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This is the second edition of a book published for the first time in 1973 by
Addison-Wesley Publishing Company, Inc., under the title A First Course in
Mathematical Statistics. The first edition has been out of print for a number of
years now, although its reprint in Taiwan is still available. That issue, however,
is meant for circulation only in Taiwan.

The first issue of the book was very well received from an academic
viewpoint. I have had the pleasure of hearing colleagues telling me that the
book filled an existing gap between a plethora of textbooks of lower math-
ematical level and others of considerably higher level. A substantial number of
colleagues, holding senior academic appointments in North America and else-
where, have acknowledged to me that they made their entrance into the
wonderful world of probability and statistics through my book. I have also
heard of the book as being in a class of its own, and also as forming a collector’s
item, after it went out of print. Finally, throughout the years, I have received
numerous inquiries as to the possibility of having the book reprinted. It is in
response to these comments and inquiries that I have decided to prepare a
second edition of the book.

This second edition preserves the unique character of the first issue of the
book, whereas some adjustments are affected. The changes in this issue consist
in correcting some rather minor factual errors and a considerable number of
misprints, either kindly brought to my attention by users of the book or
located by my students and myself. Also, the reissuing of the book has pro-
vided me with an excellent opportunity to incorporate certain rearrangements
of the material.

One change occurring throughout the book is the grouping of exercises of
each chapter in clusters added at the end of sections. Associating exercises
with material discussed in sections clearly makes their assignment easier. In
the process of doing this, a handful of exercises were omitted, as being too
complicated for the level of the book, and a few new ones were inserted. In

xv
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Chapters 1 through 8, some of the materials were pulled out to form separate
sections. These sections have also been marked by an asterisk (*) to indicate
the fact that their omission does not jeopardize the flow of presentation and
understanding of the remaining material.

Specifically, in Chapter 1, the concepts of a field and of a σ-field, and basic
results on them, have been grouped together in Section 1.2*. They are still
readily available for those who wish to employ them to add elegance and rigor
in the discussion, but their inclusion is not indispensable. In Chapter 2, the
number of sections has been doubled from three to six. This was done by
discussing independence and product probability spaces in separate sections.
Also, the solution of the problem of the probability of matching is isolated in a
section by itself. The section on the problem of the probability of matching and
the section on product probability spaces are also marked by an asterisk for the
reason explained above. In Chapter 3, the discussion of random variables as
measurable functions and related results is carried out in a separate section,
Section 3.5*. In Chapter 4, two new sections have been created by discussing
separately marginal and conditional distribution functions and probability
density functions, and also by presenting, in Section 4.4*, the proofs of two
statements, Statements 1 and 2, formulated in Section 4.1; this last section is
also marked by an asterisk. In Chapter 5, the discussion of covariance and
correlation coefficient is carried out in a separate section; some additional
material is also presented for the purpose of further clarifying the interpreta-
tion of correlation coefficient. Also, the justification of relation (2) in Chapter 2
is done in a section by itself, Section 5.6*. In Chapter 6, the number of sections
has been expanded from three to five by discussing in separate sections charac-
teristic functions for the one-dimensional and the multidimensional case, and
also by isolating in a section by itself definitions and results on moment-
generating functions and factorial moment generating functions. In Chapter 7,
the number of sections has been doubled from two to four by presenting the
proof of Lemma 2, stated in Section 7.1, and related results in a separate
section; also, by grouping together in a section marked by an asterisk defini-
tions and results on independence. Finally, in Chapter 8, a new theorem,
Theorem 10, especially useful in estimation, has been added in Section 8.5.
Furthermore, the proof of Pólya’s lemma and an alternative proof of the Weak
Law of Large Numbers, based on truncation, are carried out in a separate
section, Section 8.6*, thus increasing the number of sections from five to six.

In the remaining chapters, no changes were deemed necessary, except that
in Chapter 13, the proof of Theorem 2 in Section 13.3 has been facilitated by
the formulation and proof in the same section of two lemmas, Lemma 1 and
Lemma 2. Also, in Chapter 14, the proof of Theorem 1 in Section 14.1 has been
somewhat simplified by the formulation and proof of Lemma 1 in the same
section.

Finally, a table of some commonly met distributions, along with their
means, variances and other characteristics, has been added. The value of such
a table for reference purposes is obvious, and needs no elaboration.
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This book contains enough material for a year course in probability and
statistics at the advanced undergraduate level, or for first-year graduate stu-
dents not having been exposed before to a serious course on the subject
matter. Some of the material can actually be omitted without disrupting the
continuity of presentation. This includes the sections marked by asterisks,
perhaps, Sections 13.4–13.6 in Chapter 13, and all of Chapter 14. The instruc-
tor can also be selective regarding Chapters 11 and 18. As for Chapter 19, it
has been included in the book for completeness only.

The book can also be used independently for a one-semester (or even one
quarter) course in probability alone. In such a case, one would strive to cover
the material in Chapters 1 through 10 with the exclusion, perhaps, of the
sections marked by an asterisk. One may also be selective in covering the
material in Chapter 9.

In either case, presentation of results involving characteristic functions
may be perfunctory only, with emphasis placed on moment-generating func-
tions. One should mention, however, why characteristic functions are intro-
duced in the first place, and therefore what one may be missing by not utilizing
this valuable tool.

In closing, it is to be mentioned that this author is fully aware of the fact
that the audience for a book of this level has diminished rather than increased
since the time of its first edition. He is also cognizant of the trend of having
recipes of probability and statistical results parading in textbooks, depriving
the reader of the challenge of thinking and reasoning instead delegating the
“thinking” to a computer. It is hoped that there is still room for a book of the
nature and scope of the one at hand. Indeed, the trend and practices just
described should make the availability of a textbook such as this one exceed-
ingly useful if not imperative.

G. G. Roussas
Davis, California
May 1996
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Preface to the First Edition

This book is designed for a first-year course in mathematical statistics at the
undergraduate level, as well as for first-year graduate students in statistics—or
graduate students, in general—with no prior knowledge of statistics. A typical
three-semester course in calculus and some familiarity with linear algebra
should suffice for the understanding of most of the mathematical aspects of
this book. Some advanced calculus—perhaps taken concurrently—would be
helpful for the complete appreciation of some fine points.

There are basically two streams of textbooks on mathematical statistics
that are currently on the market. One category is the advanced level texts
which demonstrate the statistical theories in their full generality and math-
ematical rigor; for that purpose, they require a high level, mathematical back-
ground of the reader (for example, measure theory, real and complex
analysis). The other category consists of intermediate level texts, where the
concepts are demonstrated in terms of intuitive reasoning, and results are
often stated without proofs or with partial proofs that fail to satisfy an inquisi-
tive mind. Thus, readers with a modest background in mathematics and a
strong motivation to understand statistical concepts are left somewhere in
between. The advanced texts are inaccessible to them, whereas the intermedi-
ate texts deliver much less than they hope to learn in a course of mathematical
statistics. The present book attempts to bridge the gap between the two
categories, so that students without a sophisticated mathematical background
can assimilate a fairly broad spectrum of the theorems and results from math-
ematical statistics. This has been made possible by developing the fundamen-
tals of modern probability theory and the accompanying mathematical ideas at
the beginning of this book so as to prepare the reader for an understanding of
the material presented in the later chapters.

This book consists of two parts, although it is not formally so divided. Part
1 (Chapters 1–10) deals with probability and distribution theory, whereas Part
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2 (Chapters 11–20) is devoted to statistical inference. More precisely, in Part 1
the concepts of a field and σ-field, and also the definition of a random variable
as a measurable function, are introduced. This allows us to state and prove
fundamental results in their full generality that would otherwise be presented
vaguely using statements such as “it may be shown that . . . ,” “it can be proved
that . . . ,” etc. This we consider to be one of the distinctive characteristics of
this part. Other important features are as follows: a detailed and systematic
discussion of the most useful distributions along with figures and various
approximations for several of them; the establishment of several moment and
probability inequalities; the systematic employment of characteristic func-
tions—rather than moment generating functions—with all the well-known
advantages of the former over the latter; an extensive chapter on limit theo-
rems, including all common modes of convergence and their relationship; a
complete statement and proof of the Central Limit Theorem (in its classical
form); statements of the Laws of Large Numbers and several proofs of the
Weak Law of Large Numbers, and further useful limit theorems; and also an
extensive chapter on transformations of random variables with numerous
illustrative examples discussed in detail.

The second part of the book opens with an extensive chapter on suffi-
ciency. The concept of sufficiency is usually treated only in conjunction with
estimation and testing hypotheses problems. In our opinion, this does not
do justice to such an important concept as that of sufficiency. Next, the point
estimation problem is taken up and is discussed in great detail and as
large a generality as is allowed by the level of this book. Special attention is
given to estimators derived by the principles of unbiasedness, uniform mini-
mum variance and the maximum likelihood and minimax principles. An abun-
dance of examples is also found in this chapter. The following chapter is
devoted to testing hypotheses problems. Here, along with the examples (most
of them numerical) and the illustrative figures, the reader finds a discussion of
families of probability density functions which have the monotone likelihood
ratio property and, in particular, a discussion of exponential families. These
latter topics are available only in more advanced texts. Other features are
a complete formulation and treatment of the general Linear Hypothesis
and the discussion of the Analysis of Variance as an application of it.
In many textbooks of about the same level of sophistication as the present
book, the above two topics are approached either separately or in the reverse
order from the one used here, which is pedagogically unsound, although
historically logical. Finally, there are special chapters on sequential proce-
dures, confidence regions—tolerance intervals, the Multivariate Normal distri-
bution, quadratic forms, and nonparametric inference.

A few of the proofs of theorems and some exercises have been drawn from
recent publications in journals.

For the convenience of the reader, the book also includes an appendix
summarizing all necessary results from vector and matrix algebra.

There are more than 120 examples and applications discussed in detail in

Preface to the First Edition xix



xx Contents

the text. Also, there are more than 530 exercises, appearing at the end of the
chapters, which are of both theoretical and practical importance.

The careful selection of the material, the inclusion of a large variety of
topics, the abundance of examples, and the existence of a host of exercises of
both theoretical and applied nature will, we hope, satisfy people of both
theoretical and applied inclinations. All the application-oriented reader has to
do is to skip some fine points of some of the proofs (or some of the proofs
altogether!) when studying the book. On the other hand, the careful handling
of these same fine points should offer some satisfaction to the more math-
ematically inclined readers.

The material of this book has been presented several times to classes
of the composition mentioned earlier; that is, classes consisting of relatively
mathematically immature, eager, and adventurous sophomores, as well as
juniors and seniors, and statistically unsophisticated graduate students. These
classes met three hours a week over the academic year, and most of the
material was covered in the order in which it is presented with the occasional
exception of Chapters 14 and 20, Section 5 of Chapter 5, and Section 3 of
Chapter 9. We feel that there is enough material in this book for a three-
quarter session if the classes meet three or even four hours a week.

At various stages and times during the organization of this book several
students and colleagues helped improve it by their comments. In connection
with this, special thanks are due to G. K. Bhattacharyya. His meticulous
reading of the manuscripts resulted in many comments and suggestions that
helped improve the quality of the text. Also thanks go to B. Lind, K. G.
Mehrotra, A. Agresti, and a host of others, too many to be mentioned here. Of
course, the responsibility in this book lies with this author alone for all omis-
sions and errors which may still be found.

As the teaching of statistics becomes more widespread and its level of
sophistication and mathematical rigor (even among those with limited math-
ematical training but yet wishing to know “why” and “how”) more demanding,
we hope that this book will fill a gap and satisfy an existing need.

G. G. R.
Madison, Wisconsin
November 1972

xx Preface to the First Edition



1.1 Some Definitions and Notation 1

1

Chapter 1

Basic Concepts of Set Theory

1.1 Some Definitions and Notation

A set S is a (well defined) collection of distinct objects which we denote by s.
The fact that s is a member of S, an element of S, or that it belongs to S is
expressed by writing s ∈ S. The negation of the statement is expressed by
writing s ∉ S. We say that S′ is a subset of S, or that S′ is contained in S, and
write S′ ⊆ S, if for every s ∈ S′, we have s ∈ S. S′ is said to be a proper subset
of S, and we write S′ ⊂ S, if S′ ⊆ S and there exists s ∈ S such that s ∉ S′. Sets
are denoted by capital letters, while lower case letters are used for elements of
sets.

These concepts can be illustrated pictorially by a drawing called a Venn
diagram (Fig. 1.1). From now on a basic, or universal set, or space (which may
be different from situation to situation), to be denoted by S, will be considered
and all other sets in question will be subsets of S.

1.1.1 Set Operations

1. The complement (with respect to S) of the set A, denoted by Ac, is
defined by Ac = {s ∈ S; s ∉ A}. (See Fig. 1.2.)

s1

s2

S'

S

Figure 1.1 S ′ ⊆ S; in fact, S ′ ⊂ S, since s2 ∈S,
but s2 ∉S ′.
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Ac

A
S

A1 A2

S
Figure 1.4 A1 ∩ A2 is the shaded region.

Figure 1.2 Ac is the shaded region.

2. The union of the sets Aj, j = 1, 2, . . . , n, to be denoted by

A A A An j
j

n

1 2
1

∪ ∪ ⋅ ⋅ ⋅ ∪
=

or ,U

is defined by

  
A s s A at least j nj j

j

n

= ∈ ∈ = ⋅ ⋅ ⋅{ }
=

S ; , , , .  for  one   1 2
1

U

For n = 2, this is pictorially illustrated in Fig. 1.3. The definition extends to an
infinite number of sets. Thus for denumerably many sets, one has

  
A s s A at least one jj j

j

= ∈ ∈ = ⋅ ⋅ ⋅{ }
=

∞

S ; , , .  for    1 2
1

U

A1 A2

S
Figure 1.3 A1 ∪ A2 is the shaded region.

3. The intersection of the sets Aj, j = 1, 2, . . . , n, to be denoted by

A A A An j
j

n

1 2
1

∩ ∩ ⋅ ⋅ ⋅ ∩
=

or ,I

is defined by

  
A s s A all j nj j

j

n

= ∈ ∈ = ⋅ ⋅ ⋅{ }
=

S ; , , , .  for    1 2
1

I

For n = 2, this is pictorially illustrated in Fig. 1.4. This definition extends to an
infinite number of sets. Thus for denumerably many sets, one has

  
A s s A all jj j

j

= ∈ ∈ = ⋅ ⋅ ⋅{ }
=

∞

S ; , , .  for   1 2
1

I
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4. The difference A1 − A2 is defined by

  A A s s A s A1 2 1 2− = ∈ ∈ ∉{ }S ; , .

Symmetrically,

  A A s s A s A2 1 2 1− = ∈ ∈ ∉{ }S ; , .

Note that A1 − A2 = A1 ∩ Ac
2, A2 − A1 = A2 ∩ Ac

1, and that, in general, A1 − A2

≠ A2 − A1. (See Fig. 1.5.)

5. The symmetric difference A1 Δ A2 is defined by

A A A A A A1 2 1 2 2 1Δ = −( ) ∪ −( ).
Note that

A A A A A A1 2 1 2 1 2Δ = ∪( ) − ∩( ).
Pictorially, this is shown in Fig. 1.6. It is worthwhile to observe that
operations (4) and (5) can be expressed in terms of operations (1), (2), and
(3).

A1 A2

S
Figure 1.6 A1 Δ A2 is the shaded area.

A1 A2

S
Figure 1.5 A1 − A2 is ////.

A2 − A1 is \\\\.

1.1.2 Further Definitions and Notation

A set which contains no elements is called the empty set and is denoted by ∅.
Two sets A1, A2 are said to be disjoint if A1 ∩ A2 = ∅. Two sets A1, A2 are said
to be equal, and we write A1 = A2, if both A1 ⊆ A2 and A2 ⊆ A1. The sets Aj,
j = 1, 2, . . . are said to be pairwise or mutually disjoint if Ai ∩ Aj = ∅ for all
i ≠ j (Fig. 1.7). In such a case, it is customary to write

A A A A A A A An j j
jj

n

1 2 1 1 2
11

+ + ⋅ ⋅ ⋅ + = + + ⋅ ⋅ ⋅ =
=

∞

=
∑∑,  and

instead of A1 ∪ A2, Ajj
n
=1U , and Ajj =

∞
1U , respectively. We will write

AjjU , Ajj∑ , AjjI , where we do not wish to specify the range of j, which
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1.1.3 Properties of the Operations on Sets

1. S c = ∅, ∅c = S, (Ac)c = A.

2. S ∪ A = S, ∅ ∪ A = A, A ∪ Ac = S, A ∪ A = A.

3. S ∩ A = A, ∅ ∩ A = ∅, A ∩ Ac = ∅, A ∩ A = A.

The previous statements are all obvious as is the following: ∅ ⊆ A for every
subset A of S. Also

4. A1 ∪ (A2 ∪ A3) = (A1 ∪ A2) ∪ A3 } (Associative laws)
A1 ∩ (A2 ∩ A3) = (A1 ∩ A2) ∩ A3

5. A1 ∪ A2 = A2 ∪ A1 } (Commutative laws)
A1 ∩ A2 = A2 ∩ A1

6. A ∩ (∪j Aj) = ∪j (A ∩ Aj) } (Distributive laws)
A ∪ (∩j Aj) = ∩j (A ∪ Aj)

are easily seen to be true.
The following identity is a useful tool in writing a union of sets as a sum of

disjoint sets.

An identity:

A A A A A A Aj
c

j

c c= + ∩ + ∩ ∩ + ⋅ ⋅ ⋅1 1 2 1 2 3U .

There are two more important properties of the operation on sets which
relate complementation to union and intersection. They are known as De
Morgan’s laws:

i

ii

) ⎛

⎝⎜
⎞

⎠⎟
=

) ⎛

⎝⎜
⎞

⎠⎟
=

A A

A A

j
j

c

j
c

j

j
j

c

j
c

j

U I

I U

,

.

As an example of a set theoretic proof, we prove (i).

PROOF OF (i) We wish to establish

a) ( U jAj)
c ⊆ I jA

c
j and b) I jA

c
j ⊆ ( U jAj)

c.

will usually be either the (finite) set {1, 2, . . . , n}, or the (infinite) set
{1, 2, . . .}.

A1 A2

S
Figure 1.7 A1 and A2 are disjoint; that is,
A1 ∩ A2 =  ∅. Also A1 ∪ A2 = A1 + A2 for the
same reason.
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We will then, by definition, have verified the desired equality of the two
sets.

a) Let s ∈ ( U jAj)
c. Then s ∉ U jAj, hence s ∉ Aj for any j. Thus s ∈ Ac

j for every
j and therefore s ∈ I jA

c
j.

b) Let s ∈ I jA
c
j. Then s ∈ Ac

j for every j and hence s ∉ Aj for any j. Then
s ∉ U jAj and therefore s ∈( U jAj)

c.

The proof of (ii) is quite similar. ▲

This section is concluded with the following:

The sequence {An}, n = 1, 2, . . . , is said to be a monotone sequence of sets if:

ii) A1 ⊆ A2 ⊆ A3 ⊆ · · · (that is, An is increasing, to be denoted by An↑), or

ii) A1 � A2 � A3 � · · · (that is, An is decreasing, to be denoted by An↓).

The limit of a monotone sequence is defined as follows:

ii) If An↑, then lim ,
n

n n
n

A A
→∞ =

∞

=
1

U  and

ii) If An↓, then lim .
n

n n
n

A A
→∞ =

∞

=
1

I

More generally, for any sequence {An}, n = 1, 2, . . . , we define

A A A
n

n j
j nn

= =
→∞ =

∞

=

∞

lim inf ,IU
1

and

A A A
n

n j
j nn

= =
→∞ =

∞

=

∞

lim sup .UI
1

The sets A and Ā are called the inferior limit and superior limit,
respectively, of the sequence {An}. The sequence {An} has a limit if A = Ā.

Exercises

1.1.1 Let Aj, j = 1, 2, 3 be arbitrary subsets of S. Determine whether each of
the following statements is correct or incorrect.

iii) (A1 − A2) ∪ A2 = A2;

iii) (A1 ∪ A2) − A1 = A2;

iii) (A1 ∩ A2) ∩ (A1 − A2) = ∅;

iv) (A1 ∪ A2) ∩ (A2 ∪ A3) ∩ (A3 ∪ A1) = (A1 ∩ A2) ∪ (A2 ∩ A3) ∪ (A3 ∩ A1).

Exercises 5

DEFINITION 1



6 1 Basic Concepts of Set Theory

1.1.2 Let S = {(x, y)′ ∈ � 2; −5 � x � 5, 0 � y � 5, x, y = integers}, where
prime denotes transpose, and define the subsets Aj, j = 1, . . . , 7 of S as follows:

  

A x y x y A x y x y

A x y x y A x y x y

A x y x y

1 2

3
2 2

4
2 2

5
2 2 4

= ( )′ ∈ =
⎧
⎨
⎩

⎫
⎬
⎭

= ( )′ ∈ = −
⎧
⎨
⎩

⎫
⎬
⎭

= ( )′ ∈ =
⎧
⎨
⎩

⎫
⎬
⎭

= ( )′ ∈ ≤
⎧
⎨
⎩

⎫
⎬
⎭

= ( )′ ∈ + ≤

, ; ; , ; ;

, ; ; , ; ;

, ;

S S

S S

S⎧⎧
⎨
⎩

⎫
⎬
⎭

= ( )′ ∈ ≤
⎧
⎨
⎩

⎫
⎬
⎭

= ( )′ ∈ ≥
⎧
⎨
⎩

⎫
⎬
⎭

; , ; ;

, ; .

A x y x y

A x y x y

6
2

7
2

S

S

List the members of the sets just defined.

1.1.3 Refer to Exercise 1.1.2 and show that:

iii) A A A Aj
j

j
j

1
2

7

1
2

7

∩
⎛

⎝⎜
⎞

⎠⎟
= ∩( )

= =
U U ;

iii) A A A Aj
j

j
j

1
2

7

1
2

7

∪
⎛

⎝⎜
⎞

⎠⎟
= ∪( )

= =
I I ;

iii) A Aj
j

c

j
c

j= =

⎛

⎝⎜
⎞

⎠⎟
=

1

7

1

7

U I ;

iv) A Aj
j

c

j
c

j= =

⎛

⎝⎜
⎞

⎠⎟
=

1

7

1

7

I U

by listing the members of each one of the eight sets appearing on either side of
each one of the relations (i)–(iv).

1.1.4 Let A, B and C be subsets of S and suppose that A ⊆ B and B ⊆ C.
Then show that A ⊆ C; that is, the subset relationship is transitive. Verify it by
taking A = A1, B = A3 and C = A4, where A1,A3 and A4 are defined in Exercise
1.1.2.

1.1.5 Establish the distributive laws stated on page 4.

1.1.6 In terms of the acts A1, A2, A3, and perhaps their complements,
express each one of the following acts:

iii) Bi = {s ∈ S; s belongs to exactly i of A1, A2, A3, where i = 0, 1, 2, 3};

iii) C = {s ∈ S; s belongs to all of A1, A2, A3 };
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iii) D = {s ∈ S; s belongs to none of A1, A2, A3};

iv) E = {s ∈ S; s belongs to at most 2 of A1, A2, A3};

iv) F = {s ∈ S; s belongs to at least 1 of A1, A2, A3}.

1.1.7 Establish the identity stated on page 4.

1.1.8 Give a detailed proof of the second identity in De Morgan’s laws; that
is, show that

A Aj
j

c

j
c

j
I U

⎛

⎝⎜
⎞

⎠⎟
= .

1.1.9 Refer to Definition 1 and show that

iii) A = {s ∈ S; s belongs to all but finitely many A’s};

iii) Ā = {s ∈ S; s belongs to infinitely many A’s};

iii) A
¯

⊆ Ā;

iv) If {An} is a monotone sequence, then A
¯

= Ā = lim .
n

nA
→∞

1.1.10 Let S = � 2 and define the subsets An, Bn, n = 1, 2, . . . of S as
follows:

  

A x y
n

x
n

y
n

B x y x y
n

n

n

= ( )′ ∈ + ≤ < − ≤ ≤ −
⎧
⎨
⎩

⎫
⎬
⎭

= ( )′ ∈ + ≤
⎧
⎨
⎩

⎫
⎬
⎭

, ; , ,

, ; .

�

�

2
2

2 2 2
3

3
1

6
2

0 2
1

1

Then show that An↑ A, Bn↓ B and identify A and B.

1.1.11 Let S = � and define the subsets An, Bn, n = 1, 2, . . . of S as
follows:

  

A x
n

x
n

B x x
nn n= ∈ − + < < −

⎧
⎨
⎩

⎫
⎬
⎭

= ∈ < < +
⎧
⎨
⎩

⎫
⎬
⎭

� �; , ; .5
1

20
1

0 7
3

Then show that An↑ and Bn↓, so that lim
n nA A

→∞
=  and lim

n nB B
→∞

=  exist (by
Exercise 1.1.9(iv)). Also identify the sets A and B.

1.1.12 Let A and B be subsets of S and for n = 1, 2, . . . , define the sets An as
follows: A2n−1 = A, A2n = B. Then show that

lim inf , lim sup .
n

n
n

nA A B A A B
→∞ →∞

= ∩ = ∪

Exercises 7
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1.2* Fields and σ-Fields

In this section, we introduce the concepts of a field and of a σ-field, present a
number of examples, and derive some basic results.

A class (set) of subsets of S is said to be a field, and is denoted by F, if

(F1) F is a non-empty class.

(F2) A ∈ F implies that Ac ∈ F (that is, F is closed under
complementation).

(F3) A1, A2 ∈ F implies that A1 ∪ A2 ∈ F (that is, F is closed under
pairwise unions).

1.2.1 Consequences of the Definition of a Field

1. S, ∅ ∈ F.

2. If Aj ∈ F, j = 1, 2, . . . , n, then Ajj
n
=1U ∈ F, Ajj

n
=1I ∈ F for any finite n.

(That is, F is closed under finite unions and intersections. Notice, how-
ever, that Aj ∈ F, j = 1, 2, . . . need not imply that their union or intersection is
in F; for a counterexample, see consequence 2 on page 10.)

PROOF OF (1) AND (2) (1) (F1) implies that there exists A ∈ F and (F2)
implies that Ac ∈ F. By (F3), A ∪ Ac = S ∈ F. By (F2), S c = ∅ ∈ F.

(2) The proof will be by induction on n and by one of the De Morgan’s
laws. By (F3), if A1, A2 ∈ F, then A1 ∪ A2 ∈ F; hence the statement for unions
is true for n = 2. (It is trivially true for n = 1.) Now assume the statement for
unions is true for n = k − 1; that is, if

  
A A A Ak j

j

k

1 2 1
1

1

, , , . ,  then⋅ ⋅ ⋅ ∈ ∈−
=

−

F FU

Consider A1, A2, . . . , Ak ∈ F. By the associative law for unions of sets,

A A Aj j
j

k

k
j

k

=
⎛

⎝⎜
⎞

⎠⎟
∪

=

−

= 1

1

1
UU .

By the induction hypothesis, Ajj
k
=
−
1
1U ∈ F. Since Ak ∈ F, (F3) implies that

  
A A Aj

j

k

k j
j

k

=

−

=

⎛

⎝⎜
⎞

⎠⎟
∪ = ∈

1

1

1
U U F

and by induction, the statement for unions is true for any finite n. By observing
that

A Aj j
c

j

n
c

j

n

=
⎛

⎝⎜
⎞

⎠⎟== 11
UI ,

DEFINITION 2

* The reader is reminded that sections marked by an asterisk may be omitted without jeo-
* pardizing the understanding of the remaining material.
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we see that (F2) and the above statement for unions imply that if A1, . . . , An

∈ F, then Ajj
n
=1I ∈ F for any finite n. ▲

1.2.2 Examples of Fields

1. C1 = {∅, S} is a field (trivial field).

2. C2 = {all subsets of S} is a field (discrete field).

3. C3 = {∅, S, A, Ac}, for some ∅ ⊂ A ⊂ S, is a field.

4. Let S be infinite (countably so or not) and let C4 be the class of subsets
of S which are finite, or whose complements are finite; that is, C4 = {A ⊂ S; A
or Ac is finite}.

As an example, we shall verify that C4 is a field.

PROOF THAT C4 IS A FIELD

i) Since Sc = ∅ is finite, S ∈ C4, so that C4 is non-empty.

ii) Suppose that A ∈ C4. Then A or Ac is finite. If A is finite, then (Ac)c = A is
finite and hence Ac ∈ C4 also. If Ac is finite, then Ac ∈ C4.

iii) Suppose that A1, A2 ∈ C4. Then A1 or Ac
1 is finite and A2 or Ac

2 is finite.

a) Suppose that A1, A2 are both finite. Then A1 ∪ A2 is finite, so that A1

∪ A2 ∈ C4.

b) Suppose that Ac
1, A2 are finite. Then (A1 ∪ A2)c = Ac

1 ∩ Ac
2 is finite

since Ac
1 is. Hence A1 ∪ A2 ∈ C4.

The other two possibilities follow just as in (b). Hence (F1), (F2), (F3) are
satisfied. ▲

We now formulate and prove the following theorems about fields.

Let I be any non-empty index set (finite, or countably infinite, or uncoun-
table), and let Fj, j ∈ I be fields of subsets of S. Define F by F F= =∈I j I j

{A; A ∈ Fj for all j ∈ I}. Then F is a field.

PROOF

i) S, ∅ ∈ Fj for every j ∈ I, so that S, ∅ ∈ F and hence F is non-empty.

ii) If A ∈ F, then A ∈ Fj for every j ∈ I. Thus Ac ∈ Fj for every j ∈ I, so that
Ac ∈ F.

iii) If A1, A2 ∈ F, then A1, A2 ∈ Fj for every j ∈ I. Then A1 ∪ A2 ∈ Fj for every
j ∈ I, and hence A1 ∪ A2 ∈ F. ▲

Let C be an arbitrary class of subsets of S. Then there is a unique minimal field
F containing C. (We say that F is generated by C and write F = F(C).)

PROOF Clearly, C is contained in the discrete field. Next, let {Fj, j ∈ I} be the
class of all fields containing C and define F(C) by

  
F C F( ) =

∈
j

j I

.I

1.2* Fields and σσσσσ -Fields 9

THEOREM 1

THEOREM 2
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By Theorem 1, F(C) is a field containing C. It is obviously the smallest such
field, since it is the intersection of all fields containing C, and is unique. Hence
F = F(C). ▲

A class of subsets of S is said to be a σ-field, and is denoted by A, if it is a field
and furthermore (F3) is replaced by (A3): If Aj ∈ A, j = 1, 2, . . . , then U j jA=

∞
1

∈ A (that is, A is closed under denumerable unions).

1.2.3 Consequences of the Definition of a σσσσσ -Field

1. If Aj ∈ A, j = 1, 2, . . . , then I j jA=
∞

1 ∈ A (that is, A is closed under
denumerable intersections).

2. By definition, a σ-field is a field, but the converse is not true. In fact, in
Example 4 on page 9, take S = (−∞, ∞), and define Aj = {all integers in [−j, j]},
j = 1, 2, . . . . Then U j jA=

∞
1  is the set A, say, of all integers. Thus A is infinite and

furthermore so is Ac. Hence A ∉ F, whereas Aj ∈ F for all j.

1.2.4 Examples of σσσσσ-Fields

1. C1 = {∅, S} is a σ-field (trivial σ-field).

2. C2 = {all subsets of S} is a σ-field (discrete σ-field).

3. C3 = {∅, S, A, Ac} for some ∅ ⊂ A ⊂ S is a σ-field.

4. Take S to be uncountable and define C4 as follows:
C4 = {all subsets of S which are countable or whose complements are
countable}.

As an example, we prove that C4 is a σ-field.

PROOF

i) Sc = ∅ is countable, so C4 is non-empty.

ii) If A ∈ C4, then A or Ac is countable. If A is countable, then (Ac)c = A is
countable, so that Ac ∈ C4. If Ac is countable, by definition Ac ∈ C4.

iii) The proof of this statement requires knowledge of the fact that a count-
able union of countable sets is countable. (For proof of this fact see
page 36 in Tom M. Apostol’s book Mathematical Analysis, published
by Addison-Wesley, 1957.) Let Aj, j = 1, 2, . . . ∈ A. Then either each
Aj is countable, or there exists some Aj for which Aj is not countable but
Ac

j is. In the first case, we invoke the previously mentioned theorem
on the countable union of countable sets. In the second case, we note
that

A Aj
j

c

j
c

j=

∞

=

∞⎛

⎝⎜
⎞

⎠⎟
=

1 1
U I ,

which is countable, since it is the intersection of sets, one of which is
countable. ▲

DEFINITION 3



1.1 Some Definitions and Notation 11

We now introduce some useful theorems about σ-fields.

Let I be as in Theorem 1, and let Aj, j ∈ I, be σ-fields. Define A by A =
I j I∈  Aj = {A; A ∈ Aj for all j ∈ I}. Then A is a σ-field.

PROOF

i) S, ∅ ∈ Aj for every j ∈ I and hence they belong in A.

ii) If A ∈ A, then A ∈ Aj for every j ∈ I, so that Ac ∈ Aj for every j ∈ I. Thus
Ac ∈ A.

iii) If A1, A2, . . . , ∈ A, then A1, A2, . . . ∈ Aj for every j ∈ I and hence U j jA=
∞

1

∈ A j; for every j ∈ I; thus   U j jA=
∞ ∈1 A . ▲

Let C be an arbitrary class of subsets of S. Then there is a unique minimal
σ-field A containing C. (We say that A is the σ-field generated by C and write
A = σ(C).)

PROOF Clearly, C is contained in the discrete σ-field. Define

  σ σC C( ) = { }I  all -fields containing .

By Theorem 3, σ(C ) is a σ-field which obviously contains C. Uniqueness
and minimality again follow from the definition of σ(C ). Hence A =
σ(C). ▲

REMARK 1 For later use, we note that if A is a σ-field and A ∈ A, then AA

= {C; C = B ∩ A for some B ∈ A} is a σ-field, where complements of sets are
formed with respect to A, which now plays the role of the entire space. This is
easily seen to be true by the distributive property of intersection over union
(see also Exercise 1.2.5).

In all that follows, if S is countable (that is, finite or denumerably in-
finite), we will always take A to be the discrete σ-field. However, if S is
uncountable, then for certain technical reasons, we take the σ-field to be
“smaller” than the discrete one. In both cases, the pair (S, A) is called a
measurable space.

1.2.5 Special Cases of Measurable Spaces

1. Let S be �  (the set of real numbers, or otherwise known as the real
line) and define C0 as follows:

    
C0 = { } =

−∞( ) −∞( ] ∞( ) ∞[ ) ( )
( ] [ ) [ ] ∈ <

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
all intervals in 

         

        
�

�

, , , , , , , , , ,

, , , , , ; , ,
.

x x x x x y

x y x y x y x y x y

By Theorem 4, there is a σ-field A = σ(C0); we denote this σ-field by B and call

1.2* Fields and σσσσσ -Fields 11

THEOREM 3

THEOREM 4
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it the Borel σ-field (over the real line). The pair (� , B) is called the Borel real
line.

Each one of the following classes generates the Borel σ-field.

    

C
C
C
C
C
C

1

2

3

4

5

6

= ( ] ∈ <{ }
= [ ) ∈ <{ }
= [ ] ∈ <{ }
= ( ) ∈ <{ }
= ∞( ) ∈{ }
= ∞[

x y x y

x y x y

x y x y

x y x y

x x

x

, ; , ,

, ; , ,

, ; , ,

, ; , ,

, ; ,

,

   y ,  x

   y ,  x

   y ,  x

   y ,  x

�

�

�

�

�

)) ∈{ }
= −∞( ) ∈{ }
= −∞( ] ∈{ }

; ,

, ; ,

, ; .

 x  

 x  

x

x

x

�

�

�

C
C

7

8

Also the classes C ′j, j = 1, . . . , 8 generate the Borel σ-field, where for j = 1, . . . ,
8, C ′j is defined the same way as Cj is except that x, y are restricted to the
rational numbers.

PROOF Clearly, if C, C ′ are two classes of subsets of S such that C ⊆ C ′, then
σ(C) ⊆ σ(C ′). Thus, in order to prove the theorem, it suffices to prove that B
⊆ σ(Cj), B ⊆ σ(C ′j), j = 1, 2, . . . , 8, and in order to prove this, it suffices to show
that C0 ⊆ σ(Cj), C0 ⊆ σ(C′j), j = 1, 2, . . . , 8. As an example, we show that C0 ⊆
σ(C7). Consider xn ↓ x. Then (−∞, xn) ∈ σ(C7) and hence =

∞
n 1I (−∞, xn) ∈ σ(C7).

But

−∞( ) = −∞( ]
=

∞

, , .x xn
n 1
I

Thus (−∞, x] ∈ σ(C7) for every x ∈ � . Since

x x x x
c c

, , , , , ,    ∞( ) = −∞( ] ∞[ ) = −∞( )
it also follows that (x, ∞), [x, ∞) ∈ σ(C7). Next,

  

x x

x x x x

x x

, , , , , ,

, , , , , , , ,

, , , .

 y  y  x  y  

 y  y    y  y  

 y  y  

( ) = −∞( ) − −∞( ] = −∞( ) ∩ ∞( ) ∈ ( )
( ] = −∞( ]∩ ∞( ) ∈ ( ) [ ) = −∞( ) ∩ ∞[ ) ∈ ( )

[ ] = −∞( ]∩ ∞[ ) ∈ ( )

σ

σ σ

σ

C
C C

C

7

7 7

7

Thus C0 ⊆ σ(C7). In the case of C′j, j = 1, 2, . . . , 8, consider monotone
sequences of rational numbers convergent to given irrationals x, y. ▲

THEOREM 5
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2. Let S = � × � = � 2 and define C0 as follows:

    

C0 = { } = −∞( ) × −∞ ′( ) −∞( ) × −∞ ′( ]{
−∞( ] × −∞ ′( ) −∞( ] × −∞ ′( ]

∞( ) × ′ ∞( ) ⋅ ⋅ ⋅ ∞[ ) × ′ ∞[ ) ⋅ ⋅ ⋅

(

all rectangles in      

     

  , ,    , ,

2� , , , , , ,

, , , , , ,

, , , ,

,

x x x x

x x x x

x x x x

x y)) × ′ ′( ) ⋅ ⋅ ⋅ [ ] × ′ ′[ ]
′ ′ ∈ < ′ < ′}

x y x y x y

x y x y x y x y

, , , ,

, , , , , .

 , ,    

     �

The σ-field generated by C0 is denoted by B2 and is the two-dimensional
Borel σ-field. A theorem similar to Theorem 5 holds here too.

3. Let S = � × � × · · · × � = � k (k copies of �) and define C0 in a way
similar to that in (2) above. The σ-field generated by C0 is denoted by Bk and
is the k-dimensional Borel σ-field. A theorem similar to Theorem 5 holds here
too.

Exercises

1.2.1 Verify that the classes defined in Examples 1, 2 and 3 on page 9 are
fields.

1.2.2 Show that in the definition of a field (Definition 2), property (F3) can
be replaced by (F3′) which states that if A1, A2 ∈ F, then A1 ∩ A2 ∈ F.

1.2.3 Show that in Definition 3, property (A3) can be replaced by (A3′),
which states that if

  
A j Aj j

j

∈ = ⋅ ⋅ ⋅ ∈
=

∞

A A, , .1
1

 2, then I

1.2.4 Refer to Example 4 on σ-fields on page 10 and explain why S was taken
to be uncountable.

1.2.5 Give a formal proof of the fact that the class AA defined in Remark 1
is a σ-field.

1.2.6 Refer to Definition 1 and show that all three sets A
¯

, Ā and lim
n→∞

An,

whenever it exists, belong to A provided An, n ≥ 1, belong to A.

1.2.7 Let S = {1, 2, 3, 4} and define the class C of subsets of S as follows:

  

C
S

= { } { } { } { } { } { } { } { } { }{
{ } { } { } }
∅, , , , , , , , , , , , , , ,

, , , , , , , , , .

              

         

1 2 3 4 1 2 1 3 1 4 2 3 2 4

1 2 3 1 3 4 2 3 4

Determine whether or not C is a field.

1.2.8 Complete the proof of the remaining parts in Theorem 5.
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Chapter 2

Some Probabilistic Concepts
and Results

2.1 Probability Functions and Some Basic Properties and Results

Intuitively by an experiment one pictures a procedure being carried out under
a certain set of conditions whereby the procedure can be repeated any number
of times under the same set of conditions, and upon completion of the proce-
dure certain results are observed. An experiment is a deterministic experiment
if, given the conditions under which the experiment is carried out, the outcome
is completely determined. If, for example, a container of pure water is brought
to a temperature of 100°C and 760mmHg of atmospheric pressure the out-
come is that the water will boil. Also, a certificate of deposit of $1,000 at the
annual rate of 5% will yield $1,050 after one year, and $(1.05)n × 1,000 after n
years when the (constant) interest rate is compounded. An experiment for
which the outcome cannot be determined, except that it is known to be one of
a set of possible outcomes, is called a random experiment. Only random
experiments will be considered in this book. Examples of random experiments
are tossing a coin, rolling a die, drawing a card from a standard deck of playing
cards, recording the number of telephone calls which arrive at a telephone
exchange within a specified period of time, counting the number of defective
items produced by a certain manufacturing process within a certain period of
time, recording the heights of individuals in a certain class, etc. The set of all
possible outcomes of a random experiment is called a sample space and is
denoted by S. The elements s of S are called sample points. Certain subsets of
S are called events. Events of the form {s} are called simple events, while an
event containing at least two sample points is called a composite event. S and
∅ are always events, and are called the sure or certain event and the impossible
event, respectively. The class of all events has got to be sufficiently rich in order
to be meaningful. Accordingly, we require that, if A is an event, then so is its
complement Ac. Also, if Aj, j = 1, 2, . . . are events, then so is their union U jAj.
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(In the terminology of Section 1.2, we require that the events associated with
a sample space form a σ-field of subsets in that space.) It follows then that I jAj

is also an event, and so is A1 − A2, etc. If the random experiment results in s and
s ∈ A, we say that the event A occurs or happens. The U j Aj occurs if at least
one of the Aj occurs, the I j Aj occurs if all Aj occur, A1 − A2 occurs if A1 occurs
but A2 does not, etc.

The next basic quantity to be introduced here is that of a probability
function (or of a probability measure).

A probability function denoted by P is a (set) function which assigns to each
event A a number denoted by P(A), called the probability of A, and satisfies
the following requirements:

(P1) P is non-negative; that is, P(A) ≥ 0, for every event A.

(P2) P is normed; that is, P(S) = 1.

(P3) P is σ-additive; that is, for every collection of pairwise (or mutually)
disjoint events Aj, j = 1, 2, . . . , we have P(Σj Aj) = Σj P(Aj).

This is the axiomatic (Kolmogorov) definition of probability. The triple
(S, class of events, P) (or (S, A, P)) is known as a probability space.

REMARK 1 If S is finite, then every subset of S is an event (that is, A is taken
to be the discrete σ-field). In such a case, there are only finitely many events
and hence, in particular, finitely many pairwise disjoint events. Then (P3) is
reduced to:

(P3′) P is finitely additive; that is, for every collection of pairwise disjoint
events, Aj, j = 1, 2, . . . , n, we have

P A P Aj
j

n

j
j

n

= =
∑ ∑

⎛

⎝⎜
⎞

⎠⎟
= ( )

1 1

.

Actually, in such a case it is sufficient to assume that (P3′) holds for any two
disjoint events; (P3′) follows then from this assumption by induction.

2.1.1 Consequences of Definition 1

  ( ) ( ) .   ,C1 0P ∅ ∅= = + + ⋅ ⋅ ⋅In fact,  S S
so that

  P P P PS S S( ) = + + ⋅ ⋅ ⋅( ) = ( ) + ( ) + ⋅ ⋅ ⋅∅ ∅ ,

or

1 1 0= + ( ) + ⋅ ⋅ ⋅ ( ) =P P∅ ∅and ,

since P(∅) ≥ 0. (So P(∅) = 0. Any event, possibly � ∅, with probability 0 is
called a null event.)

(C2) P is finitely additive; that is for any event Aj, j = 1, 2, . . . , n such that
Ai ∩ Aj = ∅, i ≠ j,
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P A P Aj
j

n

j
j

n

= =
∑ ∑

⎛

⎝⎜
⎞

⎠⎟
= ( )

1 1

.

Indeed, for A j n P A P PA P Aj j
n

j j j j j= ≥ + ( ) = ( ) = ( ) == =
∞

=
∞0 1 1 1 1, , Σ Σ Σ

Σj
n

jP A= ( )1 .

(C3) For every event A, P(Ac) = 1 − P(A). In fact, since A + Ac = S,

P A A P S P A P Ac c+( ) = ( ) ( ) + ( ) =, ,or 1

so that P(Ac) = 1 − P(A).

(C4) P is a non-decreasing function; that is A1 ⊆ A2 implies P(A1) ≤ P(A2).

In fact,

A A A A2 1 2 1= + −( ),
hence

P A P A P A A2 1 2 1( ) = ( ) + −( ),
and therefore P(A2) ≥ P(A1).

REMARK 2 If A1 ⊆ A2, then P(A2 − A1) = P(A2) − P(A1), but this is not true,
in general.

(C5) 0 ≤ P(A) ≤ 1 for every event A. This follows from (C1), (P2), and (C4).

(C6) For any events A1, A2, P(A1 ∪ A2) = P(A1) + P(A2) − P(A1 ∩ A2).

In fact,

A A A A A A1 2 1 2 1 2∪ = + − ∩( ).
Hence

P A A P A P A A A

P A P A P A A

1 2 1 2 1 2

1 2 1 2

∪( ) = ( ) + − ∩( )
= ( ) + ( ) − ∩( ),

since A1 ∩ A2 ⊆ A2 implies

P A A A P A P A A2 1 2 2 1 2− ∩( ) = ( ) − ∩( ).
(C7) P is subadditive; that is,

P A P Aj
j

j
j=

∞

=

∞⎛

⎝⎜
⎞

⎠⎟
≤ ( )∑

1 1
U

and also

P A P Aj
j

n

j
j

n

= =

⎛

⎝⎜
⎞

⎠⎟
≤ ( )∑

1 1
U .
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This follows from the identities

A A A A A A Aj
j

c c
n
c

n
=

∞

−= + ∩( ) + ⋅ ⋅ ⋅ + ∩ ⋅ ⋅ ⋅ ∩ ∩( ) + ⋅ ⋅ ⋅
1

1 1 2 1 1U ,

A A A A A A Aj
j

n
c c

n
c

n
=

−= + ∩( ) + ⋅ ⋅ ⋅ + ∩ ⋅ ⋅ ⋅ ∩ ∩( )
1

1 1 2 1 1U ,

(P3) and (C2), respectively, and (C4).

A special case of a probability space is the following: Let S = {s1, s2, . . . , sn},
let the class of events be the class of all subsets of S, and define P as P({sj}) =
1/n, j = 1, 2, . . . , n. With this definition, P clearly satisfies (P1)–(P3′) and this
is the classical definition of probability. Such a probability function is called a
uniform probability function. This definition is adequate as long as S is finite
and the simple events {sj}, j = 1, 2, . . . , n, may be assumed to be “equally
likely,” but it breaks down if either of these two conditions is not satisfied.
However, this classical definition together with the following relative frequency
(or statistical) definition of probability served as a motivation for arriving at
the axioms (P1)–(P3) in the Kolmogorov definition of probability. The relative
frequency definition of probability is this: Let S be any sample space, finite
or not, supplied with a class of events A. A random experiment associated with
the sample space S is carried out n times. Let n(A) be the number of times that
the event A occurs. If, as n → ∞, lim[n(A)/n] exists, it is called the probability
of A, and is denoted by P(A). Clearly, this definition satisfies (P1), (P2) and
(P3′).

Neither the classical definition nor the relative frequency definition of
probability is adequate for a deep study of probability theory. The relative
frequency definition of probability provides, however, an intuitively satisfac-
tory interpretation of the concept of probability.

We now state and prove some general theorems about probability
functions.

(Additive Theorem) For any finite number of events, we have

P A P A P A A

P A A A

P A A A

j
j

n

j j j
j j nj

n

j j j
j j j n

n

n

= ≤ ≤=

≤ ≤

+

⎛

⎝⎜
⎞

⎠⎟
= ( ) − ∩( )

+ ∩ ∩( )
− ⋅ ⋅ ⋅ + −( ) ∩ ∩ ⋅ ⋅ ⋅ ∩( )

∑∑

∑
1 11

1

1

1 2

1 2

1 2

1 2 3

1 2 3

1

U
<

< <

.

PROOF (By induction on n). For n = 1, the statement is trivial, and we
have proven the case n = 2 as consequence (C6) of the definition of probability
functions. Now assume the result to be true for n = k, and prove it for
n = k + 1.

2.1 Probability Functions and Some Basic Properties and Results 17

THEOREM 1
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We have

P A P A A

P A P A P A A

P A P A A

j
j

k

j
j

k

k

j
j

k

k j
j

k

k

j j j
j j k

=

+

=
+

=
+

=
+

≤ < ≤

⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
∪

⎛

⎝
⎜

⎞

⎠
⎟

=
⎛

⎝⎜
⎞

⎠⎟
+ ( ) −

⎛

⎝⎜
⎞

⎠⎟
∩

⎛

⎝
⎜

⎞

⎠
⎟

= ( ) − ∩( )

1

1

1
1

1
1

1
1

1
1 2

1 2

U U

U U

∑∑∑

∑
=

≤ < < ≤

+

+ +
=

⎡

⎣
⎢
⎢

+ ∩ ∩( ) − ⋅ ⋅ ⋅

+ −( ) ∩ ∩ ⋅ ⋅ ⋅ ∩( )⎤⎦⎥ + ( ) − ∩( )⎛

⎝⎜
⎞

⎠⎟

= ( ) − ∩( )

j

k

j j j
j j j k

k

k k j k
j

k

j j j

P A A A

P A A A P A P A A

P A P A A

1

1

1

1 2 1 1
1

1

1 2 3

1 2 3

1 2

1 U

≤≤ ≤=

+

≤ ≤

+

+
=

∑∑

∑+ ∩ ∩( ) − ⋅ ⋅ ⋅

+ −( ) ∩ ⋅ ⋅ ⋅ ∩( ) − ∩( )⎛

⎝⎜
⎞

⎠⎟

j j kj

k

j j j
j j j k

k

k j k
j

k

i

i

P A A A

P A A A P A A

<

< <

2

1 2 3

2 3

1

1

1

1

1 2 1
1

1 U . (1)
But

P A A P A A P A A A

P A A A A

P A A

j k
j

k

j k j j k
j j kj

k

j j j k
j j j k

k

j j

∩( )⎛

⎝⎜
⎞

⎠⎟
= ∩( ) − ∩ ∩( )

+ ∩ ∩ ∩( ) − ⋅ ⋅ ⋅

+ −( ) ∩ ⋅ ⋅ ⋅ ∩

+
=

+ +
≤ ≤=

+
≤ ≤

∑∑

∑

1
1

1 1
11

1
1

1 2

1 2

1 2 3

1 2 3

1
1

U
<

< <

kk

k

A

P A A A

k
j j j k

k

k k

−

−

∩( )
+ −( ) ∩ ⋅ ⋅ ⋅ ∩ ∩( )

+
≤ ⋅ ⋅ ⋅ ≤

+

+

∑ 1

1 2 1

1 1
1

1

1 11

<

.

Replacing this in (1), we get

P A P A P A A P A A

P A A A P A A A

j
j

k

j
j

k

j j
j j k

j k
j

k

j j j
j j j k

j j k

=

+

=

+

≤ ≤
+

=

≤ ≤
+

⎛

⎝⎜
⎞

⎠⎟
= ( ) − ∩( ) + ∩( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ ∩ ∩( ) + ∩ ∩(

∑ ∑ ∑

∑

1

1

1

1

1
1

1

1
1

1 2

1 2

1 2 3

1 2 3

1 2

U
<

< <
))⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− ⋅ ⋅ ⋅ + −( ) ∩ ⋅ ⋅ ⋅ ∩( )[
+ ∩ ⋅ ⋅ ⋅ ∩ ∩( )⎤

⎦
⎥
⎥

≤ ≤

+

+
≤ ⋅ ⋅ ⋅ ≤

∑

∑ −

−

1

1

1

1
1

1 2

1 1

1 2 1

1

j j k

k

k

j j k
j j j k

P A A

P A A A
k

k

<

< < <
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+ −( ) ∩ ⋅ ⋅ ⋅ ∩ ∩( )
= ( ) − ∩( )

+ ∩ ∩( ) − ⋅ ⋅ ⋅

+ −( ) ∩ ⋅ ⋅ ⋅ ∩( )

+

+

=

+

≤ ≤ +

≤ ≤ +

+

+

∑ ∑

∑

1

1

2

1 1

1

1

1 1

1 1

2

1 1

1 2

1 2

1 2 3

1 2 3

k

k k

j
j

k

j j
j j k

j j j
j j j k

k

k

P A A A

P A P A A

P A A A

P A A

<

< <

..

Let {An} be a sequence of events such that, as n → ∞, An ↑ or An ↓. Then,

P A P A
n

n
n

nlim lim .
→∞ →∞( ) = ( )

PROOF Let us first assume that An ↑. Then

lim .
n

n j
j

A A
→∞ =

∞

=
1

U

We recall that

A A A A A A A

A A A A A

j
j

c c c

=

∞

= + ∩( ) + ∩ ∩( ) + ⋅ ⋅ ⋅

= + −( ) + −( ) + ⋅ ⋅ ⋅
1

1 1 2 1 2 3

1 2 1 3 2

U

,

by the assumption that An ↑. Hence

P A P A P A P A A

P A A P A A

P A P A A P A A

P A P A

n
n j

j

n n

n
n n

n

lim

lim

lim

→∞ =

∞

−

→∞ −

→∞

( ) =
⎛

⎝⎜
⎞

⎠⎟
= ( ) + −( )

+ −( ) + ⋅ ⋅ ⋅ + −( ) + ⋅ ⋅ ⋅

= ( ) + −( ) + ⋅ ⋅ ⋅ + −( )[ ]
= ( ) +

1
1 2 1

3 2 1

1 2 1 1

1 2

U

(( ) − ( )[
+ ( ) − ( ) + ⋅ ⋅ ⋅ + ( ) − ( )]

= ( )
−

→∞

P A

P A P A P A P A

P A

n n

n
n

1

3 2 1

lim .

Thus

P A P A
n

n
n

nlim lim .
→∞ →∞( ) = ( )

Now let An ↓. Then Ac
n ↑, so that

lim .
n

n
c

j
c

j

A A
→∞ =

∞

=
1

U

▲
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Hence

P A P A P A
n

n
c

j
c

j
n

n
clim lim ,

→∞ =

∞

→∞( ) =
⎛

⎝⎜
⎞

⎠⎟
= ( )

1
U

or equivalently,

P A P A P A P Aj
j

c

n
n j

j
n

n
=

∞

→∞ =

∞

→∞

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= − ( )[ ] −
⎛

⎝⎜
⎞

⎠⎟
= − ( )

1 1

1 1 1I Ilim , lim .or

Thus

lim lim ,
n

n j
j

n
nP A P A P A

→∞ =

∞

→∞
( ) =

⎛

⎝⎜
⎞

⎠⎟
= ( )

1
I

and the theorem is established. ▲

This theorem will prove very useful in many parts of this book.

Exercises

2.1.1 If the events Aj, j = 1, 2, 3 are such that A1 ⊂ A2 ⊂ A3 and P(A1) = 1
4

,
P(A2) = 5

12
, P(A3) = 7

12
, compute the probability of the following events:

A A A A A A A A A A A Ac c c c c c c c
1 2 1 3 2 3 1 2 3 1 2 3∩ ∩ ∩ ∩ ∩ ∩ ∩, , , , .    

2.1.2 If two fair dice are rolled once, what is the probability that the total
number of spots shown is

i) Equal to 5?

ii) Divisible by 3?

2.1.3 Twenty balls numbered from 1 to 20 are mixed in an urn and two balls
are drawn successively and without replacement. If x1 and x2 are the numbers
written on the first and second ball drawn, respectively, what is the probability
that:

i) x1 + x2 = 8?

ii) x1 + x2 ≤ 5?

2.1.4 Let S = {x integer; 1 ≤ x ≤ 200} and define the events A, B, and C by:

  

A x x

B x x n n

C x x

= ∈{ }
= ∈ = +{ }
= ∈ + ≤{ }

S
S
S

;   is divisible by 7

;    for some positive integer 

;

,

,

.

3 10

1 3752
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Compute P(A), P(B), P(C), where P is the equally likely probability function
on the events of S.

2.1.5 Let S be the set of all outcomes when flipping a fair coin four times and
let P be the uniform probability function on the events of S. Define the events
A, B as follows:

  

A s s T s H s

B s T s H s

= ∈{ }
= ∈{ }

S
S

;   contains more ’  than 

;  any  in  precedes every  in 

’ ,

.

Compute the probabilities P(A), P(B).

2.1.6 Suppose that the events Aj, j = 1, 2, . . . are such that

P Aj
j

( ) ∞
=

∞

∑
1

< .

Use Definition 1 in Chapter 1 and Theorem 2 in this chapter in order to show
that P(Ā ) = 0.

2.1.7 Consider the events Aj, j = 1, 2, . . . and use Definition 1 in Chapter 1
and Theorem 2 herein in order to show that

P A P A P A P A
n

n
n

n( ) ≤ ( ) ≤ ( ) ≤ ( )
→∞ →∞

lim inf lim .sup

2.2 Conditional Probability

In this section, we shall introduce the concepts of conditional probability and
stochastic independence. Before the formal definition of conditional probabil-
ity is given, we shall attempt to provide some intuitive motivation for it. To this
end, consider a balanced die and suppose that the sides bearing the numbers
1, 4 and 6 are painted red, whereas the remaining three sides are painted black.
The die is rolled once and we are asked for the probability that the upward
side is the one bearing the number 6. Assuming the uniform probability
function, the answer is, clearly, 1

6
. Next, suppose that the die is rolled once as

before and all that we can observe is the color of the upward side but not the
number on it (for example, we may be observing the die from a considerable
distance, so that the color is visible but not the numbers on the sides). The
same question as above is asked, namely, what is the probability that the
number on the uppermost side is 6. Again, by assuming the uniform probabil-
ity function, the answer now is 1

3
. This latter probability is called the condi-

tional probability of the number 6 turning up, given the information that the
uppermost side was painted red. Letting B stand for the event that number 6
appears and A for the event that the uppermost side is red, the above-

2.2 Conditional Probability 21
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mentioned conditional probability is denoted by P(B|A), and we observe that
this is equal to the quotient P(A ∩ B)/P(A). Or suppose that, for the purposes
of a certain study, we observe two-children families in a certain locality, and
record the gender of the children. A sample space for this experiment is the
following: S = {bb, bg, gb, gg}, where b stands for boy and g for girl, and bg, for
example, indicates that the boy is older than the girl. Suppose further
(although this is not exactly correct) that: P({bb}) = P({bg}) = P({gb}) = P({gg})
= 1

4
, and define the events A and B as follows: A = “children of one gender” =

{bb, gg}, B = “at least one boy” = {bb, bg, gb}. Then P(A|B) = P(A ∩ B)/
P(B) = 1

3
.

From these and other examples, one is led to the following definition of
conditional probability.

Let A be an event such that P(A) > 0. Then the conditional probability, given
A, is the (set) function denoted by P(·|A) and defined for every event B as
follows:

P B A
P A B

P A
( ) =

∩( )
( ) .

P(B|A) is called the conditional probability of B, given A.
The set function P(·|A) is actually a probability function. To see this, it

suffices to prove the P(·|A) satisfies (P1)–(P3). We have: P(B|A) � 0 for every
event B, clearly. Next,

P S A
P S A

P A

P A

P A
( ) =

∩( )
( ) =

( )
( ) = 1,

and if Aj, j = 1, 2, . . . , are events such that Ai ∩ Aj = ∅, i ≠ j, we have

P A A
P A A

P A

P A A

P A

P A
P A A

P A A

P A
P A A

j
j

jj jj

j
j

j

j
j

j

=

∞ =

∞

=

∞

=

∞

=

∞

=

∞

∑
∑ ∑

∑ ∑ ∑

⎛

⎝⎜
⎞

⎠⎟
=

⎛
⎝

⎞
⎠ ∩⎡

⎣⎢
⎤
⎦⎥

( ) =
∩( )⎡

⎣⎢
⎤
⎦⎥

( )
= ( ) ∩( ) =

∩( )
( ) = ( )

1

1 1

1 1 1

1
.

The conditional probability can be used in expressing the probability of
the intersection of a finite number of events.

(Multiplicative Theorem) Let Aj, j = 1, 2, . . . , n, be events such that

P Aj
j

n

=

−⎛

⎝⎜
⎞

⎠⎟1

1

0I > .

Then

DEFINITION 2

THEOREM 3
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P A P A A A A

P A A A P A A P A

j
j

n

n n

n n

=
−

− −

⎛

⎝⎜
⎞

⎠⎟
= ∩ ∩ ⋅ ⋅ ⋅ ∩( )

× ∩ ⋅ ⋅ ⋅ ∩( ) ⋅ ⋅ ⋅ ( ) ( )
1

1 2 1

1 1 2 2 1 1

I

 .

(The proof of this theorem is left as an exercise; see Exercise 2.2.4.)

REMARK 3 The value of the above formula lies in the fact that, in general, it
is easier to calculate the conditional probabilities on the right-hand side. This
point is illustrated by the following simple example.

An urn contains 10 identical balls (except for color) of which five are black,
three are red and two are white. Four balls are drawn without replacement.
Find the probability that the first ball is black, the second red, the third white
and the fourth black.

Let A1 be the event that the first ball is black, A2 be the event that the
second ball is red, A3 be the event that the third ball is white and A4 be the
event that the fourth ball is black. Then

P A A A A

P A A A A P A A A P A A P A

1 2 3 4

4 1 2 3 3 1 2 2 1 1

∩ ∩ ∩( )
= ∩ ∩( ) ∩( ) ( ) ( ),

and by using the uniform probability function, we have

P A P A A P A A A

P A A A A

1 2 1 3 1 2

4 1 2 3

5
10

3
9

2
8

4
7

( ) = ( ) = ∩( ) =

∩ ∩( ) =

, , ,

.

Thus the required probability is equal to 1
42

� 0.0238.

Now let Aj, j = 1, 2, . . . , be events such that Ai ∩ Aj = ∅, i ≠ j, and Σj Aj =
S. Such a collection of events is called a partition of S. The partition is finite
or (denumerably) infinite, accordingly, as the events Aj are finitely or
(denumerably) infinitely many. For any event, we clearly have:

B B Aj
j

= ∩( )∑ .

Hence

P B P B A P B A P Aj
j

j j
j

( ) = ∩( ) = ( ) ( )∑ ∑ ,

provided P(Aj) > 0, for all j. Thus we have the following theorem.

(Total Probability Theorem) Let {Aj, j = 1, 2, . . . } be a partition of S with
P(Aj) > 0, all j. Then for B ∈ A, we have P(B) = ΣjP(B|Aj)P(Aj).

This formula gives a way of evaluating P(B) in terms of P(B|Aj) and
P(Aj), j = 1, 2, . . . . Under the condition that P(B) > 0, the above formula

2.2 Conditional Probability 23
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can be “reversed” to provide an expression for P(Aj|B), j = 1, 2, . . . . In
fact,

P A B
P A B

P B

P B A P A

P B

P B A P A

P B A P A
j

j j j j j

i ii

( ) =
∩( )

( ) =
( ) ( )

( ) =
( ) ( )

( ) ( )∑
.

Thus

(Bayes Formula) If {Aj, j = 1, 2, . . .} is a partition of S and P(Aj) > 0, j = 1,
2, . . . , and if P(B) > 0, then

P A B
P B A P A

P B A P A
j

j j

i ii

( ) =
( ) ( )

( ) ( )∑
.

REMARK 4 It is important that one checks to be sure that the collection
{Aj, j ≥ 1} forms a partition of S, as only then are the above theorems true.

The following simple example serves as an illustration of Theorems 4
and 5.

A multiple choice test question lists five alternative answers, of which only one
is correct. If a student has done the homework, then he/she is certain to
identify the correct answer; otherwise he/she chooses an answer at random.
Let p denote the probability of the event A that the student does the home-
work and let B be the event that he/she answers the question correctly. Find
the expression of the conditional probability P(A|B) in terms of p.

By noting that A and Ac form a partition of the appropriate sample space,
an application of Theorems 4 and 5 gives

P A B
P B A P A

P B A P A P B A P A

p

p p

p
pc c

( ) =
( ) ( )

( ) ( ) + ( ) ( )
= ⋅

⋅ + −( )
=

+
1

1
1
5

1

5
4 1

.

Furthermore, it is easily seen that P(A|B) = P(A) if and only if p = 0 or 1.
For example, for p = 0.7, 0.5, 0.3, we find, respectively, that P(A|B) is

approximately equal to: 0.92, 0.83 and 0.68.

Of course, there is no reason to restrict ourselves to one partition of S
only. We may consider, for example, two partitions {Ai, i = 1, 2, . . .} {Bj, j = 1,
2, . . . }. Then, clearly,

A A B i

B B A j

i i j
j

j j i
i

= ∩( ) = ⋅ ⋅ ⋅

= ∩( ) = ⋅ ⋅ ⋅

∑

∑

, ,

, ,

1

1

 2, ,

 2, ,

and

A B i ji j∩ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅{ }, , ,  2, ,   2,1 1

EXAMPLE 2

THEOREM 5
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is a partition of S. In fact,

A B A B i j i ji j i j∩( ) ∩ ∩( ) = ( ) ≠ ′ ′( )′ ′ ∅ if , ,

and

A B A B A Si j
i j

i j
ji

i
i

∩( ) = ∩( ) = =∑ ∑∑ ∑
,

.

The expression P(Ai ∩ Bj) is called the joint probability of Ai and Bj. On the
other hand, from

A A B B A Bi i j
j

j i j
i

= ∩( ) = ∩( )∑ ∑and ,

we get

P A P A B P A B P Bi i j
j

i j
j

j( ) = ∩( ) = ( ) ( )∑ ∑ ,

provided P(Bj) > 0, j = 1, 2, . . . , and

P B P A B P B A P Aj i j
i

j i
i

i( ) = ∩( ) = ( ) ( )∑ ∑ ,

provided P(Ai) > 0, i = 1, 2, . . . . The probabilities P(Ai), P(Bj) are called
marginal probabilities. We have analogous expressions for the case of more
than two partitions of S.

Exercises

2.2.1 If P(A|B) > P(A), then show that P(B|A) > P(B) (P(A)P(B) > 0).

2.2.2 Show that:

i) P(Ac|B) = 1 − P(A|B);

ii) P(A ∪ B|C) = P(A|C) + P(B|C) − P(A ∩ B|C).

Also show, by means of counterexamples, that the following equations need
not be true:

iii) P(A|Bc) = 1 − P(A|B);

iv) P(C|A + B) = P(C|A) + P(C|B).

2.2.3 If A ∩ B = ∅ and P(A + B) > 0, express the probabilities P(A|A + B)
and P(B|A + B) in terms of P(A) and P(B).

2.2.4 Use induction to prove Theorem 3.

2.2.5 Suppose that a multiple choice test lists n alternative answers of which
only one is correct. Let p, A and B be defined as in Example 2 and find Pn(A|B)

Exercises 25



26 2 Some Probabilistic Concepts and Results

in terms of n and p. Next show that if p is fixed but different from 0 and 1, then
Pn(A|B) increases as n increases. Does this result seem reasonable?

2.2.6 If Aj, j = 1, 2, 3 are any events in S, show that {A1, Ac
1 ∩ A2, Ac

1 ∩ Ac
2 ∩

A3, (A1 ∪ A2 ∪ A3)
c} is a partition of S.

2.2.7 Let {Aj, j = 1, . . . , 5} be a partition of S and suppose that P(Aj) = j/15
and P(A|Aj) = (5 − j)/15, j = 1, . . . , 5. Compute the probabilities P(Aj|A),
j = 1, . . . , 5.

2.2.8 A girl’s club has on its membership rolls the names of 50 girls with the
following descriptions:

20 blondes, 15 with blue eyes and 5 with brown eyes;
25 brunettes, 5 with blue eyes and 20 with brown eyes;
5 redheads, 1 with blue eyes and 4 with green eyes.

If one arranges a blind date with a club member, what is the probability that:

i) The girl is blonde?

ii) The girl is blonde, if it was only revealed that she has blue eyes?

2.2.9 Suppose that the probability that both of a pair of twins are boys is 0.30
and that the probability that they are both girls is 0.26. Given that the probabil-
ity of a child being a boy is 0.52, what is the probability that:

i) The second twin is a boy, given that the first is a boy?

ii) The second twin is a girl, given that the first is a girl?

2.2.10 Three machines I, II and III manufacture 30%, 30% and 40%, respec-
tively, of the total output of certain items. Of them, 4%, 3% and 2%, respec-
tively, are defective. One item is drawn at random, tested and found to be
defective. What is the probability that the item was manufactured by each one
of the machines I, II and III?

2.2.11 A shipment of 20 TV tubes contains 16 good tubes and 4 defective
tubes. Three tubes are chosen at random and tested successively. What is the
probability that:

i) The third tube is good, if the first two were found to be good?

ii) The third tube is defective, if one of the other two was found to be good
and the other one was found to be defective?

2.2.12 Suppose that a test for diagnosing a certain heart disease is 95%
accurate when applied to both those who have the disease and those who do
not. If it is known that 5 of 1,000 in a certain population have the disease in
question, compute the probability that a patient actually has the disease if the
test indicates that he does. (Interpret the answer by intuitive reasoning.)

2.2.13 Consider two urns Uj, j = 1, 2, such that urn Uj contains mj white balls
and nj black balls. A ball is drawn at random from each one of the two urns and
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is placed into a third urn. Then a ball is drawn at random from the third urn.
Compute the probability that the ball is black.

2.2.14 Consider the urns of Exercise 2.2.13. A balanced die is rolled and if
an even number appears, a ball, chosen at random from U1, is transferred to
urn U2. If an odd number appears, a ball, chosen at random from urn U2, is
transferred to urn U1. What is the probability that, after the above experiment
is performed twice, the number of white balls in the urn U2 remains the same?

2.2.15 Consider three urns Uj, j = 1, 2, 3 such that urn Uj contains mj white
balls and nj black balls. A ball, chosen at random, is transferred from urn U1 to
urn U2 (color unnoticed), and then a ball, chosen at random, is transferred
from urn U2 to urn U3 (color unnoticed). Finally, a ball is drawn at random
from urn U3. What is the probability that the ball is white?

2.2.16 Consider the urns of Exercise 2.2.15. One urn is chosen at random
and one ball is drawn from it also at random. If the ball drawn was white, what
is the probability that the urn chosen was urn U1 or U2?

2.2.17 Consider six urns Uj, j = 1, . . . , 6 such that urn Uj contains mj (≥ 2)
white balls and nj (≥ 2) black balls. A balanced die is tossed once and if the
number j appears on the die, two balls are selected at random from urn Uj.
Compute the probability that one ball is white and one ball is black.

2.2.18 Consider k urns Uj, j = 1, . . . , k each of which contain m white balls
and n black balls. A ball is drawn at random from urn U1 and is placed in urn
U2. Then a ball is drawn at random from urn U2 and is placed in urn U3 etc.
Finally, a ball is chosen at random from urn Uk−1 and is placed in urn Uk. A ball
is then drawn at random from urn Uk. Compute the probability that this last
ball is black.

2.3 Independence

For any events A, B with P(A) > 0, we defined P(B|A) = P(A ∩ B)/P(A). Now
P(B|A) may be >P(B), <P(B), or = P(B). As an illustration, consider an urn
containing 10 balls, seven of which are red, the remaining three being black.
Except for color, the balls are identical. Suppose that two balls are drawn
successively and without replacement. Then (assuming throughout the uni-
form probability function) the conditional probability that the second ball is
red, given that the first ball was red, is 6

9
, whereas the conditional probability

that the second ball is red, given that the first was black, is 7
9

. Without any
knowledge regarding the first ball, the probability that the second ball is red is

7
10

. On the other hand, if the balls are drawn with replacement, the probability
that the second ball is red, given that the first ball was red, is 7

10
. This probabil-

ity is the same even if the first ball was black. In other words, knowledge of the
event which occurred in the first drawing provides no additional information in

2.3 Independence 27
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calculating the probability of the event that the second ball is red. Events like
these are said to be independent.

As another example, revisit the two-children families example considered
earlier, and define the events A and B as follows: A = “children of both
genders,” B = “older child is a boy.” Then P(A) = P(B) = P(B|A) = 1

2
. Again

knowledge of the event A provides no additional information in calculating
the probability of the event B. Thus A and B are independent.

More generally, let A, B be events with P(A) > 0. Then if P(B|A) = P(B),
we say that the even B is (statistically or stochastically or in the probability
sense) independent of the event A. If P(B) is also > 0, then it is easily seen that
A is also independent of B. In fact,

P A B
P A B

P B

P B A P A

P B

P B P A

P B
P A( ) =

∩( )
( ) =

( ) ( )
( ) =

( ) ( )
( ) = ( ).

That is, if P(A), P(B) > 0, and one of the events is independent of the other,
then this second event is also independent of the first. Thus, independence is
a symmetric relation, and we may simply say that A and B are independent. In
this case P(A ∩ B) = P(A)P(B) and we may take this relationship as the
definition of independence of A and B. That is,

The events A, B are said to be (statistically or stochastically or in the probabil-
ity sense) independent if P(A ∩ B) = P(A)P(B).

Notice that this relationship is true even if one or both of P(A), P(B) = 0.
As was pointed out in connection with the examples discussed above,

independence of two events simply means that knowledge of the occurrence of
one of them helps in no way in re-evaluating the probability that the other
event happens. This is true for any two independent events A and B, as follows
from the equation P(A|B) = P(A), provided P(B) > 0, or P(B|A) = P(B),
provided P(A) > 0. Events which are intuitively independent arise, for exam-
ple, in connection with the descriptive experiments of successively drawing
balls with replacement from the same urn with always the same content, or
drawing cards with replacement from the same deck of playing cards, or
repeatedly tossing the same or different coins, etc.

What actually happens in practice is to consider events which are inde-
pendent in the intuitive sense, and then define the probability function P
appropriately to reflect this independence.

The definition of independence generalizes to any finite number of events.
Thus:

The events Aj, j = 1, 2, . . . , n are said to be (mutually or completely) indepen-
dent if the following relationships hold:

P A A P A P Aj j j jk k1 1
∩ ⋅ ⋅ ⋅ ∩( ) = ( ) ⋅ ⋅ ⋅ ( )

for any k = 2, . . . , n and j1, . . . , jk = 1, 2, . . . , n such that 1 ≤ j1 < j2 < · · · < jk ≤
n. These events are said to be pairwise independent if P(Ai ∩ Aj) = P(Ai)P(Aj)
for all i ≠ j.

DEFINITION 3

DEFINITION 4
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It follows that, if the events Aj, j = 1, 2, . . . , n are mutually independent,
then they are pairwise independent. The converse need not be true, as the
example below illustrates. Also there are

n n n

n

n n
nn n

2 3
2

1 0
2 1

⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+ ⋅ ⋅ ⋅ +
⎛
⎝⎜

⎞
⎠⎟

= −
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

= − −

relationships characterizing the independence of Aj, j = 1, . . . , n and they are
all necessary. For example, for n = 3 we will have:

P A A A P A P A P A

P A A P A P A

P A A P A P A

P A A P A P A

1 2 3 1 2 3

1 2 1 2

1 3 1 3

2 3 2 3

∩ ∩( ) = ( ) ( ) ( )
∩( ) = ( ) ( )
∩( ) = ( ) ( )
∩( ) = ( ) ( )

,

,

,

.

That these four relations are necessary for the characterization of indepen-
dence of A1, A2, A3 is illustrated by the following examples:

Let S = {1, 2, 3, 4}, P({1}) = · · · = P({4}) = 1
4
, and set A1 = {1, 2}, A2 = {1, 3},

A3 = {1, 4}. Then

A A A A A A A A A1 2 1 3 2 3 1 2 31 1∩ = ∩ = ∩ = { } ∩ ∩ = { }, .and

Thus

P A A P A A P A A P A A A1 2 1 3 2 3 1 2 3

1
4

∩( ) = ∩( ) = ∩( ) = ∩ ∩( ) = .

Next,

P A A P A P A

P A A P A P A

P A A P A P A

1 2 1 2

1 3 1 3

1 3 2 3

1
4

1
2

1
2

1
4

1
2

1
2

1
4

1
2

1
2

∩( ) = = ⋅ = ( ) ( )
∩( ) = = ⋅ = ( ) ( )
∩( ) = = ⋅ = ( ) ( )

,

,

,

but

P A A A P A P A P A1 2 3 1 2 3

1
4

1
2

1
2

1
2

∩ ∩( ) = ≠ ⋅ ⋅ = ( ) ( ) ( ).

Now let S = {1, 2, 3, 4, 5}, and define P as follows:

P P P P P1
1
8

2 3 4
3

16
5

5
16

{ }( ) = { }( ) = { }( ) = { }( ) = { }( ) =, , .

2.3 Independence 29
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THEOREM 6

Let

A A A1 2 31 2 3 1 1= { } = { } = { }, , , , , , .   2,  4  3,  4

Then

A A A A A1 2 1 2 31 2 1∩ = { } ∩ ∩ = { }, , .

Thus

P A A A P A P A P A1 2 3 1 2 3

1
8

1
2

1
2

1
2

∩ ∩( ) = = ⋅ ⋅ = ( ) ( ) ( ),
but

P A A P A P A1 2 1 2

5
16

1
2

1
2

∩( ) = ≠ ⋅ = ( ) ( ).
The following result, regarding independence of events, is often used by

many authors without any reference to it. It is the theorem below.

If the events A1, . . . , An are independent, so are the events A′1, . . . , A′n, where
A′j is either Aj or Ac

j, j = 1, . . . , n.

PROOF The proof is done by (a double) induction. For n = 2, we have to
show that P(A′1 ∩ A′2) = P(A′1)P(A′2). Indeed, let A′1 = A1 and A′2 = Ac

2. Then
P(A′1 ∩ A′2) = P(A1 ∩ Ac

2) = P[A1 ∩ (S − A2)] = P(A1 − A1 ∩ A2) = P(A1) −
P(A1 ∩ A2) = P(A1) − P(A1)P(A2) = P(A1)[1 − P(A2)] = P(A′1)P(Ac

2) = P(A′1)P(A′2).
Similarly if A′1 = Ac

1 and A′2 = A2. For A′1 = Ac
1 and A′2 = Ac

2, P(A′1 ∩ A′2) =
P(Ac

1 ∩ Ac
2) = P[(S − A1) ∩ Ac

2] = P(Ac
2 − A1 ∩ Ac

2) = P(Ac
2) −P(A1 ∩ Ac

2) = P(Ac
2)

− P(A1)P(Ac
2) = P(Ac

2)[1 − P(A1)] = P(Ac
2)P(Ac

1) = P(A′1)P(A′2).
Next, assume the assertion to be true for k events and show it to be true

for k + 1 events. That is, we suppose that P(A′1 ∩ · · · ∩ A′k) = P(A′1 ) · · · P(A′k),
and we shall show that P(A′1 ∩ · · · ∩ A′k+1) = P(A′1 ) · · · P(A′k+1). First, assume
that A′k+1 = Ak+1, and we have to show that

P A A P A A A

P A P A P A

k k k

k k

′ ∩ ⋅ ⋅ ⋅ ∩ ′( ) = ′ ∩ ⋅ ⋅ ⋅ ∩ ′ ∩( )
= ′( ) ⋅ ⋅ ⋅ ′( ) ( )

+ +

+

1 1 1 1

1 1 .

This relationship is established also by induction as follows: If A′1 = Ac
1 and

A′i = Ai, i = 2, . . . , k, then

P A A A A P S A A A A

P A A A A A A A

P A A A P A A A A

c
k k k k

k k k k

k k k k

1 2 1 1 2 1

2 1 1 2 1

2 1 1 2

∩ ∩ ⋅ ⋅ ⋅ ∩ ∩( ) = −( ) ∩ ∩ ⋅ ⋅ ⋅ ∩ ∩[ ]
= ∩ ⋅ ⋅ ⋅ ∩ ∩ − ∩ ∩ ⋅ ⋅ ⋅ ∩ ∩( )
= ∩ ⋅ ⋅ ⋅ ∩ ∩( ) − ∩ ∩ ⋅ ⋅ ⋅ ∩ ∩

+ +

+ +

+ ++

+ +

+ +

( )
= ( ) ⋅ ⋅ ⋅ ( ) ( ) − ( ) ( ) ⋅ ⋅ ⋅ ( ) ( )
= ( ) ⋅ ⋅ ⋅ ( ) ( ) − ( )[ ] = ( ) ( ) ⋅ ⋅ ⋅ ( ) ( )

1

2 1 1 2 1

2 1 1 1 2 11

P A P A P A P A P A P A P A

P A P A P A P A P A P A P A P A

k k k k

k k
c

k k .



2.4 Combinatorial Results 31

This is, clearly, true if Ac
1 is replaced by any other Ac

i, i = 2, . . . , k. Now, for
� < k, assume that
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c c
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and show that
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Indeed,
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by the induction hypothesis

PP A
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c
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k

l
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1

1 1 2 1 ,

as was to be seen. It is also, clearly, true that the same result holds if the � A′i’s
which are Ac

i are chosen in any one of the (k
�) possible ways of choosing � out

of k. Thus, we have shown that

P A A A P A P A P Ak k k k′ ∩ ⋅ ⋅ ⋅ ∩ ′ ∩( ) = ′( ) ⋅ ⋅ ⋅ ′( ) ( )+ +1 1 1 1 .

Finally, under the assumption that

P A A P A P Ak k′ ∩ ⋅ ⋅ ⋅ ∩ ′( ) = ′( ) ⋅ ⋅ ⋅ ′( )1 1 ,

take A′k+1 = Ac
k+1, and show that

P A A A P A P A P Ak k
c

k k
c′ ∩ ⋅ ⋅ ⋅ ∩ ′ ∩( ) = ′( ) ⋅ ⋅ ⋅ ′( ) ( )+ +1 1 1 1 .
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In fact,

P A A A P A A S A

P A A A A A

P A A P A A A

P A

k k
c

k k

k k k

k k k

′ ∩ ⋅ ⋅ ⋅ ∩ ′ ∩( ) = ′ ∩ ⋅ ⋅ ⋅ ∩ ′ ∩ −( )( )[ ]
= ′ ∩ ⋅ ⋅ ⋅ ∩ ′ − ′ ∩ ⋅ ⋅ ⋅ ∩ ′ ∩( )
= ′ ∩ ⋅ ⋅ ⋅ ∩ ′( ) − ′ ∩ ⋅ ⋅ ⋅ ∩ ′ ∩( )
= ′

+ +

+

+

1 1 1 1

1 1 1

1 1 1

11 1 1

1 1

1 1

1

( ) ⋅ ⋅ ⋅ ′( ) − ′( ) ⋅ ⋅ ⋅ ′( ) ( )
( )

= ′( ) ⋅ ⋅ ⋅ ′( ) − ( )[ ]
= ′( ) ⋅ ⋅ ⋅ ′( ) ( )

+

+

+

P A P A P A P A

P A P A P A

P A P A P A

k k k

k k

k k
c

by the induction hypothesis and what was last proved

.

This completes the proof of the theorem. ▲

Now, for j = 1, 2, let Ej be an experiment having the sample space Sj. One
may look at the pair (E1, E2) of experiments, and then the question arises as to
what is the appropriate sample space for this composite or compound experi-
ment, also denoted by E1 × E2. If S stands for this sample space, then, clearly,
S = S1 × S2 = {(s1, s2); s1 ∈ S1, s2 ∈ S2}. The corresponding events are, of course,
subsets of S. The notion of independence also carries over to experiments.
Thus, we say that the experiments E1 and E2 are independent if P(B1 ∩ B2) =
P(B1)P(B2) for all events B1 associated with E1 alone, and all events B2 associ-
ated E2 alone.

What actually happens in practice is to start out with two experiments E1,
E2 which are intuitively independent, such as the descriptive experiments (also
mentioned above) of successively drawing balls with replacement from the
same urn with always the same content, or drawing cards with replacement
from the same deck of playing cards, or repeatedly tossing the same or differ-
ent coins etc., and have the corresponding probability spaces (S1, class of
events, P1) and (S2, class of events, P2), and then define the probability func-
tion P, in terms of P1 and P2, on the class of events in the space S1 × S2 so that
it reflects the intuitive independence.

The above definitions generalize in a straightforward manner to any finite
number of experiments. Thus, if Ej, j = 1, 2, . . . , n, are n experiments with
corresponding sample spaces Sj and probability functions Pj on the respective
classes of events, then the compound experiment

  E E E E E E1 2 1 2, , ,  ⋅ ⋅ ⋅( ) = × × ⋅ ⋅ ⋅ ×n n

has sample space S, where

  S S S S= × ⋅ ⋅ ⋅ × = ⋅ ⋅ ⋅( ) ∈ = ⋅ ⋅ ⋅{ }1 1 1n n j js s s j n, , ; , , .    2, ,  

The class of events are subsets of S, and the experiments are said to be
independent if for all events Bj associated with experiment Ej alone, j = 1,
2, . . . , n, it holds
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P B B P B P Bn n1 1∩ ⋅ ⋅ ⋅ ∩( ) = ( ) ⋅ ⋅ ⋅ ( ).
Again, the probability function P is defined, in terms of Pj, j = 1, 2, . . . , n, on
the class of events in S so that to reflect the intuitive independence of the
experiments Ej, j = 1, 2, . . . , n.

In closing this section, we mention that events and experiments which are
not independent are said to be dependent.

Exercises

2.3.1 If A and B are disjoint events, then show that A and B are independent
if and only if at least one of P(A), P(B) is zero.

2.3.2 Show that if the event A is independent of itself, then P(A) = 0 or 1.

2.3.3 If A, B are independent, A, C are independent and B ∩ C = ∅, then A,
B + C are independent. Show, by means of a counterexample, that the conclu-
sion need not be true if B ∩ C ≠ ∅.

2.3.4 For each j = 1, . . . , n, suppose that the events A1, . . . , Am, Bj are
independent and that Bi ∩ Bj = ∅, i ≠ j. Then show that the events A1, . . . , Am,
Σn

j =1Bj are independent.

2.3.5 If Aj, j = 1, . . . , n are independent events, show that

P A P Aj
j

n

j
c

j

n

= =

⎛

⎝⎜
⎞

⎠⎟
= − ( )∏

1 1

1U .

2.3.6 Jim takes the written and road driver’s license tests repeatedly until he
passes them. Given that the probability that he passes the written test is 0.9
and the road test is 0.6 and that tests are independent of each other, what is the
probability that he will pass both tests on his nth attempt? (Assume that
the road test cannot be taken unless he passes the written test, and that once
he passes the written test he does not have to take it again, no matter whether
he passes or fails his next road test. Also, the written and the road tests are
considered distinct attempts.)

2.3.7 The probability that a missile fired against a target is not intercepted by
an antimissile missile is 2

3
. Given that the missile has not been intercepted, the

probability of a successful hit is 3
4
. If four missiles are fired independently,

what is the probability that:

i) All will successfully hit the target?

ii) At least one will do so?

How many missiles should be fired, so that:
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1

2

n

BA

2.4 Combinatorial Results

In this section, we will restrict ourselves to finite sample spaces and uniform
probability functions. Some combinatorial results will be needed and we pro-
ceed to derive them here. Also examples illustrating the theorems of previous
sections will be presented.

iii) At least one is not intercepted with probability ≥0.95?

iv) At least one successfully hits its target with probability ≥0.99?

2.3.8 Two fair dice are rolled repeatedly and independently. The first time a
total of 10 appears, player A wins, while the first time that a total of 6 appears,
player B wins, and the game is terminated. Compute the probabilities that:

i) The game terminates on the nth throw and player A wins;

ii) The same for player B;

iii) Player A wins;

iv) Player B wins;

v) Does the game terminate ever?

2.3.9 Electric current is transmitted from point A to point B provided at
least one of the circuits #1 through #n below is closed. If the circuits close
independently of each other and with respective probabilities pi, i = 1, . . . , n,
determine the probability that:

i) Exactly one circuit is closed;

ii) At least one circuit is closed;

iii) Exactly m circuits are closed for 0 ≤ m ≤ n;

iv) At least m circuits are closed with m as in part (iii);

v) What do parts (i)–(iv) become for p1 = · · · = pn = p, say?
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The following theorem, known as the Fundamental Principle of Counting,
forms the backbone of the results in this section.

Let a task T be completed by carrying out all of the subtasks Tj, j = 1, 2, . . . ,
k, and let it be possible to perform the subtask Tj in nj (different) ways, j = 1,
2, . . . , k. Then the total number of ways the task T may be performed is given
by ∏ =j

k
jn1 .

PROOF The assertion is true for k = 2, since by combining each one of the n1

ways of performing subtask T1 with each one of the n2 ways of performing
subtask T2, we obtain n1n2 as the total number of ways of performing task T.
Next, assume the result to be true for k = m and establish it for k = m + 1. The
reasoning is the same as in the step just completed, since by combining each
one of the ∏ =j

m
jn1
 ways of performing the first m subtasks with each one of

nm+1 ways of performing substask Tm+1, we obtain ∏( ) × = ∏= + =
+

j
m

j m j
m

jn n n1 1 1
1  for

the total number of ways of completing task T. ▲

The following examples serve as an illustration to Theorem 7.

i) A man has five suits, three pairs of shoes and two hats. Then the number
of different ways he can attire himself is 5 ·3 ·2 = 30.

ii) Consider the set S = {1, . . . , N} and suppose that we are interested in
finding the number of its subsets. In forming a subset, we consider for each
element whether to include it or not. Then the required number is equal to
the following product of N factors 2 · · · 2 = 2N.

iii) Let nj = n(Sj) be the number of points of the sample space Sj, j = 1, 2, . . . ,
k. Then the sample space S = S1 × · · · × Sk has n(S) = n1 · · · nk sample
points. Or, if nj is the number of outcomes of the experiment Ej, j = 1,
2, . . . , k, then the number of outcomes of the compound experiment E1 ×
. . . × Ek is n1 . . . nk.

In the following, we shall consider the problems of selecting balls from an
urn and also placing balls into cells which serve as general models of
many interesting real life problems. The main results will be formulated as
theorems and their proofs will be applications of the Fundamental Principle of
Counting.

Consider an urn which contains n numbered (distinct, but otherwise iden-
tical) balls. If k balls are drawn from the urn, we say that a sample of size k was
drawn. The sample is ordered if the order in which the balls are drawn is taken
into consideration and unordered otherwise. Then we have the following
result.

i) The number of ordered samples of size k is n(n − 1) · · · (n − k + 1) = Pn,k

(permutations of k objects out of n, and in particular, if k = n, Pn,n = 1 · 2 · · ·
n = n!), provided the sampling is done without replacement; and is equal to
nk if the sampling is done with replacement.

ii) The number of unordered samples of size k is

THEOREM 8

EXAMPLE 3

THEOREM 7
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P

k
C

n

k

n

k n k
n k

n k
,

,!
!

! !
= =

⎛
⎝⎜

⎞
⎠⎟

=
−( )

if the sampling is done without replacement; and is equal to

N n k
n k

k
,( ) =

+ −⎛
⎝⎜

⎞
⎠⎟

1

if the sampling is done with replacement. [See also Theorem 9(iii).]

PROOF

i) The first part follows from Theorem 7 by taking nj = (n − j + 1), j = 1, . . . ,
k, and the second part follows from the same theorem by taking nj = n,
j = 1, . . . , k.

ii) For the first part, we have that, if order counts, this number is Pn,k. Since for
every sample of size k one can form k! ordered samples of the same size, if
x is the required number, then Pn,k = xk!. Hence the desired result.

The proof of the second part may be carried out by an appropriate induc-
tion method. However, we choose to present the following short alternative
proof which is due to S. W. Golomb and appeared in the American Mathemati-
cal Monthly, 75, 1968, p. 530. For clarity, consider the n balls to be cards
numbered from 1 to n and adjoin k − 1 extra cards numbered from n + 1 to
n + k − 1 and bearing the respective instructions: “repeat lowest numbered
card,” “repeat 2nd lowest numbered card,” . . . , “repeat (k − 1)st lowest num-
bered card.” Then a sample of size k without replacement from this enlarged
(n + k − 1)-card deck corresponds uniquely to a sample of size k from the
original deck with replacement. (That is, take k out of n + k − 1, without
replacement so that there will be at least one out of 1, 2, . . . , n, and then apply
the instructions.) Thus, by the first part, the required number is

n k

k
N n k

+ −⎛
⎝⎜

⎞
⎠⎟

= ( )1
, ,

as was to be seen. ▲

For the sake of illustration of Theorem 8, let us consider the following
examples.

i(i) Form all possible three digit numbers by using the numbers 1, 2, 3, 4, 5.
(ii) Find the number of all subsets of the set S = {1, . . . , N}.

In part (i), clearly, the order in which the numbers are selected is relevant.
Then the required number is P5,3 = 5 · 4 · 3 = 60 without repetitions, and 53 = 125
with repetitions.

In part (ii) the order is, clearly, irrelevant and the required number is (N
0)

+ (N
1) + · · · + (N

N) = 2N, as already found in Example 3.

EXAMPLE 4
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An urn contains 8 balls numbered 1 to 8. Four balls are drawn. What is the
probability that the smallest number is 3?

Assuming the uniform probability function, the required probabilities are
as follows for the respective four possible sampling cases:

Order does not count/replacements not allowed:

5

3

8

4

1
7

0 14

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= ≈ . ;

Order does not count/replacements allowed:

6 3 1

3

8 4 1

4

28
165

0 17

+ −⎛
⎝⎜

⎞
⎠⎟

+ −⎛
⎝⎜

⎞
⎠⎟

= ≈ . ;

Order counts/replacements not allowed:
5 4 3 4

8 7 6 5
1
7

0 14
⋅ ⋅( )
⋅ ⋅ ⋅

= ≈ . ;

Order counts/replacements allowed:

4

1
5

4

2
5

4

3
5

4

4

8
671

4 096
0 16

3 2

4

⎛
⎝⎜

⎞
⎠⎟

⋅ +
⎛
⎝⎜

⎞
⎠⎟

⋅ +
⎛
⎝⎜

⎞
⎠⎟

⋅ +
⎛
⎝⎜

⎞
⎠⎟

= ≈
,

. .

What is the probability that a poker hand will have exactly one pair?
A poker hand is a 5-subset of the set of 52 cards in a full deck, so there

are

52

5
2 598 960

⎛
⎝⎜

⎞
⎠⎟

= =N , ,

different poker hands. We thus let S be a set with N elements and assign the
uniform probability measure to S. A poker hand with one pair has two cards
of the same face value and three cards whose faces are all different among
themselves and from that of the pair. We arrive at a unique poker hand with
one pair by completing the following tasks in order:

a) Choose the face value of the pair from the 13 available face values. This can
be done in (13

1) = 13 ways.

b) Choose two cards with the face value selected in (a). This can be done in (4
2)

= 6 ways.

c) Choose the three face values for the other three cards in the hand. Since
there are 12 face values to choose from, this can be done in (12

3 ) = 220
ways.

d) Choose one card (from the four at hand) of each face value chosen in (c).
This can be done in 4 · 4 ·4 = 43 = 64 ways.

EXAMPLE 5

EXAMPLE 6
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Then, by Theorem 6, there are 13 ·6 ·220 ·64 = 1,098,240 poker hands with
one pair. Hence, by assuming the uniform probability measure, the required
probability is equal to

1 098 240
2 598 960

0 42
, ,
, ,

. .≈

i) The number of ways in which n distinct balls can be distributed into k
distinct cells is kn.

ii) The number of ways that n distinct balls can be distributed into k distinct
cells so that the jth cell contains nj balls (nj ≥ 0, j = 1, . . . , k, Σk

j=1 nj = n)
is

n
n n n

n

n n nk k

!
! ! ! , , ,

.
1 2 1 2⋅ ⋅ ⋅

=
⋅ ⋅ ⋅

⎛

⎝⎜
⎞

⎠⎟

iii) The number of ways that n indistinguishable balls can be distributed into
k distinct cells is

k n

n

+ −⎛
⎝⎜

⎞
⎠⎟

1
.

Furthermore, if n ≥ k and no cell is to be empty, this number becomes

n

k

−
−

⎛
⎝⎜

⎞
⎠⎟

1

1
.

PROOF

i) Obvious, since there are k places to put each of the n balls.

ii) This problem is equivalent to partitioning the n balls into k groups, where
the jth group contains exactly nj balls with nj as above. This can be done in
the following number of ways:

n

n

n n

n

n n n

n

n
n n n

k

k k1

1

2

1 1

1 2

⎛

⎝⎜
⎞

⎠⎟
−⎛

⎝⎜
⎞

⎠⎟
⋅ ⋅ ⋅

− − ⋅ ⋅ ⋅ −⎛

⎝⎜
⎞

⎠⎟
=

⋅ ⋅ ⋅
− !

! ! !
.

iii) We represent the k cells by the k spaces between k + 1 vertical bars and the
n balls by n stars. By fixing the two extreme bars, we are left with k + n −
1 bars and stars which we may consider as k + n − 1 spaces to be filled in
by a bar or a star. Then the problem is that of selecting n spaces for the n
stars which can be done in k n

n
+ −( )1  ways. As for the second part, we now

have the condition that there should not be two adjacent bars. The n stars
create n − 1 spaces and by selecting k − 1 of them in n

k

−
−( )1

1
 ways to place the

k − 1 bars, the result follows. ▲

THEOREM 9
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REMARK 5

i) The numbers nj, j = 1, . . . , k in the second part of the theorem are called
occupancy numbers.

ii) The answer to (ii) is also the answer to the following different question:
Consider n numbered balls such that nj are identical among themselves and
distinct from all others, nj ≥ 0, j = 1, . . . , k, Σk

j=1 nj = n. Then the number of
different permutations is

n

n n nk1 2, , ,
.

⋅ ⋅ ⋅

⎛

⎝⎜
⎞

⎠⎟

Now consider the following examples for the purpose of illustrating the
theorem.

Find the probability that, in dealing a bridge hand, each player receives one
ace.

The number of possible bridge hands is

N =
⎛
⎝⎜

⎞
⎠⎟

=
( )

52 52

13
413,  13,  13,  13

!

!
.

Our sample space S is a set with N elements and assign the uniform probability
measure. Next, the number of sample points for which each player, North,
South, East and West, has one ace can be found as follows:

a) Deal the four aces, one to each player. This can be done in

4

1

4
4

,

!
!

 1,  1,  1 1! 1! 1! 1!
 ways.

⎛
⎝⎜

⎞
⎠⎟

= =

b) Deal the remaining 48 cards, 12 to each player. This can be done in

48

12

48
4,

!

 12,  12,  12 12!
 ways.

⎛
⎝⎜

⎞
⎠⎟

=
( )

Thus the required number is 4!48!/(12!)4 and the desired probability is
4!48!(13!)4/[(12!)4(52!)]. Furthermore, it can be seen that this probability lies
between 0.10 and 0.11.

The eleven letters of the word MISSISSIPPI are scrambled and then arranged
in some order.

i) What is the probability that the four I’s are consecutive letters in the
resulting arrangement?

There are eight possible positions for the first I and the remaining
seven letters can be arranged in 7

1 4 2, ,( )  distinct ways. Thus the required
probability is

EXAMPLE 8

EXAMPLE 7
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8
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4
165

0 02
1,  4,  2
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1,  4,  4,  2
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= ≈ . .

ii) What is the conditional probability that the four I’s are consecutive (event
A), given B, where B is the event that the arrangement starts with M and
ends with S?

Since there are only six positions for the first I, we clearly have

P A B( ) =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= ≈
6

5

2

9

4

1
21

0 05

,

. .

 3,  2

iii) What is the conditional probability of A, as defined above, given C, where
C is the event that the arrangement ends with four consecutive S’s?

Since there are only four positions for the first I, it is clear that

P AC( ) =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= ≈
4

3

2

7

1

4
35

0 11

,

. .

 2,  4

Exercises

2.4.1 A combination lock can be unlocked by switching it to the left and
stopping at digit a, then switching it to the right and stopping at digit b and,
finally, switching it to the left and stopping at digit c. If the distinct digits a, b
and c are chosen from among the numbers 0, 1, . . . , 9, what is the number of
possible combinations?

2.4.2 How many distinct groups of n symbols in a row can be formed, if each
symbol is either a dot or a dash?

2.4.3 How many different three-digit numbers can be formed by using the
numbers 0, 1, . . . , 9?

2.4.4 Telephone numbers consist of seven digits, three of which are grouped
together, and the remaining four are also grouped together. How many num-
bers can be formed if:

i) No restrictions are imposed?

ii) If the first three numbers are required to be 752?
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2.4.5 A certain state uses five symbols for automobile license plates such that
the first two are letters and the last three numbers. How many license plates
can be made, if:

i) All letters and numbers may be used?
ii) No two letters may be the same?

2.4.6 Suppose that the letters C, E, F, F, I and O are written on six chips and
placed into an urn. Then the six chips are mixed and drawn one by one without
replacement. What is the probability that the word “OFFICE” is formed?

2.4.7 The 24 volumes of the Encyclopaedia Britannica are arranged on a
shelf. What is the probability that:

i) All 24 volumes appear in ascending order?
ii) All 24 volumes appear in ascending order, given that volumes 14 and 15

appeared in ascending order and that volumes 1–13 precede volume 14?

2.4.8 If n countries exchange ambassadors, how many ambassadors are
involved?

2.4.9 From among n eligible draftees, m men are to be drafted so that all
possible combinations are equally likely to be chosen. What is the probability
that a specified man is not drafted?

2.4.10 Show that

n

m

n

m

n
m

+
+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= +
+

1

1 1
1

.

2.4.11 Consider five line segments of length 1, 3, 5, 7 and 9 and choose three
of them at random. What is the probability that a triangle can be formed by
using these three chosen line segments?

2.4.12 From 10 positive and 6 negative numbers, 3 numbers are chosen at
random and without repetitions. What is the probability that their product is
a negative number?

2.4.13 In how many ways can a committee of 2n + 1 people be seated along
one side of a table, if the chairman must sit in the middle?

2.4.14 Each of the 2n members of a committee flips a fair coin in deciding
whether or not to attend a meeting of the committee; a committee member
attends the meeting if an H appears. What is the probability that a majority
will show up in the meeting?

2.4.15 If the probability that a coin falls H is p (0 < p < 1), what is the
probability that two people obtain the same number of H’s, if each one of
them tosses the coin independently n times?

Exercises 41
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2.4.16

i) Six fair dice are tossed once. What is the probability that all six faces
appear?

ii) Seven fair dice are tossed once. What is the probability that every face
appears at least once?

2.4.17 A shipment of 2,000 light bulbs contains 200 defective items and 1,800
good items. Five hundred bulbs are chosen at random, are tested and the
entire shipment is rejected if more than 25 bulbs from among those tested are
found to be defective. What is the probability that the shipment will be
accepted?

2.4.18 Show that
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where N, m are positive integers and m < M.

2.4.19 Show that
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2.4.20 Show that
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2.4.21 A student is given a test consisting of 30 questions. For each question
there are supplied 5 different answers (of which only one is correct). The
student is required to answer correctly at least 25 questions in order to pass the
test. If he knows the right answers to the first 20 questions and chooses an
answer to the remaining questions at random and independently of each other,
what is the probability that he will pass the test?

2.4.22 A student committee of 12 people is to be formed from among 100
freshmen (60 male + 40 female), 80 sophomores (50 male + 30 female), 70
juniors (46 male + 24 female), and 40 seniors (28 male + 12 female). Find the
total number of different committees which can be formed under each one of
the following requirements:

i) No restrictions are imposed on the formation of the committee;

ii) Seven students are male and five female;
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iii) The committee contains the same number of students from each class;

iv) The committee contains two male students and one female student from
each class;

v) The committee chairman is required to be a senior;

vi) The committee chairman is required to be both a senior and male;

vii) The chairman, the secretary and the treasurer of the committee are all
required to belong to different classes.

2.4.23 Refer to Exercise 2.4.22 and suppose that the committee is formed by
choosing its members at random. Compute the probability that the committee
to be chosen satisfies each one of the requirements (i)–(vii).

2.4.24 A fair die is rolled independently until all faces appear at least once.
What is the probability that this happens on the 20th throw?

2.4.25 Twenty letters addressed to 20 different addresses are placed at ran-
dom into the 20 envelopes. What is the probability that:

i) All 20 letters go into the right envelopes?

ii) Exactly 19 letters go into the right envelopes?

iii) Exactly 17 letters go into the right envelopes?

2.4.26 Suppose that each one of the 365 days of a year is equally likely to be
the birthday of each one of a given group of 73 people. What is the probability
that:

i) Forty people have the same birthdays and the other 33 also have the same
birthday (which is different from that of the previous group)?

ii) If a year is divided into five 73-day specified intervals, what is the probabil-
ity that the birthday of: 17 people falls into the first such interval, 23 into
the second, 15 into the third, 10 into the fourth and 8 into the fifth interval?

2.4.27 Suppose that each one of n sticks is broken into one long and one
short part. Two parts are chosen at random. What is the probability that:

i) One part is long and one is short?

ii) Both parts are either long or short?

The 2n parts are arranged at random into n pairs from which new sticks are
formed. Find the probability that:

iii) The parts are joined in the original order;

iv) All long parts are paired with short parts.

2.4.28 Derive the third part of Theorem 9 from Theorem 8(ii).

2.4.29 Three cards are drawn at random and with replacement from a stan-
dard deck of 52 playing cards. Compute the probabilities P(Aj), j = 1, . . . , 5,
where the events Aj, j = 1, . . . , 5 are defined as follows:

Exercises 43
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A s s

A s s

A s s

A s s

A s s

1

2

3

4

5 1

= ∈{ }
= ∈{ }
= ∈{ }
= ∈{

}
= ∈{ }

S
S
S
S

S

; ,

; ,

; ,

;
,

; .

 all 3 cards in  are black

 at least 2 cards in  are red

 exactly 1 card in  is an ace

 the first card in  is a diamond,
the second is a heart and the third is a club

  card in  is a diamond,  1 is a heart and 1 is a club

2.4.30 Refer to Exercise 2.4.29 and compute the probabilities P(Aj),
j = 1, . . . , 5 when the cards are drawn at random but without replacement.

2.4.31 Consider hands of 5 cards from a standard deck of 52 playing
cards. Find the number of all 5-card hands which satisfy one of the following
requirements:

i) Exactly three cards are of one color;

ii) Three cards are of three suits and the other two of the remaining suit;

iii) At least two of the cards are aces;

iv) Two cards are aces, one is a king, one is a queen and one is a jack;

v) All five cards are of the same suit.

2.4.32 An urn contains nR red balls, nB black balls and nW white balls. r balls
are chosen at random and with replacement. Find the probability that:

i) All r balls are red;

ii) At least one ball is red;

iii) r1 balls are red, r2 balls are black and r3 balls are white (r1 + r2 + r3 = r);

iv) There are balls of all three colors.

2.4.33 Refer to Exercise 2.4.32 and discuss the questions (i)–(iii) for r = 3 and
r1 = r2 = r3 (= 1), if the balls are drawn at random but without replacement.

2.4.34 Suppose that all 13-card hands are equally likely when a standard
deck of 52 playing cards is dealt to 4 people. Compute the probabilities P(Aj),
j = 1, . . . , 8, where the events Aj, j = 1, . . . , 8 are defined as follows:

  

A s s

A s s

A s s

A s s

A s s

A s s

1

2

3

4

5

6

= ∈{ }
= ∈{ }
= ∈{ }
= ∈{ }
= ∈{ }
= ∈{ }

S
S
S
S
S
S

; ,

; ,

; ,

; ,

; ,

; ,

   consists of 1 color cards

  consists only of diamonds

  consists of 5 diamonds,  3 hearts,  2 clubs and 3 spades

  consists of cards of exactly 2 suits

  contains at least 2 aces

  does not contain aces,  tens and jacks
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A s s

A s s

7

8

= ∈{ }
= ∈{ }

S
S

; ,

; .

  consists of 3 aces,  2 kings and exactly 7 red cards

  consists of cards of all different denominations

2.4.35 Refer to Exercise 2.4.34 and for j = 0, 1, . . . , 4, define the events Aj

and also A as follows:

  

A s s j

A s s

j = ∈{ }
= ∈{ }

S
S

; ,

; .

  contains exactly  tens

  contains exactly 7 red cards

For j = 0, 1, . . . , 4, compute the probabilities P(Aj), P(Aj|A) and also P(A);
compare the numbers P(Aj), P(Aj|A).

2.4.36 Let S be the set of all n3 3-letter words of a language and let P be the
equally likely probability function on the events of S. Define the events A, B
and C as follows:

  

A s s

B s s A

C s s

= ∈{ }
= ∈ ( ){

}
∈{ }

S
S

S

; ,

;
,

.

  begins with a specific letter

  has the specified letter mentioned in the definition of 
in the middle entry

= ;   has exactly two of its letters the same

Then show that:

i) P(A ∩ B) = P(A)P(B);

ii) P(A ∩ C) = P(A)P(C);

iii) P(B ∩ C) = P(B)P(C);

iv) P(A ∩ B ∩ C) ≠ P(A)P(B)P(C).

Thus the events A, B, C are pairwise independent but not mutually
independent.

2.5* Product Probability Spaces

The concepts discussed in Section 2.3 can be stated precisely by utilizing more
technical language. Thus, if we consider the experiments E1 and E2 with re-
spective probability spaces (S1, A1, P1) and (S2, A2, P2), then the compound
experiment (E1, E2) = E1 × E2 has sample space S = S1 × S2 as defined earlier.
The appropriate σ-field A of events in S is defined as follows: First define the
class C by:

  

C A A= × ∈ ∈{ }
× = ( ) ∈ ∈{ }
A A A A

A A s s s A s A

1 2 1 1 2 2

1 2 1 2 1 1 2 2

; , ,

, ; , .where   
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Then A is taken to be the σ-field generated by C (see Theorem 4 in Chapter
1). Next, define on C the set function P by P(A1 × A2) = P1(A1)P2(A2). It can be
shown that P determines uniquely a probability measure on A (by means of
the so-called Carathéodory extension theorem). This probability measure is
usually denoted by P1 × P2 and is called the product probability measure (with
factors P1 and P2), and the probability space (S, A, P) is called the product
probability space (with factors (Sj, Aj, Pj), j = 1, 2). It is to be noted that events
which refer to E1 alone are of the form B1 = A1 × S2, A1 ∈ A1, and those
referring to E2 alone are of the form B2 = S1 × A2, A2 ∈ A2. The experiments E1

and E2 are then said to be independent if P(B1 ∩ B2) = P(B1)P(B2) for all events
B1 and B2 as defined above.

For n experiments Ej, j = 1, 2, . . . , n with corresponding probability spaces
(Sj, Aj, Pj), the compound experiment (E1, . . . , En) = E1 × · · · × En has prob-
ability space (S, A, P), where

  S S S S= × ⋅ ⋅ ⋅ × = ⋅ ⋅ ⋅( ) ∈ = ⋅ ⋅ ⋅{ }1 1 1n n j js s s j n, , ; , , , ,    2,  

A is the σ-field generated by the class C, where

  C A= × ⋅ ⋅ ⋅ × ∈ = ⋅ ⋅ ⋅{ }A A A j nn j j1 1;    2,  , , , ,

and P is the unique probability measure defined on A through the
relationships

  P A A P A P A A j nn n j j1 1 1× ⋅ ⋅ ⋅ ×( ) = ( ) ⋅ ⋅ ⋅ ( ) ∈ = ⋅ ⋅ ⋅, , , ,   2,  .A
The probability measure P is usually denoted by P1 × · · · × Pn and is called the
product probability measure (with factors Pj, j = 1, 2, . . . , n), and the probabil-
ity space (S, A, P) is called the product probability space (with factors (Sj, Aj,
Pj), j = 1, 2, . . . , n). Then the experiments Ej, j = 1, 2, . . . , n are said to be
independent if P(B1 ∩ · · · ∩ B2) = P(B1) · · · P(B2), where Bj is defined by

  B A j nj j j j n= × ⋅ ⋅ ⋅ × × × × ⋅ ⋅ ⋅ × = ⋅ ⋅ ⋅− +S S S S1 1 1 1, , , .  2,  

The definition of independent events carries over to σ-fields as follows.
Let A1, A2 be two sub-σ-fields of A. We say that A1, A2 are independent if
P(A1 ∩ A2) = P(A1)P(A2) for any A1 ∈ A1, A2 ∈ A2. More generally, the
σ-fields Aj, j = 1, 2, . . . , n (sub-σ-fields of A) are said to be independent if

  
P A P A A j nj

j

n

j
j

n

j j
= =

⎛

⎝⎜
⎞

⎠⎟
= ( ) ∈ = ⋅ ⋅ ⋅∏

1 1

1I for any   2,  A , , , .

Of course, σ-fields which are not independent are said to be dependent.
At this point, notice that the factor σ-fields Aj, j = 1, 2, . . . , n may be

considered as sub-σ-fields of the product σ-field A by identifying Aj with Bj,
where the Bj’s are defined above. Then independence of the experiments Ej,
j = 1, 2, . . . , n amounts to independence of the corresponding σ-fields Aj,
j = 1, 2, . . . , n (looked upon as sub-σ-fields of the product σ-field A).
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Exercises

2.5.1 Form the Cartesian products A × B, A × C, B × C, A × B × C, where
A = {stop, go}, B = {good, defective), C = {(1, 1), (1, 2), (2, 2)}.

2.5.2 Show that A × B = ∅ if and only if at least one of the sets A, B is ∅.

2.5.3 If A ⊆ B, show that A × C ⊆ B × C for any set C.

2.5.4 Show that

i) (A × B)c = (A × Bc) + (Ac × B) + (Ac × Bc);

ii) (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D);

iii) (A × B) ∪ (C × D) = (A ∪ C) × (B ∪ D) − [(A ∩ Cc) × (Bc ∩ D)
+ (Ac ∩ C) × (B ∩ Dc )].

2.6* The Probability of Matchings

In this section, an important result, Theorem 10, is established providing an
expression for the probability of occurrence of exactly m events out of possible
M events. The theorem is then illustrated by means of two interesting exam-
ples. For this purpose, some additional notation is needed which we proceed to
introduce. Consider M events Aj, j = 1, 2, . . . , M and set

S

S P A

S P A A

S P A A A

S P A A A

j
j

M

j j
j j M

r j j j
j j j M

M M

r

r

0

1
1

2
1

1

1 2

1

1 2

1 2

1 2

1 2

=

= ( )
= ∩( )

= ∩ ∩ ⋅ ⋅ ⋅ ∩( )

= ∩ ∩ ⋅ ⋅ ⋅ ∩( )

=

≤ < ≤

≤ < < ⋅ ⋅ ⋅ < ≤

∑

∑

∑

,

,

,

,

.

M

M

Let also

B

C

D

m A j M
m

m

m

j

=
=
=

⎫

⎬
⎪

⎭
⎪

= ⋅ ⋅ ⋅

 exactly

 at least

 at most

 of the events  ,  2,   occur., ,1

Then we have
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With the notation introduced above

P B S
m

m
S

m

m
S

M

m
Sm m m m

M m

M( ) = −
+⎛

⎝⎜
⎞
⎠⎟

+
+⎛

⎝⎜
⎞
⎠⎟

− ⋅ ⋅ ⋅ + −( ) ⎛
⎝⎜

⎞
⎠⎟+ +

−1 2
11 2 (2)

which for m = 0 is

P B S S S S
M

M0 0 1 2 1( ) = − + − ⋅ ⋅ ⋅ + −( ) , (3)

and

P C P B P B P Bm m m M( ) = ( ) + ( ) + ⋅ ⋅ ⋅ + ( )+1 , (4)

and

P D P B P B P Bm m( ) = ( ) + ( ) + ⋅ ⋅ ⋅ + ( )0 1 . (5)

For the proof of this theorem, all that one has to establish is (2), since (4)
and (5) follow from it. This will be done in Section 5.6 of Chapter 5. For a proof
where S is discrete the reader is referred to the book An Introduction to
Probability Theory and Its Applications, Vol. I, 3rd ed., 1968, by W. Feller, pp.
99–100.

The following examples illustrate the above theorem.

The matching problem (case of sampling without replacement). Suppose that
we have M urns, numbered 1 to M. Let M balls numbered 1 to M be inserted
randomly in the urns, with one ball in each urn. If a ball is placed into the urn
bearing the same number as the ball, a match is said to have occurred.

i) Show the probability of at least one match is

1
1
2

1
3

1
1

1 0 63
1 1− + − ⋅ ⋅ ⋅ + −( ) ≈ − ≈

+ −

! ! !
.

M

M
e

for large M, and

ii) exactly m matches will occur, for m = 0, 1, 2, . . . , M is

1
1 1

1
2

1
3

1
1

1
1

1 1

0

1

m M m

m k m
e M m

M m

k

k

M m

! ! ! !

! ! !

− + − + ⋅ ⋅ ⋅ + −( )
−( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= −( ) ≈ −

−

=

−
−∑ for  large.

DISCUSSION To describe the distribution of the balls among the urns, write
an M-tuple (z1, z2, . . . , zM) whose jth component represents the number of the
ball inserted in the jth urn. For k = 1, 2, . . . , M, the event Ak that a match will
occur in the kth urn may be written Ak = {(z1, . . . , zM)′ ∈ � M; zj integer, 1 ≤ zj

THEOREM 10

EXAMPLE 9
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≤ M, j = 1, . . . , M, zk = k}. It is clear that for any integer r = 1, 2, . . . , M and any
r unequal integers k1, k2, . . . , kr,, from 1 to M,

P A A A
M r

Mk k kr1 2
∩ ∩ ⋅ ⋅ ⋅ ∩( ) =

−( )!
!

.

It then follows that Sr is given by

S
M

r

M r

M rr =
⎛
⎝⎜

⎞
⎠⎟

−( )
=

!

! !
.

1

This implies the desired results.

Coupon collecting (case of sampling with replacement). Suppose that a manu-
facturer gives away in packages of his product certain items (which we take to
be coupons), each bearing one of the integers 1 to M, in such a way that each
of the M items is equally likely to be found in any package purchased. If n
packages are bought, show that the probability that exactly m of the integers,
1 to M, will not be obtained is equal to

M

m

M m

k

m k
M

k

k

M m n⎛
⎝⎜

⎞
⎠⎟

−( ) −⎛
⎝⎜

⎞
⎠⎟

− +⎛
⎝⎜

⎞
⎠⎟=

−

∑ 1 1
0

.

Many variations and applications of the above problem are described in
the literature, one of which is the following. If n distinguishable balls are
distributed among M urns, numbered 1 to M, what is the probability that there
will be exactly m urns in which no ball was placed (that is, exactly m urns
remain empty after the n balls have been distributed)?

DISCUSSION To describe the coupons found in the n packages purchased,
we write an n-tuple (z1, z2, · · · , zn), whose jth component zj represents the
number of the coupon found in the jth package purchased. We now define the
events A1, A2, . . . , AM. For k = 1, 2, . . . , M, Ak is the event that the number k
will not appear in the sample, that is,

  

A z z z z M z k j nk n
n

j j j= ⋅ ⋅ ⋅( )′ ∈ ≤ ≤ ≠ = ⋅ ⋅ ⋅
⎧
⎨
⎩

⎫
⎬
⎭

1 1, , ; , , , , .   integer,  1    2,  �

It is easy to see that we have the following results:

P A
M

M M
k M

P A A
M

M M

k n

k k n

k

n n

k k

n n

( ) = −⎛
⎝⎜

⎞
⎠⎟

= −
⎛
⎝⎜

⎞
⎠⎟

= ⋅ ⋅ ⋅

∩( ) = −⎛
⎝⎜

⎞
⎠⎟

= −
⎛
⎝⎜

⎞
⎠⎟

= ⋅ ⋅ ⋅
= + ⋅ ⋅ ⋅

1
1

1
1

2
1

2 1

11 2

1

2 1

, , , ,

,
, ,

, ,

 2,  

 2,  

and, in general,

EXAMPLE 10
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P A A A
r
M

k n

k k n

k k n

k k k

n

r r

r1 2
1

1

1

1

1

2 1

1

∩ ∩ ⋅ ⋅ ⋅ ∩( ) = −
⎛
⎝⎜

⎞
⎠⎟

= ⋅ ⋅ ⋅
= + ⋅ ⋅ ⋅
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,

, ,

, ,

, , .

 2,  

M

Thus the quantities Sr are given by

S
M

r

r
M

r Mr

n

=
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

= ⋅ ⋅ ⋅1 0, , , . 1,  (6)

Let Bm be the event that exactly m of the integers 1 to M will not be found in
the sample. Clearly, Bm is the event that exactly m of the events A1, . . . , AM

will occur. By relations (2) and (6), we have

P B
r

m

M

r

r
M

M

m

M m

k

m k
M

m

r m

r m

M n

k

k

M m n

( ) = −( ) ⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

−( ) −⎛
⎝⎜

⎞
⎠⎟

− +⎛
⎝⎜

⎞
⎠⎟

−

=

=

−

∑

∑

1 1

1 1
0

, (7)

by setting r − m = k and using the identity

m k

m

M

m k

M

m

M m

k

+⎛
⎝⎜

⎞
⎠⎟ +
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟
. (8)

This is the desired result.

This section is concluded with the following important result stated as a
theorem.

Let A and B be two disjoint events. Then in a series of independent trials, show
that:

P A B
P A

P A P B
 occurs before  occurs( ) =

( )
( ) + ( ) .

PROOF For i = 1, 2, . . . , define the events Ai and Bi as follows:

A A i B B ii i= =“  occurs on the th trial,” “  occurs on the th trial.”

Then, clearly, required the event is the sum of the events

A A B A A B A B A

A B A B A

c c c c c c

c c
n
c

n
c

n

1 1 1 2 1 1 2 2 3

1 1 1

, , , ,

,

∩ ∩ ∩ ∩ ∩ ∩ ⋅ ⋅ ⋅
∩ ∩ ⋅ ⋅ ⋅ ∩ ∩ ∩ ⋅ ⋅ ⋅+

and therefore

THEOREM 11
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P A B occurs before  occurs( )
= + ∩ ∩( ) + ∩ ∩ ∩ ∩( )[

+ ⋅ ⋅ ⋅ + ∩ ∩ ⋅ ⋅ ⋅ ∩ ∩ ∩( ) + ⋅ ⋅ ⋅]+

P A A B A A B A B A

A B A B A

c c c c c c

c c
n
c

n
c

n

1 1 1 2 1 1 2 2 3

1 1 1

= ( ) + ∩ ∩( ) + ∩ ∩ ∩ ∩( )
+ ⋅ ⋅ ⋅ + ∩ ∩ ⋅ ⋅ ⋅ ∩ ∩ ∩( ) + ⋅ ⋅ ⋅+

P A P A B A P A B A B A

P A B A B A

c c c c c c

c c
n
c

n
c

n

1 1 1 2 1 1 2 2 3

1 1 1

= ( ) + ∩( ) ( ) + ∩( ) ∩( ) ( )
+ ⋅ ⋅ ⋅ + ∩( ) ⋅ ⋅ ⋅ ∩( ) ( ) + ⋅ ⋅ ⋅ ( )+

P A P A B P A P A B P A B P A

P A B P A B P A

c c c c c c

c c
n
c

n
c

n

1 1 1 2 1 1 2 2 3

1 1 1 by Theorem 6

= ( ) + ∩( ) ( ) + ∩( ) ( )
+ ⋅ ⋅ ⋅ + ∩( ) ( ) ⋅ ⋅ ⋅

P A P A B P A P A B P A

P A B P A

c c c c

n c c

2

= ( ) + ∩( ) + ∩( ) + ⋅ ⋅ ⋅ + ∩( ) + ⋅ ⋅ ⋅[ ]P A P A B P A B P A Bc c c c n c c1 2

= ( )
− ∩( )P A

P A Bc c

1

1
.

But

P A B P A B P A B

P A B P A P B

c c c
∩( ) = ∪( )⎡

⎣⎢
⎤
⎦⎥

= − ∪( )
= − +( ) = − ( ) − ( )

1

1 1 ,

so that

1 − ∩( ) = ( ) + ( )P A B P A P Bc c .

Therefore

P A B
P A

P A P B
 occurs before  occurs( ) =

( )
( ) + ( ) ,

as asserted. ▲

It is possible to interpret B as a catastrophic event, and A as an event
consisting of taking certain precautionary and protective actions upon the
energizing of a signaling device. Then the significance of the above probability
becomes apparent. As a concrete illustration, consider the following simple
example (see also Exercise 2.6.3).
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EXAMPLE 11 In repeated (independent) draws with replacement from a standard deck of 52
playing cards, calculate the probability that an ace occurs before a picture.

Let “an ace occurs,” “a picture occurs.”A B= =

Then P(A) = 4
52

= 1
13

 and P(B) = 12
52

= 4
13

, so that P(A occurs before B occurs)
= 1

13
4

13
= 1

4
.

Exercises

2.6.1 Show that

m k

m

M

m k

M

m

M m

k

+⎛
⎝⎜

⎞
⎠⎟ +
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟
,

as asserted in relation (8).

2.6.2 Verify the transition in (7) and that the resulting expression is indeed
the desired result.

2.6.3 Consider the following game of chance. Two fair dice are rolled repeat-
edly and independently. If the sum of the outcomes is either 7 or 11, the player
wins immediately, while if the sum is either 2 or 3 or 12, the player loses
immediately. If the sum is either 4 or 5 or 6 or 8 or 9 or 10, the player continues
rolling the dice until either the same sum appears before a sum of 7 appears in
which case he wins, or until a sum of 7 appears before the original sum appears
in which case the player loses. It is assumed that the game terminates the first
time the player wins or loses. What is the probability of winning?
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Chapter 3

On Random Variables and
Their Distributions

3.1 Some General Concepts

Given a probability space (S, class of events, P), the main objective of prob-
ability theory is that of calculating probabilities of events which may be of
importance to us. Such calculations are facilitated by a transformation of the
sample space S, which may be quite an abstract set, into a subset of the real
line � with which we are already familiar. This is, actually, achieved by the
introduction of the concept of a random variable. A random variable (r.v.) is
a function (in the usual sense of the word), which assigns to each sample point
s ∈ S a real number, the value of the r.v. at s. We require that an r.v. be a well-
behaving function. This is satisfied by stipulating that r.v.’s are measurable
functions. For the precise definition of this concept and related results, the
interested reader is referred to Section 3.5 below. Most functions as just
defined, which occur in practice are, indeed, r.v.’s, and we leave the matter to
rest here. The notation X(S) will be used for the set of values of the r.v. X, the
range of X.

Random variables are denoted by the last letters of the alphabet X, Y, Z,
etc., with or without subscripts. For a subset B of �, we usually denote by
(X ∈ B) the following event in S: (X ∈ B) = {s ∈ S; X(s) ∈ B} for simplicity. In
particular, (X = x) = {s ∈ S; X(s) = x}. The probability distribution function (or
just the distribution) of an r.v. X is usually denoted by PX and is a probability
function defined on subsets of � as follows: PX (B) = P(X ∈ B). An r.v. X is said
to be of the discrete type (or just discrete) if there are countable (that is, finitely
many or denumerably infinite) many points in �, x1, x2, . . . , such that PX({xj})
> 0, j ≥ 1, and Σj PX({xj})(= Σj P(X = xj)) = 1. Then the function fX defined on the
entire � by the relationships:

f x P x P X x x xX j X j j j( ) = { }( ) = =( )( ) =for ,
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and fX(x) = 0 otherwise has the properties:

f x x f xX X j
j

( ) ≥ ( ) =∑0 1for all ,  and .

Furthermore, it is clear that

P X B f xX j
x Bj

∈( ) = ( )
∈

∑ .

Thus, instead of striving to calculate the probability of the event {s ∈ S;
X(s) ∈ B}, all we have to do is to sum up the values of fX(xj) for all those xj’s
which lie in B; this assumes, of course, that the function fX is known. The
function fX is called the probability density function (p.d.f.) of X. The distribu-
tion of a discrete r.v. will also be referred to as a discrete distribution. In the
following section, we will see some discrete r.v.’s (distributions) often occur-
ring in practice. They are the Binomial, Poisson, Hypergeometric, Negative
Binomial, and the (discrete) Uniform distributions.

Next, suppose that X is an r.v. which takes values in a (finite or infinite but
proper) interval I in � with the following qualification: P(X = x) = 0 for every
single x in I. Such an r.v. is called an r.v. of the continuous type (or just a
continuous r.v.). Also, it often happens for such an r.v. to have a function fX

satisfying the properties fX(x) ≥ 0 for all x ∈ I, and P(X ∈ J) = ∫J fX(x)dx for any
sub-interval J of I. Such a function is called the probability density function
(p.d.f.) of X in analogy with the discrete case. It is to be noted, however, that
here fX(x) does not represent the P(X = x)! A continuous r.v. X with a p.d.f. fX

is called absolutely continuous to differentiate it from those continuous r.v.’s
which do not have a p.d.f. In this book, however, we are not going to concern
ourselves with non-absolutely continuous r.v.’s. Accordingly, the term “con-
tinuous” r.v. will be used instead of “absolutely continuous” r.v. Thus, the r.v.’s
to be considered will be either discrete or continuous (= absolutely continu-
ous). Roughly speaking, the idea that P(X = x) = 0 for all x for a continuous r.v.
may be interpreted that X takes on “too many” values for each one of them to
occur with positive probability. The fact that P(X = x) also follows formally by
the fact that P(X = x) = ∫ x

x fX(y)dy, and this is 0. Other interpretations are also
possible. It is true, nevertheless, that X takes values in as small a neighborhood
of x as we please with positive probability. The distribution of a continuous r.v.
is also referred to as a continuous distribution. In Section 3.3, we will discuss
some continuous r.v.’s (distributions) which occur often in practice. They are
the Normal, Gamma, Chi-square, Negative Exponential, Uniform, Beta,
Cauchy, and Lognormal distributions. Reference will also be made to t and F
r.v.’s (distributions).

Often one is given a function f and is asked whether f is a p.d.f. (of some
r.v.). All one has to do is to check whether f is non-negative for all values of its
argument, and whether the sum or integral of its values (over the appropriate
set) is equal to 1.
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When (a well-behaving) function X is defined on a sample space S and
takes values in the plane or the three-dimensional space or, more generally, in
the k-dimensional space �k, it is called a k-dimensional random vector (r.
vector) and is denoted by X. Thus, an r.v. is a one-dimensional r. vector. The
distribution of X, PX, is defined as in the one-dimensional case by simply
replacing B with subsets of �k. The r. vector X is discrete if P(X = xj) > 0, j =
1, 2, . . . with Σj P(X = xj) = 1, and the function fX(x) = P(X = xj) for x = xj, and
fX(x) = 0 otherwise is the p.d.f. of X. Once again, P(X ∈ B) = ∑xj∈B fX(xj) for B
subsets of �k. The r. vector X is (absolutely) continuous if P(X = x) = 0 for all
x ∈ I, but there is a function fX defined on �k such that:

  
f P J f dk

JX Xx x X x x( ) ≥ ∈ ∈( ) = ( )∫0 for all and� ,

for any sub-rectangle J of I. The function fX is the p.d.f. of X. The distribution
of a k-dimensional r. vector is also referred to as a k-dimensional discrete or
(absolutely) continuous distribution, respectively, for a discrete or (abso-
lutely) continuous r. vector. In Sections 3.2 and 3.3, we will discuss two repre-
sentative multidimensional distributions; namely, the Multinomial (discrete)
distribution, and the (continuous) Bivariate Normal distribution.

We will write f rather than fX when no confusion is possible. Again, when
one is presented with a function f and is asked whether f is a p.d.f. (of some r.
vector), all one has to check is non-negativity of f, and that the sum of its values
or its integral (over the appropriate space) is equal to 1.

3.2 Discrete Random Variables (and Random Vectors)

3.2.1 Binomial

The Binomial distribution is associated with a Binomial experiment; that is, an
experiment which results in two possible outcomes, one usually termed as a
“success,” S, and the other called a “failure,” F. The respective probabilities
are p and q. It is to be noted, however, that the experiment does not really
have to result in two outcomes only. Once some of the possible outcomes are
called a “failure,” any experiment can be reduced to a Binomial experiment.
Here, if X is the r.v. denoting the number of successes in n binomial experi-
ments, then

  
X P X x f x

n

x
p qx n xS( ) = ⋅ ⋅ ⋅{ } =( ) = ( ) =

⎛
⎝⎜

⎞
⎠⎟

−0, , , , 1,  2,  n

where 0 < p < 1, q = 1 − p, and x = 0, 1, 2, . . . , n. That this is in fact a p.d.f.
follows from the fact that f(x) ≥ 0 and

f x
n

x
p q p q

x

n

x

n
x n x n n( ) =

⎛
⎝⎜

⎞
⎠⎟

= +( ) = =
= =

−∑ ∑
0 0

1 1.
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f f

f f

f f

f f

f f

f f

f

0 0 0317 7 0 0115

1 0 1267 8 0 0024

2 0 2323 9 0 0004

3 0 2581 10 0 0000

4 0 1936 11 0 0000

5 0 1032 12 0 0000

6 0 0401

( ) = ( ) =

( ) = ( ) =

( ) = ( ) =

( ) = ( ) =

( ) = ( ) =

( ) = ( ) =

( ) =

. .

. .

. .

. .

. .

. .

.

The appropriate S here is:

  S = { } × ⋅ ⋅ ⋅ × { } ( )S F S F n, , .   copies

In particular, for n = 1, we have the Bernoulli or Point Binomial r.v. The r.v.
X may be interpreted as representing the number of S’s (“successes”) in
the compound experiment E × · · · × E (n copies), where E is the experiment
resulting in the sample space {S, F} and the n experiments are independent
(or, as we say, the n trials are independent). f(x) is the probability that exactly
x S’s occur. In fact, f(x) = P(X = x) = P(of all n sequences of S’s and F ’s
with exactly x S’s). The probability of one such a sequence is pxqn−x by the
independence of the trials and this also does not depend on the particular
sequence we are considering. Since there are (n

x) such sequences, the result
follows.

The distribution of X is called the Binomial distribution and the quantities
n and p are called the parameters of the Binomial distribution. We denote the
Binomial distribution by B(n, p). Often the notation X ∼ B(n, p) will be used
to denote the fact that the r.v. X is distributed as B(n, p). Graphs of the p.d.f.
of the B(n, p) distribution for selected values of n and p are given in Figs. 3.1
and 3.2.

0.25

f (x)

0 13
x

0.20

0.15

0.10

0.05

121110987654321

p �

n � 12
1
4

Figure 3.1 Graph of the p.d.f. of the Binomial distribution for n = 12, p = –14.
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0.25

f (x)

0 10
x

p �

n � 10
1
2

0.20

0.15

0.10

0.05

987654321

Figure 3.2 Graph of the p.d.f. of the Binomial distribution for n = 10, p = –12 .
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f
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3.2.2 Poisson

  
X P X x f x e

x

x

S( ) = ⋅ ⋅ ⋅{ } =( ) = ( ) = −0,  1,  2, ,
!

,λ λ

x = 0, 1, 2, . . . ; λ > 0. f is, in fact, a p.d.f., since f(x) ≥ 0 and

f x e
x

e e
x

x

x
( ) = = =

=

∞
−

=

∞
−∑ ∑

0 0

1λ λ λλ
!

.

The distribution of X is called the Poisson distribution and is denoted by
P(λ). λ is called the parameter of the distribution. Often the notation X ∼
P(λ) will be used to denote the fact that the r.v. X is distributed as P(λ).
The Poisson distribution is appropriate for predicting the number of
phone calls arriving at a given telephone exchange within a certain period
of time, the number of particles emitted by a radioactive source within a
certain period of time, etc. The reader who is interested in the applications
of the Poisson distribution should see W. Feller, An Introduction to
Probability Theory, Vol. I, 3rd ed., 1968, Chapter 6, pages 156–164, for further
examples.

In Theorem 1 in Section 3.4, it is shown that the Poisson distribution

3.2 Discrete Random Variables (and Random Vectors) 57
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may be taken as the limit of Binomial distributions. Roughly speaking, sup-
pose that X ∼ B(n, p), where n is large and p is small. Then P X x=( ) =

x
n x n x np np x

xp p e x( ) −( ) ≈ ( ) ≥
− −1 ! ,  0 . For the graph of the p.d.f. of the P(λ)

distribution for λ = 5 see Fig. 3.3.
A visualization of such an approximation may be conceived by stipulating

that certain events occur in a time interval [0,t] in the following manner: events
occurring in nonoverlapping subintervals are independent; the probability
that one event occurs in a small interval is approximately proportional to its
length; and two or more events occur in such an interval with probability
approximately 0. Then dividing [0,t] into a large number n of small intervals of
length t/n, we have that the probability that exactly x events occur in [0,t] is
approximately x

n t
n

x t
n

n x( )( ) −( ) −λ λ1 , where λ is the factor of proportionality.
Setting pn

t
n= λ ,  we have npn = λt and Theorem 1 in Section 3.4 gives that

x
n t

n

x t
n

n x t t x

xe( )( ) −( ) ≈ ( )− −λ λ λ λ1 ! . Thus Binomial probabilities are approximated by
Poisson probabilities.

f f

f f

f f

f f

f f

f f

f f

f

0 0 0067 9 0 0363

1 0 0337 10 0 0181

2 0 0843 11 0 0082

3 0 1403 12 0 0035

4 0 1755 13 0 0013

5 0 1755 14 0 0005

6 0 1462 15 0 0001

7

( ) = ( ) =

( ) = ( ) =

( ) = ( ) =

( ) = ( ) =

( ) = ( ) =

( ) = ( ) =

( ) = ( ) =

. .

. .

. .

. .

. .

. .

. .

(( ) =

( ) = ( ) ≥

0 1044

8 0 0653

.

.f f n n is negligible for 16.

f (x)

0 13
x

0.20

0.15

0.10

0.05

12 15141110987654321

Figure 3.3 Graph of the p.d.f. of the Poisson distribution with λ = 5.
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3.2.3 Hypergeometric
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where (m
x ) = 0, by definition, for x > m. f is a p.d.f., since f(x) ≥ 0 and
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The distribution of X is called the Hypergeometric distribution and arises in
situations like the following. From an urn containing m red balls and n black
balls, r balls are drawn at random without replacement. Then X represents the
number of red balls among the r balls selected, and f(x) is the probability that
this number is exactly x. Here S = {all r-sequences of R’s and B’s}, where R
stands for a red ball and B stands for a black ball. The urn/balls model just
described is a generic model for situations often occurring in practice. For
instance, the urn and the balls may be replaced by a box containing certain
items manufactured by a certain process over a specified period of time, out of
which m are defective and n meet set specifications.

3.2.4 Negative Binomial

  
X f x p
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x
qr xS( ) = ⋅ ⋅ ⋅{ } ( ) =
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0 < p < 1, q = 1 − p, x = 0, 1, 2, . . . . f is, in fact, a p.d.f. since f(x) ≥ 0 and

f x p
r x

x
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This follows by the Binomial theorem, according to which

1

1

1
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The distribution of X is called the Negative Binomial distribution. This distri-
bution occurs in situations which have as a model the following. A Binomial
experiment E, with sample space {S, F}, is repeated independently until exactly
r S’s appear and then it is terminated. Then the r.v. X represents the number
of times beyond r that the experiment is required to be carried out, and f(x) is
the probability that this number of times is equal to x. In fact, here S =

3.2 Discrete Random Variables (and Random Vectors) 59
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{all (r + x)-sequences of S’s and F’s such that the rth S is at the end of the
sequence}, x = 0, 1, . . . and f(x) = P(X = x) = P[all (r + x)-sequences as above
for a specified x]. The probability of one such sequence is pr−1qxp by the
independence assumption, and hence

f x
r x

x
p q p p

r x

x
qr x r x( ) =

+ −⎛
⎝⎜

⎞
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=
+ −⎛

⎝⎜
⎞
⎠⎟

−1 11 .

The above interpretation also justifies the name of the distribution. For r = 1,
we get the Geometric (or Pascal) distribution, namely f(x) = pqx, x = 0, 1, 2, . . . .

3.2.5 Discrete Uniform

  
X n f x

n
x nS( ) = ⋅ ⋅ ⋅ −{ } ( ) = = ⋅ ⋅ ⋅ −0,  1,   1,  , , , , , .1

1
0 1

This is the uniform probability measure. (See Fig. 3.4.)

Figure 3.4 Graph of the p.d.f. of a Discrete
Uniform distribution.

3.2.6 Multinomial
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That f is, in fact, a p.d.f. follows from the fact that
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where the summation extends over all xj’s such that xj ≥ 0, j = 1, 2, . . . , k,
Σk

j=1xj = n. The distribution of X is also called the Multinomial distribution and
n, p1, . . . , pk are called the parameters of the distribution. This distribution
occurs in situations like the following. A Multinomial experiment E with k
possible outcomes Oj, j = 1, 2, . . . , k, and hence with sample space S = {all
n-sequences of Oj’s}, is carried out n independent times. The probability of
the Oj’s occurring is pj, j = 1, 2, . . . k with pj > 0 and pjj

k =∑ = 11 . Then X is the
random vector whose jth component Xj represents the number of times xj

the outcome Oj occurs, j = 1, 2, . . . , k. By setting x = (x1, . . . , xk)′, then f is the

f (x)

0 4
x

321

n � 5

1
5
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probability that the outcome Oj occurs exactly xj times. In fact f(x) = P(X = x)
= P(“all n-sequences which contain exactly xjOj’s, j = 1, 2, . . . , k). The prob-
ability of each one of these sequences is p px

k
xk

1
1 ⋅ ⋅ ⋅  by independence, and since

there are n!/( x xk1! !⋅ ⋅ ⋅ ) such sequences, the result follows.
The fact that the r. vector X has the Multinomial distribution with param-

eters n and p1, . . . , pk may be denoted thus: X ∼ M(n; p1, . . . , pk).

REMARK 1 When the tables given in the appendices are not directly usable
because the underlying parameters are not included there, we often resort to
linear interpolation. As an illustration, suppose X ∼ B(25, 0.3) and we wish
to calculate P(X = 10). The value p = 0.3 is not included in the Binomial
Tables in Appendix III. However, 4

16
= 0.25 < 0.3 < 0.3125 = 5

16
 and the

probabilities P(X = 10), for p = 4
16

 and p = 5
16

 are, respectively, 0.9703
and 0.8756. Therefore linear interpolation produces the value:

0 9703 0 9703 0 8756
0 3 0 25

0 3125 0 25
0 8945. . .

. .
. .

. .− −( ) × −
−

=

Likewise for other discrete distributions. The same principle also applies
appropriately to continuous distributions.

REMARK 2 In discrete distributions, we are often faced with calculations of
the form x x

x θ=
∞∑ 1 . Under appropriate conditions, we may apply the following

approach:
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Similarly for the expression x xx
x−( )∑ =

∞ −12
2θ .

Exercises

3.2.1 A fair coin is tossed independently four times, and let X be the r.v.
defined on the usual sample space S for this experiment as follows:

X s H s( ) = the number of s in .’

iii) What is the set of values of X?

iii) What is the distribution of X?

iii) What is the partition of S induced by X?

3.2.2 It has been observed that 12.5% of the applicants fail in a certain
screening test. If X stands for the number of those out of 25 applicants who fail
to pass the test, what is the probability that:

Exercises 61
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iii) X ≥ 1?

iii) X ≤ 20?

iii) 5 ≤ X ≤ 20?

3.2.3 A manufacturing process produces certain articles such that the prob-
ability of each article being defective is p. What is the minimum number, n, of
articles to be produced, so that at least one of them is defective with probabil-
ity at least 0.95? Take p = 0.05.

3.2.4 If the r.v. X is distributed as B(n, p) with p > 1
2

,  the Binomial Tables
in Appendix III cannot be used directly. In such a case, show that:

ii) P(X = x) = P(Y = n − x), where Y ∼ B(n, q), x = 0, 1, . . . , n, and q = 1 − p;

ii) Also, for any integers a, b with 0 ≤ a < b ≤ n, one has: P(a ≤ X ≤ b) =
P(n − b ≤ Y ≤ n − a), where Y is as in part (i).

3.2.5 Let X be a Poisson distributed r.v. with parameter λ. Given that
P(X = 0) = 0.1, compute the probability that X > 5.

3.2.6 Refer to Exercise 3.2.5 and suppose that P(X = 1) = P(X = 2). What is
the probability that X < 10? If P(X = 1) = 0.1 and P(X = 2) = 0.2, calculate the
probability that X = 0.

3.2.7 It has been observed that the number of particles emitted by a radio-
active substance which reach a given portion of space during time t follows
closely the Poisson distribution with parameter λ. Calculate the probability
that:

iii) No particles reach the portion of space under consideration during
time t;

iii) Exactly 120 particles do so;

iii) At least 50 particles do so;

iv) Give the numerical values in (i)–(iii) if λ = 100.

3.2.8 The phone calls arriving at a given telephone exchange within one
minute follow the Poisson distribution with parameter λ = 10. What is the
probability that in a given minute:

iii) No calls arrive?

iii) Exactly 10 calls arrive?

iii) At least 10 calls arrive?

3.2.9 (Truncation of a Poisson r.v.) Let the r.v. X be distributed as Poisson
with parameter λ and define the r.v. Y as follows:

Y X X k Y= ≥ ( ) = if  a given positive integer and  otherwise.0

Find:
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ii) P(Y = y), y = k, k + 1, . . . ;
ii) P(Y = 0).

3.2.10 A university dormitory system houses 1,600 students, of whom 1,200
are undergraduates and the remaining are graduate students. From the com-
bined list of their names, 25 names are chosen at random. If X stands for the
r.v. denoting the number of graduate students among the 25 chosen, what is
the probability that X ≥ 10?

3.2.11 (Multiple Hypergeometric distribution) For j = 1, . . . , k, consider an
urn containing nj balls with the number j written on them. n balls are drawn at
random and without replacement, and let Xj be the r.v. denoting the number
of balls among the n ones with the number j written on them. Then show that
the joint distribution of Xj, j = 1, . . . , k is given by

P X x kj j

n
xj

k

n n
n

j

j

k
= ⋅ ⋅ ⋅( ) =

( )
( )

=

+ ⋅ ⋅ ⋅ +

∏
, , , j = 1,  

1

1

0
1

≤ ≤ ⋅ ⋅ ⋅ =
=

∑x n k x nj j j
j

k

, , , . j = 1,   

3.2.12 Refer to the manufacturing process of Exercise 3.2.3 and let Y be the
r.v. denoting the minimum number of articles to be manufactured until the
first two defective articles appear.

ii) Show that the distribution of Y is given by

P Y y p y p y
y

=( ) = −( ) −( ) = ⋅ ⋅ ⋅
−2 2

1 1 2, , ; 3,

ii) Calculate the probability P(Y ≥ 100) for p = 0.05.

3.2.13 Show that the function f(x) = ( 1
2
)xIA(x), where A = {1, 2, . . .}, is a p.d.f.

3.2.14 For what value of c is the function f defined below a p.d.f.?

f x c I x Ax
A( ) = ( ) = ⋅ ⋅ ⋅{ } < <( )α α, .where ,  1,  2,0 0 1

3.2.15 Suppose that the r.v. X takes on the values 0, 1, . . . with the following
probabilities:

f j P X j
c

j
j( ) = =( ) = = ⋅ ⋅ ⋅3

0, , ; 1,

iii) Determine the constant c.

Compute the following probabilities:

iii) P(X ≥ 10);
iii) P(X ∈ A), where A = {j; j = 2k + 1, k = 0, 1, . . .};
iv) P(X ∈ B), where B = {j; j = 3k + 1, k = 0, 1, . . .}.

Exercises 63
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3.2.16 There are four distinct types of human blood denoted by O, A, B and
AB. Suppose that these types occur with the following frequencies: 0.45, 0.40,
0.10, 0.05, respectively. If 20 people are chosen at random, what is the prob-
ability that:

ii) All 20 people have blood of the same type?

ii) Nine people have blood type O, eight of type A, two of type B and one of
type AB?

3.2.17 A balanced die is tossed (independently) 21 times and let Xj be the
number of times the number j appears, j = 1, . . . , 6.

ii) What is the joint p.d.f. of the X’s?

ii) Compute the probability that X1 = 6, X2 = 5, X3 = 4, X4 = 3, X5 = 2, X6 = 1.

3.2.18 Suppose that three coins are tossed (independently) n times and
define the r.v.’s Xj, j = 0, 1, 2, 3 as follows:

X j Hj = the number of times  s appear.’

Determine the joint p.d.f. of the Xj’s.

3.2.19 Let X be an r.v. distributed as P(λ), and set E = {0, 2, . . . } and O = {1,
3, . . . }. Then:

ii) In terms of λ, calculate the probabilities: P(X ∈ E) and P(X ∈ O);

ii) Find the numerical values of the probabilities in part (i) for λ = 5. (Hint: If
SE k E

k

k= ∈Σ λ
!  and SO k O

k

k= ∈Σ λ
! ,  notice that SE + SO = eλ, and SE − SO =

e−λ.)

3.2.20 The following recursive formulas may be used for calculating
Binomial, Poisson and Hypergeometric probabilities. To this effect, show
that:

iii) If X ∼ B(n, p), then f x f xp
q

n x
x+( ) = ( )−

+1 1 , x = 0, 1, . . . , n − 1;

iii) If X ∼ P(λ), then f x f xx+( ) = ( )+1 1
λ , x = 0, 1, . . . ;

iii) If X has the Hypergeometric distribution, then

f x
m x r x

n r x x
f x x m r+( ) =

−( ) −( )
− + +( ) +( ) ( ) = ⋅ ⋅ ⋅ { }1

1 1
0, , , .,  1,  min  

3.2.21

i) Suppose the r.v.’s X1, . . . , Xk have the Multinomial distribution, and let
j be a fixed number from the set {1, . . . , k}. Then show that Xj is distributed as
B(n, pj);

ii) If m is an integer such that 2 ≤ m ≤ k − 1 and j1, . . . , jm are m distinct integers
from the set {1, . . . , k}, show that the r.v.’s Xj1

, . . . , Xjm
 have Multinomial

distributions with parameters n and pj1
, · · · pjm

.



3.1 Soem General Concepts 65

3.2.22 (Polya’s urn scheme) Consider an urn containing b black balls and r
red balls. One ball is drawn at random, is replaced and c balls of the same color
as the one drawn are placed into the urn. Suppose that this experiment is
repeated independently n times and let X be the r.v. denoting the number of
black balls drawn. Then show that the p.d.f. of X is given by

P X x
n

x

b b c b c b x c

r r c r n x c

b r b r c

b r c b r m c

=( ) =
⎛
⎝⎜

⎞
⎠⎟

+( ) +( ) ⋅ ⋅ ⋅ + −( )[ ]
× +( ) ⋅ ⋅ ⋅ + − −( )[ ]

+( ) + +( )
× + +( ) ⋅ ⋅ ⋅ + + −( )[ ]

2 1

1

2 1

.

(This distribution can be used for a rough description of the spread of conta-
gious diseases. For more about this and also for a certain approximation to the
above distribution, the reader is referred to the book An Introduction to
Probability Theory and Its Applications, Vol. 1, 3rd ed., 1968, by W. Feller, pp.
120–121 and p. 142.)

3.3 Continuous Random Variables (and Random Vectors)

3.3.1 Normal (or Gaussian)

    
X f x

x
xS( ) = ( ) = −

−( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∈� �, exp , .
1

2 2

2

2πσ

μ

σ

We say that X is distributed as normal (μ, σ2), denoted by N(μ, σ2), where μ,
σ2 are called the parameters of the distribution of X which is also called
the Normal distribution (μ = mean, μ ∈ �, σ2 = variance, σ > 0). For μ = 0,
σ = 1, we get what is known as the Standard Normal distribution, denoted
by N(0, 1). Clearly f(x) > 0; that I f x dx= ( ) =∫−∞

∞ 1 is proved by showing that
I2 = 1. In fact,

I f x dx f x dx f y dy

x
dx

y
dy

e dz ez

2
2

2

2

2

2

2

1
2 2

1

2

1
2

1 12

= ( )⎡
⎣⎢

⎤
⎦⎥

= ( ) ( )

= −
−( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⋅ −
−( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= ⋅ ⋅

−∞

∞

−∞

∞

−∞

∞

−∞

∞

−∞

∞

−

−∞

∞ −

∫ ∫ ∫

∫ ∫

∫

πσ
μ

σ σ
μ

σ

π σ
σ

σ
υ

exp exp

22 2 σ υd
−∞

∞

∫ ,

upon letting (x − μ)/σ = z, so that z ∈ (−∞, ∞), and (y − μ)/σ = υ, so that υ ∈
(−∞, ∞). Thus
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I e dz d e rdrd
z r2 2

0

2

0

21
2

1
2

2 2
2

= =
− +( )

−∞

∞ ∞ −

−∞

∞

∫ ∫ ∫∫π
ν

π
θ

υ π

by the standard transformation to polar coordinates. Or

I e r dr d e r dr er r r2 2

0 0

2 2

0

2
0

1
2

1
2 2 2

= = = − =−∞ −∞ − ∞∫ ∫ ∫π
θ

π
;

that is, I2 = 1 and hence I = 1, since f(x) > 0.
It is easily seen that f(x) is symmetric about x = μ, that is, f(μ − x) =

f(μ + x) and that f(x) attains its maximum at x = μ which is equal to 1/( 2πσ ).
From the fact that

  

max
x

f x
∈

( ) =
�

1

2πσ

and the fact that

f x dx( ) =
−∞

∞

∫ 1,

we conclude that the larger σ is, the more spread-out f(x) is and vice versa. It
is also clear that f(x) → 0 as x → ±∞. Taking all these facts into consideration,
we are led to Fig. 3.5.

The Normal distribution is a good approximation to the distribution of
grades, heights or weights of a (large) group of individuals, lifetimes of various
manufactured items, the diameters of hail hitting the ground during a storm,
the force required to punctuate a cardboard, errors in numerous measure-
ments, etc. However, the main significance of it derives from the Central Limit
Theorem to be discussed in Chapter 8, Section 8.3.

3.3.2 Gamma

    X XS S( ) = ( ) = ∞( )( )� actually 0,

0.8

0.6

0.4

0.2

f (x)

543210�1�2

N (�, �2)

� � 0.5

� � 1

� � 2

x

Figure 3.5 Graph of the p.d.f. of the Normal distribution with μ = 1.5 and several values of σ.
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Here

f x
x e x

x

x

( ) = ( ) >

≤

⎧

⎨
⎪

⎩
⎪

>
− −1

0

0 0

0
1

Γ α β α βα
α β ,

,

,  > 0,

where Γ(α) = y e dyyα − −∞
∫ 1
0 (which exists and is finite for α > 0). (This integral

is known as the Gamma function.) The distribution of X is also called the
Gamma distribution and α, β are called the parameters of the distribution.
Clearly, f(x) ≥ 0 and that ∫−∞

∞ f(x)dx = 1 is seen as follows.

f x dx x e dx y e dyx y( ) = ( ) = ( )−∞

∞ − −∞ − −∞

∫ ∫ ∫
1 11

0

1

0Γ Γα β α β
β

α
α β

α
α α ,

upon letting x/β = y, x = βy, dx = β dy, y ∈ (0, ∞); that is,

f x dx y e dyy( ) = ( ) = ( ) ⋅ ( ) =− −∞

−∞

∞

∫∫
1 1

11

0Γ Γ
Γ

α α
αα .

REMARK 3 One easily sees, by integrating by parts, that

Γ Γα α α( ) = −( ) −( )1 1 ,

and if α is an integer, then

Γ Γα α α( ) = −( ) −( ) ⋅ ⋅ ⋅ ( )1 2 1 ,

where

Γ Γ1 1 1
0

( ) = = ( ) = −( )−∞

∫ e dy ay ; !that is, α

We often use this notation even if α is not an integer, that is, we write

Γ α α αα( ) = −( ) = >− −∞

∫1 01

0
! .y e dyy for

For later use, we show that

Γ 1
2

1
2

⎛
⎝⎜

⎞
⎠⎟

= −
⎛
⎝⎜

⎞
⎠⎟

=! .π

We have

Γ 1
2

1 2

0

⎛
⎝⎜

⎞
⎠⎟

= −( ) −∞

∫ y e dyy .

By setting

y
t

y
t

dy t dt t1 2
2

2 2
0= = = ∈ ∞( ), , , , .so that  
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we get

Γ 1
2

2
1

2
2 22

0

2

0

⎛
⎝⎜

⎞
⎠⎟

= = =−∞ −∞

∫ ∫t
e t dt e dtt t π ;

that is,

Γ 1
2

1
2

⎛
⎝⎜

⎞
⎠⎟

= −
⎛
⎝⎜

⎞
⎠⎟

=! .π

From this we also get that

Γ Γ3
2

1
2

1
2 2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

= π
,  etc.

Graphs of the p.d.f. of the Gamma distribution for selected values of α and
β are given in Figs. 3.6 and 3.7.

The Gamma distribution, and in particular its special case the Negative
Exponential distribution, discussed below, serve as satisfactory models for

1.00
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0.50

0.25

f (x)

0 87654321
x

� � 1, � � 1

� � 2, � � 1

� � 4, � � 1

Figure 3.6 Graphs of the p.d.f. of the Gamma distribution for several values of α, β.
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Figure 3.7 Graphs of the p.d.f. of the Gamma distribution for several values of α, β.
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describing lifetimes of various manufactured items, among other things, as
well as in statistics.

For specific choices of the parameters α and β in the Gamma distribution,
we obtain the Chi-square and the Negative Exponential distributions given
below.

3.3.3 Chi-square

For α = r/2, r ≥ 1, integer, β = 2, we get what is known as the Chi-square
distribution, that is,

f x r
x e x

x

rr

r x

( ) = ( ) >

≤

⎧

⎨
⎪

⎩
⎪

>
( )− −1

2
0

0 0

01

2

2

2 1 2

Γ
,

,

,  integer.

The distribution with this p.d.f. is denoted by χ r
2 and r is called the number of

degrees of freedom (d.f.) of the distribution. The Chi-square distribution occurs
often in statistics, as will be seen in subsequent chapters.

3.3.4 Negative Exponential

For α = 1, β = 1/λ, we get

f x
e x

x

x

( ) = >
≤

⎧
⎨
⎩

>
−λ λ

λ ,

,
,

0

0 0
0

which is known as the Negative Exponential distribution. The Negative Expo-
nential distribution occurs frequently in statistics and, in particular, in waiting-
time problems. More specifically, if X is an r.v. denoting the waiting time
between successive occurrences of events following a Poisson distribution,
then X has the Negative Exponential distribution. To see this, suppose that
events occur according to the Poisson distribution P(λ); for example, particles
emitted by a radioactive source with the average of λ particles per time unit.
Furthermore, we suppose that we have just observed such a particle, and let X
be the r.v. denoting the waiting time until the next particle occurs. We shall
show that X has the Negative Exponential distribution with parameter λ.
To this end, it is mentioned here that the distribution function F of an r.v., to
be studied in the next chapter, is defined by F(x) = P(X ≤ x), x ∈ �, and if X
is a continuous r.v., then dF x

dx f x( ) ( ).=  Thus, it suffices to determine F here.
Since X ≥ 0, it follows that F(x) = 0, x ≤ 0. So let x > 0 be the the waiting time
for the emission of the next item. Then F(x) = P(X ≤ x) = 1 − P(X > x). Since
λ is the average number of emitted particles per time unit, their average
number during time x will be λx. Then P X x e ex x x( ) ,!> = ( ) =− −λ λ λ

0

0 since no
particles are emitted in (0, x]. That is, F(x) = 1 − e−λx, so that f(x) = λe−λx. To
summarize: f(x) = 0 for x ≤ 0, and f(x) = λe−λx for x > 0, so that X is distributed
as asserted.

3.3 Continuous Random Variables (and Random Vectors) 69
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Consonant with previous notation, we may use the notation X ∼ Γ(α, β) or
X ∼ NE(λ), or X ∼ χ r

2 in order to denote the fact that X is distributed as
Gamma with parameters α and β, or Negative Exponental with parameter λ,
or Chi-square with r degrees of freedom, respectively.

3.3.5 Uniform U(α, �) or Rectangular R(α, �)

    X XS S( ) = ( ) = [ ]( )� actually   andα β,

f x
x( ) = −( ) ≤ ≤ <

⎧
⎨
⎪

⎩⎪
1

0

β α α β α β,

,
.

otherwise

Clearly,

f x f x dx dx( ) ≥ ( ) =
−

=
−∞

∞

∫ ∫0
1

1, .
β α α

β

The distribution of X is also called Uniform or Rectangular (α, β), and α and
β are the parameters of the distribution. The interpretation of this distribution
is that subintervals of [α, β], of the same length, are assigned the same prob-
ability of being observed regardless of their location. (See Fig. 3.8.)

The fact that the r.v. X has the Uniform distribution with parameters α
and β may be denoted by X ∼ U(α, β).

3.3.6 Beta

    X XS S( ) = ( ) = ( )( )� actually  1  and0,

f x
x x x( ) =

+( )
( ) ( ) −( ) < <

>

⎧

⎨
⎪

⎩
⎪

− −Γ

Γ Γ

α β

α β
α β

α β1 1
1 0 1

0 0

,

. elsewhere, > 0,  

Clearly, f(x) ≥ 0. That f x dx( )−∞
∞

∫ = 1 is seen as follows.

f (x)

0 �
x

�

1
� � � Figure 3.8 Graph of the p.d.f. of the

U(α, β) distribution.
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Γ Γα β α β

α β
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− −∞ − −∞
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which, upon setting u = x/(x + y), so that

x
uy

u
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y du

u
u x y

y
u
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−1 1
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, , ,,  1 and
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1

0

1 1
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1
.

Let y/(1 − u) = υ, so that y = υ(1 − u), dy = (1 − u)dυ, υ ∈ (0, ∞). Then the
integral is

= −( )
= −( )
= +( ) −( )

− − + − −∞

+ − −∞ − −

− −

∫∫
∫ ∫

∫

u u e du d
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that is,

Γ Γ Γα β α β α β( ) ( ) = +( ) −( )− −

∫ x x dx1 1

0

1
1

and hence

f x dx x x dx( ) =
+( )

( ) ( ) −( ) =
−∞

∞ − −

∫ ∫
Γ

Γ Γ

α β

α β
α β1 1

0

1
1 1.

Graphs of the p.d.f. of the Beta distribution for selected values of α and β are
given in Fig. 3.9.

REMARK 4 For α = β = 1, we get the U(0, 1), since Γ(1) = 1 and Γ(2) = 1.
The distribution of X is also called the Beta distribution and occurs rather
often in statistics. α, β are called the parameters of the distribution
and the function defined by x x dxα β− −−∫ 1 1

0
1 1( )  for α, β > 0 is called the Beta

function.
Again the fact that X has the Beta distribution with parameters α and β

may be expressed by writing X ∼ B(α, β).
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3.3.7 Cauchy

Here

    
X f x

x
xS( ) = ( ) = ⋅

+ −( )
∈ ∈ >� � �and

σ
π σ μ

μ σ1
0

2 2
, , , .

Clearly, f(x) > 0 and

f x dx
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1
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2
arctan ,

upon letting

y
x dx

dy= − =μ
σ σ

, .so that

The distribution of X is also called the Cauchy distribution and μ, σ are called
the parameters of the distribution (see Fig. 3.10). We may write X ∼
Cauchy(μ, σ2) to express the fact that X has the Cauchy distribution with
parameters μ and σ2.

(The p.d.f. of the Cauchy distribution looks much the same as the Normal
p.d.f., except that the tails of the former are heavier.)

3.3.8 Lognormal

Here X(S) = � (actually X(S) = (0, ∞)) and

2.5
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Figure 3.9 Graphs of the p.d.f. of the Beta distribution for several values of α, β.
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0.3

0.2

0.1

f (x)

0 21
x

�2 �1

Figure 3.10 Graph of the p.d.f. of the Cauchy distribution with μ = 0, σ = 1.
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Now f(x) ≥ 0 and
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which, letting x = ey, so that log x = y, dx = eydy, y ∈ (−∞, ∞), becomes
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−( )⎡

⎣
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⎢
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∞

∫
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But this is the integral of an N(log α, β2) density and hence is equal to 1; that
is, if X is lognormally distributed, then Y = logX is normally distributed with
parameters logα and β2. The distribution of X is called Lognormal and α, β are
called the parameters of the distribution (see Fig. 3.11). The notation X ∼
Lognormal(α, β) may be used to express the fact that X has the Lognormal
distribution with parameters α and β .

(For the many applications of the Lognormal distribution, the reader is
referred to the book The Lognormal Distribution by J. Aitchison and J. A. C.
Brown, Cambridge University Press, New York, 1957.)

3.3.9 t � These distributions occur very often in Statistics (interval esti-
mation, testing hypotheses, analysis of variance, etc.) and their

3.3.10 F densities will be presented later (see Chapter 9, Section 9.2).

We close this section with an example of a continuous random vector.

3.3.11 Bivariate Normal

Here X(S) = �2 (that is, X is a 2-dimensional random vector) with
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Figure 3.11 Graphs of the p.d.f. of the Lognormal distribution for several values of α, β.
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with μ1, μ2 ∈ �. The distribution of X is also called the Bivariate Normal
distribution and the quantities μ1, μ2, σ1, σ2, ρ are called the parameters of the
distribution. (See Fig. 3.12.)

Clearly, f(x1, x2) > 0. That ∫∫�
2 f(x1, x2)dx1dx2 = 1 is seen as follows:
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Figure 3.12 Graph of the p.d.f. of the Bivariate Normal distribution.
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since the integral above is that of an N(b, σ 2
2(1 − ρ2)) density. Since the first

factor is the density of an N(μ1, σ1
2) random variable, integrating with respect

to x1, we get

f x x dx dx1 2 1 2 1, .( ) =
−∞

∞

−∞

∞

∫∫
REMARK 5 From the above derivations, it follows that, if f(x1, x2) is Bivariate
Normal, then

f x f x x dx N1 1 1 2 2 1( ) = ( ) ( )−∞

∞

∫ , , , is  1
2μ σ

and similarly,

f x f x x dx N2 2 1 2 1 2 2
2( ) = ( ) ( )−∞

∞

∫ , , . is  μ σ
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As will be seen in Chapter 4, the p.d.f.’s f1 and f2 above are called marginal
p.d.f.’s of f.

The notation X ∼ N(μ1, μ2, σ1
2, σ 2

2, ρ) may be used to express the fact that
X has the Bivariate Normal distribution with parameters μ1, μ2, σ1

2, σ 2
2, ρ.

Then X1 ∼ N(μ1 , σ1
2) and X2 ∼ N(μ2, σ 2

2).

Exercises

3.3.1 Let f be the p.d.f. of the N(μ, σ2) distribution and show that:

ii) f is symmetric about μ;

ii)
  

max
x

f x
∈

( ) =
�

1

2πσ
.

3.3.2 Let X be distributed as N(0, 1), and for a < b, let p = P(a < X < b). Then
use the symmetry of the p.d.f. f in order to show that:

iii) For 0 ≤ a < b, p = Φ(b) − Φ(a);

iii) For a ≤ 0 < b, p = Φ(b) + Φ(−a) − 1;

iii) For a ≤ b < 0, p = Φ(−a) − Φ(−b);

iv) For c > 0, P(−c < X < c) = 2Φ(c) − 1.

(See Normal Tables in Appendix III for the definition of Φ.)

3.3.3 If X ∼ N(0, 1), use the Normal Tables in Appendix III in order to show
that:

iii) P(−1 < X < 1) = 0.68269;

iii) P(−2 < X < 2) = 0.9545;

iii) P(−3 < X < 3) = 0.9973.

3.3.4 Let X be a χ r
2 . In Table 5, Appendix III, the values γ = P(X ≤ x) are

given for r ranging from 1 to 45, and for selected values of γ. From the entries
of the table, observe that, for a fixed γ, the values of x increase along with the
number of degrees of freedom r. Select some values of γ and record the
corresponding values of x for a set of increasing values of r.

3.3.5 Let X be an r.v. distributed as χ10
2 . Use Table 5 in Appendix III in order

to determine the numbers a and b for which the following are true:

ii) P(X < a) = P(X > b);

ii) P(a < X < b) = 0.90.

3.3.6 Consider certain events which in every time interval [t1, t2] (0 < t1 < t2)
occur independently for nonoverlapping intervals according to the Poisson
distribution P(λ(t2 − t1)). Let T be the r.v. denoting the time which lapses
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between two consecutive such events. Show that the distribution of T is Nega-
tive Exponential with parameter λ by computing the probability that T > t.

3.3.7 Let X be an r.v. denoting the life length of a TV tube and suppose that
its p.d.f. f is given by:

f(x) = λe−λxI(0, ∞)(x).

Compute the following probabilities:

iii) P(j < X ≤ j + 1), j = 0, 1, . . . ;
iii) P(X > t) for some t > 0;
iii) P(X > s + t|X > s) for some s, t > 0;
iv) Compare the probabilities in parts (ii) and (iii) and conclude that the

Negative Exponential distribution is “memoryless”;
iv) If it is known that P(X > s) = α, express the parameter λ in terms of α

and s.

3.3.8 Suppose that the life expectancy X of each member of a certain group
of people is an r.v. having the Negative Exponential distribution with param-
eter λ = 1/50 (years). For an individual from the group in question, compute
the probability that:

iii) He will survive to retire at 65;
iii) He will live to be at least 70 years old, given that he just celebrated his 40th

birthday;
iii) For what value of c, P(X > c) = 1

2
?

3.3.9 Let X be an r.v. distributed as U(−α, α) (α > 0). Determine the values
of the parameter α for which the following are true:

ii) P(−1 < X < 2) = 0.75;
ii) P(|X| < 1) = P(|X| > 2).

3.3.10 Refer to the Beta distribution and set:

B x x dxα β α
β

,( ) = −( )−
−

∫ 1

0

1 1

1 .

Then show that B(α, β) = B(β, α).

3.3.11 Establish the following identity:

n
n

m
x x dx

n

m n m
x x dx

j
n p p

m n mp m n mp

j m

n
j n j

−
−

⎛
⎝⎜

⎞
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−( ) =
−( ) −( ) −( )

= ⎛
⎝⎜

⎞
⎠⎟ −( )

− − − −

=

−

∫ ∫

∑

1

1
1

1
1

1

1

0

1

0

!

!

.

3.3.12 Let X be an r.v. with p.d.f given by f(x) = 1/[π(1 + x2)]. Calculate the
probability that X2 ≤ c.

Exercises 77
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3.3.13 Show that the following functions are p.d.f.’s:

iii) f(x) = xe−x2/2I(0, ∞)(x) (Raleigh distribution);

iii) f(x) = 2 /π x2e−x2/2I(0,∞)(x) (Maxwell’s distribution);

iii) f(x) = 1
2
e−|x−μ| (Double Exponential);

iv) f(x) = ( a
c )( c

x)
α+1IA(x), A = (c, ∞), α, c > 0 (Pareto distribution).

3.3.14 Show that the following functions are p.d.f.’s:

ii) f(x) = cosxI(0,π/2)(x);

ii) f(x) = xe−xI(0,∞)(x).

3.3.15 For what values of the constant c are the following functions p.d.f.’s?

ii) f(x) =
ce x

cx x

x

x− >
− − < ≤

≤ −

⎧

⎨
⎪

⎩
⎪

6 0

1 0

0 1

,

, ;

,

ii) f(x) = cx2e−x3

I(0,∞) (x).

3.3.16 Let X be an r.v. with p.d.f. given by 3.3.15(ii). Compute the probabil-
ity that X > x.

3.3.17 Let X be the r.v. denoting the life length of a certain electronic device
expressed in hours, and suppose that its p.d.f. f is given by:

f x
c

x
I x

n( ) = ( )[ ]1 000, , . 3,000

ii) Determine the constant c in terms of n;

ii) Calculate the probability that the life span of one electronic device of the
type just described is at least 2,000 hours.

3.3.18 Refer to Exercise 3.3.15(ii) and compute the probability that X ex-
ceeds s + t, given that X > s. Compare the answer with that of Exercise
3.3.7(iii).

3.3.19 Consider the function f(x) = αβxβ −1e−αxβ

, x > 0 (α, β > 0), and:

iii) Show that it is a p.d.f. (called the Weibull p.d.f. with parameters α
and β);

iii) Observe that the Negative Exponential p.d.f. is a special case of a Weibull
p.d.f., and specify the values of the parameters for which this happens;

iii) For α = 1 and β = 1
2
, β = 1 and β = 2, draw the respective graphs of the

p.d.f.’s involved.

(Note: The Weibull distribution is employed for describing the lifetime of
living organisms or of mechanical systems.)
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3.3.20 Let X and Y be r.v.’s having the joint p.d.f. f given by:

f x y c x y I x y, .,( ) = − −( ) +( )( )25 2 2
0 5

2 2

Determine the constant c and compute the probability that 0 < X2 + Y2 < 4.

3.3.21 Let X and Y be r.v.’s whose joint p.d.f. f is given by f(x, y) =
cxyI(0,2)×(0,5)(x, y). Determine the constant c and compute the following
probabilities:

i) P( 1
2

< X < 1, 0 < Y < 3);
ii) P(X < 2, 2 < Y < 4);
iii) P(1 < X < 2, Y > 5);
iv) P(X > Y).

3.3.22 Verify that the following function is a p.d.f.:

f x y y I x y AA, cos , , , , .    ( ) = ( ) ( ) = −( ] × −
⎛
⎝⎜

⎤

⎦
⎥

1
4 2 2π

π π π π

3.3.23 (A mixed distribution) Show that the following function is a p.d.f.

f x
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8
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1
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2

0

,

,

, ,

,

 3,

otherwise.

3.4 The Poisson Distribution as an Approximation to
the Binomial Distribution and the Binomial Distribution as
an Approximation to the Hypergeometric Distribution

In this section, we first establish rigorously the assertion made earlier that the
Poisson distribution may be obtained as the limit of Binomial distributions. To
this end, consider a sequence of Binomial distributions, so that the nth distri-
bution has probability pn of a success, and we assume that as n → ∞, pn → 0 and
that

λ λn nnp= → ,

for some λ > 0. Then the following theorem is true.

THEOREM 1 With the above notation and assumptions, we have

x
n p q e

x
xn

x
n
n x

n

x⎛
⎝⎜

⎞
⎠⎟ ⎯ →⎯⎯ = ⋅ ⋅ ⋅

−
→∞

−λ λ
!

.for each fixed 0,  1,  2,
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PROOF We have
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since, if λn → λ, then

1 −
⎛
⎝⎜

⎞
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→ −λ λn

n

n
e .

This is merely a generalization of the better-known fact that

1 −
⎛
⎝⎜

⎞
⎠⎟

→ −λ λ

n
e

n

. ▲

REMARK 6 The meaning of the theorem is the following: If n is large the
probabilities ( x

n)pxqn−x are not easily calculated. Then we can approximate
them by e−λ(λx/x!), provided p is small, where we replace λ be np. This is true
for all x = 0, 1, 2, . . . , n.

We also meet with difficulty in calculating probabilities in the Hyper-
geometric distribution

m
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r x

m n

r
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⎠⎟ −
⎛
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⎞
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⎞
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if m, n are large. What we do is approximate the Hypergeometric distribution
by an appropriate Binomial distribution, and then, if need be, we can go one
step further in approximating the Binomial by the appropriate Poisson distri-
bution according to Theorem 1. Thus we have

THEOREM 2 Let m, n → ∞ and suppose that m/(m + n) = pm,n → p, 0 < p < 1. Then
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Both numerator and denominator have r factors. Dividing through by (m + n),
we get
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REMARK 7 The meaning of the theorem is that if m, n are large, we can
approximate the probabilities
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by setting p = m/(m + n). This is true for all x = 0, 1, 2, . . . , r. It is to be
observed that x

r m
m n

x
m

m n

r x( )( ) −( )+ +

−
1  is the exact probability of having exactly x

successes in r trials when sampling is done with replacement, so that the
probability of a success, m

m n+ ,  remains constant. The Hypergeometric distribu-
tion is appropriate when sampling is done without replacement. If, however,
m and n are large (m, n → ∞) and m

n  remains approximately constant
m
n c p q→ =( )/ ,  then the probabilities of having exactly x successes in r

(independent) trials are approximately equal under both sampling schemes.

Exercises

3.4.1 For the following values of n, p and λ = np, draw graphs of B(n, p) and
P(λ) on the same coordinate axes:

iii) n = 10, p = 4
16

,  so that λ = 2.5;

iii) n = 16, p = 2
16

,  so that λ = 2;

iii) n = 20, p = 2
16

,  so that λ = 2.5;

iv) n = 24, p = 1
16

,  so that λ = 1.5;

iv) n = 24, p = 2
16

,  so that λ = 3.

3.4.2 Refer to Exercise 3.2.2 and suppose that the number of applicants is
equal to 72. Compute the probabilities (i)–(iii) by using the Poisson approxi-
mation to Binomial (Theorem 1).

3.4.3 Refer to Exercise 3.2.10 and use Theorem 2 in order to obtain an
approximate value of the required probability.

3.5* Random Variables as Measurable Functions and Related Results

In this section, random variables and random vectors are introduced as special
cases of measurable functions. Certain results related to σ-fields are also
derived. Consider the probability space (S, A, P) and let T be a space and X
be a function defined on S into T, that is, X :S → T. For T ⊆ T, define the
inverse image of T, under X, denoted by X−1(T), as follows:

  X T s X s T− ( ) = ∈ ( ) ∈{ }1 S ; .
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This set is also denoted by [X ∈ T] or (X ∈ T). Then the following
properties are immediate consequences of the definition (and the fact X is a
function):

X T X Tj
j

j
j

− −⎛

⎝⎜
⎞

⎠⎟
= ( )1 1U U . (1)

If  then T T X T X T1 2
1

1
1

2∩ = ∅ ( ) ∩ ( ) = ∅− −, . (2)

Hence by (1) and (2) we have

X T X Tj
j

j
j

− −∑ ∑
⎛

⎝⎜
⎞

⎠⎟
= ( )1 1 . (3)

Also X T X Tj
j

j
j

− −⎛

⎝⎜
⎞

⎠⎟
= ( )1 1I I , (4)

X T X Tc
c− −( ) = ( )[ ]1 1 , (5)

  X
− ( ) =1 T S , (6)

X − ∅( ) = ∅1 . (7)

Let now D be a σ-field of subsets of T and define the class X−1(D) of
subsets of S as follows:

  X A A X T T− −( ) = ⊆ = ( ) ∈{ }1 1D S D; .  for some 

By means of (1), (5), (6) above, we immediately have

THEOREM 3 The class X−1(D) is a σ-field of subsets of S.

The above theorem is the reason we require measurability in our defini-
tion of a random variable. It guarantees that the probability distribution
function of a random vector, to be defined below, is well defined.

If X−1(D) ⊆ A, then we say that X is (A, D)-measurable, or just measur-
able if there is no confusion possible. If (T, D) = (�, B) and X is (A, B)-
measurable, we say that X is a random variable (r.v.). More generally, if (T, D)
= (�k, Bk), where �k = � × � × · · · × � (k copies of �), and X is (A, Bk)-
measurable, we say that X is a k-dimensional random vector (r. vector). In this
latter case, we shall write X if k ≥ 1, and just X if k = 1. A random variable is
a one-dimensional random vector.

On the basis of the properties (1)–(7) of X−1, the following is immediate.

THEOREM 4 Define the class C* of subsets of T as follows: C* = {T ⊆ T; X−1(T) = A for some
A ∈ A}. Then C* is a σ-field.

COROLLARY Let D = σ(C), where C is a class of subsets of T. Then X is (A, D)-measurable
if and only if X−1(C) ⊆ A. In particular, X is a random variable if and only if

3.5* Random Variables as Measurable Functions and Related Results 83
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X−1(Co), or X−1(Cj), or X−1(C ′j) ⊆ A, j = 1, 2, . . . , 8, and similarly for the case
of k-dimensional random vectors. The classes Co, Cj, C ′j, j = 1, . . . , 8 are
defined in Theorem 5 and the paragraph before it in Chapter 1.

PROOF The σ-field C* of Theorem 4 has the property that C* ⊇ C. Then C*
⊇ D = σ(C) and hence X−1(C*) ⊇ X−1(D). But X−1(C*) ⊆ A. Thus X−1(D) ⊆
A. The converse is a direct consequence of the definition of (A, D) =
measurability. ▲

Now, by means of an r. vector X: (S, A, P) → (�k, Bk ), define on Bk the
set function PX as follows:

  P B P B P B P s s BX X X X( ) = ( )[ ] = ∈( ) = ∈ ( ) ∈{ }( )−1 S ; . (8)

By the Corollary to Theorem 4, the sets X−1(B) in S are actually events due to
the assumption that X is an r. vector. Therefore PX is well defined by (8); i.e.,
P[X−1(B)] makes sense, is well defined. It is now shown that PX is a probability
measure on Bk . In fact, PX(B) ≥ 0, B ∈ Bk, since P is a probability measure.
Next, PX(�k) = P[X −−−−−1(�k)] = P(S ) = 1, and finally,

P B P B P B P B P Bj
j

j
j

j
j

j
j

j
j

X XX X X
=

∞
−

=

∞
−

=

∞
−

=

∞

=

∞

∑ ∑ ∑ ∑ ∑
⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ( )⎡

⎣
⎢

⎤

⎦
⎥ = ( )[ ] = ( )

1

1

1

1

1

1

1 1

.

The probability measure PX is called the probability distribution function (or
just the distribution) of X.

Exercises

3.5.1 Consider the sample space S supplied with the σ-field of events A. For
an event A, the indicator IA of A is defined by: IA(s) = 1 if s ∈ A and IA(s) = 0
if s ∈ Ac.

iii) Show that IA is r.v. for any A ∈ A .

iii) What is the partition of S induced by IA?

iii) What is the σ-field induced by IA?

3.5.2 Write out the proof of Theorem 1 by using (1), (5) and (6).

3.5.3 Write out the proof of Theorem 2.
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85

Chapter 4

Distribution Functions, Probability
Densities, and Their Relationship

4.1 The Cumulative Distribution Function (c.d.f. or d.f.) of a Random Vector—
Basic Properties of the d.f. of a Random Variable

The distribution of a k-dimensional r. vector X has been defined through the
relationship: PX(B) = P(X ∈ B), where B is a subset of � k. In particular, one
may choose B to be an “interval” in � k; i.e., B = {y ∈ � k; y ≤ x} in the sense that,
if x = (x1, . . . , xk)′ and y = (y1, . . . , yk), then yj ≤ xj, j = 1, . . . , k. For such a choice
of B, PX(B) is denoted by FX(x) and is called the cumulative distribution
function of X (evaluated at x), or just the distribution function (d.f.) of X. We
omit the subscript X if no confusion is possible. Thus, the d.f. F of a r. vector
X is an ordinary point function defined on � k (and taking values in [0, 1]). Now
we restrict our attention to the case k = 1 and prove the following basic
properties of the d.f. of an r.v.

The distribution function F of a random variable X satisfies the following
properties:

i) 0 ≤ F(x) ≤ 1, x ∈ �.

ii) F is nondecreasing.

iii) F is continuous from the right.

iv) F(x) → 0 as x → −∞, F(x) → 1, as x → +∞.

We express this by writing F(−∞) = 0, F(+∞) = 1.

PROOF In the course of this proof, we set Q for the distribution PX of X, for
the sake of simplicity. We have then:

i) Obvious.

ii) This means that x1 < x2 implies F(x1) ≤ F(x2). In fact,

THEOREM 1
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x x x x1 2 1 2< −∞( ] ⊂ −∞( ]implies   , ,

and hence

Q x Q x F x F x−∞( ] ≤ −∞( ] ( ) ≤ ( ), , ; .  equivalently,1 2 1 2

iii) This means that, if xn ↓ x, then F(xn) ↓ F(x). In fact,

x x x xn n↓ −∞( ] ↓ −∞( ]implies   , ,

and hence

Q x Q xn−∞( ] → −∞( ], ,

by Theorem 2, Chapter 2; equivalently, F(xn) ↓ F(x).

iv) Let xn → −∞. We may assume that xn ↓ −∞ (see also Exercise 4.1.6). Then

−∞( ] ↓ ∅ −∞( ] ↓ ∅( ) =, , , so that  x Q x Qn n 0

by Theorem 2, Chapter 2. Equivalently, F(xn) → 0. Similarly, if xn → +∞.
We may assume xn ↑ ∞. Then

  
−∞( ] ↑ −∞( ] ↑ ( ) = ( ) →, , ; .  and hence   equivalently,  x Q x Q F xn n n� � 1 1 �

Graphs of d.f.’s of several distributions are given in Fig. 4.1.

REMARK 1
i) F(x) can be used to find probabilities of the form P(a < X ≤ b); that is

P a X b F b F a< ≤( ) = ( ) − ( ).
In fact,

a X b X b X a< ≤( ) = −∞ < ≤( ) − −∞ < ≤( )
and

−∞ < ≤( ) ⊆ −∞ < ≤( )X a X b .

Thus

P a X b P X b P X a F b F a< ≤( ) = −∞ < ≤( ) − −∞ < ≤( ) = ( ) − ( ).
ii) The limit from the left of F(x) at x, denoted by F(x−), is defined as follows:

F x F x x x
n

n n−( ) = ( ) ↑
→∞

lim .with

This limit always exists, since F(xn)↑, but need not be equal to F(x+)(=limit
from the right) = F(x). The quantities F(x) and F(x−) are used to express
the probability P(X = a); that is, P(X = a) = F(a) − F(a−). In fact, let xn ↑
a and set A = (X = a), An = (xn < X ≤ a). Then, clearly, An ↓ A and hence
by Theorem 2, Chapter 2,

P A P A P x X a P X an
n

n( ) ↓ ( ) < ≤( ) = =( )
→∞

, lim ,or

or

lim ,
n

nF a F x P X a
→∞

( ) − ( )[ ] = =( )
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or

F a F x P X a
n

n( ) − ( ) = =( )
→∞

lim ,

or

F a F a P X a( ) − −( ) = =( ).
It is known that a nondecreasing function (such as F) may have

discontinuities which can only be jumps. Then F(a) − F(a−) is the length of
the jump of F at a. Of course, if F is continuous then F(x) = F(x−) and
hence P(X = x) = 0 for all x.

iii) If X is discrete, its d.f. is a “step” function, the value of it at x being defined
by

F x f x f x F x F xj
x x

j j j

j

( ) = ( ) ( ) = ( ) − ( )
≤

−∑ and 1 ,

where it is assumed that x1 < x2 < · · · .

iv) If X is of the continuous type, its d.f. F is continuous. Furthermore,

dF x

dx
f x

( )
= ( )

Figure 4.1 Examples of graphs of c.d.f.’s.
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at continuity points of f, as is well known from calculus. Through the
relations

F x f t dt
dF x

dx
f x

x( ) = ( ) ( )
= ( )

−∞∫ and ,

we see that if f is continuous, f determines F( f ⇒ F) and F determines f (F ⇒
f ); that is, F ⇔ f. Two important applications of this are the following two
theorems.

Often one has to deal with functions of an r. vector itself. In such cases, the
resulting entities have got to be r. vectors, since we operate in a probability
framework. The following statement is to this effect. Its precise formulation
and justification is given as Theorem 7 on page 104.

Let X be a k-dimensional r. vector defined on the sample space S, and let g be
a (well-behaving) function defined on � k and taking values in � m. Then g(X)
is defined on the underlying sample space S, takes values in � m, and is an r.
vector. (That is, well-behaving functions of r. vectors are r. vectors.) In particu-
lar, g(X) is an r. vector if g is continuous.

Now a k-dimensional r. vector X may be represented in terms of its
coordinates; i.e., X = (X1, . . . , Xk)′, where Xj, j = 1, . . . , k are real-valued
functions defined on S. The question then arises as to how X and Xj, j = 1, . . . ,
k are related from the point of view of being r. vectors. The answer is provided
by the following statement, whereas the precise statement and justification are
given as Theorem 8 below.

Let X and Xj, j = 1, . . . , k be functions defined on the sample space S and
taking values in � k and �, respectively, and let X = (X1, . . . , Xk). Then X is an
r. vector if and only if Xj, j = 1, . . . , k are r.v.’s.

The following two theorems provide applications of Statement 1.

Let X be an N(μ, σ 2)-distributed r.v. and set Y X= −μ
σ . Then Y is an r.v. and its

distribution is N(0, 1).

PROOF In the first place, Y is an r.v. by Statement 1. Then it suffices to show
that the d.f. of Y is Φ, where

Φ y e dtty( ) = −

−∞∫
1

2

2 2

π
.

We have

P Y y P
X

y P X y

t
dt e du y

y uy

≤( ) = − ≤
⎛
⎝⎜

⎞
⎠⎟

= ≤ +( )

= −
−( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= = ( )
−∞

+ −

−∞∫ ∫

μ
σ

σ μ

πσ

μ

σ π

σ μ1

2 2

1

2

2

2
22

exp ,Φ

STATEMENT 1

STATEMENT 2

THEOREM 2
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where we let u = (t − μ)/σ in the transformation of the integral. �

REMARK 2 The transformation X−μ
σ

 of X is referred to as normalization
of X.

i(i) Let X be an N(0, 1)-distributed r.v. Then Y = X2 is distributed as χ2
1.

(ii) If X is a N (μ, σ 2)-distributed r.v., then the r.v. X−( )μ
σ

2  is distributed as χ2
1.

PROOF (i) We will show that the p.d.f. of Y is that of a χ2
1-distributed r.v. by

deriving the d.f. of Y first and then differentating it in order to obtain fY. To this
end, let us observe first that Y is an r.v. on account of Statement 1. Next, for
y > 0, we have

F y P Y y P y X y

e dx e dx

Y

x

y

y xy

( ) = ≤( ) = − ≤ ≤( )
= = ⋅−

−

−∫ ∫
1

2
2

1

2

2 22 2

0π π
.

Let x = t . Then dx = dt/2 t , t ∈ (0, y] and

F y
t

e dtY
ty( ) = ⋅ −∫2

1

2

1

2
2

0π
.

Hence

dF y

dy y
e y e

Y y y( )
= =− ( )− −1

2

1 1

2
2 1 2 1 2

π π
.

Since fY(y) = 0 for y ≤ 0 (because FY(y) = 0, y ≤ 0), it follows that

f y
y e y

y
Y

y

( ) =
>

≤

⎧

⎨
⎪

⎩
⎪

( )− −1

2
0

0 0

1 2

1 2 1 2

π
,

, ,

and this is the p.d.f. of χ2
1. (Observe that here we used the fact that Γ( 1

2
) =

π .) �

Exercises

4.1.1 Refer to Exercise 3.2.13, in Chapter 3, and determine the d.f.’s corre-
sponding to the p.d.f.’s given there.

4.1.2 Refer to Exercise 3.2.14, in Chapter 3, and determine the d.f.’s corre-
sponding to the p.d.f.’s given there.

Exercises 89

THEOREM 3
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4.1.3 Refer to Exercise 3.3.13, in Chapter 3, and determine the d.f.’s corre-
sponding to the p.d.f.’s given there.

4.1.4 Refer to Exercise 3.3.14, in Chapter 3, and determine the d.f.’s corre-
sponding to the p.d.f.’s given there.

4.1.5 Let X be an r.v. with d.f. F. Determine the d.f. of the following r.v.’s:
−X, X2, aX + b, XI[a,b) (X) when:

i) X is continuous and F is strictly increasing;

ii) X is discrete.

4.1.6 Refer to the proof of Theorem 1 (iv) and show that we may assume
that xn ↓ −∞ (xn ↑ ∞) instead of xn → −∞(xn → ∞).

4.1.7 Let f and F be the p.d.f. and the d.f., respectively, of an r.v. X. Then
show that F is continuous, and dF(x)/dx = f(x) at the continuity points x of f.

4.1.8
i) Show that the following function F is a d.f. (Logistic distribution) and

derive the corresponding p.d.f., f.

  

F x
e

x
x( ) =

+
∈ > ∈

− +( )
1

1
0

α β
α β, , , ;� �

ii) Show that f(x) =αF(x)[1 − F(x)].

4.1.9 Refer to Exercise 3.3.17 in Chapter 3 and determine the d.f. F corre-
sponding to the p.d.f. f given there. Write out the expressions of F and f for
n = 2 and n = 3.

4.1.10 If X is an r.v. distributed as N(3, 0.25), use Table 3 in Appendix III in
order to compute the following probabilities:

i) P(X < −1);

ii) P(X > 2.5);

iii) P(−0.5 < X < 1.3).

4.1.11 The distribution of IQ’s of the people in a given group is well approxi-
mated by the Normal distribution with μ = 105 and σ = 20. What proportion of
the individuals in the group in question has an IQ:

i) At least 150?

ii) At most 80?

iii) Between 95 and 125?

4.1.12 A certain manufacturing process produces light bulbs whose life
length (in hours) is an r.v. X distributed as N(2,000, 2002). A light bulb is
supposed to be defective if its lifetime is less than 1,800. If 25 light bulbs are
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tested, what is the probability that at most 15 of them are defective? (Use the
required independence.)

4.1.13 A manufacturing process produces 1
2

-inch ball bearings, which are
assumed to be satisfactory if their diameter lies in the interval 0.5 ± 0.0006 and
defective otherwise. A day’s production is examined, and it is found that the
distribution of the actual diameters of the ball bearings is approximately
normal with mean μ = 0.5007 inch and σ = 0.0005 inch. Compute the propor-
tion of defective ball bearings.

4.1.14 If X is an r.v. distributed as N(μ, σ 2), find the value of c (in terms of
μ and σ) for which P(X < c) = 2 − 9P(X > c).

4.1.15 Refer to the Weibull p.d.f., f, given in Exercise 3.3.19 in Chapter 3 and
do the following:

i) Calculate the corresponding d.f. F and the reliability function �(x) = 1 −
F(x);

ii) Also, calculate the failure (or hazard) rate 
  
H x

f x

x( ) = ( )
( )�

, and draw its graph
for α = 1 and β = 1

2
, 1, 2;

iii) For s and t > 0, calculate the probability P(X > s + t|X > t) where X is an r.v.
having the Weibull distribution;

iv) What do the quantities F(x), �(x), H(x) and the probability in
part (iii) become in the special case of the Negative Exponential
distribution?

4.2 The d.f. of a Random Vector and Its Properties—Marginal and Conditional
d.f.’s and p.d.f.’s

For the case of a two-dimensional r. vector, a result analogous to Theorem
1 can be established. So consider the case that k = 2. We then have X =
(X1, X2)′ and the d.f. F(or FX or FX1

,X2
) of X, or the joint distribution function

of X1, X2, is F(x1, x2) = P(X1 ≤ x1, X2 ≤ x2). Then the following theorem holds
true.

With the above notation we have

i) 0 ≤ F(x1, x2) ≤ 1, x1, x2 ∈ �.

ii) The variation of F over rectangles with sides parallel to the axes, given in
Fig. 4.2, is ≥ 0.

iii) F is continuous from the right with respect to each of the coordinates x1, x2,
or both of them jointly.

THEOREM 4

4.2 The d.f. of a Random Vector and Its Properties 91
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(x2, y2)

Figure 4.2 The variation V of F over the
rectangle is:
F(x1, y1) + F(x2, y2) − F(x1, y2) − F(x2, y1)

iv) If both x1, x2, → ∞, then F(x1, x2) → 1, and if at least one of the x1, x2 →
−∞, then F(x1, x2) → 0. We express this by writing F(∞, ∞) = 1, F(−∞, x2) =
F(x1, −∞) = F(−∞, −∞) = 0, where −∞ < x1, x2 < ∞.

PROOF

i) Obvious.

ii) V = P(x1 < X1 ≤ x2, y1 < X2 ≤ y2) and is hence, clearly, ≥ 0.

iii) Same as in Theorem 3. (If x = (x1, x2)′, and zn = (x1n, x2n)′, then zn ↓ x means
x1n ↓ x1, x2n ↓ x2).

iv) If x1, x2 ↑ ∞, then (−∞, x1] × (−∞, x2] ↑ R 2, so that F(x1, x2) → P(S) = 1. If
at least one of x1, x2 goes (↓) to −∞, then (−∞, x1] × (−∞, x2] ↓ ∅, hence

F x x P1 2 0, .( ) → ∅( ) =  �

REMARK 3 The function F(x1, ∞) = F1(x1) is the d.f. of the random variable
X1. In fact, F(x1, ∞) = F1(x1) is the d.f. of the random variable X1. In fact,

F x P X x X x

P X x X P X x F x

x
n

n
1 1 1 2

1 1 2 1 1 1 1

, lim ,

, .

∞( ) = ≤ ≤( )
= ≤ − ∞ < < ∞( ) = ≤( ) = ( )

↑∞

Similarly F(∞, x2) = F2(x2) is the d.f. of the random variable X2. F1, F2 are called
marginal d.f.’s.

REMARK 4 It should be pointed out here that results like those discussed
in parts (i)–(iv) in Remark 1 still hold true here (appropriately interpreted).
In particular, part (iv) says that F(x1, x2) has second order partial derivatives
and

∂
∂ ∂

2

1 2
1 2 1 2x x

F x x f x x, ,( ) = ( )
at continuity points of f.

For k > 2, we have a theorem strictly analogous to Theorems 3 and 6 and
also remarks such as Remark 1(i)–(iv) following Theorem 3. In particular, the
analog of (iv) says that F(x1, . . . , xk) has kth order partial derivatives and
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∂
∂ ∂ ∂

k

k
k kx x x

F x x f x x
1 2

1 1⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( ), , , ,

at continuity points of f, where F, or FX, or FX1, · · · , Xk
, is the d.f. of X, or the joint

distribution function of X1, . . . , Xk. As in the two-dimensional case,

F x F xj j j∞ ⋅ ⋅ ⋅ ∞ ∞ ⋅ ⋅ ⋅ ∞( ) = ( ), , , , , ,    

is the d.f. of the random variable Xj, and if m xj’s are replaced by ∞ (1 < m < k),
then the resulting function is the joint d.f. of the random variables correspond-
ing to the remaining (k − m) Xj’s. All these d.f.’s are called marginal distribu-
tion functions.

In Statement 2, we have seen that if X = (X1, . . . , Xk)′ is an r. vector, then
Xj, j = 1, 2, . . . , k are r.v.’s and vice versa. Then the p.d.f. of X, f(x) =
f(x1, . . . , xk), is also called the joint p.d.f. of the r.v.’s X1, . . . , Xk.

Consider first the case k = 2; that is, X = (X1, X2)′, f(x) = f(x1, x2) and set

f x
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Then f1, f2 are p.d.f.’s. In fact, f1(x1) ≥ 0 and

f x f x x
xxx

1 1 1 2 1
211

( ) = ( ) =∑∑∑ , ,

or

f x dx f x x dx dx1 1 1 1 2 1 2 1( ) = ( ) =
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∞

−∞

∞

∫∫∫ , .

Similarly we get the result for f2. Furthermore, f1 is the p.d.f. of X1, and f2 is the
p.d.f. of X2. In fact,

  

P X B

f x x f x x f x

f x x dx dx f x x dx dx f x dx

x B x xx B x B

BBB

1

1 2 1 2 1 1
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Similarly f2 is the p.d.f. of the r.v. X2. We call f1, f2 the marginal p.d.f.’s. Now
suppose f1(x1) > 0. Then define f(x2|x1) as follows:

f x x
f x x

f x
2 1

1 2

1 1

( ) =
( )

( )
,

.
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This is considered as a function of x2, x1 being an arbitrary, but fixed, value of
X1 ( f1(x1) > 0). Then f(·|x1) is a p.d.f. In fact, f(x2|x1) ≥ 0 and

f x x
f x

f x x
f x

f x
xx

2 1
1 1

1 2
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1 1

1 1
1

22

( ) = ( ) ( ) = ( ) ⋅ ( ) =∑∑ , ,

f x x dx
f x

f x x dx
f x

f x2 1 2
1 1

1 2 2
1 1

1 1

1 1
1( ) = ( ) ( ) = ( ) ⋅ ( ) =

−∞

∞

−∞

∞

∫∫ , .

In a similar fashion, if f2(x2) > 0, we define f(x1|x2) by:

f x x
f x x

f x
1 2

1 2

2 2

( ) =
( )

( )
,

and show that f(·|x2) is a p.d.f. Furthermore, if X1, X2 are both discrete, the
f(x2|x1) has the following interpretation:

f x x
f x x

f x

P X x X x

P X x
P X x X x2 1

1 2

1 1

1 1 2 2

1 1
2 2 1 1( ) =

( )
( ) =

= =( )
=( ) = = =( ), ,

.

Hence P(X2 ∈ B|X1 = x1) = ∑x2∈B f(x2|x1). For this reason, we call f(·|x2) the
conditional p.d.f. of X2, given that X1 = x1 (provided f1(x1) > 0). For a similar
reason, we call f(·|x2) the conditional p.d.f. of X1, given that X2 = x2 (provided
f2(x2) > 0). For the case that the p.d.f.’s f and f2 are of the continuous type,
the conditional p.d.f. f (x1|x2) may be given an interpretation similar to the
one given above. By assuming (without loss of generality) that h1, h2 > 0, one
has

1

1

1

1

1 1 1 1 1 2 2 2 2

1 2 1 1 1 1 2 2 2 2

2 2 2 2 2

1 2 1 2 1 1 2 2

h P x X x h x X x h

h h P x X x h x X x h

h P x X x h

h h F x x F x h x h

( ) < ≤ + < ≤ +( )
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( ) < ≤ + < ≤ +( )
( ) < ≤ +( )

=
( ) ( ) + + +( )

,

, , −− +( ) − +( )[ ]
( ) +( ) − ( )[ ]

F x x h F x h x

h F x h F x

1 2 2 1 1 2

2 2 2 2 2 21

, ,

where F is the joint d.f. of X1, X2 and F2 is the d.f. of X2. By letting h1, h2 → 0
and assuming that (x1, x2)′ and x2 are continuity points of f and f2, respectively,
the last expression on the right-hand side above tends to f(x1, x2)/f2(x2) which
was denoted by f(x1|x2). Thus for small h1, h2, h1 f(x1|x2) is approximately equal
to P(x1 < X1 ≤ x1 + h1|x2 < X2 ≤ x2 + h2), so that h1f(x1|x2) is approximately the
conditional probability that X1 lies in a small neighborhood (of length h1) of x1,
given that X2 lies in a small neighborhood of x2. A similar interpretation may
be given to f(x2|x1). We can also define the conditional d.f. of X2, given X1 = x1,
by means of
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and similarly for F(x1|x2).
The concepts introduced thus far generalize in a straightforward way for

k > 2. Thus if X = (X1, . . . , Xk)′ with p.d.f. f(x1, . . . , xk), then we have called
f(x1, . . . , xk) the joint p.d.f. of the r.v.’s X1, X2, . . . , Xk. If we sum (integrate)
over t of the variables x1, . . . , xk keeping the remaining s fixed (t + s = k), the
resulting function is the joint p.d.f. of the r.v.’s corresponding to the remaining
s variables; that is,
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such p.d.f.’s which are also called marginal p.d.f.’s. Also if xi1
, . . . , xis

 are such
that fi1

, . . . , it
 (xi1

, . . . , xis
) > 0, then the function (of xj1

, . . . , xjt
) defined by

f x x x x
f x x
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is a p.d.f. called the joint conditional p.d.f. of the r.v.’s Xj1
, . . . , Xjt

, given Xi1
=

xi1
, · · · , Xjs

= xjs
, or just given Xi1

, . . . , Xis
. Again there are 2k − 2 joint condi-

tional p.d.f.’s involving all k r.v.’s X1, . . . , Xk. Conditional distribution func-
tions are defined in a way similar to the one for k = 2. Thus
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We now present two examples of marginal and conditional p.d.f.’s, one
taken from a discrete distribution and the other taken from a continuous
distribution.

Let the r.v.’s X1, . . . , Xk have the Multinomial distribution with parameters
n and p1, . . . , pk. Also, let s and t be integers such that 1 ≤ s, t < k and
s + t = k. Then in the notation employed above, we have:
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ii) f x x
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that is, the r.v.’s Xi1
, . . . , Xis

 and Y = n − (Xi1
+ · · · + Xis

) have the Multinomial
distribution with parameters n and pi1

, . . . , pis
, q.
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that is, the (joint) conditional distribution of Xj1
, . . . , Xjt

given Xi1
, . . . , Xis

 is
Multinomial with parameters n − r and pj1

/q, . . . , pjt
/q.

DISCUSSION
i) Clearly,

X x X x X X r n Y r Y n ri i i i i is s s1 1 1
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Denoting by O the outcome which is the grouping of all n outcomes distinct
from those designated by i1, . . . , is, we have that the probability of O is q, and
the number of its occurrences is Y. Thus, the r.v.’s Xi1

, . . . , Xis
 and Y are

distributed as asserted.
ii) We have
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,

as was to be seen.

Let the r.v.’s X1 and X2 have the Bivariate Normal distribution, and recall that
their (joint) p.d.f. is given by:

EXAMPLE 2
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We saw that the marginal p.d.f.’s f1, f2 are N(μ1, σ 2
1), N(μ2, σ 2

2), respectively;
that is, X1, X2 are also normally distributed. Furthermore, in the process of
proving that f(x1, x2) is a p.d.f., we rewrote it as follows:
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which is the p.d.f. of an N(b, σ2
2(1 − ρ2)) r.v. Similarly f(x1|x2) is seen to be the

p.d.f. of an N(b′, σ2
1(1 − ρ2)) r.v., where

′ = + −( )b xμ ρ σ
σ

μ1
1

2
2 2 .

Exercises

4.2.1 Refer to Exercise 3.2.17 in Chapter 3 and:

i) Find the marginal p.d.f.’s of the r.v.’s Xj, j = 1, · · · , 6;

ii) Calculate the probability that X1 ≥ 5.

4.2.2 Refer to Exercise 3.2.18 in Chapter 3 and determine:

ii) The marginal p.d.f. of each one of X1, X2, X3;

ii) The conditional p.d.f. of X1, X2, given X3; X1, X3, given X2; X2, X3, given
X1;

Exercises 97
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iii) The conditional p.d.f. of X1, given X2, X3; X2, given X3, X1; X3, given X1,
X2.

If n = 20, provide expressions for the following probabilities:

iv) P(3X1 + X2 ≤ 5);

v) P(X1 < X2 < X3);

vi) P(X1 + X2 = 10|X3 = 5);

vii) P(3 ≤ X1 ≤ 10|X2 = X3);

viii) P(X1 < 3X2|X1 > X3).

4.2.3 Let X, Y be r.v.’s jointly distributed with p.d.f. f given by f(x, y) = 2/c2

if 0 ≤ x ≤ y, 0 ≤ y ≤ c and 0 otherwise.

i) Determine the constant c;

ii) Find the marginal p.d.f.’s of X and Y;

iii) Find the conditional p.d.f. of X, given Y, and the conditional p.d.f. of Y,
given X;

iv) Calculate the probability that X ≤ 1.

4.2.4 Let the r.v.’s X, Y be jointly distributed with p.d.f. f given by f(x, y) =
e−x−y I(0,∞)×(0,∞) (x, y). Compute the following probabilities:

i) P(X ≤ x);

ii) P(Y ≤ y);

iii) P(X < Y);

iv) P(X + Y ≤ 3).

4.2.5 If the joint p.d.f. f of the r.v.’s Xj, j = 1, 2, 3, is given by

f x x x c e I x x x
c x x x

A1 2 3
3

1 2 3
1 2 3, , , , ,    ( ) = ( )− + +( )

where

A = ∞( ) × ∞( ) × ∞( )0 0 0, , , ,

i) Determine the constant c;

ii) Find the marginal p.d.f. of each one of the r.v.’s Xj, j = 1, 2, 3;

iii) Find the conditional (joint) p.d.f. of X1, X2, given X3, and the conditional
p.d.f. of X1, given X2, X3;

iv) Find the conditional d.f.’s corresponding to the conditional p.d.f.’s in (iii).

4.2.6 Consider the function given below:

f x y
y e

x
x y

x y

( ) = = ⋅ ⋅ ⋅ ≥
⎧
⎨
⎪

⎩⎪

−

!
, , , ;

,

0 1 0

0 otherwise.
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i) Show that for each fixed y, f(·|y) is a p.d.f., the conditional p.d.f. of an r.v.
X, given that another r.v. Y equals y;

ii) If the marginal p.d.f. of Y is Negative Exponential with parameter λ = 1,
what is the joint p.d.f. of X, Y?

iii) Show that the marginal p.d.f. of X is given by f(x) = ( 1
2

)x+1 IA(x), where
A = {0, 1, 2, . . . }.

4.2.7 Let Y be an r.v. distributed as P(λ) and suppose that the conditional
distribution of the r.v. X, given Y = n, is B(n, p). Determine the p.d.f. of X and
the conditional p.d.f. of Y, given X = x.

4.2.8 Consider the function f defined as follows:

f x x
x x

e
x x I x x1 2

1
2

2
2

1
3

2
3

1 1 1 1 1 2

1
2 2

1
4

, exp ,, ,( ) = −
+⎛

⎝
⎜

⎞

⎠
⎟ + ( )−[ ]× −[ ]π π

and show that:

i) f is a non-Normal Bivariate p.d.f.

ii) Both marginal p.d.f.’s

f x f x x dx1 1 1 2 2( ) = ( )
−∞

∞

∫ ,

and

f x f x x dx2 2 1 2 1( ) = ( )
−∞

∞

∫ ,

are Normal p.d.f.’s.

4.3 Quantiles and Modes of a Distribution

Let X be an r.v. with d.f. F and consider a number p such that 0 < p < 1. A
pth quantile of the r.v. X, or of its d.f. F, is a number denoted by xp and having
the following property: P(X ≤ xp) ≥ p and P(X ≥ xp) ≥ 1 − p. For p = 0.25 we
get a quartile of X, or its d.f., and for p = 0.5 we get a median of X, or its
d.f. For illustrative purposes, consider the following simple examples.

Let X be an r.v. distributed as U(0, 1) and let p = 0.10, 0.20, 0.30, 0.40, 0.50,
0.60, 0.70, 0.80 and 0.90. Determine the respective x0.10, x0.20, x0.30, x0.40, x0.50, x0.60,
x0.70, x0.80, and x0.90.

Since for 0 ≤ x ≤ 1, F(x) = x, we get: x0.10 = 0.10, x0.20 = 0.20, x0.30 = 0.30,
x0.40 = 0.40, x0.50 = 0.50, x0.60 = 0.60, x0.70 = 0.70, x0.80 = 0.80, and x0.90 = 0.90.

Let X be an r.v. distributed as N(0, 1) and let p = 0.10, 0.20, 0.30, 0.40, 0.50,
0.60, 0.70, 0.80 and 0.90. Determine the respective x0.10, x0.20, x0.30, x0.40, x0.50, x0.60,
x0.70, x0.80, and x0.90.

EXAMPLE 4

EXAMPLE 3

4.3 Quantiles and Modes of a Distribution 99
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1

Typical cases:

F(x)

0

(a)

x
xp

F(x)

p

p

0
][

(b)

x

xp

F(x)

1

p

0
][

(e)

x

xp

F(x)

p

0

(c)

x
xp

F(x)

1
p

0

(d)

x
xp

Figure 4.3 Observe that the figures demonstrate that, as defined, xp need not be unique.

From the Normal Tables (Table 3 in Appendix III), by linear interpolation
and symmetry, we find: x0.10 = −1.282, x0.20 = −0.842, x0.30 = −0.524, x0.40 = −0.253,
x0.50 = 0, x0.60 = 0.253, x0.70 = 0.524, x0.80 = 0.842, and x0.90 = 1.282.

Knowledge of quantiles xp for several values of p provides an indication as
to how the unit probability mass is distributed over the real line. In Fig. 4.3
various cases are demonstrated for determining graphically the pth quantile of
a d.f.

Let X be an r.v. with a p.d.f. f. Then a mode of f, if it exists, is any number
which maximizes f(x). In case f is a p.d.f. which is twice differentiable, a mode
can be found by differentiation. This process breaks down in the discrete cases.
The following theorems answer the question for two important discrete cases.
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Let X be B(n, p); that is,

f x
n

x
p q p q p x nx n x( ) =

⎛
⎝⎜

⎞
⎠⎟

< < = − = ⋅ ⋅ ⋅
− , , , , , , .0 1 1 0 1

Consider the number (n + 1)p and set m = [(n + 1)p], where [y] denotes the
largest integer which is ≤ y. Then if (n + 1)p is not an integer, f(x) has a unique
mode at x = m. If (n + 1)p is an integer, then f(x) has two modes obtained for
x = m and x = m − 1.

PROOF For x ≥ 1, we have

f x

f x

n

x
p q

n

x
p q

n

x n x
p q

n

x n x
p q

n x
x

p
q

x n x

x n x

x n x

x n x

( )
−( ) =

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

=
−( )

−( ) − +( )
= − + ⋅

−

− − +

−

− − +

1

1

1 1

1

1 1

1 1

!

! !

!

! !

.

That is,

f x

f x

n x
x

p
q

( )
−( ) = − + ⋅

1

1
.

Hence f(x) > f(x − 1) ( f is increasing) if and only if

n x p x p np xp p x xp n p x− +( ) > −( ) − + > − +( ) >1 1 1, , .or or

Thus if (n + 1)p is not an integer, f(x) keeps increasing for x ≤ m and then
decreases so the maximum occurs at x = m. If (n + 1)p is an integer, then the
maximum occurs at x = (n + 1)p, where f(x) = f(x − 1) (from above calcula-
tions). Thus

x n p= +( ) −1 1

is a second point which gives the maximum value. �

Let X be P(λ); that is,

f x e
x

x
x

( ) = = ⋅ ⋅ ⋅ >−λ λ λ
!

, , , , , .0 1 2 0

Then if λ is not an integer, f(x) has a unique mode at x = [λ]. If λ is an integer,
then f(x) has two modes obtained for x = λ and x = λ − 1.

PROOF For x ≥ 1, we have

THEOREM 5
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f x

f x

e x

e x x

x

x

( )
−( ) =

( )
−( )[ ] =

−

− −1 11

λ

λ

λ

λ
λ!

!
.

Hence f(x) > f(x − 1) if and only if λ > x. Thus if λ is not an integer, f(x) keeps
increasing for x ≤ [λ] and then decreases. Then the maximum of f(x) occurs
at x = [λ]. If λ is an integer, then the maximum occurs at x = λ. But in this case
f(x) = f(x − 1) which implies that x = λ − 1 is a second point which gives
the maximum value to the p.d.f. �

Exercises

4.3.1 Determine the pth quantile xp for each one of the p.d.f.’s given in
Exercises 3.2.13–15, 3.3.13–16 (Exercise 3.2.14 for α = 1

4
) in Chapter 3 if p =

0.75, 0.50.

4.3.2 Let X be an r.v. with p.d.f. f symmetric about a constant c (that is,
f(c − x) = f(c + x) for all x ∈ �). Then show that c is a median of f.

4.3.3 Draw four graphs—two each for B(n, p) and P(λ)—which represent
the possible occurrences for modes of the distributions B(n, p) and P(λ).

4.3.4 Consider the same p.d.f.’s mentioned in Exercise 4.3.1 from the point
of view of a mode.

4.4* Justification of Statements 1 and 2

In this section, a rigorous justification of Statements 1 and 2 made in Section
4.1 will be presented. For this purpose, some preliminary concepts and results
are needed and will be also discussed.

A set G in � is called open if for every x in G there exists an open interval
containing x and contained in G. Without loss of generality, such intervals may
be taken to be centered at x.

It follows from this definition that an open interval is an open set, the
entire real line � is an open set, and so is the empty set (in a vacuous manner).

Every open set in � is measurable.

PROOF Let G be an open set in �, and for each x ∈ G, consider an open
interval centered at x and contained in G. Clearly, the union over x, as x varies
in G, of such intervals is equal to G. The same is true if we consider only those
intervals corresponding to all rationals x in G. These intervals are countably
many and each one of them is measurable; then so is their union. �

LEMMA 1

DEFINITION 1
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A set G in � m, m ≥ 1, is called open if for every x in G there exists an open cube
in � m containing x and contained in G; by the term open “cube” we mean the
Cartesian product of m open intervals of equal length. Without loss of gener-
ality, such cubes may be taken to be centered at x.

Every open set in � n is measurable.

PROOF It is analogous to that of Lemma 1. Indeed, let G be an open set in
� m, and for each x ∈ G, consider an open cube centered at x and contained in
G. The union over x, as x varies in G, of such cubes clearly is equal to G. The
same is true if we restrict ourselves to x’s in G whose m coordinates are
rationals. Then the resulting cubes are countably many, and therefore their
union is measurable, since so is each cube. �

Recall that a function g: S ⊆ � → � is said to be continuous at x0 ∈ S if for
every ε > 0 there exists a δ = δ(ε, x0) > 0 such that |x − x0| < ε implies |g(x) − g(x0)|
< δ. The function g is continuous in S if it is continuous for every x ∈ S.

It follows from the concept of continuity that ε → 0 implies δ → 0.

Let g: � → � be continuous. Then g is measurable.

PROOF By Theorem 5 in Chapter 1 it suffices to show that g−1(G) are meas-
urable sets for all open intevals G in �. Set B = g−1(G). Thus if B = ∅, the
assertion is valid, so let B ≠ ∅ and let x0 be an arbitrary point of B, so that g(x0)
∈ G. Continuity of g at x0 implies that for every ε > 0 there exists δ = δ(ε, x0)
> 0 such that |x − x0| < ε implies |g(x) − g(x0)| < δ. Equivalently, x ∈ (x0 − ε, x0

+ ε) implies g(x) ∈ (g(x0) − δ, g(x0) + δ ). Since g(x0) ∈ G and G is open, by
choosing ε sufficiently small, we can make δ so small that (g(x0) − δ, g(x0) + δ)
is contained in G. Thus, for such a choice of ε and δ, x ∈ (x0 − ε, x0 + ε) implies
that (g(x0) − δ, g(x0) + δ) ⊂ G. But B(= g−1(G)) is the set of all x ∈ � for which
g(x) ∈ G. As all x ∈ (x0 − ε, x0 + ε) have this property, it follows that (x0 − ε, x0

+ ε) ⊂ B. Since x0 is arbitrary in B, it follows that B is open. Then by Lemma
1, it is measurable. �

The concept of continuity generalizes, of course, to Euclidean spaces of
higher dimensions, and then a result analogous to the one in Lemma 3 also
holds true.

A function g : S ⊆ �k → �m (k, m ≥ 1) is said to be continuous at x0 ∈ � k if for
every ε > 0 there exists a δ = δ (ε, x0) > 0 such that ||x − x0|| < ε implies ||g(x) −
g(x0)|| < δ. The function g is continuous in S if it is continuous for every x ∈ S.
Here ||x|| stands for the usual norm in �k; i.e., for x = (x1, . . . , xk)′, ||x|| =

xii
k 2

1

1 2

=∑( ) , and similarly for the other quantities.

Once again, from the concept of continuity it follows that ε → 0 implies
δ → 0.

Let g: �k → �m be continuous. Then g is measurable.

DEFINITION 2
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PROOF The proof is similar to that of Lemma 3. The details are presented
here for the sake of completeness. Once again, it suffices to show that g−1(G)
are measurable sets for all open cubes G in �m. Set B = g−1(G). If B = ∅ the
assertion is true, and therefore suppose that B ≠ ∅ and let x0 be an arbitrary
point of B. Continuity of g at x0 implies that for every ε > 0 there exists a δ =
δ(ε, x0) > 0 such that ||x − x0|| < ε implies ||g(x) − g(x0)|| < δ; equivalently, x ∈
S(x0, ε) implies g(x) ∈ S(g(x0), δ), where S(c, r) stands for the open sphere with
center c and radius r. Since g(x0) ∈ G and G is open, we can choose ε so small
that the corresponding δ is sufficiently small to imply that g(x) ∈ S(g(x0), δ).
Thus, for such a choice of ε and δ, x ∈ S(x0, ε) implies that g(x) ∈ S(g(x0), δ).
Since B(= g−1(G)) is the set of all x ∈ � k for which g(x) ∈ G, and x ∈ S(x0, ε)
implies that g(x) ∈ S(g(x0), δ), it follows that S(x0, ε) ⊂ B. At this point, observe
that it is clear that there is a cube containing x0 and contained in S(x0, ε); call
it C(x0, ε). Then C(x0, ε) ⊂ B, and therefore B is open. By Lemma 2, it is also
measurable. �

We may now proceed with the justification of Statement 1.

Let X : (S, A) → (� k, B k) be a random vector, and let g : (� k, B k) → (� m, Bm)
be measurable. Then g(X): (S, A) → (� m, Bm) and is a random vector. (That
is, measurable functions of random vectors are random vectors.)

PROOF To prove that [g(X)]−1(B) ∈ A if B ∈ Bm, we have

  g B g B B B g B kX X X( )[ ] ( ) = ( )[ ] = ( ) = ( ) ∈
− − − − −1

1 1 1
1 1

1, where B
by the measurability of g. Also, X−1(B1) ∈ A since X is measurable. The proof
is completed. �

To this theorem, we have the following

Let X be as above and g be continuous. Then g(X) is a random vector. (That
is, continuous functions of random vectors are random vectors.)

PROOF The continuity of g implies its measurability by Lemma 3, and there-
fore the theorem applies and gives the result. �

For j = 1, . . . , k, the jth projection function gj is defined by: gj: � k → � and
gj(x) = gj(x1, . . . , xk) = xj.

It so happens that projection functions are continuous; that is,

The coordinate functions gj, j = 1, . . . , k, as defined above, are continuous.

PROOF For an arbitrary point x0 in � K, consider x ∈ � K such that ||x − x0|| <
ε for some ε > 0. This is equivalent to ||x − x0||

2 < ε2 or x xjj
k

j
−( )∑ <= 0

2

1
2ε  which

implies that (xj − x0j)
2 < ε2 for j = 1, . . . , k, or |xj − x0j| < ε, j = 1, . . . , k. This last

expression is equivalent to |gj(x) − gj(x0)| < ε, j = 1, . . . , k. Thus the definition
of continuity of gj is satisfied here for δ = ε. �

Now consider a k-dimensional function X defined on the sample space S.
Then X may be written as X = (X1, . . . , Xk)′, where Xj, j = 1, . . . , k are real-
valued functions. The question then arises as to how X and Xj, j = 1, . . . , k are

THEOREM 7
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related from a measurability point of view. To this effect, we have the follow-
ing result.

Let X = (X1, . . . , Xk)′ : (S, A) → (� k, Bk). Then X is an r. vector if and only if
Xj, j = 1, . . . , k are r.v.’s.

PROOF Suppose X is an r. vector and let gj, j = 1, . . . , k be the coordinate
functions defined on � k. Then gj’s are continuous by Lemma 5 and therefore
measurable by Lemma 4. Then for each j = 1, . . . , k, gj(X) = gj(X1, . . . , Xk) =
Xj is measurable and hence an r.v.

Next, assume that Xj, j = 1, . . . , k are r.v.’s. To show that X is an r. vector,
by special case 3 in Section 2 of Chapter 1, it suffices to show that X−1(B) ∈ A
for each B = (−∞, x1] × · · · × (−∞, xk], x1, . . . , xk ∈ �. Indeed,

  
X X− −

=
( ) = ∈( ) = ∈ −∞( ] = ⋅ ⋅ ⋅( ) = −∞( ]( ) ∈1 1

1

1B B X x j k X xj j j j
j

k

, , , , , .    I A

The proof is completed. �

Exercises

4.4.1 If X and Y are functions defined on the sample space S into the real line
�, show that:

  
s S X s Y s x s X s r s Y s x r

r Q

∈ ( ) + ( ) <{ } = ∈ ( ) <{ } ∩ ∈ ( ) < −{ }[ ]
∈

; ; ; ,   S SU

where Q is the set of rationals in �.

4.4.2 Use Exercise 4.4.1 in order to show that, if X and Y are r.v.’s, then so
is the function X + Y.

4.4.3

ii) If X is an r.v., then show that so is the function −X.

ii) Use part (i) and Exercise 4.4.2 to show that, if X and Y are r.v.’s, then so is
the function X − Y.

4.4.4

ii) If X is an r.v., then show that so is the function X 2.

ii) Use the identity: XY = 1
2 (X + Y)2 − 1

2 (X2 + Y2) in conjunction with part (i)
and Exercises 4.4.2 and 4.4.3(ii) to show that, if X and Y are r.v.’s, then so
is the function XY.

4.4.5

ii) If X is an r.v., then show that so is the function 1
X

, provided X ≠ 0.

ii) Use part (i) in conjunction with Exercise 4.4.4(ii) to show that, if X and Y
are r.v.’s, then so is the function X

Y
, provided Y ≠ 0.

THEOREM 8
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106

5.1 Moments of Random Variables

In the definitions to be given shortly, the following remark will prove useful.

REMARK 1 We say that the (infinite) series ∑xh(x), where x = (x1, . . . , xk)′
varies over a discrete set in �k, k ≥ 1, converges absolutely if ∑x|h(x)| < ∞. Also
we say that the integral ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )∫∫ ⋅ ⋅ ⋅−∞

∞
−∞
∞ h x x dx dxk k1 1, ,   converges absolutely

if

⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅ < ∞
−∞

∞

−∞

∞

∫ ∫ h x x x dx dx dxk k1 2 1 2, , , .

In what follows, when we write (infinite) series or integrals it will always be
assumed that they converge absolutely. In this case, we say that the moments to
be defined below exist.

Let X = (X1, . . . , Xk)′ be an r. vector with p.d.f. f and consider the (measurable)
function g: � k → �, so that g(X) = g(X1, . . . , Xk) is an r.v. Then we give the

iii) For n = 1, 2, . . . , the nth moment of g(X) is denoted by E[g(X)]n and is
defined by:

E g
g f x x

g x x f x x dx dx

n

n

k

k

n

k k

X
x x x

x( )[ ] =
( )[ ] ( ) = ⋅ ⋅ ⋅( )′

⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )[ ] ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

⎧

⎨
⎪⎪

⎩
⎪
⎪

∑

∫ ∫−∞

∞

−∞

∞

, , ,

, , , , .

1

1 1 1

For n = 1, we get

E g
g f

g x x f x x dx dxk k k

X
x x

x( )[ ] =
( ) ( )

⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

⎧

⎨
⎪

⎩
⎪

∑

∫ ∫−∞

∞

−∞

∞

1 1 1, , , ,

Chapter 5
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and call it the mathematical expectation or mean value or just mean of g(X).
Another notation for E[g(X)] which is often used is μg(X), or μ[g(X)], or just
μ, if no confusion is possible.

iii) For r > 0, the rth absolute moment of g(X) is denoted by E|g(X)|r and is
defined by:

E g
g f x x

g x x f x x dx dx

r

r

k

k

r

k k

X
x x x

x( ) =
( ) ( ) = ⋅ ⋅ ⋅( )′

⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

⎧

⎨
⎪⎪

⎩
⎪
⎪

∑

∫ ∫−∞

∞

−∞

∞

, , ,

, , , , .

1

1 1 1

iii) For an arbitrary constant c, and n and r as above, the nth moment and rth
absolute moment of g(X) about c are denoted by E[g(X) − c]n, E|g(X) − c|r,
respectively, and are defined as follows:

E g c
g c f x x

g x x c f x x dx dx

n

n

k

k

n

k k

X
x x x

x( ) −[ ] =
( ) −[ ] ( ) = ⋅ ⋅ ⋅( )′

⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) −[ ] ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

⎧

⎨
⎪⎪

⎩
⎪
⎪

∑

∫ ∫−∞

∞

−∞

∞

, , ,

, , , , ,

1

1 1 1

and

E g c
g c f x x

g x x c f x x dx dx

r

r

k

k

r

k k

X
x x x

x( ) − =
( ) − ( ) = ⋅ ⋅ ⋅( )′

⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) − ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

⎧

⎨
⎪⎪

⎩
⎪
⎪

∑

∫ ∫−∞

∞

−∞

∞

, , ,

, , , , .

1

1 1 1

For c = E[g(X)], the moments are called central moments. The 2nd central
moment of g(X), that is,

E g E g

g Eg f x x

g x x Eg f x x dx dx

k

k k k

X X

x X x x

X

x

( ) − ( )[ ]{ }
=

( ) − ( )[ ] ( ) = ⋅ ⋅ ⋅( )′

⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) − ( )[ ] ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

⎧

⎨
⎪⎪

⎩
⎪
⎪

∑

∫ ∫−∞

∞

−∞

∞

2

2

1

1

2

1 1

, , ,

, , , ,

is called the variance of g(X) and is also denoted by σ 2[g(X)], or σ g X( )
2 , or just

σ 2, if no confusion is possible. The quantity + ( )[ ] = ( )[ ]σ σ2 g gX X  is called the
standard deviation (s.d.) of g(X) and is also denoted by σg(X), or just σ, if no
confusion is possible. The variance of an r.v. is referred to as the moment of
inertia in Mechanics.

5.1.1 Important Special Cases

1. Let g(X1, . . . , Xk) = X Xn

k

nk

1
1 ⋅ ⋅ ⋅ , where nj ≥ 0 are integers. Then

E( X Xn

k

nk

1
1 ⋅ ⋅ ⋅ ) is called the (n1, . . . , nk)-joint moment of X1, . . . , Xk. In par-

ticular, for n1 = · · · = nj−1 = nj+1 = · · · = nk = 0, nj = n, we get
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E X

x f x f x x

x f x x dx dx

x f x

x f x dx

j
n

j
n

j
n

k

x x

j
n

k k

j
n

j j
x

j
n

j j j

k

j

( ) =
( ) = ⋅ ⋅ ⋅( )

⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

⎧

⎨
⎪⎪

⎩
⎪
⎪

=
( )

( )

⎧

⎨
⎪

⎩
⎪

∑ ∑

∫ ∫
∑

∫

⋅ ⋅ ⋅( )′

−∞

∞

−∞

∞

−∞

∞

x
x

1

1 1

1

, ,

, ,

, ,

which is the nth moment of the r.v. Xj. Thus the nth moment of an r.v. X with
p.d.f. f is

E X
x f x

x f x dx

n

n

x

n
( ) =

( )
( )

⎧

⎨
⎪

⎩
⎪

∑

∫−∞

∞
.

For n = 1, we get

E X
xf x

xf x dx

x( ) =
( )
( )

⎧

⎨
⎪

⎩
⎪

∑

∫−∞

∞

which is the mathematical expectation or mean value or just mean of X. This
quantity is also denoted by μX or μ(X) or just μ when no confusion is possible.

The quantity μX can be interpreted as follows: It follows from the defini-
tion that if X is a discrete uniform r.v., then μX is just the arithmetic average of
the possible outcomes of X. Also, if one recalls from physics or elementary
calculus the definition of center of gravity and its physical interpretation as the
point of balance of the distributed mass, the interpretation of μX as the mean
or expected value of the random variable is the natural one, provided the
probability distribution of X is interpreted as the unit mass distribution.

REMARK 2 In Definition 1, suppose X is a continuous r.v. Then E[g(X)] =
g x f x dx( )∫ ( )−∞

∞ . On the other hand, from the last expression above, E(X) =
xf x dx−∞

∞
∫ ( ) . There seems to be a discrepancy between these two definitions.
More specifically, in the definition of E[g(X)], one would expect to use the
p.d.f. of g(X) rather than that of X. Actually, the definition of E[g(X)], as
given, is correct and its justification is roughly as follows: Consider E[g(x)] =

g x f x dx( )∫ ( )−∞

∞ and set y = g(x). Suppose that g is differentiable and has an
inverse g−1, and that some further conditions are met. Then

g x f x dx yf g y
d
dy

g y dy( ) ( ) = ( )[ ] ( )
−∞

∞ − −

−∞

∞

∫ ∫ 1 1 .
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On the other hand, if fY is the p.d.f. of Y, then f y f g y g yY
d
dy( ) = ( )[ ] ( )− −1 1 .

Therefore the last integral above is equal to yf y dyY ( )∫−∞

∞ ,  which is consonant
with the definition of E X xf x dx( ) = ( )∫−∞

∞ . (A justification of the above deriva-
tions is given in Theorem 2 of Chapter 9.)

2. For g as above, that is, g(X1, . . . , Xk) = X Xn

k

nk

1
1 ⋅ ⋅ ⋅  and n1 = · · · = nj−1 =

nj+1 = · · · = nk = 0, nj = 1, and c = E(Xj), we get

E X EX
x EX f x x

x EX f x x dx dx

x EX f x

x EX f x

j j

n j j

n

k

j j

n

k k

j j

n

j j
x

j j

n

j j

j

−( ) =
−( ) ( ) = ⋅ ⋅ ⋅( )′

⋅ ⋅ ⋅ −( ) ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

⎧

⎨
⎪⎪

⎩
⎪
⎪

=
−( ) ( )
−( ) ( )

∑

∫ ∫
∑

−∞

∞

−∞

∞

−∞

x x
x

, , ,

, ,

1

1 1

∞∞

∫

⎧

⎨
⎪⎪

⎩
⎪
⎪ dxj

which is the nth central moment of the r.v. Xj (or the nth moment of Xj about its
mean).

Thus the nth central moment of an r.v. X with p.d.f. f and mean μ is

E X EX E X
x EX f x x f x

x EX f x dx x f x dx

n n

n

x

n

x

n n
−( ) = −( ) =

−( ) ( ) = −( ) ( )
−( ) ( ) = −( ) ( )

⎧

⎨
⎪

⎩
⎪

∑ ∑

∫∫ −∞

∞

−∞

∞
μ

μ

μ .

In particular, for n = 2 the 2nd central moment of X is denoted by σ X
2  or σ 2(X)

or just σ 2 when no confusion is possible, and is called the variance of X. Its
positive square root σX or σ(X) or just σ is called the standard deviation (s.d.)
of X.

As in the case of μX, σ X
2  has a physical interpretation also. Its definition

corresponds to that of the second moment, or moment of inertia. One recalls
that a large moment of inertia means the mass of the body is spread widely
about its center of gravity. Likewise a large variance corresponds to a probabil-
ity distribution which is not well concentrated about its mean value.

3. For g(X1, . . . , Xk) = (X1 − EX1)
n1 · · · (Xk − EXk)

nk, the quantity

E X EX X EX
n

k k

nk

1 1
1−( ) ⋅ ⋅ ⋅ −( )⎡

⎣⎢
⎤
⎦⎥

is the (n1, . . . , nk)-central joint moment of X1, . . . , Xk or the (n1, . . . , nk)-joint
moment of X1, . . . , Xk about their means.

4. For g(X1, . . . , Xk) = Xj(Xj − 1) · · · (Xj − n + 1), j = 1, . . . , k, the quantity

E X X X n

x x x n f x

x x x n f x dx
j j j

j j j j j
x

j j j j j j

j−( ) ⋅ ⋅ ⋅ − +( )[ ] =
−( ) ⋅ ⋅ ⋅ − +( ) ( )
−( ) ⋅ ⋅ ⋅ − +( ) ( )

⎧

⎨
⎪

⎩
⎪

∑

∫−∞

∞
1 1

1 1

1 1
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is the nth factorial moment of the r.v. Xj. Thus the nth factorial moment of an
r.v. X with p.d.f. f is

E X X X n
x x x n f x

x x x n f x dx

x−( ) ⋅ ⋅ ⋅ − +( )[ ] =
−( ) ⋅ ⋅ ⋅ − +( ) ( )
−( ) ⋅ ⋅ ⋅ − +( ) ( )

⎧

⎨
⎪

⎩
⎪

∑

∫−∞

∞
1 1

1 1

1 1 .

5.1.2 Basic Properties of the Expectation of an R.V.

From the very definition of E[g(X)], the following properties are immediate.

(E1) E(c) = c, where c is a constant.
(E2) E[cg(X)] = cE[g(X)], and, in particular, E(cX) = cE(X) if X is an

r.v.
(E3) E[g(X) + d] = E[g(X)] + d, where d is a constant. In particular,

E(X + d) = E(X) + d if X is an r.v.
(E4) Combining (E2) and (E3), we get E[cg(X) + d] = cE[g(X)] + d,

and, in particular, E(cX + d) = cE(X) + d if X is an r.v.
(E4′) E c g c E gj jj

n
jj

n
jX X( )∑[ ] = ∑ ( )[ ]= =1 1 .

In fact, for example, in the continuous case, we have

E c g c g x x f x x dx dx

c g x x f x

j j
j

n

j j k
j

n

k k

j
j

n

j k

X( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

= =
−∞

∞

−∞

∞

=
−∞

∞

∑ ∑∫∫

∑ ∫

1
1

1
1 1

1
1 1

, , , ,

, , , , xx dx dx

c E g

k k

j j
j

n

( ) ⋅ ⋅ ⋅

= ( )[ ]
−∞

∞

=

∫

∑

1

1

X .

The discrete case follows similarly. In particular,

(E4″) E c X c E Xj jj
n

j jj
n

= =∑( ) = ( )∑1 1 .

(E5) If X ≥ 0, then E(X) ≥ 0.

Consequently, by means of (E5) and (E4″), we get that

(E5′) If X ≥ Y, then E(X) ≥ E(Y), where X and Y are r.v.’s (with finite
expectations).

(E6) |E[g(X)]| ≤ E|g(X)|.
(E7) If E|X|r < ∞ for some r > 0, where X is an r.v., then E|X|r′< ∞ for

all 0 < r′ < r.

This is a consequence of the obvious inequality |X|r′ ≤ 1 + |X|r and (E5′).
Furthermore, since of n = 1, 2, . . . , we have |Xn| = |X|n, by means of (E6),

it follows that
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(E7′) If E(Xn) exists (that is, E|X|n < ∞) for some n = 2, 3, . . . , then E(Xn′)
also exists for all n′ = 1, 2, . . . with n′ < n.

5.1.3 Basic Properties of the Variance of an R.V.

Regarding the variance, the following properties are easily established by
means of the definition of the variance.

(V1) σ2(c) = 0, where c is a constant.

(V2) σ2[cg(X)] = c2σ 2[g(X)], and, in particular, σ 2(cX) = c2σ 2(X), if X is
an r.v.

(V3) σ2[g(X) + d] = σ 2[g(X)], where d is a constant. In particular,
σ 2(X + d) = σ 2(X), if X is an r.v.

In fact,

σ

σ

2
2

2
2

g d E g d E g d

E g Eg g

X X X

X X X

( ) +[ ] = ( ) +[ ] − ( ) +[ ]{ }
= ( ) − ( )[ ] = ( )[ ].

(V4) Combining (V2) and (V3), we get σ 2[cg(X) + d] = c2σ 2[g(X)],
and, in particular, σ 2(cX + d) = c2σ 2(X), if X is an r.v.

(V5) σ 2[g(X)] = E[g(X)]2 − [Eg(X)]2, and, in particular,

(V5′) σ2(X) = E(X 2) − (EX)2, if X is an r.v.

In fact,

σ 2
2 2 2

2 2 2 2 2

2

2

g E g Eg E g g Eg Eg

E g Eg Eg E g Eg

X X X X X X X

X X X X X

( )[ ] = ( ) − ( )[ ] = ( )[ ] − ( ) ( ) + ( )[ ]⎧
⎨
⎩

⎫
⎬
⎭

= ( )[ ] − ( )[ ] + ( )[ ] = ( )[ ] − ( )[ ] ,

the equality before the last one being true because of (E4′).

(V6) σ 2(X) = E[X(X − 1)] + EX − (EX)2, if X is an r.v., as is easily seen.
This formula is especially useful in calculating the variance of a
discrete r.v., as is seen below.

Exercises

5.1.1 Verify the details of properties (E1)–(E7).

5.1.2 Verify the details of properties (V1)–(V5).

5.1.3 For r′ < r, show that |X|r′ ≤ 1 + |X|r and conclude that if E|X|r < ∞, then
E|X|r′ for all 0 < r′ < r.

Exercises 111
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5.1.4 Verify the equality ( [ ( )] ) ( ) ( ) ( )E g X g x f x dx yf y dyX Y= =∫ ∫−∞

∞

−∞

∞  for the
case that X ∼ N(0, 1) and Y = g(X) = X2.

5.1.5 For any event A, consider the r.v. X = IA, the indicator of A defined by
IA(s) = 1 for s ∈ A and IA(s) = 0 for s ∈ Ac, and calculate EXr, r > 0, and also
σ 2(X).

5.1.6 Let X be an r.v. such that

P X c P X c= −( ) = =( ) = 1
2

.

Calculate EX, σ2(X) and show that

P X EX c
X

c
− ≤( ) =

( )σ 2

2
.

5.1.7 Let X be an r.v. with finite EX.

ii) For any constant c, show that E(X − c)2 = E(X − EX)2 + (EX − c)2;

ii) Use part (i) to conclude that E(X − c)2 is minimum for c = EX.

5.1.8 Let X be an r.v. such that EX4 < ∞. Then show that

ii) E(X − EX)3 = EX3 − 3(EX)(EX)2 + 2(EX)3;

ii) E(X − EX)4 = EX4 − 4(EX)(EX3) + 6(EX)2(EX2) − 3(EX)4.

5.1.9 If EX4 < ∞, show that:

E X X EX EX E X X X EX EX EX

E X X X X EX EX EX EX

−( )[ ] = − −( ) −( )[ ] = − +

−( ) −( ) −( )[ ] = − + −

1 1 2 3 2

1 2 3 6 11 6

2 3 2

4 3 2

; ;

.

(These relations provide a way of calculating EXk, k = 2, 3, 4 by means of
the factorial moments E[X(X − 1)], E[X(X − 1)(X − 2)], E[X(X − 1)(X − 2)
(X − 3)].)

5.1.10 Let X be the r.v. denoting the number of claims filed by a policy-
holder of an insurance company over a specified period of time. On the basis
of an extensive study of the claim records, it may be assumed that the distribu-
tion of X is as follows:

x 0 1 2 3 4 5 6

f(x) 0.304 0.287 0.208 0.115 0.061 0.019 0.006

iii) Calculate the EX and the σ 2(X);

iii) What premium should the company charge in order to break even?

iii) What should be the premium charged if the company is to expect to come
ahead by $M for administrative expenses and profit?
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5.1.11 A roulette wheel has 38 slots of which 18 are red, 18 black, and 2
green.

iii) Suppose a gambler is placing a bet of $M on red. What is the gambler’s
expected gain or loss and what is the standard deviation?

iii) If the same bet of $M is placed on green and if $kM is the amount
the gambler wins, calculate the expected gain or loss and the standard
deviation.

iii) For what value of k do the two expectations in parts (i) and (ii) coincide?

iv) Does this value of k depend on M?

iv) How do the respective standard deviations compare?

5.1.12 Let X be an r.v. such that P(X = j) = ( 1
2
)j, j = 1, 2, . . . .

ii) Compute EX, E[X(X − 1)];

ii) Use (i) in order to compute σ 2(X).

5.1.13 If X is an r.v. distributed as U(α, β), show that

EX X= + ( ) =
−( )α β σ

α β
2 12

2

2

, .

5.1.14 Let the r.v. X be distributed as U(α, β). Calculate EXn for any positive
integer n.

5.1.15 Let X be an r.v. with p.d.f. f symmetric about a constant c (that is,
f(c − x) = f(c + x) for every x).

ii) Then if EX exists, show that EX = c;

ii) If c = 0 and EX2n+1 exists, show that EX2n+1 = 0 (that is, those moments of X
of odd order which exist are all equal to zero).

5.1.16 Refer to Exercise 3.3.13(iv) in Chapter 3 and find the EX for those α’s
for which this expectation exists, where X is an r.v. having the distribution in
question.

5.1.17 Let X be an r.v. with p.d.f. given by

f x
x

c
I xc c( ) = ( )−( )2 , .

Compute EXn for any positive integer n, E|Xr|, r > 0, σ 2(X).

5.1.18 Let X be an r.v. with finite expectation and d.f. F.

ii) Show that

EX F x dx F x dx= − ( )[ ] − ( )
−∞

∞

∫∫ 1
0

0
;

Exercises 113



114 5 Moments of Random Variables—Some Moment and Probability Inequalities

ii) Use the interpretation of the definite integral as an area in order to give a
geometric interpretation of EX.

5.1.19 Let X be an r.v. of the continuous type with finite EX and p.d.f. f.

ii) If m is a median of f and c is any constant, show that

E X c E X m c x f x dx
m

c
− = − + −( ) ( )∫2 ;

ii) Utilize (i) in order to conclude that E|X − c| is minimized for c = m. (Hint:
Consider the two cases that c ≥ m and c < m, and in each one split the
integral from −∞ to c and c to ∞ in order to remove the absolute value.
Then the fact that f x dx f x dxm

m( )∫ = ( )∫ =−∞

∞ 1
2

 and simple manipulations
prove part (i). For part (ii), observe that c x f x dxm

c −( ) ( ) ≥∫ 0  whether c ≥ m
or c < m.)

5.1.20 If the r.v. X is distributed according to the Weibull distribution (see
Exercise 4.1.15 in Chapter 4), then:

ii) Show that EX EX= +
⎛
⎝⎜

⎞
⎠⎟

= +
⎛
⎝⎜

⎞
⎠⎟

Γ Γ1
1

1
21 2 2

β
α

β
αβ β, , so that

σ
β β

σ β2 2 21
2

1
1

X( ) = +
⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Γ Γ ,

where recall that the Gamma function Γ is defined by Γ γ γ( ) = ∫ − −∞ t e dtt1
0 ,

γ > 0;

ii) Determine the numerical values of EX and σ 2(X) for α = 1 and β = 1
2

,
β = 1 and β = 2.

5.2 Expectations and Variances of Some r.v.’s

5.2.1 Discrete Case

1. Let X be B(n, p). Then E(X) = np, σ 2(X) = npq. In fact,

E X x
n

x
p q x

n

x n x
p q

n n

x n x
p q

np
n

x n x
p q

x n x x n x

x

n

x

n

x n x

x

n

x n

( ) =
⎛
⎝⎜

⎞
⎠⎟

=
−( )

=
−( )

−( ) −( )
=

−( )
−( ) −( ) − −( )[ ]

− −

==

−

=

− −( )

∑∑

∑

!

! !

!

! !

!

! !

10

1

1 1

1

1

1

1 1 1

−− −( )
=

−( )−
=

− −

∑

∑=
−( )

−( ) −[ ] = +( ) =

x

x

n

x n x

x

n n
np

n

x n x
p q np p q np

1

1

1

0

1 11

1

!

! !
.
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Next,

E X X

x x
n

x n x
p q

x x
n n n

x x x n x
p p q

n n p
n

x n x

x

n

x

x

n
n x

−( )[ ]
= −( )

−( )
= −( ) −( ) −( )

−( ) −( ) −( ) − −( )[ ]
= −( ) −

−

=

−

=

−( )− −( )

∑

∑

1

1

1
1 2

1 2 2 2

1
2

0

2 2

2

2 2

2

!

! !

!

! !

(( )
−( ) −( ) − −( )[ ]

= −( ) −( )
−( ) −[ ]

= −( ) +( ) = −( )

−

=

−( )− −( )

=

−
−( )−

−

∑

∑

!

! !

!

! !

.

x n x
p q

n n p
n

x n x
p q

n n p p q n n p

x

x

n
n x

x

x

n
n x

n

2 2 2

1
2

2

1 1

2

2

2 2

2

0

2
2

2 2 2

That is,

E X X n n p−( )[ ] = −( )1 1 2 .

Hence, by (V6),

σ 2 2 2 2 2

2 2 2 2 2

1 1

1

X E X X EX EX n n p np n p

n p np np n p np p npq

( ) = −( )[ ] + − ( ) = −( ) + −

= − + − = −( ) = .

2. Let X be P(λ). Then E(X) = σ 2(X) = λ. In fact,

E X xe
x

xe
x x

e
x

e
x

e e

x

x

x

x

x

x

x

x

( ) = =
−( ) =

−( )
= = =

−

=

∞
−

=

∞
−

−

=

∞

−

=

∞
−

∑ ∑ ∑

∑

λ λ λ

λ λ λ

λ λ λ λ

λ λ λ λ

! ! !

!
.

0 1

1

1

0

1 1

Next,

E X X x x e
x

x x e
x x x

e
x

x

x

x

x x

x

−( )[ ] = −( )

= −( )
−( ) −( ) = =

−

=

∞

−

=

∞
−

=

∞

∑

∑ ∑

1 1

1
1 2

0

2

2 2

0

λ

λ λ

λ

λ λ λ λ

!

! !
.

Hence EX2 = λ2 + λ, so that, σ 2(X) = λ2 + λ − λ2 = λ.

REMARK 3 One can also prove that the nth factorial moment of X is λn; that
is, E[X(X − 1) · · · (X − n + 1)] = λn.

5.2 Expectations and Variances of Some R.V.’s 115
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5.2.2 Continuous Case

1. Let X be N(0, 1). Then

E X E X
n

n
nn n

n
2 1 20

2

2
0+( ) = ( ) =

( )
( ) ≥,

!

!
, .

In particular, then

E X X E X( ) = ( ) = ( ) =
⋅

=0
2

2 1
12 2,

!
.σ

In fact,

E X x e dxn n x2 1 2 1 21

2

2+ + −

−∞

∞( ) = ∫
π

.

But

x e dx x e dx x e dx

y e dy x e dx

x e dx x e dx

n x n x n x

n y n x

n x n x

2 1 2 2 1 20 2 1 2

0

2 1 20 2 1 2

0

2 1 2

0

2 1 2

0

2 2 2

2 2

2 2

0

+ −

−∞

∞ + −

−∞

+ −∞

+ −

∞

+ −∞

+ −∞ + −∞

∫ ∫ ∫
∫ ∫
∫ ∫

= +

= +

= − + = .

Thus E(X2n+1) = 0. Next,

x e dx x e dxn x n x2 2 2 2

0

2 2

2−

−∞

∞ −∞

∫ ∫= ,

as is easily seen, and

x e dx x de

x e n x e dx

n x e dx

n x n x

n x n x

n x

2 2

0

2 1 2

0

2 1 2

0

2 2 2

0

2 2 2

0

2 2

2 2

2

2 1

2 1

−∞ − −∞

− −
∞

− −∞

− −∞

∫ ∫
∫

∫

= −

= − + −( )
= −( ) ,

and if we set m2n = E(X2n), we get then

m n m

m n m

m m

m m E X E

n n

n n

2 2 2

2 2 2 4

2 0

0 0
0

2 1

2 3

1

1 1 1

= −( )
= −( )

= ⋅

= = ( ) = ( ) =( )

−

− −

,

.

 and similarly,

 since 

M

Multiplying them out, we obtain
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m n n

n n n n

n n

n

n n

n

n n

n

n

n

2 2 1 2 3 1

1 2 2 3 2 2 2 1 2

2 2 2 2

2

2 1 2 1 2

2

2 1 1

2

2

= −( ) −( ) ⋅ ⋅ ⋅

=
⋅ ⋅ ⋅ ⋅ −( ) −( ) −( )( )

⋅ ⋅ ⋅ −( )( ) =
( )

⋅( ) ⋅ ⋅ ⋅ −( )[ ] ⋅( )
=

( )
⋅ ⋅ ⋅ −( )[ ] =

( )

!

! !
nn n!

.( )
REMARK 4 Let now X be N(μ, σ 2). Then (X − μ)/σ is N(0, 1). Hence

E
X X−⎛

⎝⎜
⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

=μ
σ

σ μ
σ

0 12, .

But

E
X

E X
−⎛

⎝⎜
⎞
⎠⎟

= ( ) −μ
σ σ

μ
σ

1
.

Hence

1
0

σ
μ
σ

E X( ) − = ,

so that E(X) = μ. Next,

σ μ
σ σ

σ2
2

21X
X

−⎛
⎝⎜

⎞
⎠⎟

= ( )

and then

1
1

2
2

σ
σ X( ) = ,

so that σ 2(X) = σ 2.

2. Let X be Gamma with parameters α and β. Then E(X) = αβ and
σ 2(X) = αβ2. In fact,

E X xx e dx x e dx

x de x e x e dx

x e dx

x x

x x x

x

( ) = ( ) = ( )
= −

( ) = − ( ) −⎛
⎝

⎞
⎠

= ( )

− −∞ −∞

−∞ − ∞ − −∞

− −∞

∫ ∫

∫ ∫

∫

1 1

1

1

0 0

0 0

1

0

1

0

Γ Γ

Γ Γ

Γ

α β α β

β
α β

β
α β

α

αβ
α β

α
α β

α
α β

α
α β

α
α β α β

α
α β == αβ.
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Next,

E X x e dxx2 1

0

21
1( ) = ( ) = +( )+ −∞

∫Γ α β
β α α

α
α β

and hence

σ β α α α β αβ α α αβ2 2 2 2 2 21 1X( ) = +( ) − = + −( ) = .

REMARK 5

ii) If X is χ r
2 , that is, if α = r/2, β = 2, we get E(X) = r, σ 2(X) = 2r.

ii) If X is Negative Exponential, that is, if α = 1, β = 1/λ, we get E(X) = 1/λ,
σ 2(X) = 1/λ2.

3. Let X be Cauchy. Then E(Xn) does not exist for any n ≥ 1. For example,
for n = 1, we get

I
xdx

x
=

+ −( )−∞

∞

∫
σ
π σ μ2 2

.

For simplicity, we set μ = 0, σ = 1 and we have

I
xdx

x

d x

x

d x

x
x

=
+

=
( )
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
+( )

+
= +( )

= ∞ − ∞( )

−∞

∞

−∞

∞

−∞

∞

−∞

∞

∫ ∫

∫

1

1

1 1
2 1

1 1
2

1

1

1
2

1

1
2

2

2

2

2

2
2

π π

π π

π

log

,

which is an indeterminate form. Thus the Cauchy distribution is an example of
a distribution without a mean.

REMARK 6 In somewhat advanced mathematics courses, one encounters
sometimes the so-called Cauchy Principal Value Integral. This coincides with
the improper Riemann integral when the latter exists, and it often exists even
if the Riemann integral does not. It is an improper integral in which the limits
are taken symmetrically. As an example, for σ = 1, μ = 0, we have, in terms of
the principal value integral,

I
xdx

x
x

A A

A A

A

A A

A

A

* lim lim log

lim log log .

=
+

= +( )
= +( ) − +( )[ ] =

→∞ − →∞ −

→∞

∫
1

1

1
2

1

1
2

1 1 0

2
2

2 2

π π

π



5.1 Moments of Random Variables 119

Thus the mean of the Cauchy exists in terms of principal value, but not in the
sense of our definition which requires absolute convergence of the improper
Riemann integral involved.

Exercises

5.2.1 If X is an r.v. distributed as B(n, p), calculate the kth factorial moment
E[X(X − 1) · · · (X − k + 1)].

5.2.2 An honest coin is tossed independently n times and let X be the r.v.
denoting the number of H’s that occur.

iii) Calculate E(X/n), σ 2(X/n);

iii) If n = 100, find a lower bound for the probability that the observed
frequency X/n does not differ from 0.5 by more than 0.1;

iii) Determine the smallest value of n for which the probability that X/n does
not differ from 0.5 by more 0.1 is at least 0.95;

iv) If n = 50 and P(|(X/n) − 0.5| < c) ≥ 0.9, determine the constant c. (Hint: In
(ii)–(iv), utilize Tchebichev’s inequality.)

5.2.3 Refer to Exercise 3.2.16 in Chapter 3 and suppose that 100 people are
chosen at random. Find the expected number of people with blood of each one
of the four types and the variance about these numbers.

5.2.4 If X is an r.v. distributed as P(λ), calculate the kth factorial moment
E[X(X − 1) · · · (X − k + 1)].

5.2.5 Refer to Exercise 3.2.7 in Chapter 3 and find the expected number of
particles to reach the portion of space under consideration there during time
t and the variance about this number.

5.2.6 If X is an r.v. with a Hypergeometric distribution, use an approach
similar to the one used in the Binomial example in order to show that

EX
mr

m n
X

mnr m n r

m n m n
=

+ ( ) =
+ −( )

+( ) + −( )
, .σ 2

2
1

5.2.7 Let X be an r.v. distributed as Negative Binomial with parameters r
and p.

ii) By working as in the Binomial example, show that EX = rq/p, σ 2(X) =
rq/p2;

ii) Use (i) in order to show that EX = q/p and σ 2(X) = q/p2, if X has the
Geometric distribution.

5.2.8 Let f be the Gamma density with parameters α = n, β = 1. Then show
that

Exercises 119
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f x dx e
x

x

x

n

( ) = −

=

−∞

∑∫ λ

λ

λ
!
.

0

1

Conclude that in this case, one may utilize the Incomplete Gamma tables (see,
for example, Tables of the Incomplete Γ-Function, Cambridge University
Press, 1957, Karl Paerson, editor) in order to evaluate the d.f. of a Poisson
distribution at the points j = 1, 2, . . . .

5.2.9 Refer to Exercise 3.3.7 in Chapter 3 and suppose that each TV tube
costs $7 and that it sells for $11. Suppose further that the manufacturer sells an
item on money-back guarantee terms if the lifetime of the tube is less than c.

ii) Express his expected gain (or loss) in terms of c and λ;

ii) For what value of c will he break even?

5.2.10 Refer to Exercise 4.1.12 in Chapter 4 and suppose that each bulb costs
30 cents and sells for 50 cents. Furthermore, suppose that a bulb is sold under
the following terms: The entire amount is refunded if its lifetime is <1,000 and
50% of the amount is refunded if its lifetime is <2,000. Compute the expected
gain (or loss) of the dealer.

5.2.11 If X is an r.v. having the Beta distribution with parameters α and β,
then

ii) Show that

EX
n

n
nn =

+( ) +( )
( ) + +( ) = ⋅ ⋅ ⋅

Γ Γ

Γ Γ

α β α

α α β
, ;1,  2,

ii) Use (i) in order to find EX and σ 2(X).

5.2.12 Let X be an r.v. distributed as Cauchy with parameters μ and σ 2. Then
show that E|X| = ∞.

5.2.13 If the r.v. X is distributed as Lognormal with parameters α and β ,
compute EX, σ 2(X).

5.2.14 Suppose that the average monthly water consumption by the resi-
dents of a certain community follows the Lognormal distribution with μ = 104

cubic feet and σ = 103 cubic feet monthly. Compute the proportion of the
residents who consume more than 15 × 103 cubic feet monthly.

5.2.15 Let X be an r.v. with finite third moment and set μ = EX, σ 2 = σ 2(X).
Define the (dimensionless quantity, pure number) γ1 by

γ μ
σ1

3

= −⎛
⎝⎜

⎞
⎠⎟

E
X

.

γ1 is called the skewness of the distribution of the r.v. X and is a measure of
asymmetry of the distribution. If γ1 > 0, the distribution is said to be skewed to
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the right and if γ1 < 0, the distribution is said to be skewed to the left. Then show
that:

iii) If the p.d.f. of X is symmetric about μ, then γ1 = 0;

iii) The Binomial distribution B(n, p) is skewed to the right for p < 1
2
 and is

skewed to the left for p > 1
2
;

iii) The Poisson distribution P(λ) and the Negative Exponential distribution
are always skewed to the right.

5.2.16 Let X be an r.v. with EX4 < ∝ and define the (pure number) γ2 by

γ μ
σ

μ σ σ2

4

2 23= −⎛
⎝⎜

⎞
⎠⎟

− = ( )E
X

EX X, , .where =  

γ2 is called the kurtosis of the distribution of the r.v. X and is a measure of
“peakedness” of this distribution, where the N(0, 1) p.d.f. is a measure of
reference. If γ2 > 0, the distribution is called leptokurtic and if γ2 < 0, the
distribution is called platykurtic. Then show that:

ii) γ2 < 0 if X is distributed as U(α, β);

ii) γ2 > 0 if X has the Double Exponential distribution (see Exercise 3.3.13(iii)
in Chapter 3).

5.2.17 Let X be an r.v. taking on the values j with probability pj = P(X = j),
j = 0, 1, . . . . Set

G t p t tj
j

j
( ) = − ≤ ≤

=

∞

∑ , .1 1
0

The function G is called the generating function of the sequence {pj}, j ≥ 0.

iii) Show that if |EX| < ∞, then EX = d/dt G(t)|t = 1;

iii) Also show that if |E[X(X − 1) · · · (X − k + 1)]| < ∞, then

E X X X k
d

dt
G t

k

k t−( ) ⋅ ⋅ ⋅ − +( )[ ] = ( ) =1 1 1;

iii) Find the generating function of the sequences

n

j
p q j p q pj n j⎛

⎝⎜
⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≥ < < = −− , , ,0 0 1 1

and

e
j

j
j−⎧

⎨
⎩

⎫
⎬
⎭

≥ >λ λ λ
!

, , ;0 0
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iv) Utilize (ii) and (iii) in order to calculate the kth factorial moments of X
being B(n, p) and X being P(λ). Compare the results with those found in
Exercises 5.2.1 and 5.2.4, respectively.

5.3 Conditional Moments of Random Variables

If, in the preceding definitions, the p.d.f. f of the r. vector X is replaced by a
conditional p.d.f. f(xj1

, . . . , xjn
|xi1

, . . . , xim
), the resulting moments are called

conditional moments, and they are functions of xi1
, . . . , xim

.
Thus

E X X x
x f x x

x f x x dx

X X x
x E X X x f x x

x E X X x f x x dx

x

x

2 1 1

2 2 1

2 2 1 2

2
2 1 1

2 2 1 1

2

2 1

2 2 1 1

2

2 1 2

2

2

=( ) =
( )
( )

⎧

⎨
⎪

⎩
⎪

=( ) =
− =( )[ ] ( )
− =( )[ ] ( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

∑

∫

∑

∫

−∞

∞

−∞

∞

,

.

σ

For example, if (X1, X2)′ has the Bivariate Normal distribution, then f(x2 |x1)
is the p.d.f. of an N(b, σ 2

2 (1 − ρ2)) r.v., where

b x= + −( )μ ρσ
σ

μ2
2

1
1 1 .

Hence

E X X x x2 1 1 2
2

1
1 1=( ) = + −( )μ ρσ

σ
μ .

Similarly,

E X X x x1 2 2 1
1

2
2 2=( ) = + −( )μ ρσ

σ
μ .

Let X1, X2 be two r.v.’s with joint p.d.f f(x1, x2). We just gave the definition
of E(X2|X1 = x1) for all x1 for which f(x2|x1) is defined; that is, for all x1 for which
fX1

(x1) > 0. Then E(X2|X1 = x1) is a function of x1. Replacing x1 by X1 and writing
E(X2|X1) instead of E(X2|X1 = x1), we then have that E(X2|X1 ) is itself an r.v.,
and a function of X1. Then we may talk about the E[E(X2|X1)]. In connection
with this, we have the following properties:
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5.3.1 Some Basic Properties of the Conditional Expectation

(CE1) If E(X2) and E(X2|X1) exist, then E[E(X2|X1)] = E(X2) (that is,
the expectation of the conditional expectation of an r.v. is the
same as the (unconditional) expectation of the r.v. in question).

It suffices to establish the property for the continuous case only, for the
proof for the discrete case is quite analogous. We have

E E X X x f x x dx f x dx

x f x x f x dx dx

x f x x dx dx x f x x dx dx

x

X

X

2 1 2 2 1 2 1 1

2 2 1 1 2 1

2 1 2 2 1 2 1 2 1 2

1

1

( )[ ] = ( )⎡
⎣⎢

⎤
⎦⎥

( )
= ( ) ( )
= ( ) = ( )
=

−∞

∞

−∞

∞

−∞

∞

−∞

∞

−∞

∞

−∞

∞

−∞

∞

−∞

∞

∫∫

∫∫
∫∫ ∫∫, ,

22 1 2 1 2 2 2 2 22
f x x dx dx x f x dx E XX, .( )⎛

⎝
⎞
⎠ = ( ) = ( )

−∞

∞

−∞

∞

−∞

∞

∫∫ ∫

REMARK 7 Note that here all interchanges of order of integration are legiti-
mate because of the absolute convergence of the integrals involved.

(CE2) Let X1, X2 be two r.v.’s, g(X1) be a (measurable) function of X1

and let that E(X2) exists. Then for all x1 for which the
conditional expectations below exist, we have

E X g X X x g x E X X x2 1 1 1 1 2 1 1( ) =[ ] = ( ) =( )
or

E X g X X g X E X X2 1 1 1 2 1( )[ ] = ( ) ( ).
Again, restricting ourselves to the continuous case, we have

E X g X X x x g x f x x dx g x x f x x dx

g x E X X x

2 1 1 1 2 1 2 1 2 1 2 2 1 2

1 2 1 1

( ) =[ ] = ( ) ( ) = ( ) ( )
= ( ) =( )

−∞

∞

−∞

∞

∫ ∫
.

In particular, by taking X2 = 1, we get

(CE2′) For all x1 for which the conditional expectations below exist, we
have E[g(X1)|X1 = x1] = g(x1) (or E[g(X1)|X1] = g(X1)).

(CV) Provided the quantities which appear below exist, we have

σ σ2
2 1

2
2E X X X( )[ ] ≤ ( )

and the inequality is strict, unless X2 is a function of X1 (on a set of
probability one).

Set μ φ= ( ) ( ) = ( )E X X E X X2 1 2 1, .

5.3 Conditional Moments of Random Variables 123
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Then

σ μ φ φ μ

φ φ μ φ φ μ

2
2 2

2

2 1 1

2

2 1

2

1

2

2 1 12

X E X E X X X

E X X E X E X X X

( ) = −( ) = − ( )[ ] + ( ) −[ ]{ }
= − ( )[ ] + ( ) −[ ] + − ( )[ ] ( ) −[ ]{ }.

Next,

E X X X

E X X E X E X E X

E E X X X E X E E X X

E X

2 1 1

2 1
2

1 2 1

2 1 1
2

1 2 1

1

− ( )[ ] ( ) −[ ]{ }
= ( )[ ] − ( )[ ] − ( ) + ( )[ ]
= ( )[ ]{ } − ( )[ ] − ( )[ ]

+ ( )[ ] ( )( )

φ φ μ

φ φ μ μ φ

φ φ μ

μ φ by CE1 ,

and this is equal to

E X E X E X E Xφ φ μ φ μ φ2
1

2
1 1 1( )[ ] − ( )[ ] − ( )[ ] + ( )[ ] ( )( )by CE2 ,

which is 0. Therefore

σ φ φ μ2
2 2 1

2

1

2
X E X X E X( ) = − ( )[ ] + ( ) −[ ] ,

and since

E X X2 1

2
0− ( )[ ] ≥φ ,

we have

σ φ μ σ2
2 1

2 2
2 1X E X E X X( ) ≥ ( ) −[ ] = ( )[ ].

The inequality is strict unless

E X X2 1

2
0− ( )[ ] =φ .

But

E X X X X E X X2 1

2
2

2 1 2 1 0− ( )[ ] = − ( )[ ] − ( )[ ] = − =φ σ φ φ μ μ, .since

Thus σ 2[X2 − φ(X1)] = 0 and therefore X2 = φ(X1) with probability one, by
Remark 8, which follows.

Exercises

5.3.1 Establish properties (CEI) and (CE2) for the discrete case.

5.3.2 Let the r.v.’s X, Y be jointly distributed with p.d.f. given by
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f x y
n n

,( ) =
+( )

2

1

if y = 1, . . . , x; x = 1, . . . , n, and 0 otherwise. Compute the following
quantities: E(X|Y = y), E(Y|X = x). Hint:  Recall that x n n

x
n = ( )∑( +

=
1

21 , and
x n n n

x
n 2 1 2 1

61 = ( )( )∑ )+ +
= .

5.3.3 Let X, Y be r.v.’s with p.d.f. f given by f(x, y) = (x + y)I(0,1)×(0,1)(x, y).
Calculate the following quantities: EX, σ 2(X), EY, σ 2(Y), E(X|Y = y),
σ 2(X|Y = y).

5.3.4 Let X, Y be r.v.’s with p.d.f. f given by f(x, y) = λ2e−λ(x+y)I(0,∞)×(0,∞)(x, y).
Calculate the following quantities: EX, σ 2(X), EY, σ 2(Y), E(X|Y = y),
σ 2(X|Y = y).

5.3.5 Let X be an r.v. with finite EX. Then for any r.v. Y, show that
E[E(X|Y)] = EX. (Assume the existence of all p.d.f.’s needed.)

5.3.6 Consider the r.v.’s X, Y and let h, g be (measurable) functions on � into
itself such that E[h(X)g(Y)] and Eg(X) exist. Then show that

E h X g Y X x h x E g Y X x( ) ( ) =[ ] = ( ) ( ) =[ ].

5.4 Some Important Applications: Probability and Moment Inequalities

THEOREM 1 Let X be a k-dimensional r. vector and g ≥ 0 be a real-valued (measurable)
function defined on �k, so that g(X) is an r.v., and let c > 0. Then

P g c
E g

c
X

X( ) ≥[ ] ≤
( )[ ]

.

PROOF Assume X is continuous with p.d.f. f. Then

E g g x x f x x dx dx

g x x f x x dx dx g x x
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k k k

kA k k kA
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c

X( )[ ] = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅( )
× ⋅ ⋅ ⋅( )

−∞

∞

−∞

∞

∫∫
∫ ∫

1 1 1

1 1 1 1

1

, , , ,

, , , , , ,

, ,

   

dxdx dxk1 ⋅ ⋅ ⋅ ,

where A = {(x1, . . . , xk)′ ∈ �k; g(x1, . . . , xk) ≥ c}. Then
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E g g x x f x x dx dx

c f x x dx dx

cP g A cP g c

k k kA

kA k

X

X X

( )[ ] ≥ ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

≥ ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

= ( ) ∈[ ] = ( ) ≥[ ]

∫
∫

1 1 1

1 1

, , , ,

, ,

.

Hence P[g(X) ≥ c] ≤ E[g(X)]/c. The proof is completely analogous if X is of the
discrete type; all one has to do is to replace integrals by summation signs. ▲

5.4.1 Special Cases of Theorem 1

1. Let X be an r.v. and take g(X) = |X − μ|r, μ = E(X), r > 0. Then

P X c P X c
E X

c

r r

r

r
− ≥[ ] = − ≥⎡

⎣⎢
⎤
⎦⎥

≤
−

μ μ
μ

.

This is known as Markov’s inequality.

2. In Markov’s inequality replace r by 2 to obtain

P X c P X c
E X

c

X

c c
− ≥[ ] = − ≥⎡

⎣⎢
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

≤
−

=
( )

=μ μ
μ σ σ2 2

2

2

2

2

2

2
.

This is known as Tchebichev’s inequality. In particular, if c = kσ, then

P X k
k

P X k
k

− ≥[ ] ≤ − <[ ] ≥ −μ σ μ σ1
1

1
2 2

; .equivalently,

REMARK 8 Let X be an r.v. with mean μ and variance σ 2 = 0. Then
Tchebichev’s inequality gives: P[|X − μ| ≥ c] = 0 for every c > 0. This result and
Theorem 2, Chapter 2, imply then that P(X = μ) = 1 (see also Exercise 5.4.6).

LEMMA 1 Let X and Y be r.v.’s such that

E X E Y X Y( ) = ( ) = ( ) = ( ) =0 12 2, .σ σ

Then

E XY E XY2 1 1 1( ) ≤ − ≤ ( ) ≤or,  equivalently, ,

and

E XY P Y X

E XY P Y X

( ) = =( ) =

( ) = − = −( ) =

1 1

1 1

if any only if

if any only if

,

.

PROOF We have

0 2

2 2 2

2 2 2

2 2

≤ −( ) = − +( )
= − ( ) + = − ( )

E X Y E X XY Y

EX E XY EY E XY
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and

0 2

2 2 2

2 2 2

2 2

≤ +( ) = + +( )
= + ( ) + = + ( )

E X Y E X XY Y

EX E XY EY E XY .

Hence E(XY) ≤ 1 and −1 ≤ E(XY), so that −1 ≤ E(XY) ≤ 1. Now let P(Y = X)
= 1. Then E(XY) = EY2 = 1, and if P(Y = −X) = 1, then E(XY) = −EY2 = −1.
Conversely, let E(XY) = 1. Then

σ 2 2 2 2

2 22 1 2 1 0

X Y E X Y E X Y E X Y

EX E XY EY

−( ) = −( ) − −( )[ ] = −( )
= − ( ) + = − + = ,

so that P(X = Y) = 1 by Remark 8; that is, P(X = Y) = 1. Finally, let
E(XY) = −1. Then σ 2(X + Y) = 2 + 2E(XY) = 2 − 2 = 0, so that

P X Y= −( ) = 1. ▲

THEOREM 2 (Cauchy–Schwarz inequality) Let X and Y be two random variables with
means μ1, μ2 and (positive) variances σ1

2 , σ 2
2 ,  respectively. Then

E X Y2
1 2 1

2
2
2−( ) −( )[ ] ≤μ μ σ σ ,

or, equivalently,

− ≤ −( ) −( )[ ] ≤σ σ μ μ σ σ1 2 1 2 1 2E X Y ,

and

E X Y−( ) −( )[ ] =μ μ σ σ1 2 1 2
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⎣
⎢

⎤

⎦
⎥ =μ σ

σ
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2

1
1 1

and

E X Y−( ) −( )[ ] = −μ μ σ σ1 2 1 2

if and only if

P Y X= − −( )⎡

⎣
⎢

⎤

⎦
⎥ =μ σ

σ
μ2

2

1
1 1.

PROOF Set

X
X

Y
Y

1
1

1
1

2

2

= − = −μ
σ

μ
σ

, .
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Then X1, Y1 are as in the previous lemma, and hence

E X Y2
1 1 1( ) ≤

if and only if

− ≤ ( ) ≤1 11 1E X Y

becomes

E X Y2
1 2

1
2

2
2

1
−( ) −( )[ ]

≤
μ μ

σ σ

if and only if

− ≤ −( ) −( )[ ] ≤σ σ μ μ σ σ1 2 1 2 1 2E X Y .

The second half of the conclusion follows similarly and will be left as an
exercise (see Exercise 5.4.6). ▲

REMARK 9 A more familiar form of the Cauchy–Schwarz inequality is
E2(XY) ≤ (EX2)(EY2). This is established as follows: Since the inequality is
trivially true if either one of EX2, EY2 is ∞, suppose that they are both finite
and set Z = λX − Y, where λ is a real number. Then 0 ≤ EZ2 = (EX2)λ2 −
2[E(XY)]λ + EY2 for all λ, which happens if and only if E2(XY) − (EX2)(EY2)
≤ 0 (by the discriminant test for quadratic equations), or E2(XY) ≤ (EX2)(EY2).

Exercises

5.4.1 Establish Theorem 1 for the discrete case.

5.4.2 Let g be a (measurable) function defined on � into (0, ∞). Then, for any
r.v. X and any ε > 0,

P g X
Eg X( ) ≥[ ] ≤

( )
ε

ε
.

If furthermore g is even (that is, g(−x) = g(x)) and nondecreasing for x ≥ 0, then

P X
Eg X

g
≥( ) ≤

( )
( )ε
ε

.

5.4.3 For an r.v. X with EX = μ and σ 2(X) = σ 2, both finite, use Tchebichev’s
inequality in order to find a lower bound for the probability P(|X − μ| < kσ).
Compare the lower bounds for k = 1, 2, 3 with the respective probabilities
when X ∼ N(μ, σ 2).
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5.4.4 Let X be an r.v. distributed as χ 40
2 . Use Tchebichev’s inequality

in order to find a lower bound for the probability P(|(X/40) − 1| ≤ 0.5),
and compare this bound with the exact value found from Table 3 in Appendix
III.

5.4.5 Refer to Remark 8 and show that if X is an r.v. with EX = μ (finite) such
that P(|X − μ| ≥ c) = 0 for every c > 0, then P(X = μ) = 1.

5.4.6 Prove the second conclusion of Theorem 2.

5.4.7 For any r.v. X, use the Cauchy–Schwarz inequality in order to show
that E|X| ≤ E1/2X2.

5.5 Covariance, Correlation Coefficient and Its Interpretation

In this section, we introduce the concepts of covariance and correlation coef-
ficient of two r.v.’s and provide an interpretation for the latter. To this end,
for two r.v.’s X and Y with means μ1, μ2, the (1, 1)-joint central mean, that is,
E[(X − μ1)(Y − μ2)], is called the covariance of X, Y and is denoted by
Cov(X,Y). If σ1, σ2 are the standard deviations of X and Y, which are assumed
to be positive, then the covariance of (X − μ1)/σ1, (Y − μ2)/σ2 is called the
correlation coefficient of X, Y and is denoted by ρ(X, Y) or ρX,Y or ρ12 or just ρ
if no confusion is possible; that is,

ρ μ
σ

μ
σ

μ μ

σ σ σ σ

μ μ
σ σ

= −⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−( ) −( )[ ]

=
( )

=
( ) −

E
X Y E X Y X Y

E XY

1

1

2

2

1 2

1 2 1 2

1 2

1 2

Cov  ,

.

From the Cauchy–Schwarz inequality, we have that ρ2 ≤ 1; that is −1 ≤ ρ ≤ 1,
and ρ = 1 if and only if

Y X= + −( )μ σ
σ

μ2
2

1
1

with probability 1, and ρ = −1 if and only if

Y X= − −( )μ σ
σ

μ2
2

1
1

with probability 1. So ρ = ±1 means X and Y are linearly related. From this
stems the significance of ρ as a measure of linear dependence between X and
Y. (See Fig. 5.1.) If ρ = 0, we say that X and Y are uncorrelated, while if ρ = ±1,
we say that X and Y are completely correlated (positively if ρ = 1, negatively if
ρ = −1).

5.5 Covariance, Correlation Coefficient and Its Interpretation 129
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Y
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�2

Figure 5.1

For −1 < ρ < 1, ρ ≠ 0, we say that X and Y are correlated (positively if ρ > 0,
negatively if ρ < 0). Positive values of ρ may indicate that there is a tendency of
large values of Y to correspond to large values of X and small values of Y to
correspond to small values of X. Negative values of ρ may indicate that small
values of Y correspond to large values of X and large values of Y to small
values of X. Values of ρ close to zero may also indicate that these tendencies
are weak, while values of ρ close to ±1 may indicate that the tendencies are
strong.

The following elaboration sheds more light on the intuitive interpreta-
tion of the correlation coefficient ρ(= ρ(X, Y)) as a measure of co-linearity
of the r.v.’s X and Y. To this end, for ρ > 0, consider the line y x= + −( )μ μσ

σ2 1
2

1

in the xy-plane and let D be the distance of the (random) point (X, Y)
from the above line. Recalling that the distance of the point (x0, y0) from the

line ax + by + c = 0 is given by ax by c a b0 0
2 2+ + + . we have in the present

case:

D X Y= − + −
⎛
⎝⎜

⎞
⎠⎟

+σ
σ

σ μ
σ

μ σ
σ

1

2

1 2

2
1

1
2

2
2

1 ,

since here a = 1, b = − σ
σ

1

2

 and c = −σ μ
σ

μ1 2

2
1.  Thus,

D X Y2 1

2

1 2

2
1

2

1
2

2
2

1= − + −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛

⎝⎜
⎞

⎠⎟
σ
σ

σ μ
σ

μ σ
σ

,

and we wish to evaluate the expected squared distance of (X, Y) from the line
y x= + −( )μ μσ

σ2 1
2

1
; that is, ED2. Carrying out the calculations, we find

σ σ σ σ σ σ σ σ μ σ μ

σ σ μ σ μ σ μ σ μ

1
2

2
2 2

2
2 2

1
2 2

1 2 2 1 2 2 1

1 1 2 2 1 1 2 2 1

2

2 2

2

+( ) = + − + −( )
− −( ) + −( )

D X Y XY X

Y . (1)

Taking the expectations of both sides in (1) and recalling that
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EX EY E XY2
1
2

1
2 2

2
2

2
2

1 2 1 2= + = + ( ) = +σ μ σ μ ρσ σ μ μ, , and

we obtain

ED2 1
2

2
2

1
2

2
2

2
1 0=

+
−( ) >( )σ σ

σ σ
ρ ρ . (2)

Working likewise for the case that ρ < 0, we get

ED2 1
2

2
2

1
2

2
2

2
1 0=

+
+( ) <( )σ σ

σ σ
ρ ρ . (3)

For ρ = 1 or ρ = −1, we already know that (X, Y) lies on the line y =
μ2 + σ

σ
σ
σμ μ μ2

1

2

11 2 1x y x−( ) = − −( ) or ,  respectively (with probability 1). There-
fore, regardless of the value of ρ, by the observation just made, relations (2)
and (3) are summarized by the expression

ED2 1
2

2
2

1
2

2
2

2
1=

+
−( )σ σ

σ σ
ρ . (4)

At this point, exploiting the interpretation of an expectation as an average,
relation (4) indicates the following: For ρ > 0, the pairs (X, Y) tend to be
arranged along the line y x= + −( )μ μσ

σ2 1
2

1
. These points get closer and closer

to this line as ρ gets closer to 1, and lie on the line for ρ = 1. For ρ < 0, the
pairs (X, Y) tend to be arranged along the line y x= − −( )μ μσ

σ2 1
2

1
. These

points get closer and closer to this line as ρ gets closer to −1, and lie on
this line for ρ = −1. For ρ = 0, the expected distance is constantly equal to
2σ1

2 σ 2
2 /(σ1

2 + σ 2
2 ) from either one of the lines y x= + −( )μ μσ

σ2 1
2

1
 and

y x= − −( )μ μσ
σ2 1

2

1
, which is equivalent to saying that the pairs (X, Y) may lie

anywhere in the xy-plane. It is in this sense that ρ is a measure of co-linearity
of the r.v.’s X and Y.

The preceding discussion is based on the paper “A Direct Development
of the Correlation Coefficient” by Leo Katz, published in the American
Statistician, Vol. 29 (1975), page 170. His approach is somewhat different
and is outlined below. First, consider the r.v.’s X1 and Y1 as defined in
the proof of Theorem 2; unlike the original r.v.’s X and Y, the “normalized”
r.v.’s X1 and Y1 are dimensionless. Through the transformations x x

1
1

1
= − μ

σ

and y y
1

2

2
= − μ

σ ,  we move from the xy-plane to the x1y1-plane. In this latter plane,
look at the point (X1, Y1) and seek the line Ax1 + By1 + C = 0
from which the expected squared distance of (X1, Y1) is minimum. That
is, determine the coefficients A, B and C, so that ED1

2 is minimum, where
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D AX BY C A B1 1 1 1
2 2= + + + . Expanding D1

2, taking expectations, and
noticing that

EX EY EX EY E X Y1 1 1
2

1
2

1 10 1= = = = ( ) =, , ,and ρ

we obtain

ED
AB

A B

C

A B
1
2

2 2

2

2 2
1

2= +
+

+
+

ρ
. (5)

Clearly, for ED1
2 to be minimized it is necessary that C = 0. Then, by (5), the

expression to be minimized is

ED
AB

A B
1
2

2 2
1

2= +
+

ρ
. (6)

At this point, observe that

− +( ) = − +( ) − ≤ ≤ +( ) − = −( )A B A B AB A B AB A B
2 2 2 2 2 2

2 0 2 ,

or equivalently,

− ≤
+

≤1
2

1
2 2

AB

A B
. (7)

From (6) and (7), we conclude that:

If ρ > 0, ED1
2 is minimized for 2

2 2
AB

A B+
= −1 and the minimum is 1 − ρ.

If ρ < 0, ED1
2 is minimized for 2

2 2
AB

A B+
= 1 and the minimum is 1 + ρ.

Finally, if ρ = 0, the ED1
2 is constantly equal to 1; there is no minimizing

line (through the origin) Ax1 + By1 = 0. However, 2
2 2
AB

A B+
= −1 if and only if A =

B, and 2
2 2
AB

A B+
= 1 if and only if A = −B. The corresponding lines are y1 = x1, the

main diagonal, and y1 = −x1. Also observe that both minima of ED1
2 (for ρ > 0

and ρ < 0), and its constant value 1 (for ρ = 0) are expressed by a single form,
namely, 1 − |ρ|.

To summarize: For ρ > 0, the ED1
2 is minimized for the line y1 = x1; for

ρ < 0, the ED1
2 is minimized for the line y1 = −x1; for ρ = 0, ED1

2 = 1, there is
no minimizing line. From this point on, the interpretation of ρ as a measure of
co-linearity (of X1 and Y1) is argued as above, with the lines y x= + −( )μ μσ

σ2 1
2

1

and y x= − −( )μ μσ
σ2 1

2

1
 being replaced by the lines y1 = x1 and y1 = −x1,

respectively.
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Exercises

5.5.1 Let X be an r.v. taking on the values −2, −1, 1, 2 each with probability
1
4

. Set Y = X2 and compute the following quantities: EX, σ 2(X), EY, σ 2(Y),
ρ(X, Y).

5.5.2 Go through the details required in establishing relations (2), (3) and
(4).

5.5.3 Do likewise in establishing relation (5).

5.5.4 Refer to Exercise 5.3.2 (including the hint given there) and

iii) Calculate the covariance and the correlation coefficient of the r.v.’s X and
Y;

iii) Referring to relation (4), calculate the expected squared distance of (X,
Y) from the appropriate line y x= + −( )μ μσ

σ2 1
2

1
 or y x= − −( )μ μσ

σ2 1
2

1

(which one?);

iii) What is the minimum expected squared distance of (X1, Y1) from
the appropriate line y = x or y = −x (which one?) where X X

1
1

1
= −μ

σ  and
Y Y

1
2

2
= −μ

σ .

Hint:  Recall that 
=

x
n n

x

n
3

1

2
1

2∑ =
+( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
.

5.5.5 Refer to Exercise 5.3.2 and calculate the covariance and the correla-
tion coefficient of the r.v.’s X and Y.

5.5.6 Do the same in reference to Exercise 5.3.3.

5.5.7 Repeat the same in reference to Exercise 5.3.4.

5.5.8 Show that ρ(aX + b, cY + d) = sgn(ac)ρ(X, Y), where a, b, c, d are
constants and sgn x is 1 if x > 0 and is −1 if x < 0.

5.5.9 Let X and Y be r.v.’s representing temperatures in two localities, A and
B, say, given in the Celsius scale, and let U and V be the respective tempera-
tures in the Fahrenheit scale. Then it is known that U and X are related as
follows: U = 9

5
X + 32, and likewise for V and Y. Fit this example in the model

of Exercise 5.5.8, and conclude that the correlation coefficients of X, Y and U,
V are identical, as one would expect.

5.5.10 Consider the jointly distributed r.v.’s X, Y with finite second moments
and σ 2(X) > 0. Then show that the values α̂  and β̂  for which E[Y − (αX + β)]2

is minimized are given by

Exercises 133
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ˆ ˆ , ˆ , .β α α
σ

σ
ρ= − =

( )
( ) ( )EY EX
Y

X
X Y

(The r.v. Ŷ = α̂ X + β̂  is called the best linear predictor or Y, given X.)

5.5.11 If the r.v.’s X1 and X2 have the Bivariate Normal distribution, show
that the parameter ρ is, actually, the correlation coefficient of X1 and X2. (Hint:
Observe that the exponent in the joint p.d.f. of X1 and X2 may be written as
follows:

1

2 1
2

2
2 1

2

1 1

1

2

1 1

1

2 2

2

2 2

2

2

1 1

2

1
2

2

2

2
2

2 2
2

−( )
−⎛

⎝⎜
⎞
⎠⎟

−
−⎛

⎝⎜
⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

+
−⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−( )

+
−( )
−⎛

⎝
⎞
⎠

= +

ρ
μ

σ
ρ μ

σ
μ

σ
μ

σ

μ

σ σ ρ
μ ρ σ

x x x x

x x b
b, where 

σσ
μ

1
1 1x −( ).

This facilitates greatly the integration in calculating E(X1X2).

5.5.12 If the r.v.’s X1 and X2 have jointly the Bivariate Normal distribution
with parameters μ1, μ2, σ1

2, σ 2
2  and ρ, calculate E(c1X1 + c2X2) and σ2(c1X1 +

c2X2) in terms of the parameters involved, where c1 and c2 are real constants.

5.5.13 For any two r.v.’s X and Y, set U = X + Y and V = X − Y. Then

iii) Show that P(UV < 0) = P(|X| < |Y|);

iii) If EX2 = EY2 < ∞, then show that E(UV) = 0;

iii) If EX2, EY2 < ∞ and σ 2(X) = σ 2(Y), then U and V are uncorrelated.

5.5.14 If the r.v.’s Xi, i = 1, . . . , m and Yj, j = 1, . . . , n have finite second
moments, show that

Cov Cov  
=

X Y X Yi
i

m

j
j

n

i j
j

n

i

m

, .,
1 1 11

∑ ∑ ∑∑
= ==

⎛

⎝⎜
⎞

⎠⎟
= ( )

5.6* Justification of Relation (2) in Chapter 2

As a final application of the results of this chapter, we give a general proof of
Theorem 9, Chapter 2. To do this we remind the reader of the definition of the
concept of the indicator function of a set A.
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Let A be an event in the sample space S. Then the indicator function of A,
denoted by IA, is a function on S defined as follows:

I s
s A

s A
A c( ) =

∈
∈

⎧
⎨
⎩

1

0

if

if .

The following are simple consequences of the indicator function:

I A I
j
n

jj A
j

n

=
=

=
∏

1
1

I
(8)

I A I
j
n

jj A
j

n

=∑ =
=

∑
1

1

, (9)

and, in particular,

I IA Ac = −1 . (10)

Clearly,

E I P AA( ) = ( ) (11)

and for any X1, . . . , Xr, we have

1 1 1 1 11 2 1 2−( ) −( ) ⋅ ⋅ ⋅ −( ) = − + − ⋅ ⋅ ⋅ + −( )X X X H H Hr

r

r , (12)

where Hj stands for the sum of the products Xi1
· · · Xij

, where the summation
extends over all subsets {i1, i2, . . . , ij} of the set {1, 2, . . . , r}, j = 1, . . . , r. Let
α, β be such that: 0 < α, β and α + β ≤ r. Then the following is true:

X X H J Hi i
j

1
⋅ ⋅ ⋅ ( ) =

+⎛
⎝⎜

⎞
⎠⎟∑ +α

α

β α α β
α β

α
, (13)

where Jα = {i1, . . . , iα} is the typical member of all subsets of size α of the set
{1, 2, . . . , r}, Hβ(Jα) is the sum of the products Xj1

· · · Xjβ
, where the summation

extends over all subsets of size β of the set {1, . . . , r} − Jα, and ∑Jα
 is meant to

extend over all subsets Jα of size α of the set {1, 2, . . . , r}.
The justification of (13) is as follows: In forming Hα+β, we select (α + β) X’s

from the available r X’s in all possible ways, which is (α β+
r ). On the other hand,

for each choice of Jα, there are ( β
αr− ) ways of choosing β X’s from the remaining

(r − α) X’s. Since there are (α
r ) choices of Jα, we get (α

r )( β
αr− ) groups (products)

of (α + β) X’s out of r X’s. The number of different groups of (α + β) X’s out

5.6* Justification of Relation (2) in Chapter 2 135
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of r X’s is (α β+
r ). Thus among the (α

r )( β
αr− ) groups of (α + β) X’s out of r X’s, the

number of distinct ones is given by

r r

r

r

r

r

r

r

r

α
α

β

α β

α α

α

β α β

α β α β

α β
α β

α β
α
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⎞
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−⎛
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⎞
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⎞
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+( ) − −( )
=

+( )
=

+⎛
⎝⎜

⎞
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!

! !

!

! !

!

! !

!

! !
.

This justifies (13).
Now clearly,

B A A A Am i i i
c

J
i
c

m m

m

M
= ∩ ⋅ ⋅ ⋅ ∩ ∩ ∩ ⋅ ⋅ ⋅ ∩

+∑ 1 1
,

where the summation extends over all choices of subsets Jm = {i1, . . . , im} of the
set {1, 2, . . . , M} and Bm is the one used in Theorem 9, Chapter 2. Hence

I I

I I I I

I I H J H J

B A A A A
J

A A A A
J

A A m m

m i im im
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iM
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by 8  9  10, ,
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−∑ 1
M m

M m m
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H J
m

by 12( )( ).
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I I H J
m k

m
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1
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( )( )+∑ by 13 ,

we have

I H
m

m
H

m

m
H

M

m
HB m m m
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Mm
= −
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−1 2
11 2 .

Taking expectations of both sides, we get (from (11) and the definition of Sr in
Theorem 9, Chapter 2)

P B S
m

m
S

m

m
S

M

m
Sm m m m

M m

M( ) = −
+⎛

⎝⎜
⎞
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+
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⎝⎜
⎞
⎠⎟

− ⋅ ⋅ ⋅ + −( ) ⎛
⎝⎜

⎞
⎠⎟+ +

−1 2
11 2 ,

as was to be proved.
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(For the proof just completed, also see pp. 80–85 in E. Parzen’s book
Modern Probability Theory and Its Applications published by Wiley, 1960.)

REMARK 10 In measure theory the quantity IA is sometimes called the char-
acteristic function of the set A and is usually denoted by χA. In probability
theory the term characteristic function is reserved for a different concept and
will be a major topic of the next chapter.
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138

Chapter 6

Characteristic Functions,
Moment Generating Functions
and Related Theorems

6.1 Preliminaries

The main subject matter of this chapter is the introduction of the concept of
the characteristic function of an r.v. and the discussion of its main properties.
The characteristic function is a powerful mathematical tool, which is used
profitably for probabilistic purposes, such as producing the moments of an r.v.,
recovering its distribution, establishing limit theorems, etc. To this end, recall
that for z ∈ �, eiz = cos z + i sin z, i = −1 , and in what follows, i may
be treated formally as a real number, subject to its usual properties: i2 = −1,
i3 = −i, i4 = 1, i5 = i, etc.

The sequence of lemmas below will be used to justify the theorems which
follow, as well as in other cases in subsequent chapters. A brief justification for
some of them is also presented, and relevant references are given at the end of
this section.

Let g1, g2 : {x1, x2, . . .} → [0, ∞) be such that

g x g x jj j1 2 1 2( ) ≤ ( ) = ⋅ ⋅ ⋅, , , ,

and that ∑xj
g2(xj) < ∞. Then ∑xj

g1(xj) < ∞.

PROOF If the summations are finite, the result is immediate; if not, it follows
by taking the limits of partial sums, which satisfy the inequality. �

Let g1, g2 : � → [0, ∞) be such that g1(x) ≤ g2(x), x ∈ �, and that ga
b

1∫ (x)dx
exists for every a, b, ∈ � with a < b, and that g2−∞

∞
∫ (x)dx < ∞. Then g1−∞

∞
∫ (x)dx

< ∞.

PROOF Same as above replacing sums by integrals. �

LEMMA A′

LEMMA A
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Let g : {x1, x2, . . .} → � and ∑xj
|g(xj)| < ∞. Then ∑xj

g(xj) also converges.

PROOF The result is immediate for finite sums, and it follows by taking the
limits of partial sums, which satisfy the inequality. �

Let g : � → � be such that ga
b

∫ (x)dx exists for every a, b, ∈ � with a < b, and that
| ( ) |g x−∞

∞
∫ dx < ∞. Then g−∞

∞
∫ (x)dx also converges.

PROOF Same as above replacing sums by integrals. �

The following lemma provides conditions under which the operations
of taking limits and expectations can be interchanged. In more advanced
probability courses this result is known as the Dominated Convergence
Theorem.

Let {Xn}, n = 1, 2, . . . , be a sequence of r.v.’s, and let Y, X be r.v.’s such
that |Xn(s)| ≤ Y(s), s ∈ S, n = 1, 2, . . . and Xn(s) → X(s) (on a set of s’s of
probability 1) and E(Y) < ∞. Then E(X) exists and E(Xn) n→∞⎯ →⎯⎯ E(X), or
equivalently,

lim lim .
n

n
n

nE X E X
→∞ →∞

( ) = ( )
REMARK 1 The index n can be replaced by a continuous variable.

The next lemma gives conditions under which the operations of differen-
tiation and taking expectations commute.

For each t ∈ T (where T is � or an appropriate subset of it, such as the interval
[a, b]), let X(·; t) be an r.v. such that (∂∂t)X(s; t) exists for each s ∈S and
t ∈T. Furthermore, suppose there exists an r.v. Y with E(Y) < ∞ and such
that

  
∂
∂t

X s t Y s s t T; , , .( ) ≤ ( ) ∈ ∈S

Then

d
dt

E X t E
t

X t t T⋅( )[ ] = ⋅( )⎡

⎣
⎢

⎤

⎦
⎥ ∈; ; , .  for all

∂
∂

The proofs of the above lemmas can be found in any book on real vari-
ables theory, although the last two will be stated in terms of weighting func-
tions rather than expectations; for example, see Advanced Calculus, Theorem
2, p. 285, Theorem 7, p. 292, by D. V. Widder, Prentice-Hall, 1947; Real
Analysis, Theorem 7.1, p. 146, by E. J. McShane and T. A. Botts, Van
Nostrand, 1959; The Theory of Lebesgue Measure and Integration, pp. 66–67,
by S. Hartman and J. Mikusiński, Pergamon Press, 1961. Also Mathematical
Methods of Statistics, pp. 45–46 and pp. 66–68, by H. Cramér, Princeton
University Press, 1961.

LEMMA B
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LEMMA B′

LEMMA C

LEMMA D
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6.2 Definitions and Basic Theorems—The One-Dimensional Case

Let X be an r.v. with p.d.f. f. Then the characteristic function of X (ch.f. of X),
denoted by φX (or just φ when no confusion is possible) is a function defined on
�, taking complex values, in general, and defined as follows:

φX
itX

itx

xx

itx

xx

t E e
e f x tx f x i tx f x

e f x dx tx f x i tx f x dx

tx f x i tx f x

tx

( ) = [ ] =
( ) = ( ) ( ) + ( ) ( )[ ]
( ) = ( ) ( ) + ( ) ( )[ ]

⎧

⎨
⎪

⎩
⎪

=
( ) ( )[ ] + ( ) ( )[ ]
( )

∑∑

∫ ∫
∑∑

−∞

∞

−∞

∞

cos sin

cos sin

cos sin

cos ff x dx i tx f x dx( ) + ( ) ( )

⎧

⎨
⎪

⎩
⎪

−∞

∞

−∞

∞

∫∫ sin .

By Lemmas A, A′, B, B′, φX(t) exists for all t ∈ �. The ch.f. φX is also called the
Fourier transform of f.

The following theorem summarizes the basic properties of a ch.f.

(Some properties of ch.f’s)

i) φX(0) = 1.

ii) |φX(t)| ≤ 1.

iii) φX is continuous, and, in fact, uniformly continuous.

iv) φX+d(t) = eitdφX(t), where d is a constant.

v) φcX(t) = φX(ct), where c is a constant.

vi) φcX+d(t) = eitdφX(ct).

vii)
d

dt
t

n

n X

t

φ ( )
=0

= inE(Xn), n = 1, 2, . . . , if E|Xn| < ∞.

PROOF

i) φX(t) = EeitX. Thus φX(0) = Eei0X = E(1) = 1.

ii) |φX(t)| = |EeitX| ≤ E|eitX| = E(1) = 1, because |eitX| = 1. (For the proof of the
inequality, see Exercise 6.2.1.)

iii) φ φX X

i t h X itX

itX ihX itX ihX

ihX

t h t E e e

E e e E e e

E e

+( ) − ( ) = −⎡
⎣⎢

⎤
⎦⎥

= −( )[ ] ≤ −( )
= −

+( )

1 1

1.

Then

THEOREM 1



6.5 The Moment Generating Function 141

lim lim lim ,
h

X X
h

ihX

h

ihXt h t E e E e
→ → →

+( ) − ( ) ≤ − = −[ ] =
0 0 0

1 1 0φ φ

provided we can interchange the order of lim and E, which here can be
done by Lemma C. We observe that uniformity holds since the last ex-
pression on the right is independent of t.

iv) φX+d(t) = Eeit(X+d) = E(eitXeitd) = eitd EeitX = eitd φX(t).

v) φcX(t) = Eeit(cX) = Eei(ct)X = φX(ct).

vi) Follows trivially from (iv) and (v).

vii)
d

dt
t

d

dt
Ee E

t
e E i X e

n

n X

n

n
itX

n

n
itX n n itXφ ∂

∂
( ) = =

⎛

⎝⎜
⎞

⎠⎟
= ( ),

provided we can interchange the order of differentiation and E. This can
be done here, by Lemma D (applied successively n times to φX and its
n − 1 first derivatives), since E|Xn| < ∞ implies E|Xk| < ∞, k = 1, . . . , n
(see Exercise 6.2.2). Thus

d

dt
t i E X

n

n X

t

n nφ ( ) = ( )
=0

. �

REMARK 2 From part (vii) of the theorem we have that E(Xn) =
(−i)n d

dt

n

n ϕX(t)|t=0, so that the ch.f. produces the nth moment of the r.v.

REMARK 3 If X is an r.v. whose values are of the form x = a + kh, where a,
h are constants, h > 0, and k runs through the integral values 0, 1, . . . , n or 0,
1, . . . , or 0, ±1, . . . , ±n or 0, ±1, . . . , then the distribution of X is called a lattice
distribution. For example, if X is distributed as B(n, p), then its values are of
the form x = a + kh with a = 0, h = 1, and k = 0, 1, . . . , n. If X is distributed as
P(λ), or it has the Negative Binomial distribution, then again its values are of
the same form with a = 0, h = 1, and k = 0, 1, . . . . If now φ is the ch.f. of X, it
can be shown that the distribution of X is a lattice distribution if and only if
|φ(t)| = 1 for some t ≠ 0. It can be readily seen that this is indeed the case in the
cases mentioned above (for example, φ(t) = 1 for t = 2π). It can also be shown
that the distribution of X is a lattice distribution, if and only if the ch.f. φ is
periodic with period 2π (that is, φ(t + 2π) = φ(t), t ∈ �).

In the following result, the ch.f. serves the purpose of recovering the
distribution of an r.v. by way of its ch.f.

(Inversion formula) Let X be an r.v. with p.d.f. f and ch.f. φ. Then if X is of the
discrete type, taking on the (distinct) values xj, j ≥ 1, one has

i) f x
T

e t dtj
T

itx

T

T
j( ) = ( )

→∞

−

−∫lim ,
1

2
φ j ≥ 1.

If X is of the continuous type, then
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ii) f x
e

ith
e t dt

h T

ith
itx

T

T( ) = − ( )
→ →∞

−
−

−∫lim lim
0

1
2

1
π

φ

and, in particular, if | ( )|φ t−∞
∞

∫ dt < ∞, then (f is bounded and continuous and)

ii′′′′′) f(x) = 1
2π

e itx−
−∞
∞

∫ φ(t)dt.

PROOF (outline) i) The ch.f. φ is continuous, by Theorem 1(iii), and since
so is e−itxj, it follows that the integral e

itx

T
T j−
−∫ φ(t)dt exists for every T(> 0). We

have then

1
2

1
2

1
2

1
2

T
e t dt

T
e e f x dt

T
e f x dt

f x
T

e dt

itx

T

T itx itx
k

k
T

T

it x x

k
k

T

T

k

it x x

T

T

k

j j k

k j

k j

−

−

−

−

−( )
−

−( )
−

( ) = ( )⎡

⎣
⎢

⎤

⎦
⎥

= ( )⎡

⎣
⎢

⎤

⎦
⎥

= ( )

∫ ∑∫

∑∫

∫∑

φ

(the interchange of the integral and summations is valid here). That is,

1
2

1
2T

e t dt f x
T

e dt
itx

k

it x x

T

T

k
T

T
j k j− −( )

−−
( ) = ( ) ∫∑∫ φ . (1)

But

e dt t x x i t x x dt

t x x dt i t x x dt

t x x dt z

e dt t x x dt

it x x

k j k jT

T

T

T

k j k jT

T

T

T

k jT

T

it x x

k j

k j

k j

−( )
−−

−−

−

−( )

= −( ) + −( )[ ]
= −( ) + −( )
= −( )
= −( )

∫∫
∫∫

∫

cos sin

cos sin

cos ,

cos .

 since sin  is an odd function. That is,

−−− ∫∫ T

T

T

T

(2)

If xk = xj, the above integral is equal to 2T, whereas, for xk ≠ xj,

cos sin

sin sin

sin
.

t x x dt
x x

d t x x

T x x T x x

x x

T x x

x x

k j
k j

k jT

T

T

T

k j k j

k j

k j

k j

−( ) =
−

−( )

=
−( ) − − −( )[ ]

−

=
−( )

−

−− ∫∫
1

2
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Therefore,

1
2

1

T
e dt

x x

T x x

T x x
x x

it x x

k j

k j

k j
k j

T

T
k j−( )

−
=

=

−( )
−( ) ≠

⎧

⎨
⎪⎪

⎩
⎪
⎪

∫
,

sin
, .

if

if
(3)

But sinT x x

x x x x
k j

k j k j

−
− −

( ) ≤ 1 , a constant independent of T, and therefore, for
xk ≠ xj, lim sin

T

T x x

T x x
k j

k j→∞

−
−

( )
( ) = 0 , so that

lim
,

, .T

it x x k j

k j
T

T

T
e dt

x x

x x
k j

→∞

−( )
−

=
=

≠

⎧
⎨
⎪

⎩⎪
∫

1
2

1

0

if

if
(4)

By means of (4), relation (1) yields

lim lim

lim

T

itx

T
k

it x x

T

T

k
T

T

k
T

it x x

T

T

k

T
e t dt f x

T
e dt

f x
T

e dt

j k j

k j

→∞

−

→∞

−( )
−−

→∞

−( )
−

( ) = ( )
= ( )

∫∑∫

∫∑

1
2

1
2

1
2

φ

(the interchange of the limit and summation is legitimate here)

= ( ) + = ( )
→∞

−( )
−

≠
∫∑f x

T
e dt f xj

T

it x x

jT

T

k j

k jlim ,
1

2

as was to be seen

ii) (ii′) Strictly speaking, (ii′) follows from (ii). We are going to omit (ii)
entirely and attempt to give a rough justification of (ii′). The assumption that

| ( )|φ t−∞
∞

∫ dt < ∞ implies that e itx−
−∞
∞

∫ φ(t)dt exists, and is taken as follows for every
arbitrary but fixed x ∈�:

e t dt e t dtitx

T

itx

T

T−

<( ) →∞

−

−−∞

∞ ( ) = ( )∫∫ φ φlim .
0

(5)

But

e t dt e e f y dy dt

e f y dy dt f y e dt dy

itx itx ity

T

T

T

T

it y x it y x

T

T

T

T

− −

−∞

∞

−−

−( ) −( )
−−∞

∞

−∞

∞

−

( ) = ( )⎡
⎣⎢

⎤
⎦⎥

= ( ) = ( )⎡
⎣⎢

⎤
⎦⎥

∫∫∫

∫∫∫∫

φ

, (6)

where the interchange of the order of integration is legitimate here. Since the
integral (with respect to y) is zero over a single point, we may assume in the
sequel that y ≠ x. Then

e dt
T y x

y x
it y x

T

T −( )
−

=
−( )

−∫
2 sin

, (7)

as was seen in part (i). By means of (7), relation (6) yields
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e t dt f y
T y x

y x
dyitx

T

−

→∞ −∞

∞

−∞

∞ ( ) = ( ) −( )
−∫∫ φ 2 lim

sin
. (8)

Setting T(y − x) = z, expression (8) becomes

e t dt f x
z
T

z
z

dz

f x f x

itx

T

−

→∞ −∞

∞

−∞

∞ ( ) = +
⎛
⎝⎜

⎞
⎠⎟

= ( ) = ( )
∫∫ φ

π π

2

2 2

lim
sin

,

by taking the limit under the integral sign, and by using continuity of f and the
fact that sin z

z
dz

−∞

∞

∫ = π . Solving for f(x), we have

f x e t dtitx( ) = ( )−

−∞

∞

∫
1

2π
φ ,

as asserted. �

Let X be B(n, p). In the next section, it will be seen that φX(t) = (peit + q)n. Let
us apply (i) to this expression. First of all, we have

1
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1
2

1
2

1
2
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Taking the limit as T → ∞, we get the desired result, namely

f x
n

x
p qx n x( ) =

⎛
⎝⎜

⎞
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− .

EXAMPLE 1
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(One could also use (i′) for calculating f(x), since φ is, clearly, periodic with
period 2π.)

For an example of the continuous type, let X be N(0, 1). In the next section, we
will see that φX(t) = e−t2/2. Since |φ(t)| = e−t2/2, we know that | ( )|φ t−∞

∞
∫ dt < ∞, so that

(ii′) applies. Thus we have

f x e t dt e e dt

e dt e e dt
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itx itx t
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2
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1

2

π π

π π
,

as was to be shown.

(Uniqueness Theorem) There is a one-to-one correspondence between the
characteristic function and the p.d.f. of a random variable.

PROOF The p.d.f. of an r.v. determines its ch.f. through the definition of the
ch.f. The converse, which is the involved part of the theorem, follows from
Theorem 2. �

Exercises

6.2.1 Show that for any r.v. X and every t ∈ �, one has |EeitX| ≤ E|eitX|(= 1).
(Hint: If z = a + ib, a, b ∈ �, recall that z a b= +2 2 . Also use Exercise 5.4.7
in Chapter 5 in order to conclude that (EY)2 ≤ EY2 for any r.v. Y.)

6.2.2 Write out detailed proofs for parts (iii) and (vii) of Theorem 1 and
justify the use of Lemmas C, D.

6.2.3 For any r.v. X with ch.f. φX, show that φ−X(t) = φ̄X(t), t ∈ �, where the bar
over φX denotes conjugate, that is, if z = a + ib, a, b ∈ �, then z̄ = a − ib.

6.2.4 Show that the ch.f. φX of an r.v. X is real if and only if the p.d.f. fX of X
is symmetric about 0 (that is, fX(−x) = fX(x), x ∈ �). (Hint: If φX is real, then the
conclusion is reached by means of the previous exercise and Theorem 2. If fX

is symmetric, show that f−X(x) = fX(−x), x ∈ �.)

Exercises 145
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6.2.5 Let X be an r.v. with p.d.f. f and ch.f. φ given by: φ(t) = 1 − |t| if |t| ≤ 1
and φ(t) = 0 if |t| > 1. Use the appropriate inversion formula to find f.

6.2.6 Consider the r.v. X with ch.f. φ(t) = e−|t|, t ∈ �, and utilize Theorem 2(ii′)
in order to determine the p.d.f. of X.

6.3 The Characteristic Functions of Some Random Variables

In this section, the ch.f.’s of some distributions commonly occurring will be
derived, both for illustrative purposes and for later use.

6.3.1 Discrete Case

1. Let X be B(n, p). Then φX(t) = (peit + q)n. In fact,

φX
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,

so that E(X ) = np. Also,
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2 2 2 2

2 2 2 2 2

1 1

1

( ) = −( ) +[ ] ( ) = ( ) − ( )
= − + − = −( ) =

 and σ

;

that is, σ 2(X ) = npq.

2. Let X be P(λ). Then φX(t) = eλeit−λ. In fact,

φ λ λ
λ λ λ λ λ λ

X
itx

x it
x

e

xx

et e e
x

e
e

x
e e e

it it( ) = =
( )

= =− − −

=

∞

=

∞
−∑∑ ! !

.
00
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Hence

d
dt

t e i e iX t

e it

t

it

φ λ λλ λ( ) = =
=

−

=0 0
,

so that E(X ) = λ. Also,

d

dt
t

d
dt

i e e

i e
d
dt

e

i e e e i i

i e e i i

i E X

X

t

e it

t

e it

t

e it it

t

it

it

it

2

2
0 0

0

0

2 21 1

φ λ

λ

λ λ

λ λ

λ λ λ λ

λ λ

λ λ

λ λ

λ λ

( ) = ( )
=

= ⋅ ⋅ ⋅ +( )
= ⋅ +( )
= +( ) = − +( ) = − ( )

=

− +

=

− +

=

− +

=
−

,

so that

σ λ λ λ λ2 2 2 21X E X EX( ) = ( ) − ( ) = +( ) − = ;

that is, σ 2(X ) = λ.

6.3.2 Continuous Case

1. Let X be N(μ, σ 2). Then φX(t) = eitμ−(σ2t2/2), and, in particular, if X is
N(0, 1), then φX(t) = e−t2/2. If X is N(μ, σ2), then (X − μ)/σ, is N(0, 1).
Thus

φ φ φ σ φ σ φμ σ σ μ σ
μ σ μ σ

μ σX X
it

X X
it

Xt t e t t e t−( ) ( ) −( )
−

−( )( ) = ( ) = ( ) ( ) = ( )1 , .and

So it suffices to find the ch.f. of an N(0, 1) r.v. Y, say. Now

φ
π π

π

Y
ity y y ity

t y it t

t e e dy e dy

e e dy e

( ) = =

= =

− − −( )
−∞

∞

−∞

∞

− − −( ) −

−∞

∞

∫∫

∫

1

2

1

2
1

2

2
2

2
2

2

2 2 2

2 2 2 .

Hence φX(t/σ) = eitμ/σ e−t2/2 and replacing t/σ by t, we get, finally:

φ μ σ
X t it

t( ) = −
⎛

⎝⎜
⎞

⎠⎟
exp .

2 2

2



148 6 Characteristic Functions, Moment Generating Functions and Related Theorems

Hence

d
dt

t it
t

i t i E X

d

dt
t it

t
i t it

t

i

X

t t

X

t t

φ μ σ μ σ μ μ

φ μ σ μ σ σ μ σ

μ σ

( ) = −
⎛

⎝⎜
⎞

⎠⎟
−( ) = ( ) =

( ) = −
⎛

⎝⎜
⎞

⎠⎟
−( ) − −

⎛

⎝⎜
⎞

⎠⎟

= − =

= =

= =

0

2 2
2

0

2

2
0

2 2
2

2
2

2 2

0

2 2 2

2

2 2

exp , .

exp exp

so that

ii 2 2 2μ σ+( ).
Then E(X2) = μ2 + σ 2 and σ 2(X) = μ2 + σ2 − μ2 = σ 2.

2. Let X be Gamma distributed with parameters α and β. Then φX(t) =
(1 − iβt)−α. In fact,

φ
α β α βα

α β
α

α β β
X

itx x x i t
t e x e dx x e dx( ) = ( ) = ( )

− −∞ − − −( )∞

∫ ∫
1 11

0

1 1

0Γ Γ
.

Setting x(1 − iβt) = y, we get

x
y
i t

dx
dy

i t
y=

−
=

−
∈ ∞[ )

1 1
0

β β
, , , .

Hence the above expression becomes

1 1

1 1

1
1

1

1
1

0

1

0

Γ

Γ

α β β β

β
α β

β

α α
α β

α

α
α β α

( ) −( ) −

= −( ) ( ) = −( )

−
− −∞

− − − −∞

∫

∫

i t
y e

dy
i t

i t y e dy i t

y

y .

Therefore

d
dt

t
i

i t
iX

t t

φ αβ

β
αβ

α( ) =
−( )

=
=

+

=0

1

0
1

,

so that E(X ) = αβ, and

d

dt
i

i t
iX

t t

2

2

0

2
2

2

0

2 2
1

1
1φ

α α β

β
α α β

α

=

+

=

=
+( )

−( )
= +( ) ,

so that E(X2) = α(α + 1)β2. Thus σ 2(X) = α(α + 1)β2 − α2β2 = αβ2.
For α = r/2, β = 2, we get the corresponding quantities for χ2

r, and for
α = 1, β = 1/λ, we get the corresponding quantities for the Negative Exponential
distribution. So
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φ φ
λ

λ
λX

r

Xt it t
it

it
( ) = −( ) ( ) = −

⎛
⎝⎜

⎞
⎠⎟

=
−

−
−

1 2 1
2

1

, ,

respectively.

3. Let X be Cauchy distributed with μ = 0 and σ = 1. Then φX(t) = e−|t|. In
fact,

φ
π π

π π

X
itxt e

x
dx

tx

x
dx

i tx

x
dx

tx

x
dx

( ) =
+

=
( )

+

+
( )

+
=

( )
+

−∞

∞

−∞

∞

∞

−∞

∞

∫∫

∫∫

1 1

1

1

1

1

2

1

2 2

2 20

cos

sin cos

because

sin
,

tx

x
dx

( )
+

=
−∞

∞

∫ 1
0

2

since sin(tx) is an odd function, and cos(tx) is an even function. Further, it can
be shown by complex variables theory that

cos
.

tx

x
dx e

t( )
+

= −∞

∫ 1 220

π

Hence

φX

t
t e( ) = −

.

Now

d
dt

t
d
dt

eX

tφ ( ) = −

does not exist for t = 0. This is consistent with the fact of nonexistence of E(X),
as has been seen in Chapter 5.

Exercises

6.3.1 Let X be an r.v. with p.d.f. f given in Exercise 3.2.13 of Chapter 3.
Derive its ch.f. φ, and calculate EX, E[X(X − 1)], σ 2(X), provided they are
finite.

6.3.2 Let X be an r.v. with p.d.f. f given in Exercise 3.2.14 of Chapter 3.
Derive its ch.f. φ, and calculate EX, E[X(X − 1)], σ 2(X), provided they are
finite.

6.3.3 Let X be an r.v. with p.d.f. f given by f(x) = λe−λ(x−α) I(α,∞)(x). Find its ch.f.
φ, and calculate EX, σ 2(X), provided they are finite.

Exercises 149
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6.3.4 Let X be an r.v. distributed as Negative Binomial with parameters r
and p.

i) Show that its ch.f., φ, is given by

φ t
p

qe

r

it
r( ) =

−( )1
;

ii) By differentiating φ, show that EX = rq/p and σ2(X) = rq/p2;

iii) Find the quantities mentioned in (i) and (ii) for the Geometric
distribution.

6.3.5 Let X be an r.v. distributed as U(α, β).

ii) Show that its ch.f., φ, is given by

φ
β α

β α

t
e e

it

it it

( ) = −
−( ) ;

ii) By differentiating φ, show that EX = α β+
2

 and σ α β2
12

2

X( ) = ( )− .

6.3.6 Consider the r.v. X with p.d.f. f given in Exercise 3.3.14(ii) of Chapter
3, and by using the ch.f. of X, calculate EXn, n = 1, 2, . . . , provided they are
finite.

6.4 Definitions and Basic Theorems—The Multidimensional Case

In this section, versions of Theorems 1, 2 and 3 are presented for the case that
the r.v. X is replaced by a k-dimensional r. vector X. Their interpretation,
usefulness and usage is analogous to the ones given in the one-dimensional
case. To this end, let now X = (X1, . . . , Xk)′ be a random vector. Then the ch.f.
of the r. vector X, or the joint ch.f. of the r.v.’s X1, . . . , Xk, denoted by φX or
φX1

, . . . , Xk
, is defined as follows:

  
φX X k

it X it X it X
jk

k kt t E e t
1

1 1 2 2
1, , , , , ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = [ ] ∈+ + ⋅ ⋅ ⋅ +

�

j = 1, 2, . . . , k. The ch.f. φX1
, . . . , Xk

always exists by an obvious generalization
of Lemmas A, A′ and B, B′. The joint ch.f. φX1

, . . . , Xk
 satisfies properties

analogous to properties (i)–(vii). That is, one has

(Some properties of ch.f.’s)

i′′′′′) φX1
, . . . , Xk

(0, . . . , 0) = 1.

ii′′′′′) |φX1
, . . . , Xk

(t1, . . . , tk)| ≤ 1.

iii′′′′′) φX1
, . . . , Xk

 is uniformly continuous.

THEOREM 1′
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iv′′′′′) φX1+d1
, . . . , Xk+dk

(t1, . . . , tk) = eit1d1+ · · · +itkdkφX1
, . . . , Xk

(t1, . . . , tk).

v′′′′′) φc1X1
, . . . , ckXk

(t1, . . . , tk) = φX1
, . . . , Xk

(c1t1, . . . , cktk).

vi′′′′′) φc1X1+ d1
, . . . , ckXk + dk

(t1, . . . , tk) = eit1d1 + · · · + itkdkφX1
, . . . , Xk

(c1t1, . . . , cktk).

vii′′′′′) If the absolute (n1, . . . , nk)-joint moment, as well as all lower order joint
moments of X1, . . . , Xk are finite, then

  t , ,  1

∂
∂ ∂

φ
n n

t
n

t
n X X k

t t

n n
k
n

k

k

k k

k

j
k

j k

t t
t i E X X

1

1

1 1

1

1 1

0

1

+ ⋅ ⋅ ⋅ +

= ⋅ ⋅ ⋅ = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ∑ ⋅ ⋅ ⋅( )=, , ,

and, in particular,

∂
∂

φ
n

j
n X X k

t t

n
j
n

t
t t i E X j k

k

k

1

1

1

0

1, , , , , , , .⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( ) = ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅ = =

   2,  

viii) If in the φX1
, . . . , Xk

(t1, . . . , tk) we set tj1 = · · · = tjn = 0, then the resulting
expression is the joint ch.f. of the r.v.’s Xi1, . . . , Xim, where the j’s and the
i’s are different and m + n = k.

Multidimensional versions of Theorem 2 and Theorem 3 also hold true.
We give their formulations below.

(Inversion formula) Let X = (X1, . . . , Xk)′ be an r. vector with p.d.f. f and ch.f.
φ. Then

ii) f x x
T

e

t t dt dt

X X k
T

k

it x it x

T

T

T

T

X X k k

k

k k

k

1

1 1

1

1

1 1

1
2

, , , , lim

, , , , ,

⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) =
⎛
⎝⎜

⎞
⎠⎟

⋅ ⋅ ⋅

× ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅

→∞

− − ⋅ ⋅ ⋅ −

−− ∫∫
   φ

if X is of the discrete type, and

ii) f x x
e

it h

e t t dt

X X k
h T

k it h

jj

k

T

T

T

T

it x it x
X X k

k

j

k k

k

1

1 1

1

1 0
1

1 1

1
2

1
, , , , lim lim

, , , ,

⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) =
⎛
⎝⎜

⎞
⎠⎟

⋅ ⋅ ⋅ −⎛

⎝
⎜

⎞

⎠
⎟

× ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) ⋅

→ →∞

−

=
−−

− − ⋅ ⋅ ⋅ −

∏∫∫
   

π

φ ⋅⋅ ⋅ dtk ,

if X is of the continuous type, with the analog of (ii′) holding if the integral
of |φX1, . . . , Xk

(t1, . . . , tk)| is finite.

(Uniqueness Theorem) There is a one-to-one correspondence between the
ch.f. and the p.d.f. of an r. vector.

PROOFS The justification of Theorem 1′ is entirely analogous to that given
for Theorem 1, and so is the proof of Theorem 2′. As for Theorem 3′, the fact
that the p.d.f. of X determines its ch.f. follows from the definition of the ch.f.
That the ch.f. of X determines its p.d.f. follows from Theorem 2′. �

THEOREM 3 ′

THEOREM 2 ′
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6.4.1 The Ch.f. of the Multinomial Distribution

Let X = (X1, . . . , Xk)′ be Multinomially distributed; that is,

P X x X x
n

x x
p pk k

k

x
k
xk

1 1
1

1
1= ⋅ ⋅ ⋅ =( ) =

⋅ ⋅ ⋅
⋅ ⋅ ⋅, ,  

!
! !

.
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φX X k
it

k
it

n

k

kt t p e p e
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1
1 1, , , , .⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = + ⋅ ⋅ ⋅ +( )

In fact,

φX X k
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⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) =
⋅ ⋅ ⋅

× ⋅ ⋅ ⋅
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∑
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n

k

1
1 .

Hence

∂
∂ ∂

φ
k

k
X X k

t t

k
k
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k
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n k

t t

k

t t
t t

n n n k i p p p e

p e i n n n
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k

k
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1
1

0

1 1
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1

1

1

1
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1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )
= −( ) ⋅ ⋅ ⋅ − +( ) ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅(

+ ) = −( ) ⋅ ⋅ ⋅ −

= ⋅ ⋅ ⋅ = =

−
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, , , ,

kk p p pk+( ) ⋅ ⋅ ⋅1 1 2 .

Hence

E X X n n n k p p pk k1 1 21 1⋅ ⋅ ⋅( ) = −( ) ⋅ ⋅ ⋅ − +( ) ⋅ ⋅ ⋅ .

Finally, the ch.f. of a (measurable) function g(X) of the r. vector X =
(X1, . . . , Xk)′ is defined by:

φg

itg

itg

k

itg x x

k k

t E e
e f x x

e f x x dx dxk
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1

′

Exercise

6.4.1 (Cramér–Wold) Consider the r.v.’s Xj, j = 1, . . . , k and for cj ∈ �,
j = 1, . . . , k, set
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Y c Xc j j
j

k

=
=

∑ .
1

Then

ii) Show that φYc
(t) = φX1, . . . , Xk

(c1t, . . . , ckt), t ∈ �, and φX1, . . . , Xk
(c1, . . . , ck)

= φYc
(1);

ii) Conclude that the distribution of the X’s determines the distribution of Yc

for every cj ∈ �, j = 1, . . . , k. Conversely, the distribution of the X’s is
determined by the distribution of Yc for every cj ∈ �, j = 1, . . . , k.

6.5 The Moment Generating Function and Factorial Moment
Generating Function of a Random Variable

The ch.f. of an r.v. or an r. vector is a function defined on the entire real line
and taking values in the complex plane. Those readers who are not well versed
in matters related to complex-valued functions may feel uncomfortable in
dealing with ch.f.’s. There is a partial remedy to this potential problem, and
that is to replace a ch.f. by an entity which is called moment generating
function. However, there is a price to be paid for this: namely, a moment
generating function may exist (in the sense of being finite) only for t = 0. There
are cases where it exists for t’s lying in a proper subset of � (containing 0), and
yet other cases, where the moment generating function exists for all real t. All
three cases will be illustrated by examples below.

First, consider the case of an r.v. X. Then the moment generating function
(m.g.f.) MX (or just M when no confusion is possible) of a random variable X,
which is also called the Laplace transform of f, is defined by MX(t) = E(etX),
t ∈ �, if this expectation exists. For t = 0, MX(0) always exists and equals
1. However, it may fail to exist for t ≠ 0. If MX(t) exists, then formally
φX(t) = MX(it) and therefore the m.g.f. satisfies most of the properties analo-
gous to properties (i)–(vii) cited above in connection with the ch.f., under
suitable conditions. In particular, property (vii) in Theorem 1 yields

d

dt X t

nn

n M t E X( ) = ( )=0
, provided Lemma D applies. In fact,

d

dt
M t

d

dt
Ee E

d
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e

E X e E X
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n X

t
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n
tX

t

n
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tX

t

n tX

t

n

( ) = ( ) =
⎛

⎝⎜
⎞

⎠⎟

= ( ) = ( )
= = =

=

0 0 0

0
.

This is the property from which the m.g.f. derives its name.
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Here are some examples of m.g.f.’s. It is instructive to derive them in order
to see how conditions are imposed on t in order for the m.g.f. to be finite. It so
happens that part (vii) of Theorem 1, as it would be formulated for an m.g.f.,
is applicable in all these examples, although no justification will be supplied.

6.5.1 The M.G.F.’s of Some R.V.’s

1. If X ∼ B(n, p), then MX(t) = (pet + q)n, t ∈ �. Indeed,

M t e
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tx x n x t
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n x t
n

x

n

x

n

( ) =
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟( ) = +( )− −

==
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which, clearly, is finite for all t ∈ �.
Then

d
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,

and
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,

so that σ 2(X) = n2p2 − np2 + np − n2p2 = np(1 − p) = npq.

2. If X ∼ P(λ), then MX(t) = eλet−λ, t ∈ �. In fact,

M t e e
x

e
e

x
e e eX

tx
x t

x

e e

xx

t t( ) = =
( )

= =− − − −

=

∞

=

∞

∑∑ λ λ λ λ λ λλ λ

! !
.

00

Then

d
dt

M t
d
dt

e e e E XX

t

e

t

t e

t

t t( ) = = = = ( )
=

−

=

−

=
0 0

0

λ λ λ λλ λ ,

and

d

dt
M t

d
dt

e e e e e e e

E X X

X

t

t e

t

t e t e t

t

t t t
2

2
0 0

0

2 2 2 21

( ) = ( ) = +( )
= +( ) = ( ) ( ) = + − =

=

−

=

− −

=
λ λ λ

λ λ σ λ λ λ λ

λ λ λ λ λ λ

, .so that 
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3. If X ∼ N(μ, σ 2), then M t eX

t t

( ) =
+μ σ 2 2

2 , t ∈ �, and, in particular, if X ∼ N(0,

1), then MX(t) = et2/2, t ∈ �. By the property for m.g.f. analogous to property (vi)
in Theorem 1,
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for all t ∈ �. Therefore
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Replacing t by σt, we get, finally, M t eX

t t
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+μ σ 2 2
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, .so that 

4. If X is distributed as Gamma with parameters α and β, then MX(t) =
(1 − βt)−α, t < 1/β. Indeed,

M t e x e dx x e dxX
tx x x t( ) = ( ) = ( )

− −∞ − − −( )∞

∫ ∫
1 11

0

1 1

0Γ Γα β α βα
α β

α
α β β

.

Then by setting x(1 − βt) = y, so that x = y
t1−β
, dx = dy

t1−β
, and y ∈ [0, ∞), the above

expression is equal to

1

1

1 1

1

1

0−( )
⋅ ( ) =

−( )
− −∞

∫
β α β β

α α
α β

α
t

y e dy
t

y

Γ
,

provided 1 − βt > 0, or equivalently, t < 1/β. Then

d
dt

M t
d
dt

t E XX

t t

( ) = −( ) = = ( )
=

−

=0 0

1 β αβ
α

,
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and

d

dt
M t

d
dt

t t

EX X

X

t t t
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2
0

1
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2 2 2 2

1 1 1

1
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= +( ) = ( ) ( ) =
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α α β σ αβ

α α

, .so that 

In particular, for α = r
2

  and β = 2, we get the m.g.f. of the χ2
r, and its mean and

variance; namely,

M t t t E X r X rX

r( ) = −( ) < ( ) = ( ) =
−

1 2
1
2

2
2 2, , , .   σ

For α = 1 and β = 1
λ

, we obtain the m.g.f. of the Negative Exponential
distribution, and its mean and variance; namely

M t
t

t EX XX ( ) =
−

< = ( ) =λ
λ

λ
λ

σ
λ

, , , .   
1 12

2

5. Let X have the Cauchy distribution with parameters μ and σ, and
without loss of generality, let μ = 0, σ = 1. Then the MX(t) exists only for t = 0.
In fact.

M t E e e
x

dx

e
x

dx tx
x

dx

X
tX tx

tx

( ) = ( ) =
+

>
+

> ( )
+

−∞

∞

∞ ∞

∫

∫ ∫

1 1

1
1 1

1

1 1

1

2

20 0 2

π

π π

if t > 0, since ez > z, for z > 0, and this equals

t x dx

x

t du
u

t
u

x2
2

1 2 220 1π π π+
= = ( )∞ ∞

→∞∫ ∫ lim log .

Thus for t > 0, MX(t) obviously is equal to ∞. If t < 0, by using the limits −∞, 0
in the integral, we again reach the conclusion that MX(t) = ∞ (see Exercise
6.5.9).

REMARK 4 The examples just discussed exhibit all three cases regarding the
existence or nonexistence of an m.g.f. In Examples 1 and 3, the m.g.f.’s exist
for all t ∈ �; in Examples 2 and 4, the m.g.f.’s exist for proper subsets of �; and
in Example 5, the m.g.f. exists only for t = 0.

For an r.v. X, we also define what is known as its factorial moment
generating function. More precisely, the factorial m.g.f. ηX (or just η when no
confusion is possible) of an r.v. X is defined by:

  
ηX

X Xt E t t E t( ) = ( ) ∈ ( ), ,� if  exists.

This function is sometimes referred to as the Mellin or Mellin–Stieltjes trans-
form of f. Clearly, ηX(t) = MX(log t) for t > 0.

Formally, the nth factorial moment of an r.v. X is taken from its factorial
m.g.f. by differentiation as follows:
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d

dt
t E X X X n

n

n X

t

η ( ) = −( ) ⋅ ⋅ ⋅ − +( )[ ]
=1

1 1 .

In fact,

d

dt
t

d

dt
E t E

t
t E X X X n t

n

n X
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n
X

n

n
X X nη ∂

∂
( ) = ( ) =

⎛

⎝⎜
⎞

⎠⎟
= −( ) ⋅ ⋅ ⋅ − +( )[ ]−1 1 ,

provided Lemma D applies, so that the interchange of the order of differen-
tiation and expectation is valid. Hence

d

dt
t E X X X n

n

n X

t

η ( ) = −( ) ⋅ ⋅ ⋅ − +( )[ ]
=1

1 1 . (9)

REMARK 5 The factorial m.g.f. derives its name from the property just estab-
lished. As has already been seen in the first two examples in Section 2 of
Chapter 5, factorial moments are especially valuable in calculating the vari-
ance of discrete r.v.’s. Indeed, since

σ 2 2 2 2 1X E X EX E X E X X E X( ) = ( ) − ( ) ( ) = −( )[ ] + ( ), ,and

we get

σ 2 2
1X E X X E X EX( ) = −( )[ ] + ( ) − ( ) ;

that is, an expression of the variance of X in terms of derivatives of its factorial
m.g.f. up to order two.

Below we derive some factorial m.g.f.’s. Property (9) (for n = 2) is valid in
all these examples, although no specific justification will be provided.

6.5.2 The Factorial M.G.F.’s of some R.V.’s

1. If X ∼ B(n, p), then ηX(t) = (pt + q)n, t ∈ �. In fact,

ηX
x

x

n
x n x x n x n

x

n

t t
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x
p q

n

x
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=
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0 0

.

Then

d

dt
t n n p pt q n n pX

t

n2

2
1

2 2 21 1η ( ) = −( ) +( ) = −( )
=

−
,

so that σ 2(X) = n(n − 1)p2 + np − n2p2 = npq.

2. If X ∼ P(λ), then ηX(t) = eλt−λ, t ∈�. In fact,

  
η λ λ

λ λ λ λ λ λ
X

x
x

x

t t
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t t e
x

e
t

x
e e e t( ) = =

( )
= = ∈− − − −

=

∞

=

∞

∑∑ ! !
, .�

00
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Hence

d

dt
t e XX
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2

2
1

2
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2 2 2 2η λ λ σ λ λ λ λλ λ( ) = = ( ) = + − =
=

−

=
, .so that 

The m.g.f. of an r. vector X or the joint m.g.f. of the r.v.’s X1, . . . , Xk,
denoted by MX or MX1

, . . . , Xk
, is defined by:

  
M t t E e t j kX X k

t X t X
jk

k k

1

1 1
1 1, , , , , , , , ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( ) ∈ = ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅   2,  �

for those tj’s in � for which this expectation exists. If MX1, . . . , Xk
(t1, . . . , tk) exists,

then formally φX1, . . . , Xk
(t1, . . . , tk) = MX1, . . . , Xk

(it1, . . . , itk) and properties analo-
gous to (i′)–(vii′), (viii) in Theorem 1′ hold true under suitable conditions. In
particular,
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t t
M t t E X X
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= ⋅ ⋅ ⋅ = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( ), , , , , (10)

where n1, . . . , nk are non-negative integers.
Below, we present two examples of m.g.f.’s of r. vectors.

6.5.3 The M.G.F.’s of Some R. Vectors

1. If the r.v.’s X1, . . . , Xk have jointly the Multinomial distribution with
parameters n and p1, . . . , pk, then
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In fact,
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n
k ,

where the summation is over all integers x1, . . . , xk ≥ 0 with x1 + · · · + xk = n.
Clearly, the above derivations hold true for all tj ∈ �, j = 1, . . . , k.

2. If the r.v.’s X1 and X2 have the Bivariate Normal distribution with
parameters μ1, μ2, σ2

1, σ2
2 and ρ, then their joint m.g.f. is

  

M t t t t t t t t t tX X1 2 1 2 1 1 2 2 1
2

1
2

1 2 1 2 2
2

2
2

1 2

1
2

2, , exp , , .   ( ) = + + + +( )⎡

⎣
⎢

⎤

⎦
⎥ ∈μ μ σ ρσ σ σ � (11)

An analytical derivation of this formula is possible, but we prefer to use
the matrix approach, which is more elegant and compact. Recall that the joint
p.d.f. of X1 and X2 is given by
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Then the determinant of ΣΣΣΣΣ, |ΣΣΣΣΣ|, is |ΣΣΣΣΣ| = σ2
1σ2

2(1 − ρ2), and the inverse, ΣΣΣΣΣ−−−−−1, is
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Therefore the p.d.f. is written as follows in matrix notation:

f x( ) = − −( ) −( )⎡

⎣
⎢

⎤

⎦
⎥

−1

2

1
21 2

1

π ∑∑
∑∑exp .x xμμ μμ′

In this form, μ is the mean vector of X = (X1 X2)′, and ΣΣΣΣΣ is the covariance matrix
of X.

Next, for t = (t1 t2)′, we have

  

M Ee f d

d

X
t Xt t x x x
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( ) = = ( ) ( )
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π
μμ μμ′ (11)

The exponent may be written as follows:
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μμ μμ μμ μμ′ ′ ′ ′ ′ ′t t t t t t t x x x1+
⎛
⎝⎜

⎞
⎠⎟

− + − + −( ) −( )[ ]1
2

1
2

2 2∑∑ ∑∑ ∑∑−− . (13)

Focus on the quantity in the bracket, carry out the multiplication, and observe
that ΣΣΣΣΣ′ = ΣΣΣΣΣ, (ΣΣΣΣΣ−−−−−1)′ = ΣΣΣΣΣ−−−−−1, x′′′′′t = t′′′′′x, μμμμμ′t = t′μμμμμ, and x′′′′′ΣΣΣΣΣ−−−−−1μμμμμ = μμμμμ′ΣΣΣΣΣ−−−−−1x, to obtain

2 2μμ μμ μμ μμ μμ′ ′ ′t t t t x x x x t x t1 1+ − + −( ) −( ) = − +( ) − +( )( )[ ]′′∑∑ ′′ ∑∑ ∑∑ ∑∑ ∑∑−− −− . (14)

By means of (13) and (14), the m.g.f. in (12) becomes
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π �

However, the second factor above is equal to 1, since it is the integral of a
Bivariate Normal distribution with mean vector μμμμμ + ΣΣΣΣΣt and covariance matrix
ΣΣΣΣΣ. Thus

MX t t t t( ) = +
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1 2 1 2 2
2

2
22

σ ρσ σ
ρσ σ σ

σ ρσ σ σ ,

it follows that the m.g.f. is, indeed, given by (11).

Exercises

6.5.1 Derive the m.g.f. of the r.v. X which denotes the number of spots that
turn up when a balanced die is rolled.

6.5.2 Let X be an r.v. with p.d.f. f given in Exercise 3.2.13 of Chapter 3.
Derive its m.g.f. and factorial m.g.f., M(t) and η(t), respectively, for those t’s
for which they exist. Then calculate EX, E[X(X − 1)] and σ2(X), provided they
are finite.

6.5.3 Let X be an r.v. with p.d.f. f given in Exercise 3.2.14 of Chapter 3.
Derive its m.g.f. and factorial m.g.f., M(t) and η(t), respectively, for those t’s
for which they exist. Then calculate EX, E[X(X − 1)] and σ2(X), provided they
are finite.
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6.5.4 Let X be an r.v. with p.d.f. f given by f(x) = λe−λ(x −α)I(α,∞)(x). Find its
m.g.f. M(t) for those t’s for which it exists. Then calculate EX and σ 2(X),
provided they are finite.

6.5.5 Let X be an r.v. distributed as B(n, p). Use its factorial m.g.f. in order
to calculate its kth factorial moment. Compare with Exercise 5.2.1 in Chapter
5.

6.5.6 Let X be an r.v. distributed as P(λ). Use its factorial m.g.f. in order to
calculate its kth factorial moment. Compare with Exercise 5.2.4 in Chapter 5.

6.5.7 Let X be an r.v. distributed as Negative Binomial with parameters
r and p.

i) Show that its m.g.f and factorial m.g.f., M(t) and η(t), respectively, are
given by

M t
p

qe
t q t

p

qt
t

qX

r

t
r X

r

r( ) =
−( )

< − ( ) =
−( )

<
1 1

1
, log , , ;η

ii) By differentiation, show that EX = rq/p and σ 2(X) = rq/p2;

iii) Find the quantities mentioned in parts (i) and (ii) for the Geometric
distribution.

6.5.8 Let X be an r.v. distributed as U(α, β).

ii) Show that its m.g.f., M, is given by

M t
e e

t

t t

( ) = −
−( )

β α

β α
;

ii) By differentiation, show that EX = α β+
2

 and σ 2(X) = α β−( )2

12
.

6.5.9 Refer to Example 3 in the Continuous case and show that MX(t) = ∞ for
t < 0 as asserted there.

6.5.10 Let X be an r.v. with m.g.f. M given by M(t) = eαt +β t2, t ∈ � (α ∈ �,
β  > 0). Find the ch.f. of X and identify its p.d.f. Also use the ch.f. of X in order
to calculate EX4.

6.5.11 For an r.v. X, define the function γ  by γ(t) = E(1 + t)X for those t’s for
which E(1 + t)X is finite. Then, if the nth factorial moment of X is finite, show
that

d dt t E X X X nn n

t
( ) ( ) = −( ) ⋅ ⋅ ⋅ − +( )[ ]

=
γ

0
1 1 .

6.5.12 Refer to the previous exercise and let X be P(λ). Derive γ(t) and use
it in order to show that the nth factorial moment of X is λn.

Exercises 161
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6.5.13 Let X be an r.v. with m.g.f. M and set K(t) = logM(t) for those t’s for
which M(t) exists. Furthermore, suppose that EX = μ and σ 2(X) = σ2 are both
finite. Then show that

d
dt

K t
d

dt
K t

t t

( ) = ( ) =
= =0

2

2
0

2μ σand .

(The function K just defined is called the cumulant generating function of X.)

6.5.14 Let X be an r.v. such that EXn is finite for all n = 1, 2, . . . . Use the
expansion

e
x
n

x
n

n

=
=

∞

∑ !0

in order to show that, under appropriate conditions, one has that the m.g.f. of
X is given by

M t EX
t
n

n
n

n
( ) = ( )

=

∞

∑ !
.

0

6.5.15 If X is an r.v. such that EXn = n!, then use the previous exercise in
order to find the m.g.f. M(t) of X for those t’s for which it exists. Also find the
ch.f. of X and from this, deduce the distribution of X.

6.5.16 Let X be an r.v. such that

EX
k

k
EXk

k
k2 2 1

2

2
0=

( )
⋅

=+
!

!
, ,

k = 0, 1, . . . . Find the m.g.f. of X and also its ch.f. Then deduce the distribution
of X. (Use Exercise 6.5.14)

6.5.17 Let X1, X2 be two r.v.’s with m.f.g. given by

  

M t t e e e t tt t t t
1 2

2

1 2

1
3

1
1
6

1 2 1 2,( ) = +( ) + +( )⎡

⎣
⎢

⎤

⎦
⎥ ∈+ , , .�

Calculate EX1, σ 2(X1) and Cov(X1, X2), provided they are finite.

6.5.18 Refer to Exercise 4.2.5. in Chapter 4 and find the joint m.g.f.
M(t1, t2, t3) of the r.v.’s X1, X2, X3 for those t1, t2, t3 for which it exists. Also find
their joint ch.f. and use it in order to calculate E(X1X2X3), provided the
assumptions of Theorem 1′ (vii′) are met.

6.5.19 Refer to the previous exercise and derive the m.g.f. M(t) of the r.v.
g(X1, X2, X3) = X1 + X2 + X3 for those t’s for which it exists. From this, deduce
the distribution of g.
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6.5.20 Let X1, X2 be two r.v.’s with m.g.f. M and set K(t1, t2) = log M(t1, t2) for
those t1, t2 for which M(t1, t2) exists. Furthermore, suppose that expectations,
variances, and covariances of these r.v.’s are all finite. Then show that for
j = 1, 2,

∂
∂

∂
∂

σ

∂
∂ ∂

t
K t t EX

t
K t t X

t t
K t t X X

j t t

j
j t t

j

t t

1 2

0

2

2 1 2

0

2

2

1 2
1 2

0

1 2

1 2 1 2

1 2

, , , ,

, , .

( ) = ( ) = ( )

( ) = ( )
= = = =

= =

Cov

6.5.21 Suppose the r.v.’s X1, . . . , Xk have the Multinomial distribution with
parameters n and p1, . . . , pk, and let i, j, be arbitrary but fixed, 1 ≤ i < j ≤ k.
Consider the r.v.’s Xi, Xj, and set X = n − Xi − Xj, so that these r.v.’s have the
Multinomial distribution with parameters n and pi, pj, p, where p = 1 − pi − pj.

ii) Write out the joint m.g.f. of Xi, Xj, X, and by differentiation, determine the
E(XiXj);

ii) Calculate the covariance of Xi, Xj, Cov(Xi, Xj), and show that it is negative.

6.5.22 If the r.v.’s X1 and X2 have the Bivariate Normal distribution with
parameters μ1, μ2, σ2

1, σ2
2 and ρ, show that Cov(X1, X2) ≥ 0 if ρ ≥ 0, and

Cov(X1, X2) < 0 if ρ < 0. Note: Two r.v.’s X1, X2 for which Fx
1
,x

2
 (X1, X2) −

Fx
1
(X1)Fx

2
(X2) ≥ 0, for all X1, X2 in �, or Fx

1
,x

2
 (X1, X2) − Fx

1
(X1)Fx

2
(X2) ≤ 0, for

all X1, X2 in �, are said to be positively quadrant dependent or negatively
quadrant dependent, respectively. In particular, if X1 and X2 have the Bivariate
Normal distribution, it can be seen that they are positively quadrant depend-
ent or negatively quadrant dependent according to whether ρ ≥ 0 or ρ < 0.

6.5.23 Verify the validity of relation (13).

6.5.24

ii) If the r.v.’s X1 and X2 have the Bivariate Normal distribution with param-
eters μ1, μ2, σ 2

1, σ2
2 and ρ, use their joint m.g.f. given by (11) and property

(10) in order to determine E(X1X2);

ii) Show that ρ is, indeed, the correlation coefficient of X1 and X2.

6.5.25 Both parts of Exercise 6.4.1 hold true if the ch.f.’s involved are re-
placed by m.g.f.’s, provided, of course, that these m.g.f.’s exist.

ii) Use Exercise 6.4.1 for k = 2 and formulated in terms of m.g.f.’s in order to
show that the r.v.’s X1 and X2 have a Bivariate Normal distribution if and
only if for every c1, c2 ∈ �, Yc = c1X1 + c2X2 is normally distributed;

ii) In either case, show that c1X1 + c2X2 + c3 is also normally distributed for any
c3 ∈ �.
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7.1 Stochastic Independence: Criteria of Independence

Let S be a sample space, consider a class of events associated with this space,
and let P be a probability function defined on the class of events. In Chapter
2 (Section 2.3), the concept of independence of events was defined and was
heavily used there, as well as in subsequent chapters. Independence carries
over to r.v.’s also, and is the most basic assumption made in this book. Inde-
pendence of r.v.’s, in essence, reduces to that of events, as will be seen below.
In this section, the not-so-rigorous definition of independence of r.v.’s is pre-
sented, and two criteria of independence are also discussed. A third criterion
of independence, and several applications, based primarily on independence,
are discussed in subsequent sections. A rigorous treatment of some results is
presented in Section 7.4.

DEFINITION 1 The r.v.’s Xj, j = 1, . . . , k are said to be independent if, for sets Bj ⊆ �, j = 1, . . . ,
k, it holds

P X B j k P X Bj j
j

k

j j∈ = ⋅ ⋅ ⋅( ) = ∈( )
=

∏, , , .1
1

The r.v.’s Xj, j = 1, 2, . . . are said to be independent if every finite subcollection
of them is a collection of independent r.v.’s. Non-independent r.v.’s are said to
be dependent. (See also Definition 3 in Section 7.4, and the comment following
it.)

REMARK 1 (i) The sets Bj, j = 1, . . . , k may not be chosen entirely arbitrar-
ily, but there is plenty of leeway in their choice. For example, taking Bj = (−∞,
xj], xj ∈ �, j = 1, . . . , k would be sufficient. (See Lemma 3 in Section 7.4.)

(ii) Definition 1 (as well as Definition 3 in Section 7.4) also applies to m-
dimensional r. vectors when � (and B in Definition 3) is replaced by �m (Bm).

Chapter 7

Stochastic Independence with Some
Applications
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THEOREM 1 (Factorization Theorem) The r.v.’s Xj, j = 1, . . . , k are independent if and only
if any one of the following two (equivalent) conditions holds:

  

i  for all  

ii  for all  

) , , , , , , , , .

) , , , , , , , , .

F x x F x x j k

f x x f x x j k

X X k X j j
j

k

X X k X j j
j

k

k j

k j

1

1

1
1

1
1

1

1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( ) ∈ = ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( ) ∈ = ⋅ ⋅ ⋅

=

=

∏

∏

�

�

PROOF

ii) If Xj, j = 1, · · · , k are independent, then

  

P X B j k P X B B j kj j j j j
j

k

∈ = ⋅ ⋅ ⋅( ) = ∈( ) ⊆ = ⋅ ⋅ ⋅
=

∏, , , , , , , .    1 1
1

�

In particular, this is true for Bj = (−∞, xj], xj ∈ �, j = 1, . . . , k which gives

F x x F xX X k X j
j

k

k j1 1
1

, , , , .⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( )
=

∏
The proof of the converse is a deep probability result, and will, of course,
be omitted. Some relevant comments will be made in Section 7.4, Lemma 3.

ii) For the discrete case, we set Bj = {xj}, where xj is in the range of Xj, j = 1, . . . ,
k. Then if Xj, j = 1, . . . , k are independent, we get

P X x X x P X xk k j j
j

k

1 1
1

= ⋅ ⋅ ⋅ =( ) = =( )
=

∏, , ,

or

f x x f xX X k X j
j

k

k j1 1
1

, , , , .⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( )
=

∏
Let now

f x x f xX X k X j
j

k

k j1 1
1

, , , , .⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( )
=

∏
Then for any sets Bj = (−∞, yj], yj ∈ �, j = 1, . . . , k, we get

B B
X X k

B B
X X k

X j
Bj

k

k

k

k

k

j

j

f x x f x f x

f x

1

1

1

11 1

1

× × × ×

=

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) =

⋅ ⋅ ⋅
( ) ⋅ ⋅ ⋅ ( )

= ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∑ ∑

∑∏

, , , ,

,

or

F y y F yX X k X j
j

k

k j1 1
1

, , , , .⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( )
=

∏
Therefore Xj, j = 1, . . . , k are independent by (i). For the continuous case,
we have: Let

f x x f xX X k X j
j

k

k j1 1
1

, , , ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( )
=

∏
and let
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C y y j kj j j= −∞( ] ∈ = ⋅ ⋅ ⋅, , . , , .� 1

Then integrating both sides of this last relationship over the set C1 × · · · ×
Ck, we get

F y y F yX X k X j
j

k

k j1 1
1

, , , , ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( )
=

∏
so that Xj, j = 1, . . . , k are independent by (i). Next, assume that

F x x F xX X k X j
j

k

k j1 1
1

, , , ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( )
=

∏
(that is, the Xj’s are independent). Then differentiating both sides, we get

f x x f xX X k X j
j

k

k j1 1
1

, , , , .⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( )
=

∏ ▲

REMARK 2 It is noted that this step also is justifiable (by means of calculus)
for the continuity points of the p.d.f. only.

Consider independent r.v.’s and suppose that gj is a function of the jth r.v.
alone. Then it seems intuitively clear that the r.v.’s gj(Xj), j = 1, . . . , k ought to
be independent. This is, actually, true and is the content of the following

LEMMA 1 For j = 1, . . . , k, let the r.v.’s Xj be independent and consider (measurable)
functions gj:� → �, so that gj(Xj), j = 1, . . . , k are r.v.’s. Then the r.v.’s gj(Xj),
j = 1, . . . , k are also independent. The same conclusion holds if the r.v.’s are
replaced by m-dimensional r. vectors, and the functions gj, j = 1, . . . , k are
defined on �m into �. (That is, functions of independent r.v.’s (r. vectors)
are independent r.v.’s.)

PROOF See Section 7.4. ▲

Independence of r.v.’s also has the following consequence stated as a
lemma. Both this lemma, as well as Lemma 1, are needed in the proof of
Theorem 1′ below.

LEMMA 2 Consider the r.v.’s Xj, j = 1, . . . , k and let gj:� → � be (measurable) functions,
so that gj(Xj), j = 1, . . . , k are r.v.’s. Then, if the r.v.’s Xj, j = 1, . . . , k are
independent, we have

E g X E g Xj
j

k

j j j
j

k

= =
∏ ∏( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ( )[ ]
1 1

,

provided the expectations considered exist. The same conclusion holds if the
gj’s are complex-valued.

PROOF See Section 7.2. ▲

REMARK 3 The converse of the above statement need not be true as will be
seen later by examples.

THEOREM 1′ (Factorization Theorem) The r.v.’s Xj, j = 1, . . . , k are independent if and only if:

  

φ φX X k X j
j

k

jk j
t t t t j k

1 1
1

1, , , , , , , , .⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( ) ∈ = ⋅ ⋅ ⋅
=

∏ for all   �
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PROOF If X1, j = 1, . . . , k are independent, then by Theorem 1(ii),

f x x f xX X k X j
j

k

k j1 1
1

, , , , .⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( )
=

∏
Hence

φX X k j j
j

k
it X

j

k
it X

j
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j j j jx x E i t X E e Ee
1 1

1 1 1
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⎞

⎠
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⎞
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= = =
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by Lemmas 1 and 2, and this is Πk
j=1φXj

(tj). Let us assume now that

φ φX X k X j
j

k

k j
t t t

1 1
1

, , , , .⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) = ( )
=

∏
For the discrete case, we have (see Theorem 2(i) in Chapter 6)
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and for the multidimensional case, we have (see Theorem 2′(i) in Chapter 6)
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That is, Xj, j = 1, . . . , k are independent by Theorem 1(ii). For the continuous
case, we have

f x
e

it h
e t dt j kX j

h T

it h

j
T

T it h
X j jj

j

j

j
( ) = − ( ) = ⋅ ⋅ ⋅→ →∞

−

−

−∫lim lim , , , ,
0

1
2

1
1

π
φ

and for the multidimensional case, we have (see Theorem 2′(ii) in Chapter 6)
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which again establishes independence of Xj, j = 1, . . . , k by Theorem
1(ii). ▲

REMARK 4 A version of this theorem involving m.g.f.’s can be formulated, if
the m.g.f.’s exist.

COROLLARY Let X1, X2 have the Bivariate Normal distribution. Then X1, X2 are indepen-
dent if and only if they are uncorrelated.

PROOF We have seen that (see Bivariate Normal in Section 3.3 of Chapter 3)

f x x eX X
q

1 2 1 2

1 2
2

21

2 1
, , ,( ) =

−
−
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Thus, if X1, X2 are uncorrelated, so that ρ = 0, then

f x x f x f xX X X X1 2 1 21 2 1 2, , ,( ) = ( ) ⋅ ( )
that is, X1, X2 are independent. The converse is always true by Corollary 1 in
Section 7.2. ▲

Exercises

7.1.1 Let Xj, j = 1, . . . , n be i.i.d. r.v.’s with p.d.f. f and d.f. F. Set

X X X X X Xn n n1 1 1( ) = ⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( )min , , , max , , ;

that is,

X s X s X s X s X s X sn n n1 1 1( ) ( )( ) = ( ) ⋅ ⋅ ⋅ ( )[ ] ( ) = ( ) ⋅ ⋅ ⋅ ( )[ ]min , , , max , , .

Then express the d.f. and p.d.f. of X(1), X(n) in terms of f and F.

7.1.2 Let the r.v.’s X1, X2 have p.d.f. f given by f(x1, x2) = I(0,1) × (0,1)(x1, x2).

ii) Show that X1, X2 are independent and identify their common distribution;

ii) Find the following probabilities: P(X1 + X2 < 1
3

), P( X1
2 + X 2

2 < 1
4

),
P(X1X2 > 1

2
).

7.1.3 Let X1, X2 be two r.v.’s with p.d.f. f given by f(x1, x2) = g(x1)h(x2).
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ii) Derive the p.d.f. of X1 and X2 and show that X1, X2 are independent;

ii) Calculate the probability P(X1 > X2) if g = h and h is of the continuous
type.

7.1.4 Let X1, X2, X3 be r.v.’s with p.d.f. f given by f(x1, x2, x3) = 8x1x2x3 IA(x1,
x2, x3), where A = (0, 1) × (0, 1) × (0, 1).

ii) Show that these r.v.’s are independent;

ii) Calculate the probability P(X1 < X2 < X3).

7.1.5 Let X1, X2 be two r.v.’s with p.d.f f given by f(x1, x2) = cIA(x1, x2), where
A = {(x1, x2)′ ∈ �2; x1

2 + x2
2 ≤ 9}.

ii) Determine the constant c;

ii) Show that X1, X2 are dependent.

7.1.6 Let the r.v.’s X1, X2, X3 be jointly distributed with p.d.f. f given by

f x x x I x x xA1 2 3 1 2 3

1
4

, , , , ,    ( ) = ( )
where

A = ( ) ( ) ( ) ( ){ }1 0 0 0 1 0 0 0 1 1 1 1, , , , , , , , , , , .           

Then show that

ii) Xi, Xj, i ≠ j, are independent;

ii) X1, X2, X3 are dependent.

7.1.7 Refer to Exercise 4.2.5 in Chapter 4 and show that the r.v.’s X1, X2, X3

are independent. Utilize this result in order to find the p.d.f. of X1 + X2 and X1

+ X2 + X3.

7.1.8 Let Xj, j = 1, . . . , n be i.i.d. r.v.’s with p.d.f. f and let B be a (Borel) set
in �.

iii) In terms of f, express the probability that at least k of the X’s lie in B for
some fixed k with 1 ≤ k ≤ n;

iii) Simplify this expression if f is the Negative Exponential p.d.f. with param-
eter λ and B = (1/λ, ∞);

iii) Find a numerical answer for n = 10, k = 5, λ = 1
2
.

7.1.9 Let X1, X2 be two independent r.v.’s and let g: � → � be measurable.
Let also Eg(X2) be finite. Then show that E[g(X2) | X1 = x1] = Eg(X2).

7.1.10 If Xj, j = 1, . . . , n are i.i.d. r.v.’s with ch.f. φ and sample mean X ,
express the ch.f. of X  in terms of φ.

7.1.11 For two i.i.d. r.v.’s X1, X2, show that φX1−X2
(t) = |φX1

(t)|2, t ∈ �. (Hint:
Use Exercise 6.2.3 in Chapter 6.)

Exercises 169



170 7 Stochastic Independence with Some Applications

7.1.12 Let X1, X2 be two r.v.’s with joint and marginal ch.f.’s φX1,X1
, φX1

 and φX2
.

Then X1, X2 are independent if and only if

  
φ φ φX X X Xt t t t t t

1 2 1 21 2 1 2 1 2, , , , .( ) = ( ) ( ) ∈�

By an example, show that

  
φ φ φX X X Xt t t t t

1 2 1 2, , , ,( ) = ( ) ( ) ∈�

does not imply independence of X1, X2.

7.2 Proof of Lemma 2 and Related Results

We now proceed with the proof of Lemma 2.

PROOF OF LEMMA 2 Suppose that the r.v.’s involved are continuous, so that
we use integrals. Replace integrals by sums in the discrete case. Thus,

E g X g x g x

f x x dx dx

g x g x f x f x
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1 1

1 1 1

1

1

, , , ,

)) ⋅ ⋅ ⋅

( )
= ( ) ( )⎡

⎣⎢
⎤
⎦⎥

⋅ ⋅ ⋅ ( ) ( )⎡
⎣⎢

⎤
⎦⎥

= ( )[ ] ⋅ ⋅ ⋅ ( )[ ]
−∞

∞

−∞

∞

∫ ∫

dx dx

g x f x dx g x f x dx

E g X E g X

k

X k k X k k

k k

k

1

1 1 1 1

1 1

1

by independence

.

Now suppose that the gj’s are complex-valued, and for simplicity, set gj(Xj) = Yj

= Yj1 + Yj2, j = 1, . . . , k. For k = 2,

E Y Y E Y iY Y iY

E Y Y Y Y iE Y Y Y Y

E Y Y E Y Y i E Y Y E Y Y

EY EY EY EY i EY EY

1 2 11 12 21 22

11 21 12 22 11 22 12 21

11 21 12 22 11 22 12 21

11 21 12 22 11

( ) = +( ) +( )[ ]
= −( ) + +( )
= ( ) − ( )[ ] + ( ) + ( )[ ]
= ( )( ) − ( )( )[ ] + ( ) 2222 12 21

11 12 21 22 1 2

( ) − ( )( )[ ]
= +( ) +( ) = ( )( )

EY EY

EY iEY EY iEY EY EY .

Next, assume the result to be true for k = m and establish it for k = m + 1.
Indeed,
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E Y Y E Y Y Y

E Y Y EY

EY EY EY

m m m

m m

m m

1 1 1 1

1 1

1 1

⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( )[ ]
= ⋅ ⋅ ⋅( )( ) ( )
= ( ) ⋅ ⋅ ⋅ ( )( ) ( )

+ +

+

+

by the part just established

by the induction hypothesis . ▲

COROLLARY 1 The covariance of an r.v. X and of any other r.v. which is equal to a constant
c (with probability 1) is equal to 0; that is, Cov(X, c) = 0.

PROOF Cov(X, c) = E(cX) − (Ec)(EX) = cEX − cEX = 0. ▲

COROLLARY 2 If the r.v.’s X1 and X2 are independent, then they have covariance equal to 0,
provided their second moments are finite. In particular, if their variances are
also positive, then they are uncorrelated.

PROOF In fact,

Cov  

by independence and Lemma 2.

X X E X X EX EX

EX EX EX EX

1 2 1 2 1 2

1 2 1 2 0

,

,

( ) = ( ) − ( )( )
= ( )( ) − ( )( ) =

The second assertion follows since ρ(X, Y) = Cov(X, Y)/σ(X)σ(Y). ▲

REMARK 5 The converse of the above corollary need not be true. Thus
uncorrelated r.v.’s in general are not independent. (See, however, the corol-
lary to Theorem 1 after the proof of part (iii).)

COROLLARY 3 i) For any k r.v.’s Xj, j = 1, . . . , k with finite second moments and variances
σ j

2 = σ2(Xj), and any constants cj, j = 1, . . . , k, it holds:

σ σ

σ

2

1

2 2

1 1

2 2

1 1

2

c X c c c X X

c c c X X

j j
j

k

j j
j

k

i j k
i j i j

j j
j

k

i j k
i j i j

= = ≤ ≠ ≤

= ≤ < ≤

∑ ∑ ∑

∑ ∑

⎛

⎝⎜
⎞

⎠⎟
= + ( )

= + ( )

Cov  

Cov  

,

, .

ii) If also σj > 0, j = 1, . . . , k, and ρij = ρ(Xi, Xj), i ≠ j, then:

σ σ σ σ ρ

σ σ σ ρ

2

1

2 2

1 1

2 2

1 1

2

c X c c c

c c c

j j
j

k

j j
j

k

i j k
i j i j ij

j j
j

k

i j k
i j i j ij

= = ≤ ≠ ≤

= ≤ < ≤

∑ ∑ ∑

∑ ∑

⎛

⎝⎜
⎞

⎠⎟
= +

= + .

In particular, if the r.v.’s are independent or have pairwise covariances 0
(are pairwise uncorrelated), then:

iii) σ2(∑k
j =1cjXj) = ∑k

j=1c
2
jσ2

j, and

iii′′′′′) σ2(∑k
j =1Xj) = ∑k

j=1σ2
j (Bienaymé equality).

7.2 Proof of Lemma 2 and Related Results 171
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PROOF

ii′′′′′i) Indeed,

σ 2

1 1 1

2

1

2

2 2

c X E c X E c X

E c X EX

E c X EX c c X EX X EX

j j
j

k

j j
j

k

j j
j

k

j j j
j

k

j j j i j i i j j
i jj

= = =

=

≠=

∑ ∑ ∑

∑

∑

⎛

⎝⎜
⎞

⎠⎟
= −

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −( ) + −( ) −( )
11

2 2

1 1

2 2

1 1

2

k

j j
j

k

i j k
i j i j

j j
j

k

i j k
i j i j

i j j i

c c c X X

c c c X X

X X X X

∑

∑ ∑

∑ ∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= + ( )

= + ( )
( ) = ( )( )

= ≤ ≠ ≤

= ≤ < ≤

σ

σ

Cov  

Cov  

since Cov  Cov  

,

,

, , .

This establishes part (i). Part (ii) follows by the fact that Cov(Xi, Xj) =
σiσjρij = σjσiρji.

iii) Here Cov (Xi, Xj) = 0, i ≠ j, either because of independence and Corollary
2, or ρij = 0, in case σj > 0, j = 1, . . . , k. Then the assertion follows from
either part (i) or part (ii), respectively.

iii′′′′′) Follows from part (iii) for c1 = · · · = ck = 1. ▲

Exercises

7.2.1 For any k r.v.’s Xj, j = 1, . . . , k for which E(Xj) = μ (finite) j = 1, . . . , k,
show that

X X X k X kS k Xj
j

k

j
j

k

−( ) = −( ) + −( ) = + −( )
= =

∑ ∑μ μ μ
2

1

2

1

2 2 2
,

where

X
k

X S
k

X Xj
j

k

j
j

k

= = −( )
= =

∑ ∑1 1

1

2

1

2

and .

7.2.2 Refer to Exercise 4.2.5 in Chapter 4 and find the E(X1 X2), E(X1 X2 X3),
σ2(X1 + X2), σ2(X1 + X2 + X3) without integration.

7.2.3 Let Xj, j = 1, . . . , n be independent r.v.’s with finite moments of third
order. Then show that

E X EX E X EXj j
j

n

j j
j

n

−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −( )
= =

∑ ∑
1

3
3

1

.

7.2.4 Let Xj, j = 1, . . . , n be i.i.d. r.v.’s with mean μ and variance σ2, both finite.
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ii) In terms of α, c and σ, find the smallest value of n for which the probability
that X  (the sample mean of the X’s) and μ differ in absolute value at most
by c is at least α;

ii) Give a numerical answer if α = 0.90, c = 0.1 and σ = 2.

7.2.5 Let X1, X2 be two r.v.’s taking on the values −1, 0, 1 with the following
respective probabilities:

f f f

f f f

f f f

−( ) = −( ) = − −( ) =

−( ) = ( ) = ( ) = > + =

−( ) = ( ) = ( ) =

1 1 1 0 1 1

0 1 0 0 0 0 1 0
1
4

1 1 1 0 1 1

, , , , ,

, , , , , ; , , .

, , , , , .

   

    

   

α β α

β β α β α β

α β α

Then show that:

ii) Cov(X1, X2) = 0, so that ρ = 0;

ii) X1, X2 are dependent.

7.3 Some Consequences of Independence

The basic assumption throughout this section is that the r.v.’s involved are
independent. Then ch.f.’s are used very effectively in deriving certain “classic”
theorems, as will be seen below. The m.g.f.’s, when they exist, can be used in
the same way as the ch.f.’s. However, we will restrict ourselves to the case of
ch.f.’s alone. In all cases, the conclusions of the theorems will be reached by
way of Theorem 3 in Chapter 6, without explicitly mentioning it.

THEOREM 2 Let Xj be B(nj, p), j = 1, . . . , k and independent. Then

X X B n p n nj
j

k

j
j

k

= ( ) =
= =

∑ ∑
1 1

is  where, , .

(That is, the sum of independent Binomially distributed r.v.’s with the same
parameter p and possibly distinct nj’s is also Binomially distributed.)

PROOF It suffices to prove that the ch.f. of X is that of a B(n, p) r.v., where
n is as above. For simplicity, writing ∑jXj instead of ∑k

j=1Xj, when this last
expression appears as a subscript here and thereafter, we have

φ φ φX X X
j

k
it

n
it

n

j

k

t t t pe q pe q
j j j

j( ) = ( ) = ( ) = +( ) = +( )
= =

∏ ∏Σ
1 1

which is the ch.f. of a B(n, p) r.v., as we desired to prove. ▲

THEOREM 3 Let Xj be P(λj), j = 1, . . . , k and independent. Then

X X Pj
j

k

j
j

k

= ( ) =
=

∑ ∑
1 1

is where
=

λ λ λ, .

7.3 Some Consequences of Independence 173
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(That is, the sum of independent Poisson distributed r.v.’s is also Poisson
distributed.)

PROOF We have

φ φ φ λ λ

λ λ λ λ

X X X
j

k

j
it

j
j

k

it
j

j

k

j
j

k
it

t t t e

e e

j j j
( ) = ( ) = ( ) = −( )

= −
⎛

⎝⎜
⎞

⎠⎟
= −( )

= =

= =

∏ ∏

∑ ∑

Σ
1 1

1 1

exp

exp exp

which is the ch.f. of a P(λ) r.v. ▲

THEOREM 4 Let Xj, be N(μj, σ2
j), j = 1, . . . , k and independent. Then

ii) X = ∑k
j=1Xj is N(μ, σ2), where μ = ∑k

j=1μj, σ2 = ∑k
j =1σ2

j, and, more generally,

ii) X = ∑k
j =1cjXj is N(μ, σ2), where μ = ∑k

j =1cjμj, σ2 = ∑k
j=1c

2
jσ2

j.

(That is, the sum of independent Normally distributed r.v.’s is Normally dis-
tributed.)

PROOF (ii) We have

φ φ φ μ
σ

μ σ

X c X X j
j

k

j j
j j

j

k

t t c t ic t
c t

it
t

j j j j
( ) = ( ) = ( ) = −

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
⎛

⎝⎜
⎞

⎠⎟

= =
∏ ∏Σ

1

2 2 2

1

2 2

2

2

exp

exp

with μ and σ2 as in (ii) above. Hence X is N(μ, σ2). (i) Follows from (ii) by
setting c1 = c2 = · · · = ck = 1. ▲

Now let Xj, j = 1, . . . , k be any k independent r.v.’s with

E X X j kj j( ) = ( ) = = ⋅ ⋅ ⋅μ σ σ, , , , .2 2 1

Set

X
k

X j
j

k

=
=

∑1

1

.

By assuming that the X’s are normal, we get

COROLLARY Let Xj be N(μ, σ2), j = 1, . . . , k and independent. Then X  is N(μ, σ2/k), or
equivalently, [ k ( X − μ)]/σ is N(0, 1).

PROOF In (ii) of Theorem 4, we set

c c
kk k k1 1 1

2 2 21= ⋅ ⋅ ⋅ = = = ⋅ ⋅ ⋅ = = = ⋅ ⋅ ⋅ = =, ,μ μ μ σ σ σand

and get the first conclusion. The second follows from the first by the use of
Theorem 4, Chapter 4, since
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k X X

k

−( )
=

−( )μ
σ

μ

σ 2
. ▲

THEOREM 5 Let Xj be χ 2
rj
, j = 1, . . . , k and independent. Then

X X r rj
j

k

r j
j

k

= =
= =

∑ ∑
1

2

1

is whereχ , .

PROOF We have

φ φ φX X X
j

k r

j

k r
t t t it it

j j j

j( ) = ( ) = ( ) = −( ) = −( )
=

−

=

−∏ ∏Σ
1

2

1

2
1 2 1 2

which is the ch.f. of a χ2
r r.v. ▲

COROLLARY 1 Let Xj be N(μj, σ2
j), j = 1, . . . , k and independent. Then

X
X j j

j
k

j

k

=
−⎛

⎝⎜
⎞

⎠⎟=
∑

μ
σ

χ
2

2

1

is .

PROOF By Lemma 1,

X
j kj j

j

−⎛

⎝⎜
⎞

⎠⎟
= ⋅ ⋅ ⋅

μ
σ

2

1, , ,  

are independent, and by Theorem 3, Chapter 4,

X
j kj j

j

−⎛

⎝⎜
⎞

⎠⎟
= ⋅ ⋅ ⋅

μ
σ

χ
2

1
2 1are  , , , .

Thus Theorem 3 applies and gives the result. ▲

Now let Xj, j = 1, . . . , k be any k r.v.’s such that E(Xj) = μ, j = 1, . . . , k.
Then the following useful identity is easily established:

X X X k X kS k Xj
j

k

j
j

k

−( ) = −( ) + −( ) = + −( )
= =

∑ ∑μ μ μ
2

1

2

1

2 2 2
,

where

S
k

X Xj
j

k
2 2

1

1= −( )
=

∑ .

If, in particular, Xj, j = 1, . . . , k are N(μ, σ2) and independent, then it will be
shown that X  and S2 are independent. (For this, see Theorem 6, Chapter 9.)

COROLLARY 2 Let Xj, be N(μ, σ2), j = 1, . . . , k and independent. Then kS2/σ2 is χ2
k−1.

PROOF We have

X k X kSj

j

k −⎛

⎝⎜
⎞

⎠⎟
=

−( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+
=

∑
μ

σ
μ

σ σ

2

1

2
2

2
.
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Now

X j
k

j

k −⎛

⎝⎜
⎞

⎠⎟=
∑

μ
σ

χ
2

2

1

is

by Corollary 1 above, and

k X −( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

μ
σ

χ

2

1
2is ,

by Theorem 3, Chapter 4. Then taking ch.f.’s of both sides of the last identity
above, we get (1 − 2it)−k/2 = (1 − 2it)−1/2 φkS2/σ2(t).

Hence φkS2/σ2(t) = (1 − 2it)−(k−1)/2 which is the ch.f. of a χ2
k−1 r.v. ▲

REMARK 6 It thus follows that,

E
kS

k
kS

k
2

2
2

2

2
1 2 1

σ
σ

σ
⎛

⎝⎜
⎞

⎠⎟
= −

⎛

⎝⎜
⎞

⎠⎟
= −( ), ,and

or

ES
k

k
S

k

k
2 2 2 2

2
41 2 1

= − ( ) =
−( )

σ σ σ, .and

The following result demonstrates that the sum of independent r.v.’s
having a certain distribution need not have a distribution of the same kind, as
was the case in Theorems 2–5 above.

THEOREM 6 Let Xj, j = 1, . . . , k be independent r.v.’s having the Cauchy distribution with
parameters μ = 0 and σ = 1. Then X = ∑k

j=1Xj is kY, where Y is Cauchy with μ
= 0, σ = 1, and hence, X/k = X  is Cauchy with μ = 0, σ = 1.

PROOF We have φX(t) = φ∑j
Xj(t) = [φX1

(t)]k = (e−|t|)k = e−k|t|, which is the
ch.f. of kY, where Y is Cauchy with μ = 0, σ = 1. The second statement is
immediate. ▲

Exercises

7.3.1 For j = 1, . . . , n, let Xj be independent r.v.’s distributed as P(λj), and set

T X j
j

n

j
j

n

= =
= =

∑ ∑
1 1

, .λ λ

Then show that

ii) The conditional p.d.f. of Xj, given T = t, is B(t, λ1j/λ), j = 1, . . . , n;

ii) The conditional joint p.d.f. of Xj, j = 1, . . . , n, given T = t, is the Multinomial
p.d.f. with parameters t and pj = λj/λ, j = 1, . . . , n.

7.3.2 If the independent r.v.’s Xj, j = 1, . . . , r have the Geometric distribution
with parameter p, show that the r.v. X = X1 + · · · + Xr has the Negative
Binomial distribution with parameters r and p.
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7.3.3 The life of a certain part in a new automobile is an r.v. X whose p.d.f.
is Negative Exponential with parameter λ = 0.005 day.

iii) Find the expected life of the part in question;

iii) If the automobile comes supplied with a spare part, whose life is an r.v. Y
distributed as X and independent of it, find the p.d.f. of the combined life
of the part and its spare;

iii) What is the probability that X + Y ≥ 500 days?

7.3.4 Let X1, X2 be independent r.v.’s distributed as B(n1, p1) and B(n2, p2),
respectively. Determine the distribution of the r.v.’s X1 + X2, X1 − X2 and X1 −
X2 + n2.

7.3.5 Let X1, X2 be independent r.v.’s distributed as N(μ1, σ2
1), and N(μ2, σ2

2),
respectively. Calculate the probability P(X1 − X2 > 0) as a function of μ1, μ2 and
σ1, σ2. (For example, X1 may represent the tensile strength (measured in p.s.i.)
of a steel cable and X2 may represent the strains applied on this cable. Then
P(X1 − X2 > 0) is the probability that the cable does not break.)

7.3.6 Let Xi, i = 1, . . . , m and Yj, j = 1, . . . , n be independent r.v.’s such that
the X’s are distributed as N(μ1, σ2

1) and the Y’s are distributed as N(μ2, σ2
2).

Then

ii) Calculate the probability P( X > Y ) as a function of m, n, μ1, μ2 and σ1, σ2;

ii) Give the numerical value of this probability for m = 10, n = 15, μ1 = μ2 and
σ2

1 = σ2
2 = 6.

7.3.7 Let X1 and X2 be independent r.v.’s distributed as χ2
r1
 and χ2

r2
, respec-

tively, and for any two constants c1 and c2, set X = c1X1 + c2X2. Under what
conditions on c1 and c2 is the r.v. X distributed as χ2

r? Also, specify r.

7.3.8 Let Xj, j = 1, . . . , n be independent r.v.’s distributed as N(μ, σ2) and set

X X Y Xj j
j

n

j j
j

n

= =
= =

∑ ∑α β, ,
1 1

where the α’s and β’s are constants. Then

ii) Find the p.d.f.’s of the r.v.’s X, Y;

ii) Under what conditions on the α’s and β’s are the r.v.’s X and Y
independent?

7.4* Independence of Classes of Events and Related Results

In this section, we give an alternative definition of independence of r.v.’s,
which allows us to present a proof of Lemma 1. An additional result, Lemma
3, is also stated, which provides a parsimonious way of checking independence
of r.v.’s.

7.4* Independence of Classes of Events and Related Results 177
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To start with, consider the probability space (S, A, P) and recall that k
events A1, . . . , Ak are said to be independent if for all 2 ≤ m ≤ k and all 1 ≤ i1

< · · · < im ≤ k, it holds that P(Ai1
∩ · · · ∩ Aim

) = P(Ai1
) · · · P(Aim

). This definition
is extended to any subclasses of Cj, j = 1, . . . , k, as follows:

DEFINITION 2 We say that Cj, j = 1, . . . , k are (stochastically) independent (or independent in
the probability sense, or statistically independent) if for every Aj ∈ Cj, j = 1, . . . ,
k, the events A1, . . . , Ak are independent.

It is an immediate consequence of this definition that subclasses of inde-
pendent classes are independent. The next step is to carry over the definition
of independence to r.v.’s. To this end, let X be a random variable. Then we
have seen (Theorem 1, Chapter 3) that X−1(B) is a σ-field, sub-σ-field
of A, the σ-field induced by X. Thus, if we consider the r.v.’s Xj, j = 1, . . . , k,
we will have the σ-fields induced by them which we denote by Aj = Xj

−1(B),
j = 1, . . . , k.

DEFINITION 3 We say that the r.v.’s Xj, j = 1, . . . , k are independent (in any one of the modes
mentioned in the previous definition) if the σ-fields induced by them are
independent.

From the very definition of Xj
−1(B), for every Aj ∈ Xj

−1(B) there exists Bj

∈B such that Aj = Xj
−1(Bj), j = 1, . . . , k. The converse is also obviously true; that

is, Xj
−1(Bj) ∈ Xj

−1(B), for every Bj ∈B, j = 1, . . . , k. On the basis of these
observations, the previous definition is equivalent to Definition 1. Actually,
Definition 3 can be weakened considerably, as explained in Lemma 3 below.

According to the following statement, in order to establish independence
of the r.v.’s Xj, j = 1, . . . , k, it suffices to establish independence of the (much
“smaller”) classes Cj, j = 1, . . . , k, where Cj = Xj

−1({(−∞, x], x ∈�}). More
precisely,

LEMMA 3 Let

    A B Cj j j jX X x x j k= ( ) = −∞( ] ∈{ }( ) = ⋅ ⋅ ⋅
− −1 1 1and     , ; , , , .�

Then if Cj are independent, so are Aj, j = 1, . . . , k.

PROOF By Definition 3, independence of the r.v.’s Xj, j = 1, . . . , k means
independence of the σ-fields. That independence of those σ-fields is implied by
independence of the classes Cj, j = 1, . . . , k, is an involved result in probability
theory and it cannot be discussed here. ▲

We may now proceed with the proof of Lemma 1.

PROOF OF LEMMA 1 In the first place, if X is an r.v. and AX = X−1(B), and
if g(X) is a measurable function of X and Ag(X) = [g(X)]−1(B), then Ag(X) ⊆ AX.
In fact, let A ∈ Ag(X). Then there exists B ∈ B such that A = [g(X)]−1 (B). But

A g X B X g B X B= ( )[ ] ( ) = ( )[ ] = ′( )− − − −1
1 1 1 ,
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where B′ = g−1 (B) and by the measurability of g, B′ ∈ B. It follows that X−1 (B′)
∈AX and thus, A ∈AX. Let now Aj = Xj

−1(B) and

  A Bj jg X j k* , , , .= ( )[ ] ( ) = ⋅ ⋅ ⋅
−1

1

Then

  A Aj j j k* , , , ,⊆ = ⋅ ⋅ ⋅1

and since Aj, j = 1, · · · , k, are independent, so are A*j , j = 1, . . . , k. ▲

Exercise

7.4.1 Consider the probability space (S, A, P) and let A1, A2 be events. Set
X1 = IA1

, X2 = IA2
 and show that X1, X2 are independent if and only if A1, A2 are

independent. Generalize it for the case of n events Aj, j = 1, . . . , n.

Exercise 179
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8.1 Some Modes of Convergence

Let {Xn}, n = 1, 2, . . . be a sequence of random variables and let X be a random
variable defined on the sample space S supplied with a class of events A and
a probability function P (that is, the sequence of the r.v.’s and the r.v. X are
defined on the probability space (S, A, P)). For such a sequence of r.v.’s four
kinds of convergence are defined, and some comments are provided as to their
nature. An illustrative example is also discussed.

i) We say that {Xn} converges almost surely (a.s.), or with probability one, to
X as n → ∞, and we write Xn

a.s.⎯ →⎯
→∞n

 X, or Xn ⎯ →⎯→∞n  X with probability 1,
or P[Xn ⎯ →⎯→∞n X] = 1, if Xn(s) ⎯ →⎯→∞n  X(s) for all s ∈ S except possibly for
a subset N of S such that P(N) = 0.

Thus Xn
a.s.⎯ →⎯
→∞n

 X means that for every ε > 0 and for every s ∈ Nc there
exists N(ε, s) > 0 such that

X s X sn( ) − ( ) < ε

for all n ≥ N(ε, s). This type of convergence is also known as strong
convergence.

ii) We say that {Xn} converges in probability to X as n → ∞, and we write
Xn

P

n
⎯ →⎯

→∞
 X, if for every ε > 0, P[|Xn − X| > ε] ⎯ →⎯→∞n  0.

Thus Xn
P

n
⎯ →⎯

→∞
X means that: For every ε, δ > 0 there exists N(ε, δ ) > 0

such that P[|Xn − X| > ε] < δ for all n ≥ N(ε, δ ).

REMARK 1 Since P[|Xn − X| > ε] + P[|Xn − X| ≤ ε] = 1, then Xn
P

n
⎯ →⎯

→∞
X is

equivalent to: P[|Xn − X| ≤ ε] ⎯ →⎯→∞n  1. Also if P[|Xn − X| > ε] ⎯ →⎯→∞n  0 for every
ε > 0, then clearly P[|Xn − X| ≥ ε] ⎯ →⎯→∞n  0.
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Let now Fn = FXn
, F = FX. Then

iii) We say that {Xn} converges in distribution to X as n → ∞, and we write
Xn

d

n
⎯ →⎯

→∞
X, if Fn(x) ⎯ →⎯→∞n F(x) for all x ∈� for which F is continuous.

Thus Xn
d

n
⎯ →⎯

→∞
X means that: For every ε > 0 and every x for which

F is continuous there exists N(ε, x) such that |Fn(x) − F(x)| < ε for all
n ≥ N(ε, x). This type of convergence is also known as weak convergence.

REMARK 2 If Fn have p.d.f.’s fn, then Xn
d

n
⎯ →⎯

→∞
X does not necessarily imply

the convergence of fn(x) to a p.d.f., as the following example illustrates.

For n = 1, 2, . . . , consider the p.d.f.’s defined by

f x
x n x n

n ( ) = = − ( ) = + ( )⎧
⎨
⎪

⎩⎪

1

2
1 1 1 1

0

,

,

if or

otherwise.

Then, clearly, fn(x) ⎯ →⎯→∞n f(x) = 0 for all x ∈� and f(x) is not a p.d.f.
Next, the d.f. Fn corresponding to fn is given by

F x

x n

n x n

x n
n ( ) =

< − ( )
− ( ) ≤ < + ( )
≥ + ( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

0 1 1

1 1 1 1

1 1 1

1

2

,

,

, .

if

if

if
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EXAMPLE 1

1

0 1

1
2

1 

1
n1 �

1
n

Fn

Figure 8.1

One sees that Fn(x) ⎯ →⎯→∞n F(x) for all x ≠ 1, where F(x) is defined by

F x
x

x
( ) =

<
≥

⎧
⎨
⎩

0 1

1

,

,

if

1, if

which is a d.f.
Under further conditions on fn, f, it may be the case, however, that fn

converges to a p.d.f. f.
We now assume that E|Xn|

2 < ∞, n = 1, 2, . . . , Then:

iv) We say that {Xn} converges to X in quadratic mean (q.m.) as n → ∞, and we
write Xn

q.m.⎯ →⎯⎯
→∞n

X, if E|Xn − X|2 ⎯ →⎯→∞n  0.
Thus Xn

q.m.⎯ →⎯⎯
→∞n

X means that: For every ε > 0, there exists N(ε) > 0 such
that E|Xn − X|2 < ε for all n ≥ N(ε).
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REMARK 3 Almost sure convergence is the familiar pointwise convergence
of the sequence of numbers {Xn(s)} for every s outside of an event N of
probability zero (a null event). Convergence in distribution is also a pointwise
convergence of the sequence of numbers {Fn(x)} for every x for which F is
continuous. Convergence in probability, however, is of a different nature. By
setting An = {s ∈S; |Xn(s) − X(s)| > ε} for an arbitrary but fixed ε > 0, we have
that Xn

P

n
⎯ →⎯

→∞
X, if P(An) ⎯ →⎯→∞n  0. So the sequence of numbers {P(An)} tends

to 0, as n → ∞, but the events An themselves keep wandering around the
sample space S. Finally, convergence in quadratic mean simply signifies that
the averages E|Xn − X|2 converge to 0 as n → ∞.

Exercises

8.1.1 For n = 1, 2, . . . , n, let Xn be independent r.v.’s such that

P X p P X pn n n n=( ) = =( ) = −1 0 1, .

Under what conditions on the pn’s does Xn
P

n
⎯ →⎯

→∞
 0?

8.1.2 For n = 1, 2, . . . , let Xn be an r.v. with d.f. Fn given by Fn(x) = 0 if
x < n and Fn(x) = 1 if x ≥ n. Then show that Fn(x) ⎯ →⎯→∞n  0 for every x ∈�.
Thus a convergent sequence of d.f.’s need not converge to a d.f.

8.1.3 Let Xj, j = 1, . . . , n, be i.i.d. r.v.’s such that EXj = μ, σ 2(Xj) = σ 2, both
finite. Show that E(X̄n − μ)2 ⎯ →⎯→∞n  0.

8.1.4 For n = 1, 2, . . . , let Xn, Yn be r.v.’s such that E(Xn − Yn)
2 ⎯ →⎯→∞n  0 and

suppose that E(Xn − X)2 ⎯ →⎯→∞n  0 for some r.v. X. Then show that Yn
q.m.⎯ →⎯⎯
→∞n

X.

8.1.5 Let Xj , j = 1, . . . , n be independent r.v.’s distributed as U(0, 1), and
set Yn = min(X1, . . . , Xn), Zn = max(X1, . . . , Xn), Un = nYn, Vn = n(1 − Zn).
Then show that, as n → ∞, one has

i) Yn
P⎯ →⎯  0;

ii) Zn
P⎯ →⎯  1;

iii) Un
d⎯ →⎯ U;

iv) Vn
d⎯ →⎯ V, where U and V have the negative exponential distribution

with parameter λ = 1.

8.2 Relationships Among the Various Modes of Convergence

The following theorem states the relationships which exist among the various
modes of convergence.
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i) Xn
a.s.⎯ →⎯
→∞n

X implies Xn
P

n
⎯ →⎯

→∞
X.

ii) Xn
q.m.⎯ →⎯⎯
→∞n

X implies Xn
P

n
⎯ →⎯

→∞
X.

iii) Xn
P

n
⎯ →⎯

→∞
X implies Xn

d

n
⎯ →⎯

→∞
X. The converse is also true if X is degener-

ate; that is, P[X = c] = 1 for some constant c. In terms of a diagram this is

a.s. conv.  conv. in prob. conv. in dist.

conv. in q.m.

⇒ ⇒
⇑

PROOF
i) Let A be the subset of S on which Xn ⎯ →⎯→∞n X. Then it is not hard to see

(see Exercise 8.2.4) that

A X X
kn r

rnk

= − <
⎛
⎝⎜

⎞
⎠⎟+

=

∞

=

∞

=

∞ 1

111
IUI ,

so that the set Ac for which Xn ⎯ →⎯→∞n X is given by

A X X
k

c
n r

rnk

= − ≥
⎛
⎝⎜

⎞
⎠⎟+

=

∞

=

∞

=

∞ 1

111
UIU .

The sets A, Ac as well as those appearing in the remaining of this discus-
sion are all events, and hence we can take their probabilities. By setting

B X X
kk n r

rn

= − ≥
⎛
⎝⎜

⎞
⎠⎟+

=

∞

=

∞ 1

11
UI ,

we have Bk↑Ac, as k → ∞, so that P(Bk) → P(Ac), by Theorem 2, Chapter
2. Thus if Xn

a.s.⎯ →⎯
→∞n

X, then P(Ac) = 0, and therefore P(Bk) = 0, k ≥ 1. Next,
it is clear that for every fixed k, and as n → ∞, Cn↓Bk, where

C X X
kn n r

r

= − ≥
⎛
⎝⎜

⎞
⎠⎟+

=

∞ 1

1
U .

Hence P(Cn)↓P(Bk) = 0 by Theorem 2, Chapter 2, again. To summarize, if
Xn

a.s.⎯ →⎯
→∞n

X, which is equivalent to saying that P(Ac) = 0, one has that
P(Cn) ⎯ →⎯→∞n  0. But for any fixed positive integer m,

X X
k

X X
kn m n r

r
+ +

=

∞

− ≥
⎛
⎝⎜

⎞
⎠⎟

⊆ − ≥
⎛
⎝⎜

⎞
⎠⎟

1 1

1
U ,

so that

P X X
k

P X X
k

P Cn m n r
r

n n+ +
=

∞

→∞
− ≥

⎛
⎝⎜

⎞
⎠⎟

≤ − ≥
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ( ) ⎯ →⎯1 1
0

1
U

for every k ≥ 1. However, this is equalivalent to saying that Xn
P

n
⎯ →⎯

→∞
X, as

was to be seen.

ii) By special case 1 (applied with r = 2) of Theorem 1, we have

P X X
E X X

n

n− >[ ] ≤
−

ε
ε

2

2
.

THEOREM 1
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Thus, if Xn
q.m.⎯ →⎯⎯
→∞n

X, then E|Xn − X|2 ⎯ →⎯→∞n  0 implies P[|Xn − X| > ε] ⎯ →⎯→∞n

0 for every ε > 0, or equivalently, Xn
P

n
⎯ →⎯

→∞
X.

iii) Let x ∈� be a continuity point of F and let ε > 0 be given. Then we have

X x X x X x X x X x

X x X x X x

X x X X

n n

n n

n n

≤ −[ ] = ≤ ≤ −[ ] + > ≤ −[ ]
⊆ ≤[ ] + > ≤ −[ ]
⊆ ≤[ ]∪ − ≥[ ]

ε ε ε

ε

ε

, ,

,

,

since
X x X x X x X x

X X X X

n n

n n

> ≤ −[ ] = > − ≥ − +[ ]
⊆ − ≥[ ] ⊆ − ≥[ ]

, ,

.

ε ε

ε ε
So

X x X x X Xn n≤ −[ ] ⊆ ≤[ ]∪ − ≥[ ]ε ε

implies

P X x P X x P X Xn n≤ −[ ] ≤ ≤[ ] + − ≥[ ]ε ε ,

or

F x F x P X Xn n−( ) ≤ ( ) + − ≥[ ]ε ε .

Thus, if Xn
P

n
⎯ →⎯

→∞
X, then we have by taking limits

F x F x
n n−( ) ≤ ( )→∞

ε lim inf . (1)

In a similar manner one can show that

limsup .
n nF x F x

→∞ ( ) ≤ +( )ε (2)

But (1) and (2) imply F(x − ε) ≤ liminf
n→∞

Fn(x) ≤ limsup
n→∞

Fn(x) ≤ F(x + ε).
Letting ε → 0, we get (by the fact that x is a continuity point of F) that

F x F x F x F x
n n n n( ) ≤ ( ) ≤ ( ) ≤ ( )→∞ →∞

lim inf lim sup .

Hence lim
n→∞

Fn(x) exists and equals F(x). Assume now that P[X = c] = 1. Then

F x
x c

x c
( ) =

<
≥

⎧
⎨
⎩

0

1

,

,

and our assumption is that Fn(x) ⎯ →⎯→∞n F(x), x ≠ c. We must show that
Xn

P

n
⎯ →⎯

→∞
c. We have

P X c P X c

P c X c

P X c P X c

P X c P X c

F c F c

n n

n

n n

n n

n n

− ≤[ ] = − ≤ − ≤[ ]
= − ≤ ≤ +[ ]
= ≤ +[ ] − < −[ ]
≥ ≤ +[ ] − ≤ −[ ]
= +( ) − −( )

ε ε ε

ε ε

ε ε

ε ε

ε ε .
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Since c − ε, c + ε are continuity points of F, we get

lim .
n

nP X c F c F c
→∞

− ≤[ ] ≥ +( ) − −( ) = − =ε ε ε 1 0 1

Thus

P X cn
n

− ≤[ ] ⎯ →⎯
→∞

ε 1. ▲

REMARK 4 It is shown by the following example that the converse in (i) is
not true.

Let S = (0, 1], and let P be the probability function which assigns to
subintervals of (0, 1] as measures of their length. (This is known as the
Lebesgue measure over (0, 1].) Define the sequence X1, X2, . . . of r.v.’s as
follows: For each k = 1, 2, . . . , divide (0, 1] into 2k−1 subintervals of equal
length. These intervals are then given by

j j
j

k k
k−⎛

⎝⎜
⎤

⎦
⎥ = ⋅ ⋅ ⋅− −

−1

2 2
1 2 2

1 1
1, , , , , .

For each k = 1, 2, . . . , we define a group of 2k−1 r.v.’s, whose subscripts range
from 2k−1 to 2k − 1, in the following way: There are (2k − 1) − (2k−1 − 1) = 2k−1 r.v.’s
within this group. We define the jth r.v. in this group to be equal to 1 for

s
j j

k k
∈ −⎛

⎝⎜
⎤

⎦
⎥− −

1

2 21 1
, and 0,  otherwise.

We assert that the so constructed sequence X1, X2, . . . of r.v.’s converges to
0 in probability, while it converges nowhere pointwise, not even for a single
s ∈ (0, 1]. In fact, by Theorem 1(ii), it suffices to show that Xn

q.m.⎯ →⎯⎯
→∞n

 0;
that is, EX 2

n ⎯ →⎯→∞n  0. For any n ≥ 1, we have that Xn is the indicator of an
interval

j j
k k

−⎛
⎝⎜

⎤

⎦
⎥− −

1

2 21 1
,

for some k and j as above. Hence EX 2
n = 1/2k−1. It is also clear that for m > n,

EX 2
m ≤ 1/2k−1. Since for every ε > 0, 1/2k−1 < ε for all sufficiently large k, the proof

that EX 2
n ⎯ →⎯→∞n  0 is complete.

The example just discussed shows that Xn
P

n
⎯ →⎯

→∞
X need not imply that

Xn
a.s.⎯ →⎯
→∞n

X, and also that Xn
q.m.⎯ →⎯⎯
→∞n

X need not imply Xn
a.s.⎯ →⎯
→∞n

X. That
Xn

a.s.⎯ →⎯
→∞n

X need not imply that Xn
q.m.⎯ →⎯⎯
→∞n

X is seen by the following example.

Let S and P be as in Example 2, and for n ≥ 1, let Xn be defined by Xn =
nI(0,1/n]. Then, clearly, Xn ⎯ →⎯→∞n  0 but EX 2

n = n(1/n) = 1, so that Xn
q.m.⎯ →⎯⎯
→∞n

 0.

REMARK 5 In (ii), if P[X = c] = 1, then: Xn
q.m.⎯ →⎯⎯
→∞n

X if and only if

E X c Xn n n n( ) ⎯ →⎯ ( ) ⎯ →⎯→∞ →∞
, .σ 2 0

In fact,

EXAMPLE 2

EXAMPLE 3
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E X c E X EX EX c

E X EX EX c

X EX c

n n n n

n n n

n n

−( ) = −( ) + −( )[ ]
= −( ) + −( )
= ( ) + −( )

2 2

2 2

2 2
σ .

Hence E(Xn − c)2 ⎯ →⎯→∞n  0 if and only if σ 2(Xn) ⎯ →⎯→∞n  0 and EXn ⎯ →⎯→∞n c.

REMARK 6 The following example shows that the converse of (iii) is not
true.

Let S = {1, 2, 3, 4}, and on the subsets of S, let P be the discrete uniform
function. Define the following r.v.’s:

X X X X nn n n n1 2 1 3 4 0 1 2( ) = ( ) = ( ) = ( ) = = ⋅ ⋅ ⋅, , , , ,   

and

X X X X1 2 0 3 4 1( ) = ( ) = ( ) = ( ) =, .

Then

  X s X s sn( ) − ( ) = ∈1 for all S.

Hence Xn does not converge in probability to X, as n → ∞. Now,

F x

x

x

x

F x

x

x

x
X Xn

( ) =
<
≤ <
≥

⎧

⎨
⎪

⎩
⎪

( ) =
<
≤ <
≥

⎧

⎨
⎪

⎩
⎪

0 0

0 1

1 1

0 0

0 1

1 1

1

2

1

2

,

, ,

,

,

, ,

,

so that FXn
(x) = FX(x) for all x ∈�. Thus, trivially, FXn

(x) ⎯ →⎯→∞n FX(x) for all
continuity points of FX; that is, Xn

d

n
⎯ →⎯

→∞
X, but Xn does not converge in

probability to X.
Very often one is confronted with the problem of proving convergence in

distribution. The following theorem replaces this problem with that of proving
convergence of ch.f.’s, which is much easier to deal with.

(P. Lévy’s Continuity Theorem) Let {Fn} be a sequence of d.f.’s, and let F be a
d.f. Let φn be the ch.f. corresponding to Fn and φ be the ch.f. corresponding to
F. Then,

i) If Fn (x) ⎯ →⎯→∞n F(x) for all continuity points x of F, then φn(t) ⎯ →⎯→∞n φ(t), for
every t ∈�.

ii) If φn(t) converges, as n → ∞, and t ∈�, to a function g(t) which is continuous
at t = 0, then g is a ch.f., and if F is the corresponding d.f., then Fn (x) ⎯ →⎯→∞n

F(x), for all continuity points x of F.

PROOF Omitted.

REMARK 7 The assumption made in the second part of the theorem above
according to which the function g is continuous at t = 0 is essential. In fact, let
Xn be an r.v. distributed as N(0, n), so that its ch.f. is given by φn(t) = e−t 2n/2. Then

EXAMPLE 4

THEOREM 2



φn(t) ⎯ →⎯
→∞n

g(t), where g(t) = 0, if t ≠ 0, and g(0) = 1, so that g is not continuous
at 0. The conclusion in (ii) does not hold here because

F x P X x P
X

n

x

n

x

n
X n

n
nn

( ) = ≤( ) = ≤
⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
⎯ →⎯

→∞
Φ 1

2

for every x ∈ � and F(x) = 1–2 , x ∈�, is not a d.f. of an r.v.

Exercises

8.2.1 (Rényi) Let S = [0, 1) and let P be the probability function on subsets
of S, which assigns probability to intervals equal to their lengths. For n = 1,
2, . . . , define the r.v.’s Xn as follows:

X s N
j

N
s

j
NN j2 2 1

1
2 1

0
+ ( ) = +

≤ < +
+

⎧
⎨
⎪

⎩⎪

,

,

if

otherwise,

j = 0, 1, . . . , 2N, N = 1, 2, . . . . Then show that

i) Xn
P

n
⎯ →⎯

→∞
 0;

ii) Xn(s) ⎯ →⎯
→∞n

 0 for any s ∈ [0, 1);

iii) Xn2(s) ⎯ →⎯
→∞n

 0, s ∈ (0, 1);

iv) EXn ⎯ →⎯
→∞n

 0.

8.2.2 For n = 1, 2, . . . , let Xn be r.v.’s distributed as B(n, pn), where npn =
λn ⎯ →⎯

→∞n
λ(>0). Then, by using ch.f.’s, show that Xn

d

n
⎯ →⎯

→∞
X, where X is an r.v.

distributed as P(λ).

8.2.3 For n = 1, 2, . . . , let Xn be r.v.’s having the negative binomial distribu-
tion with pn and rn such that pn ⎯ →⎯

→∞n
 1, rn ⎯ →⎯

→∞n
∞, so that rn(1 − pn) = λn ⎯ →⎯

→∞n
λ(>0). Show that Xn

d

n
⎯ →⎯

→∞
X, where X is an r.v. distributed as P(λ). (Use

ch.f.’s.)

8.2.4 If the i.i.d. r.v.’s Xj, j = 1, . . . , n have a Cauchy distribution, show that
there is no finite constant c for which X̄n

P

n
⎯ →⎯

→∞
c. (Use ch.f.’s.)

8.2.5 In reference to the proof of Theorem 1, show that the set A of conver-
gence of {Xn} to X is, indeed, expressed by A = IUI rnk =

∞
=

∞
=

∞
111 (|Xn+r − X| < 1–k).

8.3 The Central Limit Theorem

We are now ready to formulate and prove the celebrated Central Limit
Theorem (CLT) in its simplest form.

(Central Limit Theorem) Let X1, . . . , Xn be i.i.d. r.v.’s with mean μ (finite) and
(finite and positive) variance σ 2. Let

THEOREM 3
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−∞∑ ∫
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21

22
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σ π
and Φ

Then Gn(x) ⎯ →⎯
→∞n

Φ(x) for every x in �.

REMARK 8
i) We often express (loosely) the CLT by writing

n X
N

S E S

S
N

n n n

n

−( )
≈ ( ) − ( )

( ) ≈ ( )μ
σ σ

0 1 0 1, , , , or  

for large n, where

S X
n X S E S

S
n j

n n n

nj

n

=
−( )

=
− ( )
( )=

∑ , . since 
μ

σ σ1

ii) In part (i), the notation Sn was used to denote the sum of the r.v.’s X1, . . . ,
Xn. This is a generally accepted notation, and we are going to adhere to
it here. It should be pointed out, however, that the same or similar
symbols have been employed elsewhere to denote different quantities
(see, for example, Corollaries 1 and 2 in Chapter 7, or Theorem 9 and
Corollary to Theorem 8 in this chapter). This point should be kept in mind
throughout.

iii) In the proof of Theorem 3 and elsewhere, the “little o” notation will be
employed as a convenient notation for the remainder in Taylor series
expansions. A relevant comment would then be in order. To this end, let
{an}, {bn}, n = 1, 2, . . . be two sequences of numbers. We say that {an} is o(bn)
(little o of bn) and we write an = o(bn), if an/bn ⎯ →⎯

→∞n
 0. For example, if an

= n and bn = n2, then an = o(bn), since n/n2 = 1/n ⎯ →⎯
→∞n

 0. Clearly, if an =
o(bn), then an = bno(1). Therefore o(bn) = bno(1).

iv) We recall the following fact which was also employed in the proof of
Theorem 3, Chapter 3. Namely, if an ⎯ →⎯

→∞n
a, then

1 +
⎛
⎝⎜

⎞
⎠⎟

⎯ →⎯
→∞

a
n

en

n

n

a.

PROOF OF THEOREM 3 We may now begin the proof. Let gn be the ch.f.
of Gn and φ be the ch.f. of Φ; that is, φ(t) = e−t2/2, t ∈�. Then, by Theorem 2, it
suffices to prove that gn(t) ⎯ →⎯

→∞n
φ(t), t ∈ �. This will imply that Gn(x) → Φ(x),

x ∈ �. We have

n X nX n

n n

X

n
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n n j

j
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n

−( )
= − =
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=

=
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∑
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1

1
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,



where Zj = (Xj − μ)/σ, j = 1, . . . , n are i.i.d. with E(Zj) = 0, σ 2(Zj) = E(Z2
j) = 1.

Hence, for simplicity, writing Σj Zj instead of Σn
j=1 Zj, when this last expression

appears as a subscript, we have

g t g t g
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n
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n
n t n Z Z Z

n

j j j j
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⎤

⎦
⎥
⎥( )Σ Σ 1

1
.

Now consider the Taylor expansion of gz1
 around zero up to the second order

term. Then
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Since
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⎞

⎠⎟
= − +

⎛
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⎞
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= − + ( ) = − − ( )[ ].

Thus
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t
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n

( ) = − − ( )[ ]⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
1

2
1 1

2

.

Taking limits as n → ∞ we have, gn(t) ⎯ →⎯
→∞n

e−t2/2, which is the ch.f. of
Φ. ▲

The theorem just established has the following corollary, which along with
the theorem itself provides the justification for many approximations.

The convergence Gn(x) ⎯ →⎯
→∞n

Φ(x) is uniform in x ∈ �.
(That is, for every x ∈� and every ε > 0 there exists N(ε) > 0 independent of
x, such that |Gn(x) − Φ(x)| < ε for all n ≥ N(ε) and all x ∈� simultaneously.)

PROOF It is an immediate consequence of Lemma 1 in Section
8.6*. ▲

The following examples are presented for the purpose of illustrating the
theorem and its corollary.

8.3.1 Applications

1. If Xj, j = 1, . . . , n are i.i.d. with E(Xj) = μ, σ 2(Xj) = σ 2, the CLT is used
to give an approximation to P[a < Sn ≤ b], −∞ < a < b < +∞. We have:

8.3 The Central Limit Theorem 189

COROLLARY



190 8 Basic Limit Theorems
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a n

n

b a
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nσ
μ

σ

Φ Φ* * ,

where

a
a n

n
b

b n

n
* , * .= − = −μ

σ
μ

σ
(Here is where the corollary is utilized. The points a* and b* do depend on n,
and therefore move along � as n → ∞. The above approximation would not be
valid if the convergence was not uniform in x ∈�.) That is, P(a < Sn ≤ b) ≈
Φ(b*) − Φ(a*).

2. Normal approximation to the Binomial. This is the same problem
as above, where now Xj, j = 1, . . . , n, are independently distributed as
B(1, p). We have μ = p, σ = pq . Thus:

P a S b b an< ≤( ) ≈ ( ) − ( )Φ Φ* * ,

where

a
a np

npq
b

b np

npq
* , * ,= − = −

REMARK 9 It is seen that the approximation is fairly good provided n and
p are such that npq ≥ 20. For a given n, the approximation is best for p = 1–2 and
deteriorates as p moves away from 1–2 . Some numerical examples will shed some
light on these points. Also, the Normal approximation to the Binomial
distribution presented above can be improved, if in the expressions of a* and
b* we replace a and b by a + 0.5 and b + 0.5, respectively. This is called the
continuity correction. In the following we give an explanation of the continuity
correction. To start with, let

f r
n

r
p q x

npq
en

r n r
n

x( ) =
⎛
⎝⎜

⎞
⎠⎟

( ) =− −, ,and let φ
π
1

2

2 2

where

x
r np

npq
= −

.

Then it can be shown that fn(r)/φn(x) ⎯ →⎯
→∞n

 1 and this convergence is uniform
for all x’s in a finite interval [a, b]. (This is the De Moivre theorem.) Thus for



large n, we have, in particular, that fn(r) is close to φn(x). That is, the probability
(n

r)prqn−r is approximately equal to the value

1

2 2

2

πnpq

r np

npq
exp −

−( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

of the normal density with mean np and variance npq for sufficiently large n.
Note that this asymptotic relationship of the p.d.f.’s is not implied, in general,
by the convergence of the distribution functions in the CLT.

To give an idea of how the correction term 1–2 comes in, we refer to Fig. 8.2
drawn for n = 10, p = 0.2.

0.3

0 54321

0.2

0.1

N(2, 1.6)

Figure 8.2

Now

P S P S f fn n n n1 3 2 3 2 3< ≤( ) = ≤ ≤( ) = ( ) + ( )
= shaded area,

while the approximation without correction is the area bounded by the normal
curve, the horizontal axis, and the abscissas 1 and 3. Clearly, the correction,
given by the area bounded by the normal curve, the horizontal axis and the
abscissas 1.5 and 3.5, is closer to the exact area.

To summarize, under the conditions of the CLT, and for discrete r.v.’s,

P a S b
b n

n

a n

n
n< ≤( ) ≈ −⎛

⎝⎜
⎞

⎠⎟
− −⎛

⎝⎜
⎞

⎠⎟
Φ Φμ

σ
μ

σ
without continuity correction,

and

P a S b
b n

n

a n

n
n< ≤( ) ≈ + −⎛

⎝⎜
⎞

⎠⎟
− + −⎛

⎝⎜
⎞

⎠⎟
Φ Φ0 5 0 5. .μ

σ
μ

σ
with continuity correction.

In particular, for integer-valued r.v.’s and probabilities of the form P(a ≤ Sn ≤
bn), we first rewrite the expression as follows:
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P a S b P a S bn n n n≤ ≤( ) = −( ) < ≤( )1 , (3)

and then apply the above approximations in order to obtain:

P a S b b an≤ ≤( ) ≈ ( ) − ( )Φ Φ* * without continuity correction,

where

a
a n

n
b

b n

n
* , * ,= − − = −1 μ

σ
μ

σ
(4)

and

P a S b b an≤ ≤( ) ≈ ′( ) − ′( )Φ Φ with continuity correction,

where

′ = − − ′ = + −
a

a n

n
b

b n

n

0 5 0 5.
,

.
.

μ
σ

μ
σ

(5)

These expressions of a*, b* and a′, b′ in (4) and (5) will be used in calculating
probabilities of the form (3) in the numerical examples below.

(Numerical) For n = 100 and p1 = 1–2 , p2 = 5–16, find P(45 ≤ Sn ≤ 55).

i) For p1 = 1–2 : Exact value: 0.7288

Normal approximation without correction:

a

b

* . ,

* .

=
− ⋅

⋅ ⋅
= = −

=
− ⋅

⋅ ⋅
= =

44 100
1
2

100
1
2

1
2

6
5

1 2

55 100
1
2

100
1
2

1
2

5
5

1

Thus

Φ Φ Φ Φ Φ Φb a* * . .

. . . .

( ) − ( ) = ( ) − −( ) = ( ) + ( ) −

= + − =

1 1 2 1 1 2 1

0 841345 0 884930 1 0 7263

Normal approximation with correction:

′ =
− − ⋅

⋅ ⋅

= − = −

′ =
+ − ⋅

⋅ ⋅

= =

a

b

45 0 5 100
1
2

100
1
2

1
2

5 5
5

1 1

55 0 5 100
1
2

100
1
2

1
2

5 5
5

1 1

. .
.

. .
. .

EXAMPLE 5



Thus

Φ Φ Φ Φ Φ′( ) − ′( ) = ( ) − −( ) = ( ) − = × − =b a 1 1 1 1 2 1 1 1 2 0 864334 1 0 7286. . . . . .

Error without correction: 0.7288 − 0.7263 = 0.0025.

Error with correction: 0.7288 − 0.7286 = 0.0002.

ii) For p2 = 5–16, working as above, we get:

Exact value: 0.0000.

a b b a

a b b a

* . , * . , * * . .

. , . , . .

= = ( ) − ( ) =

′ = ′ = ′( ) − ′( ) =

2 75 4 15 0 0030

2 86 5 23 0 0021

so that 

so that 

Φ Φ

Φ Φ

Then:

Error without correction: 0.0030.

Error with correction: 0.0021.

3. Normal approximation to Poisson. This is the same problem as in
(1), where now Xj, j = 1, . . . , n are independent P(λ). We have μ = λ, σ = λ .
Thus

P a S b
b n

n

a n

n
n< ≤( ) ≈ −⎛

⎝⎜
⎞

⎠⎟
− −⎛

⎝⎜
⎞

⎠⎟
Φ Φλ

λ
λ

λ
without continuity correction,

and

P a S b
b n

n

a n

n
n< ≤( ) ≈ + −⎛

⎝⎜
⎞

⎠⎟
− + −⎛

⎝⎜
⎞

⎠⎟
Φ Φ0 5 0 5. .λ

λ
λ

λ
with continuity correction.

Probabilities of the form P(a ≤ Sn ≤ b) are approximated as follows:

P a S b b an≤ ≤( ) ≈ ( ) − ( )Φ Φ* * without continuity correction,

where

a
a n

n
b

b n

n
* , * ,= − − = −1 λ

λ
λ

λ
and

P a S b b an≤ ≤( ) ≈ ′( ) − ′( )Φ Φ with continuity correction,

where

′ = − − ′ = + −
a

a n

n
b

b n

n

0 5 0 5.
,

.
.

λ
λ

λ
λ

(Numerical) For nλ = 16, find P(12 ≤ Sn ≤ 21). We have:

Exact value: 0.7838.

EXAMPLE 6
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Normal approximation without correction:

a b* . , * . ,= − = − = − = − = =11 16

16

5
4

1 25
21 16

16

5
4

1 25

so that Φ(b*) − Φ(a*) = Φ(1.25) − Φ(−1.25) = 2Φ(1.25) − 1 = 2 × 0.894350
− 1 = 0.7887.

Normal approximation with correction:

′ = − ′ = ′( ) − ′( ) =a b b a1 125 1 375 0 7851. , . , . .so that Φ Φ

Error without correction: 0.0049.

Error with correction: 0.0013.

Exercises

8.3.1 Refer to Exercise 4.1.12 of Chapter 4 and suppose that another manu-
facturing process produces light bulbs whose mean life is claimed to be 10%
higher than the mean life of the bulbs produced by the process described in the
exercise cited above. How many bulbs manufactured by the new process must
be examined, so as to establish the claim of their superiority with probability
0.95?

8.3.2 A fair die is tossed independently 1,200 times. Find the approximate
probability that the number of ones X is such that 180 ≤ X ≤ 220. (Use the
CLT.)

8.3.3 Fifty balanced dice are tossed once and let X be the sum of the
upturned spots. Find the approximate probability that 150 ≤ X ≤ 200. (Use the
CLT.)

8.3.4 Let Xj, j = 1, . . . , 100 be independent r.v.’s distributed as B(1, p). Find
the exact and approximate value for the probability P( Xj =∑ 1

100
j = 50). (For the

latter, use the CLT.)

8.3.5 One thousand cards are drawn with replacement from a standard deck
of 52 playing cards, and let X be the total number of aces drawn. Find the
approximate probability that 65 ≤ X ≤ 90. (Use the CLT.)

8.3.6 A Binomial experiment with probability p of a success is repeated
1,000 times and let X be the number of successes. For p = 1–2  and p = 1–4, find
the exact and approximate values of probability P(1,000p − 50 ≤ X ≤ 1,000p
+ 50). (For the latter, use the CLT.)

8.3.7 From a large collection of bolts which is known to contain 3% defec-
tive bolts, 1,000 are chosen at random. If X is the number of the defective bolts
among those chosen, what is probability that this number does not exceed 5%
of 1,000? (Use the CLT.)



8.3.8 Suppose that 53% of the voters favor a certain legislative proposal.
How many voters must be sampled, so that the observed relative frequency of
those favoring the proposal will not differ from the assumed frequency by
more than 2% with probability 0.99? (Use the CLT.)

8.3.9 In playing a game, you win or lose $1 with probability 1–2 . If you play the
game independently 1,000 times, what is the probability that your fortune (that
is, the total amount you won or lost) is at least $10? (Use the CLT.)

8.3.10 A certain manufacturing process produces vacuum tubes whose life-
times in hours are independently distributed r.v.’s with Negative Exponential
distribution with mean 1,500 hours. What is the probability that the total life of
50 tubes will exceed 75,000 hours? (Use the CLT.)

8.3.11 Let Xj, j = 1, . . . , n be i.i.d. r.v.’s such that EXj = μ finite and σ2(Xj) =
σ2 = 4. If n = 100, determine the constant c so that P(|X̄n − μ| ≤ c) = 0.90. (Use
the CLT.)

8.3.12 Let Xj, j = 1, . . . , n be i.i.d. r.v.’s with EXj = μ finite and σ 2(Xj) = σ2 ∈
(0, ∞).

i) Show that the smallest value of the sample size n for which P(|X̄n − μ| ≤ kσ)
≥ p is given by n k

p= ( )[ ]− +1 1 1
2

2
Φ  if this number is an integer, and n is

the integer part of this number increased by 1, otherwise. (Use the
CLT.);

ii) By using Tchebichev’s inequality, show that the above value of n is given
by n

k p
= ( )−

1

12  if this number is an integer, and n is the integer part of this
number increased by 1, otherwise;

iii) For p = 0.95 and k = 0.05, 0.1, 0.25, compare the respective values of n in
parts (i) and (ii).

8.3.13 Refer to Exercise 4.1.13 in Chapter 4 and let Xj, j = 1, . . . , n be the
diameters of n ball bearings. If EXj = 0.5 inch and σ = 0.0005 inch, what is the
minimum value of n for which P(|X̄n − μ| ≤ 0.0001) = 0.099? (Use Exercise
8.3.12.)

8.3.14 Let Xj, j = 1, . . . , n, Yj = 1, . . . , n be independent r.v.’s such that the
X’s are identically distributed with EXj = μ1, σ 2(Xj) = σ 2, both finite, and
the Y’s are identically distributed with EYj = μ2 finite and σ2(Yj) = σ2. Show
that:

i) E X Y X Yn n n n n−( ) = − −( ) =μ μ σ σ
1 2

2 2 2

, ;

ii) n X Yn n− − −( ) ( )[ ]μ μ

σ
1 2

2
 is asymptotically distributed as N(0, 1).

8.3.15 Let Xj, j = 1, . . . , n, Yj, j = 1, . . . , n be i.i.d. r.v.’s from the same
distribution with EXj = EYj = μ and σ 2(Xj) = σ 2(Yj) = σ 2, both finite. Determine
the sample size n so that P(|X̄n − Ȳn| ≤ 0.25σ) = 0.95. (Use Exercise 8.3.12.)

8.3.16 An academic department in a university wishes to admit c first-year
graduate students. From past experience it follows that, on the average,
100p% of the students admitted will, actually, accept an admission offer (0 < p

Exercises 195
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< 1). It may be assumed that acceptance and rejection of admission offers by
the various students are independent events.

i) How many students n must be admitted, so that the probability P(|X − c|
≤ d) is maximum, where X is the number of students actually accepting an
admission, and d is a prescribed number?

ii) What is the value of n for c = 20, d = 2, and p = 0.6?

iii) What is the maximum value of the probability P(|X − 20| ≤ 2) for p = 0.6?

Hint: For part (i), use the CLT (with continuity correction) in order to find the
approximate value to P(|X − c| ≤ d). Then draw the picture of the normal
curve, and conclude that the probability is maximized when n is close to c/p.
For part (iii), there will be two successive values of n suggesting themselves as
optimal values of n. Calculate the respective probabilities, and choose that
value of n which gives the larger probability.)

8.4 Laws of Large Numbers

This section concerns itself with certain limit theorems which are known as
laws of large numbers (LLN). We distinguish two categories of LLN: the
strong LLN (SLLN) in which the convergence involved is strong (a.s.), and the
weak LLN (WLLN), where the convergence involved is convergence in prob-
ability.

(SLLN) If Xj, j = 1, . . . , n are i.i.d. r.υ.’s with (finite) mean μ, then

X
X X

nn
n

n
= + ⋅ ⋅ ⋅ + ⎯ →⎯

→∞
1 a.s. μ.

The converse is also true, that is, if X̄n
a.s.⎯ →⎯
→∞n

 to some finite constant μ,
then E(Xj) is finite and equal to μ.

PROOF Omitted; it is presented in a higher level probability course. ▲
Of course, X̄n

a.s.⎯ →⎯
→∞n

μ implies X̄n
P

n
⎯ →⎯

→∞
μ. The latter are the weak LLN; that is,

(WLLN) If Xj, j = 1, . . . , n, are i.i.d. r.υ.’s with (finite) mean μ, then

X
X X

nn
n P

n
= + ⋅ ⋅ ⋅ + ⎯ →⎯

→∞
1 μ.

PROOF

i) The proof is a straightforward application of Tchebichev’s inequality under
the unnecessary assumption that the r.v.’s also have a finite variance σ2.
Then EX̄n = μ, σ2(X̄n) = σ2/n, so that, for every ε > 0,

P X
n

nn − ≥[ ] ≤ → → ∞μ ε
ε

σ1
0

2

2

as .
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ii) This proof is based on ch.f.’s (m.g.f.’s could also be used if they exist). By
Theorems 1(iii) (the converse case) and 2(ii) of this chapter, in order to
prove that X̄n

P

n
⎯ →⎯

→∞
μ, it suffices to prove that

  
φ φμ
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n
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REMARK 10 An alternative proof of the WLLN, without the use of ch.f.’s,
is presented in Lemma 1 in Section 8.6*. The underlying idea there is that of
truncation, as will be seen.

Both laws of LLN hold in all concrete cases which we have studied except
for the Cauchy case, where E(Xj) does not exist. For example, in the Binomial
case, we have:

If Xj, j = 1, . . . , n are independent and distributed as B(1, p), then

X
X X

n
pn

n
n

= + ⋅ ⋅ ⋅ + ⎯ →⎯
→∞

1 a.s.

and also in probability.
For the Poisson case we have:

If Xj, j = 1, . . . , n are independent and distributed as P(λ), then:

X
X X

nn
n

n
= + ⋅ ⋅ ⋅ + ⎯ →⎯

→∞
1 λ a.s.

and also in probability.

8.4.1 An Application of SLLN and WLLN

Let Xj, j = 1, . . . , n be i.i.d. with d.f. F. The sample or empirical d.f. is denoted
by Fn and is defined as follows:

  
For  the number of  x F x

n
X X xn n∈ ( ) = ⋅ ⋅ ⋅ ≤[ ]� , , , .

1
1
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Fn is a step function which is a d.f. for a fixed set of values of X1, . . . , Xn. It is
also an r.v. as a function of the r.v.’s X1,, . . . , Xn, for each x. Let

Y x Y
X x

X x j nj j
j

j
( ) = =

≤
> = ⋅ ⋅ ⋅

⎧
⎨
⎪

⎩⎪
1

0 1

,

, , , , .

Then, clearly,

F x
n

Yn j
j

n

( ) =
=

∑1

1

.

On the other hand, Yj, j = 1, . . . , n are independent since the X’s are, and Yj is
B(1, p), where

p P Y P X x F xj j= =( ) = ≤( ) = ( )1 .

Hence

E Y np nF x Y npq nF x F xj
j

n

j
j

n

= =
∑ ∑

⎛

⎝⎜
⎞

⎠⎟
= = ( ) ⎛

⎝⎜
⎞

⎠⎟
= = ( ) − ( )[ ]

1

2

1

1, .σ

It follows that

E F x
n

nF x F xn( )[ ] = ( ) = ( )1
.

So for each x ∈�, we get by the LLN

F x F x F x F xn n n
P

n( ) ⎯ →⎯ ( ) ( ) ⎯ →⎯ ( )→∞ →∞
a.s. , .

Actually, more is true. Namely,

(Glivenko–Cantelli Lemma) With the above notation, we have

  
P F x F x xn n

sup  ( ) − ( ) ∈{ } ⎯ →⎯⎡
⎣⎢

⎤
⎦⎥

=
→∞

; � 0 1

(that is, Fn(x) a.s.⎯ →⎯
→∞n

F(x) uniformly in x ∈�).

PROOF Omitted.

Exercises

8.4.1 Let Xj, j = 1, . . . , n be i.i.d. r.v.’s and suppose that EXk
j  is finite for a

given positive integer k. Set

X
n

Xn

k

j
k

j

n( )
=

= ∑1

1

for the kth sample moment of the distribution of the X’s and show that
X̄n

(k) P

n
⎯ →⎯

→∞
EXk

1.

8.4.2 Let Xj, j = 1, . . . , n be i.i.d. r.v.’s with p.d.f. given in Exercise 3.2.14 of
Chapter 3 and show that the WLLN holds. (Calculate the expectation by
means of the ch.f.)

THEOREM 6
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8.4.3 Let Xj, j = 1, . . . , n be r.v.’s which need be neither independent
nor identically distributed. Suppose that EXj = μj, σ 2(Xj) = σ 2

j, all finite,
and set

μ μn j
j

n

n
=

=
∑1

1

.

Then a generalized version of the WLLN states that

Xn n
P

n
− ⎯ →⎯

→∞
μ 0.

Show that if the X’s are pairwise uncorrelated and σ 2
j ≤ M(<∞), j ≥ 1, then the

generalized version of the WLLN holds.

8.4.4 Let Xj, j = 1, . . . , n be pairwise uncorrelated r.v.’s such that

P X P Xj
j

j
j= −( ) = =( ) =α α 1

2
.

Show that for all α’s such that 0 < α ≤ 1, the generalized WLLN holds.

8.4.5 Decide whether the generalized WLLN holds for independent r.v.’s
such that the jth r.v. has the Negative Exponential distribution with parameter
λj = 2j/2.

8.4.6 For j = 1, 2, . . . , let Xj be independent r.v.’s such that Xj is distributed
as χ 2

j/ j . Show that the generalized WLLN holds.

8.4.7 For j = 1, 2, . . . , let Xj be independent r.v.’s such that Xj is distributed
as P(λj). If {1/nΣn

j=1λj} remains bounded, show that the generalized WLLN
holds.

8.5 Further Limit Theorems

In this section, we present some further limit theorems which will be used
occasionally in the following chapters.

i) Let Xn, n ≥ 1, and X be r.v.’s, and let g: �→� be continuous, so that g(Xn),
n ≥ 1, and g(X) are r.v.’s. Then Xn

a.s.⎯ →⎯
→∞n

X implies g(Xn)
a.s.⎯ →⎯
→∞n

g(X).

ii) More generally, if for j = 1, . . . , k, Xn
( j), n ≥ 1, and Xj are r.v.’s, and g:

� k→� is continuous, so that g(Xn
(1), . . . , Xn

(k)) and g(X1, . . . , Xk) are r.v.’s,
then

X X

j k g X X g X X

n

j

n j

n n

k

n k

( )
→∞

( ) ( )
→∞

⎯ →⎯

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎛
⎝

⎞
⎠ ⎯ →⎯ ⋅ ⋅ ⋅( )

a.s.

a.s.  imply   

,

, , , , , , .1
1

1
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PROOF Follows immediately from the definition of the a.s. convergence and
the continuity of g. ▲

A similar result holds true when a.s. convergence is replaced by conver-
gence in probability, but a justification is needed.

i) Let Xn, n ≥ 1, X and g be as in Theorem 7(i), and suppose that Xn
P

n
⎯ →⎯

→∞
X.

Then g(Xn)
P

n
⎯ →⎯

→∞
g(X).

ii) More generally, let again Xn
(j), Xj and g be as in Theorem 7(ii), and suppose

that Xn
(j) P

n
⎯ →⎯

→∞
Xj, j = 1, . . . , k. Then g(Xn

(1), . . . , Xn
(k)) P

n
⎯ →⎯

→∞
g(X1, . . . , Xk).

PROOF

i) We have P(X ∈ �) = 1, and if Mn ↑ ∞(Mn > 0), then P(X ∈ [−Mn, Mn])
⎯ →⎯

→∞n
 1. Thus there exist n0 sufficiently large such that

P X M X M P X M Mn n n n∈ −∞ −( )[ ] + ∈ ∞( )[ ]( ) = >( ) < >( ), .,0 0 0 0
2 1ε

Define M = Mn0
; we then have

P X M>( ) < ε 2.

g being continuous in �, is uniformly continuous in [−2M, 2M]. Thus for
every ε > 0, there exists δ(ε, M) = δ(ε) (<1) such that |g(x′) − g(x″)| < ε for
all x′, x″ ∈ [−2M, 2M] with |x′ − x″| < δ(ε). From Xn

P

n
⎯ →⎯

→∞
X we have that

there exists N(ε) > 0 such that

P X X n Nn − ≥ ( )[ ] < ≥ ( )δ ε ε ε2 , .

Set

A X M A n X Xn1 2= ≤[ ] ( ) = − < ( )[ ], ,δ ε

and

A n g X g X n Nn3 ( ) = ( ) − ( ) <[ ] ≥ ( )( )ε εfor .

Then it is easily seen that on A1 ∩ A2(n), we have −2M < X < 2M, −2M < Xn

< 2M, and hence

A A n A n1 2 3∩ ( ) ⊆ ( ),
which implies that

A n A A nc c c
3 1 2( ) ⊆ ∪ ( ).

Hence

P A n P A P A n

n N

c c c
3 1 2 2 2( )[ ] ≤ ( ) + ( )[ ] ≤ + =

≥ ( )( )
ε ε ε

εfor .

That is, for n ≥ N(ε),

P g X g Xn( ) − ( ) ≥[ ] <ε ε.
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The proof is completed. (See also Exercise 8.6.1.)

ii) It is carried out along the same lines as the proof of part (i). (See also
Exercises 8.5.3 and 8.6.2.) ▲

The following corollary to Theorem 7′ is of wide applicability.

If Xn
P

n
⎯ →⎯

→∞
X, Yn

P

n
⎯ →⎯

→∞
Y, then

i) Xn + Yn
P

n
⎯ →⎯

→∞
X + Y.

ii) aXn + bYn
P

n
⎯ →⎯

→∞
aX + bY (a, b constants).

iii) XnYn
P

n
⎯ →⎯

→∞
XY.

iv) Xn/Yn
P

n
⎯ →⎯

→∞
X/Y, provided P(Yn ≠ 0) = P(Y ≠ 0) = 1.

PROOF In suffices to take g as follows and apply the second part of the
theorem:

i) g(x, y) = x + y,

ii) g(x, y) = ax + by,

iii) g(x, y) = xy,

iv) g(x, y) = x/y, y ≠ 0. ▲

The following is in itself a very useful theorem.

If Xn
d

n
⎯ →⎯

→∞
X and Yn

P

n
⎯ →⎯

→∞
c, constant, then

i) Xn +Yn
d

n
⎯ →⎯

→∞
 X + c,

ii) XnYn
d

n
⎯ →⎯

→∞
 cX,

iii) Xn/Yn
d

n
⎯ →⎯

→∞
 X/c, provided P(Yn ≠ 0) = 1, c ≠ 0.

Equivalently,

i) P X Y z F z F z

P X c z P X z c F z c

n n X Y n X c

X

n n
+ ≤( ) = ( ) ⎯ →⎯ ( )

= + ≤( ) = ≤ −( ) = −( )
+ →∞ +

;

ii) P X Y z F z F z

P cX z

P X
z
c

F
z
c

c

P X
z
c

F
z
c

c

n n X Y n cX

X

X

n n
≤( ) = ( ) ⎯ →⎯ ( )

= ≤( ) =
≤

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

>

≥
⎛
⎝⎜

⎞
⎠⎟

= − −
⎛
⎝⎜

⎞
⎠⎟

<

⎧

⎨
⎪
⎪

⎩
⎪
⎪

→∞

,

, ;

0

1 0

iii) P
X
Y

z F z F z

P
X
c

z
P X cz F cz c

P X cz F cz c

n

n
X Y n X c

X

X

n n
≤

⎛
⎝⎜

⎞
⎠⎟

= ( ) ⎯ →⎯ ( )

= ≤
⎛
⎝⎜

⎞
⎠⎟

=
≤( ) = ( ) >

≥( ) = − −( ) <

⎧
⎨
⎪

⎩⎪

→∞

,

, ,

0

1 0
provided P(Yn ≠ 0) = 1.
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REMARK 11 Of course, FX(z/c−) = FX(z/c) and FX(cz−) = FX(cz), if F is
continuous.

PROOF As an illustration of how the proof of this theorem is carried out, we
proceed to establish (iii) under the (unnecessary) additional assumption that
FX is continuous and for the case that c > 0. The case where c < 0 is treated
similarly.

We first notice that Yn
P

n
⎯ →⎯

→∞
c (>0) implies that P(Yn > 0) ⎯ →⎯

→∞n
1. In fact,

Yn
P

n
⎯ →⎯

→∞
c is equivalent to P(|Yn − c| ≤ ε) ⎯ →⎯

→∞n
 1 for every ε > 0, or

P(c − ε ≤ Yn ≤ c + ε) ⎯ →⎯
→∞n

 1. Thus, if we choose ε < c, we obtain the result. Next,
since P(Yn ≠ 0) = 1, we may divide by Yn except perhaps on a null set. Outside
this null set, we have then

P
X
Y

z P
X
Y

z Y P
X
Y

z Y

P
X
Y

z Y P Y

n

n

n

n
n

n

n
n

n

n
n n

≤
⎛
⎝⎜

⎞
⎠⎟

= ≤
⎛
⎝⎜

⎞
⎠⎟

>( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ ≤
⎛
⎝⎜

⎞
⎠⎟

<( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤ ≤
⎛
⎝⎜

⎞
⎠⎟

>( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ <( )

0 0

0 0

I I

I .

In the following, we will be interested in the limit of the above probabilities as
n → ∞. Since P(Yn < 0) → 0, we assume that Yn > 0. We have then

X
Y

z
X
Y

z Y c
X
Y

z Y c

Y c X zY Y c

n

n

n

n
n

n

n
n

n n n n

≤
⎛
⎝⎜

⎞
⎠⎟

= ≤
⎛
⎝⎜

⎞
⎠⎟

− ≥( ) + ≤
⎛
⎝⎜

⎞
⎠⎟

− <( )
⊆ − ≥( ) ≤( ) − <( )

ε ε

ε ε

I I

U I .

But |Yn − c| < ε is equivalent to c − ε < Yn < c + ε. Therefore

X zY Y c X z c zn n n n≤( ) ∩ − <( ) ⊆ ≤ +( )[ ] ≥ε ε , ,if 0

and

X zY Y c X z c zn n n n≤( ) ∩ − <( ) ⊆ ≤ −( )[ ] <ε ε , .if 0

That is, for every z ∈ �,

X zY Y c X z cn n n n≤( ) ∩ − <( ) ⊆ ≤ ±( )[ ]ε ε

and hence

  

X
Y

z Y c X z c zn

n
n n≤

⎛
⎝⎜

⎞
⎠⎟

⊆ − ≥( ) ≤ ±( )[ ] ∈ε ε , .�U

Thus

  

P
X
Y

z P Y c P X z c zn

n
n n≤

⎛
⎝⎜

⎞
⎠⎟

≤ − ≥( ) + ≤ ±( )[ ] ∈ε ε , .�

Letting n → ∞ and taking into consideration the fact that P(|Yn − c| ≥ ε) → 0
and P[Xn ≤ z(c ± ε)] → FX[z(c ± ε)], we obtain

  

lim sup , .
n

n

n
XP

X
Y

z F z c z
→∞

≤
⎛
⎝⎜

⎞
⎠⎟

≤ ±( )[ ] ∈ε �



Since, as ε → 0, FX[z(c ± ε)] → FX(zc), we have

  

lim sup , .
n

n

n
XP

X
Y

z F zc z
→∞

≤
⎛
⎝⎜

⎞
⎠⎟

≤ ( ) ∈� (6)

Next,

X z c X z c Y c X z c

Y c Y c

X z c Y c

n n n n

n n

n n

≤ ±( )[ ] = ≤ ±( )[ ]∩ − ≥( ) + ≤ ±( )[ ]
∩ − <( ) ⊆ − ≥( )
∪ ≤ ±( )[ ]∩ − <( )

ε ε ε ε

ε ε

ε ε .

By choosing ε < c, we have that |Yn − c| < ε is equivalent to 0 < c − ε < Yn <
c + ε and hence

X z c Y c
X
Y

z zn n
n

n

≤ −( )[ ] − <( ) ⊆ ≤
⎛
⎝⎜

⎞
⎠⎟

≥ε εI , ,if 0

and

X z c Y c
X
Y

z zn n
n

n

≤ +( )[ ] − <( ) ⊆ ≤
⎛
⎝⎜

⎞
⎠⎟

<ε εI , .if 0

That is, for every z ∈ �,

X z c Y c
X
Y

zn n
n

n

≤ ±( )[ ] − <( ) ⊆ ≤
⎛
⎝⎜

⎞
⎠⎟

ε εI

and hence

  

X z c Y c
X
Y

z zn n
n

n

≤ ±( )[ ] ⊆ − ≥( ) ≤
⎛
⎝⎜

⎞
⎠⎟

∈ε ε U , .�

Thus

P X z c P Y c P
X
Y

zn n
n

n

≤ ±( )[ ] ≤ − ≥( ) + ≤
⎛
⎝⎜

⎞
⎠⎟

ε ε .

Letting n → ∞ and taking into consideration the fact that P(|Yn − c| ≥ ε) → 0
and P[Xn ≤ z(c ± ε)] → Fx[z(c ± ε)], we obtain

  

F z c P
X
Y

z zX
n

n

n

±( )[ ] ≤ ≤
⎛
⎝⎜

⎞
⎠⎟

∈
→∞

ε lim inf , .�

Since, as ε → 0, FX[z(c ± ε)] → FX(zc), we have

  

F zc P
X
Y

z zX
n

n

n
( ) ≤ ≤

⎛
⎝⎜

⎞
⎠⎟

∈
→∞

lim inf , .� (7)

Relations (6) and (7) imply that lim
n→∞

P(Xn/Yn ≤ z) exists and is equal to

F zc P X zc P
X
c

z F zX X c( ) = ≤( ) = ≤
⎛
⎝⎜

⎞
⎠⎟

= ( ).
Thus
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P
X
Y

z F z F z zn

n
X Y n X cn n

≤
⎛
⎝⎜

⎞
⎠⎟

= ( ) ⎯ →⎯ ( ) ∈
→∞

, ,�

as was to be seen. ▲

REMARK 12 Theorem 8 is known as Slutsky’s theorem.

Now, if Xj, j = 1, . . . , n, are i.i.d. r.v.’s, we have seen that the sample
variance

S
n

X X
n

X Xn j n
j

n

j
j

n

n
2 2

1

2

1

21 1= −( ) = −
= =

∑ ∑ .

Next, the r.v.’s X2
j, j = 1, . . . , n are i.i.d., since the X’s are, and

E X X EX E X Xj j j j j
2 2 2 2 2 2 2( ) = ( ) + ( ) = + = ( ) = ( )σ σ μ μ σ σ, ,if

(which are assumed to exist). Therefore the SLLN and WLLN give the result
that

1 2

1

2 2

n
X j

j

n

n
=

→∞∑ ⎯ →⎯ +σ μ a.s.

and also in probability. On the other hand, X̄ 2
n ⎯ →⎯

→∞n
μ2 a.s. and also in

probability, and hence X̄ 2
n ⎯ →⎯

→∞n
μ2 a.s. and also in probability (by Theorems

7(i) and 7′(i)). Thus

1 2

1

2 2 2 2 2

n
X Xj

j

n

n
=

∑ − → + − =σ μ μ σ a.s.

and also in probability (by the same theorems just referred to). So we have
proved the following theorem.

Let Xj, j = 1, . . . , n, be i.i.d. r.v.’s with E(Xj) = μ, σ 2(Xj) = σ 2, j = 1, . . . , n. Then
S2

n ⎯ →⎯
→∞n

σ 2 a.s. and also in probability.

REMARK 13 Of course,

S
n

n

S
n

P

n

n P

n

2 2
2

21
1⎯ →⎯

−
⎯ →⎯

→∞ →∞
σ

σ
implies ,

since n/(n − 1) ⎯ →⎯
→∞n

 1.

If X1, . . . , Xn are i.i.d. r.v.’s with mean μ and (positive) variance σ2, then

n X

S
N

n X

S
N

n

n

d

n

n

n

d

n

− −( )
⎯ →⎯ ( ) −( )

⎯ →⎯ ( )→∞ →∞

1
0 1 0 1

μ μ
, , .and also

PROOF In fact,

n X
N

n d

n

−( )
⎯ →⎯ ( )→∞

μ
σ

0 1, ,
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by Theorem 3, and

n

n

Sn P

n−
⎯ →⎯

→∞
1

1
σ

,

by Remark 13. Hence the quotient of these r.v.’s which is

n X

S
n

n

− −( )1 μ

converges in distribution to N(0, 1) as n → ∞, by Theorem 9. ▲

The following result is based on theorems established above and it is of
significant importance.

For n = 1, 2, . . . , let Xn and X be r.v.’s, let g: � → � be differentiable, and let
its derivative g′(x) be continuous at a point d. Finally, let cn be constants such
that 0 ≠ cn → ∞, and let cn(Xn − d) d⎯ →⎯ X as n → ∞. Then cn[g(Xn) − g(d)]

d⎯ →⎯ g′(d)X as n → ∞.

PROOF In this proof, all limits are taken as n → ∞. By assumption,
cn(Xn −d) d⎯ →⎯ X and cn

−1 → 0. Then, by Theorem 8(ii), Xn − d d⎯ →⎯  0, or
equivalently, Xn − d P⎯ →⎯  0, and hence, by Theorem 7′(i),

X dn
P− ⎯ →⎯ 0. (8)

Next, expand g(Xn) around d according to Taylor’s formula in order to obtain

g X g d X d g Xn n n( ) = ( ) + −( ) ′( )* ,

where Xn* is an r.v. lying between d and Xn. Hence

c g X g d c X d g Xn n n n n( ) − ( )[ ] = −( ) ′( )* . (9)

However, |Xn* − d| ≤ |Xn − d| P⎯ →⎯  0 by (8), so that Xn*
P⎯ →⎯ d, and therefore,

by Theorem 7′(i) again,

g X g dn
P* .( ) ⎯ →⎯ ( ) (10)

By assumption, convergence (10) and Theorem 8(ii), we have cn(Xn − d)
g′(Xn*) d⎯ →⎯ g′(d)X. This result and relation (9) complete the proof of the
theorem. ▲

Let the r.v.’s X1, . . . , Xn be i.i.d. with mean μ ∈ � and variance σ 2 ∈ (0, ∞),
and let g: � → � be differentiable with derivative continuous at μ. Then, as
n → ∞,

n g X g N gn
d( ) − ( )[ ] ⎯ →⎯ ′( )[ ]⎛

⎝⎜
⎞
⎠⎟

μ σ μ0
2

, .

PROOF By the CLT, n(X̄n − μ) d⎯ →⎯ X ∼ N(0, σ 2), so that the theorem
applies and gives

THEOREM 10
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n g X g g X N gn
d( ) − ( )[ ] ⎯ →⎯ ′( ) ′( )[ ]⎛

⎝⎜
⎞
⎠⎟

μ μ σ μ~ , .0
2

▲

APPLICATION If the r.v.’s Xj, j = 1, . . . , n in the corollary are distributed as
B(1, p), then, as n → ∞,

n X X pq N pq pn n
d1 0 1 2

2
−( ) −[ ] ⎯ →⎯ −( )⎛

⎝
⎞
⎠, .

Here μ = p, σ 2 = pq, and g(x) = x(1 − x), so that g′(x) = 1 − 2x. The result
follows.

Exercises

8.5.1 Use Theorem 8(ii) in order to show that if the CLT holds, then so does
the WLLN.

8.5.2 Refer to the proof of Theorem 7′(i) and show that on the set A1 ∩
A2(n), we actually have −2M < X < 2M.

8.5.3 Carry out the proof of Theorem 7′(ii). (Use the usual Euclidean
distance in � k.)

8.6* Pólya’s Lemma and Alternative Proof of the WLLN

The following lemma is an analytical result of interest in its own right. It was
used in the corollary to Theorem 3 to conclude uniform convergence.

(Pólya). Let F and {Fn} be d.f.’s such that Fn(x) ⎯ →⎯
→∞n

F(x), x ∈�, and let F be
continuous. Then the convergence is uniform in x ∈�. That is, for every ε > 0
there exists N(ε) > 0 such that n ≥ N(ε) implies that |Fn(x) − F(x)| < ε for every
x ∈ �.

PROOF Since F(x) → 0 as x → −∞, and F(x) → 1, as x → ∞, there exists an
interval [α, β] such that

F Fα ε β ε( ) < ( ) > −2 1 2, . (11)

The continuity of F implies its uniform continuity in [α, β]. Then there is a
finite partition α = x1 < x2 < · · · < xr = β of [α, β] such that

F x F x j rj j+( ) − ( ) < = ⋅ ⋅ ⋅ −1 2 1 1ε , , , . (12)

Next, Fn(xj) ⎯ →⎯
→∞n

F(xj) implies that there exists Nj(ε) > 0 such that for all
n ≥ Nj(ε),

F x F x j rn j j( ) − ( ) < = ⋅ ⋅ ⋅ε 2 1, , , .

By taking

LEMMA 1



n N N Nr≥ ( ) = ( ) ⋅ ⋅ ⋅ ( )( )ε ε εmax , , ,1

we then have that

F x F x j rn j j( ) − ( ) < = ⋅ ⋅ ⋅ε 2 1, , , . (13)

Let x0 = −∞, xr+1 = ∞. Then by the fact that F(−∞) = 0 and F(∞) = 1, relation (11)
implies that

F x F x F x F xr r1 0 12 2( ) − ( ) < ( ) − ( ) <+ε ε, . (14)

Thus, by means of (12) and (14), we have that

F x F x j rj j+( ) − ( ) < = ⋅ ⋅ ⋅1 2 0 1ε , , , , . (15)

Also (13) trivially holds for j = 0 and j = r + 1; that is, we have

F x F x j rn j j( ) − ( ) < = ⋅ ⋅ ⋅ +ε 2 0 1 1, , , , . (16)

Next, let x be any real number. Then xj ≤ x < xj+1 for some j = 0, 1, . . . , r. By (15)
and (16) and for n ≥ N(ε), we have the following string of inequalities:

F x F x F x F x F x

F x F x F x

j n j n n j j

j j

( ) − < ( ) ≤ ( ) ≤ ( ) < ( ) +

< ( ) + ≤ ( ) + ≤ ( ) +
+ −

+

ε ε

ε ε ε

2 21 1

1 .

Hence

0 2 21≤ ( ) + − ( ) ≤ ( ) + − ( ) + <+F x F x F x F xn j jε ε ε ε

and therefore |Fn(x) − F(x)| < ε. Thus for n ≥ N(ε), we have

  
F x F x xn( ) − ( ) < ∈ε for every �. (17)

Relation (17) concludes the proof of the lemma. ▲

Below, a proof of the WLLN (Theorem 5) is presented without using
ch.f.’s. The basic idea is that of suitably truncating the r.v.’s involved, and is
due to Khintchine; it was also used by Markov.

ALTERNATIVE PROOF OF THEOREM 5 We proceed as follows: For any
δ > 0, we define

Y n Y
X X n

X nj j
j j

j

( ) = =
≤ ⋅

> ⋅

⎧
⎨
⎪

⎩⎪

,

,

if

if

δ
δ0

and

Z n Z
X n

X X n j nj j
j

j j

( ) = =
≤ ⋅

> ⋅ = ⋅ ⋅ ⋅

⎧
⎨
⎪

⎩⎪

0

1

,

, , , , .

if

if  

δ
δ

Then, clearly, Xj = Yj + Zj, j = 1, . . . , n. Let us restrict ourselves to the
continuous case and let f be the (common) p.d.f. of the X’s. Then,

8.6* Pélya’s Lemma and Alternative Proof of the WLLN 207
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σ σ

δ δ

δ

δ

δ

δ

δ

2 2
1

1
2

1

2

1
2

1
2

1

2

2

1

Y Y

E Y EY E Y

E X I X

x I x f x dx

x f x dx n x f x dx n x f x dx

j

X n

x n

n

n

( ) = ( )
= ( ) − ( ) ≤ ( )
= ⋅ ( ){ }
= ( ) ( )
= ( ) ≤ ⋅ ( ) ≤ ⋅ ( )

≤ ⋅[ ]

≤ ⋅[ ]−∞

∞

− ⋅

⋅

−∞

∞

−

∫
∫ ∫⋅⋅

⋅

∫
= ⋅

n

n

nE X

δ

δ 1 ;
that is,

σ δ2
1Y n E Xj( ) ≤ ⋅ ⋅ . (18)

Next,

E Y E Y E X I X

xI x f x dx

j X n

x n

( ) = ( ) = ( ){ }
= ( ) ( )

≤ ⋅[ ]

≤ ⋅[ ]−∞

∞

∫

1 1 1
1 δ

δ .

Now,

xI x f x x f x xI x f x xf x
x n x n n≤ ⋅[ ] ≤ ⋅[ ] →∞( ) ( ) < ( ) ( ) ( ) ⎯ →⎯ ( )δ δ, ,

and

x f x dx( ) < ∞
−∞

∞

∫ .

Therefore

xI x f x dx xf x dx
x n n≤ ⋅[ ] →∞−∞

∞

−∞

∞( ) ( ) ⎯ →⎯ ( ) =∫ ∫δ μ

by Lemma C of Chapter 6; that is,

E Yj n( ) ⎯ →⎯
→∞

μ. (19)

P
n

Y EY P Y E Y n

n
Y

n Y

n
n n E X

n

E X

j j
j

n

j j
j

n

j

n

j
j

n

1

1

1 11

2 2
2

1

2
1

2 2

1

2 2

2 1

− ≥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
⎛

⎝⎜
⎞

⎠⎟
≥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤
⎛

⎝⎜
⎞

⎠⎟

=
( )

≤
⋅ ⋅

=

= ==

=

∑ ∑∑

∑

ε ε

ε
σ

σ

ε
δ

ε
δ
ε
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by (18); that is,

P
n

Y EY E Xj
j

n1
1

1
2 1− ≥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤
=

∑ ε δ
ε

. (20)

Thus,

P
n

Y P
n

Y E Y E Y

P
n

Y EY EY

P
n

Y EY

j
j

n

j
j

n

j
j

n

j
j

n

1
2

1
2

1
2

1

1
1

1
1

1
1

1

1
1

− ≥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − ( )⎛

⎝⎜
⎞

⎠⎟
+ ( ) −( ) ≥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤ − + − ≥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤ − ≥
⎡

⎣
⎢
⎢

= =

=

=

∑ ∑

∑

∑

μ ε μ ε

μ ε

ε
⎤⎤

⎦
⎥
⎥

+ − ≥[ ]
≤

P EY

E X

1

2 1

μ ε

δ
ε

for n sufficiently large, by (19) and (20); that is,

P
n

Y E Xj
j

n1
2

1
2 1− ≥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤
=

∑ μ ε δ
ε

(21)

for n large enough. Next,

P Z P Z n

P X n

f x dx f x dx

f x dx

f x dx

x

n
f x dx

n
x f x dx

j j

j

n

n

x n

x in

x n

x n

≠( ) = > ⋅( )
= > ⋅( )
= ( ) + ( )
= ( )
= ( )

∫

<
⋅ ( )

=
⋅ ( )

<

⋅

∞

−∞

− ⋅

> ⋅( )

> >( )

> ⋅( )

> ⋅( )

∫∫
∫
∫

∫

∫

0

1

1

δ

δ

δ

δ

δ

δ

δ

δ

δ

11 2

2

δ
δ

δ δ
δ

⋅

= ( ) <
> ⋅( )∫

n

n
x f x dx

x n
, since

for n sufficiently large. So P(Zj ≠ 0) ≤ δ/n and hence

P Z nP Zj
j

n

j
=

∑ ≠
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤ ≠( ) ≤
1

0 0 δ (22)
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for n sufficiently large. Thus,

P
n

X P
n

Y
n

Z

P
n

Y
n

Z

P
n

Y P

j
j

n

j j
j

n

j

n

j
j

n

j
j

n

j
j

n

1
4

1 1
4

1 1
4

1
2

1 11

1 1

1

− ≥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= + − ≥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤ − + ≥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤ − ≥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

= ==

= =

=

∑ ∑∑

∑ ∑

∑

μ ε μ ε

μ ε

μ ε 11
2

1
2 0

1

1 1

2 1

n
Z

P
n

Y P Z

E X

j
j

n

j
j

n

j
j

n

=

= =

∑

∑ ∑

≥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤ − ≥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ ≠
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤ +

ε

μ ε

δ
ε

δ

for n sufficiently large, by (21), (22).
Replacing δ by ε3, for example, we get

P
n

X E Xj
j

n1
4

1
1

3− ≥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤ +
=

∑ μ ε ε ε

for n sufficiently large. Since this is true for every ε > 0, the result
follows. ▲

This section is concluded with a result relating convergence in probability
and a.s. convergence. More precisely, in Remark 3, it was stated that Xn

P

n
⎯ →⎯

→∞
X does not necessarily imply that Xn

a.s.⎯ →⎯
→∞n

X. However, the following is
always true.

If Xn
P

n
⎯ →⎯

→∞
X, then there is a subsequence {nk} of {n} (that is, nk ↑ ∞, k → ∞)

such that Xnk
a.s.⎯ →⎯
→∞n

X.

PROOF Omitted.

As an application of Theorem 11, refer to Example 2 and consider the
subsequence of r.v.’s {X2k−1}, where

X Ik k

k

2 1 2 1

2
1

1

1

− − ⋅
⎛

⎝
⎜

⎤

⎦
⎥
⎥

= −

−

.

Then for ε > 0 and large enough k, so that 1/2k−1 < ε, we have

P X P Xk k k2 1 2 1 1
1

1

2− − −
>( ) = =( ) = <ε ε.

Hence the subsequence {X2k−1} of {Xn} converges to 0 in probability.
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Exercises

8.6.1 Use Theorem 11 in order to prove Theorem 7′(i).

8.6.2 Do likewise in order to establish part (ii) of Theorem 7′.
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212

Chapter 9

Transformations of Random Variables
and Random Vectors

9.1 The Univariate Case

The problem we are concerned with in this section in its simplest form is the
following:

Let X be an r.v. and let h be a (measurable) function on � into �, so
that Y = h(X) is an r.v. Given the distribution of X, we want to determine
the distribution of Y. Let PX, PY be the distributions of X and Y, respectively.
That is, PX(B) = P(X ∈ B), PY(B) = P(Y ∈ B), B (Borel) subset of �. Now
(Y ∈ B) = [h(X) ∈ B] = (X ∈ A), where A = h−1(B) = {x ∈ �; h(x) ∈ B}.
Therefore PY(B) = P(Y ∈ B) = P(X ∈ A) = PX(A). Thus we have the following
theorem.

Let X be an r.v. and let h: � → � be a (measurable) function, so that Y = h(X)
is an r.v. Then the distribution PY of the r.v. Y is determined by the distribution
PX of the r.v. X as follows: for any (Borel) subset B of �, PY(B) = PX(A), where
A = h−1(B).

9.1.1 Application 1: Transformations of
Discrete Random Variables

Let X be a discrete r.v. taking the values xj, j = 1, 2, . . . , and let Y = h(X). Then
Y is also a discrete r.v. taking the values yj, j = 1, 2, . . . . We wish to determine
fY(yj) = P(Y = yj), j = 1, 2, . . . . By taking B = {yj}, we have

A x h x yi i j= ( ) ={ }; ,

and hence

f y P Y y P y P A f xY j j Y j X X i
x Ai

( ) = =( ) = { }( ) = ( ) = ( )
∈

∑ ,

THEOREM 1
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where

f x P X xX i i( ) = =( ).
Let X take on the values −n, . . . , −1, 1, . . . , n each with probability 1/2n, and
let Y = X2. Then Y takes on the values 1, 4, . . . , n2 with probability found as
follows: If B = {r2}, r = ±1, . . . , ±n, then

A h B x r x r x r

x r x r r r

= ( ) = =( ) = = − =( )
= =( ) + = −( ) = −{ } + { }

−1 2 2 or

.

Thus

P B P A P r P r
n n nY X X X( ) = ( ) = −{ }( ) + { }( ) = + =1

2
1

2
1

.

That is,

P Y r n r n=( ) = = ⋅ ⋅ ⋅
2 1 1, , , .

Let X be P(λ) and let Y = h(X) = X2 + 2X − 3. Then Y takes on the values

y x x x= + − = ⋅ ⋅ ⋅{ } = − ⋅ ⋅ ⋅{ }2 2 3 0 1 3 0 5 12; , , , , , , .    

From

x x y2 2 3+ − = ,

we get

x x y x y2 2 3 0 1 4+ − +( ) = = − ± +, .so that

Hence x y= − + +1 4 , the root − − +1 4y  being rejected, since it is nega-
tive. Thus, if B = {y}, then

A h B y= ( ) = − + +{ }−1 1 4 ,

and

P B P Y y P A
e

y
Y X

y

( ) = =( ) = ( ) = ⋅
− + +( )

− − + +λ λ 1 4

1 4 !
.

For example, for y = 12, we have P(Y = 12) = e−λλ3/3!.

It is a fact, proved in advanced probability courses, that the distribution PX of
an r.v. X is uniquely determined by its d.f. X. The same is true for r. vectors.
(A first indication that such a result is feasible is provided by Lemma 3 in
Chapter 7.) Thus, in determining the distribution PY of the r.v. Y above, it
suffices to determine its d.f., FY. This is easily done if the transformation h is
one-to-one from S onto T and monotone (increasing or decreasing), where S
is the set of values of X for which fX is positive and T is the image of S, under
h: that is, the set to which S is transformed by h. By “one-to-one” it is meant
that for each y ∈T, there is only one x ∈S such that h(x) = y. Then the inverse

EXAMPLE 1

EXAMPLE 2
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transformation, h−1, exists and, of course, h−1[h(x)] = x. For such a transforma-
tion, we have

F y P Y y P h X y

P h h X h y

P X x F x

Y

X

( ) = ≤( ) = ( ) ≤[ ]
= ( )[ ] ≤ ( ){ }
= ≤( ) = ( )

− −1 1

,

where x = h−1(y) and h is increasing. In the case where h is decreasing, we have

F y P h X y P h h X h y

P X h y P X x

P X x F x

Y

X

( ) = ( ) ≤[ ] = ( )[ ] ≥ ( ){ }
= ≥ ( )[ ] = ≥( )
= − ( ) = − −( )

− −

−

1 1

1

1 1< ,

where FX(x−) is the limit from the left of FX at x; FX(x−) = limFX(y), y ↑ x.

REMARK 1 Figure 9.1 points out why the direction of the inequality is re-
versed when h−1 is applied if h in monotone decreasing.

Thus we have the following corollary to Theorem 1.

Let h: S → T be one-to-one and monotone. Then FY(y) = FX(x) if h is increas-
ing, and FY(y) = 1 − FX(x−) if h is decreasing, where x = h−1(y) in either case.

REMARK 2 Of course, it is possible that the d.f. FY of Y can be expressed in
terms of the d.f. FX of X even though h does not satisfy the requirements of the
corollary above. Here is an example of such a case.

Let Y = h(X) = X2. Then for y ≥ 0,

F y P Y y P h X y P X y P y X y

P X y P X y F y F y

Y

X X

( ) = ≤( ) = ( ) ≤[ ] = ≤( ) = − ≤ ≤( )
= ≤( ) − < −( ) = ( ) − − −( )

2

;

that is,

F y F y F yY X X( ) = ( ) − − −( )
for y ≥ 0 and, of course, it is zero for y < 0.

Figure 9.1

y

0
x

y0

x0 � h�1 (y0)

y � h(x)

(y � y0) corresponds,
under h, to (x � x0)

COROLLARY

EXAMPLE 3



9.1 The Univariate Case 215

We will now focus attention on the case that X has a p.d.f. and we will
determine the p.d.f. of Y = h(X), under appropriate conditions.

One way of going about this problem would be to find the d.f. FY of the r.v.
Y by Theorem 1 (take B = (−∞, y], y ∈� ), and then determine the p.d.f. fY of
Y, provided it exists, by differentiating (for the continuous case) FY at continu-
ity points of fY. The following example illustrates the procedure.

In Example 3, assume that X is N(0, 1), so that

f x eX
x( ) = −1

2

2 2

π
.

Then, if Y = X2, we know that

F y F y F y yY X X( ) = ( ) − −( ) ≥, .0

Next,
d
dy

F y f y
d
dy

y
y

f y
y

eX X X
y( ) = ( ) = ( ) = −1

2

1

2 2
2

π
,

and
d
dy

F y
y

f y
y

eX X
y−( ) = − −( ) = − −1

2

1

2 2
2

π
,

so that
d
dy

F y f y
y

e
Z

y eY Y
y y( ) = ( ) = =

( )
= ( )( )− − −1 1

2

12

1
2

1 2 1
21

2

1
2

π
π

Γ
Γ ,

y ≥ 0 and zero otherwise. We recognize it as being the p.d.f. of a χ 2
1 distributed

r.v. which agrees with Theorem 3, Chapter 4.

Another approach to the same problem is the following. Let X be an r.v.
whose p.d.f. fX is continuous on the set S of positivity of fX. Let y = h(x) be a
(measurable) transformation defined on � into � which is one-to-one on the
set S onto the set T (the image of S under h). Then the inverse transformation
x = h−1(y) exists for y ∈ T. It is further assumed that h−1 is differentiable and its
derivative is continuous and different from zero on T. Set Y = h(X), so that Y
is an r.v. Under the above assumptions, the p.d.f. fY of Y is given by the
following expression:

f y
f h y

d
dy

h y y T
Y

X( ) = ( )[ ] ( ) ∈
⎧
⎨
⎪

⎩⎪

− −1 1

0

,

, otherwise.

For a sketch of the proof, let B = [c, d] be any interval in T and set A = h−1(B).
Then A is an interval in S and

P Y B P h X B P X A f x dxXA
∈( ) = ( ) ∈[ ] = ∈( ) = ( )∫ .

Under the assumptions made, the theory of changing the variable in the
integral on the right-hand side above applies (see for example, T. M. Apostol,

EXAMPLE 4
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Mathematical Analysis, Addison-Wesley, 1957, pp. 216 and 270–271) and
gives

f x dx f h y
d
dy

h y dyX XBA
( ) = ( )[ ] ( )− −∫∫ 1 1 .

That is, for any interval B in T,

P Y B f h y
d
dy

h y dyXB
∈( ) = ( )[ ] ( )− −∫ 1 1 .

Since for (measurable) subsets B of T c, P(Y ∈ B) = P[X ∈ h−1(B)] ≤ P(X ∈ Sc)
= 0, it follows from the definition of the p.d.f. of an r.v. that fY has the
expression given above. Thus we have the following theorem.

Let the r.v. X have a continuous p.d.f. fX on the set S on which it is positive, and
let y = h(x) be a (measurable) transformation defined on � into �, so that
Y = h(X) is an r.v. Suppose that h is one-to-one on S onto T (the image of S
under h), so that the inverse transformation x = h−1(y) exists for y ∈ T. It
is further assumed that h−1 is differentiable and its derivative is continuous
and ≠ 0 on T. Then the p.d.f. fY of Y is given by

f y
f h y

d
dy

h y y T
Y

X( ) = ( )[ ] ( ) ∈
⎧
⎨
⎪

⎩⎪

− −1 1

0

,

, otherwise.

Let X be N(μ, σ2) and let y = h(x) = ax + b, where a, b ∈�, a � 0, are constants,
so that Y = aX + b. We wish to determine the p.d.f. of the r.v. Y.

Here the transformation h: � → � , clearly, satisfies the conditions of
Theorem 2. We have

h y
a

y b
d
dy

h y
a

− −( ) = −( ) ( ) =1 11 1
and .

Therefore,

f y
a

a

y a b

a

Y

y b
a( ) = −

−( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⋅

=
− − +( )[ ]⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
1

2 2

1

1

2 2

2

2

2 2

πσ

μ

σ

π σ

μ

σ

exp

exp

which is the p.d.f. of a normally distributed r.v. with mean aμ + b and variance
a2σ2. Thus, if X is N(μ, σ2), then aX + b is N(aμ + b, a2σ2).

Now it may happen that the transformation h satisfies all the requirements
of Theorem 2 except that it is not one-to-one from S onto T. Instead, the
following might happen: There is a (finite) partition of S, which we denote by

THEOREM 2

EXAMPLE 5
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{Sj, j = 1, . . . , r}, and there are r subsets of T, which we denote by Tj, j = 1, . . . ,
r, (note that �r

j=1Tj = T, but the Tj’s need not be disjoint) such that h: Sj → Tj,
j = 1, . . . , r is one-to-one. Then by an argument similar to the one used in
proving Theorem 2, we can establish the following theorem.

Let the r.v. X have a continuous p.d.f. fX on the set S on which it is positive, and
let y = h(x) be a (measurable) transformation defined on � into �, so that
Y = h(X) is an r.v. Suppose that there is a partition {Sj, j = 1, . . . , r} of S and
subsets Tj, j = 1, . . . , r of T (the image of S under h), which need not be distinct
or disjoint, such that ∪ r

j=1Tj = T and that h defined on each one of Sj onto Tj ,
j = 1, . . . , r, is one-to-one. Let hj be the restriction of the transformation h to
Sj and let hj

−1 be its inverse, j = 1, . . . , r. Assume that hj
−1 is differentiable and

its derivative is continuous and ≠ 0 on Tj, j = 1, . . . , r. Then the p.d.f. fY of Y is
given by

f y
y f y y T

Y
j Y

j

r

j( ) = ( ) ( ) ∈
⎧
⎨
⎪

⎩⎪
=

∑δ ,

,
1

0 otherwise,

where for j = 1, . . . , r,

f y f h y
d
dy

h y y TY X j j jj
( ) = ( )[ ] ( ) ∈− −1 1 , ,

and δj(y) = 1 if y ∈ Tj and δj(y) = 0 otherwise.

This result simply says that for each one of the r pairs of regions (Sj, Tj),
j = 1, . . . , r, we work as we did in Theorem 2 in order to find

f y f h y
d
dy

h yY X j jj
( ) = ( )[ ] ( )− −1 1 ;

then if a y in T belongs to k of the regions Tj, j = 1, . . . , r (0 ≤ k ≤ r), we find
fY(y) by summing up the corresponding fYj

(y)’s. The following example will
serve to illustrate the point.

Consider the r.v. X and let Y = h(X) = X2. We want to determine the p.d.f. fY

of the r.v. Y. Here the conditions of Theorem 3 are clearly satisfied with

S S T T1 2 1 20 0 0 0= −∞( ] = ∞( ) = ∞[ ) = ∞( ), , , , , , ,    

by assuming that fX(x) > 0 for every x ∈�. Next,

h y y h y y1
1

2
1− −( ) = − ( ) =, ,

so that

d
dy

h y
y

d
dy

h y
y

y1
1

2
11

2

1

2
0− −( ) = − ( ) = >, , .

Therefore,

THEOREM 3
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f y f y
y

f y f y
y

Y X Y X1 2

1

2

1

2
( ) = −( ) ( ) = ( ), ,

and for y > 0, we then get

f y
y

f y f yY X X( ) = ( ) + −( )⎡
⎣⎢

⎤
⎦⎥

1

2
,

provided ±√y are continuity points of fX. In particular, if X is N(0, 1), we arrive
at the conclusion that fY(y) is the p.d.f. of a χ 2

1 r.v., as we also saw in Example
4 in a different way.

Exercises

9.1.1 Let X be an r.v. with p.d.f. f given in Exercise 3.2.14 of Chapter 3 and
determine the p.d.f. of the r.v. Y = X 3.

9.1.2 Let X be an r.v. with p.d.f. of the continuous type and set
Y = ∑n

j =1cjIBj
(X), where Bj, j = 1, . . . , n, are pairwise disjoint (Borel) sets and cj,

j = 1, . . . , n, are constants.
i) Express the p.d.f. of Y in terms of that of X, and notice that Y is a discrete

r.v. whereas X is an r.v. of the continuous type;
ii) If n = 3, X is N(99, 5) and B1 = (95, 105), B2 = (92, 95) + (105, 107),

B3 = (−∞, 92] + [107, ∞), determine the distribution of the r.v. Y defined
above;

iii) If X is interpreted as a specified measurement taken on each item of a
product made by a certain manufacturing process and cj, j = 1, 2, 3 are the
profit (in dollars) realized by selling one item under the condition that
X ∈ Bj, j = 1, 2, 3, respectively, find the expected profit from the sale of one
item.

9.1.3 Let X, Y be r.v.’s representing the temperature of a certain object
in degrees Celsius and Fahrenheit, respectively. Then it is known that Y = 9–5 X
+ 32. If X is distributed as N(μ, σ2), determine the p.d.f. of Y, first by determin-
ing its d.f., and secondly directly.

9.1.4 If the r.v. X is distributed as Negative Exponential with parameter λ,
find the p.d.f. of each one of the r.v.’s Y, Z, where Y = eX, Z = logX, first by
determining their d.f.’s, and secondly directly.

9.1.5 If the r.v. X is distributed as U(α, β):
i) Derive the p.d.f.’s of the following r.v.’s: aX + b (a > 0), 1/(X + 1), X2 +1,

eX, logX (for α > 0), first by determining their d.f.’s, and secondly directly;
ii) What do the p.d.f.’s in part (i) become for α = 0 and β = 1?
iii) For α = 0 and β = 1, let Y = logX and suppose that the r.v.’s Yj, j = 1, . . . ,

n, are independent and distributed as the r.v. Y. Use the ch.f. approach to
determine the p.d.f. of −∑n

j=1Yj.
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9.1.6 If the r.v. X is distributed as U(− 1–2 π, 1–2 π), show that the r.v. Y = tan X is
distributed as Cauchy. Also find the distribution of the r.v. Z = sinX.

9.1.7 If the r.v. X has the Gamma distribution with parameters α, β, and Y =
2X/β, show that Y ∼ χ 2

2α, provided 2α is an integer.

9.1.8 If X is an r.v. distributed as χ 2
r, set Y = X/(1 + X) and determine the

p.d.f. of Y.

9.1.9 If the r.v. X is distributed as Cauchy with μ = 0 and σ = 1, show that the
r.v. Y = tan−1 X is distributed as U(−1–2 π, 1–2 π).

9.1.10 Let X be an r.v. with p.d.f. f given by

  

f x x e x
x( ) = ∈− − ( )1

2
2 1 2 2

π
, �

and show that the r.v. Y = 1/X is distributed as N(0, 1).

9.1.11 Suppose that the velocity X of a molecule of mass m is an r.v. with
p.d.f. f given in Exercise 3.3.13(ii) of Chapter 3. Derive the distribution of the
r.v. Y = 1–2 mX2 (which is the kinetic energy of the molecule).

9.1.12 If the r.v. X is distributed as N(μ, σ2), show, by means of a transforma-
tion, that the r.v. Y = [(X − μ)/σ]2 is distributed as χ 2

1.

9.2 The Multivariate Case

What has been discussed in the previous section carries over to the multidi-
mensional case with the appropriate modifications.

Let X = (X1, . . . , Xk)′ be a k-dimensional r. vector and let h: � k → � m be
a (measurable) function, so that Y = h(X) is an r. vector. Then the distribu-
tion PY of the r. vector Y is determined by the distribution PX of the r. vector
X as follows: For any (Borel) subset B of � m, PY(B) = PX(A), where
A = h−1(B).

The proof of this theorem is carried out in exactly the same way as that of
Theorem 1. As in the univariate case, the distribution PY of the r. vector Y is
uniquely determined by its d.f. FY.

Let X1, X2 be independent r.v.’s distributed as U(α, β). We wish to determine
the d.f. of the r.v. Y = X1 + X2. We have

F y P X X y f x x dx dxY X Xx x y
( ) = + ≤( ) = ( )

+ ≤{ }∫∫1 2 1 2 1 21 2
1 2

, , .

From Fig. 9.2, we see that for y ≤ 2α, FY(y) = 0. For

2 2
1

2
α β

β α
< ≤ ( ) =

−( )
⋅y F y AY, ,

THEOREM 1′
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where A is the area of that part of the square lying to the left of the line
x1 + x2 = y. Since for y ≤ α + β, A = (y − 2α)2/2, we get

F y
y

yY ( ) =
−( )

−( )
< ≤ +

2

2
2

2

2

α

β α
α α βfor .

For α + β < y ≤ 2β, we have

F y
y y

Y ( ) =
−( )

−( ) −
−( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
−( )
−( )

1 2

2
1

2

2
2

2
2 2

2
β α

β α
β β

β α
.

Thus we have:

F y

y

y
y

y
y

y

Y ( ) =

≤

−( )
−( )

< ≤ +

−
−( )
−( )

+ < ≤

>

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

0 2

2

2
2

1
2

2
2

1 2

2

2

2

2

,

,

,

, .

α
α

β α
α α β

β

β α
α β β

β

REMARK 3 The d.f. of X1 + X2 for any two independent r.v.’s (not necessarily
U(α, β) distributed) is called the convolution of the d.f.’s of X1, X2 and is
denoted by FX1+X2

= FX1 * FX2
. We also write fX1+X2

= fX1 * fX2
 for the corresponding

p.d.f.’s. These concepts generalize to any (finite) number of r.v.’s.

x1

x2

0

2�

2�

2�

�

�

�

� 
 �

�

x1 
 x2 � y

x1 
 x2 � y

Figure 9.2
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Let X1 be B(n1, p), X2 be B(n2, p) and independent. Let Y1 = X1 + X2 and
Y2 = X2. We want to find the joint p.d.f. of Y1, Y2 and also the marginal p.d.f.
of Y1, and the conditional p.d.f. of Y2, given Y1 = y1.

f y y P Y y Y y P X y y X yY Y1 2 1 2 1 1 2 2 1 1 2 2 2, , , , ,   ( ) = = =( ) = = − =( )
since X1 = Y1 − Y2 and X2 = Y2. Furthermore, by independence, this is
equal to

P X y y P X y

n

y y
p q

n

y
p q

n

y y

n

y
p q

y y n y y y n y

y n n y

1 1 2 2 2

1

1 2

2

2

1

1 2

2

2

1 2 1 1 2 2 2 2

1 1 2 1

= −( ) =( )
=

−
⎛

⎝⎜
⎞

⎠⎟
⋅
⎛

⎝⎜
⎞

⎠⎟

=
−

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟

− − −( ) −

+( )− ;

that is

f y y
n

y y

n

y
p q

y n n

u y n y y n

Y Y
y n n y

1 2

1 1 2 1

1 2
1

1 2

2

2

1 1 2

1 1 2 1 2

0

0

, , ,

max , min , .

( ) =
−

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟

≤ ≤ +
= −( ) ≤ ≤ ( ) =

⎧
⎨
⎪

⎩⎪

+( )−

υ
Thus

f y P Y y f y y p q
n

y y

n

yY Y Y
y n n y

y uy u
1 1 2

1 1 2 1

22

1 1 1 1 2
1

1 2

2

2

( ) = =( ) = ( ) =
−

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
+( )−

==
∑∑ , , .

υυ

Next, for the four possible values of the pair, (u, υ), we have

n

y y

n

y

n

y y

n

y

n

y y

n

y

n

y y

n

y

y

y

y

n

y y n

y
1

1 2

2

20

1

1 2

2

20

1

1 2

2

2

1

1 2

2

2

2

1

2

2

2 1 1

1

−
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
=

−
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
=

−
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟

=
−

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜

= = = −
∑ ∑ ∑

⎞⎞

⎠⎟
=

+⎛

⎝⎜
⎞

⎠⎟= −
∑

y y n

n n n

y
2 1 1

2
1 2

1

;

that is, Y1 = X1 + X2 is B(n1 + n2, p). (Observe that this agrees with Theorem 2,
Chapter 7.)

Finally, with y1 and y2 as above, it follows that

P Y y Y y

n

y y

n

y

n n

y

2 2 1 1

1

1 2

2

2

1 2

1

= =( ) =
−

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟

+⎛

⎝⎜
⎞

⎠⎟

,

the hypergeometric p.d.f., independent, of p!.

We next have two theorems analogous to Theorems 2 and 3 in Section 1.
That is,

EXAMPLE 8
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Let the k-dimensional r. vector X have continuous p.d.f. fX on the set S on
which it is positive, and let

    
y = ( ) = ( ) ( )( )′⋅ ⋅ ⋅h h hkx x x1 , ,

be a (measurable) transformation defined on � k into � k, so that Y = h(X) is a
k-dimensional r. vector. Suppose that h is one-to-one on S onto T (the image
of S under h), so that the inverse transformation

    
x y y y= ( ) = ( ) ⋅ ⋅ ⋅ ( )( )′ ∈−h g g Tk

1
1 , , .exists for y

It is further assumed that the partial derivatives

g
y

g y y i j kji
i

j ky( ) = ⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅
∂

∂ 1 1, , , , , ,   

exist and are continuous on T. Then the p.d.f. fY of Y is given by

f
f h J f g g J Tk

Y
X Xy

y y y y( ) = ( )[ ] = ( ) ⋅ ⋅ ⋅ ( )[ ] ∈⎧
⎨
⎪

⎩⎪

−1
1

0

, , ,

, otherwise,

where the Jacobian J is a function of y and is defined as follows

J

g g g

g g g

g g g

k

k

k k kk

=

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅

11 12 1

21 22 2

1 2

M M M M

and is assumed to be ≠ 0 on T.

REMARK 4 In Theorem 2′, the transformation h transforms the k-dimen-
sional r. vector X to the k-dimensional r. vector Y. In many applications,
however, the dimensionality m of Y is less than k. Then in order to determine
the p.d.f. of Y, we work as follows. Let y = (h1(x), . . . , hm(x))′ and choose
another k − m transformations defined on � k into �, hm+j, j = 1, . . . , k − m,
say, so that they are of the simplest possible form and such that the
transformation

h h h h hm m k= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )′+1 1, , , , ,   

satisfies the assumptions of Theorem 2′. Set Z = (Y1, . . . , Ym, Ym + 1, . . . , Yk)′,
where Y = (Y1, . . . , Ym)′ and Ym + j = hm + j(X), j = 1, . . . , k − m. Then by applying
Theorem 2′, we obtain the p.d.f. fZ of Z and then integrating out the last k − m
arguments ym+j, j = 1, . . . , k − m, we have the p.d.f. of Y.

A number of examples will be presented to illustrate the application of
Theorem 2′ as well as of the preceding remark.

THEOREM 2 ′
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Let X1, X2 be i.i.d. r.v.’s distributed as U(α, β). Set Y1 = X1 + X2 and find the
p.d.f. of Y1.

We have

f x x
x x

X X1 2 1 2
2 1 2

1

0

, ,
, ,

,

( ) = −( )
< <

⎧

⎨
⎪

⎩
⎪

β α
α β

otherwise.

Consider the transformation

h
y x x

y x
x x

Y X X

Y X
: , , ;

.
1 1 2

2 2
1 2

1 1 2

2 2

= +
=

⎧
⎨
⎩

< <
= +
=

⎧
⎨
⎩

α β then

From h, we get

x y y

x y
J1 1 2

2 2

1 1

0 1
1

= −
=

=
−⎧

⎨
⎪

⎩⎪
=

.
Then

and also α < y2 < β. Since y1 − y2 = x1, α < x1 < β, we have α < y1 − y2 < β. Thus
the limits of y1, y2 are specified by α < y2 < β, α < y1 − y2 < β. (See Figs. 9.3 and
9.4.)

EXAMPLE 9

Figure 9.4 T = image of S under the transformation h.

2��
2� �

� 
 �

�

�

0
y1

y2

T

y1 � y2 � c

y1 � y2 � �

y1 � y2 � �

x1

x2

S

h

T(Fig. 9.4)

0

�

�

�

�

Figure 9.3 S = {(x1, x2)′; fX1,X2
(x1, x2) > 0}
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REMARK 5 This density is known as the triangular p.d.f.

Let X1, X2 be i.i.d. r.υ.’s from U(1, β). Set Y1 = X1X2 and find the p.d.f. of Y1.
Consider the transformation

h
y x x

y x

Y X X

Y X
: ;

.
1 1 2

2 2

1 1 2

2 2

=
=

⎧
⎨
⎩

=
=

⎧
⎨
⎩

then

From h, we get

x
y
y

x y
J y

y

y
y

1
1

2

2 2

2

1

2
2

2

1

0 1

1=

=

⎧
⎨
⎪

⎩⎪
=

−
=and .

Now

S x x f x xX X= ( )′ ( ) >
⎧
⎨
⎩

⎫
⎬
⎭

1 2 1 21 2
0, ; ,,

is transformed by h onto

T y y
y
y

y= ( )′ < < < <
⎧
⎨
⎩

⎫
⎬
⎭

1 2
1

2
21 1, ; , .β β

Thus we get

f y y
y y y y

Y Y1 2 1 2
2 1 2 1 2

1
2 2

0

, ,
, , ,

,

( ) = −( )
< < < < < − <

⎧

⎨
⎪

⎩
⎪

β α
α β α β α β

otherwise.

Therefore

f y

dy
y

y

dy
y

yY

y

y

1

1

1

1

2 2
1

2 1

2 2
1
2

1 2
2

1 2

0

2( ) =
−( )

= −

−( )
< ≤ +

−( )
= −

−( )
<

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

−

−

∫

∫

β α

α

β α
α α β

β α

β

β α
α β β

α

α

β

β

,

,

,

for

otherwise.

for + < 1

The graph of fY1
 is given in Fig. 9.5.
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f y y
y y T

Y Y1 2 1 2
2 1 2

1

1

1
2

0

, ,
, ,

,

( ) = −( )
( )′ ∈

⎧

⎨
⎪

⎩
⎪

β
otherwise,

we have

f y

dy
y

y y

dy
y

y y
Y

y

y

1

1

1

1

2
2

2
2 1 11

2
2

2
2 1 1

2

1

1

1

1
1

1

1

1

1
2

( ) =
−( )

=
−( )

< <

−( )
=

−( )
−( ) ≤ <

⎧

⎨

⎪
⎪

⎩

⎪
⎪

∫

∫

β β
β

β β
β β β

β

β

log ,

log log , ;

that is

f y

y y

y yY1 1

2 1 1

2 1 1
2

1

1
1

1

1
2

0

( ) =

−( )
< <

−( )
−( ) ≤ <

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

β
β

β
β β β

log ,

log log ,

, otherwise.

Let X1, X2 be i.i.d. r.υ.’s from N(0, 1). Show that the p.d.f. of the r.v.
Y1 = X1/X2 is Cauchy with μ = 0, σ = 1; that is,

  

f y
y

yY1 1
1
2 1

1 1

1
( ) = ⋅

+
∈

π
, .�

We have

Y1 = X1/X2. Let Y2 = X2 and consider the transformation
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EXAMPLE 11

(See Fig. 9.6.) Thus, since

�2

�

�

1

0 1
y1

Ty2 � y1

y2 �
�

y1

Figure 9.6
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h
y x x x

y x

x y y

x y
:

,

;
1 1 2 2

2 2

1 1 2

2 2

0= ≠
=

⎧
⎨
⎩

=
=

⎧
⎨
⎩

then

and

J
y y

y J y= = =2 1
2 2

0 1
, .so that

Since −∞ < x1, x2 < ∞ implies −∞ < y1, y2 < ∞, we have

f y y f y y y y
y y y

yY Y X X1 2 1 21 2 1 2 2 2
1
2

2
2

2
2

2

1
2 2, ,, , exp( ) = ( ) ⋅ = −

+⎛

⎝
⎜

⎞

⎠
⎟π

and therefore

f
y y y

y dy
y y

y dyY
y

1
1

1
2 2

1 1

2
1
2

2
2

2
2

2 2

1
2

2
2

0 2 2
( )

−∞

∞ ∞
= −

+⎛

⎝
⎜

⎞

⎠
⎟ = −

+( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥∫ ∫π π

exp exp .

Set

y
y t y

t

y

1
2

2
2

2
2

1
2

1

2
2

1

+( )
= =

+
, so that

and

2
2

1 1
02 2

1
2 2 2

1
2

y dy
dt

y
y dy

dt

y
t=

+
=

+
∈ ∞[ ), , , .or

Thus we continue as follows:

1

1

1 1

1

1 1

11
20

1
2 0

1
2π π π

e
dt

y y
e dt

y
t t−∞ −∞

+
= ⋅

+
= ⋅

+∫ ∫ ,

since

e dtt−∞

∫ =
0

1;

that is,

f y
y

Y1 1
1
2

1 1

1
( ) = ⋅

+π
.

Let X1, X2 be independent r.υ.’s distributed as Gamma with parameters (α, 2)
and (β, 2), respectively. Set Y1 = X1/(X1 + X2) and prove that Y1 is distributed
as Beta with parameters α, β.

We set Y2 = X1 + X2 and consider the transformation:

h
y

x
x x

y x x
x x

x y y

x y y y
: , , ;

.
1

1

1 2

2 1 2

1 2
1 1 2

2 2 1 2

0
=

+
= +

⎧
⎨
⎪

⎩⎪
>

=
= −

⎧
⎨
⎩

then

EXAMPLE 12
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Hence

J
y y

y y
y y y y y y J y=

− −
= − + = =2 1

2 1
2 1 2 1 2 2 21

and .

Next,

f x x
x x

x x
x x

X X1 2 1 2
1

1
2

1 1 2
1 2

1

2 2 2
0

0 0
, ,

exp , , ,

, , .

( ) = ( ) ( ) − +⎛
⎝⎜

⎞
⎠⎟

>

>

⎧

⎨
⎪

⎩
⎪

− −

Γ Γα β
α β

α β
α β

otherwise,  

From the transformation, it follows that for x1 = 0, y1 = 0 and for x1 → ∞,

y
x

x x x x
1

1

1 2 2 1

1

1
1=

+
=

+ ( ) → .

Thus 0 < y1 < 1 and, clearly, 0 < y2 < ∞. Therefore, for 0 < y1 < 1, 0 < y2 < ∞, we
get

f y y y y y y
y

y

y y y e

Y Y

y

1 2

2

1 2 1
1

2
1

2
1

1

1
2

2

1
1

1

1

2
1 2

1

2
1

2

1

2
1

, , exp

.

( ) = ( ) ( ) −( ) −
⎛
⎝⎜

⎞
⎠⎟

= ( ) ( ) −( )

+
− − − −

+
− − + − −

Γ Γ

Γ Γ

α β

α β

α β
α α β β

α β
α β α β

Hence

f y y y

y e dy

Y

y

1

2

1 1
1

1

1

2
1

0

2
2

1

2
1( ) = ( ) ( ) −( )

×

+
− −

+ −∞ −∫

Γ Γα β α β
α β

α β .

But

y e dy t e dty t
2

1

0

2
2

1

0

2 2 2α β α β α β α β α β+ −∞ − + + −∞ − +∫ ∫= = +( )Γ .

Therefore

f y a
y y y

Y1 1
1

1
1

1

11 0 1

0

( ) =
+( )

( ) ( ) −( ) < <
⎧

⎨
⎪

⎩
⎪

− −Γ

Γ Γ

α β

β
α β

,

, otherwise.

Let X1, X2, X3 be i.i.d. r.υ.’s with density

f x
e x

x

x

( ) = >
≤

⎧
⎨
⎩

− ,

, .

0

0 0

Set

Y
X

X X
Y

X X
X X X

Y X X X1
1

1 2
2

1 2

1 2 3
3 1 2 3=

+
= +

+ +
= + +, ,

EXAMPLE 13
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and prove that Y1 is U(0, 1), Y3 is distributed as Gamma with α = 3, β = 1, and
Y1, Y2, Y3 are independent.

Consider the transformation

h

y
x

x x

y
x x

x x x

y x x x

x x x

x y y y

x y y y y y

x y y y

: , , , ;

1
1

1 2

2
1 2

1 2 3

3 1 2 3

1 2 3

1 1 2 3

2 1 2 3 2 3

3 2 3 3

0

=
+

= +
+ +

= + +

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

>
=
= − +
= − +

⎧

⎨
⎪

⎩
⎪

 then

and

J

y y y y y y

y y y y y y y y

y y

y y= − − + − +
− − +

=
2 3 1 3 1 2

2 3 1 3 3 1 2 2

3 2

2 3
2

0 1

.

Now from the transformation, it follows that x1, x2, x3 ∈ (0, ∞) implies that

y y y1 2 30 1 0 1 0∈( ) ∈( ) ∈ ∞( ), , , , , .   

Thus

f y y y
y y e y y y

Y Y Y

y

1 2 3

3

1 2 3
2 3

2
1 2 30 1 0 1 0

0
, , , ,

, , ,

,
( ) = < < < < < < ∞⎧

⎨
⎪

⎩⎪

−

otherwise.

Hence

f y y y e dy dy y

f y y y e dy dy y y e dy

y y

Y
y

Y
y y

1

3

2

3 3

1 2 3
2

0

1

0 2 3 1

2 2 3
2

0

1

0 1 3 2 3
2

0 3

2 2

1 0 1

2 0 1

( ) = = < <

( ) = =

= < <

−∞

−∞ ∞ −

∫∫
∫∫ ∫

, ,

,

and

f y y y e dy dy y e y dy

y e y

Y
y y

y

3

3 3

3

3 2 3
2

0

1

0

1

1 2 3
2

2 20

1

3
2

3

1
2

0

( ) = =

= < < ∞

∫∫ ∫− −

− , .

Since

f y y y f y f y f yY Y Y Y Y Y1 2 3 1 2 31 2 3 1 2 3, , , , ,( ) = ( ) ( ) ( )
the independence of Y1, Y2, Y3 is established. The functional forms of fY1

, fY3

verify the rest.
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9.2.1 Application 2: The t and F Distributions

The density of the t distribution with r degrees of freedom (tr). Let the indepen-
dent r.υ.’s X and Y be distributed as N(0, 1) and χ2

r, respectively, and set T =
X/√Y/r. The r.v. T is said to have the (Student’s) t-distribution with r degrees of
freedom (d.f.) and is often denoted by tr. We want to find its p.d.f. We have:

  

f x e xX

x( ) = ∈−( )1

2

1 2 2

π
, ,�

f y r
y e y

y

Y
r

r y

( ) = ( )
>

≤

⎧

⎨
⎪

⎩
⎪

( )
( )− −1

2
0

0 0

1
2

1 2

2 1 2

Γ
,

, .

Set U = Y and consider the transformation

h
t

x

y r
u y

x
r

t u

y u

: ;
=

=

⎧

⎨
⎪

⎩
⎪

=

=

⎧
⎨
⎪
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1
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J
u

r

t

u r
u

r
= =2

0 1

.

Then for t ∈ � , u > 0, we get

f t u e
r

u e
u

r

r r
u

u t
r

T U

t u r

r

r u

r

r
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⎢
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2 2
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2 2 2 2
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2

π

π

Γ

Γ

Hence

f t
r r

u
u t

r
duT r

r( ) =
( )
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2
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We set

u t
r

z u z
t
r

du
t
r
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2

1 2 1 2 1
2 2

1
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1
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⎛

⎝⎜
⎞

⎠⎟
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⎛

⎝⎜
⎞
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− −

, , ,so that  

and z ∈[0, ∞). Therefore we continue as follows:
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f t
r r

z
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t r
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that is
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r r t r
tT r( ) =

+( )[ ]
( ) + ( )[ ]

∈( ) +( )
Γ

Γ

1
2

2
1 2 1

1
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1

1π
, � .

The probabilities P(T ≤ t) for selected values of t and r are given in tables (the
t-tables). (For the graph of fT, see Fig. 9.7.)

The density of the F distribution with r1, r2 d.f. (Fr1,r2
). Let the independent r.υ.’s

X and Y be distributed as χ2
r1
 and χ2

r2
, respectively, and set F = (X/r1)/(Y/r2). The

r.v. F is said to have the F distribution with r1, r2 degrees of freedom (d.f.) and
is often denoted by Fr1,r2

.
We want to find its p.d.f. We have:

f x r
x e x

x
X

r

r x
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⎨
⎪

⎩
⎪
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2
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0 0

1
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2 1 2
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1

Γ
,

, ,

Figure 9.7
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f y r
y e y
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We set Z = Y, and consider the transformation

h
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For f, z > 0, we get:
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Thus continuing, we have

9.2 The Multivariate Case 231



232 9 Transformations of Random Variables and Random Vectors

REMARK 6

i) If F is distributed as Fr1,r2
, then, clearly, 1/F is distributed as Fr2,r1

.

ii) If X is N(0, 1), Y is χ 2
r and X, Y are independent, so that T = X/√Y/r is

distributed as tr, the n T 2 is distributed as F1,r, since X 2 is χ 2
1.

We consider the multidimensional version of Theorem 3.

Let the k-dimensional r. vector X have continuous p.d.f. fX on the set S on
which it is positive, and let y = h(x) = (h1(x), . . . , hk(x))′ be a (measurable)
transformation defined on � k into � k, so that Y = h(X) is a k-dimensional r.
vector. Suppose that there is a partition {Sj, j = 1, . . . , r} of S and subsets Tj,
j = 1, . . . , r of T (the image of S under h), which need not be distinct or dis-
joint, such that �r

j =1 Tj = T and that h defined on each one of Sj onto Tj,

f f
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,

for

for 0.

The probabilities P(F ≤ f) for selected values of f and r1, r2 are given by
tables (the F-tables). (For the graph of fF, see Fig. 9.8.)

THEOREM 3 ′

Figure 9.8

0 302010
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F10, 10



9.1 The Univariate Case 233

j = 1, . . . , r is one-to-one. Let hj be the restriction of the transformation h to
Sj and let hj

−1(y) = (gj1(y), . . . , gjk(y))′ be its inverse, j = 1, . . . , r. Assume that
the partial derivatives gjil(y) = (∂/∂yl)gji(y1, · · · , yk), i, l = 1, . . . , k, j = 1, . . . ,
r exist and for each j, gjil, i, l = 1, . . . , k are continuous, j = 1, . . . , r. Then the
p.d.f. fY of Y is given by

    

f
f Tj

j

r

j
Y

Yy y y
y( ) = ( ) ( ) ∈

⎧
⎨
⎪

⎩⎪
=

∑δ
1

0

,

, otherwise,

where for j = 1, . . . , r, fYj
(y) = fX[hj

−1(y)]|Jj|, y ∈Tj, δj(y) = 1 if y ∈T and δj(y) =
0 otherwise, and the Jacobians Jj which are functions of y are defined by

J

g g g

g g g

g g g

j

j j j k

j j j k

jk jk jkk

=

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅

11 12 1

21 22 2

1 2

M M M M
,

and are assumed to be ≠ 0 on Tj, j = 1, . . . , r.

In the next chapter (Chapter 10) on order statistics we will have the
opportunity of applying Theorem 3′.

Exercises

9.2.1 Let X1, X2 be independent r.v.’s taking on the values 1, . . . , 6 with
probability f(x) = 1–6 , x = 1, . . . , 6. Derive the distribution of the r.v. X1 + X2.

9.2.2 Let X1, X2 be r.v.’s with joint p.d.f. f given by

f x x I x xA1 2 1 2

1
, , ,( ) = ( )π

where

  

A x x x x= ( )′ ∈ + ≤
⎧
⎨
⎩

⎫
⎬
⎭

1 2
2

1
2

2
2 1, ; .�

Set Z2 = X 2
1 + X 2

2 and derive the p.d.f. of the r.v. Z2. (Hint: Use polar co-
ordinates.)

9.2.3 Let X1, X2 be independent r.v.’s distributed as N(0, 1). Then:

i) Find the p.d.f. of the r.v.’s X1 + X2 and X1 − X2;

ii) Calculate the probability P(X1 − X2 < 0, X1 + X2 > 0).

9.2.4 Let X1, X2 be independent r.v.’s distributed as Negative Exponential
with parameter λ = 1. Then:

Exercises 233
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ii) Derive the p.d.f.’s of the following r.v.’s:

X X X X X X1 2 1 2 1 2+ −, , ;and

ii) Show that X1 + X2 and X1/X2 are independent.

9.2.5 Let X1, X2 be independent r.v.’s distributed as U(α, α + 1). Then:

i) Derive the p.d.f.’s of the r.v.’s X1 + X2 and X1 − X2;

ii) Determine whether these r.v.’s are independent or not.

9.2.6 Let the independent r.v.’s X1, X2 have p.d.f. f given by

f x
x

I x( ) = ( )∞( )
1

2 1, .

Determine the distribution of the r.v. X = X1/X2.

9.2.7 Let X be an r.v. distributed as tr.

ii) For r = 1, show that the p.d.f. of X becomes a Cauchy p.d.f.;

ii) Also show that the r.v. Y
X r

=
+ ( )

1

1 2
is distributed as Beta.

9.2.8 If the r.v. X is distributed as Fr1,r2
, then:

i) Find its expectation and variance;

ii) If r1 = r2, show that its median is equal to 1;

iii) The p.d.f. of Y
r r X

=
+ ( )

1

1 1 2

 is Beta;

iv) The p.d.f. of r1 X converges to that of χ 2
r1
 as r2 → ∞.

(Hint: For part (iv), use Stirling’s formula (see, for example, W. Feller’s book
An Introduction to Probability Theory, Vol. I, 3rd ed., 1968, page 50) which
states that, as n → ∞, Γ(n)/(2π)1/2n(2n−1)/2e−n tends to 1.)

9.2.9 Let X1, X2 be independent r.v.’s distributed as χ 2
r1
 and χ 2

r2
, respectively,

and set X = X1 + X2, Y = X1/X2. Then show that:

i) The r.v. X is distributed as χ 2
r1+r2

 (as anticipated);

ii) The r.v. Y is distributed as r1–r2
Z, where Z has the Fr1,r2

 distribution;

iii) The r.v.’s X and Y are independent.

9.2.10 Let X1, X2 be independent r.v.’s distributed as N(0, σ2). Then show
that:

i) The r.v. X 2
1 + X 2

2 has the Negative Exponential distribution with parameter
λ = 1/2σ2;

ii) The r.v. X1/X2 has the Cauchy distribution with μ = 0 and σ = 1;

iii) The r.v.’s X 2
1 + X 2

2 and X1/X2 are independent.
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9.2.11 Let Xr be an r.v. distributed as tr. Then show that:

EX r X
r

r
rr r= ≥ ( ) =

−
≥0 2

2
32, ; , .σ

9.2.12 Let Xr1,r2
 be an r.v. distributed as Fr1,r2

. Then show that:

EX
r

r
r X

r r r

r r r
rr r r r1 2 1 2

2

2
2

2 2
2

1 2

1 2

2

2

22
3

2 2

2 4
5, ,, ; , .=

−
≥ ( ) =

+ −( )
−( ) −( )

≥σ

9.2.13 Let Xr be an r.v. distributed as tr, and let fr be its p.d.f. Then show that:

  

f x
x

xr r( ) ⎯ →⎯ −
⎛

⎝⎜
⎞

⎠⎟
∈

→∞

1

2 2

2

π
exp , .�

(Hint: Use Stirling’s formula given as a hint in Exercise 9.2.8(iv).)

9.2.14 Let Xr1
 and Xr1,r2

 be r.v.’s distributed as χ 2
r1
 and Fr1,r2

, respectively, and,
for α ∈ (0, 1), let χ 2

r1;α and Fr1,r2;α be defined by: P(Xr1
≥ χ 2

r1;α) = α, P(Xr1,r2
≥ Fr1,r2;α)

= α. Then show that:

F
r

rr r r1 2 1

1

1

2
2, ; ; .α αχ→ → ∞as

9.3 Linear Transformations of Random Vectors

In this section we will restrict ourselves to a special and important class of
transformations, the linear transformations. We first introduce some needed
notation and terminology.

9.3.1 Preliminaries

A transformation h: � k → � k which transforms the variables x1, . . . , xk to the
variables y1, . . . , yk in the following manner:

y c x c i j ki ij j ij
j

k

= = ⋅ ⋅ ⋅
=

∑ , , , , ,real constants, 1 2
1

(1)

is called a linear transformation. Let C be the k × k matrix whose elements are
cij. That is, C = (cij), and let Δ = |C| be the determinant of C. If Δ ≠ 0, we can
uniquely solve for the x’s in (1) and get

x d y d i j ki ij j ij
j

k

= = ⋅ ⋅ ⋅
=

∑ , , , , .real constants, 1
1

(2)

Let D = (dij) and Δ* = |D|. Then, as is known from linear algebra (see also
Appendix 1), Δ* = 1/Δ. If, furthermore, the linear transformation above is
such that the column vectors (c1j, c2j, . . . , ckj)′, j = 1, . . . , k are orthogonal,
that is
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and
c c j j

c j k

ij i j
i

k

ij
i

k

′
=

=

= ≠ ′

= = ⋅ ⋅ ⋅

⎫

⎬
⎪⎪

⎭
⎪
⎪

∑

∑

0

1 1

1

2

1

for

, , , ,
(3)

then the linear transformation is called orthogonal. The orthogonality
relations (3) are equivalent to orthogonality of the row vectors (ci1, . . . , cik)′
i = 1, . . . , k. That is,

and

c c i i

c i k

ij i j
j

k

ij
j

k

′
=

=

= ≠ ′

= = ⋅ ⋅ ⋅

⎫

⎬
⎪
⎪

⎭
⎪
⎪

∑

∑

0

1 1

1

2

1

for

, , , .
(4)

It is known from linear algebra that |Δ| = 1 for an orthogonal transformation.
Also in the case of an orthogonal transformation, we have dij = cji, i, j = 1, . . . ,
k, so that

x c y i ki ji j
j

k

= = ⋅ ⋅ ⋅
=

∑ , , , .
1

1

This is seen as follows:

c y c c x c c x x c c xji j
j

k

ji
j

k

jl l
l

k

ji
l

k

jl l l
l

k

j

k

ji
j

k

jl i
= = = = == =

∑ ∑ ∑ ∑ ∑∑ ∑=
⎛

⎝⎜
⎞

⎠⎟
= =

⎛

⎝⎜
⎞

⎠⎟
=

1 1 1 1 11 1

by means of (3). Thus, for an orthogonal transformation, if

y c x x c y i ki ij
j

k

j i ji
j

k

j= = = ⋅ ⋅ ⋅
= =

∑ ∑
1 1

1, , , , .then

According to what has been seen so far, the Jacobian of the transforma-
tion (1) is J = Δ* = 1/Δ, and for the case that the transformation is orthogonal,
we have J = ±1, so that |J| = 1. These results are now applied as follows:

Consider the r. vector X = (X1, . . . , Xk)′ with p.d.f. fX and let S be the
subset of � k over which fX > 0. Set

Y c X i ki ij
j

k

j= = ⋅ ⋅ ⋅
=

∑
1

1, , , ,

where we assume Δ = |(cij)| ≠ 0. Then the p.d.f. of the r. vector Y = (Y1, . . . , Yk)′
is given by

f y y
f d y d y y y T

k
j j kj j

j

k

j

k

k
Y

X
1

1
11

1

1

0

, ,
, , , , ,

,
⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅

⎛

⎝⎜
⎞

⎠⎟
⋅ ⋅ ⋅ ⋅( )′ ∈

⎧

⎨
⎪

⎩
⎪

==
∑∑ Δ

otherwise,

where T is the image of S under the transformation in question. In particular,
if the transformation is orthogonal,
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f y y
f c y c y y y T

k
j j jk j

j

k

j

k

k
Y

X
1

1
11

1

0

, ,
, , , , ,

,
⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅

⎛

⎝⎜
⎞

⎠⎟ ⋅ ⋅ ⋅( )′ ∈
⎧

⎨
⎪

⎩
⎪

==
∑∑

otherwise.

Another consequence of orthogonality of the transformation is that

Y Xi
i

k

i
i

k
2

1

2

1= =
∑ ∑= .

In fact,

Y c X c X c X

c c X X X X c c

i
i

k

ij
j

k

j ij
j

k

j il
l

k

l
i

k

i

k

ij
l

k

j

k

i

k

il j l j
l

k

j

k

l ij
i

k

il

2

1 1

2

1 111

111 11 1

= = = ===

=== == =

∑ ∑ ∑ ∑∑∑

∑∑∑ ∑∑ ∑

=
⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟

= =
⎛

⎝⎜
⎞⎞

⎠⎟

=
=
∑ X i
i

k
2

1

because

c c j l j lij
i

k

il
=
∑ = = ≠

1

1 0for and for .

We formulate these results as a theorem.

Consider the r. vector X = (X1, . . . , Xk)′ with p.d.f. fX which is > 0 on S ⊆ � k.
Set

Y c X i ki ij
j

k

j= = ⋅ ⋅ ⋅
=

∑
1

1, , , ,

where |(cij)| = Δ ≠ 0. Then

X d Y i ki ij
j

k

j= = ⋅ ⋅ ⋅
=

∑
1

1, , , ,

and the p.d.f. of the r. vector Y = (Y1, . . . , Yk)′ is

f y y
f d y c y y y T

k
j

j

k

j kj
j

k

j k
Y

X
1

1
1 1

1

1

0

, ,
, , , , ,

,
⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅

⎛

⎝⎜
⎞

⎠⎟
⋅ ⋅ ⋅ ⋅( )′ ∈

⎧

⎨
⎪

⎩
⎪

= =
∑ ∑ Δ

otherwise.

where T is the image of S under the given transformation. If, in particular, the
transformation is orthogonal, then

f y y
f c y c y y y T

k
j

j

k

j jk
j

k

j k
Y

X
1

1
1 1

1

0

, ,
, , , , ,

,
⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅

⎛

⎝⎜
⎞

⎠⎟
⋅ ⋅ ⋅( )′ ∈

⎧

⎨
⎪

⎩
⎪

= =
∑ ∑

otherwise.
Furthermore, in the case of orthogonality, we also have
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X Yj
j

k

j
j

k
2

1

2

1= =
∑ ∑= .

The following theorem is an application of Theorem 4 to the normal case.

Let the r.v.’s Xi be N(μi, σ2), i = 1, . . . , k, and independent. Consider the
orthogonal transformation

Y c X i ki ij
j

k

j= = ⋅ ⋅ ⋅
=

∑
1

1, , , .

Then the r.v.’s Y1, . . . , Yk are also independent, normally distributed with
common variance σ2 and means given by

E Y c i ki ij
j

k

j( ) = = ⋅ ⋅ ⋅
=

∑
1

1μ , , , .

PROOF With X = (X1, . . . , Xk)′ and Y = (Y1, . . . , Yk)′, we have

f x x xk

k

i i
i

k

X 1 2

2

1

1

2

1

2
, , exp ,⋅ ⋅ ⋅( ) =

⎛

⎝⎜
⎞

⎠⎟
− −( )⎡

⎣
⎢

⎤

⎦
⎥

=
∑

πσ σ
μ

and hence

f y y c yk

k

ji j
j

k

i
i

k

Y 1 2
1

2

1

1

2

1

2
, , exp .⋅ ⋅ ⋅( ) =

⎛

⎝⎜
⎞

⎠⎟
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⎛

⎝⎜
⎞

⎠⎟
⎡

⎣

⎢
⎢

⎤

⎦

⎥
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∑∑
πσ σ

μ

Now

c y c y c y

c c y y c y
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and this is equal to

y cj ji
i

k

i
j

k

−
⎛

⎝⎜
⎞

⎠⎟==
∑∑

1

2

1

μ ,

since expanding this last expression we get:
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y c c c y

y c y c c
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as was to be seen. ▲

As a further application of Theorems 4 and 5, we consider the following
result. Let Z1, . . . , Zk be independent N(0, 1), and set

Y
k

Z
k

Z
k

Z

Y Z Z

Y Z Z Z

Y
k k

Z
k k

Z
k

k k
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k k k

1 1 2
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We thus have
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while for i = 2, . . . , k, we get
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and for i, l = 2, . . . , k(i ≠ l), we have

c c c c i lij
j

k

lj ij
j

i

lj
= =

∑ ∑= <
1 1

if ,

and

c c i lij
j

l

lj
=

∑ >
1

if .

For i < l, this is
1

1 1
1 1 0

i i l l
i i

−( ) −( )
−( ) − −( )[ ] = ,

and for i > l, this is
1

1 1
1 1 0

i i l l
l l

−( ) −( )
−( ) − −( )[ ] = .

Thus the transformation is orthogonal. It follows, by Theorem 5, that
Y1, . . . , Yk are independent, N(0, 1), and that

Y Zi
i

k

i
i

k
2

1

2

1= =
∑ ∑= by Theorem 4.

Thus

Y Y Y Z kZ

Z kZ Z Z
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i
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2
1
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1

2

2

1
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1
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= − = − ( )
= − = −( ) .

Since Y1 is independent of ∑k
i=2Y

2
i, we conclude that Z̄ is independent of

∑k
i=1 (Zi − Z̄ )2. Thus we have the following theorem.

Let X1, . . . , Xk be independent r.υ.’s distributed as N(μ, σ2). Then X̄ and S2 are
independent.

PROOF Set Zj = (Xj − μ)/σ, j = 1, . . . , k. Then the Z’s are as above, and hence

Z X Z Z X Xj
j

k

j
j

k

= −( ) −( ) = −( )
= =

∑ ∑1 12

1
2

2

1σ
μ

σ
and

are independent. Hence X̄ and S2 are independent. ▲

Exercises

9.3.1 For i = 1, 2, 3, let Xi be independent r.v.’s distributed as N(μi, σ2), and
set:

Y X X Y X X X1 1 2 2 1 2 3

1

2

1

2

1

3

1

3

1

3
= − + = − − +, ,

Y X X X3 1 2 3

1

6

1

6

2

6
= + + .

THEOREM 6



9.1 The Univariate Case 241

Then:

i) Show that the r.v.’s Y1, Y2, Y3 are also independent normally distributed
with variance σ2, and specify their respective means.
(Hint: Verify that the transformation is orthogonal, and then use Theorem
5);

ii) If μ1 = μ2 = μ3 = 0, use a conclusion in Theorem 4 in order to show that
Y 2

1 + Y 2
2 + Y 2

3 � σ 2χ 2
3.

9.3.2 If the pair of r.v.’s (X, Y) has the Bivariate Normal distribution with
parameters μ1, μ2, σ 2

1, σ 2
2, ρ, that is, (X, Y) � N(μ1, μ2, σ 2

1, σ 2
2, ρ), then show that

X Y− −( )μ
σ

μ
σ

1

1

2

2
, ′� N(0, 0, 1, 1, ρ), and vice versa.

9.3.3 If (X, Y)′ � N(0, 0, 1, 1, ρ), and c, d are constants with cd ≠ 0, then show
that (cX, dY) � N(0, 0, c2, d2, ρ0), where ρ0 = ρ if cd > 0, and ρ0 = −ρ if cd < 0.

9.3.4 If (X, Y)′ � N(0, 0, 1, 1, ρ), show that X + Y � N(0, 2(1 − ρ)), X − Y �
N(0, 2(1 − ρ)), and X + Y, X − Y are independent.

9.3.5 If (X, Y)′ � N(μ1, μ2, σ 2
1, σ 2

2, ρ), and U VX Y= =− −μ
σ

μ
σ

1

1

2

2
, , then:

i) Determine the distribution of the r.v.’s U + V, U − V, and show that these
r.v.’s are independent;

ii) In particular, for σ 2
1 = σ 2

2 = σ2, say, specify the distributions of the r.v.’s
X + Y, X − Y, and show that r.υ.’s are independent.

9.3.6 Let (X, Y)′ � N(0, 0, σ 2
1, σ 2

2, ρ). Then:

iii) (X + Y, X − Y)′ � N(0, 0, τ 2
1, τ 2

2, ρ0), where

τ σ σ ρσ σ τ σ σ ρσ σ ρ σ σ τ τ1
2

1
2

2
2

1 2 2
2

1
2

2
2

1 2 0 1
2

2
2

1 22 2= + + = + − = −( ), , ;  and 

iii) X + Y � N(0, τ 2
1) and X − Y � N(0, τ 2

2);

iii) The r.v.’s X + Y and X − Y are independent if and only if σ1 = σ2. (Compare
with the latter part of Exercise 9.3.5.)

9.3.7 Let (X, Y)′ � N(μ1, μ2, σ 2
1, σ 2

2, ρ), and let c, d be constants with cd ≠ 0.
Then:

i) (cX, dY)′ � N(cμ1, dμ2, c2σ 2
1, d2σ 2

2, ±ρ), with +ρ if cd > 0, and −ρ if cd < 0;

ii) (cX + dY, cX − dY)′ � N(cμ1 + dμ2, cμ1 − dμ2, τ 2
1, τ 2

2, ρ0), where

τ σ σ ρ σ σ τ σ σ ρ σ σ

ρ
σ σ

τ τ

1
2 2

1
2 2

2
2

1 2 2
2 2

1
2 2

2
2

1 2

0

2
1
2 2

2
2

1 2

2 2= + + = + −

=
−

c d cd c d cd

c d

, ,

;and

iii) The r.v.’s cX + dY and cX − dY are independent if and only if c
d = ± σ

σ
2

1
;
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iv) The r.v.’s in part (iii) are distributed as N(cμ1 + dμ2, τ 2
1), and N(cμ1 − dμ2,

τ 2
2), respectively.

9.3.8 Refer to Exercise 9.3.7 and:

i) Provide an expression for the probability P(cX + dY > λ);

ii) Give the numerical value of the probability in part (i) for c = 2, d = 3,
λ = 15, μ1 = 3.5, μ2 = 1.5, σ1 = 1, σ2 = 0.9, and ρ = −0.5.

9.3.9 For j = 1, . . . , n, let (Xj, Yj)′ be independent r. vectors with distribution
N(μ1, μ2, σ 2

1, σ 2
2, ρ). Then:

i) Determine the distribution of the r.v. X̄ − Ȳ ;

ii) What does this distribution become for μ1 = μ2 and σ 2
1 = σ 2

2 = σ2, say?

9.4 The Probability Integral Transform

In this short section, we derive two main results. According to the first
result, if X is any r.v. with continuous d.f. F, and if Y = F(X), then surprisingly
enough Y � U(0, 1). The name of this section is derived from the transforma-
tion Y = F(X), since F is represented by the integral of a p.d.f. (in the
absolutely continuous case). Next, in several instances a statement has been
made to the effect that X is an r.v. with d.f. F. The question then arises as to
whether such an r.v. can actually be constructed. The second result resolves
this question as follows: Let F be any d.f. and let Y � U(0, 1). Set X = F−1(Y).
Then X � F.

The proof presented is an adaptation of the discussion in the Note “The
Probability Integral Transformation: A Simple Proof” by E. F. Schuster, pub-
lished in Mathematics Magazine, Vol. 49 (1976) No. 5, pages 242–243.

Let X be an r.v. with continuous d.f. F, and define the r.v. Y by Y = F(X). Then
the distribution of Y is U(0, 1).

PROOF Let G be the d.f. of Y. We will show that G(y) = y, 0 < y < 1;
G(0) = 0; G(1) = 1. Indeed, let y ∈ (0, 1). Since F(x) → 0 as x → −∞, there
exists a such that (0 ≤)F(a) < y; and since F(x) → 1 as x → ∞, there exists
ε > 0 such that y + ε < 1 and F(y) < F(y + ε)(≤ 1). Set F(a) = c, y + ε = b,
and F(b) = d. Then the function F is continuous in the closed interval
[a, b] and all y of the form y + ε–n (n ≥ 2 integer) lie in (c, d). Therefore, by the
Intermediate Value Theorem (see, for example, Theorem 3(ii) on page 95
in Calculus and Analytic Geometry, 3rd edition (1966), by George B.
Thomas, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts)
there exist x0 and xn (n ≥ 2) in (a, b) such that F(x0) = y and F(xn) = y + ε–n .
Then

THEOREM 7
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Figure 9.9
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Figure 9.10 Figure 9.11

X x F X F x F

F X y F x y

F X y
n

F X F x F x y
n

X x F

n n

n

≤( ) ⊆ ( ) ≤ ( )[ ] ( )
= ( ) ≤[ ] ( ) =( )
⊆ ( ) < +

⎡

⎣
⎢

⎤

⎦
⎥

= ( ) < ( )[ ] ( ) = +
⎛
⎝⎜

⎞
⎠⎟

⊆ <( ) (
)

0 0

0

since  is nondecreasing

since

since

by the fact that  is nondecreasing
and by contradiction

ε

ε

.

That is (X ≤ x0) ⊆ [F(X) ≤ y] ⊆ (X ≤ xn). Hence

P X x P F X y P X x

y F x G y F x y
n

n

n

≤( ) ≤ ( ) ≤[ ] ≤ ≤( )
= ( ) ≤ ( ) ≤ ( ) = +

0

0

,

.or
ε

Letting n → ∞, we obtain G(y) = y. Next, G is right-continuous, being a d.f.
Thus, as y ↓ 0, G(0) = lim G(y) = lim y = 0. Finally, as y ↑ 1, G(1−) = lim G(y)
= lim y = 1, so that G(1) = 1. The proof is completed. ▲

For the formulation and proof of the second result, we need some notation
and a preliminary result. To this end, let X be an r.v. with d.f. F. Set y = F(x)
and define F−1 as follows:

  
F y x F x y− ( ) = ∈ ( ) ≥{ }1 inf ; .� (5)

From this definition it is then clear that when F is strictly increasing, for each
x ∈ �, there is exactly one y ∈ (0, 1) such that F(x) = y. It is also clear that, if
F is continuous, then the above definition becomes as follows:

  
F y x F x y− ( ) = ∈ ( ) ={ }1 inf ; .� (6)

(See also Figs. 9.9, 9.10 and 9.11.)
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We now establish the result to be employed.

Let F−1 be defined by (5). Then F−1(y) ≤ t if and only if y ≤ F(t).

PROOF We have F−1(y) = inf {x ∈ �; F(x) ≥ y}. Therefore there exists xn ∈
{x ∈ �; F(xn) ≥ y} such that xn ↓ F−1(y). Hence F(xn) → F[F−1(y)], by the right
continuity of F, and

F F y y− ( )[ ] ≥1 . (7)

Now assume that F−1(y) ≤ t. Then F[F−1(y)] ≤ F(t), since F is nondecreasing.
Combining this result with (7), we obtain y ≤ F(t).

Next assume, that y ≤ F(t). This means that t belongs to the set {x ∈ �, F(x)
≥ y} and hence F−1(y) ≤ t. The proof of the lemma is completed. ▲

By means of the above lemma, we may now establish the following result.

Let Y be an r.v. distributed as U(0, 1), and let F be a d.f. Define the r.v. X by
X = F−1(Y), where F−1 is defined by (5). Then the d.f. of X is F.

PROOF We have

P X x P F Y x P Y F x F x≤( ) = ( ) ≤[ ] = ≤ ( )[ ] = ( )−1 ,

where the last step follows from the fact that Y is distributed as U(0, 1) and the
one before it by Lemma 1. ▲

REMARK 7 As has already been stated, the theorem just proved provides a
specific way in which one can construct an r.v. X whose d.f. is a given d.f. F.

Exercise

9.4.1 Let Xj, j = 1, . . . , n be independent r.v.’s such that Xj has continuous
and strictly increasing d.f. Fj. Set Yj = Fj(Xj) and show that the r.v.

X Y
j

n

j= − −( )
=

∑2 1
1

log

is distributed as χ 2
2n.

LEMMA 1

THEOREM 8
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Chapter 10

Order Statistics and Related Theorems

In this chapter we introduce the concept of order statistics and also derive
various distributions. The results obtained here will be used in the second part
of this book for statistical inference purposes.

10.1 Order Statistics and Related Distributions

Let X1, X2, . . . , Xn be i.i.d. r.v.’s with d.f. F. The jth order statistic of X1, X2, . . . ,
Xn is denoted by X( j), or Yj, for easier writing, and is defined as follows:

Y j X X X j nj n= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅th smallest of the     1 2 1, , , , , , ;

(that is, for each s ∈S, look at X1(s), X2(s), . . . , Xn(s), and then Yj(s) is defined
to be the jth smallest among the numbers X1(s), X2(s), . . . , Xn(s), j = 1, 2, . . . ,
n). It follows that Y1 ≤ Y2 ≤ · · · ≤ Yn, and, in general, the Y’s are not
independent.

We assume now that the X’s are of the continuous type with p.d.f. f such
that f(x) > 0, (−∞ ≤)a < x < b(≤ ∞) and zero otherwise. One of the problems we
are concerned with is that of finding the joint p.d.f. of the Y’s. By means of
Theorem 3′, Chapter 9, it will be established that:

THEOREM 1 If X1, . . . , Xn are i.i.d. r.v.’s with p.d.f. f which is positive for a < x < b and 0
otherwise, then the joint p.d.f. of the order statistics Y1, . . . , Yn is given by:

g y y
n f y f y a y y y b

n
n n

1
1 1 2

0
, ,

! ,

,
⋅ ⋅ ⋅( ) = ( ) ⋅ ⋅ ⋅ ( ) ⋅ ⋅ ⋅⎧

⎨
⎪

⎩⎪ otherwise.

< < < < <

PROOF The proof is carried out explicitly for n = 3, but it is easily seen, with
the proper change in notation, to be valid in the general case as well. In the first
place, since for i ≠ j,



246 10 Order Statistics and Related Theorems

P X X f x f x dx dx f x f x dx dxi j x x i j i j a

b

x

x
i j i ji j j

j=( ) = ( ) ( ) = ( ) ( ) ==( )∫∫ ∫ ∫ 0,

and therefore P(Xi = Xj = Xk) = 0 for i ≠ j ≠ k, we may assume that the joint
p.d.f., f(·, ·, ·), of X1, X2, X3 is zero if at least two of the arguments x1, x2, x3 are
equal. Thus we have

f x x x
f x f x f x a x x x b

1 2 3
1 2 3 1 2 3

0
,

otherwise.
,

,

,
( ) = ( ) ( ) ( ) ≠ ≠⎧

⎨
⎪

⎩⎪

< <

Thus f(x1, x2, x3) is positive on the set S, where

  

S x x x a x b i x x xi= ( )′ ∈ =
⎧
⎨
⎩

⎫
⎬
⎭

1 2 3
3

1 2 31,    ,   2,  3,  ,    all different ., ; , ,� < <

Let Sijk ⊂ S be defined by

S x x x a x x x b i j k i j kijk i j k= ( )′⎧
⎨
⎩

⎫
⎬
⎭

= ≠ ≠1 2 3 1,    , ,  ,   2,  3, ., ; ,< < < <

Then we have

S S S S S S S= + + + + +123 132 213 231 312 321.

Now on each one of the Sijk’s there exists a one-to-one transformation from the
x’s to the y’s defined as follows:

S y x y x y x

S y x y x y x

S y x y x y x

S y x y x y x

S y x y x y x

S y x y x y

123 1 1 2 2 3 3

132 1 1 2 3 3 2

213 1 2 2 1 3 3

231 1 2 2 3 3 1

312 1 3 2 1 3 2

321 1 3 2 2

: , ,

: , ,

: , ,

: , ,

: , ,

: , ,

= = =
= = =
= = =
= = =
= = =
= = 33 1= x .

Solving for the x’s, we have then:

S x y x y x y

S x y x y x y

S x y x y x y

S x y x y x y

S x y x y x y

S x y x y x

123 1 1 2 2 3 3

132 1 1 2 3 3 2

213 1 2 2 1 3 3

231 1 3 2 1 3 2

312 1 2 2 3 3 1

321 1 3 2 2

: , ,

: , ,

: , ,

: , ,

: , ,

: , ,

= = =
= = =
= = =
= = =
= = =
= = 33 1= y .

The Jacobians are thus given by:



S J S J

S J S J

S J S J

123 123 231 231

132 132 312 312

213 213 321 321

1 0 0

0 1 0

0 0 1

1

0 0 1

1 0 0

0 1 0

1

1 0 0

0 0 1

0 1 0

1

0 1 0

0 0 1

1 0 0

1

0 1 0

1 0 0

0 0 1

1

0 0 1

0 1 0

1 0 0

1

: :

: ; :

: : .

= = = =

= = − = =

= = − = = −

Hence |J123| = · · · = |J321| = 1, and Theorem 3′, Chapter 9, gives

g y y y

f y f y f y f y f y f y f y f y f y

f y f y f y f y f y f y f y f y f y

a y y
1 2 3

1 2 3 1 3 2 2 1 3

3 1 2 2 3 1 3 2 1

1 2

, , ,( ) =

( ) ( ) ( ) + ( ) ( ) ( ) + ( ) ( ) ( )
+ ( ) ( ) ( ) + ( ) ( ) ( ) + ( ) ( ) ( )

< < << <y b3

0, otherwise.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

This is,

g y y y
f y f y f y a y y y b

1 2 3
1 2 3 1 2 33

0
, ,

! ,

, otherwise.
( ) = ( ) ( ) ( ) < < < <⎧

⎨
⎪

⎩⎪ ▲

Notice that the proof in the general case is exactly the same. One has n!
regions forming S, one for each permutation of the integers 1 through n. From
the definition of a determinant and the fact that each row and column contains
exactly one 1 and the rest all 0, it follows that the n! Jacobians are either 1 or
−1 and the remaining part of the proof is identical to the one just given except
one adds up n! like terms instead of 3!.

EXAMPLE 1 Let X1, . . . , Xn be i.i.d. r.υ.’s distributed as N(μ, σ 2). Then the joint p.d.f. of the
order statistics Y1, . . . , Yn is given by

g y y n yn

n

j
j

n

1

2

1

1

2
, , ! ,⋅ ⋅ ⋅( ) =

⎛

⎝⎜
⎞

⎠⎟
− −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

∑ exp
1

2 2πσ σ
μ

if −∞ < y1 < · · · < yn < ∞ and zero otherwise.

EXAMPLE 2 Let X1, . . . , Xn be i.i.d. r.υ.’s distributed as U(α, β). Then the joint p.d.f. of the
order statistics Y1, . . . , Yn is given by

g y y
n

n n1, ,
!

,⋅ ⋅ ⋅( ) =
−( )β α

10.1 Order Statistics and Related Distributions 247



248 10 Order Statistics and Related Theorems

if α < y1 < · · · < yn < β and zero otherwise.

Another interesting problem is that of finding the marginal p.d.f. of each
Yj, j = 1, . . . , n, as well as the joint p.d.f. of any number of the Yj’s. As a partial
answer to this problem, we have the following theorem.

THEOREM 2 Let X1, . . . , Xn be i.i.d. r.v.’s with d.f. F and p.d.f. f which is positive and
continuous for (−∞ ≤) a < x < b(≤ ∞) and zero otherwise, and let Y1, . . . , Yn be
the order statistics. Then the p.d.f. gj of Yj, j = 1, 2, . . . , n, is given by:

i) g y

n

j n j
F y F y f y a y b

j j

j

j

j

n j

j j( ) = −( ) −( ) ( )[ ] − ( )[ ] ( ) < <
⎧

⎨
⎪

⎩
⎪

− −!

! !
,

,

1
1

0

1

otherwise.

In particular,

i′′′′′) g y
n F y f y a y b

n

1 1
1

1

1 11

0
( ) = − ( )[ ] ( ) < <⎧

⎨
⎪

⎩⎪

−
,

, otherwise

and

i″″″″″) g y
n F y f y a y b

n n
n

n

n n( ) = ( )[ ] ( ) < <⎧
⎨
⎪

⎩⎪

−1

0

,

, otherwise.

The joint p.d.f. gij of any Yi, Yj with 1 ≤ i < j ≤ n, is given by:

ii) g y y

n

i j i n j
F y F y F y

F y f y f y a y y b
ij i j

i

i

j i

j i

j

n j

i j i j

,

!

! ! !

,

, otherwise.

( ) =
−( ) − −( ) −( ) ( )[ ] ( ) − ( )[ ]

× − ( )[ ] ⋅ ( ) ( ) < < <

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− − −

−

1 1

1

0

1 1

In particular,

ii′′′′′) g y y
n n F y F y f y f y a y y b

n n
n

n

n n
1 1

1

2

1 11

0
,

,

, otherwise.
( ) = −( ) ( ) − ( )[ ] ( ) ( ) < < <⎧

⎨
⎪

⎩⎪

−

PROOF From Theorem 1, we have that g(y1, . . . , yn) = n!f(y1) · · · f(yn) for
a < y1 < · · · < yn < b and equals 0 otherwise. Since f is positive in (a, b), it follows
that F is strictly increasing in (a, b) and therefore F−1 exists in this interval.
Hence if u = F(y), y ∈(a, b), then y = F−1 (u), u ∈(0, 1) and

dy
du f F u

u= ( )[ ] ∈( )−

1
1

, .0,  1



Therefore by setting Uj = F(Yj), j = 1, . . . , n, one has that the joint p.d.f. h of
the U’s is given by

h u u n f F u f F u
f F u f F u

n n

n

1
1

1
1

1
1

1

1
, , !⋅ ⋅ ⋅( ) = ( )[ ] ⋅ ⋅ ⋅ ( )[ ] ( )[ ] ⋅ ⋅ ⋅ ( )[ ]

− −
− −

for 0 < u1 < · · · < un < 1 and equals 0 otherwise; that is, h(u1, . . . , un) = n! for
0 < u1 < · · · < un < 1 and equals 0 otherwise. Hence for uj ∈(0, 1),

h u n du du du duj

u

u

u

nu j j

j

j n
( ) = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∫ ∫∫ ∫

−
+ −! .

0

1

0

1

1 1 1
2

1

The first n − j integrations with respect to the variables un, . . . , uj+1 yield
[1/(n − j)!] (1 − uj)

n−j and the last j − 1 integrations with respect to the variables
u1, . . . , uj−1 yield [1/(j − 1)!] uj

j−1. Thus

h u
n

j n j
u uj j

j
j

n j( ) =
−( ) −( ) −( )− −!

! !1
11

for uj ∈(0, 1) and equals 0 otherwise. Finally, using once again the transforma-
tion Uj = F(Yj), we obtain

g y
n

j n j
F y F y f yj j

j

j

n j

j( ) =
−( ) −( ) ( )[ ] − ( )[ ] ( )− −!

! !1
1

1

for yj ∈ (a, b) and 0 otherwise. This completes the proof of (i).
Of course, (i′) and (i″) follow from (i) by setting j = 1 and j = n, res-

pectively. An alternative and easier way of establishing (i′) and (i″) is the
following:

G y P Y y P X y F yn n n n j n
n

n( ) = ≤( ) = ≤( ) = ( ) all s’ .

Thus gn(yn) = n[F(yn)]n−1 f(yn). Similarly,

1 11 1 1 1 1 1− ( ) = >( ) = >( ) = − ( )[ ]G y P Y y P X y F yj

n
  all s’ .

Then

− ( ) = − ( )[ ] − ( )[ ] ( ) = − ( )[ ] ( )−
g y n F y f y g y n F y f y

n n

1 1 1

1

1 1 1 1 11 1, .or

The proof of (ii) is similar to that of (i), and in fact the same method can be
used to find the joint p.d.f. of any number of Yj’s (see also Exercise
10.1.19). ▲

EXAMPLE 3 Refer to Example 2. Then

F x

x

x
a x

x

( ) =

≤
−
−

< <

≥

⎧

⎨
⎪
⎪

⎩
⎪
⎪

0

1

,

,

, ,

α
α

β α
β

β
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and therefore

g y
n

j n j

y y
a y

n

j n j
y y a y

j j

j

j

j

n j

j

n j

j

j

n j

( ) = −( ) −( )
−

−

⎛

⎝
⎜

⎞

⎠
⎟

−

−

⎛

⎝
⎜

⎞

⎠
⎟ −

< <
⎧

⎨
⎪⎪

⎩
⎪
⎪

= −( ) −( ) −( )
−( ) −( ) <

− −

− −

!

! !
,

,

!

! !
,

1

1

0

1

1

1

α
β α

β
β α β α

β

β α
α β

otherwise

jj <
⎧

⎨
⎪⎪

⎩
⎪
⎪

β

0, otherwise.

Thus

g y
n

y n
y y

g y
n

y n
y y

n

n

n

n n

n

n

n n

n

n

1 1

1

1

1

1

1

1
1

1

0

1

0

( ) =
−
−

⎛
⎝⎜

⎞
⎠⎟ −

=
−( )

−( ) < <
⎧

⎨
⎪⎪

⎩
⎪
⎪

( ) =
−
−

⎛
⎝⎜

⎞
⎠⎟ −

=
−( )

−( ) < <

−
−

−
−

β
β α β α β α

β α β

α
β α β α β α

α α β

,

,

,

,

otherwise,

otherwise,otherwise,

otherwise.

⎧

⎨
⎪⎪

⎩
⎪
⎪

( ) =
−( ) −

−
⎛
⎝⎜

⎞
⎠⎟ −( )

=
−( )

−( )
−( )
< < <

⎧

⎨

⎪
⎪

⎩

⎪
⎪

−
−

g y y

n n
y y n n

y y

a y y
n n

n

n

n n

n

n

1 1

1

2

2 1

2

1

1
1 1

0

,

,

,

β α β α β α
β

In particular, for α = 0, β = 1, these formulas simplify as follows:

g y

n

j n j
y y y

j j

j
j

j

n j

j( ) = −( ) −( ) −( ) < <
⎧

⎨
⎪

⎩
⎪

− −!

! !
,

,

1
1 0 1

0

1

otherwise.

Since Γ(m) = (m − 1)!, this becomes

g y

n

j n j
y y y

j j
j
j

j

n j

j( ) =
+( )

( ) − +( ) −( ) < <
⎧

⎨
⎪⎪

⎩
⎪
⎪

− −Γ

Γ Γ

1

1
1 0 1

0

1 ,

, otherwise,

which is the density of a Beta distribution with parameters α = j, β = n − j + 1.
Likewise



g y
n y y

g y
ny y

n

n n
n
n

n

1 1
1

1

1

1

1 0 1

0

0 1

0

( ) = −( ) < <⎧
⎨
⎪

⎩⎪

( ) = < <⎧
⎨
⎪

⎩⎪

−

−

,

,

,

,

otherwise,

otherwise

and

g y y
n n y y y y

n n
n

n

n
1 1

1

2

11 0 1

0
,

,

, otherwise.
( ) = −( ) −( ) < < <⎧

⎨
⎪

⎩⎪

−

The r.v. Y = Yn − Y1 is called the (sample) range and is of some interest in
statistical applications. The distribution of Y is found as follows. Consider the
transformation

y y y

z y

y z

y y z
Jn

n

= −
=

⎧
⎨
⎩

=
= +

⎧
⎨
⎩

=1

1

1 1
.

.Then and hence

Therefore

f y g z y z

n n F y z F z f z f y z
y b a

a z b y

Y n

n

, , ,

,

Z z( ) = +( )
= −( ) +( ) − ( )[ ] ( ) +( ) < < −

< < −
⎧
⎨
⎩

−

1

2
1

0

and zero otherwise. Integrating with respect to z, one obtains

f y n n F y z F z f z f y z dz y b a
Y a

b y n

( ) = −( ) +( ) − ( )[ ] ( ) +( ) < < −
⎧
⎨
⎪

⎩⎪

− −

∫1 0

0

2

,

, otherwise.

In particular, if X is an r.v. distributed as U(0, 1), then

f y n n y dz n n y y yY
ny n( ) = −( ) = −( ) −( ) < <−− −∫1 1 1 0 12

0

1 2 , ;

that is

f y
n n y y y

Y

n

( ) =
−( ) −( ) < <⎧

⎨
⎪

⎩⎪

−1 1 0 1

0

2 ,

, otherwise.

Let now U be χ2
r and independent of the sample range Y. Set

Z
Y

U r
= .

We are interested in deriving the distribution of the r.v. Z. To this end, we
consider the transformation
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z
y

u r

w u r

u rw

y z w
J r w

=

=

⎧

⎨
⎪

⎩
⎪

=

=

⎧
⎨
⎪

⎩⎪
=

.

.Then and hence

Therefore

f z w f z w f rw r wZ W Y U, , ,( ) = ( ) ( )
if 0 < z, w < ∞ and zero otherwise. Integrating out w, we get

f z f z w f rw r w dwZ Y U( ) = ( ) ( )∞

∫0
 ,

if 0 < z < ∞ and zero otherwise.
Now if the r.v.’s X1, . . . , Xn are i.i.d. N(0, 1) and Y is as above, then the r.v.

Z is called the Studentized range. Its density is given by fZ(z) above and the
values of the points zα for which P(Z > zα) = α are given by tables for selected
values of α. (See, for example, Donald B. Owen’s Handbook of Statistical
Tables, pp. 144–149, published by Addison-Wesley.)

Exercises

Throughout these exercises, Xj, j = 1, . . . , n, are i.i.d. r.v.’s and Yj = X(j) is the
jth order statistic of the X’s. The r.v.’s Xj, j = 1, . . . , n may represent various
physical quantities such as the breaking strength of certain steel bars, the
crushing strength of bricks, the weight of certain objects, the life of certain
items such as light bulbs, vacuum tubes, etc. From these examples, it is then
clear that the distribution of the Y’s and, in particular, of Y1, Yn as well as
Yn − Y1, are quantities of great interest.

10.1.1 Let Xj, j = 1, . . . , n be i.i.d. r.v.’s with d.f. and p.d.f. F and f, respec-
tively, and let m be the median of F. Use Theorem 2(i″) in order to calculate
the probability that all Xj’s exceed m; also calculate the probability P(Yn ≤ m).

10.1.2 Let X1, X2, X3 be independent r.v.’s with p.d.f. f given by:

f x e I x
x( ) = ( )− −( )

∞( )
θ

θ , .1

Use Theorem 2(i″) in order to determine the constant c = c(θ) for which
P(θ < Y3 < c) = 0.90.

10.1.3 If the independent r.v.’s X1, . . . , Xn are distributed as U(α, β), then:

i) Calculate the probability that all X’s are greater than (α + β)/2;

ii) In particular, for α = 0, β = 1, and n = 2, derive the p.d.f. of the r.v. Y2/Y1.

10.1.4 Let Xj, j = 1, . . . , n be independent r.v.’s distributed as U(α, β). Then:

i) Use the p.d.f. derived in Example 3 in order to show that



EY
j

n
Y

j n j

n n
j j=

−( )
+

+ ( ) =
−( ) − +( )

+( ) +( )
β α

α σ
β α

1

1

1 2

2

2

2
and ;

ii) Derive EY1, σ 2(Y1), and EYn, σ 2(Yn) from part (i);

iii) What do the quantities in parts (i) and (ii) become for α = 0 and
β = 1? (Hint: In part (i), use the appropriate Beta p.d.f.’s to facilitate
the integrations.)

10.1.5

i) Refer to the p.d.f. gij derived in Theorem 2(ii), and show that, if X1, . . . , Xn

are independent with distribution U(α, β), then:

g y y
n n

y y y yn n n n

n

n1 1 1

2

1

1
, , ;( ) =

−( )
−( )

−( ) < < <
−

β α
α β

ii) Set Y = Yn − Y1, and show that the p.d.f. of Y is given by:

f y
n n

y y yY n
n( ) =

−( )
−( )

− −( ) < < −−
1

02

β α
β α β α, ;

iii) For a and b with 0 < a < b ≤ β − α, show that:

P a Y b
n

b b a a
b a

n
n n

n n

n
< <( ) =

−( )
− −( ) − − −( )[ ] + −

−( )
− −

β α
β α β α

β α
1 1 ;

iv) What do the quantities in parts (i)–(iii) become for α = 0 and β = 1?

10.1.6 Let X1, . . . , Xn be independent r.v.’s distributed as U(0, 1), and let
1 ≤ i < j ≤ n.

i) Refer to the p.d.f. gij derived in Theorem 2(ii), and show that, in the
present case:

g y y
n

i j i n j
y y y y

y y

ij i j i
i

j i

j i

j

n j

i j

,
!

! ! !
,

;
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−( ) − −( ) −( ) −( ) −( )
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− − − −

1 1
1

0 1

1 1

ii) Integrating by parts repeatedly, show that:

y z y dy
i j i

j
z z z dz

j n j

n
i j iz j j n j
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!
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!
;

iii) Use parts (i) and (ii) to show that

E YY
i j

n n
i j( ) =

+( )
+( ) +( )

1

1 2
;
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iv) By means of part (iii) and Exercise 1.4(i), show that:

Cov  andY Y
i n j

n n
Y Y

i n j

i n i j n j
i j i j, , ;( ) =

− +( )
+( ) +( )

( ) =
− +( )

− +( ) − +( )[ ]
1

1 2

1

1 1
2 1 2

ρ

v) From part (iv), derive Cov(Y1, Yn) and ρ(Y1, Yn).

10.1.7 Let the independent r.v.’s X1, . . . , Xn be distributed as U(0, 1), and let
1 < j < n. Use the relevant results in Example 3, and Exercise 1.6(i) in order to
derive:

i) The conditional p.d.f. of Yj, given Y1;

ii) The conditional p.d.f. of Yj, given Yn;

iii) The conditional p.d.f. of Yn, given Y1; and the conditional p.d.f. of Y1,
given Yn.

10.1.8 Let the independent r.v.’s X1, . . . , Xn be distributed as U(0, 1), and
define the r.v.’s Zj, j = 1, . . . , n as follows: Z1 = Y1, Zj = Yj − Yj−1, j = 2, . . . , n.
Then use the result in Theorem 1 in order to show that the r.v.’s Zj, j = 1, . . . ,
n are uniformly distributed over the set

  

z z z j n zn
n

j j
j

n

1 0 1 1, , ; , , , .⋅ ⋅ ⋅( )′ ∈ ≥ = ⋅ ⋅ ⋅ ≤
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∑    and 

=1

�

(For n = 2, this set is a triangle in � 2.)

10.1.9

i) Let the independent r.v.’s X1, . . . , Xn have the Negative Exponential distri-
bution with parameter λ. Then show that Y1 has the same distribution with
parameter nλ;

ii) Let F be the (common) d.f. of the independent r.v.’s X1, . . . , Xn, and
suppose that their first order statistic Y1 has the Negative Exponential
distribution with parameter nλ. Then F is the Negative Exponential d.f.
with parameter λ.

10.1.10 Let the independent r.v.’s X1, . . . , Xn have the Negative Expon-
ential distribution with parameter λ. Then:

i) Use Theorem 2(i′) in order to show that the p.d.f. of Yn is given by:

g y n e e yn n
y y

n

n
n n( ) = −( ) >− −

λ λ λ1 0
1
, ;

ii) Let Y be the (sample) range; that is, Y = Yn − Y1, and then use Theorem 2
(ii′) in order to show that the p.d.f. of Y is given by:

f y n e e yY
y y

n( ) = −( ) −( ) >− − −
1 1 0

2
λ λ λ , ;



iii) Calculate the probability P(a < Y < b) for 0 < a < b;

iv) For a = 1/λ, b = 2/λ, and n = 10, find a numerical value for the probability
in part (iii).

10.1.11 Let the independent r.v.’s X1, . . . , Xn have the Negative Exponen-
tial distribution with parameter λ, and let 1 < j < n. Use Theorem 2(ii) and
Exercises 1.9(i) and 1.10(i) in order to determine:

i) The conditional p.d.f. of Yj, given Y1;

ii) The conditional p.d.f. of Yj, given Yn;

iii) The conditional p.d.f. of Yn, given Y1; and the conditional p.d.f. of Y1,
given Yn.

10.1.12 Let the independent r.v.’s X1, . . . , Xn have the Negative Exponen-
tial distribution with parameter λ, and set: Z1 = Y1, Zj = Yj − Yj−1, j = 2, . . . , n.
Then:

i) For j = 1, . . . , n, show that Zj has the Negative Exponential distribution
with parameter (n − j + 1)λ, and that these r.v.’s are independent;

ii) From the definition of the Zj’s, it follows that Yj = Z1 + · · · + Zj, j = 1, . . . ,
n. Use this expression and part (i) in order to conclude that:

EY
n n n jj = +

−
+ ⋅ ⋅ ⋅ +

− +
⎛
⎝⎜

⎞
⎠⎟

1 1 1
1

1
1λ

;

iii) Use part (i) in order to show that, for c > 0:

P X X c n n c
i j

i jmin exp
≠

− ≥⎡
⎣⎢

⎤
⎦⎥

= − −( )[ ]λ 1 2 .

10.1.13 Refer to Exercise 10.1.12 and show that:

i) σ2(Yj) = σ ii
j 2

1=∑ , where σ i
2 = [λ(n − i + 1)]−2, i = 1, . . . , n;

ii) For 1 ≤ i ≤ j < n, Cov(Yi, Yj) = σ kk
i 2

1=∑ ;

iii) From parts (i) and (ii), conclude that:

  

σ σ2
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2
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2
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iv) Also utilize parts (i) and (ii) in order to show that:

Cov  c Y d Y c d c di i
i

n

j j
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where cj ∈�, dj ∈� constants.

Let Xj, j = 1, . . . , n be i.i.d. r.v.’s. Then the sample median SM is defined as
follows:
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S
Y n

Y Y n
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n n
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⎪
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2
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1

2

if  is odd

if  is even.
*

10.1.14 If Xj, j = 1, . . . , n are i.i.d. r.v.’s, and n is odd, determine the p.d.f. of
SM when the underlying distribution is:

i) U(α, β);

ii) Negative Exponential with parameter λ.

10.1.15 If the r.v.’s Xj, j = 1, . . . , n are independently distributed as N(μ, σ 2),
show that the p.d.f. of SM is symmetric about μ, where SM is defined by (*).
Without integration, conclude that ESM = μ.

10.1.16 For n odd, let the independent r.v.’s Xj, j = 1, . . . , n have p.d.f. f with
median m. Then determine the p.d.f. of SM, and also calculate the probability
P(SM > m) in each one of the following cases:

i) f(x) = 2xI(0,1)(x);

ii) f(x) = 2(2 − x)I(1,2)(x);

iii) f(x) = 2(1 − x)I(0,1)(x);

iv) What do parts (i)–(iii) become for n = 3?

10.1.17 Refer to Exercise 10.1.2 and derive the p.d.f. of SM, where SM is
defined by (*).

10.1.18 Let Xj, j = 1, . . . , 6 be i.i.d. r.v.’s with p.d.f. f given by f(x) = 1–6 ,
x = 1, . . . , 6. Find the p.d.f.’s of Y1 and Y6. Also, observe that P(Y1 = y) =
P(Y6 = 7 − y), y = 1, . . . , 6.

10.1.19 Carry out the proof of part (ii) of Theorem 2.

10.2 Further Distribution Theory: Probability of Coverage of a
Population Quantile

It has been shown in Theorem 7, Chapter 9, that if X is an r.v. with continuous
d.f. F, then the r.v. Y = F(X) is U(0, 1). This result in conjunction with Theorem
1 of the present chapter gives the following theorem.

THEOREM 3 Let X1, . . . , Xn be i.i.d. r.υ.’s with continuous d.f. F and let Zj = F(Yj), where Yj,
j = 1, 2, . . . , n are the order statistics. Then Z1, . . . , Zn are order statistics
from U(0, 1), and hence their joint p.d.f., h is given by:

h z z
n z z

n
n

1
1 1

0
, ,

!,

,
⋅ ⋅ ⋅( ) =

< < ⋅ ⋅ ⋅ < <⎧
⎨
⎩

0

otherwise.



PROOF Set Wj = F(Xj), j = 1, 2, . . . , n. Then the Wj’s are independent, since
the Xj’s are, and also distributed as U(0, 1), by Theorem 7, Chapter 9. Because
F is nondecreasing, to each ordering of the Xj’s, X(1) ≤ X(2) ≤ · · · ≤ X(n) there
corresponds the ordering F(X(1)) ≤ F(X(2)) ≤ · · · ≤ F(X(n)) of the F(Xj)’s, and
conversely. Therefore W( j) = F(Yj), j = 1, 2, . . . , n. That the joint p.d.f. of the
Zj’s is the one given above follows from Theorem 1 of this chapter. ▲

The distributions of Zj, Z1, Zn and (Z1, Zn) are given in Example 3 of this
chapter.

Let now X be an r.v. with d.f. F. Consider a number p, 0 < p < 1. Then in
Chapter 4, a pth quantile, xp, of F was defined to be a number with the
following properties:

i) P(X ≤ xp) ≥ p and

ii) P(X ≥ xp) ≥ 1 − p.

Now we would like to establish a certain theorem to be used in a sub-
sequent chapter.

THEOREM 4 Let X1, . . . , Xn be i.i.d. r.v.’s with continuous d.f. F and let Y1, . . . , Yn be the
order statistics. For p, 0 < p < 1, let xp be the (unique by assumption) pth
quantile. Then we have

P Y x Y p q q pi p j k
n

k i

j
k n k≤ ≤( ) = ( ) = −
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−
−∑
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1 where, .

PROOF Define the r.v.’s Wj, j = 1, 2, . . . , n as follows:
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Then W1, . . . , Wn are i.i.d. r.υ.’s distributed as B(1, p), since

P W P X x F x pp p1 11=( ) = ≤( ) = ( ) = .

Therefore
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Next, for 1 ≤ i < j ≤ n, we get
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since

Y x Y xj p i p<( ) ⊆ ≤( ).
Therefore

P Y x Y P Y x P Y xi p j i p j p≤ ≤( ) = ≤( ) − <( ).
By means of (1), this gives
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j
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∑
1

. ▲

Exercise

10.2.1 Let Xj, j = 1, . . . , n be i.i.d. r.v.’s with continuous d.f. F. Use Theorem
3 and the relevant part of Example 3 in order to determine the distribution of
the r.v. F(Y1) and find its expectation.
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259

Let X be an r.v. with p.d.f. f(·; θθθθθ) of known functional form but depending upon
an unknown r-dimensional constant vector θθθθθ = (θ1, . . . , θr)′ which is called a
parameter. We let ΩΩΩΩΩ stand for the set of all possible values of θθθθθ and call it the
parameter space. So ΩΩΩΩΩ ⊆ � r, r ≥ 1. By F we denote the family of all p.d.f.’s we
get by letting θθθθθ vary over ΩΩΩΩΩ; that is, F = {f(·; θθθθθ); θθθθθ ∈ ΩΩΩΩΩ}.

Let X1, . . . , Xn be a random sample of size n from f(·; θθθθθ), that is, n
independent r.v.’s distributed as X above. One of the basic problems of
statistics is that of making inferences about the parameter θθθθθ (such as estimat-
ing θθθθθ, testing hypotheses about θθθθθ, etc.) on the basis of the observed values
x1, . . . , xn, the data, of the r.v.’s X1, . . . , Xn. In doing so, the concept of
sufficiency plays a fundamental role in allowing us to often substantially con-
dense the data without ever losing any information carried by them about the
parameter θθθθθ.

In most of the textbooks, the concept of sufficiency is treated exclusively
in conjunction with estimation and testing hypotheses problems. We propose,
however, to treat it in a separate chapter and gather together here all relevant
results which will be needed in the sequel. In the same chapter, we also
introduce and discuss other concepts such as: completeness, unbiasedness and
minimum variance unbiasedness.

For j = 1, . . . , m, let Tj be (measurable) functions defined on � n into � and
not depending on θθθθθ or any other unknown quantities, and set T = (T1, . . . , Tm)′.
Then

T     X X T X X T X Xn n m n1 1 1 1, , , , , , , ,⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )( )′
is called an m-dimensional statistic. We shall write T(X1, . . . , Xn) rather than
T(X1, . . . , Xn) if m = 1. Likewise, we shall write θ rather than θθθθθ when r = 1.
Also, we shall often write T instead of T(X1, . . . , Xn), by slightly abusing the
notation.

Chapter 11

Sufficiency and Related Theorems
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The basic notation and terminology introduced so far is enough to allow us
to proceed with the main part of the present chapter.

11.1 Sufficiency: Definition and Some Basic Results

Let us consider first some illustrative examples of families of p.d.f.’s.

EXAMPLE 1 Let X = (X1, . . . , Xr)′ have the Multinomial distribution. Then by setting
θj = pj, j = 1, . . . , r, we have
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For example, for r = 3, ΩΩΩΩΩ is that part of the plane through the points (1, 0, 0),
(0, 1, 0) and (0, 0, 1) which lies in the first quadrant, whereas for r = 2, the
distribution of X = (X1, X2)′ is completely determined by that of X1 = X which
is distributed as B(n, θ1) = B(n, θ).

EXAMPLE 2 Let X be U(α, β). By setting θ1 = α, θ2 = β, we have θθθθθ = (θ1, θ2)′, ΩΩΩΩΩ = {(θ1, θ2)′
∈� 2; θ1, θ2 ∈�, θ1 < θ2} (that is, the part of the plane above the main diagonal)
and

f x I x AA; , , .θθ( ) =
− ( ) = [ ]1

2 1
1 2θ θ

θ θ

If α is known and we put β = θ, then ΩΩΩΩΩ = (α, ∞) and

f x I x AA; , , .θ
θ α

α θ( ) =
− ( ) = [ ]1

Similarly, if β is known and α = θ.

EXAMPLE 3 Let X be N(μ, σ2). Then by setting θ1 = μ, θ2 = σ2, we have θθθθθ = (θ1, θ2)′,

  

ΩΩ = ( )′ ∈ ∈ >
⎧
⎨
⎩

⎫
⎬
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θ θ θ θ1 2
2

1 2 0, ; ,   � �

(that is, the part of the plane above the horizontal axis) and
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f x
x

; exp .θθ( ) = −
−( )⎡

⎣

⎢
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⎢

⎤

⎦
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⎥

1

2 2
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2πθ

θ
θ

If σ is known and we set μ = θ, then ΩΩΩΩΩ = � and

f x
x

; exp .θ
πσ

θ

σ
( ) = −

−( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

2 2

2

2

Similarly if μ is known and σ2 = θ.

EXAMPLE 4 Let X = (X1, X2)′ have the Bivariate Normal distribution. Setting θ1 = μ1,θ2 = μ2,
θ3 = σ2

1, θ4 = σ2
2, θ5 = ρ, we have then θθθθθ = (θ1, . . . , θ5)′ and

  

ΩΩ = ⋅ ⋅ ⋅( )′ ∈ ∈ ∈ ∞( ) ∈ −( )⎧
⎨
⎩

⎫
⎬
⎭

θ θ θ θ θ θ θ1 5
5

1 2 3 4 50 1 1, , ; , , , , , ,        � �
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f e qx; ,θθ( ) =
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Before the formal definition of sufficiency is given, an example will be
presented to illustrate the underlying motivation.

EXAMPLE 5 Let X1, . . . , Xn be i.i.d. r.v.’s from B(1, θ); that is,

f x I x j nX j
x x

A jj

j j

; , , , ,θ θ θ( ) = −( ) ( ) = ⋅ ⋅ ⋅
−

1 1
1

where A = {0, 1}, θ ∈ΩΩΩΩΩ = (0, 1). Set T = ∑n
j =1 Xj. Then T is B(n, θ), so that

f t
n

t
I tT

t n t

B; ,θ θ θ( ) =
⎛
⎝⎜

⎞
⎠⎟

−( ) ( )−
1

where B = {0, 1, . . . , n}. We suppose that the Binomial experiment in question
is performed and that the observed values of Xj are xj, j = 1, . . . , n. Then the
problem is to make some kind of inference about θ on the basis of xj, j = 1, . . . ,
n. As usual, we label as a success the outcome 1. Then the following question
arises: Can we say more about θ if we know how many successes occurred and
where rather than merely how many successes occurred? The answer to this
question will be provided by the following argument. Given that the number
of successes is t, that is, given that T = t, t = 0, 1, . . . , n, find the probability of
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each one of the (n
t) different ways in which the t successes can occur. Then, if

there are values of θ for which particular occurrences of the t successes can
happen with higher probability than others, we will say that knowledge of the
positions where the t successes occurred is more informative about θ than
simply knowledge of the total number of successes t. If, on the other hand, all
possible outcomes, given the total number of successes t, have the same
probability of occurrence, then clearly the positions where the t successes
occurred are entirely irrelevant and the total number of successes t provides all
possible information about θ. In the present case, we have

P X x X x T t
P X x X x T t

P T t

P X x X x

P T t

x x t

n n
n n

n n

n

θ
θ

θ

θ

θ

1 1
1 1

1 1

1

= ⋅ ⋅ ⋅ = =( ) =
= ⋅ ⋅ ⋅ = =( )

=( )
=

= ⋅ ⋅ ⋅ =( )
=( )

+ ⋅ ⋅ ⋅ + =

, , |
, , ,

, ,

if

and zero otherwise, and this is equal to

θ θ θ θ

θ θ

θ θ

θ θ

x x x x

t n t

t n t

t n t

n
n

n

t

n

t

n

t

1
1

1 1

1

1

1

1
1 1

−( ) ⋅ ⋅ ⋅ −( )
⎛
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⎞
⎠⎟

−( )
=

−( )
⎛
⎝⎜

⎞
⎠⎟

−( )
=

⎛
⎝⎜

⎞
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− −

−

−

−

if x1 + · · · + xn = t and zero otherwise. Thus, we found that for all x1, . . . , xn such
that xj = 0 or 1, j = 1, . . . , n and

x t P X x X x T t
n

t
j

j

n

n n
=

∑ = = ⋅ ⋅ ⋅ = =( ) =
⎛
⎝⎜

⎞
⎠⎟1

1 1 1, , , |θ

independent of θ, and therefore the total number of successes t alone provides
all possible information about θ.

This example motivates the following definition of a sufficient statistic.

DEFINITION 1 Let Xj, j = 1, . . . , n be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ), θθθθθ = (θ1, . . . , θr)′ ∈Ω ⊆ � r, and
let T = (T1, . . . , Tm)′, where

T T X X j mj j n= ⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅1 1, , , , ,

are statistics. We say that T is an m-dimensional sufficient statistic for the
family F = {f(·; θθθθθ); θθθθθ ∈ ΩΩΩΩΩ}, or for the parameter θθθθθ, if the conditional distribution
of (X1, . . . , Xn)′, given T = t, is independent of θθθθθ for all values of t (actually, for
almost all (a.a.)t, that is, except perhaps for a set N in � m of values of t such
that Pθθθθθ(T ∈ N) = 0 for all θθθθθ ∈ ΩΩΩΩΩ, where Pθθθθθ denotes the probability function
associated with the p.d.f. f(·; θθθθθ)).

REMARK 1 Thus, T being a sufficient statistic for θθθθθ implies that every (meas-
urable) set A in � n, Pθθθθθ[(X1, . . . , Xn)′ ∈ A|T = t] is independent of θθθθθ for a.a.
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t. Actually, more is true. Namely, if T* = (T*1, . . . , T*k)′ is any k-dimensional
statistic, then the conditional distribution of T*, given T = t, is independent of
θθθθθ for a.a. t. To see this, let B be any (measurable) set in � k and let A = T*−−−−−1 (B).
Then

P B P X X Anθθ θθT* T t T t∈ =( ) = ⋅ ⋅ ⋅( )′ ∈ =
⎡

⎣
⎢

⎤

⎦
⎥1, ,  

and this is independent of θθθθθ for a.a. t.
We finally remark that X = (X1, . . . , Xn)′ is always a sufficient statistic

for θθθθθ.

Clearly, Definition 1 above does not seem appropriate for identifying a
sufficient statistic. This can be done quite easily by means of the following
theorem.

THEOREM 1 (Fisher–Neyman factorization theorem) Let X1, . . . , Xn be i.i.d. r.v.’s with
p.d.f. f(·; θθθθθ), θθθθθ = (θ1, . . . , θr)′ ∈ ΩΩΩΩΩ ⊆ � r. An m-dimensional statistic

T T= ⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )( )′X X T X X T X Xn n m n1 1 1 1, , , , , , , ,    

is sufficient for θθθθθ if and only if the joint p.d.f. of X1, . . . , Xn factors as follows,

f x x g x x h x xn n n1 1 1, , ; , , ; , , ,⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( )[ ] ⋅ ⋅ ⋅( )     θθ θθT

where g depends on x1, . . . , xn only through T and h is (entirely) independent
of θθθθθ.

PROOF The proof is given separately for the discrete and the continuous
case.

Discrete case: In the course of this proof, we are going to use the notation
T(x1, . . . , xn) = t. In connection with this, it should be pointed out at the outset
that by doing so we restrict attention only to those x1, · · · , xn for which
T(x1, . . . , xn) = t.

Assume that the factorization holds, that is,

f x x g x x h x xn n n1 1 1, , ; , , ; , , ,⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( )[ ] ⋅ ⋅ ⋅( )     θθ θθT

with g and h as described in the theorem. Clearly, it suffices to restrict atten-
tion to those t’s for which Pθθθθθ (T = t) > 0. Next,

P P X X P X x X xn n nθθ θθ θθT t T t=( ) = ⋅ ⋅ ⋅( ) =[ ] = = ′ ⋅ ⋅ ⋅ = ′( )∑1 1 1, , , , ,

where the summation extends over all (x′1, . . . , x′n)′ for which T(x′1, . . . , x′n) = t.
Thus

P f x f x g h x x

g h x x

n n

n

θθ θθ θθ θθ

θθ

T t t

t

=( ) = ′( ) ⋅ ⋅ ⋅ ′( ) = ( ) ′ ⋅ ⋅ ⋅ ′( )
= ( ) ′ ⋅ ⋅ ⋅ ′( )

∑∑
∑
1 1

1

; ; ; , ,

; , , .

    

Hence
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P X x X x

P X x X x
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P X x X x
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g h x x

g h x
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n n n n
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θθ
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1
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⋅ ⋅ ⋅( )∑,
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h x x

h x xn

n

n

1

1

and this is independent of θθθθθ.
Now, let T be sufficient for θθθθθ. Then Pθθθθθ (X1 = x1, . . . , Xn = xn|T = t) is

independent of θθθθθ ; call it k[x1, . . . , xn, T(x1, . . . , xn )]. Then

P X x X x
P X x X x

P

k x x x x

n n
n n

n n

θθ
θθ

θθ
1 1

1 1

1 1

= ⋅ ⋅ ⋅ = =( ) =
= ⋅ ⋅ ⋅ =( )

=( )
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )[ ]

, ,
, ,

, , , , ,   

T t
T t

T

if and only if

f x f x P X x X x

P k x x x x

n n n

n n

1 1 1

1 1

; ; , ,

, , , , , .

   

   

θθ θθ θθ

θθ

( ) ⋅ ⋅ ⋅ ( ) = = ⋅ ⋅ ⋅ =( )
= =( ) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )[ ]T t T

Setting

g x x P h x x

k x x x x

n n

n n

T T t

T

1 1

1 1

, , ; , ,

, , , , , ,

⋅ ⋅ ⋅( )[ ] = =( ) ⋅ ⋅ ⋅( )
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )[ ]

  and  

   

θθ θθ

we get

f x f x g x x h x xn n n1 1 1; ; , , ; , , ,     θθ θθ θθ( ) ⋅ ⋅ ⋅ ( ) = ⋅ ⋅ ⋅( )[ ] ⋅ ⋅ ⋅( )T

as was to be seen.
Continuous case: The proof in this case is carried out under some further

regularity conditions (and is not as rigorous as that of the discrete case). It
should be made clear, however, that the theorem is true as stated. A proof
without the regularity conditions mentioned above involves deeper concepts
of measure theory the knowledge of which is not assumed here. From Remark
1, it follows that m ≤ n. Then set Tj = Tj(X1, . . . , Xn), j = 1, . . . , m, and assume
that there exist other n − m statistics Tj = Tj(X1, . . . , Xn), j = m + 1, . . . , n, such
that the transformation

t T x x j nj j n= ⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅1 1, , , , ,  ,

is invertible, so that

x x t t j n t tj j m n m= ⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )′+t t, , , , , , , , .   , =  1 11
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It is also assumed that the partial derivatives of xj with respect to ti, i, j = 1, . . . ,
n, exist and are continuous, and that the respective Jacobian J (which is
independent of θθθθθ) is different from 0.

Let first

f x f x g x x h x xn n n1 1 1; ; , , ; , , .     θθ θθ θθ( ) ⋅ ⋅ ⋅ ( ) = ⋅ ⋅ ⋅( )[ ] ⋅ ⋅ ⋅( )T

Then
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= ( ) ⋅ ⋅ ⋅(
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1 1

1 1 1

1

θθ

θθ

θθ )),
where we set

h t t h x t t x t t Jm n m n n m n* , , , , , , , , , , , .t t t       + + +⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )[ ]1 1 1 1

Hence

f g h t t dt dt g hm n m nT t t t t t; ; * , , , ; ** ,θθ θθ θθ( ) = ⋅ ⋅ ⋅ ( ) ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅ = ( ) ( )
−∞

∞

−∞

∞

+ +∫ ∫     1 1

where

h h t t dt dtm n m n** * , , , .t t( ) = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( ) ⋅ ⋅ ⋅+−∞

∞

−∞

∞

+∫∫ 1 1

That is, fT(t; θθθθθ) = g(t; θθθθθ)h**(t) and hence

f t t
g h t

g h

h t t

h
m n

m n m n
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+ +
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( ) ⋅ ⋅ ⋅( )
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θθ

θθ

θθ

t t

which is independent of θθθθθ. That is, the conditional distribution of Tm+1, . . . , Tn,
given T = t, is independent of θθθθθ. It follows that the conditional distribution of
T, Tm+1, · · · , Tn, given T = t, is independent of θθθθθ. Since, by assumption, there is
a one-to-one correspondence between T, Tm+1, . . . , Tn, and X1, . . . , Xn, it
follows that the conditional distribution of X1, . . . , Xn, given T = t, is indepen-
dent of θθθθθ.

Let now T be sufficient for θθθθθ. Then, by using the inverse transformation of
the one used in the first part of this proof, one has

f x x f t t J

f t t f J

n T T m n

m n

m n1 1
1

1
1

1
, , ; , , , , , ;

, , ; ; .

,⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )
= ⋅ ⋅ ⋅( ) ( )

+ +
−

+
−

     

   

θθ θθ

θθ θθ

T

T

t

t t

But f(tm+1, . . . , tn|t; θθθθθ) is independent of θθθθθ by Remark 1. So we may set

f t t J h t t h x xm n m n n+
−

+⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( )1
1

1 1, , ; * , , ; , , .     t tθθ

If we also set

f g x xnT t T; , , ; ,   θθ θθ( ) = ⋅ ⋅ ⋅( )[ ]1
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we get

f x x g x x h x xn n n1 1 1, , ; , , ; , , ,⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( )[ ] ⋅ ⋅ ⋅( )     θθ T θθ

as was to be seen. ▲

COROLLARY Let φ: �m → �m ((measurable and independent) of θθθθθ) be one-to-one, so that
the inverse φ−1 exists. Then, if T is sufficient for θθθθθ, we have that T̃ = φ(T) is also
sufficient for θθθθθ and T is sufficient for θ̃θ = ψ(θθθθθ), where ψ: � r → � r is one-to-one
(and measurable).

PROOF We have T =φ−1[φ(T)] = φ−1( T̃ ). Thus

f x x g x x h x x

g x x h x x

n n n

n n

1 1 1

1
1 1

, , ; , , ; , ,

˜ , , ; , ,

⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( )[ ] ⋅ ⋅ ⋅( )
= ⋅ ⋅ ⋅( )[ ]{ } ⋅ ⋅ ⋅( )−

     

   

θθ θθ

θθ

T

Tφ

which shows that T̃  is sufficient for θθθθθ. Next,

θθ θθ θθ= ( )[ ] = ( )− −ψ ψ ψ1 1 ˜ .

Hence

f x x g x x h x xn n n1 1 1, , ; , , ; , ,⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( )[ ] ⋅ ⋅ ⋅( )     θθ θθT

becomes

˜ , , ; ˜ ˜ , , ; ˜ , , ,f x x g x x h x xn n n1 1 1⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅( )[ ] ⋅ ⋅ ⋅( )     θθ θθT

where we set

˜ , , ; ˜ , , ; ˜f x x f x xn n1 1
1

⋅ ⋅ ⋅( ) = ⋅ ⋅ ⋅ ( )[ ]−    θθ θθψ

and

˜ , , ; ˜ , , ; ˜ .g x x g x xn nT T1 1
1

⋅ ⋅ ⋅( )[ ] = ⋅ ⋅ ⋅( ) ( )[ ]−    θθ θθψ

Thus, T is sufficient for the new parameter θ̃θ. ▲

We now give a number of examples of determining sufficient statistics by
way of Theorem 1 in some interesting cases.

EXAMPLE 6 Refer to Example 1, where
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Then, by Theorem 1, it follows that the statistic (X1, . . . , Xr)′ is sufficient for θθθθθ
= (θ1, . . . , θr)′. Actually, by the fact that ∑r

j=1θj = 1 and ∑r
j=1 xj = n, we also have
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from which it follows that the statistic (X1, . . . , Xr−1)′ is sufficient for (θ1, . . . ,
θr−1)′. In particular, for r = 2, X1= X is sufficient for θ1 = θ.

EXAMPLE 7 Let X1, . . . , Xn be i.i.d. r.v.’s from U(θ1, θ2). Then by setting x = (x1, . . . , xn)′
and θθθθθ = (θ1, θ2)′, we get

f I x I x

g x g x

n n

n n

x;

, , ,

, ,θθ

θθ θθ

( ) =
−( ) ( ) ( )
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1 1 2

1 2

θ θ

θ θ

θ θ

where g1[x(1), θθθθθ] = I[θ1, ∞)(x(1)), g2[x(n), θθθθθ] = I(−∞, θ2](x(n)). It follows that (X(1), X(n))′ is
sufficient for θθθθθ. In particular, if θ1 = α is known and θ2 = θ, it follows that X(n)

is sufficient for θθθθθ. Similarly, if θ2 = β is known and θ1 = θ, X(1) is sufficient for θ.

EXAMPLE 8 Let X1, . . . , Xn be i.i.d. r.v.’s from N(μ, σ2). By setting x = (x1, . . . , xn)′, μ = θ1,
σ2 = θ2 and θθθθθ = (θ1, θ2)′, we have
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so that
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It follows that ( X , ∑n
j=1(Xj − X )2)′ is sufficient for θθθθθ. Since also
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it follows that, if θ2 = σ2 is known and θ1 = θ, then ∑n
j=1Xj is sufficient for θ,

whereas if θ1 = μ is known and θ2 = θ, then ∑n
j =1 (Xj − μ)2 is sufficient for θ, as

follows from the form of f(x; θθθθθ) at the beginning of this example. By the
corollary to Theorem 1, it also follows that ( X , S2)′ is sufficient for θθθθθ, where

S
n

X X
n

Xj
j

n

j
j

n
2 2

1

2

1

1 1= −( ) −( )
= =

∑ ∑, and μ

is sufficient for θ2 = θ if θ1 = μ is known.

REMARK 2 In the examples just discussed it so happens that the
dimensionality of the sufficient statistic is the same as the dimensionality of the
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parameter. Or to put it differently, the number of the real-valued statistics
which are jointly sufficient for the parameter θθθθθ coincides with the number of
independent coordinates of θθθθθ. However, this need not always be the case. For
example, if X1, . . . , Xn are i.i.d. r.v.’s from the Cauchy distribution with param-
eter θθθθθ = (μ, σ2)′, it can be shown that no sufficient statistic of smaller
dimensionality other than the (sufficient) statistic (X1, . . . , Xn)′ exists.

If m is the smallest number for which T ===== (T1, . . . , Tm)′, Tj = Tj(X1, . . . ,
Xn), j = 1, . . . , m, is a sufficient statistic for θ = (θ1, . . . , θr)′, then T is called a
minimal sufficient statistic for θθθθθ.

REMARK 3 In Definition 1, suppose that m = r and that the conditional
distribution of (X1, . . . , Xn)′, given Tj = tj, is independent of θj. In a situation
like this, one may be tempted to declare that Tj is sufficient forθj. This outlook,
however, is not in conformity with the definition of a sufficient statistic. The
notion of sufficiency is connected with a family of p.d.f.’s F = {f(·; θθθθθ); θθθθθ ∈ΩΩΩΩΩ},
and we may talk about Tj being sufficient for θj, if all other θi, i ≠ j, are known;
otherwise Tj is to be either sufficient for the above family F or not sufficient at
all.

As an example, suppose that X1, . . . , Xn are i.i.d. r.v.’s from N(θ1, θ2).
Then ( X , S2)′ is sufficient for (θ1, θ2)′, where

S
n

X Xj
j

n
2 2

1

1= −( )
=

∑ .

Now consider the conditional p.d.f. of (X1, . . . , Xn−1)′, given ∑n
j = 1Xj = yn. By

using the transformation

y x j n y xj j n j
j

n

= = ⋅ ⋅ ⋅ − =
=

∑, , , , ,   1 1
1

one sees that the above mentioned conditional p.d.f. is given by the quotient of
the following p.d.f.’s:
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and

y n n y n y n y y y

y n y y y y y

n n n n
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1
2

1 1

2
,

independent of θ1. Thus the conditional p.d.f. under consideration is indepen-
dent of θ1 but it does depend on θ2. Thus ∑n

j=1 Xj, or equivalently, X  is not
sufficient for (θ1, θ2)′. The concept of X  being sufficient for θ1 is not valid
unless θ2 is known.

Exercises

11.1.1 In each one of the following cases write out the p.d.f. of the r.v. X and
specify the parameter space Ω of the parameter involved.

i) X is distributed as Poisson;

ii) X is distributed as Negative Binomial;

iii) X is distributed as Gamma;

iv) X is distributed as Beta.

11.1.2 Let X1, . . . , Xn be i.i.d. r.v.’s distributed as stated below. Then use
Theorem 1 and its corollary in order to show that:

i) ∑n
j =1 Xj or X  is a sufficient statistic for θ, if the X’s are distributed as

Poisson;

ii) ∑n
j =1 Xj or X  is a sufficient statistic for θ, if the X’s are distributed as

Negative Binomial;

iii) (Πn
j=1 Xj, ∑n

j =1 Xj)′ or (Πn
j =1 Xj, X )′ is a sufficient statistic for (θ1, θ2)′ = (α,

β)′ if the X’s are distributed as Gamma. In particular, Πn
j =1 Xj is a sufficient

statistic for α = θ if β is known, and ∑n
j =1 Xj or X  is a sufficient statistic for

β = θ if α is known. In the latter case, take α = 1 and conclude that ∑n
j=1 Xj

or X  is a sufficient statistic for the parameter θ̃ = 1/θ of the Negative
Exponential distribution;

iv) (Πn
j=1 Xj, Πn

j =1 (1 − Xj))′ is a sufficient statistic for (θ1, θ2)′ = (α, β)′ if the X’s
are distributed as Beta. In particular, Πn

j =1 Xj or −∑n
j=1 log Xj is a sufficient

statistic for α = θ if β is known, and Πn
j=1 (1 − Xj) is a sufficient statistic for

β = θ if α is known.

11.1.3 (Truncated Poisson r.v.’s) Let X1, X2 be i.i.d. r.v.’s with p.d.f. f(·; θ)
given by:

f e f e f e e

f x x

0 1 2 1

0 0 1 2

; , ; , ; ,

; , , , ,

   

   

θ θ θ θ θ
θ

θ θ θ θ( ) = ( ) = ( ) = − −

( ) = ≠

− − − −

where θ > 0. Then show that X1 + X2 is not a sufficient statistic for θ.

Exercises 269
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11.1.4 Let X1, . . . , Xn be i.i.d. r.v.’s with the Double Exponential p.d.f. f(·; θ)
given in Exercise 3.3.13(iii) of Chapter 3. Then show that ∑n

j =1|Xj| is a sufficient
statistic for θ.

11.1.5 If Xj = (X1j, X2j)′, j = 1, . . . , n, is a random sample of size n from the
Bivariate Normal distribution with parameter θθθθθ as described in Example 4,
then, by using Theorem 1, show that:

X X X X X Xj
j

n

j
j

n

j j
j

n

1 2 1
2

1
2
2

1
1 2

1

, , , ,    
= = =

∑ ∑ ∑
⎛

⎝⎜
⎞

⎠⎟

′

is a sufficient statistic for θθθθθ.

11.1.6 If X1, . . . , Xn is a random sample of size n from U(−θ, θ), θ ∈(0, ∞),
show that (X(1), X(n))′ is a sufficient statistic for θ. Furthermore, show that this
statistic is not minimal by establishing that T = max(|X1|, . . . , |Xn|) is also a
sufficient statistic for θ.

11.1.7 If X1, . . . , Xn is a random sample of size n from N(θ, θ2), θ ∈�, show
that

X X X Xj
j

n

j
j

n

j
j
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,
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∑ ∑ ∑
⎛

⎝⎜
⎞
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′

1

2

1

2

1

 or ,  

is a sufficient statistic for θ.

11.1.8 If X1, . . . , Xn is a random sample of size n with p.d.f.

  
f x e I x

x
; , ,,θ θθ

θ( ) = ( ) ∈− −( )
∞( ) �

show that X(1) is a sufficient statistic for θ.

11.1.9 Let X1, . . . , Xn be a random sample of size n from the Bernoulli
distribution, and set T1 for the number of X’s which are equal to 0 and T2 for
the number of X’s which are equal to 1. Then show that T = (T1, T2)′ is a
sufficient statistic for θ.

11.1.10 If X1, . . . , Xn are i.i.d. r.v.’s with p.d.f. f(·; θ) given below, find a
sufficient statistic for θ.
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11.2 Completeness

In this section, we introduce the (technical) concept of completeness which we
also illustrate by a number of examples. Its usefulness will become apparent in
the subsequent sections. To this end, let X be a k-dimensional random vector
with p.d.f. f(·; θθθθθ), θθθθθ ∈ΩΩΩΩΩ ⊆ Rr, and let g: � k → � be a (measurable) function,
so that g(X) is an r.v. We assume that Eθθθθθ g(X) exists for all θ ∈Ω and set
F = {f(.; θ );θ ∈Ω}.

DEFINITION 2 With the above notation, we say that the family F (or the random vector X) is
complete if for every g as above, Eθ g(X) = 0 for all θθθθθ ∈ ΩΩΩΩΩ implies that g(x) = 0
except possibly on a set N of x’s such that Pθθθθθ(X ∈N) = 0 for all θθθθθ ∈ΩΩΩΩΩ.

The examples which follow illustrate the concept of completeness. Mean-
while let us recall that if ∑n

j = 0 cn−j xn−j = 0 for more than n values of x, then
cj = 0, j = 0, . . . , n. Also, if ∑∞

n=0 cnx
n = 0 for all values of x in an interval for

which the series converges, then cn = 0, n = 0, 1, . . . .

EXAMPLE 9 Let

  
F = ⋅( ) ( ) =

⎛
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⎞
⎠⎟

−( ) ( ) ∈( )⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−

f f x
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x
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where A = {0, 1, . . . , n}. Then F is complete. In fact,
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where ρ = θ/(1 − θ). Thus Eθg(X) = 0 for all θ ∈ (0, 1) is equivalent to

g x
n

xx

n
x( )⎛

⎝⎜
⎞
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=
=

∑
0

0ρ

for every ρ ∈ (0, ∞), hence for more than n values of ρ, and therefore

g x
n

x
x n( )⎛

⎝⎜
⎞
⎠⎟

= = ⋅ ⋅ ⋅0 0 1, , , ,   

which is equivalent to g(x) = 0, x = 0, 1, . . . , n.

EXAMPLE 10 Let

  
F = ⋅( ) ( ) = ( ) ∈ ∞( )⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−f f x e

x
I x

x

A; ; ;
!

, , ,     θ θ θ θθ 0

where A = {0, 1, . . .}. Then F is complete. In fact,

E g X g x e
x

e
g x

xx

x

x

x
θ

θ θθ θ( ) = ( ) =
( )

=
=

∞
− −

=

∞

∑ ∑
0 0

0
! !

for θ ∈ (0, ∞) implies g(x)/x! = 0 for x = 0, 1, . . . and this is equivalent to g(x)
= 0 for x = 0, 1, . . . .

11.2 Completeness 271
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EXAMPLE 11 Let

  
F = ⋅( ) ( ) =

− ( ) ∈ ∞( )⎧
⎨
⎩

⎫
⎬
⎭[ ]f f x I x; ; ; , , .,     θ θ

θ α
θ αα θ
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Then F is complete. In fact,

E g X
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g x dxθ α

θ

θ( ) =
− ( )∫
1

.

Thus, if Eθg(X) = 0 for all θ ∈(α, ∞), then ∫θ
α g(x)dx = 0 for all θ > α which

intuitively implies (and that can be rigorously justified) that g(x) = 0 except
possibly on a set N of x’s such that Pθ(X ∈N) = 0 for all θ ∈ Ω, where X is an
r.v. with p.d.f. f(·; θ). The same is seen to be true if f(·; θ) is U(θ, β ).

EXAMPLE 12 Let X1, . . . , Xn be i.i.d. r.v.’s from N(μ, σ2). If σ is known and μ = θ, it can be
shown that
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is complete. If μ is known and σ2 = θ, then
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is not complete. In fact, let g(x) = x − μ. Then Eθg(X ) = Eθ(X − μ) = 0 for all
θ ∈ (0, ∞), while g(x) = 0 only for x = μ. Finally, if both μ and σ2 are unknown,
it can be shown that ( X , S2)′ is complete.

In the following, we establish two theorems which are useful in certain
situations.

THEOREM 2 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ), θθθθθ ∈ ΩΩΩΩΩ ⊆ � r and let T = (T1, . . . ,
Tm)′ be a sufficient statistic for θθθθθ, where Tj = Tj(X1, · · · , Xn), j = 1, · · · , m. Let
g(·; θθθθθ) be the p.d.f. of T and assume that the set S of positivity of g(·; θθθθθ) is the
same for all θθθθθ ∈ Ω. Let V = (V1, . . . , Vk)′, Vj = Vj(X1, . . . , Xn), j = 1, . . . , k, be
any other statistic which is assumed to be (stochastically) independent of T.
Then the distribution of V does not depend on θθθθθ.

PROOF We have that for t ∈S, g(t; θθθθθ) > 0 for all θθθθθ ∈ ΩΩΩΩΩ and so f(v|t) is well
defined and is also independent of θθθθθ, by sufficiency. Then

f f gV T v t v t t,    , ; ;θθ θθ( ) = ( ) ( )
for all v and t ∈ S, while by independence

f f gV T Vv t v t,     , ; ; ;θθ θθ θθ( ) = ( ) ( )
for all v and t. Therefore
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f g f gV v t v t t; ; ;   θθ θθ θθ( ) ( ) = ( ) ( )
for all v and t ∈ S. Hence fV(v; θθθθθ) = f(v/t) for all v and t ∈S; that is, fV(v; θθθθθ) =
fV(v) is independent of θθθθθ. ▲

REMARK 4 The theorem need not be true if S depends on θ.

Under certain regularity conditions, the converse of Theorem 2 is true
and also more interesting. It relates sufficiency, completeness, and stochastic
independence.

THEOREM 3 (Basu) Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ), θθθθθ ∈ΩΩΩΩΩ ⊆ � r and let
T = (T1, . . . , Tm)′ be a sufficient statistic of θθθθθ, where Tj = Tj(X1, . . . , Xn),
j = 1, . . . , m. Let g(·; θθθθθ) be the p.d.f. of T and assume that C = {g(·; θθθθθ); θθθθθ ∈ΩΩΩΩΩ}
is complete. Let V = (V1, . . . , Vk)′, Vj = Vj(X1, . . . , Xn), j = 1, . . . , k be any other
statistic. Then, if the distribution of V does not depend on θθθθθ, it follows that V
and T are independent.

PROOF It suffices to show that for every t ∈� m for which f(v|t) is defined,
one has fV(v) = f(v|t), v ∈� k. To this end, for an arbitrary but fixed v, consider
the statistic φ(T; v) = fV(v) − f(v|T) which is defined for all t’s except perhaps
for a set N of t’s such that Pθθθθθ(T ∈N) = 0 for all θθθθθ ∈Ω. Then we have for the
continuous case (the discrete case is treated similarly)

E E f f f E f

f f t t g t t dt dt

f f t

m m m
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φ T v v v T v v T

v v
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∫ ∫
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1 1 1

1 tt dt dt

f f

m m;

;

θθ( ) ⋅ ⋅ ⋅

= ( ) − ( ) =
−∞

∞

∫ 1

0V Vv v

that is, Eθθθθθφ(T; v) = 0 for all θθθθθ ∈ ΩΩΩΩΩ and hence φ(t; v) = 0 for all t ∈ Nc by
completeness (N is independent of v by the definition of completeness). So
fV(v) = f(v/t), t ∈Nc, as was to be seen. ▲

Exercises

11.2.1 If F is the family of all Negative Binomial p.d.f.’s, then show that F is
complete.

11.2.2 If F is the family of all U(−θ, θ) p.d.f.’s, θ ∈ (0, ∞), then show that F
is not complete.

11.2.3 (Basu) Consider an urn containing 10 identical balls numbered θ + 1,
θ + 2, . . . , θ + 10, where θ ∈ Ω = {0, 10, 20, . . . }. Two balls are drawn one by
one with replacement, and let Xj be the number on the jth ball, j = 1, 2. Use this

Exercises 273
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example to show that Theorem 2 need not be true if the set S in that theorem
does depend on θ.

11.3 Unbiasedness—Uniqueness

In this section, we shall restrict ourselves to the case that the parameter is real-
valued. We shall then introduce the concept of unbiasedness and we shall
establish the existence and uniqueness of uniformly minimum variance un-
biased statistics.

DEFINITION 3 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ), θ ∈Ω ⊆ � and let U = U(X1, . . . ,
Xn) be a statistic. Then we say that U is an unbiased statistic for θ if EθU = θ for
every θ ∈Ω, where by EθU we mean that the expectation of U is calculated by
using the p.d.f. f(·; θ).

We can now formulate the following important theorem.

THEOREM 4 (Rao–Blackwell) Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ), θ ∈Ω ⊆ �, and
let T = (T1, . . . , Tm)′, Tj = Tj(X1, . . . , Xn), j = 1, . . . , m, be a sufficient statistic
for θ. Let U = U(X1, . . . , Xn) be an unbiased statistic for θ which is not a
function of T alone (with probability 1). Set φ(t) = Eθ(U|T = t). Then we have
that:

i) The r.v. φ(T) is a function of the sufficient statistic T alone.

ii) φ(T) is an unbiased statistic for θ.

iii) σ2
θ[φ(T)] < σ2

θ(U), θ ∈Ω, provided EθU
2 < ∞.

PROOF

i) That φ(T) is a function of the sufficient statistic T alone and does not
depend on θ is a consequence of the sufficiency of T.

ii) That φ(T) is unbiased for θ, that is, Eθφ(T) = θ for every θ ∈Ω, follows
from (CE1), Chapter 5, page 123.

iii) This follows from (CV), Chapter 5, page 123. ▲

The interpretation of the theorem is the following: If for some reason one
is interested in finding a statistic with the smallest possible variance within the
class of unbiased statistics of θ, then one may restrict oneself to the subclass of
the unbiased statistics which depend on T alone (with probability 1). This is so
because, if an unbiased statistic U is not already a function of T alone (with
probability 1), then it becomes so by conditioning it with respect to T. The
variance of the resulting statistic will be smaller than the variance of the
statistic we started out with by (iii) of the theorem. It is further clear that
the variance does not decrease any further by conditioning again with respect
to T, since the resulting statistic will be the same (with probability 1) by
(CE2′), Chapter 5, page 123. The process of forming the conditional expecta-
tion of an unbiased statistic of θ, given T, is known as Rao–Blackwellization.
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The concept of completeness in conjunction with the Rao–Blackwell theo-
rem will now be used in the following theorem.

THEOREM 5 (Uniqueness theorem: Lehmann–Scheffé) Let X1, . . . , Xn be i.i.d. r.v.’s with
p.d.f. f(·; θ), θ ∈Ω ⊆ �, and let F = {f(·; θ); θ ∈Ω}. Let T = (T1, . . . , Tm)′, Tj =
Tj(X1, . . . , Xn), j = 1, . . . , m, be a sufficient statistic for θ and let g(·; θ) be its
p.d.f. Set C = {g(·; θ); θ ∈Ω} and assume that C is complete. Let U = U(T) be
an unbiased statistic for θ and suppose that EθU

2 < ∞ for all θ ∈Ω. Then U is
the unique unbiased statistic for θ with the smallest variance in the class of all
unbiased statistics for θ in the sense that, if V = V(T) is another unbiased
statistic for θ, then U(t) = V(t) (except perhaps on a set N of t’s such that
Pθ(T ∈N) = 0 for all θ ∈Ω).

PROOF By the Rao–Blackwell theorem, it suffices to restrict ourselves in the
class of unbiased statistics of θ which are functions of T alone. By the
unbiasedness of U and V, we have then EθU(T) = EθV(T) = θ, θ ∈ Ω;
equivalently,

E U Vθ θθ φ θT T T( ) − ( )[ ] = ∈ ( ) = ∈0 0, , , ,Ω Ωor E

where φ(T) = U(T) − V(T). Then by completeness of C, we have φ(t) = 0 for
all t ∈Rm except possibly on a set N of t’s such that Pθ(T ∈N) = 0 for all
θ ∈ΩΩΩΩΩ. ▲

DEFINITION 4 An unbiased statistic for θ which is of minimum variance in the class of all
unbiased statistics of θ is called a uniformly minimum variance (UMV) unbi-
ased statistic of θ (the term “uniformly” referring to the fact that the variance
is minimum for all θ ∈ Ω).

Some illustrative examples follow.

EXAMPLE 13 Let X1, . . . , Xn be i.i.d. r.v.’s from B(1, θ), θ ∈(0, 1). Then T = ∑n
j =1 Xj is a

sufficient statistic for θ, by Example 5, and also complete, by Example 9. Now
X = (1/n)T is an unbiased statistic for θ and hence, by Theorem 5, UMV
unbiased for θ.

EXAMPLE 14 Let X1, . . . , Xn be i.i.d. r.v.’s from N(μ, σ2). Then if σ is known and μ = θ, we
have that T = ∑n

j=1 Xj is a sufficient statistic for θ, by Example 8. It is also
complete, by Example 12. Then, by Theorem 5, X = (1/n)T is UMV unbiased
for θ, since it is unbiased for θ. Let μ be known and without loss of generality
set μ = 0 and σ2 = θ. Then T = ∑n

j =1 X2
j is a sufficient statistic for θ, by Example

8. Since T is also complete (by Theorem 8 below) and S2 = (1/n)T is unbiased
for θ, it follows, by Theorem 5, that it is UMV unbiased for θ.

Here is another example which serves as an application to both Rao–
Blackwell and Lehmann–Scheffé theorems.

EXAMPLE 15 Let X1, X2, X3 be i.i.d. r.v.’s from the Negative Exponential p.d.f. with param-
eter λ. Setting θ = 1/λ, the p.d.f. of the X’s becomes f(x; θ) = 1/θe−x/θ, x > 0. We
have then that Eθ(Xj) = θ and σ2

θ(Xj) = θ2, j = 1, 2, 3. Thus X1, for example, is an
unbiased statistic for θ with variance θ2. It is further easily seen (by Theorem
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8 below) that T = X1 + X2 + X3 is a sufficient statistic for θ and it can be shown
that it is also complete. Since X1 is not a function of T, one then knows that
X1 is not the UMV unbiased statistic for θ. To actually find the UMV unbiased
statistic for θ, it suffices to Rao–Blackwellize X1. To this end, it is clear that, by
symmetry, one has Eθ(X1|T) = Eθ(X2|T) = Eθ(X3|T). Since also their sum is
equal to Eθ(T|T) = T, one has that their common value is T/3. Thus Eθ(X1|T) =
T/3 which is what we were after. (One, of course, arrives at the same result by
using transformations.) Just for the sake of verifying the Rao–Blackwell theo-
rem, one sees that

E
T T

θ θθ σ θ θ θ
3 3 3

02
2

2⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

= <( ) ∈ ∞( )and  , , .

Exercises

11.3.1 If X1, . . . , Xn is a random sample of size n from P(θ), then use
Exercise 11.1.2(i) and Example 10 to show that X  is the (essentially) unique
UMV unbiased statistic for θ.

11.3.2 Refer to Example 15 and, by utilizing the appropriate transformation,
show that X  is the (essentially) unique UMV unbiased statistic for θ.

11.4 The Exponential Family of p.d.f.’s: One-Dimensional Parameter Case

A large class of p.d.f.’s depending on a real-valued parameter θ is of the
following form:

  
f x C e h x x

Q T x
; , , ,θ θ θθ( ) = ( ) ( ) ∈ ∈ ⊆( )( ) ( )

� �Ω (1)

where C(θ) > 0, θ ∈Ω and also h(x) > 0 for x ∈S, the set of positivity of f(x; θ),
which is independent of θ. It follows that

C e h x
Q T x

x S

− ( ) ( )
∈

( ) = ( )∑1 θ θ

for the discrete case, and

C e h x dx
Q T x

S

− ( ) ( )( ) = ( )∫1 θ θ

for the continuous case. If X1, . . . , Xn are i.i.d. r.v.’s with p.d.f. f(·; θ) as above,
then the joint p.d.f. of the X’s is given by

  

f x x C Q T x h x h x

x j n

n
n

j
j

n

n

j

1
1

1

1

, , ; exp ,

, , , , .

⋅ ⋅ ⋅( ) = ( ) ( ) ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( ) ⋅ ⋅ ⋅ ( )
∈ = ⋅ ⋅ ⋅ ∈

=
∑
   

θ θ θ

θ� Ω (2)
Some illustrative examples follow.
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EXAMPLE 16 Let

f x
n

x
I xx n x

A; ,θ θ θ( ) =
⎛
⎝⎜

⎞
⎠⎟

−( ) ( )−
1

where A = {0, 1, . . . , n}. This p.d.f. can also be written as follows,

f x x
n

x
I x

n

A; exp log , , ,θ θ θ
θ

θ( ) = −( ) −
⎛
⎝⎜

⎞
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝⎜

⎞
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( ) ∈( )1
1

0 1

and hence is of the exponential form with

C Q T x x h x
n

x
I x

n

Aθ θ θ θ
θ( ) = −( ) ( ) =

− ( ) = ( ) =
⎛
⎝⎜

⎞
⎠⎟

( )1
1

, log , , .

EXAMPLE 17 Let now the p.d.f. be N(μ, σ2). Then if σ is known and μ = θ, we have

  

f x x x; exp exp exp , ,θ
πσ

θ
σ

θ
σ σ

θ( ) = −
⎛

⎝⎜
⎞

⎠⎟
⎛
⎝⎜

⎞
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−
⎛
⎝⎜

⎞
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∈1

2 2

1

2

2

2 2 2
2 �

and hence is of the exponential form with

C Q

T x x h x x

θ
πσ

θ
σ

θ θ
σ

σ

( ) = −
⎛
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exp , ,

, exp .

If now μ is known and σ2 = θ, then we have

f x x; exp , , ,θ
πθ θ

μ θ( ) = − −( )⎛
⎝⎜

⎞
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∈ ∞( )1

2

1
2

0
2

and hence it is again of the exponential form with

C Q T x x h xθ
πθ

θ
θ

μ( ) = ( ) = − ( ) = −( ) ( ) =1

2

1
2

1
2

, , .and

If the parameter space Ω of a one-parameter exponential family of p.d.f.’s
contains a non-degenerate interval, it can be shown that the family is com-
plete. More precisely, the following result can be proved.

THEOREM 6 Let X be an r.v. with p.d.f. f(·; θ), θ ∈ Ω ⊆ � given by (1) and set C = {g(·; θ);
θ ∈Ω}, where g(·; θ) is the p.d.f. of T(X). Then C is complete, provided Ω
contains a non-degenerate interval.

Then the completeness of the families established in Examples 9 and 10
and the completeness of the families asserted in the first part of Example 12
and the last part of Example 14 follow from the above theorem.

In connection with families of p.d.f.’s of the one-parameter exponential
form, the following theorem holds true.
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THEOREM 7 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. of the one-parameter exponential form.
Then

i) T* = ∑n
j=1 T(Xj) is a sufficient statistic for θ.

ii) The p.d.f. of T* is of the form

g t C e h tn Q t
; * ,θ θ θ( ) = ( ) ( )( )

where the set of positivity of h*(t) is independent of θ.

PROOF

i) This is immediate from (2) and Theorem 1.

ii) First, suppose that the X’s are discrete, and then so is T*. Then we have
g(t; θ) = Pθ(T* = t) = ∑f(x1, . . . , xn; θ), where the summation extends over
all (x1, . . . , xn)′ for which ∑n

j=1T(xj) = t. Thus

g t C Q T x h x

C e h x C e h t

n
j

j

n

j
j

n

n Q t

j
j

n
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( )

1 1

1

where

h t h xj
j

n

* .( ) = ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

∏∑
1

Next, let the X’s be of the continuous type. Then the proof is carried out under
certain regularity conditions to be spelled out. We set Y1 = ∑n

j=1 T(Xj) and let
Yj = Xj, j = 2, . . . , n. Then consider the transformation

y T x

y x j n

T x y T y

x y j n

j
j
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j j

j
j

n

j j

1
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1 1
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2 2
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where we assume that y = T(x) is one-to-one and hence the inverse T−1

exists. Next,
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∂
∂
x
y T T z

z y T yj
j

n
1

1
1 1

2

1=
′ ( )[ ] = − ( )−

=
∑, ,where

provided we assume that the derivative T ′ of T exists and T ′[T−1(z)] ≠ 0.
Since for j = 2, . . . , n, we have

∂
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for j = 2, . . . , n and ∂xj/∂yi = 0 for 1 < i, j, i ≠ j, we have that

J
T T z T T y T y T yn

=
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1 1
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1 2

.

Therefore, the joint p.d.f. of Y1, . . . , Yn is given by

g y y C Q y T y T y

T y T y
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So if we integrate with respect to y2, . . . yn, set

h y h T y T y T y

h y J dy dy

n

j
j

n

n
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∞
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∫ ∫

∏
and replace y1, by t, we arrive at the desired result. ▲

REMARK 5 The above proof goes through if y = T(x) is one-to-one on each
set of a finite partition of �.

We next set C = {g(·; θ ∈Ω}, where g(·; θ) is the p.d.f. of the sufficient
statistic T*. Then the following result concerning the completeness of C
follows from Theorem 6.

THEOREM 8 The family C = {g(·; θ ∈Ω} is complete, provided Ω contains a non-degenerate
interval.

Now as a consequence of Theorems 2, 3, 7 and 8, we obtain the following
result.
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THEOREM 9 Let the r.v. X1, . . . , Xn be i.i.d. from a p.d.f. of the one-parameter exponential
form and let T* be defined by (i) in Theorem 7. Then, if V is any other statistic,
it follows that V and T* are independent if and only if the distribution of V
does not depend on θ.

PROOF In the first place, T* is sufficient for θ, by Theorem 7(i), and the set
of positivity of its p.d.f. is independent of θ, by Theorem 7(ii). Thus the
assumptions of Theorem 2 are satisfied and therefore, if V is any statistic which
is independent of T*, it follows that the distribution of V is independent of θ.
For the converse, we have that the family C of the p.d.f.’s of T* is complete, by
Theorem 8. Thus, if the distribution of a statistic V does not depend on θ,
it follows, by Theorem 3, that V and T* are independent. The proof is
completed. ▲

APPLICATION Let X1, . . . , Xn be i.i.d. r.v.’s from N(μ, σ2). Then

X
n

X S
n

X Xj
j

n

j
j

n

= = −( )
= =

∑ ∑1 1

1

2 2

1

and

are independent.

PROOF We treat μ as the unknown parameter θ and let σ2 be arbitrary (>0)
but fixed. Then the p.d.f. of the X’s is of the one-parameter exponential form
and T = X  is both sufficient for θ and complete. Let

V V X X X Xn j
j

n

= ⋅ ⋅ ⋅( ) = −( )
=

∑1

2

1

, , .

Then V and T will be independent, by Theorem 9, if and only if the distribution
of V does not depend on θ. Now Xj being N(θ, σ2) implies that Yj = Xj − θ is
N(0, σ2). Since Y = X − θ, we have

X X Y Yj
j

n

j
j

n

−( ) = −( )
= =

∑ ∑2

1

2

1

.

But the distribution of ∑n
j =1 (Yj − Y )2 does not depend on θ, because P[∑n

j =1 (Yj

− Y )2 ∈ B] is equal to the integral of the joint p.d.f. of the Y’s over B and this
p.d.f. does not depend on θ. ▲

Exercises

11.4.1 In each one of the following cases, show that the distribution of the
r.v. X is of the one-parameter exponential form and identify the various
quantities appearing in a one-parameter exponential family.

i) X is distributed as Poisson;

ii) X is distributed as Negative Binomial;

iii) X is distributed as Gamma with β known;



11.1 Sufficiency: Definition and Some Basic Results 281

iii′) X is distributed as Gamma with α known;

iv) X is distributed as Beta with β known;

iv′) X is distributed as Beta with α known.

11.4.2 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ) given by

f x x
x

I x; exp , , .,  knownθ γ
θ θ

θ γγ
γ

( ) = −
⎛

⎝⎜
⎞

⎠⎟
( ) > > ( )−

∞( )
1

0 0 0

i) Show that f(·; θ) is indeed a p.d.f.;

ii) Show that ∑n
j=1 X γ

j is a sufficient statistic for θ ;

iii) Is f(·; θ) a member of a one-parameter exponential family of p.d.f.’s?

11.4.3 Use Theorems 6 and 7 to discuss:

ii) The completeness established or asserted in Examples 9, 10, 12 (for μ = θ
and σ known), 15;

ii) Completeness in the Beta and Gamma distributions when one of the
parameters is unknown and the other is known.

11.5 Some Multiparameter Generalizations

Let X1, . . . , Xk be i.i.d. r.v.’s and set X = (X1, . . . , Xk)′. We say that the joint
p.d.f. of the X’s, or that the p.d.f. of X, belongs to the r-parameter exponential
family if it is of the following form:

f C Q T hj
j

r

jx x x; exp ,θθ θθ θθ( ) = ( ) ( ) ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
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( )
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∑
1

where x = (x1, . . . , xk)′, xj ∈ �, j = 1, . . . , k, k ≥ 1, θθθθθ = (θ1, . . . , θr)′ ∈ ΩΩΩΩΩ ⊆ Rr,
C(θθθθθ) > 0, θθθθθ ∈ Ω and h(x) > 0 for x ∈ S, the set of positivity of f(·; θθθθθ), which is
independent of θθθθθ.

The following are examples of multiparameter exponential families.

EXAMPLE 18 Let X = (X1, . . . , Xr)′ have the multinomial p.d.f. Then
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x
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where A = {(x1, · · · , xr)′ ∈� r; xj ≥ 0, j = 1, . . . , r and ∑r
j =1 xj = n}. Thus this p.d.f.

is of exponential form with
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EXAMPLE 19 Let X be N(θ1, θ2). Then,
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and hence this p.d.f. is of exponential form with
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For multiparameter exponential families, appropriate versions of Theo-
rems 6, 7 and 8 are also true. This point will not be pursued here, however.

Finally, if X1, . . . , Xn are i.i.d. r.v.’s with p.d.f. f(·; θθθθθ), θθθθθ = (θ1, . . . , θr)′ ∈ ΩΩΩΩΩ
⊆ � r, not necessarily of an exponential form, the r-dimensional statistic U =
(U1, . . . , Ur)′, Uj = Uj(X1, . . . , Xn), j = 1, . . . , r, is said to be unbiased if EθUj =
θj, j = 1, . . . , r for all θθθθθ ∈ ΩΩΩΩΩ. Again, multiparameter versions of Theorems 4–9
may be formulated but this matter will not be dealt with here.

Exercises

11.5.1 In each one of the following cases, show that the distribution of the
r.v. X and the random vector X is of the multiparameter exponential form and
identify the various quantities appearing in a multiparameter exponential
family.

i) X is distributed as Gamma;

ii) X is distributed as Beta;

iii) X = (X1, X2)′ is distributed as Bivariate Normal with parameters as de-
scribed in Example 4.

11.5.2 If the r.v. X is distributed as U(α, β), show that the p.d.f. of X is not
of an exponential form regardless of whether one or both of α, β are unknown.

11.5.3 Use the not explicitly stated multiparameter versions of Theorems 6
and 7 to discuss:
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ii) The completeness asserted in Example 15 when both parameters are
unknown;

ii) Completeness in the Beta and Gamma distributions when both parameters
are unknown.

11.5.4 (A bio-assay problem) Suppose that the probability of death p(x) is
related to the dose x of a certain drug in the following manner

p x
e

x( ) =
+ − +( )

1

1
α β

,

where α > 0, β ∈ � are unknown parameters. In an experiment, k different
doses of the drug are considered, each dose is applied to a number of animals
and the number of deaths among them is recorded. The resulting data can be
presented in a table as follows.

Dose x1 x2 . . . xk

Number of animals used
(n) n1 n2 . . . nk

Number of deaths
(Y) Y1 Y2 . . . Yk

x1, x2, . . . , xk and n1, n2, . . . , nk are known constants, Y1, Y2, . . . , Yk are
independent r.v.’s; Yj is distributed as B(nj, p(xj)). Then show that:

ii) The joint distribution of Y1, Y2, . . . , Yk constitutes an exponential family;

ii) The statistic

Y x Yj
j

k

j j
j

k

= =
∑ ∑

⎛

⎝⎜
⎞
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′

1 1

,

is sufficient for θθθθθ = (α, β)′.

(REMARK In connection with the probability p(x) given above, see also
Exercise 4.1.8 in Chapter 4.)

Exercises 283



284 12 Point Estimation

284

Chapter 12

Point Estimation

12.1 Introduction

Let X be an r.v. with p.d.f. f(·; θθθθθ), where θθθθθ ∈ΩΩΩΩΩ ⊆ � r. If θθθθθ is known, we can
calculate, in principle, all probabilities we might be interested in. In practice,
however, θθθθθ is generally unknown. Then the problem of estimating θθθθθ arises; or
more generally, we might be interested in estimating some function of θθθθθ, g(θθθθθ ),
say, where g is (measurable and) usually a real-valued function. We now
proceed to define what we mean by an estimator and an estimate of g(θθθθθ ). Let
X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ ). Then

DEFINITION 1 Any statistic U = U(X1, . . . , Xn) which is used for estimating the unknown
quantity g(θθθθθ ) is called an estimator of g(θθθθθ ). The value U(x1, . . . , xn) of U for
the observed values of the X’s is called an estimate of g(θθθθθ ).

For simplicity and by slightly abusing the notation, the terms estimator and
estimate are often used interchangeably.

Exercise

12.1.1 Let X1, . . . , Xn be i.i.d. r.v.’s having the Cauchy distribution with σ =
1 and μ unknown. Suppose you were to estimate μ; which one of the estimators
X1, X̄ would you choose? Justify your answer.

(Hint: Use the distributions of X1 and X̄ as a criterion of selection.)
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12.2 Criteria for Selecting an Estimator: Unbiasedness, Minimum Variance

From Definition 1, it is obvious that in order to obtain a meaningful estimator
of g(θθθθθ ), one would have to choose that estimator from a specified class of
estimators having some optimal properties. Thus the question arises as to how
a class of estimators is to be selected. In this chapter, we will devote ourselves
to discussing those criteria which are often used in selecting a class of
estimators.

DEFINITION 2 Let g be as above and suppose that it is real-valued. Then the estimator U =
U(X1, . . . , Xn) is called an unbiased estimator of g(θθθθθ ) if EθθθθθU(X1, . . . , Xn) =
g(θθθθθ ) for all θθθθθ ∈ ΩΩΩΩΩ.

DEFINITION 3 Let g be as above and suppose it is real-valued. g(θθθθθ ) is said to be estimable if
it has an unbiased estimator.

According to Definition 2, one could restrict oneself to the class of unbi-
ased estimators. The interest in the members of this class stems from the
interpretation of the expectation as an average value. Thus if U =
U(X1, . . . , Xn) is an unbiased estimator of g(θθθθθ), then, no matter what θθθθθ ∈ ΩΩΩΩΩ is,
the average value (expectation under θθθθθ) of U is equal to g(θθθθθ).

Although the criterion of unbiasedness does specify a class of estimators
with a certain property, this class is, as a rule, too large. This suggests that a
second desirable criterion (that of variance) would have to be superimposed
on that of unbiasedness. According to this criterion, among two estimators of
g(θθθθθ ) which are both unbiased, one would choose the one with smaller
variance. (See Fig. 12.1.) The reason for doing so rests on the interpretation
of variance as a measure of concentration about the mean. Thus, if U =
U(X1, . . . , Xn) is an unbiased estimator of g(θθθθθ ), then by Tchebichev’s
inequality,

P U g
U

θθ
θθθθ− ( ) ≤[ ] ≥ −ε σ
ε

1
2

2
.

Therefore the smaller σ 2
θθθθθU is, the larger the lower bound of the probability of

concentration of U about g(θθθθθ ) becomes. A similar interpretation can be given
by means of the CLT when applicable.

0
u

h1(u; ) h2(u; )

(a)

0
u

g(  )

(b)

g(  )

Figure 12.1 (a) p.d.f. of U1 (for a fixed θθθθθ ). (b) p.d.f. of U2 (for a fixed θθθθθ ).
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Following this line of reasoning, one would restrict oneself first to the class
of all unbiased estimators of g(θθθθθ ) and next to the subclass of unbiased estima-
tors which have finite variance under all θθθθθ ∈ ΩΩΩΩΩ. Then, within this restricted
class, one would search for an estimator with the smallest variance. Formaliz-
ing this, we have the following definition.

DEFINITION 4 Let g be estimable. An estimator U = U(X1, . . . , Xn) is said to be a uniformly
minimum variance unbiased (UMVU) estimator of g(θθθθθ ) if it is unbiased and
has the smallest variance within the class of all unbiased estimators of g(θθθθθ)
under all θθθθθ ∈ ΩΩΩΩΩ. That is, if U1 = U1(X1, . . . , Xn) is any other unbiased estimator
of g(θθθθθ ), then σ 2

θθθθθU1 ≥ σ 2
θθθθθU for all θθθθθ ∈ ΩΩΩΩΩ.

In many cases of interest a UMVU estimator does exist. Once one decides
to restrict oneself to the class of all unbiased estimators with finite variance,
the problem arises as to how one would go about searching for a UMVU
estimator (if such an estimator exists). There are two approaches which may
be used. The first is appropriate when complete sufficient statistics are avail-
able and provides us with a UMVU estimator. Using the second approach, one
would first determine a lower bound for the variances of all estimators in the
class under consideration, and then would try to determine an estimator whose
variance is equal to this lower bound. In the second method just described, the
Cramér–Rao inequality, to be established below, is instrumental.

The second approach is appropriate when a complete sufficient statistic is
not readily available. (Regarding sufficiency see, however, the corollary to
Theorem 2.) It is more effective, in that it does provide a lower bound for the
variances of all unbiased estimators regardless of the existence or not of a
complete sufficient statistic.

Lest we give the impression that UMVU estimators are all-important, we
refer the reader to Exercises 12.3.11 and 12.3.12, where the UMVU estimators
involved behave in a rather ridiculous fashion.

Exercises

12.2.1 Let X be an r.v. distributed as B(n, θ ). Show that there is no unbiased
estimator of g(θ ) = 1/θ based on X.

In discussing Exercises 12.2.2–12.2.4 below, refer to Example 3 in Chapter 10
and Example 7 in Chapter 11.

12.2.2 Let X1, . . . , Xn be independent r.v.’s distributed as U(0, θ ), θ ∈ Ω =
(0, ∞). Find unbiased estimators of the mean and variance of the X’s depend-
ing only on a sufficient statistic for θ.

12.2.3 Let X1, . . . , Xn be i.i.d. r.v.’s from U(θ1, θ2), θ1 < θ2 and find unbiased
estimators for the mean (θ1 + θ2)/2 and the range θ2 − θ1 depending only on a
sufficient statistic for (θ1, θ2)′.
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12.2.4 Let X1, . . . , Xn be i.i.d. r.v.’s from the U(θ, 2θ ), θ ∈ Ω = (0, ∞)
distribution and set

U
n
n

X U
n
n

X Xn n1 2 1

1
2 1

1
5 4

2= +
+

= +
+

+[ ]( ) ( ) ( )and .

Then show that both U1 and U2 are unbiased estimators of θ and that U2 is
uniformly better than U1 (in the sense of variance).

12.2.5 Let X1, . . . , Xn be i.i.d. r.v.’s from the Double Exponential distribu-
tion f(x; θ) = 1

2
e−|x−θ|, θ ∈ Ω = �. Then show that (X(1) + X(n))/2 is an unbiased

estimator of θ.

12.2.6 Let X1, . . . , Xm and Y1, . . . , Yn be two independent random samples
with the same mean θ and known variances σ 2

1 and σ 2
2, respectively. Then show

that for every c ∈ [0, 1], U = cX̄ + (1 − c)Ȳ is an unbiased estimator of θ. Also
find the value of c for which the variance of U is minimum.

12.2.7 Let X1, . . . , Xn be i.i.d. r.v.’s with mean μ and variance σ 2, both
unknown. Then show that X̄ is the minimum variance unbiased linear estima-
tor of μ.

12.3 The Case of Availability of Complete Sufficient Statistics

The first approach described above will now be looked into in some detail. To
this end, let T = (T1, . . . , Tm)′, Tj = Tj(X1, . . . , Xn), j = 1, . . . , m, be a statistic
which is sufficient for θθθθθ and let U = U(X1, . . . , Xn) be an unbiased estimator of
g(θθθθθ), where g is assumed to be real-valued. Set φ(T) = Eθθθθθ(U|T). Then by the
Rao–Blackwell theorem (Theorem 4, Chapter 11) (or more precisely, an
obvious modification of it), φ(T) is also an unbiased estimator of g(θθθθθ) and
furthermore σ 2

θθθθθ(φφφφφ) ≤ σ 2
θθθθθU for all θθθθθ ∈ΩΩΩΩΩ with equality holding only if U is a

function of T (with Pθθθθθ-probability 1). Thus in the presence of a sufficient
statistic, the Rao–Blackwell theorem tells us that, in searching for a UMVU
estimator of g(θθθθθ), it suffices to restrict ourselves to the class of those unbiased
estimators which depend on T alone. Next, assume that T is also complete.
Then, by the Lehmann–Scheffé theorem (Theorem 5, Chapter 11) (or rather,
an obvious modification of it), the unbiased estimator φ(T) is the one with
uniformly minimum variance in the class of all unbiased estimators. Notice
that the method just described not only secures the existence of a UMVU
estimator, provided an unbiased estimator with finite variance exists, but also
produces it. Namely, one starts out with any unbiased estimator of g(θθθθθ) with
finite variance, U say, assuming that such an estimator exists. Then Rao–
Blackwellize it and obtain φ(T). This is the required estimator. It is essentially
unique in the sense that any other UMVU estimators will differ from φ(T) only
on a set of Pθθθθθ-probability zero for all θθθθθ ∈ ΩΩΩΩΩ. Thus we have the following result.
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THEOREM 1 Let g be as in Definition 2 and assume that there exists an unbiased estimator
U = U(X1, . . . , Xn) of g(θθθθθ) with finite variance. Furthermore, let T = (T1, . . . ,
Tm)′, Tj = Tj(X1, . . . , Xn), j = 1, . . . , m be a sufficient statistic for θθθθθ and suppose
that it is also complete. Set φ(T) = Eθθθθθ (U|T). Then φ(T) is a UMVU estimator
of g(θθθθθ) and is essentially unique.

This theorem will be illustrated by a number of concrete examples.

EXAMPLE 1 Let X1, . . . , Xn be i.i.d. r.v.’s from B(1, p) and suppose we wish to find a
UMVU estimator of the variance of the X ’s.

The variance of the X’s is equal to pq. Therefore, if we set p = θ, θ ∈ Ω =
(0, 1) and g(θ) = θ (1 − θ ), the problem is that of finding a UMVU estimator for
g(θ). We know that, if

U
n

X Xj
j
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−( )
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,

then EθU = g(θ). Thus U is an unbiased estimator of g(θ). Furthermore,
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because Xj takes on the values 0 and 1 only and hence X2
j = Xj. By setting

T = ∑n
j=1 Xj, we have then
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T
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But T is a complete, sufficient statistic for θ by Examples 6 and 9 in Chapter 11.
Therefore U is a UMVU estimator of the variance of the X’s according to
Theorem 1.

EXAMPLE 2 Let X be an r.v. distributed as B(n, θ) and set

g P X
n
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On the basis of r independent r.v.’s X1, . . . , Xr distributed as X, we would like
to find a UMVU estimator of g(θ ), if it exists. For example, θ may represent
the probability of an item being defective, when chosen at random from a lot
of such items. Then g(θ ) represents the probability of accepting the entire lot,
if the rule for rejection is this: Choose at random n (≥2) items from the lot and
then accept the entire lot if the number of observed defective items is ≤2. The
problem is that of finding a UMVU estimator of g(θ), if it exists, if the
experiment just described is repeated independently r times.

Now the r.v.’s Xj, j = 1, . . . , r are independent B(n, θ), so that T = ∑r
j =1 Xj

is B(nr, θ ). T is a complete, sufficient statistic for θ. Set
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Then EθU = g(θ) but it is not a function of T. Then one obtains the required
estimator by Rao–Blackwellization of U.

To this end, we have
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is a UMVU estimator of g(θ) by Theorem 1.

EXAMPLE 3 Consider certain events which occur according to the distribution P(λ). Then
the probability that no event occurs is equal to e−λ. Let now X1, . . . , Xn (n ≥ 2)
be i.i.d. r.v.’s from P(λ). Then the problem is that of finding a UMVU estima-
tor of e−λ.

Set

T X ej
j

n

= ( ) = −

=
∑ , λ θ θ θ= , g

1

and define U by

U
X
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if
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Then

E U P U P X gθ θ θ θ= =( ) = =( ) = ( )1 01 ;

that is, U is an unbiased estimator of g(θ ). However, it does not depend on T
which is a complete, sufficient statistic for θ, according to Exercise 11.1.2(i)
and Example 10 in Chapter 11. It remains then for us to Rao–Blackwellize U.
For this purpose we use the fact that the conditional distribution of X1, given
T = t, is B(t, 1/n). (See Exercise 12.3.1.) Then
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is a UMVU estimator of e−λ.

EXAMPLE 4 Let X1, . . . , Xn be i.i.d. r.v.’s from N(μ, σ 2) with σ 2 unknown and μ known. We
are interested in finding a UMVU estimator of σ.

Set σ 2 = θ and let g(θ) = √
–
θ . By Corollary 5, Chapter 7, we have that

1/θ∑ n
j=1(Xj − μ)2 is χ2

n. So, if we set

S
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then nS2/θ is χ2
n, so that √

–
nS/√

–
θ  is distributed as χn. Then the expectation

Eθ(√
–
nS/√

–
θ ) can be calculated and is independent of θ ; call it c ′n (see Exercise

12.3.2). That is,
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Setting finally cn = c′n/√
–
n, we obtain
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E
S
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θ θ
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= ;

that is, S/cn is an unbiased estimator of g(θ). Since this estimator depends on
the complete, sufficient statistic (see Example 8 and Exercise 11.5.3(ii), Chap-
ter 11) S2 alone, it follows that S/cn is a UMVU estimator of σ.

EXAMPLE 5 Let again X1, . . . , Xn be i.i.d. r.v.’s from N(μ, σ 2) with both μ and σ 2 unknown.
We are interested in finding UMVU estimators for each one of μ and σ 2.

Here θθθθθ = (μ, σ 2)′ and let g1(θθθθθ) = μ, g2(θθθθθ) = σ 2. By setting
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n

X Xj
j
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2 2

1
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∑ ,

we have that (X̄, S2)′ is a sufficient statistic for θθθθθ. (See Example 8, Chapter 11.)
Furthermore, it is complete. (See Example 12, Chapter 11.) Let U1 = X̄ and U2

= nS 2/(n − 1). Clearly, EθθθθθU1 = μ. By Remark 5 in Chapter 7,
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So U1 and U2 are unbiased estimators of μ and σ 2, respectively. Since they
depend only on the complete, sufficient statistic (X̄, S 2)′, it follows that they
are UMVU estimators.

EXAMPLE 6 Let X1, . . . , Xn be i.i.d. r.v.’s from N(μ, σ 2) with both μ and σ 2 unknown, and
set ξp for the upper pth quantile of the distribution (0 < p < 1). The problem is
that of finding a UMVU estimator of ξp.

Set θθθθθ = (μ, σ2)′. From the definition of ξp, one has Pθθθθθ(X1 ≥ ξp) = p. But
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Of course, since p is given, Φ−1(1 − p) is a uniquely determined number. Then
by setting g(θθθθθ) = μ + σΦ−1(1 − p), our problem is that of finding a UMVU
estimator of g(θθθθθ). Let
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U X
S
c

p
n

= + −( )−Φ 1 1 ,

where cn is defined in Example 4. Then by the fact that EθθθθθX̄ = μ and Eθθθθθ (S/cn)
= σ (see Example 4), we have that EθθθθθU = g(θθθθθ). Since U depends only on the
complete, sufficient statistic (X̄, S2)′, it follows that U is a UMVU estimator
of ξp.

Exercises

12.3.1 Let X1, . . . , Xn be i.i.d. r.v.’s from P(λ) and set T = ∑n
j=1 Xj. Then show

that the conditional p.d.f. of X1, given T = t, is that of B(t, 1/n). Furthermore,
observe that the same is true if X1 is replaced by any one of the remaining X’s.

12.3.2 Refer to Example 4 and evaluate the quantity c′n mentioned there.

12.3.3 If X1, . . . , Xn are i.i.d. r.v.’s from B(1, θ ), θ ∈Ω = (0, 1), by using
Theorem 1, show that X̄ is the UMVU estimator of θ.

12.3.4  If X1, . . . , Xn are i.i.d. r.v.’s from P(θ ), θ ∈Ω = (0, ∞), use Theorem
1 in order to determine the UMVU estimator of θ.

12.3.5  Let X1, . . . , Xn be i.i.d. r.v.’s from the Negative Exponential distribu-
tion with parameter θ ∈Ω = (0, ∞). Use Theorem 1 in order to determine the
UMVU estimator of θ.

12.3.6 Let X be an r.v. having the Negative Binomial distribution with
parameter θ ∈ Ω = (0, 1). Find the UMVU estimator of g(θ ) = 1/θ and
determine its variance.

12.3.7 Let X1, . . . , Xn be independent r.v.’s distributed as N(θ, 1). Show that
X̄ 2 − (1/n) is the UMVU estimator of g(θ) = θ 2.

12.3.8 Let X1, . . . , Xn be independent r.v.’s distributed as N(μ, σ 2), where
both μ and σ2 are unknown. Find the UMVU estimator of μ/σ.

12.3.9 Let (Xj, Yj)′, j = 1, . . . , n be independent random vectors having the
Bivariate Normal distribution with parameter θθθθθ = (μ1, μ2, σ1, σ2, ρ)′. Find the
UMVU estimators of the following quantities: ρσ1σ2, μ1μ2, ρσ2/σ1.

12.3.10 Let X be an r.v. denoting the life span of a piece of equipment. Then
the reliability of the equipment at time x, R(x), is defined as the probability
that X > x. If X has the Negative Exponential distribution with parameter
θ ∈Ω = (0, ∞), find the UMVU estimator of the reliability R(x; θ ) on the basis
of n observations on X.

12.3.11 Let X be an r.v. having the Geometric distribution; that is,

f x x
x

; , , , . . . , , ,   θ θ θ θ( ) = −( ) = ∈ = ( )1 0 1 0 1Ω



12.3 The Case of Availability of Complete Sufficient Statistics 293

and let U(X) be defined as follows: U(X) = 1 if X = 0 and U(X ) = 0 if X ≠ 0.
By using Theorem 1, show that U(X) is a UMVU estimator of θ and conclude
that it is an unreasonable one.

12.3.12 Let X be an r.v. denoting the number of telephone calls which arrive
at a given telephone exchange, and suppose that X is distributed as P(θ ),
where θ ∈Ω = (0, ∞) is the number of calls arriving at the telephone exchange
under consideration within a 15 minute period. Then the number of calls which
arrive at the given telephone exchange within 30 minutes is an r.v. Y distrib-
uted as P(2θ), as can be shown. Thus Pθ(Y = 0) = e−2θ = g(θ). Define U(X) by
U(X) = (−1)X. Then show that U(X) is the UMVU estimator of g(θ ) and
conclude that it is an entirely unreasonable estimator. (Hint: Use Theorem 1.)

12.3.13 Use Example 11, Chapter 11, in order to show that the unbiased
estimator constructed in Exercise 12.2.2 is actually UMVU.

12.3.14 Use Exercise 11.1.4, Chapter 11, in order to conclude that the un-
biased estimator constructed in Exercise 12.2.5 is not UMVU.

12.4 The Case Where Complete Sufficient Statistics Are Not Available or
May Not Exist: Cramér–Rao Inequality

When complete, sufficient statistics are available, the problem of finding a
UMVU estimator is settled as in Section 3. When such statistics do not exist,
or it is not easy to identify them, one may use the approach described here in
searching for a UMVU estimator. According to this method, we first establish
a lower bound for the variances of all unbiased estimators and then we attempt
to identify an unbiased estimator with variance equal to the lower bound
found. If that is possible, the problem is solved again. At any rate, we do have
a lower bound of the variances of a class of estimators, which may be useful for
comparison purposes.

The following regularity conditions will be employed in proving the main
result in this section. We assume that Ω ⊆ � and that g is real-valued and
differentiable for all θ ∈ Ω.

12.4.1 Regularity Conditions

Let X be an r.v. with p.d.f. f(·; θ ), θ ∈ Ω ⊆ �. Then it is assumed that

iii) f(x; θ ) is positive on a set S independent of θ ∈ Ω.

iii) Ω is an open interval in � (finite or not).

iii) (∂/∂θ ) f(x; θ) exists for all θ ∈ Ω and all x ∈ S except possibly on a set
N ⊂ S which is independent of θ and such that Pθ(X ∈ N ) = 0 for all θ ∈ Ω.

iv) ⋅ ⋅ ⋅ ( ) ⋅ ⋅ ⋅ ( ) ⋅ ⋅ ⋅∫ ∫S S n nf x f x dx dx1 1; ;θ θ
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or ⋅ ⋅ ⋅ ( ) ⋅ ⋅ ⋅ ( )∑ ∑
S

n
S

f x f x1; ;θ θ

may be differentiated under the integral or summation sign, respectively.

iv) Eθ[(∂/∂θ )log f (X; θ )]2, to be denoted by I(θ), is >0 for all θ ∈ Ω.

vi) ⋅ ⋅ ⋅ ( ) ( ) ⋅ ⋅ ⋅ ( ) ⋅ ⋅ ⋅∫ ∫S nS n nU x x f x f x dx dx1 1 1, . . . , ; ;   θ θ

or ⋅ ⋅ ⋅ ( ) ( ) ⋅ ⋅ ⋅ ( )∑ ∑
S

n n
S

U x x f x f x1 1, . . . , ; ;   θ θ

may be differentiated under the integral or summation sign, respectively,
where U(X1, . . . , Xn) is any unbiased estimator of g(θ ). Then we have the
following theorem.

THEOREM 2 (Cramér–Rao inequality.) Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ ) and
assume that the regularity conditions (i)–(vi) are fulfilled. Then for any un-
biased estimator U = U(X1, . . . , Xn) of g(θ ), one has

σ
θ

θ
θ θ

θ

θθ
2

2

U
g

nI
g

dg

d
≥

′( )[ ]
( ) ∈ ′( ) =

( )
, , .Ω where

PROOF If σ 2
θU = ∞ or I(θ) = ∞ for some θ ∈ Ω, the inequality is trivially true

for those θ’s. Hence we need only consider the case where σ 2
θU < ∞ and I(θ)

< ∞ for all θ ∈Ω. Also it suffices to discuss the continuous case only, since the
discrete case is treated entirely similarly with integrals replaced by summation
signs.

We have

E U X X
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Differentiating with respect to θ both sides of (1) on account of (vi) and
utilizing (2), we obtain

′( ) = ⋅ ⋅ ⋅ ( ) ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Next,

⋅ ⋅ ⋅ ( ) ⋅ ⋅ ⋅ ( ) ⋅ ⋅ ⋅ =∫∫ f x f x dx dx
SS n n1 1 1; ; .θ θ

Therefore differentiating both sides with respect to θ by virtue of (iv), and
employing (2),
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From (3) and (4), it follows that

Co U V E UV E U E V E UV gυ θθ θ θ θ θ θ θ θ θ, .( ) = ( ) − ( )( ) = ( ) = ′( ) (5)

From (4) and the definition of Vθ, it further follows that
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But

ρ
υ

σ σθ θ
θ

θ θ θ

U V
Co U V

U V
,

,( ) =
( )

( )( )
and ρ 2

θ(U, Vθ) ≤ 1, which is equivalent to

C o U V U V
2 2 2υ σ σθ θ θ θ θ, .( ) ≤ ( )( ) (7)

Taking now into consideration (5) and (6), relation (7) becomes

′( )[ ] ≤ ( ) ( )⎡

⎣
⎢

⎤

⎦
⎥g U nE f Xθ σ ∂

∂θ
θθ θ

2
2

2

log ; ,

or by means of (v),

σ
θ

∂ ∂θ θ

θ

θθ

θ

2

2

2

2

U
g

nE f X

g

nI
≥

′( )[ ]
( ) ( )[ ]

=
′( )[ ]

( )log ;
. (8)

The proof of the theorem is completed. ▲

DEFINITION 5 The expression Eθ[(∂/∂θ )log f(X; θ )]2, denoted by I(θ ), is called Fisher’s infor-
mation (about θ ) number; nEθ[(∂/∂θ )log f(X; θ )]2 is the information (about θ )
contained in the sample X1, . . . , Xn.

(For an alternative way of calculating I(θ ), see Exercises 12.4.6 and 12.4.7.)
Returning to the proof of Theorem 2, we have that equality holds in (8) if

and only if C 2oυθ(U, Vθ) = (σ 2
θU)(σ 2

θVθ) because of (7). By Schwarz inequality
(Theorem 2, Chapter 5), this is equivalent to

V E V k U E U Pθ θ θ θ θθ= + ( ) −( ) − with probability 1, (9)

where

k
V
U

θ σ
σ

θ θ

θ
( ) = ± .

Furthermore, because of (i), the exceptional set for which (9) does not hold is
independent of θ and has Pθ-probability 0 for all θ ∈ Ω. Taking into considera-
tion (4), the fact that EθU = g(θ) and the definition of Vθ, equation (9) becomes
as follows:

∂
∂θ

θ θ θ θlog ; , . . . ,f X k U X X g kj
j

n

n( ) = ( ) ( ) − ( ) ( )
=

∏
1

1 (10)

outside a set N in � n such that Pθ[(X1, . . . , Xn) ∈ N] = 0 for all θ ∈ Ω.
Integrating (10) (with respect to θ ) and assuming that the indefinite integrals
∫k(θ)dθ and ∫g(θ )k(θ )dθ exist, we obtain

log ; , . . . , ˜ , . . . , ,f X U X X k d g k d h X Xj
j

n

n n   θ θ θ θ θ θ( ) = ( ) ( ) − ( ) ( ) + ( )
=
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1

1 1
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where h̃(X1, . . . , Xn) is the “constant” of the integration, or

log ; , . . . , ˜ , . . . , .f x U x x k d g k d h x xj
j

n

n n   θ θ θ θ θ θ( ) = ( ) ( ) − ( ) ( ) + ( )
=
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1

1 1 (11)

Exponentiating both sides of (11), we obtain

f x C Q U x x h x xj
j

n

n n; exp , . . . , , . . . , ,   θ θ θ( ) = ( ) ( ) ( )[ ] ( )
=

∏
1

1 1 (12)

where

C g k d Q k dθ θ θ θ θ θ θ( ) = − ( ) ( )[ ] ( ) = ( )∫ ∫exp ,  

and

h x x h x xn n1 1, . . . , exp ˜ , . . . , .( ) = ( )[ ]
Thus, if equality occurs in the Cramér–Rao inequality for some unbiased
estimator, then the joint p.d.f. of the X’s is of the one-parameter exponential
form, provided certain conditions are met. More precisely, we have the follow-
ing result.

COROLLARY If in Theorem 2 equality occurs for some unbiased estimator U = U
(X1, . . . , Xn) of g(θ ) and if the indefinite integrals ∫k(θ )dθ, ∫g(θ )k(θ )dθ exist,
where

k
V
U

θ σ
σ

θ θ

θ
( ) = ± ,

then

f x C Q U x x h x xj
j

n

n n; exp , . . . , , . . . ,   θ θ θ( ) = ( ) ( ) ( )[ ] ( )
=

∏
1

1 1

outside a set N in � n such that Pθ[(X1, . . . , Xn) ∈N] = 0 for all θ ∈Ω; here C(θ)
= exp[−∫g(θ )k(θ )dθ] and Q(θ ) = ∫k(θ )dθ. That is, the joint p.d.f. of the X’s is
of the one-parameter exponential family (and hence U is sufficient for θ).

REMARK 1 Theorem 2 has a certain generalization for the multiparameter
case, but this will not be discussed here.

In connection with the Cramér–Rao bound, we also have the following
important result.

THEOREM 3 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ ) and let g be an estimable real-
valued function of θ. For an unbiased estimator U = U(X1, · · · , Xn) of g(θ ), we
assume that regularity conditions (i)–(vi) are satisfied. Then σ 2

θU is equal to
the Cramér–Rao bound if and only if there exists a real-valued function of θ,
d(θ ), such that U = g(θ ) + d(θ )Vθ except perhaps on a set of Pθ-probability
zero for all θ ∈ Ω.

PROOF Under the regularity conditions (i)–(vi), we have that
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≥

′( )[ ]
( ) ≥

′( )[ ]
, ,or

since nI(θ ) = σ 2
θVθ by (6). Then σ 2

θU is equal to the Cramér–Rao bound if and
only if

′( )[ ] = ( )( )g U Vθ σ σθ θ θ

2
2 2 .

But

′( )[ ] = ( ) ( )g C o U Vθ υθ θ

2 2
, . by 5

Thus σ 2
θU is equal to the Cramér–Rao bound if and only if C 2

θ(U, Vθ) = (σ 2
θU)

× (σ 2
θVθ), or equivalently, if and only if U = a(θ ) + d(θ)Vθ with Pθ-probability

1 for some functions of θ, a(θ ) and d(θ ). Furthermore, because of (i), the
exceptional set for which this relationship does not hold is independent of θ
and has Pθ-probability 0 for all θ ∈ Ω. Taking expectations and utilizing the
unbiasedness of U and relation (4), we get that U = g(θ ) + d(θ )Vθ except
perhaps on a set of Pθ-probability 0 for all θ ∈Ω. The proof of the theorem is
completed. ▲

The following three examples serve to illustrate Theorem 2. The checking
of the regularity conditions is left as an exercise.

EXAMPLE 7 Let X1, . . . , Xn be i.i.d. r.v.’s from B(1, p), p ∈ (0, 1). By setting p = θ, we have

f x xx x
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(see Chapter 5), we have
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so that the Cramér–Rao bound is equal to θ(1 − θ )/n.
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Now X̄ is an unbiased extimator of θ and its variance is σ 2
θ(X̄ ) =

θ(1 − θ )/n, that is, equal to the Cramér–Rao bound. Therefore X̄ is a UMVU
estimator of θ.

EXAMPLE 8 Let X1, . . . , Xn be i.i.d. r.v.’s from P(λ), λ > 0. Again by setting λ = θ, we have

f x e
x

x f x x x
x

;
!

, , , . . . log ; log log !. so that  θ θ θ θ θθ( ) = = ( ) = − + −− 0 1
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1 2

Since EθX = θ and EθX2 = θ(1 + θ ) (see Chapter 5), we obtain

E f Xθ
∂
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θ

θ
log ; ,( )⎡

⎣
⎢

⎤

⎦
⎥ =

2
1

so that the Cramér–Rao bound is equal to θ/n. Since again X̄ is an unbiased
estimator of θ with variance θ/n, we have that X̄ is a UMVU estimator of θ.

EXAMPLE 9 Let X1, . . . , Xn be i.i.d. r.v.’s from N(μ, σ 2). Assume first that σ 2 is known and
set μ = θ. Then
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since (X − θ )/σ is N(0, 1) and hence

E
X

θ
θ

σ
= −⎛

⎝⎜
⎞
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= ( )
2

1. See Chapter 5.

Thus the Cramér–Rao bound is σ 2/n. Once again, X̄ is an unbiased esti-
mate of θ and its variance is equal to σ 2/n, that is, the Cramér–Rao bound.
Therefore, X̄ is a UMVU estimator. This was also shown in Example 5.

Suppose now that μ is known and set σ 2 = θ. Then
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θ is N(0, 1), we obtain
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1 3, . See Chapter 5.
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and the Cramér–Rao bound is 2θ 2/n. Next,
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(see Remark 5 in Chapter 7). Therefore (1/n)∑n
j=1(Xj − μ)2 is an unbiased

estimator of θ and its variance is 2θ 2/n, equal to the Cramér–Rao bound. Thus
(1/n)∑n

j=1(Xj − μ)2 is a UMVU estimator of θ.
Finally, we assume that both μ and σ2 are unknown and set μ = θ1, σ 2 = θ 2.

Suppose that we are interested in finding a UMVU estimator of θ2. By using
the generalization we spoke of in Remark 1, it can be seen that the Cramér–
Rao bound is again equal to 2θ 2

2/n. As a matter of fact, we arrive at the same
conclusion by treating θ1 as a constant and θ2 as the (unknown) parameter θ
and calculating the Cramér–Rao bound, provided by Theorem 2. Now it has
been seen in Example 5 that
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1n
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n
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is a UMVU estimator of θ 2. Since
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(see second corollary to Theorem 5, Chapter 7), it follows that
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the Cramér–Rao bound.
This then is an example of a case where a UMVU estimator does exist but

its variance is larger than the Cramér–Rao bound.

A UMVU estimator of g(θ) is also called an efficient estimator of g(θ ) (in
the sense of variance). Thus if U is a UMVU estimator of g(θθθθθ ) and U* is any
other unbiased estimator of g(θθθθθ ), then the quantity σ 2

θU/(σ 2
θU*) may serve as

a measure of expressing the efficiency of U* relative to that of U. It is known
as relative efficiency (r.eff.) of U* and, clearly, takes values in (0, 1].

REMARK 2 Corollary D in Chapter 6 indicates the sort of conditions which
would guarantee the fulfillment of the regularity conditions (iv) and (vi).

Exercises

12.4.1 Let X1, . . . , Xn be i.i.d. r.v.’s from the Gamma distribution with α
known and β = θ ∈ Ω (0, ∞) unknown. Then show that the UMVU estimator
of θ is

U X X
n

Xn j
j

n

1
1

1
, . . . ,  ( ) =

=
∑α
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and its variance attains the Cramér–Rao bound.

12.4.2 Refer to Exercise 12.3.5 and investigate whether the Cramér–Rao
bound is attained.

12.4.3 Refer to Exercise 12.3.6 and investigate whether the Cramér–Rao
bound is attained.

12.4.4 Refer to Exercise 12.3.7 and show that the Cramér–Rao bound is not
attained for the UMVU estimator of g(θ ) = θ 2.

12.4.5 Refer to Exercise 12.3.11 and investigate whether the Cramér–Rao
bound is attained.

12.4.6 Assume conditions (i) and (ii) listed just before Theorem 2, and also
suppose that the ∂

∂θ

2

2 f(x; θ) exists for all θ ∈ Ω and all x ∈ S except, perhaps,
on a set N ⊂ S with Pθ(X ∈ N) = 0 for all θ ∈ Ω. Furthermore, suppose that,
respectively,

∂
∂θ

θ ∂
∂θ

θ
2

2

2

2
0 0

S
S

f x dx f x∫ ∑( ) = ( ) =; ; . or  

Then show that  I E f Xθ ∂
∂θ

θθ( ) = − ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

2
log ; .

12.4.7 In Exercises 12.4.1–12.4.4, recalculate I(θ ) and the Cramér–Rao
bound by utilizing Exercise 12.4.6 where appropriate.

12.4.8 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ ), θ ∈ Ω ⊆ �. For an
estimator V = V(X1, . . . , Xn) of θ for which EθV is finite, write EθV = θ + b(θ ).
Then b(θ ) is called the bias of V. Show that, under the regularity conditions
(i)–(vi) preceding Theorem 2—where (vi) is assumed to hold true for all
estimators for which the integral (sum) is finite—one has

σ
θ

∂ ∂θ θ
θθ

θ

2

2

2

1
V

b

nE f X
≥

+ ′( )[ ]
( ) ( )[ ]

∈
log ;

, .Ω

Here X is an r.v. with p.d.f. f(·; θ) and b′(θ ) = db(θ)/dθ. (This inequality is
established along the same lines as those used in proving Theorem 2.)

12.5 Criteria for Selecting an Estimator: The Maximum Likelihood Principle

So far we have concerned ourselves with the problem of finding an estimator
on the basis of the criteria of unbiasedness and minimum variance. Another
principle which is very often used is that of the maximum likelihood.

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ), θθθθθ ∈ΩΩΩΩΩ ⊆ � r and consider the
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joint p.d.f. of the X’s f(x1; θθθθθ) · · · f(xn; θθθθθ). Treating the x’s as if they were
constants and looking at this joint p.d.f. as a function of θθθθθ, we denote it by
L(θθθθθ |x1, . . . , xn) and call it the likelihood function.

DEFINITION 6 The estimate θ̂θθθθ = θ̂θθθθ (x1, . . . , xn) is called a maximum likelihood estimate (MLE)
of θθθθθ if

L x x L x xn n
ˆ , . . . , max , . . . , ; ;θθ θθ θθ1 1   ( ) = ( ) ∈[ ]Ω

θ̂θθθθ(X1, . . . , Xn) is called an ML estimator (MLE for short) of θθθθθ.

REMARK 3 Since the function y = logx, x > 0 is strictly increasing, in order
to maximize (with respect to θθθθθ) L(θθθθθ|x1, . . . , xn) in the case that Ω     ∈�, it suffices
to maximize logL(θθθθθ|x1, . . . , xn). This is much more convenient to work with, as
will become apparent from examples to be discussed below.

In order to give an intuitive interpretation of a MLE, suppose first that the
X’s are discrete. Then

L x x P X x X xn n nθθ θθ1 1 1, . . . , , . . . , ;( ) = = =( )
that is, L(θθθθθ |x1, . . . , xn) is the probability of observing the x’s which were
acutally observed. Then it is intuitively clear that one should select as an
estimate of θθθθθ that θθθθθ which maximizes the probability of observing the x’s which
were actually observed, if such a θθθθθ exists. A similar interpretation holds true
for the case that the X’s are continuous by replacing L(θθθθθ|x1, . . . , xn) with the
probability element L(θθθθθ|x1, . . . , xn)dx1 · · · dxn which represents the probability
(under Pθθθθθ) that Xj lies between xj and xj + dxj, j = 1, . . . , n.

In many important cases there is a unique MLE, which we then call the
MLE and which is often obtained by differentiation.

Although the principle of maximum likelihood does not seem to be justi-
fiable by a purely mathematical reasoning, it does provide a method for
producing estimates in many cases of practical importance. In addition, an
MLE is often shown to have several desirable properties. We will elaborate on
this point later.

The method of maximum likelihood estimation will now be applied to a
number of concrete examples.

EXAMPLE 10 Let X1, . . . , Xn be i.i.d. r.v.’s from P(θ ). Then

L x x e
x

n
n

jj

n

xjj
n

θ θθ
1

1

1 1, . . . ,
!

( ) = −

=

∑

∏
=

and hence

log , . . . , log ! log .L x x x n xn j
j

n

j
j

n

θ θ θ1
1 1

( ) = −
⎛

⎝⎜
⎞
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− +

⎛

⎝⎜
⎞

⎠⎟= =
∏ ∑

Therefore the likelihood equation
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∂
∂θ

θ
θ

log , . . . ,L x x n nxn1 0
1

0 becomes –( ) = + =

which gives θ̃ = x̄. Next,

∂
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θ
θ

θ
2

2 1 2

1
0 0L x x nxn, . . . ,  for all( ) = − < >

and hence, in particular, for θ = θ̃. Thus θ = x̄ is the MLE of θ.

EXAMPLE 11 Let X1, . . . , Xr be multinomially distributed r.v.’s with parameter θ = (p1, · · · ,
pr)′ ∈ ΩΩΩΩΩ, where ΩΩΩΩΩ is the (r − 1)-dimensional hyperplane in � r defined by
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where n = ∑ r
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Differentiating with respect to pj, j = 1, . . . , r − 1 and equating the resulting
expressions to zero, we get
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Hence xj/pj = n and pj = xj/n, j = 1, . . . , r. It can be seen that these values of the
p’s actually maximize the likelihood function, and therefore p̂j = xj/n, j = 1, . . . ,
r are the MLE’s of the p’s. (See Exercise 12.5.4.)

EXAMPLE 12 Let X1, . . . , Xn be i.i.d. r.v.’s from N(μ, σ 2) with parameter θθθθθ = (μ, σ 2)′. Then
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Differentiating with respect to μ and σ 2 and equating the resulting expressions
to zero, we obtain

∂
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and 2 2

1

1

are the roots of these equations. It is further shown that μ̃ and σ̃ 2 actually
maximize the likelihood function (see Exercise 12.5.5) and therefore

ˆ ˆμ σ= = −( )
=

∑x
n

x xj
j

n

and 2 2

1

1

are the MLE’s of μ and σ 2, respectively.
Now, if we assume that σ 2 is known and set μ = θ, then we have again that

μ̃ = x̄ is the root of the equation

∂
∂θ

θlog , . . . , .L x xn1 0( ) =

In this case it is readily seen that

∂
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2 1 2
0log , . . . ,L x x

n
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and hence μ̂ = x̄  is the MLE of μ.
On the other hand, if μ is known and we set σ 2 = θ, then the root of

∂
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θlog , . . . ,L x xn1 0( ) =
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∑ μ .
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Next,
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is the MLE of σ 2 in this case.

EXAMPLE 13 Let X1, . . . , Xn be i.i.d. r.v.’s from U(α, β). Here θθθθθ = (α, β)′ ∈ ΩΩΩΩΩ which is the
part of the plane above the main diagonal.

Then

L x x I x I xn n nθθ 1 1

1
, , ., ,⋅ ⋅ ⋅( ) =

−( ) ( ) ( )∞[ ) ( ) −∞( ] ( )
β α

α β

Here the likelihood function is not differentiable with respect to α and β, but
it is, clearly, maximized when β − α is minimum, subject to the conditions that
α ≤ x(1) and β ≥ x(n). This happens when  α̂ = x(1) and β̂ = x(n). Thus  ̂α = x(1) and
β̂ = x(n) are the MLE’s of α and β, respectively.

In particular, if α = θ − c, β = θ + c, where c is a given positive constant, then

L x x
c

I x I xn n c c nθ θ θ1 1

1

2
, . . . , ., ,  +( ) =

( ) ( ) ( )− ∞[ ) ( ) −∞( ] ( )

The likelihood function is maximized, and its maximum is 1/(2c)n, for any θ
such that θ − c ≤ x(1) and θ + c ≥ x(n); equivalently, θ ≤ x(1) + c and θ ≥ x(n) − c. This
shows that any statistic that lies between X(1) + c and X(n) − c is an MLE of θ.
For example, 1–2 [X(1) + X(n)] is such a statistic and hence an MLE of θ.

If β is known and α = θ, or if α is known and β = θ, then, clearly, x(1) and
x(n) are the MLE’s of α and β, respectively.

REMARK 4

iii) The MLE may be a UMVU estimator. This, for instance, happens in
Example 10, for μ̂ in Example 12, and also for σ̂ 2 in the same example
when μ is known.
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iii) The MLE need not be UMVU. This happens, e.g., in Example 12 for σ̂ 2

when μ is unknown.
iii) The MLE is not always obtainable by differentiation. This is the case in

Example 13.
iv) There may be more than one MLE. This case occurs in Example 13 when

α = θ − c, β = θ + c, c > 0

In the following, we present two of the general properties that an MLE enjoys.

THEOREM 4 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ), θθθθθ ∈ ΩΩΩΩΩ ⊆ � r, and let T = (T1, . . . ,
Tr)′, Tj = Tj(X1, . . . , Xn), j = 1, . . . , r be a sufficient statistic for θθθθθ = (θ1, . . . , θr)′.
Then, if  θ̂θθθθ = (θ̂1, . . . , θ̂r)′ is the unique MLE θθθθθ, it follows that θ̂θθθθ is a function
of T.

PROOF Since T is sufficient, Theorem 1 in Chapter 11 implies the following
factorization:

f x f x g x x h x xn n n1 1 1; ; , . . . , ; , . . . , ,     θθ θθ θθ( ) ⋅ ⋅ ⋅ ( ) = ( )[ ] ( )T

where h is independent of θθθθθ.
Therefore

max ; ; ;

, . . . , max , . . . , ; ; .

f x f x

h x x g x x

n

n n

1

1 1

   

    

θθ θθ θθ ΩΩ

θθ θθ ΩΩ

( ) ⋅ ⋅ ⋅ ( ) ∈[ ]
= ( ) ( )[ ] ∈{ }T

Thus, if a unique MLE exists, it will have to be a function of T, as it follows
from the right-hand side of the equation above. ▲

REMARK 5 Notice that the conclusion of the theorem holds true in all
Examples 10–13. See also Exercise 12.3.10.

Another optimal property of an MLE is invariance, as is proved in the
following theorem.

THEOREM 5 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(x; θθθθθ ), θθθθθ ∈ ΩΩΩΩΩ ⊆ � r, and let φ be defined
on ΩΩΩΩΩ onto Ω* ⊆ � m and let it be one-to-one. Suppose θ̂θθθθ is an MLE of θθθθθ. Then
φ(θ̂θθθθ) is an MLE of φ(θθθθθ ). That is, an MLE is invariant under one-to-one
transformations.

PROOF Set θθθθθ* = φ(θθθθθ ), so that θθθθθ = φ−1(θθθθθ*). Then

L x x L x xn nθθ θθ1
1

1, . . . , * , . . . , ,( ) = ( )[ ]−φ

call it L*(θθθθθ*|x1, . . . , xn). It follows that

max , . . . , ; max * * , . . . , ; * * .L x x L x xn nθθ θθ ΩΩ θθ θθ ΩΩ1 1      ( ) ∈[ ] = ( ) ∈[ ]
By assuming the existence of an MLE, we have that the maximum at the
left-hand side above is attained at an MLE θ̂θθθθ. Then, clearly, the right-hand
side attains its maximum at θ̂θθθθ*, where θ̂θθθθ* = φ(θ̂θθθθ). Thus φ(θ̂θθθθ) is an MLE of φ(θθθθθ). ▲

For instance, since

12.5 Criteria for Selecting an Estimator: The Maximum Likelihood Principle 307
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1 2

1n
x xj

j

n

−( )
=

∑
is the MLE of σ 2 in the normal case (see Example 12), it follows that

1 2

1n
x xj

j

n

−( )
=

∑
is the MLE of σ.

Exercises

12.5.1 If X1, . . . , Xn are i.i.d. r.v.’s from B(m, θ), θ ∈ Ω = (0, ∞), show that
X̄/m is the MLE of θ.

12.5.2 If X1, . . . , Xn are i.i.d. r.v.’s from the Negative Binomial distribution
with parameter θ ∈ Ω = (0, 1), show that r/(r + X̄ ) is the MLE of θ.

12.5.3 If X1, . . . , Xn are i.i.d. r.v.’s from the Negative Exponential distribu-
tion with parameter θ ∈ Ω = (0, ∞), show that 1/X̄ ) is the MLE of θ.

12.5.4 Refer to Example 11 and show that the quantities p̂j = xj/n, j = 1, . . . ,
r indeed maximize the likelihood function.

12.5.5 Refer to Example 12 and consider the case that both μ and σ 2 are
unknown. Then show that the quantities  μ̃ = x̄ and

σ̃ 2 2

1

1= −( )
=

∑n
x xj

j

n

indeed maximize the likelihood function.

12.5.6 Suppose that certain particles are emitted by a radioactive source
(whose strength remains the same over a long period of time) according to a
Poisson distribution with parameter θ during a unit of time. The source in
question is observed for n time units, and let X be the r.v. denoting the number
of times that no particles were emitted. Find the MLE of θ in terms of X.

12.5.7 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ1, θ2) given by

  

f x
x

x; , exp , , , , .    2θ θ
θ

θ
θ

θ θ θ1 2
2

1

2
1 1

1
0( ) = − −⎛

⎝⎜
⎞
⎠⎟

≥ = ( )′ ∈ = × ∞( )θθ Ω �

Find the MLE’s of θ1, θ2.

12.5.8 Refer to Exercise 11.4.2, Chapter 11, and find the MLE of θ.

12.5.9 Refer to Exercise 12.3.10 and find the MLE of the reliability �(x; θ ).

12.5.10 Let X1, . . . , Xn be i.i.d. r.v.’s from the U (θ − 1
2
, θ + 1

2
), θ ∈ Ω ⊆ �

distribution, and let
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ˆ ˆ , . . . , cos .θ θ= ( ) = −
⎛
⎝⎜

⎞
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+ ( ) − +( )( ) ( ) ( )X X X X X Xn n n1
2

1 1

1
2

1

Then show that θ̂ is an MLE of θ but it is not a function only of the sufficient
statistic (X(1), X(n))′. (Thus Theorem 4 need not be correct if there exists more
than one MLE of the parameters involved. For this, see also the paper Maxi-
mum Likelihood and Sufficient Statistics by D. S. Moore in the American
Mathematical Monthly, Vol. 78, No. 1, January 1971, pp. 42–45.)

12.6 Criteria for Selecting an Estimator: The Decision-Theoretic Approach

We will first develop the general theory underlying the decision-theoretic
method of estimation and then we will illustrate the theory by means of
concrete examples. In this section, we will restrict ourselves to a real-valued
parameter. So let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ ), θ ∈ Ω ⊆ �. Our
problem is that of estimating θ.

DEFINITION 7 A decision function (or rule) δ is a (measurable) function defined on � n into �.
The value δ(x1, . . . , xn) of δ at (x1, . . . , xn)′ is called a decision.

DEFINITION 8 For estimating θ on the basis of X1, . . . , Xn and by using the decision function
δ, a loss function is a nonnegative function in the arguments θ and δ(x1, . . . , xn)
which expresses the (financial) loss incurred when θ is estimated by
δ(x1, . . . , xn).

The loss functions which are usually used are of the following form:

L x x x xn nθ δ θ δ; , . . . , , . . . , ,   1 1( )[ ] = − ( )
or more generally,

L x x x x kn n

k
θ δ υ θ θ δ; , . . . , , . . . , , ;   1 1 0( )[ ] = ( ) − ( ) >

or L[·; δ(x1, . . . , xn)] is taken to be a convex function of θ. The most convenient
form of a loss function is the squared loss function; that is,

L x x x xn nθ δ θ δ; , . . . , , . . . , .   1 1

2( )[ ] = − ( )[ ]
DEFINITION 9 The risk function corresponding to the loss function L(·; ·) is denoted by

R (·; ·) and is defined by
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That is, the risk corresponding to a given decision function is simply the
average loss incurred if that decision function is used.

Two decision functions δ and δ* such that

R θ δ θ δ θ δ θ δθ θ; ; , . . . , ; * , . . . , ;     R  *( ) = ( )[ ] = ( )[ ] = ( )E L X X E L X Xn n1 1

for all θ ∈ Ω are said to be equivalent.
In the present context of (point) estimation, the decision δ = δ(x1, . . . , xn)

will be called an estimate of θ, and its goodness will be judged on the basis of
its risk R(·; δ). It is, of course, assumed that a certain loss function is chosen
and then kept fixed throughout. To start with, we first rule out those estimates
which are not admissible (inadmissible), where

DEFINITION 10 The estimator δ of θ is said to be admissible if there is no other estimator δ*
of θ such that R(θ; δ*) ≤ R(θ; δ) for all θ ∈Ω with strict inequality for at least
one θ.

Since for any two equivalent estimators δ and δ* we have R(θ ; δ) =
R(θ; δ*) for all θ ∈Ω, it suffices to restrict ourselves to an essentially complete
class of estimators, where

DEFINITION 11 A class D of estimators of θ is said to be essentially complete if for any
estimator δ* of θ not in D one can find an estimator δ in D such that R(θ; δ*)
= R(θ; δ ) for all θ ∈ Ω.

Thus, searching for an estimator with some optimal properties, we confine
our attention to an essentially complete class of admissible estimators. Once
this has been done the question arises as to which member of this class is to be
chosen as an estimator of θ. An apparently obvious answer to this question
would be to choose an estimator δ such that R(θ; δ ) ≤ R(θ; δ*) for any other
estimator δ* within the class and for all θ ∈Ω. Unfortunately, such estimators
do not exist except in trivial cases. However, if we restrict ourselves only to the
class of unbiased estimators with finite variance and take the loss function to
be the squared loss function (see paragraph following Definition 8), then,
clearly, R(θ; δ ) becomes simply the variance of δ(X1, . . . , Xn). The criterion
proposed above for selecting δ then coincides with that of finding a UMVU
estimator. This problem has already been discussed in Section 3 and Section 4.
Actually, some authors discuss UMVU estimators as a special case within the
decision-theoretic approach as just mentioned. However, we believe that the
approach adopted here is more pedagogic and easier for the reader to follow.

Setting aside the fruitless search for an estimator which would uniformly
(in θ) minimize the risk within the entire class of admissible estimators, there
are two principles on which our search may be based. The first is to look for an
estimator which minimizes the worst which could happen to us, that is, to
minimize the maximum (over θ ) risk. Such an estimator, if it exists, is called a
minimax (from minimizing the maximum) estimator. However, in this case,
while we may still confine ourselves to the essentially complete class of estima-
tors, we may not rule out inadmissible estimators, for it might so happen that
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R(•; �), � � minimax

a minimax estimator is inadmissible. (See Fig. 12.2.) Instead, we restrict our
attention to the class D1 of all estimators for which R(θ; δ) is finite for all θ ∈
Ω. Then we have the following definition:

DEFINITION 12 Within the class D1, the estimator δ is said to be minimax if for any other
estimator δ*, one has

sup ; ; sup ; ; .R   R  *  θ δ θ θ δ θ( ) ∈[ ] ≤ ( ) ∈[ ]Ω Ω

Figure 12.2 illustrates the fact that a minimax estimator may be inadmissible.

Now one may very well object to the minimax principle on the grounds
that it gives too much weight to the maximum risk and entirely neglects its
other values. For example, in Fig. 12.3, whereas the minimax estimate δ is
slightly better at its maximum R(θ0; δ), it is much worse than δ* at almost all
other points.

Legitimate objections to minimax principles like the one just cited
prompted the advancement of the concept of a Bayes estimate. To see what
this is, some further notation is required. Recall that Ω ⊆ �, and suppose now
that θ is an r.v. itself with p.d.f. λ, to be called a prior p.d.f. Then set

R R  
R

R
δ θ δ

θ δ λ θ θ

θ δ λ θλ( ) = ( ) =
( ) ( )
( ) ( )

⎧
⎨
⎪

⎩⎪

∫
∑E

d
;

;

; .
Ω

Ω

Assuming that the quantity just defined is finite, it is clear that R(δ) is
simply the average (with respect to λ) risk over the entire parameter space Ω
when the estimator δ is employed. Then it makes sense to choose that δ for
which R(δ) ≤ R(δ*) for any other δ*. Such a δ is called a Bayes estimator of θ,
provided it exists. Let D2 be the class of all estimators for which R(δ ) is finite
for a given prior p.d.f. λ on Ω. Then

DEFINITION 13 Within the class D2, the estimator δ is said to be a Bayes estimator (in the
decision-theoretic sense and with respect to the prior p.d.f. λ on Ω) if R(δ ) ≤
R(δ*) for any other estimator δ*.

It should be pointed out at the outset that the Bayes approach to estima-
tion poses several issues that we have to reckon with. First, the assumption of
θ being an r.v. might be entirely unreasonable. For example, θ may denote the
(unknown but fixed) distance between Chicago and New York City, which is
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to be determined by repeated measurements. This difficulty may be circum-
vented by pretending that this assumption is only a mathematical device, by
means of which we expect to construct estimates with some tangible and
mathematically optimal properties. This granted, there still is a problem in
choosing the prior λ on Ω. Of course, in principle, there are infinitely many
such choices. However, in concrete cases, choices do suggest themselves. In
addition, when choosing λ we have the flexibility to weigh the parameters the
way we feel appropriate, and also incorporate in it any prior knowledge we
might have in connection with the true value of the parameter. For instance,
prior experience might suggest that it is more likely that the true parameter
lies in a given subset of Ω rather than in its complement. Then, in choosing λ,
it is sensible to assign more weight in the subset under question than to its
complement. Thus we have the possibility of incorporating prior information
about θ or expressing our prior opinion about θ. Another decisive factor in
choosing λ is that of mathematical convenience; we are forced to select λ so
that the resulting formulas can be handled.

We should like to mention once and for all that the results in the following
two sections are derived by employing squared loss functions. It should be
emphasized, however, that the same results may be discussed by using other
loss functions.

12.7 Finding Bayes Estimators

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ ), θ ∈ Ω ⊆ �, and consider the
squared loss function. That is, for an estimate

δ δ θ δ θ δ θ δ= ( ) ( ) = ( )[ ] = − ( )[ ]x x L L x x x xn n n1 1 1

2
, . . . , , ; ; , . . . , , . . . , .     

Let θ be an r.v. with prior p.d.f. λ. Then we are interested in determining δ so
that it will be a Bayes estimate (of θ in the decision-theoretic sense). We
consider the continuous case, since the discrete case is handled similarly with
the integrals replaced by summation signs. We have

R

   

θ δ θ δ

θ δ θ θ

θ; , . . . ,
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(13)

(As can be shown, the interchange of the order of integration is valid here
because the integrand is nonnegative. The theorem used is known as the
Fubini theorem.)

From (13), it follows that if δ is chosen so that

θ δ λ θ θ θ θ− ( )[ ] ( ) ( ) ⋅ ⋅ ⋅ ( )∫ x x f x f x dn n1

2

1, . . . , ; ;   
Ω

is minimized for each (x1, . . . , xn)′, then R(δ ) is also minimized. But
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nn nd f x f x d; ; ; ,   θ λ θ θ θ θ θ λ θ θ( ) ( ) + ( ) ⋅ ⋅ ⋅ ( ) ( )∫ ∫Ω Ω

2
1 (14)

and the right-hand side of (14) is of the form

g t at bt c a( ) = − + >( )2 2 0

which is minimized for t = b/a. (In fact, g′(t) = 2at − 2b = 0 implies t = b/a and
g″(t) = 2a > 0.)

Thus the required estimate is given by

δ
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Ω

Formalizing this result, we have the following theorem:

THEOREM 6 A Bayes estimate δ(x1, . . . , xn) (of θ) corresponding to a prior p.d.f. λ on Ω for
which
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for each (x1, . . . , xn)′, is given by
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(15)

provided λ is of the continuous type. Integrals in (15) are to be replaced by
summation signs if λ is of the discrete type.
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Now, if the observed value of Xj is xj, j = 1, . . . , n, we determine the
conditional p.d.f. of θ, given X1 = x1, . . . , Xn = xn. This is called the posterior
p.d.f. of θ and represents our revised opinion about θ after new evidence (the
observed X’s) has come in. Setting x = (x1, . . . , xn)′ and denoting by h(·|x) the
posterior p.d.f. of θ, we have then

h
f f f x f xnθ

θ θ λ θ θ θ λ θ
x

x

x

x

x x
( ) =

( )
( ) =

( ) ( )
( ) =

( ) ⋅ ⋅ ⋅ ( ) ( )
( )

, ; ; ;
,

    

h h h

1
(16)

where

h f d f x f x dnx x( ) = ( ) ( ) = ( ) ⋅ ⋅ ⋅ ( ) ( )∫ ∫; ; ;   θ λ θ θ θ θ λ θ θ
Ω Ω 1

for the case that λ is of the continuous type. By means of (15) and (16), it
follows then that the Bayes estimate of θ (in the decision-theoretic sense)
δ(x1, . . . , xn) is the expectation of θ with respect to its posterior p.d.f., that is,

δ θ θ θx x h dn1, . . . , .( ) = ( )∫ x
Ω

Another Bayesian estimate of θ could be provided by the median of h(·|x),
or the mode of h(·|x), if it exists.

REMARK 6 At this point, let us make the following observation regarding
the maximum likelihood and the Bayesian approach to estimation problems.
As will be seen, this observation establishes a link between maximum likeli-
hood and Bayes estimates and provides insight into each other. To this end, let
h(·|x) be the posterior p.d.f. of θ given by (16) and corresponding to the prior
p.d.f. λ. Since f(x; θ ) = L(θ |x), h(·|x) may be written as follows:

h
L

h
θ

θ λ θ
x

x

x
( ) =

( ) ( )
( ) . (17)

Now let us suppose that Ω is bounded and let λ be constant on Ω, λ(θ ) = c, say,
θ ∈ Ω. Then it follows from (17) that the MLE of θ, if it exists, is simply that
value of θθθθθ which maximizes h(·|x). Thus when no prior knowledge about θ
is available (which is expressed by taking λ(θ ) = c, θ ∈ Ω), the likelihood
function is maximized if and only if the posterior p.d.f. is.

Some examples follow.

EXAMPLE 14 Let X1, . . . , Xn be i.i.d. r.v.’s from B(1, θ ), θ ∈ Ω = (0, 1). We choose λ to be
the Beta density with parameters α and β; that is,

λ θ
α β

α β
θ θ θα β

( ) =
+( )

( ) ( ) −( ) ∈( )
⎧

⎨
⎪⎪

⎩
⎪
⎪

− −Γ

Γ Γ
1 1

1 0 1

0

,

,

if ,  

otherwise.

Now, from the definition of the p.d.f. of a Beta distribution with param-
eters α and β, we have
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x x dxα β α β
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, (18)

and, of course Γ(γ) = (γ − 1)Γ(γ − 1). Then, for simplicity, writing ∑n
jxj rather

than ∑n
j=1xj when this last expression appears as an exponent, we have
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which by means of (18) becomes as follows:
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Next,
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Once more relation (18) gives
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Relations (19) and (20) imply, by virtue of (15),
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REMARK 7 We know (see Remark 4 in Chapter 3) that if α = β = 1, then the
Beta distribution becomes U(0, 1). In this case the corresponding Bayes esti-
mate is

δ x x
x

nn

jj

n

1
1

1

2
, . . . , ,( ) =

+

+
=∑

as follows from (21).

EXAMPLE 15 Let X1, . . . , Xn be i.i.d. r.v.’s from N(θ, 1). Take λ to be N(μ, 1), where μ is
known. Then
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Next,

I f x f x d

x d

n
x

nx

n

n j
j

n

n j

2 1

1

2

1

2

2 2

1

2

1
2 2

1

1

1

2

1
2

= ( ) ⋅ ⋅ ⋅ ( ) ( )

=

( )
− −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
−( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
+ ( )

− + −
+(

∫

∑∫+
=

−∞

∞

θ θ θ λ θ θ

π
θ θ

θ μ
θ

π
μ

μ

; ;

exp exp

exp

Ω

))
+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

×
+( ) −

+( )
− +

+
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
+ ( )

− + −
+( )

=

−∞

∞

∑

∫

2

1

2

2

2 2

2

1

1

2 1 1

1

2 1 1
1

1

1

1

2

1
2

n

n n

nx
n

d

n
x

nx

n

j

n

n j

π
θ θ μ θ

π
μ

μ

exp

exp
++

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

+
+=

∑ 1 11j

n nx
n

μ
.

(23)

By means of (22) and (23), one has, on account of (15),
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Exercises

12.7.1 Refer to Example 14 and:

iii) Determine the posterior p.d.f. h(θ|x);

iii) Construct a 100(1 − α)% Bayes confidence interval for θ ; that is, deter-
mine a set {θ ∈ (0, 1); h(θ|x) ≥ c(x)}, where c(x) is determined by the
requirement that the Pλ-probability of this set is equal to 1 − α;

iii) Derive the Bayes estimate in (21) as the mean of the posterior p.d.f.
h(θ|x).

(Hint: For simplicity, assign equal probabilities to the two tails.)

12.7.2 Refer to Example 15 and:

iii) Determine the posterior p.d.f. h(θ|x);

iii) Construct the equal-tail 100(1 − α)% Bayes confidence interval for θ;

iii) Derive the Bayes estimate in (24) as the mean of the posterior p.d.f.
h(θ|x).

Exercises 317
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12.7.3 Let X be an r.v. distributed as P(θ ), and let the prior p.d.f. λ of θ be
Negative Exponential with parameter τ. Then, on the basis of X:

iii) Determine the posterior p.d.f. h(θ |x);

iii) Construct the equal-tail 100(1 − α)% Bayes confidence interval for θ ;

iii) Derive the Bayes estimates δ(x) for the loss functions L(θ; δ ) = [θ − δ(x)]2

as well as L(θ ; δ ) = [θ − δ (x)]2/θ;

iv) Do parts (i)–(iii) for any sample size n.

12.7.4 Let X be an r.v. having the Beta p.d.f. with parameters α = θ and β =
1, and let the prior p.d.f. λ of θ be the Negative Exponential with parameter τ.
Then, on the basis of X:

iii) Determine the posterior p.d.f. h(θ|x);

iii) Construct the equal-tail 100(1 − α)% Bayes confidence interval for θ ;

iii) Derive the Bayes estimates δ(x) for the loss functions L(θ; δ) = [θ − δ(x)]2

as well as L(θ; δ) = [θ − δ (x)]2/θ ;

iv) Do parts (i)–(iii) for any sample size n;

iv) Do parts (i)–(iv) for any sample size n when λ is Gamma with parameters
k (positive integer) and β.

(Hint: If Y is distributed as Gamma with parameters k and β, then it is easily
seen that 2Y

β
∼ χ2

2k.)

12.8 Finding Minimax Estimators

Although there is no general method for deriving minimax estimates, this can
be achieved in many instances by means of the Bayes method described in the
previous section.

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ), θ ∈ Ω (⊆ �) and let λ be a
prior p.d.f. on Ω. Then the posterior p.d.f. of θ, given X = (X1, . . . , Xn)′ =
(x1, . . . , xn)′ = x, h(·|x), is given by (16), and as has been already observed, the
Bayes estimate of θ (in the decision-theoretic sense) is given by

δ θ θ θx x h dn1 , . . . , ,( ) = ( )∫ x
Ω

provided λ is of the continuous type. Then we have the following result.

THEOREM 7 Suppose there is a prior p.d.f. λ on Ω such that for the Bayes estimate δ defined
by (15) the risk R(θ ; δ ) is independent of θ. Then δ is minimax.

PROOF By the fact that δ is the Bayes estimate corresponding to the prior λ,
one has
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R  R  θ δ λ θ θ θ δ λ θ θ; ; *( ) ( ) ≤ ( ) ( )∫ ∫d d
Ω Ω

for any estimate δ*. But R(θ; δ ) = c by assumption. Hence

sup ; ; ; * sup ; * ;R   R  R   θ δ θ θ δ λ θ θ θ δ θ( ) ∈[ ] = ≤ ( ) ( ) ≤ ( ) ∈[ ]∫Ω Ω
Ω

c d

for any estimate δ*. Therefore δ is minimax. The case that λ is of the discrete
type is treated similarly. ▲

The theorem just proved is illustrated by the following example.

EXAMPLE 16 Let X1, . . . , Xn and λ be as in Example 14. Then the corresponding Bayes
estimate δ is given by (21). Now by setting X = ∑n

j=1Xj and taking into consid-
eration that EθX = nθ and EθX

2 = nθ(1 − θ + nθ), we obtain

R θ δ θ α
α β

α β
α β θ α αβ θ α

θ;

.

( ) = − +
+ +

⎛
⎝⎜

⎞
⎠⎟

=
+ +( )

+( ) −⎡
⎣⎢

⎤
⎦⎥

− + −( ) +⎧
⎨
⎩

⎫
⎬
⎭

E
X

n

n
n n

2

2

2 2 2 21
2 2

By taking α = β = 1
2

√
–
n and denoting by δ* the resulting estimate, we have

α β α αβ+( ) − = + − =
2 20 2 2 0n n, ,

so that

R θ δ α

α β
; * .( ) =

+ +( )
=

+( )
=

+( )
2

2 2 2

4

1

4 1n

n

n n n

Since R(θ; δ*) is independent of θ, Theorem 6 implies that

δ * , . . . ,x x
x n

n n

nx

n
n

jj

n

1

1

1
2 2 1

2 1
( ) =

+

+
= +

+( )
=∑

is minimax.

EXAMPLE 17 Let X1, . . . , Xn be i.i.d. r.v.’s from N(μ, σ 2), where σ 2 is known and μ = θ.
It was shown (see Example 9) that the estimator X̄ of θ was UMVU. It can

be shown that it is also minimax and admissible. The proof of these latter two
facts, however, will not be presented here.

Now a UMVU estimator has uniformly (in θ ) smallest risk when its
competitors lie in the class of unbiased estimators with finite variance. How-
ever, outside this class there might be estimators which are better than a
UMVU estimator. In other words, a UMVU estimator need not be admissible.
Here is an example.

12.8 Finding Minimax Estimators 319
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EXAMPLE 18 Let X1, . . . , Xn be i.i.d. r.v.’s from N(0, σ 2). Set σ 2 = θ. Then the UMVU
estimator of θ is given by

U
n

X j
j

n

=
=

∑1 2

1

.

(See Example 9.) Its variance (risk) was seen to be equal to 2θ 2/n; that is,
R(θ; U) = 2θ 2/n. Consider the estimator δ = αU. Then its risk is

R θ δ α θ α θ α θ θ α αθ θ; .( ) = −( ) = −( ) + −( )[ ] = +( ) − +[ ]E U E U
n

n n n
2 2 2

21 2 2

The value α = n/(n + 2) minimizes this risk and the minimum risk is equal to
2θ 2/(n + 2) < 2θ 2/n for all θ. Thus U is not admissible.

Exercise

12.8.1 Let X1, . . . , Xn be independent r.v.’s from the P(θ ) distribution, and
consider the loss function L(θ; δ ) = [θ − δ (x)]2/θ. Then for the estimate δ(x) =
x̄, calculate the risk R(θ; δ ) = 1/θEθ[θ − δ (X)]2, and conclude that δ(x) is
minimax.

12.9 Other Methods of Estimation

Minimum chi-square method. This method of estimation is applicable in
situations which can be described by a Multinomial distribution. Namely,
consider n independent repetitions of an experiment whose possible outcomes
are the k pairwise disjoint events Aj, j = 1, . . . , k. Let Xj be the number of trials
which result in Aj and let pj be the probability that any one of the trials results
in Aj. The probabilities pj may be functions of r parameters; that is,

p p j kj j r= ( ) = ( )′ =θθ θθ, , . . . , , , . . . ,θ θ1 1  .

Then the present method of estimating θθθθθ consists in minimizing some
measure of discrepancy between the observed X’s and the expected values of
them. One such measure is the following:

χ 2

2

1

=
− ( )[ ]

( )=
∑

X np

np

j j

jj

k θθ

θθ
.

Often the p’s are differentiable with respect to the θ’s, and then the minimiza-
tion can be achieved, in principle, by differentiation. However, the actual
solution of the resulting system of r equations is often tedious. The solution
may be easier by minimizing the following modified χ2 expression:
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χmod ,2

2

1

=
− ( )[ ]

=
∑

X np

X

j j

jj

k θθ

provided, of course, all Xj > 0, j = 1, . . . , k.
Under suitable regularity conditions, the resulting estimators can be

shown to have some asymptotic optimal properties. (See Section 12.10.)
The method of moments. Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ )

and for a positive integer r, assume that EXr = mr is finite. The problem is that
of estimating mr. According to the present method, mr will be estimated by the
corresponding sample moment

1

1n
X j

r

j

n

=
∑ ,

The resulting moment estimates are always unbiased and, under suitable
regularity conditions, they enjoy some asymptotic optimal properties as well.

On the other hand the theoretical moments are also functions of θ =
(θ1, . . . , θr)′. Then we consider the following system

1
1

1
1n

X m k rj
k

j

n

k r
=

∑ = ( ) =θ θ, . . . , , , . . . ,  ,

the solution of which (if possible) will provide estimators for θj, j = 1, . . . , r.

EXAMPLE 19 Let X1, . . . , Xn be i.i.d. r.v.’s from N(μ, σ 2), where both μ and σ 2 are unknown.
By the method of moments, we have

X

n
X X

n
X Xj

j

n

j
j

n

=

= + = = −( )
⎧

⎨
⎪

⎩
⎪

= =
∑ ∑

μ

σ μ μ σ1 12

1

2 2 2 2

1

, ˆ , ˆ .hence  

EXAMPLE 20 Let X1, . . . , Xn be i.i.d. r.v.’s from U(α, β), where both α and β are unknown.
Since

EX X1
2

1

2

2 12
= + ( ) =

−( )α β σ
α β

and

(see Chapter 5), we have

X

n
X

X

S
j

j

n

= +

=
−( )

+
+( ) + =

− =

⎧
⎨
⎪

⎩⎪

⎧

⎨

⎪
⎪

⎩

⎪
⎪

=
∑

α β

α β α β β α

β α

2

1
12 4

2

12
2

1

2 2

,
,

or

where
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S
n

X Xj
j

n

= −( )
=

∑1 2

1

.

Hence ˆ , ˆ .α β= − = +X S X S3 3

REMARK 8 In Example 20, we see that the moment estimators α̂, β̂ of α, β,
respectively, are not functions of the sufficient statistic (X(1), X(n))′ of (α, β)′.
This is a drawback of the method of moment estimation. Another obvious
disadvantage of this method is that it fails when no moments exist (as in the
case of the Cauchy distribution), or when not enough moments exist.

Least square method. This method is applicable when the underlying
distribution is of a certain special form and it will be discussed in detail in
Chapter 16.

Exercises

12.9.1 Let X1, . . . , Xn be independent r.v.’s distributed as U(θ − a, θ + b),
where a, b > 0 are known and θ ∈ Ω = �. Find the moment estimator of θ and
calculate its variance.

12.9.2 If X1, . . . , Xn are independent r.v.’s distributed as U(−θ, θ), θ ∈ Ω =
(0, ∞), does the method of moments provide an estimator for θ?

12.9.3 If X1, . . . , Xn are i.i.d. r.v.’s from the Gamma distribution with param-
eters α and β, show that α̂ = X̄ 2/S2 and β̂ = S2/X̄  are the moment estimators of
α and β, respectively, where

S
n

X Xj
j

n
2 2

1

1= −( )
=

∑ .

12.9.4 Let X1, X2 be independent r.v.’s with p.d.f. f(·; θ) given by

f x x I x; , , .,θ
θ

θ θθ( ) = −( ) ( ) ∈ = ∞( )( )
2

0
2 0 Ω

Find the moment estimator of θ.

12.9.5 Let X1, . . . , Xn be i.i.d. r.v.’s from the Beta distribution with param-
eters α, β and find the moment estimators of α and β.

12.9.6 Refer to Exercise 12.5.7 and find the moment estimators of θ1 and θ2.

12.10 Asymptotically Optimal Properties of Estimators

So far we have occupied ourselves with the problem of constructing an estima-
tor on the basis of a sample of fixed size n, and having one or more of the
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following properties: Unbiasedness, (uniformly) minimum variance, minimax,
minimum average risk (Bayes), the (intuitively optimal) property associated
with an MLE. If however, the sample size n may increase indefinitely, then
some additional, asymptotic properties can be associated with an estimator.
To this effect, we have the following definitions.

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ), θ ∈ Ω ⊆ �.

DEFINITION 14 The sequence of estimators of θ, {Vn} = {V(X1, . . . , Xn)}, is said to be consistent
in probability (or weakly consistent) if Vn

Pθ⎯ →⎯ θ as n → ∞, for all θ ∈ Ω.
It is said to be a.s. consistent (or strongly consistent) if Vn

a s

P

. .⎯ →⎯
θ

θ as n → ∞,
for all θ ∈ Ω. (See Chapter 8.)

From now on, the term “consistent” will be used in the sense of “weakly
consistent.”

The following theorem provides a criterion for a sequence of estimates to
be consistent.

THEOREM 8 If, as n → ∞, EθVn → θ and σ 2
θVn → 0, then Vn

Pθ⎯ →⎯ θ.

PROOF For the proof of the theorem the reader is referred to Remark 5,
Chapter 8. ▲

DEFINITION 15 The sequence of estimators of θ, {Vn} = {V(X1, . . . , Xn)}, properly normalized,
is said to be asymptotically normal N(0, σ 2(θ)), if, as n → ∞, √

–
n(Vn − θ )

d

P
⎯ →⎯

( )θ
X for all θ ∈ Ω, where X is distributed (under Pθ) as N(0, σ2(θ)). (See

Chapter 8.)

This is often expressed (loosely) by writing Vn ≈ N(θ, σ2(θ)/n).
If

n V N nn
d

P
−( ) ⎯ →⎯ ( )( ) → ∞

( )
θ σ θ

θ
0 2, , ,  as 

it follows that Vn
P

n
θ⎯ →⎯

→∞
θ (see Exercise 12.10.1).

DEFINITION 16 The sequence of estimators of θ, {Vn} = {V(X1, . . . , Xn)}, is said to be best
asymptotically normal (BAN) if:

ii) iIt is asymptotically normal and

ii) The variance σ 2(θ) of its limiting normal distribution is smallest for all
θ ∈ Ω in the class of all sequences of estimators which satisfy (i).

A BAN sequence of estimators is also called asymptotically efficient (with
respect to the variance). The relative asymptotic efficiency of any other se-
quence of estimators which satisfies (i) only is expressed by the quotient of the
smallest variance mentioned in (ii) to the variance of the asymptotic normal
distribution of the sequence of estimators under consideration.

In connection with the concepts introduced above, we have the following
result.

12.10 Asymptotically Optimal Properties of Estimators 323
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THEOREM 9 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ), θ ∈ Ω ⊆ �. Then, if certain
suitable regularity conditions are satisfied, the likelihood equation

∂
∂θ

θlog , . . . ,L X Xn1 0( ) =

has a root θ*n = θ*(X1, . . . , Xn), for each n, such that the sequence {θ*n} of
estimators is BAN and the variance of its limiting normal distribution is equal
to the inverse of Fisher’s information number

I E f Xθ ∂
∂θ

θθ( ) = ( )⎡

⎣
⎢

⎤

⎦
⎥log ; ,

2

where X is an r.v. distributed as the X’s above.

In smooth cases, θ*n will be an MLE or the MLE. Examples have been
constructed, however, for which {θ∗

n} does not satisfy (ii) of Definition 16 for
some exceptional θ’s. Appropriate regularity conditions ensure that these
exceptional θ ’s are only “a few” (in the sense of their set having Lebesgue
measure zero). The fact that there can be exceptional θ’s, along with other
considerations, has prompted the introduction of other criteria of asymptotic
efficiency. However, this topic will not be touched upon here. Also, the proof
of Theorem 9 is beyond the scope of this book, and therefore it will be omitted.

EXAMPLE 21 iii) Let X1, . . . , Xn be i.i.d. r.v.’s from B(1, θ). Then, by Exercise 12.5.1, the
MLE of θ is X̄, which we denote by X̄n here. The weak and strong
consistency of X̄n follows by the WLLN and SLLN, respectively (see
Chapter 8). That √

–
n(X̄n − θ) is asymptotically normal N(0, I−1(θ)), where

I(θ) = 1/[θ(1 − θ)] (see Example 7), follows from the fact that
n X n −( ) −( )θ θ θ1  is asymptotically N(0, 1) by the CLT (see Chapter

8).

iii) If X1, . . . , Xn are i.i.d. r.v.’s from P(θ ), then the MLE X̄ = X̄n of θ (see
Example 10) is both (strongly) consistent and asymptotically normal by
the same reasoning as above, with the variance of limiting normal distribu-
tion being equal to I−1(θ) = θ (see Example 8).

iii) The same is true of the MLE X̄ = X̄n of μ and (1/n)∑n
j=1(Xj − μ)2 of σ 2 if

X1, . . . , Xn are i.i.d. r.v.’s from N(μ, σ 2) with one parameter known and the
other unknown (see Example 12). The variance of the (normal) distribu-
tion of √

–
n(X

—

n − μ) is I−1(μ) = σ 2, and the variance of the limiting normal
distribution of

n
n

X Ij
j

n1
2

2 2

1

1 2 4−( ) −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( ) = ( )
=

−∑ μ σ σ σis see Example 9 .

It can further be shown that in all cases (i)–(iii) just considered the regu-
larity conditions not explicitly mentioned in Theorem 9 are satisfied, and
therefore the above sequences of estimators are actually BAN.
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Exercise

12.10.1  Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ); θ ∈ Ω ⊆ � and let {Vn}
= {Vn(X1, . . . , Xn)} be a sequence of estimators of θ such that √

–
n(Vn − θ ) d

P
⎯ →⎯

( )θ
Y as n → ∞, where Y is an r.v. distributed as N(0, σ 2(θ )). Then show that
Vn

P

n
θ⎯ →⎯

→∞
θ. (That is, asymptotic normality of {Vn} implies its consistency in

probability.)

12.11 Closing Remarks

The following definition serves the purpose of asymptotically comparing two
estimators.

DEFINITION 17 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ), θ ∈ Ω ⊆ � and let

U U X X V V X Xn n n n n n{ } = ( ){ } { } = ( ){ }1 1, . . . , , . . . , and  

be two sequences of estimators of θ. Then we say that {Un} and {Vn} are
asymptotically equivalent if for every θ ∈ Ω,

n U Vn n
P

n
−( ) ⎯ →⎯

→∞
θ 0.

For an example, suppose that the X’s are from B(1, θ). It has been shown
(see Exercise 12.3.3) that the UMVU estimator of θ is Un = X̄n (= X̄ ) and this
coincides with the MLE of θ (Exercise 12.5.1). However, the Bayes estimator
of θ, corresponding to a Beta p.d.f. λ, is given by

V
X

nn

jj

n

=
+

+ +
=∑ α

α β
1 , (25)

and the minimax estimator is

W
X n

n n
n

jj

n

=
+

+
=∑ 2

1 . (26)

That is, four different methods of estimation of the same parameter θ pro-
vided three different estimators. This is not surprising, since the criteria
of optimality employed in the four approaches were different. Next, by the
CLT, √

–
n(Un − θ) d

P
⎯ →⎯

( )θ
Z, as n → ∞, where Z is an r.v. distributed as

N(0, θ(1 − θ)), and it can also be shown (see Exercise 11.1), that √
–
n(Vn − θ)

d

P
⎯ →⎯

( )θ
Z, as n → ∞, for any arbitrary but fixed (that is, not functions of n)

values of α and β. It can also be shown (see Exercise 12.11.2) that √
–
n(Un − Vn)

P

n
θ⎯ →⎯

→∞
 0. Thus {Un} and {Vn} are asymptotically equivalent according to Defi-

nition 17. As for Wn, it can be established (see Exercise 12.11.3) that √
–
n(Wn −

θ) d

P
⎯ →⎯

( )θ
W, as n → ∞, where W is an r.v. distributed as N( 1

2
− θ, θ(1 − θ)).
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Thus {Un} and {Wn} or {Vn} and {Wn} are not even comparable on the basis of
Definition 17.

Finally, regarding the question as to which estimator is to be selected in a
given case, the answer would be that this would depend on which kind of
optimality is judged to be most appropriate for the case in question.

Although the preceding comments were made in reference to the Bino-
mial case, they are of a general nature, and were used for the sake of definite-
ness only.

Exercises

12.11.1 In reference to Example 14, the estimator Vn given by (25) is the
Bayes estimator of θ, corresponding to a prior Beta p.d.f. Then show that
√

–
n(Vn − θ) d

P
⎯ →⎯

( )θ
Z as n → ∞, where Z is an r.v. distributed as N(0, θ (1 − θ )).

12.11.2 In reference to Example 14, Un = X̄n is the UMVU (and also the ML)
estimator of θ, whereas the estimator Vn is given by (25). Then show that √

–
n(Un

− Vn) P

n
θ⎯ →⎯

→∞
 0.

12.11.3 In reference to Example 14, Wn, given by (26), is the minimax
estimator of θ. Then show that √

–
n(Wn − θ) d

P
⎯ →⎯

( )θ
W as n → ∞, where W is an

r.v. distributed as (N 1
2

− θ, θ(1 − θ ).)
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Throughout this chapter, X1, . . . , Xn will be i.i.d. r.v.’s defined on a probability
space (S, class of events, Pθ), θθθθθ ∈ ΩΩΩΩΩ ⊆ � r and having p.d.f. f(·; θθθθθ).

13.1 General Concepts of the Neyman–Pearson Testing Hypotheses Theory

In this section, we introduce the basic concepts of testing hypotheses theory.

A statement regarding the parameter θθθθθ, such as θθθθθ ∈ ωωωωω ⊂ ΩΩΩΩΩ, is called a (statis-
tical) hypothesis (about θθθθθ) and is usually denoted by H (or H0). The statement
that θθθθθ ∈ ωωωωω c (the complement of ωωωωω with respect to ΩΩΩΩΩ) is also a (statistical)
hypothesis about θθθθθ, which is called the alternative to H (or H0) and is usually
denoted by A. Thus

H H

A c

0( ) ∈

∈

:

: .

θθ ωω

θθ ωω

Often hypotheses come up in the form of a claim that a new product, a
new technique, etc., is more efficient than existing ones. In this context, H (or
H0) is a statement which nullifies this claim and is called a null hypothesis.

If ωωωωω contains only one point, that is, ωωωωω = {θθθθθ0}, then H is called a simple
hypothesis, otherwise it is called a composite hypothesis. Similarly for
alternatives.

Once a hypothesis H is formulated, the problem is that of testing H on the
basis of the observed values of the X’s.

A randomized (statistical) test (or test function) for testing H against the
alternative A is a (measurable) function φ defined on � n, taking values in [0, 1]
and having the following interpretation: If (x1, . . . , xn)′ is the observed value of
(X1, . . . , Xn)′ and φ(x1, . . . , xn) = y, then a coin, whose probability of falling
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DEFINITION 2

DEFINITION 1
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heads is y, is tossed and H is rejected or accepted when heads or tails appear,
respectively. In the particular case where y can be either 0 or 1 for all (x1, . . . ,
xn)′, then the test φ is called a nonrandomized test.

Thus a nonrandomized test has the following form:

φ x x
x x B

x x B
n

n

n
c

1

1

1

1

0
, . . . ,

, . . . ,

, . . . , .

if  

if  
( ) =

( )′ ∈

( )′ ∈

⎧

⎨
⎪

⎩
⎪

In this case, the (Borel) set B in � n is called the rejection or critical region and
Bc is called the acceptance region.

In testing a hypothesis H, one may commit either one of the following two
kinds of errors: to reject H when actually H is true, that is, the (unknown)
parameter θ does lie in the subset ω specified by H; or to accept H when H is
actually false.

Let β(θθθθθ) = Pθθθθθ (rejecting H), so that 1 − β(θθθθθ) = Pθθθθθ (accepting H), θθθθθ ∈ ΩΩΩΩΩ. Then
β(θθθθθ) with θθθθθ ∈ ωωωωω is the probability of rejecting H, calculated under the assump-
tion that H is true. Thus for θθθθθ ∈ωωωωω, β(θθθθθ) is the probability of an error, namely,
the probability of type-I error. 1 − β(θθθθθ) with θθθθθ ∈ ωωωωωc is the probability of
accepting H, calculated under the assumption that H is false. Thus for θθθθθ ∈ ωωωωωc,
1 − β(θθθθθ) represents the probability of an error, namely, the probability of type-
II error. The function β restricted to ωωωωωc is called the power function of the test
and β(θθθθθ) is called the power of the test at θθθθθ ∈ωωωωωc. The sup [β(θθθθθ); θθθθθ ∈ωωωωω] is denoted
by α and is called the level of significance or size of the test.

Clearly, α is the smallest upper bound of the type-I error probabilities. It
is also plain that one would desire to make α as small as possible (preferably
0) and at the same time to make the power as large as possible (preferably 1).
Of course, maximizing the power is equivalent to minimizing the type-II
error probability. Unfortunately, with a fixed sample size, this cannot be done,
in general. What the classical theory of testing hypotheses does is to fix the
size α at a desirable level (which is usually taken to be 0.005, 0.01, 0.05, 0.10)
and then derive tests which maximize the power. This will be done explicitly in
this chapter for a number of interesting cases. The reason for this course
of action is that the roles played by H and A are not at all symmetric. From
the consideration of potential losses due to wrong decisions (which may or
may not be quantifiable in monetary terms), the decision maker is somewhat
conservative for holding the null hypothesis as true unless there is overwhelm-
ing evidence from the data that it is false. He/she believes that the conse-
quence of wrongly rejecting the null hypothesis is much more severe to him/
her than that of wrongly accepting it. For example, suppose a pharmaceutical
company is considering the marketing of a newly developed drug for treat-
ment of a disease for which the best available drug in the market has a cure
rate of 60%. On the basis of limited experimentation, the research division
claims that the new drug is more effective. If, in fact, it fails to be more

DEFINITION 3
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effective or if it has harmful side effects, the loss sustained by the company due
to an immediate obsolescence of the product, decline of the company’s image,
etc., will be quite severe. On the other hand, failure to market a truly better
drug is an opportunity loss, but that may not be considered to be as serious as
the other loss. If a decision is to be made on the basis of a number of clinical
trials, the null hypothesis H should be that the cure rate of the new drug is no
more than 60% and A should be that this cure rate exceeds 60%.

We notice that for a nonrandomized test with critical region B, we have

β

φ

θθ θθ θθ

θθ θθ

( ) = ( )′ ∈
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⎣
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P X X B P X X B

P X X B E X X

n n

n
c

n

1 1

1 1

1

0

, . . . , , . . . ,

, . . . , , . . . , ,   

and the same can be shown to be true for randomized tests (by an appropriate
application of property (CE1) in Section 3 of Chapter 5). Thus

β β φφ θθ θθ θθ ΩΩθθ( ) = ( ) = ( ) ∈E X Xn1, . . . , , . (1)

A level-α test which maximizes the power among all tests of level α is said to
be uniformly most powerful (UMP). Thus φ is a UMP, level-α test if (i) sup
[βφ(θθθθθ); θθθθθ ∈ ωωωωω] = α and (ii) βφ(θθθθθ) ≥ βφ*(θθθθθ), θθθθθ ∈ ωωωωωc for any other test φ* which
satisfies (i).

If ωc consists of a single point only, a UMP test is simply called most
powerful (MP). In many important cases a UMP test does exist.

Exercise

13.1.1 In the following examples indicate which statements constitute a
simple and which a composite hypothesis:

i) X is an r.v. whose p.d.f. f is given by f(x) = 2e−2xI(0,∞)(x);

ii) When tossing a coin, let X be the r.v. taking the value 1 if head appears and
0 if tail appears. Then the statement is: The coin is biased;

iii) X is an r.v. whose expectation is equal to 5.

13.2 Testing a Simple Hypothesis Against a Simple Alternative

In the present case, we take Ω to consist of two points only, which can be
labeled as θθθθθ0 and θθθθθ1; that is, ΩΩΩΩΩ = {θθθθθ0, θθθθθ1}. In actuality, ΩΩΩΩΩ may consist of more
than two points but we focus attention only on two of its points. Let fθθθθθ0

 and fθθθθθ1

be two given p.d.f.’s. We set f0 = f(·; θθθθθ0), f1 = f(·; θθθθθ1) and let X1, . . . , Xn be i.i.d.
r.v.’s with p.d.f., f(·; θθθθθ), θθθθθ ∈ΩΩΩΩΩ. The problem is that of testing the hypothesis H :
θθθθθ ∈ ωωωωω = {θθθθθ0} against the alternative A : θθθθθ ∈ ωωωωω c = {θθθθθ1} at level α. In other words,
we want to test the hypothesis that the underlying p.d.f. of the X’s is f0 against
the alternative that it is f1. In such a formulation, the p.d.f.’s f0 and f1 need not
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even be members of a parametric family of p.d.f.’s; they may be any p.d.f.’s
which are of interest to us.

In connection with this testing problem, we are going to prove the follow-
ing result.

(Neyman–Pearson Fundamental Lemma) Let X1, . . . , Xn be i.i.d. r.v.’s with
p.d.f. f(·; θθθθθ), θθθθθ ∈ ΩΩΩΩΩ = {θθθθθ0, θθθθθ1}.We are interested in testing the hypothesis H :
θθθθθ = θθθθθ0 against the alternative A : θθθθθ = θθθθθ1 at level α (0 < α < 1). Let φ be the test
defined as follows:

φ γx x

f x f x Cf x f x

f x f x Cf x f xn

n n
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1 1 1 1 0 0
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(2)

where the constants γ (0 ≤ γ ≤ 1) and C(>0) are determined so that

E X Xnθ φ α
0 1 , . . . , .( ) = (3)

Then, for testing H against A at level α, the test defined by (2) and (3) is MP
within the class of all tests whose level is ≤α.

The proof is presented for the case that the X’s are of the continuous type,
since the discrete case is dealt with similarly by replacing integrals by summa-
tion signs.

PROOF For convenient writing, we set

z z= ( )′ = ⋅ ⋅ ⋅ = ( )′x x d dx dx X Xn n n1 1 1, . . . , , , , . . . , Z  

and f(z; θθθθθ), f(Z; θθθθθ) for f(x1; θθθθθ) · · · f(xn; θθθθθ), f(X1; θθθθθ) · · · f(Xn; θθθθθ), respectively.
Next, let T be the set of points z in � n such that f0(z) > 0 and let Dc = Z−1(Tc).
Then

P D P T f dc c

T cθθ θθ0 0 0 0( ) = ∈( ) = ( ) =∫Z z z ,

and therefore in calculating Pθθθθθ0
-probabilities we may redefine and modify r.v.’s

on the set Dc. Thus we have, in particular,
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1

a(C )

a(C )
a(C�)

0
C

where Y = f1(Z)/f0(Z) on D and let Y be arbitrary (but measurable) on Dc. Now
let a(C) = Pθθθθθ 0

 (Y > C), so that G(C) = 1 − a(C) = Pθθθθθ0
(Y ≤ C) is the d.f. of the r.v.

Y. Since G is a d.f., we have G(−∞) = 0, G(∞) = 1, G is nondecreasing and
continuous from the right. These properties of G imply that the function a is
such that a(−∞) = 1, a(∞) = 0, a is nonincreasing and continuous from the right.
Futhermore,

P Y C G C G C a C a C a C a Cθθ0
1 1=( ) = ( ) − −( ) = − ( )[ ] − − −( )[ ] = −( ) − ( ),

and a(C) = 1 for C < 0, since Pθθθθθ 0
 (Y ≥ 0) = 1

Figure 13.1 represents the graph of a typical function a. Now for any α (0
< α < 1) there exists C0 (≥0) such that a(C0) ≤ α ≤ a(C0 −). (See Fig. 13.1.) At
this point, there are two cases to consider. First, a(C0) = a(C0 −); that is, C0 is
a continuity point of the function a. Then, α = a(C0) and if in (2) C is replaced
by C0 and γ = 0, the resulting test is of level α. In fact, in this case (4) becomes

E P Y C a Cθθ θθ0 0 0 0φ αZ( ) = >( ) = ( ) = ,

as was to be seen.
Next, we assume that C0 is a discontinuity point of a. In this case, take

again C = C0 in (2) and also set

γ
α

=
− ( )
−( ) − ( )

a C

a C a C

0

0 0

(so that 0 ≤ γ ≤ 1). Again we assert that the resulting test is of level α. In the
present case, (4) becomes as follows:

E P Y C P Y C

a C
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a C a C
a C a C

θθ θθ θθ0 0 00 0

0
0

0 0
0 0

φ γ

α
α
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−( ) − ( ) −( ) − ( )[ ] = .

Figure 13.1
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Summarizing what we have done so far, we have that with C = C0, as
defined above, and

γ
α

=
− ( )
−( ) − ( )

a C

a C a C

0

0 0

(which it is to be interpreted as 0 whenever is of the form 0/0), the test defined
by (2) is of level α. That is, (3) is satisfied.

Now it remains for us to show that the test so defined is MP, as described
in the theorem. To see this, let φ* be any test of level ≤α and set
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and this is ≥0 on account of (5). That is,

  
φ φz z z z z( ) − ( )[ ] ( ) − ( )[ ] ≥∫ * ,
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f Cf d1 0 0

which is equivalent to

  
φ φ φ φz z z z z z z z( ) − ( )[ ] ( ) ≥ ( ) − ( )[ ] ( )∫ ∫* * .

� �n n
f d C f d1 0 (6)
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and similarly,

  
φ φ φ φ β βφ φz z z z Z Z( ) − ( )[ ] ( ) = ( ) − ( ) = ( ) − ( )∫ * * .*

�n
f d E E1 1 11 1θθ θθ θθ θθ (8)

Relations (6), (7) and (8) yield βφ(θθθθθ1) − βφ*(θθθθθ1) ≥ 0, or βφ(θθθθθ1) ≥ βφ*(θθθθθ1). This
completes the proof of the theorem. ▲

The theorem also guarantees that the power βφ(θθθθθ1) is at least α. That is,
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Let φ be defined by (2) and (3). Then βφ(θθθθθ1) ≥ α.

PROOF The test φ*(z) = α is of level α, and since φ is most powerful, we have
βφ(θθθθθ1) ≥ βφ*(θθθθθ1) = α. ▲

REMARK 1

i) The determination of C and γ is essentially unique. In fact, if C = C0 is a
discontinuity point of a, then both C and γ are uniquely defined the way it
was done in the proof of the theorem. Next, if the (straight) line through
the point (0, α) and parallel to the C-axis has only one point in common
with the graph of a, then γ = 0 and C is the unique point for which a(C) =
α. Finally, if the above (straight) line coincides with part of the graph of a
corresponding to an interval (b1, b2], say, then γ = 0 again and any C in (b1,
b2] can be chosen without affecting the level of the test. This is so because

P Y b b G b G b

a b a b a b a b

θθ0 1 2 2 1

2 1 2 11 1 0

∈( ][ ] ≤ ( ) − ( )
= − ( )[ ] − − ( )[ ] = ( ) − ( ) =

,

.

ii) The theorem shows that there is always a test of the structure (2) and (3)
which is MP. The converse is also true, namely, if φ is an MP level α test,
then φ necessarily has the form (2) unless there is a test of size <α with
power 1.

This point will not be pursued further here.

The examples to be discussed below will illustrate how the theorem is
actually used in concrete cases. In the examples to follow, Ω = {θ0, θ1} and the
problem will be that of testing a simple hypothesis against a simple alternative
at level of significance α. It will then prove convenient to set

R z; ,
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; ;
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n

n

whenever the denominator is greater than 0. Also it is often more convenient
to work with log R(z; θ0; θ1) rather than R(z; θ0, θ1) itself, provided, of course,
R(z; θ0, θ1) > 0.

Let X1, . . . , Xn be i.i.d. r.v.’s from B(1, θ) and suppose θ0 < θ1. Then
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Thus the MP test is given by
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where C0 and γ are determined by

E P X C P X Cθ θ θφ γ α
0 0 00 0Z( ) = >( ) + =( ) = , (10)

and X = Σn
j=1Xj is B(n, θi), i = 0, 1. If θ0 > θ1, the inequality signs in (9) and (10)

are reversed.
For the sake of definiteness, let us take θ0 = 0.50, θ1= 0.75, α = 0.05 and

n = 25. Then

0 05 10 5 0 0 5 0 0 5 0 0 5 0. . . . .= >( ) + =( ) = − ≤( ) + =( )P X C P X C P X C P X Cγ γ

is equivalent to

P X C P X C0 5 0 0 5 0 0 95. . . .≤( ) − =( ) =γ

For C0 = 17, we have, by means of the Binomial tables, P0.5(X ≤ 17) = 0.9784
and P0.5(X = 17) = 0.0323. Thus γ is defined by 0.9784 − 0.0323γ = 0.95, whence
γ = 0.8792. Therefore the MP test in this case is given by (2) with C0 = 17 and
γ = 0.882. The power of the test is P0.75(X > 17) + 0.882 P0.75(X = 17) = 0.8356.

Let X1, . . . , Xn be i.i.d. r.v.’s from P(θ) and suppose θ0 < θ1. Then
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and hence, by using the assumption that θ0 < θ1, one has that R(z; θ0, θ1) > C is
equivalent to x > C0 , where
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Thus the MP test is defined by
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where C0 and γ are determined by

E P X C P X Cθ θ θφ γ α
0 0 00 0Z( ) = >( ) + =( ) = , (12)

and X = Σn
j=1Xj is P(nθi), i = 0, 1. If θ0 > θ1, the inequality signs in (11) and (12)

are reversed.
As an application, let us take θ0 = 0.3, θ1 = 0.4, α = 0.05 and n = 20. Then

(12) becomes

P X C P X C0 3 0 0 3 0 0 95. . . .≤( ) − =( ) =γ

By means of the Poisson tables, one has that for C0 = 10, P0.3(X ≤ 10) = 0.9574
and P0.3(X = 10) = 0.0413. Therefore γ is defined by 0.9574 − 0.0413γ = 0.95,
whence γ = 0.1791.

Thus the test is given by (11) with C0 = 10 and γ = 0.1791. The power of the
test is

P X P X0 4 0 410 0 1791 10 0 2013. .. . .>( ) + =( ) =

Let X1, . . . , Xn be i.i.d. r.v.’s from N(θ, 1) and suppose θ0 < θ1. Then
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and therefore R(z; θ0, θ1) > C is equivalent to x̄ > C0, where
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by using the fact that θ0 < θ1.
Thus the MP test is given by

φ z( ) =
>⎧

⎨
⎩

1

0
0,

,

if

otherwise,

x C
(13)

where C0 is determined by

E P X Cθ θφ α
0 0 0Z( ) = >( ) = , (14)

and X̄ is N(θi, 1/n), i = 0, 1. If θ0 > θ1, the inequality signs in (13) and (14) are
reversed.

Let, for example, θ0 = −1, θ1, = 1, α = 0.001 and n = 9. Then (14) gives

P X C P X C P N C− −>( ) = +( ) > +( )[ ] = ( ) > +( )[ ] =1 0 1 0 03 1 3 1 0 1 3 1 0 001, . ,

whence C0 = 0.03. Therefore the MP test in this case is given by (13) with
C0 = 0.03. The power of the test is

P X P X P N1 10 03 3 1 2 91 0 1 2 91 0 9982>( ) = −( ) > −[ ] = ( ) > −[ ] =. . , . . .
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Let X1, . . . , Xn be i.i.d. r.v.’s from N(0, θ) and suppose θ0 < θ1. Here
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j, so that, by means of θ0 < θ1, one has that R(z; θ0, θ1) > C is
equivalent to x > C0, where
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Thus the MP test in the present case is given by
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where C0 is determined by
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and
X

iθ  is distributed as χ2
n, i = 0, 1, where X = Σn

j =1X2
j. If θ0 > θ1, the inequal-

ity signs in (15) and (16) are reversed. For an example, let θ0 = 4, θ1 = 16, α =
0.01 and n = 20. Then (16) becomes
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whence C0 = 150.264. Thus the test is given by (15) with C0 = 150.264. The
power of the test is
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150 264

16
9 3915 0 977>( ) = >

⎛
⎝⎜

⎞
⎠⎟

= >( ) =.
.

. . .χ

Exercises

13.2.1 If X1, . . . , X16 are independent r.v.’s, construct the MP test of the
hypothesis H that the common distribution of the X’s is N(0, 9) against the
alternative A that it is N(1, 9) at level of significance α = 0.05. Also find
the power of the test.

13.2.2 Let X1, . . . , Xn be independent r.v.’s distributed as N(μ, σ2), where μ
is unknown and σ is known. Show that the sample size n can be determined so
that when testing the hypothesis H :μ = 0 against the alternative A : μ = 1, one
has predetermined values for α and β. What is the numerical value of n if
α = 0.05, β = 0.9 and σ = 1?

EXAMPLE 4
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13.2.3 Let X1, . . . , Xn be independent r.v.’s distributed as N(μ, σ2), where μ
is unknown and σ is known. For testing the hypothesis H : μ = μ1 against the
alternative A :μ = μ2, show that α can get arbitrarily small and β arbitrarily
large for sufficiently large n.

13.2.4 Let X1, . . . , X100 be independent r.v.’s distributed as N(μ, σ2). If
x̄ = 3.2, construct the MP test of the hypothesis H :μ = 3, σ2 = 4 against the
alternative A :μ = 3.5, σ2 = 4 at level of significance α = 0.01.

13.2.5 Let X1, . . . , X30 be independent r.v.’s distributed as Gamma with α =
10 and β unknown. Construct the MP test of the hypothesis H : β = 2 against
the alternative A :β = 3 at level of significance 0.05.

13.2.6 Let X be an r.v. whose p.d.f. is either the U(0, 1) p.d.f. denoted by f0,
or the Triangular p.d.f. over the [0, 1] interval, denoted by f1 (that is, f1(x) = 4x
for 0 ≤ x < 1

2
, f1(x) = 4 − 4x for 1

2
≤ x ≤ 1 and 0 otherwise). On the basis of one

observation on X, construct the MP test of the hypothesis H : f = f0 against the
alternative A : f = f1 at level of significance α = 0.05.

13.2.7 Let X be an r.v. with p.d.f. f which can be either f0 or else f1, where
f0 is P(1) and f1 is the Geometric p.d.f. with p = 1

2
. For testing the hypothesis

H : f = f0 against the alternative A : f = f1:

i) Show that the rejection region is defined by: {x ≥ 0 integer; 1.36 × x
x

!

2
≥ C} for

some positive number C;

ii) Determine the level of the test α when C = 3.

(Hint: Observe that the function x!/2x is nondecreasing for x integer ≥1.)

13.3 UMP Tests for Testing Certain Composite Hypotheses

In the previous section an MP test was constructed for the problem of testing
a simple hypothesis against a simple alternative. However, in most problems of
practical interest, at least one of the hypotheses H or A is composite. In cases
like this it so happens that for certain families of distributions and certain H
and A, UMP tests do exist. This will be shown in the present section.

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ), θ ∈ Ω ⊆ �. It will prove
convenient to set

g f x f x x xnz z; ; ; , , . . . , .    θ θ θ( ) = ( ) ⋅ ⋅ ⋅ ( ) = ( )′1 1 1 (17)

Also Z = (X1, . . . , Xn)′.
In the following, we give the definition of a family of p.d.f.’s having the

monotone likelihood ratio property. This definition is somewhat more restric-
tive than the one found in more advanced textbooks but it is sufficient for our
purposes.
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The family {g(·; θ); θ ∈ Ω} is said to have the monotone likelihood ratio (MLR)
property in V if the set of z’s for which g(z; θ) > 0 is independent of θ and there
exists a (measurable) function V defined in � n into � such that whenever θ, θ′
∈ Ω with θ < θ′ then: (i) g(·; θ) and g(·; θ′) are distinct and (ii) g(z; θ′)/g(z; θ)
is a monotone function of V(z).

Note that the likelihood ratio (LR) in (ii) is well defined except perhaps on
a set N of z’s such that Pθ(Z ∈ N) = 0 for all θ ∈ Ω. In what follows, we will
always work outside such a set.

An important family of p.d.f.’s having the MLR property is a one-
parameter exponential family.

Consider the exponential family

f x C e h x
Q T x

: ,θ θ θ( ) = ( ) ( )( ) ( )

where C(θ) > 0 for all θ ∈ Ω ⊆ � and the set of positivity of h is independent
of θ. Suppose that Q is increasing. Then the family {g(· ;θ); θ ∈ Ω} has the MLR
property in V, where V(z) = Σn

j=1T(xj) and g(· ; θ) is given by (17). If Q is
decreasing, the family has the MLR property in V′ = −V.

PROOF We have

g C e h
Q V

z z
z

: * ,θ θ θ( ) = ( ) ( )( ) ( )
0

where C0(θ) = Cn(θ), V(z) = Σn
j=1T(xj) and h*(z) = h(x1) · · · h(xn). Therefore on

the set of z’s for which h*(z) > 0 (which set has Pθ-probability 1 for all θ),
one has

g

g

C e

C e

C

C
e

Q V

Q V

Q Q Vz

z

z

z

z;

;
.

′( )
( ) =

′( )
( )

=
′( )

( )
′( ) ( )

( ) ( )
′( )− ( )[ ] ( )θ

θ

θ

θ

θ

θ

θ

θ

θ θ0

0

0

0

Now for θ < θ′, the assumption that Q is increasing implies that g(z; θ′)/g(z; θ)
is an increasing function of V(z). This completes the proof of the first assertion.
The proof of the second assertion follows from the fact that

Q Q V Q Q V′( ) − ( )[ ] ( ) = ( ) − ′( )[ ] ′( )θ θ θ θz z . ▲

From examples and exercises in Chapter 11, it follows that all of the
following families have the MLR property: Binomial, Poisson, Negative Bino-
mial, N(θ, σ2) with σ2 known and N(μ, θ) with μ known, Gamma with α = θ and
β known, or β = θ and α known. Below we present an example of a family
which has the MLR property, but it is not of a one-parameter exponential
type.

Consider the Logistic p.d.f. (see also Exercise 4.1.8(i), Chapter 4) with param-
eter θ ; that is,

  

f x
e

e
x

x

x
; , , .θ θ

θ

θ
( ) =

+( )
∈ ∈ =

− −

− −1
2

� �Ω (18)

DEFINITION 5

EXAMPLE 5

PROPOSITION 1
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Then

f x

f x
e

e

e

f x

f x

f x

f x

x

x

;

;

;

;

;

;
and

′( )
( ) = +

+

⎛

⎝⎜
⎞

⎠⎟
′( )

( ) <
′ ′( )
′( )

− ′
− −

− − ′

θ

θ

θ

θ

θ

θ
θ θ

θ

θ

1

1

2

if and only if

e
e

e
e

e

e

x

x

x

x
θ θ

θ

θ
θ θ

θ

θ
− ′

− −

− − ′
− ′

− ′−

− ′− ′

+
+

⎛

⎝⎜
⎞

⎠⎟
< +

+

⎛

⎝⎜
⎞

⎠⎟
1

1

1

1

2 2

.

However, this is equivalent to e−x(e−θ − e−θ′) < e−x′(e−θ − e−θ′). Therefore if θ < θ′,
the last inequality is equivalent to e−x < e−x′ or −x < −x′. This shows that the
family {f(·; θ); θ ∈ �} has the MLR property in −x.

For families of p.d.f.’s having the MLR property, we have the following
important theorem.

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(x; θ), θ ∈ Ω ⊆ � and let the family {g(·;
θ); θ ∈ Ω} have the MLR property in V, where g(·; θ) is defined in (17). Let θ0

∈ Ω and set ω = {θ ∈ Ω; θ ≤ θ0}. Then for testing the (composite) hypothesis
H :θ ∈ ω against the (composite) alternative A : θ ∈ω c at level of significance α,
there exists a test φ which is UMP within the class of all tests of level ≤α. In the
case that the LR is increasing in V(z), the test is given by

φ γz( ) =

( ) >

( ) =

⎧

⎨
⎪⎪

⎩
⎪
⎪

1

0

,

,

,

if z

if z

otherwise,

V C

V C (19)

where C and γ are determined by

E P V C P V Cθ θ θφ γ α
0 0 0

Z Z Z( ) = ( ) >[ ] + ( ) =[ ] = . (19′)

If the LR is decreasing in V(z), the test is taken from (19) and (19′) with
the inequality signs reversed.

The proof of the theorem is a consequence of the following two lemmas.

Under the assumptions made in Theorem 2, the test φ defined by (19) and (19′)
is MP (at level α) for testing the (simple) hypothesis H0 :θ = θ0 against the
(composite) alternative A :θ ∈ ω c among all tests of level ≤ α.

PROOF Let θ′  be an arbitrary but fixed point in ω c and consider the problem
of testing the above hypothesis H0 against the (simple) alternative A′ : θ = θ′ at
level α. Then, by Theorem 1, the MP test φ′ is given by

′( ) =

′( ) > ′ ( )
′( ) = ′ ( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

φ

θ θ

γ θ θz

z z

z z

1

0

0

0

, ; ;

, ; ;

,

if   

if   

otherwise,

g C g

g C g

LEMMA 1

THEOREM 2
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where C′ and γ′ are defined by

Eθ φ α
0

′( ) =Z .

Let g(z; θ′)/g(z; θ0) = ψ [V(z)]. Then in the case under consideration ψ is
defined on � into itself and is increasing. Therefore

ψ ψ

ψ

V C V C C

V C V C

z z

z z

( )[ ] > ′ ( ) > ′( ) =

( )[ ] = ′ ( ) =

⎫
⎬
⎪

⎭⎪

−if and only if

if and only if

1
0

0 .
(20)

In addition,

E P V C P V C

P V C P V C

θ θ θ

θ θ

φ ψ γ ψ

γ

0 0 0

0 00 0

′( ) = ( )[ ] > ′{ } + ′ ( )[ ] = ′{ }
= ( ) >[ ] + ′ ( ) =[ ]

Z Z Z

Z Z .

Therefore the test φ′ defined above becomes as follows:

′( ) =

( ) >

( ) =

⎧

⎨
⎪⎪

⎩
⎪
⎪

φ γz

z

z

1

0

0

0

,

,

,

if

if

otherwise,

V C

V C (21)

and

E P V C P V Cθ θ θφ γ α
0 0 00 0′( ) = ( ) >[ ] + ′ ( ) =[ ] =Z Z Z , (21′)

so that C0 = C and γ ′ = γ by means of (19) and (19′).
It follows from (21) and (21′) that the test φ′ is independent of θ′ ∈ ω c. In

other words, we have that C = C0 and γ = γ ′ and the test given by (19) and (19′)
is UMP for testing H0 : θ = θ0 against A : θ ∈ ω c (at level α). ▲

Under the assumptions made in Theorem 2, and for the test function φ defined
by (19) and (19′), we have Eθ′φ(Z) ≤ α for all θ′ ∈ ω.

PROOF Let θ′ be an arbitrary but fixed point in ω and consider the problem
of testing the (simple) hypothesis H′ : θ = θ′ against the (simple) alternative
A0(= H0) :θ = θ0 at level α(θ′) = Eθ′φ(Z). Once again, by Theorem 1, the MP test
φ′ is given by

′( ) =

( ) > ′ ′( )
( ) = ′ ′( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

φ

θ θ

γ θ θz

z z

z z

1

0

0

0

, ; ;

, ; ;

,

if   

if   

otherwise,

g C g

g C g

where C′ and γ′ are determined by

E P V C P V C′ ′ ′′( ) = ( )[ ] > ′{ } + ′ ( )[ ] = ′{ } = ′( )θ θφ ψ γ ψ α θZ Z Zθθ .

LEMMA 2
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On account of (20), the test φ′ above also becomes as follows:

′( ) =

( ) > ′

( ) = ′

⎧

⎨
⎪⎪

⎩
⎪
⎪

φ γz

z

z

1

0

0

0

,

,

,

if

if

otherwise,

V C

V C (22)

E P V C P V C′ ′ ′′( ) = ( ) > ′[ ] + ′ ( ) = ′[ ] = ′( )θ θ θφ γ α θZ Z Z0 0 , (22′)

where C′0 = ψ −1(C′).
Replacing θ0 by θ′ in the expression on the left-hand side of (19′) and

comparing the resulting expression with (22′), one has that C′0 = C and γ ′ = γ.
Therefore the tests φ′ and φ are identical. Furthermore, by the corollary to
Theorem 1, one has that α(θ′) ≤ α, since α is the power of the test φ′. ▲

PROOF OF THEOREM 2 Define the classes of test C and C0 as follows:

  

C
C

= ≤{ }
= ={ }

all level  tests for testing :

all level  tests for testing :

0

0

α θ θ

α θ θ

H

H

,

.0 0

Then, clearly, C ⊆ C0. Next, the test φ, defined by (19) and (19′), belongs in C
by Lemma 2, and is MP among all tests in C0, by Lemma 1. Hence it is MP
among tests in C. The desired result follows. ▲

REMARK 2 For the symmetric case where ω = {θ ∈ Ω; θ ≥ θ0}, under the
assumptions of Theorem 2, a UMP test also exists for testing H :θ ∈ ω against
A : θ ∈ω c. The test is given by (19) and (19′) if the LR is decreasing in V(z) and
by those relationships with the inequality signs reversed if the LR is increasing
in V (z). The relevant proof is entirely analogous to that of Theorem 2.

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ) given by

f x C e h x
Q T x

; ,θ θ θ( ) = ( ) ( )( ) ( )

where Q is strictly monotone. Then for testing H :θ ∈ ω = {θ ∈ Ω; θ ≤ θ0} against
A : θ ∈ω c at level of significance α, there is a test φ which is UMP within the
class of all tests of level ≤α. This test is given by (19) and (19′) if Q is increasing
and by (19) and (19′) with reversed inequality signs if Q is decreasing.

Also for testing H :θ ∈ ω = {θ ∈ Ω; θ ≤ θ0} against A : θ ∈ ω c at level α, there
is a test φ which is UMP within the class of all tests of level ≤α. This test is given
by (19) and (19′) if Q is decreasing and by those relationships with reversed
inequality signs if Q is increasing.

In all tests, V(z) = Σn
j=1T(xj).

PROOF It is immediate on account of Proposition 1 and Remark 2. ▲

It can further be shown that the function β(θ) = Eθφ(Z), θ ∈ Ω, for the
problem discussed in Theorem 2 and also the symmetric situation mentioned

COROLLARY
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in Remark 2, is increasing for those θ’s for which it is less than 1 (see Figs. 13.2
and 13.3, respectively).

Another problem of practical importance is that of testing

H : ;θ ω θ θ θ θ θ∈ = ∈ ≤ ≥{ }Ω  or1 2

against A :θ ∈ω c, where θ1, θ2 ∈ Ω and θ1 < θ2. For instance, θ may represent a
dose of a certain medicine and θ1, θ2 are the limits within which θ is allowed to
vary. If θ ≤ θ1 the dose is rendered harmless but also useless, whereas if θ ≥ θ2

the dose becomes harmful. One may then hypothesize that the dose in ques-
tion is either useless or harmful and go about testing the hypothesis.

If the underlying distribution of the relevant measurements is assumed to
be of a certain exponential form, then a UMP test for the testing problem
above does exist. This result is stated as a theorem below but its proof is not
given, since this would rather exceed the scope of this book.

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ), given by

f x C e h x
Q T x

; ,θ θ θ( ) = ( ) ( )( ) ( ) (23)

where Q is assumed to be strictly monotone and θ ∈ Ω = � .
Set ω = {θ ∈ Ω; θ ≤ θ1 or θ ≥ θ2}, where θ1, θ2 ∈ Ω and θ1 < θ2. Then for testing

the (composite) hypothesis H : θ ∈ ω against the (composite) alternative A : θ
∈ ω c at level of significance α, there exists a UMP test φ. In the case that Q is
increasing, φ is given by

φ γz

z

z( ) =

< ( ) <

( ) = =( ) <( )
⎧

⎨
⎪⎪

⎩
⎪
⎪

1

1 2

0

1 2

1 2

,

,

,

if

if  

otherwise,

C V C

V C i C Ci i (24)

where C1, C2 and γ1, γ2 are determined by

E P C V C P V C

P V C i V T x

i i i

i j
j

n

θ θ θ

θ

φ γ

γ α

Z Z Z

Z z

( ) = < ( ) <[ ] + ( ) =[ ]
+ ( ) =[ ] = = ( ) = ( )

=
∑

1 2 1 1

2 2
1

1 2, , , . and (25)

1

�(�)

�
0 �0

�

1

�(�)

�
0 �0

�

Figure 13.2 H:θ ≤ θ0, A :θ > θ0 Figure 13.3 H:θ ≥ θ0, A :θ < θ0

THEOREM 3
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If Q is decreasing, the test is given again by (24) and (25) with C1 < V (z) < C2

replaced by V(z) < C1 or V(z) > C2.
It can also be shown that (in nondegenerate cases) the function β(θ) =

Eθφ(Z), θ ∈ Ω for the problem discussed in Theorem 3, increases for θ ≤ θ0 and
decreases for θ ≥ θ0 for some θ1 < θ0 < θ2 (see also Fig. 13.4).

Theorems 2 and 3 are illustrated by a number of examples below. In order
to avoid trivial repetitions, we mention once and for all that the hypotheses to
be tested are H : θ ∈ω = {θ ∈Ω; θ ≤ θ0} against A :θ ∈ωc and H′ :θ ∈ω = {θ ∈ Ω;
θ ≤ θ1 or θ ≥ θ2} against A′ :θ ∈ωc; θ0, θ1, θ2 ∈Ω and θ1 < θ2. The level of
significance is α(0 < α < 1).

Let X1, . . . , Xn be i.i.d. r.v.’s from B(1, θ), θ ∈ Ω = (0, 1). Here

V x Qj
j

n

z( ) = ( ) =
−=

∑ and logθ θ
θ1 1

is increasing since θ/(1 − θ) is so. Therefore, on account of the corollary to
Theorem 2, the UMP test for testing H is given by

φ γz( ) =

>

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

=

=

∑
∑

1

0

1

1

,

,

,

if

if

otherwise,

x C

x C

jj

n

jj

n
(26)

where C and γ are determined by

E P X C P X Cθ θ θφ γ α
0 0 0

Z( ) = >( ) + =( ) = , (27)

and

X X B nj
j

n

= ( )
=

∑
1

is  , .θ

For a numerical application, let θ0 = 0.5, α = 0.01 and n = 25. Then one
has

EXAMPLE 6

Figure 13.4 H:θ ≤ θ1 or θ ≥ θ2, A :θ1 < θ < θ2.
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P X C P X C0 5 0 5 0 01. . . .>( ) + =( ) =γ

The Binomial tables provided the values C = 18 and γ = 27
143

. The power of the
test at θ = 0.75 is

βφ 0 75 18
27

143
18 0 59230 75 0 75. . .. .( ) = >( ) + =( ) =P X P X

By virtue of Theorem 3, for testing H′ the UMP test is given by

φ γz( ) =

< <

= =( )
⎧

⎨

⎪
⎪

⎩

⎪
⎪

=

=

∑
∑

1

1

0

1 21

1

if

if  2

otherwise,

C x C

x C i

jj

n

i j ij

n
,

,

with C1, C2 and γ1, γ2 defined by

E P C X C P X C P X C i
i i i iθ θ θ θφ γ γ αZ( ) = < <( ) + =( ) + =( ) = =1 2 1 1 2 2 1, ,  2.

Again for a numerical application, take θ1 = 0.25, θ2 = 0.75, α = 0.05 and
n = 25. One has then

P C X C P X C P X C

P C X C P X C P X C

0 25 1 2 1 0 25 1 2 0 25 2

0 75 1 2 1 0 75 1 2 0 75 2

0 05

0 05

. . .

. . .

.

. .

< <( ) + =( ) + =( ) =

< <( ) + =( ) + =( ) =

γ γ

γ γ

For C1 = 10 and C2 = 15, one has after some simplifications

416 2 205

2 416 205
1 2

1 2

γ γ
γ γ

+ =
+ = ,

from which we obtain

γ γ1 2

205
418

0 4904= = ≈ . .

The power of the test at θ = 0.5 is

βφ 0 5 10 15
205
418

10 15 0 67110 5 0 5 0 5. . .. . .( ) = < <( ) + =( ) + =( )[ ] =P X P X P X

Let X1, . . . , Xn be i.i.d. r.v.’s from P(θ), θ ∈Ω = (0, ∞). Here V(z) = Σn
j=1 xj and

Q(θ) = log θ is increasing. Therefore the UMP test for testing H is again given
by (26) and (27), where now X is P(nθ).

For a numerical example, take θ0 = 0.5, α = 0.05 and n = 10. Then, by means
of the Poisson tables, we find C = 9 and

γ = ≈182
363

0 5014. .

EXAMPLE 7
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The power of the test at θ = 1 is βφ(1) = 0.6048.

Let X1, . . . , Xn be i.i.d. r.v.’s from N(θ, σ2) with σ2 known. Here

V x Qj
j

n

z( ) = ( ) =
=

∑
1

2

1
and θ

σ
θ

is increasing. Therefore for testing H the UMP test is given by (dividing by n)

φ z( ) =
>⎧

⎨
⎩

1

0

,

,

if

otherwise,

x C

where C is determined by

E P X Cθ θφ α
0 0

Z( ) = >( ) = ,

and X̄ is N(θ, σ2/n). (See also Figs. 13.5 and 13.6.)
The power of the test, as is easily seen, is given by

β θ
θ

σφ ( ) = −
−( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1 Φ
n C

.

For instance, for σ = 2 and θ0 = 20, α = 0.05 and n = 25, one has C = 20.66. For
θ = 21, the power of the test is

βφ 21 0 8023( ) = . .

On the other hand, for testing H′ the UMP test is given by

φ z( ) =
< <⎧

⎨
⎩

1

0
1 2,

,

if

otherwise,

C x C

where C1, C2 are determined by

E P C X C i
i iθ θφ αZ( ) = < <( ) = =1 2 1 2, , .

(See also Fig. 13.7.)
The power of the test is given by

β θ
θ

σ
θ

σφ ( ) =
−( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−
−( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Φ Φ
n C n C2 1

.

Figure 13.6 H:θ ≥ θ0, A :θ < θ0.
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Figure 13.5 H:θ ≤ θ0, A :θ > θ0.
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Figure 13.7 H′ :θ ≤ θ1 or θ ≥ θ2, A′ :θ1 < θ < θ2.

Figure 13.8 H:θ ≤ θ0, A :θ > θ0.
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Figure 13.9 H:θ ≥ θ0, A :θ < θ0.
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For instance, for σ = 2 and θ1 = −1, θ2 = 1, α = 0.05 and n = 25, one has C1 =
−0.344, C2 = 0.344, and for θ = 0, the power of the test is βφ(0) = 0.610.

Let X1, . . . , Xn be i.i.d. r.v.’s from N(μ, θ) with μ known. Then V(z) =
Σn

j=1 (xj − μ)2 and Q(θ) = −1/(2θ) is increasing. Therefore for testing H, the UMP
test is given by

φ μ
z( ) = −( ) >⎧

⎨
⎪

⎩⎪
=∑1

0

2

1
,

,

if

otherwise,

x Cjj

n

where C is determined by

E P X Cj
j

n

θ θφ μ α
0 0

2

1

Z( ) = −( ) >
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
=

∑ .

The power of the test, as is easily seen, is given by

β θ χ θ μφ ( ) = − <( ) ( )1 2P Cn independent of ! .

(See also Figs. 13.8 and 13.9; χ2
n stands for an r.v. distribution as χ2

n.)
For a numerical example, take θ0 = 4, α = 0.05 and n = 25. Then one has

C = 150.608, and for θ = 12, the power of the test is βφ(12) = 0.980.
On the other hand, for testing H′ the UMP test is given by

φ μ
z( ) = < −( ) <⎧

⎨
⎪

⎩⎪
=∑1

0

1

2

21
,

,

if

otherwise,

C x Cjj

n

where C1, C2 are determined by

EXAMPLE 9



13.3 UMP Tests for Testing Certain Composite Hypotheses 347

E P C X C i
i i j
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The power of the test, as is easily seen, is given by

β θ χ
θ

χ
θ

μθ ( ) = <
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− <
⎛
⎝⎜

⎞
⎠⎟

( )P
C

P
C

n n
2 2 2 1 independent of ! .

For instance, for θ1 = 1, θ2 = 3, α = 0.01 and n = 25, we have

P C P C P
C

P
Cχ χ χ χ25

2
2 25

2
1 25

2 2
25
2 10 01

3 3
0 01<( ) − <( ) = <

⎛
⎝⎜

⎞
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− <
⎛
⎝⎜

⎞
⎠⎟

=. , .

and C1, C2 are determined from the Chi-square tables (by trial and error).

Exercises

13.3.1 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f given below. In each case,
show that the joint p.d.f. of the X’s has the MLR property in V = V(x1, . . . , xn)
and identity V.

i) f x x e I xx; , , , ;,  knownθ θ
α

θ α
α

α θ( ) = ( ) ( ) ∈ = ∞( ) = >( )− −
∞( )Γ

Ω1
0 0 0

ii) f x
r x

x
I x Ar x

A; , , . . . , , .  1,  1θ θ θ θ( ) =
+ −⎛

⎝⎜
⎞
⎠⎟

−( ) ( ) = { } ∈ = ( )1
1 0 0Ω

13.3.2 Refer to Example 8 and show that, for testing the hypotheses H and
H′ mentioned there, the power of the respective tests is given by

β θ
θ

σφ ( ) = −
−( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1 Φ
n C

and

β θ
θ

σ
θ

σφ ( ) =
−( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−
−( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Φ Φ
n C n C2 1

as asserted.

13.3.3 The length of life X of a 50-watt light bulb of a certain brand may be
assumed to be a normally distributed r.v. with unknown mean μ and known
s.d. σ = 150 hours. Let X1, . . . , X25 be independent r.v.’s distributed as X and
suppose that x̄ = 1,730 hours. Test the hypothesis H :μ = 1,800 against the
alternative A :μ < 1,800 at level of significance α = 0.01.

Exercises 347
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13.3.4 The rainfall X at a certain station during a year may be assumed to be
a normally distributed r.v. with s.d. σ = 3 inches and unknown mean μ. For the
past 10 years, the record provides the following rainfalls: x1 = 30.5, x2 = 34.1,
x3 = 27.9, x4 = 29.4, x5 = 35.0, x6 = 26.9, x7 = 30.2, x8 = 28.3, x9 = 31.7, x10 = 25.8.
Test the hypothesis H :μ = 30 against the alternative A :μ < 30 at level of
significance α = 0.05.

13.3.5 Refer to Example 9 and show that, for testing the hypotheses H and
H′ mentioned there, the power of the respective tests is given by

β θ χ
θ

β θ χ
θ

χ
θφ φ( ) = − <

⎛
⎝⎜

⎞
⎠⎟

( ) = <
⎛
⎝⎜

⎞
⎠⎟

− <
⎛
⎝⎜

⎞
⎠⎟

1 2 2 2 2 1P
C

P
C

P
C

n n nand

as asserted.

13.3.6 Let X1, . . . , X25 be independent r.v.’s distributed as N(0, σ2). Test the
hypothesis H :σ ≤ 2 against the alternative A : σ > 2 at level of significance α =
0.05. What does the relevant test become for Σ25

j=1x
2
j = 120, where xj is the

observed value of Xj, j = 1, . . . , 25.

13.3.7 In a certain university 400 students were chosen at random and it was
found that 95 of them were women. On the basis of this, test the hypothesis H
that the proportion of women is 25% against the alternative A that is less than
25% at level of significance α = 0.05. Use the CLT in order to determine the
cut-off point.

13.3.8 Let X1, . . . , Xn be independent r.v.’s distributed as B(1, p). For testing
the hypothesis H : p ≤ 1

2
 against the alternative A :p > 1

2
, suppose that α = 0.05

and β( 7
8

) = 0.95. Use the CLT in order to determine the required sample
size n.

13.3.9 Let X be an r.v. distributed as B(n, θ), θ ∈Ω = (0, 1).

i) Derive the UMP test for testing the hypothesis H : θ ≤ θ0 against the
alternative A : θ > θ0 at level of significance α.

ii) What does the test in (i) become for n = 10, θ0 = 0.25 and α = 0.05?

iii) Compute the power at θ1 = 0.375, 0.500, 0.625, 0.750, 0.875.

Now let θ0 = 0.125 and α = 0.1 and suppose that we are interested in securing
power at least 0.9 against the alternative θ1 = 0.25.

iv) Determine the minimum sample size n required by using the Binomial
tables (if possible) and also by using the CLT.

13.3.10 The number X of fatal traffic accidents in a certain city during a year
may be assumed to be an r.v. distributed as P(λ). For the latest year x = 4,
whereas for the past several years the average was 10. Test whether it has been
an improvement, at level of significance α = 0.01. First, write out the expres-
sion for the exact determination of the cut-off point, and secondly, use the
CLT for its numerical determination.



13.3 UMP Tests for Testing Certain Composite Hypotheses 349

13.3.11 Let X be the number of times that an electric light switch can be
turned on and off until failure occurs. Then X may be considered to be an r.v.
distributed as Negative Binomial with r = 1 and unknown p. Let X1, . . . , X15 be
independent r.v.’s distributed as X and suppose that x̄ = 15,150. Test the
hypothesis H : p = 10−4 against the alternative A : p > 10−4 at level of significance
α = 0.05.

13.3.12 Let X1, . . . , Xn be independent r.v.’s with p.d.f. f given by

f x e I xx; , , .,θ
θ

θθ( ) = ( ) ∈ = ∞( )−
∞( )

1
00 Ω

i) Derive the UMP test for testing the hypothesis H :θ ≥ θ0 against the alter-
native A :θ < θ0 at level of significance α ;

ii) Determine the minimum sample size n required to obtain power at least
0.95 against the alternative θ1 = 500 when θ0 = 1,000 and α = 0.05.

13.4 UMPU Tests for Testing Certain Composite Hypotheses

In Section 13.3, it was stated that under the assumptions of Theorem 3, for
testing H : θ ∈ω = {θ ∈Ω; θ ≤ θ1 or θ ≥ θ2} against A : θ ∈ωc, a UMP test exists.
It is then somewhat surprising that, if the roles of H and A are interchanged,
a UMP test does not exist any longer. Also under the assumptions of Theorem
2, for testing H0 : θ = θ0 against A″ : θ ≠ θ0 a UMP does not exist. This is so
because the test given by (19) and (19′) is UMP for θ > θ0 but is worse than the
trivial test φ(z) = α for θ < θ0. Thus there is no unique test which is UMP for all
θ ≠ θ0.

The above observations suggest that in order to find a test with some
optimal property, one would have to restrict oneself to a smaller class of tests.
This leads us to introducing the concept of an unbiased test.

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ), θθθθθ ∈ΩΩΩΩΩ and let ωωωωω ⊂ ΩΩΩΩΩ ⊆ � r. Then
for testing the hypothesis H : θθθθθ ∈ωωωωω against the alternative A : θθθθθ ∈ ωωωωωc at level of
significance α, a test φ based on X1, . . . , Xn is said to be unbiased if Eθφ(X1, . . . ,
Xn) ≤ α for all θθθθθ ∈ ωωωωω and Eθθθθθφ(X1, . . . , Xn) ≥ α for all θθθθθ ∈ωωωωωc.

That is, the defining property of an unbiased test is that the type-I error
probability is at most α and the power of the test is at least α.

In the notation of Definition 6, a test is said to be uniformly most powerful
unbiased (UMPU) if it is UMP within the class of all unbiased tests.

REMARK 3 A UMP test is always UMPU. In fact, in the first place it is
unbiased because it is at least as powerful as the test which is identically equal
to α. Next, it is UMPU because it is UMP within a class including the class of
unbiased tests.

DEFINITION 6

DEFINITION 7

13.4 UMPU Tests for Testing Certain Composite Hypotheses 349
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For certain important classes of distributions and certain hypotheses,
UMPU tests do exist. The following theorem covers cases of this sort, but it
will be presented without a proof.

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θ) given by

  
f x C e h x

T x
; , .θ θ θθ( ) = ( ) ( ) ∈ ⊆( ) Ω � (28)

Let ω = {θ ∈Ω; θ1 ≤ θ ≤ θ2} and ω0 = {θ0}, where θ0, θ1, θ2 ∈ Ω and θ1 < θ2.
Then for testing the hypothesis H :θ ∈ω against A :θ ∈ ωc and the hypoth-

esis H0 : θ ∈ω0 against A0 : θ ∈ω c at level of significance α, there exist UMPU
tests which are given by

φ γz

z z

z( ) =

( ) < ( ) >

( ) = =( ) <( )
⎧

⎨
⎪⎪

⎩
⎪
⎪

1

1

0

1 2

1 2

,

, , ,

,

if or

if  2

otherwise,

V C V C

V C i C Ci i

where the constants Ci, γi, i = 1, 2 are given by

E i H
iθ φ αZ( ) = =, , ,1  2 for

and

E E V E V Hθ θ θφ α φ α
0 0 0 0Z Z Z Z( ) = ( ) ( )[ ] = ( ), . for

(Recall that z = (x1, . . . , xn)′, Z = (X1, . . . , Xn)′ and V(z) = Σn
j=1 T(xj).)

Furthermore, it can be shown that the function βφ(θ) = Eθφ(Z), θ ∈Ω
(except for degenerate cases) is decreasing for θ ≤ θ0 and increasing for θ ≥ θ0

for some θ1 < θ0 < θ2 (see also Fig. 13.10).

REMARK 4 We would expect that cases like Binomial, Poisson and Normal
would fall under Theorem 4, while they seemingly do not. However, a simple
reparametrization of the families brings them under the form (28). In fact, by
Examples and Exercises of Chapter 11 it can be seen that all these families are
of the exponential form

Figure 13.10 H:θ1 ≤ θ ≤ θ2, A :θ < θ1 or θ > θ2.
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� �

THEOREM 4
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f x C e h x
Q T x

; .θ θ θ( ) = ( ) ( )( ) ( )

i) For the Binomial case, Q(θ) = log[θ/(1 − θ)]. Then by setting log[θ/(1 − θ)]
= τ, the family is brought under the form (28). From this transformation,
we get θ = eτ/(1 + eτ) and the hypotheses θ1 ≤ θ ≤ θ2, θ = θ0 become
equivalently, τ1 ≤ τ ≤ τ2, τ = τ0, where

τ θ
θi
i

i

i=
−

=log  1,  2.
1

0, ,

ii) For the Poisson case, Q(θ) = logθ and the transformation logθ = τ brings
the family under the form (28). The transformation implies θ = eτ and the
hypotheses θ1 ≤ θ ≤ θ2, θ = θ0 become, equivalently, τ1 ≤ τ ≤ τ2, τ = τ0 with
τi = logθi, i = 0, 1, 2.

iii) For the Normal case with σ known and μ = θ, Q(θ) = (1/σ2)θ and the factor
1/σ2 may be absorbed into T(x).

iv) For the Normal case with μ known and σ2 = θ, Q(θ) = −1/(2θ) and the
transformation −1/(2θ) = τ brings the family under the form (28) again.
Since θ = −1/(2τ), the hypotheses θ1 ≤ θ ≤ θ2 and θ = θ0 become, equiva-
lently, τ1 ≤ τ ≤ τ2 and τ = τ0, where τi = −1/(2θi), i = 0, 1, 2.

As an application to Theorem 4 and for later reference, we consider the
following example. The level of significance will be α.

Suppose X1, . . . , Xn are i.i.d. r.v.’s from N(μ, σ2). Let σ be known and set
μ = θ. Suppose that we are interested in testing the hypothesis H : θ = θ0 against
the alternative A :θ ≠ θ0. In the present case,

T x x( ) = 1
2σ

,

so that

V T x x
n

xj
j

n

j
j

n

z( ) = ( ) = =
= =

∑ ∑
1

2 2
1

1

σ σ
.

Therefore, by Theorem 4, the UMPU test is as follows:

φ σ σz
if or

otherwise,
( ) =

< >
⎧
⎨
⎪

⎩⎪

1

0

2 1 2 2,

,

n
x C

n
x C

where C1, C2 are determined by

E E V E Vθ θ θφ α φ α
0 0 0

Z Z Z Z( ) = ( ) ( )[ ] = ( ), .

Now φ can be expressed equivalently as follows:

EXAMPLE 10

13.4 UMPU Tests for Testing Certain Composite Hypotheses 351
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On the other hand, under H, √
–
n(X̄ − θ0)/σ is N(0, 1). Therefore, because of

symmetry C′1 = −C′2 = −C, say (C > 0). Also

n x
C

n x
C
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>

θ
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θ
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0 0
or

is equivalent to

n x
C

−( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
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>
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σ
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2

and, of course, [√
–
n(X̄ − θ0)/σ]2 is χ2

1, under H. By summarizing then, we have

φ
θ
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,
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otherwise,
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where C is determined by

P Cχ α1
2 >( ) = .

In many situations of practical importance, the underlying p.d.f. involves
a real-valued parameter θ in which we are exclusively interested, and in
addition some other real-valued parameters ϑ1, . . . , ϑk in which we have no
interest. These latter parameters are known as nuisance parameters. More
explicitly, the p.d.f. is of the following exponential form:

f x C T x

T x T x h x

k k

k k k

; , , . . . , , , . . . ,

,

      expθ ϑ ϑ θ ϑ ϑ θ

ϑ ϑ

1 1

1 1

( ) = ( ) ( )[
+ ( ) + ⋅ ⋅ ⋅ + ( )] ( ) (29)

where θ ∈Ω ⊆ �, ϑ1, . . . , ϑk are real-valued and h(x) > 0 on a set independent
of all parameters involved.

Let θ0, θ1, θ2 ∈Ω with θ1 < θ2. Then the (composite) hypotheses of interest
are the following ones, where ϑ1, . . . , ϑk are left unspecified.
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Ω
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1

AA ii
c( ) ∈ =: , , . . . ,θ ω 1  4.

(30)

We may now formulate the following theorem, whose proof is omitted.

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. given by (29). Then, under some
additional regularity conditions, there exist UMPU tests with level of signifi-
cance α for testing any one of the hypotheses Hi(H′1) against the alternatives
Ai(A′1), i = 1, . . . , 4, respectively.

Because of the special role that normal populations play in practice, the
following two sections are devoted to presenting simple tests for the hypoth-
eses specified in (30). Some of the tests will be arrived at again on the basis of
the principle of likelihood ratio to be discussed in Section 7. However, the
optimal character of the tests will not become apparent by that process.

Exercises

13.4.1 A coin, with probability p of falling heads, is tossed independently 100
times and 60 heads are observed. Use the UMPU test for testing the hypoth-
esis H :p = 1

2
 against the alternative A : p ≠ 1

2
 at level of significance α = 0.1.

13.4.2 Let X1, X2, X3 be independent r.v.’s distributed as B(1, p). Derive the
UMPU test for testing H : p = 0.25 against A :p ≠ 0.25 at level of significance α.
Determine the test for α = 0.05.

13.5 Testing the Parameters of a Normal Distribution

In the present section, X1, . . . , Xn are assumed to be i.i.d. r.v.’s from N(μ, σ2),
where both μ and σ2 are unknown. One of the parameters at a time will be the
parameter of interest, the other serving as a nuisance parameter. Under appro-
priate reparametrization, as indicated in Remark 5, the family is brought
under the form (29). Also the remaining (unspecified) regularity conditions in
Theorem 5 can be shown to be satisfied here, and therefore the conclusion of
the theorem holds.

All tests to be presented below are UMPU, except for the first one which
is UMP. This is a consequence of Theorem 5 (except again for the UMP test).

THEOREM 5

13.5 Testing the Parameters of a Normal Distribution 353
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Whenever convenient, we will also use the notation z and Z instead of (x1, . . . ,
xn)′ and (X1, . . . , Xn)′, respectively. Finally, all tests will be of level α.

13.5.1 Tests about the Variance

For testing H1 :σ ≤ σ0 against A1 : σ > σ0, the test given by

φ z( ) = −( ) >⎧
⎨
⎪

⎩⎪
=∑1

0

2

1
,

,

if

otherwise,

x x Cjj

n

(31)

where C is determined by

P Cnχ σ α− >( ) =1
2

0
2 , (32)

is UMP. The test given by (31) and (32) with reversed inequalities is UMPU
for testing H′1 :σ ≥ σ0 against A′1 :σ < σ0.

The power of the tests is easily determined by the fact that (1/σ2) Σn
j=1

(Xj − X̄ )2 is χ2
n−1 when σ obtains (that is, σ is the true s.d.). For example, for

n = 25, σ0 = 3 and α = 0.05, we have for H1, C/9 = 36.415, so that C = 327.735.
The power of the test at σ = 5 is equal to P(χ2

24 > 13.1094) = 0.962.
For H′1, C/9 = 13.848, so that C = 124.632, and the power at σ = 2 is P χ2

24

(< 31.158) = 0.8384.

For testing H2 :σ ≤ σ1 or σ ≥ σ2, against A2 :σ1 < σ < σ2, the test given by

φ z( ) = < −( ) <⎧
⎨
⎪
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(33)

where C1, C2 are determined by

P C C ii n i1
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2
2 1 2σ χ σ α< <( ) = =− , , , (34)

is UMPU. The test given by (33) and (34), where the inequalities C1 < Σn
j=1

(xj − x̄)2 < C2 are replaced by
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or ,

and similarly for (34), is UMPU for testing H3 :σ1 ≤ σ ≤ σ2 against A3 : σ < σ1

or σ > σ2. Again, the power of the tests is determined by the fact that
(1/σ2) Σn

j=1 (Xj − X̄ )2 is χ2
n−1 when σ obtains.

For example, for H2 and for n = 25, σ1 = 2, σ2 = 3 and α = 0.05, C1, C2 are
determined by
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PROPOSITION 3

PROPOSITION 2
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from the Chi-square tables (by trial and error).

For testing H4 :σ = σ0 against A4 : σ ≠ σ0, the test given by

φ z( ) = −( ) < −( ) >⎧
⎨
⎪

⎩⎪
== ∑∑1

0

2

1

2

211
,

,

if or

otherwise,

x x C x x Cj jj

n

j

n

where C1, C2 are determined by

g t dt
n

tg t dt
c

c

c

c( ) =
− ( ) = −∫ ∫
1

1
1

1 0
2

2 0
2

1 0
2

2 0
2

σ

σ

σ

σ
α ,

g being the p.d.f. of a χ2
n−1 distribution, is UMPU.

The power of the test is determined as in the previous cases.

REMARK 5 The popular equal tail test is not UMPU; it is a close approxima-
tion to the UMPU test when n is large.

13.5.2 Tests about the Mean

In connection with the problem of testing the mean, UMPU tests exist in a
simple form and are explicitly given for the following three cases: μ ≤ μ0, μ ≥ μ0

and μ = μ0.
To facilitate the writing, we set

t
n x

n
x xj

j

n
z( ) =

−( )

−
−( )

=
∑

μ0

2

1

1
1

. (35)

For testing H1 :μ ≤ μ0 against A1 : μ > μ0, the test given by

φ z
z( ) = ( ) >⎧

⎨
⎪

⎩⎪

1

0

,

,

if

otherwise,

t C
(36)

where C is determined by

P t Cn− >( ) =1 α , (37)

is UMPU. The test given by (36) and (37) with reversed inequalities is UMPU
for testing H′1 :μ ≥ μ0 against A′1 :μ < σ0; t(z) is given by (35). (See also Figs. 13.11
and 13.12; tn−1 stands for an r.v. distributed as tn−1.)

For n = 25 and α = 0.05, we have P(t24 > C) = 0.05; hence C = 1.7109 for H1,
and C = −1.7109 for H′1.

For testing H4 :μ = μ0 against A4 : μ ≠ μ0, the test given by

φ z
z z( ) = ( ) < − ( ) > >( )⎧

⎨
⎪

⎩⎪

1 0

0

,

,

if or

otherwise,

t C t C C

PROPOSITION 4
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Figure 13.11 H1 :μ ≤ μ0, A1 :μ > μ0.
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Figure 13.12 H ′1 :μ ≥ μ0, A′1 :μ < μ0.

where C is determined by

P t Cn− >( ) =1 2α ,

is UMPU; t(z) is given by (35). (See also Fig. 13.13.)

For example, for n = 25 and α = 0.05, we have C = 2.0639.

In both these last two propositions, the determination of the power in-
volves what is known as non-central t-distribution, which is defined in
Appendix II.

Exercises

13.5.1 The diameters of bolts produced by a certain machine are r.v.’s dis-
tributed as N(μ, σ2). In order for the bolts to be usable for the intended
purpose, the s.d. σ must not exceed 0.04 inch. A sample of size 16 is taken and
is found that s = 0.05 inch. Formulate the appropriate testing hypothesis
problem and carry out the test if α = 0.05.

13.5.2 Let X1, . . . , Xn be i.i.d. r.v.’s from N(μ, σ2), where both μ and σ are
unknown.

i) Derive the UMPU test for testing the hypothesis H :σ = σ0 against the
alternative A :σ ≠ σ0 at level of significance α;

ii) Carry out the test if n = 25, σ0 = 2, Σ25
j=1 (xj − x̄)2 = 24.8, and α = 0.05.

13.5.3 Discuss the testing hypothesis problem in Exercise 13.3.4 if both μ
and σ are unknown.

�C 0 C

tn � 1

�
2

�
2

Figure 13.13 H4 :μ = μ0, A4 :μ ≠ μ0.
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13.5.4 A manufacturer claims that packages of certain goods contain 18
ounces. In order to check his claim, 100 packages are chosen at random from
a large lot and it is found that

x xj
j

j
j

= =
= =

∑ ∑1 752 31 157
1

100
2

1

100

, , .and

Make the appropriate assumptions and test the hypothesis H that the manu-
facturer’s claim is correct against the appropriate alternative A at level of
significance α = 0.01.

13.5.5 The diameters of certain cylindrical items produced by a machine are
r.v.’s distributed as N(μ, 0.01). A sample of size 16 is taken and is found that
x̄ = 2.48 inches. If the desired value for μ is 2.5 inches, formulate the appropri-
ate testing hypothesis problem and carry out the test if α = 0.05.

13.6 Comparing the Parameters of Two Normal Distributions

Let X1, . . . , Xm be i.i.d. r.v.’s from N(μ1, σ2
1) and let Y1, . . . , Yn be i.i.d. r.v.’s

from N(μ2, σ2
2). It is assumed that the two random samples are independent

and that all four parameters involved are unknown. Set μ = μ1 − μ2 and τ = σ2
2/

σ2
1. The problem to be discussed in this section is that of testing certain

hypotheses about μ and τ. Each time either μ or τ will be the parameter of
interest, the remaining parameters serving as nuisance parameters.

Writing down the joint p.d.f. of the X’s and Y’s and reparametrizing the
family along the lines suggested in Remark 4 reveals that this joint p.d.f. has
the form (29), in either one of the parameters μ or τ. Furthermore, it can be
shown that the additional (but unspecified) regularity conditions of Theorem
5 are satisfied and therefore there exist UMPU tests for the hypotheses speci-
fied in (30). For some of these hypotheses, the tests have a simple form to
be explicitly mentioned below. For convenient writing, we shall employ the
notation

Z W= ( )′ = ( )′X X Y Ym n1 1, . . . , , , . . . ,

for the X’s and Y’s, respectively, and

z w= ( )′ = ( )′x x y ym n1 1, . . . , , , . . . ,

for their observed values.

13.6.1 Comparing the Variances of Two Normal Densities

For testing H1 :τ ≤ τ0 against A1 : τ > τ0, the test given byPROPOSITION 7
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0 C0

�

Fn � 1, m � 1

0 C0

�

Fn � 1, m � 1

Figure 13.14 H1 :τ ≤ τ0, A1 :τ > τ0. Figure 13.15 H′1 :τ ≥ τ0, A′1 :τ < τ0.
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where C is determined by

P F C C
m C

n
n m− − >( ) = =

−( )
−( )1 1 0 0

0

1

1
, , ,α

τ
(39)

is UMPU. The test given by (38) and (39) with reversed inequalities is UMPU
for testing H′ : τ ≥ τ0 against A′1 : τ < τ0. (See also Figs. 13.14 and 13.15; Fn−1,m−1

stands for an r.v. distributed as Fn−1,m−1.)

The power of the test is easily determined by the fact that
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∑
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∑

is Fn−1,m−1 distributed when τ obtains. Thus the power of the test depends only
on τ. For m = 25, n = 21, τ0 = 2 and α = 0.05, one has P(F20,24 > 5C/12) = 0.05,
hence 5C/12 = 2.0267 and C = 4.8640 for H1; for H′1,

P F
C

P F
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5
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⎛
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= >
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=

implies 12/5C = 2.0825 and hence C = 1.1525.
Now set

V

y y

x x y y
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i j
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m
z w, .( ) =

−( )

−( ) + −( )
=

==

∑

∑∑

1

1
0

2

1

2

0

2

11

τ

τ

(40)

Then we have the following result.
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For testing H4 :τ = τ0 against A4 : τ ≠ τ0, the test given by

φ z w
z w z w

,
, , ,

,

if  or  

otherwise,
( ) = ( ) < ( ) >⎧

⎨
⎪

⎩⎪

1

0

1 2V C V C

where C1, C2 are determined by
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= < <
⎡

⎣
⎢
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⎤

⎦
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= −
−( ) −( ) +( ) −( ), ,

,α

is UMPU; V(z, w) is defined by (40). (Br1,r2
 stands for an r.v. distributed as Beta

with r1, r2 degrees of freedom.) For the actual determination of C1, C2, we use
the incomplete Beta tables. (See, for example, New Tables of the Incomplete
Gamma Function Ratio and of Percentage Points of the Chi-Square and Beta
Distributions by H. Leon Harter, Aerospace Research Laboratories, Office of
Aerospace Research; also, Tables of the Incomplete Beta-Function by Karl
Pearson, Cambridge University Press.)

13.6.2 Comparing the Means of Two Normal Densities

In the present context, it will be convenient to set

t
y x

x x y yi jj

n

i

m
z w, .( ) = −

−( ) + −( )== ∑∑ 2 2

11

(41)

We shall also assume that σ2
1 = σ2

2 = σ2 (unspecified).

For testing H1 :μ ≤ 0 against A1 :μ > 0, where μ = μ2 − μ1, the test given by

φ z w
z w

,
, ,

,

if  

otherwise,
( ) = ( ) >⎧

⎨
⎪

⎩⎪

1

0

t C
(42)

where C is determined by

P t C C C
m n

m n
m n+ − >( ) = = + −

( ) + ( )2 0 0

2

1 1
α , , (43)

is UMPU. The test given by (42) and (43) with reversed inequalities is UMPU
for testing H′1 :μ ≥ 0 against A′1 : μ < 0; t(z, w) is given by (41). The determination
of the power of the test involves a non-central t-distribution, as was also the
case in Propositions 5 and 6.

For example, for m = 15, n = 10 and α = 0.05, one has for H1 :
P(t23 > C 23 6× ) = 0.05; hence C 23 6× = 1.7139 and C = 0.1459. For H′1,
C = −0.1459.

For testing H4 :μ = 0 against A4 : μ ≠ 0, the test given by

PROPOSITION 8

PROPOSITION 10

13.6 Comparing the Parameters of Two Normal Distributions 359
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φ z w
z w z w

,
, , ,if  or  

0, otherwise,
( ) = ( ) < − ( ) >⎧

⎨
⎪

⎩⎪

1 t C t C

where C is determined by

P t Cm n+ − >( ) =2 0 2α ,

C0 as above, is UMPU.
Again with m = 15, n = 10 and α = 0.05, one has P(t23 > C 23 6× ) = 0.025

and hence C 23 6× = 2.0687 and C = 0.1762.

Once again the determination of the power of the test involves the non-
central t-distribution.

REMARK 6 In Propositions 9 and 10, if the variances are not equal, the tests
presented above are not UMPU. The problem of comparing the means of two
normal densities when the variances are unequal is known as the Behrens–
Fisher problem. For this case, various tests have been proposed but we will not
discuss them here.

Exercises

13.6.1 Let Xi, i = 1, . . . , 9 and Yj, j = 1, . . . , 10 be independent random
samples from the distributions N(μ1, σ2

1) and N(μ2, σ2
2), respectively. Suppose

that the observed values of the sample s.d.’s are sX = 2, sY = 3. At level of
significance α = 0.05, test the hypothesis: H :σ1 = σ2 against the alternative A :σ1

≠ σ2 and find the power of the test at σ1 = 2, σ2 = 3. (Compute the value of the
test statistic, and set up the formulas for determining the cut-off points and the
power of the test.)

13.6.2 Let Xj, j = 1, . . . , 4 and Yj, j = 1, . . . , 4 be two independent random
samples from the distributions N(μ1, σ2

1) and N(μ2, σ2
2), respectively. Suppose

that the observed values of the X’s and Y’s are as follows:

x x x x

y y y y
1 2 3 4

1 2 3 4

10 1 8 4 14 3 11 7

9 0 8 2 12 1 10 3

= = = =
= = = =

. , . , . , . ,

. , . , . , . .

Test the hypothesis H :σ1 = σ2 against the alternative A :σ1 ≠ σ2 at level of
significance α = 0.05. (Compute the value of the test statistic, and set up the
formulas for determining the cut-off points and the power of the test.)

13.6.3 Five resistance measurements are taken on two test pieces and the
observed values (in ohms) are as follows:

x x x x x

y y y y y
1 2 3 4 5

1 2 3 4 5

0 118 0 125 0 121 0 117 0 120

0 114 0 115 0 119 0 120 0 110

= = = = =
= = = = =

. , . , . , . , .

. , . , . , . , . .

Make the appropriate assumptions and test the hypothesis H : σ1 = σ2 against
the alternative A : σ1 ≠ σ2 at level of significance α = 0.05. (Compute the value
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of the test statistic, and set up the formulas for determining the cut-off points
and the power of the test.)

13.6.4 Refer to Exercise 13.6.2 and suppose it is known that σ1 = 4 and σ2 =
3. Test the hypothesis H that the two means do not differ by more than 1 at
level of significance α = 0.05.

13.6.5 The breaking powers of certain steel bars produced by processes A
and B are r.v.’s distributed as normal with possibly different means but the
same variance. A random sample of size 25 is taken from bars produced by
each one of the processes, and it is found that x̄ = 60, sX = 6, ȳ = 65,
sY = 7. Test whether there is a difference between the two processes at the level
of significance α = 0.05.

13.6.6 Refer to Exercise 13.6.3, make the appropriate assumptions, and
test the hypothesis H : μ1 = μ2 against the alternative A : μ1 ≠ μ2 at level of
significance α = 0.05.

13.6.7 Let Xi, i = 1, . . . , n and Yi, i = 1, . . . , n be independent random
samples from the distributions N(μ1, σ2

1) and N(μ2, σ2
2), respectively, and sup-

pose that all four parameters are unknown. By setting Zi = Xi − Yi, we  have
that the paired r.v.’s Zi, i = 1, . . . , n, are independent and distributed as N(μ,
σ2) with μ = μ1 − μ2 and σ2 = σ2

1 + σ2
2. Then one may use Propositions 5 and 6 to

test hypotheses about μ.
Test the hypotheses H1 :μ ≤ 0 against A1 :μ > 0 and H2 :μ = 0 against

A2 :μ ≠ 0 at level of significance α = 0.05 for the data given in (i) Exercise 13.6.2;
(ii) Exercise 13.6.3.

13.7 Likelihood Ratio Tests

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ), θθθθθ ∈ ΩΩΩΩΩ ⊆ � r and let ωωωωω ⊂ ΩΩΩΩΩ. Set
L(ωωωωω) = f(x1; θθθθθ) · · · f(xn; θθθθθ) whenever θθθθθ ∈ ωωωωω, and L(ωωωωωc) = f(x1; θθθθθ) · · · f(xn; θθθθθ) when
θθθθθ is varying over ωωωωωc. Now, when both ωωωωω and ωωωωωc consist of a single point, then
L(ωωωωω) and L(ωωωωωc) are completely determined and for testing H : θθθθθ ∈ ωωωωω against
A : θ ∈ωc, the MP test rejects when the likelihood ratio (LR) L(ωωωωωc)/L(ωωωωω) is too
large (greater than or equal to a constant C determined by the size of the test.)
However, if ωωωωω and ωωωωωc contain more than one point each, then neither L(ωωωωω) nor
L(ωωωωωc) is determined by H and A and the above method of testing does not
apply. The problem can be reduced to it though by the following device. L(ωωωωω)
is to be replaced by L(ωωωωω̂) = max[L(θθθθθ); θθθθθ ∈ ωωωωω] and L(ωωωωωc) is to be replaced by
L(ωωωωω̂c) = max[L(θθθθθ); θθθθθ ∈ ωωωωωc]. Then for setting up a test, one would compare the
quantities L(ωωωωω̂) and L(ωωωωω̂c). In practice, however, the statistic L(ωωωωω̂c)/L(ΩΩΩΩΩ) is
used rather than L(ωωωωω̂c)/L(ωωωωω̂), where, of course, L(ΩΩΩΩΩ̂) = max[L(θθθθθ); θθθθθ ∈ ΩΩΩΩΩ].
(When we talk about a statistic, it will be understood that the observed values
have been replaced by the corresponding r.v.’s although the same notation will
be employed.) In terms of this statistic, one rejects H if L(ωωωωω̂)/L(ΩΩΩΩΩ̂) is too small,
that is, ≤C, where C is specified by the desired size of the test. For obvious
reasons, the test is called a likelihood ratio (LR) test. Of course, the test

13.7 Likelihood Ratio Tests 361
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specified by the Neyman–Pearson fundamental lemma is also a likelihood
ratio test.

Now the likelihood ratio test which rejects H whenever L(ωωωωω̂)/L(ΩΩΩΩΩ̂) is too
small has an intuitive interpretation, as follows: The quantity L(ωωωωω̂) and the
probability element L(ωωωωω̂)dx1 · · · dxn for the discrete and continuous case, re-
spectively, is the maximum probability of observing x1, . . . , xn if θθθθθ lies in ωωωωω.
Similarly, L(ΩΩΩΩΩ̂) and L(ΩΩΩΩΩ̂)dx1 · · · dxn represent the maximum probability for
the discrete and continuous case, respectively, of observing x1, . . . , xn without
restrictions on θθθθθ. Thus, if θθθθθ ∈ωωωωω, as specified by H, the quantities L(ωωωωω̂) and L(ΩΩΩΩΩ̂)
will tend to be close together (by an assumed continuity (in θθθθθ) of the likelihood
function L(θθθθθ | x1, . . . , xn)), and therefore λ will be close to 1. Should λ be too
far away from 1, the data would tend to discredit H, and therefore H is to be
rejected.

The notation λ = L(ωωωωω̂)/L(ΩΩΩΩΩ̂) has been in wide use. (Notice that 0 < λ ≤ 1.)
Also the statistic −2 logλ rather than λ itself is employed, the reason being
that, under certain regularity conditions, the asymptotic distribution of
−2 log λ, under H, is known. Then in terms of this statistic, one rejects H
whenever −2 logλ > C, where C is determined by the desired level of the test.
Of course, this test is equivalent to the LR test. In carrying out the likelihood
ratio test in actuality, one is apt to encounter two sorts of difficulties. First is
the problem of determining the cut-off point C and second is the problem of
actually determining L(ωωωωω̂) and L(ΩΩΩΩΩ̂). The first difficulty is removed at the
asymptotic level, in the sense that we may use as an approximation (for
sufficiently large n) the limiting distribution of −2 logλ for specifying C. The
problem of finding L(ΩΩΩΩΩ̂) is essentially that of finding the MLE of θθθθθ. Calculating
L(ωωωωω̂) is a much harder problem. In many cases, however, H is simple and then
no problem exists.

In spite of the apparent difficulties that a likelihood ratio test may present,
it does provide a unified method for producing tests. Also in addition to its
intuitive interpretation, in many cases of practical interest and for a fixed
sample size, the likelihood ratio test happens to coincide with or to be close to
other tests which are known to have some well defined optimal properties such
as being UMP or being UMPU. Furthermore, under suitable regularity condi-
tions, it enjoys some asymptotic optimal properties as well.

In the following, a theorem referring to the asymptotic distribution of
−2 log λ is stated (but not proved) and then a number of illustrative examples
are discussed.

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ), θθθθθ ∈ΩΩΩΩΩ, where ΩΩΩΩΩ is an r-dimen-
sional subset of � r and let ωωωωω be an m-dimensional subset of ΩΩΩΩΩ. Suppose also
that the set of positivity of the p.d.f. does not depend on θθθθθ. Then under some
additional regularity conditions, the asymptotic distribution of −2 logλ is χ2

r−m,
provided θθθθθ ∈ωωωωω ; that is, as n → ∞,

P x G x xθθ θθ ωω− ≤( ) → ( ) ≥ ∈2 0log for allλ , ,

THEOREM 6
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where G is the d.f. of a χ2
r−m distribution.

Since in using the LR test, or some other test equivalent to it, the alterna-
tive A specifies that θθθθθ ∈ ωc , this will not have to be mentioned explicitly in the
sequel. Also the level of significance will always be α.

(Testing the mean of a normal distribution) Let X1, . . . , Xn be i.i.d. r.v.’s from
N(μ, σ2), and consider the following testing hypotheses problems.

i) Let σ be known and suppose we are interested in testing the hypothesis
H :μ ∈ω = {μ0}.
Since the MLE of μ is μ̂ΩΩΩΩΩ = x̄ (see Example 12, Chapter 12), we have
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In this example, it is much easier to determine the distribution of −2 logλ
rather than that of λ. In fact,

− = −( )2
2 0

2
log λ

σ
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x

and the LR test is equivalent to
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,

if

otherwise,

n x
C

where C is determined by

P Cχ α1
2 >( ) = .

(Recall that z = (x1, . . . , xn)′.)
Notice that this is consistent with Theorem 6. It should also be pointed

out that this test is the same as the test found in Example 10 and therefore
the present test is also UMPU.

ii) Consider the same problem as in (i) but suppose now that σ is also un-
known. We are still interested in testing the hypothesis H :μ = μ0 which now
is composite, since σ is unspecified.
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Now the MLE’s of σ2, under ΩΩΩΩΩ = {θθθθθ = (μ, σ)′; μ ∈ �, σ > 0} and ωωωωω =
{θ = (μ, σ)′; μ = μ0, σ > 0} are, respectively,
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(see Example 12, Chapter 12). Therefore
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Then λ < λ0 is equivalent to t2 > C for a certain constant C. That is, the LR
test is equivalent to the test
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where C is determined by

P t Cn− >( ) =1 2α .

Notice that, by Proposition 6, the test just derived is UMPU.

(Comparing the parameters of two normal distributions) Let X1, . . . , Xm be
i.i.d. r.v.’s from N(μ1, σ2

1) and Y1, . . . , Yn be i.i.d. r.v.’s from N(μ2, σ2
2). Suppose

that the X’s and Y’s are independent and consider the following testing hy-
potheses problems. In the present case, the joint p.d.f. of the X’s and Y’s is
given by

1

2

1 1

2

1

21 2 1
2 1

2

2
2 2

2

11π σ σ σ
μ

σ
μ

( )
− −( ) − −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥+

==
∑∑m n m n i j
j

m

i

m

x yexp .

i) Assume that σ1 = σ2 = σ unknown and we are interested in testing the
hypothesis H :μ1 = μ2 (= μ unspecified). Under ΩΩΩΩΩ = {θθθθθ = (μ1, μ2, σ)′; μ1, μ2 ∈�,
σ > 0}, the MLE’s of the parameters involved are given by
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Therefore the LR test which rejects H whenever λ < λ0 is equivalent to the
following test:

φ z w,
if or

otherwise,
( ) =

< − > >( )⎧
⎨
⎪

⎩⎪

1 0

0

,

,

t C t C C

where C is determined by

P t Cm n+ − >( ) =2 2α ,

and z = (x1, . . . , xm)′, w = (y1, . . . , yn)′, because, under H, t is distributed as
tm+n−2. We notice that the test φ above is the same as the UMPU test found in
Proposition 10.
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ii) Now we are interested in testing the hypothesis H : σ1 = σ2 (= σ un-
specified). Under ΩΩΩΩΩ = {θθθθθ = (μ1, μ2, σ1, σ2)′; μ1, μ2 ∈�, σ1, σ2 > 0}, we have
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where f = [Σm
i=1(xi − x̄)2/(m − 1)]/[Σn

j=1(yj − ȳ)2/(n − 1)].
Therefore the LR test, which rejects H whenever λ < λ0, is equivalent to

the test based on f and rejecting H if
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for a certain constant .

Setting g( f) for the left hand side of this last inequality, we have that g(0) = 0
and g(f) → 0 as f → ∞. Furthermore, it can be seen (see Exercise 13.7.4) that
g(f) has a maximum at the point

f
m n

n m
max =

−( )
−( )

1

1
;

it is increasing between 0 and fmax and decreasing in (fmax, ∞). Therefore

g f C f C f C( ) < < >if and only if or1 2

for certain specified constants C1 and C2.
Now, if in the expression of f the x’s and y’s are replaced by X’s and Y’s,

respectively, and denote by F the resulting statistic, it follows that, under H, F
is distributed as Fm−1,n−1. Therefore the constants C1 and C2 are uniquely deter-
mined by the following requirements:

P F C F C g C g Cm n m n− − − −< >( ) = ( ) = ( )1 1 1 1 1 2 1 2, , .or andα

However, in practice the C1 and C2 are determined so as to assign probability
α/2 to each one of the two tails of the Fm−1,n−1 distribution; that is, such that

P F C P F Cm n m n− − − −<( ) = >( ) =1 1 1 1 1 2 2, , .α

(See also Fig. 13.16.)

0 C1 C2

Fm � 1, n � 1

�
2

�
2 Figure 13.16
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Exercises

13.7.1 Refer to Exercise 13.4.2 and use the LR test to test the hypothesis
H :p = 0.25 against the alternative A :p ≠ 0.25. Specifically, set λ(t) for the
likelihood function, where t = x1 + x2 + x3, and:

i) Calculate the values λ(t) for t = 0, 1, 2, 3 as well as the corresponding
probabilities under H;

ii) Set up the LR test, in terms of both λ(t) and t;

iii) Specify the (randomized) test of level of significance α = 0.05;

iv) Compare the test in part (iii) with the UMPU test constructed in Exercise
13.4.2.

13.7.2 A coin, with probability p of falling heads, is tossed 100 times and 60
heads are observed. At level of significance α = 0.1:

i) Test the hypothesis H :p = 1
2

 against the alternative A :p ≠ 1
2

 by using the
LR test and employ the appropriate approximation to determine the cut-
off point;

ii) Compare the cut-off point in part (i) with that found in Exercise 13.4.1.

13.7.3 If X1, . . . , Xn are i.i.d. r.v.’s from N(μ, σ2), derive the LR test and the
test based on −2 logλ for testing the hypothesis H :σ = σ0 first in the case that
μ is known and secondly in the case that μ is unknown. In the first case,
compare the test based on −2 logλ with that derived in Example 11.

13.7.4 Consider the function
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13.8 Applications of LR Tests: Contingency Tables, Goodness-of-Fit Tests

Now we turn to a slightly different testing hypotheses problem, where the LR
is also appropriate. We consider an r. experiment which may result in k
possibly different outcomes denoted by Oj, j = 1, . . . , k. In n independent
repetitions of the experiment, let pj be the (constant) probability that each one
of the trials will result in the outcome Oj and denote by Xj the number of trials
which result in Oj, j = 1, . . . , k. Then the joint distribution of the X’s is the
Multinomial distribution, that is,
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We may suspect that the p’s have certain specified values; for example, in
the case of a die, the die may be balanced. We then formulate this as a
hypothesis and proceed to test it on the basis of the data. More generally, we
may want to test the hypothesis that θ lies in a subset ωωωωω of ΩΩΩΩΩ.

Consider the case that H : θθθθθ ∈ ωωωωω = {θθθθθ0} = {(p10, . . . , pk0)′}. Then, under ωωωωω,
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while, under ΩΩΩΩΩ,
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where p̂j = xj/n are the MLE’s of pj, j = 1, . . . , k (see Example 11, Chapter 12).
Therefore
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and H is rejected if −2 logλ > C. The constant C is determined by the fact that
−2 log λ is asymptotically χ2

k−1 distributed under H, as it can be shown on the
basis of Theorem 6, and the desired level of significance α.

Now consider r events Ai, i = 1, . . . , r which form a partition of the sample
space S and let {Bj, j = 1, . . . , s} be another partition of S. Let pij = P(Ai ∩ Bj)
and let

p p p pi ij j ij
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j

s

. ., .= =
==
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11
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Then, clearly, pi. = P(Ai), p.j = P(Bj) and

p p pi j ij
j

s
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r

j

s
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r

. . .= = =
====
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1111

Furthermore, the events {A1, . . . , Ar} and {B1, . . . , Bs} are independent if and
only if pij = pi.p.j, i = 1, . . . , r, j = 1, . . . , s.

A situation where this set-up is appropriate is the following: Certain
experimental units are classified according to two characteristics denoted
by A and B and let A1, . . . , Ar be the r levels of A and B1, . . . , Br be the J
levels of B. For instance, A may stand for gender and A1, A2 for male and
female, and B may denote educational status comprising the levels B1 (el-
ementary school graduate), B2 (high school graduate), B3 (college graduate),
B4 (beyond).

We may think of the rs events Ai ∩ Bj being arranged in an r × s rectangular
array which is known as a contingency table; the event Ai ∩ Bj is called the
(i, j)th cell.

Again consider n experimental units classified according to the character-
istics A and B and let Xij be the number of those falling into the (i, j)th cell. We
set
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It is then clear that
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Let θθθθθ = (pij, i = 1, . . . , r, j = 1, . . . , s)′. Then the set ΩΩΩΩΩ of all possible values of
θθθθθ is an (rs −1)-dimensional hyperplane in � rs. Namely, ΩΩΩΩΩ = {θθθθθ = (pij, i = 1, . . . ,
r, j = 1, . . . , s)′ ∈ � rs; pij > 0, i = 1, . . . , r, j = 1, . . . , s, Σr

i =1 Σs
j=1 pij = 1}.

Under the above set-up, the problem of interest is that of testing whether
the characteristics A and B are independent. That is, we want to test the
existence of probabilities pi, qj, i = 1, . . . , r, j = 1, . . . , s such that H :pij = piqj,
i = 1, . . . , r, j = 1, . . . , s. Since for i = 1, . . . , r − 1 and j = 1, . . . , s − 1 we have
the r + s − 2 independent linear relationships
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i

r

j

s

= =
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11

it follows that the set ωωωωω, specified by H, is an (r + s − 2)-dimensional subset
of ΩΩΩΩΩ.

Next, if xij  is the observed value of Xij and if we set
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the likelihood function takes the following forms under ΩΩΩΩΩ and ωωωωω, respectively.
Writing Πi,j instead of Πr

i=1 Πs
j =1, we have
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Now the MLE’s of pij, pi and qi are, under ΩΩΩΩΩ and ωωωωω, respectively,
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It can be shown that the (unspecified) assumptions of Theorem 6 are
fulfilled in the present case and therefore −2 logλ is asymptotically χ2

f, under ωωωωω,
where f = (rs − 1) − (r + s − 2) = (r − 1)(s − 1) according to Theorem 6. Hence
the test for H can be carried out explicitly.

Now in a multinomial situation, as described at the beginning of this
section and in connection with the estimation problem, it was seen (see Section
12.9, Chapter 12) that certain chi-square statistics were appropriate, in a sense.
Recall that

χ 2

2

1

=
−( )

=
∑

X np

np
j j

jj

k

.
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This χ2 r.v. can be used for testing the hypothesis

H p pk: , . . . , ,θθ ωω θθ∈ = { } = ( )′⎧
⎨
⎩

⎫
⎬
⎭

0 10 0

where θθθθθ = (p1, . . . , pk)′. That is, we consider

χωω
2 0

2

01

=
−( )

=
∑

x np

np
j j

jj

k

and reject H if χ2
ωωωωω is too large, in the sense of being greater than a certain

constant C which is specified by the desired level of the test. It can further be
shown that, under ωωωωω, χ2

ωωωωω is asymptotically distributed as χ2
k−1. In fact, the present

test is asymptotically equivalent to the test based on −2 logλ.
For the case of contingency tables and the problem of testing indepen-

dence there, we have

χωω
2

2

=
−( )∑

x np q

np q
ij i j

i ji j,

,

where ωωωωω is as in the previous case in connection with the contingency tables.
However, χ2

ωωωωω is not a statistic since it involves the parameters pi, qj. By replac-
ing them by their MLE’s, we obtain the statistic

χ ˆ
, ,

, ,,

ˆ ˆ

ˆ ˆ
.ωω

ωω ωω

ωω ωω

2

2

=
−( )∑

x np p

np q
ij i j

i ji j

By means of χω̂ω
2 , one can test H by rejecting it whenever χω̂ω

2 > C. The constant
C is to be determined by the significance level and the fact that the asymptotic
distribution of χω̂ω

2 , under ωωωωω, is χ2
f with f = (r − 1)(s − 1), as can be shown. Once

more this test is asymptotically equivalent to the corresponding test based on
−2 log λ.

Tests based on chi-square statistics are known as chi-square tests or
goodness-of-fit tests for obvious reasons.

Exercises

13.8.1 Show that ˆ
,pij

xij
nΩΩ = , ˆ

,
.pi

xi
nωω = , ˆ

,qj

x

n
j

ωω = ⋅  as claimed in the discussion in
this section.

In Exercises 13.8.2–13.8.9 below, the test to be used will be the appropriate χ2

test.

13.8.2 Refer to Exercise 13.7.2 and test the hypothesis formulated there at
the specified level of significance by using a χ 2-goodness-of-fit test. Also,
compare the cut-off point with that found in Exercise 13.7.2(i).

Exercises 373
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13.8.3 A die is cast 600 times and the numbers 1 through 6 appear with the
frequencies recorded below.

1 2 3 4 5 6

100 94 103 89 110 104

At the level of significance α = 0.1, test the fairness of the die.

13.8.4 In a certain genetic experiment, two different varieties of a certain
species are crossed and a specific characteristic of the offspring can only occur
at three levels A, B and C, say. According to a proposed model, the probabili-
ties for A, B and C are 1

12
, 3

12
 and 8

12
, respectively. Out of 60 offsprings, 6, 18,

and 36 fall into levels A, B and C, respectively. Test the validity of the
proposed model at the level of significance α = 0.05.

13.8.5 Course work grades are often assumed to be normally distributed. In
a certain class, suppose that letter grades are given in the following manner: A
for grades in [90, 100], B for grades in [75, 89], C for grades in [60, 74], D for
grades in [50, 59] and F for grades in [0, 49]. Use the data given below to check
the assumption that the data is coming from an N(75, 92) distribution. For this
purpose, employ the appropriate χ2 test and take α = 0.05.

A B C D F

3 12 10 4 1

13.8.6 It is often assumed that I.Q. scores of human beings are normally
distributed. Test this claim for the data given below by choosing appropriately
the Normal distribution and taking α = 0.05.

x ≤ 90 90 < x ≤ 100 100 < x ≤ 110 110 < x ≤ 120 120 < x ≤ 130 x > 130

10 18 23 22 18 9

(Hint: Estimate μ and σ2 from the grouped data; take the midpoints for the
finite intervals and the points 65 and 160 for the leftmost and rightmost
intervals, respectively.)

13.8.7 Consider a group of 100 people living and working under very similar
conditions. Half of them are given a preventive shot against a certain disease
and the other half serve as control. Of those who received the treatment, 40
did not contract the disease whereas the remaining 10 did so. Of those not
treated, 30 did contract the disease and the remaining 20 did not. Test effec-
tiveness of the vaccine at the level of significance α = 0.05.
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13.8.8 On the basis of the following scores, appropriately taken, test
whether there are gender-associated differences in mathematical ability (as is
often claimed!). Take α = 0.05.

Boys: 80 96 98 87 75 83 70 92 97 82
Girls: 82 90 84 70 80 97 76 90 88 86

(Hint: Group the grades into the following six intervals: [70, 75), [75, 80), [80,
85), [85, 90), [90, 100).)

13.8.9 From each of four political wards of a city with approximately the
same number of voters, 100 voters were chosen at random and their opinions
were asked regarding a certain legislative proposal. On the basis of the data
given below, test whether the fractions of voters favoring the legislative pro-
posal under consideration differ in the four wards. Take α = 0.05.

WARD
Totals

1 2 3 4

Favor
Proposal 37 29 32 21 119

Do not favor
proposal 63 71 68 79 281

Totals 100 100 100 100 400

13.8.10 Let X1, . . . , Xn be independent r.v.’s with p.d.f. f(·; θθθθθ), θθθθθ ∈ ΩΩΩΩΩ ⊆ � r.
For testing a hypothesis H against an alternative A at level of significance α, a
test φ is said to be consistent if its power βφ, evaluated at any fixed θθθθθ ∈ ΩΩΩΩΩ,
converges to 1 as n → ∞. Refer to the previous exercises and find at least one
test which enjoys the property of consistency. Specifically, check whether the
consistency property is satisfied with regards to Exercises 13.2.3 and 13.3.2.

13.9 Decision-Theoretic Viewpoint of Testing Hypotheses

For the definition of a decision, loss and risk function, the reader is referred to
Section 6, Chapter 12.

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ), θθθθθ ∈ ΩΩΩΩΩ ⊆ � r, and let ωωωωω be a
(measurable) subset of ΩΩΩΩΩ. Then the hypothesis to be tested is H : θθθθθ ∈ωωωωω against
the alternative A : θθθθθ ∈ωωωωωc. Let B be a critical region. Then by setting z = (x1, . . . ,
xn)′, in the present context a non-randomized decision function δ = δ(z) is
defined as follows:

δ z
z( ) =

∈⎧
⎨
⎩

1

0

,

,

if

otherwise.

B

13.9 Decision-Theoretic Viewpoint of Testing Hypotheses 375
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We shall confine ourselves to non-randomized decision functions only. Also an
appropriate loss function, corresponding to δ, is of the following form:

L L

L

c

c

θθ
θθ ωω θθ ωω
θθ ωω

θθ ωω

;

, , .

,

, ,

if and  or  and 

if and

if and

δ
δ δ
δ

δ
( ) =

∈ = ∈ =
∈ =

∈ =

⎧

⎨
⎪

⎩
⎪

0 0 1

1

0
1

2

where L1, L2 > 0.
Clearly, a decision function in the present framework is simply a test

function. The notation φ instead of δ could be used if one wished.
By setting Z = (X1, . . . , Xn)′, the corresponding risk function is

R    θθ θθ θθ ΖΖθθ θθ; ; ; ,δ( ) = ( ) ∈( ) + ( ) ∈( )L P B L P Bc1 0Z

or

R
if

if
θθ

θθ ωω

θθ ωω

θθ

θθ

;
,

, .
δ( ) =

∈( ) ∈

∈( ) ∈

⎧
⎨
⎪

⎩⎪

L P B

L P Bc c

1

2

Z

Z
(44)

In particular, if ωωωωω = {θθθθθ0}, ωωωωωc = {θθθθθ1} and Pθθθθθ0
(Z ∈ B) = α, Pθθθθθ1

(Z ∈ B) = β, we have

R
if

if
θθ

θθ θθ

θθ θθ
;

,

, .
δ

α
β( ) =

=

−( ) =

⎧
⎨
⎪

⎩⎪

L

L
1 0

2 11
(45)

As in the point estimation case, we would like to determine a decision
function δ for which the corresponding risk would be uniformly (in θθθθθ) smaller
than the risk corresponding to any other decision function δ*. Since this is not
feasible, except for trivial cases, we are led to minimax decision and Bayes
decision functions corresponding to a given prior p.d.f. on ΩΩΩΩΩ. Thus in the case
that ωωωωω = {θθθθθ0} and ωωωωωc = {θθθθθ1}, δ is minimax if

max R   R  max R   R  θθ θθ θθ θθ0 1 0 1; , ; ; * , ; *δ δ δ δ( ) ( )[ ] ≤ ( ) ( )[ ]
for any other decision function δ*.

Regarding the existence of minimax decision functions, we have the result
below. The r.v.’s X1, . . . , Xn is a sample whose p.d.f. is either f(·; θθθθθ0) or else
f(·; θθθθθ1). By setting f0 = f(·; θθθθθ0) and f1 = f(·; θθθθθ1), we have

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ), θθθθθ ∈ ΩΩΩΩΩ = {θθθθθ0, θθθθθ1}. We are
interested in testing the hypothesis H : θθθθθ = θθθθθ0 against the alternative A : θθθθθ = θθθθθ1 at
level α. Define the subset B of � n as follows: B = {z ∈ � n; f(z; θθθθθ1) > Cf(z; θθθθθ0)}
and assume that there is a determination of the constant C such that

L P B L P Bc
1 2 0 10 1θθ θθ θθ θθZ Z∈( ) = ∈( ) ( ) = ( )( )equivalently,  R  R  ; ; .δ δ (46)

Then the decision function δ defined by

THEOREM 7
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δ z
z( ) =

∈⎧
⎨
⎩

1

0

,

,

if

otherwise,

B
(47)

is minimax.

PROOF For simplicity, set P0 and P1 for Pθθθθθ0
 and Pθθθθθ1

, respectively, and similarly
R(0; δ), R(1; δ) for R(θθθθθ0; δ) and R(θθθθθ1; δ). Also set P0(Z ∈ B) = α and
P1(Z ∈ Bc) = 1 − β. The relation (45) implies that

R  and R  0 1 11 2; ; .δ α δ β( ) = ( ) = −( )L L

Let A be any other (measurable) subset of � n and let δ* be the corresponding
decision function. Then

R  and R  0 11 0 2 1; * ; * .δ δ( ) = ∈( ) ( ) = ∈( )L P A L P AcZ Z

Consider R(0; δ) and R(0; δ*) and suppose that R(0; δ*) ≤ R(0; δ). This is
equivalent to L1P0(Z ∈ A) ≤ L1P0(Z ∈ B), or

P A0 Z ∈( ) ≤ α .

Then Theorem 1 implies that P1(Z ∈ A) ≤ P1(Z ∈ B) because the test defined
by (47) is MP in the class of all tests of level ≤α. Hence

P A P B L P A L P Bc c c c
1 1 2 1 2 1Z Z Z Z∈( ) ≥ ∈( ) ∈( ) ≥ ∈( ), ,or

or equivalently, R(1; δ*) ≥ R(1; δ). That is, if

R  R  then R  R  0 0 1 1; * ; , ; ; * .δ δ δ δ( ) ≤ ( ) ( ) ≤ ( ) (48)

Since by assumption �(0; δ) = �(1; δ), we have

max R   R  R  R  max R   R  0 1 1 1 0 1; * , ; * ; * ; ; , ; ,δ δ δ δ δ δ( ) ( )[ ] = ( ) ≥ ( ) = ( ) ( )[ ]
(49)

whereas if R(0; δ) < R(0; δ*), then

max R   R  R  R  max R   R  0 1 0 0 0 1; * , ; * ; * ; ; , ; .δ δ δ δ δ δ( ) ( )[ ] ≥ ( ) > ( ) = ( ) ( )[ ]
(50)

Relations (49) and (50) show that δ is minimax, as was to be seen. ▲

REMARK 7 It follows that the minimax decision function defined by (46) is
an LR test and, in fact, is the MP test of level P0 (Z ∈ B) constructed in
Theorem 1.

We close this section with a consideration of the Bayesian approach. In
connection with this it is shown that, corresponding to a given p.d.f. on ΩΩΩΩΩ =
{θθθθθ0, θθθθθ1}, there is always a Bayes decision function which is actually an LR test.
More precisely, we have
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Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ), θθθθθ ∈ ΩΩΩΩΩ = {θθθθθ0, θθθθθ1} and let λ0 = {p0,
p1} (0 < p0 < 1) be a probability distribution on ΩΩΩΩΩ. Then for testing the
hypothesis H : θθθθθ = θθθθθ0 against the alternative A : θθθθθ = θθθθθ1, there exists a Bayes
decision function δλ0

corresponding to λ0 = {p0, p1}, that is, a decision rule which
minimizes the average risk R(θθθθθ0; δ)p0 + R(θθθθθ1; δ)p1, and is given by

δλ0

1

0
z

z( ) =
∈⎧

⎨
⎩

,

,

if

otherwise,

B

where B = {z ∈ Rn; f(z; θθθθθ1) > Cf(z; θθθθθ0)} and C = p0L1/p1L2.

PROOF Let Rλ0
(δ) be the average risk corresponding to λ0. Then by virtue of

(44), and by employing the simplified notation used in the proof of Theorem
7, we have

R L P B p L P B p

p L P B p L P B

p L p L P B p L P B

c
λ δ

0 1 0 0 2 1 1

0 1 0 1 2 1

1 2 0 1 0 1 2 1

1

( ) = ∈( ) + ∈( )
= ∈( ) + − ∈( )[ ]
= + ∈( ) − ∈( )[ ]

Z Z

Z Z

Z Z (51)

and this is equal to

p L p L f p L f d
B1 2 0 1 0 1 2 1+ ( ) − ( )[ ]∫ z z z;  ;  θθ θθ

for the continuous case and equal to

p L p L f p L f
B

1 2 0 1 0 1 2 1+ ( ) − ( )[ ]
∈
∑ z z
z

;  ;  θθ θθ

for the discrete case. In either case, it follows that the δ which minimizes Rλ0
(δ)

is given by

δλ0

1 0

0

0 1 0 1 2 1z
z z( ) = ( ) − ( ) <⎧

⎨
⎪

⎩⎪

,

,

if ;  ;  

otherwise;

p L f p L fθθ θθ

equivalently,

δλ0

1

0
z

z( ) =
∈⎧

⎨
⎩

,

,

if

otherwise,

B

where

  

B f
p L
p L

fn= ∈ ( ) > ( )⎧
⎨
⎩

⎫
⎬
⎭

z z z� ; , ;  ;  θθ θθ1
0 1

1 2
0

as was to be seen. ▲

REMARK 8 It follows that the Bayesian decision function is an LR test and
is, in fact, the MP test for testing H against A at the level P0(Z ∈ B), as follows
by Theorem 1.

THEOREM 8
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The following examples are meant as illustrations of Theorems 7 and 8.

Let X1, . . . , Xn be i.i.d. r.v.’s from N(θ, 1). We are interested in determining
the minimax decision function δ for testing the hypothesis H : θ = θ0 against the
alternative A :θ = θ1. We have

f

f

n x

n

z

z

;

;

exp

exp

θ

θ

θ θ

θ θ

1

0

1 0

1
2

0
21

2

( )
( ) =

−( )[ ]
−( )⎡

⎣
⎢

⎤

⎦
⎥

,

so that f(z; θ1) > Cf(z; θ0) is equivalent to

exp  exp orn x C n x Cθ θ θ θ1 0 1
2

0
2

0

1
2

−( )[ ] > −( )⎡

⎣
⎢

⎤

⎦
⎥ > ,

where

C
C

n
0 1 0

1 0

1
2

= +( ) +
−( ) >( )θ θ

θ θ
θ θlog

for 1 2 .

Then condition (46) becomes

L P X C L P X C1 0 2 00 1θ θ>( ) = ≤( ).
As a numerical example, take θ0 = 0, θ1 = 1, n = 25 and L1 = 5, L2 = 2.5. Then

L P X C L P X C1 0 2 00 1θ θ>( ) = <( )
becomes

P X C P X Cθ θ1 00 02<( ) = >( ),
or

P n X C P n X Cθ θθ θ
1 01 0 0 05 1 2 5−( ) < −( )[ ] = −( ) >[ ],

or

Φ Φ Φ Φ5 5 2 1 5 2 5 5 5 10 0 0 0C C C C−( ) = − ( )[ ] ( ) − −( ) =, or

Hence C0 = 0.53, as is found by the Normal tables.
Therefore the minimax decision function is given by

δ z( ) =
>⎧

⎨
⎩

1 0 53

0

, .

,

if

otherwise.

x

The type-I error probability of this test is

P X P Nθ0
0 53 0 1 0 53 5 1 2 65 1 0 996 0 004>( ) = ( ) > ×[ ] = − ( ) = − =. , . . . .Φ

EXAMPLE 13

13.9 Decision-Theoretic Viewpoint of Testing Hypotheses 379
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and the power of the test is

P X P Nθ1
0 53 0 1 5 0 53 1 2 35 0 9906>( ) = ( ) > −( )[ ] = ( ) =. , . . . .Φ

Therefore relation (44) gives

R Rθ δ θ δ0 15 0 004 0 02 2 5 0 009 0 0235; . . ; . . . . and  ( ) = × = ( ) = × =

Thus

max    R Rθ δ θ δ0 1 0 0235; , ; . ,( ) ( )[ ] =

corresponding to the minimax δ given above.

Refer to Example 13 and determine the Bayes decision function correspond-
ing to λ0 = {p0, p1 }.

From the discussion in the previous example it follows that the Bayes
decision function is given by

δλ0

1

0
0z( ) =

>⎧
⎨
⎩

,

,

if

otherwise,

x C

where

C
C

n
C

p L
p L0 1 0

1 0

0 1

1 2

1
2

= +( ) +
−( )θ θ

θ θ
log

and .

Suppose p0 = 2
3

, p1 = 1
3
. Then C = 4 and C0 = 0.555451 (≈0.55). Therefore the

Bayes decision function corresponding to λ′0 = { 2
3

, 1
3
} is given by

′ ( ) =
>⎧

⎨
⎩

δλ0

1 0 55

0
z

, .

,

if

otherwise.

x

The type-I error probability of this test is Pθ0
(X̄ > 0.55) = P[N(0, 1) > 2.75] =

1 − Φ(2.75) = 0.003 and the power of the test is Pθ1
(XX̄ > 0.55) = P[N(1, 1) > −

2.25] = Φ(2.25) = 0.9878. Therefore relation (51) gives that the Bayes risk
corresponding to { 2

3
, 1

3
} is equal to 0.0202.

Let X1, . . . , Xn be i.i.d. r.v.’s from B(1, θ). We are interested in determining the
minimax decision function δ for testing H : θ = θ0 against A : θ = θ1.

We have

f

f
x x

x n x

j
j

nz

z

;

;
where

θ

θ
θ
θ

θ
θ

1

0

1

0

1

0 1

1
1

( )
( ) =

⎛
⎝⎜

⎞
⎠⎟

−
−

⎛
⎝⎜

⎞
⎠⎟

=
−

=
∑, ,

so that f(z; θθθθθ1) > Cf(z; θθθθθ0) is equivalent to

x Clog
1

1

0 1

0 1
0

−( )
−( ) > ′
θ θ

θ θ
,

EXAMPLE 15

EXAMPLE 14
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where

′ = − −
−

C C n0
1

0

1
1

log log
θ
θ

.

Let now θ0 = 0.5, θ1 = 0.75, n = 20 and L1 = 1071/577 ≈ 1.856, L2 = 0.5. Then

1

1
3 1

0 1

0 1

−( )
−( ) = >( )θ θ

θ θ

and therefore f(z; θ1) > Cf(z; θ0) is equivalent to x > C0, where

C C n0
1

0

1 0

0 1

1
1

1

1
= − −

−
⎛
⎝⎜

⎞
⎠⎟

−( )
−( )log log log

θ
θ

θ θ

θ θ
.

Next, X = Σn
j=1Xj is B(n, θ) and for C0 = 13, we have P0.5(X > 13) = 0.0577 and

P0.75(X > 13) = 0.7858, so that P0.75(X ≤ 13) = 0.2142. With the chosen values of
L1 and L2, it follows then that relation (46) is satisfied. Therefore the minimax
decision function is determined by

δ z( ) =
>⎧

⎨
⎩

1 13

0

,

,

if

otherwise.

x

Furthermore, the minimax risk is equal to 0.5 × 0.2142 = 0.1071.

13.9 Decision-Theoretic Viewpoint of Testing Hypotheses 381
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14.1 Some Basic Theorems of Sequential Sampling

In all of the discussions so far, the random sample Z1, . . . , Zn, say, that we have
dealt with was assumed to be of fixed size n. Thus, for example, in the point
estimation and testing hypotheses problems the sample size n was fixed be-
forehand, then the relevant random experiment was supposed to have been
independently repeated n times and finally, on the basis of the outcomes, a
point estimate or a test was constructed with certain optimal properties.

Now, whereas in some situations the random experiment under considera-
tion cannot be repeated at will, in many other cases this is, indeed, the case. In
the latter case, as a rule, it is advantageous not to fix the sample size in
advance, but to keep sampling and terminate the experiment according to a
(random) stopping time.

Let {Zn} be a sequence of r.v.’s. A stopping time (defined on this sequence) is
a positive integer-valued r.v. N such that, for each n, the event (N = n) depends
on the r.v.’s Z1, . . . , Zn alone.

REMARK 1 In certain circumstances, a stopping time N is also allowed to
take the value ∞ but with probability equal to zero. In such a case and when
forming EN, the term ∞ · 0 appears, but that is interpreted as 0 and no problem
arises.

Next, suppose we observe the r.v.’s Z1, Z2, . . . one after another, a single
one at a time (sequentially), and we stop observing them after a specified event
occurs. In connection with such a sampling scheme, we have the following
definition.

A sampling procedure which terminates according to a stopping time is called
a sequential procedure.

382

Chapter 14

Sequential Procedures

DEFINITION 2
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Thus a sequential procedure terminates with the r.v. ZN, where ZN is
defined as follows:

  the value of  at  is equal to Z s Z sN N s∈ ( )( )S . (1)

Quite often the partial sums SN = Z1 + · · · + ZN defined by

  S s Z s Z s sN N s( ) = ( ) + ⋅ ⋅ ⋅ + ( ) ∈( )1 , S (2)

are of interest and one of the problems associated with them is that of finding
the expectation ESN of the r.v. SN. Under suitable regularity conditions, this
expectation is provided by a formula due to Wald.

(Wald’s lemma for sequential analysis) For j ≥ 1, let Zj be independent r.v.’s
(not necessarily identically distributed) with identical first moments such that
E|Zj| = M < ∞, so that EZj = μ is also finite. Let N be a stopping time, defined
on the sequence {Zj}, j ≥ 1, and assume that EN is finite. Then E|SN| < ∞ and
ESN = μEN, where SN is defined by (2) and ZN is defined by (1).

The proof of the theorem is simplified by first formulating and proving a
lemma. For this purpose, set Yj = Zj − μ, j ≥ 1. Then the r.v.’s Y1, Y2, . . . are
independent, EYj = 0 and have (common) finite absolute moment of first order
to be denoted by m; that is, E|Yj| = m < ∞. Also set TN = Y1 + · · · + YN, where
YN and TN are defined in a way similar to the way ZN and SN are defined by (1)
and (2), respectively. Then we will show that

ET ETN N< ∞ =and 0. (3)

In all that follows, it is assumed that all conditional expectations, given N = n,
are finite for all n for which P(N = n) > 0. We set E(Yj|N = n) = 0 (accordingly,
E(|Yj||N = n) = 0 for those n’s for which P(N = n) = 0).

In the notation introduced above:

i) ∑∞
j =1∑∞

n= jE(|Yj||N = n)P(N = n) = m E N(<∞);

ii) ∑∞
n=1∑n

j=1E(|Yj||N = n)P(N = n) = ∑∞
j=1∑∞

n= jE(|Yj||N = n)P(N = n).

PROOF

i) For j ≥ 2,

∞ >( ) = = ( )[ ] = =( ) =( )

= =( ) =( ) + =( ) =( )
=

∞

=

∞

=

−

∑

∑∑

m E Y E E Y N E Y N n P N n

E Y N n P N n E Y N n P N n

j j j
n

j j
n jn

j

1

1

1

. (4)

The event (N = n) depends only on Y1, . . . , Yn and hence, for j > n,
E(|Yj||N = n) = E|Yj| = m. Therefore (4) becomes

m m P N n E Y N n P N nj
n jn

j

= =( ) + =( ) =( )
=

∞

=

−

∑∑
1

1

THEOREM 1
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or

mP N j E Y N n P N nj
n j

≥( ) = =( ) =( )
=

∞

∑ . (5)

Equality (5) is also true for j = 1, as

mP N m E Y E Y N n P N n
n

≥( ) = = = =( ) =( )
=

∞

∑1 1 1
1

.

Therefore

E Y N n P N n mP N j jj
n j

=( ) =( ) = ≥( ) ≥
=

∞

∑ , ,1

and hence

E Y N n P N n m P N j m jP N j mENj
jjn jj

=( ) =( ) = ≥( ) = =( ) =
=

∞

=

∞

=

∞

=

∞

∑∑∑∑ ,
111

(6)

where the equality ∑∞
j =1P(N ≥ j) = ∑∞

j =1jP(N = j) is shown in Exercise 14.1.1.
Relation (6) establishes part (i).

ii) By setting pjn = E(|Yj||N = n)P(N = n), this part asserts that

p p p p p p pjn n n nn
j

n

n

= + +( ) + ⋅ ⋅ ⋅ + + + ⋅ ⋅ ⋅ +( ) + ⋅ ⋅ ⋅
==

∞

∑∑ 11 12 22 1 2
11

,

and

p p p p p p pjn nn n n
n jj

= + + ⋅ ⋅ ⋅( ) + + + ⋅ ⋅ ⋅( ) + ⋅ ⋅ ⋅ + + + ⋅ ⋅ ⋅( ) + ⋅ ⋅ ⋅+
=

∞

=

∞

∑∑ 11 12 22 23 1
1

,

are equal. That this is, indeed, the case follows from part (i) and calculus
results (see, for example, T.M. Apostol, Theorem 12–42, page 373, in
Mathematical Analysis, Addison-Wesley, 1957). ▲

PROOF OF THEOREM 1 Since TN = SN − μN, it suffices to show (3). To this
end, we have

ET E E T N E T N n P N n

E Y N n P N n

E Y N n P N n E Y N n P N n

N N N
n

j
j

n

n

j
j

n

n
j

j

n

n

= ( )[ ] = =( ) =( )( )

= =
⎛

⎝
⎜

⎞

⎠
⎟ =( )

≤ =
⎛

⎝⎜
⎞

⎠⎟
=( ) = =( ) =(

=

∞

==

∞

==

∞

==

∞

∑

∑∑

∑∑ ∑∑

1

11

11 11
))

= =( ) =( ) ( )( )
= < ∞( ) ( )( )

=

∞

=

∞

∑∑ E Y N n P N n

mEN

j
n jj 1

by Lemma 1 ii

 by Lemma 1 i .
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ii) Here

ET E E T N E T N n P N n

E Y N n P N n E Y N n P N n

E Y N n P N n

N N N
n

j
j

n

n
j

j

n

n

j
n jj

= ( )[ ] = =( ) =( )

= =
⎛

⎝⎜
⎞

⎠⎟
=( ) = =( ) =( )

= =( ) =( )

=

∞

==

∞

==

∞

=

∞

=

∞

∑

∑∑ ∑∑

∑∑

1

11 11

1

. (7)

This last equality holds by Lemma 1(ii), since

E Y N n P N n E Y N n P N nj
n jj

j
n jj

=( ) =( ) ≤ =( ) =( ) < ∞
=

∞

=

∞

=

∞

=

∞

∑∑ ∑∑
1 1

by Lemma 1(i). Next, for j ≥ 1,

0
1

= = ( )[ ] = =( ) =( )
=

∞

∑EY E E Y N E Y N n P N nj j j
n

, (8)

whereas, for j ≥ 2, relation (8) becomes as follows:

0
1

1

= =( ) =( ) + =( ) =( )

= =( ) =( )
=

−

=

∞

=

∞

∑ ∑

∑

E Y N n P N n E Y N n P N n

E Y N n P N n

j
n

j

j
n j

j
n j

. (9)

This is so because the event (N = n) depends only on Y1, . . . , Yn, so that, for
j > n, E(Yj|N = n) = EYj = 0. Therefore (9) yields

E Y N n P N n jj
n j

=( ) =( ) = ≥
=

∞

∑ 0 2, . (10)

By (8), this is also true for j = 1. Therefore

E Y N n P N n jj
n j

=( ) =( ) = ≥
=

∞

∑ 0 1, . (11)

Summing up over j ≥ 1 in (11), we have then

E Y N n P N nj
n jj

=( ) =( ) =
=

∞

=

∞

∑∑
1

0. (12)

Relations (7) and (12) complete the proof of the theorem. ▲

Now consider any r.v.’s Z1, Z2, . . . and let C1, C2 be two constants such that
C1 < C2. Set Sn = Z1 + · · · + Zn and define the random quantity N as follows: N
is the smallest value of n for which Sn ≤ C1 or Sn ≥ C2. If C1 < Sn < C2 for all n,
then set N = ∞. In other words, for each s ∈S, the value of N at s, N(s), is
assigned as follows: Look at Sn(s) for n ≥ 1, and find the first n, N = N(s), say,
for which SN(s) ≤ C1 or SN(s) ≥ C2. If C1 < Sn(s) < C2 for all n, then set N(s) = ∞.
Then we have the following result.
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Let Z1, Z2, . . . be i.i.d. r.v.’s such that P(Zj = 0) ≠ 1. Set Sn = Z1 + · · · + Zn and
for two constants C1, C2 with C1 < C2, define the r. quantity N as the smallest n
for which Sn ≤ C1 or Sn ≥ C2; set N = ∞ if C1 < Sn < C2 for all n. Then there exist
c > 0 and 0 < r < 1 such that

P N n cr nn≥( ) ≤ for all . (13)

PROOF The assumption P(Zj = 0) ≠ 1 implies that P(Zj > 0) > 0, or P(Zj < 0)
> 0. Let us suppose first that P(Zj > 0) > 0. Then there exists ε > 0 such that
P(Zj > ε) = δ > 0. In fact, if P(Zj > ε) = 0 for every ε > 0, then, in particular,
P(Zj > 1/n) = 0 for all n. But (Zj > 1/n) ↑ (Zj > 0) and hence 0 = P(Zj > 1/n) →
P(Zj > 0) > 0, a contradiction.

Thus for the case that P(Zj > 0) > 0, we have that

There exists such thatε ε δ> >( ) = >0 0P Z j . (14)

With C1, C2 as in the theorem and ε as in (14), there exists a positive integer m
such that

m C Cε > −2 1. (15)

For such an m, we shall show that

P Z C C kj
j k

k m
m

= +

+

∑ > −
⎛

⎝⎜
⎞

⎠⎟
> ≥

1
2 1 0δ for . (16)

We have

Z Z m Z C Cj
j k

k m

j
j k

k m

j
j k

k m

>( ) ⊆ >
⎛

⎝⎜
⎞

⎠⎟
⊆ > −

⎛

⎝⎜
⎞

⎠⎟= +

+

= +

+

= +

+

∑ ∑ε ε
1 1 1

2 1I , (17)

the first inclusion being obvious because there are m Z’s, each one of which is
greater than ε, and the second inclusion being true because of (15). Thus

P Z C C P Z P Zj
j k

k m

j
j k

k m

j
j k

k m
m

= +

+

= +

+

= +

+

∑ ∏> −
⎛

⎝⎜
⎞

⎠⎟
≥ >( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= >( ) =
1

2 1
1 1

ε ε δI ,

the inequality following from (17) and the equalities being true because of the
independence of the Z’s and (14). Clearly

S Z Zkm jm j m
j

k

= + ⋅ ⋅ ⋅ +[ ]+ +( )
=

−

∑ 1 1
0

1

.

Now we assert that

C S C i kmi1 2 1< < =, , . . . ,
implies

Z Z C C j kjm j m+ +( )+ ⋅ ⋅ ⋅ + ≤ − = −1 1 2 1 0 1 1, , , . . . , . (18)

This is so because, if for some j = 0, 1, . . . , k − 1, we suppose that Zjm+1 + · · · +
Z( j+1)m > C2 − C1, this inequality together with Sjm > C1 would imply that S(j+1)m

> C2, which is in contradiction to C1 < Si < C2, i = 1, . . . , km. Next,

THEOREM 2
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N km C S C j km

Z Z C C

j

jm j m
j

k

≥ +( ) ⊆ < < =( )
⊆ + ⋅ ⋅ ⋅ + ≤ −[ ]+ +( )

=

−

1 11 2

1 1 2 1
0

1

, , . . . ,

,I

the first inclusion being obvious from the definition of N and the second one
following from (18). Therefore

P N km P Z Z C C

P Z Z C C

jm j m
j

k

jm j m
j

k

m

j

k
m

k

≥ +( ) ≤ + ⋅ ⋅ ⋅ + ≤ −[ ]⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= + ⋅ ⋅ ⋅ + ≤ −[ ]
≤ −( ) = −( )

+ +( )
=

−

+ +( )
=

−

=

−

∏

∏

1

1 1

1 1 2 1
0

1

1 1 2 1
0

1

0

1

I

δ δ ,

the last inequality holding true because of (16) and the equality before it by the
independence of the Z’s. Thus

P N km m
k

≥ +( ) ≤ −( )1 1 δ . (19)

Now set c = 1/(1 − δm), r = (1 − δm)1/m, and for a given n, choose k so that
km < n ≤ (k + 1)m. We have then

P N n P N km

c

cr cr

m
k

m

m
k

m
m

k m

k m n

≥( ) ≤ ≥ +( ) ≤ −( )
=

−( ) −( ) = −( )⎡
⎣⎢

⎤
⎦⎥

= ≤

+ +( )

+( )

1 1

1

1
1 1

1 1
1

1

δ

δ
δ δ

;

these inequalities and equalities are true because of the choice of k, relation
(19) and the definition of c and r. Thus for the case that P(Zj > 0) > 0, relation
(13) is established. The case P(Zj < 0) > 0 is treated entirely symmetrically, and
also leads to (13). (See also Exercise 14.1.2.) The proof of the theorem is then
completed. ▲

The theorem just proved has the following important corollary.

Under the assumptions of Theorem 2, we have (i) P(N < ∞) = 1 and (ii)
EN < ∞.

PROOF

i) Set A = (N = ∞) and An = (N ≥ n). Then, clearly, A = �∞
n=1An. Since also

A1 � A2 � · · · , we have A = lim
n→∞

An and hence

P A P A P A
n

n
n

n( ) = ( ) = ( )
→∞ →∞

lim lim

COROLLARY
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by Theorem 2 in Chapter 2. But P(An) ≤ crn by the theorem. Thus lim
P(An) = 0, so that P(A) = 0, as was to be shown.

ii) We have

EN nP N n P N n cr c r

c
r

r

n n

n

n

n

n

= =( ) = ≥( ) ≤ =

=
−

< ∞

=

∞

=

∞

=

∞

=

∞

∑ ∑ ∑ ∑
1 1 1 1

1
,

as was to be seen. ▲

REMARK 2 The r.v. N is positive integer-valued and it might also take on the
value ∞ but with probability 0 by the first part of the corollary. On the other
hand, from the definition of N it follows that for each n, the event (N = n)
depends only on the r.v.’s Z1, . . . , Zn. Accordingly, N is a stopping time by
Definition 1 and Remark 1.

Exercises

14.1.1 For a positive integer-valued r.v. N show that EN = ∑∞
n=1P(N ≥ n).

14.1.2 In Theorem 2, assume that P(Zj < 0) > 0 and arrive at relation (13).

14.2 Sequential Probability Ratio Test

Although in the point estimation and testing hypotheses problems discussed in
Chapter 12 and 13, respectively (as well as in the interval estimation problems
to be dealt with in Chapter 15), sampling according to a stopping time is, in
general, profitable, the mathematical machinery involved is well beyond the
level of this book. We are going to consider only the problem of sequentially
testing a simple hypothesis against a simple alternative as a way of illustrating
the application of sequential procedures in a concrete problem.

To this end, let X1, X2, . . . be i.i.d. r.v.’s with p.d.f. either f0 or else f1, and
suppose that we are interested in testing the (simple) hypothesis H: the true
density is f0 against the (simple) alternative A: the true density is f1, at level of
significance α (0 < α < 1) without fixing in advance the sample size n.

In order to simplify matters, we also assume that {x ∈ �; f0(x) > 0} =
{x ∈ �; f1(x) > 0}.

Let a, b, be two numbers (to be determined later) such that 0 < a < b, and
for each n, consider the ratio

λ λn n n
n

n

X X
f X f X

f X f X
= ( ) =

( ) ⋅ ⋅ ⋅ ( )
( ) ⋅ ⋅ ⋅ ( )1

1 1 1

0 1 0

0 1, . . . , ; , .   
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We shall use the same notation λn for λn (x1, . . . , xn; 0, 1), where x1, . . . , xn are
the observed values of X1, . . . , Xn.

For testing H against A, consider the following sequential procedure: As
long as a < λn < b, take another observation, and as soon as λn ≤ a, stop
sampling and accept H and as soon as λn ≥ b, stop sampling and reject H.

By letting N stand for the smallest n for which λn ≤ a or λn ≥ b, we have that
N takes on the values 1, 2, . . . and possibly ∞, and, clearly, for each n, the event
(N = n) depends only on X1, . . . , Xn. Under suitable additional assumptions,
we shall show that the value ∞ is taken on only with probability 0, so that N will
be a stopping time.

Then the sequential procedure just described is called a sequential prob-
ability ratio test (SPRT) for obvious reasons.

In what follows, we restrict ourselves to the common set of positivity of
f0 and f1, and for j = 1, . . . , n, set

Z Z X
f X

f X
Zj j j

j

j
n j

j

n

= ( ) =
( )
( ) =

=
∑; , log , log .  so that0 1

1

0 1

λ

Clearly, the Zj’s are i.i.d. since the X’s are so, and if Sn = ∑n
j =1Zj, then N is

redefined as the smallest n for which Sn ≤ loga or Sn ≥ logb.
At this point, we also make the assumption that Pi[f0(X1) ≠ f1(X1)] > 0 for

i = 0, 1; equivalently, if C is the set over which f0 and f1 differ, then it is assumed
that ∫C f0(x)dx > 0 and ∫C f1(x)dx > 0 for the continuous case. This assumption is
equivalent to Pi(Z1 ≠ 0) > 0 under which the corollary to Theorem 2 applies.

Summarizing, we have the following result.

Let X1, X2, . . . be i.i.d. r.v.’s with p.d.f. either f0 or else f1, and suppose that

  
x f x x f x∈ ( ) >{ } = ∈ ( ) >{ }� �; ;0 10 0

and that Pi [f0(X1) ≠ f1(X1)] > 0, i = 0, 1. For each n, set

λn
n

n
j

j

j

f X f X

f X f X
Z

f X

f X
j n=

( ) ⋅ ⋅ ⋅ ( )
( ) ⋅ ⋅ ⋅ ( ) =

( )
( ) =1 1 1

0 1 0

1

0

1, log , , . . . ,  

and

S Zn j
j

n

n= =
=

∑
1

log .λ

For two numbers a and b with 0 < a < b, define the random quantity N as the
smallest n for which λn ≤ a or λn ≥ b; equivalently, the smallest n for which
Sn ≤ loga or Sn ≥ logb for all n. Then

P N E N ii i< ∞( ) = < ∞ =1 0 1and  , , .

Thus, the proposition assures us that N is actually a stopping time with
finite expectation, regardless of whether the true density is f0 or f1. The impli-
cation of Pi(N < ∞) = 1, i = 0, 1 is, of course, that the SPRT described above will

PROPOSITION 1

14.2 Sequential Probability Ratio Test 389
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terminate with probability one and acceptance or rejection of H, regardless of
the true underlying density.

In the formulation of the proposition above, the determination of a and b
was postponed until later. At this point, we shall see what is the exact determi-
nation of a and b, at least from theoretical point of view. However, the actual
identification presents difficulties, as will be seen, and the use of approximate
values is often necessary.

To start with, let α and 1 − β be prescribed first and second type of errors,
respectively, in testing H against A, and let α < β < 1. From their own defini-
tion, we have

α

λ λ λ

λ λ λ

λ λ λ

λ

= ( )
= ≥( ) + < < ≥( ) + ⋅ ⋅ ⋅[

+ < < < < ≥( ) + ⋅ ⋅ ⋅]
= ≥( ) + < < ≥( ) + ⋅ ⋅ ⋅

+ < <

−

P H H

P b a b b

a b a b b

P b P a b b

P a b

n n

rejecting  when  is true

0 1 1 2

1 1

0 1 0 1 2

0 1

,

, . . . , ,

,

, . . . ,, ,a b bn n< < ≥( ) + ⋅ ⋅ ⋅−λ λ1 (20)

and

1

1 1 1 2

1 1

1 1 1 1 2

1 1

− = ( )
= ≤( ) + < < ≤( ) + ⋅ ⋅ ⋅[

+ < < < < ≤( ) + ⋅ ⋅ ⋅]
= ≤( ) + < < ≤( ) + ⋅ ⋅ ⋅

+ < <

−

β

λ λ λ

λ λ λ

λ λ λ

λ

P H H

P a a b a

a b a b a

P a P a b a

P a b

n n

accepting  when  is false

,

, . . . , ,

,

, . .. . , , .a b an n< < ≤( ) + ⋅ ⋅ ⋅−λ λ1 (21)

Relations (20) and (21) allow us to determine theoretically the cut-off points
a and b when α and β are given.

In order to find workable values of a and b, we proceed as follows. For
each n, set

f f x x i iin n= ( ) =1 0 1, . . . , ; , ,

and in terms of them, define T ′n and T″n as below; namely

  

′ = ∈ ≤
⎧
⎨
⎩

⎫
⎬
⎭

′′= ∈
( )
( ) ≥

⎧
⎨
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⎩⎪

⎫
⎬
⎪

⎭⎪
T x

f
f

a T x
f x

f x
b1 1
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1 1

11 1

01 1

� �; , ; (22)

and for n ≥ 2,

  

′ = ( )′ ∈ < < = − ≤
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
T x x a

f
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f
f
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n
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′′ = ( )′ ∈ < < = − ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
T x x a

f

f
b j n

f
f
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j

n

n
1

1

0

1

0

1 1, . . . , ; , , . . . , .     and � (24)
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In other words, T ′n is the set of points in �n for which the SPRT terminates
with n observations and accepts H, while T″n is the set of points in �n for which
the SPRT terminates with n observations and rejects H.

In the remainder of this section, the arguments will be carried out for the
case that the Xj’s are continuous, the discrete case being treated in the same
way by replacing integrals by summation signs. Also, for simplicity, the differ-
entials in the integrals will not be indicated.

From (20), (22) and (23), one has

α =
′′

=

∞

∫∑ f nT
n n

0
1

.

But on T″n, f1n/fon ≥ b, so that f0n ≤ (1/b)f1n. Therefore

α = ≤
′′

=

∞

′′
=

∞

∫∑ ∫∑f
b

fnT
n

nT
nn n

0
1

1
1

1
. (25)

On the other hand, we clearly have

P N n f f ii inT inTn n

=( ) = + =
′ ′′∫ ∫ , , ,0 1

and by Proposition 1,

1 0 1
1 1 1

= =( ) = + =
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∞
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∞
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∞
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, , . (26)

From (21), (22), (24) and (26) (with i = 1), we have

1 11
1

1
1

1
1

− = = − =
′

=

∞

′′
=

∞

′′
=

∞

∫∑ ∫∑ ∫∑β βf f fnT
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nT
n

nT
nn n n

, .so that

Relation (25) becomes then

α β≤ b , (27)

and in a very similar way (see also Exercise 14.2.1), we also obtain

1 1− ≥ −( )α β a . (28)

From (27) and (28) it follows then that

α β
α

β
α

≥ −
−

≤1
1

, .b (29)

Relation (29) provides us with a lower bound and an upper bound for the
actual cut-off points a and b, respectively.

Now set

′ = −
−

′ =

′ < ′ < <( )
a b

a b

1
1

0 1

β
α

β
α

α β

,

,

and

so that <  by the assumption (30)

and suppose that the SPRT is carried out by employing the cut-off points a′
and b′ given by (30) rather than the original ones a and b. Furthermore, let α′

14.2 Sequential Probability Ratio Test 391
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and 1 − β′ be the two types of errors associated with a′ and b′. Then replacing
α, β, a and b by α′, β′, a′ and b′, respectively, in (29) and also taking into
consideration (30), we obtain

1
1

1
1

− ′
− ′

≤ ′ = −
−

= ′ ≤ ′
′

β
α

β
α

β
α

β
α

a band

and hence

1
1
1

1
1
1

− ′ ≤ −
−

− ′( ) ≤ −
−

′ ≤ ′ ≤β β
α

α β
α

α α
β

β α
β

and . (31)

That is,

′ ≤ − ′ ≤ −
−

α α
β

β β
α

and 1
1
1

. (32)

From (31) we also have

1 1 1 1−( ) − ′( ) ≤ −( ) − ′( ) ′ ≤ ′α β β α α β αβand ,

or

1 1− ′( ) − + ′ ≤ −( ) − ′ + ′ − ′ ≤ − ′β α αβ β α α β αβ α βand ,

and by adding them up,

′ + − ′( ) ≤ + −( )α β α β1 1 . (33)

Summarizing the main points of our derivations, we have the following result.

For testing H against A by means of the SPRT with prescribed error probabili-
ties α and 1 − β such that α < β < 1, the cut-off points a and b are determined
by (20) and (21). Relation (30) provides approximate cut-off points a′ and b′
with corresponding error probabilities α′ and 1 − β′, say. Then relation (32)
provides upper bounds for α′ and 1 − β′ and inequality (33) shows that their
sum α′ + (1 − β′) is always bounded above by α + (1 − β).

REMARK 3 From (33) it follows that α′ > α and 1 − β ′ > 1 − β cannot happen
simultaneously. Furthermore, the typical values of α and 1 − β are such as 0.01,
0.05 and 0.1, and then it follows from (32) that α′ and 1 − β ′ lie close to α and
1 − β, respectively. For example, for α = 0.01 and 1 − β = 0.05, we have α′ <
0.0106 and 1 − β′ < 0.0506. So there is no serious problem as far as α′ and 1 −
β′ are concerned. The only problem which may arise is that, because a′ and b′
are used instead of a and b, the resulting α′ and 1 − β ′ are too small compared
to α and 1 − β, respectively. As a consequence, we would be led to taking a
much larger number of observations than would actually be needed to obtain
α and β. It can be argued that this does not happen.

Exercise

14.2.1 Derive inequality (28) by using arguments similar to the ones em-
ployed in establishing relation (27).

PROPOSITION 2
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14.3 Optimality of the SPRT-Expected Sample Size

An optimal property of the SPRT is stated in the following theorem, whose
proof is omitted as being well beyond the scope of this book.

For testing H against A, the SPRT with error probabilities α and 1 − β
minimizes the expected sample size under both H and A (that is, it minimizes
E0N and E1N) among all tests (sequential or not) with error probabilities
bounded above by α and 1 − β and for which the expected sample size is finite
under both H and A.

The remaining part of this section is devoted to calculating the expected
sample size of the SPRT with given error probabilities, and also finding ap-
proximations to the expected sample size.

So consider the SPRT with error probabilities α and 1 − β, and let N be the
associated stopping time. Then we clearly have

E N nP N n P N nP N n

P a b nP a b j n

a b i

i i
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i i
n

i i
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j

n n

= =( ) = =( ) + =( )

= ≤ ≥( ) + < < = −(
≤ ≥ ) =

=

∞

=

∞

=

∞

∑ ∑

∑
1 2

1 1
2

1 1

1 1

0 1

λ λ λ

λ λ

 or   

or  

, , . . . , ,

, , . (34)

Thus formula (34) provides the expected sample size of the SPRT under both
H and A, but the actual calculations are tedious. This suggests that we should
try to find an approximate value to Ei N, as follows. By setting A = loga and
B = logb, we have the relationships below:

a b j n a b

A Z B j n Z A Z B n

j n

i
i

j

i
i

n

i
i

n

< < = − ≤ ≥( )
= < < = − ≤ ≥

⎛

⎝⎜
⎞

⎠⎟
≥

= = =
∑ ∑ ∑

λ λ λ, , . . . , ,

, , . . . , , ,

    or 

    or 

1 1

1 1 2
1 1 1

(35)

and

λ λ1 1 1 1≤ ≥( ) = ≤ ≥( )a b Z A Z B or  or . (36)

From the right-hand side of (35), all partial sums ∑ j
i=1Zi, j = 1, . . . , n − 1 lie

between A and B and it is only the ∑n
i=1Zi which is either ≤A or ≥B, and this is

due to the nth observation Zn. We would then expect that ∑n
i=1Zi would not be

too far away from either A or B. Accordingly, by letting SN = ∑N
i=1Zi, we are led

to assume as an approximation that SN takes on the values A and B with
respective probabilities

P S A P S B ii N i N≤( ) ≥( ) =and  , , .0 1

But

P S A P S BN N0 01≤( ) = − ≥( ) =α α,

and

P S A P S BN N1 11≤( ) = − ≥( ) =β β, .

THEOREM 3
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Therefore we obtain

E S A B E S A BN N0 11 1≈ −( ) + ≈ −( ) +α α β βand . (37)

On the other hand, by assuming that Ei |Z1| < ∞, i = 0, 1, Theorem 1 gives
EiSN = (EiN)(EiZ1). Hence, if also Ei Z1 ≠ 0, then EiN = (EiSN)/(EiZ1). By
virtue of (37), this becomes

E N
A B

E Z
E N

A B

E Z0
0 1

1
1 1

1 1
≈

−( ) +
≈

−( ) +α α β β
, . (38)

Thus we have the following result.

In the SPRT with error probabilities α and 1 − β, the expected sample size EiN,
i = 0, 1 is given by (34). If furthermore Ei|Z1| < ∞ and EiZ1 ≠ 0, i = 0, 1, relation
(38) provides approximations to EiN, i = 0, 1.

REMARK 4 Actually, in order to be able to calculate the approximations
given by (38), it is necessary to replace A and B by their approximate values
taken from (30), that is,

A a B b≈ ′ = −
−

≈ ′ =log log log .
1
1

β
α

β
α

and (39)

In utilizing (39), we also assume that α < β < 1, since (30) was derived under
this additional (but entirely reasonable) condition.

Exercises

14.3.1 Let X1, X2, . . . be independent r.v.’s distributed as P(θ), θ ∈ Ω =
(0, ∞). Use the SPRT for testing the hypothesis H :θ = 0.03 against the alterna-
tive A :θ = 0.05 with α = 0.1, 1 − β = 0.05. Find the expected sample sizes under
both H and A and compare them with the fixed sample size of the MP test for
testing H against A with the same α and 1 − β as above.

14.3.2 Discuss the same questions as in the previous exercise if the Xj’s
are independently distributed as Negative Exponential with parameter θ ∈
Ω = (0, ∞).

14.4 Some Examples

This chapter is closed with two examples. In both, the r.v.’s X1, X2, . . . are i.i.d.
with p.d.f. f(·; θ), θ ∈ Ω ⊆ �, and for θ0, θ1 ∈ Ω with θ0 < θ1, the problem is that
of testing H :θ = θ0 against A :θ = θ1 by means of the SPRT with error probabili-
ties α and 1 − β. Thus in the present case f0 = f(·; θ0) and f1 = f(·; θ1).

PROPOSITION 3
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What we explicitly do, is to set up the formal SPRT and for selected
numerical values of α and 1 − β, calculate a′, b′, upper bounds for α′ and
1 − β′, estimate EiN, i = 0, 1, and finally compare the estimated EiN, i = 0, 1
with the size of the fixed sample size test with the same error probabilities.

Let X1, X2, . . . be i.i.d. r.v.’s with p.d.f.

f x xx x
; , , , , .   θ θ θ θ( ) = −( ) = ∈ = ( )−

1 0 1 0 1
1

Ω

Then the test statistic λn is given by
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(40)

Next,

Z
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f X
X1

1 1

0 1
1

1 0

0 1

1

0

1

1

1
1

=
( )
( ) =

−( )
−( ) + −

−
log log log ,

θ θ

θ θ
θ
θ

so that
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For a numerical application, take α = 0.01 and 1 − β = 0.05. Then the cut-off
points a and b are approximately equal to a′ and b′, respectively, where a′ and
b′ are given by (30). In the present case,

′ =
−

= ≈ ′ = =a b
0 05

1 0 01
0 05
0 99

0 0505
0 95
0 01

95
.

.
.
.

.
.
.

.and

For the cut-off points a′ and b′, the corresponding error probabilities α′ and
1 − β′ are bounded as follows according to (32):

′ ≤ ≈ − ′ ≤ ≈a
0 01
0 95

0 0105 1
0 05
0 99

0 0505
.
.

.
.
.

. .and β

Next, relation (39) gives

A B≈ = − ≈ =log . log . .
5

99
1 29667 95 1 97772and (42)

At this point, let us suppose that θ0 = 3–8 and θ1 = 4–8 . Then

EXAMPLE 1

14.4 Some Examples 395
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log log . log log . ,
θ θ

θ θ
θ
θ

1 0

0 1

1

0

1

1
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0 22185
1
1

4
5

0 09691
−( )
−( ) = = −

−
= = −and

so that by means of (41), we have

E Z E Z0 1 1 10 13716 0 014015= − =. . .and (43)

Finally, by means of (42) and (43), relation (38) gives

E N E N0 192 5 129 4≈ ≈. .and

On the other hand, the MP test for testing H against A based on a fixed
sample size n is given by (9) in Chapter 13. Using the normal approximation,
we find that for the given α = 0.01 and β = 0.95, n has to be equal to 244.05.
Thus both E0N and E1N compare very favorably with it.

Let X1, X2, . . . be i.i.d. r.v.’s with p.d.f. that of N(θ, 1). Then
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Next,

Z
f X

f X
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1 1
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1 0 1 1

2
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2
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( ) = −( ) − −( )log ,θ θ θ θ

so that

E Z ii i1 1 0 1
2
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2
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By using the same values of α and 1 − β as in the previous example, we have
the same A and B as before. Taking θ0 = 0 and θ1 = 1, we have

E Z E Z0 1 1 10 5 0 5= − =. . .and

Thus relation (38) gives

E N E N0 12 53 3 63≈ ≈. . .and

Now the fixed sample size MP test is given by (13) in Chapter 13. From this
we find that n ≈ 15.84. Again both E0N and E1N compare very favorably with
the fixed value of n which provides the same protection.

EXAMPLE 2
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397

15.1 Confidence Intervals

Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(·; θθθθθ) θθθθθ ∈ ΩΩΩΩΩ ⊆ � r. In Chapter 12, we
considered the problem of point estimation of a real-valued function of θθθθθ, g(θθθθθ).
That is, we considered the problem of estimating g(θθθθθ) by a statistic (based on
the X’s) having certain optimality properties.

In the present chapter, we return to the estimation problem, but in a
different context. First, we consider the case that θ is a real-valued parameter
and proceed to define what is meant by a random interval and a confidence
interval.

DEFINITION 1 A random interval is a finite or infinite interval, where at least one of the end
points is an r.v.

DEFINITION 2 Let L(X1, . . . , Xn) and U(X1, . . . , Xn) be two statistics such that L(X1, . . . , Xn)
≤ U(X1, . . . , Xn). We say that the r. interval [L(X1, . . . , Xn), U(X1, . . . , Xn)] is
a confidence interval for θ with confidence coefficient 1 − α (0 < α < 1) if

P L X X U X Xn nθ θ α θ1 1 1, . . . , , . . . ,( ) ≤ ≤ ( )[ ] ≥ − ∈for all .Ω (1)

Also we say that U(X1, . . . , Xn) and L(X1, . . . , Xn) is an upper and a lower
confidence limit for θ, respectively, with confidence coefficient 1 − α, if for all
θ ∈ Ω,

P U X Xnθ θ α−∞ < ≤ ( )[ ] ≥ −1 1, . . . ,

and

P L X Xnθ θ α1 1, . . . , .( ) ≤ < ∞[ ] ≥ − (2)

Thus the r. interval [L(X1, . . . , Xn), U(X1, . . . , Xn)] is a confidence interval
for θ with confidence coefficient 1 − α, if the probability is at least 1 − α that the

Chapter 15

Confidence Regions—Tolerance
Intervals
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r. interval [L(X1, . . . , Xn), U(X1, . . . , Xn)] covers the parameter θ no matter
what θ ∈ Ω is.

The interpretation of this statement is as follows: Suppose that the r.
experiment under consideration is carried out independently n times, and if xj

is the observed value of Xj, j = 1, . . . , n, construct the interval [L(x1, . . . , xn),
U(x1, . . . , xn)]. Suppose now that this process is repeated independently N
times, so that we obtain N intervals. Then, as N gets larger and larger, at least
(1 − α)N of the N intervals will cover the true parameter θ.

A similar interpretation holds true for an upper and a lower confidence
limit of θ.

REMARK 1 By relations (1) and (2) and the fact that

P L X X P U X X

P L X X U X X

n n

n n

θ θ

θ

θ θ

θ

≥ ( )[ ] + ≤ ( )[ ]
= ( ) ≤ ≤ ( )[ ] +

1 1

1 1 1

, . . . , , . . . ,

, . . . , , . . . , ,

it follows that, if L(X1, . . . , Xn) and U(X1, . . . , Xn) is a lower and an upper
confidence limit for θ, respectively, each with confidence coefficient 1 − 1–2 α,
then [L(X1, . . . , Xn), U(X1, . . . , Xn)] is a confidence interval for θ with confi-
dence coefficient 1 − α. The length l(X1, . . . , Xn) of this confidence interval is
l = l(X1, . . . , Xn) = U(X1, . . . , Xn) − L(X1, . . . , Xn) and the expected length is
Eθl, if it exists.

Now it is quite possible that there exist more than one confidence interval
for θ with the same confidence coefficient 1 − α. In such a case, it is obvious
that we would be interested in finding the shortest confidence interval within a
certain class of confidence intervals. This will be done explicitly in a number of
interesting examples.

At this point, it should be pointed out that a general procedure for
constructing a confidence interval is as follows: We start out with an r.v.
Tn(θ) = T(X1, . . . , Xn; θ) which depends on θ and on the X’s only through a
sufficient statistic of θ, and whose distribution, under Pθ, is completely deter-
mined. Then Ln = L(X1, . . . , Xn) and Un = U(X1, . . . , Xn) are some rather
simple functions of Tn(θ) which are chosen in an obvious manner.

The examples which follow illustrate the point.

Exercise

15.1.1 Establish the relation claimed in Remark 1 above.

15.2 Some Examples

We now proceed with the discussion of certain concrete cases. In all of the
examples in the present section, the problem is that of constructing a confi-
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dence interval (and also the shortest confidence interval within a certain class)
for θ with confidence coefficient 1 − α.

EXAMPLE 1 Let X1, . . . , Xn be i.i.d. r.v.’s from N(μ, σ 2). First, suppose that σ is known, so
that μ is the parameter, and consider the r.v. Tn(μ) = √n(X̄ − μ)/σ. Then Tn(μ)
depends on the X’s only through the sufficient statistic X̄  of μ and its distribu-
tion is N(0, 1) for all μ.

Next, determine two numbers a and b (a < b) such that

P a N b≤ ( ) ≤[ ] = −0 1 1, .α (3)

From (3), we have

P a
n X

bμ
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X b
n

X a
n
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
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σ σ
, (4)

is a confidence interval for μ with confidence coefficient 1 − α. Its length is
equal to (b − a)σ/√n. From this it follows that, among all confidence intervals
with confidence coefficient 1 − α which are of the form (4), the shortest one is
that for which b − a is smallest, where a and b satisfy (3). It can be seen (see
also Exercise 15.2.1) that this happens if b = c (> 0) and a = −c, where c is the
upper α/2 quantile of the N(0, 1) distribution which we denote by zα/2. There-
fore the shortest confidence interval for μ with confidence coefficient 1 − α
(and which is of the form (4)) is given by

X z
n

X z
n

− +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α α
σ σ

2 2, . (5)

Next, assume that μ is known, so that σ 2 is the parameter, and consider
the r.v.

T
nS

S
n

Xn
n

n j
j

n

σ
σ

μ2
2

2
2 2

1

1( ) = = −( )
=

∑, .where

Then T̄ n(σ 2) depends on the X’s only through the sufficient statistic S2
n of σ 2

and its distribution is χ2
n for all σ 2.

Now determine two numbers a and b (0 < a < b) such that

P a bn≤ ≤( ) = −χ α2 1 . (6)

From (6), we obtain
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⎥
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(7)

is a confidence interval for σ 2 with confidence coefficient 1 − α and its length
is equal to (1/a − 1/b)nS2

n. The expected length is equal to (1/a − 1/b)nσ 2.
Now, although there are infinite pairs of numbers a and b satisfying (6), in

practice they are often chosen by assigning mass α/2 to each one of the tails of
the χ2

n distribution. However, this is not the best choice because then the
corresponding interval (7) is not the shortest one. For the determination of the
shortest confidence interval, we work as follows. From (6), it is obvious that a
and b are not independent of each other but the one is a function of the other.
So let b = b(a). Since the length of the confidence interval in (7) is l = (1/a −
1/b)nS2

n, it clearly follows that that a for which l is shortest is given by
dl/da = 0 which is equivalent to

db
da

b

a
=

2

2
. (8)

Now, letting Gn and gn be the d.f. and the p.d.f. of the χ2
n, relation (6) becomes

Gn(b) − Gn(a) = 1 − α. Differentiating it with respect to a, one obtains

g b
db
da

g a
db
da

g a

g b
n n

n

n

( ) − ( ) = =
( )
( )0, .or

Thus (8) becomes a2gn(a) = b2gn(b). By means of this result and (6), it follows
that a and b are determined by

a g a b g b g t dtn n na

b2 2 1( ) = ( ) ( ) = −∫and α . (9)

For the numerical solution of (9), tables are required. Such tables are available
(see Table 678 in R. F. Tate and G. W. Klett, “Optimum confidence intervals
for the variance of a normal distribution,” Journal of the American Statistical
Association, 1959, Vol. 54, pp. 674–682) for n = 2(1)29 and 1 − α = 0.90, 0.95,
0.99, 0.995, 0.999).

To summarize then, the shortest (both in actual and expected length)
confidence interval for σ 2 with confidence coefficient 1 − α (and which is of the
form (7)) is given by
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nS
b

nS
a

n n
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⎣
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⎤

⎦
⎥
⎥

where a and b are determined by (9).
As a numerical application, let n = 25, σ = 1, and 1 − α = 0.95. Then

zα/2 = 1.96, so that (5) gives [X̄ − 0.392, X̄ + 0.392]. Next, for the equal-tails
confidence interval given by (7), we have a = 13.120 and b = 40.646, so that
the equal-tails confidence interval itself is given by

25
40 646

25
13 120

25
2

25
2S S

.
,

.
.

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

On the other hand, the shortest confidence interval is equal to

25
45 7051

25
14 2636

25
2

25
2S S

.
,

.

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

and the ratio of their lengths is approximately 1.07.

EXAMPLE 2 Let X1, . . . , Xn be i.i.d. r.v.’s from the Gamma distribution with parameter β
and α a known positive integer, call it r. Then ∑n

j=1Xj is a sufficient statistic for
β (see Exercise 11.1.2(iii), Chapter 11). Furthermore, for each j = 1, . . . , n, the
r.v. 2Xj /β is χ2

2r, since

φ φ
ββ2 2 2

2 1

1 2
X X rj j

t
t

it
( ) =

⎛
⎝⎜

⎞
⎠⎟

=
−( )

( )see Chapter 6 .

Therefore

T Xn j
j

n

β
β( ) =

=
∑2

1

is χ2
2rn for all β > 0. Now determine a and b (0 < a < b) such that

P a brn≤ ≤( ) = −χ α2
2 1 . (10)

From (10), we obtain

P a X bj
j

n

β β
α≤ ≤

⎛

⎝⎜
⎞

⎠⎟
= −

=
∑2

1
1

which is equivalent to

P X b X aj
j

n

j
j

n

β β α2 2 1
1 1= =

∑ ∑≤ ≤
⎛

⎝⎜
⎞

⎠⎟
= − .

Therefore a confidence interval with confidence coefficient 1 − α is given
by
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2 2
1 1
X

b

X

a

jj

n

jj

n

= =∑ ∑⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, . (11)

Its length and expected length are, respectively,

l
a b

X E l rn
a bj

j

n

= −
⎛
⎝⎜

⎞
⎠⎟

= −
⎛
⎝⎜

⎞
⎠⎟=

∑2
1 1

2
1 1

1

, .β β

As in the second part of Example 1, it follows that the equal-tails confidence
interval, which is customarily employed, is not the shortest among those of the
form (11).

In order to determine the shortest confidence interval, one has to mini-
mize l subject to (10). But this is the same problem as the one we solved in the
second part of Example 1. It follows then that the shortest (both in actual and
expected length) confidence interval with confidence coefficient 1 − α (which
is of the form (11)) is given by (11) with a and b determined by

a g a b g b g t dtrn rn rna

b2
2

2
2 2 1( ) = ( ) ( ) = −∫and α .

For instance, for n = 7, r = 2 and 1 − α = 0.95, we have, by means of the
tables cited in Example 1, a = 16.5128 and b = 49.3675. Thus the corresponding
shortest confidence interval is then

2

49 3675

2

16 5128
1

7

1

7
X Xjj jj= =∑ ∑⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.
,

.
.

The equal-tails confidence interval is

2

44 461

2

15 308
1

7

1

7
X Xjj jj= =∑ ∑⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.
,

.
,

so that the ratio of their length is approximately equal to 1.075.

EXAMPLE 3 Let X1, . . . , Xn be i.i.d. r.v.’s from the Beta distribution with β = 1 and α = θ
unknown.

Then ∏n
j=1Xj, or −∑n

j =1 logXj is a sufficient statistic for θ. (See Exercise
11.1.2(iv) in Chapter 11.) Consider the r.v. Yj = −2θ logXj. It is easily seen that
its p.d.f. is 1–2 exp(−yj/2), yj > 0, which is the p.d.f. of a χ2

2. This shows that

T X Yn j j
j

n

j

n

θ θ( ) = − =
==

∑∑2
11

log

is distributed as χ2
2n. Now determine a and b (0 < a < b) such that

P a bn≤ ≤( ) = −χ α2
2 1 . (12)
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From (12), we obtain

P a X bj
j

n

θ θ α≤ − ≤
⎛

⎝⎜
⎞

⎠⎟
= −

=
∑2 1

1

log

which is equivalent to

P a X b Xj
j

n

j
j

n

θ θ α− ≤ ≤ −
⎛

⎝⎜
⎞

⎠⎟
= −

= =
∑ ∑2 2 1

1 1

log log .

Therefore a confidence interval for θ with confidence coefficient 1 − α is given
by

− −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥= =∑ ∑

a

X

b

Xjj

n

jj

n
2 2

1 1
log

,
log

. (13)

Its length is equal to

l
a b

X jj

n
= −

=∑2
1
log

.

Considering dl/da = 0 in conjunction with (12) in the same way as it was done
in Example 2, we have that the shortest (both in actual and expected length)
confidence interval (which is of the form (13)) is found by numerically solving
the equations

g a g b g t dtn n na

b

2 2 2 1( ) = ( ) ( ) = −∫and α .

However, no tables which would facilitate this solution are available.
For example, for n = 25 and 1 − α = 0.95, the equal-tails confidence interval

for θ is given by (13) with a = 32.357 and b = 71.420.

EXAMPLE 4 Let X1, . . . , Xn be i.i.d. r.v.’s from U(0, θ). Then Yn = X(n) is a sufficient statistic
for θ (see Example 7, Chapter 11) and its p.d.f. gn is given by

g y
n

y yn n n n
n

n( ) = ≤ ≤ ( )−

θ
θ1 0, .by Example 3,  Chapter 10

Consider the r.v. Tn(θ) = Yn/θ. Its p.d.f. is easily seen to be given by

h t nt tn
n( ) = ≤ ≤−1 0 1, .

Then define a and b with 0 ≤ a < b ≤ 1 and such that

P a T b nt dt b an
n n n

a

b

θ θ α≤ ( ) ≤[ ] = = − = −−∫ 1 1 . (14)
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From (14), we get Pθ(a ≤ Yn/θ ≤ b) = 1 − α which is equivalent to
Pθ[X(n)/b ≤ θ ≤ X(n)/a] = 1 − α. Therefore a confidence interval for θ with
confidence coefficient 1 − α is given by

X

b

X

a
n n( ) ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (15)

and its length is l = (1/a − 1/b)X(n). From this, we have

dl
db

X
a

da
db bn= − +

⎛
⎝⎜

⎞
⎠⎟( )

1 1
2 2

,

while by way of (14), da/db = bn−1/an−1, so that

dl
db

X
a b

b an

n n

n
= −

( )
+ +

+

1 1

2 1
.

Since this is less than 0 for all b, l is decreasing as a function of b and its
minimum is obtained for b = 1, in which case a = α1/n, by means of (14).
Therefore the shortest (both in actual and expected length) confidence inter-
val with confidence coefficient 1 − α (which is the form (15)) is given by

X
X

n

n

n( )
( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, .
α 1

For example, for n = 32 and 1 − α = 0.95, we have approximately
[X(32), 1.098X(32)].

Exercises 15.2.5–15.2.7 at the end of this section are treated along the
same lines with the examples already discussed and provide additional inter-
esting cases, where shortest confidence intervals exist. The inclusion of the
discussions in relation to shortest confidence intervals in the previous exam-
ples, and the exercises just mentioned, has been motivated by a paper by W. C.
Guenther on “Shortest confidence intervals” in The American Statistican,
1969, Vol. 23, Number 1.

Exercises

15.2.1 Let Φ be the d.f. of the N(0, 1) distribution and let a and b with a < b be
such that Φ(b) − Φ(a) = γ  (0 < γ < 1). Show that b − a is minimum if b = c (> 0)
and a = −c. (See also the discussion of the second part of Example 1.)

15.2.2 Let X1, . . . , Xn be independent r.v.’s having the Negative Exponential
distribution with parameter θ ∈ Ω = (0, ∞), and set U = ∑n

i =1Xi.

ii) Show that the r.v. U is distributed as Gamma with parameters (n, θ) and
that the r.v. 2U/θ is distributed as χ2

2n;
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ii) Use part (i) to construct a confidence interval for θ with confidence coeffi-
cient 1 − α. (Hint: Use the parametrization f (x; θ) = 1/θe−x/θ, x > 0).

15.2.3

ii) If the r.v. X has the Negative Exponential distribution with parameter θ ∈ Ω
= (0, ∞), show that the reliability R(x; θ) = Pθ(X > x) (x > 0) is equal to e−x/θ;

ii) If X1, . . . , Xn is a random sample from the distribution in part (i) and U =
∑n

i=1Xi, then (by Exercise 15.2.2(i)) 2U/θ is distributed as χ2
2n. Use this fact

and part (i) of this exercise to construct a confidence interval for R(x; θ)
with confidence coefficient 1 − α. (Hint: Use the parametrization f (x; θ) =
1/θe−x/θ, x > 0).

15.2.4 Refer to Example 4 and set R = X(n) − X(1). Then:

iii) Find the distribution of R;

(Hint: Take cε(0, 1) such that Pθ(c ≤ R
θ

 ≤ 1) = 1 − α.)
iii) Show that a confidence interval for θ, based on R, with confidence coeffi-

cient 1 − α is of the form [R, R/c], where c is a root of the equation

c n n cn− − −( )[ ] =1 1 α

iii) Show that the expected length of the shortest confidence interval in Exam-
ple 4 is shorter than that of the confidence interval in (ii) above. (Hint: Use
the parametrization f (x; θ) = 1/θe−x/θ, x > 0).

15.2.5 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. given by

  
f x e I x

x
; ,,θ θθ

θ( ) = ( ) ∈ =− −( )
∞( ) Ω �

and set Y1 = X(1). Then show that:

iii) The p.d.f. g of Y1 is given by g(y) = ne−n(y−θ)I(θ,∞)(y)

iii) The r.v. Tn(θ) = 2n(Y1 − θ) is distributed as χ2
2;

iii) A confidence interval for θ, based on Tn(θ), with confidence coefficient
1 − α is of the form [Y1 − (b/2n), Y1 − (a/2n)];

iv) The shortest confidence interval of the form given in (iii) is provided by

Y
n

Y1
2
2

12
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

χ α;
, ,

where χ2
2;α is the upper αth quantile of the χ 2

2 distribution.

15.2.6 Let X1, . . . , Xn be independent r.v.’s having the Weibull p.d.f. given in
Exercise 11.4.2, Chapter 11. Then show that:

iii) The r.v. Tn(θ) = 2Y/θ is distributed as χ2
2n, where Y = ∑n

j=1X
γ
j;

iii) A confidence interval for θ, based on Tn(θ), with confidence coefficient
1 − α is of the form [2Y/b, 2Y/a];

Exercises 405
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iii) The shortest confidence interval of the form given in (ii) is taken for a and
b satisfying the equations

g t dt a g a b g bna

b

n n2
2

2
2

21( ) = − ( ) = ( )∫ α and ,

where g2n is the p.d.f. of the χ2
2n distribution.

15.2.7 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. given by

f x e
x

; , . ,  θ
θ

θθ( ) = ∈ = ∞( )1
2

0Ω

Then show that:

ii) The r.v. Tn(θ) = 2Y
θ

 is distributed as χ 2
2n, where Y = ∑n

j=1|Xj|;

ii) and (iii) as in Exercise 15.2.6.

15.2.8 Consider the independent random samples X1, . . . , Xm from N(μ1, σ 2
1)

and Y1, . . . , Yn from N(μ2, σ 2
2), where σ1, σ2 are known and μ1, μ2 are unknown,

and let the r.v. Tm,n(μ1 − μ2) be defined by

T
X Y

m n
m n

m n
, .μ μ

μ μ

σ σ
1 2

1 2

1
2

2
2

−( ) =
−( ) − −( )

( ) + ( )
Then show that:

ii) A confidence interval for μ1 − μ2, based on Tm,n(μ1 − μ2), with confidence
coefficient 1 − α is given by

X Y b
m n

X Y a
m nm n m n−( ) − + −( ) − +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

σ σ σ σ1
2

2
2

1
2

2
2

, ,

where a and b are such that Φ(b) − Φ(a) = 1 − α;

ii) The shortest confidence interval of the aforementioned form is provided by
the last expression above with − = =a b zα

2

.

15.2.9 Refer to Exercise 15.2.8, but now suppose that μ1, μ2 are known and
σ1, σ2 are unknown. Consider the r.v.

T
S

S
m n

n

m
,

σ
σ

σ
σ

1

2

1
2

2
2

2

2

⎛
⎝⎜

⎞
⎠⎟

=

and show that a confidence interval for σ 2
1/σ 2

2, based on T̄ m,n(σ1/σ2), with
confidence coefficient 1 − α is given by

a
S

S
b

S

S
m

n

m

n

2

2

2

2
, ,

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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where 0 < a < b are such that P(a ≤ Fn,m ≤ b) = 1 − α. In particular, the equal-
tails confidence interval is provided by the last expression above with
a = F ′n,m;α/2 and b = Fn,m;α/2, where F ′n,m;α/2 and Fn,m;α/2 are the lower and the upper
α/2 quantiles, respectively, of Fn,m.

15.2.10 Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples
from the Negative Exponential distributions with parameters θ1 and θ2, respec-
tively, and set U = ∑m

i =1Xi, V = ∑n
i =1Yj. Then (by Exercise 15.2.2(i)) the inde-

pendent r.v.’s 2U/θ1 and 2V/θ2 are distributed as χ 2
2m and χ2

2n, respectively, so
that the r.v. 2 2

2 1

V U
θ θ  is distributed as F2n,2m. Use this result in order to construct a

confidence interval for θ1/θ2 with confidence coefficient 1 − α. (Hint: Employ
the parametrization used in Exercise 15.2.2.)

15.3 Confidence Intervals in the Presence of Nuisance Parameters

So far we have been concerned with the problem of constructing a confidence
interval for a real-valued parameter when no other parameters are present.
However, in many interesting examples, in addition to the real-valued param-
eter of main interest, some other (nuisance) parameters do appear in the p.d.f.
under consideration.

In such cases, we replace the nuisance parameters by appropriate estima-
tors and then proceed as before.

The examples below illustrate the relevant procedure.

EXAMPLE 5 Refer to Example 1 and suppose that both μ and σ are unknown.
First, we suppose that we are interested in constructing a confidence

interval for μ. For this purpose, consider the r.v. Tn(μ) of Example 1 and
replace σ 2 by its usual estimator

S
n

X Xn j n
j

n

−
=

=
−

−( )∑1
2 2

1

1
1

.

Thus we obtain the new r.v. T ′n(μ) = √n(X̄n − μ)/Sn−1 which depends on the X’s
only through the sufficient statistic (X̄n, S2

n−1)′ of (μ, σ 2)′. Basing the confidence
interval in question on Tn(μ), which is tn−1 distributed, and working as in
Example 1, we obtain a confidence interval of the form

X b
S

n
X a

S

n
n

n
n

n− −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− −1 1, . (16)

Furthermore, an argument similar to the one employed in Example 1 implies
that the shortest (both in actual and expected length) confidence interval of
the form (16) is given by

X t
S

n
X t

S

n
n n

n
n n

n− +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
−

−
−

1 2
1

1 2
1

; ;, ,α α (17)

15.3 Confidence Intervals in the Presence of Nuisance Parameters 407
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where tn−1;α/2 is the upper α/2 quantile of the tn−1 distribution. For instance, for
n = 25 and 1 − α = 0.95, the corresponding confidence interval for μ is taken
from (17) with t24;0.025 = 2.0639. Thus we have approximately [X̄n − 0.41278S24,
X̄n + 0.41278S24].

Suppose now that we wish to construct a confidence interval for σ 2. To this
end, modify the r.v. T̄ n(σ 2) of Example 1 as follows:

′( ) =
−( ) −

T
n S

n
nσ

σ
2 1

2

1
,

so that T̄ ′n(σ 2) is χ2
n−1 distributed. Proceeding as in the corresponding case of

Example 1, one has the following confidence interval for σ 2:

n S

b

n S

a
n n−( ) −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− −1 11
2

1
2

, , (18)

and the shortest confidence interval of this form is taken when a and b are
numerical solutions of the equations

a g a b g b g t dtn n na

b2
1

2
1 1 1− − −( ) = ( ) ( ) = −∫and α .

Thus with n and 1 − α as above, one has, by means of the tables cited in
Example 1, a = 13.5227 and b = 44.4802, so that the corresponding interval
approximately is equal to [0.539S2

24, 1.775S2
24].

EXAMPLE 6 Consider the independent r. samples X1, . . . , Xm from N(μ1, σ 2
1) and Y1, . . . ,

Yn from N(μ2, σ 2
2), where all μ1, μ2, σ1 and σ2 are unknown.

First, suppose that a confidence interval for μ1 − μ2 is desired. For this
purpose, we have to assume that σ1 = σ2 = σ, say (unspecified).

Consider the r.v.

T
X Y

m S n S

m n m n

m n
m n

m n

, .μ μ
μ μ

1 2
1 2

1
2

1
21 1

2
1 1

−( ) =
−( ) − −( )

−( ) + −( )
+ −

+
⎛
⎝⎜

⎞
⎠⎟

− −

Then Tm,n(μ1 − μ2) is distributed as tm+n−2. Thus, as in the first case of Example
1 (and also Example 5), the shortest (both in actual and expected length)
confidence interval based on Tm,n(μ1 − μ2) is given by

X Y t
m S n S

m n m n

X Y t
m S n S

m n m n

m n m n a

m n

m n m n a

m n

−( ) −
−( ) + −( )

+ −
+

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

−( ) +
−( ) + −( )

+ −
+

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦

⎥

+ −
− −

+ −
− −

2 2

1
2

1
2

2 2

1
2

1
2

1 1

2
1 1

1 1

2
1 1

;

;

,

⎥⎥
⎥
.
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For instance, for m = 13, n = 14 and 1 − α = 0.95, we have t25;0.025 = 2.0595, so that
the corresponding interval approximately is equal to

X Y S S X Y S S13 14 12
2

13
2

13 14 12
2

13
20 1586 12 13 0 1586 12 13−( ) − + −( ) + +⎡

⎣⎢
⎤
⎦⎥

. , . .

If our interest lies in constructing a confidence interval for σ 2
1/σ 2

2, we
consider the r.v.

T
S

S
m n

n

m
,

σ
σ

σ
σ

1

2

1
2

2
2

1
2

1
2

⎛
⎝⎜

⎞
⎠⎟

= −

−

which is distributed as Fn−1,m−1. Now determine two numbers a and b with 0 < a
< b and such that

P a F bn m≤ ≤( ) = −− −1 1 1, .α

Then

P a
S

S
bn

m
σ σ

σ
σ

α
1 2

1
2

2
2

1
2

1
2
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⎛
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⎞
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−

,

or

P a
S

S
b

S

S
m

n

m

n
σ σ

σ
σ

α
1 2

1
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1
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1
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2
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1
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1
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1−

−

−

−

≤ ≤
⎛

⎝⎜
⎞

⎠⎟
= − .

Therefore a confidence interval for σ 2
1/σ 2

2 is given by

a
S

S
b

S

S
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n

m
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⎡

⎣
⎢
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⎤

⎦
⎥
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1
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1
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1
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, .

In particular, the equal-tails confidence interval is provided by

S

S
F

S

S
Fm

n
n m

m

n
n m
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−
− −
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−
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⎢
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⎤

⎦
⎥
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1
2

1
2 1 1 2

1
2

1
2 1 1 2, ; , ;, ,α α

where F ′n−1,m−1;α/2 and Fn−1,m−1;α/2 are the lower and the upper α /2-quantiles of
Fn−1,m−1. The point Fn−1,m−1;α/2 is read off the F-tables and the point F ′n−1,m−1;α/2 is
given by

′ =− −
− −

F
Fn m

m n
1 1 2

1 1 2

1
, ;

, ;

.α
α

Thus, for the previous values of m, n and 1 − α, we have F13,12;/0.025 = 3.2388
and F12,13;0.025 = 3.1532, so that the corresponding interval approximately is
equal to

0 3171 3 238812
2

13
2

12
2

13
2

. , . .
S

S

S

S
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⎣
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⎦
⎥
⎥
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Exercise

15.3.1 Let X1, . . . , Xn be independent r.v.’s distributed as N(μ, σ 2). Derive a
confidence interval for σ with confidence coefficient 1 − α when μ is unknown.

15.4 Confidence Regions—Approximate Confidence Intervals

The concept of a confidence interval can be generalized to that of a confidence
region in the case that θ is a multi-dimensional parameter. This will be illus-
trated by means of the following example.

EXAMPLE 7 (Refer to Example 5.) Here the problem is that of constructing a confidence
region in �2 for (μ, σ 2)′. To this end, consider the r.v.’s

n X n Sn n−( ) −( ) −μ
σ σ

and
1 1

2

2
,

which are independently distributed as N(0, 1) and χ2
n−1, respectively. Next,

define the constants c (> 0), a and b (0 < a < b) by
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Equivalently,
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1 (19)

For the observed values of the X’s, we have the confidence region for (μ, σ 2)′
indicated in Fig. 15.1. The quantities a, b and c may be determined so that
the resulting intervals are the shortest ones, both in actual and expected
lengths.

Now suppose again that θ is real-valued. In all of the examples considered
so far the r.v.’s employed for the construction of confidence intervals had an
exact and known distribution. There are important examples, however, where
this is not the case. That is, no suitable r.v. with known distribution is available
which can be used for setting up confidence intervals. In cases like this, under
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appropriate conditions, confidence intervals can be constructed by way of the
CLT.

So let X1, . . . , Xn be i.i.d. r.v.’s with finite mean and variance μ and σ 2,
respectively. Then the CLT applies and gives that √n(X̄n − μ)/σ is approxi-
mately N(0, 1) for large n. Thus, if we assume that σ is known, then a confi-
dence interval for μ with approximate confidence coefficient 1 − α is given by
(5), provided n is sufficiently large. Suppose now that σ is also unknown. Then
since

S
n

X Xn j n n
j

n
2 2

1

21= −( ) ⎯ →⎯⎯→∞
=

∑ σ

in probability, we have that √n(X̄n − μ)/Sn is again approximately N(0, 1) for
large n and therefore a confidence interval for μ with approximate confidence
coefficient 1 − α is given by (20) below, provided n is sufficiently large.
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⎥
⎥

α α2 2, . (20)

As an application, consider the Binomial and Poisson distributions.

EXAMPLE 8 Let X1, . . . , Xn be i.i.d. r.v.’s from B(1, p). The problem is that of constructing
a confidence interval for p with approximate confidence coefficient 1 − α. Here
S2

n = X̄n(1 − X̄n), so that (20) becomes
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X X

n
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, .

EXAMPLE 9 Let X1, . . . , Xn be i.i.d. r.v.’s from P(λ). Then a confidence interval for λ with
approximate confidence coefficient 1 − α is provided by

X z
X
nn

n± α 2 .

The two-sample problem also fits into this scheme, provided both means
and variances (known or not) are finite.
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We close this section with a result which shows that there is an intimate
relationship between constructing confidence regions and testing hypotheses.
Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(x; θθθθθ), θθθθθ ∈ ΩΩΩΩΩ ⊆ � r. For each θθθθθ * ∈ ΩΩΩΩΩ let
us consider the problem of testing the hypothesis H(θθθθθ *): θθθθθ = θθθθθ * at level of
significance α, and let A(θθθθθ *) stand for the acceptance region in � n. Set Z =
(X1, . . . , Xn)′, z = (x1, . . . , xn)′, and define the region T(z) in ΩΩΩΩΩ as follows:

T Az z( ) = ∈ ∈ ( ){ }θθ ΩΩ θθ: . (21)

In other words. T(z) is that subset of ΩΩΩΩΩ with the following property: On the
basis of z, every H(θθθθθ) is accepted for θθθθθ ∈ T(z). From (21), it is obvious that

z z∈ ( ) ∈ ( )A Tθθ θθif and only if .

Therefore

P T P Aθθ θθθθ θθ∈ ( )[ ] = ∈ ( )[ ] ≥ −Z Z 1 α ,

so that T(Z) is a confidence region for θθθθθ with confidence coefficient 1 − α. Thus
we have the following theorem.

THEOREM 1 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f(x; θθθθθ), θθθθθ ∈ ΩΩΩΩΩ ⊆ � r. For each
θθθθθ * ∈ΩΩΩΩΩ, consider the problem of testing H(θθθθθ *) : θθθθθ = θθθθθ * at level α and let A(θθθθθ*)
be the acceptance region. Set Z = (X1, . . . , Xn)′, z = (x1, . . . , xn)′, and define
T(z) by (21). Then T(Z) is a confidence region for θθθθθ with confidence coefficient
1 − α.

Exercises

15.4.1 Let X1, . . . , Xn be i.i.d. r.v.’s with (finite) unknown mean μ and (finite)
known variance σ 2, and suppose that n is large.

iii) Use the CLT to construct a confidence interval for μ with approximate
confidence coefficient 1 − α ;

iii) What does this interval become if n = 100, σ = 1 and α = 0.05?

iii) Refer to part (i) and determine n so that the length of the confidence
interval is 0.1, provided σ = 1 and α = 0.05.

15.4.2 Refer to the previous problem and suppose that both μ and σ 2 are
unknown. Then a confidence interval for μ with approximate confidence coef-
ficient 1 − α is given be relation (20).

iii) What does this interval become for n = 100 and α = 0.05?

iii) Show that the length of this confidence interval tends to 0 in probability
(and also a.s.) as n → ∞;

iii) Discuss part (i) for the case that the underlying distribution is B(1, θ),
θ ∈ Ω = (0, 1) or P(θ), θ ∈ Ω = (0, ∞).
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15.4.3 Let X1, . . . , Xn be independent r.v.’s having the Negative Exponential
distribution with parameter θ ∈ Ω = (0, ∞) and suppose that n is large. Use the
CLT to construct a confidence interval for θ with approximate confidence
coefficient 1 − α. Compare this interval with that constructed in Exercise
15.2.2.

15.4.4 Construct confidence intervals as in Example 1 by utilizing
Theorem 1.

15.4.5 Let X1, . . . , Xn be i.i.d. r.v.’s with continuous d.f. F. Use Theorem 4 in
Chapter 10 to construct a confidence interval for the pth quantile of F, where
p = 0.25, 0.50, 0.75. Also identify the confidence coefficient 1 − α if n = 10 for
various values of the pair (i, j).

15.4.6 Refer to Example 14, Chapter 12, and show that the posterior p.d.f. of
θ, given x1, . . . , xn, is Beta with parameters α + ∑n

j =1xj and β + n − ∑n
j=1xj. Thus

if x′p and xp are the lower and the upper pth quantiles, respectively, of the Beta
p.d.f. mentioned above, it follows that [x′p, xp] is a prediction interval for θ with
confidence coefficient 1 − 2p. (The term prediction interval rather than confi-
dence interval is more appropriate here, since θ is considered to be an r.v.
rather than a parameter. Thus the Bayes method of estimation considered in
Section 7 of Chapter 12 also leads to the construction of prediction intervals
for θ.)

15.4.7 Refer to Example 15, Chapter 12, and show that the posterior p.d.f. of
θ, given x1, . . . , xn, is N((nx̄ + μ)/(n + 1), 1/(n + 1)). Then work as in Exercise
15.4.6 to find a prediction interval for θ with confidence coefficient 1 − p. What
does this interval become for p = 0.05, n = 9, μ = 1 and x̄ = 1.5?

15.5 Tolerance Intervals

In the sections discussed so far, we assumed that X1, . . . , Xn were an r. sample
with a p.d.f. of known functional form and depending on a parameter θ. Then
for the case that θ were real-valued, the problem was that of constructing a
confidence interval for θ with a preassigned confidence coefficient. This prob-
lem was solved for certain cases.

Now we suppose that the p.d.f. f of the X ’s is not of known functional
form; that is, we assume a nonparametric model. Then the concept of a confi-
dence interval, as given in Definition 2, becomes meaningless in the present
context. Instead, it is replaced by what is known as a tolerance interval. More
precisely, we have the following definition.

DEFINITION 3 Let X1, . . . , Xn be i.i.d. r.v.’s with a (nonparametric) d.f. F and let T1 =
T1(X1, . . . , Xn) and T2 = T2(X1, . . . , Xn ) be two statistics of the X’s such that
T1 ≤ T2. For p and γ with 0 < p, γ < 1, we say that the interval (T1, T2] is a
100γ percent tolerance interval of 100p percent of F if P[F(T2) − F(T1) ≥ p] ≥ γ.

15.5 Tolerance Intervals 413
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If we notice that for the observed values t1 and t2 of T1 and T2, respectively,
F(t2) − F(t1) is the portion of the distribution mass of F which lies in the interval
(t1, t2], the concept of a tolerance interval has an interpretation analogous to
that of a confidence interval. Namely, suppose the r. experiment under consid-
eration is carried out independently n times and let (t1, t2] be the resulting
interval for the observed values of the X’s. Suppose now that this is repeated
independently N times, so that we obtain N intervals (t1, t2]. Then as N gets
larger and larger, at least 100γ of the N intervals will cover at least 100p
percent of the distribution mass of F.

Now regarding the actual construction of tolerance intervals, we have the
following result.

THEOREM 2 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f of the continuous type and let Yj = X( j),
j = 1, . . . , n be the order statistics. Then for any p ∈ (0, 1) and 1 ≤ i < j ≤ n, the
r. interval (Yi, Yj] is a 100γ percent tolerance interval of 100p percent of F,
where γ is determined as follows:

γ υ υ= ( )−∫ g dj ip
,

1

gj−i being the p.d.f. of a Beta distribution with parameters α = j − i and
β = n − j + i + 1. (For selected values of p, α and β, 1 − γ is read off the
Incomplete Beta tables.)

PROOF We wish to show that P[F(Yj) − F(Yi) ≥ p] = γ. If we set Zk = F(Yk),
k = 1, . . . , n, this becomes

P Z Z pj i− ≥( ) = γ . (22)

This suggests that we shall have to find the p.d.f. of Zj − Zi. Set

W Z W Z Z k nk k k1 1 1 2= = − =−and  , , . . . , .

Then the determinant of the transformation is easily seen to be 1 and therefore
Theorem 3 in Chapter 10 gives

g w w
n w k n w w

n
k n

1
10 1 1

0
, . . . ,

!, , , . . . , ,

, otherwise.
( ) =

< = + ⋅ ⋅ ⋅ + <⎧
⎨
⎩

From the transformation above, we also have

Z Z W W W W W Wj i j i i j− = + ⋅ ⋅ ⋅ +( ) − + ⋅ ⋅ ⋅ +( ) = + ⋅ ⋅ ⋅ ++1 1 1 .

Thus it suffices to find the p.d.f. of Wi+1 + · · · + Wj. Actually, if we set j − i = r,
then it is clear that the p.d.f. of the sum of any consecutive r W’s is the same.
Accordingly, it suffices to determine the p.d.f. of W1 + · · · + Wr. For this
purpose, use the transformation Vk = W1 + · · · Wk, k = 1, . . . , n. Then we see
that formally we go back to the Z’s and therefore
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g
n v v

k
kυ υ1

10 1

0
, . . . ,

!,

,
( ) =

< < ⋅ ⋅ ⋅ < <⎧
⎨
⎩ otherwise.

It follows then from Theorem 2(i) in Chapter 10, that the marginal p.d.f. gr is
given by

g v

n

r n r
v v v

r

r n r

( ) = −( ) −( ) −( ) < <
⎧

⎨
⎪

⎩
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− −!

!
,

,

1
1 0 1

0

1

otherwise.

By taking into consideration that Γ(m) = (m − 1)!, this can be rewritten as
follows:

g v

n

r n r
v v v

r

r n r

( ) =
+( )

( ) − +( ) −( ) < <
⎧

⎨
⎪⎪

⎩
⎪
⎪

− −Γ

Γ Γ

1

1
1 0 1

0

1 ,

, otherwise.

But this is the p.d.f. of a Beta distribution with parameters α = r and β = n −
r + 1. Since this is also the p.d.f. of Zj − Zi, it follows that (22) is true, provided
γ is determined by

g v dvrp
( ) =∫ γ .

1

This completes the proof of the theorem. ▲

Let now f be positive in (a, b) with −∞ ≤ a < b ≤ ∞, so that F is strictly
increasing. Then, if X is an r.v. with d.f. F, it follows that for any p ∈ (0, 1), the
r. interval (−∞, X] covers at most 100p percent of the distribution mass of F,
and the r. interval (X, ∞) covers at least 100(1 − p) percent of the distribution
mass of F, each with probability equal to p. In fact,

P F X p P X F p F F p p( ) ≤[ ] = ≤ ( )[ ] = ( )[ ] =− −1 1 ,

so that (−∞, X] does cover at most p of the distribution mass of F with
probability p, and

P F X p P F X p F F p p p( ) > −[ ] = − ( ) ≤ −[ ] = − −( )[ ] = − −( ) =−1 1 1 1 1 1 11 ,

so that (X, ∞) does cover at least 1 − p of the distribution mass of F with
probability p, as was to be seen.

15.5 Tolerance Intervals 415



416 16 The General Linear Hypothesis

416

Chapter 16

The General Linear Hypothesis

16.1 Introduction of the Model

In the present chapter, the reader is assumed to be familiar with the basics of
linear algebra. However, for the sake of completeness, a brief exposition of the
results employed herein is given in Appendix I.

For the introduction of the model, consider a certain chemical or physical
experiment which is carried out at each one of the (without appreciable error)
selected temperatures xj, j = 1, . . . , n which need not be all distinct but they are
not all identical either. Assume that a certain aspect of the experiment de-
pends on the temperature and let yj be some measurements taken at the
temperatures xj, j = 1, . . . , n. Then one has the n pairs (xj, yj), j = 1, . . . , n which
can be represented as points in the xy-plane. One question which naturally
arises is how we draw a line in the xy-plane which would fit the data best in a
certain sense; that is, which would pass through the pairs (xj, yj), j = 1, . . . , n as
closely as possible. The reason that this line-fitting problem is important is
twofold. First, it reveals the pattern according to which the y’s depend on the
x’s, and secondly, it can be used for prediction purposes.

Quite often, as is seen by inspection, the pairs (xj, yj), j = 1, . . . , n are
approximately linearly related; that is, they lie approximately on a straight
line. In other cases, a polynomial of higher degree would seem to fit the data
better, and still in others, the data is periodic and it is fit best by a trigonometric
polynomial.

The underlying idea in all these cases is that, due to random errors in
taking measurements, yj is actually an observed value of a r.v. Yj, j = 1, . . . , n.
If it were not for the r. errors, the pairs (xj, yj), j = 1, . . . , n would be (exactly)
related as follows for the three cases considered above.

y x j n nj j= + = ≥( )β β1 2 1 2, , . . . , , (1)

for some values of the parameters β1, β2, or



y x x j n k nj j k j
k= + + ⋅ ⋅ ⋅ + = ≤ ≤ −( )+β β β1 2 1 1 2 1, , . . . , , (2)

for some values of the parameters β1, . . . , βk+1, or, finally,

y t t kt ktj j j k j k j= + + + ⋅ ⋅ ⋅ + ( ) + ( )+β β β β β1 2 3 2 2 1cos sin cos sin ,

j n n k= ≥ +( )1 2 1, . . . , , (3)

for some values of the parameters β1, . . . , β2k+1.
In the presence of r. errors ej, j = 1, . . . , n, the y’s appearing in (1)–(3) are

observed values of the following r.v.’s, respectively:

Y x e j n nj j j= + + = ≥( )β β1 2 1 2, , . . . , , (1′)

Y x x e j n k nj j k j
k

j= + + ⋅ ⋅ ⋅ + + = ≤ ≤ −( )+β β β1 2 1 1 2 1, , . . . , , (2′)

and Y t t kt kt ej j j k j k j j= + + + ⋅ ⋅ ⋅ + ( ) + ( ) ++β β β β β1 2 3 2 2 1cos sin cos sin , ,

j n n k= ≥ +( )1 2 1, . . . , . (3′)

At this point, one observes that the models appearing in relations (1′)–(3′)
are special cases of the following general model:

Y x x x e

Y x x x e

Y x x x e

p p

p p

n n n pn p n

1 11 1 21 2 1 1

2 12 1 22 2 2 2

1 1 2 2

= + + ⋅ ⋅ ⋅ + +

= + + ⋅ ⋅ ⋅ + +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= + + ⋅ ⋅ ⋅ + +

β β β
β β β

β β β ,

or in a more compact form

Y x e j n p n p nj ij i j
i

p

= + = ≤ <
=
∑ β , , . . . , .1

1

 with  and most often (4)
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x

x x x

x x x

p

p

n n pn

relation (4) is written as follows in matrix notation:

Y X e= ′ +ββ . (5)

The model given by (5) is called the general linear model (linear because the
parameters β1, . . . , βp enter the model in their first powers only). At this point,
it should be noted that what one actually observes is the r. vector Y, whereas
the r. vector e is unobservable.

16.1 Introduction of the Model 417
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DEFINITION 1 Let C = (Zij) be an n × k matrix whose elements Zij are r.v.’s. Then by assuming
the EZij are finite, the EC is defined as follows. EC = (EZij). In particular, for
Z = (Z1, . . . , Zn)′, we have EZ = (EZ1, . . . , EZn)′, and for C = (Z − EZ)(Z −
EZ)′, we have EC = E[(Z − EZ) (Z − EZ)′]. This last expression is denoted by
ΣΣΣΣΣ/ z and is called the variance–covariance matrix of Z, or just the covariance
matrix of Z. Clearly the (i, j)th element of the n × n matrix ΣΣΣΣΣ/ z is Coυ(Zi, Zj), the
covariance of Zi and Zj, so that the diagonal elements are simply the variances
of the Z’s.

Since the r.v.’s ej, j = 1, . . . , n are r. errors, it is reasonable to assume that
Eej = 0 and that σ 2(ej) = σ 2, j = 1, . . . , n. Another assumption about the e’s
which is often made is that they are uncorrelated, that is, Coυ(ei, ej) = 0, for
i ≠ j. These assumptions are summarized by writing E(e) = 0 and ΣΣΣΣΣ/ e = σ 2In,
where In is the n × n unit matrix.

By then taking into consideration Definition 1 and the assumptions just
made, our model in (5) becomes as follows:

Y X e Y X IY= ′ + = ′ = / =ββ ββ ηη ∑∑, , ,E nσ 2 (6)

where e is an n × 1 r. vector, X′ is an n × p (p ≤ n) matrix of known constants,
and βββββ is a p × 1 vector of parameters, so that Y is an n × 1 r. vector.

This is the model we are going to concern ourselves with from now on.
It should also be mentioned in passing that the expectations ηj of the r.v.’s Yj,
j = 1, . . . , n are linearly related to the β’s and are called linear regression
functions. This motivates the title of the present chapter.

In the model represented by (6), there are p + 1 parameters β1, . . . , βp, σ2

and the problem is that of estimating these parameters and also testing certain
hypotheses about the β’s. This is done in the following sections.

16.2 Least Square Estimators—Normal Equations

According to the model assumed in (6), we would expect to have ηηηηη = X′βββββ,
whereas what we actually observe is Y = X′βββββ + e = ηηηηη + e for some βββββ. Then the
principle of least squares (LS) calls for determining βββββ, so that the difference
between what we expect and what we actually observe is minimum. More
precisely, βββββ is to be determined so that the sum of squares of errors,

Y e− = =
=

∑ηη
2 2 2

1

ej
j

n

,

is minimum.

DEFINITION 2 Any value of βββββ which minimizes the squared norm �Y − ηηηηη�2, where ηηηηη = X′βββββ, is
called a least square estimator (LSE) of βββββ and is denoted by βββββ̂.

The norm of an m-dimensional vector v = (v1, . . . , vm)′, denoted by �v�, is
the usual Euclidean norm, namely



v =
⎛

⎝⎜
⎞

⎠⎟=
∑υ j
j

m
2

1

1 2

.

For the pictorial illustration of the principle of LS, let p = 2, x1j = 1 and
x2j = xj, j = 1, . . . , n, so that ηj = β1 + β2xj, j = 1, . . . , n. Thus (xj, ηj)′, j = 1, . . . ,
n are n points on the straight line η = β1 + β2x and the LS principle specifies that
β1 and β2 be chosen so that Σn

j=1(Yj − ηj)
2 be minimum; Yj is the (observable) r.v.

corresponding to xj, j = 1, . . . , n. (See also Fig. 16.1.)
(The values of β1 and β2 are chosen in order to minimize the quantity

(Y1 − η1)
2 + · · · + (Y5 − η5)

2.)
From (η1, . . . , ηn)′ = ηηηηη = X′βββββ, we have that

η βj ij
i

p

ix j n= =
=
∑

1

1, , . . . ,  

and

Y − = −( ) = −
⎛

⎝⎜
⎞

⎠⎟= ==
∑ ∑∑ηη

2 2

1 11

2

Y Y xj j
j

n

j ij i
i

p

j

n

η β ,

which we denote by S(Y, βββββ). Then any LSE is a root of the equations

Figure 16.1
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∂

∂β
ν

v

pS Y, , , . . . ,ββ( ) = =0 1

which are known as the normal equations.
Now

  
∂

∂β
β β β

v
j ij j

i

p

j

n

vj vj j
j

n

vj ij i
i

p

j

n

Y x x x Y x xS Y, ,( ) = −
⎛

⎝⎜
⎞

⎠⎟
−( ) = − +

== = ==
∑∑ ∑ ∑∑2 1 2 2

11 1 11

so that the normal equations become

x x x Y v pvj ij i
i

p

j

n

vj j
j

n

β
== =
∑∑ ∑= = ⋅ ⋅ ⋅

11 1

1, , , . (7)

The equations in (7) are written as follows in matrix notation

XX XY S XY S XX′ = ′ββ ββ ==, or , where = . (7′)
Actually, the set of LSE’s of βββββ coincides with the set of solutions of the normal
equations, as the following theorem shows. The normal equations provide a
method for the actual calculation of LSE’s.

THEOREM 1 Any LSE βββββ̂ of βββββ is a solution of the normal equations and any solution of the
normal equations is an LSE.

PROOF We have

ηη ββ= ′ =

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= + + ⋅ ⋅ ⋅ + + + ⋅

X

x x x

x x x

x x x

x x x x x

p

p

n n pn p

p p

11 21 1

12 22 2

1 2

1

2

11 1 21 2 1 12 1 22 2

β
β

β

β β β β β

M

, ⋅⋅ ⋅(
+ + + ⋅ ⋅ ⋅ + )′

= ( )′ + ( )′ + ⋅ ⋅ ⋅

+ ( )′ = + +

x x x x

x x x x x x

x x x

p p n n pn p

n n

p p p pn

2 1 1 2 2

1 11 12 1 2 21 22 2

1 2 1 2

β β β β

β β

β β β

, . . . ,

, , . . . , , , . . . ,

, , . . . ,

    

1 2ξξ ξξ ⋅⋅ ⋅ ⋅ + βp pξξ ,

where ξξξξξj is the jth column of X′, j = 1, . . . , n. Thus

ηη ξξ ξξ= =
=

∑ β j j
j

p

j j p
1

1with   as above., , . . . , (8)

Let Vn be the n-dimensional vector space �n and let r (≤ p) be the rank of X (=
rank X′). Then the vector space Vr generated by ξξξξξ1, . . . , ξξξξξp is of dimension r
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Figure 16.2 (n = 3, r = 2).

Y � X' � Y �
Y

ˆ ˆ

ˆ 0

Vn

Vr

(≤p), and Vr ⊆ Vn. Of course, Y ∈ Vn and from (8), it follows that ηηηηη ∈ Vr. Let
ηηηηη̂ be the projection of Y into Vr. Then ηηηηη̂ = Σp

j=1βββββ̂jξξξξξj, where βββββ̂j, j = 1, . . . , p may
not be uniquely determined (ηηηηη̂ is, however) but may be chosen to be functions
of Y since ηηηηη̂ is a function of Y. Now, as is well known, �Y − X′βββββ�2 = �Y − ηηηηη�2

becomes minimum if ηηηηη = ηηηηη̂. Thus βββββ̂ is an LSE of βββββ if and only if X′βββββ̂ = ηηηηη̂, and
this is equivalent to saying that Y − X′βββββ̂ ⊥ Vr. Clearly, an equivalent condition
to it is that Y − X′βββββ̂ ⊥ ξξξξξj, j = 1, . . . , p, or ξξξξξ′j(Y − X′βββββ̂) = 0, j = 1, . . . , p. From
the definition of ξξξξξj, j = 1, . . . , p, this last condition is equivalent to X(Y − X′βββββ̂)
= 0, or equivalently, XX′βββββ̂ = XY, which is the matrix notation for the normal
equations. This completes the proof of the theorem. (For a pictorial
illustration of some of the arguments used in the proof of the theorem, see
Fig. 16.2.) ▲

In the course of the proof of the last theorem, it was seen that there exists
at least one LSE βββββ̂ or βββββ and by the theorem itself the totality of LSE’s coincides
with the set of the solutions of the normal equations. Now a special but
important case is that where X is of full rank, that is, rank X = p. Then S = XX′
is a p × p symmetric matrix of rank p, so that S−1 exists. Therefore the normal
equations in (7′) provide a unique solution, namely βββββ̂ = S−1XY. This is part of
the following result.

THEOREM 2 If rank X = p, then there exists a unique LSE βββββ̂ of βββββ given by the expression
ˆ ,ββ = = ′−S XY S XX1 where . (9)

Furthermore, this LSE is linear in Y, unbiased and has covariance matrix given
by ΣΣΣΣΣ/ βββββ̂ = σ 2S−1.

PROOF The existence and uniqueness of the LSE βββββ̂ and the fact that it is
given by (9) have already been established. That it is linear in Y follows
immediately from (9). Next, its unbiasedness is checked thus:

E E E pβ̂β ββ ββ ββ ββ= ( ) = = ′ = = =− − − −S XY S X Y XX S S I1 1 1 1  S .
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Finally, for the calculation of the covariance of βββββ̂, we need the following
auxiliary result:

/ = / ′∑∑ ∑∑AV VA A , (10)

where V is an n × 1 r. vector with finite covariances and A is an m × n matrix
of constants. Relation (10) is established as follows:

/ = − ( )[ ] − ( )[ ]′⎧
⎨
⎩

⎫
⎬
⎭

= −( ) −( )′ ′
⎡

⎣
⎢

⎤

⎦
⎥

= −( ) −( )′⎡

⎣
⎢

⎤

⎦
⎥ ′ = / ′

∑∑

∑∑

AV

V

AV AV AV AV A V V V V A

A V V V V A A A

E E E E E E

E E E .

In the present case, A = S−1X and V = Y with ΣΣΣΣΣ/ Y = σ2In, so that

/ = ( )′ = ′( )′ = ( )′
= =

− − − − − −

− −

∑∑ββ̂ σ σ σ

σ σ

2 2 2

2 2

S X S X S XX S S S S

I S S

1 1 1 1 1 1

p
1 1

because S and hence S−1 is symmetric, so that (S−1)′ = S−1. This completes the
proof of the theorem. ▲

The following definition will prove useful in the sequel.

DEFINITION 3 For a known p × 1 vector c, set ψ = c′βββββ. Then ψ is called a parametric function.
A parametric function ψ is called estimable if it has an unbiased, linear (in Y)
estimator; that is, if there exists a nonrandom n × 1 vector a such that E(a′Y)
= ψ identically in βββββ.

In connection with estimable functions, the following result holds.

LEMMA 1 Let ψ = c′βββββ be an estimable function, so that there exists a ∈ Vn such that
E(a′Y) = ψ identically in βββββ. Furthermore, let d be the projection of a into Vr.
Then:

i) E(d′Y) = ψ.

ii) σ2(a′Y) ≥ σ 2 (d′Y).

iii) d′Y = c′βββββ̂ for any LSE βββββ̂ of βββββ.

iv) If ααααα is any other nonrandom vector in Vr such that E(ααααα′Y) = ψ, then
ααααα = d.

PROOF

i) The vector a can be written uniquely as follows: a = d + b, where b ⊥ Vr,
Hence

′ = +( )′ = ′ + ′a Y d b Y d Y b Y

and therefore

ψ = ′( ) = ′( ) + ′ = ′( ) + ′ ′E E E Ea Y d Y b Y d Y b X ββ.



But b′X′ = 0 since b ⊥ Vr and thus b ⊥ ξξξξξj, j = 1, . . . , p, the column vectors
of X

–
′. Hence E(d′Y) = ψ.

ii) From the decomposition a = d + b mentioned in (i), it follows that �a�2 =
�d�2 + �b�2. Next, by means of (10),

σ σ σ σ2 2 2 2 2 2 2
′( ) = ′ / = = +a Y a a a d bY∑∑ .

Since also

σ σ2 2 2d d Y= ′( )
by (10) again, we have

σ σ σ2 2 2 2
′( ) = ′( ) +a Y d Y b

from which we conclude that

σ σ2 2′( ) ≥ ′( )a Y d Y .

iii) By (i), E(d′′′′′Y) = ψ = c′βββββ identically in β. But

E E′( ) = ′ = ′ ′d Y d Y d X ββ,

so that d′Xβββββ = c′βββββ identically in βββββ. Hence d′X′ = c′. Next, with ηηηηη̂ = X′βββββ̂, the
projection of Y into Vr, one has d′(Y − ηηηηη̂) = 0, since d ∈ Vr. Therefore

′ = ′ ′ ′ ′d Y d d X cˆ ˆ ˆηη == ββ == ββ.

iv) Finally, let ααααα ∈ Vr be such that E(ααααα′Y) = ψ. Then we have

0 = ′( ) − ′( ) = ′ − ′( )[ ] = ′ − ′( ) ′E E Eαα αα αα ββY d Y d Y d X .

That is, (ααααα′ − d′)X′βββββ = 0 identically in βββββ and hence (ααααα′ − d′)X′ = 0, or
(ααααα − d)′X′ = 0 which is equivalent to saying that ααααα − d ⊥ Vr. So, both ααααα − d
∈ Vr and ααααα − d ⊥ Vr and hence ααααα − d = 0. Thus ααααα = d, as was to be seen. ▲

Part (iii) of Lemma 1 justifies the following definition.

DEFINITION 4 Let ψ = c′βββββ be an estimable function. Thus there exists a ∈ Vn such that E(a′Y)
= ψ identically in βββββ, and let d be the projection of a into Vr. Set ψ̂ = c′βββββ̂(= d′Y),
where βββββ̂ is any LSE of βββββ. Then the unbiased, linear (in Y) estimator ψ̂ of ψ is
called the LSE of ψ.

We are now able to formulate and prove the following basic result.

THEOREM 3 (Gauss–Markov) Assume the model described in (6) and let ψ be an estimable
function. Then its LSE ψ̂ has the smallest variance in the class of all linear in
Y and unbiased estimators of ψ.

PROOF Since ψ is estimable there exists a ∈ Vn such that E(a′Y) = ψ identi-
cally in βββββ, and let d be the projection of a into Vr. Then if b′Y is any other linear
in Y and unbiased estimator of ψ, it follows, by Lemma 1, that σ2(b′Y) ≥
σ2(d′Y). Since d′Y = ψ̂, the proof is complete. ▲
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COROLLARY Suppose that rank X = p. Then for any c ∈ Vp, the function ψ = c′βββββ is estimable,
and hence its LSE ψ̂ = c′βββββ̂ has the smallest variance in the class of all linear in
Y and unbiased estimators of ψ. In particular, the same is true for each β̂j,
j = 1, . . . , p, where β̂ = (β̂1, . . . , β̂p)′.

PROOF The first part follows immediately by the fact that βββββ̂ = S−1XY.
The particular case follows from the first part by taking c to have all its
components equal to zero except for the jth one which is equal to one, for
j = 1, . . . , n. ▲

16.3 Canonical Reduction of the Linear Model—Estimation of σσσσσ2

Assuming the model described in (6), in the previous section we solved
the problem of estimating βββββ by means of the LS principle. In the present
section, we obtain a certain reduction of the linear model under consideration,
and as a by-product of it, we also obtain an estimator of the variance σ2.
For this, it will have to be assumed that r < n as will become apparent in the
sequel.

Recall that Vr is the r-dimensional vector space generated by the column
vectors of X′, where r = rank X, so that Vr ⊆ Vn, Let {α1, . . . , αr} be an
orthonormal basis for Vr (that is, a basis for which ααααα′iαααααj = 0, i ≠ j and �αααααj�

2 = 1,
j = 1, . . . , r). Then this basis can be extended to an orthonormal basis {ααααα1, . . . ,
αααααr, αααααr+1, . . . , αααααn} for Vn. Now since Y ∈ Vn, one has that Y = Σn

j=1Zjαααααj for certain
r.v.’s Zj, j = 1, . . . , n to be specified below. It follows that ααααα′i Y = Σn

j=1Zjααααα′iαααααj, so
that Zi = ααααα′iY, i = 1, . . . , n. By letting P be the matrix with rows the vectors ααααα′i,
i = 1, . . . , n, the last n equations are summarized as follows: Z = PY, where
Z = (Z1, . . . , Zn)′. From the definition of P, it is clear that PP′ = In, so that
relation (10) gives

/ = ′ =∑∑Z P I P Iσ σ2 2
n n .

Thus

σ σ2 2 1Z j nj( ) = =, , . . . , . (11)

Next, let EZ = ζ = (ζ1, . . . , ζn)′. Then ζζζζζ = E(PY) = Pηηηηη, where ηηηηη ∈ Vr. It follows
then that

ζ j j r n= = +0 1, , . . . , . (12)

By recalling that ηηηηη̂ is the projection of Y into Vr, we have

Y = =
= =

∑ ∑Z Zj j
j

n

j j
j

r

αα ηη αα
1 1

and ,ˆ

so that



Y − = =
⎛

⎝⎜
⎞

⎠⎟

′
⎛

⎝⎜
⎞

⎠⎟
=

= + = + = + = +
∑ ∑ ∑ ∑η̂η αα αα αα

2

1

2

1 1

2

1

Z Z Z Zj j
j r

n

j j
j r

n

j j
j r

n

j
j r

n

. (13)

From (11) and (12), we get that EZ2
j = σ 2, j = r + 1, . . . , n, so that (13) gives

E�Y − ηηηηη̂�2 = (n − r)σ 2. Hence �Y − ηηηηη̂�2/(n − r) is an unbiased estimator of σ 2.
(Here is where we use the assumption that r < n in order to ensure that
n − r > 0.) Thus we have shown the following result.

THEOREM 4 In the model described in (6) with the assumption that r < n, an unbiased
estimator for σ2, σ̃2, is provided by �Y − ηηηηη̂�2/(n − r), where ηηηηη̂ is the projection
of Y into Vr and r (≤ p) is the rank of X. We may refer to σ̃ 2 as the LSE
of σ 2.

Now suppose that rank X = p, so that βββββ̂ = S−1XY by Theorem 2. Next, the
rows of X are ξξξξξ′j, where ξξξξξj, j = 1, . . . , p are the column vectors of X′, and ξj ∈
Vp, j = 1, . . . , p. Therefore ξξξξξ′jαααααi = 0 for all j = 1, . . . , p and i = p + 1, . . . , n. Since
αααααj, j = 1, . . . , n are the columns of P′, it follows that the last n − p elements in
all p rows of the p × n matrix XP′ are all equal to zero. Now from the
transformation Z = PY one has Y = P−1Z. But P−1 = P′ as follows from the fact
that PP′ = In. Thus Y = P′Z and therefore βββββ̂ = S−1XP′Z. Because of the special
form of the matrix XP′ menitoned above, it follows that βββββ̂ is a function of Zj,
j = 1, . . . , p only (see also Exercise 16.3.1), whereas

˜ .σ 2 2

1

1=
− ( )

= +
∑n p

Zj
j p

n

by 13

By summarizing these results, we have then

COROLLARY Let rank X = p (< n). Then the LSE’s βββββ̂ and σ̃ 2 are functions only of the
transformed r.v.’s Zj, j = 1, . . , , p and Zj, j = p + 1, . . . , n, respectively.

REMARK 1 From the last theorem above, it follows that in order for
us to be able to actually calculate the LSE σ̃ 2 of σ 2, we would have to rewrite
�Y − ηηηηη̂�2 in a form appropriate for calculation. To this end, we have

Y Y X Y X Y X

Y X Y X Y Y Y X XY XX

Y Y Y X XX XY

− = − ′ = − ′( )′ − ′( )
= ′ − ′( ) − ′( ) = ′ − ′ ′ ′ + ′ ′

′ − ′ ′ + ′ ′ −( )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ .

ηη ββ ββ ββ

ββ ββ ββ −− ββ ββ ββ

== ββ ββ ββ

2 2

But Y′X′βββββ̂ is (1 × n) × (n × p) × (p × 1) = 1 × 1, that is, a number. Hence
Y′X′βββββ̂ = (Y′X′βββββ̂)′ = βββββ̂′XY. On the other hand, XX′βββββ̂ − XY = 0 since XX′βββββ̂ = XY
by the normal equations (7′). Therefore

Y Y Y XY XY− = ′ − ′ = − ′
=

∑ˆ ˆ ˆηη ββ ββ
2 2

1

Yj
j

n

 . (14)
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Finally, denoting by rv the vth element of the p × 1 vector XY, one has

r x Y v pv vj
j

n

j= =
=

∑
1

1, , . . . ,  (15)

and therefore (14) becomes as follows:

Y − = −
= =

∑ ∑ˆ ˆ .ηη
2 2

1 1

Y rj
j

n

v
v

p

vβ (16)

As an application of some of the results obtained so far, consider the
following example.

EXAMPLE 1 Let Yj = β1 + β2xj + ej, where Eej = 0 and E(eiej) = σ2δij, i, j = 1, . . . , n (δij = 1, if
i = j and δij = 0 if i ≠ j).

Clearly, this example fits the model described in (6) by taking

′ =
⋅ ⋅
⋅ ⋅
⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
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⎜
⎜
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⎟
⎟

( )′X

1

1

1

1

2

2

x

x

xn

and =  1ββ β β, .

Next,

XX S′ =
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛
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⎞
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1
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x

n x

x xn

n
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j

n

j
j

n

j
j

n
,

so that the normal equations are given by (7′) with S as above and

XY =
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝⎜
⎞

⎠⎟
( )′ =

⎛

⎝⎜
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11x x x
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n

j
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, , . . . , , . (17)

Now

S = −
⎛

⎝⎜
⎞

⎠⎟
= −( )

= = =
∑ ∑ ∑n x x n x xj
j

n

j
j

n
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j
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2

1 1

2
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1

,

so that

x xj
j

n

−( ) ≠
=

∑ 2

1

0,



provided that not all x’s are equal. Then S−1 exists and is given by

S−−1

2

1

2

1 1

1

1=
−( )

−

−

⎛

⎝

⎜
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∑n x x
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x nj
j

n

j
j

n

j
j

n

j
j

n
. (18)

It follows that

ˆ
ˆ
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But

n x Y x Y n x x Y Yj j
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as is easily seen, so that
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x x Y Y

x x

i jj
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jj

n
(19′)
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It is also verified (see also Exercise 16.3.2) that

ˆ ˆ .β β1 2= −Y x (19″)

The expressions of β̂1 and β̂2 given by (19″) and (19′), respectively, are more
compact, but their expressions given by (19) are more appropriate for actual
calculations.

In the present case, (15) gives in conjunction with (17)

r Y r x Yj
j

n

j j
j

n

1
1

2
1

= =
= =

∑ ∑and ,

so that (16) becomes

Y − = −
⎛

⎝⎜
⎞

⎠⎟
−

⎛

⎝⎜
⎞

⎠⎟= = =
∑ ∑ ∑ˆ ˆ ˆ .ηη

2 2

1
1

1
2

1

Y Y x Yj
j

n

j
j

n

j j
j

n

β β (20)

Since also r = p = 2, the LSE of σ 2 is given by

˜
ˆ

.σ 2

2

2
=

−

−

Y ηη

n
(21)

For a numerical example, take n = 12 and the x’s and Y’s as follows:

x x Y Y

x x Y Y

x x Y Y

x x Y Y

x x Y Y

x x Y Y

1 7 1 7

2 8 2 8

3 9 3 9

4 10 4 10

5 11 5 11

6 12 6 12

30 70 37 20

30 70 43 26

30 70 30 22

50 90 32 15

50 90 27 19

50 90 34 20

= = = =
= = = =
= = = =
= = = =
= = = =
= = = = .

Then relation (19) provides us with the estimates β̂1 = 46.3833 and β̂2 = −0.3216,
and (20) and (21) give the estimate σ̃ 2 = 14.8939.

Exercises

16.3.1 Referring to the proof of the corollary to Theorem 4, elaborate on the
assertion that βββββ̂ is a function of the r.v.’s Zj, j = 1, . . . , r alone.

16.3.2 Verify relation (19″).

16.3.3 Show directly, by means of (19′) and (19″), that

E E
x xjj

n

ˆ , ˆ , ˆβ β β β σ β σ
1 1 2 2

2
2

2

2

1

= = ( ) =
−( )=∑



and that β̂2 and β̂1 are normally distributed if the Y’s are normally distributed.

16.3.4 i) Use relation (18) to show that

σ β
σ

σ β σ2
1

2 2

1

2

1

2
2

2

2

1

ˆ , ˆ( ) =
−( ) ( ) =

−( )
=

= =

∑
∑ ∑

x

n x x x x

jj

n

jj

n

jj

n

and that, if x̄ = 0, then β̂1 and β̂2 are uncorrelated;
Again refer to Example 1 and suppose that x̄ = 0. Then

ii) Conclude that β̂1 is normally distributed if the Y’s are normally distributed;

iii) Show that

σ β σ σ β σ2
1

2
2

2

2

2

1

ˆ , ˆ( ) = ( ) =
=∑n xjj

n

and, by assuming that n is even and xj∈[−x, x], j = 1, . . . , n for some x > 0,
conclude that σ 2(β̂2) becomes a minimum if half of the x’s are chosen equal
to x and the other half equal to −x (if that is feasible). (It should be pointed
out, however, that such a choice of the x’s—when feasible—need not be
“optimal.” This is the case, for example, when there is doubt about the
linearity of the model.)

16.3.5 Consider the linear model Yj = β1 + β2xj + β3x
2
j + ej, j = 1, . . . , n under

the usual assumptions and bring it under the form (6). Then for n = 5 and the
data given in the table below find:

i) The LSE’s of βββββ and σ 2;

ii) The covariance of βββββ̂ (the LSE of βββββ);

iii) An estimate of the covariance found in (ii).

x 1 2 3 4 5

y 1.0 1.5 1.3 2.5 1.7

16.4 Testing Hypotheses About ηηηηη � E(Y)

The assumptions made in (6) were adequate for the derivation of the results
obtained so far. Those assumptions did not specify any particular kind of
distribution for the r. vector e and hence the r. vector Y. However, in order to
be able to carry out tests about ηηηηη, such an assumption will have to be made
now. Since the r.v.’s ej, j = 1, . . . , n represent errors in taking measurements, it
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is reasonable to assume that they are normally distributed. Denoting by (C)
the set of conditions assumed so far, we have then

C N r p nn( ) = ′ + ( ) = ≤ <( ): , , . , :   rank  2Y X e e 0 I Xββ σ (22)

The assumption that e: N(0, σ 2In) simply states that the r.v.’s ej, j = 1, . . . , n are
uncorrelated normal (equivalently, independent normal) with mean zero and
variance σ 2.

Now from (22), we have that ηηηηη = EY = X′βββββ and it was seen in (8) that
ηηηηη ∈ Vr, the r-dimensional vector space generated by the column vectors of X′.
This means that the coordinates of ηηηηη are not allowed to vary freely but they
satisfy n − r independent linear relationships. However, there might be some
evidence that the components of ηηηηη satisfy 0 < q ≤ r additional independent
linear relationships. This is expressed by saying that ηηηηη actually belongs in
Vr−q, that is, an (r − q)-dimensional vector subspace of Vr. Thus we hypothesize
that

H V V q rr q r: ηη ∈ ⊂ <( )− (23)

and denote by c = C ∩ H, that is, the conditions that our model satisfies if in
addition to (C), we also assume H.

For testing the hypothesis H, we are going to use the Likelihood Ratio
(LR) test. For this purpose, denote by fY(y; βββββ, σ 2), or fY1, . . . , Yn(y1, . . . , yn; βββββ, σ 2)
the joint p.d.f. of the Y’s and let SC and Sc stand for the minimum of

  
S y y X, ββ ββ( ) = − ′ = −( )

=
∑2 2

1

y EYj j
j

n

under C and c, respectively. We have

  

f y EY
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2 2
S .

(24)

From (24), it is obvious that for a fixed σ2, the maximum of fY(Y; βββββ, σ2) with
respect to βββββ, under C, is obtained when S(y, βββββ) is replaced by Sc. Thus in order
to maximize fY(y; βββββ, σ2) with respect to both βββββ and σ 2, under C, it suffices to
maximize with respect to σ2 the quantity

  
1

2

1

22 2
πσ σ
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Cexp S ,

or its logarithm

  
− ( ) − −n n C

2 2 2
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2
log 2π σ
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log .

S



Differentiating with respect to σ2 this last expression and equating the deriva-
tive to zero, we obtain

  
− + = =n

n
C C

2
1

2
1

0
2 4σ σ

σS S
, .so that 2

The second derivative with respect to σ2 is equal to n/(2σ4) − (SC/σ6) which for
σ2 =σ̄ 2 becomes −n3/(2S2

C) < 0. Therefore

  
max  ,  exp2
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f
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In an entirely analogous way, one also has
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so that the LR statistic λ is given by

  
λ =

⎛
⎝⎜

⎞
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−S
S

c

C

n 2

(27)

where

  

S SC
C

C C

C C

= ( ) = − = − ′

=

min ,  

LSE of  under ,

Y Y Y Xββ ηη ββ

ββ ββ
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(28)

and

  

S Sc
c

c c

c c

= ( ) = − = − ′
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min ,  

LSE of  under .

Y Y Y Xββ ηη ββ

ββ ββ

ˆ ˆ ,

ˆ

2 2

(29)

The actual calculation of SC and Sc is done by means of (16), where ηηηηη̂ is
replaced by ηηηηη̂C and ηηηηη̂c, respectively.

The LR test rejects H whenever λ < λ0, where λ0 is defined, so that the
level of the test is α. Now the problem which arises is that of determining
the distribution of λ (at least) under H. We will show in the following that
the LR test is equivalent to a certain “F-test” based on a statistic whose
distribution is the F-distribution, under H, with specified degrees of freedom.
To this end, set

g nλ λ( ) = −−2 1. (30)

Then

dg

d n
n nλ

λ
λ

( )
= − <− +( )2 2

0,

16.4 Testing Hypotheses About � � E(Y) 431



432 16 The General Linear Hypothesis

so that g(λ) is decreasing. Thus λ < λ0 if and only if g(λ) > g(λ0).
Taking into consideration relations (27) and (30), the last inequality

becomes

  
n r

q
c C

C

− − >S S
S F0 ,

where F0 is determined by

  
P

n r
qH

c C

C

− − >
⎛
⎝⎜

⎞
⎠⎟

=S S
S F0 α.

Therefore the LR test is equivalent to the test which rejects H whenever

  
F F F S S

S F> = − − = −0 0, .,where and
n r

q
Fc C

C
q n rjx

(31)

The statistics SC and Sc are given by (28) and (29), respectively, and the
distribution of F, under H, is Fq,n−r, as is shown in the next section.

Now although the F-test in (31) is justified on the basis that it is equivalent
to the LR test, its geometric interpretation illustrated by Fig. 16.3 below
illuminates it even further. We have that ηηηηη̂C is the “best” estimator of η under
C and ηηηηη̂c is the “best” estimator of η under c. Then the F-test rejects H
whenever ηηηηη̂C and ηηηηη̂c differ by too much; equivalently, whenever Sc − SC is too
large (when measured in terms of SC).

Suppose now that rank X = p (< n), and let βββββ̂ be the unique (and unbiased)
LSE of βββββ. By the facet that (Y − ηηηηη̂)′(ηηηηη̂ − ηηηηη) = 0 because Y − ηηηηη̂ ⊥ ηηηηη̂ − ηηηηη, one has
that the joint p.d.f. of the Y’s is given by the following expression, where y has
been replaced by Y:

1

2

1

22 2
2

2

πσ σ
σ
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− −( ) + ′ ′⎡
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⎧
⎨
⎩

⎫
⎬
⎭

n

n pexp ˜ ˆ .X Xββ −− ββ

Figure 16.3 (n = 3, r = 2, r − q = 1).

Y

Cˆ

cˆ

0

Vn

Vr � q

Vr

SC � squared norm of

Sc � squared norm of

Sc � SC � squared norm of



This shows that (βββββ̂, σ̃ 2) is a sufficient statistic for (βββββ, σ 2). It can be shown that
it is also complete (this follows from the multiparameter version of Theorem
6 in Chapter 11). By sufficiency and completeness, we have then the following
result.

THEOREM 5 Under conditions (C) described in (22) and the assumption that rank X = p (<
n), it follows that the LSE’s β̂j of βj, j = 1, . . . , p have the smallest variance in
the class of all unbiased estimators of βj, j = 1, . . . , n (that is, regardless of
whether they are linear in Y or not).

PROOF For j = 1, . . . , p, β̂j is an unbiased (and linear in Y) estimate of βj. It
is also of minimum variance (by the Lehmann–Scheffé theorem) as it depends
only on a sufficient and complete statistic. ▲

Exercises

16.4.1 Show that the MLE and the LSE of σ2, σ̂ 2, and σ̃2, respectively, are
related as follows:

ˆ ˜ ˆσ σ σ σ2 2 2= − =n r
n

and that 2

where σ̄ 2 is given in Section 16.4.

16.4.2 Let Yj, j = 1, . . . , n be independent r.v.’s where Yj is distributed as

N x x x j nj jβ γ σ+ −( )( ) =, ; , , . . . ,   2 1

are known constants,

x
n

xj
j

n

=
=

∑1

1

and β, γ, σ 2 are parameters. Then:

ii) Derive the LR test for testing the hypothesis H :γ = γ0 against the alterna-
tive A: γ ≠ γ0 at level of significance α;

ii) Set up a confidence interval for γ  with confidence coefficient 1 − α.

16.5 Derivation of the Distribution of the F Statistic

Consider the three vector spaces Vr−q, Vr and Vn(r < n) which are related as
follows: Vr−q ⊂ Vr ⊂ Vn. Following similar arguments to those in Section 16.3,
let {αααααq+r, . . . , αααααr} be an orthonormal basis for Vr−q and extend it to an
orthonormal basis {ααααα1, . . . , αααααq, αααααq+1, . . . , αααααr} for Vr and then to an orthonormal
basis {ααααα1, . . . , αααααq, αααααq+1, . . . , αααααr, αααααr+1, . . . , αααααn} for Vn. Let P be the n × n orthogonal
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matrix with rows the vectors ααααα′J, j = 1, . . . , n, so that PP′ = In. As in Section 16.3,
consider the transformation Z = PY and set EZ = ζζζζζ = (ζ1, . . . , ζn)′. Then ζζζζζ = Pηηηηη,
where ηηηηη ∈ Vr. Thus ζj = 0, j = r + 1, . . . , n. Now if H is true, we will further have
that ηηηηη ∈ Vr−q, so that ζj = 0, j = 1, . . . , q, as follows from the transformation
ζζζζζ = Pηηηηη. The converse is also, clearly, true. Thus the hypothesis H is equivalent
to the hypothesis

′ = =H j qj: , , . . . , .ζ 0 1  

By (13) and (28),

  
SC C j

j r

n

Z= − =
= +
∑Y ˆ .ηη

2 2
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Y = =
= = +
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1 1

and c
ˆ ,

since ηηηηη̂c is the projection of ηηηηη̂ into Vr−q, Therefore (29) gives
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.

Now since the Y’s are independent and the transformation P is orthogonal,
it follows that Z’s are also independent. (See Theorem 5, Chapter 9.)
Since also σ 2(Zj) = σ 2, j = 1, . . . , n by (11), it follows that, under H (or
equivalently, H′).

Z Zj
j

q

q j
j r

n

n r
2

1

2 2

1

2

= = +
−∑ ∑ is and  is 2 2σ χ σ χ .

It follows that, under H (H′), the statistic F is distributed as Fq, n−r. The distri-
bution of F, under the alternatives, is non-central Fq, n−r which is defined in
terms of a χ2

n−r and a non-central χ2
q distribution. For these definitions, the

reader is referred to Appendix II.
From the derivations in this section and previous results, one has the

following theorem.
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THEOREM 6 Assume the model described in (22) and let rank X = p (< n). Then the LSE’s
βββββ̂ and σ̃ 2 of βββββ and σ2, respectively, are independent.

PROOF It is an immediate consequence of the corollary to Theorem 4 and
Theorem 5 in Chapter 9. ▲

Finally, we should like to emphasize that the transformation of the r.v.’s
Yj, j = 1, . . . , n to the r.v.’s Zj, j = 1, . . . , n is only a technical device for deriving
the distribution of F and also for proving unbiasedness of the LSE of σ2. For
actually carrying out the test and also for calculating the LSE of σ2, the Y’s
rather than the Z’s are used.

This section is closed with two examples.

EXAMPLE 2 Refer to Example 1 and suppose that the x’s are not all equal, and that the Y’s
are normally distributed. It follows that rank X = r = 2, and the regression line
is y = β1 + β2x in the xy-plane. Without loss of generality, we may assume that
x1 ≠ x2. Then ηi = β1 + β2 xi, i = 1, 2 are linearly independent, and all ηj, j = 3, . . . ,
n are linear combinations of η1 and η2. Therefore η ∈ V2.

Now, suppose we are interested in testing the following hypothesis about
the slope of the regression line; namely H1: β2 = β20, where β20 is a given
number. Hypothesis H1 is equivalent to the hypothesis H′1: ηi = β1 + β20 xi, i = 1,
2, from which it follows that, under H1 (or H ′1), η ∈ V1. Thus, r − q = 1, or q =
1. The LSE of β1 and β2 are β̂1C = Ȳ − β̂2Cx̄, β̂2C = Σn

j=1(xj − x̄)2(Yj − Ȳ )/
Σn

j=1(xj − x̄)2, whereas under H1 (or H ′1, the LSE become β̂1c = Ȳ − β20x̄, β̂2c = β20.
Then η̂C = X′β̂C and SC = �Y − ηηηηη̂C �2 = Σn

j=1(Yj − Ȳ )2 − β̂2
2CΣn

j =1(xj − x̄)2. Likewise,
ηηηηη̂c = X′βββββ̂c and Sc = �Y − ηηηηη̂c �2 = Σn

j=1(Yj − Ȳ )2 + β20 · (β20 − 2β̂2C)Σn
j=1(xj − x̄)2. It

follows that Sc − SC = (β̂2C − β20)
2 Σn

j =1(xj − x̄)2, and the test statistic is

  F
S S

S= − −
−

n
n

c C

C
F2

1 1 2~ ,,  and the cut-off point is F0 = F1,n−2;α.
Next, suppose we are interested in testing the hypothesis H2: β1 = β10, β2 =

β20, where β10 and β20 are given numbers. Hypothesis H2 is equivalent to the
hypothesis H ′2: ηi = β10 + β20 xi, i = 1, 2, from which it follows that, under H2

(or H ′2), ηηηηη ∈ V0. Thus, r − q = 0, or q = 2. Clearly, β̂1c = β10, β̂2c = β20, so that
ηηηηη̂c = X′βββββ̂c and Sc = Σn

j=1(Yj − β10 − β20xj)
2. It follows that the test statistic

here is   F
S S

S= − −
−

n
n

c C

C
F2

2 2 2~ ,,  where SC was given above. The cut-off point is
F0 = F2,n−2;α.

As mentioned earlier, the linear model adopted in this chapter can also be
used for prediction purposes. The following example provides an instance of a
prediction problem and its solution.

EXAMPLE 3 Refer to Example 2. Let x0 ≠ xj, j = 1, . . . , n and suppose that the independent
r.v.’s Y0i = β1 + β2x0 + ei, i = 1, . . . , m are to be observed at the point x0. Let Y0

be their sample mean. The problem is that of predicting Y0 and also construct-
ing a prediction interval for Y0. Of course, it is also assumed that if the Y0i’s
were actually observed, they would be independent of the Y’s.

The r.v. Y0 is to be predicted by Ŷ0, where Ŷ0 = β̂1 + β̂2x0. Then it follows
that EŶ0 = β1 + β2x0. Thus, if we set Z = Y0 − Ŷ0, then EZ = 0. Furthermore, by
means of Exercise 16.5.4(i) and (18), we find (see also Exercise 16.5.3) that
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It follows by Theorem 6 that
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is tn−2 distributed, so that a prediction interval for Y0 with confidence coefficient
1 − α is provided by
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where

α α

σ

For a numerical example, refer to the data used in Example 1 and let x0 = 60,
m = 1 and α = 0.05. Then Ŷ0 = 27.0873, s = 1.2703 and t10;0.025 = 2.2281, so that the
prediction interval for Y0 is given by [24.2570, 29.9176].

Exercises

16.5.1 From the discussion in Section 16.5, it follows that the distribution of
[(n − r)σ̃ 2]/σ2 is χ 2

n−r. Thus the statistic σ̃ 2 can be used for testing hypotheses
about σ 2 and also for constructing confidence intervals for σ 2.

ii) Set up a confidence interval for σ2 with confidence coefficient 1 − α;

ii) What is this confidence interval in the case of Example 2 when n = 27 and
α = 0.05?

16.5.2 Refer to Example 2 and:
i) Use Exercises 16.3.3 and 16.3.4 to show that

n xjj

nˆ ˆβ β

σ

β β

σ

−( ) −( )=∑1
2

1 2 2
and



are distributed as N(0, 1), provided x̄ = 0;

ii) Use Theorem 6 and Exercise 16.5.1 to show that

n x xjj

nˆ

˜

ˆ

˜

β β

σ

β β

σ

−( ) −( ) −( )=∑1

2

2

1 2 2

2
and

are distributed as tn−2.

Thus the r.v.’s figuring in (ii) may be used for testing hypotheses
about β1 and β2 and also for constructing confidence intervals for β1 and
β2;

iii) Set up the test for testing the hypothesis H : β1 = 0 (the regression line
passes through the origin) against A :β1 ≠ 0 at level α and also construct a
1 − α confidence interval for β1;

iv) Set up the test for testing the hypothesis H′ : β2 = 0 (the Y’s are independent
of the x’s) against A′ :β2 ≠ 0 at level α and also construct a 1 − α confidence
interval for β2;

v) What do the results in (iii) and (iv) become for n = 27 and α = 0.05?

16.5.3 Verify relation (32).

16.5.4 Refer to Example 3 and suppose that the r.v.’s Y0i = β1 + β2x0 + ei,
i = 1, . . . , m corresponding to an unknown point x0 are observed. It is
assumed that the r.v.’s Yj, j = 1, . . . , n and Y0i, i = 1, . . . , m are all
independent.

ii) Derive the MLE x̂0 of x0;

ii) Set V = Y0 − β̂1 − β̂2x0, where Y0 is the sample mean of the Y0i’s and show
that the r.v.

V

m n m n

Vσ

σ σ+( ) + −( )ˆ̂
,

2 23

where

σ σV

jj

nm n

x x

x x

2 2 0

2

2

1

1 1= + +
−( )

−( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥=∑

and

ˆ̂ ˆ ˆ ,σ β β2
1 2

2

0 0

2

11

1=
+

− −( ) + −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥==

∑∑m n
Y x Y Yj j i

i

m

j

n

is distributed as tm+n−3.

16.5.5 Refer to the model considered in Example 1 and suppose that the x’s
and the observed values of the Y’s are given by the following table:

Exercises 437
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x 5 10 15 20 25 30

y 0.10 0.21 0.30 0.35 0.44 0.62

i) Find the LSE’s of β1, β2 and σ 2 by utilizing the formulas (19′), (19″) and
(21), respectively;

ii) Construct confidence intervals for β1, β2 and σ 2 with confidence coefficient
1 − α = 0.95 (see Exercises 16.5.1 and 16.5.2(ii));

iii) On the basis of the assumed model, predict Y0 at x0 = 17 and construct a
prediction interval for Y0 with confidence coefficient 1 − α = 0.95 (see
Example 3).

16.5.6 The following table gives the reciprocal temperatures (x) and the
corresponding observed solubilities of a certain chemical substance.

x 3.80 3.72 3.67 3.60 3.54

1.27 1.20 1.10 0.82 0.65
y 1.32 1.26 1.07 0.84 0.57

1.50 0.80 0.62

Assume the model considered in Example 1 and discuss questions (i) and (ii)
of the previous exercise. Also discuss question (iii) of the same exercise for
x0 = 3.77.

16.5.7 Let Zj, j = 1, . . . , n be independent r.v.’s, where Zj is distributed as
N(ζj, σ 2). Suppose that ζj = 0 for j = r + 1, . . . , n whereas ζ1, . . . , ζr, σ 2 are
parameters. Then derive the LR test for testing the hypothesis H :ζ1 = ζ1

against the alternative A :ζ1 ≠ ζ1 at level of significance α.

16.5.8 Consider the r.v.’s of Exercise 16.4.2 and transform the Y’s to Z’s by
means of an orthogonal transformation P whose first two rows are

x x
s

x x
s n n

s x x
x

n

x
x j

j

n
1 2 2

1

1 1− −⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
= −( )

=
∑, . . . , , , . . . , , .

Then:

ii) Show that the Z’s are as in Exercise 16.5.7 with r = 2, ζ1 = γsx, ζ2 = β;

ii) Set up the test mentioned in Exercise 16.5.7 and then transform the Z’s
back to Y’s. Also compare the resulting test with the test mentioned in
Exercise 16.4.2.



16.5.9 Let Yi = β1 + β2xi + ei, i = 1, . . . , m, Y*j  = β*1 + β*2x*j + e*j, j = 1, . . . , n,
where the e’s and e*’s are independent r.v.’s distributed as N(0, σ 2). Use
Exercises 16.3.3, 16.3.4 and 16.5.1 to test the hypotheses H1 : β1 = β*1, H2 : β2 = β*2
against the corresponding alternatives A1 : β1 ≠ β*1, A2 : β2 ≠ β*2 at level of
significance α.

Exercises 439
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Chapter 17

Analysis of Variance

The Analysis of Variance techniques discussed in this chapter can be used to
study a great variety of problems of practical interest. Below we mention a few
such problems.

Crop yields corresponding to different soil treatment.
Crop yields corresponding to different soils and fertilizers.
Comparison of a certain brand of gasoline with and without an additive by
using it in several cars.
Comparison of different brands of gasoline by using them in several cars.
Comparison of the wearing of different materials.
Comparison of the effect of different types of oil on the wear of several
piston rings, etc.
Comparison of the yields of a chemical substance by using different cata-
lytic methods.
Comparison of the strengths of certain objects made of different batches
of some material.
Identification of the melting point of a metal by using different
thermometers.
Comparison of test scores from different schools and different teachers, etc.

Below, we discuss some statistical models which make the comparisons
mentioned above possible.

17.1 One-way Layout (or One-way Classification) with the Same Number of
Observations Per Cell

The models to be discussed in the present chapter are special cases of the
general model which was studied in the previous chapter. In this section, we
consider what is known as a one-way layout, or one-way classification, which
we introduce by means of a couple of examples.



EXAMPLE 1 Consider I machines, each one of which is manufactured by I different compa-
nies but all intended for the same purpose. A purchaser who is interested in
acquiring a number of these machines is then faced with the question as to
which brand he should choose. Of course his decision is to be based on the
productivity of each one of the I different machines. To this end, let a worker
run each one of the I machines for J days each and always under the same
conditions, and denote by Yij his output the jth day he is running the ith
machine. Let μi be the average output of the worker when running the ith
machine and let eij be his “error” (variation) the jth day when he is running the
ith machine. Then it is reasonable to assume that the r.v.’s eij are normally
distributed with mean 0 and variance σ 2. It is further assumed that they are
independent. Therefore the Yij’s are r.v.’s themselves and one has the follow-
ing model.

Y e e N i I

j J

ij i ij ij= + ( ) = ≥( )
= ≥( )

μ σwhere  are independent for ,

,

0 1 2

1 2 1

2, , . . . ;

, . . . . ( )

EXAMPLE 2 For an agricultural example, consider I ·J identical plots arranged in an I × J
orthogonal array. Suppose that the same agricultural commodity (some sort of
a grain, tomatoes, etc.) is planted in all I · J plots and that the plants in the ith
row are treated by the ith kind of I available fertilizers. All other conditions
assumed to be the same, the problem is that of comparing the I different kinds
of fertilizers with a view to using the most appropriate one on a large scale.
Once again, we denote by μi the average yield of each one of the J plots in the
ith row, and let eij stand for the variation of the yield from plot to plot in the
ith row, i = 1, . . . , I. Then it is again reasonable to assume that the r.v.’s eij, i =
1, . . . , I; j = 1, . . . , J are independent N(0, σ 2), so that the yield Yij of the jth
plot treated by the ith kind of fertilizer is given by (1).

One may envision the I objects (machines, fertilizers, etc.) as being repre-
sented by the I spaces between I + 1 horizontal (straight) lines and the J objects
(days, plots, etc.) as being represented by the J spaces between J + 1 vertical
(straight) lines. In such a case there are formed IJ rectangles in the resulting
rectangular array which are also referred to as cells (see also Fig. 17.1). The
same interpretation and terminology is used in similar situations throughout
this chapter.

In connection with model (1), there are three basic problems we are
interested in: Estimation of μi, i = 1, . . . , I; testing the hypothesis: H :μ1 = · · · =
μI (=μ, unspecified) (that is, there is no difference between the I machines, or
the I kind of fertilizers) and estimation of σ 2. Set

Y

e

= ( )
= ( )
= ( )

Y Y Y Y Y Y

e e e e e e

J J I I

J J I I

I

11 1 21 2

11 1 21 2

1

, . . . , ; , . . . , ; . . . ; , . . . ,

, . . . , ; , . . . , ; . . . ; , . . . ,

, . . . ,

′

′

′ββ μ μ
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Then it is clear that Y = X′βββββ + e. Thus we have the model described in (6)
of Chapter 16 with n = IJ and p = I. Next, the I vectors (1, 0, · · · , 0)′, (0, 1,
0, . . . , 0)′, . . . , (0, 0, . . . , 0, 1)′ are, clearly, independent and any other row
vector in X′ is a linear combination of them. Thus rank X′ = I (= p), that is, X

� 
J

Figure 17.1



is of full rank. Then by Theorem 2, Chapter 16, μi = 1, . . . , I have uniquely
determined LSE’s which have all the properties mentioned in Theorem 5 of
the same chapter. In order to determine the explicit expression of them, we
observe that

S XX I= ′ =

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅
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=

J

J

J

J p

0 0 0
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0 0 0
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XY =
⎛

⎝⎜
⎞

⎠⎟
′

===
∑∑∑Y Yj j IJ
jj

J

j

J

1 2
111

, , . . . , ,Y
J

so that, by (9), Chapter 16,

ˆ , , . . . , .ββ = =
⎛

⎝⎜
⎞

⎠⎟
′

−

===
∑∑∑S XY1 1 1 1

1 2
111J

Y
J

Y
J

Yj j IJ
j

J

j

J

j

J

Therefore the LSE’s of the μ’s are given by

ˆ , , , . . . , .. .μi i i ij
j

J

Y Y
J

Y i I= = =
=

∑where
1

1
1

(2)

Next, one has

ηη = =
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

EY μ μ μ μ μ μ1 1 2 2, . . . , ; , . . . , ; . . . ; , . . . , ,

J J J

I I

6 74 84 6 74 84 6 74 84
′

so that, under the hypothesis H :μ1 = · · ·= μI (= μ, unspecified), ηηηηη ∈V1. That is,
r − q = 1 and hence q = r − 1 = p − 1 = I − 1. Therefore, according to (31) in
Chapter 16, the F statistic for testing H is given by

  
F S S

S
S S

S= − − =
−( )

−
−n r

q

I J

I
c C

C

c C

C

1

1
. (3)

Now, under H, the model becomes Yij = μ + eij and the LSE of μ is obtained by
differentiating with respect to μ the expression

Y − = −( )
==

∑∑ηηc ij
j

J

i

I

Y
2 2

11

μ .

One has then the (unique) solution

ˆ , .. . . .μ = =
==

∑∑Y Y
IJ

Yij
j

J

i

I

where
1

11

(4)

Therefore relations (28) and (29) in Chapter 16 give
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Likewise,
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so that, by means of (5) and (6), one has
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That is,

Sc − SC = SSH, (7)

where

SS J Y Y J Y IJYH i
i

I

i
i
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Therefore the F statistic given in (3) becomes as follows:
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I
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1
, (8)

where
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SS
I
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I JH
H

e
e=

−
=

−( )1 1
,

and SSH and SSe are given by (7) and (5), respectively. These expressions are
also appropriate for actual calculations. Finally, according to Theorem 4 of
Chapter 16, the LSE of σ 2 is given by

˜ .σ 2

1
=

−( )
SS

I J
e (9)



Table 1 Analysis of Variance for One-Way Layout

source of degrees of
variance sums of squares freedom mean squares

between groups SS J Y YH i
i
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= −( )
=

∑ . . .

2

1

I − 1 MS
SS
IH

H=
− 1
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j
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==
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11
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11

IJ − 1 —
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REMARK 1 From (5), (6) and (7) it follows that SST = SSH + SSe. Also from
(6) it follows that SST stands for the sum of squares of the deviations of the Yij’s
from the grand (sample) mean Y. .. Next, from (5) we have that, for each i,
∑J

j=1(Yij − Yi .)
2 is the sum of squares of the deviations of Yij, j = 1, . . . , J within

the ith group. For this reason, SSe is called the sum of squares within groups.
On the other hand, from (7) we have that SSH represents the sum of squares of
the deviations of the group means Yi. from the grand mean Y. . (up to the factor
J). For this reason, SSH is called the sum of squares between groups. Finally,
SST is called the total sum of squares for obvious reasons, and as mentioned
above, it splits into SSH and SSe. Actually, the analysis of variance itself derives
its name because of such a split of SST.

Now, as follows from the discussion in Section 5 of Chapter 16, the
quantities SSH and SSe are independently distributed, under H, as σ 2χ 2

I−1 and
σ 2χ2

I(J−1), respectively. Then SST is σ 2χ2
IJ−1 distributed, under H. We may

summarize all relevant information in a table (Table 1) which is known as an
Analysis of Variance Table.

EXAMPLE 3 For a numerical example, take I = 3, J = 5 and let

Y11 = 82 Y21 = 61 Y31 = 78
Y12 = 83 Y22 = 62 Y31 = 72
Y13 = 75 Y23 = 67 Y33 = 74
Y14 = 79 Y24 = 65 Y34 = 75
Y15 = 78 Y25 = 64 Y35 = 72

We have then
ˆ . , ˆ . , ˆ .μ μ μ1 2 379 4 63 8 74 2= = =

and MSH = 315.5392, MSe = 7.4, so that F = 42.6404. Thus for α = 0.05, F2,12;0.05,
= 3.8853 and the hypothesis H : μ1 = μ2 = μ3 is rejected. Of course, ̃σ 2 = MSe = 7.4.
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Exercise

17.1.1 Apply the one-way layout analysis of variance to the data given in the
table below.

A B C

10.0 9.1 9.2

11.5 10.3 8.4

11.7 9.4 9.4

17.2 Two-way Layout (Classification) with One Observation Per Cell

The model to be employed in this paragraph will be introduced by an appro-
priate modification of Examples 1 and 2.

EXAMPLE 4 Referring to Example 1, consider the I machines mentioned there and also J
workers from a pool of available workers. Each one of the J workers is
assigned to each one of the I machines which he runs for one day. Let μij be the
daily output of the jth worker when running the ith machine and let eij be his
“error.” His actual daily output is then an r.v. Yij such that Yij = μij + eij. At this
point it is assumed that each μij is equal to a certain quantity μ, the grand mean,
plus a contribution αi due to the ith row (ith machine), and called the ith row
effect, plus a contribution βj due to the jth worker, and called the jth column
effect. It is further assumed that the I row effects and also the J column effects
cancel out each other in the sense that

α βi j
j

J

i

I

= =
==

∑∑
11

0.

Finally, it is assumed, as is usually the case, that the r. errors eij, i = 1, . . . , I;
j = 1, . . . , J are independent N(0, σ 2). Thus the assumed model is then

Y eij i j ij i
i

I

j
j

J

= + + + = =
= =
∑ ∑μ α β α β, where

1 1

0 (10)

and eij, i = 1, . . . , I (≥ 2); j = 1, . . . , J (≥ 2) are independent N(0, σ2).

EXAMPLE 5 Consider the identical I ·J plots described in Example 2, and suppose that J
different varieties of a certain agricultural commodity are planted in each one
of the I rows, one variety in each plot. Then all J plots in the ith row are treated
by the ith of I different kinds of fertilizers. Then the yield of the jth variety of
the commodity in question treated by the ith fertilizer is an r.v. Yij which is
assumed again to have the structure described in (10). Here the ith row effect



is the contribution of the ith fertilized and the jth column effect is the contri-
bution of the jth variety of the commodity in question.

From the preceding two examples it follows that the outcome Yij is af-
fected by two factors, machines and workers in Example 4 and fertilizers and
varieties of agricultural commodity in Example 5. The I objects (machines or
fertilizers) and the J objects (workers or varieties of an agricultural commod-
ity) associated with these factors are also referred to as levels of the factors.
The same interpretation and terminology is used in similar situations through-
out this chapter.

In connection with model (10), there are the following three problems to
be solved: Estimation of μ; αi, i = 1, . . . , I; βj, j = 1, . . . , J; testing the hypothesis
HA :α1 = · · ·= αI = 0 (that is, there is no row effect), HB : β1 = · · · = βJ = 0 (that is,
there is no column effect) and estimation of σ 2.

We first show that model (10) is a special case of the model described in
(6) of Chapter 16. For this purpose, we set
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and then we have

Y X e= ′ + = = + +ββ with andn IJ p I J 1.

It can be shown (see also Exercise 17.2.1) that X′ is not of full rank but rank
X′ = r = I + J − 1. However, because of the two independent restrictions

α βi
i

I

j
j

J

= =
∑ ∑= =

1 1

0,

imposed on the parameters, the normal equations still have a unique solution,
as is found by differentiation.

In fact,

  
S SY Y, ,.ββ ββ( ) = − − −( ) ( ) =

==
∑∑ Yij i j
j

J

i

I

μ α β ∂
∂μ

2

11

0and

implies μ̂ = Y. ., where Y. . is again given by (4);

  
∂

∂ai

S Y,ββ( ) = 0

implies α̂ i = Yi . − Y. ., where Yi. is given by (2) and (∂/∂βj)S(Y, βββββ) = 0 implies
βββββ̂j = Y.j − Y. ., where

Y
I

Yj ij
i

I

. .=
=
∑1

1

Summarizing these results, we have then that the LSE’s of μ, αi and βj are,
respectively,

ˆ , ˆ , , . . . , , ˆ , , . . . , ..μ α β= = − = = − =Y Y Y i I Y Y j Ji i j j. . . . . .. 1 1 (11)

where Yi ., i = 1, . . . , I are given by (2), Y. . is given by (4) and

Y
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Y j Jj ij
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Now we turn to the testing hypotheses problems. We have

E V r I JJ rY X= = ′( )′ ∈ = + −ηη μ α α β β: , . . . , ; . . . , , .1 1 1I , where

Consider the hypothesis

HA:α1 = · · · = αI = 0.

Then, under HA, ηηηηη ∈ Vr−q, where r − qA = J, so that qA = I − 1.
Next, under HA again, S(Y, βββββ) becomes

Yij j
j

J

i

I

− −( )
==

∑∑ μ β
2

11

from where by differentiation, we determine the LSE’s of μ and βj, to be
denoted by μ̂A and β̂j,A, respectively. That is, one has
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Therefore relations (28) and (29) in Chapter 16 give by means of (11) and (12)
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Now SC can be rewritten as follows:
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1

2

1

2
. (15)

It follows that for testing HA, the F statistic, to be denoted here by FA, is given
by

  
FA

A

e

A

e

I J

I
SS
SS

MS
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−( ) −( )

−
=

1 1

1
, (16)

where
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SS
I
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SS

I J
A

A
e

e=
−
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−( ) −( )1 1 1

,

and SSA, SSe are given by (15) and (14), respectively. (However, for an expres-
sion of SSe to be used in actual calculations, see (20) below.)
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Next, for testing the hypothesis

HB:β1 = · · · = βJ = 0,

we find in an entirely symmetric way that the F statistic, to be denoted here by
FB, is given by

  
FB

B

e

B

e

I J

J
SS
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MS
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−( ) −( )

−
=

1 1

1
, (17)

where MSB = SSB/(J − 1) and
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The quantities SSA and SSB are known as sums of squares of row effects and
column effects, respectively.

Finally, if we set
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we show below that SST = SSe + SSA + SSB from where we get

SSe = SST − SSA − SSB. (20)

Relation (20) provides a way of calculating SSe by way of (15), (18) and (19).
Clearly,
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Table 2 Analysis of Variance for Two-way Layout with One Observation Per Cell

source of degrees of
variance sums of squares freedom mean squares
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The pairs SSe, SSA and SSe, SSB are independent σ 2χ 2 distributed r.v.’s with
certain degrees of freedom, as a consequence of the discussion in Section 5 of
Chapter 16. Finally, the LSE of σ 2 is given by

σ̃ 2 = MSe. (21)

This section is closed by summarizing the basic results in Table 2 above.

Exercises

17.2.1 Show that rank X′ = I + J − 1, where X′ is the matrix employed in
Section 2.

17.2.2 Apply the two-way layout with one observation per cell analysis of
variance to the data given in the following table (take α = 0.05).
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3 7 5 4

−1 2 0 2

1 2 4 0

17.3 Two-way Layout (Classification) with K (≥≥≥≥≥ 2) Observations Per Cell

In order to introduce the model of this section, consider Examples 4 and 5 and
suppose that K (≥ 2) observations are taken in each one of the IJ cells. This
amounts to saying that we observe the yields Yijk, k = 1, . . . , K of K identical
plots with the (i, j)th plot, that is, the plot where the jth agricultural commodity
was planted and it was treated by the ith fertilizer (in connection with Example
5); or we allow the jth worker to run the ith machine for K days instead of one
day (Example 4). In the present case, the relevant model will have the form
Yijk = μij + eijk. However, the means μij, i = 1, . . . , I; j = 1, . . . , J need not be
additive any longer. In other words, except for the grand mean μ and the row
and column effects αi and βj, respectively, which in the previous section added
up to make μij, we may now allow interactions γij among the various factors
involved, such as fertilizers and varieties of agricultural commodities, or work-
ers and machines. It is not unreasonable to assume that, on the average, these
interactions cancel out each other and we shall do so. Thus our present model
is as follows:

Yijk = μ + αi + β j + γij + eijk, (22)

where

α β γ γi
i

I

j ij
j

J

ij
i

I

j

J

= = ==
∑ ∑ ∑∑= = = =

1 1 11

0

for all i and j and eijk, i = 1, . . . , I (≥ 2); j = 1, . . . , J (≥ 2); k = 1, . . . , K (≥ 2) are
independent N(0, σ 2).

Once again the problems of main interest are estimation of μ, αi, βj and γij,
i = 1, . . . , I; j = 1, . . . , J; testing the hypotheses: HA :α1 = · · · = αI = 0, HB : β1 = · · · =
βJ = 0 and HAB : γij = 0, i = 1, . . . , I; j = 1, . . . , J (that is, there are no interactions
present); and estimation of σ 2.

By setting

Y
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it is readily seen that

Y = X′βββββ + e with n = IJK  and p = IJ, (22′)
so that model (22′) is a special case of model (6) in Chapter 16. From the form
of X′ it is also clear that rank X′ = r = p = IJ; that is, X′ is of full rank (see also
Exercise 17.3.1). Therefore the unique LSE’s of the parameters involved are
obtained by differentiating with respect to μij the expression

  
S Y, .ββ( ) = −( )
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∑∑∑ Yijk ij
k
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j
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μ
2

111

We have then

� K
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ˆ , . . . . , ; , . . . , ..μ ij ijY i I j J= = =1 1  (23)

Next, from the fact that μij = μ + αi + βj + γij and on the basis of the assumptions
made in (22), we have

μ = μ. ., αi = μi. − μ. ., βj = μ.j − μ. ., γij = μij − μi. − μ.j + μ. ., (24)

by employing the “dot” notation already used in the previous two sections.
From (24) we have that μ, αi, βj and γij are linear combinations of the param-
eters μij. Therefore, by the corollary to Theorem 3 in Chapter 16, they are
estimable, and their LSE’s μ̂, α̂ i, β̂j, γ̂ij, are given by the above-mentioned linear
combinations, upon replacing μij by their LSE’s. It is then readily seen that
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Now from (23) and (25) it follows that μ̂ij = μ̂ + α̂ i + β̂j, + γ̂ij. Therefore
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(26)

because, as is easily seen, all other terms are equal to zero. (See also Exercise
17.3.2.)

From identity (26) it follows that, under the hypothesis

HA:α1 = · · · = αI = 0,

the LSE’s of the remaining parameters remain the same as those given in (25).
It follows then that
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Thus for testing the hypothesis HA the sum of squares to be employed are
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and
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For the purpose of determining the dimension r − qA of the vector space in
which ηηηηη = EY lies under HA, we observe that μi . − μ. . = αi, so that, under HA,
μi . − μ. . = 0, i = 1, . . . , I. For i = 1, . . . , I − 1, we get I − 1 independent linear
relationships which the IJ components of ηηηηη satisfy and hence r − qA = IJ −
(I − 1). Thus qA = I − 1 since r = IJ.

Therefore the F statistic in the present case is
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and SSA, SSe are given by (28) and (27), respectively.
For testing the hypothesis

HB:β1 = · · · = βJ = 0,

we find in an entirely symmetric way that the F statistic to be employed is
given by
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Also for testing the hypothesis

HAB:γ ij = 0, i = 1, . . . , I; j = 1, . . . , J,

arguments similar to the ones used before yield the F statistic, which now is
given by
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where
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(However, for an expression of SSAB suitable for calculations, see (35) below.)
Finally, by setting

SS Y Y

Y IJKY
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(34)

we can show (see Exercise 17.3.3) that SST = SSe + SSA + SSB + SSAB, so that

SSAB = SST − SSe − SSA − SSB. (35)

Relation (35) is suitable for calculating SSAB in conjunction with (27), (28), (31)
and (34).

Of course, the LSE of σ 2 is given by

σ̃ 2 = MSe. (36)

Once again the main results of this section are summarized in a table, Table 3.
The number of degrees of freedom of SST is calculated by those of SSA,

SSB, SSAB and SSe, which can be shown to be independently distributed as σ 2χ2

r.v.’s with certain degrees of freedom.

EXAMPLE 6 For a numerical application, consider two drugs (I = 2) administered in three
dosages (J = 3) to three groups each of which consists of four (K = 4) subjects.
Certain measurements are taken on the subjects and suppose they are as
follows:

X111 = 18 X121 = 64 X131 = 61
X112 = 20 X122 = 49 X132 = 73
X113 = 50 X123 = 35 X133 = 62
X114 = 53 X124 = 62 X134 = 90

X211 = 34 X221 = 40 X231 = 56
X212 = 36 X222 = 63 X232 = 61
X213 = 40 X223 = 35 X233 = 58
X214 = 17 X224 = 63 X234 = 73

For this data we have

μ̂ = 50.5416; α̂1 = 2.5417, α̂2 = −2.5416; β̂1 = −17.0416, β̂2 = 0.8334,
β̂3 = 16.2084; γ̂11 = −0.7917, γ̂12 = −1.4167, γ̂13 = 2.2083, γ̂21 = 0.7916,
γ̂22 = 1.4166, γ̂23 = −2.2084



and

FA = 0.8471, FB = 12.1038, FAB = 0.1641.

Thus for α = 0.05, we have F1,18;0.05 = 4.4139 and F2,18;0.05 = 3.5546; we accept HA,
reject HB and accept HAB. Finally, we have σ̃ 2 = 183.0230.

The models analyzed in the previous three sections describe three experi-
mental designs often used in practice. There are many others as well. Some of
them are taken from the ones just described by allowing different numbers of
observations per cell, by increasing the number of factors, by allowing the row
effects, column effects and interactions to be r.v.’s themselves, by randomizing
the levels of some of the factors, etc. However, even a brief study of these
designs would be well beyond the scope of this book.

Exercises

17.3.1 Show that rank X′ = IJ, where X′ is the matrix employed in Section
17.3.

17.3.2 Verify identity (26).

Table 3 Analysis of Variance for Two-way Layout with K (≥ 2) Observations Per Cell

source of degrees of
variance sums of squares freedom mean squares

A main effects SS JK JK Y YA i
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i
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17.3.3 Show that SST = SSe + SSA + SSB + SSAB, where SSe, SSA, SSB, SSAB and
SST are given by (27), (28), (31), (33) and (34), respectively.

17.3.4 Apply the two-way layout with two observations per cell analysis of
variance to the data given in the table below (take α = 0.05).

110 128 48 123 19

95 117 60 138 94

214 183 115 114 129

217 187 127 156 125

208 183 130 225 114

119 195 164 194 109

17.4 A Multicomparison Method

Consider again the one-way layout with J (≥ 2) observations per cell described
in Section 17.1 and suppose that in testing the hypothesis H : μ1 = · · · = μI (= μ,
unspecified) we decided to reject it on the basis  of the available data. In
rejecting H, we simply conclude that the μ’s are not all equal. No conclusions
are reached as to which specific μ’s may be unequal.

The multicomparison method described in this section sheds some light on
this problem.

For the sake of simplicity, let us suppose that I = 6. After rejecting H, the
natural quantities to look into are of the following sort:

μ μ μ μ μ μ μ μ

μ μ μ μ μ μ

i j i j− ≠ + +( ) − + +( )
+ +( ) − + +( )

, , ,or

or etc.

1
3

1
3

1
3

1
3

1 2 3 4 5 6

1 3 5 2 4 6

We observe that these quantities are all of the form

c ci i i
ii

μ with
==
∑∑ =

1

6

1

6

0.

This observation gives rise to the following definition.

DEFINITION 1 Any linear combination ψ = ∑I
i=1 ciμi of the μ’s, where ci, i = 1, . . . , I are known

constants such that ∑I
i =1ci = 0, is said to be a contrast among the parameters μi,

i = 1, . . . , I.

Let ψ = ∑I
i =1ciμi be a contrast among the μ’s and let



ˆ , ˆ ˆ ,. , ;ψ σ ψ= ( ) = = −( )
= =

− −∑ ∑c Y
J

c MS S I Fi i
i

I

i
i

I

e I n I a and2

1

2

1

2
1

1
1

where n = IJ. We will show in the sequel that the interval [ψ̂ − Sσ̂(ψ̂ ), ψ̂ +
Sσ̂(ψ̂ )] is a confidence interval with confidence coefficient 1 − α for all con-
trasts ψ. Next, consider the following definition.

DEFINITION 2 Let ψ and ψ̂  be as above. We say that ψ̂ is significantly different from zero,
according to the S (for Scheffé) criterion, if the interval [ψ̂ − Sσ̂(ψ̂ ), ψ̂ + Sσ̂
(ψ̂ )] does not contain zero; equivalently, if |ψ̂ | > Sσ̂(ψ̂ ).

Now it can be shown that the F test rejects the hypothesis H if and only if
there is at least one contrast ψ such that ψ̂  is significantly different from zero.

Thus following the rejection of H one would construct a confidence inter-
val for each contrast ψ and then would proceed to find out which contrasts are
responsible for the rejection of H starting with the simplest contrasts first.

The confidence intervals in question are provided by the following
theorem.

THEOREM 1 Refer to the one-way layout described in Section 17.1 and let

ψ μ= =
==
∑∑c ci i i
i

I

i

I

, ,0
11

so that

ˆ ˆ ,σ ψ2 2

1

1( ) =
=
∑J

c MSi e
i

I

where MSe is given in Table 1. Then the interval [ψ̂ − Sσ̂(ψ̂ ), ψ̂ + Sσ̂(ψ̂ )] is a
confidence interval simultaneously for all contrasts ψ with confidence coeffi-
cients 1 − α, where S2 = (I − 1)FI −1,n−I;α and n = IJ.

PROOF Consider the problem of maximizing (minimizing) (with respect to
ci, i = 1, . . . , I) the quantity

f c c

J
c

c YI

i
i

I
i i i

i

I

1

2

1

1

1

1
, . . . , .( ) = −( )

=

=∑
∑ μ

subject to the contrast constraint

ci
i

I

=
∑ =

1

0.

Now, clearly, f(c1, . . . , cI) = f(γc1, . . . , γcI) for any γ > 0. Therefore the maxi-
mum (minimum) of f(c1, . . . , cI), subject to the restraint

ci
i

I

=
∑ =

1

0,

is the same with the maximum (minimum) of f(γ c1, . . . , γ cI) = f(c′1, . . . , cI′),
c ′i = γ ci, i = 1, . . . , I subject to the restraints
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′ =
=
∑ci
i

I

1

0

and

1
12

1J
ci

i

I

′ =
=
∑ .

Hence the problem becomes that of maximizing (minimizing) the quantity

q c c c YI i i i
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subject to the constraints

c c Ji
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and .

Thus the points which maximize (minimize) q(c1, . . . , cI) are to be found on
the circumference of the circle which is the intersection of the sphere

c Ji
i

I
2

1

=
=
∑

and the plane

ci
i

I

=
=
∑ 0

1

which passes through the origin. Because of this it is clear that q(c1, . . . , cI) has
both a maximum and a minimum. The solution of the problem in question will
be obtained by means of the Lagrange multipliers. To this end, one considers
the expression
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and maximizes (minimizes) it with respect to ci, i = 1, · · · , I and λ1, λ2. We
have
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(37)

Solving for ck in (37), we get

c Y k Ik k k= − −( ) =1
2

1
2

1λ
μ λ. , . . . , . (38)

Then the last two equations in (37) provide us with
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Replacing these values in (38), we have
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(39)
for all ci, i = 1, . . . , I such that

ci
i
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Now we observe that
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is σ 2χ2
I−1 distributed (see also Exercise 17.4.1) and also independent of SSe

which is σ2χ2
n−I distributed. (See Section 17.1.) Therefore
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is FI−1,n−I distributed and thus
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17.4 A Multicomparison Method 461



462 17 Analysis of Variance

From (40) and (39) it follows then that

P I F J c MS c Y
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for all ci, i = 1, . . . , I such that ∑I
i =1ci = 0, or equivalently,

P S Sˆ ˆ ˆ ˆ ˆ ˆ ,ψ σ ψ ψ ψ σ ψ α− ( ) ≤ + ( )[ ] = −≤ 1

for all contrasts ψ, as was to be seen. (This proof has been adapted from the
paper “A simple proof of Scheffé’s multiple comparison theorem for contrasts
in the one-way layout” by Jerome Klotz in The American Statistician, 1969,
Vol. 23, Number 5.) ▲

In closing, we would like to point out that a similar theorem to the one just
proved can be shown for the two-way layout with (K ≥ 2) observations per cell
and as a consequence of it we can construct confidence intervals for all con-
trasts among the α’s, or the β’s, or the γ’s.

Exercises

17.4.1 Show that the quantity J Y Yi ii

I μ μ− − +( )=∑ . . . .1

2

mentioned in Sec-

tion 17.4 is distributed as σ2χ2
I−1, under the null hypothesis.

17.4.2 Refer to Exercise 17.1.1 and construct confidence intervals for all
contrasts of the μ’s (take 1 − α = 0.95).
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Chapter 18

The Multivariate Normal Distribution

DEFINITION 1

18.1 Introduction

In this chapter, we introduce the Multivariate Normal distribution and estab-
lish some of its fundamental properties. Also, certain estimation and inde-
pendence testing problems closely connected with it are discussed.

Let Yj, j = 1, . . . , m be i.i.d. r.v.’s with common distribution N(0, 1).
Then we know that for any constants cj, j = 1, . . . , m and μ the r.v. ∑m

j =1 cjYj +
μ is distributed as N(μ, ∑m

j=1 c2
j). Now instead of considering one (non-

homogeneous) linear combination of the Y’s, consider k such combinations;
that is,

X c Y i ki ij
j

m

j i= + =
=

∑
1

1μ , , . . . , , (1)

or in matrix notation
X CY= + μμ, (2)

where

X C= ( )′ = ( ) ×( )X X c k mk ij1, . . . , , ,

Y = ( )′ = ( )′Y Ym k1 1, . . . , , , . . . , . and  μμ μ μ

Thus we can give the following definition.

Let Yj, j = 1, . . . , m be i.i.d. r.v.’s distributed as N(0, 1) and let the r.v.’s Xi, i =
1, . . . , k, or the r. vector X, be defined by (1) or (2), respectively. Then the
joint distribution of the r.v.’s Xi, i = 1, . . . , k or the distribution of the r. vector
X, is called Multivariate (or more specifically, k-Variate) Normal.

REMARK 1 From Definition 1, it follows that if Xi, i = 1, . . . , k are jointly
normally distributed, then any subset of them also is a set of jointly normally
distributed r.v.’s.
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From (2) and relation (10), Chapter 16, it follows that EX = μμμμμ and ΣΣΣΣΣ/ x =
CΣΣΣΣΣ/ YC′ = CImC′ = CC′; that is,

EX CCx= / /( ) = ′μμ ΣΣ ΣΣ,  or just . (3)

We now proceed to finding the ch.f. φx of the r. vector X. For t = (t1, . . . , tk)′ ∈
�k, we have

φX t t X t CY t t CY( ) = ′( ) = ′ +( )[ ] = ′ ′( )E i E i i E iexp exp exp .μμ μμ exp (4)
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1 1

1 1
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1
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2⎝⎝⎜

⎞
⎠⎟

(5)

because

t c t cj j
j

k

j j m
j

k

1
1
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= =
∑ ∑

⎛

⎝⎜
⎞

⎠⎟
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⎠⎟
= ′ ′t CC t.

Therefore by means of (3)–(5), we have the following result.

The ch.f. of the r. vector X = (X1, . . . , Xk)′, which has the k-Variate Normal
distribution with mean μμμμμ and covariance matrix ΣΣΣΣΣ/ , is given by

φx t t t t( ) = ′ − ′ /
⎛
⎝⎜

⎞
⎠⎟

exp .i μμ ΣΣ1
2

(6)

From (6) it follows that φx, and therefore the distribution of X, is completely
determined by means of its mean μμμμμ and covariance matrix ΣΣΣΣΣ/ , a fact analogous
to that of a Univariate Normal distribution. This fact justifies the following
notation:

X ~ , .N μμ ΣΣ/( )
where μμμμμ and ΣΣΣΣΣ/  are the parameters of the distribution.

Now we shall establish the following interesting result.

Let Yj, j = 1, . . . , k be i.i.d. r.v.’s with distribution N(0, 1) and set X = CY + μμμμμ,
where C is a k × k non-singular matrix. Then the p.d.f. fx of X exists and is given
by

THEOREM 2

THEOREM 1
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f
k k

X x x x x( ) = ( ) / − −( )′ / −( )⎡

⎣
⎢

⎤

⎦
⎥ ∈

− − −2
1
2

2 1 2 1π ΣΣ μμ ΣΣ μμexp , ,� (7)

where ΣΣΣΣΣ/ = CC′ and |ΣΣΣΣΣ/ | denotes the determinant of ΣΣΣΣΣ/ .

PROOF From X = CY + μμμμμ we get CY = X − μμμμμ, which, since C is non-singular,
gives

Y C X= −( )−1 μμ .

Therefore

f f y
k

j
j

k

X Yx C x C C( ) = −( )[ ] = ( ) −
⎛

⎝⎜
⎞

⎠⎟
− − −
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−∑1 1 2 2
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12
1
2

μμ π exp .

But

y j
j

k
2

1

1 1

=

− −∑ = −( )′ ( )′ ( ) −( ) ( )x C C xμμ μμ see also Exercise 18.1.2 ,

C C C C C C CC− − − − − − − −= ( )′ ( ) = ′( ) = ′( ) = /1 1 1 1 1 1 1and 1 ΣΣ . (8)

Therefore

f
k

X x C x x( ) = ( ) − −( )′ / −( )⎡

⎣
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⎤

⎦
⎥

− − −2
1
2

2 1 1π exp .μμ ΣΣ μμ

Finally, from ΣΣΣΣΣ/ = CC′, one has |ΣΣΣΣΣ/ | = |C| |C′| = |C|2, so that ||C|| = |ΣΣΣΣΣ/ |
1–2. Thus

f
k

X x x x( ) = ( ) / − −( )′ / −( )⎡

⎣
⎢

⎤

⎦
⎥

− − −2
1
2

2 1 2 1π ΣΣ μμ ΣΣ μμexp ,

as was to be seen. ▲

REMARK 2 A k-Variate Normal distribution with p.d.f. given by (7) is called
a non-singular k-Variate Normal. The use of the term non-singular corre-
sponds to the fact that |ΣΣΣΣΣ/ | ≠ 0; that is, the fact that ΣΣΣΣΣ/  is of full rank.

In the theorem, let k = 2. Then X = (X1, X2)′ and the joint p.d.f. of X1, X2 is the
Bivariate Normal p.d.f.

PROOF By Remark 1, both X1 and X2 are normally distributed and let X1~
N(μ1, σ 2

1) and X2 ∼ N(μ2, σ 2
2). Also let ρ be the correlation coefficient of X1 and

X2. Then their covariance matrix ΣΣΣΣΣ/  is given by

/ =
⎛

⎝
⎜

⎞

⎠
⎟ΣΣ

σ ρσ σ
ρσ σ σ

1
2

1 2

1 2 2
2

and hence |ΣΣΣΣΣ/ | = σ 2
1σ 2

2(1 − ρ2), so that

/ =
−( )

−
−

⎛

⎝
⎜

⎞

⎠
⎟

−ΣΣ 1

1
2

2
2 2

2
2

1 2

1 2 1
2

1

1σ σ ρ
σ ρσ σ

ρσ σ σ
.

COROLLARY 1
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Therefore
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μ μ
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= −( ) − −( ) −( ) + −( )

x
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Hence

f x x
x

x x
x

X X1 2 1 2

1 2
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1 2
1 1 2 2

2 2
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2 1
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⎬
⎪
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πσ σ ρ ρ
μ

σ

ρ
σ σ

μ μ μ
σ

as was to be shown. ▲

The (normal) r.v.’s Xi, i = 1, . . . , k are independent if and only if they are
uncorrelated.

PROOF The r.v.’s Xi, i = 1, . . . , k are uncorrelated if and only if ΣΣΣΣΣ/  is a
diagonal matrix and its diagonal elements are the variances of the X’s. Then
|ΣΣΣΣΣ/ | = σ 2

1 · · · σ2
n. On the other hand, |ΣΣΣΣΣ/ | ΣΣΣΣΣ/ −1 is also a diagonal matrix with the jth

diagonal element given by ∏i≠j σ 2
i , so that ΣΣΣΣΣ/ −1 itself is a diagonal matrix with the

jth diagonal element being given by 1/σ 2
j. It follows that

f x x xX X k

ii

k

i
i ik1 1

1
2

21

2

1

2
, . . . , , . . . , exp( ) = − −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

∏
πσ σ

μ

and this establishes the independence of the X’s. ▲

REMARK 3 The really important part of the corollary is that noncorrelation
plus normality implies independence, since independence implies non-
correlation in any case. It is also to be noted that noncorrelation without
normality need not imply independence, as it has been seen elsewhere.

Exercises

18.1.1 Use Definition 1 herein in order to conclude that the LSE βββββ̂ of βββββ in (9)
of Chapter 16 has the n-Variate Normal distribution with mean βββββ and
covariance matrix σ 2S−1. In particular, (β̂ 1, β̂ 2)′, given by (19″) and (19′) of
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Chapter 16, have the Bivariate Normal distribution with means and variances
Eβ̂1 = β1, Eβ̂2 = β2 and

σ β
σ

σ β σ2
1

2 2

1

2

1

2
2

2

2

1

ˆ , ˆ( ) =
−( ) ( ) =

−( )
=

= =

∑
∑ ∑

x

n x x x x

jj

n

jj

n

jj

n

and correlation coefficient equal to − =

=

∑
∑

x

n x

jj

n

jj

n

1

2

1

.

18.1.2 Verify relation (8).

18.1.3 Let the random vector X = (X1. . . . , Xk)′ be distributed as N(μμμμμ, ΣΣΣΣΣ/ ) and
suppose that ΣΣΣΣΣ/  is non-singular. Then show that the conditional joint distribu-
tion of Xi1

, . . . , Xim
, given Xj1

, . . . , Xjn
 (1 ≤ m < k, m + n = k, all i1, . . . , im ≠ from

all j1, . . . , jn), is Multivariate Normal and specify its parameters.

18.2 Some Properties of Multivariate Normal Distributions

In this section we establish some of the basic properties of a Multivariate
Normal distribution.

Let X = (X1, . . . , Xk)′ be N(μμμμμ, ΣΣΣΣΣ/ ) (not necessarily non-singular). Then for any
m × k constant matrix A = (αij), the r. vector Y defined by Y = AX has the
m-Variate Normal distribution with mean Aμμμμμ and covariance matrix AΣΣΣΣΣ/A′.
In particular, if m = 1, the r.v. Y is a linear combination of the X’s, Y = ααααα′X,
say, and Y has the Univariate Normal distribution with mean ααααα′μμμμμ and variance
ααααα′ΣΣΣΣΣ/ ααααα.

PROOF For t ∈ � m, we have

φ φY Xt t Y t AX A t X A t( ) = ′( )[ ] = ′( ) = ′( )′⎡

⎣
⎢

⎤

⎦
⎥ = ′( )E E Eexp exp exp ,

so that by means of (6), we have

φY t A t A t A t t A t A A t( ) = ′( )′ − ′( )′ / ′( )⎡

⎣
⎢

⎤

⎦
⎥ = ′( ) − ′ / ′( )⎡

⎣
⎢

⎤

⎦
⎥exp expi iμμ ΣΣ μμ ΣΣ1

2
1
2

and this last expression is the ch.f. of the m-Variate Normal with mean Aμ and
covariance matrix AΣΣΣΣΣ/A′, as was to be seen. The particular case follows from
the general one just established. ▲

For j = 1, . . . , n, let Xj be independent N(μμμμμj, ΣΣΣΣΣ/ j) k-dimensional r. vectors and let
cj be constants. Then the r. vector

X X= /
⎛

⎝⎜
⎞

⎠⎟= = =
∑ ∑ ∑c N c cj
j

n

j j
j

n

j j
j

n

j
1 1

2

1

is  μμ ΣΣ,

THEOREM 4

THEOREM 3
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(a result parallel to a known one for r.v.’s).

PROOF For t ∈ � k and the independence of the Xj’s, we have

φ φ φX X Xt t t( ) = ( ) = ( )
= =

∏ ∏c
j

n

j

n

jj
c

j
1 1

j .

But
φX t t t t

t t t

j
c i c c c

i c c

j j j j j j

j j j

( ) = ( )′ − ( )′ / ( )⎡

⎣
⎢

⎤

⎦
⎥

= ′( ) − ′ /( )⎡

⎣
⎢

⎤

⎦
⎥

exp

exp ,

μμ ΣΣ

μμ ΣΣ

1
2

1
2

2
j

so that

φX t t t t( ) = ′
⎛

⎝⎜
⎞
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− ′ /

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥= =

∑ ∑exp .i c cj
j

n

j j
j

n

j
1

2

1

1
2

μμ ΣΣ ▲

For j = 1, . . . , n, let Xj be independent N(μμμμμ, ΣΣΣΣΣ/ ) k-dimensional r. vectors and let

X X=
=

∑1

1n j
j

n

.

Then X̄ is N(μμμμμ, (1/n)ΣΣΣΣΣ/ ).

PROOF In the theorem, taken μμμμμj = μμμμμ, ΣΣΣΣΣ/ j = ΣΣΣΣΣ/  and cj = 1/n, j = 1, . . . , n. ▲

Let X = (X1, . . . , Xk)′ be non-singular N(μμμμμ, ΣΣΣΣΣ/ ) and set Q = (X − μμμμμ)′ΣΣΣΣΣ/ −1(X − μμμμμ).
Then Q is an r.v. distributed as χ 2

k.

PROOF For t ∈ �, we have

  

φ π

π

Q

k

k

t E itQ it

d

k

k

( ) = ( ) = −( )′ / −( )⎡

⎣
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⎤
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× − −( )′ / −( )⎡
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∫
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( )⎡
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⎤
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⎥
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−

× − −( )′ /
−

⎛
⎝⎜

⎞
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−( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
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∫
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x x x

= 1 2

,

2 2
1 2

1

2
1 2

1
2 1 2

π
�

ΣΣ

μμ ΣΣ μμexp

since

/
−

= −( ) /
−ΣΣ ΣΣ

1 2
1 2

it
it

k
.

Now the integrand in the last integral above can be looked upon as the p.d.f.
of a k-Variate Normal with mean μμμμμ and covariance matrix ΣΣΣΣΣ/ /(1 − 2it). Hence
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the integral is equal to one and we conclude that φQ(t) = (1 − 2it)−k/2 which is the
ch.f. of χ 2

k. ▲

REMARK 4 Notice that Theorem 5 generalizes a known result for the one-
dimensional case.

Exercise

18.2.1 Consider the k-dimensional random vectors Xn = (X1n, . . . , Xkn)′, n =
1, 2, . . . and X = (X1, . . . , Xk)′ with d.f.’s Fn, F and ch.f.’s φn, φ, respectively.
Then we say that {Xn} converges in distribution to X as n → ∞, and we write
X Xn

d

n
⎯ →⎯

→∞
, if F Fn n

( (x x) )⎯ →⎯
→∞

 for all x ∈ �k for which F is continuous (see
also Definition 1(iii) in Chapter 8). It can be shown that a multidimensional
version of Theorem 2 in Chapter 8 holds true. Use this result (and also
Theorem 3′ in Chapter 6) in order to prove that X Xn

d

n
⎯ →⎯

→∞
, if and only if

′ ⎯ →⎯ ′
→∞

λλ λλX Xn
d

n
,  for every λλλλλ = (λ, . . . , λk)′ ∈ � k. In particular, X Xn

d

n
⎯ →⎯

→∞
,

where X is distributed as N(μμμμμ, ΣΣΣΣΣ/ ) if and only if {λλλλλ′Xn} converges in distribution
as n → ∞, to an r.v. Y which is distributed as Normal with mean λλλλλ′μμμμμ and
variance λλλλλ′ΣΣΣΣΣ/ λλλλλ for every λλλλλ ∈ �k.

18.3 Estimation of μμμμμ and ΣΣΣΣΣ/ and a Test of Independence

First we formulate a theorem without proof, providing estimators for μμμμμ and
ΣΣΣΣΣ/ , and then we proceed with a certain testing hypothesis problem.

For j = 1, . . . , n, let Xj = (Xj1, . . . , Xjk)′ be independent, non-singular N(μμμμμ, ΣΣΣΣΣ/ )
r. vectors and set

X = ( )′ = =
=

∑X X X
n

X i kk i ji
j

n

1
1

1
1, . . . , , , , . . . , , where  

and

S = ( ) = −( ) −( ) =
=

∑S S X X X X i j kij ij ki i
k

n

kj j, , , , . . . , .where   
1

1

Then

i) X̄ and S are sufficient for (μμμμμ, ΣΣΣΣΣ/ );

ii) X̄ and S/(n − 1) are unbiased estimators of μμμμμ and ΣΣΣΣΣ/ , respectively;

iii) X̄ and S/n are MLE’s of μμμμμ and ΣΣΣΣΣ/ , respectively.

Now suppose that the joint distribution of the r.v.’s X and Y is the
Bivariate Normal distribution. That is,

THEOREM 6
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Then by Corollary 2 to Theorem 2, the r.v.’s X and Y are independent if and
only if they are uncorrelated. Thus the problem of testing independence for X
and Y becomes that of testing the hypothesis H :ρ = 0. For this purpose,
consider an r. sample of size n(Xj, Yj), j = 1, . . . , n, from the Bivariate Normal
under consideration. Then their joint p.d.f., f, is given by

1

2 11 2
2

2

πσ σ ρ−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−
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Qe ,
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μ
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μ
σ

,

, . . . , . (9)

For testing H, we are going to employ the LR test. And although the
MLE’s of the parameters involved are readily given by Theorem 6, we
choose to derive them directly. For this purpose, we set g(θθθθθ) for log f(θθθθθ)
considered as a function of the parameter θθθθθ ∈ ΩΩΩΩΩ, where the parameter space ΩΩΩΩΩ
is given by

  

ΩΩ θθ= = ( )′ ∈ ∈ > − < <
⎧
⎨
⎩

⎫
⎬
⎭

μ μ σ σ ρ μ μ σ σ1 2 1
2

2
2 5

1 2 1
2

2
2 0 1 1, , , , ; , ; , ; ,         � � p

whereas under H, the parameter space ωωωωω becomes

  

ωω θθ= = ( )′ ∈ ∈ > =
⎧
⎨
⎩

⎫
⎬
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μ μ σ σ ρ μ μ σ σ ρ1 2 1
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2 5

1 2 1
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n
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=
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2
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, , , , ; , . . . , , , . . . ,

log log log log ,

        

(10)
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where qj, j = 1, . . . , n are given by (9). Differentiating (10) with respect to μ1

and μ2 and equating the partial derivatives to zero, we get after some
simplifications

ρ
σ

μ
σ

μ ρ
σ σ

ρ
σ

μ
σ

μ ρ
σ σ

2
2

1
1

2 1

1
1

2
2

1 2

1 1

1 1

− = −

− = −

⎫

⎬
⎪⎪

⎭
⎪
⎪

( )
y x

x y.
. See also Exercise 18.3.1. (11)

Solving system (11) for μ1 and μ2, we get
˜ , ˜ .μ μ1 2= =x y (12)

Now let us set

S
n

x xx j
j

n

= −( )
=

∑1

1

2

,

S
n

y y S
n

x x y yy j
j

n

xy j
j

n

j= −( ) = −( ) −( )
= =

∑ ∑1 12

1 1

and . (13)

Then, differentiating g with respect to σ 2
1 and σ 2

2, equating the partial deriva-
tives to zero and replacing μ1 and μ2 by μ̃1 and μ̃2, respectively, we obtain after
some simplifications

1
1

1
1

1
2

1 2

2

2
2

1 2

2

σ
ρ

σ σ
ρ

σ
ρ

σ σ
ρ

S S

S S
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y xy

− = −

− = −

⎫

⎬
⎪
⎪

⎭
⎪
⎪

( )
.

. See also Exercise 18.3.2. (14)

Next, differentiating g with respect to ρ and equating the partial derivative to
zero, we obtain after some simplifications (see also Exercise 18.3.3)

ρ ρ
ρ σ

ρ
σ σ σ σ σ

−
−

− +
⎛

⎝
⎜

⎞

⎠
⎟ + =

1

1 2 1 1
0

2
1
2

1 2 2
2

1 2

S S S Sx xy y xy . (15)

In (14) and (15), solving for σ 2
1, σ 2

2 and ρ, we obtain (see also Exercise 18.3.4)

˜ , ˜ , ˜ .σ σ ρ1
2

2
2= = =S S

S

S S
x y

xy

x y

(16)

It can further be shown (see also Exercise 18.3.5) that the values of the
parameters given by (12) and (16) actually maximize f (equivalently, g) and the
maximum is given by

max ; ˆ .f L
e

S S
S

S Sx y
xy

x y

n

θθ θθ ΩΩ ΩΩ( ) ∈[ ] = ( ) =

−
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⎜
⎜
⎜
⎜
⎜
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⎠

⎟
⎟
⎟
⎟
⎟

−1

2

2 1π

(17)
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It follows that the MLE’s of μ1, μ2, σ 2
1, σ 2

2 and ρ, under ΩΩΩΩΩ, are given by (12) and
(16), which we may now denote by μ̂1,ΩΩΩΩΩ, μ̂2,ΩΩΩΩΩ, σ̂ 2

1,ΩΩΩΩΩ, σ̂ 2
2,ΩΩΩΩΩ and ρ̂ΩΩΩΩΩ. That is,

ˆ , ˆ , ˆ , ˆ , ˆ ., , , ,μ μ σ σ ρ1 2 1
2

2
2

ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ= = = = =x y S S
S

S S
x y

xy

x y

(18)

Under ωωωωω (that is, for ρ = 0), it is seen (see also Exercise 18.3.6) that the MLE’s
of the parameters involved are given by

ˆ , ˆ , ˆ , ˆ
, , , ,μ μ σ σ1 2 1

2
2
2

ωω ωω ωω ωω= = = =x y S Sx y (19)

and

max ; ˆ .f L
e

S Sx y
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θθ θθ ωω( ) ∈[ ] = ( ) =
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⎝
⎜
⎜

⎞

⎠
⎟
⎟

−

ω
π

1

2
(20)

Replacing the x’s and y’s by X’s and Y’s, respectively, in (17) and (20), we have
that the LR statistic λ is given by

λ = −
⎛

⎝⎜
⎞

⎠⎟
= −( )1 1

2
2

2
2S

S S
XY

X Y

n
n

R . (21)

where R is the sample correlation coefficient, that is,

R = −( ) −( ) −( ) −( )
= = =

∑ ∑ ∑X X Y Y X X Y Yj
j

n

j j
j

n

j
j

n

1

2

1

2

1

. (22)

From (22), it follows that R 2 ≤ 1. (See also Exercise 18.3.7.) Therefore by
the fact that the LR test rejects H whenever λ < λ0, where λ0 is determined, so
that PH(λ < λ0) = α, we get by means of (21), that this test is equivalent to
rejecting H whenever

R equivalently, R  or R2
0 0 0 0 0

21> < − > = −c c c c n, , .λ (23)

In (23), in order to be able to determine the cut-off point c0, we have to know
the distribution of R under H. Now although the p.d.f. of the r.v. R can be
derived, this p.d.f. is none of the usual ones. However, if we consider the
function

W W
n= ( ) = −

−
R

R

R

2

1 2
, (24)

it is easily seen, by differentiation, that W is an increasing function of R.
Therefore, the test in (23) is equivalent to the following test

Reject whenever orH W c W c< − > , (25)

where c is determined, so that PH(W < −c or W > c) = α. It is shown in the sequel
that the distribution of W under H is tn−2 and hence c is readily determined.
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Suppose Xj = xj, j = 1, . . . , n and that ∑n
j=1(xj − x̄)2 > 0 and set
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Let also
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Let also W nx x x= − −2 1 2R R . It is readily seen that

R Rx v j j
j

n

j
j

n

v Y Y nY= ∗ = −
= =

∑ ∑
1

2

1

2 ,

so that (see also Exercise 18.3.8)
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We have that Yj, j = 1, . . . , n are independent N(μ2, σ 2
2). Now if we consider the

N(0, 1) r.v.’s Y′j = (Yj − μ2)/ σ2, j = 1, . . . , n and replace Yj by Y′j in (28), it is seen
(see also Exercise 18.3.9) that Wx = W*v  remains unchanged. Therefore we may
assume that the Y’s are themselves independent N(0, 1). Next consider the
transformation

Z
n

Y
n

Y

Z v Y v Y

n

n n

1 1

2 1 1

1 1= + ⋅ ⋅ ⋅ +

= + ⋅ ⋅ ⋅ +

⎧
⎨
⎪

⎩⎪ .

Then because of (1/√n)2 + · · · + (1/√n)2 = n/n = 1 and also because of (27),
this transformation can be completed to an orthogonal transformation (see
Theorem 8.I(i) in Appendix I) and let Zj, j = 3, . . . , n be the remaining Z’s.
Then by Theorem 5, Chapter 9, it follows that the r.v.’s Zj, j = 1, . . . , n
are independent N(0, 1). Also ∑n

j =1 Y 2
j = ∑n

j =1 Z2
j by Theorem 4, Chapter 9. By

means of the transformation in question, the statistic in (28) becomes
Z Z nj

n
j2 3
2 2Σ = −( ). Therefore the distribution of Wx, equivalently the

distribution of W, given Xj = xj, j = 1, . . . , n is tn−2. Since this distribution is
independent of the x’s, it follows that the unconditional distribution of W is
tn−2. Thus we have the following result.

For testing H :ρ = 0 against A :ρ ≠ 0 at level of significance α, one rejects H
whenever W < −c or W > c, where W is given by (24), the sample correlation

THEOREM 7

18.3 Estimation of μμμμμ and ∑∑∑∑∑/  and Test of Independence 473
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coefficient R is given by (22) and the cut-off point c is determined from
P(tn−2 > c) = α/2 by the fact that the distribution of W, under H, is tn−2.

To this last theorem, one has the following corollary.

The p.d.f. of the correlation coefficient R is given by

f r

n

n

r r
n

R ( ) =
−( )⎡

⎣
⎢

⎤

⎦
⎥

−( )⎡

⎣
⎢

⎤

⎦
⎥

−( ) − < <
( )−1

1
2

1

1
2

2

1 1 12
2 2

π

Γ

Γ
, .

PROOF From W = √n − 2 r/√1 − R2, it follows that R and W have the same
sign, that is, RW ≥ 0. Solving for R, one has then R = W/√W 2 + n − 2. By setting
w = √n − 2 r/√1 − r2, one has dw/dr = √n − 2(1 − r2)−3/2, whereas

  

f w

n

n n

w
n

wW

n

( ) =
−( )⎡

⎣
⎢

⎤

⎦
⎥

− −( )⎡

⎣
⎢

⎤

⎦
⎥

+
−

⎛

⎝⎜
⎞

⎠⎟
∈

− −( )Γ

Γ

1
2

1

2
1
2

2

1
2

2
1 2

π
, .�

Therefore

f r f
n r

r

dw
dr

n

n n

n r

n r
n r

n

W

n

R ( ) = −

−

⎛

⎝
⎜

⎞

⎠
⎟

=
−( )⎡

⎣
⎢

⎤

⎦
⎥

− −( )⎡

⎣
⎢

⎤

⎦
⎥

+
−( )

−( ) −( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

− −( )

=
−( )⎡

⎣
⎢

⎤

− −( )
−

2

1

1
2

1

2
1
2

2

1
2

2 1
2 1

1
2

1

2

2

2

1 2

2
3 2

Γ

Γ

Γ

π

⎦⎦
⎥

−( )⎡

⎣
⎢

⎤

⎦
⎥

−( )( )−

π Γ 1
2

2

1 2
2 2

n

r
n

,

as was to be shown. ▲

The p.d.f. of R when ρ ≠ 0 can also be obtained, but its expression is rather
complicated and we choose not to go into it.

We close this chapter with the following comment. Let X be a k-
dimensional random vector distributed as N(μμμμμ, ΣΣΣΣΣ/ ). Then its ch.f. is given by (6).
Furthermore, if ΣΣΣΣΣ/  is non-singular, then the N(μ, Σ/ ) distribution has a p.d.f.
which is given by (7). However, this is not the case if ΣΣΣΣΣ/  is singular. In this latter
case, the distribution is called singular, and it can be shown that it is concen-
trated in a hyperplane of dimensionality less than k.

COROLLARY
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Exercises

18.3.1 Verify relation (11).

18.3.2 Verify relation (14).

18.3.3 Verify relation (15).

18.3.4 Show that σ̃ 2
1, σ̃ 2

2, and ρ̃ given by (16) is indeed the solution of the
system of the equations in (14) and (15).

18.3.5 Consider g given by (10) and set

d gij
i j

= ( )
=

∂
∂θ ∂θ

2

θθ
θθ θθ̃

,

where

θθ θθ= ( )′ = ( )′μ μ σ σ ρ μ μ σ σ ρ1 2 1
2

2
2

1 2 1
2

2
2, , , , ˜ ˜ , ˜ , ˜ , ˜ , ˜

and μ̃1, μ̃2, σ̃ 2
1, σ̃ 2

2 and ρ̃ are given by (12) and (16). Let D = (dij), i, j = 1, . . . , 5
and denote by D5−k the determinant obtained from D by deleting the last k
rows and columns, k = 1, . . . , 5, D0 = 1. Then show that the six numbers D0,
D1, . . . , D5 are alternately positive and negative. This result together with the
fact that dij, i, j = 1, . . . , 5 are continuous functions of θθθθθ implies that the
quantities given by (18) are, indeed, the MLE’s of the parameters μ1, μ2, σ 2

1, σ 2
2

and ρ, under ΩΩΩΩΩ. (See for example Mathematical Analysis by T. M. Apostol,
Addison-Wesley, 1957, Theorem 7.9, pp. 151–152.)

18.3.6 Show that the MLE’s of μ1, μ2, σ 2
1, and σ 2

2, under ωωωωω, are indeed given
by (19).

18.3.7 Show that � 2 ≤ 1, where � is the sample correlation coefficient given
by (22).

18.3.8 Verify relation (28).

18.3.9 Show that the statistic Wx (= W*v) in (28) remains unchanged if the
r.v.’s Yj are replaced by the r.v.’s

′ =
−

=Y
Y

j nj
j μ
σ

2

2
1, , . . . , .

18.3.10 Refer to the quantities X̄ and S defined in Theorem 6 and, by using
Basu’s theorem (Theorem 3, Chapter 11), show that they are independent.

Exercises 475
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Chapter 19

Quadratic Forms

19.1 Introduction

In this chapter, we introduce the concept of a quadratic form in the variables
xj, j = 1, . . . , n and then confine attention to quadratic forms in which the xj’s
are replaced by independent normally distributed r.v.’s Xj, j = 1, . . . , n. In this
latter case, we formulate and prove a number of standard theorems referring
to the distribution and/or independence of quadratic forms.

A quadratic form, Q, in the variables xj, j = 1, . . . , n is a homogeneous
quadratic (second degree) function of xj, j = 1, . . . , n. That is,

Q c x xij i j
j

n

i

n

=
==

∑∑ ,
11

where here and in the sequel the coefficients of the x’s are always assumed to
be real-valued constants. By setting x = (x1, . . . , xn)′ and C = (cij), we can write
Q = x′Cx. Now Q is a 1 × 1 matrix and hence Q′ = Q, or (x′Cx)′ = x′C′x = x′Cx.
Therefore Q = 1–2 (x′C′x + x′Cx) = x′Ax, where A = 1–2 (C + C′); that is to say, if
A = (aij), then aij = 1–2 (cij + cji), so that aij = aji. Thus A is symmetric. We can then
give the following definition.

DEFINITION 1 A (real) quadratic form, Q, in the variables xj, j = 1, . . . , n is a homogeneous
quadratic function of xj, j = 1, . . . , n,

Q c x xij i j
j

n

i

n

=
==

∑∑ ,
11

(1)

where cij ∈ � and cij = cji, i, j = 1, . . . , n. In matrix notation, (1) becomes as
follows:

Q = ′x Cx, (2)
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where x = (x1, . . . , xn)′, C = (cij) and C′ = C (which expresses the symmetry
of C).

DEFINITION 2 For an n × n matrix C, the polynomial (in λ) |C − λIn| is of degree n and is called
the characteristic polynomial of C. The n roots of the equation |C − λIn| = 0 are
called characteristic or latent roots or eigenvalues of C.

DEFINITION 3 The quadratic form Q = x′Cx is called positive definite if x′Cx > 0 for every
x ≠ 0; it is called negative definite if x′Cx < 0 for every x ≠ 0 and positive
semidefinite if x′Cx ≥ 0 for every x. A symmetric n × n matrix C is called positive
definite, negative definite or positive semidefinite if the quadratic form asso-
ciated with it, Q = x′Cx, is positive definite, negative definite or positive
semidefinite, respectively.

DEFINITION 4 If Q = x′Cx, then the rank of C is also called the rank of Q.

19.2 Some Theorems on Quadratic Forms

Throughout this section, it is assumed that the r.v.’s Xj, j = 1, . . . , n
are independently distributed as N(0, 1) and we set X = (X1, . . . , Xn)′. We
then replace x by X in (2) and obtain the following quadratic form in
Xj, j = 1, . . . , n, or X:

Q = ′ ′ =X CX C C, where .

Some theorems related to such quadratic forms will now be established.

THEOREM 1 (Cochran) Let

′ =
=
∑X X Qi
i

k

,
1

(3)

where for i = 1, . . . , k, Qi are quadratic forms in X with rank Qi = ri. Then the
r.v.’s Qi are independent χ 2

ri
 if and only if ∑k

i =1ri = n.

PROOF We have that X′X = ∑n
j=1X

2
j is χ 2

n. Therefore if for i = 1, . . . , k, Qi are
independent χ 2

ri
, then because of (3), ∑k

i =1ri = n.
Next, we suppose that ∑k

i =1ri = n and show that for i = 1, . . . , k, Qi are
independent χ 2

ri
. To this end, one has that Qi = X′CiX, where Ci is an n × n

symmetric matrix with rank Ci = ri. Consider the matrix Ci. By Theorem 11.I(ii)
in Appendix I, there exist ri linear forms in the X’s such that

Q b X b X b X b Xi

i i

n

i

n r

i

r

i

rn

i

ni i i
= + ⋅ ⋅ ⋅ +⎛

⎝
⎞
⎠ + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ +⎛

⎝
⎞
⎠

( ) ( ) ( ) ( ) ( ) ( )δ δ1 11 1 1

2

1 1

2

, (4)

where δ 1
(i), . . . , δ (i)

ri
 are either 1 or −1. Now ∑k

i =1ri = n and let B be the n × n
matrix defined by
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B =

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

( ) ( )

( ) ( )

( ) ( )

( ) ( )

b b

b b

b b

b b

n

r r n

k

n

k

r

k

r n

k

k k

11
1

1
1

1

1 1

11 1

1

1 1 .

Then by (4) and the definition of B, it is clear that

Qi
i

k

= ( ) ( )
=
∑ BX D BX′ ,

1

(5)

where D is an n × n diagonal matrix with diagonal elements equal to
δ 1

(i), . . . , δ (i)
ri
 , i = 1, . . . , k. On the other hand,

Qi
i

k

= ′ ( ) ( ) = ′ ′( )
=
∑ X X BX D BX X B DB Xand .′

1

Therefore (5) gives

′ = ′ ′( )X X X B DB X Xidentically in .

Hence B′DB = In. From the definition of D, it follows that ||D|| = 1, so that rank
D = n. Let r = rank B. Then, of course, r ≤ n. Also n = rank In = rank (B′DB)
≤ r, so that r = n. It follows that B is nonsingular and therefore the relationship
B′DB = In implies D = (B′)−1B−1 = (BB′)−1. On the other hand, for any
nonsingular square matrix M, MM′ is positive definite (by Theorem 10.I(ii)
in Appendix I) and so is (MM′)−1. Thus (BB′)−1 is positive definite and hence
so is D. From the form of D, it follows then that all diagonal elements of
D are equal to 1, which implies that D = In and hence B′B = In; that is to
say, B is orthogonal. Set Y = BX. By Theorem 5, Chapter 9, it follows that, if
Y = (Y1, . . . , Yn)′, then the r.v.’s Yj, j = 1, . . . , n are independent N(0, 1). Also
the fact that D = In and the transformation Y = BX imply, by means of (4), that
Q1 is equal to the sum of the squares of the first r1, Y’s, Q2 is the sum of the
squares of the next r2 Y’s, . . . , Qk is the sum of the squares of the last rk Y’s.
It follows that, for i = 1, . . . , k, Qi are independent χ 2

ri
. The proof is

completed. ▲

APPLICATION 1 For j = 1, . . . , n, let Zj be independent r.v.’s distributed as N(μ, σ 2) and set
Xj = (Zj − μ)/σ, so that the X’s are i.i.d. distributed as N(0, 1). It has been
seen elsewhere that

Z Z Z n Z
j

j

n
j

j

n−⎛

⎝⎜
⎞

⎠⎟
=

−⎛

⎝⎜
⎞

⎠⎟
+

−( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥= =

∑ ∑
μ

σ σ
μ

σ1

2

1

2
2

;

equivalently,



19.2 Some Theorems on Quadratic Forms 479

X X X n Xj
j

n

j
j

n
2

1

2
2

1

1
2

= =
∑ ∑= −( ) + ⎛

⎝⎜
⎞
⎠⎟

.

Now

n X
n

X j
j

n1
2

2

1

2
1⎛

⎝⎜
⎞
⎠⎟

=
⎛

⎝⎜
⎞

⎠⎟
= ′

=
∑ X C X2 ,

where C2 has its elements identically equal to 1/n, so that rank C2 = 1. Next it
can be shown (see also Exercise 19.2.1) that

X Xj
j

n

−( ) = ′
=

∑ 2

1

X C X1 ,

where C1 is given by

C1 =

−( ) − ⋅ ⋅ ⋅ −

− −( ) ⋅ ⋅ ⋅ −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− − ⋅ ⋅ ⋅ −( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

n n n n

n n n n

n n n n

1 1 1

1 1 1

1 1 1

and that rank C1 = n − 1. Then Theorem 1 applies with k = 2 and gives that
∑n

j =1(Xj − X̄ )2 and (√nX̄)2 are independent distributed as χ 2
n−1 and χ 2

1, respec-
tively. Thus it follows that (1/σ 2)∑n

j =1(Zj − Z̄ )2 is distributed as χ 2
n−1 and is

independent of Z̄ .

The following theorem refers to the distribution of a quadratic form in the
independent N(0, 1) r.v.’s Xj, j = 1, . . . , n. Namely,

THEOREM 2 Consider the quadratic form Q = X′CX. Then Q is distributed as χ 2
r if and only

if C is idempotent (that is, C2 = C) and rank C = r.

PROOF Suppose that C is idempotent and that rank C = r. Then by Theorem
12.I(iii) in Appendix I, we have

rank rankC I C+ −( ) =n n. (6)

Also

′ = ′ + ′ −( )X X X CX X I C Xn . (7)

Then Theorem 1 applies with k = 2 and gives that X′CX is χ 2
r (and also

X′(In − C)X is χ 2
n−r).

Assume now that Q = X′CX is χ 2
r. Then we first show that rank C = r. By

Theorem 11.I(iii) in Appendix I, there exists an orthogonal matrix P such that
if Y = P−1X (equivalently, X = PY), then

Q Yj j
j

m

= ′ = ( ) ( ) = ′ ′( ) =
=

∑X CX PY C PY Y P CP Y′ λ 2

1

, (8)
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where (Y1, . . . , Yn)′ = Y and λj, j = 1, . . . , m are the nonzero characteristic
roots of C.

By the orthogonality of P, the Y’s are independent N(0, 1) (Theorem 5,
Chapter 9), so that the Y 2’s are independent χ 2

1. Therefore the ch.f. of ∑m
j=1λjY

2
j,

evaluated at t, is given by

1 2 1 21

1 2
−( ) ⋅ ⋅ ⋅ −( )[ ]−

i t i tmλ λ . (9)

On the other hand, Q is χ 2
r by assumption, so that its ch.f., evaluated at t, is

given by

1 2
2

−( )−
it

r
. (10)

From (8)–(10), one then has that (see also Exercise 19.2.2)

λ λ1 1= ⋅ ⋅ ⋅ = = =m m rand . (11)

It follows then that rank C = r. We now show that C2 = C. From (8), one has
that P′CP is diagonal and, by (11), its diagonal elements are either 1 or 0.
Hence P′CP is idempotent. Thus

′ = ′( ) = ′( ) ′( )
= ′ ′( ) = ′ = ′

P CP P CP P CP P CP

P C PP CP P CI CP P C P

2

n
2 .

That is,

′ = ′P CP P C P2 . (12)

Multiplying by P′−1 and P−1 on the left and right, respectively, both sides of
(12), one concludes that C = C2. This completes the proof of the theorem. ▲

APPLICATION 2 Refer to Application 1. It can be shown (see also Exercise 19.2.3) that C1 and
C2 are idempotent. Then Theorem 2 implies that ∑n

j=1(Xj − X̄ )2 and (√n1/2X̄)2,
or equivalently

1
2

2

1

2

σ

μ
σ

Z Z
n Z

j
j

n

−( ) −( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥=

∑ and

are distributed as χ2
n−1 and χ 2

1, respectively.

To this theorem there are the following two corollaries which will be
employed in the sequel.

COROLLARY 1 If the quadratic form Q = X′CX is distributed as χ 2
r, then it is positive

semidefinite.

PROOF From (8) and (10), one has that Q = X′CX is equal to ∑r
j=1Y

2
j, so that

X′CX is equal to ∑r
j=1Y

2
j, where X = (X1, . . . , Xn)′ and (Y1, . . . , Yn)′ = Y = P−1X.

Thus X′CX ≥ 0 for every X, as was to be seen. ▲
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COROLLARY 2 Let P be an orthogonal matrix and consider the transformation Y = P−1X. Then
if the quadratic form Q = X′CX is χ 2

r, so is the quadratic form Q* = Y′(P′CP)Y.

PROOF By the theorem, it suffices to show that P′CP is idempotent and that
its rank is r. We have

′( ) = ′ ′( ) = ′ = ′P CP P C PP CP P CCP P CP
2

since C2 = C. That rank P′CP = r follows from Theorem 9.I(iv) in Appendix I.
Hence the result. ▲

THEOREM 3 Suppose that X′X = Q1 + Q2, where Q1, Q2 are quadratic forms in X, and let Q1

be χ 2
r1
. Then Q2 is χ 2

n−r1
 and Q1, Q2 are independent.

PROOF Let Q1 = X′C1X. Then the assumption that Q1 is χ 2
r1
 implies (by

Theorem 2) that C1 is idempotent and rank C1 = r1. Next

Q Q n2 1= ′ − = ′ − ′ = ′ −( )X X X X X C X X I C X1 1

and (In − C1)
2 = In − 2C1 + C2

1 = In − C1, that is, In − C1 is idempotent. Also rank
C1 + rank (In − C1) = n by Theorem 12.I(iii) in Appendix I, so that rank (In − C1)
= n − r1. We have then that rank Q1 + rank Q2 = n, and therefore Theorem 1
applies and gives the result. ▲

APPLICATION 3 Refer to Application 1. Since √nX̄  is N(0, 1), it follows that (√nX̄ )2 is χ 2
1. Then,

by Theorem 3, ∑n
j=1(Xj − X̄)2 is distributed as χ 2

n−1 and is independent of
(√nX̄ )2. Thus once again, (1/σ 2)∑n

j=1(Zj − Z̄)2 is distributed as χ 2
n−1 and is

independent of Z̄ .

The following theorem is also of interest.

THEOREM 4 Suppose that Q = Q1 + Q2, where Q, Q1 and Q2 are quadratic forms in X.
Furthermore, let Q be χ 2

r, let Q1 be χ 2
r1
 and let Q2 be positive semidefinite. Then

Q2 is χ 2
r2
, where r2 = r − r1, and Q1, Q2 are independent.

PROOF Let Q = X′CX. Then, by Theorem 2, C is idempotent and rank C =
r. By Theorem 11.I(iv) in Appendix I, it follows that there exists an orthogonal
matrix P such that if Y = P−1X (equivalently, X = PY), then Q is transformed
into Y′(P′CP)Y = ∑r

j=1Y
2
j. For i = 1, 2, let Qi = X′CiX and let Q*i  be the quadratic

form in Y into which Qi is transformed under P; that is,

Q ii i i i
∗ = ′ = ′ =Y B Y B P C P, where ,   2.1,

The equation Q = Q1 + Q2 implies

Y Y Y Y Y Q Qr r j
j

r

1 1
2

1
1

2, . . . , , . . . , .( ) ( ) = = ∗ + ∗
=

∑′ (13)

By Corollary 1 to Theorem 2, it follows that C1 is positive semidefinite and so
is C2 by assumption. Therefore by Theorem 10.I in Appendix I, B1 and B2, or
equivalently, Q*1 and Q*2 are positive semidefinite. From this result and (13), it
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follows that Q*1 and Q*2 are functions of Yj, j = 1, . . . , r only. From the
orthogonality of P, we have that the r.v.’s Yj, j = 1, . . . , r are independent
N(0, 1). On the other hand, Q*1 is χ 2

r1
 by Corollary 2 to Theorem 2. These

facts together with (13) imply that Theorem 3 applies (with n = r) and provides
the desired result. ▲

This last theorem generalizes as follows.

THEOREM 5 Suppose that Q = ∑k
i=1Qi, where Q and Qi, i = 1, . . . , k (≥ 2) are quadratic forms

in X. Furthermore, let Q be χ 2
r, let Qi be χ 2

ri
, i = 1, . . . , k − 1 and let Qk be

positive semidefinite. Then Qk is χ 2
rk
, where

r r r Q i kk i
i

k

i= − =
=

−

∑ , , , . . . ,
1

1

1and   

are independent.

PROOF The proof is by induction. For k = 2 the conclusion is true by Theo-
rem 4. Let the theorem hold for k = m and show that it also holds for m + 1. We
write

Q Q Q Q Q Qi m
i

m

m m m= + ∗ ∗ = +
=

−

+∑
1

1

1, .where

By our assumptions and Corollary 1 to Theorem 2, it follows that Q*m is
positive semidefinite. Hence Q*m is χ 2

r*m,

r r r Q Q Qm i
i

m

m m
∗ = − ∗

=

−

−∑ , , . . . , ,
1

1

1 1and   

are independent, by the induction hypothesis. Thus Q*m = Qm + Qm+1, where Q*m
is χ 2

r*m, Qm is χ 2
rm

 and Qm+1 is positive semidefinite. Once again Theorem 4 applies
and gives that Qm+1 is χ 2

rm+1
, where

r r r r rm m m i
i

m

+
=

= ∗ − = − ∑1
1

,

and that Qm and Qm+1 are independent. It follows that Qi, i = 1, . . . , m + 1 are
also independent and the proof is concluded. ▲

The theorem below gives a necessary and sufficient condition for inde-
pendence of two quadratic forms. More precisely, we have the following
result.

THEOREM 6 Consider the independent r.v.’s Yj, j = 1, . . . , n, where Yj is distributed as
N(μj, σ 2), and for i = 1, 2, let Qi be quadratic forms in Y = (Y1, . . . , Yn)′; that
is, Qi = Y′CiY. Then Q1 and Q2 are independent if and only if C1C2 = 0.

PROOF The proof is presented only for the special case that Yj = Xj �
N(0, 1) and Qi � χ 2

ri
, i = 1, 2. To this end, suppose that C1C2 = 0. By the fact that
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Qi is distributed as χ 2
ri
, it follows (by Theorem 2) that Ci, i = 1, 2 are idempotent;

that is, C2
i = Ci, i = 1, 2. Next by the symmetry of Ci, one has C2C1 = C′2C′1 =

(C1C2)′ = 0′ = 0. Therefore

C I C C C I C C 01 1 2 2 1 2n n− −( ) = − −( ) = .

Then Theorem 12.I(iii), in Appendix I, implies that

rank rank rank1 2 1 2C C I C C+ + − −( ) =n n. (14)

On the other hand, clearly, we have

′ = ′ + ′ + ′ − −( )X X X C X X C X X I C C X1 2 1 2 .n (15)

Then relations (14), (15) and Theorem 1 imply that X′C1X = Q1, X′C2X = Q2

(and X′(In − C1 − C2)X) are independent.
Let now Q1, Q2 be independent. Since Q1 is χ 2

r1
 and Q2 is χ 2

r2
, it follows that

Q1 + Q2 = X′(C1 + C2)X is χ 2
r1+r2

. That is, X′(C1 + C2)X is a quadratic form in X
distributed as χ 2

r1+r2
. Thus C1 + C2 is idempotent by Theorem 2. So the matrices

C1, C2 and C1 ± C2 are all idempotent. Then Theorem 12.I(iv), in Appendix I,
applies and gives that C1C2 (= C2C1) = 0. This concludes the proof of the
theorem. ▲

REMARK 1 Consider the quadratic forms X′C1X and X′C2X figuring in Ap-
plications 1–3. Then, according to the conclusion reached in discussing those
applications, X′C1X and X′C2X are distributed as χ 2

n−1 and χ 2
1, respectively.

This should imply that C1C2 = 0, by Theorem 6. This is, indeed, the case as is
easily seen.

Exercises
19.2.1 Refer to Application 1 and show that

X Xj
j

n

−( ) = ′
=

∑ 2

1

X C X1

as asserted there.

19.2.2 Justify the equalities asserted in (11).

19.2.3 Refer to Application 2 and show that the matrices C1 and C2 are both
idempotent.

19.2.4 Consider the usual linear model Y = X′βββββ + e, where X is of full rank
p, and let β̂ = S−1XY be the LSE of βββββ. Write Y as follows: Y = X′β̂ + (Y − X′β̂)
and show that:

ii) ||Y||2 = Y′X′S−1XY + ||Y − X′β̂||2;

ii) The r.v.’s Y′X′S−1XY and ||Y − X′β̂||2 are independent, the first being distrib-
uted as noncentral χ 2

p and the second as χ 2
n−p.

Exercises 483
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19.2.5 Let X1, X2, X3 be independent r.v.’s distributed as N(0, 1) and let the
r.v. Q be defined by

Q X X X X X X X X X= + + + − +( )1
6

5 2 5 4 2 41
2

2
2

3
2

1 2 1 3 2 3 .

Then find the distribution of Q and show that Q is independent of the r.v.
∑3

j =1X
2
j − Q.

19.2.6 Refer to Example 1 in Chapter 16 and (by using Theorem 6 herein)
show that the r.v.’s β̂1, σ̃ 2, as well as the r.v.’s β̂2, σ̃ 2, are independent, where
σ̃ 2 is the LSE of σ 2.

19.2.7 For j = 1, . . . , n, let Yj be independent r.v.’s, Yj being distributed as
N(μj, 1), and set Y = (Y1, . . . , Yn)′. Let Y′Y = ∑k

i=1Qi, where for i = 1, . . . , k, Qi

are quadratic forms in Y, Qi = Y′CiY, with rank Qi = ri. Then show that the
r.v.’s Qi are independent χ 2

ri;δi
 if and only if ∑k

i =1ri = n, where the noncentrality
parameter δi = μμμμμ′Ciμμμμμ, μμμμμ = (μ1, . . . , μn)′, i = 1, . . . , k. [Hint: The proof is
presented along the same lines as that of Theorem 1.]
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Chapter 20

Nonparametric Inference

In this chapter, we discuss briefly some instances of nonparametric, or more
properly, distribution-free inference. That is, inferences which are made with-
out any assumptions regarding the functional form of the underlying distribu-
tions. The first part of the chapter is devoted to nonparametric estimation and
the remaining part of it to nonparametric testing of hypotheses.

20.1 Nonparametric Estimation

At the beginning, we should like to mention a few cases of nonparametric
estimation which have already been discussed in previous chapters although
the term “nonparametric” was not employed there. To this end, let Xj, j =
1, . . . , n be i.i.d. r.v.’s with certain distribution about which no functional form
is stipulated. The only assumption made is that the X’s have a finite (unknown)
mean μ. Let X̄n be the sample mean of the X’s; that is,

X
n

Xn j
j

n

=
=

∑1

1

.

Then it has been shown that X̄n, viewed as an estimator of μ, is weakly
consistent, that is, consistent in the probability sense. Thus Xn

P
n

⎯ →⎯
→∞

μ . This is
so by the WLLN’s. It has also been mentioned that X̄n is strongly consistent,
namely, Xn n

a.s.⎯ →⎯
→∞

μ . This is justified on the basis of the SLLN’s.
Let us suppose now that the X’s also have finite (and positive) variance σ 2

which presently is assumed to be known. Then, according to the CLT,

  

n X
Z N

n d
n

−( )
⎯ →⎯ ( )→∞

μ
σ

� 0 1, .

Thus if zα/2 is the upper α/2 quantile of the N(0, 1) distribution, then
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P z
n X

z

P X z
n

X z
n

n

n n n

− ≤
−( )

≤
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= − ≤ ≤ +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎯ →⎯ −
→∞

α α

α α

μ
σ

σ μ σ α

2 2

2 2 1 ,

so that [Ln, Un] is a confidence interval for μ with asymptotic confidence co-
efficient 1 − α; here

L L X X X z
n

n n n= ( ) = −1 2, . . . ,  α
σ

and

U U X X X z
n

n n n= ( ) = +1 2, . . . , .α
σ

Next, suppose that σ 2 is unknown and set S2
n for the sample variance of the

X’s; namely,

S
n

X Xn j n
j

n
2 2

1

1= −( )
=

∑ .

Then the WLLN’s and the SLLN’s, properly applied, ensured that S2
n, viewed

as an estimator of σ 2, was both a weakly and strongly consistent estimator of σ 2.
Also by the corollary to Theorem 9 of Chapter 8, it follows that

  

n X

S
Z N

n

n

d
n

−( )
⎯ →⎯ ( )→∞

μ
� 0 1, .

By setting

L L X X X z
S

n
n n n

n∗ = ∗( ) = −1 2, . . . ,  α

and

U U X X X z
S

n
n n n

n∗ = ∗( ) = +1 2, . . . , ,α

we have that [L*n, U*n ] is a confidence interval for μ with asymptotic confidence
coefficient 1 − α.

Clearly, the examples mentioned so far are cases of nonparametric
point and interval estimation. A further instance of point nonparametric
estimation is provided by the following example. Let F be the (common
and unknown) d.f. of the Xi’s and set Fn for their sample or empirical d.f.; that
is,
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F x s

n
X s X s x x sn n; , . . . , , , . the number of  ( ) = ( ) ( ) ≤[ ] ∈ ∈1

1 � S (1)

We often omit the random element s and write Fn(x) rather than Fn(x; s). Then
it was stated in Chapter 8 (see Theorem 6) that

  
F x F x xn n

; . uniformly ina.s.⋅( ) ⎯ →⎯⎯ ( ) ∈
→∞

� (2)

Thus Fn(x; ·) is a strongly consistent estimator of F(x) and for almost all s ∈ S
and every ε > 0, we have

F x s F x F x sn n; ; ,( ) − ≤ ( ) ≤ ( ) +ε ε

provided n ≥ n(ε, s) independent of x ∈ � .
We close this section by observing that Section 5 of Chapter 15 is con-

cerned with another nonparametric aspect, namely that of constructing toler-
ance intervals.

20.2 Nonparametric Estimation of a p.d.f.

At the end of the previous section, an unknown d.f. F was estimated by the
sample d.f. Fn based on the i.i.d. r.v.’s Xj, j = 1, . . . , n whose (common) d.f. is
assumed to be the unknown one F. In the present section, we shall consider the
problem of estimation of an unknown p.d.f. To this end, let Xj, j = 1, . . . , n be
i.i.d. r.v.’s with (the common) p.d.f. f which is assumed to be of the continuous
type. A significant amount of work has been done regarding the estimation of
f(x), x ∈ �, which, of course, is assumed to be unknown. In this section, we
report some of these results without proofs. The relevant proofs can be found
in the paper “On estimation of a probability density function and mode,” by
E. Parzen, which appeared in The Annals of Mathematical Statistics, Vol. 33
(1962), pp. 1065–1076.

First we shall try to give a motivation to the estimates to be employed in
the sequel. To this end, recall that if F is the d.f. corresponding to the p.d.f. f,
then

f x
F x h F x h

hh
( ) =

+( ) − −( )
→

lim .
0 2

Thus, for (0 <) h sufficiently small, the quantity [F(x + h) − F(x − h)]/2h should
be close to f(x). This suggests estimating f(x) by the (known) quantity

ˆ .f x
F x h F x h

hn
n n( ) =

+( ) − −( )
2

However,

20.2 Nonparametric Estimation of a P.D.F. 487
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ˆ

, . . . ,

, . . . ,

, . . . , ,
;

f x
F x h F x h

h

h
X X x h

n

X X x h
n

h

X X x h x h

n

n
n n

n

n

n

( ) =
+( ) − −( )

= ≤ +⎛
⎝⎜

− ≤ − ⎞
⎠⎟

=
− +( ]

2
1

2

1
2

1

1

1

the number of  

the number of  

the number of   in 

that is

ˆ , . . . , ,
f x

h

X X x h x h

nn
n( ) =

− +( ]1
2

1the number of   in 

and it can be further easily seen (see Exercise 20.2.1) that

ˆ ,f x
nh

K
x X

hn
j

j

n

( ) =
−⎛

⎝⎜
⎞

⎠⎟=
∑1

1

(3)

where K is the following p.d.f.:

K x
x( ) = ∈ −( ]⎧

⎨
⎪

⎩⎪

1

2
1 1, ,if  

0, otherwise.

Thus the proposed estimator f̂ n(x) of f(x) is expressed in terms of a known
p.d.f. K by means of (3). This expression also suggests an entire class of
estimators to be introduced below. For this purpose, let K be any p.d.f. defined
on � into itself and satisfying the following properties:

  

sup

as

K x x

xK x x

K x K x x

( ) ∈{ } < ∞

( ) = → ∞

−( ) = ( ) ∈

⎫

⎬
⎪⎪

⎭
⎪
⎪

;

lim

, .

�

�

0 (4)

Next, let {hn} be a sequence of positive constants such that

hn n
⎯ →⎯

→∞
0. (5)

For each x ∈ � and by means of K and {hn}, define the r.v. f̂ n(x; s), to be
shortened to f̂ n(x), as follows:

ˆ .f x
nh

K
x X

hn
n j

n
j

n
( ) =

−⎛

⎝⎜
⎞

⎠⎟=
∑1

1

(6)

Then we may formulate the following results.

Let Xj, j = 1, . . . , n be i.i.d. r.v.’s with (unknown) p.d.f. f and let K be a p.d.f.
satisfying conditions (4). Also, let {hn} be a sequence of positive constants

THEOREM 1
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satisfying (5) and for each x ∈ � let f̂ n(x) be defined by (6). Then for any x ∈
� at which f is continuous, the r.v. f̂ n(x), viewed as an estimator of f(x), is
asymptotically unbiased in the sense that

Ef x f xn n
ˆ .( ) ⎯ →⎯ ( )→∞

Now let {hn} be as above and also satisfying the following requirement:

nhn n
⎯ →⎯ ∞

→∞
. (7)

Then the following results hold true.

Under the same assumptions as those in Theorem 1 and the additional condi-
tion (7), for each x ∈ � at which f is continuous, the estimator f̂ n(x) of f(x) is
consistent in quadratic mean in the sense that

E f x f xn n
ˆ .( ) − ( ) ⎯ →⎯

→∞

2
0

The estimator f̂ n(x), when properly normalized, is also asymptotically
normal, as the following theorem states.

Under the same assumptions as those in Theorem 2, for each x ∈ � at which
f is continuous,

  

ˆ ˆ

ˆ
, .

f x E f x

f x
Z N

n n

n

d
n

( ) − ( )[ ]
( )[ ] ⎯ →⎯ ( )→∞σ

� 0 1

Finally, if it happens to be known that f belongs to a class of p.d.f.’s which
are uniformly continuous, then by choosing the sequence {hn} of positive
constants to tend to zero and also such that

nhn n
2 ⎯ →⎯ ∞

→∞
, (8)

we may show the following result.

Under the same assumptions as those in Theorem 1 and also condition (8),

  
ˆ ,f x f x xn n( ) ⎯ →⎯⎯ ( ) ∈

→∞
a. s. uniformly in �

provided f is uniformly continuous.

In closing this section, it should be pointed out that there are many p.d.f.’s
of the type K satisfying conditions (4). For example, if K is taken to be the
p.d.f. of the N(0, 1), or the U(− 1–2 , 1–2 ) p.d.f., these conditions are, clearly,
satisfied. As for the sequence {hn}, there is plenty of flexibility in choosing it. As
an illustration, consider the following example.

Consider the i.i.d. r.v.’s Xj, j = 1, . . . , n with (unknown) p.d.f. f. Take

K x e x( ) = −1

2

2 2

π
.

EXAMPLE 1

20.2 Nonparametric Estimation of a P.D.F. 489

THEOREM 3

THEOREM 2

THEOREM 4
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Then, clearly,

  

K x e K x xx( ) = ≤ ( ) ∈{ } < ∞−1

2

1

2

2 2

π π
, sup ; .so that  �

Next, for x > 1, one has ex < ex2

, so that e−x2/2 < e−x/2 and hence

xe xe x ex x x− −< =
2 2 2 2 .

Now consider the expansion et = 1 + teθt for some 0 < θ < 1, and replace t by
x/2. We get then

x

e

x

x e x e
x x

x x2 2
21 2

1

1
1
2

0=
+ ( ) =

( ) +
⎯ →⎯

→∞θ
θ

and therefore xe x

x
− ⎯ →⎯→∞

2 2 0.  In a similar way xe x

x
− ⎯ →⎯→−∞

2 2 0,  so that
lim|xK(x)| = 0 as |x| → ∞. Since also K(−x) = K(x), condition (4) is satisfied.
Let us now take hn = 1/n1/4. Then 0 0< ⎯ →⎯→∞hn n , nh n n nn n

2 1 2 1 2= = ⎯ →⎯ ∞→∞  and
nh nn n= ⎯ →⎯ ∞→∞

3 4 . Thus the estimator given by (6) has all properties stated in
Theorems 1–4. This estimator here becomes as follows:

ˆ exp .f x
n

x X

n
n

j

j

n

( ) = −
−( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥=

∑1

2 23 4

2

1 2
1π

Exercise

20.2.1 Let Xj, j = 1, . . . , n be i.i.d. r.v.’s and for some h > 0 and any x ∈ � ,
define f̂ n(x) as follows:

ˆ , . . . , ,
.f x

h

X X x h x h

nn
n( ) =

− +( ]1
2

1the number of  in  

Then show that

ˆ ,f x
nh

K
x X

hn
j

n
j( ) =

−⎛

⎝⎜
⎞

⎠⎟=
∑1

1

where K(x) is 1–2  if x ∈ [−1, 1) and 0 otherwise.

20.3 Some Nonparametric Tests

Let Xj, j = 1, . . . , n be i.i.d. r.v.’s with unknown d.f. F. As was seen in Section
20.1, the sample d.f. Fn may be used for the purpose of estimating F. However,
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testing hypotheses problems about F also arise and are of practical impor-
tance. Thus we may be interested in testing the hypothesis H :F = F0, a given
d.f., against all possible alternatives. This hypothesis can be tested by utilizing
the chi-square test for goodness of fit discussed in Chapter 13, Section 8. The
chi-square test is the oldest nonparametric test regarding d.f.’s. Alternatively,
the sample d.f. Fn may also be used for testing the same hypothesis as above.
In order to be able to employ the test proposed below, we have to make the
supplementary (but mild) assumption that F is continuous. Thus the hypoth-
esis to be tested here is

H F F: ,= 0 a given continuous d.f.,

against the alternative

  
A F F F x F x x: .≠ ( ) ≠ ( ) ∈( )0 0in the sense that  for at least one �

Let α be the level of significance. Define the r.v. Dn as follows,

  
D F x F x xn n= ( ) − ( ) ∈{ }sup ; ,0 � (9)

where Fn is the sample d.f. defined by (1). Then, under H, it follows from (2)
that Dn n

a.s.⎯ →⎯
→∞

0. Therefore we would reject H if Dn > C and would accept it

otherwise. The constant C is to be determined through the relationship

P D C Hn >( ) = α . (10)

In order for this determination to be possible, we would have to know the
distribution of Dn, under H, or of some known multiple of it. It has been shown
in the literature that

P nD x H e xn

j

j

j x

n
≤( ) ⎯ →⎯ −( ) ≥

→∞ = −∞

∞
−∑ 1 02 2 2

, . (11)

Thus for large n, the right-hand side of (11) may be used for the purpose of
determining C by way of (10). For moderate values of n (n ≤ 100) and selected
α’s (α = 0.10, 0.05, 0.025, 0.01, 0.005), there are tables available which facilitate
the calculation of C. (See, for example, Handbook of Statistical Tables by D. B.
Owen, Addison-Wesley, 1962.) The test employed above is known as the
Kolmogorov one-sample test.

The testing hypothesis problem just described is of limited practical im-
portance. What arise naturally in practice are problems of the following type:
Let Xi, i = 1, . . . , m be i.i.d. r.v.’s with continuous but unknown d.f. F and let
Yj, j = 1, . . . , n be i.i.d. r.v.’s with continuous but unknown d.f. G. The two
random samples are assumed to be independent and the hypothesis of interest
here is

H F G: .=
One possible alternative is the following:

A F G: ≠ (12)
(in the sense that F(x) ≠ G(x) for at least one x ∈ �).

20.3 Some Nonparametric Tests 491
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The hypothesis is to be tested at level α. Define the r.v. Dm,n as follows:

  
D F x G x xm n m n, sup ; ,= ( ) − ( ) ∈{ }� (13)

where Fm, Gn are the sample d.f.’s of the X’s and Y’s, respectively. Under H,
F = G, so that

F x G x F x F x G x G x

F x F x G x G x

m n m n

m n

( ) − ( ) = ( ) − ( )[ ] − ( ) − ( )[ ]
≤ ( ) − ( ) + ( ) − ( ) .

Hence

  
D F x F x x G x G x xm n m n, sup ; sup ; ,≤ ( ) − ( ) ∈{ } + ( ) − ( ) ∈{ }� �

whereas

  
sup ; , sup ; .F x F x x G x G x xm nm m( ) − ( ) ∈{ } ⎯ →⎯ ( ) − ( ) ∈{ } ⎯ →⎯

→∞ →∞
a.s. a.s.� �0 0

In other words, we have that Dm n,
a.s.⎯ →⎯ 0  as m, n → ∞, and this suggests

rejecting H if Dm,n > C and accepting it otherwise. The constant C is deter-
mined by means of the relation

P D C Hm n, .>( ) = α (14)

Once again the actual determination of C requires the knowledge of the
distribution of Dm,n, under H, or some known multiple of it. In connection with
this it has been shown in the literature that

P N D x H e m n xm n

j

j

j x
, , , ,≤( ) → −( ) → ∞ ≥

= −∞

∞
−∑ 1 02 2 2

as (15)

where N = mn/(m + n).
Thus, for large m and n, the right-hand side of (15) may be used for the

purpose of determining C by way of (14). For moderate values of m and
n (such as m = n ≤ 40), there are tables available which facilitate the calcula-
tion of C. (See reference cited above in connection with the one-sample
Kolmogorov test.)

In addition to the alternative A :F ≠ G just considered, the following two
alternatives are also of interest; namely,

′ >A F G: , (16)

in the sense that F(x) ≥ G(x) with strict inequality for at least one x ∈ � , and

′′ <A F G: , (17)

in the sense that F(x) ≤ G(x) with strict inequality for at least one x ∈ � .
For testing H against A′, we employ the statistic D+

m,n defined by

  
D F x G x xm n m n, sup ;+ = ( ) − ( ) ∈{ }�
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and reject H if D+
m,n > C+. The cut-off point C+ is determined through the

relation

P D C Hm n,
+ +>( ) = α

by utilizing the fact that

  
P N D x e m n xm n

x
, , , ,+ −≤( ) → − → ∞ ∈1 2 2

as �

as can be shown. Here N is as before, that is, N = mn/(m + n). Similarly, for
testing H against A″, we employ the statistic D −

m,n defined by

  
D G x F x xm n n m, sup ;− = ( ) − ( ) ∈{ }�

and reject H if D−
m,n < C−. The cut-off point C − is determined through the

relation

P D C Hm n,
− −<( ) = α

by utilizing the fact that

  
P N D x e m n xm n

x
, , , .− −≤( ) → − → ∞ ∈1 2 2

as �

For relevant tables, the reader is referred to the reference cited earlier in this
section. The last three tests based on the statistics Dm,n, D+

m,n and D−
m,n are

known as Kolmogorov–Smirnov two-sample tests.

20.4 More About Nonparametric Tests: Rank Tests

Consider again the two-sample problem discussed in the latter part of the
previous section. Namely, let Xi, i = 1, . . . , m and Yj, j = 1, . . . , n be two
independent random samples with continuous d.f.’s F and G, respectively. The
problem is that of testing the hypothesis H :F = G against various alternatives
at level of significance α.

Now it seems reasonable that in testing H on the basis of the X’s and Y’s,
we should reach the same conclusion regarding the rejection or acceptance of
H regardless of the scale used in measuring the X’s and Y’s. (That is, the
conclusion should be the same if the X’s and Y’s are multiplied by the same
positive constant. This is a special case of what is known as invariance under
monotone transformations.) This is done by employing the ranks of the X’s and
Y’s in the combined sample rather than their actual values. The rank of Xi  in
the combined sample of X’s and Y’s, to be denoted by �(Xi), is that integer
among the numbers 1, . . . , N (= m + n) which corresponds to the position of
Xi after the X’s and Y’s have been ordered according to their size. Of course,
the rank R(Yj) of Yj in the combined sample of the X’s and Y’s is defined in a
similar fashion. By the assumption of continuity of F and G, it follows that in
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ordering the X’s and Y’s, we have strict inequalities with probability equal to
one.

For testing the hypothesis H specified above, we are going to use either
one of the rank sum statistics RX, RY defined by

R R X R R YX i
i

m

Y
j

n

j= ( ) = ( )
= =
∑ ∑,

1 1

(18)

because RX + RY = N(N + 1)/2 (fixed), as is easily seen. (See Exercise 20.4.1.)
In the present case, and for reasons to become apparent soon, it is custom-

ary to take the level of significance α as follows:

α = ( ) < <
⎛
⎝⎜

⎞
⎠⎟

k
k

N

m
m
N

, .1

There are three alternatives of interest to consider, namely, A, A′ and A″, as
they are specified by (12), (16) and (17), respectively. As an example, let the
r.v.’s X, Y be distributed as the X’s and Y’s, respectively, and let us consider
alternative A′. Under A′, P(X ≤ x) ≥ P(Y ≤ x), x ∈ �, so that RX would tend to
take on small values; accordingly, we would reject H in favor of A′ if

�X C< ′, (19)
where C′ is defined, so that

  
P C HX� < ′( ) = α. (20)

Theoretically the determination of C′ is a simple matter; under H, all (N
m)

values of (R(X1), . . . , R(Xm)) are equally likely each having probability 1/(N
m).

The rejection region then is defined as follows: Consider all these (N
m) values

and for each one of them form the rank sum RX. Then the rejection region
consists of the k smallest values of these rank sums. For small values of m and
n (n ≤ m ≤ 10), this procedure is facilitated by tables (see reference cited in
previous section), whereas for large values of m and n it becomes unmanage-
able; for this latter case, the normal approximation to be discussed below may
be employed. The remaining two alternatives are treated in a similar fashion.

Next, consider the function u defined as follows:

u z
z

z
( ) =

>
<

⎧
⎨
⎩

1 0

0 0

,

,

if

if
(21)

and set

U u X Yi j
j

n

i

m

= −( )
==

∑∑
11

. (22)

Then U is, clearly, the number of times a Y precedes an X and it can be shown
(see Exercise 20.4.2) that

U mn
n n

R R
m m

Y X= +
+( )

− = −
+( )1

2

1

2
. (23)
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Therefore the test in (19) can be expressed equivalently in terms of the
U statistic. This test is known as the two-sample Wilcoxon–Mann–Whitney
test.

Now it can be shown (see Exercise 20.4.3) that under H,

EU
mn

U
mn m n

= ( ) =
+ +( )

2

1

12
2, .σ

Then the r.v. (U − EU)/(σ(U)) converges in distribution to an r.v. Z distrib-
uted as N(0, 1) as m, n → ∞ and therefore, for large m, n, the limiting
distribution (along with the continuity correction for better precision) may be
used for determining the cut-off point C′ by means of (20).

A special interesting case, where the rank sum tests of the present section
are appropriate, is that where the d.f. G of the Y’s is assumed to be of the form

  
G x F x x( ) = −( ) ∈ ∈Δ Δ, . for some unknown� �

As before, F is assumed to be unknown but continuous. In this case, we
say that G is a shift of F (to the right if Δ > 0 and to the left if Δ < 0). Then
the hypothesis H :F = G is equivalent to testing Δ = 0 and the alternatives
A :F ≠ G, A′ :F > G and A″ :F < G are equivalent to Δ ≠ 0, Δ > 0 and Δ < 0,
respectively.

In closing this section, we should like to mention that there is also the one-
sample Wilcoxon–Mann–Whitney test, as well as other one-sample and two-
sample rank tests available. However, their discussion here would be beyond
the purposes of the present chapter.

As an illustration, consider the following numerical example.

Let m = 5, n = 4 and suppose that X1 = 78, X2 = 65, X3 = 74, X4 = 45, X5 = 82;
Y1 = 110, Y2 = 71, Y3 = 53, Y4 = 50. Combining these values and ordering them
according to their size, we obtain

45 50 53 65 71 74 78 82 110

X Y Y X Y X X X Y( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),
where an X or Y below a number means that the number is coming from the
X or Y sample, respectively. From this, we find that

R X R X R X R X R X R Y

R Y R Y R Y R RX Y

1 2 3 4 5 1

2 3 4

7 4 6 1 8 9

5 3 2 26 19

( ) = ( ) = ( ) = ( ) = ( ) = ( ) =

( ) = ( ) = ( ) = = =

, , , , ; ,

, , , , .so that

We also find that

U = + + + =4 4 3 0 11.

(Incidentally, these results check with (23) and Exercise 20.4.1.) Now

N
m
N

= + = ( ) = ( ) =5 4 9
1 1 1

126
5
9

and ,

EXAMPLE 2
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and let us take

α = ≈( )5
126

0 04. .

Then for testing H against A′ (given by (16)), we would reject for small values
of RX, or equivalently (by means of (23)), for small values of U. For the given
m, n, α and for the observed value of RX (or U), H is accepted. (See tables on
p. 341 of the reference cited in Section 20.3.)

Exercises

20.4.1 Consider the two independent random samples Xi, i = 1, . . . , m and
Yj, j = 1, . . . , n and let R(Xi) and �(Yj) be the ranks of Xi and Yj, respectively,
in the combined sample of the X’s and Y’s. Furthermore, let RX and RY be
defined by (18). Then show that

R R
N N

X Y+ =
+( )1

2
,

where N = m + n.

20.4.2 Let RX and RY be as in the previous exercise and let U be defined by
(22). Then establish (23).

20.4.3 Let Xi, i = 1, . . . , m and Yj, j = 1, . . . , n be two independent random
samples and let U be defined by (22). Then show that, under H,

EU
mn

U
mn m n

= ( ) =
+ +( )

2

1

12
2, .σ

20.5 Sign Test

In this section, we briefly mention another nonparametric test—the two-
sample Sign test, which is easily applicable in many situations of practical
importance. In order to avoid distribution related difficulties, we assume, as
we have also done in previous sections, that the underlying distributions are
continuous. More precisely, we suppose that Xj, j = 1, . . . , n are i.i.d. r.v.’s with
continuous d.f. F and that Yj, j = 1, . . . , n are also i.i.d. r.v.’s with continuous d.f.
G. The two random samples are assumed to be independent and the hypoth-
esis H to be tested is

H F G: .=
To this end, consider the n pairs (Xj, Yj), j = 1, . . . , n and set

Z
X Y

X Yj
j j

j j

=
<
>

⎧
⎨
⎪

⎩⎪
1

0

,

, .

if

if
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Also set Z = ∑n
j=1Zj and p = P(Xj < Yj). Then, clearly, Z is distributed as B(n, p)

and the hypothesis H above is equivalent to testing p = 1–2 . Depending on the
type of the alternatives, one would use the two-sided or the appropriate one-
sided test.

Some cases where the sign test just described is appropriate is when one is
interested in comparing the effectiveness of two different drugs used for the
treatment of the same disease, the efficiency of two manufacturing processes
producing the same item, the response of n customers regarding their prefer-
ences towards a certain consumer item, etc.

Of course, there is also the one-sample Sign test available, but we will not
discuss it here.

For the sake of an illustration, consider the following numerical example.

Let n = 10 and suppose that

X X X X X

X X X X X
1 2 3 4 5

6 7 8 9 10

73 68 64 90 83

48 100 75 90 85

= = = = =
= = = = =

, , , , ,

, , , ,

and

Y Y Y Y Y

Y Y Y Y Y
1 2 3 4 5

6 7 8 9 10

50 100 70 96 74

64 76 83 98 40

= = = = =
= = = = =

, , , , ,

, , , , .

Then

Z Z Z Z Z Z Z

Z Z Z Zj
j

1 2 3 4 5 6 7

8 9 10
1

10

0 1 1 1 0 1 0

1 1 0 6

= = = = = = =

= = = =
=

∑

, , , , , , ,

, , , .so that

Thus, if α = 0.1 and if we are interested in testing H :F = G against A :F ≠ G
(equivalently, p = 1–2 against p ≠ 1–2 ), we would accept H.

20.6 Relative Asymptotic Efficiency of Tests

Consider again the testing hypothesis problem discussed in the previous sec-
tions; namely, let Xi, i = 1, . . . , m and Yj, j = 1, . . . , n be i.i.d. r.v.’s with
continuous d.f.’s F and G, respectively. The hypothesis to be tested is H :F = G
and the alternative may be either A :F ≠ G, or A′ :F > G, or A″ :F < G. In
employing either the Wilcoxon–Mann–Whitney test or the Sign test in the
problem just described, we would like to have some measure on the basis of
which we could judge the performance of the test in question at least in an
asymptotic sense. This is obtained by introducing what is known as the Pitman
asymptotic relative efficiency of tests. For the precise definition of this con-
cept, suppose that the two sample sizes are the same and let n be the sample
size needed in order to obtain a given power β, say, against a specified alterna-
tive when one of the above-mentioned tests is employed. The level of signifi-

EXAMPLE 3
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cance is α. Formally, we may also employ the t-test (see (36), Chapter 13) for
testing the same hypothesis against the same specified alternative at the same
level α. Let n* be the (common) sample size required in order to achieve a
power equal to β by employing the t-test. We further assume that the limit of
n*/n, as n → ∞, exists and is independent of α and β. Denote this limit by e.
Then this quantity e is the Pitman asymptotic relative efficiency of the
Wilcoxon–Mann–Whitney test (or of the Sign test, depending on which one is
used) relative to the t-test. Thus, if we use the Wilcoxon–Mann–Whitney test
and if it so happens that e = 1–3 , then this means that the Wilcoxon–Mann–
Whitney test requires approximately three times as many observations as the
t-test in order to achieve the same power. However, if e = 5, then the
Wilcoxon–Mann–Whitney test requires approximately only one-fifth as many
observations as the t-test in order to achieve the same power.

It has been found in the literature that the asymptotic efficiency of the
Wilcoxon–Mann–Whitney test relative to the t-test is 3/π ≈ 0.95 when the
underlying distribution is Normal, 1 when the underlying distribution is Uni-
form and ∞ when the underlying distribution is Cauchy.
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I.1 Basic Definitions in Vector Spaces

For a positive integer n, x is said to be an n-dimensional vector with
real components if it is an n-tuple of real numbers. All vectors will be
column vectors but for typographical convenience, they will be written in the
form of a row with a prime (′) to indicate transpose. Thus x = (x1, . . . , xn)′,
xj ∈ �, j = 1, . . . , n. Only vectors with real components will be considered. The
set of all n-dimensional vectors is denoted by Vn. Thus Vn = � n (= � × . . . × �,
n factors) in our previous notation, and Vn is called the (real) n-dimensional
vector space. The zero vector, to be denoted by O, is the vector all of whose
components are equal to 0. Two vectors x = (x1, . . . , xn)′, y = (y1, . . . , yn)′
are said to be equal if xj = yj, j = 1, . . . , n. The sum x + y of two vectors x =
(x1, . . . , xn)′, y = (y1, . . . , yn)′ is the vector defined by x + y = (x1 + y1, . . . , xn +
yn)′. This definition is extended in an obvious manner to any finite number of
vectors. For any three vectors x, y and z in Vn, the following properties are
immediate:

x y y x x y z x y z x y z+ = + +( ) + = + +( ) = + +, .

The product αx of the vector x = (x1, . . . , xn)′ by the real number α (scalar) is
the vector defined by αx = (αx1, . . . , αxn)′. For any two vectors x, y in Vn and
any two scalars α, β, the following properties are immediate:

α α α α β α β α β β α αβ

α β α β

x y x y x x x x x x

x y x y x x

+( ) = + +( ) = + ( ) = ( ) =

+( )′ = ′ + ′ =

, , ,

, 1 .

The inner (or scalar) product x′y of any two vectors x = (x1, . . . , xn)′, y =
(y1, . . . , yn)′ is a scalar and is defined as follows:

Appendix I

Topics from Vector and
Matrix Algebra
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′ =
=

∑x y x yj j
j

n

.
1

For any three vectors x, y and z in Vn and any scalars α, β, the following
properties are immediate:

′ = ′ ′( ) = ( )′ = ′( ) ′ +( ) = ′ + ′

′ ≥ ′ = =

x y y x x y x y x y x y z x y x z

x x x x x

, ,

;

α α α α β α β ,

and if and only if0 0 0

also if

′ = ∈ =x y y x0 0for every thenVn , .

The norm (or length) ||x|| of a vector x in Vn is a non-negative number and is
defined by ||x|| = (x′x)1/2. For any vector in Vn and any scalar α, the following
property is immediate:

α αx x= .

Two vectors x, y in Vn are said to be orthogonal (or perpendicular), and we
write x ⊥ y, if x′y = 0. A vector x in Vn is said to be orthogonal (or perpendicu-
lar) to a subset U of Vn, and we write x ⊥ U, if x′y = 0 for every y ∈ U.

A (nonempty) subset V of Vn is a vector space, which is a subspace of Vn,
denoted by V ⊆ Vn, if for any vectors x, y in V and any scalars α and β, αx +
βy is also in V. Thus, for example, the straight line α1x1 + α2x2 = 0 in the plane,
being the set {x = (x1, x2)′ ∈ V2; α1x1 + α2x2 = 0} is a subspace of V2. It is shown
easily that for any given set of vectors xj, j = 1, . . . , r in Vn, V defined by

    
V = ∈ = ∈ =

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=
∑y y xV j rn j j j
j

r

; , , , . . . ,   α α � 1
1

is a subspace of Vn.
The vectors xj, j = 1, . . . , r in Vn are said to span (or generate) the subspace

V ⊆ Vn if every vector y in V may be written as follows: y = Σr
j=1αjxj for some

scalars αj, j = 1, . . . , r.
For any positive integer m < n, the m-dimensional vector space Vm may be

considered as a subspace of Vn by enlarging the m-tuples to n-tuples and
identifying the appropriate components with zero in the resulting n-tuples.
Thus, for examples, the x-axis in the plane may be identified with the set {x =
(x1, x2)′ ∈ V2; x1 ∈ �, x2 = 0} which is a subspace of V2. Similarly the y-axis in the
plane may be identified with the set {y = (y1, y2)′ ∈ V2; y1 = 0, y2 ∈ �} which is
a subspace of V2; the xy-plane in the three-dimensional space may be identi-
fied with the set {z = (x1, x2, x3)′ ∈ V3; x1, x2 ∈ �, x3= 0} which is a subspace of
V3, etc.

From now on, we shall assume that the above-mentioned identi-
fication has been made and we shall write Vm ⊆ Vn to indicate that Vm is a
subspace of Vn.
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The vectors xj , j = 1, . . . , k in the subspace V ⊆ Vn are said to be linearly
independent if there are no scalars αj, j = 1, . . . , k which are not all zero for
which Σk

j =1αjxj = 0; otherwise they are said to be linearly dependent. A basis for
the subspace V ⊆ Vn is any set of linearly independent vectors which span V.
The vectors {xj, j = 1, . . . , k} are said to form an orthonormal basis in V if
they form a basis in V and also are pairwise orthogonal and of norm one; that
is, x′ixj = 0 for i ≠ j,

′ = = =x x xi i i i k
2

1 1, , . . . , .

For example, by taking

e e e1 21 0 1 0 0= ( )′ = ( )′ = ( )′, . . . , , , . . . , , . . . , . . . , , 0,  0,   0,  0,  ,  1n

it is clear that the vectors {ej, j = 1, . . . , n} form an orthonormal basis in Vn. It
can be shown that the number of vectors in any basis of V is the same and this
is the largest number of linearly independent vectors in V. This number is
called the dimension of V.

I.2 Some Theorems on Vector Spaces

In this section, we gather together for easy reference those results about vector
spaces used in this book.

For any positive integer n, consider any subspace V ⊆ Vn. Then V has a basis
and any two bases in V have the same number of vectors, say, m (the
dimension of V ). In particular, the dimension of Vn is n and m ≤ n.

Let m, n be any positive integers with m < n and let {xj, j = 1, . . . , m} be an
orthonormal basis for Vm. Then this basis can be extended to an orthonormal
basis {xj, j = 1, . . . , n} for Vn.

Let n be any positive integer, let x be a vector in Vn and let V be a subspace
of Vn. Then x ⊥ V if and only if x is orthogonal to the vectors of a basis for V,
or to the vectors of any set of vectors in V spanning V.

Let m, n be any positive integers with m < n and let Vm be a subspace of Vn of
dimension m. Let U be the set of vectors in Vn each of which is orthogonal to
Vm. Then U is an r-dimensional subspace Ur of Vn with r = n − m and is called
the orthocomplement (or orthogonal complement) of Vm in Vn. Furthermore,
any vector x in Vn may be written (decomposed) uniquely as follows: x = v + u
with v ∈ Vm, u ∈ U r. The vectors v, u are called the projections of x into Vm

and Ur, respectively, and ||x||2 = ||v||2 + ||u||2. Finally, as z varies in Vm, ||x − z|| has
a minimum value obtained for z = v, and as w varies in Ur, ||x − w|| has a
minimum value obtained for w = u.

THEOREM 4.I

THEOREM 3.I

THEOREM 2.I

THEOREM 1.I

I.2 Some Theorems on Vector Spaces 501
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I.3 Basic Definitions About Matrices

Let m, n be any positive integers. Then a (real) m × n matrix Am×n is a
rectangular array of mn real numbers arranged in m rows and n columns; m
and n are called the dimensions of the matrix. Thus

Am n

n

n

m m mn

a a a

a a a

a a a

× =

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

11 12 1

21 22 2

1 2

The numbers aij, i = 1, . . . , m; j = 1, . . . , n are called the elements of the matrix.
For brevity, we shall write A = (aij), i = 1, . . . , m; j = 1, . . . , n for an m × n
matrix, and only real matrices will be considered in the sequel. It follows that
a vector in Vn is simply an n × 1 matrix. A matrix is said to be a square matrix
if m = n and then n is called the order of the matrix. The elements aii, i = 1, . . . ,
n of a square matrix of order n are called the elements of the main diagonal of
A, or just the diagonal elements of A. If aij = 0 for all i ≠ j (that is, if all of the
elements off the main diagonal are 0), then A is called diagonal. A zero matrix
is one in which all the elements are equal to zero. A zero matrix will be
denoted by 0 regardless of its dimensions. A unit (or identity) matrix is a
square matrix in which all diagonal elements are equal to 1 and all other
elements are equal to 0. The proper notation for a unit matrix of order n is In.
However, we shall often write simply I and the order is to be understood from
the context. Thus I = (δij), where δij = 1 if i = j and equals 0 if i ≠ j. Two m × n
matrices are said to be equal if they have identical elements. The sum A + B of
two m × n matrices A = (aij), B = (bij) is the m = n matrix defined by A + B =
(aij + bij). This definition is extended in an obvious manner to any finite number
of m × n matrices. For any m × n matrices A, B and C, the following properties
are immediate:

A B B A A B C A B C A B C+ = + +( ) + = + +( ) = + +, .

The product αA of the matrix A = (aij) by the scalar α is the matrix defined by
αA = (αaij). The transpose A′ of the m × n matrix A = (aij) is the n × m matrix
defined by A′ = (aij). Thus the rows and columns of A′ are equal to the columns
and rows of A, respectively. If A is a square matrix and A′ = A, then A is called
symmetric. Clearly, for a symmetric matrix the elements symmetric with
respect to the main diagonal of A are equal; that is, aij = aji for all i and j. For
any m × n matrices A, B and any scalars α, β, the following properties are
immediate:

′( )′ = ( )′ = ′ +( )′ = ′ + ′A A A A A B A B, , .α α α β α β

The product AB of the m × n matrix A = (aij) by the n = r matrix B = (bij) is the
m × r matrix defined as follows: AB = (cij), where cij = Σn

k=1aikbkj. The product
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BA is not defined unless r = m and even then, it is not true, in general, that
AB = BA. For example, take

A B=
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

0 0

0 1

1 1

0 0
, .

Then

AB BA=
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

0 0

0 0

0 1

0 0
, ,

so that AB ≠ BA. The products AB, BA are always defined for all square
matrices of the same order.

Let A be an m × n matrix, let B, C be two n × r matrices and let D be an
r × k matrix. Then for any scalars α, β and γ, the following properties are
immediate:

IA AI A 0A A0 0 A B C AB AC

B C D BD CD A B A B AB AB

AB B A AB D A BD

= = = = +( ) = +

+( ) = + ( ) = ( ) = ( ) =

( )′ = ′ ′ ( ) = ( )

, ,

,

,

,

,

.

β γ β γ

β γ β γ α α α α

By means of the last property, we may omit the parentheses and set ABD for
(AB)D = A(BD).

Let A be an m × n matrix and let ri, i = 1, . . . , m, cj, j = 1, . . . , n stand for
the row and column vectors of A, respectively. Then it can be shown that the
largest number of independent r-vectors is the same as the largest number of
independent c-vectors and this common number is called the rank of the matrix
A. Thus the rank of A, to be denoted by rank A, is the common dimension of
the two vector spaces spanned by the r-vectors and the c-vectors. Always rank
A ≤ min(m, n) and if equality occurs, we say that A is non-singular or of full
rank; otherwise A is called singular.

Let now |A| stand for the determinant of the square matrix A, defined only
for square matrices, say m × m, by the expression

A = ± ⋅ ⋅ ⋅∑ a a ai j mp1 2 ,

where the aij are the elements of A and the summation extends over all
permutations (i, j, . . . , p) of (1, 2, . . . , m). The plus sign is chosen if the
permutation is even and the minus sign if it is odd. For further elaboration, see
any of the references cited at the end of this appendix. It can be shown that A
is nonsingular if and only is |A| ≠ 0. It can also be shown that if |A| ≠ 0, there
exists a unique matrix, to be denoted by A−1, such that AA−1 = A−1A = I. The
matrix A−1 is called the inverse of A. Clearly, (A−1)−1 = A.

Let A be a square matrix of order n such that A′A = AA′ = I. Then A is
said to be orthogonal. Let ri and ci, i = 1, . . . , n stand for the row and column
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vectors of the matrix A of order n. Then the orthogonality of A is equivalent
to the following properties:

′ = = = ′ = ′ = ′ = ≠r r r c c c r r c ci i i i i i i j i j i j
2 2

1 0and for .

That is, {rj, j = 1, . . . , n} and {cj, j = 1, . . . , n} are orthonormal bases of Vn.

For a square matrix A of order n, consider the determinant |A − λI|, where
λ is a scalar. Then it is immediate that |A − λI| is a polynomial in λ of degree
n and is called the characteristic polynomial of A. The n roots of the equation
|A − λI| = 0 are called the characteristic (or latent) roots, or eigenvalues of A.
The matrix A is said to be positive definite, negative definite, or positive
semidefinite if its characteristic roots λj, j = 1, . . . , n satisfy the following
inequalities λj > 0, λj < 0, λj ≥ 0, j = 1, . . . , n, respectively.

REMARK 1.I Although all matrices considered here are matrices with real
elements, it should be noted that their characteristic roots will, in general, be
complex numbers. However, they are always real for symmetric matrices.

Finally, a square matrix A is said to be idempotent if A2 = A.

I.4 Some Theorems About Matrices and Quadratic Forms

 Those theorems about matrices used in this book are gathered together here
for easy reference.

Let A, B, C be any m × n, n × r, r × s matrices, respectively. Then (ABC)′ =
C′B′A′ and, in particular (by taking C = Ir), (AB)′ = B′A′.

i) Let A, B be any two matrices of the same order. Then |AB| = |BA| = |A| |B|.

ii) For any diagonal matrix A of order n, |A| = Πn
j=1aj, where aj, j = 1, . . . , n are

the diagonal elements of A.

iii) For any (square) matrix A, |A| = |A′|.
iv) For any orthogonal matrix A, |A| is either 1 or −1.

v) Let A, B be matrices of the same order and suppose that B is orthogonal,
Then |B′AB| = |BAB′| = |A|.

vi) For any matrix A for which |A| ≠ 0, |A−1| = |A|−1.

i) A square matrix A is non-singular if and only if |A| ≠ 0.

ii) Every orthogonal matrix is non-singular. (See (iv) of Theorem 6.I.)

iii) Let A be a non-singular square matrix. Then A′, A−1 are also non-singular.
(See (iii), (vi) of Theorem 6.I.)

iv) If A is symmetric non-singular, then so is A−1.

v) Let A, B be non-singular m × m matrices.

Then the m × m matrix AB is non-singular and (AB)−1 = B−1A−1.

THEOREM 7.I

THEOREM 6.I

THEOREM 5.I
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i) Let r1, r2 be two vectors in Vn such that r′1r2 = 0 and ||r1|| = ||r2|| = 1. Then there
exists an n × n orthogonal matrix, the first two rows of which are equal to
r′1, r′2.

(For a concrete example, see the application after Theorem 5 in
Chapter 9.)

ii) Let x be a vector in Vn, let A be an n × n orthogonal matrix and set y = Ax.
Then x′x = y′y, so that ||x|| = ||y||.

iii) For every symmetric matrix A there is an orthogonal matrix B (of the
same order as that of A) such that the matrix B′AB is diagonal (and its
diagonal elements are the characteristic roots of A).

i) For any square matrix A,

rank rank rank rank .AA A A A A′( ) = ′( ) = = ′

ii) Let A, B and C be m × n, n × r and r × k matrices, respectively.
Then

rank min rank ,  rank AB A B( ) ≤ ( )
and

rank min rank ,  rank ,  rank ABC A B C( ) ≤ ( ).
iii) Let A, B and C be m × n, m × m and n × n matrices, respectively, and

suppose that B, C are non-singular. Then

rank rank  rank rank .BA AC BAC A( ) = ( ) = ( ) =

iv) Let A, B and C be m × n, m × m and n × n matrices, respectively, and
suppose that B, C are non-singular. Then rank (BAC) = rank A. In
particular, rank (B′AB) = rank (BAB′) = rank A if m = n and B is
orthogonal.

v) For any matrix A, rank A = number of nonzero characteristic roots of A.

i) If A is positive definite, A−1 exists and is also positive definite.
ii) For any nonsingular square matrix A, AA′ is positive definite (and

symmetric).
iii) Let A = (aij), i, j = 1, . . . , n and define Aj by

A j
j

j jj

a a

a a
j n=

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝⎜
⎞

⎠⎟
=11 1

1

1, , . . . , .

Then A is positive definite if and only if |Aj| > 0, j = 1, . . . , n. In particular,
a diagonal matrix is positive definite if and only if its diagonal elements are
all positive.

iv) A matrix A of order n is positive definite (semidefinite, negative definite,
respectively,) if and only if x′Ax > 0 (≥0, <0, respectively) for every x ∈Vn

with x ≠ 0.

THEOREM 8.I

I.4 Some Theorems About Matrices and Quadratic Forms 505

THEOREM 10.I

THEOREM 9.I
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v) If A is a positive semidefinite matrix of order n and B is a non-singular
matrix of order n, then B′AB is positive semidefinite.

vi) The characteristic roots of a positive definite (semidefinite) matrix are
positive (nonnegative).

The following theorem refers to quadratic forms. For the definition of a
quadratic form, the reader is referred to Definition 1, Chapter 19.

i) Let A be a symmetric matrix of order n. If x′Ax = x′x identically in x ∈ Vn,
then A = I.

ii) Consider the quadratic form Q = x′Ax, where A is of order n, and suppose
that rank A = r. Then there exist r linear forms in the x′s

b x i rij j
j

n

, , . . . ,=
=

∑ 1
1

such that

Q b xi ij j
j

n

i

r

=
⎛

⎝⎜
⎞

⎠⎟==
∑∑δ

1

2

1

,

where δi is either 1 or −1, i = 1, . . . , r.

iii) Let Q be as in (ii). There exists an orthogonal matrix B such that if

y B x= =−

=
∑1 2

1

, then Q yj j
j

m

λ ,

where λj, j = 1, . . . , m are the nonzero characteristic roots of A.

iv) Let Q be as in (ii) and suppose that A is idempotent and rank A = r. There
exists an orthogonal matrix B such that if y = B−1x, then

Q yj
j

r

=
=

∑ 2

1

.

Finally, we formulate the following results referring to idempotent matrices:

i) The characteristic roots of an idempotent matrix are either 1 or 0.

ii) A diagonal matrix whose (diagonal) elements are either 1 or 0 is
idempotent.

iii) If Aj, j = 1, . . . , m are symmetric idempotent matrices of order n, such that
AiAj = 0 for 1 ≤ i < j ≤ m, then Σm

j=1Aj is idempotent and

rank rank A Aj j
j

m

j

m

=
⎛

⎝⎜
⎞

⎠⎟==
∑∑

11

.

In particular,

rank rank A I A1 1+ −( ) = n

THEOREM 11.I

THEOREM 12.I
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and

rank rank rank 2 2A A I A A1 1+ + − −( ) = n.

iv) If Aj, j = 1, . . . , m are symmetric idempotent matrices of the same order
and Σm

j =1Aj is also idempotent, the AiAj = 0 for 1 ≤ i < j ≤ m.

The proof of the theorems formulated in this appendix may be found in
most books of linear algebra. For example, see Birkhoff and MacLane, A
Survey of Modern Algebra, 3d ed., MacMillan, 1965; S. Lang, Linear Algebra,
Addison-Wesley, 1968; D. C. Murdoch, Linear Algebra for Undergraduates,
Wiley, 1957; S. Perlis, Theory of Matrices, Addison-Wesley, 1952. For a brief
exposition of most results from linear algebra employed in statistics, see also
C. R. Rao, Linear Statistical Inference and Its Applications, Chapter 1, Wiley,
1965; H. Scheffé, The Analysis of Variance, Appendices I and II, Wiley, 1959;
and F. A. Graybill, An Introduction to Linear Statistical Models, Vol. I, Chap-
ter 1, McGraw-Hill, 1961.

I.4 Some Theorems About Matrices and Quadratic Forms 507
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II.1 Noncentral t-Distribution

It was seen in Chapter 9, Application 2, that if the independent r.v.’s X and Y
were distributed as N(0, 1) and χ2

r, respectively, then the distribution of the r.v.
T X Y r= ( )  was the (Student’s) t-distribution with r d.f. Now let X and
Y be independent r.v.’s distributed as N(δ, 1) and χ2

r, respectively, and set
′ = ( )T X Y r . The r.v. T ′ is said to have the noncentral t-distribution with r

d.f. and noncentrality parameter δ. This distribution, as well as an r.v. having
this distribution, if often denoted by t′r:δ. Using the definition of a t′r:δ r.v., it can
be found by well known methods that its p.d.f. is given by

  

f t
r r

x

x t
x
r

dx t

t r

r

r′ +( )
−( )∞( ) =

( )

× − + −
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∈

∫;
;

, .

δ
δ

π

δ exp

1

2 2

1
2

1 2

1 2

0

2

Γ

�

II.2 Noncentral χχχχχ 2-Distribution
It was seen in Chapter 7 (see corollary to Theorem 5) that if X1, . . . , Xr were
independent normally distributed r.v.’s with variance 1 and mean 0, then the
r.v. X = Σr

j =1X
2
j was distributed as χ2

r. Let now the r.v.’s X1, . . . , Xr be indepen-
dent normally distributed with variance 1 but means μ1, . . . , μr, respectively.
Then the distribution of the r.v. X* = Σr

j =1X
2
j is said to be the noncentral

Appendix II

Noncentral t, χχχχχ2 and F Distributions
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chi-square distribution with r d.f. and noncentrality parameter δ, where δ2 =
Σr

j=1 μ2
j. This distribution, and also an r.v. having this distribution, is often

denoted by χ′2
r:δ. Using the definition of a χ′2

r;δ r.v., one can find its p.d.f. but it
does not have any simple closed form. It can be seen that this p.d.f. is a mixture
of χ2-distributions with Poisson weights. More precisely, one has

f x P f x x
r

j
j

r j′
=

∞

+( ) = ( ) ( ) ≥∑χ δ
δ δ

;
; , ,2

0
2 0

where

P e
j

f jj

j

r j r jδ
δ

χδ( ) =
( )

=−
+ +

2 2

2

2 2
2

2
0

!
, , . . . .and is the p.d.f. of  1,

II.3 Noncentral F-Distribution

In Chapter 9, Application 2, the F-distribution with r1 and r2 d.f. was defined as
the distribution of the r.v.

F
X r
Y r

= 1

2

,

where X and Y were independent r.v.’s distributed as χ2
r

1
 and χ2

r
2
, respectively.

Suppose now that the r.v.’s X and Y are independent and distributed as χ′2
r

1
:δ

and χ2
r

2
, respectively, and set

′ =F
X r
Y r

1

2

.

Then the distribution of F ′ is said to be the noncentral F-distribution with r1 and
r2 d.f. and noncentrality parameter δ. This distribution, and also an r.v. having
this distribution, is often denoted by F′r

1
,r

2
;δ, and its p.d.f., which does not have

any simple closed form, is given by the following expression:

f f e c
j

f

f
fF j

j

j

r j

r r jr r′
−

=

∞ − +
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REMARKS
(i) By setting δ = 0 in the noncentral t, χ2 and F-distributions, we obtain the

t, χ2 and F-distributions, respectively. In view of this, the latter distribu-
tions may also be called central t, χ2 and F-distributions.

(ii) Tables for the noncentral t, χ2 and F-distributions are given in a reference
cited elsewhere, namely, Handbook of Statistical Tables by D. B. Owen.
Addison-Wesley, 1962.
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Appendix III

Tables

Table 1 The Cumulative Binomial Distribution

The tabulated quantity is

j

k
j n jn

j
p p

=

−∑⎛
⎝⎜

⎞
⎠⎟

−( )
0

1 .

p
n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

2 0 0.8789 0.7656 0.6602 0.5625 0.4727 0.3906 0.3164 0.2500
1 0.9961 0.9844 0.9648 0.9375 0.9023 0.8594 0.8086 0.7500
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0 0.8240 0.6699 0.5364 0.4219 0.3250 0.2441 0.1780 0.1250
1 0.9888 0.9570 0.9077 0.8437 0.7681 0.6836 0.5933 0.5000
2 0.9998 0.9980 0.9934 0.9844 0.9695 0.9473 0.9163 0.8750
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 0 0.7725 0.5862 0.4358 0.3164 0.2234 0.1526 0.1001 0.0625
1 0.9785 0.9211 0.8381 0.7383 0.6296 0.5188 0.4116 0.3125
2 0.9991 0.9929 0.9773 0.9492 0.9065 0.8484 0.7749 0.6875
3 1.0000 0.9998 0.9988 0.9961 0.9905 0.9802 0.9634 0.9375
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0 0.7242 0.5129 0.3541 0.2373 0.1536 0.0954 0.0563 0.0312
1 0.9656 0.8793 0.7627 0.6328 0.5027 0.3815 0.2753 0.1875
2 0.9978 0.9839 0.9512 0.8965 0.8200 0.7248 0.6160 0.5000
3 0.9999 0.9989 0.9947 0.9844 0.9642 0.9308 0.8809 0.8125
4 1.0000 1.0000 0.9998 0.9990 0.9970 0.9926 0.9840 0.9687
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 1 (continued)

p
n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

6 0 0.6789 0.4488 0.2877 0.1780 0.1056 0.0596 0.0317 0.0156
1 0.9505 0.8335 0.6861 0.5339 0.3936 0.2742 0.1795 0.1094
2 0.9958 0.9709 0.9159 0.8306 0.7208 0.5960 0.4669 0.3437
3 0.9998 0.9970 0.9866 0.9624 0.9192 0.8535 0.7650 0.6562
4 1.0000 0.9998 0.9988 0.9954 0.9868 0.9694 0.9389 0.8906
5 1.0000 1.0000 1.0000 0.9998 0.9991 0.9972 0.9930 0.9844
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

7 0 0.6365 0.3927 0.2338 0.1335 0.0726 0.0373 0.0178 0.0078
1 0.9335 0.7854 0.6114 0.4449 0.3036 0.1937 0.1148 0.0625
2 0.9929 0.9537 0.8728 0.7564 0.6186 0.4753 0.3412 0.2266
3 0.9995 0.9938 0.9733 0.9294 0.8572 0.7570 0.6346 0.5000
4 1.0000 0.9995 0.9965 0.9871 0.9656 0.9260 0.8628 0.7734
5 1.0000 1.0000 0.9997 0.9987 0.9952 0.9868 0.9693 0.9375
6 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990 0.9969 0.9922
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

8 0 0.5967 0.3436 0.1899 0.1001 0.0499 0.0233 0.0100 0.0039
1 0.9150 0.7363 0.5406 0.3671 0.2314 0.1350 0.0724 0.0352
2 0.9892 0.9327 0.8238 0.6785 0.5201 0.3697 0.2422 0.1445
3 0.9991 0.9888 0.9545 0.8862 0.7826 0.6514 0.5062 0.3633
4 1.0000 0.9988 0.9922 0.9727 0.9318 0.8626 0.7630 0.6367
5 1.0000 0.9999 0.9991 0.9958 0.9860 0.9640 0.9227 0.8555
6 1.0000 1.0000 0.9999 0.9996 0.9983 0.9944 0.9849 0.9648
7 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9961
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

9 0 0.5594 0.3007 0.1543 0.0751 0.0343 0.0146 0.0056 0.0020
1 0.8951 0.6872 0.4748 0.3003 0.1747 0.0931 0.0451 0.0195
2 0.9846 0.9081 0.7707 0.6007 0.4299 0.2817 0.1679 0.0898
3 0.9985 0.9817 0.9300 0.8343 0.7006 0.5458 0.3907 0.2539
4 0.9999 0.9975 0.9851 0.9511 0.8851 0.7834 0.6506 0.5000
5 1.0000 0.9998 0.9978 0.9900 0.9690 0.9260 0.8528 0.7461
6 1.0000 1.0000 0.9998 0.9987 0.9945 0.9830 0.9577 0.9102
7 1.0000 1.0000 1.0000 0.9999 0.9994 0.9977 0.9926 0.9805
8 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9980
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0 0.5245 0.2631 0.1254 0.0563 0.0236 0.0091 0.0032 0.0010
1 0.8741 0.6389 0.4147 0.2440 0.1308 0.0637 0.0278 0.0107
2 0.9790 0.8805 0.7152 0.5256 0.3501 0.2110 0.1142 0.0547
3 0.9976 0.9725 0.9001 0.7759 0.6160 0.4467 0.2932 0.1719
4 0.9998 0.9955 0.9748 0.9219 0.8275 0.6943 0.5369 0.3770
5 1.0000 0.9995 0.9955 0.9803 0.9428 0.8725 0.7644 0.6230
6 1.0000 1.0000 0.9994 0.9965 0.9865 0.9616 0.9118 0.8281
7 1.0000 1.0000 1.0000 0.9996 0.9979 0.9922 0.9773 0.9453
8 1.0000 1.0000 1.0000 1.0000 0.9998 0.9990 0.9964 0.9893
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Table 1 (continued)

p
n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

10 9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11 0 0.4917 0.2302 0.1019 0.0422 0.0162 0.0057 0.0018 0.0005
1 0.8522 0.5919 0.3605 0.1971 0.0973 0.0432 0.0170 0.0059
2 0.9724 0.8503 0.6589 0.4552 0.2816 0.1558 0.0764 0.0327
3 0.9965 0.9610 0.8654 0.7133 0.5329 0.3583 0.2149 0.1133
4 0.9997 0.9927 0.9608 0.8854 0.7614 0.6014 0.4303 0.2744
5 1.0000 0.9990 0.9916 0.9657 0.9068 0.8057 0.6649 0.5000
6 1.0000 0.9999 0.9987 0.9924 0.9729 0.9282 0.8473 0.7256
7 1.0000 1.0000 0.9999 0.9988 0.9943 0.9807 0.9487 0.8867
8 1.0000 1.0000 1.0000 0.9999 0.9992 0.9965 0.9881 0.9673
9 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983 0.9941

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

12 0 0.4610 0.2014 0.0828 0.0317 0.0111 0.0036 0.0010 0.0002
1 0.8297 0.5467 0.3120 0.1584 0.0720 0.0291 0.0104 0.0032
2 0.9649 0.8180 0.6029 0.3907 0.2240 0.1135 0.0504 0.0193
3 0.9950 0.9472 0.8267 0.6488 0.4544 0.2824 0.1543 0.0730
4 0.9995 0.9887 0.9429 0.8424 0.6900 0.5103 0.3361 0.1938
5 1.0000 0.9982 0.9858 0.9456 0.8613 0.7291 0.5622 0.3872
6 1.0000 0.9998 0.9973 0.9857 0.9522 0.8822 0.7675 0.6128
7 1.0000 1.0000 0.9996 0.9972 0.9876 0.9610 0.9043 0.8062
8 1.0000 1.0000 1.0000 0.9996 0.9977 0.9905 0.9708 0.9270
9 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9938 0.9807

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9968
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

13 0 0.4321 0.1762 0.0673 0.0238 0.0077 0.0022 0.0006 0.0001
1 0.8067 0.5035 0.2690 0.1267 0.0530 0.0195 0.0063 0.0017
2 0.9565 0.7841 0.5484 0.3326 0.1765 0.0819 0.0329 0.0112
3 0.9931 0.9310 0.7847 0.5843 0.3824 0.2191 0.1089 0.0461
4 0.9992 0.9835 0.9211 0.7940 0.6164 0.4248 0.2565 0.1334
5 0.9999 0.9970 0.9778 0.9198 0.8078 0.6470 0.4633 0.2905
6 1.0000 0.9996 0.9952 0.9757 0.9238 0.8248 0.6777 0.5000
7 1.0000 1.0000 0.9992 0.9944 0.9765 0.9315 0.8445 0.7095
8 1.0000 1.0000 0.9999 0.9990 0.9945 0.9795 0.9417 0.8666
9 1.0000 1.0000 1.0000 0.9999 0.9991 0.9955 0.9838 0.9539

10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9968 0.9888
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

14 0 0.4051 0.1542 0.0546 0.0178 0.0053 0.0014 0.0003 0.0001
1 0.7833 0.4626 0.2312 0.1010 0.0388 0.0130 0.0038 0.0009
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Table 1 (continued)

p
n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

14 2 0.9471 0.7490 0.4960 0.2811 0.1379 0.0585 0.0213 0.0065
3 0.9908 0.9127 0.7404 0.5213 0.3181 0.1676 0.0756 0.0287
4 0.9988 0.9970 0.8955 0.7415 0.5432 0.3477 0.1919 0.0898
5 0.9999 0.9953 0.9671 0.8883 0.7480 0.5637 0.3728 0.2120
6 1.0000 0.9993 0.9919 0.9167 0.8876 0.7581 0.5839 0.3953
7 1.0000 0.9999 0.9985 0.9897 0.9601 0.8915 0.7715 0.6047
8 1.0000 1.0000 0.9998 0.9978 0.9889 0.9615 0.8992 0.7880
9 1.0000 1.0000 1.0000 0.9997 0.9976 0.9895 0.9654 0.9102

10 1.0000 1.0000 1.0000 1.0000 0.9996 0.9979 0.9911 0.9713
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9935
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

15 0 0.3798 0.1349 0.0444 0.0134 0.0036 0.0009 0.0002 0.0000
1 0.7596 0.4241 0.1981 0.0802 0.0283 0.0087 0.0023 0.0005
2 0.9369 0.7132 0.4463 0.2361 0.1069 0.0415 0.0136 0.0037
3 0.9881 0.8922 0.6946 0.4613 0.2618 0.1267 0.0518 0.0176
4 0.9983 0.9689 0.8665 0.6865 0.4729 0.2801 0.1410 0.0592
5 0.9998 0.9930 0.9537 0.8516 0.6840 0.4827 0.2937 0.1509
6 1.0000 0.9988 0.9873 0.9434 0.8435 0.6852 0.4916 0.3036
7 1.0000 0.9998 0.9972 0.9827 0.9374 0.8415 0.6894 0.5000
8 1.0000 1.0000 0.9995 0.9958 0.9799 0.9352 0.8433 0.6964
9 1.0000 1.0000 0.9999 0.9992 0.9949 0.9790 0.9364 0.8491

10 1.0000 1.0000 1.0000 0.9999 0.9990 0.9947 0.9799 0.9408
11 1.0000 1.0000 1.0000 1.0000 0.9999 0.9990 0.9952 0.9824
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992 0.9963
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

16 0 0.3561 0.1181 0.0361 0.0100 0.0025 0.0005 0.0001 0.0000
1 0.7359 0.3879 0.1693 0.0635 0.0206 0.0057 0.0014 0.0003
2 0.9258 0.6771 0.3998 0.1971 0.0824 0.0292 0.0086 0.0021
3 0.9849 0.8698 0.6480 0.4050 0.2134 0.0947 0.0351 0.0106
4 0.9977 0.9593 0.8342 0.6302 0.4069 0.2226 0.1020 0.0384
5 0.9997 0.9900 0.9373 0.8103 0.6180 0.4067 0.2269 0.1051
6 1.0000 0.9981 0.9810 0.9204 0.7940 0.6093 0.4050 0.2272
7 1.0000 0.9997 0.9954 0.9729 0.9082 0.7829 0.6029 0.4018
8 1.0000 1.0000 0.9991 0.9925 0.9666 0.9001 0.7760 0.5982
9 1.0000 1.0000 0.9999 0.9984 0.9902 0.9626 0.8957 0.7728

10 1.0000 1.0000 1.0000 0.9997 0.9977 0.9888 0.9609 0.8949
11 1.0000 1.0000 1.0000 1.0000 0.9996 0.9974 0.9885 0.9616
12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9975 0.9894
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9979
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Table 1 (continued)

p
n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

16 14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17 0 0.3338 0.1033 0.0293 0.0075 0.0017 0.0003 0.0001 0.0000
1 0.7121 0.3542 0.1443 0.0501 0.0149 0.0038 0.0008 0.0001
2 0.9139 0.6409 0.3566 0.1637 0.0631 0.0204 0.0055 0.0012
3 0.9812 0.8457 0.6015 0.3530 0.1724 0.0701 0.0235 0.0064
4 0.9969 0.9482 0.7993 0.5739 0.3464 0.1747 0.0727 0.0245
5 0.9996 0.9862 0.9180 0.7653 0.5520 0.3377 0.1723 0.0717
6 1.0000 0.9971 0.9728 0.8929 0.7390 0.5333 0.3271 0.1662
7 1.0000 0.9995 0.9927 0.9598 0.8725 0.7178 0.5163 0.3145
8 1.0000 0.9999 0.9984 0.9876 0.9484 0.8561 0.7002 0.5000
9 1.0000 1.0000 0.9997 0.9969 0.9828 0.9391 0.8433 0.6855

10 1.0000 1.0000 1.0000 0.9994 0.9954 0.9790 0.9323 0.8338
11 1.0000 1.0000 1.0000 0.9999 0.9990 0.9942 0.9764 0.9283
12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9935 0.9755
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9936
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9988
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

18 0 0.3130 0.0904 0.0238 0.0056 0.0012 0.0002 0.0000 0.0000
1 0.6885 0.3228 0.1227 0.0395 0.0108 0.0025 0.0005 0.0001
2 0.9013 0.6051 0.3168 0.1353 0.0480 0.0142 0.0034 0.0007
3 0.9770 0.8201 0.5556 0.3057 0.1383 0.0515 0.0156 0.0038
4 0.9959 0.9354 0.7622 0.5187 0.2920 0.1355 0.0512 0.0154
5 0.9994 0.9814 0.8958 0.7175 0.4878 0.2765 0.1287 0.0481
6 0.9999 0.9957 0.9625 0.8610 0.6806 0.4600 0.2593 0.1189
7 1.0000 0.9992 0.9889 0.9431 0.8308 0.6486 0.4335 0.2403
8 1.0000 0.9999 0.9973 0.9807 0.9247 0.8042 0.6198 0.4073
9 1.0000 1.0000 0.9995 0.9946 0.9721 0.9080 0.7807 0.5927

10 1.0000 1.0000 0.9999 0.9988 0.9915 0.9640 0.8934 0.7597
11 1.0000 1.0000 1.0000 0.9998 0.9979 0.9885 0.9571 0.8811
12 1.0000 1.0000 1.0000 1.0000 0.9996 0.9970 0.9860 0.9519
13 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9964 0.9846
14 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9962
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

19 0 0.2934 0.0791 0.0193 0.0042 0.0008 0.0001 0.0000 0.0000
1 0.6650 0.2938 0.1042 0.0310 0.0078 0.0016 0.0003 0.0000
2 0.8880 0.5698 0.2804 0.1113 0.0364 0.0098 0.0021 0.0004
3 0.9722 0.7933 0.5108 0.2631 0.1101 0.0375 0.0103 0.0022
4 0.9947 0.9209 0.7235 0.4654 0.2440 0.1040 0.0356 0.0096
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Table 1 (continued)

p
n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

19 5 0.9992 0.9757 0.8707 0.6678 0.4266 0.2236 0.0948 0.0318
6 0.9999 0.9939 0.9500 0.8251 0.6203 0.3912 0.2022 0.0835
7 1.0000 0.9988 0.9840 0.9225 0.7838 0.5779 0.3573 0.1796
8 1.0000 0.9998 0.9957 0.9713 0.8953 0.7459 0.5383 0.3238
9 1.0000 1.0000 0.9991 0.9911 0.9573 0.8691 0.7103 0.5000

10 1.0000 1.0000 0.9998 0.9977 0.9854 0.9430 0.8441 0.0672
11 1.0000 1.0000 1.0000 0.9995 0.9959 0.9793 0.9292 0.8204
12 1.0000 1.0000 1.0000 0.9999 0.9990 0.9938 0.9734 0.9165
13 1.0000 1.0000 1.0000 1.0000 0.9998 0.9985 0.9919 0.9682
14 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9980 0.9904
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9978
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 0 0.2751 0.0692 0.0157 0.0032 0.0006 0.0001 0.0000 0.0000
1 0.6148 0.2669 0.0883 0.0243 0.0056 0.0011 0.0002 0.0000
2 0.8741 0.5353 0.2473 0.0913 0.0275 0.0067 0.0013 0.0002
3 0.9670 0.7653 0.4676 0.2252 0.0870 0.0271 0.0067 0.0013
4 0.9933 0.9050 0.6836 0.4148 0.2021 0.0790 0.0245 0.0059
5 0.9989 0.9688 0.8431 0.6172 0.3695 0.1788 0.0689 0.0207
6 0.9999 0.9916 0.9351 0.7858 0.5598 0.3284 0.1552 0.0577
7 1.0000 0.9981 0.9776 0.8982 0.7327 0.5079 0.2894 0.1316
8 1.0000 0.9997 0.9935 0.9591 0.8605 0.6829 0.4591 0.2517
9 1.0000 0.9999 0.9984 0.9861 0.9379 0.8229 0.6350 0.4119

10 1.0000 1.0000 0.9997 0.9961 0.9766 0.9153 0.7856 0.5881
11 1.0000 1.0000 0.9999 0.9991 0.9926 0.9657 0.8920 0.7483
12 1.0000 1.0000 1.0000 0.9998 0.9981 0.9884 0.9541 0.8684
13 1.0000 1.0000 1.0000 1.0000 0.9996 0.9968 0.9838 0.9423
14 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9953 0.9793
15 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9989 0.9941
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

21 0 0.2579 0.0606 0.0128 0.0024 0.0004 0.0001 0.0000 0.0000
1 0.6189 0.2422 0.0747 0.0190 0.0040 0.0007 0.0001 0.0000
2 0.8596 0.5018 0.2175 0.0745 0.0206 0.0046 0.0008 0.0001
3 0.9612 0.7366 0.4263 0.1917 0.0684 0.0195 0.0044 0.0007
4 0.9917 0.8875 0.6431 0.3674 0.1662 0.0596 0.0167 0.0036
5 0.9986 0.9609 0.8132 0.5666 0.3172 0.1414 0.0495 0.0133
6 0.9998 0.9888 0.9179 0.7436 0.5003 0.2723 0.1175 0.0392
7 1.0000 0.9973 0.9696 0.8701 0.6787 0.4405 0.2307 0.0946
8 1.0000 0.9995 0.9906 0.9439 0.8206 0.6172 0.3849 0.1917
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Table 1 (continued)

p
n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

21 9 1.0000 0.9999 0.9975 0.9794 0.9137 0.7704 0.5581 0.3318
10 1.0000 1.0000 0.9995 0.9936 0.9645 0.8806 0.7197 0.5000
11 1.0000 1.0000 0.9999 0.9983 0.9876 0.9468 0.8454 0.6682
12 1.0000 1.0000 1.0000 0.9996 0.9964 0.9799 0.9269 0.8083
13 1.0000 1.0000 1.0000 0.9999 0.9991 0.9936 0.9708 0.9054
14 1.0000 1.0000 1.0000 1.0000 0.9998 0.9983 0.9903 0.9605
15 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9974 0.9867
16 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9964
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

22 0 0.2418 0.0530 0.0104 0.0018 0.0003 0.0000 0.0000 0.0000
1 0.5963 0.2195 0.0631 0.0149 0.0029 0.0005 0.0001 0.0000
2 0.8445 0.4693 0.1907 0.0606 0.0154 0.0031 0.0005 0.0001
3 0.9548 0.7072 0.3871 0.1624 0.0535 0.0139 0.0028 0.0004
4 0.9898 0.8687 0.6024 0.3235 0.1356 0.0445 0.0133 0.0022
5 0.9981 0.9517 0.7813 0.5168 0.2700 0.1107 0.0352 0.0085
6 0.9997 0.9853 0.8983 0.6994 0.4431 0.2232 0.0877 0.0267
7 1.0000 0.9963 0.9599 0.8385 0.6230 0.3774 0.1812 0.0669
8 1.0000 0.9992 0.9866 0.9254 0.7762 0.5510 0.3174 0.1431
9 1.0000 0.9999 0.9962 0.9705 0.8846 0.7130 0.4823 0.2617

10 1.0000 1.0000 0.9991 0.9900 0.9486 0.8393 0.6490 0.4159
11 1.0000 1.0000 0.9998 0.9971 0.9804 0.9220 0.7904 0.5841
12 1.0000 1.0000 1.0000 0.9993 0.9936 0.9675 0.8913 0.7383
13 1.0000 1.0000 1.0000 0.9999 0.9982 0.9885 0.9516 0.8569
14 1.0000 1.0000 1.0000 1.0000 0.9996 0.9966 0.9818 0.9331
15 1.0000 1.0000 1.0000 1.0000 0.9999 0.9991 0.9943 0.9739
16 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9985 0.9915
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9978
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

23 0 0.2266 0.0464 0.0084 0.0013 0.0002 0.0000 0.0000 0.0000
1 0.5742 0.1987 0.0532 0.0116 0.0021 0.0003 0.0000 0.0000
2 0.8290 0.4381 0.1668 0.0492 0.0115 0.0021 0.0003 0.0000
3 0.9479 0.6775 0.3503 0.1370 0.0416 0.0099 0.0018 0.0002
4 0.9876 0.8485 0.5621 0.2832 0.1100 0.0330 0.0076 0.0013
5 0.9976 0.9413 0.7478 0.4685 0.2280 0.0859 0.0247 0.0053
6 0.9996 0.9811 0.8763 0.6537 0.3890 0.1810 0.0647 0.0173
7 1.0000 0.9949 0.9484 0.8037 0.5668 0.3196 0.1403 0.0466
8 1.0000 0.9988 0.9816 0.9037 0.7283 0.4859 0.2578 0.1050
9 1.0000 0.9998 0.9944 0.9592 0.8507 0.6522 0.4102 0.2024
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Table 1 (continued)

p
n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

23 10 1.0000 1.0000 0.9986 0.9851 0.9286 0.7919 0.5761 0.3388
11 1.0000 1.0000 0.9997 0.9954 0.9705 0.8910 0.7285 0.5000
12 1.0000 1.0000 0.9999 0.9988 0.9895 0.9504 0.8471 0.6612
13 1.0000 1.0000 1.0000 0.9997 0.9968 0.9806 0.9252 0.7976
14 1.0000 1.0000 1.0000 0.9999 0.9992 0.9935 0.9686 0.8950
15 1.0000 1.0000 1.0000 1.0000 0.9998 0.9982 0.9888 0.9534
16 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9967 0.9827
17 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992 0.9947
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

24 0 0.2125 0.0406 0.0069 0.0010 0.0001 0.0000 0.0000 0.0000
1 0.5524 0.1797 0.0448 0.0090 0.0015 0.0002 0.0000 0.0000
2 0.8131 0.4082 0.1455 0.0398 0.0086 0.0014 0.0002 0.0000
3 0.9405 0.6476 0.3159 0.1150 0.0322 0.0070 0.0011 0.0001
4 0.9851 0.8271 0.5224 0.2466 0.0886 0.0243 0.0051 0.0008
5 0.9970 0.9297 0.7130 0.4222 0.1911 0.0661 0.0172 0.0033
6 0.9995 0.9761 0.8522 0.6074 0.3387 0.1453 0.0472 0.0113
7 0.9999 0.9932 0.9349 0.7662 0.5112 0.2676 0.1072 0.0320
8 1.0000 0.9983 0.9754 0.8787 0.6778 0.4235 0.2064 0.0758
9 1.0000 0.9997 0.9920 0.9453 0.8125 0.5898 0.3435 0.1537

10 1.0000 0.9999 0.9978 0.9787 0.9043 0.7395 0.5035 0.2706
11 1.0000 1.0000 0.9995 0.9928 0.9574 0.8538 0.6618 0.4194
12 1.0000 1.0000 0.9999 0.9979 0.9835 0.9281 0.7953 0.5806
13 1.0000 1.0000 1.0000 0.9995 0.9945 0.9693 0.8911 0.7294
14 1.0000 1.0000 1.0000 0.9999 0.9984 0.9887 0.9496 0.8463
15 1.0000 1.0000 1.0000 1.0000 0.9996 0.9964 0.9799 0.9242
16 1.0000 1.0000 1.0000 1.0000 0.9999 0.9990 0.9932 0.9680
17 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9981 0.9887
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9967
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

25 0 0.1992 0.0355 0.0056 0.0008 0.0001 0.0000 0.0000 0.0000
1 0.5132 0.1623 0.0377 0.0070 0.0011 0.0001 0.0000 0.0000
2 0.7968 0.3796 0.1266 0.0321 0.0064 0.0010 0.0001 0.0000
3 0.9325 0.6176 0.2840 0.0962 0.0248 0.0049 0.0007 0.0001
4 0.9823 0.8047 0.4837 0.2137 0.0710 0.0178 0.0033 0.0005
5 0.9962 0.9169 0.6772 0.3783 0.1591 0.0504 0.0119 0.0028
6 0.9993 0.9703 0.8261 0.5611 0.2926 0.1156 0.0341 0.0073
7 0.9999 0.9910 0.9194 0.7265 0.4573 0.2218 0.0810 0.0216
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Table 1 (continued)

p
n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

25 8 1.0000 0.9977 0.9678 0.8506 0.6258 0.3651 0.1630 0.0539
9 1.0000 0.9995 0.9889 0.9287 0.7704 0.5275 0.2835 0.1148

10 1.0000 0.9999 0.9967 0.9703 0.8756 0.6834 0.4335 0.2122
11 1.0000 1.0000 0.9992 0.9893 0.9408 0.8110 0.5926 0.3450
12 1.0000 1.0000 0.9998 0.9966 0.9754 0.9003 0.7369 0.5000
13 1.0000 1.0000 1.0000 0.9991 0.9911 0.9538 0.8491 0.6550
14 1.0000 1.0000 1.0000 0.9998 0.9972 0.9814 0.9240 0.7878
15 1.0000 1.0000 1.0000 1.0000 0.9992 0.9935 0.9667 0.8852
16 1.0000 1.0000 1.0000 1.0000 0.9998 0.9981 0.9874 0.9462
17 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9960 0.9784
18 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9989 0.9927
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9980
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995
21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 2 The Cumulative Poisson Distribution

The tabulated quantity is

j

k j

e
j=

−∑
0

λ λ
!

.

λλλλλ
k 0.001 0.005 0.010 0.015 0.020 0.025

0 0.9990 0050 0.9950 1248 0.9900 4983 0.9851 1194 0.9801 9867 0.9753 099
1 0.9999 9950 0.9999 8754 0.9999 5033 0.9998 8862 0.9998 0264 0.9996 927
2 1.0000 0000 0.9999 9998 0.9999 9983 0.9999 9945 0.9999 9868 0.9999 974
3 1.0000 0000 1.0000 0000 1.0000 0000 0.9999 9999 1.0000 000
4 1.0000 0000 1.0000 000

λλλλλ
k 0.030 0.035 0.040 0.045 0.050 0.055

0 0.970 446 0.965 605 0.960 789 0.955 997 0.951 229 0.946 485
1 0.999 559 0.999 402 0.999 221 0.999 017 0.998 791 0.998 542
2 0.999 996 0.999 993 0.999 990 0.999 985 0.999 980 0.999 973
3 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000

λλλλλ
k 0.060 0.065 0.070 0.075 0.080 0.085

0 0.941 765 0.937 067 0.932 394 0.927 743 0.923 116 0.918 512
1 0.998 270 0.997 977 0.997 661 0.997 324 0.996 966 0.996 586
2 0.999 966 0.999 956 0.999 946 0.999 934 0.999 920 0.999 904
3 0.999 999 0.999 999 0.999 999 0.999 999 0.999 998 0.999 998
4 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000

λλλλλ
k 0.090 0.095 0.100 0.200 0.300 0.400

0 0.913 931 0.909 373 0.904 837 0.818 731 0.740 818 0.670 320
1 0.996 185 0.995 763 0.995 321 0.982 477 0.963 064 0.938 448
2 0.999 886 0.999 867 0.999 845 0.998 852 0.996 401 0.992 074
3 0.999 997 0.999 997 0.999 996 0.999 943 0.999 734 0.999 224
4 1.000 000 1.000 000 1.000 000 0.999 998 0.999 984 0.999 939
5 1.000 000 0.999 999 0.999 996
6 1.000 000 1.000 000

λλλλλ
k 0.500 0.600 0.700 0.800 0.900 1.000

0 0.606 531 0.548 812 0.496 585 0.449 329 0.406 329 0.367 879
1 0.909 796 0.878 099 0.844 195 0.808 792 0.772 482 0.735 759
2 0.985 612 0.976 885 0.965 858 0.952 577 0.937 143 0.919 699
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Table 2 (continued)

λλλλλ
k 0.500 0.600 0.700 0.800 0.900 1.000

3 0.998 248 0.996 642 0.994 247 0.990 920 0.986 541 0.981 012
4 0.999 828 0.999 606 0.999 214 0.998 589 0.997 656 0.996 340
5 0.999 986 0.999 961 0.999 910 0.999 816 0.999 657 0.999 406
6 0.999 999 0.999 997 0.999 991 0.999 979 0.999 957 0.999 917
7 1.000 000 1.000 000 0.999 999 0.999 998 0.999 995 0.999 990
8 1.000 000 1.000 000 1.000 000 0.999 999
9 1.000 000

λλλλλ
k 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50

0 0.3012 0.2466 0.2019 0.1653 0.1353 0.0821 0.0498 0.0302
1 0.6626 0.5918 0.5249 0.4628 0.4060 0.2873 0.1991 0.1359
2 0.8795 0.8335 0.7834 0.7306 0.6767 0.5438 0.4232 0.3208
3 0.9662 0.9463 0.9212 0.8913 0.8571 0.7576 0.6472 0.5366
4 0.9923 0.9857 0.9763 0.9636 0.9473 0.8912 0.8153 0.7254
5 0.9985 0.9968 0.9940 0.9896 0.9834 0.9580 0.9161 0.8576
6 0.9997 0.9994 0.9987 0.9974 0.9955 0.9858 0.9665 0.9347
7 1.0000 0.9999 0.9997 0.9994 0.9989 0.9958 0.9881 0.9733
8 1.0000 1.0000 0.9999 0.9998 0.9989 0.9962 0.9901
9 1.0000 1.0000 0.9997 0.9989 0.9967

10 0.9999 0.9997 0.9990
11 1.0000 0.9999 0.9997
12 1.0000 0.9999
13 1.0000

λλλλλ
k 4.00 4.50 5.00 6.00 7.00 8.00 9.00 10.00

0 0.0183 0.0111 0.0067 0.0025 0.0009 0.0003 0.0001 0.0000
1 0.0916 0.0611 0.0404 0.0174 0.0073 0.0030 0.0012 0.0005
2 0.2381 0.1736 0.1247 0.0620 0.0296 0.0138 0.0062 0.0028
3 0.4335 0.3423 0.2650 0.1512 0.0818 0.0424 0.0212 0.0103
4 0.6288 0.5321 0.4405 0.2851 0.1730 0.0996 0.0550 0.0293
5 0.7851 0.7029 0.6160 0.4457 0.3007 0.1912 0.1157 0.0671
6 0.8893 0.8311 0.7622 0.6063 0.4497 0.3134 0.2068 0.1301
7 0.9489 0.9134 0.8666 0.7440 0.5987 0.4530 0.3239 0.2202
8 0.9786 0.9597 0.9319 0.8472 0.7291 0.5925 0.4577 0.3328
9 0.9919 0.9829 0.9682 0.9161 0.8305 0.7166 0.5874 0.4579

10 0.9972 0.9933 0.9863 0.9574 0.9015 0.8159 0.7060 0.5830
11 0.9991 0.9976 0.9945 0.9799 0.9467 0.8881 0.8030 0.6968
12 0.9997 0.9992 0.9980 0.9912 0.9730 0.9362 0.8758 0.7916
13 0.9999 0.9997 0.9993 0.9964 0.9872 0.9658 0.9261 0.8645
14 1.0000 0.9999 0.9998 0.9986 0.9943 0.9827 0.9585 0.9165
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Table 2 (continued)

λλλλλ
k 4.00 4.50 5.00 6.00 7.00 8.00 9.00 10.00

15 1.0000 0.9999 0.9995 0.9976 0.9918 0.9780 0.9513
16 1.0000 0.9998 0.9990 0.9963 0.9889 0.9730
17 0.9999 0.9996 0.9984 0.9947 0.9857
18 1.0000 0.9999 0.9993 0.9976 0.9928
19 0.9997 0.9989 0.9965
20 1.0000 0.9999 0.9996 0.9984
21 1.0000 0.9998 0.9993
22 0.9999 0.9997
23 1.0000 0.9999
24 1.0000
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Table 3 The Normal Distribution

The tabulated quantity is

Φ

Φ Φ

x e dt

x x

x
t( ) =

−( ) = − ( )[ ]
−∞

−∫
1

2

1

2 2

π
.

.

x ΦΦΦΦΦ(x) x ΦΦΦΦΦ(x) x ΦΦΦΦΦ(x) x ΦΦΦΦΦ(x)

0.00 0.500000 0.35 0.636831 0.70 0.758036 1.05 0.853141
0.01 0.503989 0.36 0.640576 0.71 0.761148 1.06 0.855428
0.02 0.507978 0.37 0.644309 0.72 0.764238 1.07 0.857690
0.03 0.511966 0.38 0.648027 0.73 0.767305 1.08 0.859929
0.04 0.515953 0.39 0.651732 0.74 0.770350 1.09 0.862143
0.05 0.519939 0.40 0.655422 0.75 0.773373 1.10 0.864334
0.06 0.523922 0.41 0.659097 0.76 0.776373 1.11 0.866500
0.07 0.527903 0.42 0.662757 0.77 0.779350 1.12 0.868643
0.08 0.531881 0.43 0.666402 0.78 0.782305 1.13 0.870762
0.09 0.535856 0.44 0.670031 0.79 0.785236 1.14 0.872857
0.10 0.539828 0.45 0.673645 0.80 0.788145 1.15 0.874928
0.11 0.543795 0.46 0.677242 0.81 0.791030 1.16 0.876976
0.12 0.547758 0.47 0.680822 0.82 0.793892 1.17 0.879000
0.13 0.551717 0.48 0.684386 0.83 0.796731 1.18 0.881000
0.14 0.555670 0.49 0.687933 0.84 0.799546 1.19 0.882977
0.15 0.559618 0.50 0.691462 0.85 0.802337 1.20 0.884930
0.16 0.563559 0.51 0.694974 0.86 0.805105 1.21 0.886861
0.17 0.567495 0.52 0.698468 0.87 0.807850 1.22 0.888768
0.18 0.571424 0.53 0.701944 0.88 0.810570 1.23 0.890651
0.19 0.575345 0.54 0.705401 0.89 0.813267 1.24 0.892512
0.20 0.579260 0.55 0.708840 0.90 0.815940 1.25 0.894350
0.21 0.583166 0.56 0.712260 0.91 0.818589 1.26 0.896165
0.22 0.587064 0.57 0.715661 0.92 0.821214 1.27 0.897958
0.23 0.590954 0.58 0.719043 0.93 0.823814 1.28 0.899727
0.24 0.594835 0.59 0.722405 0.94 0.826391 1.29 0.901475
0.25 0.598706 0.60 0.725747 0.95 0.828944 1.30 0.903200
0.26 0.602568 0.61 0.279069 0.96 0.831472 1.31 0.904902
0.27 0.606420 0.62 0.732371 0.97 0.833977 1.32 0.906582
0.28 0.610261 0.63 0.735653 0.98 0.836457 1.33 0.908241
0.29 0.614092 0.64 0.738914 0.99 0.838913 1.34 0.909877
0.30 0.617911 0.65 0.742154 1.00 0.841345 1.35 0.911492
0.31 0.621720 0.66 0.745373 1.01 0.843752 1.36 0.913085
0.32 0.625516 0.67 0.748571 1.02 0.846136 1.37 0.914657
0.33 0.629300 0.68 0.751748 1.03 0.848495 1.38 0.916207
0.34 0.633072 0.69 0.754903 1.04 0.850830 1.39 0.917736
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Table 3 (continued)

x ΦΦΦΦΦ(x) x ΦΦΦΦΦ(x) x ΦΦΦΦΦ(x) x ΦΦΦΦΦ(x)

1.40 0.919243 1.85 0.967843 2.30 0.989276 2.75 0.997020
1.41 0.920730 1.86 0.968557 2.31 0.989556 2.76 0.997110
1.42 0.922196 1.87 0.969258 2.32 0.989830 2.77 0.997197
1.43 0.923641 1.88 0.969946 2.33 0.990097 2.78 0.997282
1.44 0.925066 1.89 0.970621 2.34 0.990358 2.79 0.997365
1.45 0.926471 1.90 0.971283 2.35 0.990613 2.80 0.997445
1.46 0.927855 1.91 0.971933 2.36 0.990863 2.81 0.997523
1.47 0.929219 1.92 0.972571 2.37 0.991106 2.82 0.997599
1.48 0.930563 1.93 0.973197 2.38 0.991344 2.83 0.997673
1.49 0.931888 1.94 0.973810 2.39 0.991576 2.84 0.997744
1.50 0.933193 1.95 0.974412 2.40 0.991802 2.85 0.997814
1.51 0.934478 1.96 0.975002 2.41 0.992024 2.86 0.997882
1.52 0.935745 1.97 0.975581 2.42 0.992240 2.87 0.997948
1.53 0.936992 1.98 0.976148 2.43 0.992451 2.88 0.998012
1.54 0.938220 1.99 0.976705 2.44 0.992656 2.89 0.998074
1.55 0.939429 2.00 0.977250 2.45 0.992857 2.90 0.998134
1.56 0.940620 2.01 0.977784 2.46 0.993053 2.91 0.998193
1.57 0.941792 2.02 0.978308 2.47 0.993244 2.92 0.998250
1.58 0.942947 2.03 0.978822 2.48 0.993431 2.93 0.998305
1.59 0.944083 2.04 0.979325 2.49 0.993613 2.54 0.998359
1.60 0.945201 2.05 0.979818 2.50 0.993790 2.95 0.998411
1.61 0.946301 2.06 0.980301 2.51 0.993963 2.96 0.998462
1.62 0.947384 2.07 0.980774 2.52 0.994132 2.97 0.998511
1.63 0.948449 2.08 0.981237 2.53 0.994297 2.98 0.998559
1.64 0.949497 2.09 0.981691 2.54 0.994457 2.99 0.998605
1.65 0.950529 2.10 0.982136 2.55 0.994614 3.00 0.998650
1.66 0.951543 2.11 0.982571 2.56 0.994766 3.01 0.998694
1.67 0.952540 2.12 0.982997 2.57 0.994915 3.02 0.998736
1.68 0.953521 2.13 0.983414 2.58 0.995060 3.03 0.998777
1.69 0.954486 2.14 0.983823 2.59 0.995201 3.04 0.998817
1.70 0.955435 2.15 0.984222 2.60 0.995339 3.05 0.998856
1.71 0.956367 2.16 0.984614 2.61 0.995473 3.06 0.998893
1.72 0.957284 2.17 0.984997 2.62 0.995604 3.07 0.998930
1.73 0.958185 2.18 0.985371 2.63 0.995731 3.08 0.998965
1.74 0.959070 2.19 0.985738 2.64 0.995855 3.09 0.998999
1.75 0.959941 2.20 0.986097 2.65 0.995975 3.10 0.999032
1.76 0.960796 2.21 0.986447 2.66 0.996093 3.11 0.999065
1.77 0.961636 2.22 0.986791 2.67 0.996207 3.12 0.999096
1.78 0.962462 2.23 0.987126 2.68 0.996319 3.13 0.999126
1.79 0.963273 2.24 0.987455 2.69 0.996427 3.14 0.999155
1.80 0.964070 2.25 0.987776 2.70 0.996533 3.15 0.999184
1.81 0.964852 2.26 0.988089 2.71 0.996636 3.16 0.999211
1.82 0.965620 2.27 0.988396 2.72 0.996736 3.17 0.999238
1.83 0.966375 2.28 0.988696 2.73 0.996833 3.18 0.999264
1.84 0.967116 2.29 0.988989 2.74 0.996928 3.19 0.999289
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Table 3 (continued)

x ΦΦΦΦΦ(x) x ΦΦΦΦΦ(x) x ΦΦΦΦΦ(x) x ΦΦΦΦΦ(x)

3.20 0.999313 3.40 0.999663 3.60 0.999841 3.80 0.999928
3.21 0.999336 3.41 0.999675 3.61 0.999847 3.81 0.999931
3.22 0.999359 3.42 0.999687 3.62 0.999853 3.82 0.999933
3.23 0.999381 3.43 0.999698 3.63 0.999858 3.83 0.999936
3.24 0.999402 3.44 0.999709 3.64 0.999864 3.84 0.999938
3.25 0.999423 3.45 0.999720 3.65 0.999869 3.85 0.999941
3.26 0.999443 3.46 0.999730 3.66 0.999874 3.86 0.999943
3.27 0.999462 3.47 0.999740 3.67 0.999879 3.87 0.999946
3.28 0.999481 3.48 0.999749 3.68 0.999883 3.88 0.999948
3.29 0.999499 3.49 0.999758 3.69 0.999888 3.89 0.999950
3.30 0.999517 3.50 0.999767 3.70 0.999892 3.90 0.999952
3.31 0.999534 3.51 0.999776 3.71 0.999896 3.91 0.999954
3.32 0.999550 3.52 0.999784 3.72 0.999900 3.92 0.999956
3.33 0.999566 3.53 0.999792 3.73 0.999904 3.93 0.999958
3.34 0.999581 3.53 0.999800 3.74 0.999908 3.94 0.999959
3.35 0.999596 3.55 0.999807 3.75 0.999912 3.95 0.999961
3.36 0.999610 3.56 0.999815 3.76 0.999915 3.96 0.999963
3.37 0.999624 3.57 0.999822 3.77 0.999918 3.97 0.999964
3.38 0.999638 3.58 0.999828 3.78 0.999922 3.98 0.999966
3.39 0.999651 3.59 0.999835 3.79 0.999925 3.99 0.999967
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Table 4 Critical Values for Student’s t-Distribution

Let tr be a random variable having the Student’s t-distribution with r degrees of
freedom. Then the tabulated quantities are the numbers x for which

P t xr ≤( ) = γ .

γγγγγ
r 0.75 0.90 0.95 0.975 0.99 0.995

1 1.0000 3.0777 6.3138 12.7062 31.8207 63.6574
2 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248
3 0.7649 1.6377 2.3534 3.1824 4.5407 5.8409
4 0.7407 1.5332 2.1318 2.7764 3.7649 4.6041
5 0.7267 1.4759 2.0150 2.5706 3.3649 4.0322
6 0.7176 1.4398 1.9432 2.4469 3.1427 3.7074
7 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995
8 0.7064 1.3968 1.8595 3.3060 2.8965 3.3554
9 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498

10 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693
11 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058
12 0.6955 1.3562 1.7823 2.1788 2.6810 3.0545
13 0.6938 1.3502 1.7709 1.1604 2.6503 3.0123
14 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768
15 0.6912 1.3406 1.7531 2.1315 2.6025 2.9467
16 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208
17 0.6892 1.3334 1.7396 2.1098 2.5669 2.8982
18 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784
19 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609
20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453
21 0.6864 1.3232 1.7207 2.0796 2.5177 2.8314
22 0.6858 1.3212 1.7171 2.0739 2.5083 2.8188
23 0.6853 1.3195 1.7139 2.0687 2.4999 2.8073
24 0.6848 1.3178 1.7109 2.0639 2.4922 2.7969
25 0.6844 1.3163 1.7081 2.0595 2.4851 2.7874
26 0.6840 1.3150 1.7056 2.0555 2.4786 2.7787
27 0.6837 1.3137 1.7033 2.0518 2.4727 2.7707
28 0.6834 1.3125 1.7011 2.0484 2.4671 2.7633
29 0.6830 1.3114 1.6991 2.0452 2.4620 2.7564
30 0.6828 1.3104 1.6973 2.0423 2.4573 2.7500
31 0.6825 1.3095 1.6955 2.0395 2.4528 2.7440
32 0.6822 1.3086 1.6939 2.0369 2.4487 2.7385
33 0.6820 1.3077 1.6924 2.0345 2.4448 2.7333
34 0.6818 1.3070 1.6909 2.0322 2.4411 2.7284
35 0.6816 1.3062 1.6896 2.0301 2.4377 2.7238
36 0.6814 1.3055 1.6883 2.0281 2.4345 2.7195
37 0.6812 1.3049 1.6871 2.0262 2.4314 1.7154
38 0.6810 1.3042 1.6860 2.0244 2.4286 2.7116
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Table 4 (continued)

γγγγγ
r 0.75 0.90 0.95 0.975 0.99 0.995

39 0.6808 1.3036 1.6849 2.0227 2.4258 2.7079
40 0.6807 1.3031 1.6839 2.0211 2.4233 2.7045
41 0.6805 1.3025 1.6829 2.0195 2.4208 2.7012
42 0.6804 1.3020 1.6820 2.0181 2.4185 2.6981
43 0.6802 1.3016 1.6811 2.0167 2.4163 2.6951
44 0.6801 1.3011 1.6802 2.0154 2.4141 2.6923
45 0.6800 1.3006 1.6794 2.0141 2.4121 2.6896
46 0.6799 1.3002 1.6787 2.0129 2.4102 2.6870
47 0.6797 1.2998 1.6779 2.0117 2.4083 2.6846
48 0.6796 1.2994 1.6772 2.0106 2.4066 2.6822
49 0.6795 1.2991 1.6766 2.0096 2.4069 2.6800
50 0.6794 1.2987 1.6759 2.0086 2.4033 2.6778
51 0.6793 1.2984 1.6753 2.0076 2.4017 2.6757
52 0.6792 1.2980 1.6747 2.0066 2.4002 2.6737
53 0.6791 1.2977 1.6741 2.0057 2.3988 2.6718
54 0.6791 1.2974 1.6736 2.0049 2.3974 2.6700
55 0.6790 1.2971 1.6730 2.0040 2.3961 2.6682
56 0.6789 1.2969 1.6725 2.0032 2.3948 2.6665
57 0.6788 1.2966 1.6720 2.0025 2.3936 2.6649
58 0.6787 1.2963 1.6716 2.0017 2.3924 2.6633
59 0.6787 1.2961 1.6711 2.0010 2.3912 2.6618
60 0.6786 1.2958 1.6706 2.0003 2.3901 2.6603
61 0.6785 1.2956 1.6702 1.9996 2.3890 2.6589
62 0.6785 1.2954 1.6698 1.9990 2.3880 2.6575
63 0.6784 1.2951 1.6694 1.9983 2.3870 2.6561
64 0.6783 1.2949 1.6690 1.9977 2.3860 2.6549
65 0.6783 1.2947 1.6686 1.9971 2.3851 2.6536
66 0.6782 1.2945 1.6683 1.9966 2.3842 2.6524
67 0.6782 1.2943 1.6679 1.9960 2.3833 2.6512
68 0.6781 1.2941 1.6676 1.9955 2.3824 2.6501
69 0.6781 1.2939 1.6672 1.9949 2.3816 2.6490
70 0.6780 1.2938 1.6669 1.9944 2.3808 2.6479
71 0.6780 1.2936 1.6666 1.9939 2.3800 2.6469
72 0.6779 1.2934 1.6663 1.9935 2.3793 2.6459
73 0.6779 1.2933 1.6660 1.9930 2.3785 2.6449
74 0.6778 1.2931 1.6657 1.9925 2.3778 2.6439
75 0.6778 1.2929 1.6654 1.9921 2.3771 2.6430
76 0.6777 1.2928 1.6652 1.9917 2.3764 2.6421
77 0.6777 1.2926 1.6649 1.9913 2.3758 2.6412
78 0.6776 1.2925 1.6646 1.9908 2.3751 2.6403
79 0.6776 1.2924 1.6644 1.9905 2.3745 2.6395
80 0.6776 1.2922 1.6641 1.9901 2.3739 2.6387
81 0.6775 1.2921 1.6639 1.9897 2.3733 2.6379
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Table 4 (continued)

γγγγγ
r 0.75 0.90 0.95 0.975 0.99 0.995

82 0.6775 1.2920 1.6636 1.9893 2.3727 2.6371
83 0.6775 1.2918 1.6634 1.9890 2.3721 2.6364
84 0.6774 1.2917 1.6632 1.9886 2.3716 2.6356
85 0.6774 1.2916 1.6630 1.9883 2.3710 2.6349
86 0.6774 1.2915 1.6628 1.9879 2.3705 2.6342
87 0.6773 1.2914 1.6626 1.9876 2.3700 2.6335
88 0.6773 1.2912 1.6624 1.9873 2.3695 2.6329
89 0.6773 1.2911 1.6622 1.9870 2.3690 2.6322
90 0.6772 1.2910 1.6620 1.9867 2.3685 2.6316



Tables 529

Table 5 Critical Values for the Chi-Square Distribution

Let χ2
r be a random variable having the chi-square distribution with r degrees of

freedom. Then the tabulated quantities are the numbers x for which

P xrχ γ2 ≤( ) = .

γγγγγ
r 0.005 0.01 0.025 0.05 0.10 0.25

1 — — 0.001 0.004 0.016 0.102
2 0.010 0.020 0.051 0.103 0.211 0.575
3 0.072 0.115 0.216 0.352 0.584 1.213
4 0.207 0.297 0.484 0.711 1.064 1.923
5 0.412 0.554 0.831 1.145 1.610 2.675
6 0.676 0.872 1.237 1.635 2.204 3.455
7 0.989 1.239 1.690 2.167 2.833 4.255
8 1.344 1.646 2.180 2.733 3.490 5.071
9 1.735 2.088 2.700 2.325 4.168 5.899

10 2.156 2.558 3.247 3.940 4.865 6.737
11 2.603 3.053 3.816 4.575 5.578 7.584
12 3.074 3.571 4.404 5.226 6.304 9.438
13 3.565 4.107 5.009 5.892 7.042 9.299
14 4.075 4.660 5.629 6.571 7.790 10.165
15 4.601 5.229 6.262 7.261 8.547 11.037
16 5.142 5.812 6.908 7.962 9.312 11.912
17 5.697 6.408 7.564 8.672 10.085 12.792
18 6.265 7.015 8.231 8.390 10.865 13.675
19 6.844 7.633 8.907 10.117 11.651 14.562
20 7.434 8.260 9.591 10.851 12.443 15.452
21 8.034 8.897 10.283 11.591 13.240 16.344
22 8.643 9.542 10.982 12.338 14.042 17.240
23 9.260 10.196 11.689 13.091 14.848 18.137
24 9.886 10.856 12.401 13.848 15.659 19.037
25 10.520 11.524 13.120 14.611 16.473 19.939
26 11.160 12.198 13.844 13.379 17.292 20.843
27 11.808 12.879 14.573 16.151 18.114 21.749
28 12.461 13.565 15.308 16.928 18.939 22.657
29 13.121 14.257 16.047 17.708 19.768 23.567
30 13.787 14.954 16.791 18.493 20.599 24.478
31 14.458 15.655 17.539 19.281 21.434 25.390
32 15.134 16.362 18.291 20.072 22.271 26.304
33 15.815 17.074 19.047 20.867 23.110 27.219
34 16.501 17.789 19.806 21.664 23.952 28.136
35 17.192 18.509 20.569 22.465 24.797 29.054
36 17.887 19.233 21.336 23.269 25.643 29.973
37 18.586 19.960 22.106 24.075 26.492 30.893
38 19.289 20.691 22.878 24.884 27.343 31.815
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Table 5 (continued)

γγγγγ
r 0.005 0.01 0.025 0.05 0.10 0.25

39 19.996 21.426 23.654 25.695 28.196 32.737
40 20.707 22.164 24.433 26.509 29.051 33.660
41 21.421 22.906 25.215 27.326 29.907 34.585
42 22.138 23.650 25.999 28.144 30.765 35.510
43 22.859 24.398 26.785 28.965 31.625 36.436
44 23.584 25.148 27.575 29.787 32.487 37.363
45 24.311 25.901 28.366 30.612 33.350 38.291

γγγγγ
r 0.75 0.90 0.95 0.975 0.99 0.995

1 1.323 2.706 3.841 5.024 6.635 7.879
2 2.773 4.605 5.991 7.378 9.210 10.597
3 4.108 6.251 7.815 9.348 11.345 12.838
4 5.385 7.779 9.488 11.143 13.277 14.860
5 6.626 9.236 11.071 12.833 15.086 16.750
6 7.841 10.645 12.592 14.449 16.812 18.548
7 9.037 12.017 14.067 16.013 18.475 20.278
8 10.219 13.362 15.507 17.535 20.090 21.955
9 11.389 14.684 16.919 19.023 21.666 23.589

10 12.549 15.987 18.307 20.483 23.209 25.188
11 13.701 17.275 19.675 21.920 24.725 26.757
12 14.845 18.549 21.026 23.337 26.217 28.299
13 15.984 19.812 23.362 24.736 27.688 29.819
14 17.117 21.064 23.685 26.119 29.141 31.319
15 18.245 22.307 24.996 27.488 30.578 32.801
16 19.369 23.542 26.296 28.845 32.000 34.267
17 20.489 24.769 27.587 30.191 33.409 35.718
18 21.605 25.989 28.869 31.526 34.805 37.156
19 22.718 27.204 30.144 32.852 36.191 38.582
20 23.828 28.412 31.410 34.170 37.566 39.997
21 24.935 29.615 32.671 35.479 38.932 41.401
22 26.039 30.813 33.924 36.781 40.289 42.796
23 27.141 32.007 35.172 38.076 41.638 44.181
24 28.241 33.196 36.415 39.364 42.980 45.559
25 29.339 34.382 37.652 40.646 44.314 46.928
26 30.435 35.563 38.885 41.923 45.642 48.290
27 31.528 36.741 40.113 43.194 46.963 49.645
28 32.620 37.916 41.337 44.641 48.278 50.993
29 33.711 39.087 42.557 45.722 49.588 52.336
30 34.800 40.256 43.773 46.979 50.892 53.672
31 35.887 41.422 44.985 48.232 51.191 55.003
32 36.973 42.585 46.194 49.480 53.486 56.328
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Table 5 (continued)

γγγγγ
r 0.75 0.90 0.95 0.975 0.99 0.995

33 38.058 43.745 47.400 50.725 54.776 57.648
34 39.141 44.903 48.602 51.966 56.061 58.964
35 40.223 46.059 49.802 53.203 57.342 60.275
36 41.304 47.212 50.998 54.437 58.619 61.581
37 42.383 48.363 52.192 55.668 59.892 62.883
38 43.462 49.513 53.384 56.896 61.162 64.181
39 44.539 50.660 54.572 58.120 62.428 65.476
40 45.616 51.805 55.758 59.342 63.691 66.766
41 46.692 52.949 56.942 60.561 64.950 68.053
42 47.766 54.090 58.124 61.777 66.206 69.336
43 48.840 55.230 59.304 62.990 67.459 70.616
44 49.913 56.369 60.481 64.201 68.710 71.893
45 50.985 57.505 61.656 65.410 69.957 73.166
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Let Fr1,r2
 be a random variable having the F-distribution with r1, r2 degrees of freedom.

Then the tabulated quantities are the numbers x for which

P F xr r1 2, .≤( ) = γ

r1

γγγγγ 1 2 3 4 5 6 γγγγγ

0.500 1.0000 1.5000 1.7092 1.8227 1.8937 1.9422 0.500
0.750 5.8285 7.5000 8.1999 8.5810 8.8198 8.9833 0.750
0.900 39.864 49.500 53.593 55.833 57.241 58.204 0.900

1 0.950 161.45 199.50 215.71 224.58 230.16 233.99 0.950 1
0.975 647.79 799.50 864.16 899.58 921.85 937.11 0.975
0.990 4052.2 4999.5 5403.3 5624.6 5763.7 5859.0 0.990
0.995 16211 20000 21615 22500 23056 23437 0.995

0.500 0.66667 1.0000 1.1349 1.2071 1.2519 1.2824 0.500
0.750 2.5714 3.0000 3.1534 3.2320 3.2799 3.3121 0.750
0.900 8.5623 9.0000 9.1618 9.2434 9.2926 9.3255 0.900

2 0.950 18.513 19.000 19.164 19.247 19.296 19.330 0.950 2
0.975 38.506 39.000 39.165 39.248 39.298 39.331 0.975
0.990 98.503 99.000 99.166 99.249 99.299 99.332 0.990
0.995 198.50 199.00 199.17 199.25 199.30 199.33 0.995

0.500 0.58506 0.88110 1.0000 1.0632 1.1024 1.1289 0.500
0.750 2.0239 2.2798 2.3555 2.3901 2.4095 2.4218 0.750
0.900 5.5383 5.4624 5.3908 5.3427 5.3092 5.2847 0.900

3 0.950 10.128 9.5521 9.2766 9.1172 9.0135 8.9406 0.950 3
0.975 17.443 16.044 15.439 15.101 14.885 14.735 0.975
0.990 34.116 30.817 29.457 28.710 28.237 27.911 0.990

r2 0.995 55.552 49.799 47.467 46.195 45.392 44.838 0.995 r2

0.500 0.54863 0.82843 0.94054 1.0000 1.0367 1.0617 0.500
0.750 1.8074 2.0000 2.0467 2.0642 2.0723 2.0766 0.750
0.900 4.5448 4.3246 4.1908 4.1073 4.0506 4.0098 0.900

4 0.950 7.7086 6.9443 6.5914 6.3883 6.2560 6.1631 0.950 4
0.975 12.218 10.649 9.9792 9.6045 9.3645 9.1973 0.975
0.990 21.198 18.000 16.694 15.977 15.522 15.207 0.990
0.995 31.333 26.284 24.259 23.155 22.456 21.975 0.995

0.500 0.52807 0.79877 0.90715 0.96456 1.0000 1.0240 0.500
0.750 1.6925 1.8528 1.8843 1.8927 1.8947 1.8945 0.750
0.900 4.0604 3.7797 3.6195 3.5202 3.4530 3.4045 0.900

5 0.950 6.6079 5.7861 5.4095 5.1922 5.0503 4.9503 0.950 5
0.975 10.007 8.4336 7.7636 7.3879 7.1464 6.9777 0.975
0.990 16.258 13.274 12.060 11.392 10.967 10.672 0.990
0.995 22.785 18.314 16.530 15.556 14.940 14.513 0.995

0.500 0.51489 0.77976 0.88578 0.94191 0.97654 1.0000 0.500
0.750 1.6214 1.7622 1.7844 1.7872 1.7852 1.7821 0.750
0.900 3.7760 3.4633 3.2888 3.1808 3.1075 3.0546 0.900

6 0.950 5.9874 5.1433 4.7571 4.5337 4.3874 4.2839 0.950 6
0.975 8.8131 7.2598 6.5988 6.2272 5.9876 5.8197 0.975
0.990 13.745 10.925 9.7795 9.1483 8.7459 8.4661 0.990
0.995 18.635 14.544 12.917 12.028 11.464 11.073 0.995
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Table 6 (continued)

r1

γγγγγ 7 8 9 10 11 12 γγγγγ

0.500 1.9774 2.0041 2.0250 2.0419 2.0558 2.0674 0.500
0.750 9.1021 9.1922 9.2631 9.3202 9.3672 9.4064 0.750
0.900 58.906 59.439 59.858 60.195 60.473 60.705 0.900

1 0.950 236.77 238.88 240.54 241.88 242.99 243.91 0.950 1
0.975 948.22 956.66 963.28 968.63 973.04 976.71 0.975
0.990 5928.3 5981.1 6022.5 6055.8 6083.3 6106.3 0.990
0.995 23715 23925 24091 24224 24334 24426 0.995

0.500 1.3045 1.3213 1.3344 1.3450 1.3537 1.3610 0.500
0.750 3.3352 3.3526 3.3661 3.3770 3.3859 3.3934 0.750
0.900 9.3491 9.3668 9.3805 9.3916 9.4006 9.4081 0.900

2 0.950 19.353 19.371 19.385 19.396 19.405 19.413 0.950 2
0.975 39.355 39.373 39.387 39.398 39.407 39.415 0.975
0.990 99.356 99.374 99.388 99.399 99.408 99.416 0.990
0.995 199.36 199.37 199.39 199.40 199.41 199.42 0.995

0.500 1.1482 1.1627 1.1741 1.1833 1.1909 1.1972 0.500
0.750 2.4302 2.4364 2.4410 2.4447 2.4476 2.4500 0.750
0.900 5.2662 5.2517 5.2400 5.2304 5.2223 5.2156 0.900

3 0.950 8.8868 8.8452 8.8123 8.7855 8.7632 8.7446 0.950 3
0.975 14.624 14.540 14.473 14.419 14.374 14.337 0.975
0.990 27.672 27.489 27.345 27.229 27.132 27.052 0.990

r2 0.995 44.434 44.126 43.882 43.686 43.523 43.387 0.995 r2

0.500 1.0797 1.0933 1.1040 1.1126 1.1196 1.1255 0.500
0.750 2.0790 2.0805 2.0814 2.0820 2.0823 2.0826 0.750
0.900 3.9790 3.9549 3.9357 3.9199 3.9066 3.8955 0.900

4 0.950 6.0942 6.0410 5.9988 5.9644 5.9357 5.9117 0.950 4
0.975 9.0741 8.9796 8.9047 8.8439 8.7933 8.7512 0.975
0.990 14.976 14.799 14.659 14.546 14.452 14.374 0.990
0.995 21.622 21.352 21.139 20.967 20.824 20.705 0.995

0.500 1.0414 1.0545 1.0648 1.0730 1.0798 1.0855 0.500
0.750 1.8935 1.8923 1.8911 1.8899 1.8887 1.8877 0.750
0.900 3.3679 3.3393 3.3163 3.2974 3.2815 3.2682 0.900

5 0.950 4.8759 4.8183 4.7725 4.7351 4.7038 4.6777 0.950 5
0.975 6.8531 6.7572 6.6810 6.6192 6.5676 6.5246 0.975
0.990 10.456 10.289 10.158 10.051 9.9623 9.8883 0.990
0.995 14.200 13.961 13.772 13.618 13.490 13.384 0.995

0.500 1.0169 1.0298 1.0398 1.0478 1.0545 1.0600 0.500
0.750 1.7789 1.7760 1.7733 1.7708 1.7686 1.7668 0.750
0.900 3.0145 2.9830 2.9577 2.9369 2.9193 2.9047 0.900

6 0.950 4.2066 4.1468 4.0990 4.0600 4.0272 3.9999 0.950 6
0.975 5.6955 5.5996 5.5234 5.4613 5.4094 5.3662 0.975
0.990 8.2600 8.1016 7.9761 7.8741 7.7891 7.7183 0.990
0.995 10.786 10.566 10.391 10.250 10.132 10.034 0.995
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Table 6 (continued)

r1

γγγγγ 13 14 15 18 20 24 γγγγγ

0.500 2.0773 2.0858 2.0931 2.1104 2.1190 2.1321 0.500
0.750 9.4399 9.4685 9.4934 9.5520 9.5813 9.6255 0.750
0.900 60.903 61.073 61.220 61.567 61.740 62.002 0.900

1 0.950 244.69 245.37 245.95 247.32 248.01 249.05 0.950 1
0.975 979.85 982.54 984.87 990.36 993.10 997.25 0.975
0.990 6125.9 6142.7 6157.3 6191.6 6208.7 6234.6 0.990
0.995 24504 24572 24630 24767 24836 24940 0.995

0.500 1.3672 1.3725 1.3771 1.3879 1.3933 1.4014 0.500
0.750 3.3997 3.4051 3.4098 3.4208 3.4263 3.4345 0.750
0.900 9.4145 9.4200 9.4247 9.4358 9.4413 9.4496 0.900

2 0.950 19.419 19.424 19.429 19.440 19.446 19.454 0.950 2
0.975 39.421 39.426 39.431 39.442 39.448 39.456 0.975
0.990 99.422 99.427 99.432 99.443 99.449 99.458 0.990
0.995 199.42 199.43 199.43 199.44 199.45 199.46 0.995

0.500 1.2025 1.2071 1.2111 1.2205 1.2252 1.2322 0.500
0.750 2.4520 2.4537 2.4552 2.4585 2.4602 2.4626 0.750
0.900 5.2097 5.2047 5.2003 5.1898 5.1845 5.1764 0.900

3 0.950 8.7286 8.7148 8.7029 8.6744 8.6602 8.6385 0.940 3
0.975 14.305 14.277 14.253 14.196 14.167 14.124 0.975
0.990 26.983 26.923 26.872 26.751 26.690 26.598 0.990

r2 0.995 43.271 43.171 43.085 42.880 42.778 42.622 0.955 r2

0.500 1.1305 1.1349 1.1386 1.1473 1.1517 1.1583 0.500
0.750 2.0827 2.0828 2.0829 2.0828 2.0828 2.0827 0.750
0.900 3.8853 3.8765 3.8689 3.8525 3.8443 3.8310 0.900

4 0.950 5.8910 5.8732 5.8578 5.8209 5.8025 5.7744 0.950 4
0.975 8.7148 8.6836 8.6565 8.5921 8.5599 8.5109 0.975
0.990 14.306 14.248 14.198 14.079 14.020 13.929 0.990
0.995 20.602 20.514 20.438 20.257 20.167 20.030 0.995

0.500 1.0903 1.0944 1.0980 1.1064 1.1106 1.1170 0.500
0.750 1.8867 1.8858 1.8851 1.8830 1.8820 1.8802 0.750
0.900 3.2566 3.2466 3.2380 3.2171 3.2067 3.1905 0.900

5 0.950 4.6550 4.6356 4.6188 4.5783 4.5581 4.5272 0.950 5
0.975 6.4873 6.4554 6.4277 6.3616 6.3285 6.2780 0.975
0.990 9.8244 9.7697 9.7222 9.6092 9.5527 9.4665 0.990
0.995 13.292 13.214 13.146 12.984 12.903 12.780 0.995

0.500 1.0647 1.0687 1.0722 1.0804 1.0845 1.0907 0.500
0.750 1.7650 1.7634 1.7621 1.7586 1.7569 1.7540 0.750
0.900 2.8918 2.8808 2.8712 2.8479 2.8363 2.8183 0.900

6 0.950 3.9761 3.9558 3.9381 3.8955 3.8742 3.8415 0.950 6
0.975 5.3287 5.2966 5.2687 5.2018 5.1684 5.1172 0.975
0.990 7.6570 7.6045 7.5590 7.4502 7.3958 7.3127 0.990
0.995 9.9494 9.8769 9.8140 9.6639 9.5888 9.4741 0.995
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Table 6 (continued)

r1

γγγγγ 30 40 48 60 120 ∞∞∞∞∞ γγγγγ

0.500 2.1452 2.1584 2.1650 2.1716 2.1848 2.1981 0.500
0.750 9.6698 9.7144 9.7368 9.7591 9.8041 9.8492 0.750
0.900 62.265 62.529 62.662 62.794 63.061 63.328 0.990

1 0.950 250.09 251.14 251.67 252.20 253.25 254.32 0.950 1
0.975 1001.4 1005.6 1007.7 1009.8 1014.0 1018.3 0.975
0.990 6260.7 6286.8 6299.9 6313.0 6339.4 6366.0 0.990
0.995 25044 25148 25201 25253 25359 25465 0.995

0.500 1.4096 1.4178 1.4220 1.4261 1.4344 1.4427 0.500
0.750 3.4428 3.4511 3.4553 3.4594 3.4677 3.4761 0.750
0.900 9.4579 9.4663 9.4705 9.4746 9.4829 9.4913 0.900

2 0.950 19.462 19.471 19.475 19.479 19.487 19.496 0.950 2
0.975 39.465 39.473 39.477 39.481 39.490 39.498 0.975
0.990 99.466 99.474 99.478 99.483 99.491 99.499 0.990
0.995 199.47 199.47 199.47 199.48 199.49 199.51 0.995

0.500 1.2393 1.2464 1.2500 1.2536 1.2608 1.2680 0.500
0.750 2.4650 2.4674 2.4686 2.4697 2.4720 2.4742 0.750
0.900 5.1681 5.1597 5.1555 5.1512 5.1425 5.1337 0.900

3 0.950 8.6166 8.5944 8.5832 8.5720 8.5494 8.5265 0.950 3
0.975 14.081 14.037 14.015 13.992 13.947 13.902 0.975
0.990 26.505 26.411 26.364 26.316 26.221 26.125 0.990

r2 0.995 42.466 42.308 42.229 42.149 41.989 41.829 0.995 r2

0.500 1.1649 1.1716 1.1749 1.1782 1.1849 1.1916 0.500
0.750 2.0825 2.0821 2.0819 2.0817 2.0812 2.0806 0.750
0.900 3.8174 3.8036 3.7966 3.7896 3.7753 3.7607 0.900

4 0.950 5.7459 5.7170 5.7024 5.6878 5.6581 5.6281 0.950 4
0.975 8.4613 8.4111 8.3858 8.3604 8.3092 8.2573 0.975
0.990 13.838 13.745 13.699 13.652 13.558 13.463 0.990
0.995 19.892 19.752 19.682 19.611 19.468 19.325 0.995

0.500 1.1234 1.1297 1.1329 1.1361 1.1426 1.1490 0.500
0.750 1.8784 1.8763 1.8753 1.8742 1.8719 1.8694 0.750
0.900 3.1741 3.1573 3.1488 1.1402 3.1228 3.1050 0.900

5 0.950 4.4957 4.4638 4.4476 4.4314 4.3984 4.3650 0.950 5
0.975 6.2269 6.1751 6.1488 6.1225 6.0693 6.0153 0.975
0.990 9.3793 9.2912 9.2466 9.2020 9.1118 0.0204 0.990
0.995 12.656 12.530 12.466 12.402 12.274 12.144 0.995

0.500 1.0969 1.1031 1.1062 1.1093 1.1156 1.1219 0.500
0.750 1.7510 1.7477 1.7460 1.7443 1.7407 1.7368 0.750
0.900 2.8000 2.7812 2.7716 2.7620 2.7423 2.7222 0.900

6 0.950 3.8082 3.7743 3.7571 3.7398 3.7047 3.6688 0.950 6
0.975 5.0652 5.0125 4.9857 4.9589 4.9045 4.9491 0.975
0.990 7.2285 7.1432 7.1000 7.0568 6.9690 6.8801 0.990
0.995 9.3583 9.2408 9.1814 9.1219 9.0015 8.8793 0.995
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Table 6 (continued)

r1

γγγγγ 1 2 3 4 5 6 γγγγγ

0.500 0.50572 0.76655 0.87095 0.92619 0.96026 0.98334 0.500
0.750 1.5732 1.7010 1.7169 1.7157 1.7111 1.7059 0.750
0.900 3.5894 3.2574 3.0741 2.9605 2.8833 2.8274 0.900

7 0.950 5.5914 4.7374 4.3468 4.1203 3.9715 3.8660 0.950 7
0.975 8.0727 6.5415 5.8898 5.5226 5.2852 5.1186 0.975
0.990 12.246 9.5466 8.4513 7.8467 7.4604 7.1914 0.990
0.995 16.236 12.404 10.882 10.050 9.5221 9.1554 0.995

0.500 0.49898 0.75683 0.86004 0.91464 0.94831 0.97111 0.500
0.750 1.5384 1.6569 1.6683 1.6642 1.6575 1.6508 0.750
0.900 3.4579 3.1131 2.9238 2.8064 2.7265 2.6683 0.900

8 0.950 5.3177 4.4590 4.0662 3.8378 3.6875 3.5806 0.950 8
0.975 7.5709 6.0595 5.4160 5.0526 4.8173 4.6517 0.975
0.990 11.259 8.6491 7.5910 7.0060 6.6318 6.3707 0.990
0.995 14.688 11.042 9.5965 8.8051 8.3018 7.9520 0.995

0.500 0.49382 0.74938 0.85168 0.90580 0.93916 0.96175 0.500
0.750 1.5121 1.6236 1.6315 1.6253 1.6170 1.6091 0.750
0.900 3.3603 3.0065 2.8129 2.6927 2.6106 2.5509 0.900

9 0.950 5.1174 4.2565 3.8626 3.6331 3.4817 3.3738 0.950 9
0.975 7.2093 5.7147 5.0781 4.7181 4.4844 4.3197 0.975
0.990 10.561 8.0215 6.9919 6.4221 6.0569 5.8018 0.990

r2 0.995 13.614 10.107 8.7171 7.9559 7.4711 7.1338 0.995 r2

0.500 0.48973 0.74349 0.84508 0.89882 0.93193 0.95436 0.500
0.750 1.4915 1.5975 1.6028 1.5949 1.5853 1.5765 0.750
0.900 3.2850 2.9245 2.7277 2.6053 2.5216 2.4606 0.900

10 0.950 4.9646 4.1028 3.7083 3.4780 3.3258 3.2172 0.950 10
0.975 6.9367 5.4564 4.8256 4.4683 4.2361 4.0721 0.975
0.990 10.044 7.5594 6.5523 5.9943 5.6363 5.3858 0.990
0.995 12.826 9.4270 8.0807 7.3428 6.8723 6.5446 0.995

0.500 0.48644 0.73872 0.83973 0.89316 0.92608 0.94837 0.500
0.750 1.4749 1.5767 1.5798 1.5704 1.5598 1.5502 0.750
0.900 3.2252 2.8595 2.6602 2.5362 2.4512 2.3891 0.900

11 0.950 4.8443 3.9823 3.5874 3.3567 3.2039 3.0946 0.950 11
0.975 6.7241 5.2559 4.6300 4.2751 4.0440 3.8807 0.975
0.990 9.6460 7.2057 6.2167 5.6683 5.3160 5.0692 0.990
0.995 12.226 8.9122 7.6004 6.8809 6.4217 6.1015 0.995

0.500 0.48369 0.73477 0.83530 0.88848 0.92124 0.94342 0.500
0.750 1.4613 1.5595 1.5609 1.5503 1.5389 1.5286 0.750
0.900 3.1765 2.8068 2.6055 2.4801 2.3940 2.3310 0.900

12 0.950 4.7472 3.8853 3.4903 3.2592 3.1059 2.9961 0.950 12
0.975 6.5538 5.0959 4.4742 4.1212 3.8911 3.7283 0.975
0.990 9.3302 6.9266 5.9526 5.4119 5.0643 4.8206 0.990
0.995 11.754 8.5096 7.2258 6.5211 6.0711 5.7570 0.995
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Table 6 (continued)

r1

γγγγγ 7 8 9 10 11 12 γγγγγ

0.500 1.0000 1.0216 1.0224 1.0304 1.0369 1.0423 0.500
0.750 1.7011 1.6969 1.6931 1.6898 1.6868 1.6843 0.750
0.900 2.7849 2.7516 2.7247 2.7025 2.6837 2.6681 0.900

7 0.950 3.7870 3.7257 3.6767 3.6365 3.6028 3.5747 0.950 7
0.975 4.9949 4.8994 4.8232 4.7611 4.7091 4.6658 0.975
0.990 6.9928 6.8401 6.7188 6.6201 6.5377 6.4691 0.990
0.995 8.8854 8.6781 8.5138 8.3803 8.2691 8.1764 0.995

0.500 0.98757 1.0000 1.0097 1.0175 1.0239 1.0293 0.500
0.750 1.6448 1.6396 1.6350 1.6310 1.6274 1.6244 0.750
0.900 2.6241 2.5893 2.5612 2.5380 2.5184 2.5020 0.900

8 0.950 3.5005 3.4381 3.3881 3.3472 3.3127 3.2840 0.950 8
0.975 4.5286 4.4332 4.3572 4.2951 4.2431 4.1997 0.975
0.990 6.1776 6.0289 5.9106 5.8143 5.7338 5.6668 0.990
0.995 7.6942 7.4960 7.3386 7.2107 7.1039 7.0149 0.995

0.500 0.97805 0.99037 1.0000 1.0077 1.0141 1.0194 0.500
0.750 1.6022 1.5961 1.5909 1.5863 1.5822 1.5788 0.750
0.900 2.5053 2.4694 2.4403 2.4163 2.3959 2.3789 0.900

9 0.950 3.2927 3.2296 3.1789 3.1373 3.1022 3.0729 0.950 9
0.975 4.1971 4.1020 4.0260 3.9639 3.9117 3.8682 0.975
0.990 5.6129 5.4671 5.3511 5.2565 5.1774 5.1114 0.990

r2 0.995 6.8849 6.6933 6.5411 6.4171 6.3136 6.2274 0.995 r2

0.500 0.97054 0.98276 0.99232 1.0000 1.0063 1.0166 0.500
0.750 1.5688 1.5621 1.5563 1.5513 1.5468 1.5430 0.750
0.900 2.4140 2.3772 2.3473 2.3226 2.3016 2.2841 0.900

10 0.950 3.1355 3.0717 3.0204 2.9782 2.9426 2.9130 0.950 10
0.975 3.9498 3.8549 3.7790 3.7168 3.6645 3.6209 0.975
0.990 5.2001 5.0567 4.9424 4.8492 4.7710 4.7059 0.990
0.995 6.3025 6.1159 5.9676 5.8467 5.7456 5.6613 0.995

0.500 0.96445 0.97661 0.98610 0.99373 0.99999 1.0052 0.500
0.750 1.5418 1.5346 1.5284 1.5230 1.5181 1.5140 0.750
0.900 2.3416 2.3040 2.2735 2.2482 2.2267 2.2087 0.900

11 0.950 3.0123 2.9480 2.8962 2.8536 2.8176 2.7876 0.950 11
0.975 3.7586 3.6638 3.5879 3.5257 3.4733 3.4296 0.975
0.990 4.8861 4.7445 4.6315 4.5393 4.4619 4.3974 0.990
0.995 5.8648 5.6821 5.5368 5.4182 5.3190 5.2363 0.995

0.500 0.95943 0.97152 0.98097 0.98856 0.99480 1.0000 0.500
0.750 1.5197 1.5120 1.5054 1.4996 1.4945 1.4902 0.750
0.900 2.2828 2.2446 2.2135 2.1878 1.1658 1.1474 0.900

12 0.950 2.9134 2.8486 2.7964 2.7534 2.7170 2.6866 0.950 12
0.975 3.6065 3.5118 3.4358 3.3736 3.3211 3.2773 0.975
0.990 4.6395 4.4994 4.3875 4.2961 4.2193 4.1553 0.990
0.995 5.5245 5.3451 5.2021 5.0855 4.9878 4.9063 0.995
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Table 6 (continued)

r1

γγγγγ 13 14 15 18 20 24 γγγγγ

0.500 1.0469 1.0509 1.0543 1.0624 1.0664 1.0724 0.500
0.750 1.6819 1.6799 1.6781 1.6735 1.6712 1.6675 0.750
0.900 2.6543 2.6425 2.6322 2.6072 2.5947 2.5753 0.900

7 0.950 3.5501 3.5291 3.5108 3.4666 3.4445 3.4105 0.950 7
0.975 4.6281 4.5958 4.5678 4.5004 4.4667 4.4150 0.975
0.990 6.4096 6.3585 6.3143 6.2084 6.1554 6.0743 0.990
0.995 8.0962 8.0274 7.9678 7.8253 7.7540 7.6450 0.995

0.500 1.0339 1.0378 1.0412 1.0491 1.0531 1.0591 0.500
0.750 1.6216 1.6191 1.6170 1.6115 1.6088 1.6043 0.750
0.900 2.4875 2.4750 2.4642 2.4378 2.4246 2.4041 0.900

8 0.950 3.2588 3.2371 3.2184 3.1730 3.1503 3.1152 0.950 8
0.975 4.1618 4.1293 4.1012 4.0334 3.9995 3.9472 0.975
0.990 5.6085 5.5584 5.5151 5.4111 5.3591 5.2793 0.990
0.995 6.9377 6.8716 6.8143 6.6769 6.6082 6.5029 0.995

0.500 1.0239 1.0278 1.0311 1.0390 1.0429 1.0489 0.500
0.750 1.5756 1.5729 1.5705 1.5642 1.5611 1.5560 0.750
0.900 2.3638 2.3508 2.3396 2.3121 2.9893 2.2768 0.900

9 0.950 3.0472 3.0252 3.0061 2.9597 2.9365 2.9005 0.950 9
0.975 3.8302 3.7976 3.7694 3.7011 3.6669 3.6142 0.975
0.990 5.0540 5.0048 4.9621 4.8594 4.8080 4.7290 0.990

r2 0.995 6.1524 6.0882 6.0325 5.8987 5.8318 5.7292 0.995 r2

0.500 1.0161 1.0199 1.0232 1.0310 1.0349 1.0408 0.500
0.750 1.5395 1.5364 1.5338 1.5269 1.5235 1.5179 0.750
0.900 2.2685 2.2551 2.2435 2.2150 2.2007 2.1784 0.900

10 0.950 2.8868 2.8644 2.8450 2.7977 2.7740 2.7372 0.950 10
0.975 3.5827 3.5500 3.5217 3.4530 3.4186 3.3654 0.975
0.990 4.6491 4.6004 4.5582 4.4563 4.4054 4.3269 0.990
0.995 5.5880 5.5252 5.4707 5.3396 5.2740 5.1732 0.995

0.500 1.0097 1.0135 1.0168 1.0245 1.0284 1.0343 0.500
0.750 1.5102 1.5069 1.5041 1.4967 1.4930 1.4869 0.750
0.900 2.1927 2.1790 2.1671 2.1377 2.1230 2.1000 0.900

11 0.950 2.7611 2.7383 2.7186 2.6705 2.6464 2.6090 0.950 11
0.975 3.3913 3.3584 3.3299 3.2607 3.2261 3.1725 0.975
0.990 4.3411 4.2928 4.2509 4.1496 4.0990 4.0209 0.990
0.995 5.1642 5.1024 5.0489 4.9198 4.8552 4.7557 0.995

0.500 1.0044 1.0082 1.0115 1.0192 1.0231 1.0289 0.500
0.750 1.4861 1.4826 1.4796 1.4717 1.4678 1.4613 0.750
0.900 2.1311 2.1170 1.1049 2.0748 2.0597 2.0360 0.900

12 0.950 2.6598 2.6368 2.6169 2.5680 2.5436 2.5055 0.950 12
0.975 3.2388 3.2058 3.1772 3.1076 3.0728 3.0187 0.975
0.990 4.0993 4.0512 4.0096 3.9088 3.8584 3.7805 0.990
0.995 4.8352 4.7742 4.7214 4.5937 4.5299 4.4315 0.995
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Table 6 (continued)

r1

γγγγγ 30 40 48 60 120 ∞∞∞∞∞ γγγγγ

0.500 1.0785 1.0846 1.0877 1.0908 1.0969 1.1031 0.500
0.750 1.6635 1.6593 1.6571 1.6548 1.6502 1.6452 0.750
0.900 2.5555 2.5351 2.5427 2.5142 2.4928 2.4708 0.900

7 0.950 3.3758 3.3404 3.3224 3.3043 3.2674 3.2298 0.950 7
0.975 4.3624 4.3089 4.2817 4.2544 4.1989 4.1423 0.975
0.990 5.9921 5.9084 5.8660 5.8236 5.7372 5.6495 0.990
0.995 7.5345 7.4225 7.3657 7.3088 7.1933 7.0760 0.995

0.500 1.0651 1.0711 1.0741 1.0771 1.0832 1.0893 0.500
0.750 1.5996 1.5945 1.5919 1.5892 1.5836 1.5777 0.750
0.900 2.3830 2.3614 2.3503 2.3391 2.3162 2.2926 0.900

8 0.950 3.0794 3.0428 3.0241 3.0053 2.9669 2.9276 0.950 8
0.975 3.8940 3.8398 3.8121 3.7844 3.7279 3.6702 0.975
0.990 5.1981 5.1156 5.0736 5.0316 4.9460 4.8588 0.990
0.995 6.3961 6.2875 6.2324 6.1772 6.0649 5.9505 0.995

0.500 1.0548 1.0608 1.0638 1.0667 1.0727 1.0788 0.500
0.750 1.5506 1.5450 1.5420 1.5389 1.5325 1.5257 0.750
0.900 2.2547 2.2320 2.2203 2.2085 2.1843 2.1592 0.900

9 0.950 2.8637 2.8259 2.8066 2.7872 2.7475 2.7067 0.950 9
0.975 3.5604 3.5055 3.4774 3.4493 3.3918 3.3329 0.975
0.990 4.6486 4.5667 4.5249 4.4831 4.3978 4.3105 0.990

r2 0.995 5.6248 5.5186 5.4645 5.4104 5.3001 5.1875 0.995 r2

0.500 1.0467 1.0526 1.0556 1.0585 1.0645 1.0705 0.500
0.750 1.5119 1.5056 1.5023 1.4990 1.4919 1.4843 0.750
0.900 2.1554 1.1317 2.1195 2.1072 2.0818 2.0554 0.900

10 0.950 2.6996 2.6609 2.6410 2.6211 2.5801 2.5379 0.950 10
0.975 3.3110 3.2554 3.2269 3.1984 3.1399 3.0798 0.975
0.990 4.2469 4.1653 4.1236 4.0819 3.9965 3.9090 0.990
0.995 5.0705 4.9659 4.9126 4.8592 4.7501 4.6385 0.995

0.500 1.0401 1.0460 1.0490 1.0519 1.0578 1.0637 0.500
0.750 1.4805 1.4737 1.4701 1.4664 1.4587 1.4504 0.750
0.900 2.0762 2.0516 2.0389 2.0261 1.9997 1.9721 0.900

11 0.950 2.5705 2.5309 2.5105 2.4901 2.4480 2.4045 0.950 11
0.975 3.1176 3.0613 3.0324 3.0035 2.9441 2.8828 0.975
0.990 3.9411 3.8596 3.8179 3.7761 3.6904 3.6025 0.990
0.995 4.6543 4.5508 4.4979 4.4450 4.3367 4.2256 0.995

0.500 1.0347 1.0405 1.0435 1.0464 1.0523 1.0582 0.500
0.750 1.4544 1.4471 1.4432 1.4393 1.4310 1.4221 0.750
0.900 2.0115 1.9861 1.9729 1.9597 1.9323 1.9036 0.900

12 0.950 2.4663 2.4259 2.4051 2.3842 2.3410 2.2962 0.950 12
0.975 2.9633 2.9063 2.8771 2.8478 2.7874 2.7249 0.975
0.990 3.7008 3.6192 3.5774 3.5355 3.4494 3.3608 0.990
0.995 4.3309 4.2282 4.1756 4.1229 4.0149 3.9039 0.995
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Table 6 (continued)

r1

γγγγγ 1 2 3 4 5 6 γγγγγ

0.500 0.48141 0.73145 0.83159 0.88454 0.91718 0.93926 0.500
0.750 1.4500 1.5452 1.5451 1.5336 1.5214 1.5105 0.750
0.900 3.1362 2.7632 2.5603 2.4337 2.3467 2.2830 0.900

13 0.950 4.6672 3.8056 3.4105 3.1791 3.0254 2.9153 0.950 13
0.975 6.4143 4.9653 4.3472 3.9959 3.7667 3.6043 0.975
0.990 9.0738 6.7010 5.7394 5.2053 4.8616 4.6204 0.990
0.995 11.374 8.1865 6.9257 6.2335 5.7910 5.4819 0.995

0.500 0.47944 0.72862 0.82842 0.88119 0.91371 0.93573 0.500
0.750 1.4403 1.5331 1.5317 1.5194 1.5066 1.4952 0.750
0.900 3.1022 2.7265 2.5222 2.3947 2.3069 2.2426 0.900

14 0.950 4.6001 3.7389 3.3439 3.1122 2.9582 2.8477 0.950 14
0.975 6.2979 4.8567 4.2417 3.8919 3.6634 3.5014 0.975
0.990 8.8616 6.5149 5.5639 5.0354 4.6950 4.4558 0.990
0.995 11.060 7.9216 6.6803 5.9984 5.5623 5.2574 0.995

0.500 0.47775 0.72619 0.82569 0.87830 0.91073 0.93267 0.500
0.750 1.4321 1.5227 1.5202 1.5071 1.4938 1.4820 0.750
0.900 3.0732 2.6952 2.4898 2.3614 2.2730 2.2081 0.900

15 0.950 4.5431 3.6823 3.2874 3.0556 2.9013 2.7905 0.950 15
0.975 6.1995 4.7650 4.1528 3.8043 3.5764 3.4147 0.975
0.990 8.6831 6.3589 5.4170 4.8932 4.5556 4.3183 0.990

r2 0.995 10.798 7.7008 6.4760 5.8029 5.3721 5.0708 0.995 r2

0.500 0.47628 0.72406 0.82330 0.87578 0.90812 0.93001 0.500
0.750 1.4249 1.5137 1.5103 1.4965 1.4827 1.4705 0.750
0.900 3.0481 2.6682 2.4618 2.3327 2.2438 2.1783 0.900

16 0.950 4.4940 3.6337 3.2389 3.0069 2.8524 2.7413 0.950 16
0.975 6.1151 4.6867 4.0768 3.7294 3.5021 3.3406 0.975
0.990 8.5310 6.2262 5.2922 4.7726 4.4374 4.2016 0.990
0.995 10.575 7.5138 6.3034 5.6378 5.2117 4.9134 0.995

0.500 0.47499 0.72219 0.82121 0.87357 0.90584 0.92767 0.500
0.750 1.4186 1.5057 1.5015 1.4873 1.4730 1.4605 0.750
0.900 3.0262 2.6446 2.4374 2.3077 2.2183 2.1524 0.900

17 0.950 4.4513 3.5915 3.1968 2.9647 2.8100 2.6987 0.950 17
0.975 6.0420 4.6189 4.0112 3.6648 3.4379 3.2767 0.975
0.990 8.3997 6.1121 5.1850 4.6690 4.3359 4.1015 0.990
0.995 10.384 7.3536 6.1556 5.4967 5.0746 5.7789 0.995

0.500 0.47385 0.72053 0.81936 0.87161 0.90381 0.92560 0.500
0.750 1.4130 1.4988 1.4938 1.4790 1.4644 1.4516 0.750
0.900 3.0070 2.6239 2.4160 2.2858 2.1958 1.1296 0.900

18 0.950 4.4139 3.5546 3.1599 2.9277 2.7729 2.6613 0.950 18
0.975 5.9781 4.5597 3.9539 3.6083 3.3820 3.2209 0.975
0.990 8.2854 6.0129 5.0919 4.5790 4.2479 4.0146 0.990
0.995 10.218 7.2148 6.0277 5.3746 4.9560 4.6627 0.995
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Table 6 (continued)

r1

γγγγγ 7 8 9 10 11 12 γγγγγ

0.500 0.95520 0.96724 0.97665 0.98421 0.99042 0.99560 0.500
0.750 1.5011 1.4931 1.4861 1.4801 1.4746 1.4701 0.750
0.900 2.2341 2.1953 2.1638 1.1376 1.1152 2.0966 0.900

13 0.950 2.8321 2.7669 2.7144 2.6710 2.6343 2.6037 0.950 13
0.975 3.4827 3.3880 3.3120 3.2497 3.1971 3.1532 0.975
0.990 4.4410 4.3021 4.1911 4.1003 4.0239 3.9603 0.990
0.995 5.2529 5.0761 4.9351 4.8199 4.7234 4.6429 0.995

0.500 0.95161 0.96360 0.97298 0.98051 0.98670 0.99186 0.500
0.750 1.4854 1.4770 1.4697 1.4634 1.4577 1.4530 0.750
0.900 2.1931 2.1539 2.1220 2.0954 2.0727 2.0537 0.900

14 0.950 2.7642 2.6987 2.6548 2.6021 2.5651 2.5342 0.950 14
0.975 3.3799 2.2853 3.2093 3.1469 3.0941 3.0501 0.975
0.990 4.2779 4.1399 4.0297 3.9394 3.8634 3.8001 0.990
0.995 5.0313 4.8566 4.7173 4.6034 4.5078 4.4281 0.995

0.500 0.94850 0.96046 0.96981 0.97732 0.98349 0.98863 0.500
0.750 1.4718 1.4631 1.4556 1.4491 1.4432 1.4383 0.750
0.900 2.1582 2.1185 2.0862 2.0593 2.0363 2.0171 0.900

15 0.950 2.7066 2.6408 2.5876 2.5437 2.5064 2.4753 0.950 15
0.975 3.2934 3.1987 3.1227 3.0602 3.0073 2.9633 0.975
0.990 4.1415 4.0045 3.8948 3.8049 3.7292 3.6662 0.990

r2 0.995 4.8473 4.6743 4.5364 4.4236 4.3288 4.2498 0.995 r2

0.500 0.94580 0.95773 0.96705 0.97454 0.98069 0.98582 0.500
0.750 1.4601 1.4511 1.4433 1.4366 1.4305 1.4255 0.750
0.900 2.1280 2.0880 2.0553 2.0281 2.0048 1.9854 0.900

16 0.950 2.6572 2.5911 2.5377 2.4935 2.4560 2.4247 0.950 16
0.975 3.2194 3.1248 3.0488 2.9862 2.9332 2.8890 0.975
0.990 4.0259 3.8896 3.7804 3.6909 3.6155 3.5527 0.990
0.995 4.6920 4.5207 4.3838 4.2719 4.1778 4.0994 0.995

0.500 0.94342 0.95532 0.96462 0.97209 0.97823 0.98334 0.500
0.750 1.4497 1.4405 1.4325 1.4256 1.4194 1.4142 0.750
0.900 2.1017 2.0613 2.0284 2.0009 1.9773 1.9577 0.900

17 0.950 2.6143 2.5480 2.4943 2.4499 2.4122 2.3807 0.950 17
0.975 3.1556 3.0610 2.9849 2.9222 2.8691 2.8249 0.975
0.990 3.9267 3.7910 3.6822 3.5931 3.5179 3.4552 0.990
0.995 4.5594 4.3893 4.2535 4.1423 4.0488 3.9709 0.995

0.500 0.94132 0.95319 0.96247 0.96993 0.97606 0.98116 0.500
0.750 1.4406 1.4312 1.4320 1.4159 1.4095 1.4042 0.750
0.900 2.0785 2.0379 2.0047 1.9770 1.9532 1.9333 0.900

18 0.950 2.5767 2.5102 2.4563 2.4117 2.3737 2.3421 0.950 18
0.975 3.0999 3.0053 2.9291 2.8664 2.8132 2.7689 0.975
0.990 3.8406 3.7054 3.5971 3.5082 3.4331 3.3706 0.990
0.995 4.4448 4.2759 4.1410 4.0305 3.9374 3.8599 0.995

These tables have been adapted from Donald B. Owen’s Handbook of Statistical Tables,
published by Addison-Wesley, by permission of the publishers.
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Table 7 Table of Selected Discrete and Continuous Distributions and Some of their Characteristics

Distribution Probability density function Mean Variance

Binomial, B(n, p) f x
n

x
p q x nx n x( ) =

⎛
⎝⎜

⎞
⎠⎟

=− , , , . . . , ;   0 1

0 < p < 1, q = 1 − p np npq

(Bernoulli, B(1, p) f x p q xx x( ) = =−1 0 1, , p pq)

Poisson P(λλλλλ) f x e
x

x
x

( ) = =−λ λ
!

, , , . . . ;0 1

λ > 0 λ λ

Hypergeometric f x

m

x

n

r x

m n

r

( ) =

⎛
⎝⎜

⎞
⎠⎟ −
⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

,  where

mr
m n+

mnr m n r

m n m n

+ −( )
+( ) + −( )2

1

x r m= ( )0 1, , . . . ,  min ,  

Negative Binomial f x p
r x

x
q xr x( ) =

+ −⎛
⎝⎜

⎞
⎠⎟

=
1

0 1, , , . . . ;
rq
p

rq
p2

0 < p < 1, q = 1 − p

(Geometric f x pq xx( ) = =, , , . . .0 1
q
p

q
p2

)

Multinomial f x x
n

x x xk
k

1
1 2

, . . . ,
!

! ! !
( ) =

⋅ ⋅ ⋅
× vector of expectations: vector of variances:

p p p xx x
k
x

j
k

1 2
1 2 0⋅ ⋅ ⋅ ≥,   integers, (np1, . . . , npk)′ (np1q1, . . . , npkqk)′

x1 + · · · + xk = n; pj > 0, j = 1, qj = 1 − pj, j = 1, . . . , k

2, . . . , k, p1 + p2 + · · · + pk = 1

Normal, N(μμμμμ, σσσσσ2) f x
x( ) = −

−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2 2

2

2πσ

μ
σ

exp ,

x ∈ �; μ ∈ �, σ > 0 μ σ2

(Standard Normal, N(0, 1)
  

f x
x

x( ) = −
⎛
⎝⎜

⎞
⎠⎟

∈1

2 2

2

π
exp , � 0 1)

Gamma f x x
x

x( ) = ( ) −
⎛
⎝⎜

⎞
⎠⎟

>−1
01

Γ α β βα
α exp , ; αβ αβ2

α, β > 0

Chi-square f x
r

x
x

x
r

r

( ) =
⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

>
−1

2
2

2
0

2

2
1

Γ
exp , ;

r > 0 integer r 2r
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Table 7 (continued)

Distribution Probability density function Mean Variance

Negative Exponential f x x x( ) = −( ) > >λ λ λexp , ;0 0
1
λ

1
2λ

Uniform, U(ααααα, βββββ) f x x( ) =
−

≤ ≤1
β α

α β, ;
α β+

2

α β−( )2

12

−∞ < α < β < ∞

Beta f x x x x( ) =
+( )

( ) ( ) −( ) < <− −Γ
Γ Γ

α β
α β

α β1 1
1 0 1, ;

α, β > 0
α

α β+
αβ

α β α β+( ) + +( )2
1

Cauchy
  

f x
x

x( ) = ⋅
+ −( )

∈σ
π σ μ

1
2 2 , ;�

μ ∈ �, σ > 0 Does not exist Does not exist

Bivariate Normal f x x
q

1 2

1 2
2

1

2 1 2
, exp ,( ) =

−
−⎛

⎝⎜
⎞
⎠⎟πσ σ ρ

q
x x

=
−

−⎛
⎝⎜

⎞
⎠⎟

−
−⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

1
1

2
2

1 1

1

2

1 1

1ρ
μ

σ
ρ μ

σ

×
−⎛

⎝⎜
⎞
⎠⎟

+
−⎛

⎝⎜
⎞
⎠⎟

⎤

⎦
⎥
⎥

x x2 2

2

2 2

2

2
μ

σ
μ

σ
,

x1, x2, ∈�; vector of expectations: vector of variances:

μ1, μ2 ∈ �, σ1, σ2 > 0, −1 ≤ ρ ≤ 1 (μ1, μ2)′ (σ 2
1, σ 2

2)′.

k-Variate Normal, N(μμμμμ, /Σ ) f
k

x( ) = ( ) / ×
− −

2
2 1 2π ΣΣ

exp ,− −( ) / −( )⎡
⎣⎢

−1
2

1x xμμ μμ′ΣΣ

x ∈ �k; μμμμμ ∈ �, /Σ : k × k mean vector: covariance
non-singular symmetric matrix μμμμμ matrix: /Σ

Distribution Characteristic function Moment generating function

Binomial, B(n, p)
  
ϕ t pe q tit n( ) = +( ) ∈, � M t pe q tt n( ) = +( ) ∈, �

(Bernoulli, B(1, p)
  
ϕ t pe q tit( ) = + ∈, �

  
M t pe q tt( ) = + ∈, )�

Poisson, P(λλλλλ)
  
ϕ λ λt e tit( ) = −( ) ∈exp , �

  
M t e tt( ) = −( ) ∈exp ,λ λ �

Negative Binomial

  

ϕ t
p

qe
t

r

it r( ) =
−( )

∈
1

, � M t
p

qe
t q

r

t r( ) =
−( )

< −
1

, log

(Geometric
  
ϕ t

p
qe

tit( ) =
−

∈
1

, � M t
p
qe

t q
t( ) =

−
< −

1
, log )
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Table 7 (continued)

Distribution Characteristic function Moment generating function

Multinomial ϕ t t p e p ek
it

k
it n

k
1 1

1, . . . , ,( ) = + ⋅ ⋅ ⋅ +( ) M t t p e p ek
t

k
t n
k

1 1
1, . . . , ,( ) = + ⋅ ⋅ ⋅ +( )

t1, . . . , tk ∈ � t1, . . . , tk ∈ �

Normal, N(μμμμμ, σσσσσ2)
  

ϕ μ σ
t i t

t
t( ) = −

⎛
⎝⎜

⎞
⎠⎟

∈exp ,
2 2

2
�

  

M t t
t

t( ) = +
⎛
⎝⎜

⎞
⎠⎟

∈exp ,μ σ 2 2

2
�

(Standard Normal
  

ϕ t
t

t( ) = −
⎛
⎝⎜

⎞
⎠⎟

∈exp ,
2

2
�

  

M t
t

t( ) =
⎛
⎝⎜

⎞
⎠⎟

∈exp , )
2

2
�

Gamma
  

ϕ
β αt

i t
t( ) =

−( )
∈1

1
, � M t

t
t( ) =

−( )
<1

1

1

β βα ,

Chi-square
  

ϕ t
it

tr( ) =
−( )

∈1

1 2
2 , � M t

t
t

r( ) =
−( )

<1

1 2

1
22

,

Negative Exponential
  
ϕ λ

λ
t

it
t( ) =

−
∈, � M t

t
t( ) =

−
<λ

λ
λ,

Uniform, U(ααααα, βββββ)
  

ϕ
β α

β α

t
e e
it

t
it it

( ) = −
−( ) ∈, �

  

M t
e e
t

t
t t

( ) = −
−( ) ∈

β α

β α
, �

Cauchy (μμμμμ ===== 0, σσσσσ ===== 1)
  
ϕ t t t( ) = −( ) ∈exp , � Does not exist (for t ≠ 0)

Bivariate Normal ϕ μ μt t i t i t1 2 1 1 2 2, exp( ) = +[ M t t t t1 2 1 1 2 2, exp( ) = +[μ μ

− + +( )⎤
⎦⎥

1
2

21
2

1
2

1 2 1 2 2
2

2
2σ ρσ σ σt t t t , + + +( )⎤

⎦⎥
1
2

21
2

1
2

1 2 1 2 2
2

2
2σ ρσ σ σt t t t ,

t1, t2 ∈ � t1, t2 ∈ R

k-Variate Normal ϕ t t t t( ) = ′ − ′ /⎛
⎝⎜

⎞
⎠⎟

exp ,i μμ 1
2

ΣΣ M t t t t( ) = ′ + ′ /⎛
⎝⎜

⎞
⎠⎟

exp ,μμ 1
2

ΣΣ

t ∈ � k t ∈ �k
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Some Notation and Abbreviations

F, A (usually) a field and sigma-field, respectively

F (C ), σ(C ) field and σ-field, respectively, generated by the class C
AA σ-field of members of A which are subsets of A

(S, A) measurable space

� k, B k, k ≥ 1 k-dimensional Euclidean space and Borel σ-field, respectively

(� 1, B 1) = (� , B) Borel real line

↑, ↓ increasing (non-decreasing) and decreasing (non-increasing), respectively

P, (S, A, P) probability measure (function) and probability space, respectively

IA indicator of the set A

X−1(B) inverse image of the set B under X

AX or X−1(σ-field) σ-field induced by X

(X ∈ B) = [X ∈ B]

= X−1(B) the set of points for which X takes values in B

r.v., r. vector, random variable, random vector
r. experiment, random experiment
r. sample, r. interval, random sample, random interval
r. error random error

X(S ) range of X

X( j) or Yj jth order statistic

B(n, p) Binomial distribution (or r.v.) with parameters n and p

P(λ) Poisson distribution (or r.v.) with parameter λ
N(μ, σ 2) Normal distribution (or r.v.) with parameters μ and σ 2

Φ distribution function of N(0, 12)
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χ 2
r Chi-square distribution (or r.v.) with r degrees of freedom (d.f.)

U(α, β) or R(α, β) Uniform or Rectangular distribution (or r.v.) with parameters α and β
tr (Student’s) t distribution (or r.v.) with r d.f.

Fr1,r2
F distribution (or r.v.) with r1 and r2 d.f.

χ′2
r : δ noncentral Chi-square distribution with r d.f. and noncentrality parameter δ

t ′r : δ noncentral t distribution with r d.f. and noncentrality parameter δ
F ′r1,r2 : δ noncentral F distribution with r1, r2 d.f. and noncentrality parameter δ
E(X) or EX or
μ(X) or μX or } expectation (mean value, mean) of X
just μ
σ 2(X) (σ(X)) or
σ 2

X (σX) or } variance (standard deviation) of X
just σ 2(σ)

Cov(X, Y), ρ(X, Y) Covariance and correlation coefficient, respectively, of X and Y

ϕX or ϕX1, . . . , Xn
,

ϕX or just ϕ characteristic function (cf. f.)

MX or MX1, . . . , Xn
,

MX or just M moment generating function (m.g.f.)

ηX factorial moment generating function
a.s.⎯ →⎯⎯ almost sure (a.s.) convergence or convergence with probability one
P d⎯ →⎯ ⎯ →⎯ ⎯ →⎯⎯, , q.m. convergence in probability, distribution, quadratic mean,

respectively

UMV (UMVU) uniformly minimum variance (unbiased)

ML (MLE) maximum likelihood (estimator or estimate)

(UMP) MP (UMPU) (uniformly) most powerful (unbiased)

(MLR) LR (monotone) likelihood ratio

SPRT sequential probability ratio test
LE (LSE) least square (estimator or estimate)
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Answers to Selected Exercises

Chapter 1 1.1.1. (i), (ii) incorrect; (iii), (iv) correct.

1.1.2. A1 = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}
A2 = {(−5, 5), (−4, 4), (−3, 3),  (−2, 2), (−1, 1), (0, 0)}
A5 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0), (−1, 0), (−1, 1), (−2, 0)}.

1.1.9. (i) A A A Aj
j nn

j
j nn

= =
=

∞

=

∞

=

∞

=

∞

; ; (ii)  (iii) – (v) follow from (i),  (ii).IU UI
1 1

1.1.11. An ↑ A = (−5, 20), Bn↓B = (0, 7].

1.2.2. Let A1, A2 ∈ F. Then Ac
1, Ac

2 ∈ F  by (F 2). Also Ac
1 ∩ Ac

2 ∈ F  by (F 3′).
But Ac

1 ∩ Ac
2 = (A1 ∪ A2)

c. Thus (A1 ∪ A2)
c ∈ F  and hence A1 ∪ A2 ∈ F  by

(F 2).

1.2.7. C is not a field because, for example, {3} ∈ C but {3}c = {1, 2, 4} ∉ C.

Chapter 2 2.1.1. P(Ac
1 ∩ A2) = P(Ac

2 ∩ A3) = 1/6, P(Ac
1 ∩ A3) = 1/3,

P(A1 ∩ Ac
2 ∩ Ac

3) = 0, P(Ac
1 ∩ Ac

2 ∩ Ac
3) = 5/12.

2.1.2. (i) 1/9; (ii) 1/3.

2.1.3. (i) 3/190; (ii) 4/190.

2.1.4. P(A) = 0.14, P(B) = 0.315, P(C) = 0.095.

2.2.7. P(Aj | A) = j(5 − j)/20, j = 1, . . . , 5.

2.2.8. (i) 2/5; (ii) 5/7.

2.2.9. (i) 15/26; (ii) 13/24.
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2.2.11. (i) 7/9; (ii) 1/6.

2.2.12. 19/218.

2.2.17.
1
3

1
1

6

× + + −
=

∑[ /( )( )].m n m n m nj j j j j j
j

2.3.1. 0 = P(∅) = P(A ∩ B). Thus P(A ∩ B) = 0 if and only if P(A) = 0 or
P(B) = 0 or P(A) = P(B) = 0.

2.3.6. 0 54 0 1 0 41 1

1

1

. ( . ) ( . ) .× − − −

=

−

∑ j n j

j

n

2.4.1. 720.

2.4.2. 2n.

2.4.3. 900.

2.4.4. (i) 107; (ii) 104.

2.4.6. 1/360.

2.4.7. (i) 1/(24!); (ii) 1/(13!) × (9!).

2.4.8. n(n − 1).

2.4.12. 29/56.

2.4.13. (2n)!.

2.4.14. ( / ) .1 2
22

1

2
n

j n

n n

j
×

⎛
⎝⎜

⎞
⎠⎟= +

∑

2.4.15.
n

j
p pj n j

j

n ⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

=
∑ ( ) .1

0

2

2.4.21.
10 1

5
4
55

10 10

jj

j j⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟=

−

∑ .

2.4.29. With regard to order: P(A1) = 0.125; P(A2) = 0.25; P(A3) = 4 48 3

52

2

3

× ×

≈ 0.19663; P(A4) = 0.015625; P[A5] = 0.09375.

Without regard to order: P(A1) = 7
53

≈ 0.13207; P(A2) = 0.50;

P(A3) = 392
2067

≈ 0.18965; P(A5) = 507
5724

≈ 0.08857.



2.4.31. ( ;

.

i) 2  (ii) 4 ;  (iii) ;  (iv) 384;

(v) 4

×
⎛
⎝⎜

⎞
⎠⎟

×
⎛
⎝⎜

⎞
⎠⎟

×
⎛
⎝⎜

⎞
⎠⎟

×
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ −
⎛
⎝⎜

⎞
⎠⎟

×
⎛
⎝⎜

⎞
⎠⎟

=
∑26

3

26

2

13

1

13

2

4 48

5

13

5

3

2

4

j jj

2.6.3. 244/495.

Chapter 3 3.2.1. (i) {0, 1, 2, 3, 4}; (ii) P(X = x) = 4
24

x

⎛
⎝⎜

⎞
⎠⎟

, x = 0, 1, . . . , 4.

3.2.2. (i) 1 � (0.875)25 = 0.9645; (ii) 1; (iii) 0.1953.

3.2.5. λ = 2.3026 and P(X > 5) = 0.032.

3.2.6. e−4.

3.2.10. 1
400 1200

25

1600

250

9

−
⎛
⎝⎜

⎞
⎠⎟ −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

∑
x xx

.

3.2.14. c = 1 − α .

3.2.15. (i) 2/3; (ii) (1/3)10; (iii) 0.25; (iv) 3/13.

3.3.5. a = 3.94, b = 18.3.

3.3.7. (i) e−λj(1 − e−λ), j = 0, 1, . . . ; (ii) e−λt; (iii) e−λt; (iv) λ = −logα /s.

3.3.8. (i) e−1.3 ≈ 0.27; (ii) e−0.6 ≈ 0.55; (iii) 50 log2 ≈ 34.65.

3.3.9. (i) α = 2; (ii) α = 3.

3.3.12. 2 1tan / .c− π

3.3.15. (i) 1.5; (ii) 3.

3.3.16. exp(−x3).

3.3.21. (i) 27/400; (ii) 12/25; (iii) 0; (iv) 2/25.

3.4.2. (i) 0.9999; (ii) 0.9996; (iii) 0.9446.

3.4.3. 0.0713.

Chapter 4 4.1.10. (i) 0; (ii) 0.841345; (iii) 0.

4.1.11. (i) 0.01222; (ii) 0.10565; (iii) 0.53281.
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4.1.13. (i) 0.584.

4.1.14. c = μ + 1.15σ.

4.2.1. (i)   6;  (ii) 1f x
x

j
x

j

x x

x

x x

( ) , , . . . , .=
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= −
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

−

=

−

∑21 1
6

5
6

1
21 1

6
5
6

21

0

4 21

4.2.3. (i) c = any real > 0; (ii) fX(x) = 2(c − x)/c2, x ∈ [0, c], fY(y) = 2y/c2,
y ∈ [0, c]; (iii) f(x|y) = 1/y, x ∈ [0, y], y ∈ (0, c], f(y|x) = 1/(c − x),
0 ≤ x ≤ y < c; (iv) (2c − 1)/c2, by assuming that c > 1/2.

4.2.4. (i) 1 − e−x, x > 0; (ii) 1 − e−y, y > 0; (iii) 1/2; (iv) 1 − 4e−3.

Chapter 5 5.1.6. 0, c2.

5.1.12. (i) 2, 4; (ii) 2.

5.2.1. n(n − 1) · · · (n − k + 1)pk.

5.2.2. (i) 0.5, 0.25/n; (ii) 0.75; (iii) 500; (iv) 0.2236.

5.2.3. 45(O), 40(A), 10(B), 5(AB).

5.2.4. λk.

5.2.10. $0.075.

5.2.13. exp , )exp( ).
2

2
1 2

2
2α β β α β+⎛

⎝⎜
⎞

⎠⎟
− + (exp 2

5.2.15. (ii) γ1 = [np(p − 1)(2p − 1)]/σ 3, σ 2 = np(1 − p), so that γ1 < 0 if p < 1/2
and γ1 > 0 if p > 1/2; (iii) λ−1/2, 2.

5.2.16. (i) γ2 = −1.2; (ii) 9.

5.3.2. [n(n + 1) − y(y − 1)]/2(n − y + 1), y = 1, . . . , n, (x + 1)/2, x = 1, . . . ,
n.

5.3.3. 7/12, 11/144, 7/12, 11/144, (3y + 2)/(6y + 3), y ∈ (0, 1), (6y2 + 6y + 1)/
2(6y + 3)2, y ∈ (0, 1).

5.3.4. 1/λ, 1/λ2, 1/λ, 1/λ2, 1/λ, 1/λ2.

5.4.5. P X P X
n

P X
n

P X
n

n
n

n

( ) lim

lim .

= = − <
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − <
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − <
⎛
⎝⎜

⎞
⎠⎟

=

=

∞

→∞

→∞

μ μ μ

μ

1 1

1
1

1
I

5.5.1. 0, 2.5, 2.5, 2.25, 0.



Chapter 6 6.2.10. φ(t) = 1/(1 − it)2, EXn = (n + 1)!.

6.2.11. (1 − cosx)/πx2 for x ≠ 0, anything (for example, 1/(2π)) for x = 0.

6.5.1.

  

e tjt

j=
∑

⎛

⎝⎜
⎞

⎠⎟
∈

1

6

6,  .�

6.5.2. et/(2 − et), t < log2, eit/(2 − eit), 2, 4, 2.

6.5.4. λeαt/(λ − t), t < λ, λeiαt/(λ − it), α + (1/λ), 1/λ2.

6.5.5. η(t) = [pt + (1 − p)]n, t ∈ �.

6.5.12. γ (t) = eλt, t ∈ �.

6.5.15. M(t) = 1/(1 − t), t ∈ (−1, 1), φ(t) = 1/(1 − it), f(x) = e−x, x > 0.

6.5.17. EX1 = 1, σ 2(X1) = 0.5, Coυ(X1, X2) = 1/6.

6.5.24. M(t1, t2) = exp(μμμμμ′t + 1
2
t′Ct), μμμμμ = (μ1, μ2)′, t = (t1, t2)′ ∈ �2,

C =
⎛

⎝⎜
⎞

⎠⎟
σ ρσ σ

ρσ σ σ
1
2

1 2

1 2 2
2

, φ(t1, t2) = exp(iμμμμμ′t − 1
2
t′Ct), E(X1, X2) = ρσ1σ2  + μ1μ2.

Chapter 7 7.1.1. FX(1)
(x) = 1 − [1 − F(x)]n, FX(n)

(x) = [F(x)]n. Then for the continuous
case and continuity points of f, we have fX(1)

(x) = nf(x)[1 − F(x)]n−1,
fX(n)

(x) = nf(x)[F(x)]n−1.

7.1.2. (i) fX1
(x1) = I(0,1 )(x1), fX2

(x2) = I(0,1)(x2); (ii) 1/18, π/16, (1 − log2)/2.

7.1.6. (i) For j ≠ 1, fX1,Xj
(0, 0) = fX1,Xj

(0, 1) = fX1,Xj
(1, 0) = fX1,Xj

(1, 1) = 1/4 and
fXi

(0) = fXi
(1) = 1/2, i = 1, 2, 3; (ii) Follows from (i).

7.1.8. (i)   (ii) 

(iii)  independently of .

n

j
p p p P X B p e

j
e e

j k

n
j n j

j

j j

⎛
⎝⎜

⎞
⎠⎟

− = ∈ =

⎛
⎝⎜

⎞
⎠⎟

− ≈

=

−

=

− − −

∑

∑

( ) , ( ); / ;

( ) .

1 1

10
1 0 3057

1

5

10
1 10 λ

7.2.2. 1/c2, 1/c3, 2/c2, 3/c2.

7.2.4. (i) n = integral part of σ 2/(1 − α)c2 plus 1; (ii) 4,000.

7.3.3. (i) 200; (ii) fX+Y(z) = λ2ze−λz, z > 0; (iii) 3.5e−2.5.

Chapter 8 8.1.1. pn → 0 as n → ∞.

8.1.3. E(X̄n − μ)2 = σ 2(X̄n) = σ 2

n
→ 0 as n → ∞.
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8.1.4. E(Yn − X )2 = E(Xn − Yn)
2 + E(Xn − X )2 − 2E[(Xn − Yn)(Xn − X )]

and |E[(Xn − Yn)(Xn − X)]| ≤ E|(Xn − Yn)(Xn − X)| ≤ E1/2(Xn − Yn)
2

× E1/2(Xn − X)2.

8.2.2. φ
λ

φ
λ λ λ

X n
e

n

n
it

n

n

e e
Xn

it
it

t p q
n e

n
e e t( ) ,= +( ) = −

−( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎯ →⎯⎯ = = ( )→∞

− −( ) −1
1 1

where X~ P(λ).

8.3.2. P(180 ≤ X ≤ 200) ≈ 0.88.

8.3.3. P(150 ≤ X ≤ 200) ≈ 0.96155.

8.3.5. P(65 ≤ X ≤ 90) ≈ 0.87686.

8.3.7. 0.999928.

8.3.8. 4,146.

8.3.11. c = 0.329.

8.3.15. n = 123.

8.3.16. 26.

8.4.3. E X
n

E X
n

E X
n

n
nM

M
n

n n j j
j

n

j j
j

n

j
j

n

n

( ) ( ) ( )

.

− = −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − =

≤ = ⎯ →⎯⎯

= = =

→∞

∑ ∑ ∑μ μ μ σ2
2

1

2

2
2

1
2

2

1

2

1 1 1

1
0

8.4.6. σ σ χ σ χ2 2 2 2 21 1
2( ) ( )X

j jj j j=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = =  and then Exercise 8.4.3 applies.

8.4.7. σ λ μ σ λ

λ

2 2

2
2

1
2

1

1

1 1

1 1
0

( )

.

X E X
n n

n n

j j n n j
j

n

j
j

n

j n
j

n

= −( ) = =

= ⋅ ⎯ →⎯⎯

= =

→∞
=

∑ ∑

∑

 so that 

Chapter 9 9.1.2. (ii) P(Y = c1) = 0.9596, P(Y = c2) = 0.0393, P(Y = c3) = 0.0011;
(iii) 0.9596c1 + 0.0393c2 + 0.0011c3.

9.1.3. N( 9–5 μ + 32, 81–25 σ 2 ).

9.1.6. f z z zZ ( ) / , (= − ∈ −1 1 12π  ,  1).

9.1.8. f y
r

y y y y yr r r( ) ( ) exp[ / ( )], ( ,/ ( / ) [( / ) ]=
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− − − ∈
−

− − +Γ
2

2 1 2 1 02

1

2 1 2 1   1).



9.2.1. P(X1 + X2 = j) = (j − 1)/36, j = 2, . . . , 7, P(X1 + X2 = j) = (13 − j )/36, j =
8, . . . , 12, and P(X1 + X2 = j ) = 0 otherwise.

9.2.6. f x I x
x

IX ( ) ( )( , ) ( , )= + ∞
1
2

1

2
0 1 2 1 , and 0 otherwise.

9.2.8.

ii(i) Use EXk = r
r

r k r k

r r

k

2

1

1 2

1 2

1
2

1
2

1
2

1
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Γ Γ

Γ Γ
;

i(ii) The transformation y
xr

r

=
+
1

1 1

2

 gives

x
r
r

y
y

o y
dx
dy

r
r y

= ⋅ − < < = ⋅2

1

2

1
2

1
1

1
, , .and

Then the p.d.f. of Fr
1
,r

2
, on page 236 yields:

f y f
r
r

y
y

r
r y

y yY X

r r

r r

r r

( ) = ⋅ −⎛
⎝⎜

⎞
⎠⎟

⋅ ⋅ =
( )

( ) ( ) −( )
+

− −
2

1

1 1
12

1
2

2

2 2

1 1
1 2

1 2

2 2
2 1Γ

Γ Γ

after cancellations. This last expression is the p.d.f. of the Beta distri-
bution with degrees of freedom r2–2 and r1–2.

(iii) By (ii) and for r1 = (= r), 1/(1 + X) is B(r/2, r/2) which is symmetric
about 1/2.

Hence P X P
X

Y r X( ) ; .≤ =
+

≥
⎛
⎝⎜

⎞
⎠⎟

= =1
1

1
1
2

1
2 1 (iv) Set  Then

f y

r r

r r r

y
y
r

y
rY

r

r

r r

( )

( )

/

( / )

/ /

=
+

⎡

⎣
⎢

⎤

⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

−
− −Γ

Γ Γ

1
2

1
2

1
2

1 1
1 2

1 2 2
2

2 1

2

2

2

2

1

1

2 1

r
r

r y

r

y e
2

1

1
1

1
2

21
2 1

2 1 2
→∞

−

− −⎯ →⎯⎯
⎛
⎝⎜

⎞
⎠⎟

Γ ( / )

( / ) /

since Γ Γr r r
r r

r
r1 2 2

2
2 2 1

2 2
1 21

2

1
+⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎯ →⎯⎯ [ ]→∞
−/ ( / )

by the approximation employed in Exercise 2.7(iii).
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9.2.13 f x

r

e
r

r

e
r

r

r
r

r

r( ) =

+⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

− +( ) −
−( )

−

Γ Γ1
2

2
1

2

2

2
2

1 2
2

2

1 2

1

π π

.

1
1

1 1

1 2
2

1 2
2

1 2

1 2 2
1

+
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⋅ +
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⋅ +
⎛

⎝⎜
⎞

⎠⎟
⋅( )

− −
−

r
t
r

t
r

e
r r

π .

As r → ∞, the first two terms on the right-hand side converge to 1 (by Stirling’s
formula), and the remaining terms converge to:

e e e et t1 2 2 1 2
1

22 2

1 2
1

2
⋅ ⋅ ⋅( ) =−

−
−π

π
.

9.3.5. (i)
u v

u v
N

+
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+( )
−( )

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟~ , ,

0

0

2 1 0

0 2 1

ρ
ρ

(ii)
x y

x y
N

+
−

⎛
⎝⎜

⎞
⎠⎟

+
−

⎛

⎝⎜
⎞

⎠⎟
+( )

−( )
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟~ , .

μ μ
μ μ

σ ρ
σ ρ

1 2

1 2

2

2

2 1 0

0 2 1

Chapter 10 10.1.1. P(Xj > m, j = 1, . . . , n) = 1–
2n, P(Yn ≤ m) = 1/2n.

10.1.2. c = θ − log [1 − (0.9)1/3].

10.1.4.

ii(i) α + (β − α)j/(n + 1), (β − α)2j(n − j + 1)/(n + 1)2 (n + 2);

i(ii) EY
n

Y Y
n

n n
EY

n

nn n1
2

1
2

2

21 1 2 1
= −

+
+ ( ) = ( ) =

−( )
+( ) +( )

=
−( )
+

+β α α σ σ
β α β α

α,   ,   ;

(iii) EY
n

Y Y
n

n n
EY

n
nn n1

2
1

2
2

1
1 1 2 1

=
+ ( ) = ( ) =

+( ) +( )
=

+
,   ,   .σ σ

10.1.9. For the converse, e−nλt = P(Y1 > t) = P(Xj > t, j = 1, . . . , n) = [P(X1 > t)]n

so that P(X1 > t) = e−λt. Thus the common distribution of the X ’s is the Negative
Exponential distribution with parameter λ.



10.1.14. With k
n k

k
y y y

k
k k= + −

− −
− − ∈

−
− −1

2
2 1

1

1
2 2 1

1 1,
( )!

[( )!] ( )
( ) ( ) , ( , ),   

β α
α β α β

and
( )!

[( )!]
( ) ( ) , .

2 1

1
1 0

2
1k

k
e e yy k y k−

−
− >− − −λ λ λ

10.1.15. For
  
n k f y F y F y f y yS

k

k

k k

M
= − = − ∈−

−

− −2 1 12 1

1

1 1
2, ( ) [ ( )] [ ( )] ( ), .( )!

[( )!]
�  But

f(μ − y) = f (μ + y) and F(μ + y) = 1 − F(μ − y). Hence the result.

10.1.17. fSM
(y) = 3!e−2(y−θ) [1 − e−(y−θ)], y > θ.

10.2.1. Set Z = F(Y1). Then fZ(z) = n(1 − z)n−1, z ∈ (0, 1) and
EZ = 1/(n + 1).

Chapter 11 11.1.10. (i) ;  (ii)   (iii) ;  (iv) X X X X Xj
j

n

n j
j

n

j
j

n

( , . . . , ); .1
1 1 1= = =

∏ ∑ ∏

11.2.2. Take g(x) = x. Then Eθ g(X ) = 1
2

0
θ θ

θ
x dx =

−∫  for every θ ∈ Ω = (0, ∞).

11.2.3. f(x; θ) = Pθ(Xj = x) = 1/10, x = θ + 1, . . . , θ + 10, j = 1, 2 and
let T(X1, X2) = X1, V(X1, X2) = X2. Then T is sufficient for θ and T, V are
independent. But the distribution of V does depend on θ. This is so because the
set of positivity of the p.d.f. of T depends on θ (see Theorem 2).

11.3.1. Set T = ∑n
j =1Xj. Then T is P(nθ), sufficient for θ (Exercise 11.1.2(i)) and

complete (Example 10). Finally, Eθ(T/n) = θ for every θ ∈ Ω = (0, ∞).

11.5.2. f x I xX x( ) ( )( , )= −
1

β α β  so that the set of positivity of f does depend on the
parameter(s).

Chapter 12 12.2.2.
n

n
X

n
n

Xn n

+ +1
2

2
12

2
( ) ( ), .

12.2.3. [ ] , [ ].( ) ( )X X
n
n

X Xn n1 12
1
1

+ +
−

−( ) ( )

12.3.2. ′ = +
⎡

⎣
⎢

⎤

⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

c n nn 2
1
2

1
1
2

Γ Γ( ) .

12.3.5. It is X̄  if the p.d.f. is in the form f x e x( ; )θ
θ

θ= −1 , x > 0, and it is n
n X
− ⋅1 1

if the p.d.f. is in the form f(x; θ) = θe−θx, x > 0.

12.3.6. (X + r)/r, σ 2
θ[(X + r)/r] = (1 − θ)/rθ2.

12.3.8. 2
1

2
2

2
2

1

Γ Γn
X

n
X Xj

j

n−⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

∑/ ( ) .
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12.3.9. ( )( ) /( ),
( )

( )( ),

( )( ) /( ) ( ) .

X X Y Y n XY
n n

X X Y Y

n
X X Y Y n

n
X X

j j j j
j

n

j

n

j j
j

n

j
j

n

− − − −
−

− −

−⎛
⎝⎜

⎞
⎠⎟

− − − −⎛
⎝⎜

⎞
⎠⎟

−

==

= =

∑∑

∑ ∑

1
1

1

2
1

2
1

3
2

11

1

2

1

Γ Γ

12.5.6. −log(X/n).

12.5.7. X(1), X̄ − X(1).

12.5.8. X nj
r

j

n

=
∑

⎛

⎝⎜
⎞

⎠⎟1

.

12.5.9. exp(−x/X̄).

12.9.1. X
b a

X
b a

a b n− − − −⎛
⎝⎜

⎞
⎠⎟

= +
2 2

122, ( ) / .2σθ

12.9.4. 3(X1 + X2)/2.

12.9.6. X S S S
n

X Xj
j

n

− = −
=

∑ and ,  where 2 2

1

1
( ) .

12.11.2. n U V X n n nn n j
j

n

( ) ( ) ( )− = + −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ +
=

∑α β α α β
1

 and

E n U V n n n n

n U V n n n

n n n

n n n

θ

θ

α β θ α α β

σ θ θ α β α β

[ ( )] [( ) ]/ ( )

[ ( )] ( )[( ) / ( )]

− = + − + + ⎯ →⎯⎯

− = − + + + ⎯ →⎯⎯
→∞

→∞

  0,

  0.2 1 2

Chapter 13 13.2.1. Reject H if x̄ > 1.2338. Power = 0.378.

13.2.2. n = 9.

12.2.4. Cut-off point = 3.466, H is accepted.

13.3.1. V = − xj
j

n

=
∑

1

in both cases.

13.3.4. Cut-off point = 28.44, H is accepted.

13.3.7. Cut-off point ≈ 86, H is accepted.

13.3.8. n = 14.

13.3.10. Cut-off point = 10, H : λ = 20 (there is no improvement) is
accepted.



13.3.12. (i) Reject H if xj
j

n

=
∑

1

< C, C P X Cj
j

n

: θ α
0

1

<
⎛

⎝⎜
⎞

⎠⎟
=

=
∑ ; (ii) n = 23.

13.4.1. H is rejected.

13.5.1. H :σ ≤ 0.04, A :σ > 0.04. H is accepted.

13.5.4. Assume normality and independence. H is accepted.

13.5.5. H :μ = 2.5, A : μ ≠ 2.5. H is accepted.

13.7.2. H is rejected in both cases.

13.8.3. Cut-off point = 2.82, H is accepted.

13.8.4. H (hypothesizing the validity of the model) is accepted.

13.8.7. H (the vaccine is not effective) is rejected.

Chapter 14 14.3.1. E0(N) = 77.3545, E1(N) = 97.20, n (fixed sample size) = 869.90
≈ 870.

14.3.2.  E0(N) = 2.32, E1(N) = 4.863, n (fixed sample size) = 32.18 ≈ 33.

Chapter 15 15.2.4. (i) fR(r) = n(n − 1)rn−2(θ − r)/θ n, r ∈ (0, θ); (iii) The expected length
of the shortest confidence interval in Example 4 is = nθ(α−1/n − 1)/(n + 1).
The expected length of the confidence interval in (ii) is = (n − 1)
× θ(1 − c)/c(n + 1) and the required inequality may be seen to be true.

15.4.1.

ii(i) [ / , / ];/ /X z n X z nn n− +α ασ σ2 2

i(ii) [X̄ 100 − 0.196, X̄ 100 + 0.196];

(iii) n = 1537.

15.4.2.

i(i) [X̄ 100 − 0.0196S100, X̄ 100 + 0.0196S100], S2
100 = ( ) / ;X Xj

j

−
=

∑ 100
2

1

100

100

(ii) Sn n→∞⎯ →⎯⎯ σ in probability (and also a.s.).

15.4.4. σ = known, μ = unknown: [X̄n − zα/2σ / n , X̄n + zα/2σ/ n ]; μ = known,
σ = unknown: [nS 2

n/C2, nS2
n/C1], C1, C2 :P(χ 2

n < C1 or χ 2
n > C2) = α.

15.4.5. P Y x Y
k

p pi p j
k i

j
k k( ) ( ) .≤ ≤ =

⎛
⎝⎜

⎞
⎠⎟

− = −
=

−
−∑ 10

1 1
1

10 α  Let p = 0.25 and (i, j) =
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(2, 9), (3, 4), (4, 7). Then 1 − α = 0.756, 0.2503, 0.2206, respectively.
For p = 0.50 and (i, j) as above, 1 − α = 0.9786, 0.1172, 0.6562,
respectively.

15.4.7. [x′p/2, xp/2], [0.8302, 2.0698].

Chapter 16 16.3.5.

ii(i) ˆ
.

.

.

, ˜ . ;ββ =
−

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

=
0 280

0 572

0 268

7 95362σ

i(ii) σ 2

4 6 3 30 0 50

3 3 2 67 0 43

0 5 0 43 0 07

. . .

. . .

. . .

;

−
− −

−

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

(iii)

36 5865 26 2469 3 9768

26 2469 21 2361 3 4200

3 9768 3 4200 0 5567

. . .

. . .

. . .

−
− −

−

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

16.4.2.

i(i) (i) Reject  if H x x n n tj
j

n

n( ˆ ) ( ) ˆ / ( ) ,; /γ γ σ α− − − >
=

−∑0
2

1

2
2 22

where ˆ ( ) ( ) , ˆ

[ ˆ ˆ( )] , ˆ ;

γ σ

β γ β

= − −

= − − − =

= =

=

∑ ∑

∑

x x Y x x

Y x x n Y

j j
j

n

j
j

n

j j
j

n

1

2 2

1

2

1

(ii) ˆ ˆ ( ) ( ) ,

ˆ ˆ ( ) ( ) .

; /

; /

γ σ

γ σ

α

α

− − −
⎡

⎣
⎢
⎢

+ − −
⎤

⎦
⎥
⎥

−
=

−
=

∑

∑

t n n x x

t n n x x

n j
j

n

n j
j

n

2 2
2

1

2

2 2
2

1

2

2

2

16.5.1.

i(i) [(n − r)σ̃ 2/b, (n − r)σ̃ 2/a], a, b: P(a ≤ χ 2
n−r ≤ b) = 1 − α ;

(ii) [25σ̃ 2/40.6, 25σ̃ 2/13.1].

16.5.2.

(iii) Reject H if n tn
ˆ ˜ ,; /β σ α1

2
2 2> −



ˆ ˜ / , ˆ ˜ / , : ( ) ;β σ β σ α1
2

1
2

2 1− −⎡
⎣⎢

⎤
⎦⎥

≤ ≤ = −−b n a n a b P a t bn ,   

(iv) Reject H′ if ˆ ˜ ,; /β σ α2
2

1

2
2 2x tj

j

n

n
=

−∑ >

ˆ ˜ , ˆ ˜ , ,β σ β σ2
2 2

1
2

2 2

1

− −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥= =

∑ ∑b x a x a bj
j

n

j
j

n

   as in (iii).

16.5.5.

ii(i) β̂1 = 0.00242, β̂2 = 0.0191, σ̃ 2 = 0.0019;

i(ii) β1: [−0.04698, 0.05182], β2: [0.0166, 0.0216], σ 2: [0.0007, 0.0157];

(iii) [0.26172, 0.39248].

16.5.9. Reject H1 if

( ˆ ˆ ) ˜ ( ) ( )β β σ1 1
2 2

1

2

1

2

1

2

1

− ∗ −
⎡

⎣
⎢

⎤

⎦
⎥ + ∗ ∗ − ∗⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪= = = =
∑ ∑ ∑ ∑x m x x x n x xi
i

m

i
i

m

j
j

n

j
j

n

> + −tm n 4 2; / ,α

and reject H2 if

( ˆ ˆ ) ˜ ( ) ( ) .; /β β σ α2 2
2 2

1

2

1
4 21 1− ∗ −

⎡

⎣
⎢

⎤

⎦
⎥ + ∗ − ∗⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
>

= =
+ −∑ ∑x x x x ti

i

m

j j
j

n

m n

Chapter 17 17.1.1. SSH = 0.9609 (d.f. = 2), MSH = 0.48045, SSe = 8.9044 (d.f. = 6),
MSe = 1.48407, SST = 9.8653 (d.f. = 8).

17.2.2. SSA = 34.6652 (d.f. = 2), MSA = 17.3326, SSB = 12.2484 (d.f. = 3),
MSB = 4.0828, SSe = 12.0016 (d.f. = 6), MSe = 2.0003, SST = 58.9152 (d.f. = 11).

17.4.1. Yij ≈N(μi, σ 2), i = 1, . . . , I; j = 1, . . . , J independent implies

Y N
J

ii i⋅ −
⎛

⎝⎜
⎞

⎠⎟
=μ σ

~ , ,0 1
2

, . . . , I independent. Since

1

1I
Y Yi i

i

I

( ) ,⋅
=

⋅⋅ ⋅− = −∑ μ μ  we have that

[( ) ( )] / ~Y Y Ji i
i

I

I⋅ ⋅⋅ ⋅
=

−− − −∑ μ μ σ χ2

1

2
1

2  Hence that result.
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Chapter 18 18.1.3. Let X(1) = (Xil
, . . . , Xim

)′, X(2) = (Xjl
, . . . , Xjn

)′ and partition μμμμμ and /ΣΣas
follows:

μμ ΣΣ=
⎛

⎝⎜
⎞

⎠⎟
/ =

/ /
/ /

⎛

⎝⎜
⎞

⎠⎟
μ
μ

( )

( )
.

1

2
11 12

21 22

,
Σ Σ
Σ Σ

Then the conditional distribution of X(1), given X(2) = x(2), is the m-variate
Normal with parameters:

μμ ΣΣ ΣΣ μμ ΣΣ ΣΣ ΣΣ ΣΣ( ) ( ) ( ) , .1
12 22

1 2 2
11 12 22

1
21+ / + / −[ ] / − / / /− −x

18.3.7. In the inequality α β α βj j
j

n

i
i

n

j
j

n

= = =
∑ ∑ ∑

⎛

⎝⎜
⎞

⎠⎟
≤

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟1

2

2

1

2

1

, αi, βj ∈ �, i, j = 1, . . . ,

n, set αi = Xi − X̄ , βj = Yj − Ȳ .

Chapter 19 19.2.5. Q = X′CX, where X = (X1, X2, X3)′, C =
−

−

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

5 6 1 3 1 6

1 3 1 3 1 3

1 6 1 3 5 6

/ / /

/ / /

/ / /

and C is idempotent and of full rank. Thus Q is χ 2
3. Furthermore,

X′X − Q = 1–6 (X1 − X2 + X3)
2 ≥ 0, so that X′X − Q is positive definite. Then, by

Theorem 4, X′X − Q and Q are independent.

Chapter 20 20.4.1. R R R X R Y N N NX Y i
i

m

j
j

n

+ = + = + + ⋅ ⋅ ⋅ + = +
= =
∑ ∑( ) ( ) ( ) / .

1 1

1 2 1 2

20.4.3. Eu(Xi − Yj) = Eu2(Xi − Yj) = P(Xi > Yj) = 1/2, so that σ 2u(Xi − Yj ) =
1/4, and Cov[u(Xi − Yj), u(Xk − Yl)] = 0, i ≠ k, j ≠ l, Cov[u(Xi − Yj),
u(Xk − Yl)] = 1–3 , i = k, j ≠ l or i ≠ k, j = l. The result follows.
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INDEX

A

Absolutely continuous, 54, 55
Acceptance region, 332
Analysis of variance, 440

one-way layout (classification) in, 440
tables for, 445, 451, 457
two-way layout (classification) in, 446, 452

Asymptotic efficiency (efficient), 327
Asymptotic relative efficiency, 327, 497

Pittman, 498
of the sign test, 498
of the t-test, 498
of the Wilcoxon-Mann-Whitney test,
498

B

Basis, 501
orthonormal, 501

Bayes, decision function, 380, 382
estimator (estimate), 315–317, 322
formula, 24

Behrens-Fisher problem, 364
Best linear predictor, 134
Beta distribution, 71

expectation of, 120, 543
graphs of, 72
moments of, 120
parameters of, 71
p.d.f. of, 70, 542
variance of, 543

Beta function, 71
Bias, 306
Bienaymé equality, 171
Binomial distribution, 56

approximation by Poisson, 58, 79
as an approximation to Hypergeometric, 81

ch.f. of, 144, 146, 543
expectation of, 114, 542
factorial moments of, 119
graphs of, 56, 57
m.g.f. of, 154, 543
parameters of, 56
Point, 56
p.d.f. of, 55
tables of, 511–519
variance of, 114, 542

Binomial experiment, 55, 59
Bio-assay, 287
Bivariate Normal distribution, 74, 96, 543

ch.f. of, 544
conditional moments of, 122
conditional p.d.f.’s of, 122
conditional variance of, 122
graph of, 75
independence in, 168
marginal p.d.f.’s of, 75
m.g.f. of, 158, 544
parameters of, 74
p.d.f. of, 74, 97, 134, 465–466, 543
test of independence in, 470
uncorrelation in, 168
vector of expectations of, 543
vector of variances of, 543

Borel, real line, 11
σ-field, 12

k-dimensional, 13

C

Cauchy distribution, 72, 543
ch.f. of, 149, 544
graph of, 73
m.g.f. of, 156, 544
parameters of, 72
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Cauchy principle value integral, 118
Central Limit Theorem (CLT), 66, 189

applications of, 191–196
continuity correction in, 192

Center of gravity, 108
Ch.f.’s, 138, 140

application of, 166, 173–176
basic properties of, 140
joint, 150
of an r.v., 140
of Binomial distribution, 144, 146, 543
of Bivariate Normal distribution, 544
of Cauchy distribution, 149, 544
of Chi-square distribution, 148, 544
of Gamma distribution, 148, 544
of Geometric distribution, 150, 544
of k-Variate Normal distribution, 464, 544
of Multinomial distribution, 152, 544
of Negative Binomial distribution, 150, 543
of Negative Exponential distribution, 148,

544
of Normal distribution, 145, 147, 544
of Poisson distribution, 146, 544
of Uniform distribution, 150, 544
properties of, 140–141, 150–151

Characteristic polynomial, 477, 504
roots, 477, 504

Chi-square distribution, 69
critical values of, 529–531
degrees of freedom of, 69
expectation of, 118, 542
noncentral, 434, 508
p.d.f. of, 69
variance of, 118, 542

Chi-square statistic, 377
asymptotic distribution of, 377

Chi-square test, 377
Column effect, 446, 450
Combinatorial results, 34
Completeness, 275, 281, 283, 285

lack of, 276
of Beta distribution, 285, 287
of Binomial distribution, 275
of Exponential distibution, 281, 283
of Gamma distribution, 285, 287
of Negative Binomial distribution, 287
of Negative Exponential distribution, 287
of Normal N (θ, σ2) distribution, 276
of Poisson distribution, 275
of Uniform distribution, 276

Conditional expectation, 122
basic properties of, 122

Confidence coefficient, 397
approximate, 410
asymptotic, 486

Confidence interval(s), 397, 486
expected length of, 398
in Beta distribution, 402–403, 409
in Binomial distribution, 411
in Gamma distribution, 401–402

in Normal distribution, 398–401, 407–409,
410–411

in Poisson distribution, 411
in the presence of nuisance parameters,

407
in Uniform distribution, 403
length (shortest) of, 398–400, 402, 404, 408

Confidence limits (lower, upper), 397
Confidence region(s), 397, 410

and testing hypotheses, 412
in Normal distribution, 411

Contingency tables, 374–375
Continuity correction, 192–196
Contrast, 458
Convergence of r.v.’s, 180

almost sure, 180, 183
in distribution, 181, 183, 469
in probability, 180, 183
in quadratic mean, 182–183
modes of, 180–181
strong, 180
weak, 181
with probability one, 180

Convolution of d.f.’s, 224
Correlation coefficient, 129, 134

interpretation of, 129–133
p.d.f. of sample, 474
sample, 472

Covariance, 129
of a matrix of r.v.’s, 418
of LSE in case of full rank, 421

Cramér-Rao bound, 297–298
in Binomial distribution, 302
in Normal distribution, 303–305
in Poisson distribution, 303

Critical region, 332
Cumulant generating function, 162
Cumulative d.f., 85

basic properties of, 85

D

Data, 263
Decision, 313

rule, 313
Decision function(s), 313

Bayes, 380, 382, 384
equivalent, 314
minimax, 380, 383–385
nonrandomized, 308

Degrees of freedom
of Chi-square distribution, 69
of F-distribution, 233
of noncentral Chi-square distribution, 508–

509
of noncentral F-distribution, 509
of noncentral t-distribution, 508
of t-distribution, 233

De Morgan’s laws, 4, 7–8
Dependent
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negatively quadrant, 163
positively quadrant, 163

Dimension of a space, 501
Distinct, balls, 38

cells, 38
Distribution

Bernoulli (or Point Binomial), 56, 542–543
Beta, 70, 543
Binomial, 55–56, 542–543
Bivariate Normal, 74, 96, 465–466, 543–544
Cauchy, 72, 543–544
central Chi-square, 511
central F-, 511
central t-, 511
Chi-square, 69, 542, 544
continuous, 54
discrete, 54
discrete Uniform, 60
Double Exponential, 78
F-, 73, 223
-free, 485
function(s), 85

basic properties of, 85
conditional, 91
cumulative, 85
empirical (or sample), 200, 486
graphs of, 87
joint, 91, 93
marginal, 91–93
variation of, 92

Gamma, 67, 542, 544
Gauss, 65
Geometric, 60, 542–543
Hypergeometric, 59, 542

Multiple, 63
kurtosis of a, 121
k-Variate Normal, 462, 543–544
lattice, 141
leptokurtic, 121
Logistic, 90
Lognormal, 73
Maxwell, 78
memoryless, 77
mixed, 79
Multinomial, 60–61, 95–96, 542, 544
Multivariate Normal, 463
Negative Binomial, 59, 542–543
Negative Exponential, 69, 543–544
noncentral Chi-square, 434, 508–509
noncentral F-, 434, 509
noncentral t-, 360, 508
Normal, 65, 542, 544
of an r.v., 53
of the F statistic, 433
of the sample variance in Normal, 480
Pareto, 78
Pascal, 60
platykurtic, 121
Point Binomial, 56
Poisson, 57, 542–543

Raleigh, 78
Rectangular, 70
skewed, 121
skewness, 120
Standard Normal, 65
t-, 223
Triangular, 228
Uniform, 60, 70, 543–544
Weibull, 78, 285

E

Effects
column, 446, 450
main, 457
row, 446, 450

Efficiency, relative asymptotic, 327. See also
Pittman asymptotic relative efficiency

Eigenvalues, 477, 504
Error(s), sum of squares of, 418

type-I, 332
type-II, 332

Estimable, function, 422
Estimation

by the method of moments, 324
decision-theoretic, 313
least square, 326
maximum likelihood, 307
minimum chi-square, 324
nonparametric, 485
point, 288

Estimator(s) (estimate(s))
admissible, 314
a.s. consistent, 327
asymptotically efficient, 327
asymptotically equivalent, 329
asymptotically normal, 327, 489
asymptotically optimal properties of, 326
asymptotically unbiased, 489
Bayes, 315–317, 322
best asymptotically normal, 327
consistent in probability, 327
consistent in quadratic mean (q.m.), 489
criteria for selecting, 289, 306, 313
efficient, 305
essentially complete class of, 314
inadmissible, 315
least square, 418
maximum likelihood, 307
minimax, 314, 322–323
strongly consistent, 327, 485–487, 489
unbiased, 289
uniformly minimum variance unbiased

(UMVU), 292, 297
weakly consistent, 327, 485–486

Event(s)
certain (or sure), 14
composite, 14
dependent, 33
happens (or occurs), 15
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Event(s) continued
impossible, 14
independent, 28

completely, 28
in the probability sure, 28
mutually, 28
pairwise, 28
statistically, 28
stochastically, 28

null, 15
simple, 14

Expectation, 107–108
basic properties of, 110
conditional, 123
mathematical, 107–108
of a matrix of r.v’s, 418
of Beta distribution, 120, 543
of Binomial distribution, 114, 542
of Chi-square distribution, 118, 542
of Gamma distribution, 117, 542
of Geometric distribution, 119, 542
of Hypergeometric distribution, 119, 542
of Lognormal distribution, 120
of Negative Binomial distribution, 119, 542
of Negative Exponential distribution, 118,

543
of Normal distribution, 117, 542
of Poisson distribution, 115, 542
of Standard Normal distribution, 116
of Uniform distribution, 113, 543
of Weibull distribution, 114
properties of conditional, 123

Experiment(s)
binomial, 55, 59
composite (or compound), 32
dependent, 33
deterministic, 14
independent, 32, 46
multinomial, 60
random, 14

Exponential distribution(s), 280
multiparameter, 285–286
Negative Exponential, 69
one-dimensional parameter, 280, 282
U(α, β) is not an, 286

F

F-distribution, 73, 233
critical values of, 532–541
expectation of, 238
graph of, 236
noncentral, 434, 509
the p.d.f. of, 234
variance of, 258

F-test, 432
geometric interpretation of, 432

Factorial moment, 110
generating function of a, 153
of Binomial distribution, 157

of Negative Binomial distribution, 161
of Poisson distribution, 115, 119

Failure rate, 91
Field(s), 8

consequences of the definition of a, 8
discrete, 9
examples of, 9
generated by a class of sets, 9
trivial, 9

Finitely additive, 15
Fisher’s information number, 300
Fourier transform, 140
Function

Bayes, 380, 382
Beta, 71
continuous, 103
cumulative distribution, 85
decision, 313, 379
empirical distribution, 200, 486
estimable, 422
Gamma, 67
indicator, 84, 135
loss, 313, 380
measurable, 103
minimax, 380
non-randomized, 379
parametric, 422
projection, 104
risk, 313, 380
sample distribution, 200, 486
squared loss, 313

Fundamental Principle of Counting, 35

G

Gamma distribution, 67, 542
ch.f. of, 148, 544
expectation of, 117, 542
function, 67
graph of, 68
m.g.f. of, 155, 544
parameters of, 67
p.d.f. of, 67, 542
variance of, 117, 542

General linear
hypothesis, 416
model, 417

Generating function, 121
cumulant, 162
factorial moment, 153
moment, 138, 153, 158

Geometric distribution, 60
ch.f. of, 543
expectation of, 119, 542
m.g.f. of, 543
p.d.f. of, 60, 542
variance of, 119, 542

Grand
mean, 446
sample mean, 445
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probability, 125
Tchebichev’s, 126

Inference(s), 263
Interaction(s), 452, 457
Intersection, 2
Invariance, 307, 493
Inverse image, 82
Inversion formula, 141, 151

J

Jacobian, 226, 237, 240
Joint, ch.f., 150

conditional distribution, 95, 467
conditional p.d.f., 95
d.f., 91, 94
moment, 107
m.g.f., 158
probability, 25
p.d.f., 95
p.d.f. of order statistics, 249

K

Kolmogorov
one sample test, 491
-Smirnov, two-sample test, 493

Kurtosis of a distribution, 121
of Double Exponential

distribution, 121
of Uniform distribution, 121

L

Laplace transform, 153
Latent roots, 481, 504
Laws of Large Numbers (LINs), 198

Strong (SLLNs), 198, 200
Weak (WLLNs), 198–200, 210

Least squares, 418
estimator, 418, 420
estimator in the case of full rank, 421

Lebesgue measure, 186, 328
Leptokurtic distribution, 121
Level, of factor, 447

of significance, 332
Likelihood, function, 307

ratio, 365
Likelihood ratio test, 365, 430, 432

applications of, 374
in Normal distribution(s), 367–372
interpretation of, 366

Likelihood statistic, 365
asymptotic distribution of, 366

Limit
inferior, 5
of a monotone sequence of sets, 5
superior, 5
theorems, basic, 180
theorems, further, 202

H

Hazard rate, 91
Hypergeometric distribution, 59, 542

approximation to, 81
expectation of, 119, 542
Multiple, 63
p.d.f. of, 59, 542
variance of, 119, 542

Hypothesis(-es)
alternative, 331
composite, 331, 353
linear, 416
null, 331
simple, 331
statistical, 331
testing a simple, 333, 337
testing a composite, 341

I

Independence, 27
complete (or mutual), 28
criteria of, 164
in Bivariate Normal distribution, 168
in the sense of probability, 28
of classes, 177–178
of events, 28
of random experiments, 32, 46
of r.v.’s, 164, 178
of sample mean and sample variance in the

Normal distribution, 244, 284, 479, 481
of σ-fields, 46, 178
pairwise, 28
statistical, 28
stochastic, 28

Independent
Binomial r.v.’s, 173
Chi-square r.v.’s, 175
classes, 178
completely, 28
events, 28
in the sense of probability, 28
mutually, 28
Normal r.v.’s, 174–175
pairwise, 28
Poisson r.v.’s, 173
random experiments, 32, 46
r.v.’s, 164, 178
σ-fields, 46, 178
statistically, 28
stochastically, 28

Indicator, 84
function, 135

Indistinguishable balls, 38
Inequality(-ies)

Cauchy-Schwarz, 127
Cramér-Rao, 297-298
Markov, 126
moment, 125
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Linear
dependence, 129
hypothesis, 416
interpolation, 61
model, 424

canonical reduction of, 424
regression functions, 418

Lognormal distribution, 73
expectation of, 120
graphs of, 74
parameters of, 73
p.d.f. of, 73
variance of, 120

Loss function, 313, 380
squared, 313

Least Square Estimate (LSE), of μ’s, 443
of μ, αi, βj, 448–449
of μij etc., 454
of σ2, 425, 444, 451, 456

M

Matching problem, 48
Matrix (-ices), 502

characteristic polynomial of a, 504
characteristic (latent) roots of a, 504–505
determinant of a square, 503
diagonal, 502, 504–506
diagonal element of a, 502
dimensions of a, 502
eigenvalues of a, 504
elements of a, 502
equal, 502
idempotent, 504, 506–507
indentity, 502
inverse, 503
negative definite (semidefinite), 504–506
nonsingular, 503–506
of full rank, 503
order of a, 502, 505–507
orthogonal, 503–506
positive definite (semidefinite), 504–506
product by a scalar, 502
product of, 502
rank of a, 503, 505–507
singular, 503
some theorems about, 504
square, 502, 504–505
sum of, 502
symmetric, 502, 505–507
transpose, 502
unit, 502
zero, 502

Maximum likelihood, 306
and Bayes estimation, 318
estimator (estimate) (MIE), 307

in Binomial distribution, 309
in Bivariate Normal distribution, 472, 475
in Multinomial distribution, 308–309, 312
in Negative Binomial distribution, 312

in Negative Exponential distribution, 312
in Normal distribution, 309–310, 312
in Poisson distribution, 307
in Uniform distribution, 310
interpretation of, 307
invariance of, 307

function, 307
principle of, 306

Mean, 107–108. See also, expectation
grand, 446
grand sample, 445
interpretation of, 108

Mean value, 107–108
Measurable, function, 103

space, 11
Measurable spaces

product of, 45–46
Median, 99

sample, 259
Mellin (or Mellin-Stieltjes)

transform, 156
Method(s) of estimation, other, 324

least square, 326, 418
minimum chi-square, 324
moments, 325

in Beta distribution, 326
in Gamma distribution, 326
in Normal distribution, 325
in Uniform distribution, 325

M.g.f., 138, 153, 158
factorial, 153, 156–157
joint, 158
of Binomial distribution, 154, 543
of Bivariate Normal distribution, 158, 544
of Cauchy distribution, 156, 544
of Chi-square distribution, 544
of Gamma distribution, 155, 544
of Geometric distribution, 543
of Multinomial distribution, 158, 544
of Negative Binomial distribution, 161, 543
of Negative Exponential distribution, 156,

544
of Normal distribution, 155, 544
of Poisson distribution, 154, 543
of Uniform distribution, 161, 544

Mode(s), 100
of Binomial distribution, 101
of Poisson distribution, 101

Moment(s)
about the mean, 109
absolute, 107
central, 107, 109
central joint, 109
conditional, 122
factorial, 110, 115

of Binomial distribution, 119
of Poisson distribution, 119

generating function (m.g.f.), 153–156
inequalities, 125
joint, 107
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n-th, 106–107
of an r.v., 106, 108
of Beta distribution, 120
of inertia, 107
of Standard Normal, 116
r-th absolute, 107
sample, 325

Monotone likelihood ratio (MLR) property,
342

of Exponential distribution, 342
of Logistic distribution, 342–343
testing under, 343

Multicomparison method, 458
Multinomial distribution, 60–61, 64, 95–96, 542

ch.f. of, 152, 544
distribution, 60–61, 64, 95–96, 542
experiment, 60
m.g.f. of, 158, 544
parameters of, 60–61
p.d.f. of, 60
vector of expectations of, 542
vector of variances, 542

Multivariate (or k-Variate) Normal
distribution, 463–465, 543–544

ch.f. of, 544
estimation of μ and Σ, 469
m.g.f. of, 544
nonsingular, 465
parameters of, 464
p.d.f. of, 465, 543
singular, 474
some properties of, 467

N

Negative Binomial distribution, 59
ch.f. of, 150, 543
expectation of, 119, 542
factorial m.g.f., 161
m.g.f., 161, 543
p.d.f. of, 59, 542
variance of, 119, 542

Negative Exponential distribution, 69
ch.f. of, 544
expectation of, 118, 543
m.g.f. of, 156, 544
parameter of, 69
p.d.f. of, 69, 543
variance of, 118, 543

Neyman-Pearson, 331, 366
fundamental lemma, 334

Noncentrality parameter, 508–509
Noncomplete distributions, 276–277
Nonexponential distribution, 286
Nonnormal Bivariate distribution, 99
Nonparametric, estimation, 485

estimation of a p.d.f., 487
inference, 485
tests, 490

Normal distribution, 65, 542

approximation by, 194–196
ch.f. of, 145, 147, 544
expectation of, 116–117, 542
graph of, 66
independence of sample mean and sample

variance in, 244, 284, 479, 481
m.g.f. of, 155, 544
moments of Standard, 116
parameters of, 65
p.d.f. of, 65, 542
Standard, 65
tabulation of Standard, 523–525
variance of, 116–117, 542

Normal equations, 418, 420
Notation and abbreviations, 545–546

O

Occupancy numbers, 39
Order statistic(s), 249

joint p.d.f. of, 249
p.d.f. of j-th, 252

Orthocomplement (or orthogonal
complement), 501

P

Parameters, 263
noncentrality, 508–509
nuisance, 356, 407
space, 263

Partition (finite, denumerably infinite), 23
Permutation(s), 35
Pittman asymptotic relative

efficiency, 498
of the Sign test, 498
of the Wilcoxon-Mann-Whitney, 498
telative to the t-test, 498

Platikurtic distribution, 121
Poisson distribution, 57

approximation to Binomial distribution, 58,
79

ch.f. of, 146, 543
expectation of, 115, 542
factorial moments of, 119
graph of, 58
m.g.f. of, 154, 543
parameter of, 57
p.d.f. of,  57, 542
tabulation of, 520–522
variance of, 115, 542

Poisson, truncated r.v.(’s), 62, 273
Polya’s lemma, 210

urn scheme, 65
Power function, 332
Prediction interval, 413
Predictor, best linear, 134
Probability(-ies)

classical definition of, 17
conditional, 21–22
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Probability(-ies) continued
consequences of the definition of, 15–16
defining properties of, 15
densities, 85
density function, 54
distribution, 53, 84
distribution function, 53, 84
function, 15

uniform, 17
inequalities, 125
integral transform, 246
joint, 25
Kolmogorov definition of, 17
marginal, 25
measure(s), 15

product of, 46
of coverage of a population quantile, 260
of matchings, 47
of type-I error, 332
of type-II error, 332
relative frequency definition of, 17
space, 15
statistical definition of, 17

Probability density function(s) (p.d.f.(’s)), 53–
54

conditional, 91, 94
convolution of, 224
F-, 233–234
joint, 93
joint conditional, 95
marginal, 91, 93, 95
of Bernoulli (or Point Binomial)

distribution, 56, 542
of Beta distribution, 70, 543
of Binomial distribution, 55, 542
of Bivariate Normal distribution, 74, 97,

134, 465–466, 543
of Cauchy distribution, 72, 543
of Chi-square distribution, 69, 542
of continuous Uniform distribution, 70, 543
of discrete Uniform distribution, 60
of Double Exponential distribution, 78
of Gamma distribution, 67, 542
of Geometric distribution, 60, 542
of Hypergeometric distribution, 59, 542
of Lognormal distribution, 73
of Maxwell distribution, 78
of Multinomial distribution, 60, 542
of Multivariate Normal distribution, 465,

543
of Negative Binomial distribution, 59, 542
of Negative Exponential distribution, 69,

543
of Normal distribution, 65, 542
of Pareto distribution, 78
of Pascal distribution, 60
of Poisson distribution, 57, 542
of Raleigh distribution, 78
of sample range, 255
of Standard Normal distribution, 65

of t-distribution, 233
of Triangular distribution, 228
posterior, 318
prior, 315, 380

Product probability
measures, 46
spaces, 45–46

Q

Quadratic form(s), 476, 504, 506
negative definite (semidefinite), 477
positive definite (semidefinite), 477
rank of a, 477
some theorems on, 477

Quantile, p-th, 99, 261

R

Random variable(s) (r.v.(’s)), 53
absolute moments of a, 107
absolutely continuous, 54
as a measurable function, 82–83
Bernoulli (or Point Binomial), 56
Beta, 70
Binomial, 55
Cauchy, 72
central moment of a, 107
ch.f. of a, 138, 140
Chi-square, 69
completely correlated, 129
continuous, 53–54
criteria of independence of, 164–167
cumulative distribution function of a, 85
degenerate, 183
dependent, 164
discrete, 53–55
discrete Uniform, 60
distribution function of a, 85
distribution of a, 53
expectation of a, 107–108
functions of, 107–108
Gamma, 66, 117
Geometric, 119, 542
Hypergeometric, 59, 119
independent, 178
linearly related, 129
Lognormal, 72
mathematical expectation of a, 107–108
mean (or mean value) of a, 107–108
m.g.f. of a, 138, 153, 158
moments of a, 107–108
Negative Binomial, 59
Negative Exponential, 69
negatively correlated, 129
Normal, 65
normalization of a, 89
pairwise uncorrelated, 171
Poisson, 57
Poisson, truncated, 62
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positively correlated, 129
p.d.f. of a, 54
probability distribution function of a, 53
Standard Normal, 65
transformation of a, 216
uncorrelated, 129
Uniform, 60, 70
variance of a, 107

Random vector(s), 55
absolutely continuous, 55
as a measurable function, 82–83
Bivariate Normal, 74
ch.f. of, 150
continuous, 55
discrete, 55
distribution (or probability distribution

function) of, 55
distribution function of, 85
k-dimensional, 55
linear transformation of, 239
Multinomial, 60
Multiple Hypergeometric, 63
Multivariate (or k-variate) Normal, 463
orthogonal transformation of, 239–240
p.d.f. of a, 55
transformation of, 216, 223

Range
sample, 255
studentized, 256

Rao-Blackwell, 278
Rao-Blackwellization, 278

Rectangular distribution, 70
Recursive formula(s) for, 64

Binomial probabilites, 64
Hypergeometric probabilities, 64
Poisson probabilities, 64

Region(s)
acceptance, 332
contidence, 397, 410
critical, 332
rejection, 332

Regression function(s)
linear, 418

Regularity conditions, 297
Reliability (function), 91, 296, 312, 405
Risk

average, 315
function, 313, 380

Row effect(s), 446, 450

S

Sample(s)
correlation coefficient, 472
mean, 445
median, 259
moment, 325
ordered, 35
point, 14
random, 263

range, 255
size, 35
space, 14
unordered, 35

Sampling
sequential, 382
with replacement, 35–36, 49, 82
without replacement, 35–36, 48–49, 59, 63,

82
Scalar, 499, 502
Scheffé criterion, 459
Sequential

analysis, 383
probability ratio test (SPRT), 388–389

expected sample size, 393–394
for Binomial distribution, 395
for Normal distribution, 396
optimality of, 393
with prescribed error probabilities, 392

procedures, 382
sampling, 383

Set(s)
basic, 1
complement of, 1
decreasing sequence of, 5
difference of, 3
disjoint, 3
element of, 1
empty, 3
equal, 3
increasing sequence of, 5
inferior limit of a sequence of, 5
intersection of, 2
limit of a sequence of, 5
measure of a, 102
member of a, 1
monotone sequence of, 5
mutually disjoint, 3
of convergence of a sequence of r.v.’s, 183
open, 102–103
operations, 1
pairwise disjoint, 3
properties of operations on, 4
superior limit of a sequence of, 5
symmetric difference of, 3
union of, 2
universal, 1

Shift, 499
σ-additive, 15
σ-field(s)

Borel, 12
consequences of the definition of a, 10
dependent, 46
discrete, 10
examples of, 10
generated by, 11
independent, 46
induced by, 178
of events, 15
k-dimensional Borel, 13
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σ-field(s) continued
trivial, 10
two-dimensional Borel, 13

Sign test
one-sample, 497
two-sample, 496

Significantly different from zero, 459
Skewed, to the left (to the right), 121
Skewness, 120

of Binomial distribution, 121
of Negative Exponential distribution, 121
of Poisson distribution, 121

Space(s)
measurable, 11
probability, 15
product probability, 45–46
sample, 14

Standard
deviation, 107, 109
Normal distribution, 65

Statistic(s), 263
complete, 292
m-dimensional, 263
minimal sufficient, 272
of uniformly minimum variance (UMV),

279
sufficient, 266, 270, 292
U-, 495
unbiased, 278

Stopping time, 382
Strong Law of Large Numbers (SLLNs), 198,

200
Studentized range, 256
Subadditive, 16
Subset, 1

proper, 1
Sub-σ-fields

independent, 46
Sufficiency, 263–264

definition of, 264
some basic results on, 264

Sufficient statistic(s), 266, 270, 282, 292
complete, 291
for Bernoulli distribution, 274
for Beta distribution, 273
for Bivariate Normal distribution, 274
for Cauchy distribution, 272
for Double Exponential distribution, 274
for Exponential distribution, 282
for Gamma distribution, 273
for Multinomial distribution, 270
for Multivariate Normal distribution, 469
for Negative Binomial distribution, 273
for Negative Exponential distribution, 273
for Normal distribution, 271
for Poisson distribution, 273
for Uniform distribution, 271
for Weibull distribution, 285
m-dimensional, 263
minimal, 272

Sums of squares
between groups, 445
total, 440
within groups, 445

T

Tables, 511
of critical values for Chi-square

distribution, 529–531
of critical values for F-distribution, 532–541
of critical values for Student’s

t-distribution, 526–528
of the cumulative Binomial distribution,

511–519
of the cumulative Normal distribution, 523–

525
of the cumulative Poisson distribution, 520–

522
t (Student’s)-distribution, 73, 233–234

critical values of, 526–528
expectation of, 239
graph of, 234
noncentral, 360, 364, 508
noncentrality parameter, 508
p.d.f. of, 234
variance of, 239

Test(s), 311
about mean(s) in Normal distribution(s),

339, 349, 355, 359–360, 363–364, 383–384
about variance(s) in Normal distribution(s),

340, 350, 358–359, 361–363
Bayes, in Normal distribution, 384
chi-square, 377
consistent, 379
equal-tail, 359, 372
F-, 432
function, 331
goodness-of-fit, 374
Kolmogorov one-sample, 491
Kolmogorov-Smirnov two-sample test, 493
level-α, 333
level of significance of a, 332
likelihood ratio (LR), 365, 367–372
minimax in Binomial distribution, 385
minimax in Normal distribution, 384
most powerful (MP), 333, 338–340
nonparametric, 490–493
nonrandomized, 332
of independence in Bivariate Normal

distribution, 470
one-sample Wilcoxon-Mann-Whitney, 495
power of a, 332
randomized, 331
rank, 493
rank sum, 495
relative asymptotic efficiency of a, 497
sign, 496–497
size of a, 332
statistical, 331
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two-sample Wilcoxon-Mann-Whitney, 495
unbiased, 353
uniformly most powerful (UMP), 333, 343,

345, 346–350, 353, 357–358
uniformly most powerful unbiased

(UMPU), 353–354, 357–360, 362–364
Testing hypothesis(-es), 331

about η, 434
composite, 343, 345–346, 353
decision-theoretic viewpoint of, 379
general concepts of, 331
in Binomial distribution, 337, 347, 355, 384–

385
in Exponential family, 346, 354
in Normal distribution, 339–340,

349–350, 355, 358–364, 383–384
in Poisson distribution, 338, 348, 355
theory of, 331
under monotone likelihood ratio (MLR)

property, 343, 345–346
Testing, composite hypotheses, 343, 345–346

simple hypotheses, 333–334
Theorem(s)

additive probability, 17
basic limit, 180
Basu, 277
Carathéodory extension, 46
Central Limit (CLT), 189
Cochran, 477
De Moivre, 192
factorization, 165–166
Fisher-Neyman factorization, 267
Fubini, 317
further limit, 202
Gauss-Markov, 423
Glivenko-Cantelli, 201
Lehmann-Scheffé, 279
multiplicative probability, 22
P. Lévy’s continuity, 187
Rao-Blackwell, 278
Slutsky’s, 207
total probability, 23
uniqueness, 145, 151
Wald’s, 383

Tolerance interval(s), 413–414
interpretation of, 414

Tolerance limits, 397
Transformation(s)

invariance under monotone, 493
linear, 239–244
of continuous r.v.’s, 218–224, 226–237
of discrete r.v.’s, 216–218, 225
orthogonal, 239–240
the multivariate case of, 223–237
the univariate case of, 216–222

Transitive relationship, 6
Type-I error, 332

probability of, 332
Type-II error, 332

probability of, 332

U

U statistic, 495
Unbiasedness, 278, 286, 289
Unbiased statistic, 278

asymptotically, 489
unique, 279

Uniform distribution, 60, 70
ch.f. of, 150, 544
continuous, 70
discrete, 60
expectation of, 113, 543
graphs of, 60, 70
m.g.f. of, 161, 544
parameters of, 70
p.d.f. of, 60, 70, 544
variance of, 113, 543

Uniformly minimum variance unbiasedness,
279, 290

Uniformly minimum variance unbiased
(UMVU) estimator(s) (estimate(s)), 290–
291

in Binomial distribution, 292–294, 296
in Bivariate Normal distribution, 296
in Gamma distribution, 305
in Geometric distribution, 297
in Negative Binomial distribution, 296
in Negative Exponential distribution, 296
in Normal distribution, 294–295, 303–305
in Poisson distribution, 294, 303

Uniformly minimum variance unbiased
statistic(s), 279

in Binomial distribution, 279
in Negative Exponential

distribution, 279–280
in Normal distribution, 279
in Poisson distribution, 280

Uniformly most powerful (UMP) test(s), 333,
343, 345

in Binomial distribution, 347
in distributions with the MLR property,

343
in Exponential distributions, 345–346
in Normal distribution, 349–350, 358
in Poisson distribution, 348

Uniformly most powerful unbiased (UMPU)
test(s), 353, 357

in Exponential distributions, 354
in Normal distributions, 355, 357–360
in the presence of nuisance parameters,

357–364
Uniform probability measure, 60
Union of sets, 2

V

Variance, 107, 109
basic properties of, 111
covariance of a matrix of r.v.’s, 418
interpretation of, 109
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Variance continued
minimum, 289
of Beta distribution, 120, 543
of Binomial distribution, 114, 542
of Chi-square distribution, 118, 542
of Gamma distribution, 117, 542
of Geometric distribution, 119, 542
of Hypergeometric distribution, 119, 542
of Lognormal distribution, 120
of Negative Binomial distribution, 119,

542
of Negative Exponential distribution, 118,

543
of Normal distribution, 117, 543
of Poisson distribution, 115, 542
of Standard Normal distribution, 116, 542
of Uniform distribution, 113, 543
of Weibull distribution, 114

Vector(s), 499
components of a, 499
equal, 499
inner (scalar) product of, 499
linearly dependent, 501
linearly independent, 501
n-dimensional, 499
norm (or length) of a, 500

orthogonal (or perpendicular), 500
orthogonal (or perpendicular), to a subset

of, 500
product by a scalar, 499
space(s), 499

dimension of a, 499
some theorems on, 501
spanning (or generating) a, 500
subspace(s), 500
orthocomplement of a, 501

transpose of a, 499
zero, 499

Venn diagram, 1

W

Wald’s lemma for sequential analysis, 383
Weak Law of Large Numbers (WLLNs),

198–200, 210–214
generalized, 201

application to Chi-square, Negative
Exponential and Poisson distributions of
the, 202

Wilcoxon-Mann-Whitney, one-sample test,
498

two-sample test, 498
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