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Preface to the Second Edition

This is the second edition of a book published for the first time in 1973 by
Addison-Wesley Publishing Company, Inc., under the title A First Course in
Mathematical Statistics. The first edition has been out of print for a number of
years now, although its reprint in Taiwan is still available. That issue, however,
is meant for circulation only in Taiwan.

The first issue of the book was very well received from an academic
viewpoint. I have had the pleasure of hearing colleagues telling me that the
book filled an existing gap between a plethora of textbooks of lower math-
ematical level and others of considerably higher level. A substantial number of
colleagues, holding senior academic appointments in North America and else-
where, have acknowledged to me that they made their entrance into the
wonderful world of probability and statistics through my book. I have also
heard of the book as being in a class of its own, and also as forming a collector’s
item, after it went out of print. Finally, throughout the years, I have received
numerous inquiries as to the possibility of having the book reprinted. It is in
response to these comments and inquiries that I have decided to prepare a
second edition of the book.

This second edition preserves the unique character of the first issue of the
book, whereas some adjustments are affected. The changes in this issue consist
in correcting some rather minor factual errors and a considerable number of
misprints, either kindly brought to my attention by users of the book or
located by my students and myself. Also, the reissuing of the book has pro-
vided me with an excellent opportunity to incorporate certain rearrangements
of the material.

One change occurring throughout the book is the grouping of exercises of
each chapter in clusters added at the end of sections. Associating exercises
with material discussed in sections clearly makes their assignment easier. In
the process of doing this, a handful of exercises were omitted, as being too
complicated for the level of the book, and a few new ones were inserted. In

XV
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Preface to the Second Edition

Chapters 1 through 8, some of the materials were pulled out to form separate
sections. These sections have also been marked by an asterisk (*) to indicate
the fact that their omission does not jeopardize the flow of presentation and
understanding of the remaining material.

Specifically, in Chapter 1, the concepts of a field and of a o-field, and basic
results on them, have been grouped together in Section 1.2*. They are still
readily available for those who wish to employ them to add elegance and rigor
in the discussion, but their inclusion is not indispensable. In Chapter 2, the
number of sections has been doubled from three to six. This was done by
discussing independence and product probability spaces in separate sections.
Also, the solution of the problem of the probability of matching is isolated in a
section by itself. The section on the problem of the probability of matching and
the section on product probability spaces are also marked by an asterisk for the
reason explained above. In Chapter 3, the discussion of random variables as
measurable functions and related results is carried out in a separate section,
Section 3.5*%. In Chapter 4, two new sections have been created by discussing
separately marginal and conditional distribution functions and probability
density functions, and also by presenting, in Section 4.4%, the proofs of two
statements, Statements 1 and 2, formulated in Section 4.1; this last section is
also marked by an asterisk. In Chapter 5, the discussion of covariance and
correlation coefficient is carried out in a separate section; some additional
material is also presented for the purpose of further clarifying the interpreta-
tion of correlation coefficient. Also, the justification of relation (2) in Chapter 2
is done in a section by itself, Section 5.6*. In Chapter 6, the number of sections
has been expanded from three to five by discussing in separate sections charac-
teristic functions for the one-dimensional and the multidimensional case, and
also by isolating in a section by itself definitions and results on moment-
generating functions and factorial moment generating functions. In Chapter 7,
the number of sections has been doubled from two to four by presenting the
proof of Lemma 2, stated in Section 7.1, and related results in a separate
section; also, by grouping together in a section marked by an asterisk defini-
tions and results on independence. Finally, in Chapter 8, a new theorem,
Theorem 10, especially useful in estimation, has been added in Section 8.5.
Furthermore, the proof of Pdlya’s lemma and an alternative proof of the Weak
Law of Large Numbers, based on truncation, are carried out in a separate
section, Section 8.6%, thus increasing the number of sections from five to six.

In the remaining chapters, no changes were deemed necessary, except that
in Chapter 13, the proof of Theorem 2 in Section 13.3 has been facilitated by
the formulation and proof in the same section of two lemmas, Lemma 1 and
Lemma 2. Also, in Chapter 14, the proof of Theorem 1 in Section 14.1 has been
somewhat simplified by the formulation and proof of Lemma 1 in the same
section.

Finally, a table of some commonly met distributions, along with their
means, variances and other characteristics, has been added. The value of such
a table for reference purposes is obvious, and needs no elaboration.
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This book contains enough material for a year course in probability and
statistics at the advanced undergraduate level, or for first-year graduate stu-
dents not having been exposed before to a serious course on the subject
matter. Some of the material can actually be omitted without disrupting the
continuity of presentation. This includes the sections marked by asterisks,
perhaps, Sections 13.4-13.6 in Chapter 13, and all of Chapter 14. The instruc-
tor can also be selective regarding Chapters 11 and 18. As for Chapter 19, it
has been included in the book for completeness only.

The book can also be used independently for a one-semester (or even one
quarter) course in probability alone. In such a case, one would strive to cover
the material in Chapters 1 through 10 with the exclusion, perhaps, of the
sections marked by an asterisk. One may also be selective in covering the
material in Chapter 9.

In either case, presentation of results involving characteristic functions
may be perfunctory only, with emphasis placed on moment-generating func-
tions. One should mention, however, why characteristic functions are intro-
duced in the first place, and therefore what one may be missing by not utilizing
this valuable tool.

In closing, it is to be mentioned that this author is fully aware of the fact
that the audience for a book of this level has diminished rather than increased
since the time of its first edition. He is also cognizant of the trend of having
recipes of probability and statistical results parading in textbooks, depriving
the reader of the challenge of thinking and reasoning instead delegating the
“thinking” to a computer. It is hoped that there is still room for a book of the
nature and scope of the one at hand. Indeed, the trend and practices just
described should make the availability of a textbook such as this one exceed-
ingly useful if not imperative.

G. G. Roussas
Davis, California
May 1996
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Preface to the First Edition

This book is designed for a first-year course in mathematical statistics at the
undergraduate level, as well as for first-year graduate students in statistics—or
graduate students, in general—with no prior knowledge of statistics. A typical
three-semester course in calculus and some familiarity with linear algebra
should suffice for the understanding of most of the mathematical aspects of
this book. Some advanced calculus—perhaps taken concurrently—would be
helpful for the complete appreciation of some fine points.

There are basically two streams of textbooks on mathematical statistics
that are currently on the market. One category is the advanced level texts
which demonstrate the statistical theories in their full generality and math-
ematical rigor; for that purpose, they require a high level, mathematical back-
ground of the reader (for example, measure theory, real and complex
analysis). The other category consists of intermediate level texts, where the
concepts are demonstrated in terms of intuitive reasoning, and results are
often stated without proofs or with partial proofs that fail to satisfy an inquisi-
tive mind. Thus, readers with a modest background in mathematics and a
strong motivation to understand statistical concepts are left somewhere in
between. The advanced texts are inaccessible to them, whereas the intermedi-
ate texts deliver much less than they hope to learn in a course of mathematical
statistics. The present book attempts to bridge the gap between the two
categories, so that students without a sophisticated mathematical background
can assimilate a fairly broad spectrum of the theorems and results from math-
ematical statistics. This has been made possible by developing the fundamen-
tals of modern probability theory and the accompanying mathematical ideas at
the beginning of this book so as to prepare the reader for an understanding of
the material presented in the later chapters.

This book consists of two parts, although it is not formally so divided. Part
1 (Chapters 1-10) deals with probability and distribution theory, whereas Part
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2 (Chapters 11-20) is devoted to statistical inference. More precisely, in Part 1
the concepts of a field and o-field, and also the definition of a random variable
as a measurable function, are introduced. This allows us to state and prove
fundamental results in their full generality that would otherwise be presented
vaguely using statements such as “it may be shown that . . .,” “it can be proved
that...,” etc. This we consider to be one of the distinctive characteristics of
this part. Other important features are as follows: a detailed and systematic
discussion of the most useful distributions along with figures and various
approximations for several of them; the establishment of several moment and
probability inequalities; the systematic employment of characteristic func-
tions—rather than moment generating functions—with all the well-known
advantages of the former over the latter; an extensive chapter on limit theo-
rems, including all common modes of convergence and their relationship; a
complete statement and proof of the Central Limit Theorem (in its classical
form); statements of the Laws of Large Numbers and several proofs of the
Weak Law of Large Numbers, and further useful limit theorems; and also an
extensive chapter on transformations of random variables with numerous
illustrative examples discussed in detail.

The second part of the book opens with an extensive chapter on suffi-
ciency. The concept of sufficiency is usually treated only in conjunction with
estimation and testing hypotheses problems. In our opinion, this does not
do justice to such an important concept as that of sufficiency. Next, the point
estimation problem is taken up and is discussed in great detail and as
large a generality as is allowed by the level of this book. Special attention is
given to estimators derived by the principles of unbiasedness, uniform mini-
mum variance and the maximum likelihood and minimax principles. An abun-
dance of examples is also found in this chapter. The following chapter is
devoted to testing hypotheses problems. Here, along with the examples (most
of them numerical) and the illustrative figures, the reader finds a discussion of
families of probability density functions which have the monotone likelihood
ratio property and, in particular, a discussion of exponential families. These
latter topics are available only in more advanced texts. Other features are
a complete formulation and treatment of the general Linear Hypothesis
and the discussion of the Analysis of Variance as an application of it.
In many textbooks of about the same level of sophistication as the present
book, the above two topics are approached either separately or in the reverse
order from the one used here, which is pedagogically unsound, although
historically logical. Finally, there are special chapters on sequential proce-
dures, confidence regions—tolerance intervals, the Multivariate Normal distri-
bution, quadratic forms, and nonparametric inference.

A few of the proofs of theorems and some exercises have been drawn from
recent publications in journals.

For the convenience of the reader, the book also includes an appendix
summarizing all necessary results from vector and matrix algebra.

There are more than 120 examples and applications discussed in detail in
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the text. Also, there are more than 530 exercises, appearing at the end of the
chapters, which are of both theoretical and practical importance.

The careful selection of the material, the inclusion of a large variety of
topics, the abundance of examples, and the existence of a host of exercises of
both theoretical and applied nature will, we hope, satisfy people of both
theoretical and applied inclinations. All the application-oriented reader has to
do is to skip some fine points of some of the proofs (or some of the proofs
altogether!) when studying the book. On the other hand, the careful handling
of these same fine points should offer some satisfaction to the more math-
ematically inclined readers.

The material of this book has been presented several times to classes
of the composition mentioned earlier; that is, classes consisting of relatively
mathematically immature, eager, and adventurous sophomores, as well as
juniors and seniors, and statistically unsophisticated graduate students. These
classes met three hours a week over the academic year, and most of the
material was covered in the order in which it is presented with the occasional
exception of Chapters 14 and 20, Section 5 of Chapter 5, and Section 3 of
Chapter 9. We feel that there is enough material in this book for a three-
quarter session if the classes meet three or even four hours a week.

At various stages and times during the organization of this book several
students and colleagues helped improve it by their comments. In connection
with this, special thanks are due to G. K. Bhattacharyya. His meticulous
reading of the manuscripts resulted in many comments and suggestions that
helped improve the quality of the text. Also thanks go to B. Lind, K. G.
Mehrotra, A. Agresti, and a host of others, too many to be mentioned here. Of
course, the responsibility in this book lies with this author alone for all omis-
sions and errors which may still be found.

As the teaching of statistics becomes more widespread and its level of
sophistication and mathematical rigor (even among those with limited math-
ematical training but yet wishing to know “why” and “how”) more demanding,
we hope that this book will fill a gap and satisfy an existing need.

G.G. R.
Madison, Wisconsin
November 1972



Chapter 1

Basic Concepts of Set Theory

N

1.1 Some Definitions and Notation

A set S is a (well defined) collection of distinct objects which we denote by s.
The fact that s is a member of S, an element of S, or that it belongs to S is
expressed by writing s € S. The negation of the statement is expressed by
writing s ¢ S. We say that S’ is a subset of S, or that §”is contained in S, and
write §” c S, if for every s € §’, we have s € S. S’ is said to be a proper subset
of S, and we write 8" S, if " < § and there exists s € S such that s ¢ §". Sets

are denoted by capital letters, while lower case letters are used for elements of
sets.

Figure 1.1 S’ c S; in fact, S’ S, since s, €S,
buts, ¢S’

These concepts can be illustrated pictorially by a drawing called a Venn
diagram (Fig. 1.1). From now on a basic, or universal set, or space (which may
be different from situation to situation), to be denoted by S, will be considered
and all other sets in question will be subsets of S.

1.1.1 Set Operations

1. The complement (with respect to S) of the set A, denoted by A, is
defined by A“={s € S; s ¢ A}. (See Fig. 1.2.)
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AC Figure 1.2 A°is the shaded region.

2. The union of the sets A;,j=1,2, ..., n, to be denoted by
AlVA,U---UA, or OAj,
=1
is defined by ]
OA]-Z{SGS; se A foratleastonej=1,2,. .., n}
j=1

For n = 2, this is pictorially illustrated in Fig. 1.3. The definition extends to an
infinite number of sets. Thus for denumerably many sets, one has

UA]:{seS; s € A, for at least one j =1, 2,...}.
j=1

Figure 1.3 A, U A, is the shaded region.
A Ay

3. The intersection of the sets A;, j=1,2,..., n, to be denoted by
ANA,N---NA, or ﬁAj,
i=1
is defined by ]
ﬁA/:{SGS; se A forallj=1,2,...,n}
j=1

For n =2, this is pictorially illustrated in Fig. 1.4. This definition extends to an
infinite number of sets. Thus for denumerably many sets, one has

NA,={seS:sea foranj=1,2, .}
j=1

S

Figure 1.4 A, n A, is the shaded region.
A Ay
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4. The difference A, — A, is defined by
A -A, ={seS; seA, seA2}.
Symmetrically,
A, - A ={se5; seA,, seAl}.

Note that A, — A, = A, N A5, A, — A, = A, N AY, and that, in general, A, — A,
# A, — A,. (See Fig. 1.5.)

Figure 1.5 A, — A, is ///].
A, — A, is \\\.
A Ay

5. The symmetric difference A, A A, is defined by
A AA, =(A - A)u(4,-A)

Note that
A AA, =(AUA)-(ANA,).

Pictorially, this is shown in Fig. 1.6. It is worthwhile to observe that
operations (4) and (5) can be expressed in terms of operations (1), (2), and

3)-

Figure 1.6 A, A A, is the shaded area.
A Ay

1.1.2 Further Definitions and Notation

A set which contains no elements is called the empty set and is denoted by &.
Two sets A,, A, are said to be disjoint if A, N A, =O. Two sets A,, A, are said
to be equal, and we write A, = A,, if both A, € A, and A, ¢ A,. The sets A,
j=1,2,...are said to be pairwise or mutually disjoint if A; " A, = & for all
i #j (Fig. 1.7). In such a case, it is customary to write

A+A, A+ +A =Y A and A+A+-=) A,
j=1 j=1

instead of A, U A,, U]’-‘:]Aj, and U}'—llA,-, respectively. We will write

U4, 2,4, N;A;, where we do not wish to specify the range of j, which
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will usually be either the (finite) set {1, 2,..., n}, or the (infinite) set
1,2,...).

Figure 1.7 A, and A, are disjoint; that is,
A NnA,=0. Also A, UA, = A, + A, for the
A A same reason.

1.1.3 Properties of the Operations on Sets
1. =0, @ =S, (A" = A.
2. SUA=S GUA=A,AUVA=5,AUA=A.
3.SNA=AONA=0,ANA =0, AnA=A.

The previous statements are all obvious as is the following: & < A for every
subset A of S. Also

4. A, U (A, UA)=(A,UA) U A,
Alm(AzmA3)=(AlmA2)mA3]

5. AiJUA,=A,UA,
AlmAZ:AzmAI]

6. An(YA)=U, (AN A)
Au(MA)=n(AUA)

(Associative laws)
(Commutative laws)

(Distributive laws)

are easily seen to be true.
The following identity is a useful tool in writing a union of sets as a sum of
disjoint sets.

An identity:
UA].:AI+AfmA2+AfmA§mA3+---.

J
There are two more important properties of the operation on sets which
relate complementation to union and intersection. They are known as De
Morgan’s laws:

) Y] -
ii) (OA/.]C :L]JA/C..

As an example of a set theoretic proof, we prove (i).

PROOF OF (i) We wish to establish

a) (UA) c N4  and b) NiA; < (UA)"
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Exercises 5

We will then, by definition, have verified the desired equality of the two
sets.

a) Letse (UA)". Thens ¢ |JA;, hence s ¢ A, for any j. Thus s € Aj for every
j and therefore s € N;A}.

b) Let s € (A{. Then s € AS for every j and hence s ¢ A; for any j. Then
s ¢ U;A; and therefore s e (U,A))"

The proof of (ii) is quite similar. A

This section is concluded with the following:
The sequence {A,},n=1,2,...,is said to be a monotone sequence of sets if:

i) A, c A, c A, - (that is, A, is increasing, to be denoted by A,T), or
ii) A, DA, DA, D (thatis, A, is decreasing, to be denoted by A,l).

The limit of a monotone sequence is defined as follows:

i) If AT, then lim A, = JA,, and
n—yoo n=l

i) If A, then lim 4, =[ A4,.
n—>c0 n=1
More generally, for any sequence {A,},n =1, 2, ..., we define
A=liminfA, = U ﬂA}.,
e n=l j=n
and
A=limsupA, = ﬂ UA]..
R0 n=l j=n

The sets A and A are called the inferior limit and superior limit,
respectively, of the sequence {A,}. The sequence {A,} has a limit if A = A.

Exercises

111 Let A, j=1,2,3 be arbitrary subsets of S. Determine whether each of
the following statements is correct or incorrect.
i) (A -A4,)uUA,=A;
i) (A,UA)-A =A;;
iii) (A, NA) N (A4 -A4)=9;
iv) (A, VAN (A UA)N (A3 UA)=(A NA) U A NA)U (AN A).



1 Basic Concepts of Set Theory

112 LetS={(x,y) e R5-5=x=5,0=<y=35,x,y=integers}, where
prime denotes transpose, and define the subsets A, j=1,...,7 of Sas follows:

A1={(x,y)’65;x=y}; A2={(x,y),eS;x=—y};
A3={(x,y),65; xzzyz}; A4={(x,y),es; xZSyz};
A5={(x,y),65; x2+yzs4}; A6={(x,y),es;xSy2};

A, :{(x,y)’ eS;x*> y}.

List the members of the sets just defined.

1.1.3 Refer to Exercise 1.1.2 and show that:
7
Aj] =U(4 n4))
j=2
A,J: .(](A1 UA,);
]

7
=2

C-

7

i) Alm(

Il
]

DR

i) A u(

J

Il
]

7 ¢ g
i) (UAI.} =A%
j=l

Jj=1

j=l

v (ﬁA,-] -4y
j=

by listing the members of each one of the eight sets appearing on either side of
each one of the relations (i)—(iv).

1.1.4 Let A, B and C be subsets of S and suppose that A ¢ B and B c C.
Then show that A c C; that is, the subset relationship is transitive. Verify it by
taking A=A,, B=Ayand C=A,, where A,,A, and A, are defined in Exercise
1.1.2.

1.1.5  Establish the distributive laws stated on page 4.

1.1.6 In terms of the acts A,, A,, A;, and perhaps their complements,
express each one of the following acts:

i) B;={s e S; s belongs to exactly i of A, A,, Ay, where i =0, 1, 2, 3};
ii) C ={s € S; s belongs to all of A, A,, A,};
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iii) D = {s € S; s belongs to none of A,, A,, A;};
iv) £ ={s € S; s belongs to at most 2 of A,, A,, A,};
v) F ={s € S, s belongs to at least 1 of A, A,, A;}.

1.1.7  Establish the identity stated on page 4.

1.1.8  Give a detailed proof of the second identity in De Morgan’s laws; that
is, show that

() -y

1.1.9 Refer to Definition 1 and show that

i) A={s e S;s belongs to all but finitely many A’s};
ii) A={s e S;s belongs to infinitely many A’s};
i) Ac A4;

iv) If {A,} is a monotone sequence, then A= A= [im A, .

n—oo

1.1.10 Let S = R* and define the subsets A,, B,, n = 1, 2,...0of S as

follows:

A

n

{(x,y)'eRz; 3+1Sx<6_2, Ogysz_iz},
n n n
g :{(x y) eR*: x2+y23i}
n P 5 n3 .

Then show that A,T A, B,! B and identify A and B.

1.1.11 Let S = R and define the subsets A,, B,, n = 1, 2,...0f S as
follows:

An={xeR; —5+l<x<20—l}, an{xeR;O<x<7+E}.
n n n

Then show that A,T and B,{, so that hmA =A and hmB = B exist (by
Exercise 1.1.9(iv)). Also identify the sets A and B.

1.1.12 Let A and B be subsets of Sand forn=1, 2, ..., define the sets A, as
follows: A,, , = A, A,, = B. Then show that

liminf A, = An B, limsupA,=AuUB.

n—ee n—soo
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1.2* Fields and o-Fields

DEFINITION 2

In this section, we introduce the concepts of a field and of a o-field, present a
number of examples, and derive some basic results.

A class (set) of subsets of S is said to be a field, and is denoted by F, if

(F1) Fis a non-empty class.

(F2) A e Fimplies that A° € F (that is, Fis closed under
complementation).

(F3) A,, A, e Fimplies that A, U A, € F (that is, Fis closed under
pairwise unions).

1.2.1 Consequences of the Definition of a Field
1. S, F.
2.1tA; e F,j=1,2,...,n,then UL A, e F, (. A; € Flor any finite n.
(That is, F is closed under finite unions and intersections. Notice, how-

ever, that A;e F,j=1,2,...need not imply that their union or intersection is
in F; for a counterexample, see consequence 2 on page 10.)

PROOF OF (1) AND (2) (1) (1) implies that there exists A € F and (JF2)
implies that A“e F. By (F3),AuA°=Se F.By(F2),5 =0 F.

(2) The proof will be by induction on n and by one of the De Morgan’s
laws. By (F3),if A,, A, € F,then A, U A, € F, hence the statement for unions
is true for n = 2. (It is trivially true for n = 1.) Now assume the statement for
unions is true for n = k — 1; that is, if

k-1
A, A, ..., A eF, then (JA eF.
j=1

Consider A,, A,, ..., A, € F. By the associative law for unions of sets,

k k-1
UA].=(UA].)UAk.
j=1

j=1

By the induction hypothesis, U A;e F. Since A, € F, (F3) implies that

and by induction, the statement for unions is true for any finite n. By observing
that

* The reader is reminded that sections marked by an asterisk may be omitted without jeo-
pardizing the understanding of the remaining material.
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1.2* Fields and o-Fields 9

we see that (F2) and the above statement for unions imply thatif A,,..., A,
€ [J. then (_A; € Ffor any finite n. A

1.2.2 Examples of Fields

. C ={9, S} is a field (trivial field).

2. G = {all subsets of S} is a field (discrete field).

3. GG=1{9, S, A, A, for some T c A C §, is a field.

4. Let Sbe infinite (countably so or not) and let C, be the class of subsets
of S which are finite, or whose complements are finite; thatis, C,={A c S; A
or A° is finite}.

—_

As an example, we shall verify that C, is a field.

PROOF THAT C, IS A FIELD
i) Since S° = I is finite, S € C,, so that C, is non-empty.

ii) Suppose that A € C,. Then A or A is finite. If A is finite, then (A°)" = A is
finite and hence A° € C, also. If A° is finite, then A° € C,.

iii) Suppose that A,, A, € C,. Then A, or Aj is finite and A, or Aj is finite.

a) Suppose that A, A, are both finite. Then A, U A, is finite, so that A,
U A, e C,.

b) Suppose that A, A, are finite. Then (A, U A,) = A N AS is finite
since A is. Hence A, U A, € C,.
The other two possibilities follow just as in (b). Hence (1), (F2), (F3) are
satisfied. A
We now formulate and prove the following theorems about fields.

Let I be any non-empty index set (finite, or countably infinite, or uncoun-
table), and let F, j € I be fields of subsets of S. Define F by F=N,_,F =
{A; A e F forallje I}. Then Fis a field.

PROOF
i) S, e F foreveryje I sothat S, J e Fand hence Fis non-empty.
ii) If A € F, then A € [, for every j € I. Thus A° e F; for every j € I, so that
A‘e F
iii) If A, A,e F,then A, A, e Fforeveryje I. Then A, U A, € [, for every
je I,andhence A, U A, e F. A

Let Cbe an arbitrary class of subsets of S. Then there is a unique minimal field
F containing C. (We say that Fis generated by C and write F= F(C).)

PROOF Clearly, Cis contained in the discrete field. Next, let { F,, j € I} be the
class of all fields containing C and define F(C) by

F()=N7F;

jel
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DEFINITION 3

By Theorem 1, F(C) is a field containing C. It is obviously the smallest such
field, since it is the intersection of all fields containing C, and is unique. Hence

F=HO. A

A class of subsets of Sis said to be a o-field, and is denoted by A, if it is a field
and furthermore (J3) is replaced by (A3):1f A;e A,j=1,2, ..., then U, 4,
€ A (that is, A is closed under denumerable unions).

1.2.3 Consequences of the Definition of a o-Field
1.LIfAje Aj=1,2,...,then [ A, € A (that is, A is closed under
denumerable intersections).

2. By definition, a o-field is a field, but the converse is not true. In fact, in
Example 4 on page 9, take S = (-0, =), and define A, = {all integers in [, j]},
j=1,2,....Then U;’;l A, is the set A, say, of all integers. Thus A is infinite and
furthermore so is A°. Hence A ¢ F, whereas A; € F for all j.

1.2.4 Examples of o-Fields
1. C ={9, S} is a o-field (trivial o-field).
2. G, ={all subsets of S} is a o-field (discrete o-field).
3. GG=1{9, S, A, A} for some & c A c Sis a o-field.

4. Take S to be uncountable and define C, as follows:
C, = {all subsets of S which are countable or whose complements are
countable}.

As an example, we prove that C, is a o-field.
PROOF

i) "= is countable, so C, is non-empty.
ii) If A € C, then A or A is countable. If A is countable, then (A°)" = A is
countable, so that A° € C,. If A°is countable, by definition A° € C,.

iii) The proof of this statement requires knowledge of the fact that a count-
able union of countable sets is countable. (For proof of this fact see
page 36 in Tom M. Apostol’s book Mathematical Analysis, published
by Addison-Wesley, 1957.) Let A, j =1, 2,...e A. Then either each
A, is countable, or there exists some A; for which A, is not countable but
Aj is. In the first case, we invoke the previously mentioned theorem
on the countable union of countable sets. In the second case, we note
that

)0
j=1 j=1

which is countable, since it is the intersection of sets, one of which is
countable. A
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We now introduce some useful theorems about o-fields.

Let I be as in Theorem 1, and let A, j € I, be o-fields. Define A by A =
N A={A;Ae Aforallje I}. Then Ais a o-field.

PROOF

i) S, e Aforeveryje I and hence they belong in A.
ii) If A e A, then A e A foreveryje I, sothat A°e A, foreveryje I. Thus
A‘e A
iii) If A, A,,...,e A, then A, A,,...€ A foreveryje [and hence U7, A;
€ Ajforeveryje I;thus U_, A, e A A

Let C be an arbitrary class of subsets of S. Then there is a unique minimal
o-field A containing C. (We say that A is the o-field generated by C and write

A=0(0).)
PROOF Clearly, Cis contained in the discrete o-field. Define

O'(C ) =M {all o-fields containing C }

By Theorem 3, o(C) is a o-field which obviously contains C. Uniqueness
and minimality again follow from the definition of o(C). Hence A =
o(C). A

REMARK 1 For later use, we note that if A is a o-field and A € A, then A,
={C; C=B N A for some B € A} is a o-field, where complements of sets are
formed with respect to A, which now plays the role of the entire space. This is
easily seen to be true by the distributive property of intersection over union
(see also Exercise 1.2.5).

In all that follows, if S is countable (that is, finite or denumerably in-
finite), we will always take A to be the discrete o-field. However, if S is
uncountable, then for certain technical reasons, we take the o-field to be
“smaller” than the discrete one. In both cases, the pair (S, A) is called a
measurable space.

1.2.5 Special Cases of Measurable Spaces

1. Let S be R (the set of real numbers, or otherwise known as the real
line) and define C, as follows:

() (o] (o) e =) )]

C = {all intervals in R’} = (x, y], [x, y), [x, y]; x,yeR, x<y

By Theorem 4, there is a o-field A = o((;); we denote this o-field by B and call
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it the Borel o-field (over the real line). The pair (R, B) is called the Borel real
line.

THEOREM 5 Each one of the following classes generates the Borel o-field.
G :{(x y]' x,yeR, X<y},

Nﬁ

Also the classes C7,j=1, ..., 8 generate the Borel o-field, where forj=1, ...,
8, Cjis defined the same way as C; is except that x, y are restricted to the
rational numbers.

PROOF Clearly, if C, C" are two classes of subsets of Ssuch that C < C’, then
0(C) c o(C’). Thus, in order to prove the theorem, it suffices to prove that B
co(C),Bco(C),j=1,2,...,8,and in order to prove this, it suffices to show
that G, c o(C), G G(C) j= 1 2,...,8. As an example, we show that C, ¢
o(C,). Consider x, | x. Then (—oo x,,) € cr(C ) and hence (-0, x,) € o(C,).
But

D)

A= %)==

Thus (-, x] € o(C,) for every x € R. Since

)=l o))

it also follows that (x, o), [x, =) € o((;). Next,

(v, ¥)= (=000 ¥) = (o= 5] = (o= y) . =) e 0(G ),
(v, ¥]= (== ] =) e0(G). [x. y) = (= y) [ =) e o(C),
[, y]= (== y]n [, ) eo(Cy).

Thus G, ¢ o(C). In the case of C}, j =1, 2,..., 8, consider monotone
sequences of rational numbers convergent to given irrationals x, y. A

i
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2. Let S= R x R = R* and define C, as follows:

G= {all rectangles in Rz} = {(—oc, x) X (—oo, x’), (—oo, x) X (—oo, x’],

(oo re(moon ) (oo e ]
(x, oo)x(x’, 00), ces [x, oo)x[x', °<>), ces
(e )b y)eo e ][ v7)
X, y, X, yeR, x<y, x'< y’}.
The o-field generated by C, is denoted by B* and is the two-dimensional
Borel o-field. A theorem similar to Theorem 5 holds here too.

3. Let S=R x R x---x R = R* (k copies of R) and define C, in a way
similar to that in (2) above. The o-field generated by C, is denoted by B* and
is the k-dimensional Borel o-field. A theorem similar to Theorem 5 holds here
too.

Exercises

1.2.1 Verify that the classes defined in Examples 1, 2 and 3 on page 9 are
fields.

1.2.2 Show that in the definition of a field (Definition 2), property (F3) can
be replaced by (F3’) which states that if A;, A, € F,then A, " A, e F.

1.2.3 Show that in Definition 3, property (A3) can be replaced by (A3),
which states that if

A;eA, j=1,2,... then QA].GJZL
j=
1.2.4 Refer to Example 4 on o-fields on page 10 and explain why S was taken
to be uncountable.

1.2.5 Give a formal proof of the fact that the class A, defined in Remark 1
is a o-field.

1.2.6 Refer to Definition 1 and show that all three sets A, A and lim A,,

whenever it exists, belong to A provided A,, n > 1, belong to A.
1.2.7 Let S={1, 2, 3, 4} and define the class C of subsets of S as follows:

c=[o. 1 £} ) 4 102 (13} 1 4] 3 o4
12,3}, {1. 3, 4}, [2. 3, 4], S}.

Determine whether or not Cis a field.

1.2.8 Complete the proof of the remaining parts in Theorem 5.



Chapter 2

Some Probabilistic Concepts
and Results

2.1 Probability Functions and Some Basic Properties and Results

14

Intuitively by an experiment one pictures a procedure being carried out under
a certain set of conditions whereby the procedure can be repeated any number
of times under the same set of conditions, and upon completion of the proce-
dure certain results are observed. An experiment is a deterministic experiment
if, given the conditions under which the experiment is carried out, the outcome
is completely determined. If, for example, a container of pure water is brought
to a temperature of 100°C and 760mmHg of atmospheric pressure the out-
come is that the water will boil. Also, a certificate of deposit of $1,000 at the
annual rate of 5% will yield $1,050 after one year, and $(1.05)" x 1,000 after n
years when the (constant) interest rate is compounded. An experiment for
which the outcome cannot be determined, except that it is known to be one of
a set of possible outcomes, is called a random experiment. Only random
experiments will be considered in this book. Examples of random experiments
are tossing a coin, rolling a die, drawing a card from a standard deck of playing
cards, recording the number of telephone calls which arrive at a telephone
exchange within a specified period of time, counting the number of defective
items produced by a certain manufacturing process within a certain period of
time, recording the heights of individuals in a certain class, etc. The set of all
possible outcomes of a random experiment is called a sample space and is
denoted by S. The elements s of S are called sample points. Certain subsets of
S are called events. Events of the form {s} are called simple events, while an
event containing at least two sample points is called a composite event. S and
0 are always events, and are called the sure or certain event and the impossible
event, respectively. The class of all events has got to be sufficiently rich in order
to be meaningful. Accordingly, we require that, if A is an event, then so is its
complement A°. Also,if A;,j=1,2,...are events, then so is their union U A
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(In the terminology of Section 1.2, we require that the events associated with
asample space form a o-field of subsets in that space.) It follows then that A,
is also an event, and so is A, — A,, etc. If the random experiment results in s and
s € A, we say that the event A occurs or happens. The U ;jA; occurs if at least
one of the A; occurs, the 1 A; occurs if all A; occur, A, — A, occurs if A; occurs
but A, does not, etc.

The next basic quantity to be introduced here is that of a probability
function (or of a probability measure).

A probability function denoted by P is a (set) function which assigns to each
event A a number denoted by P(A), called the probability of A, and satisfies
the following requirements:

(P1) P is non-negative; that is, P(A) > 0, for every event A.
(P2) P is normed, that is, P(S) = 1.
(P3) P is o-additive; that is, for every collection of pairwise (or mutually)
disjoint events A, j =1, 2,..., we have P(£,A)) = X, P(A)).
This is the axiomatic (Kolmogorov) definition of probability. The triple
(S, class of events, P) (or (S, A, P)) is known as a probability space.

REMARK 1 If Sis finite, then every subset of Sis an event (that is, A is taken
to be the discrete o-field). In such a case, there are only finitely many events
and hence, in particular, finitely many pairwise disjoint events. Then (P3) is
reduced to:

(P3’) P is finitely additive; that is, for every collection of pairwise disjoint
events, A;,j=1,2,..., n, we have

P(g Ai) = ]Z:P(Aj).

Actually, in such a case it is sufficient to assume that (P3’) holds for any two
disjoint events; (P3") follows then from this assumption by induction.

2.1.1 Consequences of Definition 1
(C1) P()=0. Infact, S=S+T+---,
so that
P(S):P(S+®+ e ):P(S)+P(®)+ e
or
1=1+P(@)+--- and  P(@)=0,

since P(J) 2 0. (So P(J) =0. Any event, possibly # &, with probability 0 is
called a null event.)

(C2) Pis finitely additive; that is for any event A, j=1,2,..., nsuch that
ANA=0, i#]
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Indeed, for A =0,j=2n
2 P(A;).
(C3) For every event A, P(A) =1 — P(A). In fact, since A + A“= S,
P(A+A)=P(S), or P(A)+P(A)=1,
so that P(A°) =1 - P(A).
(C4) Pis anon-decreasing function; thatis A, € A, implies P(A,) < P(A,).

In fact,
A, = A +(A, - A),
hence
P(A,)=P(A)+P(A, - A),

and therefore P(A,) > P(A)).

REMARK 2 1If A, C A,, then P(A, - A,) = P(A,) — P(A)), but this is not true,
in general.

(C5) 0<P(A)<1foreveryevent A. This follows from (C1), (P2), and (C4).
(C6) For any events A, A,, P(A, U A,) = P(A,) + P(A,) — P(A, N A),).

In fact,
AUA, = A +(A, - ANA)
Hence
P(A, UA,)=P(A)+P(A, - ANA,)
= P(A)+P(A,)-P(A N A,),
since A, N A, C A, implies
P(A, - A N A,)=P(A,)-P(A N A,)

(C7) P is subadditive; that is,

and also
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This follows from the identities

EJA A+( mA) ~-~+(Afm~--ﬁA§_1ﬁAn)+~~-,

LnJAj:Al +(A1" mA2)+ e +(A1" N--NA mAn),

(P3) and (C2), respectively, and (C4).

A special case of a probability space is the following: Let S={s,,s,, . .., s,},
let the class of events be the class of all subsets of S, and define P as P({s;}) =
1n,j=1,2,...,n With this definition, P clearly satisfies (P1)—(P3") and this
is the classical definition of probability. Such a probability function is called a
uniform probability function. This definition is adequate as long as S is finite
and the simple events {s}}, j = 1, 2,..., n, may be assumed to be “equally
likely,” but it breaks down if either of these two conditions is not satisfied.
However, this classical definition together with the following relative frequency
(or statistical) definition of probability served as a motivation for arriving at
the axioms (P1)—(P3) in the Kolmogorov definition of probability. The relative
frequency definition of probability is this: Let S be any sample space, finite
or not, supplied with a class of events A. A random experiment associated with
the sample space Sis carried out  times. Let n(A) be the number of times that
the event A occurs. If, as n — o, lim[n(A)/n] exists, it is called the probability
of A, and is denoted by P(A). Clearly, this definition satisfies (P1), (P2) and
(P3").

Neither the classical definition nor the relative frequency definition of
probability is adequate for a deep study of probability theory. The relative
frequency definition of probability provides, however, an intuitively satisfac-
tory interpretation of the concept of probability.

We now state and prove some general theorems about probability
functions.

(Additive Theorem) For any finite number of events, we have

{0 )-Sr)- 3 rann)
+ Y P(Ajl NA, N Ah)

1<ji<p<jz<n

—~~~+(—1)MP(A1F\A2F\-~~mA,,).

PROOF (By induction on n). For n = 1, the statement is trivial, and we
have proven the case n =2 as consequence (C6) of the definition of probability
functions. Now assume the result to be true for n = k, and prove it for
n=k+1.
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We have

1<ji<jp <k

j=
+ Y P(AjlmAjzmAh)—--~

1<ji<j, <j3<k

+(-1)" P(A, n 4, --~mAk)—P( (Aij,M)J. (1)

C=

j=1

But

AU ra)|-Srtanan)- S Aaina,na)

j=1 1<ji<j, <k

N

- P(A, nA, A Ay )

]
+(_1)" P(Afl N NA, mAk-A)
)

Replacing this in (1), we get

k+l k+l k
P[UA,): ZP(AI.)—[ D kP(Ajl A, )+ P(A N Ak+1)]
j=1 j=1 1<j<h< j=1

+l D P(AjlmAjzmAjs)—k D P(AjlmAjzmAkﬂ)}
1<)i<jp <js<k 1<),<jp <k

. +(_1)k+1[P(Al NN A

h

+ Y P(A. N--NA, mAM)}

1ji<p<--- <<k
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()T P(A N A NAL)

k+l

= EP(AI.)— D P(A,.l mAjz)

1<ji<jp <k+l

+ Y PAnA NA )
1<fi<jp <j3<k+l
+(—1)k+2 P(A1 N mAk+1). A
THEOREM 2 Let {A,} be a sequence of events such that, as n — e, A, T or A, . Then,
P(lim An) = lim P(A,)
PROOF Let us first assume that A, T. Then
lim A, = UA;
=i
We recall that
UA = A +(A7 0 A)+ (A7 0 A5 A A )+
j=1

=A1+(A2_A1)+(A3_A2)+""

by the assumption that A, T. Hence

Pllim 4, )= P(/Ol Aj) = P(4)+ P(A, - 4)

Thus
P(lim An) =lim P(4,).
Now let A, . Then A¢ T, so that

lim A¢ = A".

Al



20 2 Some Probabilistic Concepts and Results

Hence

n—yeo n—co

Pllim 47 ) = P{O Al ) = lim P(A; ),
A

or equivalently,

P(ﬁAJJC =tim[1-P(4,)], or 1—P(ﬁAjJ=1—limP(An).

n—eo i=1 n—eo

Thus

lim P(A,) = P(Q A/’] = Pllim 4, }

H—o0 n—>o0

and the theorem is established. A

This theorem will prove very useful in many parts of this book.

Exercises

2.1.1 If the events A;, j =1, 2, 3 are such that A, c A, € A; and P(A,) = %,
P(A)) =2, P(Ay) = L, compute the probability of the following events:

E7
AfNA,, AfNA, A NA, ANA NA], Al NA NA;.

2.1.2 If two fair dice are rolled once, what is the probability that the total
number of spots shown is

i) Equal to 5?

ii) Divisible by 3?

2.1.3 Twenty balls numbered from 1 to 20 are mixed in an urn and two balls
are drawn successively and without replacement. If x, and x, are the numbers
written on the first and second ball drawn, respectively, what is the probability
that:

i) x, +x,=8?

i) x, +x,<5?

2.1.4 Let S={xinteger; 1 <x <200} and define the events A, B, and C by:

A={xesS; xis divisible by 7},
B= {x € S; x=3n+10 for some positive integer n},
C={res;x’+1<375.
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Compute P(A), P(B), P(C), where P is the equally likely probability function
on the events of S.

2.1.5 Let Sbe the set of all outcomes when flipping a fair coin four times and
let P be the uniform probability function on the events of S. Define the events
A, B as follows:

A= {s € S; s contains more 7T’s than H ’s},
B= {s € S; any Tin s precedes every H in s}.
Compute the probabilities P(A), P(B).
2.1.6 Suppose that the events A, j=1, 2, ... are such that

Y P(A) <.

=)
Use Definition 1 in Chapter 1 and Theorem 2 in this chapter in order to show
that P(A ) = 0.

2.1.7 Consider the events A, j=1, 2, ... and use Definition 1 in Chapter 1
and Theorem 2 herein in order to show that

P(A)<liminf P(A,)<limsup P(A,) < P(A),

n—soo

2.2 Conditional Probability

In this section, we shall introduce the concepts of conditional probability and
stochastic independence. Before the formal definition of conditional probabil-
ity is given, we shall attempt to provide some intuitive motivation for it. To this
end, consider a balanced die and suppose that the sides bearing the numbers
1,4 and 6 are painted red, whereas the remaining three sides are painted black.
The die is rolled once and we are asked for the probability that the upward
side is the one bearing the number 6. Assuming the uniform probability
function, the answer is, clearly, % Next, suppose that the die is rolled once as
before and all that we can observe is the color of the upward side but not the
number on it (for example, we may be observing the die from a considerable
distance, so that the color is visible but not the numbers on the sides). The
same question as above is asked, namely, what is the probability that the
number on the uppermost side is 6. Again, by assuming the uniform probabil-
ity function, the answer now is 1. This latter probability is called the condi-
tional probability of the number 6 turning up, given the information that the
uppermost side was painted red. Letting B stand for the event that number 6

appears and A for the event that the uppermost side is red, the above-
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mentioned conditional probability is denoted by P(BlA), and we observe that
this is equal to the quotient P(A N B)/P(A). Or suppose that, for the purposes
of a certain study, we observe two-children families in a certain locality, and
record the gender of the children. A sample space for this experiment is the
following: S={bb, bg, gb, gg}, where b stands for boy and g for girl, and bg, for
example, indicates that the boy is older than the girl. Suppose further
(although this is not exactly correct) that: P({bb}) = P({bg}) = P({gb}) = P({gg})
= %, and define the events A and B as follows: A = “children of one gender” =
{bb, gg}, B = “at least one boy” = {bb, bg, gh}. Then P(AIB) = P(A n B)/
P(B)= 1.

Fr0r3n these and other examples, one is led to the following definition of
conditional probability.

Let A be an event such that P(A) > 0. Then the conditional probability, given
A, is the (set) function denoted by P(-IA) and defined for every event B as

follows:
P(BlA)= %

P(BIA) is called the conditional probability of B, given A.

The set function P(:lA) is actually a probability function. To see this, it
suffices to prove the P(-lA) satisfies (P1)—(P3). We have: P(BIA) = 0 for every
event B, clearly. Next,

P(SnA) P(A)

M=y
andif A, j=1,2,..., are events such that A, " A, = @, i # j, we have
A Ala [( "1Af)mA]_P[zwl(AfmA)]
(]2{ j J_ P(A) - P(A)
1 _wP(A/.mA)_m
m;P(Ajrm)_; 0 _;P(A/_|A)

The conditional probability can be used in expressing the probability of
the intersection of a finite number of events.

(Multiplicative Theorem) Let A, j=1,2, ..., n, be events such that

n-1
P( A ]] > 0.
j=1

Then
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P[ﬂA,):P(An ANA N NA,,)

j=1

x P(4,,

A A, P44 )P(A),

(The proof of this theorem is left as an exercise; see Exercise 2.2.4.)

REMARK 3 The value of the above formula lies in the fact that, in general, it
is easier to calculate the conditional probabilities on the right-hand side. This
point is illustrated by the following simple example.

An urn contains 10 identical balls (except for color) of which five are black,
three are red and two are white. Four balls are drawn without replacement.
Find the probability that the first ball is black, the second red, the third white
and the fourth black.

Let A, be the event that the first ball is black, A, be the event that the
second ball is red, A, be the event that the third ball is white and A, be the
event that the fourth ball is black. Then

P(AnA,NANA,)
= P(A,]A4, 0 A, 0 4, )P(A|4, 0 A4, )P(4;]4,)P(4,),
and by using the uniform probability function, we have
P(4,)= %, P(a,]a)) :%, P(A)|4, 0 4,)= %
P(AJA A A, A 4= %.

1

Thus the required probability is equal to - = 0.0238.

Nowlet A, j=1,2,...,beeventssuchthat A, N A;=0,i#], and LA, =
S. Such a collection of events is called a partition of S. The partition is finite
or (denumerably) infinite, accordingly, as the events A; are finitely or
(denumerably) infinitely many. For any event, we clearly have:

B=Y(BnA,)
J
Hence
P(B)=3,P(Bn4,)=Y P(B|4,)P(4,))
J ]
provided P(A)) > 0, for all j. Thus we have the following theorem.

(Total Probability Theorem) Let {A;, j=1, 2,...} be a partition of S with
P(A)) >0, all j. Then for B € A, we have P(B) = ZP(BIA))P(A)).

This formula gives a way of evaluating P(B) in terms of P(BIA;) and
P(A), j=1,2,....Under the condition that P(B) > 0, the above formula
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can be “reversed” to provide an expression for P(A/lB), j =1, 2,.... In
fact,

P(A,~B) P(BlA)P(4)  P(BlA,)P(4)

]

PB) P Y p(HA)P(a)

P(A|B)=

Thus

(Bayes Formula) If {A,, j=1,2, ...} is a partition of S and P(A4)) >0,j=1,
2,...,and if P(B) > 0, then

__P{Bla)(4)

MR S A a)

REMARK 4 1t is important that one checks to be sure that the collection
{A;, j 2 1} forms a partition of S, as only then are the above theorems true.

The following simple example serves as an illustration of Theorems 4
and 5.

A multiple choice test question lists five alternative answers, of which only one
is correct. If a student has done the homework, then he/she is certain to
identify the correct answer; otherwise he/she chooses an answer at random.
Let p denote the probability of the event A that the student does the home-
work and let B be the event that he/she answers the question correctly. Find
the expression of the conditional probability P(AIB) in terms of p.

By noting that A and A° form a partition of the appropriate sample space,
an application of Theorems 4 and 5 gives

ale)- P(Bla)P(4) b 5p
P(B|A)P(A)+P(B‘AC)P(A”) 1_p+%(1_p) 4p+1

Furthermore, it is easily seen that P(AIB) = P(A) if and only if p =0 or 1.
For example, for p = 0.7, 0.5, 0.3, we find, respectively, that P(AIB) is
approximately equal to: 0.92, 0.83 and 0.68.

Of course, there is no reason to restrict ourselves to one partition of S
only. We may consider, for example, two partitions {A4,,i=1,2, .. }{B,,j=1,
2,...}. Then, clearly,

A=Y(AnB) i=12 ...,
j
B,=Y(B,nA) j=12...,

and

[AnB.i=12 . j=12.}
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is a partition of S. In fact,
(AnB)n(4,nB,)=@ if (i.j)= ("))
and
Z(AimBj) = ZZ(AimB].) =2 A=S.
L] L I i

The expression P(A; N B,) is called the joint probability of A, and B,. On the
other hand, from

A=Y (AnB;) and B, =Y (A,nB)
j i
we get

P(A)= Z], P(A,nB))= )y P(Ai|Bj)P (B))

J

provided P(B;) >0,j=1,2,...,and
P(B)=Y P(A,nB)=Y P(B|A)P(A)
provided P(A;) > 0,i =1, 2,.... The probabilities P(A,), P(B)) are called

marginal probabilities. We have analogous expressions for the case of more
than two partitions of S.

Exercises

2.2.1 If P(AIB) > P(A), then show that P(BIA) > P(B) (P(A)P(B) >0).
2.2.2 Show that:

i) P(A‘IB) =1 - P(AIB);

ii) P(A U BIC) = P(AIC) + P(BIC) — P(A n BIC).

Also show, by means of counterexamples, that the following equations need
not be true:

iii) P(AIBY) =1 - P(AIB);
iv) P(CIA + B) = P(CIA) + P(CIB).

223 If AnB=Jand P(A + B) > 0, express the probabilities P(AIA + B)
and P(BIA + B) in terms of P(A) and P(B).

2.2.4 Use induction to prove Theorem 3.

2.2.5 Suppose that a multiple choice test lists n alternative answers of which
only one is correct. Let p, A and B be defined as in Example 2 and find P,(A|B)
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in terms of n and p. Next show that if p is fixed but different from 0 and 1, then
P,(AIB) increases as n increases. Does this result seem reasonable?

226 IfA,j=1,2,3areany eventsin S, show that {A,, AN A,, AT AN
A (A, U A, U Ay is a partition of S.

227 Let{A,j=1,...,5} be a partition of S and suppose that P(A)) = j/15
and P(AlA)) = (5 - j)/15,j =1,..., 5. Compute the probabilities P(AA),
j=1,...,5.

2.2.8 A girl’s club has on its membership rolls the names of 50 girls with the
following descriptions:

20 blondes, 15 with blue eyes and 5 with brown eyes;
25 brunettes, 5 with blue eyes and 20 with brown eyes;
5 redheads, 1 with blue eyes and 4 with green eyes.

If one arranges a blind date with a club member, what is the probability that:

i) The girl is blonde?
ii) The girl is blonde, if it was only revealed that she has blue eyes?

2.2.9 Suppose that the probability that both of a pair of twins are boys is 0.30
and that the probability that they are both girls is 0.26. Given that the probabil-
ity of a child being a boy is 0.52, what is the probability that:

i) The second twin is a boy, given that the first is a boy?
ii) The second twin is a girl, given that the first is a girl?

2.2.10 Three machines I, IT and III manufacture 30%, 30% and 40%, respec-
tively, of the total output of certain items. Of them, 4%, 3% and 2%, respec-
tively, are defective. One item is drawn at random, tested and found to be
defective. What is the probability that the item was manufactured by each one
of the machines I, IT and III?

2.2.11 A shipment of 20 TV tubes contains 16 good tubes and 4 defective
tubes. Three tubes are chosen at random and tested successively. What is the
probability that:

i) The third tube is good, if the first two were found to be good?

ii) The third tube is defective, if one of the other two was found to be good
and the other one was found to be defective?

2.2.12 Suppose that a test for diagnosing a certain heart disease is 95%
accurate when applied to both those who have the disease and those who do
not. If it is known that 5 of 1,000 in a certain population have the disease in
question, compute the probability that a patient actually has the disease if the
test indicates that he does. (Interpret the answer by intuitive reasoning.)

2.2.13 Consider two urns U}, j =1, 2, such that urn U, contains m, white balls
and n; black balls. A ball is drawn at random from each one of the two urns and
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is placed into a third urn. Then a ball is drawn at random from the third urn.
Compute the probability that the ball is black.

2.2.14 Consider the urns of Exercise 2.2.13. A balanced die is rolled and if
an even number appears, a ball, chosen at random from U, is transferred to
urn U,. If an odd number appears, a ball, chosen at random from urn U,, is
transferred to urn U,. What is the probability that, after the above experiment
is performed twice, the number of white balls in the urn U, remains the same?

2.2.15 Consider three urns U}, j = 1, 2, 3 such that urn U, contains m; white
balls and n, black balls. A ball, chosen at random, is transferred from urn U, to
urn U, (color unnoticed), and then a ball, chosen at random, is transferred
from urn U, to urn U (color unnoticed). Finally, a ball is drawn at random
from urn U,. What is the probability that the ball is white?

2.2.16 Consider the urns of Exercise 2.2.15. One urn is chosen at random
and one ball is drawn from it also at random. If the ball drawn was white, what
is the probability that the urn chosen was urn U, or U,?

2.2.17 Consider six urns U, j =1, ..., 6 such that urn U, contains m, (> 2)
white balls and n; (= 2) black balls. A balanced die is tossed once and if the
number j appears on the die, two balls are selected at random from urn U,
Compute the probability that one ball is white and one ball is black.

2.2.18 Consider k urns U, j=1, ..., k each of which contain m white balls
and n black balls. A ball is drawn at random from urn U, and is placed in urn
U,. Then a ball is drawn at random from urn U, and is placed in urn U, etc.
Finally, a ball is chosen at random from urn U,_, and is placed in urn U,. A ball
is then drawn at random from urn U,. Compute the probability that this last
ball is black.

2.3 Independence

For any events A, B with P(A) > 0, we defined P(BIA) = P(A n B)/P(A). Now
P(BIA) may be >P(B), <P(B), or = P(B). As an illustration, consider an urn
containing 10 balls, seven of which are red, the remaining three being black.
Except for color, the balls are identical. Suppose that two balls are drawn
successively and without replacement. Then (assuming throughout the uni-
form probability function) the conditional probability that the second ball is
red, given that the first ball was red, is £, whereas the conditional probability
that the second ball is red, given that the first was black, is 7. Without any
knowledge regarding the first ball, the probability that the second ball is red is
- On the other hand, if the balls are drawn with replacement, the probability
that the second ball is red, given that the first ball was red, is ... This probabil-
ity is the same even if the first ball was black. In other words, knowledge of the
event which occurred in the first drawing provides no additional information in
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calculating the probability of the event that the second ball is red. Events like
these are said to be independent.

As another example, revisit the two-children families example considered
earlier, and define the events A and B as follows: A = “children of both
genders,” B = “older child is a boy.” Then P(A) = P(B) = P(BIA) = 1. Again
knowledge of the event A provides no additional information in calculating
the probability of the event B. Thus A and B are independent.

More generally, let A, B be events with P(A) > 0. Then if P(BIA) = P(B),
we say that the even B is (statistically or stochastically or in the probability
sense) independent of the event A. If P(B) is also > 0, then it is easily seen that
A is also independent of B. In fact,

P(AnB) P(BlA)P(A) P(B)P(A)
A R T R TR
That is, if P(A), P(B) > 0, and one of the events is independent of the other,
then this second event is also independent of the first. Thus, independence is
a symmetric relation, and we may simply say that A and B are independent. In

this case P(A N B) = P(A)P(B) and we may take this relationship as the
definition of independence of A and B. That is,

The events A, B are said to be (statistically or stochastically or in the probabil-
ity sense) independent if P(A N B) = P(A)P(B).
Notice that this relationship is true even if one or both of P(A), P(B) = 0.

As was pointed out in connection with the examples discussed above,
independence of two events simply means that knowledge of the occurrence of
one of them helps in no way in re-evaluating the probability that the other
event happens. This is true for any two independent events A and B, as follows
from the equation P(AIB) = P(A), provided P(B) > 0, or P(BIA) = P(B),
provided P(A) > 0. Events which are intuitively independent arise, for exam-
ple, in connection with the descriptive experiments of successively drawing
balls with replacement from the same urn with always the same content, or
drawing cards with replacement from the same deck of playing cards, or
repeatedly tossing the same or different coins, etc.

What actually happens in practice is to consider events which are inde-
pendent in the intuitive sense, and then define the probability function P
appropriately to reflect this independence.

The definition of independence generalizes to any finite number of events.
Thus:

The events A, j=1,2, ..., nare said to be (mutually or completely) indepen-
dent if the following relationships hold:
P(A,n---nA)=P(4;) - P(A,)

foranyk=2,...,nandj,...,j,=1,2,...,nsuchthat 1 <j, <j,<---<j, <
n. These events are said to be pairwise independent if P(A; " A;) = P(A,)P(A))
forall i #j.
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It follows that, if the events A, j=1,2,..., n are mutually independent,
then they are pairwise independent. The converse need not be true, as the
example below illustrates. Also there are

LV Gl LMoo

relationships characterizing the independence of A, j=1, ..., n and they are
all necessary. For example, for n =3 we will have:

P(A, N A, 0 Ay) = P(A)P(A,)P(4,),
P(A, N A,)=P(A)P(A,)

P(A n A)= P(A)P(A)

P(A, N A;) = P(A,)P(A,).

>
]

That these four relations are necessary for the characterization of indepen-
dence of A,, A,, A, is illustrated by the following examples:

Let §={1,2,3,4}, P({1}) =---=P({4}) = },and set A, = {1, 2}, A, = {1, 3},
A, =1{1, 4}. Then

ANnA=AnA=AnA={l}, and AnAnA={1}

Thus
P(A, N A,)=P(A N A)=P(A, 0 A)=P(A N A, mA3):%.
Next,
P(A N A,) =%=%%= P(A)P(A,)
PAna)=1=25=P(4)P(4)
P(A, mA3):%:%%:P(A2)P(A3)
but
P(ANANA) 7 ¢%~%%_P(AI)P(A2)P(A3)

Now let S={1, 2, 3, 4, 5}, and define P as follows:

A5 re)-rl) -l -5
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Let
A ={1, 2, 3}, A, ={1, 2, 4}, A, ={1, 3, 4}.

Then

AnaA={1,2}, AnAna={1].
Thus

P(A N A, m@):é:%%%:P(A])P(AZ)P(AS),

but

P(A N A,)= 156 %%— (4,)P(4,)

The following result, regarding independence of events, is often used by
many authors without any reference to it. It is the theorem below.

If the events A,, . . ., A, are independent, so are the events A7, ..., A;, where
Ajis either A;jor A, j=1,...,n.

PROOF The proof is done by (a double) induction. For n = 2, we have to
show that P(A] N A%) = P(A})P(A%). Indeed, let A7 = A, and A} = A5. Then
P(AT N A)) = P(A; N AY) = P[A; N (S— A)] = P(A, - A, n A;) = P(A)) -
P(A,nA;)=P(A) = P(A)P(A;) = P(A)[1 - P(A,)] = P(A]) P(AS) = P(A}) P(A3).
Similarly if A] = A{and A} = A,. For A] = A{ and A} = Aj, P(A] N A)) =
P(A5 A A5) = P[(S—A,) M A5] = P(A5 — A, 0 A3) = P(A3) ~P(A, 1 A5) = P(A3)
— P(A)P(A3) = (A1 - P(A,)] = P(A9)P(AS) = P(A])P(A}).

Next, assume the assertion to be true for k£ events and show it to be true
for k + 1 events. That is, we suppose that P(A] N --- N A;) = P(A]) --- P(A)),
and we shall show that P(A] N --- N Ay,)) = P(A]) - - - P(A},,). First, assume
that A;,, = A,,;, and we have to show that

PA/A - AL )=P(A/n - AN AL
= P(A{) - P(A})P(A,)

This relationship is established also by induction as follows: If A7= A and
Al=A,i=2,...,k, then

(Ayn - A NAL)-PANA N NANA)
(42) - P(A)P(A )= P(A)P(4,) - P(A4)P(Ac)
(4,) - P(A)P(A)1-P(A)]= P47 )P(4,) - P(4)P(A).
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This is, clearly, true if Af is replaced by any other A, i=2,..., k. Now, for
{ < k, assume that
P(A N--NA;NA, N- mA,M)
( ) ( ) 4+1)"‘P(Ak+1)

and show that

P(Af N NA NA NA, N mAkH)

= P(Af) T P(Af;C)P(A/,Cﬂ)P(Aaz) T P(Ak+1)'
Indeed,
P(Af N NA NA  NA,N--- mA,M)
= [Al N -NA/ m S AM)mAMm mAk+1]
= (A1 N NA NA LN - NA,
—Af N mA(/mAHlmAHZm”'mAkH)
=P(Af N NA NA,N--- mAk+1)
—P(Al" N NA NA,NA,N- - mAkH)
= P(A7) -+ PlAS)P(A,L) - P(Ay)
_P(Alc) e P(A(/C )P(Am )P(Auz) e P(Ak+l)
(by the induction hypothesis)

= P(Alc) T P(Af )P(Am) T P(Akﬂ)[l_P(AHl)]

= P(Alc) T P(A; )P(A/,/+2) o P(Alm )P(Al,fﬂ)

= P(Ar) - PAT)P(AL)P(AL) - P(A),

as was to be seen. It is also, clearly, true that the same result holds if the € A’s
which are A¢are chosen in any one of the (}) possible ways of choosing ¢ out
of k. Thus, we have shown that

P(A/A - N AL A A ) =P(A]) - P(A)P(Ay, )
Finally, under the assumption that
P(AlA - 0 A)=P(A)) - P(AY),
take A;,, = A{,,, and show that

PlA/A- n A AL ) = P(AY) - P(A)P(AL )
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In fact,

P(A{m e mA,imA,ﬁH)zP[(A{m e mA,;m(S—AkH))]

P(AIA - nA-Aln - N A N AL
P(Al’m e mA,;)—P(Al’m M AL mAk+1)
P(A) - P(A;)- P(A)) - P(A)P(Ar)

(by the induction hypothesis and what was last proved)
- p(a)- - Plagi- )
= P(4))- - P(A)P(AL,)
This completes the proof of the theorem. A

Now, for j =1, 2, let Z; be an experiment having the sample space S;. One
may look at the pair (Z,, Z,) of experiments, and then the question arises as to
what is the appropriate sample space for this composite or compound experi-
ment, also denoted by E, x E,. If S stands for this sample space, then, clearly,
S=8x8={(s,5);s,€ S, 5, € S,}. The corresponding events are, of course,
subsets of S. The notion of independence also carries over to experiments.
Thus, we say that the experiments Z, and ZE, are independent if P(B, N B,) =
P(B,)P(B,) for all events B, associated with Z, alone, and all events B, associ-
ated Z, alone.

What actually happens in practice is to start out with two experiments Z,,
E, which are intuitively independent, such as the descriptive experiments (also
mentioned above) of successively drawing balls with replacement from the
same urn with always the same content, or drawing cards with replacement
from the same deck of playing cards, or repeatedly tossing the same or differ-
ent coins etc., and have the corresponding probability spaces (S,, class of
events, P,) and (S,, class of events, P,), and then define the probability func-
tion P, in terms of P, and P,, on the class of events in the space S, x S, so that
it reflects the intuitive independence.

The above definitions generalize in a straightforward manner to any finite
number of experiments. Thus, if E, j =1, 2,..., n, are n experiments with
corresponding sample spaces S; and probability functions P, on the respective
classes of events, then the compound experiment

(fl’ fz,...,fn)zflezx...xf

n

has sample space S, where
S=51><~-~><Sn={(s1,~~,sn); s;€8,j=1, 2,,.,,n}.

The class of events are subsets of S, and the experiments are said to be
independent if for all events B; associated with experiment Z; alone, j = 1,
2,...,n,it holds
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P(B.~---nB,)=P(B)--- P(B,).

Again, the probability function P is defined, in terms of P,,j=1,2,...,n,0on
the class of events in S so that to reflect the intuitive independence of the
experiments E,j=1,2,...,n.

In closing this section, we mention that events and experiments which are
not independent are said to be dependent.

Exercises

2.3.1 If A and B are disjoint events, then show that A and B are independent
if and only if at least one of P(A), P(B) is zero.

2.3.2 Show that if the event A is independent of itself, then P(A) =0 or 1.

2.3.3 If A, B are independent, A, C are independent and B N C =, then A,
B + C are independent. Show, by means of a counterexample, that the conclu-
sion need not be true if BN C # &.

2.3.4 For each j =1,..., n, suppose that the events A,,..., A,, B, are
independent and that B, » B;= @, i # . Then show that the events A, ..., A,
Z’}:IB]- are independent.

235 IfA,j=1,...,nare independent events, show that

P(QAJ:l—QP(A;).

2.3.6 Jim takes the written and road driver’s license tests repeatedly until he
passes them. Given that the probability that he passes the written test is 0.9
and the road test is 0.6 and that tests are independent of each other, what is the
probability that he will pass both tests on his nth attempt? (Assume that
the road test cannot be taken unless he passes the written test, and that once
he passes the written test he does not have to take it again, no matter whether
he passes or fails his next road test. Also, the written and the road tests are
considered distinct attempts.)

2.3.7 The probability that a missile fired against a target is not intercepted by

an antimissile missile is 2. Given that the missile has not been intercepted, the

probability of a successful hit is 2. If four missiles are fired independently,

what is the probability that:

i) All will successfully hit the target?

ii) At least one will do so?

How many missiles should be fired, so that:
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iii) At least one is not intercepted with probability >0.95?
iv) At least one successfully hits its target with probability 20.99?
2.3.8 Two fair dice are rolled repeatedly and independently. The first time a
total of 10 appears, player A wins, while the first time that a total of 6 appears,
player B wins, and the game is terminated. Compute the probabilities that:
i) The game terminates on the nth throw and player A wins;
ii) The same for player B;
iii) Player A wins;
iv) Player B wins;
v) Does the game terminate ever?
2.3.9 Electric current is transmitted from point A to point B provided at
least one of the circuits #1 through #n below is closed. If the circuits close
independently of each other and with respective probabilities p,, i =1,. .., n,
determine the probability that:
i) Exactly one circuit is closed;
ii) At least one circuit is closed;
iii) Exactly m circuits are closed for 0 < m < n;
iv) At least m circuits are closed with m as in part (iii);
v) What do parts (i)—(iv) become for p, =---=p, = p, say?

2.4 Combinatorial Results

In this section, we will restrict ourselves to finite sample spaces and uniform
probability functions. Some combinatorial results will be needed and we pro-
ceed to derive them here. Also examples illustrating the theorems of previous
sections will be presented.
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The following theorem, known as the Fundamental Principle of Counting,
forms the backbone of the results in this section.

Let a task 7" be completed by carrying out all of the subtasks 7, j=1,2,...,
k, and let it be possible to perform the subtask 7; in n; (different) ways, j = 1,
2, ..., k. Then the total number of ways the task 7"may be performed is given
by I1%,n,.

PROOF The assertion is true for k = 2, since by combining each one of the n,
ways of performing subtask 7, with each one of the n, ways of performing
subtask 7,, we obtain n;n, as the total number of ways of performing task 7.
Next, assume the result to be true for kK = m and establish it for k =m + 1. The
reasoning is the same as in the step just completed, since by combining each
one of the 7 p. ways of performing the first m subtasks with each one of
j=1.75 . m mil
n,,,, ways of performing substask 7,,,,, we obtain (H,-:1” ].) xn,, =1I;5 n; for
the total number of ways of completing task 7. A

The following examples serve as an illustration to Theorem 7.

i) A man has five suits, three pairs of shoes and two hats. Then the number
of different ways he can attire himself is 5-3-2 = 30.

ii) Consider the set S = {1,..., N} and suppose that we are interested in
finding the number of its subsets. In forming a subset, we consider for each
element whether to include it or not. Then the required number is equal to
the following product of N factors 2 - - -2 =2".

iii) Let n; = n(S)) be the number of points of the sample space S, j=1,2,...,
k. Then the sample space S = S, x---x S, has n(S) = n,-- - n, sample
points. Or, if #; is the number of outcomes of the experiment Z, j = 1,
2, ..., k, then the number of outcomes of the compound experiment Z, X
oXEisny ...y

In the following, we shall consider the problems of selecting balls from an
urn and also placing balls into cells which serve as general models of
many interesting real life problems. The main results will be formulated as
theorems and their proofs will be applications of the Fundamental Principle of
Counting.

Consider an urn which contains n numbered (distinct, but otherwise iden-
tical) balls. If k balls are drawn from the urn, we say that a sample of size k was
drawn. The sample is ordered if the order in which the balls are drawn is taken
into consideration and unordered otherwise. Then we have the following
result.

i) The number of ordered samples of size kisn(n -1)---(n—-k+1)=P,,
(permutations of k objects out of n, and in particular,if k=n, P,,=1-2---
n = n!), provided the sampling is done without replacement; and is equal to
n"* if the sampling is done with replacement.

ii) The number of unordered samples of size k is
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EXAMPLE 4

P (n)_ n!
T O _(k] ~ K(n—k)!

if the sampling is done without replacement; and is equal to

N k)z(n+1;—1)

if the sampling is done with replacement. [See also Theorem 9(iii). ]
PROOF

i) The first part follows from Theorem 7 by takingn; =(n—-j+1),j=1,...,
k, and the second part follows from the same theorem by taking n; = n,
ji=1,..., k.

ii) For the first part, we have that, if order counts, this number is P, ;. Since for
every sample of size k one can form k! ordered samples of the same size, if
x is the required number, then P,, = xk!. Hence the desired result.

The proof of the second part may be carried out by an appropriate induc-
tion method. However, we choose to present the following short alternative
proof which is due to S. W. Golomb and appeared in the American Mathemati-
cal Monthly, 75, 1968, p. 530. For clarity, consider the n balls to be cards
numbered from 1 to n and adjoin k — 1 extra cards numbered from n + 1 to
n + k — 1 and bearing the respective instructions: “repeat lowest numbered
card,” “repeat 2nd lowest numbered card,” . . ., “repeat (k — 1)st lowest num-
bered card.” Then a sample of size k& without replacement from this enlarged
(n + k — 1)-card deck corresponds uniquely to a sample of size k from the
original deck with replacement. (That is, take k out of n + k — 1, without
replacement so that there will be at least one out of 1,2, . . ., n, and then apply
the instructions.) Thus, by the first part, the required number is

(H/lz_lJ:N(”’ k).

as was to be seen. A

For the sake of illustration of Theorem 8§, let us consider the following
examples.

(i) Form all possible three digit numbers by using the numbers 1, 2, 3, 4, 5.
(ii) Find the number of all subsets of the set S={1,..., N}.

In part (i), clearly, the order in which the numbers are selected is relevant.
Then the required number is Ps;=35-4-3 = 60 without repetitions, and 5’ = 125
with repetitions.

In part (ii) the order is, clearly, irrelevant and the required number is ()
+ () +-- -+ (§) =2", as already found in Example 3.
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An urn contains 8 balls numbered 1 to 8. Four balls are drawn. What is the
probability that the smallest number is 3?

Assuming the uniform probability function, the required probabilities are
as follows for the respective four possible sampling cases:

Order does not count/replacements not allowed:

(6+3—1)
3 _28 = 0.17,

Order does not count/replacements allowed: L =——=

8+4-1) 165
4

(5434 1
Order counts/replacements not allowed: L =—=0.14;
8765 7
(o))
ST ST LS5+
Order counts/replacements allowed: \ 1 2 3 4)_ 671 016
8 4,096

What is the probability that a poker hand will have exactly one pair?
A poker hand is a 5-subset of the set of 52 cards in a full deck, so there
are

(552) =N =2,598,960

different poker hands. We thus let S be a set with N elements and assign the
uniform probability measure to S. A poker hand with one pair has two cards
of the same face value and three cards whose faces are all different among
themselves and from that of the pair. We arrive at a unique poker hand with
one pair by completing the following tasks in order:

a) Choose the face value of the pair from the 13 available face values. This can
be done in (}) = 13 ways.

b) Choose two cards with the face value selected in (a). This can be done in (%)
= 6 ways.

¢) Choose the three face values for the other three cards in the hand. Since
there are 12 face values to choose from, this can be done in (%) = 220
ways.

d) Choose one card (from the four at hand) of each face value chosen in (c).
This can be done in 4-4-4 = 4> = 64 ways.
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Then, by Theorem 6, there are 13-6-220-64 = 1,098,240 poker hands with
one pair. Hence, by assuming the uniform probability measure, the required
probability is equal to

1,098,240
2,598,960

THEOREM 9 i) The number of ways in which n distinct balls can be distributed into &
distinct cells is k".

ii) The number of ways that n distinct balls can be distributed into k distinct
cells so that the jth cell contains n; balls (n,20, j=1,..., k, Zf, n,=n)
is

n! n
mlnd-n! \n,n,, .. ., ¢

iii) The number of ways that n indistinguishable balls can be distributed into
k distinct cells is
k+n-1
; .
Furthermore, if n > k and no cell is to be empty, this number becomes

)

i) Obvious, since there are k places to put each of the » balls.

PROOF

ii) This problem is equivalent to partitioning the » balls into k£ groups, where
the jth group contains exactly n; balls with n; as above. This can be done in
the following number of ways:

A KU DU Rt Ut U S
m\ n, n, m'n,! - n!

iii) We represent the k cells by the k spaces between k + 1 vertical bars and the
n balls by n stars. By fixing the two extreme bars, we are left with k +n —
1 bars and stars which we may consider as k + n — 1 spaces to be filled in
by a bar or a star. Then the problem is that of selecting n spaces for the n
stars which can be done in k*:‘l).' ways. As for the second part, we now
have the condition that there' should not be two adjacent bars. The » stars
create n — 1 spaces and by selecting k — 1 of them in (Zj) ways to place the
k — 1 bars, the result follows. A
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REMARK 5

i) The numbers n;, j=1,..., k in the second part of the theorem are called
occupancy numbers.

ii) The answer to (ii) is also the answer to the following different question:
Consider n numbered balls such that n; are identical among themselves and
distinct from all others, n;20,j=1,..., k, Z';Zl n; = n. Then the number of
different permutations is

My, Mys s My

Now consider the following examples for the purpose of illustrating the
theorem.

Find the probability that, in dealing a bridge hand, each player receives one
ace.
The number of possible bridge hands is

52 52!
N= =2
13,13, 13,13) " (13)°

Our sample space Sis a set with N elements and assign the uniform probability
measure. Next, the number of sample points for which each player, North,
South, East and West, has one ace can be found as follows:

a) Deal the four aces, one to each player. This can be done in

4 41
=——— =4! ways.
1,1,1,1) 1r1r1r1!

b) Deal the remaining 48 cards, 12 to each player. This can be done in

48 !
=—— ways.
12,12,12,12) (12))

Thus the required number is 4!48!/(12!)* and the desired probability is
4148!(131)Y/[(12!)*(52!)]. Furthermore, it can be seen that this probability lies
between 0.10 and 0.11.

The eleven letters of the word MISSISSIPPI are scrambled and then arranged
in some order.

i) What is the probability that the four I’s are consecutive letters in the
resulting arrangement?
There are eight possible positions for the first I and the remaining
seven letters can be arranged in (1 Z2) distinct ways. Thus the required
probability is o



40 2 Some Probabilistic Concepts and Results

8(1 Z 2)
42 4 _om.

11 " 165
1,4, 4,2

ii) What is the conditional probability that the four I’s are consecutive (event
A), given B, where B is the event that the arrangement starts with M and
ends with S?

Since there are only six positions for the first I, we clearly have

{3
. 0.05.

9 21
4,3,2

iii) What is the conditional probability of A, as defined above, given C, where
C is the event that the arrangement ends with four consecutive S’s?
Since there are only four positions for the first I, it is clear that

)

S YL BT
7 35

1,24

P(A4B)=

PlAc)=

Exercises

2.4.1 A combination lock can be unlocked by switching it to the left and
stopping at digit a, then switching it to the right and stopping at digit » and,
finally, switching it to the left and stopping at digit c. If the distinct digits a, b
and c are chosen from among the numbers 0, 1, ..., 9, what is the number of
possible combinations?

2.4.2 How many distinct groups of # symbols in a row can be formed, if each
symbol is either a dot or a dash?

2.4.3 How many different three-digit numbers can be formed by using the
numbers 0, 1,...,9?

2.4.4 Telephone numbers consist of seven digits, three of which are grouped
together, and the remaining four are also grouped together. How many num-
bers can be formed if:

i) No restrictions are imposed?

ii) If the first three numbers are required to be 752?
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2.4.5 A certain state uses five symbols for automobile license plates such that
the first two are letters and the last three numbers. How many license plates
can be made, if:

i) All letters and numbers may be used?
ii) No two letters may be the same?

2.4.6 Suppose that the letters C, E, F, F, I and O are written on six chips and
placed into an urn. Then the six chips are mixed and drawn one by one without
replacement. What is the probability that the word “OFFICE” is formed?

2.4.7 The 24 volumes of the Encyclopaedia Britannica are arranged on a
shelf. What is the probability that:

i) All 24 volumes appear in ascending order?

ii) All 24 volumes appear in ascending order, given that volumes 14 and 15
appeared in ascending order and that volumes 1-13 precede volume 14?

2.4.8 If n countries exchange ambassadors, how many ambassadors are
involved?

2.4.9 From among n eligible draftees, m men are to be drafted so that all
possible combinations are equally likely to be chosen. What is the probability
that a specified man is not drafted?

2.4.10 Show that
n+1
m+1 _n+1

by

2.4.11 Consider five line segments of length 1, 3, 5, 7 and 9 and choose three
of them at random. What is the probability that a triangle can be formed by
using these three chosen line segments?

2.4.12 From 10 positive and 6 negative numbers, 3 numbers are chosen at
random and without repetitions. What is the probability that their product is
a negative number?

2.4.13 In how many ways can a committee of 2n + 1 people be seated along
one side of a table, if the chairman must sit in the middle?

2.4.14 Each of the 2n members of a committee flips a fair coin in deciding
whether or not to attend a meeting of the committee; a committee member
attends the meeting if an H appears. What is the probability that a majority
will show up in the meeting?

2.4.15 If the probability that a coin falls H is p (0 < p < 1), what is the
probability that two people obtain the same number of H’s, if each one of
them tosses the coin independently # times?
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2.4.16

i) Six fair dice are tossed once. What is the probability that all six faces
appear?

ii) Seven fair dice are tossed once. What is the probability that every face
appears at least once?

2.4.17 A shipment of 2,000 light bulbs contains 200 defective items and 1,800
good items. Five hundred bulbs are chosen at random, are tested and the
entire shipment is rejected if more than 25 bulbs from among those tested are
found to be defective. What is the probability that the shipment will be

accepted?
M) (M-1 N M-1
m m m-1)

2.4.18 Show that
where N, m are positive integers and m < M.

2.4.19 Show that
where

2.4.20 Show that

i) 2(’?} =2" i) Z(-1)’(’,’J =0.
j=0\J j=0 J
2.4.21 A studentis given a test consisting of 30 questions. For each question
there are supplied 5 different answers (of which only one is correct). The
student is required to answer correctly at least 25 questions in order to pass the
test. If he knows the right answers to the first 20 questions and chooses an
answer to the remaining questions at random and independently of each other,
what is the probability that he will pass the test?

2.4.22 A student committee of 12 people is to be formed from among 100
freshmen (60 male + 40 female), 80 sophomores (50 male + 30 female), 70
juniors (46 male + 24 female), and 40 seniors (28 male + 12 female). Find the
total number of different committees which can be formed under each one of
the following requirements:

i) No restrictions are imposed on the formation of the committee;
ii) Seven students are male and five female;
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iii) The committee contains the same number of students from each class;

iv) The committee contains two male students and one female student from
each class;

v) The committee chairman is required to be a senior;
vi) The committee chairman is required to be both a senior and male;
vii) The chairman, the secretary and the treasurer of the committee are all
required to belong to different classes.

2.4.23 Refer to Exercise 2.4.22 and suppose that the committee is formed by
choosing its members at random. Compute the probability that the committee
to be chosen satisfies each one of the requirements (i)—(vii).

2.4.24 A fair die is rolled independently until all faces appear at least once.
What is the probability that this happens on the 20th throw?

2.4.25 Twenty letters addressed to 20 different addresses are placed at ran-
dom into the 20 envelopes. What is the probability that:

i) All 20 letters go into the right envelopes?
ii) Exactly 19 letters go into the right envelopes?
iii) Exactly 17 letters go into the right envelopes?

2.4.26 Suppose that each one of the 365 days of a year is equally likely to be
the birthday of each one of a given group of 73 people. What is the probability
that:

i) Forty people have the same birthdays and the other 33 also have the same
birthday (which is different from that of the previous group)?

ii) If a year is divided into five 73-day specified intervals, what is the probabil-
ity that the birthday of: 17 people falls into the first such interval, 23 into
the second, 15 into the third, 10 into the fourth and 8 into the fifth interval?

2.4.27 Suppose that each one of n sticks is broken into one long and one
short part. Two parts are chosen at random. What is the probability that:

i) One part is long and one is short?

ii) Both parts are either long or short?

The 2n parts are arranged at random into » pairs from which new sticks are
formed. Find the probability that:

iii) The parts are joined in the original order;

iv) All long parts are paired with short parts.
2.4.28 Derive the third part of Theorem 9 from Theorem 8(ii).

2.4.29 Three cards are drawn at random and with replacement from a stan-
dard deck of 52 playing cards. Compute the probabilities P(A)),j=1,...,5,
where the events A, j=1,..., 5 are defined as follows:
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A = {s € S; all 3 cards in s are black},

A, = {s € §; at least 2 cards in s are red},

i

= {s € S; exactly 1 card in s is an ace},

A, = {s € §; the first card in s is a diamond,
the second is a heart and the third is a club},

A = {s € S; 1cardinsis a diamond, 1isaheartand lisa club}.

2430 Refer to Exercise 2.429 and compute the probabilities P(A)),
j=1,...,5 when the cards are drawn at random but without replacement.

2.4.31 Consider hands of 5 cards from a standard deck of 52 playing
cards. Find the number of all 5-card hands which satisfy one of the following
requirements:

i) Exactly three cards are of one color;

ii) Three cards are of three suits and the other two of the remaining suit;
iii) At least two of the cards are aces;
iv) Two cards are aces, one is a king, one is a queen and one is a jack;

v) All five cards are of the same suit.
2.4.32 An urn contains n, red balls, n, black balls and n,, white balls. r balls
are chosen at random and with replacement. Find the probability that:

i) All r balls are red;

ii) At least one ball is red;
iii) r, balls are red, r, balls are black and r, balls are white (r, + r, + r; =r);
iv) There are balls of all three colors.

2.4.33 Refer to Exercise 2.4.32 and discuss the questions (i)—(iii) for =3 and
r, =r, =r; (= 1), if the balls are drawn at random but without replacement.

2.4.34 Suppose that all 13-card hands are equally likely when a standard
deck of 52 playing cards is dealt to 4 people. Compute the probabilities P(A)),
j=1,...,8, where the events A;, j=1, ..., 8 are defined as follows:

A =1{s€S; sconsists of 1 color cards},

s € S; s consists only of diamonds},

s € S; s consists of cards of exactly 2 suits},

A = {s e S; s consists of 5 diamonds, 3 hearts, 2 clubs and 3 spades},
{s € S; s contains at least 2 aces},

¢ =15 € S; s does not contain aces, tens and jacks},
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A, = {s € S; s consists of 3 aces, 2 kings and exactly 7 red cards},

A = {s € §; s consists of cards of all different denominations}.

2.4.35 Refer to Exercise 2.4.34 and for j =0, 1,. .., 4, define the events A;
and also A as follows:

A= {s € S; s contains exactly j tens},

A= {s € S; s contains exactly 7 red cards}.

Forj=0,1,..., 4, compute the probabilities P(A;), P(A}|A) and also P(A);
compare the numbers P(A)), P(A]A).

2.4.36 Let Sbe the set of all n’ 3-letter words of a language and let P be the
equally likely probability function on the events of S. Define the events A, B
and C as follows:

A= {s € S; s begins with a specific letter},

B= {s € S; s has the specified letter (mentioned in the definition of A)
in the middle entry},

C= {s € S; s has exactly two of its letters the same}.

Then show that:
i) P(A n B) = P(A)P(B);
ii) P(An C)=P(A)P(C);
iii) P(B n C) = P(B)P(C);
iv) P(An B n C)# P(A)P(B)P(C).

Thus the events A, B, C are pairwise independent but not mutually
independent.

2.5* Product Probability Spaces

The concepts discussed in Section 2.3 can be stated precisely by utilizing more
technical language. Thus, if we consider the experiments Z, and Z, with re-
spective probability spaces (S, A,, P,) and (S,, ‘A,, P,), then the compound
experiment (E,, F,) = £, x E, has sample space S = S, x S, as defined earlier.
The appropriate o-field A of events in Sis defined as follows: First define the
class C by:

C={AxA;AecA, AeAl
where A X A, ={(s1,s2); s,€A, S, € Az}.
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Then A is taken to be the o-field generated by C (see Theorem 4 in Chapter
1). Next, define on C the set function P by P(A, X A,) = P,(A,)P,(A,). It can be
shown that P determines uniquely a probability measure on A (by means of
the so-called Carathéodory extension theorem). This probability measure is
usually denoted by P, X P, and is called the product probability measure (with
factors P, and P,), and the probability space (S, ‘A, P) is called the product
probability space (with factors (S, A, P),j=1,2). Itis to be noted that events
which refer to Z, alone are of the form B, = A, x S,, A, € A,, and those
referring to E, alone are of the form B, =S, XA,, A, € A,. The experiments Z,
and Z, are then said to be independent if P(B, N B,) = P(B,)P(B,) for all events
B, and B, as defined above.

For n experiments E,j=1,2, ..., n with corresponding probability spaces
(S, A, P), the compound experiment (E,, ..., E,) = E x- - - x E, has prob-
ability space (S, A, P), where

stlx"'xsn:{(sl,...a s,,); SI-ES/-,jzl, 2’~--’ n}’
A is the o-field generated by the class C, where
C={Ax-xA;AeA, j=12..,n}

and P is the unique probability measure defined on A through the
relationships

P(Ax- xA)=P(A)---P(A,) Aje A, j=12,. . n

The probability measure P is usually denoted by P, X - - - X P, and is called the
product probability measure (with factors P, j=1,2, ..., n), and the probabil-
ity space (S, A, P) is called the product probability space (with factors (S, A,
P),j=1,2,..., n). Then the experiments E, j =1, 2,..., n are said to be
independent if P(B, n--- N B,) = P(B,) - - - P(B,), where B, is defined by
Bj=51><---><5j71><Aj><S. x--xS ., j=1,2,...,n

j+1

The definition of independent events carries over to o-fields as follows.
Let A;, A, be two sub-o-fields of A. We say that A,, A, are independent if
P(A, " A,) = P(A)P(A,) for any A, € A,, A, € A, More generally, the
ofields A, j=1,2,...,n (sub-o-fields of AA) are said to be independent if

P(ﬁAjJ:ﬁP(AJ.) for any Ajeﬂj,jzl, 2,...,n.
j=1 j=1

Of course, o-fields which are not independent are said to be dependent.

At this point, notice that the factor o-fields A, j=1,2,..., n may be
considered as sub-o-fields of the product o-field A by identifying A; with B,
where the B;’s are defined above. Then independence of the experiments E,
j=1,2,..., n amounts to independence of the corresponding o-fields A,
j=1,2,...,n (looked upon as sub-o-fields of the product o-field A).
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Exercises

2.5.1 Form the Cartesian products A X B, A x C, Bx C, A x B x C, where
A = {stop, go}, B = {good, defective), C ={(1, 1), (1, 2), (2, 2)}.

2.5.2 Show that A x B = @ if and only if at least one of the sets A, B is &.
2.5.3 If A c B, show that A x C < B x C for any set C.

2.5.4 Show that
i) (AxB)'=(AXB)+(A°xXB) + (A" x BY);
ii) (AXxB)Nn(CxD)=(AnC)x(BnD);

iii) (AXB)U(CxD)=(AuC)x(BuD)-[(AnC)x(B°ND)
+ (AN C)x(Bn DY)

2.6* The Probability of Matchings

In this section, an important result, Theorem 10, is established providing an
expression for the probability of occurrence of exactly m events out of possible
M events. The theorem is then illustrated by means of two interesting exam-
ples. For this purpose, some additional notation is needed which we proceed to

introduce. Consider M events A, j=1,2,..., M and set
S, =1,
M

S, = ZP(A].),

Let also

B, = exactly
C = atleast ym of the events Aj, j=1,2,..., Moccur.

m

D = at most

m

Then we have
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THEOREM 10 With the notation introduced above

EXAMPLE 9

P(B,)=S5, - (’" N 1)Sm+1 + (’” " ZJSM ot (—1)M""[M JSM )
m

m m

which for m =0 is

P(B))=S,~S,+8,— - +(-1)"5,. 3)
and

P(C,)=P(B,)+P(B,. )+ +P(B,), (4)
and

P(D,)=P(B,)+P(B)+- - +P(B,) (5)

For the proof of this theorem, all that one has to establish is (2), since (4)
and (5) follow from it. This will be done in Section 5.6 of Chapter 5. For a proof
where S is discrete the reader is referred to the book An Introduction to
Probability Theory and Its Applications, Vol. 1, 3rd ed., 1968, by W. Feller, pp.
99-100.

The following examples illustrate the above theorem.

The matching problem (case of sampling without replacement). Suppose that
we have M urns, numbered 1 to M. Let M balls numbered 1 to M be inserted
randomly in the urns, with one ball in each urn. If a ball is placed into the urn
bearing the same number as the ball, a match is said to have occurred.

i) Show the probability of at least one match is

_l+l_ R +(_1)M+1Lz1—(371 =~ (.63
2! 3! M!

for large M, and
ii) exactly m matches will occur, form=0,1,2,..., M is

1 1 1 M-m 1
E1—1+5—§+--~+(—1) —(M—m)!

= (—1) —=—¢  for M-mlarge.

DISCUSSION To describe the distribution of the balls among the urns, write
an M-tuple (zy, 2o, - - - , 2,) Whose jth component represents the number of the
ball inserted in the jth urn. For k=1, 2, ..., M, the event A, that a match will
occur in the kth urn may be written A, = {(z,, . .., z,)’ € R"; z; integer, 1 < z;
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<M,j=1,...,M,z,=k}. Itis clear that for any integer r=1, 2, ..., M and any
r unequal integers k,, k,, . . ., k,, from 1 to M,

P(Ak]mAkz m---mAky):(

It then follows that S, is given by

This implies the desired results.

Coupon collecting (case of sampling with replacement). Suppose that a manu-
facturer gives away in packages of his product certain items (which we take to
be coupons), each bearing one of the integers 1 to M, in such a way that each
of the M items is equally likely to be found in any package purchased. If n
packages are bought, show that the probability that exactly m of the integers,
1 to M, will not be obtained is equal to

M-m _ n
M z (_1)k M—-m 1_m+k '
m Ji=o k M
Many variations and applications of the above problem are described in
the literature, one of which is the following. If n distinguishable balls are
distributed among M urns, numbered 1 to M, what is the probability that there

will be exactly m urns in which no ball was placed (that is, exactly m urns
remain empty after the n balls have been distributed)?

DISCUSSION To describe the coupons found in the n packages purchased,
we write an n-tuple (z,, z,, - -, z,), Whose jth component z; represents the
number of the coupon found in the jth package purchased. We now define the
events A, A,,...,Ay. Fork=1,2,..., M, A, is the event that the number k
will not appear in the sample, that is,

A, :{(Zl’ . Zn)
It is easy to see that we have the following results:
ﬂ&%w%j;zlni, k=12,.. ., M,
M M

-2Y ! k=12
A, na)=(M=2) 122, K=hae
‘ 2 M M k,=k+1,... ,n

’

e R"; z;integer, 1<z, <M, z; 2k, j=1, 2,,,,,n}.

and, in general,
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THEOREM 11

Thus the quantities S, are given by

S,:(M](1—LJ, r=0,1,..., M. (6)
r M

Let B,, be the event that exactly m of the integers 1 to M will not be found in
the sample. Clearly, B,, is the event that exactly m of the events A, ..., Ay,

will occur. By relations (2) and (6), we have

P(B,)= é(‘l)r_m(;)(ﬂ(l _ﬁJ )
i s B

by setting » — m = k and using the identity

S A ®

This is the desired result.

This section is concluded with the following important result stated as a
theorem.

Let A and B be two disjoint events. Then in a series of independent trials, show

that:

P(4)

P(A occurs before B occurs) =,
P(A)+P(B)

PROOF Fori=1,2,...,define the events A, and B; as follows:

A; = “A occurs on the ith trial,” B, = “B occurs on the ith trial.”
Then, clearly, required the event is the sum of the events
A, AANBnA,, AANB NASNB,NA,, ...,
AfNBfn---NnA, NB, NA

n+lo -

and therefore
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P(A occurs before B occurs)
= P[A1 +(Af NBf N A2)+(Af NBf NnA; NnB; N A3)
+ - +(Af NBn---NA, NB, mAn+1)+ . ]
= P(A1)+P(Af N Bf mA2)+P(Af NBf NA; NB; mA3)
+o +P(A; AB A NAS (B mAn+1)+ .
= P(A4)+ P(A7 Bf)P(A,)+ P(AS  BY)P(A5 ~ BS)P(4,)
4+ P(AS O BS) - P(A; A Bf)P(A,,)+ - (by Theorem 6)
= P(A)+ P(A° B )P(A)+ P*(A° A B°)P(4)
+o +P”(A" mB")P(A) .

= P(A) 1+ P(A A B )+ PP (A A B )+ PP (A A BT ]

=P4) 1—P(A1” nB)
P(AC mB‘) = P[(AUB)C]z 1-P(AU B)
=1-P(A+B)=1-P(A)- P(B)
1- P(A‘ A B ) = P(A)+ P(B)
Therefore

P(A occurs before B occurs) =

as asserted. A

It is possible to interpret B as a catastrophic event, and A as an event
consisting of taking certain precautionary and protective actions upon the
energizing of a signaling device. Then the significance of the above probability
becomes apparent. As a concrete illustration, consider the following simple
example (see also Exercise 2.6.3).
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EXAMPLE 11 Inrepeated (independent) draws with replacement from a standard deck of 52
playing cards, calculate the probability that an ace occurs before a picture.
Let A= “an ace occurs,” B = “a picture occurs.”
— 4 _ 1 — 12 _ 4
Thlen4P(_A1) = &= and P(B) = 2 = X, so that P(A occurs before B occurs)
- E/ 1B 4
Exercises

2.6.1 Show that

m+k| M | (M\M-m
m J\m+k m k)
as asserted in relation (8).

2.6.2 Verify the transition in (7) and that the resulting expression is indeed
the desired result.

2.6.3 Consider the following game of chance. Two fair dice are rolled repeat-
edly and independently. If the sum of the outcomes is either 7 or 11, the player
wins immediately, while if the sum is either 2 or 3 or 12, the player loses
immediately. If the sum is either 4 or 5 or 6 or 8 or 9 or 10, the player continues
rolling the dice until either the same sum appears before a sum of 7 appears in
which case he wins, or until a sum of 7 appears before the original sum appears
in which case the player loses. It is assumed that the game terminates the first
time the player wins or loses. What is the probability of winning?



Chapter 3

On Random Variables and
Their Distributions

3.1 Some General Concepts

Given a probability space (S, class of events, P), the main objective of prob-
ability theory is that of calculating probabilities of events which may be of
importance to us. Such calculations are facilitated by a transformation of the
sample space S, which may be quite an abstract set, into a subset of the real
line R with which we are already familiar. This is, actually, achieved by the
introduction of the concept of a random variable. A random variable (r.v.) is
a function (in the usual sense of the word), which assigns to each sample point
s € Sareal number, the value of the r.v. at s. We require that an r.v. be a well-
behaving function. This is satisfied by stipulating that r.v.’s are measurable
functions. For the precise definition of this concept and related results, the
interested reader is referred to Section 3.5 below. Most functions as just
defined, which occur in practice are, indeed, r.v.’s, and we leave the matter to
rest here. The notation X(S) will be used for the set of values of the r.v. X, the
range of X.

Random variables are denoted by the last letters of the alphabet X, Y, Z,
etc., with or without subscripts. For a subset B of R, we usually denote by
(X € B) the following event in S: (X € B) ={s € S; X(s) € B} for simplicity. In
particular, (X =x) ={s € S; X(s) = x}. The probability distribution function (or
just the distribution) of an r.v. X is usually denoted by P, and is a probability
function defined on subsets of R as follows: P (B) = P(X € B). Anr.v. X is said
to be of the discrete type (or just discrete) if there are countable (that is, finitely
many or denumerably infinite) many points in R, x,, x,, . . ., such that Py({x;})
>0,j21,and X, Py({x})(= X, P(X = x;)) = 1. Then the function fy defined on the
entire R by the relationships:

fx(x,-) = Px({x,})(= P(X =xj)) forx=x,

53
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and fy(x) = 0 otherwise has the properties:
fX(x) >0 forall x, and fo(x].) =1.
i

Furthermore, it is clear that

P(X eB)=Y f(x))
x,eB

Thus, instead of striving to calculate the probability of the event {s € S;
X(s) € B}, all we have to do is to sum up the values of fy(x;) for all those x;’s
which lie in B; this assumes, of course, that the function f, is known. The
function fy is called the probability density function (p.d.f.) of X. The distribu-
tion of a discrete r.v. will also be referred to as a discrete distribution. In the
following section, we will see some discrete r.v.’s (distributions) often occur-
ring in practice. They are the Binomial, Poisson, Hypergeometric, Negative
Binomial, and the (discrete) Uniform distributions.

Next, suppose that X is an r.v. which takes values in a (finite or infinite but
proper) interval / in R with the following qualification: P(X = x) = 0 for every
single x in I. Such an r.v. is called an r.v. of the continuous type (or just a
continuous 1.v.). Also, it often happens for such an r.v. to have a function f
satisfying the properties fy(x) > 0 for all x € I, and P(X € J) =], f,(x)dx for any
sub-interval J of 1. Such a function is called the probability density function
(p.d.f.) of X in analogy with the discrete case. It is to be noted, however, that
here fy(x) does not represent the P(X =x)! A continuous r.v. X with a p.d.f. f,
is called absolutely continuous to differentiate it from those continuous r.v.’s
which do not have a p.d.f. In this book, however, we are not going to concern
ourselves with non-absolutely continuous r.v.’s. Accordingly, the term “con-
tinuous” r.v. will be used instead of “absolutely continuous” r.v. Thus, the r.v.’s
to be considered will be either discrete or continuous (= absolutely continu-
ous). Roughly speaking, the idea that P(X =x) =0 for all x for a continuous r.v.
may be interpreted that X takes on “too many” values for each one of them to
occur with positive probability. The fact that P(X = x) also follows formally by
the fact that P(X = x) = |* f,(y)dy, and this is 0. Other interpretations are also
possible. It is true, nevertheless, that X takes values in as small a neighborhood
of x as we please with positive probability. The distribution of a continuous r.v.
is also referred to as a continuous distribution. In Section 3.3, we will discuss
some continuous r.v.’s (distributions) which occur often in practice. They are
the Normal, Gamma, Chi-square, Negative Exponential, Uniform, Beta,
Cauchy, and Lognormal distributions. Reference will also be made to ¢ and F
r.v.’s (distributions).

Often one is given a function f and is asked whether fis a p.d.f. (of some
r.v.). All one has to do is to check whether fis non-negative for all values of its
argument, and whether the sum or integral of its values (over the appropriate
set) is equal to 1.
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When (a well-behaving) function X is defined on a sample space S and
takes values in the plane or the three-dimensional space or, more generally, in
the k-dimensional space R, it is called a k-dimensional random vector (r.
vector) and is denoted by X. Thus, an r.v. is a one-dimensional r. vector. The
distribution of X, Py, is defined as in the one-dimensional case by simply
replacing B with subsets of R*. The r. vector X is discrete if P(X =x,) >0, j =
1,2,...with X, P(X =x;) = 1, and the function fx(x) = P(X =x,) for x = x;, and
fx(x) 0 otherw1se is the p.d.f. of X. Once again, P(X € B) = er 5 fx(X)) for B
subsets of R*. The r. vector X is (absolutely) continuous if P(X = x) = 0 for all
x € 1, but there is a function fx defined on R* such that:

fx(x)20 forall xeR*, and P(XeJ)=]fi(x)dx

for any sub-rectangle J of /. The function fx is the p.d.f. of X. The distribution
of a k-dimensional r. vector is also referred to as a k-dimensional discrete or
(absolutely) continuous distribution, respectively, for a discrete or (abso-
lutely) continuous r. vector. In Sections 3.2 and 3.3, we will discuss two repre-
sentative multidimensional distributions; namely, the Multinomial (discrete)
distribution, and the (continuous) Bivariate Normal distribution.

We will write frather than fx when no confusion is possible. Again, when
one is presented with a function f and is asked whether fis a p.d.f. (of some r.
vector), all one has to check is non-negativity of f, and that the sum of its values
or its integral (over the appropriate space) is equal to 1.

3.2 Discrete Random Variables (and Random Vectors)
3.2.1 Binomial

The Binomial distribution is associated with a Binomial experiment; that is, an
experiment which results in two possible outcomes, one usually termed as a
“success,” S, and the other called a “failure,” F. The respective probabilities
are p and q. It is to be noted, however, that the experiment does not really
have to result in two outcomes only. Once some of the possible outcomes are
called a “failure,” any experiment can be reduced to a Binomial experiment.
Here, if X is the r.v. denoting the number of successes in n binomial experi-
ments, then

x(S)={o, 1,2, .n},  P(x=x)=f(x) :(Z)pxq,,_x

where 0 <p<1l,g=1-p,andx =0, 1, 2,...,n That this is in fact a p.d.f.
follows from the fact that f(x) >0 and

Y ——
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The appropriate S here is:
S={S, F}x---x{S, F} (ncopies).

In particular, for n = 1, we have the Bernoulli or Point Binomial r.v. The r.v.
X may be interpreted as representing the number of §’s (“successes”) in
the compound experiment E X - - - X E (n copies), where T is the experiment
resulting in the sample space {S, F} and the n experiments are independent
(or, as we say, the n trials are independent). f(x) is the probability that exactly
x §’s occur. In fact, f(x) = P(X = x) = P(of all n sequences of S’s and F’s
with exactly x S’s). The probability of one such a sequence is p'q"™ by the
independence of the trials and this also does not depend on the particular
sequence we are considering. Since there are (}) such sequences, the result
follows.

The distribution of X is called the Binomial distribution and the quantities
n and p are called the parameters of the Binomial distribution. We denote the
Binomial distribution by B(n, p). Often the notation X ~ B(n, p) will be used
to denote the fact that the r.v. X is distributed as B(n, p). Graphs of the p.d.f.
of the B(n, p) distribution for selected values of n and p are given in Figs. 3.1
and 3.2.

o
0.25 -

S
I
)

0.20 —

<
Il
e

0.15 —
0.10 —
0.05 —

| N S I I B I
0 123456 78 910111213

Figure 3.1 Graph of the p.d.f. of the Binomial distribution for n=12, p = 17

£(0)=0.0317 (7)=00115
(1) =0.1267 £(8)=0.0024
f(2)=02323 £(9) = 0.0004
£(3)=0.2581 £(10) = 0.0000
£(4)=0.1936 £(11)=0.0000
£(5)=0.1032 £(12) = 0.0000
£(6)=0.0401
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fo
0.25 -

0.20 — n=10

N =

0.15 — p=
0.10 —
0.05 —

|| ||\x

0 123456728910
Figure 3.2 Graph of the p.d.f. of the Binomial distribution for n= 10, p = 1.

£(0)=0.0010 £(6)=0.2051
£(1) =0.0097 f(7)=0.1172
£(2) =0.0440 £(8)=0.0440
(3)=0.1172 £(9)=0.0097
£(4)=0.2051 £(10)=0.0010
£(5)= 02460

3.2.2 Poisson
X(s)=fo. 12} P(x=x)=slx)=et
x=0,1,2,...; A>0. fis, in fact, a p.d.f., since f(x) >0 and

oo X

i{f(x)ze"l Z=etet =1,

x=0 XI
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The distribution of X is called the Poisson distribution and is denoted by
P(A). A is called the parameter of the distribution. Often the notation X ~
P(A) will be used to denote the fact that the r.v. X is distributed as P(A4).
The Poisson distribution is appropriate for predicting the number of
phone calls arriving at a given telephone exchange within a certain period
of time, the number of particles emitted by a radioactive source within a
certain period of time, etc. The reader who is interested in the applications
of the Poisson distribution should see W. Feller, An Introduction to
Probability Theory, Vol. 1, 3rd ed., 1968, Chapter 6, pages 156-164, for further

examples.

In Theorem 1 in Section 3.4, it is shown that the Poisson distribution
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may be taken as the limit of Binomial distributions. Roughly speaking, sup-
pose that X ~ B(n, p), where n is large and p is small. Then P(X :x):
(1)p(1-p)" =e L x20. For the graph of the p.df. of the P(})
distribution for A =5 see Fig. 3.3.

A visualization of such an approximation may be conceived by stipulating
that certain events occur in a time interval [0,f] in the following manner: events
occurring in nonoverlapping subintervals are independent; the probability
that one event occurs in a small interval is approximately proportional to its
length; and two or more events occur in such an interval with probability
approximately 0. Then dividing [0,f] into a large number n of small intervals of
length t/n, we have that the probability that exactly x events occur in [0,] is
approximately (")(£)'(1-%)"", where A is the factor of proportionality.
Setting p, =%, we have np, = At and Theorem 1 in Section 3.4 gives that
(")) (1-2)"" =e™* Y. Thus Binomial probabilities are approximated by

Poisson probabilities.

)
0.20 |-
0.15 |-
0.10 |-
0.05 |~

| ||I|xxx

0 12345678 9101112131415
Figure 3.3 Graph of the p.d.f. of the Poisson distribution with A = 5.

£(0)=0.0067 £(9)=0.0363

(1) =0.0337 f(10)=0.0181
f(2)=0.0843 £(11) = 0.0082
£(3)=0.1403 £(12)=0.0035
f(4)=01755 £(13) =0.0013
£(5)=0.1755 £(14) = 0.0005
£(6)=0.1462 £(15) = 0.0001
£(7)=0.1044

£(8)=0.0653 f(n) is negligible for n> 16.
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3.2.3 Hypergeometric

x(s)={o.1,2.....r}, f(x)[?&:jcj,

where () = 0, by definition, for x > m. fis a p.d.f., since f(x) > 0 and

20 e 2L e
fo bl ()

The distribution of X is called the Hypergeometric distribution and arises in
situations like the following. From an urn containing m red balls and #n black
balls, r balls are drawn at random without replacement. Then X represents the
number of red balls among the r balls selected, and f{x) is the probability that
this number is exactly x. Here S = {all r-sequences of R’s and B’s}, where R
stands for a red ball and B stands for a black ball. The urn/balls model just
described is a generic model for situations often occurring in practice. For
instance, the urn and the balls may be replaced by a box containing certain
items manufactured by a certain process over a specified period of time, out of
which m are defective and n meet set specifications.

3.2.4 Negative Binomial

x(s)={o.1.2...}  f(x)= p’[Hi_l)q’,

O<p<l,g=1-p,x=0,1,2,....fis,in fact, a p.d.f. since f(x) > 0 and

) ]

x=0 1—q)r p

This follows by the Binomial theorem, according to which

1 :"" n+j-1); 1L
(1) 2( j } i<

The distribution of X is called the Negative Binomial distribution. This distri-
bution occurs in situations which have as a model the following. A Binomial
experiment E, with sample space {S, F}, is repeated independently until exactly
r 8’s appear and then it is terminated. Then the r.v. X represents the number
of times beyond r that the experiment is required to be carried out, and f(x) is
the probability that this number of times is equal to x. In fact, here S =
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{all (r + x)-sequences of S’s and F’s such that the rth S is at the end of the
sequence}, x =0, 1, ... and f(x) = P(X = x) = P[all (r + x)-sequences as above
for a specified x]. The probability of one such sequence is p"'q'p by the
independence assumption, and hence

r+x—-1\) ,4 . Ar+x—=1) .
f(x)Z( N JP 'q p=p[ . ]q.

The above interpretation also justifies the name of the distribution. For r =1,
we get the Geometric (or Pascal) distribution, namely f(x) =pq*,x=0,1,2, .. ..

3.2.5 Discrete Uniform
X(S)z{O, 1,...,n—1}, f(x):;, x=0,1,.. . ,n-1.

This is the uniform probability measure. (See Fig. 3.4.)

f
n=>5
1 Figure 3.4 Graph of the p.d.f. of a Discrete
5 | | | Uniform distribution.
X
0 1 2 3 4

3.2.6 Multinomial

Here

4

x(s)={x=(x1,...,xk)

n!
X)=—— " pnpnpn ps0,j=12,.. kY p =1
f() xl!le"'xk!pl b2 PP ! zp]

k
;ox;20,7=1,2,..., k, Zx,=n},
j=1

~

That f'is, in fact, a p.d.f. follows from the fact that

Sl

where the summation extends over all x;’s such that x; 20, =1, 2,..., k,
2f,x; = n. The distribution of X is also called the Multinomial distribution and
n, py,..., p, are called the parameters of the distribution. This distribution
occurs in situations like the following. A Multinomial experiment £ with k
possible outcomes O;, j =1, 2, ..., k, and hence with sample space S = {all
n-sequences of O/s}, is carried out n independent times. The probability of
the Os occurring is p;, j=1,2, ... k with p;>0and ¥%, p,=1. Then X is the
random vector whose jth component X, represents the number of times x;
the outcome O, occurs,j=1,2,..., k. Bysettingx=(x,,...,x;)’, then fis the

' n
Y et (e bp) =1 =1

XXy V10 k
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probability that the outcome O; occurs exactly x; times In fact f(x) = P(X =x)
= P(“all n-sequences which contaln exactly X; O s,j=1,2,..., k). The prob-
ability of each one of these sequencesis p;' - - - p;* by 1ndependence, and since
there are n!/( x,!--- x,!) such sequences, the result follows.

The fact that the r. vector X has the Multinomial distribution with param-
eters n and p,, . .., p, may be denoted thus: X ~ M(n; py, . . ., pi)-

REMARK 1 When the tables given in the appendices are not directly usable
because the underlying parameters are not included there, we often resort to
linear interpolation. As an illustration, suppose X ~ B(25, 0.3) and we wish
to calculate P(X = 10). The value p = 0.3 is not included in the Binomial
Tables in Appendix III. However, * =025 < 0.3 < 03125 = > and the
probabilities P(X = 10), for p = £ and p = 2 are, respectively, 0.9703

16 16
and 0.8756. Therefore linear interpolation produces the value:

0.9703 — (0.9703 - 0.8756) w03-025 _qo45,
0.3125-0.25

Likewise for other discrete distributions. The same principle also applies
appropriately to continuous distributions.

REMARK 2 In discrete distributions, we are often faced with calculations of
the form Y7, x60". Under appropriate conditions, we may apply the following
approach:

x _ “_oV dge _gd N gr_pgd[ 0 |__ 0
er 92::)60 eﬁﬁe deée "ede(l-e} (1_9)2.

Similarly for the expression Y7, x(x - 1)9"’2.

Exercises

3.2.1 A fair coin is tossed independently four times, and let X be the r.v.
defined on the usual sample space S for this experiment as follows:

X(s) =the number of H’s in s.

i) What is the set of values of X?
ii) What is the distribution of X?
iii) What is the partition of S induced by X?
3.2.2 It has been observed that 12.5% of the applicants fail in a certain

screening test. If X stands for the number of those out of 25 applicants who fail
to pass the test, what is the probability that:
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i) X>1?
ii) X <20?
iii) 5 <X <207
3.2.3 A manufacturing process produces certain articles such that the prob-
ability of each article being defective is p. What is the minimum number, n, of

articles to be produced, so that at least one of them is defective with probabil-
ity at least 0.95? Take p = 0.05.

3.2.4 If the r.v. X is distributed as B(n, p) with p > 1, the Binomial Tables

in Appendix III cannot be used directly. In such a case, show that:

i) P(X=x)=P(Y=n-x),where Y~B(n,q),x=0,1,...,n,andg=1-p;

ii) Also, for any integers a, b with 0 < a < b < n, one has: Pla < X < b) =
P(n—b <Y <n-a),where Yis as in part (i).

3.25 Let X be a Poisson distributed r.v. with parameter A. Given that
P(X =0) =0.1, compute the probability that X > 5.

3.2.6 Refer to Exercise 3.2.5 and suppose that P(X =1) = P(X =2). What is
the probability that X <10? If P(X=1) =0.1 and P(X =2) = 0.2, calculate the
probability that X = 0.

3.2.7 It has been observed that the number of particles emitted by a radio-
active substance which reach a given portion of space during time ¢ follows
closely the Poisson distribution with parameter A. Calculate the probability
that:

i) No particles reach the portion of space under consideration during
time f;
ii) Exactly 120 particles do so;
iii) At least 50 particles do so;
iv) Give the numerical values in (i)—(iii) if A = 100.
3.2.8 The phone calls arriving at a given telephone exchange within one
minute follow the Poisson distribution with parameter A = 10. What is the
probability that in a given minute:
i) No calls arrive?
ii) Exactly 10 calls arrive?
iii) At least 10 calls arrive?

3.2.9 (Truncation of a Poisson r.v.) Let the r.v. X be distributed as Poisson
with parameter 4 and define the r.v. Y as follows:

Y=XifX2>2k (a given positive integer) and Y =0 otherwise.

Find:
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) P(Y=y),y=k k+1,...;
ii) P(Y =0).

3.2.10 A university dormitory system houses 1,600 students, of whom 1,200
are undergraduates and the remaining are graduate students. From the com-
bined list of their names, 25 names are chosen at random. If X stands for the
r.v. denoting the number of graduate students among the 25 chosen, what is
the probability that X > 10?

3.2.11  (Multiple Hypergeometric distribution) For j=1,..., k, consider an
urn containing »; balls with the number j written on them. # balls are drawn at
random and without replacement, and let X be the r.v. denoting the number
of balls among the n ones with the number j written on them. Then show that
the joint distribution of X, j =1, ..., k is given by

IT..(:
J=I\X;
gt 4 )
n

k
OijSnj,j:l,_,,,k, ij=n.
j=1

P(X,=x,j=1,.... k)=

3.2.12 Refer to the manufacturing process of Exercise 3.2.3 and let Y be the
r.v. denoting the minimum number of articles to be manufactured until the
first two defective articles appear.

i) Show that the distribution of Y is given by
-2
P(y=y)=p’(y-1)1-p) . y=2.3,...;
ii) Calculate the probability P(Y > 100) for p = 0.05.

3.2.13 Show that the function f(x) = (1)"L,(x), where A ={1,2, .. },isa p.d.f.
3.2.14 For what value of c is the function f defined below a p.d.f.?

f(x) =co’l, (x), where A= {0, 1,2, .. } (0 << 1).

3.2.15 Suppose that the r.v. X takes on the values 0, 1, . . . with the following
probabilities:

f(j):P(X:j):%, j=0,1,  ;
i) Determine the constant c.
Compute the following probabilities:
ii) P(X >10);
iii) P(X e A),where A={j;j=2k+1,k=0,1,...};
iv) P(X € B),where B={j;j=3k+1,k=0,1,...}.
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3.2.16 There are four distinct types of human blood denoted by O, A, B and

AB. Suppose that these types occur with the following frequencies: 0.45, 0.40,

0.10, 0.05, respectively. If 20 people are chosen at random, what is the prob-

ability that:

i) All 20 people have blood of the same type?

ii) Nine people have blood type O, eight of type A, two of type B and one of
type AB?

3.2.17 A balanced die is tossed (independently) 21 times and let X be the
number of times the number j appears, j=1,..., 6.

i) What is the joint p.d.f. of the X’s?

ii) Compute the probability that X, =6, X, =5, X;=4, X, =3, X;=2, X;=1.

3.2.18 Suppose that three coins are tossed (independently) n times and
define the r.v.’s X}, =0, 1, 2, 3 as follows:

X; = the number of times j H’s appear.

Determine the joint p.d.f. of the X’s.

3.2.19 Let X be an r.v. distributed as P(1), and set E={0,2,...}and O ={1,
3,...}). Then:

i) In terms of A, calculate the probabilities: P(X € E) and P(X € O);

ii) Find the numerical values of the probabilities in part (i) for A =5. (Hint: If
S, =% % and S,=%,,%, notice that S, + S, = ¢*, and S, — S, =

£ keE kI keO k12
e .

3.2.20 The following recursive formulas may be used for calculating
Binomial, Poisson and Hypergeometric probabilities. To this effect, show

that:
i) If X~B(n,p), then f(x+1)=222f(x), x=0,1,...,n-1;

ii) If X~ P(A), then f(x+1):%f(x), x=0,1,...;
iii) If X has the Hypergeometric distribution, then

flx+1)= ( =) =) | f(x), x=0,1,..., min{m, r}.

n—r+x+1)(x+1

3.2.21

i) Suppose the r.v.’s X}, ..., X, have the Multinomial distribution, and let
j be a fixed number from the set {1, ..., k}. Then show that X;is distributed as
B(n, pj);

ii) If mis anintegersuchthat2<m<k-1andj,...,j, arem distinct integers
from the set {1,..., k}, show that the r.v.’s X;,..., X, have Multinomial

distributions with parameters n and p;, - - p, .
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3.2.22 (Polya’s urn scheme) Consider an urn containing b black balls and r
red balls. One ball is drawn at random, is replaced and c balls of the same color
as the one drawn are placed into the urn. Suppose that this experiment is
repeated independently # times and let X be the r.v. denoting the number of
black balls drawn. Then show that the p.d.f. of X is given by

b(b+c)b+2¢) - [b+(x=1)c]
xr(r+c) . [r+(n—x—1)c].

P(X:x):[ZJ(b+r)(b+r+c)

x(b+r+2c) e [b+r+(m—1)c]

(This distribution can be used for a rough description of the spread of conta-
gious diseases. For more about this and also for a certain approximation to the
above distribution, the reader is referred to the book An Introduction to
Probability Theory and Its Applications, Vol. 1, 3rd ed., 1968, by W. Feller, pp.
120-121 and p. 142.)

3.3 Continuous Random Variables (and Random Vectors)

3.3.1 Normal (or Gaussian)

2

X(S)z/R’, f(x):Lexp —(x—'l;) A xeR.
2no 20

We say that X is distributed as normal (u, ¢°), denoted by N(u, ¢°), where ,
o are called the parameters of the distribution of X which is also called
the Normal distribution (1 = mean, u € R, o> = variance, ¢ > 0). For u =0,
o =1, we get what is known as the Standard Normal distribution, denoted
by N(0, 1). Clearly f(x) > 0; that I =]~ f(x)dx=1 is proved by showing that
IF=1. In fact,

P =[] = stofa sl
(x (v-n)

2
o —-H 1 ¢ —Hu
_—an.[_mex __20_2) dx-gj_wexp ——20_2 dy
=E-éf;e’zz/ZO'dzéJ:e’”z/zde,

upon letting (x — p)/o = z, so that z € (—oo, ), and (y — u)/o= v, so that v e
(=00, ). Thus
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f(x)

0.8 —
o=05

0.6 —

04 —

4 | | - .

-2 -1 0 1 2 3 4 5
N(p, o?)
Figure 3.5 Graph of the p.d.f. of the Normal distribution with 1 = 1.5 and several values of o.

= % [ etz av- % [ ["eraras

by the standard transformation to polar coordinates. Or

p=tr

=520 e"’z/2 rer‘;”dez _[:e"'z/z rdr= —e"'z/2
b4

o=1

that is, I” = 1 and hence I = 1, since f(x) > 0.

It is easily seen that f(x) is symmetric about x = y, that is, f(u — x) =
f(u+ x) and that f(x) attains its maximum at x = y which is equal to 1/(,/270).
From the fact that

max f(x)z !

xelRR 2”0_

and the fact that

[ flxe=1,

we conclude that the larger o is, the more spread-out f(x) is and vice versa. It
is also clear that f(x) — 0 as x — *eo. Taking all these facts into consideration,
we are led to Fig. 3.5.

The Normal distribution is a good approximation to the distribution of
grades, heights or weights of a (large) group of individuals, lifetimes of various
manufactured items, the diameters of hail hitting the ground during a storm,
the force required to punctuate a cardboard, errors in numerous measure-
ments, etc. However, the main significance of it derives from the Central Limit
Theorem to be discussed in Chapter 8, Section 8.3.

3.3.2 Gamma
X(S) =R (actually X(S) = (0, oo))
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Here

a-1 _-x/
£x)={T{a)p " e w20 650,50,
0, x<0

where T'(@) = [ y*"'e”dy (which exists and is finite for &> 0). (This integral
is known as the Gamma function.) The distribution of X is also called the
Gamma distribution and o, § are called the parameters of the distribution.
Clearly, f(x) = 0 and that [~ f(x)dx =1 is seen as follows.

4 —x 1 “ o _-ypa
e R R
upon letting x/B =y, x = By, dx = Bdy, y € (0, o); that is,

- I ot -y y:L-Fa =1.
J_mf(x)dx—r(a)_[oy d F(a) ()

REMARK 3 One easily sees, by integrating by parts, that

F((x) = ((x - 1)F(a - 1),

and if o is an integer, then

rle)= (e 1)e-2) - T(1).

where
r(1)= j:e*ydy =1; thatis, [(a)=(a-1)!

We often use this notation even if ¢ is not an integer, that is, we write
(a)=(a-1)= j: y*ledy for a>0.

For later use, we show that
We have

By setting
2

s that y=t2, dy=tdi, te(0, ).
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we get

F(lJ = \Erle’#/zt dt = \Ere'[z/z dt =
o ¢ o

2

that is,

From this we also get that

T é =1F 1 =ﬂ,etc.
2 2 12 2

Graphs of the p.d.f. of the Gamma distribution for selected values of ocand
B are given in Figs. 3.6 and 3.7.

The Gamma distribution, and in particular its special case the Negative
Exponential distribution, discussed below, serve as satisfactory models for

VACY)
1.00

0.75 —

0.50 —

0.25 — a/:4,,8:1

\ \ ‘ L oy
0 1 2 3 4 5 6 7 8

Figure 3.6 Graphs of the p.d.f. of the Gamma distribution for several values of o, S.

)
1.00

075 |- a=2,8=05

0.50 —

0.25 w=2.p-2

0 1 2 3 4 5

Figure 3.7 Graphs of the p.d.f. of the Gamma distribution for several values of o, S.
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describing lifetimes of various manufactured items, among other things, as
well as in statistics.

For specific choices of the parameters o and in the Gamma distribution,
we obtain the Chi-square and the Negative Exponential distributions given
below.

3.3.3 Chi-square

For o = r/2, r 2 1, integer, B = 2, we get what is known as the Chi-square
distribution, that is,

1 (/21 —x/2
f(x) = F(é r)2’/2 * A r>0, integer.
0, x<0

The distribution with this p.d.f. is denoted by x> and r is called the number of
degrees of freedom (d.f.) of the distribution. The Chi-square distribution occurs
often in statistics, as will be seen in subsequent chapters.

3.3.4 Negative Exponential
For a=1, B=1/A, we get

G I

which is known as the Negative Exponential distribution. The Negative Expo-
nential distribution occurs frequently in statistics and, in particular, in waiting-
time problems. More specifically, if X is an r.v. denoting the waiting time
between successive occurrences of events following a Poisson distribution,
then X has the Negative Exponential distribution. To see this, suppose that
events occur according to the Poisson distribution P(1); for example, particles
emitted by a radioactive source with the average of A particles per time unit.
Furthermore, we suppose that we have just observed such a particle, and let X
be the r.v. denoting the waiting time until the next particle occurs. We shall
show that X has the Negative Exponential distribution with parameter A.
To this end, it is mentioned here that the distribution function F of an r.v., to
be studied in the next chapter, is defined by F(x) = P(X < x),x € R, and if X
is a continuous r.v., then 2 = f(x). Thus, it suffices to determine F here.
Since X >0, it follows that F(x) =0, x < 0. So let x > 0 be the the waiting time
for the emission of the next item. Then F(x) = P(X <x) =1 - P(X > x). Since
A is the average number of emitted particles per time unit, their average
number during time x will be Ax. Then P(X >x)=¢™ (%z e, since no
particles are emitted in (0, x]. That is, F(x) = 1 — e ™, so that f(x) = A ™. To
summarize: f(x) = 0 for x <0, and f(x) = Ae™™ for x > 0, so that X is distributed
as asserted.
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Consonant with previous notation, we may use the notation X ~ I'(¢e, B) or
X ~ NE(X), or X ~ x? in order to denote the fact that X is distributed as
Gamma with parameters ¢« and f3, or Negative Exponental with parameter A,
or Chi-square with r degrees of freedom, respectively.

3.3.5 Uniform U(e, p) or Rectangular R(a, f)
X(S) =R (actually X(S) = [a, [3]) and

f(x)={1/(ﬁ_a)’ oa<x<f a<p.

0, otherwise

Clearly,

= 1 (s
> = =
f(x) >0, J:N f(x)dx Bl dx =1

The distribution of X is also called Uniform or Rectangular (¢, B), and o and
B are the parameters of the distribution. The interpretation of this distribution
is that subintervals of [¢, ], of the same length, are assigned the same prob-
ability of being observed regardless of their location. (See Fig. 3.8.)

The fact that the r.v. X has the Uniform distribution with parameters o
and  may be denoted by X ~ U(e, ).

f@)
1
F=al """ — Figure 3.8 Graph of the p.d.f. of the
U(e,, P) distribution.
| ‘ x
0 a B
3.3.6 Beta

X(S)=R (actually x(s)=(o, 1)) and

F(a+ﬁ) ot B
1) ={{@r(p)* (1=

0 elsewhere, a>0, >0.

O<x<l1

Clearly, f(x) 2 0. That [~ f(x)dx=1 is seen as follows.
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F(a)l"(ﬂ) = (wa“"le’xdx)(Jm yﬁ’le’ydy)
= j j x@yPle ) dy

which, upon setting u = x/(x + y), so that

leu—yu’ dxz(l_u)z, ue(O, 1) and x+yzlfu’

becomes

_f_u at B, —y/(1-u) du d
'[)'[J—(l—u) Ty y—(l_u)2 y

o-1

= r J.l L y“*ﬁ’lefy/(lfu)du dy.
o Jo (1 _ u)a+1
Let y/(1 — u) = v, so that y = v(1 — u), dy = (1 — u)dv, v € (0, ). Then the
integral is

= J: J.: ua’l(l - u)ﬂ_1 v e dudv
= J: v”’*ﬂ’le"”dv_’z u*? (1 - u)/H du
= F(a + ﬁ)'[j u‘H(l - u)ﬁfldu;
that is,
F(a)F(ﬁ) = F(a + ﬂ)ij‘H(l - )c)lH dx
and hence

B —M x*H1- xﬁlle
Lof(x)dx_r(a) ( ).[ ( ) dx=1.

Graphs of the p.d.f. of the Beta distribution for selected values of o and f are
given in Fig. 3.9.

REMARK 4 For o= =1, we get the U(0, 1), since T'(1) =1 and I'(2) = 1.
The distribution of X is also called the Beta distribution and occurs rather
often in statistics. o, [ are called the parameters of the distribution
and the function defined by [jx*"(1-x)*"dx for o, B> 0 is called the Beta
function.

Again the fact that X has the Beta distribution with parameters o and 8
may be expressed by writing X ~ B(¢c,, f).
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Sx) a=>5
2.5 p=3
a=3
L=3
2.0 —
a=2
1.5 TB=2
1.0 —
\ \ \
0 0.2 0.4 0.6 0.8 1.0

Figure 3.9 Graphs of the p.d.f. of the Beta distribution for several values of ¢, S.

3.3.7 Cauchy

Here
X(S):R and f(x)zg' 1 = xeR, ueR, o>0.
T 02+(x—u)
Clearly, f(x) >0 and
- 1 = 1
fxdx=— dx=—| —dx
L1t L (x- /,L) on _N1+[(x—,u)/0']2

:lriz:larctan yr =1,
T1+y" 7w -

upon letting

y:ﬂ, so that ﬂz dy.
o (o}
The distribution of X is also called the Cauchy distribution and u, o are called
the parameters of the distribution (see Fig. 3.10). We may write X ~
Cauchy(u, o°) to express the fact that X has the Cauchy distribution with
parameters u and
(The p.d.f. of the Cauchy distribution looks much the same as the Normal
p.d.f., except that the tails of the former are heavier.)

3.3.8 Lognormal
Here X(S) = R (actually X(S) = (0, «)) and
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S

0.3
02—

0.1

\ \ \ \ X
-2 -1 0 1 2

Figure 3.10 Graph of the p.d.f. of the Cauchy distribution with u =0, c=1.

(log x —log (x)2

=t ™2 [
0, x <0 where a, > 0.
Now f(x) >0 and
logx —logar)’
f f(x)dx =% :lexp _(()gx——2C)ga) dx
- p\N2m X 2B

which, letting x = ¢’, so that logx =y, dx = €’dy, y € (-0, ), becomes

2
_ 1 -1 exp _—(y—loga) e’ dy.

Bl 2p°

But this is the integral of an N(log e, 8°) density and hence is equal to 1; that
is, if X is lognormally distributed, then Y =log X is normally distributed with
parameters log azand 8°. The distribution of X is called Lognormal and «, Bare
called the parameters of the distribution (see Fig. 3.11). The notation X ~
Lognormal(e;, B) may be used to express the fact that X has the Lognormal
distribution with parameters o and f3.

(For the many applications of the Lognormal distribution, the reader is
referred to the book The Lognormal Distribution by J. Aitchison and J. A. C.
Brown, Cambridge University Press, New York, 1957.)

339 ¢ These distributions occur very often in Statistics (interval esti-
3 3 1 0 F mation, testing hypotheses, analysis of variance, etc.) and their
e densities will be presented later (see Chapter 9, Section 9.2).

We close this section with an example of a continuous random vector.

3.3.11 Bivariate Normal

Here X(S) = R (that is, X is a 2-dimensional random vector) with



74 3 On Random Variables and Their Distributions

f
0.8 - B2=05

0.6 —
1
04 — a=ce?

0.2 — a=ce

\ \ ] Ly
0 1 2 3 4

Figure 3.11 Graphs of the p.d.f. of the Lognormal distribution for several values of ¢, S.

— 1 -q/2
f(xl,xZ) 2”610'2ﬁe ’

where x, x, € R; 0, 0,>0; -1 < p <1 and

2 2
_ 1 X, — K ) Xy —H || X2 My " X2~ Hy
=1 o Ao o o
P 1 1 2 2

with u,, i, € R. The distribution of X is also called the Bivariate Normal
distribution and the quantities u,, W,, 0, 0,, p are called the parameters of the
distribution. (See Fig. 3.12.)

Clearly, f(x,, x,) > 0. That [z f(x,, x,)dx,dx, = 1 is seen as follows:

oo (5] ) 22|

2 2
X, — X, — X, —
:|:[ 2 ﬂz)_p[ 1 F‘l)] +(1_p2)( 1 /-‘1).
62 61 0-1
Furthermore,

(xZ_IUZJ_p(xl_lu’lJ= X, —Hy _i.po’z.xl_'lyt1
0, O 0, 0, 0

where
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7= f(x1, xp)forz >k

Figure 3.12 Graph of the p.d.f. of the Bivariate Normal distribution.

Thus
_p 2 B 2
ol 5
and hence
L] s
J- f(xl, xz)dx2 = \/EO'I exp| — 12 :
i 2
x [[— ! exp (xz _ b) dx,
- \f‘JZJTO'Z\sl—pz | 20;(1_/)2)
1 3 (x1 - ,“1)2 | .
B \’%0'1 o 20} b

75

since the integral above is that of an N(b, o;(1 — p*)) density. Since the first
factor is the density of an N(u,, 6;) random variable, integrating with respect

to x,;, we get

I:J:f(xl’ Xz)dxl dx, =1.

REMARK 5 From the above derivations, it follows that, if f(x,, x,) is Bivariate

Normal, then

]ﬁ(xl):_[if(xl,xz)dxz is N(/,Ll,crlz),

and similarly,

fz(x2)=jif(xlvx2)dx1 is N(luz’o—;)-
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As will be seen in Chapter 4, the p.d.f.’s f; and f, above are called marginal
p.d.f’s of f.

The notation X ~ N(u,, i,, 6, 05, p) may be used to express the fact that
X has the Bivariate Normal distribution with parameters u,, i,, 6., o3, p.
Then X, ~ N(u,, o) and X, ~ N(i,, G3).

Exercises

3.3.1 Let fbe the p.d.f. of the N(u, o°) distribution and show that:

i) fis symmetric about y;

ii) max f(x) = i .
xelt \2rno

3.3.2 Let X be distributed as N(0, 1), and for a< b, let p=P(a < X <b). Then
use the symmetry of the p.d.f. fin order to show that:

i) ForO<a<b, p=o(b) - d(a);

ii) Fora<0<b, p=®(b) + ®(-a) - 1;
iii) Fora<b <0, p = ®(-a) — O(-b);
iv) For¢> 0, P(~c < X <¢) =2®(c) - 1.
(See Normal Tables in Appendix III for the definition of ®.)
3.3.3 If X~ N(0, 1), use the Normal Tables in Appendix III in order to show
that:

i) P(-1<X<1)=0.68269;

i) P(-2 <X <2)=0.9545;
iii) P(-3 < X <3)=0.9973.

3.3.4 Let X be ay..In Table 5, Appendix III, the values y= P(X < x) are
given for r ranging from 1 to 45, and for selected values of y. From the entries
of the table, observe that, for a fixed 7, the values of x increase along with the
number of degrees of freedom r. Select some values of y and record the
corresponding values of x for a set of increasing values of r.

3.3.5 Let Xbeanr.v.distributed as y;,. Use Table 5in Appendix III in order
to determine the numbers a and b for which the following are true:

i) P(X <a)=P(X>Db);

ii) P(a< X <b)=0.90.

3.3.6 Consider certain events which in every time interval [¢,, £,] (0 <t <1,)

occur independently for nonoverlapping intervals according to the Poisson
distribution P(A(t, — t;)). Let T be the r.v. denoting the time which lapses
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between two consecutive such events. Show that the distribution of 7' is Nega-
tive Exponential with parameter A by computing the probability that 7 > t.

3.3.7 Let X be anr.v. denoting the life length of a TV tube and suppose that
its p.d.f. fis given by:
fx) = 2L ().
Compute the following probabilities:
i) P(<X<j+1),j=0,1,...;
ii) P(X > 1) for some ¢ > 0;
iii) P(X > s + 11X > s) for some s, ¢ > 0;

iv) Compare the probabilities in parts (ii) and (iii) and conclude that the
Negative Exponential distribution is “memoryless”;

v) If it is known that P(X > s) = o, express the parameter A in terms of o
and s.

3.3.8 Suppose that the life expectancy X of each member of a certain group
of people is an r.v. having the Negative Exponential distribution with param-
eter A = 1/50 (years). For an individual from the group in question, compute
the probability that:

i) He will survive to retire at 65;

ii) He will live to be at least 70 years old, given that he just celebrated his 40th
birthday;

iii) For what value of ¢, P(X > ¢) = 1?

3.3.9 Let X be an r.v. distributed as U(-¢, o) (> 0). Determine the values
of the parameter o for which the following are true:

i) P(-1<X<2)=0.75;
ii) P(IX1<1)=P(XI>2).
3.3.10 Refer to the Beta distribution and set:
B-1
B(oc, ﬁ) = _Ex“"l(l - x) dx.

Then show that B(e, B) = B(B, ).

3.3.11 Establish the following identity:
n-m ! P n-m
J;)px”’"l(l—x) dxszx 1(1—x) dx

{27
-3 p-a

3.3.12 Let X be an r.v. with p.d.f given by f(x) = 1/[z(1 + x*)]. Calculate the
probability that X* < c.
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3.3.13 Show that the following functions are p.d.f.’s:
i) f(x)=xe™ "I, .(x) (Raleigh distribution);
ii) f(x) = J2/mx’e "1, (x) (Maxwell’s distribution);
iii) f(x) = le™* (Double Exponential);
iv) flx) = (g) (%)“”I (%), A = (¢, ), o, ¢ > 0 (Pareto distribution).

3.3.14 Show that the following functions are p.d.f.’s:

i) flx)= COSXI(O.n/z)(x)§
i) flx) = xe "I .(x).

3.3.15 For what values of the constant ¢ are the following functions p.d.f.’s?

ce™®, x>0
i) f(x) = {-cx, -1<x<0;
0, x<-1

i) f(x) = ex’e I, (x).
3.3.16 Let X be an r.v. with p.d.f. given by 3.3.15(ii). Compute the probabil-
ity that X > x.

3.3.17 Let X be the r.v. denoting the life length of a certain electronic device
expressed in hours, and suppose that its p.d.f. fis given by:

f(x) = xi,,l[moo,s,ooo](x)‘

i) Determine the constant ¢ in terms of n;
ii) Calculate the probability that the life span of one electronic device of the
type just described is at least 2,000 hours.

3.3.18 Refer to Exercise 3.3.15(ii) and compute the probability that X ex-
ceeds s + ¢, given that X > 5. Compare the answer with that of Exercise
3.3.7(iii).

3.3.19 Consider the function f(x) = ofx’"'e™’, x > 0 (o, B> 0), and:
i) Show that it is a p.d.f. (called the Weibull p.d.f. with parameters o
and f);

ii) Observe that the Negative Exponential p.d.f. is a special case of a Weibull
p.d.f., and specify the values of the parameters for which this happens;

iii) For «=1and = ], B=1 and =2, draw the respective graphs of the
p.d.f.’s involved.

(Note: The Weibull distribution is employed for describing the lifetime of
living organisms or of mechanical systems.)
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3.3.20 Let X and Y be r.v.’s having the joint p.d.f. f given by:
f(x, y) = c(25 -x2- yz)I(OS)(xZ + yz).
Determine the constant ¢ and compute the probability that 0 < X* + Y* < 4.

3.3.21 Let X and Y be r.v.’s whose joint p.d.f. fis given by f(x, y) =
cxyl,).05 (X, y). Determine the constant ¢ and compute the following
probabilities:

i) P(%<X< 1,0<Y<3);

i) P(X<2,2<Y<4);

iii) P(1<X<2,Y>5),

iv) P(X>Y).

3.3.22 Verify that the following function is a p.d.f.:

s )= leossliafro ) a=(om (-3, 5]

3.3.23 (A mixed distribution) Show that the following function is a p.d.f.

xQ
=
=
IN
)

R = A=
o
N
=
N
)

119

—
N | =
=
=
1l
»
»

otherwise.

k=

3.4 The Poisson Distribution as an Approximation to
the Binomial Distribution and the Binomial Distribution as
an Approximation to the Hypergeometric Distribution

THEOREM 1

In this section, we first establish rigorously the assertion made earlier that the
Poisson distribution may be obtained as the limit of Binomial distributions. To
this end, consider a sequence of Binomial distributions, so that the nth distri-
bution has probability p, of a success, and we assume that as n — e, p, — 0 and
that

A, =np, = A,
for some A > 0. Then the following theorem is true.

With the above notation and assumptions, we have

(z)p;‘ qr —%e"ll—' for each fixedx =0, 1, 2, . ...

n—seo
X
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PROOF We have

(n)px o _nn=1) o (nmxrt)

nqn

Il
=
3
)
3

Il
S
—_—
S
|
[E
~—~—
—_
N
|
=
+
—_
~——
VT
|>>
B
=
VR
|
|>>
B
N— o
i
=

since, if A, — A, then

(1—ﬁ] — et
n

This is merely a generalization of the better-known fact that

(1—1] et A
n

REMARK 6 The meaning of the theorem is the following: If n is large the
probabilities (})p*q"™ are not easily calculated. Then we can approximate
them by e™(A/x!), provided p is small, where we replace A be np. This is true
forallx=0,1,2,...,n.

We also meet with difficulty in calculating probabilities in the Hyper-

geometric distribution
m) n m+n
x \r—x r

if m, n are large. What we do is approximate the Hypergeometric distribution
by an appropriate Binomial distribution, and then, if need be, we can go one
step further in approximating the Binomial by the appropriate Poisson distri-
bution according to Theorem 1. Thus we have

THEOREM 2 Let m, n — oo and suppose that m/(m +n) =p,,, = p,0<p < 1. Then
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u%@ ‘W k=012 r

PROOF We have
PL) ey
(m—i—n) (m=x)[n=(r=x)}(m+n) x(r—x)

e

=(r)m(m—1) . [m—(x—l)]-n(n—l) . [n—(r—x—l)]‘
(m+n) cee [(m+n)—(r—1)]

Both numerator and denominator have r factors. Dividing through by (m + n),
we get
m)| x
n\r-x) (r m m 1 o m x-1
m+n x\m+nf m+n m+n m+n m+n
r
o " n 1 n_r-—x-1
m+n)\m+n m+n m+n m+n
-1
x[l-(l— 1 )-~~(1—r_1ﬂ
m+n m+n
r X r=x
W{x}?q )

— p and hence
m+n m+n

X

since

n

—>1-p=q. A

REMARK 7 The meaning of the theorem is that if m, n are large, we can
approximate the probabilities
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L1 o
( :n) (x)”

by setting p = m/(m + n). This is true for all x =0, 1, 2,..., r. It is to be
observed that ( )( ) (1— m’iﬂ)H is the exact probability of having exactly x
successes in r trials when sampling is done with replacement, so that the
probability of a success, --, remains constant. The Hypergeometric distribu-
tion is appropriate when sampling is done without replacement. If, however,
m and n are large (m, n — o) and * remains approximately constant
(%—>c= p/ q), then the probabilities of having exactly x successes in r

(independent) trials are approximately equal under both sampling schemes.

m+n

Exercises

3.4.1 For the following values of n, p and A= np, draw graphs of B(n, p) and
P(A) on the same coordinate axes:
i) n=10,p= 2 sothat A=2.5;

ii) n=16,p = 2, sothat A=2;

16’

iii) n =20, p = 2, so that A =2.5;

16’

iv) n=24,p= 1 sothat A1=1.5;

16’
v) n=24,p= %, so that A = 3.
3.4.2 Refer to Exercise 3.2.2 and suppose that the number of applicants is
equal to 72. Compute the probabilities (i)—(iii) by using the Poisson approxi-
mation to Binomial (Theorem 1).

3.4.3 Refer to Exercise 3.2.10 and use Theorem 2 in order to obtain an
approximate value of the required probability.

3.5* Random Variables as Measurable Functions and Related Results

In this section, random variables and random vectors are introduced as special
cases of measurable functions. Certain results related to o-fields are also
derived. Consider the probability space (S, A, P) and let T be a space and X
be a function defined on S into 7, that is, X:S — 7. For T c 7, define the
inverse image of T, under X, denoted by X '(T), as follows:

X’l(T)={se S; X(s)eT}.
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This set is also denoted by [X € T] or (X € T). Then the following
properties are immediate consequences of the definition (and the fact X is a
function):

X"l(UTj) =Jx(T). (1)
If 7, T, =@, then X \(T,)n X (T, ) = @. ()

Hence by (1) and (2) we have

X'l(; Tl): > X1 3)

i

Also X'l(OT,)=ﬂX"] (). @

J

X‘I(TC) = [X-I(T)]”, (5)
X(T)=5, (6)
xX(@)=2. (7

Let now D be a o-field of subsets of 7 and define the class X (D) of
subsets of S as follows:

X’l(D) = {A cS: A= X’I(T) for some T € D}.
By means of (1), (5), (6) above, we immediately have
The class X'(D) is a o-field of subsets of S.

The above theorem is the reason we require measurability in our defini-
tion of a random variable. It guarantees that the probability distribution
function of a random vector, to be defined below, is well defined.

If X'(D) c A, then we say that X is (A, D)-measurable, or just measur-
able if there is no confusion possible. If (7, D) = (R, B) and X is (A, B)-
measurable, we say that X is a random variable (r.v.). More generally, if (T, D)
= (R, B"), where R* = R x R x---x R (k copies of R), and X is (A, BY)-
measurable, we say that X is a k-dimensional random vector (r. vector). In this
latter case, we shall write X if k > 1, and just X if k = 1. A random variable is
a one-dimensional random vector.

On the basis of the properties (1)—(7) of X, the following is immediate.

Define the class C* of subsets of T as follows: C*={T = T; X '(T) = A for some
A e A}. Then C* is a o-field.

Let D = o(C), where Cis a class of subsets of 7. Then X is (A, D)-measurable
if and only if X'(C) < A. In particular, X is a random variable if and only if



84 3 On Random Variables and Their Distributions

X' (C),or X'(C),or X(C’)c A,j=1,2,...,8, and similarly for the case
of k-dimensional random vectors. The classes C,, C, C’, j=1,..., 8 are
defined in Theorem 5 and the paragraph before it in Chapter 1.

PROOF The o-field C* of Theorem 4 has the property that C* o C. Then C*
2 D= 0o(C) and hence X '(C*¥) 2 X '(D). But X '(C¥) c A. Thus X (D) c
A. The converse is a direct consequence of the definition of (A, D)=
measurability. A

Now, by means of an r. vector X: (S, A4, P) — (R, B"), define on B the
set function Py as follows:

P(B)=P[X"'(B)]= P(X € B)= P({s €S X(s)e B}). (8)

By the Corollary to Theorem 4, the sets X '(B) in S are actually events due to
the assumption that X is an r. vector. Therefore Py is well defined by (8); i.e.,
P[X"'(B)] makes sense, is well defined. It is now shown that Py is a probability
measure on B*. In fact, Px(B) = 0, B € B, since P is a probability measure.
Next, Px(R‘) = P[X (R")] = P(S) = 1, and finally,

(e A o et

The probability measure Py is called the probability distribution function (or
just the distribution) of X.

Exercises

3.5.1 Consider the sample space S supplied with the o-field of events A. For
an event A, the indicator I, of A is defined by: I,(s)=1if s € A and I,(s) =0
if s e A

i) Show that /, is r.v. for any A € A.

ii) What is the partition of S induced by 1,?
iii) What is the o-field induced by 7,?
3.5.2 Write out the proof of Theorem 1 by using (1), (5) and (6).

3.5.3 Write out the proof of Theorem 2.



Chapter 4

Distribution Functions, Probability
Densities, and Their Relationship

4.1 The Cumulative Distribution Function (c.d.f. or d.f.) of a Random Vector—
Basic Properties of the d.f. of a Random Variable

THEOREM 1

The distribution of a k-dimensional r. vector X has been defined through the
relationship: Px(B) = P(X € B), where B is a subset of R*. In particular, one
may choose B to be an “interval” in R*;i.e., B={ye R*;y<x}in the sense that,
ifx=(x,...,x) andy=(y,,...,y),theny,<x,j=1, ..., k. Forsuch achoice
of B, Px(B) is denoted by Fx(x) and is called the cumulative distribution
function of X (evaluated at x), or just the distribution function (d.f.) of X. We
omit the subscript X if no confusion is possible. Thus, the d.f. F of a r. vector
X is an ordinary point function defined on R* (and taking values in [0, 1]). Now
we restrict our attention to the case k = 1 and prove the following basic
properties of the d.f. of an r.v.

The distribution function F of a random variable X satisfies the following
properties:

i) 0<Fx)<l,xe R.
ii) Fis nondecreasing.
iii) £ is continuous from the right.
iv) F(x) — 0 as x — —, F(x) — 1, as x — oo,
We express this by writing F(—oo) = 0, F(+e) = 1.

PROOF 1In the course of this proof, we set Q for the distribution Py of X, for
the sake of simplicity. We have then:

i) Obvious.

ii) This means that x, < x, implies F(x,) < F(x,). In fact,

85
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iii)

iv)

X, <x, implies (—oo, xl] c (—oo, xz]
and hence
Q(—oo, x]] < Q(—oo, xz]; equivalently, F(x])s F(xz).
This means that, if x, { x, then F(x,) l F(x). In fact,
x, 4 x implies (—oo, xn] J (—oo, x]
and hence
===, x,] = 0=, 1]
by Theorem 2, Chapter 2; equivalently, F(x,) 4 F(x).
Let x, — —o. We may assume that x,  — (see also Exercise 4.1.6). Then
(<o, x, [V @, sothat Qe x,]1 0(2)=0

by Theorem 2, Chapter 2. Equivalently, F(x,) — 0. Similarly, if x,, — +co.
We may assume x, T . Then

(—oo, X, ] T R and hence Q(—oo, X, ] T Q(R) =1; equivalently, F(xn ) >1. A

Graphs of d.f.’s of several distributions are given in Fig. 4.1.

REMARK 1

i)

F(x) can be used to find probabilities of the form P(a < X < b); that is
Pla< X <b)=F(b)-F(a)

In fact,
(a<X£b):(—oo<Xsb)—(—oo<XSa)
and
(—oo<XSa)g(—oo<XSb).
Thus

Pla<X <b)=P(-o< X <b)-P(-< X <a)=F(b)- Fla).
The limit from the left of F(x) at x, denoted by F(x—), is defined as follows:
F(x —) =lim F(xn) with x, T x.

This limit always exists, since F(x,)T, but need not be equal to F(x+)(=limit
from the right) = F(x). The quantities F(x) and F(x—) are used to express
the probability P(X = a); that is, P(X = a) = F(a) — F(a-). In fact, let x, T
aandset A= (X=a), A, =(x,< X <a). Then, clearly, A, | A and hence
by Theorem 2, Chapter 2,

P(An) l P(A), or lim P(xn <X< a) = P(X = a),
or
lim[F(a) - F(xn)] = P(X = a),

n—oo
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F(a) —lim F(xn) = P(X = a),

n—oo

or
F(a)-F(a-)=P(X =a).

It is known that a nondecreasing function (such as F) may have

discontinuities which can only be jumps. Then F(a) — F(a—) is the length of

the jump of F at a. Of course, if F is continuous then F(x) = F(x—) and
hence P(X =x) =0 for all x.

iii) If Xis discrete, its d.f. is a “step” function, the value of it at x being defined
by

F(x)z Zf(xj) and f(xj)z F(xj)—F(xi_l),
where it is assumed that x; < x, <---.
iv) If X is of the continuous type, its d.f. F is continuous. Furthermore,

sty

F(x) F(x)

1.00 [~ — 100 | —————————— et
L | —o0
0.80 — 0.80
0.60 0.60 !
|

040 — 040 - +—
0.20 = 020 - |

0 X 0 X

(a) Binomial forn = 6,p = 5. (b) Poisson for A = 2.

(c)U(a,B).HereF(x)—{B_Z a<x<§p

D(x)

0 r<a
X

(d) N(O, 1).
1 x>p

Figure 4.1 Examples of graphs of c.d.f.’s.
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STATEMENT 1

STATEMENT 2

THEOREM 2

at continuity points of f, as is well known from calculus. Through the

relations
x dF
F(x)=[" f(t)dr and dfj‘) - £(x)

we see that if fis continuous, f determines F(f = F) and F determines f (F =
f); that is, F < f. Two important applications of this are the following two
theorems.

Often one has to deal with functions of an r. vector itself. In such cases, the
resulting entities have got to be r. vectors, since we operate in a probability
framework. The following statement is to this effect. Its precise formulation
and justification is given as Theorem 7 on page 104.

Let X be a k-dimensional r. vector defined on the sample space S, and let g be
a (well-behaving) function defined on R* and taking values in R”. Then g(X)
is defined on the underlying sample space S, takes values in R™, and is an r.
vector. (That is, well-behaving functions of r. vectors are r. vectors.) In particu-
lar, g(X) is an r. vector if g is continuous.

Now a k-dimensional r. vector X may be represented in terms of its
coordinates; i.e., X = (X,,..., X,)’, where X, j = 1,..., k are real-valued
functions defined on S. The question then arises as to how X and X),j=1, ...,
k are related from the point of view of being r. vectors. The answer is provided
by the following statement, whereas the precise statement and justification are
given as Theorem 8 below.

Let X and X}, j =1,..., k be functions defined on the sample space S and
taking values in R* and R, respectively, and let X = (X, ..., X,). Then X is an
r. vector if and only if X, j=1,..., k are .v.’s.

The following two theorems provide applications of Statement 1.

Let X be an N(u, 6*)-distributed r.v. and set Y = <%, Then Y is an r.v. and its
distribution is N(0, 1).

PROOF In the first place, Yis an r.v. by Statement 1. Then it suffices to show
that the d.f. of Y is @, where

o(y)= % [ e,
N2

P(Ysy)zp[X;“sszp(XSyow)

—n) dt =

1
e —
N P 20° N

Jie’“z/zdu = d)(y),
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where we let u = (t — u)/o in the transformation of the integral. A

REMARK 2 The transformation *# of X is referred to as normalization
of X.

(i) Let X be an N(0, 1)-distributed r.v. Then Y = X” is distributed as y}.

(ii) If X'is a N (i, o°)-distributed r.v., then the r.v. (ﬂ)z is distributed as 7.
PROOF (i) We will show that the p.d.f. of Y is that of a yj-distributed r.v. by
deriving the d.f. of Y first and then differentating it in order to obtain f,. To this

end, let us observe first that Y is an r.v. on account of Statement 1. Next, for
y >0, we have

Fy(y)zp(YSy)zp(—\Esxsﬁ)

_XZ/de=2' —xz/de'

1 ¢y 1 vy
=EJ_M EL ¢

Let x = \ﬁ Then dx = dt/Z\Ft,te (0, y] and
1 Yy 1 —1/2
Fly)=2-— | —=e"“dt.
) 21 2t

Hence

aE0) 11

1
dy _\/Z\G _\/Ey

Since fi(y) = 0 for y <0 (because Fy(y) =0, y <0), it follows that

W2H o2

h1 y(l/z)—le,y/z ’
Fr(v)=1 w2
0, y<0,

y>0

and this is the p.d.f. of x5. (Observe that here we used the fact that 1"(%) =
vr.) A

Exercises

4.1.1 Refer to Exercise 3.2.13, in Chapter 3, and determine the d.f.’s corre-
sponding to the p.d.f.’s given there.

4.1.2 Refer to Exercise 3.2.14, in Chapter 3, and determine the d.f.’s corre-
sponding to the p.d.f.’s given there.
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4.1.3 Refer to Exercise 3.3.13, in Chapter 3, and determine the d.f.’s corre-
sponding to the p.d.f.’s given there.

4.1.4 Refer to Exercise 3.3.14, in Chapter 3, and determine the d.f.’s corre-
sponding to the p.d.f.’s given there.

4.1.5 Let X be an r.v. with d.f. F. Determine the d.f. of the following r.v.’s:
-X, X°, aX + b, XI,,,, (X) when:

i) X is continuous and F is strictly increasing;

ii) X is discrete.

4.1.6 Refer to the proof of Theorem 1 (iv) and show that we may assume
that x,, L —eo (x, T ) instead of x,, — —oo(x,, — o).

4.1.7 Let fand F be the p.d.f. and the d.f., respectively, of an r.v. X. Then
show that F'is continuous, and dF(x)/dx = f(x) at the continuity points x of f.

4.1.8
i) Show that the following function F is a d.f. (Logistic distribution) and
derive the corresponding p.d.f., f.

F(X)ZT]W, XGR, (X>0, ﬁER,
ii) Show that f(x) =aF(x)[1 — F(x)].

4.1.9 Refer to Exercise 3.3.17 in Chapter 3 and determine the d.f. F corre-
sponding to the p.d.f. f given there. Write out the expressions of F and f for
n=2andn=3.

4.1.10 If Xis an r.v. distributed as N(3, 0.25), use Table 3 in Appendix III in
order to compute the following probabilities:
i) P(X <-1);
ii) P(X >2.5);
iii) P(-0.5 < X < 1.3).
4.1.11 The distribution of IQ’s of the people in a given group is well approxi-
mated by the Normal distribution with =105 and o= 20. What proportion of
the individuals in the group in question has an 1Q:
i) Atleast 1507
ii) At most 80?
iii) Between 95 and 125?
4.1.12 A certain manufacturing process produces light bulbs whose life

length (in hours) is an r.v. X distributed as N(2,000, 200°). A light bulb is
supposed to be defective if its lifetime is less than 1,800. If 25 light bulbs are
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tested, what is the probability that at most 15 of them are defective? (Use the
required independence.)

4.1.13 A manufacturing process produces %-inch ball bearings, which are

assumed to be satisfactory if their diameter lies in the interval 0.5 £ 0.0006 and
defective otherwise. A day’s production is examined, and it is found that the
distribution of the actual diameters of the ball bearings is approximately
normal with mean g = 0.5007 inch and o = 0.0005 inch. Compute the propor-
tion of defective ball bearings.

4.1.14 If X is an r.v. distributed as N(u, ¢°), find the value of ¢ (in terms of
u and o) for which P(X' <c¢) =2 - 9P(X > ¢).

4.1.15 Refer to the Weibull p.d.f., f, given in Exercise 3.3.19 in Chapter 3 and
do the following:

i) Calculate the corresponding d.f. F and the reliability function R(x) =1 —

F(x);

ii) Also, calculate the failure (or hazard) rate H| (x) = %, and draw its graph
forazlandﬁ:%,l,Z; '

iii) For s and ¢> 0, calculate the probability P(X >s + /X > ) where X is anr.v.
having the Weibull distribution;

iv) What do the quantities F(x), R(x), H(x) and the probability in
part (iii) become in the special case of the Negative Exponential
distribution?

4.2 The d.f. of a Random Vector and Its Properties—Marginal and Conditional

d.f.’s and p.d.f.’s

THEOREM 4

For the case of a two-dimensional r. vector, a result analogous to Theorem
1 can be established. So consider the case that k = 2. We then have X =
(X1, X;) and the d.f. F(or Fy or Fy,,y,) of X, or the joint distribution function
of X, X,, is F(x,, x,) = P(X, £ x,, X, £ x,). Then the following theorem holds
true.

With the above notation we have

i) 0<Fx,x)<1,x,x,¢e R

ii) The variation of F over rectangles with sides parallel to the axes, given in
Fig. 4.2,is > 0.

iii) F'is continuous from the right with respect to each of the coordinates x,, x,,
or both of them jointly.



92

4 Distribution Functions, Probability Densities, and Their Relationship

y

(x1,y2)

S — (23
: Figure 4.2 The variation V of F over the
I 4 . rectangle is:

Vi ————- b———— (X2, ¥1) Flxi, y1) + Fxe, y2) = F(Xq, ¥2) — F(X%, v1)
(1, 1) !
1 1 X

0 X1 X2

iv) If both x,, x,, > o, then F(x,, x,) — 1, and if at least one of the x,, x, =
—oo, then F(x,, x,) — 0. We express this by writing F(eo, o) =1, F(—eo, x,) =
F(x,, —e0) = F(—o0, —o) = 0, Where —oo < x4, X, < co.

PROOF

i) Obvious.
ii) V=P <X, <x,y <X,<y, and is hence, clearly, > 0.
iii) Same as in Theorem 3. (If x= (x,, x,)’, and z, = (x,,, X,,)’, then z, | x means
x4 x, x, box).
iv) If x,, x, T oo, then (—oo, x,] X (=00, x,] T R? so that F(x,, x,) — P(S) = 1. If
at least one of x,, x, goes ({) to —o, then (—eo, x,] X (—oo, x,] 4 @, hence

F(xl, xz)% P(@)z 0. A

REMARK 3 The function F(x,, o) = F|(x,) is the d.f. of the random variable
X,. In fact, F(x,, ) = F|(x,) is the d.f. of the random variable X,. In fact,

F(xl, oo) = }Ci"rTr}cP(Xl <x, X, < x")
= P(X,<x,, —eo< X, <eo)= P(X, <x,)= F(x,).
Similarly F(ee, x,) = F,(x,) is the d.f. of the random variable X,. F,, F, are called
marginal d.f.’s.

REMARK 4 1t should be pointed out here that results like those discussed
in parts (i)-(iv) in Remark 1 still hold true here (appropriately interpreted).
In particular, part (iv) says that F(x;, x,) has second order partial derivatives
and
82
X, 0%,

F(xl, x2)=f(x1, xz)
at continuity points of f.

For k > 2, we have a theorem strictly analogous to Theorems 3 and 6 and
also remarks such as Remark 1(i)—(iv) following Theorem 3. In particular, the
analog of (iv) says that F(x,, ..., x,) has kth order partial derivatives and
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&k

e CINRRE Y CREE

at continuity points of f, where F, or Fx, or Fy, ... x,, s the d.f. of X, or the joint
distribution function of X, ..., X,. As in the two-dimensional case,
Floo, ..., w0, x;, 00, o) = F(x))

] ]

is the d.f. of the random variable X, and if m x;’s are replaced by o (1 <m < k),
then the resulting function is the joint d.f. of the random variables correspond-
ing to the remaining (k — m) X}’s. All these d.f.’s are called marginal distribu-
tion functions.

In Statement 2, we have seen that if X = (X, ..., X,) is an 1. vector, then
X,j=1,2,..., k are r.v.’s and vice versa. Then the p.d.f. of X, f(x) =
flxy, ..., x;), is also called the joint p.d.f. of the r.v.’s X, ..., X,.

Consider first the case k = 2; that is, X = (X, X,), f(x) = f(x, x,) and set

B )Zz,f(xp xz)

[ #s x)ax,
Zf(xp xz)

R

J: f(xl, X, )dxl.

()

f xz)z

Then f,, f, are p.d.f.’s. In fact, f;(x,) >0 and

;ﬁ(xl)=22f(xnxz)=1,

X1 X

or

[;fl(x])dx1 = J: J: f(x], xz)dxldx2 =1.

Similarly we get the result for f,. Furthermore, f; is the p.d.f. of X, and f, is the
p-d.f. of X,. In fact,

Z f(xl’ x2)= z Zf(xp x2)= Zfl(xl)

P(Xl c B) _ JneB neR x,€B x,eR ¥,eB
IB jﬂ@f(xl’ xz)dx]dxz - .[B “Rf(xl’ *2 )dxz]d)ﬁ - .[Bfl(xl )dxl'

Similarly f, is the p.d.f. of the r.v. X,. We call f,, f, the marginal p.d.f.’s. Now
suppose fi(x;) > 0. Then define f(x,lx,) as follows:
f (xp xz)

f(x2|"1): £i(%)
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This is considered as a function of x,, x, being an arbitrary, but fixed, value of
X, (fi(x;) > 0). Then f(-lx,) is a p.d.f. In fact, f(x,lx,) > 0 and

%f(x2|x1)=ﬁ§f(x1, x2)=ﬁ'ﬁ(xl)=1,

- 1 = 1
J:xf(x2|x1)dx2 =M_[mf(xl, xz)dx2 =m-fl(xl)= 1.

In a similar fashion, if f,(x,) > 0, we define f(x,lx,) by:

X, |x =M
ok )=

and show that f(:lx,) is a p.d.f. Furthermore, if X;, X, are both discrete, the
f(x,1x,) has the following interpretation:

o m) PXExXozn) g e
) A=) o

Hence P(X, € BIX, = x;) = X, 3 f(x,lx,). For this reason, we call f(-lx,) the
conditional p.d.f. of X,, given that X, = x, (provided f,(x,) > 0). For a similar
reason, we call f(-x,) the conditional p.d.f. of X,, given that X, = x, (provided
fo(x,) > 0). For the case that the p.d.f.’s f and f, are of the continuous type,
the conditional p.d.f. f (x,lx,) may be given an interpretation similar to the

one given above. By assuming (without loss of generality) that 4, i, > 0, one
has

floafr )=

(1/111)P(x1 <X <x +h1|x2 <X, <x, +h2)
(1/mh, ) P(x, < X, Sx,+ By, x, <X, <x, +hy)
(1/h,)P(x, < X, <x, +h,)

(1/hlhz)[F(x1, x2)+F(x1 +h, x, +h2)—F(x1, X, +l12)—F()c1 + hy, xz)]

(1/m, )[Fz(xz +hy)-F(x, )]

where F'is the joint d.f. of X,, X, and F, is the d.f. of X,. By letting /,, h, > 0
and assuming that (x;, x,)" and x, are continuity points of fand f,, respectively,
the last expression on the right-hand side above tends to f(x,, x,)/f;(x,) which
was denoted by f(x,lx,). Thus for small &, h,, h, f(x,lx,) is approximately equal
to P(x; < X, £ x, + hylx, < X, < x, + h,), so that h,f(x,Ix,) is approximately the
conditional probability that X, lies in a small neighborhood (of length 4,) of x,,
given that X, lies in a small neighborhood of x,. A similar interpretation may
be given to f(x,lx,). We can also define the conditional d.f. of X,, given X, = x,,
by means of




EXAMPLE 1

4.2 The d.f. of a Random Vector and Its Properties 95

Y, fxifu)

F(x2|x1) = {550

Joots
and similarly for F(x,lx,).

The concepts introduced thus far generalize in a straightforward way for
k>2. Thus if X = (X, ..., X}) with p.d.f. f(x,, ..., x,), then we have called
flxy, ..., x;) the joint p.d.f. of the rv.’s X,, X,, ..., X;. If we sum (integrate)
over ¢ of the variables x,, . . ., x, keeping the remaining s fixed (¢ + s = k), the
resulting function is the joint p.d.f. of the r.v.’s corresponding to the remaining
s variables; that is,

)dxg,

2 f(xl,..., )
J jf(xl,..., ) x; cedx;

SRH I

fil,_”yis(xil, ...,xis)

There are

such p.d.f.’s which are also called marginal p.d.f.’s. Also if x,l, ..., x; are such
thatf,,...,, (x;,...,x,) >0, then the function (of x;, ..., x;) deﬁned by
flx, ..., x
f(le,...,xj‘|xil,...,xl.): ( )
fih___,,.l(xil, e x,.&)
is a p.d.f. called the joint conditional p.d.f. of the r.v.’s X;, ..., X,, given X, =
X, oo, Xj =X, Or just given sz ..., X,. Again there are 2" 2 joint condi-
tional p.d.f.’s 1nV01V1ng all k r.v.’s Xl, ..., X;. Conditional distribution func-

tions are defined in a way similar to the one for k = 2. Thus

We now present two examples of marginal and conditional p.d.f.’s, one
taken from a discrete distribution and the other taken from a continuous
distribution.

Let the r.v.’s X}, ..., X, have the Multinomial distribution with parameters
n and py,..., pr. Also, let s and ¢ be integers such that 1 < s, t < k and
s +t = k. Then in the notation employed above, we have:
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. n! X, X ner
l) f; >>>>> i xi?---’xi = pil".p[q >
1 5 1 5 1 s
xx !(n—r)! ‘

b

‘]:1_(171', +"'+Pi))’ P=Xte X3

thatis, ther.v.’s X, ..., X; and Y=n - (X, +- - - + X, ) have the Multinomial
distribution with parameters n and p;, ..., p;, q.

— l ) Xjy . Xj
I

I

r=x X

that is, the (joint) conditional distribution of X, ..., X given X;, ..., X, is
Multinomial with parameters n —r and p; /q, . .., p;/q.
DISCUSSION
i) Clearly,
(Xi. =X, X =xl.x)g(Xil +o+ X :r):(n—Y:r):(Y:n—r),

so that

(x
Denoting by O the outcome which is the grouping of all n outcomes distinct
from those designated by iy, . . . , i;, we have that the probability of O is g, and

the number of its occurrences is Y. Thus, the r.v.’s X;,..., X; and Y are
distributed as asserted.

ii) We have

=X X =xl.:):()(,.l =X,..., X, =x, Y=n—r).

n! ! X~ n! X iy =T
:( | P Pk ) | | | lll P, 4q
X, X, xil.--~xix.(n—r)
R T . iy Xig Xjt oo X,
_| 7 P P, P, p; P4
Lo I Lo x ! . _
xboex g e ! xlxg !(n r)!

(since n—r:n—(x,

(=r) (2 )" (2"
x].l!~--x,.[! q q ’

as was to be seen.

EXAMPLE 2 Letther.v.’s X; and X, have the Bivariate Normal distribution, and recall that
their (joint) p.d.f. is given by:

+--~+xis):le+-~-+x].1)



Exercises 97

v
flx. %)= T

2 2
X expi— 1 (xl_‘ul) _zp[x1_ﬂlj(xz_ﬂ2)+[xz_ﬂ2) )
2(1 - pz) o, o, 0, 0,
We saw that the marginal p.d.f.’s f,, f, are N(u,, 67), N(1,, 03), respectively;

that is, X;, X, are also normally distributed. Furthermore, in the process of
proving that f(x,, x,) is a p.d.f., we rewrote it as follows:

s 2)= P ST LS
2716,0,+/1-p* or 2(0_2 - p? )2
where
b=u2+pz—j(xl—m)
Hence
2
f(x2|x1)= f(xp xz) S 1 exp| - (xzi :
fl(xl) \e’27to'2\/1_P2 2(02\/1—p2)

which is the p.d.f. of an N(b, o5(1 — p*)) r.v. Similarly f(x,lx,) is seen to be the
p.d.f. of an N(b’, o7(1 — p°)) r.v., where

b’ = +P%(x2 _.uz)-

2

Exercises

4.2.1 Refer to Exercise 3.2.17 in Chapter 3 and:

i) Find the marginal p.d.f’s of the r.v.’s X, j=1,---,6;

ii) Calculate the probability that X > 5.

4.2.2 Refer to Exercise 3.2.18 in Chapter 3 and determine:

i) The marginal p.d.f. of each one of X, X,, X;;

ii) The conditional p.d.f. of X, X,, given Xj; X|, Xj;, given X,; X,, X;, given
X
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iii) The conditional p.d.f. of X, given X,, X;; X,, given X;, X;; X;, given X,
X,.

If n = 20, provide expressions for the following probabilities:
iv) P(3X, + X, <5);
v) P(X, <X, < X;);
vi) P(X;+ X,=101X;=Y5);
vii) P(3 < X, £ 10LX, = Xj);
viii) P(X, < 3X,1X, > X;).
4.2.3 Let X, Y be r.v.’s jointly distributed with p.d.f. f given by f(x, y) = 2/c*
if 0 <x <y, 0<y<cand 0 otherwise.
i) Determine the constant c;
ii) Find the marginal p.d.f.’s of X and Y;

iii) Find the conditional p.d.f. of X, given Y, and the conditional p.d.f. of Y,
given X;
iv) Calculate the probability that X < 1.

4.2.4 Letther.v’s X, Y be jointly distributed with p.d.f. f given by f(x, y) =
€7 I g0 (X, y). Compute the following probabilities:
i) P(X <x);
ii) P(Y <y);
iii) P(X <Y);
iv) P(X + Y <3).
4.2.5 If the joint p.d.f. fof the r.v.’s X}, j =1, 2, 3, is given by

3 —c(x1+xz+x3)IA(

f(xl,xz,x3)=c e xl,xz,xs),

where
A=(0.=)x(0. <) x(0. =),
i) Determine the constant c;

ii) Find the marginal p.d.f. of each one of the r.v.’s X}, j =1, 2, 3;

iii) Find the conditional (joint) p.d.f. of X|, X,, given Xj, and the conditional
p.d.f. of X;, given X,, X;;

iv) Find the conditional d.f.’s corresponding to the conditional p.d.f.’s in (iii).
4.2.6 Consider the function given below:

ye”

flaly)={

0, otherwise.

, x=0,1,...;y20



4.3 Quantiles and Modes of a Distribution 99

i) Show that for each fixed y, f(-ly) is a p.d.f., the conditional p.d.f. of an r.v.
X, given that another r.v. Y equals y;

ii) If the marginal p.d.f. of Y is Negative Exponential with parameter A =1,
what is the joint p.d.f. of X, Y?

iii) Show that the marginal p.d.f. of X is given by f(x) = (%)X+1 1,(x), where
A={0,1,2,...}

4.2.7 Let Y be an r.v. distributed as P(A) and suppose that the conditional
distribution of the r.v. X, given Y =n, is B(n, p). Determine the p.d.f. of X and
the conditional p.d.f. of Y, given X = x.

4.2.8 Consider the function f defined as follows:

1 X7 +x; 1
f(xl, xz)z—exp[— 2 ]+_x13X§I[1,1]x[1,1](x1’ xz)

21 2 4 e

and show that:

i) fis a non-Normal Bivariate p.d.f.
ii) Both marginal p.d.f.’s

filx)= I flas x)dx,

and

fz(xz) = J: f(x17 x2)dxl

are Normal p.d.f.’s.

4.3 Quantiles and Modes of a Distribution

EXAMPLE 3

EXAMPLE 4

Let X be an r.v. with d.f. F and consider a number p such that 0 <p <1. A
pth quantile of the r.v. X, or of its d.f. F, is a number denoted by x, and having
the following property: P(X < x,) 2 p and P(X 2x,) 21 — p. For p = 0.25 we
get a quartile of X, or its d.f., and for p = 0.5 we get a median of X, or its
d.f. For illustrative purposes, consider the following simple examples.

Let X be an r.v. distributed as U(0, 1) and let p = 0.10, 0.20, 0.30, 0.40, 0.50,
0.60, 0.70, 0.80 and 0.90. Determine the respective X9, Xo20» X030> X0.40» X0.505 X0.605
Xo.70» Xo.50, AN Xg,0-

Since for 0 < x < 1, F(x) = x, we get: x,,, = 0.10, x5, = 0.20, x5, = 0.30,
Xo40 = 0.40, x5, = 0.50, x4, = 0.60, x,,, = 0.70, x5, = 0.80, and x,4,= 0.90.

Let X be an r.v. distributed as N(0, 1) and let p = 0.10, 0.20, 0.30, 0.40, 0.50,
0.60, 0.70, 0.80 and 0.90. Determine the respective X9, Xo20» X030> X0.40» X0.505 X0.605
Xo.70» Xo.50» and Xg g9
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Typical cases:

% 0 * 0 ———
Xp
(a) (b)
F(x) /—
Pr-————- N

Figure 4.3 Observe that the figures demonstrate that, as defined, x, need not be unique.

From the Normal Tables (Table 3 in Appendix III), by linear interpolation
and symmetry, we find: x,,, = —1.282, x,,, = —0.842, x5, = —0.524, x4, = —0.253,
Xos50 =0, Xp60=0.253, x50 = 0.524, x4, = 0.842, and x4, = 1.282.

Knowledge of quantiles x, for several values of p provides an indication as
to how the unit probability mass is distributed over the real line. In Fig. 4.3
various cases are demonstrated for determining graphically the pth quantile of
adf.

Let X be an r.v. with a p.d.f. f. Then a mode of f, if it exists, is any number
which maximizes f(x). In case fis a p.d.f. which is twice differentiable, a mode
can be found by differentiation. This process breaks down in the discrete cases.
The following theorems answer the question for two important discrete cases.
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Let X be B(n, p); that is,

f(x):(Z}u"q""x, O<p<l, g=1-p, x=0,1,..., n

Consider the number (n + 1)p and set m = [(n + 1)p], where [y] denotes the
largest integer which is < y. Then if (n + 1)p is not an integer, f(x) has a unique
mode at x = m. If (n + 1)p is an integer, then f(x) has two modes obtained for
x=mandx=m— 1.

PROOF For x > 1, we have

o
flx-1) ( n ] g

x—1

That is,

f (x) _n-x+1p
(TR
Hence f(x) > f(x — 1) (fis increasing) if and only if

(n—x+1)p>x(1—p), or np—xp+p>x—-xp, or (n+1)p>x.

Thus if (n + 1)p is not an integer, f(x) keeps increasing for x < m and then
decreases so the maximum occurs at x = m. If (n + 1)p is an integer, then the
maximum occurs at x = (n + 1)p, where f(x) = f(x — 1) (from above calcula-
tions). Thus

X = (n + 1) p-1
is a second point which gives the maximum value. A

Let X be P(A); that is,

X

f(x):e’l%, x=0,1,2,..., A>0.

Then if A is not an integer, f(x) has a unique mode at x = [A]. If 1 is an integer,
then f(x) has two modes obtained forx =Aand x =4 — 1.

PROOF For x > 1, we have
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f(x) eHa/x) g

fle=1) e fx-1)] x

Hence f(x) > f(x — 1) if and only if A > x. Thus if A is not an integer, f(x) keeps
increasing for x < [A] and then decreases. Then the maximum of f(x) occurs
at x = [A]. If Ais an integer, then the maximum occurs at x = A. But in this case
f(x) = f(x — 1) which implies that x = A — 1 is a second point which gives
the maximum value to the p.d.f. A

Exercises

4.3.1 Determine the pth quantile x, for each one of the p.d.f.’s given in
Exercises 3.2.13-15, 3.3.13-16 (Exercise 3.2.14 for a = %) in Chapter 3 if p =
0.75, 0.50.

4.3.2 Let X be an r.v. with p.d.f. f symmetric about a constant ¢ (that is,
flc —x) = f(c + x) for all x € R). Then show that c is a median of f.

4.3.3 Draw four graphs—two each for B(n, p) and P(1)—which represent
the possible occurrences for modes of the distributions B(n, p) and P(A).

4.3.4 Consider the same p.d.f.’s mentioned in Exercise 4.3.1 from the point
of view of a mode.

4.4* Justification of Statements 1 and 2

DEFINITION 1

LEMMA 1

In this section, a rigorous justification of Statements 1 and 2 made in Section
4.1 will be presented. For this purpose, some preliminary concepts and results
are needed and will be also discussed.

A set G in R is called open if for every x in G there exists an open interval
containing x and contained in G. Without loss of generality, such intervals may
be taken to be centered at x.

It follows from this definition that an open interval is an open set, the
entire real line R is an open set, and so is the empty set (in a vacuous manner).

Every open set in [R is measurable.

PROOF Let G be an open set in R, and for each x € G, consider an open
interval centered at x and contained in G. Clearly, the union over x, as x varies
in G, of such intervals is equal to G. The same is true if we consider only those
intervals corresponding to all rationals x in G. These intervals are countably
many and each one of them is measurable; then so is their union. A



DEFINITION 2

LEMMA 2

DEFINITION 3

LEMMA 3

DEFINITION 4

LEMMA 4
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Aset Gin R™,m>1,is called open if for every x in G there exists an open cube
in R™ containing x and contained in G; by the term open “cube” we mean the
Cartesian product of m open intervals of equal length. Without loss of gener-
ality, such cubes may be taken to be centered at x.

Every open set in R" is measurable.

PROOF It is analogous to that of Lemma 1. Indeed, let G be an open set in
R™, and for each x € G, consider an open cube centered at x and contained in
G. The union over x, as x varies in G, of such cubes clearly is equal to G. The
same is true if we restrict ourselves to x’s in G whose m coordinates are
rationals. Then the resulting cubes are countably many, and therefore their
union is measurable, since so is each cube. A

Recall that a function g: S ¢ R — R is said to be continuous at x, € S if for
every >0 there exists a 6= d(¢, x,) > 0 such that |x — x| < eimplies Ig(x) — g(x,)!
< 6. The function g is continuous in S if it is continuous for every x € S.

It follows from the concept of continuity that € — 0 implies § — 0.
Let g: R — R be continuous. Then g is measurable.

PROOF By Theorem 5 in Chapter 1 it suffices to show that g”'(G) are meas-
urable sets for all open intevals G in R. Set B = g”'(G). Thus if B = &, the
assertion is valid, so let B # & and let x,, be an arbitrary point of B, so that g(x,)
€ G. Continuity of g at x, implies that for every € > 0 there exists § = d(&, x,)
> 0 such that Ix — x| < € implies Ig(x) — g(x,)| < 8. Equivalently, x € (x, — &, x,
+ ¢€) implies g(x) € (g(x,) — 6, g(x,) + ). Since g(x,) € G and G is open, by
choosing ¢ sufficiently small, we can make & so small that (g(x,) — 8, g(x,) + )
is contained in G. Thus, for such a choice of € and 6, x € (x, — &, x, + €) implies
that (g(x,) — &, g(x,) + 6) = G. But B(= g '(G)) is the set of all x € R for which
g(x) e G. Asallx € (x,— & x, + €) have this property, it follows that (x, — &, x,
+ €) c B. Since x, is arbitrary in B, it follows that B is open. Then by Lemma
1, it is measurable. A

The concept of continuity generalizes, of course, to Euclidean spaces of
higher dimensions, and then a result analogous to the one in Lemma 3 also
holds true.

A function g : S ¢ R* — R" (k, m > 1) is said to be continuous at x, € R"* if for
every € > 0 there exists a §= 9 (&, x,) > 0 such that llx — x,/l < € implies lig(x) —
g(xy)ll < 8. The function g is continuous in S if it is continuous for every x € S.
Here lIxl| stands for the usual norm in R ie., for x = (x,,..., x,), lIxll =
(= xz)l/z, and similarly for the other quantities.

i=1"Yi

Once again, from the concept of continuity it follows that € — 0 implies
06— 0.

Let g: R* — R" be continuous. Then g is measurable.
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THEOREM 7

COROLLARY

DEFINITION 5

LEMMA 5

PROOF The proof is similar to that of Lemma 3. The details are presented
here for the sake of completeness. Once again, it suffices to show that g™'(G)
are measurable sets for all open cubes G in R". Set B = g'(G). If B = O the
assertion is true, and therefore suppose that B # & and let x, be an arbitrary
point of B. Continuity of g at x, implies that for every € > 0 there exists a § =
4(&, x,) > 0 such that lIx — x,/l < € implies llg(x) — g(x,)!l < & equivalently, x €
S(x,, €) implies g(x) € S(g(x,), 8), where S(c, r) stands for the open sphere with
center ¢ and radius r. Since g(x,) € G and G is open, we can choose € so small
that the corresponding § is sufficiently small to imply that g(x) € S(g(x,), 0).
Thus, for such a choice of € and 6, x € S(x,, €) implies that g(x) € S(g(x,), 0).
Since B(= g'(G)) is the set of all x € R* for which g(x) € G, and x € S(x,, €)
implies that g(x) € S(g(x,), 9), it follows that S(x,, €)  B. At this point, observe
that it is clear that there is a cube containing x, and contained in S(x,, €); call
it C(x,, €). Then C(x,, €) c B, and therefore B is open. By Lemma 2, it is also
measurable. A
We may now proceed with the justification of Statement 1.

Let X : (S, A) - (R*, B*) be a random vector, and let g : (R*, B*) = (R, B")
be measurable. Then g(X): (S, A) — (R™, B") and is a random vector. (That
is, measurable functions of random vectors are random vectors.)

PROOF To prove that [g(X)](B) € Aif B e B", we have
[s(X)] (B)=x"[g"(B)|=X"(B)). where B =g"(B)<B"

by the measurability of g. Also, X'(B,) € A since X is measurable. The proof
is completed. A
To this theorem, we have the following

Let X be as above and g be continuous. Then g(X) is a random vector. (That
is, continuous functions of random vectors are random vectors.)

PROOF The continuity of g implies its measurability by Lemma 3, and there-
fore the theorem applies and gives the result. A

For j=1,..., k, the jth projection function g; is defined by: g;: R* — R and
g(x) =glxp, ..., x)=x,
It so happens that projection functions are continuous; that is,

The coordinate functions g, j =1, ..., k, as defined above, are continuous.

PROOF For an arbitrary point x, in R*, consider x € R“ such that IIx — x|l <
e for some &> 0. This is equivalent to lix — x,|I* < & or ¥, (x, — xoj.)z <€’ which
implies that (x; - x,)’ <& forj=1,...,k, orlx,—x,l <& j=1,..., k. This last
expression is equivalent to Ig(x) — gi(x))l < &, j=1,..., k. Thus the definition
of continuity of g is satisfied here for 6=¢. A

Now consider a k-dimensional function X defined on the sample space S.
Then X may be written as X = (X, ..., X,)’, where X, j=1,..., k are real-
valued functions. The question then arises as to how X and X}, j=1, ..., k are
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related from a measurability point of view. To this effect, we have the follow-
ing result.

Let X=(X,,..., X)) : (S, A) = (R, B"). Then X is an r. vector if and only if
X,j=1,..., karer.v.’s.

PROOF Suppose X is an 1. vector and let g, j=1,..., k be the coordinate
functions defined on R*. Then g’s are continuous by Lemma 5 and therefore
measurable by Lemma 4. Then foreach j=1,..., k, g(X) =g(X,,..., X)) =
X, is measurable and hence an r.v.

Next, assume that X}, j=1,..., k arer.v.’s. To show that X is an r. vector,
by special case 3 in Section 2 of Chapter 1, it suffices to show that X '(B) e A
for each B = (—oo, x;] X - -+ X (=00, x,], Xy, - - . , X, € R. Indeed,

X(B)=(X e B)=(X, e (- x ] j=1..... k):ﬁxg((_w, x])eA.

The proof is completed. A

Exercises

4.41 If X and Y are functions defined on the sample space Sinto the real line
R, show that:

{se S: X(s)+Y(s) <x}= g[{se S: X(s)<r}m{se5; Y(s)<x—r}],
where Q is the set of rationals in .

4.4.2 Use Exercise 4.4.1 in order to show that, if X and Y are r.v.’s, then so
is the function X + Y.

44.3

i) If X is an r.v., then show that so is the function —X.

ii) Use part (i) and Exercise 4.4.2 to show that, if X and Y are r.v.’s, then so is
the function X — Y.

44.4

i) If X is an r.v., then show that so is the function X?.

ii) Use the identity: XY = 3 (X + Y)>— 5 (X”+ Y?) in conjunction with part (i)
and Exercises 4.4.2 and 4.4.3(ii) to show that, if X and Y are r.v.’s, then so
is the function XY.

4.4.5
i) If X is an r.v., then show that so is the function %, provided X # 0.
ii) Use part (i) in conjunction with Exercise 4.4.4(ii) to show that, if X and Y

are r.v.’s, then so is the function %, provided Y # 0.



Chapter 5

Moments of Random Variables—Some
Moment and Probability Inequalities

5.1 Moments of Random Variables

DEFINITION 1

106

In the definitions to be given shortly, the following remark will prove useful.

’

REMARK 1 We say that the (infinite) series X A(x), where x = (x4, ..., x;)
varies over a discrete set in R, k > 1, converges absolutely if ¥, |h(x)| < e. Also
we say that the integral [~ ...[7 h(xl, cees Xy )dx1 -+ - dx, converges absolutely

if
In what follows, when we write (infinite) series or integrals it will always be

assumed that they converge absolutely. In this case, we say that the moments to
be defined below exist.

h(xl, Xy oot xk)‘dxl dx, - - dx, <eo.

LetX=(X|,..., X)) beanr. vector with p.d.f. fand consider the (measurable)
function g: R* — R, so that g(X) =g(X,, ..., X,) is an r.v. Then we give the

i) Forn=1,2,..., the nth moment of g(X) is denoted by E[g(X)]" and is
defined by:

4

el - el 1) x=(xi )
J': . -_li[g(xl, o xk)]”f(xl, e xk)dx1 o dx,.

For n =1, we get

J; . .J:g(xl, e xk)f(xl, e xk)dx1 - dx,
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and call it the mathematical expectation or mean value or just mean of g(X).
Another notation for E[g(X)] which is often used is ), or u[g(X)], or just
L, if no confusion is possible.

ii) For r > 0, the rth absolute moment of g(X) is denoted by Elg(X)I" and is
defined by:

, Zlg(")fx
ol

iii) For an arbitrary constant ¢, and n and r as above, the nth moment and rth
absolute moment of g(X) about ¢ are denoted by E[g(X) — c]", Elg(X) — ¢l
respectively, and are defined as follows:

[ - ]nf x=(x1,...,xk),

J. j [(xl,..., )_C]nf(xl,.“,xk)dxl"'dxk’

o - (5 )

(xl, ce xk)dx1 e dxy.

and

4

X:(xl,...,xk)

[kt
J: ' 'J:lg(xh I

For ¢ = E[g(X)], the moments are called central moments. The 2nd central
moment of g(X), that is,

E{g(X)—E[g(X)]}Z
| Xslx )-Es(X)] /(x). x=(x.....x)

[ [l o)~ Ee(X)] £ ), -,

is called the variance of g(X) and is also denoted by o’[g(X)], or 6 s OF just
o, if no confusion is possible. The quantity +\/ o [g( )] = G[g(X)] is called the
standard deviation (s.d.) of g(X) and is also denoted by o), or just o, if no
confusion is possible. The variance of an r.v. is referred to as the moment of
inertia in Mechanics.

Elg(x -

r
c (xl, s xk)dx1 S dx.

’

5.1.1 Important Special Cases

1. Let g(Xy,..., X,) = X" --- X;*, where n; > 0 are integers. Then
E(X"--- X)is called the (n,, ..., n)-joint moment of X,, ..., X,. In par-
ticular,forn1=~~~=nj_1=n,-+1=-~-—nk 0, n;=n, we get
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,zx:x;lf(x)= 2 x;‘f(xl,...,xk)

.E. ' -J:x;’f(xl, BN xk)dxl -dx,

—ZX;L i(xf)

X

f:, Xy f/’(xf )dx].

which is the nth moment of the r.v. X. Thus the nth moment of an r.v. X with
p.d.f. fis

[Zes

E(x")={
.L, x”f(x)dx.
For n =1, we get
o |2

[ ef(x)ax

which is the mathematical expectation or mean value or just mean of X. This
quantity is also denoted by p, or u(X) or just u when no confusion is possible.
The quantity uy can be interpreted as follows: It follows from the defini-
tion that if X is a discrete uniform r.v., then u, is just the arithmetic average of
the possible outcomes of X. Also, if one recalls from physics or elementary
calculus the definition of center of gravity and its physical interpretation as the
point of balance of the distributed mass, the interpretation of u, as the mean
or expected value of the random variable is the natural one, provided the
probability distribution of X is interpreted as the unit mass distribution.

REMARK 2 In Definition 1, suppose X is a continuous r.v. Then E[g(X)] =
j:g(x)f(x)dx On the other hand, from the last expression above, E(X) =
j:xf(x)dx. There seems to be a discrepancy between these two definitions.
More specifically, in the definition of E[g(X)], one would expect to use the
p.d.f. of g(X) rather than that of X. Actually, the definition of E[g(X)], as
given, is correct and its justification is roughly as follows: Consider E[g(x)] =
I g(x)f(x)dx and set y = g(x). Suppose that g is differentiable and has an
inverse g, and that some further conditions are met. Then

[ gl = vt (v)

diyg1 (v)ldy-
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On the other hand, if fy is the p.d.f. of Y, then f, y)= f[g’l (y)] r gfl(y)|‘
Therefore the last integral above is equal to [~ yf, (y 'y, which is consonant
with the definition of E(X ) =" xf (x) dx. (A justification of the above deriva-

tions is given in Theorem 2 of Chapter 9.)

2. For g as above, thatis, g(X}, ..., X,)= X" --- X* andn,=---=n;, =
n,=---=n=0,n=1,and c = E(X)), we get

;(xf _EX/)nf(X)» X=(x1, o xk)
ch . .J.:(xj —EXj)"f(xl, R xk)dx1 codx,

_ XZ(XJ_EXi)nfi(xf)

IZ(% —EX; ) 1

which is the nth central moment of the r.v. X (or the nth moment of X; about its
mean).
Thus the nth central moment of an r.v. X with p.d.f. f and mean u is

S (x—EX) flx)= X (x-u) f(x)

E(X-EX) =E(X-p) =" -
U (e = e e

In particular, for n =2 the 2nd central moment of X is denoted by ¢} or 6*(X)
or just 6 when no confusion is possible, and is called the variance of X. Its
positive square root oy or o(.X) or just o is called the standard deviation (s.d.)
of X.

As in the case of uy, oy has a physical interpretation also. Its definition
corresponds to that of the second moment, or moment of inertia. One recalls
that a large moment of inertia means the mass of the body is spread widely
about its center of gravity. Likewise a large variance corresponds to a probabil-
ity distribution which is not well concentrated about its mean value.

3. For g(X,,..., X,)=(X, - EX))" - - - (X, — EX,)"™, the quantity

E(X, —EXj)n -

E[(Xl -EX,)" - (X, - EX,) ]
is the (ny, . .., ny)-central joint moment of X,, . .., X, or the (n,, ..., n,)-joint
moment of X,, . .., X, about their means.
4. Forg(X,,...,X,)=X(X,—-1)---(X,—n+1),j=1,..., k, the quantity

Sl -1) (e ne)ife)

J:xf(xf _1) o (xf_n+1)ff(xf)dxj

]

Hx,(x,-1) - (x,-n+1)|=
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is the nth factorial moment of the r.v. X). Thus the nth factorial moment of an
r.v. X with p.d.f. fis

Sale-1) (el
[X(x-1) - (X =n+1)]= [ x(e=1) - (e =nt1)f(x)dx.

5.1.2 Basic Properties of the Expectation of an R.V.

From the very definition of E[g(X)], the following properties are immediate.

(E1) E(c) = c, where c is a constant.
(E2) E[cg(X)] = cE[g(X)], and, in particular, E(cX) = cE(X) if X is an
r.v.

(E3) E[g(X) + d] = E[g(X)] + d, where d is a constant. In particular,
E(X+d)=E(X)+dif Xisanr.v.

(E4) Combining (E2) and (E3), we get E[cg(X) + d] = cE[g(X)] + d,
and, in particular, E(cX + d) = cE(X) + d if X is an r.v.
(B4) E[3]1¢,8,(X)| = 2, E[g, (X))

In fact, for example, in the continuous case, we have

%gg&@ﬂ:ﬁnfigg&@wnﬁghnwwxwm.uak
=§ch1 g (e ) (s ), g
zggq&@ﬂ

The discrete case follows similarly. In particular,
(E4") E(¥¢, X)) =3¢, E(X))
(E5) If X>0, then E(X) 2 0.
Consequently, by means of (ES) and (E4”), we get that

(ES") If X>Y, then E(X) > E(Y), where X and Y are r.v.’s (with finite
expectations).

(E6) IE[g(X)]I £ Elg(X)l.

(E7) If EIXI" < o for some r > 0, where X is an r.v., then EIX1"< o for
all0<r <r.

This is a consequence of the obvious inequality |XI” <1 + |XI" and (E5).
Furthermore, since of n =1, 2, ..., we have X" = 1XI", by means of (E6),
it follows that
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(E7’) If E(X") exists (that is, EIX|" < o) for some n=2, 3, ..., then E(X")
also exists for alln’ =1, 2,...with n’ < n.

5.1.3 Basic Properties of the Variance of an R.V.

Regarding the variance, the following properties are easily established by
means of the definition of the variance.

(V1) &’(c) =0, where c is a constant.

(V2) o’[cg(X)] = ’6’[g(X)], and, in particular, 67(cX) = ’0°(X), if X is
an r.v.

(V3) o’[g(X) + d] = 6°[g(X)], where d is a constant. In particular,
o’(X + d) = 6°(X), if X is an r.v.

o?[g(X)+d|= E{[g(X) +d|- E[g(X)+ d]}z

= E[g(X) - Eg(X)] =0’[g(X)]
(V4) Combining (V2) and (V3), we get 6”[cg(X) + d] = ¢’67[g(X)],
and, in particular, 6°(cX + d) = ’6°(X), if X is an r.v.
(V5) o’[g(X)] = E[g(X)]* - [Eg(X)]’, and, in particular,
(VS) 0°(X) = E(X?) — (EX)’, if X is an r.v.

In fact,

o [6(x)] = £[s(x)- B&(x)]" = E{[s(x)] -25(x)E(x)+ [£=(x)] |

2 2 2 2 2
= Elg(X)| -2 Ee(X)| +[E2(X)] = E[2(X)] -[Es(X)] -
the equality before the last one being true because of (E4).
(V6) o*(X)=E[X(X-1)]+EX - (EX)*, if X is an r.v., as is easily seen.

This formula is especially useful in calculating the variance of a
discrete r.v., as is seen below.

Exercises

5.1.1 Verify the details of properties (E1)-(E7).
5.1.2 Verify the details of properties (V1)—(V5).

5.1.3 For 7 < r, show that |XI” <1 + |XI" and conclude that if EIXI" < o, then
EIX!"forall 0 <7 <r.
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5.1.4 Verify the equality (E[g(X)]=)[" g(x)f,(x)dx=["yf,(y)dy for the
case that X ~ N(0, 1) and Y = g(X) = X°.

5.1.5 For any event A, consider the r.v. X = I, the indicator of A defined by
I,(s)=1forse A and I,(s) =0 for s € A, and calculate EX", r > 0, and also

o’ (X).
5.1.6 Let X be an r.v. such that
1
P(X=-c)=P(X=c)==.
(A =—c)=P(X =c)=3
Calculate EX, 6°(X) and show that
02(X )

2
C

P(|X - EX|< c) -

5.1.7 Let X be an r.v. with finite EX.

i) For any constant c, show that E(X - ¢)’ = E(X — EX)’ + (EX - ¢)’;
ii) Use part (i) to conclude that E(X — ¢)* is minimum for ¢ = EX.
5.1.8 Let X be an r.v. such that EX" < . Then show that

i) E(X - EX)’ = EX* - 3(EX)(EX)* + 2(EX)’;

ii) E(X - EX)' = EX*' — 4EX)(EX®) + 6(EXXEX?) — 3(EX)".

5.1.9 If EX* < o, show that:

E[X(X-l)]: EX?-EX; E[X(X—l)(X—z)]z EX®-3EX*+2EX;
E[X(X -1)(X -2)(X -3)|= EX* - 6EX’ +11EX” -6 EX.
(These relations provide a way of calculating EX*, k = 2, 3, 4 by means of
the factorial moments E[X(X — 1)], E[X(X - 1)(X - 2)], E[X(X - )(X -2)
(X-=3)])
5.1.10 Let X be the r.v. denoting the number of claims filed by a policy-
holder of an insurance company over a specified period of time. On the basis

of an extensive study of the claim records, it may be assumed that the distribu-
tion of X is as follows:

x|0 1 2 3 4 5 6

f(x) ‘ 0.304 0.287 0.208 0.115 0.061 0.019 0.006
i) Calculate the EX and the 6°(X);

ii) What premium should the company charge in order to break even?

iii) What should be the premium charged if the company is to expect to come
ahead by $M for administrative expenses and profit?
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5.1.11 A roulette wheel has 38 slots of which 18 are red, 18 black, and 2
green.

i) Suppose a gambler is placing a bet of $M on red. What is the gambler’s
expected gain or loss and what is the standard deviation?

ii) If the same bet of $M is placed on green and if $4M is the amount
the gambler wins, calculate the expected gain or loss and the standard
deviation.

iii) For what value of k do the two expectations in parts (i) and (ii) coincide?
iv) Does this value of k depend on M?
v) How do the respective standard deviations compare?

5.1.12 Let X be an r.v. such that P(X =j) = (1),j=1,2,....
i) Compute EX, E[X(X - 1)];
ii) Use (i) in order to compute o*(X).

5.1.13 If X is an r.v. distributed as U(ea, ), show that

2
a f—
EX=OC—+B, O-Z(X)=ﬂ.
2 12
5.1.14 Let ther.v. X be distributed as U(¢, B). Calculate EX" for any positive
integer n.

5.1.15 Let X be an r.v. with p.d.f. f symmetric about a constant ¢ (that is,
flc — x) = f(c + x) for every x).

i) Then if EX exists, show that EX = c;

ii) If c =0 and EX™""' exists, show that EX*""' = 0 (that is, those moments of X
of odd order which exist are all equal to zero).

5.1.16 Refer to Exercise 3.3.13(iv) in Chapter 3 and find the EX for those o/s
for which this expectation exists, where X is an r.v. having the distribution in
question.

5.1.17 Let X be an r.v. with p.d.f. given by

f(x) = @I(_w)(x).

Cc

Compute EX” for any positive integer n, EIXl, r > 0, 6°(X).
5.1.18 Let X be an r.v. with finite expectation and d.f. F.
i) Show that

EX = J‘:[l - F(x)]dx - J‘i F(x)dx;
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ii) Use the interpretation of the definite integral as an area in order to give a
geometric interpretation of EX.

5.1.19 Let X be an r.v. of the continuous type with finite £X and p.d.f. f.
i) If m is a median of f and c is any constant, show that
E|X - c| = E|X - m| + Zr (c - x)f(x)dx;

ii) Utilize (i) in order to conclude that EIX — ¢l is minimized for ¢ = m. (Hint:
Consider the two cases that ¢ > m and ¢ < m, and in each one split the
integral from —eo to ¢ and c to « in order to remove the absolute value.
Then the fact that [” f(x)dx=["f(x)dx=2% and simple manipulations
prove part (i). For part (ii), observe that [; (c—x)f(x)dx >0 whether ¢ >m
or ¢ <m.)

5.1.20 If the r.v. X is distributed according to the Weibull distribution (see
Exercise 4.1.15 in Chapter 4), then:

i) Show that EX = r(1 + [13] /al/” ,EX? = F(l + EJ /oﬂ/ # . so that

o*(X)= [F(1+[23)— rZ(l + ;H /02/[3 ,

where recall that the Gamma function T is defined by F(}/) = e dr,

Y>0;
ii) Determine the numerical values of EX and ¢°(X) for o =1 and 8 = 2,
B=1and B=2.

5.2 Expectations and Variances of Some r.v.’s
5.2.1 Discrete Case
1. Let X be B(n, p). Then E(X) = np, 6*(X) = npq. In fact,
< n X _n—x < n! X _n—x
EX)=Yx" |p'¢™ =X x——p'q
=0 \X =1 x!(n—x)!

S k)
Sl 1
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- E[x(x-1)]
St
Lo x(x—l)(z(—;f[zin—_z?!—<x—2)]!”2”x_2q("'2)_(x_2)
Rl e
-1}y z(‘)x'[(i 2))’ 7 gl
1) (p+a) = n{n-1)p7.

E[X(X - 1)] =n(n-1)p?
Hence, by (V6),
o?(X)= E[x(x -1)]+ EX - (EX) =n(n-1)p* +np—n’p?
=g+ mp—np? = mp{1-p) = npa.
2. Let X be P(A). Then E(X) = 6°(X) = A. In fact,

¥=0 ) x—l).
_AZG - —l Ao — g
Next,
- pr
E[X(X—l)]:xgox(x—l)e ’1;
_°° _ -1 /lx _z_lw/lx_z
—éx(x l)e x(x—l)(x—Z)! re 2_())6' A

Hence EX* = 1>+ A, so that, 6*(X) =2+ A - A’ = A.

REMARK 3 One can also prove that the nth factorial moment of X is A”; that
is, EIX(X-1)---(X-n+1)]=2
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5.2.2 Continuous Case
1. Let X be N(0, 1). Then

E(X2"+1) =0, E(Xz”) - (2) n>0.

In particular, then

2
E(X)=0, o’(X)= E(Xz) =>=5=1.
In fact,
E(X2n+1) _ ﬁj‘ixzmexz/zdx'
But

J‘°° x2n+1e-xz/2dx _ J‘O x2n+1e—x2/2dx+j0”x2n+1e-x2/2dx
_ J‘Oy2n+1e-yz/2dy n J‘0°° x2n+1efx2/2dx
_ _IO“X2n+1e-xz/2dX+ J’0°°x2n+1e-x2/2dx -0.
Thus E(X*") = 0. Next,
J‘sz"e”‘z/zdx = ZJ:xz”e’Xz/zdx,
as is easily seen, and
Iomxzne—xz/zdx _ _J‘:x2n—1de—x2/2

2n-1_-x*/2

=—x""¢ m+(2n—1)rx2""ze"‘z/2dx

0 0

_ (Zn _ 1)J'O°° xzn’ze’xz/zdx,

and if we set m,, = E(X™), we get then

m,, = (Zn - 1)m2n_2, and similarly,

n

my, , = (2” - 3)m2n—4

m,=1-m,

m, =1 (since my = E(XO) = E(l) = l).

Multiplying them out, we obtain
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m,, =(2n-1)2n-3) -1
1.2 (2n-3)2n-2)(2n-1)(2n) (2n)

2. (2n-2)(2n) (2:1) - [2o(n=1)](2- n)
(2n) (2n)

) 2"[1---(n—1)n]= 2" (n))’

REMARK 4 Let now X be N(u, 0°). Then (X — u)/ois N(0, 1). Hence

E(X_“J: 0, Gz(ﬂ]: 1.
o o

But
E(X_“}_lE(X)—E.
(03 (03 (03
Hence
1 Ho_
EE(X)—E—O

so that E(X) = u. Next,

and then

so that 6°(X) = 0°.

2. Let X be Gamma with parameters o and . Then E(X) = off and
o’(X) = of>. In fact,

[
F((x)/}"‘jox e P dx

_ﬂ wxocde—x/ﬁ — ﬁ (xuze—x/ﬁ

1 w a-1 -x
W'[) xxe P dx =

E(X) = (
Ttk T T
= aﬁ;fx“"e“/ﬁdx =oap.

F{e)p

—ocrx“e"‘/ﬁdx)
0 0
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Next,
E(x?)= Talp )ﬂa ——— [ e dx =po(a+1)
and hence
o’ (X)=Pa(a+1)-a’p* =’ (a+1-a)=af’.
REMARK 5

i) If Xis x7, thatis, if o =7/2, B=2, we get E(X) =r, 6°(X) =2r.
ii) If X is Negative Exponential, that is, if =1, B = 1/A, we get E(X) = 1/4,
o’(X) = A
3. Let X be Cauchy. Then E(X") does not exist for any n > 1. For example,
for n =1, we get

o [ xdx

=2
T 7”02+(x—,u)

For simplicity, we set 4 =0, o= 1 and we have

[_lrﬂ 1 1J' (2)
ety 2914+ x?

. d(1+x? -
g

1
S

which is an indeterminate form. Thus the Cauchy distribution is an example of
a distribution without a mean.

REMARK 6 In somewhat advanced mathematics courses, one encounters
sometimes the so-called Cauchy Principal Value Integral. This coincides with
the improper Riemann integral when the latter exists, and it often exists even
if the Riemann integral does not. It is an improper integral in which the limits
are taken symmetrically. As an example, for =1, u =0, we have, in terms of
the principal value integral,

= Tim - de:—hmlog(1+x "
Ao Jp J-A 1+X2 2T Ao A

=—hm[log 1+A2)- log(1+A2)] 0.

A—e0
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Thus the mean of the Cauchy exists in terms of principal value, but not in the
sense of our definition which requires absolute convergence of the improper
Riemann integral involved.

Exercises

5.2.1 If Xis an r.v. distributed as B(n, p), calculate the kth factorial moment
EX(X-1)--- (X -k +1)].

5.2.2 An honest coin is tossed independently »n times and let X be the r.v.
denoting the number of H’s that occur.

i) Calculate E(X/n), o*(X/n);
ii) If » = 100, find a lower bound for the probability that the observed
frequency X/n does not differ from 0.5 by more than 0.1;
iii) Determine the smallest value of #n for which the probability that X/n does
not differ from 0.5 by more 0.1 is at least 0.95;
iv) If n =50 and P(I(X/n) — 0.5 < c¢) 2 0.9, determine the constant c. (Hint: In
(ii)—(iv), utilize Tchebichev’s inequality.)

5.2.3 Refer to Exercise 3.2.16 in Chapter 3 and suppose that 100 people are
chosen at random. Find the expected number of people with blood of each one
of the four types and the variance about these numbers.

5.2.4 If X is an r.v. distributed as P(1), calculate the kth factorial moment
EX(X-1)---(X-k+1)].

5.2.5 Refer to Exercise 3.2.7 in Chapter 3 and find the expected number of
particles to reach the portion of space under consideration there during time
t and the variance about this number.

5.2.6 If X is an r.v. with a Hypergeometric distribution, use an approach
similar to the one used in the Binomial example in order to show that

mnr{m+n—r
ExX="" o*(X)= (2 )
m+n (m+n) (m+n—1)
5.2.7 Let X be an r.v. distributed as Negative Binomial with parameters r

and p.

i) By working as in the Binomial example, show that EX = rq/p, 6°(X) =
rqlp*;

ii) Use (i) in order to show that EX = g/p and ¢°(X) = q/p’, if X has the
Geometric distribution.

5.2.8 Let fbe the Gamma density with parameters = n, = 1. Then show
that



120 5 Moments of Random Variables—Some Moment and Probability Inequalities

J:o f(x)dx = ie"l /1—

x=0 x!

Conclude that in this case, one may utilize the Incomplete Gamma tables (see,
for example, Tables of the Incomplete I-Function, Cambridge University
Press, 1957, Karl Paerson, editor) in order to evaluate the d.f. of a Poisson
distribution at the points j=1, 2, .. ..

5.2.9 Refer to Exercise 3.3.7 in Chapter 3 and suppose that each TV tube
costs $7 and that it sells for $11. Suppose further that the manufacturer sells an
item on money-back guarantee terms if the lifetime of the tube is less than c.

i) Express his expected gain (or loss) in terms of ¢ and A4;

ii) For what value of ¢ will he break even?

5.2.10 Refer to Exercise 4.1.12 in Chapter 4 and suppose that each bulb costs
30 cents and sells for 50 cents. Furthermore, suppose that a bulb is sold under
the following terms: The entire amount is refunded if its lifetime is <1,000 and

50% of the amount is refunded if its lifetime is <2,000. Compute the expected
gain (or loss) of the dealer.

5.2.11 If X is an r.v. having the Beta distribution with parameters o and f3,
then

i) Show that
prr LB
F(a)F(a +pB+ n)
ii) Use (i) in order to find EX and ¢*(X).

5.2.12 Let X be anr.v. distributed as Cauchy with parameters ¢ and °. Then
show that ElX] = co.

5.2.13 If the r.v. X is distributed as Lognormal with parameters o and 3,
compute EX, o*(X).

5.2.14 Suppose that the average monthly water consumption by the resi-
dents of a certain community follows the Lognormal distribution with u = 10*
cubic feet and o = 10’ cubic feet monthly. Compute the proportion of the
residents who consume more than 15 x 10’ cubic feet monthly.

5.2.15 Let X be an r.v. with finite third moment and set u = EX, ¢” = 6°(X).
Define the (dimensionless quantity, pure number) ¥, by

3
’yl = E(u) .
o

7% is called the skewness of the distribution of the r.v. X and is a measure of
asymmetry of the distribution. If ¥ > 0, the distribution is said to be skewed to
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the right and if ¥, < 0, the distribution is said to be skewed to the left. Then show
that:

i) If the p.d.f. of X is symmetric about y, then 4 = 0;

ii) The Binomial distribution B(n, p) is skewed to the right for p < 1 and is
skewed to the left for p > 1;

iii) The Poisson distribution P(A) and the Negative Exponential distribution
are always skewed to the right.

5.2.16 Let X be an r.v. with EX" < o and define the (pure number) }, by

4
7, = E[MJ -3, where p=EX, o’ =0’(X).
(e}

7 is called the kurtosis of the distribution of the r.v. X and is a measure of
“peakedness” of this distribution, where the N(0, 1) p.d.f. is a measure of
reference. If § > 0, the distribution is called leptokurtic and if p, < 0, the
distribution is called platykurtic. Then show that:

i) % <0 if X is distributed as U(¢, B);

ii) % > 0if X has the Double Exponential distribution (see Exercise 3.3.13(iii)
in Chapter 3).

5.2.17 Let X be an r.v. taking on the values j with probability p; = P(X = j),
j=0,1,....Set
G(z):ijtf, —1<t<1.
j=0
The function G is called the generating function of the sequence {p;}, j > 0.

i) Show that if IEX] < e, then EX = d/dt G(¢)|,_;
ii) Also show that if IE[X(X —1)--- (X — k + 1)]l < oo, then

E[x(x-1) (X -k+1)] =j—;G(z)|H;

iii) Find the generating function of the sequences

{(?)p’q”"}, j20,0<p<l g=1-p

{e-lﬁ}, j=0, A>0;

and

!
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iv) Utilize (ii) and (iii) in order to calculate the kth factorial moments of X
being B(n, p) and X being P(A). Compare the results with those found in
Exercises 5.2.1 and 5.2.4, respectively.

5.3 Conditional Moments of Random Variables
If, in the preceding definitions, the p.d.f. f of the r. vector X is replaced by a

conditional p.d.f. f{x;,..., x;Ix;,..., X, ), the resulting moments are called
conditional moments, and they are functions of x;, ..., x; .
Thus

—xzz,xzf(xz|x1)
:[;xzf(x2|xl)dx2,
Z[xz —E(X2|X1 = xl)]zf(x2|x1)

IN [ - B(x.)x, = x )]2 £l )t

E(X,[X, =x,)=

0'2(X2|X1 =x1)=

For example, if (X), X,)” has the Bivariate Normal distribution, then f(x, lx,)
is the p.d.f. of an N(b, o3 (1 — p’)) r.v., where

b=u, +%(x1 _:ul)‘

1

Hence

E(X,|X, = x ) = 1, +%(x1 —1).

1

Similarly,

E(X,|X, =x,) = +’;—il(x2 ~1t,).

Let X, X, be two r.v.’s with joint p.d.f f(x,, x,). We just gave the definition
of E(X,|IX, =x,) for all x, for which f(x,lx,) is defined; that is, for all x, for which
fx,(x;) >0. Then E(X,|X, =x,) is a function of x,. Replacing x, by X, and writing
E(X,lX,) instead of E(X,|X, = x,), we then have that E(X,|.X, ) is itself an r.v.,
and a function of X,. Then we may talk about the E[E(X,IX))]. In connection
with this, we have the following properties:
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5.3.1 Some Basic Properties of the Conditional Expectation

(CEl) If E(X,) and E(X,|X)) exist, then E[E(X,IX))] = E(X,) (that is,
the expectation of the conditional expectation of an r.v. is the
same as the (unconditional) expectation of the r.v. in question).

It suffices to establish the property for the continuous case only, for the
proof for the discrete case is quite analogous. We have

o )| = [ ool s [ s,
= J: J: xzf(x2 |xl )fx, (xl)dx2 dx,
B R R o

= ijz(J: f(xl, xz)dxl)dx2 = J:xzsz (xz)dx2 = E(Xz).

REMARK 7 Note that here all interchanges of order of integration are legiti-
mate because of the absolute convergence of the integrals involved.

(CE2) Let X,, X, be two r.v.’s, g(X)) be a (measurable) function of X,
and let that E(X,) exists. Then for all x, for which the
conditional expectations below exist, we have

E[X (X, )|X, = x| = g ) E(X,|X, = x,)
or
E[ XX, )X, = o(X,) E(X,|x, )
Again, restricting ourselves to the continuous case, we have
E[ng(X1 )|X1 = xl] = J:o ng(x] )f()c2 |x1 )dx2 = g()cl )J: xzf(x2|xl )dx2
= g(xl)E(X2|X1 = xl).
In particular, by taking X, = 1, we get
(CE2") For all x, for which the conditional expectations below exist, we
have E[g(X))IX, = x,] = g(x;) (or E[g(X))IX|] = g(X))).
(CV) Provided the quantities which appear below exist, we have
ch[E(X2 |X1)] <o’(X,)
and the inequality is strict, unless X, is a function of X; (on a set of

probability one).
Set u=E(X,), o(x,)= E(X]X, ).
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0*(X.) = B(X, - )" = E{[X, - o{x, )]+ [o(x,) -]}
- e[, o[ + fofx) - ] s 2], - o3, [o(x)- ]}

Next,

E{[X. -ofx,)Jo(x,)-u}

= E[X0(x )|~ Elo* ()] (X, uE[o(x, ]

_E{E[ngb X, ]} Ho*(x,)]- yE[E(X2|X1)]

+utlo(x,)]  (by (CED)
and this is equal to

E[¢2(Xl)]—E[¢2( ] ,uE[q) ]+ uE[q)( )] (by (CEz)),

which is 0. Therefore

o*(x,)= E[x, —o(x,)] +E[o(x,) -] .
and since

E[X,-9(X, )]2 >0,

we have

o (X,)> E[g(X,)-*]= <;2[E(X2|X1 )]

The inequality is strict unless

E[ X, - 9(X, )]2 =0.
Ex, -o(x,)] =o[x,~9(x,)] since Ex,-o(x,)]=u-p=0.

Thus 6°[X, — ¢(X,)] = 0 and therefore X, = ¢(X,) with probability one, by
Remark 8, which follows.

Exercises
5.3.1 Establish properties (CEI) and (CE2) for the discrete case.
5.3.2 Let ther.v.’s X, Y be jointly distributed with p.d.f. given by
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2
X, y|=
f( y) n(n+1)
ify=1,..., x; x =1,..., n, and 0 otherwise. Compute the following

quantities:( E;((Xl%’)z y), E(YIX = x). (Hint: Recall that ¥/ x = n(r;ﬂ)’ and
n 2 n(n+1)(2n+1
X =T

5.3.3 Let X, Y be r.v.’s with p.d.f. f given by f(x, y) = (x + ¥) 101X, ¥)-
Calculate the following quantities: EX, o°(X), EY, o°(Y), E(XIY = y),
o’ (XY = y).

5.3.4 Let X, Y be r.v.’s with p.d.f. f given by f(x, y) = X0 (x, ¥).
Calculate the following quantities: EX, o°(X), EY, o°(Y), E(XIY = y),
o’ (XY = y).

5.3.5 Let X be an r.v. with finite £X. Then for any r.v. Y, show that
E[E(X1Y)] = EX. (Assume the existence of all p.d.f.’s needed.)

5.3.6 Consider ther.v.’s X, Y and let i, g be (measurable) functions on Rinto
itself such that E[h(X)g(Y)] and Eg(X) exist. Then show that

E[h(X)g(¥ )X = x| = h(x)E[g(¥ ) x = x]

5.4 Some Important Applications: Probability and Moment Inequalities

THEOREM 1

Let X be a k-dimensional r. vector and g > 0 be a real-valued (measurable)
function defined on R, so that g(X) is an r.v., and let ¢ > 0. Then

P[g(X) = c] < M

Cc

PROOF Assume X is continuous with p.d.f. f. Then

E[g(X)]:'EO . -J.j;g(xl,...,xk)f(x],...,xk)alx1 coedx,
=J‘Ag(xl,...,xk)f(xl,...,xk)dx1 ~~-dxk+'|‘Aég(x1,...,xk)
><f(xl,...,xk)dx1 ceedxy,

where A = {(x,,...,x,) € R g(x,,...,x) =c}. Then
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LEMMA 1

E[g(X)]ZLg(xl, ce xk)f(xl, ce xk)dx1 e dx,
ZcJAf(xl, cees xk)alx1 codxy,
= cP[g(X) € A] = cP[g(X) > c].

Hence P[g(X) = c] < E[g(X)]/c. The proof is completely analogous if X is of the
discrete type; all one has to do is to replace integrals by summation signs. A

5.4.1 Special Cases of Theorem 1
1. Let X be an r.v. and take g(X) =X — ul, u = E(X), r> 0. Then
E[x -y
< .

P[|X—u|2c]=P[|X—u|' za]_c_r

This is known as Markov’s inequality.
2. In Markov’s inequality replace r by 2 to obtain
2
E|\X - o’(X) o2
< X - _ (¥) _o”

Pllx - uf> c](= P[|X —uf 2¢? D <= ¥

C Cc C

[S]

This is known as Tchebichev’s inequality. In particular, if ¢ = ko, then
1 . 1
P”X - ,u| > kO‘] < F; equivalently, P[|X - ,u| < kO'] >21- PR

REMARK 8 Let X be an r.v. with mean u and variance o> = 0. Then
Tchebichev’s inequality gives: P[IX — ul > ¢] = 0 for every ¢ > 0. This result and
Theorem 2, Chapter 2, imply then that P(X = i) =1 (see also Exercise 5.4.6).

Let X and Y be r.v.’s such that
E(X)=E(Y)=0, o’(X)=0’(Y)=1L

Then

EZ(XY) <1 or, equivalently, —1< E(XY) <1,
and

E(XY)=1 ifanyonlyif PY=X)=1,

E(XY)=-1 ifanyonlyif P(Y=-X)=1.

PROOF We have
0<E(X-Y) = E(X*-2XY +Y?)
= EX’ —2E(XY)+EY’ =2-2E(XY)
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and
0< E(X+Y)2 - E(X2 +2XY+Y2)
=EX? +2E(XY)+ EY?=2 +2E(XY).

Hence E(XY) <1 and -1 £ E(XY), so that -1 < E(XY) < 1. Now let P(Y = X)
=1. Then E(XY) = EY* =1, and if P(Y = -X) =1, then E(XY) =-EY’*=-1.
Conversely, let E(XY) = 1. Then

o*(X-Y)=E(x-Y) —[E(X—Y)]2 = E(x-Y)
= EX* -2E(XY)+EY> =1-2+1=0,

so that P(X = Y) = 1 by Remark 8; that is, P(X = Y) = 1. Finally, let
E(XY)=-1.Then 6’ (X +Y) =2+ 2E(XY) =2 -2=0, so that

P(X=-Y)=1. A

(Cauchy-Schwarz inequality) Let X and Y be two random variables with
means L, 4, and (positive) variances o, o, respectively. Then

E’|(X - )Y - )| < 0703,

or, equivalently,

-0,0, < E[(X - M)(Y -, )] <0,0,,

and

() )] 0.

if and only if

P|:Y=u2+%(X—M)]=1

1

and

E[(X - ul)(Y - U, )] =-0,0,

if and only if

PROOF Set
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Then X, Y, are as in the previous lemma, and hence
E’(X\y,)<1
if and only if
~1< E(X,Y;)<1

becomes

if and only if

-0,0, < E[(X - ul)(Y - U, )] <0,0,.

The second half of the conclusion follows similarly and will be left as an
exercise (see Exercise 5.4.6). A

REMARK 9 A more familiar form of the Cauchy-Schwarz inequality is
EX(XY) < (EX?)(EY?). This is established as follows: Since the inequality is
trivially true if either one of EX?, EY” is e, suppose that they are both finite
and set Z = AX — Y, where A is a real number. Then 0 < EZ* = (EX)A’ —
2[E(XY)]A+ EY” for all A, which happens if and only if E*(XY) — (EX*)(EY?)
<0 (by the discriminant test for quadratic equations), or EX(XY) < (EX*)(EY?).

Exercises

5.4.1 Establish Theorem 1 for the discrete case.

5.4.2 Letgbe a (measurable) function defined on Rinto (0, ). Then, for any
r.v. X and any £ > 0,

If furthermore g is even (that is, g(—x) = g(x)) and nondecreasing for x >0, then

EglX
P(x|>¢)< ﬁ.
sle)
5.4.3 Foranr.v. X with EX = g and 6°(X) = 07, both finite, use Tchebichev’s
inequality in order to find a lower bound for the probability P(LX — ul < ko).

Compare the lower bounds for k = 1, 2, 3 with the respective probabilities
when X ~ N(u, 6°).



5.5 Covariance, Correlation Coefficient and Its Interpretation 129

5.4.4 Let X be an r.v. distributed as yj,. Use Tchebichev’s inequality
in order to find a lower bound for the probability P(I(X/40) — 11 £ 0.5),
and compare this bound with the exact value found from Table 3 in Appendix
111

5.4.5 Referto Remark 8 and show that if X is an r.v. with EX = y (finite) such
that P(IX — ul > ¢) = 0 for every ¢ > 0, then P(X = u) = 1.

5.4.6 Prove the second conclusion of Theorem 2.

5.4.7 For any r.v. X, use the Cauchy-Schwarz inequality in order to show
that E1XI < E"X°.

5.5 Covariance, Correlation Coefficient and Its Interpretation

In this section, we introduce the concepts of covariance and correlation coef-
ficient of two r.v.’s and provide an interpretation for the latter. To this end,
for two r.v.’s X and Y with means u,, i, the (1, 1)-joint central mean, that is,
E[(X — )Y — w,)], is called the covariance of X, Y and is denoted by
Cov(X,Y). If 0,, 0, are the standard deviations of X and Y, which are assumed
to be positive, then the covariance of (X — w,)/o;, (Y — 1,)/0, is called the
correlation coefficient of X, Y and is denoted by p(X, Y) or py, or p;, or just p
if no confusion is possible; that is,

p:EKX_MIY_mH:EKK#QW—%HZCW@;n

21 0, 0,0, 0,0,
_E(XY)-pp,
0,0, .

From the Cauchy-Schwarz inequality, we have that p* < 1; thatis -1 < p <1,
and p =1 if and only if

Y =u, +%(X—‘u1)

1

with probability 1, and p = -1 if and only if

Y=u,- 22 (X - /11)
0y
with probability 1. So p = £1 means X and Y are linearly related. From this
stems the significance of p as a measure of /inear dependence between X and
Y. (See Fig. 5.1.) If p=0, we say that X and Y are uncorrelated, while if p = +1,
we say that X and Y are completely correlated (positively if p = 1, negatively if

p=-1).
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Y
L2 -
Fa®o b y:/"2+??(x_1“1)
Myp————————— =2 o
I — 2
. } Y= K27 5 (= pp)
Mo Flﬂl\ }
e 1 ¥
0 M
Figure 5.1

For-1<p<1, p#0, we say that X and Y are correlated (positively if p> 0,
negatively if p < 0). Positive values of p may indicate that there is a tendency of
large values of Y to correspond to large values of X and small values of Y to
correspond to small values of X. Negative values of p may indicate that small
values of Y correspond to large values of X and large values of Y to small
values of X. Values of p close to zero may also indicate that these tendencies
are weak, while values of p close to £1 may indicate that the tendencies are
strong.

The following elaboration sheds more light on the intuitive interpreta-
tion of the correlation coefficient p(= p(X, Y)) as a measure of co-linearity
of the r.v.’s X and Y. To this end, for p > 0, consider the line y =y, +%(x - ,u])
in the xy-plane and let D be the distance of the (random) point (X, Y)
from the above line. Recalling that the distance of the point (x,, y,) from the

line ax + by + ¢ = 0 is given by |axO +by, +c|/\/a2 +b”. we have in the present

case:
2
D={x-Sy+| Dy ) 14O
o, o, o’
since herea=1, b= 9% and =Sk — 1. Thus,
0, 0,

2 2
oo 1+
o, o, o,

and we wish to evaluate the expected squared distance of (X, Y) from the line
y=Uu, +;‘,il(x - ,ul); that is, ED’. Carrying out the calculations, we find

(0'12 + (f%)D2 =0, X’ +0/Y?*-20,0,XY +20, (0'1;12 —qul)X

2
- 20, (61.Uz — O,y )Y + (0‘1,112 - O'z.ul) . (1)
Taking the expectations of both sides in (1) and recalling that
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EX* =0l +ul, EY’ =05 +4; and E(XY)=poo, +m,,
we obtain

2 2.2
EDZZ%(l—p) (p>0) )

Working likewise for the case that p < 0, we get

ED* =12 (14p)  (p<0) (3)

For p =1 or p = -1, we already know that (X, Y) lies on the line y =
W + Zi](x— /.Ll) ory=pu, —Zil(x— /.Ll), respectively (with probability 1). There-
fore, regardless of the value of p, by the observation just made, relations (2)
and (3) are summarized by the expression

2 2.2
ED? = a;fczj (10 (4)

At this point, exploiting the interpretation of an expectation as an average,
relation (4) indicates the following: For p > 0, the pairs (X, Y) tend to be
arranged along the line y=yu, +§—f(x - ul). These points get closer and closer
to this line as p gets closer to 1, and lie on the line for p = 1. For p < 0, the
pairs (X, Y) tend to be arranged along the line y=u, —Z—j(x—ul). These
points get closer and closer to this line as p gets closer to —1, and lie on
this line for p = —1. For p = 0, the expected distance is constantly equal to
20707/(0} + 03) from either one of the lines y=u,+2(x—p,) and
y=U, —Zil(x— u, ), which is equivalent to saying that the pairs (X, Y) may lie
anywhere in the xy-plane. It is in this sense that p is a measure of co-linearity
of ther.v’s X and Y.

The preceding discussion is based on the paper “A Direct Development
of the Correlation Coefficient” by Leo Katz, published in the American
Statistician, Vol. 29 (1975), page 170. His approach is somewhat different
and is outlined below. First, consider the r.v.’s X, and Y, as defined in
the proof of Theorem 2; unlike the original r.v.’s X and Y, the “normalized”
r.v.’s X, and Y, are dimensionless. Through the transformations x, =—*

and y, =22, we move from the xy-plane to the x,y,-plane. In this latter plané,
look at the point (X, Y;) and seek the line Ax, + By, + C = 0
from which the expected squared distance of (X;, Y;) is minimum. That

is, determine the coefficients A, B and C, so that ED? is minimum, where
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D, =|AX +BY +C,| VA’ +B’. Expanding D;, taking expectations, and
noticing that

EX,=EY,=0, EX!=EY?=1, and E(X)Y,)=p,

we obtain

24Bp | C’

ED* =1+ )
! A*+ B> A’ +B?

©)

Clearly, for ED; to be minimized it is necessary that C = 0. Then, by (5), the
expression to be minimized is

ED} =1+ 6
! A% + B? ©
At this point, observe that
~(A+B) =-(A*+B*)-24B<0<(A’ + B*)-2AB=(A-B)
or equivalently,
2AB
-1<——<1. 7
A’ + B @

From (6) and (7), we conclude that:

If p >0, ED? is minimized for Az;:gz = -1 and the minimum is 1 — p.

2AB
A+B?

Finally, if p = 0, the ED?} is constantly equal to 1; there is no minimizing

If p < 0, ED7 is minimized for =1 and the minimum is 1 + p.

line (through the origin) Ax, + By, = 0. However, 2% =-1if and only if A =
B, and 2% =1 if and only if A =—-B. The corresponding lines are y, = x,, the

main diagonal, and y, = —x,. Also observe that both minima of ED? (for p >0
and p <0), and its constant value 1 (for p = 0) are expressed by a single form,
namely, 1 - Ipl.

To summarize: For p > 0, the ED} is minimized for the line y, = x,; for
p < 0, the ED? is minimized for the line y, = —x,; for p = 0, ED} = 1, there is
no minimizing line. From this point on, the interpretation of p as a measure of
co-linearity (of X, and Y)) is argued as above, with the lines y =y, +§il(x - ul)
and y=p, —f,il(x— /,Ll) being replaced by the lines y, = x; and y, = —x,,
respectively.
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Exercises

5.5.1 Let X be an r.v. taking on the values -2, —1, 1, 2 each with probability
1. Set Y = X* and compute the following quantities: EX, 6*(X), EY, ¢’(Y),

4
p(X, Y).

5.5.2 Go through the details required in establishing relations (2), (3) and
(4).

5.5.3 Do likewise in establishing relation (5).

5.5.4 Refer to Exercise 5.3.2 (including the hint given there) and

i) Calculate the covariance and the correlation coefficient of the r.v.’s X and
Y;

ii) Referring to relation (4), calculate the expected squared distance of (X,
Y) from the appropriate line y=p, +%(x —,ul) or y=u, —%(x—/.tl)
(which one?);

iii) What is the minimum expected squared distance of (X;, Y;) from
the appropriate line y = x or y = —x (which one?) where X, =X* and
Y, =18,

1 03

2
n 1
Hint: Recall that 2x3 = li@jl )

x=1

5.5.5 Refer to Exercise 5.3.2 and calculate the covariance and the correla-
tion coefficient of the r.v.’s X and Y.

5.5.6 Do the same in reference to Exercise 5.3.3.
5.5.7 Repeat the same in reference to Exercise 5.3.4.

5.5.8 Show that p(aX + b, cY + d) = sgn(ac)p(X, Y), where a, b, ¢, d are
constants and sgn x is 1 if x > 0 and is -1 if x < 0.

5.5.9 Let Xand Yber.v.’srepresenting temperatures in two localities, A and
B, say, given in the Celsius scale, and let U and V be the respective tempera-
tures in the Fahrenheit scale. Then it is known that U and X are related as
follows: U= 2X + 32, and likewise for V and Y. Fit this example in the model
of Exercise 5.5.8, and conclude that the correlation coefficients of X, Y and U,
V are identical, as one would expect.

5.5.10 Consider the jointly distributed r.v.’s X, Y with finite second moments
and 6°(X) > 0. Then show that the values & and f8 for which E[Y — (aX + B)]’
is minimized are given by
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B=EY -GEX &:ﬂp()( Y).
9 G(X) b
(The r.v. Y = aX+ ﬁ is called the best linear predictor or Y, given X.)

5.5.11 [If the r.v.’s X, and X, have the Bivariate Normal distribution, show
that the parameter p is, actually, the correlation coefficient of X, and X,. (Hint:
Observe that the exponent in the joint p.d.f. of X; and X, may be written as
follows:

T )

, whereb=y, +p2(x1 _U1)-

+
2 2
P o
20—1 2(0.2 1 _ pZ) 1
This facilitates greatly the integration in calculating E(X,X;).

5.5.12 If the r.v.’s X, and X, have jointly the Bivariate Normal distribution
with parameters u,, i, 6., o, and p, calculate E(c,X, + ¢,X) and o°(c, X, +
¢,X,) in terms of the parameters involved, where ¢, and ¢, are real constants.

5.5.13 Foranytwor.v.’s Xand Y,set U=X+ Y and V=X -Y. Then
i) Show that P(UV < 0) = P(X] < 1Y));

ii) If EX* = EY? < o, then show that E(UV) = 0;

iii) If EX*, EY” < = and 6°(X) = 6°(Y), then U and V are uncorrelated.

55.14 Iftherv’s X;,i=1,...,mand Y, j=1,..., n have finite second
moments, show that

n

COV(iXi, Y1)=i COV(XL-‘ Y])
i=1 j=1 i=1

j=1

.Mx

5.6* Justification of Relation (2) in Chapter 2

As a final application of the results of this chapter, we give a general proof of
Theorem 9, Chapter 2. To do this we remind the reader of the definition of the
concept of the indicator function of a set A.
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Let A be an event in the sample space S. Then the indicator function of A,
denoted by /,, is a function on S defined as follows:

1 ifseA
IA(S):{O itse A,

The following are simple consequences of the indicator function:

I A :ﬁIA, (®)
12;;,‘4/ :g,]A,’ )
and, in particular,
I,=1-1,. (10)
Clearly,
E(1,)=P(A) (11)

and for any X, ..., X,, we have

r

(1-x)1-x,)-- (1-X,)=1-H,+H, - --- +(-1) H,, (12)
where H; stands for the sum of the products X; - - - X;, where the summation
extends over all subsets {i}, i,,..., i} of theset {1,2,...,r}, j=1,...,r Let
o, 3 be such that: 0 < o, B and o+ B < r. Then the following is true:

>, ---XiaHﬁ(Ja)=(a;ﬂ)Ha+ﬁ, (13)

where J,={i,, ..., i,} is the typical member of all subsets of size o of the set
{1,2,...,71}, Hy(J,) is the sum of the products X - - - X;, where the summation
extends over all subsets of size § of the set {1, ..., r} —J, and 3, is meant to
extend over all subsets J, of size o of the set {1,2,...,r}.

The justification of (13) is as follows: In forming H,,, 45, we select (a+ ) X’s
from the available r X’s in all possible ways, which is (, ;). On the other hand,
for each choice of /,, there are (";* ) ways of choosing 8 X’s from the remaining
(r — @) X’s. Since there are () choices of J,, we get (;)(";*) groups (products)
of (a+ f) X’s out of r X’s. The number of different groups of (o + ) X’s out
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of r X’s is (a:p). Thus among the (;,)(";*) groups of (o + B) X’s out of r X7s, the
number of distinct ones is given by

5wt ,3(() )

r r!

a+p (o + ﬂ)!(r‘—a— B)!
_(“+ﬁ)’:(a+ﬂ}

ol o

This justifies (13).
Now clearly,

B, =Y A N--NA NA N NAL
T

where the summation extends over all choices of subsets J,, = {i,, . . ., i,,} of the
set {1,2,..., M} and B,, is the one used in Theorem 9, Chapter 2. Hence

1 M

=%1Aq. 1, (1—1/,‘_”1”) . (1—1%) (by (8). (9). (10))

- %IAH ey, |:1—H1(J,,,)+H2(Jm)_ . +(_1)M—m . (J,,, ):|

o 1)

IBm - Z IA,lﬁ S NA NAL LN NA]
T

Since
k
%IA” 1, H(T,)= [mn: JHM (by (13))
we have
Iy, =H, _(mn: 1]Hm+l +[m’;:2JHm+2 -t (_1)’”'"(1:][_1%

Taking expectations of both sides, we get (from (11) and the definition of S, in
Theorem 9, Chapter 2)

P(B,)=5, - (m + 1)Sm+1 . (m + 2JSM . (_1)Mm(M)SM,
m m m

as was to be proved.
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(For the proof just completed, also see pp. 80-85 in E. Parzen’s book
Modern Probability Theory and Its Applications published by Wiley, 1960.)

REMARK 10 In measure theory the quantity /, is sometimes called the char-
acteristic function of the set A and is usually denoted by y,. In probability
theory the term characteristic function is reserved for a different concept and
will be a major topic of the next chapter.



Chapter 6

Characteristic Functions,
Moment Generating Functions
and Related Theorems

6.1 Preliminaries

138

LEMMA A

LEMMA A

The main subject matter of this chapter is the introduction of the concept of
the characteristic function of an r.v. and the discussion of its main properties.
The characteristic function is a powerful mathematical tool, which is used
profitably for probabilistic purposes, such as producing the moments of anr.v.,
recovering its distribution, establishing limit theorems, etc. To this end, recall
that for z € R, ¢ = cosz + i sinz, i = -1, and in what follows, i may
be treated formally as a real number, subject to its usual properties: i = —1,
P=—i,i*=1,7 =i, etc.

The sequence of lemmas below will be used to justify the theorems which
follow, as well as in other cases in subsequent chapters. A brief justification for
some of them is also presented, and relevant references are given at the end of
this section.

Let g, &: {xb Xy, ot } — [0, °°) be such that
gi(x)<e(x) j=12...
and that ¥, g,(x;) < co. Then X, g(x;) < ce.

PROOF If the summations are finite, the result is immediate; if not, it follows
by taking the limits of partial sums, which satisfy the inequality. A

Let g, ,:R — [0, =) be such that g,(x) < g,(x), x € R, and that [’ g (x)dx
exists for every a, b, € R with a < b, and that [~ g,(x)dx <. Then |~ g,(x)dx
< oo,

PROOF Same as above replacing sums by integrals. A
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LEMMA B

LEMMA C

LEMMA D
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Let g:{x;, x,, ...} > Rand X, |g(x))| < e. Then X, g(x;) also converges.

PROOF The result is immediate for finite sums, and it follows by taking the
limits of partial sums, which satisfy the inequality. A

Let g: R— Rbe such that j: g(x)dx exists for every a, b, € Rwith a <b, and that
I71g(x)ldx < . Then [~ g(x)dx also converges.

PROOF Same as above replacing sums by integrals. A

The following lemma provides conditions under which the operations
of taking limits and expectations can be interchanged. In more advanced
probability courses this result is known as the Dominated Convergence
Theorem.

Let {X,}, n =1, 2,..., be a sequence of r.v.’s, and let Y, X be r.v.’s such
that IX,(s)l < Y(s),s e S,n=1,2,...and X,(s) = X(s) (on a set of s’s of
probability 1) and E(Y) < . Then E(X) exists and E(X,) ——=— E(X), or
equivalently,

lim E(X,) = E(lim Xn).

n—eo n—eo

REMARK 1 The index n can be replaced by a continuous variable.

The next lemma gives conditions under which the operations of differen-
tiation and taking expectations commute.

For each t € T (where T'is [R or an appropriate subset of it, such as the interval
[a, b]), let X(-; t) be an r.v. such that (d9,)X(s; ¢) exists for each s €S and
t € T. Furthermore, suppose there exists an r.v. Y with E(Y) < e and such
that

‘%X(s; t)sY(s), seS, teT.

Then

% E[ x(; t)] - E[% X( z)] forall reT.

The proofs of the above lemmas can be found in any book on real vari-
ables theory, although the last two will be stated in terms of weighting func-
tions rather than expectations; for example, see Advanced Calculus, Theorem
2, p. 285, Theorem 7, p. 292, by D. V. Widder, Prentice-Hall, 1947; Real
Analysis, Theorem 7.1, p. 146, by E. J. McShane and T. A. Botts, Van
Nostrand, 1959; The Theory of Lebesgue Measure and Integration, pp. 66—67,
by S. Hartman and J. Mikusifiski, Pergamon Press, 1961. Also Mathematical
Methods of Statistics, pp. 45-46 and pp. 66—68, by H. Cramér, Princeton
University Press, 1961.
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6.2 Definitions and Basic Theorems—The One-Dimensional Case

Let X be an r.v. with p.d.f. f. Then the characteristic function of X (ch.f. of X),
denoted by ¢y (or just ¢ when no confusion is possible) is a function defined on
R, taking complex values, in general, and defined as follows:

2 e”xf(x) = Z[cos(tx)f(x) +i sin(tx)f(x)]
J:e”x f (x)dx = J: [cos(tx) f(x) +i sin(tx) f (x)]dx
2 [cos(tx)f(x)] + iz [sin(tx)f(x)]
J: cos(tx)f(x)dx + zJ: sin(tx)f(x)dx.

By Lemmas A, A’, B, B’, ¢,(t) exists for all t € R. The ch.f. ¢y is also called the

Fourier transform of f.

The following theorem summarizes the basic properties of a ch.f.
THEOREM 1 (Some properties of ch.f’s)
i) ¢x(0)=1.

ii) 19 (1) < 1.

iii) ¢, is continuous, and, in fact, uniformly continuous.

iv) @y..(t) = €"“¢,(f), where d is a constant.

V) ¢.(f) = ¢y(ct), where c is a constant.

Vi) Qux.a(t) = eml@((a)'

¢X(t): E[ei’X]

Lo d"
vii) Py ¢X(t)

=I"E(X"),n=1,2,...,if EIX"I <oo.

=0

PROOF
i) ¢4(1) = E¢™. Thus ¢,(0) = E¢™ = E(1) = 1.

ii) 19,(1)l = |IEe™ < Ele™| = E(1) = 1, because le™| = 1. (For the proof of the
inequality, see Exercise 6.2.1.)

iii) ‘(])X(t + h) % (t)‘ = ‘El:ef(wh)X _ eirX]

_ ‘E[enx(eihx _ 1)]‘ < E‘eux (eihX _ 1)‘

= E‘e’hx - 1‘.

Then
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timlg, (1 + 1) - 0 (1) < Tim Ele™ 1| = E[lhigg X _ 1‘] -0,

provided we can interchange the order of lim and E, which here can be
done by Lemma C. We observe that uniformity holds since the last ex-
pression on the right is independent of ¢.

iV) ¢X+d(t) — Eei[(X+d) — E(e[tXeizd) — eizd Ee[tX — eizd ¢X(t)'
V) 9u(t) = " = Ee'" = gy(cr).
vi) Follows trivially from (iv) and (v).

vii) L (1) =L perr - E[:;; e”XJ = E(i"x"e"™),

dr T dr

provided we can interchange the order of differentiation and E. This can
be done here, by Lemma D (applied successively n times to ¢, and its
n — 1 first derivatives), since EIX"| < oo implies EIX*| <o, k=1,..., n
(see Exercise 6.2.2). Thus

dﬂ
dt"

- i”E(X”). A

it=0

ox(1)

REMARK 2 From part (vii) of the theorem we have that E(X") =
(—i)" % @x(t)l,—o, SO that the ch.f. produces the nth moment of the r.v.

REMARK 3 If X is an r.v. whose values are of the form x = a + kh, where a,
h are constants, & > 0, and k runs through the integral values 0, 1, ..., n or 0,
1,...,0r0,%1,...,fn0r0,=£1, ..., then the distribution of X is called a lattice
distribution. For example, if X is distributed as B(n, p), then its values are of
the formx=a+ kh witha=0,h=1,and k=0, 1, ..., n. If X is distributed as
P(A), or it has the Negative Binomial distribution, then again its values are of
the same form witha=0,h=1,and k=0, 1,....If now ¢ is the ch.f. of X, it
can be shown that the distribution of X is a lattice distribution if and only if
l¢(¢)l =1 for some ¢ # 0. It can be readily seen that this is indeed the case in the
cases mentioned above (for example, ¢(f) = 1 for ¢t = 27). It can also be shown
that the distribution of X is a lattice distribution, if and only if the ch.f. ¢ is
periodic with period 27 (that is, ¢(t + 27) = ¢(¢), t € R).

In the following result, the ch.f. serves the purpose of recovering the
distribution of an r.v. by way of its ch.f.

(Inversion formula) Let X be an r.v. with p.d.f. fand ch.f. ¢. Then if X is of the
discrete type, taking on the (distinct) values x;, j > 1, one has

i () =tim [ e ofr)dr, j> 1.

If X is of the continuous type, then
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) fle) = timtim o[ o

and, in particular, if [~ |¢p(¢)ldt < e, then (fis bounded and continuous and)

i) f06) = 5= 2 e o(0)dr

PROOF (outline) i) The ch.f. ¢is contmuous by Theorem 1(iii), and since
so0 is ¢, it follows that the integral ['.e ~e o(t)dt exists for every T(> 0). We

have then

L7 o) = [2 f(xk)]dt
k

2T - 2T

5 [ Bt

2T
= L r it(xk”‘f)d
;f(xk) 2T J‘—Te !

(the interchange of the integral and summations is valid here). That is,

T it(xA

% " e g (t)de = Zf(xk) = N, (1)

But

J_TTe”(x’(_X’)dt = J-_T [cos t(xk —-x ) +1i sint(xk - x,.)]dt
= jTTcost(xk —x])dt+zj smt( xj)dt
= j cost(x =X j)dt since sin z is an odd function. That is,

J:TTeit(xe’)dt—J‘ cost(xk x])dt 2)

If x, = x;, the above integral is equal to 27, whereas, for x, # x;,

J_TTcost(xk—xi)dtzx ix j‘_TTdsint(xk—xj)
kA

sinT(xk - xj) - sin[—T(xk —x].)]

X=X,

25inT(xk —xj)

Xy —X;
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Therefore,
L if x, =x;
i Teit(xk_xl)dt: SiIlT(xk_xf) i ¥
27 -1 —, if x,#x,
T(xk_x/)
B ML . a constant independent of 7, and therefore, for
k SinT(x, —x’) i
7 X, hmT(Y—kX) 0, so that
7 X
it| x,—x 19 it xe=x;
lim — " ") gy = tox ey ?
PRT 0. if x, x,

By means of (4), relation (1) yields

1imi et )dt_hmz f(xk) jT ") g

T—e QT J- T—eo
= zf(xk)hm— "l

(the interchange of the limit and summation is legitimate here)

= (x)+ 11rn— Ot = f(x),

as was to be seen

ii) (ii") Strictly speaking, (ii") follows from (ii). We are going to omit (ii)
entirely and attempt to give a rough justification of (ii’). The assumption that
|7 lg(t)ldt < o implies that [~ e "™¢(r)dt exists, and is taken as follows for every
arbitrary but fixed x € R:

[ eo()de= tim [ e o(t)dr. (5)

(O<)T—)m -T

e afar=, e-ffx[fzefw)dy]dr
[y a= A e 6

where the interchange of the order of integration is legitimate here. Since the
integral (with respect to y) is zero over a single point, we may assume in the
sequel that y # x. Then

J-r 0 g 2 sinT(y - x)
-T y_x

as was seen in part (i). By means of (7), relation (6) yields

™)



144

6 Characteristic Functions, Moment Generating Functions and Related Theorems

sinT(y—x)
y—x

[~ e g(t)de = 21im [ 1y dy. )

Setting T(y — x) = z, expression (8) becomes
" emo(e)de =20im [~ fx+ 2| SN2
[ e g(t)dr =2lim [ f(x - T) —dz

=2f(x)r =2xf(x).

by taking the limit under the integral sign, and by using continuity of fand the
fact that | s:dz=7. Solving for f(x), we have

)= o

as asserted. A

EXAMPLE 1 Let X be B(n, p). In the next section, it will be seen that ¢,(¢) = (pe" + q)". Let
us apply (i) to this expression. First of all, we have

21 2T -1
- % J-_TT |::0 ( rrl)(Pe ! )rq” e }dr
ipene
%ZUM ol il
+ %(:Jpxq“ _TTdt
- 25(1:]1) ‘q" ei(r;; (_r e_x())T + %(:Jp T

r_n-—r Sin(r_x)T n X _n—Xx
]p q —+(x]p q".

(r—x)T

Taking the limit as T — oo, we get the desired result, namely

flx)= (Z]p"q”"‘-
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(One could also use (i") for calculating f(x), since ¢ is, clearly, periodic with
period 27.)

EXAMPLE 2 For an example of the continuous type, let X be N(0, 1). In the next section, we
will see that ¢,(f) = e™”. Since 1¢(¢)l = e™?, we know that [~ |¢(¢)ldt < e, so that
(ii") applies. Thus we have
I N I S ey
f(x) = e q)(t)dt = e e Nt
_ e ) 1 we—(l/Z)[;2+2t(ix)+(ix) ]e 0N,
2 = 2 o=
_ e 2 I L )iy, _ e I Ly
Vor T om Voo
_ e—(1/2)xz . 1 e_xz/z
N 27 \/% ’
as was to be shown.
THEOREM 3 (Uniqueness Theorem) There is a one-to-one correspondence between the
characteristic function and the p.d.f. of a random variable.
PROOF The p.d.f. of an r.v. determines its ch.f. through the definition of the
ch.f. The converse, which is the involved part of the theorem, follows from
Theorem 2. A
Exercises

6.2.1 Show that for any r.v. X and every ¢ € R, one has |[Ee"*| < Ele"¥I(=1).
(Hint: If z=a +ib, a, b € R, recall that |z| =+va’+b’. Also use Exercise 5.4.7
in Chapter 5 in order to conclude that (EY)* < EY” for any r.v. Y.)

6.2.2 Write out detailed proofs for parts (iii) and (vii) of Theorem 1 and
justify the use of Lemmas C, D.

6.2.3 Foranyr.v. X with ch.f. ¢, show that ¢_(¢) = ¢ (¢),t € R, where the bar
over ¢, denotes conjugate, that is, if z=a + ib, a, b € R, then Z = a — ib.

6.2.4 Show that the ch.f. ¢, of an r.v. X is real if and only if the p.d.f. fy of X
is symmetric about 0 (that is, fy(—x) = fy(x), x € R). (Hint: If ¢, is real, then the
conclusion is reached by means of the previous exercise and Theorem 2. If f,
is symmetric, show that f y(x) = fy(-x), x € R.)
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6.2.5 Let X be an r.v. with p.d.f. fand ch.f. ¢ given by: ¢(t) =1 — Izl if lfl < 1
and ¢(¢) = 0 if It/ > 1. Use the appropriate inversion formula to find f.

6.2.6 Consider the r.v. X with ch.f. ¢(/) =™, r € R, and utilize Theorem 2(ii’)
in order to determine the p.d.f. of X.

6.3 The Characteristic Functions of Some Random Variables

In this section, the ch.f.’s of some distributions commonly occurring will be
derived, both for illustrative purposes and for later use.

6.3.1 Discrete Case
1. Let X be B(n, p). Then ¢,(¢) = (pe" + q)". In fact,

ox ()= Z;)e(;l)ﬂq = i(:)(pe”)xq“ =(pe"+q)

x=0

Hence

it

= n(pei’ + q)H ipe

t=0

d
g%(f)
so that E(X) = np. Also,
. d it nl oy
=0:zan[(pe +q) e ]

_ inp|:(n _ 1)(peit + q)n_zipeiteit " (peit + q)n—l ieit:l

d2
y‘bx(f)t

t=0

t=0

= iznp[(n - 1)p + 1] = —np[(n - 1)p + 1] = —E(Xz),
so that
E(X?)=np[(n-1)p+1] and 0*(X) = B(X?)- (Ex)’
=n’p> —np> +np-n’p’ :np(l—p)z npq;

that is, 6*(X) = npq.
2. Let X be P(A). Then ¢,(t) = ¢ In fact,
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Hence
d _ e =D it _
E% (t)‘ e ile"| =il

so that E(X) = 4. Also,

t=0

t=0

= ide e (26" -i+i)‘
=ife™ e (Ai+i)
=P A(A+1)=-A(A+1)= —E(Xz),

t=0

so that
o*(X)= E(XZ)—(EX)Z =AA+1)-2 =1
that is, 0*(X) = L.

6.3.2 Continuous Case

1. Let X be N(u, 6?). Then ¢,(f) = €"“? and, in particular, if X is
N(0, 1), then ¢y (t) = ¢ If X is N(u, o°), then (X — u)/o, is N(0, 1).
Thus

¢(X—,u)/a (I) = ¢(1/0)X—(y/a) (t) = e_im/%bx (Z/O‘), and ¢y (t/o-) = eim/afp(x—y)/a (t)

So it suffices to find the ch.f. of an N(0, 1) r.v. Y, say. Now

0,(t) = ﬁ [ emeray= \% [ et elgy

-2/2

dy=e

=——c

@ _

Hence ¢,(t/0) = ¢"°¢™* and replacing #/c by t, we get, finally:

o-onf-2)

1 _2)2 'rc ef(y—ir)z/z
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Hence
d . o’t .
EQ)X (f) = exp(ztu— 5 ] l,u o t =iu, so that E(X) =U.
it=0
d2 . o 12 2 . 02[2
F(DX(t)I 0: exp(ztu— 5 }(z,u c t) -0~ exp| it — 3 0
- .

=i’u*-o’ =i2(,u2 +62).

Then E(X*)=pu*+ o’ and 6’ (X)=>+ o — ' = ¢°.
2. Let X be Gamma distributed with parameters o and . Then ¢,(¢) =
(1 —ipr)™ In fact,

j e x“e ’x/ﬁdX——l rx“"le_x(l_iﬁt)/ﬁdx.

ox(1)= e )ﬂa r{(a)p”

Setting x(1 — iff) = y, we get

__y __dy -
C1-ip’ dx_l—iﬁt’ ye[O, )

Hence the above expression becomes

1 < 1 a-1_-y/B dy
rap gy 1B

=(1-ipr) " - (al)ﬁ"‘ [ ytePay=(1 ~ipt) "

Therefore

so that E(X) = af3, and

2 alo+1)p?
4, =i2—( )[32 =i +1)p7,
d (1-ip)"
=0 =0
so that E(X*) = o+ 1)B. Thus 6*(X) = e+ 1) — o/’ = aff".
For o = r/2, B = 2, we get the corresponding quantities for yZ, and for

a=1, B=1/A, we get the corresponding quantities for the Negative Exponential
distribution. So
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respectively.

3. Let X be Cauchy distributed with =0 and o= 1. Then ¢,(f) = ¢™. In
fact,

e a1 1 1 ¢ cOS|tx
oxlt)=[ " crzar=2] 1+(x2)
| e SIN{£X 2 e COS|tX
e e
because
- sin(zx) B
I =0,

since sin(#x) is an odd function, and cos(zx) is an even function. Further, it can
be shown by complex variables theory that

J.m cos(tx) dr = Ee_M‘

X
0 1+ x?
Hence
d)X(t) =,
Now
d d -
Equ(t) = Ee i

does not exist for =0. This is consistent with the fact of nonexistence of E(X),
as has been seen in Chapter 5.

Exercises

6.3.1 Let X be an r.v. with p.d.f. f given in Exercise 3.2.13 of Chapter 3.
Derive its ch.f. ¢, and calculate EX, E[X(X - 1)], 6*(X), provided they are
finite.

6.3.2 Let X be an r.v. with p.d.f. f given in Exercise 3.2.14 of Chapter 3.
Derive its ch.f. ¢, and calculate EX, E[X(X — 1)], 0*(X), provided they are
finite.

6.3.3 Let X be anr.v. with p.d.f. fgiven by f(x) = 2 [, (x). Find its ch.f.
¢, and calculate EX, o’(X), provided they are finite.
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6.3.4 Let X be an r.v. distributed as Negative Binomial with parameters r
and p.

i) Show that its ch.f., ¢, is given by

r

ofr)=——
(1-ae")
ii) By differentiating ¢, show that EX = rq/p and o°(X) = rq/p*;

iii) Find the quantities mentioned in (i) and (ii) for the Geometric
distribution.

6.3.5 Let X be an r.v. distributed as U(c, f).
i) Show that its ch.f., ¢, is given by
it ita
e’ —e
t)=—F——;
)= 5=
ii) By differentiating ¢, show that EX =% and O'Z(X ) = (o Y

6.3.6 Consider the r.v. X with p.d.f. fgiven in Exercise 3.3.14(ii) of Chapter
3, and by using the ch.f. of X, calculate EX", n =1, 2, ..., provided they are
finite.

6.4 Definitions and Basic Theorems—The Multidimensional Case

THEOREM 1

In this section, versions of Theorems 1, 2 and 3 are presented for the case that
the r.v. X is replaced by a k-dimensional r. vector X. Their interpretation,
usefulness and usage is analogous to the ones given in the one-dimensional
case. To this end, let now X = (X, . .., X,)" be a random vector. Then the ch.f.
of the r. vector X, or the joint ch.f. of the r.v.’s X, ..., X,, denoted by ¢y or
Oxys - - - 5 x, 18 defined as follows:

Ox, ..., x (tl, R tk)= E[eitlxﬁitzxﬁmmkxk , 1 eR,
j=1,2,..., k. The chf. ¢y, ..., x always exists by an obvious generalization
of Lemmas A, A" and B, B’. The joint ch.f. ¢y, ..., , satisfies properties

analogous to properties (i)—(vii). That is, one has
(Some properties of ch.f.’s)
i) ¢y, x(0,...,0)=1.

i) 1oy, ..., x (. )< 1L
iii’) ¢y, ..., x, is uniformly continuous.
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. itidi+ - - - +itrd
iv’) ¢X1+d19 s kak(tl’ RN tk) = e k¢xla ceey Xk(tl, e, tk)'
V,) ¢L‘1X19 R cka(tl’ ey [k) = ¢X1’ RN Xk(clth R thk)‘
. itvdy +- - + ityd,
V) Ouxiiap s o (i oo o5 1) =€ TG (Gt aly).

vii’) If the absolute (n,, . .., n,)-joint moment, as well as all lower order joint
moments of X, ..., X, are finite, then

8n1+ sty

md’xww ot =i2,;:‘"’E(X1”I Xk)

and, in particular,

an

—0ren x (fee o ) :i"E(X;?), i=1,2,..., k.
or;
ty= - =t,=0
viii) If in the @y, ..., x (4, ..., 5) wesett;, =---=1¢ =0, then the resulting
expression is the joint ch.f. of the r.v.’s X, ..., X, , where the j’s and the

i’s are different and m + n = k.

Multidimensional versions of Theorem 2 and Theorem 3 also hold true.
We give their formulations below.

THEOREM 2’ (Inversion formula) Let X = (X, ..., X,)" be an r. vector with p.d.f. fand ch.f.
¢. Then

k
D foes o (rx) = lin%] S

X Oyroon x (te ot )ty -ty

if X is of the discrete type, and

k —ith
.. T A A s T [ 1™
1 s X,..., X, )=limlim| — j j _
) fX‘ Xy ( 1 k) h—0 T—>oo( 2w -T -T g l[]h
% e_itlxl_m_ithkq)xl? e Xk(tl’ cl, [k)dtl . dtk»

if X is of the continuous type, with the analog of (ii") holding if the integral
of lgy, . x(t, ..., )l is finite.

THEOREM 3° (Uniqueness Theorem) There is a one-to-one correspondence between the
ch.f. and the p.d.f. of an r. vector.

PROOFS The justification of Theorem 1’ is entirely analogous to that given
for Theorem 1, and so is the proof of Theorem 2’. As for Theorem 3’, the fact
that the p.d.f. of X determines its ch.f. follows from the definition of the ch.f.
That the ch.f. of X determines its p.d.f. follows from Theorem 2’. A
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6.4.1 The Ch.f. of the Multinomial Distribution
Let X = (X, ..., X)) be Multinomially distributed; that is,

n!

P(Xlle,...,szxk)z ' 'pf‘~~p,fk.
X! x,!
Then
Dx,soe s Xk(tl’ s tk)z(ple"‘ oo +pke“k)n.
In fact,
¢X1’.“’ Xk(tl’“.’[k)=X"Z.Xkeit1xl+---+ithk#!.Xk!xpih pl’(‘k
| i, X, i, X
=x,.2.,xk x,! n xk!(plet ) o (p"et )
_ (pleit, 4. +pkeitk )”
Hence
k
oo e o
=n(n—1) (n—k+1)i 12 pk(ple”' +
+pe )n_k =1kn(n—1) (n—k+1)p1p2 Dy
f=---=1,=0
Hence

E(X1 ~~~Xk):n(n—1) e (n—k+1)p1p2 C D

Finally, the ch.f. of a (measurable) function g(X) of the r. vector X =
(X, ..., X)) is defined by:

Exercise

6.4.1 (Cramér-Wold) Consider the r.v’s X, j=1,..., k and for ¢; € R,
j=1,...,k,set
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Then

i) Show that ¢y (1) = ¢y,
= (PYC(l);

ii) Conclude that the distribution of the X’s determines the distribution of Y,

for every ¢c; e R, j=1,..., k. Conversely, the distribution of the X’s is
determined by the distribution of Y, for every ¢;e R, j=1,..., k.

xlat, ..., qt), t e R, and ¢y, y(c,..., c)

6.5 The Moment Generating Function and Factorial Moment
Generating Function of a Random Variable

The ch.f. of an r.v. or an r. vector is a function defined on the entire real line
and taking values in the complex plane. Those readers who are not well versed
in matters related to complex-valued functions may feel uncomfortable in
dealing with ch.f.’s. There is a partial remedy to this potential problem, and
that is to replace a ch.f. by an entity which is called moment generating
function. However, there is a price to be paid for this: namely, a moment
generating function may exist (in the sense of being finite) only for #=0. There
are cases where it exists for #’s lying in a proper subset of R (containing 0), and
yet other cases, where the moment generating function exists for all real 7. All
three cases will be illustrated by examples below.

First, consider the case of an r.v. X. Then the moment generating function
(m.g.f.) My (or just M when no confusion is possible) of a random variable X,
which is also called the Laplace transform of f, is defined by M (t) = E(e"”),
t € R, if this expectation exists. For ¢ = 0, M (0) always exists and equals
1. However, it may fail to exist for ¢ # 0. If M(¢) exists, then formally
dx(t) = M(it) and therefore the m.g.f. satisfies most of the properties analo-
gous to properties (i)—(vii) cited above in connection with the ch.f., under
suitable conditions. In particular, property (vii) in Theorem 1 yields
LM, (t)|l:0 = E(X "), provided Lemma D applies. In fact,

dr"
d" d"
i, =gt ol

=0

n

L (5)

- E(X"e’X)

t=0

This is the property from which the m.g.f. derives its name.
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Here are some examples of m.g.f.’s. [t is instructive to derive them in order
to see how conditions are imposed on ¢ in order for the m.g.f. to be finite. It so
happens that part (vii) of Theorem 1, as it would be formulated for an m.g.f.,
is applicable in all these examples, although no justification will be supplied.

6.5.1 The M.G.F.’s of Some R.V.’s
1. If X ~ B(n, p), then M(t) = (pe' + q)", t € R. Indeed,
” MRG xn—x_n n txn—x_ t "
Mx(z)=§0e (xJp q —;O(XJ(pe) g =(pe' +a) .

which, clearly, is finite for all t € R.
Then

d
EMx(f)

=np:E(X),

it=0

= n(pe’ + q)n_]pe’

=0

= %(pe[ + q)n

it=0

and

d2
27 M)

= %[np(pet + q)rH et]

=0 t=0

_ npl:(n _ 1)(p€t + q)n_zpe,e; " (pe[ + q)n—let:l

it=0

= n(n— 1)p2 +np=n’p’—np’>+np= E(Xz),
so that 6*(X) = n’p’ —np” + np — n’p’ = np(1 — p) = npq.

2. If X ~ P(X), then M,(f) = ¢*™ t € R. In fact,

b

t
x!

oo

MX(t)=Ze”‘e_A§=e"li =e e’ =e
x=0 . x=0
Then
d d e ¢ dee
EMX(t)H):EeM ’ e e =A=E(X),
and

d’ d .
FMX(t)‘ o)

3 il
2( t Ae'-A t le—/l)vet)
it=0

t=0

= 2(1+2) =E(X2), so that 02(X )=+ 2 -2 = .
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22
w+ T

3. If X~ N(u, 6°), then MX(t):e > te R, and, in particular, if X ~ N(0,

1), then M,(t) =e”?, t e R. By the property for m.g.f. analogous to property (vi)
in Theorem 1,

My, ()= e M, (é) so that M, (éj =" M, (1)

for all t € R. Therefore
v
MX(L)—e oefzeo 2,
o

Replacing ¢ by ot, we get, finally, M, (t) =e ? .Then

L1 0=%e‘"*z (uro)e™ > | =u=E(x)
= t=0 t=0
and
dz H >
dtz X() _d— (‘U,'f'Gt)
= t=0
[ k3 u+az)2 ””6;} =c’+u’
t=0

E ) sothato(X)=0'2+,u2—u2:0'2.

4. If X is distributed as Gamma with parameters o and f3, then M(¢) =
(1 =P t < 1/B. Indeed,

M, (t) = F(ozl)ﬁ“ J:e‘”x“"le’x/ﬁdx =

Then by setting x(1 - fr) =y, so thatx = 22, dx= -, and y € [0, «), the above
expression is equal to

L Jm xoe PP gy
a b

1 1 < el -y/B g,
o a J y e dy N
(1-p)" ()8 J (1-p)

provided 1 — 3t > 0, or equivalently, ¢ < 1/f. Then

d
EMx(f)

=af = E(X)

d —a
=—(1-B)

t=0

t=0
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and

d2

e = a(a+1)/32(1—/3t)7a72

Mlt) =B (1-p) "

t=0 it=0

= a((x+1)ﬁ2 = (EXZ), so that O'Z(X) =of3°.

=0

In particular, for o =2 and =2, we get the m.g.f. of the y2, and its mean and
variance; namely,

M(e)=(1-20) ", <2, B(x)=r, 0(x) =2

For ¢ =1 and B = %, we obtain the m.g.f. of the Negative Exponential
distribution, and its mean and variance; namely

A 1

MX(I):/,L S 1< EX =, o’(X)= !

12
5. Let X have the Cauchy distribution with parameters g and o, and
without loss of generality, let =0, o=1. Then the M,(¢) exists only for t =0.

In fact.
Mx(t) = E(etx) = J.x e” 1.1 dx
-~ 7 1+x2
>— dx >— tx dx
'[ -[ +x2
if > 0, since €” > z, for z > 0, and this equals
to=2xdx _ du
— (hm log u)
20 14 x? 271 u 27\

Thus for ¢t > 0, M ,(f) obviously is equal to . If < 0, by using the limits —co, 0
in the integral, we again reach the conclusion that M,(f) = ~ (see Exercise
6.5.9).

REMARK 4 The examples just discussed exhibit all three cases regarding the
existence or nonexistence of an m.g.f. In Examples 1 and 3, the m.g.f.’s exist
for all t € R, in Examples 2 and 4, the m.g.f.’s exist for proper subsets of R; and
in Example 5, the m.g.f. exists only for ¢ = 0.

For an r.v. X, we also define what is known as its factorial moment
generating function. More precisely, the factorial m.g.f. 1, (or just 7 when no
confusion is possible) of an r.v. X is defined by:

Ny (l) = E(tx), teR, if E(IX) exists.

This function is sometimes referred to as the Mellin or Mellin—Stieltjes trans-
form of f. Clearly, n(t) = M,(logt) for ¢ > 0.

Formally, the nth factorial moment of an r.v. X is taken from its factorial
m.g.f. by differentiation as follows:
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dn
s (z)t=1 = E[X(x-1)--- (X -n+1)|
In fact,
d d" " .
o nx(t) = o E(")= E(yt’(] = HX(X 1) (X —n+1)]

provided Lemma D applies, so that the interchange of the order of differen-
tiation and expectation is valid. Hence

n

<o

=E[X(X—1) . (X—n+1)]. 9)

ir=1

REMARK 5 The factorial m.g.f. derives its name from the property just estab-
lished. As has already been seen in the first two examples in Section 2 of
Chapter 5, factorial moments are especially valuable in calculating the vari-
ance of discrete r.v.’s. Indeed, since

2

o’(X)=E(X?)-(EX), and E(X?)= E[X(X - 1)] + E(X),

we get
2 .

o*(X)= E[X(X - 1)] + E(X) - (EX)

that is, an expression of the variance of X in terms of derivatives of its factorial
m.g.f. up to order two.

Below we derive some factorial m.g.f.’s. Property (9) (for n =2) is valid in
all these examples, although no specific justification will be provided.

6.5.2 The Factorial M.G.F.’s of some R.V.’s
1. If X ~ B(n, p), then ny(¢) = (pt + q)", t € R. In fact,

) =S(Mpra =3[ o (o

x=0

Then

= n(n— l)pz(pt +q),,,2 = n(n— 1)p2,

ir=1

)

so that 6°(X) = n(n — 1)p* + np — n’p”> = npq.
2. If X ~ P(X), then ny(t) = ¢**, t € R. In fact,

nl)=3re

' | et =¥t teR.
x=0 X x=0 X
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Hence

_2 — J2eMh
dr? B
t=1
The m.g.f. of an 1. vector X or the joint m.g.f. of the r.v.’s X, ..., X,
denoted by My or My, ..., x,, is defined by:

My,ooos (o i) = B[ 9%, eR j=1,2,.. .k,

for those #s in R for which this expectation exists. If My, =, (#,, ..., 1) exists,
then formally ¢y, x(t,,...,4) =My,  x(it,...,it) and properties analo-
gous to (i")—(vii"), (viii) in Theorem 1” hold true under suitable conditions. In
particular,

=A%, sothat GZ(X):AZ+/1—/12 =1

nx (1)

ir=1

ot

= E(Xl’“ X ) (10)

fi= - =t,=0

WMXI,..., Xk(tl""’ tk)

where n,, . .., n, are non-negative integers.
Below, we present two examples of m.g.f.’s of r. vectors.

6.5.3 The M.G.F.’s of Some R. Vectors

1. If the r.v.’s X, ..., X, have jointly the Multinomial distribution with
parameters n and p,, . . ., p,, then

Mxl,...,Xk(tl,...,tk)z(ple"+~--+pke’k)n, teR, j=1,..., k.

In fact,

LX+ X LX 0+ H X, n! . B
MXI’..., Xk(tlv...,tk):Eell "‘226 —pll”'pkk

x!-ox,!
n! L\ 2
=2 ! v(plel) m(pkek)
x!--x,!

:(171etI +ootpet )",

Xk

where the summation is over all integers x,, ..., x, 2 0 with x, +-- -+ x, = n.
Clearly, the above derivations hold true forall,e R,j=1,..., k.

2. If the r.v.’s X, and X, have the Bivariate Normal distribution with
parameters i, L, 0,, 05 and p, then their joint m.g.f. is

1
My (6 1) = exp[,ultl + ot +5(0']2t12 +2p0,0,1t, + Ot )] t,t,eR (11)

An analytical derivation of this formula is possible, but we prefer to use
the matrix approach, which is more elegant and compact. Recall that the joint
p.d.f. of X; and X, is given by
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f(xl’ xz)

1

=————exp{——
270,06,y 1- p’ 2

2
2
1 (MJ 2P(M)(u](u)]
0 O 0, )

Setx = (x; x,)", u= (4, ), and
Z _ (0'12 Po'lo'zJ
poc, O,
Then the determinant of Z, [Zl, is [Z| = 6705(1 — p?), and the inverse, X7, is
2—1 — i[ ‘75 _po'lo'z]
|Z| -po,6, O}

Therefore

TR RS I Mol

—p0o,0, 0'12 Xy —Hy
- m[o—g(xl _'ul)z _2p0_10_2(x1 _iuq)(xz _/-12)"'0—12()‘2 _ﬂ2)2:|

2 2
(MJ zp(ul)(u][u) ]
0, O 0, 0,

Therefore the p.d.f. is written as follows in matrix notation:

1
I-p

2

f(x):ﬁexp[_%(x_u)'z1(x_,l)}

In this form, u is the mean vector of X = (X, X,)’, and X is the covariance matrix
of X.
Next, for t = (¢, £,)’, we have

My (t) =Ee'™™ = '[Rz exp(t'x)f(x)dx

= ;J.Rz exp|:t’x - l(x - p)'Z’l (x —y)]dx. (11)

23] 2

The exponent may be written as follows:



160 6 Characteristic Functions, Moment Generating Functions and Related Theorems

(u’t + %t’ Zt) - %[Zp’t +t' Xt -2t'x+ (x - p)’ Z‘l(x - u)] (13)

Focus on the quantity in the bracket, carry out the multiplication, and observe
that ' =%, (7)Y =2, X't = t'x, Wt =t'u, and xX’T'u = wX'x, to obtain

20t +t Xt -2t'x + (x - u)’ Z‘l(x - p) = [x - (ﬂ+ Zt)' Z‘l(x - (y+ Zt))]. (14)
By means of (13) and (14), the m.g.f. in (12) becomes
My(t)

- exp(u’t + %t’ Zt}ﬁjﬂﬂ exp[—%(x— (ﬂ+ Zt))' Z‘I(X - (Il+ Zt))]dx.

However, the second factor above is equal to 1, since it is the integral of a
Bivariate Normal distribution with mean vector g + Zt and covariance matrix
Z. Thus

My (t) = exp(p’t + %t' Zt). (15)

Observing that

2

o 0,0, |t

t'2t= (t1 tz)[ roP B 2}( ! ): ot} +2po,0,tt, + 055,
poi6, O, f

it follows that the m.g.f. is, indeed, given by (11).

Exercises

6.5.1 Derive the m.g.f. of the r.v. X which denotes the number of spots that
turn up when a balanced die is rolled.

6.5.2 Let X be an r.v. with p.d.f. f given in Exercise 3.2.13 of Chapter 3.
Derive its m.g.f. and factorial m.g.f., M(¢) and n(¢), respectively, for those ¢’s
for which they exist. Then calculate EX, E[X(X —1)] and o°(X), provided they
are finite.

6.5.3 Let X be an r.v. with p.d.f. f given in Exercise 3.2.14 of Chapter 3.
Derive its m.g.f. and factorial m.g.f., M(f) and n(¢), respectively, for those #’s
for which they exist. Then calculate EX, E[X(X —1)] and 6°(X), provided they
are finite.
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6.5.4 Let X be an r.v. with p.d.f. f given by f(x) = eI, (x). Find its
m.g.f. M(t) for those ¢'s for which it exists. Then calculate EX and ¢°(X),
provided they are finite.

6.5.5 Let X be an r.v. distributed as B(n, p). Use its factorial m.g.f. in order
to calculate its kth factorial moment. Compare with Exercise 5.2.1 in Chapter
5.

6.5.6 Let X be an r.v. distributed as P(A). Use its factorial m.g.f. in order to
calculate its kth factorial moment. Compare with Exercise 5.2.4 in Chapter 5.

6.5.7 Let X be an r.v. distributed as Negative Binomial with parameters
rand p.

i) Show that its m.g.f and factorial m.g.f., M(¢) and n(¢), respectively, are
given by
pr
(1-ar)
ii) By differentiation, show that EX = rq/p and ¢°(X) = rq/p’;

iii) Find the quantities mentioned in parts (i) and (ii) for the Geometric
distribution.

6.5.8 Let X be an r.v. distributed as U(c, ).
i) Show that its m.g.f., M, is given by

M (t)=—2— r<-logg, my(r)= |t|<§;

ii) By differentiation, show that EX :”‘T*” and o”°(X) :@.

6.5.9 Refer to Example 3 in the Continuous case and show that M (¢) = for
t <0 as asserted there.

6.5.10 Let X be an r.v. with m.g.f. M given by M(f) = e“ " te R (a e R,
B >0). Find the ch.f. of X and identify its p.d.f. Also use the ch.f. of X in order
to calculate EX".

6.5.11 For an r.v. X, define the function y by %(t) = E(1 + t)*for those ’s for
which E(1 +¢)" is finite. Then, if the nth factorial moment of X is finite, show
that

(lac

6.5.12 Refer to the previous exercise and let X be P(1). Derive ¥(¢) and use
it in order to show that the nth factorial moment of X is A"

[:0=E[X(X—1) . (X—n+1)].
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6.5.13 Let X be an r.v. with m.g.f. M and set K(¢) = log M() for those ¢’s for
which M(f) exists. Furthermore, suppose that EX = g and 6°(X) = ¢” are both
finite. Then show that
2
LK) =4 and LK) =0
dt o dt -

(The function K just defined is called the cumulant generating function of X.)

6.5.14 Let X be an r.v. such that EX" is finite for all n =1, 2, .. .. Use the
expansion

oo n

X X
n=0 n'

in order to show that, under appropriate conditions, one has that the m.g.f. of
X is given by
S

M(r) -

n=0
6.5.15 If X is an r.v. such that £X" = n!, then use the previous exercise in

order to find the m.g.f. M(¢) of X for those #’s for which it exists. Also find the
ch.f. of X and from this, deduce the distribution of X.

6.5.16 Let X be an r.v. such that

EX? = @
2K k!

k=0,1,....Find the m.g.f. of X and also its ch.f. Then deduce the distribution
of X. (Use Exercise 6.5.14)

2h+1 _

bl i

6.5.17 Let X, X, be two r.v.’s with m.f.g. given by

M(tl, t2)=|:%(e"”z +1)+%(e’l +e” )T, t, t, €R.

Calculate EX,, 0°(X,) and Cov(X,, X,), provided they are finite.

6.5.18 Refer to Exercise 4.2.5. in Chapter 4 and find the joint m.g.f.
M(t,, t,, t;) of the r.v.’s X, X,, X for those ¢, t,, t; for which it exists. Also find
their joint ch.f. and use it in order to calculate E(X,X,X;), provided the
assumptions of Theorem 17 (vii") are met.

6.5.19 Refer to the previous exercise and derive the m.g.f. M(¢) of the r.v.
g(X,, X, X;) = X, + X, + X for those ¢’s for which it exists. From this, deduce
the distribution of g.
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6.5.20 Let X, X, be twor.v.’s with m.g.f. M and set K(t,, t,) =log M(t,, t,) for
those t,, t, for which M(t,, t,) exists. Furthermore, suppose that expectations,
variances, and covariances of these r.v.’s are all finite. Then show that for
j=12,

d J’ 2
zK(Il, [2) :EX]-, ?K(tl’ [2) =0 (Xj)’
i t=6,=0 i t,=1,=0
(92
S K(t. 1,) » = Cov(X,, X,).

6.5.21 Suppose the r.v.’s X}, ..., X, have the Multinomial distribution with
parameters n and p,, ..., p;, and let i, j, be arbitrary but fixed, 1 <i<j< k.
Consider the r.v.’s X;, X, and set X = n — X, — X, so that these r.v.’s have the
Multinomial distribution with parameters n and p,, p;, p, where p=1-p, - p..

i) Write out the joint m.g.f. of X, X}, X, and by differentiation, determine the
E(X:X);
ii) Calculate the covariance of X, X}, Cov(X;, X)), and show that it is negative.

6.5.22 If the r.v.’s X, and X, have the Bivariate Normal distribution with
parameters (i, [, 03, 05 and p, show that Cov(X,, X,) > 0 if p > 0, and
Cov(X,, X;) < 0if p < 0. Note: Two r.v.’s X;, X, for which F, , (X, X,) -
F,(X)F,(X,) 20, for all X, X,in R, or F, . (X,, X,) - F, (X))F, (X,) <0, for
all X;, X, in R, are said to be positively quadrant depehdent or negatively
quadrant dependent, respectively. In particular, if X, and X, have the Bivariate
Normal distribution, it can be seen that they are positively quadrant depend-
ent or negatively quadrant dependent according to whether p >0 or p < 0.

6.5.23 Verify the validity of relation (13).
6.5.24

i) If the r.v.’s X| and X, have the Bivariate Normal distribution with param-
eters U, [, 0, 05 and p, use their joint m.g.f. given by (11) and property
(10) in order to determine E(X,X);

ii) Show that p is, indeed, the correlation coefficient of X, and X,.
6.5.25 Both parts of Exercise 6.4.1 hold true if the ch.f.’s involved are re-

placed by m.g.f.’s, provided, of course, that these m.g.f.’s exist.

i) Use Exercise 6.4.1 for k =2 and formulated in terms of m.g.f.’s in order to
show that the r.v.’s X, and X, have a Bivariate Normal distribution if and
only if for every c;, ¢, € R, Y. = ¢, X, + ¢,X, is normally distributed;

ii) In either case, show that ¢, X + ¢, X, + ¢; is also normally distributed for any
e R
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Stochastic Independence with Some
Applications

7.1 Stochastic Independence: Criteria of Independence
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DEFINITION 1

Let S be a sample space, consider a class of events associated with this space,
and let P be a probability function defined on the class of events. In Chapter
2 (Section 2.3), the concept of independence of events was defined and was
heavily used there, as well as in subsequent chapters. Independence carries
over to r.v.’s also, and is the most basic assumption made in this book. Inde-
pendence of 1.v.’s, in essence, reduces to that of events, as will be seen below.
In this section, the not-so-rigorous definition of independence of r.v.’s is pre-
sented, and two criteria of independence are also discussed. A third criterion
of independence, and several applications, based primarily on independence,
are discussed in subsequent sections. A rigorous treatment of some results is
presented in Section 7.4.

Therv’s X,j=1,..., karesaid to be independent if, for sets B,c R,j=1, . ..,
k, it holds

P(X,;eB,.j=1,..., k)=ﬁP(Xj €B)).
j=1

Ther.v.’s X,,j=1,2,...are said to be independent if every finite subcollection
of them is a collection of independent r.v.’s. Non-independent r.v.’s are said to
be dependent. (See also Definition 3 in Section 7.4, and the comment following
it.)

REMARK 1 (i) The sets B;,j=1,..., k may not be chosen entirely arbitrar-
ily, but there is plenty of leeway in their choice. For example, taking B, = (—ee,
x],x;e R,j=1,..., k would be sufficient. (See Lemma 3 in Section 7.4.)
(ii) Definition 1 (as well as Definition 3 in Section 7.4) also applies to m-
dimensional r. vectors when R (and B in Definition 3) is replaced by R" (B™).
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THEOREM 1  (Factorization Theorem) Ther.v.’s X, j=1, ..., k are independent if and only
if any one of the following two (equivalent) conditions holds:

i) FXI,...,Xk(xl,...,xk)zﬁFXJ(xj), forall x;eR,j=1,... k.
j=1

ii) le,...,Xk(x],...,xk)zﬁfxl(xj), forall x,eR,j=1,....k
j=1

PROOF

i)

If X, j=1,---, k are independent, then
k
P(X,eB;.j=1,....k)=]]P(X,eB,). B,cR.j=1,.... k.
j=1
In particular, this is true for B, = (-, x|, x; € R, j=1,..., k which gives
k
Fy....ox, (xl, R xk)anXJ(xj).
j=1

The proof of the converse is a deep probability result, and will, of course,
be omitted. Some relevant comments will be made in Section 7.4, Lemma 3.

For the discrete case, we set B;= {x;}, where x;is in the range of X, j=1, .. .,
k. Thenif X, j=1,..., k are independent, we get

k
P(X,=x,..., X, :xk):HP(Xj =x;),
i

or

Txooooox, (xl,...,xk)=HfX](xj).

Let now

k
Txooooox, (xl, e xk)=HfX](xj).
j=1
Then for any sets B; = (-, y;], ;€ R, j=1,..., k, we get

BX'ZXBfXI,...,Xk (xlw-~’xk)ZBXZXBfX,(xJ"’ka(xk)

H{fo (x,,-)}

or

k
FXl’" S X, (yl,- B yk)ZHFX,(y/)'
=1

Therefore X, j=1, ..., k are independent by (i). For the continuous case,
we have: Let

an""’Xk (xl,..., xk)ZHfX,(xi)

and let
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LEMMA 1

LEMMA 2

THEOREM 1

C].:(—oo, y].], yieR. j=1..., k.

Then integrating both sides of this last relationship over the set C, x - - - X
C,, we get

R yk):f!FXj(yj),
so that X, j=1,..., k are independent by (i]). Next, assume that
e (s xk)zljFXJ(x,)
(that is, the X}’s are independent). Then diffe;entiating both sides, we get
Txooooox, (xl, e xk)=ﬁij(xj). A
j=

REMARK 2 1t is noted that this step also is justifiable (by means of calculus)
for the continuity points of the p.d.f. only.

Fy

Consider independent r.v.’s and suppose that g; is a function of the jth r.v.
alone. Then it seems intuitively clear that the r.v.’s g(X)),j=1, ..., k ought to
be independent. This is, actually, true and is the content of the following

Forj=1,..., k, let the r.v.’s X, be independent and consider (measurable)
functions g;: /R(’ — R, so that g/(X) j= , k are r.v.’s. Then the r.v.’s g/(X)
j=1,..., k are also independent. The same conclusion holds if the r.v.’s are
replaced by m-dimensional r. vectors, and the functions g, j =1,..., k are
defined on R™ into R. (That is, functions of independent r.v.’s (r. Vectors)
are independent r.v.’s.)

PROOF See Section 7.4. A

Independence of r.v.’s also has the following consequence stated as a
lemma. Both this lemma, as well as Lemma 1, are needed in the proof of
Theorem 1’ below.

Consider ther.v.’s X, j=1, ..., k and let g;: R — R be (measurable) functions,
so that g(X)),j=1,..., k are r.v.’s. Then, if the r.v.’s X, j=1,..., k are
independent, we have

[H g,(x ] HE[g, )|
provided the expectations considered exist. The same conclusion holds if the
g/’s are complex-valued.
PROOF See Section 7.2. A

REMARK 3 The converse of the above statement need not be true as will be
seen later by examples.

(Factorization Theorem) Ther.v.’s X,j=1, ...,k are independent if and only if:

k
Oxprwox, (i ) =[10x (). forall ¢ eR j=1,.... k.
j=1
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PROOF 1If X|,j=1,..., k are independent, then by Theorem 1(ii),
k
Txoooox, (xl, ces xk):HfXj(xj)'
j=1

Hence

k ko koo
Px,s - oox, (xl, - xk) = E[exp{ithXjD = E(Hen,X, J = HEe”fX/
j=1 j=1 j=1
by Lemmas 1 and 2, and this is IT_; ¢, (#,). Let us assume now that

k
N (A tk):Uq)X/(tj)'

For the discrete case, we have (see Theorem 2(i) in Chapter 6)

fX/(xj)=;i£I°1°% i,e_it]qubxj(tj)dtj’ j=1, FN k,

and for the multidimensional case, we have (see Theorem 2'(i) in Chapter 6)

. 1 k . k
f/\’n""’Xk (xl,.._,xk)zg_lig(ﬁ) JTT,.,J'TTexp(—l;th/J
XOysooony, (o t)dt - di
(1Y &
- ?ﬂ(ﬁ) [ o] exo “;tixi

k

L S Y
=H[¥$ﬁ e ’¢x,»(ff)dtf]=nfx'(”)'

j=1

]j[(j)xl(t,.)(dt1 --dt,)

]

Thatis, X;,j=1, ..., k are independent by Theorem 1(ii). For the continuous
case, we have

1= Ly, .
fXJ(xj)_}g%;lﬂﬂ T O (6;)de;, j=1,..., kK,

and for the multidimensional case, we have (see Theorem 2(ii) in Chapter 6)

. . 1 ¢ kel 1- i —itx
le""’Xk(xl""’xk):%g;ﬂ(g] J'_TT.[_TTE itih e z,/]
XOxs oyt b )dty -t
k —1_ —it;h i
ZIhILI(} %I—IE(E] .[-TT o J.—TTE ith ' ]¢X/ (t!)}




168 7 Stochastic Independence with Some Applications

which again establishes independence of X, j = 1,..., k by Theorem
1(1i). A

REMARK 4 A version of this theorem involving m.g.f.’s can be formulated, if
the m.g.f.’s exist.

COROLLARY Let X,, X,have the Bivariate Normal distribution. Then X, X, are indepen-
dent if and only if they are uncorrelated.
PROOF We have seen that (see Bivariate Normal in Section 3.3 of Chapter 3)
1 -
fX,,Xz (xp xz): ] > e q/2’
270,0,4/1-p
where
1 2 2
X, — X, — X, — X, —
o ( s ul] _zp( , uz)( . uz]_( . #z) ’
I-p, o, o, 0, o,
and
2 2
1 X =K 1 X, —Hy
fx, (%)= exp —#, fr. (x2) = exp | : )
2no, 20, \2ro, 20,
Thus, if X, X, are uncorrelated, so that p =0, then
f)(1,)(z (xl» xz) = fX, (xl) : fxz (xz)a
that is, X, X, are independent. The converse is always true by Corollary 1 in
Section 7.2. A
Exercises

711 LetX,j=1,...,nbeiid. r.v.’s with p.d.f. fand d.f. F. Set
X(l)zmin(Xl,...,Xn), anmax(Xl,...,X,,);
that is,
X(l)(s) = min[Xl(s), R Xn(s)], X(n)(s) = max[Xl(s), o X, (s)]
Then express the d.f. and p.d.f. of X;), X, in terms of f and F.
7.1.2 Let the r.v.’s X, X, have p.d.f. f given by f(x,, x,) = L) 01) (X1, X2)-

i) Show that X, X, are independent and identify their common distribution;
ii) Find the following probabilities: P(X, + X, < 1), P(X} + X; < 1),
P(X, X, > 1).

7.1.3 Let X}, X, be two r.v.’s with p.d.f. f given by f(x,, x,) = g(x,)h(x,).
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i) Derive the p.d.f. of X, and X, and show that X;, X, are independent;

ii) Calculate the probability P(X, > X,) if g = h and h is of the continuous
type.

7.1.4 Let X, X,, X, be r.v.’s with p.d.f. f given by f(x,, x,, x3) = 8xx,05 L, (xy,
Xy, X3), where A = (0, 1) x (0, 1) x (0, 1).

i) Show that these r.v.’s are independent;

ii) Calculate the probability P(X, < X, < X;).

7.1.5 Let X, X, be two r.v.’s with p.d.f f given by f(x,, x,) = c[,(x,, x,), Where
A={(x,x,) € R x} + x5 <9).

i) Determine the constant c;

ii) Show that X, X, are dependent.

7.1.6 Let the r.v.’s X;, X,, X; be jointly distributed with p.d.f. f given by

f(xl’ X2 x3)=%IA(xl? X2 xs)’

where

A:{(l, 0,0). (0, 1, 0), (0, 0, 1), (1, 1, 1)}
Then show that

i) X, X, i #j, are independent;
ii) X, X,, X; are dependent.

7.1.7 Refer to Exercise 4.2.5 in Chapter 4 and show that the r.v.’s X}, X,, X;
are independent. Utilize this result in order to find the p.d.f. of X, + X, and X
+ X, + X,

71.8 LetX,j=1,...,nbeiid. r.v.’s with p.d.f. fand let B be a (Borel) set
in R.

i) In terms of f, express the probability that at least k£ of the X’s lie in B for
some fixed k with 1 < k < n;

ii) Simplify this expression if fis the Negative Exponential p.d.f. with param-
eter A and B = (1/A, «);

iii) Find a numerical answer for n =10, k=5, A= 1

2

7.1.9 Let X, X, be two independent r.v.’s and let g: R — R be measurable.
Let also Eg(X,) be finite. Then show that E[g(X,) | X, = x,] = Eg(X,).

7110 If X, j=1,..., nareiid. r.v.’s with ch.f. ¢ and sample mean X,
express the ch.f. of X in terms of ¢.

7.1.11  For two iid. r.v.’s X, X,, show that ¢, _, (1) = ¢ ()P, t € R. (Hint:
Use Exercise 6.2.3 in Chapter 6.)
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7112 Let X, X, be twor.v.’s with joint and marginal ch.f.’s ¢y, x, ¢y and ¢y
Then X, X, are independent if and only if

Ox, x, (tp tz) =0y, (zl )¢X2 (tz )’ h, L eR
By an example, show that
Oy, (t, t) =0y (z)q)xz (t) teR,

does not imply independence of X, X,.

7.2 Proof of Lemma 2 and Related Results
We now proceed with the proof of Lemma 2.

PROOF OF LEMMA 2 Suppose that the r.v.’s involved are continuous, so that
we use integrals. Replace integrals by sums in the discrete case. Thus,

)1 CIERI S S ARG

X[y X, (x1 ..... xk)alx1 codx,
_J I g1 x1 gk(xk)le(xl)--~ka(xk)dx1 - dx,
(by mdependence)

Y2 BRIV AEN T
= E[g(X.)] - Elgi(X, )]

Now suppose that the g;’s are complex-valued, and for simplicity, set g(X)) =Y
=Y, +Y,j=1,..., k. For k=2,

E[ 1 +1Y12 Y21 +1Y22)]
= E(Yl1Y21 Y12Y22)+1E(Y11Y22 +Y12Y21)
[E YHYZI Y12Y22 )] [E(Ynyzz) + E(leYm )]

= [(EY11 EY,)-(EY,)EY,, )] + i[(EYH)(EYZZ) ~(EY,,)(EY,, )]
=(EY, +iEY,,)(EY, +iEY,)=(EY,)(EY,)

Next, assume the result to be true for k = m and establish it for k =m + 1.
Indeed,
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E(Yl . qu) = E[(Yl . Ym)Ym+1]
= E(Y1 e Ym)(EYmH) (by the part just established)
= (EYl) e (EYm)(EYm+1) (by the induction hypothesis). A
COROLLARY 1 The covariance of an r.v. X and of any other r.v. which is equal to a constant
¢ (with probability 1) is equal to 0; that is, Cov(X, c) = 0.
PROOF Cov(X,c)=E(cX) - (Ec)(EX)=cEX-cEX=0. A

COROLLARY 2 If ther.v.’s X, and X, are independent, then they have covariance equal to 0,
provided their second moments are finite. In particular, if their variances are
also positive, then they are uncorrelated.

PROOF In fact,

Cov(X,, X,)= E(X,X,)-(EX,) EX,)
=(EX,)(EX,)-(EX,)(EX,)=0,
by independence and Lemma 2.

The second assertion follows since p(X, Y) = Cov(X, Y)/o(X)o(Y). A

REMARK 5 The converse of the above corollary need not be true. Thus
uncorrelated r.v.’s in general are not independent. (See, however, the corol-
lary to Theorem 1 after the proof of part (iii).)

COROLLARY 3 i) Forany kr.v’s X;,j=1,..., k with finite second moments and variances
0} = 0°(X)), and any constants ¢, j=1,. .., k, it holds:

Gz(zk:c/.X/J=zk:cf0f+ D c,.cl.Cov(X,.,X/.)
i=1

j=1 1<i#j<k
k

= Zc?of +2 2 CiCjCOV(Xi, Xj).
j=1 1<i<j<k

ii) If also 6,>0,j=1,..., k, and p,; = p(X,, X)), i # ], then:

k k
2 _ 2. 2
o (Elchj)— E c;o;+ E €,C;0,0,0;
iz

j=1 1<i#j<k
k
—Zc262+2 Z c.C.0.0
=2.60; i€j0:0 Py
=1 1si<jsk

In particular, if the r.v.’s are independent or have pairwise covariances 0
(are pairwise uncorrelated), then:

iii) 0°(X_,cX) = X1 cio}, and
iii’) 0’1, X) =20, (Bienaymé equality).
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PROOF
i) Indeed,

k
GZ(ZC,X,.):E
j=1

j= j=1

:ZC,Xj —E[ﬁcjxjﬂz

=FE

™

~
Il

]

c.(X].—EX,.)T

(X, ~EX,) + Y e, (X, -EX,)(X, - EX,)

i#j

™

Il
=N

]

c_?O'f + 2 Cl-CjCOV(Xi, Xj)

1<i#j<k

Il
M-I 3

~
I
—_

c_?af +2 2 CiCjCOV(Xl-, Xj)
1<i<j<k
(since Cov(Xi, Xj) = Cov(Xj, X, ))
This establishes part (i). Part (ii) follows by the fact that Cov(X,, X)) =
G;0,p;; = O;0;P;;-

iii) Here Cov (X, X;) =0, i #, either because of independence and Corollary
2,0r p;=0,in case 0;,>0,j=1,..., k. Then the assertion follows from
either part (i) or part (ii), respectively.

iii") Follows from part (iii) for ¢, =---=¢,=1. A

Exercises

7.21 Foranykrv.’s X, j=1,..., kfor which E(X)) = u(finite) j=1,..., k,
show that
(X, 1) =3 (X, - X + k(X =kS" + k(X ~p)

j=1 j=1

2
]

where
- 14 ) 14 e
X==—>»X, and S°=—)(X.-X).
k 12=14 ] k le( J )
7.2.2 Refer to Exercise 4.2.5 in Chapter 4 and find the E(X, X,), E(X; X, X3),
o(X, + X,), (X, + X, + X;) without integration.

723 LetX,j=1,...,n beindependent r.v.’s with finite moments of third
order. Then show that

E[i(xj - EX].)T - jiE(Xj ~EX,).

j=1
724 LetX,j=1,...,nbeiid.r.v.’swithmean yuand variance o, both finite.
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i) In terms of e, c and o, find the smallest value of n for which the probability
that X (the sample mean of the X’s) and u differ in absolute value at most
by c is at least o;

ii) Give a numerical answer if o=0.90, ¢ =0.1 and o= 2.

7.2.5 Let X|, X, be two r.v.’s taking on the values —1, 0, 1 with the following
respective probabilities:

f-L1)=a, f(-1,0)=B, f(-1, -1)=a

£0. =1)=B. f(0,0)=0, f(0.1)=B : a, B>0, a+ﬁ:%.
L -1)=a, f(1,0)=p, f(L1)=c

Then show that:

i) Cov(X,, X,) =0, so that p=0;
ii) X, X, are dependent.

—_

7.3 Some Consequences of Independence

THEOREM 2

THEOREM 3

The basic assumption throughout this section is that the r.v.’s involved are
independent. Then ch.f.’s are used very effectively in deriving certain “classic”
theorems, as will be seen below. The m.g.f.’s, when they exist, can be used in
the same way as the ch.f.’s. However, we will restrict ourselves to the case of
ch.f.’s alone. In all cases, the conclusions of the theorems will be reached by
way of Theorem 3 in Chapter 6, without explicitly mentioning it.

Let X;be B(n;, p),j=1,..., k and independent. Then
k k
X=2Xj is B(n, p), where n=2nj.
j=1 j=1
(That is, the sum of independent Binomially distributed r.v.’s with the same

parameter p and possibly distinct #;’s is also Binomially distributed.)

PROOF It suffices to prove that the ch.f. of X is that of a B(n, p) r.v., where
n is as above. For simplicity, writing >, X; instead of X X,, when this last
expression appears as a subscript here and thereafter, we have

k k . nj . n
0x ()= 95 x (1) =TT0x (1) =TT (pe" +q) =(pe" +q)
j=1 j=1
which is the ch.f. of a B(n, p) r.v., as we desired to prove. A
Let X;be P(4),j=1,..., k and independent. Then
k K
XzZXj is P(l), where AzZ/lj.
j=1

j=1
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THEOREM 4

COROLLARY

(That is, the sum of independent Poisson distributed r.v.’s is also Poisson
distributed.)

PROOF We have

Oy (I) = ¢2,X, (t) = ﬁqu, (I) = ﬁexp(l/eit - )’/)

j=1

= exp( 2,1 iz]J = exp(Ae” - 1)

j=1 j=1
which is the ch.f. of a P(1) r.v. A
Let X, be N(u;, 07),j=1,..., k and independent. Then

i) X=X X, is N(u, 0°), where p =Y u, 0° =X 0}, and, more generally,
i) X = Zj-‘:lcfX_,- is N(u, 0°), where u = X1 ¢, 07 = X cjo.

(That is, the sum of independent Normally distributed r.v.’s is Normally dis-
tributed.)

PROOF (ii) We have

()= s, 1 (1)= ﬁ oy (c1)= ﬁ[exp[ic,—t . of;jztz )]

j=1
= exp(itu o’ )
B 2

with u and ¢ as in (ii) above. Hence X is N(u, ¢°). (i) Follows from (ii) by
settingc, =¢,=--"=¢,=1. A

Now let X, j=1,..., k be any k independent r.v.’s with

E(X))=p, o’(X,

]

)=0’. j=L....k

Set

—_

“i2X,
By assuming that the X’s are normal, we get

Let X, be N(u, @), j=1,..., k and independent. Then X is N(u, o’/k), or
equlvalently, [VEk(X - u)]/a is N(0, 1).
PROOF In (ii) of Theorem 4, we set

1
C]:---:Ck:— ‘u,l::,L[k:IL[’ and 012::6,3:0'2

?sT‘

and get the first conclusion. The second follows from the first by the use of
Theorem 4, Chapter 4, since
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WE)_(£n)
° Vo2 lk

Let X, be xi, j=1,..., k and independent. Then

K K
X=X, is x, where r=>Yr,.

j=1 j=1
PROOF We have

0x(1)= 05 x (1) = H¢X ()=TT0-2i) " ~(1-2i)

which is the ch.f. of a 3 r.v. A
Let X; be N(u;, Gf), j=1,..., k and independent. Then

PROOF By Lemma 1,

2
X —u
( j “f], i=1,.. .k
o.

]

are independent, and by Theorem 3, Chapter 4,

2
X. —U.
( / #’] are ., ji=1,..., k.
O;

Thus Theorem 3 applies and gives the result. A

Now let X;,j=1,..., k be any k r.v.’s such that E(X)) = u,j=1,..., k.
Then the following useful identity is easily established:

K LS —\2 — 2 ) — 2

DX —u) =X (X, = X) + k(X - p) =kS* +k(X - ),

j=1 j=1
where

1< —\2
s? :EZ(Xj—X) :

If, in particular, X, j=1,..., k are N(u, 0°) and independent, then it will be
shown that X and S° are independent. (For this, see Theorem 6, Chapter 9.)

Let X, be N(u, 0°),j=1,..., k and independent. Then kS*/c” is y; ;.
PROOF We have

j=1

2

{X,-—ﬂJz _ V(X -p) L ks?

=Y c o?
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THEOREM 6

Now

2
k X__
Z( B s 2

by Corollary 1 above, and

Jk(® )|

o

. 2
18 X,

by Theorem 3, Chapter 4. Then taking ch.£.’s of both sides of the last identity
above, we get (1 —2it)™ = (1 - 2it)"” ¢502(2).
Hence ¢g,(t) = (1 — 2it) *” which is the ch.f. of a y; , r.v. A

REMARK 6 1t thus follows that,

kS? kS?
E( 2J=k—l, and 62[ 2]=2(k—1),

o o

or

ES? :Eaz, and 0'2(52)2 Z(k 1) o’.
k k*
The following result demonstrates that the sum of independent r.v.’s
having a certain distribution need not have a distribution of the same kind, as
was the case in Theorems 2-5 above.

Let X,,j=1,..., k be independent r.v.’s having the Cauchy distribution with
parameters 4 =0 and o=1. Then X = Z;‘: X, is kY, where Y is Cauchy with u
=0, o=1, and hence, X/k = X is Cauchy with u=0, o= 1.

PROOF We have (1) = ¢ X/(1) = [0x()]° = (¢)" = ¢, which is the
ch.f. of kY, where Y is Cauchy with u = 0, 0 = 1. The second statement is
immediate. A

Exercises

7.3.1 Forj=1,...,n,let X;beindependentr.v.’s distributed as P(4;), and set

T=YX,, A=)YA,.
j=1 j=1
Then show that

i) The conditional p.d.f. of X}, given T'=¢,is B(t, A;/A),j=1,...,n;

ii) The conditional joint p.d.f. of X},j=1,...,n, given T=t, is the Multinomial
p.d.f. with parameters t and p; = A/A,j=1,..., n.

7.3.2 Iftheindependentr.v.’s X;,j=1,...,rhave the Geometric distribution
with parameter p, show that the r.v. X = X, +---+ X, has the Negative
Binomial distribution with parameters r and p.
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7.3.3 The life of a certain part in a new automobile is an r.v. X whose p.d.f.
is Negative Exponential with parameter A = 0.005 day.

i) Find the expected life of the part in question;

ii) If the automobile comes supplied with a spare part, whose life is an r.v. Y
distributed as X and independent of it, find the p.d.f. of the combined life
of the part and its spare;

iii) What is the probability that X + Y > 500 days?

7.3.4 Let X, X, be independent r.v.’s distributed as B(n,, p,) and B(n,, p,),
respectively. Determine the distribution of the r.v.’s X + X,, X, — X, and X, —
X, +n,.

7.3.5 Let X,, X, be independent r.v.’s distributed as N(u,, 0}), and N(,, 03),
respectively. Calculate the probability P(X, — X, > 0) as a function of y,, 1, and
0,, 0,. (For example, X; may represent the tensile strength (measured in p.s.i.)
of a steel cable and X, may represent the strains applied on this cable. Then
P(X, — X, > 0) is the probability that the cable does not break.)

736 LetX,i=1,...,mandY,j=1,...,nbeindependentr.v.’s such that

the X’s are distributed as N(u,, 07) and the Y’s are distributed as N(u,, 05).

Then

i) Calculate the probability P( X > 7) as a function of m, n, u;, W, and o, o,;

ii) Give the numerical value of this probability for m = 10, n = 15, i, = u, and
G= =6

7.3.7 Let X, and X, be independent r.v.’s distributed as y, and y;, respec-
tively, and for any two constants ¢, and ¢,, set X = ¢, X, + ¢,X,. Under what
conditions on ¢, and ¢, is the r.v. X distributed as y>? Also, specify r.

7.3.8 LetX,j=1,...,nbeindependentr.v.’s distributed as N(u, o°) and set
X= ziajxj, Y =2;/3in,
j= j=
where the o/s and f’s are constants. Then
i) Find the p.d.f.’s of the r.v.’s X, Y;

ii) Under what conditions on the o’s and s are the rv.’s X and Y
independent?

7.4* Independence of Classes of Events and Related Results

In this section, we give an alternative definition of independence of r.v.’s,
which allows us to present a proof of Lemma 1. An additional result, Lemma
3, is also stated, which provides a parsimonious way of checking independence
of r.v.’s.
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DEFINITION 2

DEFINITION 3

LEMMA 3

To start with, consider the probability space (S, A, P) and recall that k

events A,, ..., A, are said to be independent if forall2<m < k and all 1 <,
<-+-<i,<k,itholds that P(A, n---NA, )=P(A,) - - - P(A, ). This definition
is extended to any subclasses of G, j=1,..., k, as follows:

We say that C,j=1, ..., k are (stochastically) independent (or independent in
the probability sense, or statistically independent) if for every A, e C,j=1,...,
k, the events A,, ..., A, are independent.

It is an immediate consequence of this definition that subclasses of inde-
pendent classes are independent. The next step is to carry over the definition
of independence to r.v.’s. To this end, let X be a random variable. Then we
have seen (Theorem 1, Chapter 3) that X'(B) is a o-field, sub-o-field
of A, the o-field induced by X. Thus, if we consider the r.v.’s X, j=1,...,k,
we will have the o-fields induced by them which we denote by A, = X;'(B),
j=1..., k.

We say that the r.v.’s X, j=1, ..., k are independent (in any one of the modes
mentioned in the previous definition) if the o-fields induced by them are
independent.

From the very definition of X;'(B), for every A; € X;'(B) there exists B,
€ Bsuch that A;= Xj'l(Bj), j=1,..., k. The converse is also obviously true; that
is, X;'(B) € X;'(B), for every B; € B, j=1,..., k. On the basis of these
observations, the previous definition is equivalent to Definition 1. Actually,
Definition 3 can be weakened considerably, as explained in Lemma 3 below.

According to the following statement, in order to establish independence

of therv.’s X;,j=1,..., k, it suffices to establish independence of the (much
“smaller”) classes C, j = 1,..., k, where G = X;'({(—, x], x €R}). More
precisely,

Let

A= X'(B) and €, =X}"({(-, ] xeR}) j=1.... k.
Then if G are independent, so are A, j=1,..., k.

PROOF By Definition 3, independence of the r.v.’s X}, j=1,..., k means
independence of the o-fields. That independence of those o-fields is implied by
independence of the classes C, j=1, ..., k, is an involved result in probability
theory and it cannot be discussed here. A

We may now proceed with the proof of Lemma 1.

PROOF OF LEMMA 1 In the first place, if X is an r.v. and A, = X '(B), and
if g(X) is a measurable function of X and A, = [¢(X)]"'(B), then A, , < A,.
In fact, let A € Ay, Then there exists B € Bsuch that A = [g(X)]™ (B). But

A=[s(] (8)= X[ (8)] = x-(),
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where B’=g' (B) and by the measurability of g, B’ B. It follows that X' (B”)
e Ay and thus, A € A,. Let now A, = X;'(B) and

A =[g(x)] (B j=l...k
Then

* .
A cA, i=1,..., k,

and since A, j=1,---, k, are independent, so are A%, j=1,..., k. A

Exercise

7.4.1 Consider the probability space (S, A, P) and let A,, A, be events. Set
X,=1,,X,=1, and show that X, X, are independent if and only if A, A, are
independent. Generalize it for the case of n events A, j=1,..., n.
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Basic Limit Theorems

8.1 Some Modes of Convergence
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DEFINITION 1

Let{X,},n=1,2,...beasequence of random variables and let X be a random
variable defined on the sample space S supplied with a class of events A and
a probability function P (that is, the sequence of the r.v.’s and the r.v. X are
defined on the probability space (S, A, P)). For such a sequence of r.v.’s four
kinds of convergence are defined, and some comments are provided as to their
nature. An illustrative example is also discussed.

i) We say that {X,} converges almost surely (a.s.), or with probability one, to
X as n — o, and we write X, —=— X, or X, -== X with probability 1,
or P[X, == X]=1,if X,(s) W X(s) for all s € S except possibly for
a subset N of S such that P(N) = 0.

Thus X, —*— X means that for every £> 0 and for every s € N° there
exists N(g, s) >'0'such that

‘Xn(s)—X(s)‘ <e

for all n > N(e, s). This type of convergence is also known as strong
convergence.

ii) We say that {X,} converges in probability to X as n — oo, and we write
X, —e X, if for every € >0, P[IX, — X| > €] === 0.

Thus X, ——> X means that: For every ¢, § > 0 there exists N(g, 6) >0
such that P[IX X1 > gl < dforalln>N(g d).

REMARK 1 Since P[IX, — XI>¢] + P[IX, — X1 < g =1, then X, Tj? Xis
equivalent to: P[IX, — XI < €] === 1. Alsoif P[IX, — X > €] == 0 for every
e> 0, then clearly P[IX, — X > ] == 0.
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Let now F, = Fy, F = Fy. Then

iii) We say that {X,} converges in distribution to X as n — oo, and we write
X, % X, if F,(x) == F(x) for all x € R for which F is continuous.

Thus X, —> X means that: For every € > 0 and every x for which

F is continuous there exists N(e, x) such that IF,(x) — F(x)| < € for all

n > N(g, x). This type of convergence is also known as weak convergence.

REMARK 2 1If F, have p.d.f.’s f,, then X, —e X does not necessarily imply
the convergence of fu(x) to a p.d.f., as the followmg example illustrates.

Forn=1,2,...,consider the p.d.f.’s defined by

f(x)={%’ if le—(l/n) or x:1+(1/n)
! 0, otherwise.
EXAMPLE 1

Then, clearly, f,(x) —==> f(x) =0 for all x € R and f(x) is not a p.d.f.
Next, the d.f. F, corresponding to f,, is given by

0, if x<1—(1/n)
F,(x)=4%, if 1-(1/n)<x<1+(1/n)
L if x21+(1/n).

by
1 —
\
|
1
2 | | Figure 8.1
|
Lol
R
n n

One sees that F,(x) == F(x) for all x # 1, where F(x) is defined by

Flx)= {o, i x<l
1, if x21,
which is a d.f.
Under further conditions on f,, f, it may be the case, however, that f,
converges to a p.d.f. f.
We now assume that EIX,|> <o, n=1,2,..., Then:

iv) We say that { X, { .} converges to X in quadratic mean (q.m.) as n — oo, and we
write X, —4™ 5 X if EIX, — XI* —= 0.
Thus X, —> X means that: For every € > 0, there exists N(€) > 0 such
that EIX, — XPEE for all n > N(e).
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REMARK 3 Almost sure convergence is the familiar pointwise convergence
of the sequence of numbers {X,(s)} for every s outside of an event N of
probability zero (a null event). Convergence in distribution is also a pointwise
convergence of the sequence of numbers {F,(x)} for every x for which F is
continuous. Convergence in probability, however, is of a different nature. By
setting A, = {s € S; 1X,(s) — X(s)| > €} for an arbitrary but fixed € > 0, we have
that X, —— X, if P(A,) —==> 0. So the sequence of numbers {P(4,)} tends
to 0, as n — oo, but the events A, themselves keep wandering around the
sample space S. Finally, convergence in quadratic mean simply signifies that
the averages EIX, — XI* converge to 0 as n — oo.

Exercises

811 Forn=1,2,...,n,let X, be independent r.v.’s such that
P(x,=1)=p,. P(X,=0)=1-p,

Under what conditions on the p,’s does X, pr) 0?

8.1.2 Forn=1,2,...,let X, be an r.v. with d.f. F, given by F,(x) = 0 if

x <n and F,(x) =1 if x > n. Then show that F,(x) == 0 for every x e R.
Thus a convergent sequence of d.f.’s need not converge to a d.f.

8.1.3 LetX,j=1,...,n, beiid. r.v.’s such that EX; = u, 6*(X)) = ¢°, both
finite. Show that E(X, — 1)’ —==> 0.

8.1.4 Forn=1,2,...,let X,, Y, be r.v.’s such that E(X, - Y,)’ -== 0 and
suppose that E(X, — X)* ——==> 0 for some r.v. X. Then show that Y, %
X.

8.1.5 Let X;,j=1,...,n be independent r.v.’s distributed as U(0, 1), and
set Y, =min(X,,...,X,), Z,=max(X,...,X,), U,=nY,,V,=n(1-2).
Then show that, as n — oo, one has

i)Y, —£50;

i) Z, — 2 1;
i) U, —— U;
iv) V, —4> V, where U and V have the negative exponential distribution

with parameter A = 1.

8.2 Relationships Among the Various Modes of Convergence

The following theorem states the relationships which exist among the various
modes of convergence.



8.2 Relationships Among the Various Modes of Convergence 183

THEOREM 1 i) X, —*— X implies X, —— X.
i) X, —3=— X implies X, —— X.

iii) X ——> X implies X, ——> X. The converse is also true if X is degener-

ate that i is, P[ X=c]=1 for some constant c. In terms of a diagram this is

a.s.conv. = conv. in prob. = conv. in dist.

conv. in g.m.

PROOF
i) Let A be the subset of S on which X, == X. Then it is not hard to see
(see Exercise 8.2.4) that

The sets A, A° as well as those appearing in the remaining of this discus-
sion are all events, and hence we can take their probabilities. By setting

5,-AU(x...-x21}

n=l r=1

we have BkTA" as k — oo, so that P(B,) — P(A°), by Theorem 2, Chapter
2. Thusif X, —— X, then P(A°)=0, and therefore P(B,) =0, k> 1. Next,
it is clear that for every fixed k, and as n — oo, C,|B,, where

c, UUX —X|>—)

r=l

Hence P(C,l)\LP(Bk) 0 by Theorem 2, Chapter 2, again. To summarize, if
X, —— X, which is equivalent to saying that P(A°) =0, one has that
P(C,) == 0. But for any fixed positive integer m,

(|Xn+m_X|2;J‘;Q(|Xn+, —X|2;),

so that

1 - 1
P(|X”+m - X|> ;) < P[Q (|XW E ;H =P(C,)—>0

for every k > 1. However, this is equalivalent to saying that X, —— X, as
was to be seen.

ii) By special case 1 (applied with r =2) of Theorem 1, we have
Elx, - x|

Pllx, - x|>e|< <
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Thus, if X, ——> X, then EIX, — X —_mﬁ 0 implies P[IX, — X1 > €] ==
0 for every € > 0 or equivalently, X, —e X.

iii) Let x € R be a continuity point of F and let £ > 0 be given. Then we have
[XSx—e]:[Xn <x, XSx—e]+[Xn > X, XSx—e]
c[X, <x]+[X,>x X <x-¢]
c[x, <x]u[lx, - X|> ]

since

[X,, > X, XSx—£]=[Xn >x,—X2—x+s]

c[x, - xze]c[x, - x|z¢]
So
[x <x-e]c[x, <x]uljx, - X|2¢]
implies
P{X <x-¢]< P[X, <x|+P|x, - X|>¢]

or

Flx—g)<F,(x)+ P|x, - X|> ¢]
Thus, if X, Ti? X, then we have by taking limits

F(x—¢)<lim inf F, (x). (1)
In a similar manner one can show that
limsup F, {x ( )<F(x+£) (2)

But (1) and (2) imply F(x — ¢) < liminf F,(x) < hmsupF (x) £ F(x + ¢).
Letting € — 0, we get (by the fact that x is a contmulty point of F) that

F( )Sllr}LLann( )SllrnnjllpFn( )SF( )
Hence lim F,(x) exists and equals F(x). Assume now that P[ X =c]=1. Then

n—>co 0’
H-f

and our assumption is that F,(x) —== F(x), x # c. We must show that
X, —£— c. We have

Pl|x, - d<e|=P-e< X, -c<¢]
=P[c—££Xn Sc+£]
=P[X, <c+e]-P[X, <c-¢]
>P[X, <c+e|-P[X, <c-¢
:Fn(c+£)—Fn(c—8).
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Since ¢ — €, ¢ + € are continuity points of F, we get

lim P|X, —¢[<¢]> Fc+&)- Flc-¢)=1-0=1.

n—eo

Thus
Pllx,-c[<e] —>1. A

n—soo

REMARK 4 1t is shown by the following example that the converse in (i) is
not true.

Let S = (0, 1], and let P be the probability function which assigns to
subintervals of (0, 1] as measures of their length. (This is known as the
Lebesgue measure over (0, 1].) Define the sequence X, X,,...of r.v.’s as
follows: For each k =1, 2,..., divide (0, 1] into 2K subintervals of equal
length. These intervals are then given by

R SRS

For each k=1, 2,..., we define a group of 2" r.v.’s, whose subscripts range
from 2" to 2°— 1, in the following way: There are (2 —1) - (2" =1)=2""r.v.’s
within this group. We define the jth r.v. in this group to be equal to 1 for

2k—1 ’ 2k—1

We assert that the so constructed sequence X, X,, ... of r.v.’s converges to
0 in probability, while it converges nowhere pointwise, not even for a single
s € (0, 1]. In fact, by Theorem 1(ii), it suffices to show that X, —= 0;
that is, EX, —==> 0. For any n > 1, we have that X, is the 1ndlcat6r of an

interval
=t _j
2k—1 ’ 2k—1

for some k and j as above. Hence EX? = 1/2"". It is also clear that for m > n,
EX?,<1/2". Since for every £> 0, 1/2"! < e for all sufficiently large k, the proof
that EX. —== 0 is complete.

The example just discussed shows that X, —> X need not 1mply that
X, —== X, and also that X, —=>— X need not 1mply X, —=— X. That
X, —— ré ~— X need notimply that X —> Xisseen by the followmg example.

e[] —1 L] and 0, otherwise.

Let S and P be as in Example 2, and for n 2 1, let X, be defined by X, =
/nl ;. Then, clearly, X, -==> 0 but EX; =n(1/n) =1, so that X, % 0.

REMARK 5 In (ii), if P[X = c] =1, then: X, —=— X if and only if
E(Xn) n_}—N)C, Gz(Xn)K)O

In fact,
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EXAMPLE 4

THEOREM 2

2
E(x,-c) = (X, - Ex,)+(EX, -¢)]
= E(X, - EX,) +(EX, ~¢)
=o*(X,)+(EX, ).
Hence E(X, - ¢)* == 0if and only if 6*(X,) —==> 0 and EX, —==> c.
REMARK 6 The following example shows that the converse of (iii) is not
true.
Let S={1, 2, 3, 4}, and on the subsets of S, let P be the discrete uniform
function. Define the following r.v.’s:
X,(1)=x,(2)=1 X,(3)=x,(4)=0,n=1,2,...,

and

Then
‘Xn(s)—X(s)‘ =1 forall seS.

Hence X, does not converge in probability to X, as n — . Now,

0, x<0 0, x<0
FX"(x): ;. 0<x<l,  Fyx)=4s, 0s<x<l,
1, x2>1 1, x=>1

so that Fy (x) = Fy(x) for all x € R. Thus, trivially, Fy (x) —==> Fx(x) for all
continuity points of Fy; that is, X, Ti?) X, but X, does not converge in
probability to X.

Very often one is confronted with the problem of proving convergence in
distribution. The following theorem replaces this problem with that of proving
convergence of ch.f.’s, which is much easier to deal with.

(P. Lévy’s Continuity Theorem) Let {F,} be a sequence of d.f.’s, and let F be a
d.f. Let ¢, be the ch.f. corresponding to F, and ¢ be the ch.f. corresponding to
F. Then,

i) If F,(x) === F(x) for all continuity points x of F, then ¢,(f) == ¢(¢), for
everyt eR.
ii) If ¢,(¢) converges, as n — o, and ¢ € [R, to a function g(¢) which is continuous

atr=0, then g is a ch.f., and if F is the corresponding d.f., then F, (x) ==
F(x), for all continuity points x of F.

PROOF Onmitted.

REMARK 7 The assumption made in the second part of the theorem above
according to which the function g is continuous at ¢ = 0 is essential. In fact, let
X, be anr.v. distributed as N(0, n), so that its ch.f. is given by ¢,(f) =e™"*. Then
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9.(t) —= g(1), where g(¢) =0, if £ # 0, and g(0) = 1, so that g is not continuous
at 0. The conclusion in (ii) does not hold here because

Fy (x)=P(X, <x)= P[% < %J = @(%J — %

for every x € Rand F(x) =1, x € R, is not a d.f. of an r.v.

Exercises

8.2.1 (Rényi) Let S=[0, 1) and let P be the probability function on subsets
of S, which assigns probability to intervals equal to their lengths. For n =1,
2,..., define the r.v.’s X, as follows:

. j j+1
N, if <s<
Xy (s)= 2N +1 2N +1
0, otherwise,

j=0,1,...,2N, N=1,2,....Then show that
i) X, £ 0;

ii) X,(s) %e) 0 for any s € [0, 1);

iii) X,:(s) —= 0,5¢ (0,1);

iv) EX, 7@ 0.

8.22 Forn=1,2,...,let X,be r.v.’s distributed as B(n, p,), where np,, =

Ay —=> A(>0). Then, by using ch.f.’s, show that X, —> X, where Xisanr.v.
distributed as P(R).

8.23 Forn=1,2,...,let X, ber.v.’s having the negative binomial distribu-
tion with p, and r, such that pn—== 1.1, == e, sothatr,(1-p,) =1, —
A(>0). Show that X, —% X, Where X is an r.v. distributed as P(A). (Use
ch.f’s.)

8.24 Iftheiid. rv’sX,j=1,..., n_have a Cauchy distribution, show that
there is no finite constant ¢ for which X, ﬁ ¢. (Use ch.f.’s.)

8.2.5 Inreference to the proof of Theorem 1, show that the set A of conver-
gence of {X,} to X is, indeed, expressed by A = M Uz, N, (1X,,, — X1 <.

8.3 The Central Limit Theorem

We are now ready to formulate and prove the celebrated Central Limit
Theorem (CLT) in its simplest form.

THEOREM 3 (Central Limit Theorem) Let X, ..., X, beii.d. r.v.’s with mean u (finite) and
(finite and positive) variance ¢”. Let
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X, =13 x, G,(x)=
ni3

Then G,(x) —= ®(x) for every x in R.

REMARK 8
i) We often express (loosely) the CLT by writing
\n(X u) (O 1) or S, _E(Sn) _ N(O 1)
o O'(S”) "

for large n, where

n \’n
S, = ZX]., since
j=1

ii) In part (i), the notation S, was used to denote the sum of the r.v.’s X, . . .,
X,. This is a generally accepted notation, and we are going to adhere to
it here. It should be pointed out, however, that the same or similar
symbols have been employed elsewhere to denote different quantities
(see, for example, Corollaries 1 and 2 in Chapter 7, or Theorem 9 and
Corollary to Theorem 8 in this chapter). This point should be kept in mind
throughout.

iii) In the proof of Theorem 3 and elsewhere, the “little 0” notation will be
employed as a convenient notation for the remainder in Taylor series
expansions. A relevant comment would then be in order. To this end, let
{a,},{b,},n=1,2, ... betwosequences of numbers. We say that {a,} is o(b,)
(little o of b,) and we write a, = o(b,), if a,/b, —— 0. For example, if a,
=n and b, = n’, then a, = o(b,), since n/n’* = 1/n —— 0. Clearly, if a,
o(b,), then a, = b ,0(1). Therefore o(b,) = b,0(1).

iv) We recall the following fact which was also employed in the proof of
Theorem 3, Chapter 3. Namely, if a, —aq, then

n
a
(1 + —") —e.
n n—soo

PROOF OF THEOREM 3 We may now begin the proof. Let g, be the ch.f.
of G, and ¢ be the ch.f. of ®@; that is, ¢(f) = ¢ t € R. Then, by Theorem 2, it
suffices to prove that g,(1) —— ¢(), r € R. This will imply that G,(x) — ®(x),
x € R. We have

\/;()?n _.U) nX —-nu

o Gw; (2 o
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where Z, = (X, - u)/o,j=1,...,nareiid. with E(Z) =0, 0*(Z) = E(Z}) = 1.
Hence, for simplicity, writing X, Z; instead of X, Z,, when this last expression
appears as a subscript, we have

g.(1)= 8linle, (t)=gs, [ﬁ) = [gzl {%ﬂ :

Now consider the Taylor expansion of g, around zero up to the second order
term. Then

gzl[ﬁ]:gzl(opﬁglzl (o)%(ﬁ]zggl (o)ﬂ{%}

Since
g,(0)=1, g3,(0)=iE(z)=0, g7 (0)=i"E(Z})=-1,
we get
t £2 12 27 t?
ng (\/—;J_l—z—n-l-0(;]:1——”4‘;0(1):1——”[1— 0(1)]
Thus

2

g.(1)= {1 —;—n[l —0(1)]}n.

Taking limits as n — o we have, g,() —— ¢, which is the ch.f. of
. A

The theorem just established has the following corollary, which along with
the theorem itself provides the justification for many approximations.

The convergence G,(x) —= ®(x) is uniformin x € R.
(That is, for every x € R and every € > 0 there exists N(¢) > 0 independent of
x, such that 1G,(x) — ®(x)| < € for all n > N(¢) and all x € R simultaneously.)

PROOF 1t is an immediate consequence of Lemma 1 in Section
8.6%. A

The following examples are presented for the purpose of illustrating the
theorem and its corollary.
8.3.1 Applications

1. If X, j=1,...,nare iid. with E(X)) = i, 6°(X;) = 0°, the CLT is used
to give an approximation to Pla < S, < b], — < a < b < +e. We have:
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Pla<S,<b]=P

_p a—n,u<5n—E(Sn) b—n,u]

where

_a—-nl b—nu

a¥=————, b*=
on ovn

(Here is where the corollary is utilized. The points a* and b* do depend on n,

and therefore move along [R as n — . The above approximation would not be

valid if the convergence was not uniform in x € R.) That is, P(a < S, < b) =

O(b*) — O(a*).

2. Normal approximation to the Binomial. This is the same problem
as above, where now X, j = 1,..., n, are independently distributed as
B(1, p). We have u=p, o= +pq. Thus:

Pla<S, <b)=a(b*)-dfa*),
where
o = a—np’ b = b—np

\npq \npq

REMARK 9 1t is seen that the approximation is fairly good provided »n and
p are such that npg > 20. For a given n, the approximation is best for p =1 and
deteriorates as p moves away from+. Some numerical examples will shed some
light on these points. Also, the Normal approximation to the Binomial
distribution presented above can be improved, if in the expressions of a* and
b* we replace a and b by a + 0.5 and b + 0.5, respectively. This is called the
continuity correction. In the following we give an explanation of the continuity
correction. To start with, let

I (r) — (”)prq”", and let ¢n(x) = %6—12/2’
' v2mpg
where
_r—np

xX=—.
\npq

Then it can be shown that f,(r)/¢,(x) —=> 1 and this convergence is uniform

for all x’s in a finite interval [a, b]. (This is the De Moivre theorem.) Thus for
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large n, we have, in particular, that f,(r) is close to ¢,(x). That is, the probability
("p'q"" is approximately equal to the value

-
‘ exp| —
\27npq 2npq

of the normal density with mean np and variance npq for sufficiently large .
Note that this asymptotic relationship of the p.d.f.’s is not implied, in general,
by the convergence of the distribution functions in the CLT.

To give an idea of how the correction term+ comes in, we refer to Fig. 8.2
drawn for n =10, p = 0.2.

03—

0.2

/

\\\
/

_/

Figure 8.2

Now
P(1<58,<3)=P(2<S,<3)=1,(2)+1£(3)
= shaded area,
while the approximation without correction is the area bounded by the normal
curve, the horizontal axis, and the abscissas 1 and 3. Clearly, the correction,
given by the area bounded by the normal curve, the horizontal axis and the

abscissas 1.5 and 3.5, is closer to the exact area.
To summarize, under the conditions of the CLT, and for discrete r.v.’s,

P(a <S,< b) = CD( b=nu ) - CI)[ a- n,u] without continuity correction,

on on

and
Pla<s, <b) @(MJ . q{M]
G\/; o\n

with continuity correction.

In particular, for integer-valued r.v.’s and probabilities of the form P(a < S, <
b,), we first rewrite the expression as follows:
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Pla<s,<b,)=P((a-1)<S,<b,)

and then apply the above approximations in order to obtain:

P(a <3, < b) = d>(b ") - dJ(a *) without continuity correction,

where
*_a—l—n,u b = b—nu
on on
and
P(a <§,< b) = (I)(b’) - CD(a’) with continuity correction,
where
a,=a—0.5;nu’ b= b+0.5- b+0.5-nu

o\n owf

)

(4)

©)

These expressions of a*, b* and &, b’ in (4) and (5) will be used in calculating

probabilities of the form (3) in the numerical examples below.

EXAMPLE 5 (Numerical) For n =100 and p, = 1, p, ==, find P(45 < S, < 55).

i) For p, =+: Exact value: 0.7288

Normal approximation without correction:

44— 1001 6
2=-12,
J100
22
1
55-100-
2=5=1
\/10 11
22

Thus
d)(b *) - q>(a x) = <I>(1) - <1>(—1 .2) = <I>(1) + cb(l.z) -1
=0.841345+0.884930 — 1 = 0.7263.

Normal approximation with correction:

45-05-100- 1 ss
a'=—2=—?=—1.1
100.1.1
22
1
55+405-100 > <«
b = 2=?'=1.1.
100- 1.1
22
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Thus
q>(b') - (D(a’) = q>(1.1) - q>(-1.1) = 2<1>(1.1) —1=2x0.864334 —1 = 0.7286.

Error without correction: 0.7288 — 0.7263 = 0.0025.

Error with correction: 0.7288 — 0.7286 = 0.0002.
2, working as above, we get:
Exact value: 0.0000.

a*=275, b*=415  so that ®(b*)—®(a*)=0.0030.

a’ =286, b'=523, so that d)(b’) —cb(a') =0.0021.

ii) For p, =

Then:

Error without correction: 0.0030.
Error with correction: 0.0021.
3. Normal approximation to Poisson. This is the same problem as in

(1), where now X, j=1, ..., n are independent P(1). We have =1, 6= /4.
Thus

P(a <S, < b) =~ d)[ b %’l] - dD[ aJ;_zl) without continuity correction,

A
and

b+0.5-nA a+0.5-nA
Pla<S,<b)=® = -d
s ) -of 22222 - of £

N nA
with continuity correction.
Probabilities of the form P(a < S, < b) are approximated as follows:

P(a <S§,< b) = <I)(b *) - <I>(a *) without continuity correction,

where
a*za—l—nﬂ,, b*zb—nl,
Y n/”t \/%
and
P(a <§,< b) = dJ(b’) - <I>(a’) with continuity correction,
where
a,_a—O.S—n/l b,_b+0.5—n),
\/ﬁ ’ \Vni

EXAMPLE 6 (Numerical) For nA =16, find P(12 < S, < 21). We have:
Exact value: 0.7838.
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Normal approximation without correction:
_11-16 =—§=—1.25, pe = 21216 =§=1.25,
Jie 4

N

so that ®(b*) — d(a*) = ®(1.25) — D(~1.25) = 2d(1.25) — 1 = 2 x 0.894350
—1=0.7887.

a*

Normal approximation with correction:
a’=-1125, b’'=1375,  sothat ®(b’)-®(a’)=0.7851.

Error without correction: 0.0049.
Error with correction: 0.0013.

Exercises

8.3.1 Refer to Exercise 4.1.12 of Chapter 4 and suppose that another manu-
facturing process produces light bulbs whose mean life is claimed to be 10%
higher than the mean life of the bulbs produced by the process described in the
exercise cited above. How many bulbs manufactured by the new process must
be examined, so as to establish the claim of their superiority with probability
0.95?

8.3.2 A fair die is tossed independently 1,200 times. Find the approximate
probability that the number of ones X is such that 180 < X < 220. (Use the
CLT.)

8.3.3 Fifty balanced dice are tossed once and let X be the sum of the
upturned spots. Find the approximate probability that 150 < X <200. (Use the
CLT.)

8.3.4 LetX,j=1,...,100 be independent r.v.’s distributed as B(1, p). Find
the exact and approximate value for the probability P( 3% X;= 50). (For the
latter, use the CLT.)

8.3.5 One thousand cards are drawn with replacement from a standard deck
of 52 playing cards, and let X be the total number of aces drawn. Find the
approximate probability that 65 < X <90. (Use the CLT.)

8.3.6 A Binomial experiment with probability p of a success is repeated
1,000 times and let X be the number of successes. For p = 17 and p = %, find
the exact and approximate values of probability P(1,000p — 50 < X < 1,000p
+ 50). (For the latter, use the CLT.)

8.3.7 From a large collection of bolts which is known to contain 3% defec-
tive bolts, 1,000 are chosen at random. If X is the number of the defective bolts
among those chosen, what is probability that this number does not exceed 5%
of 1,000? (Use the CLT.)
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8.3.8 Suppose that 53% of the voters favor a certain legislative proposal.
How many voters must be sampled, so that the observed relative frequency of
those favoring the proposal will not differ from the assumed frequency by
more than 2% with probability 0.99? (Use the CLT.)

8.3.9 Inplaying a game, you win or lose $1 with probability 5. If you play the
game independently 1,000 times, what is the probability that your fortune (that
is, the total amount you won or lost) is at least $10? (Use the CLT.)

8.3.10 A certain manufacturing process produces vacuum tubes whose life-
times in hours are independently distributed r.v.’s with Negative Exponential
distribution with mean 1,500 hours. What is the probability that the total life of
50 tubes will exceed 75,000 hours? (Use the CLT.)

8.3.11 LetX,j=1,...,nbeiid. r.v.’s such that EX = u finite and 62()(]) =
o’ = 4. If n = 100, determine the constant c so that P(1X, — ul < ¢) = 0.90. (Use
the CLT.)

8.3.12 LetX,j=1,...,nbeiid. r.v.’s with EX,= u finite and 6°(X;) =0’ €
(0, ).

i) Show that the smallest value of tzhe sample size n for which P(1X, — ul < ko)
> p is given by n:[%cb’l (“TP)] if this number is an integer, and #n is
the integer part of this number increased by 1, otherwise. (Use the
CLT.);

ii) By using Tchebichev’s inequality, show that the above value of n is given
by n= ﬁ if this number is an integer, and 7 is the integer part of this
number increased by 1, otherwise;

iii) For p =0.95 and k£ =0.05, 0.1, 0.25, compare the respective values of z in
parts (i) and (ii).

8.3.13 Refer to Exercise 4.1.13 in Chapter 4 and let X, j=1,..., n be the
diameters of n ball bearings. If EX; = 0.5 inch and o= 0.0005 inch, what is the
minimum value of n for which P(1X, — ul £ 0.0001) = 0.099? (Use Exercise
8.3.12.)

8314 LetX,j=1,...,n Y;=1,..., nbeindependent r.v.’s such that the
X’s are identically distributed with EX; = y,, 0°(X;) = ¢°, both finite, and
the Y’s are identically distributed with EY; = y, finite and ¢°(Y;) = ¢°. Show
that:

i) E()?n _?n):lll’l —U,, 62()?" _2)24;

i) T Guom)] s asymptotically distributed as N(0, 1).

oN2

8315 LetX,j=1,...,n,Y,j=1,..., n be iid. r.v.’s from the same
distribution with EX;= EY,= uand 6*(X;) =6*(Y)) = 6°, both finite. Determine
the sample size n so that P(IX, — Y,l £0.250) = 0.95. (Use Exercise 8.3.12.)

8.3.16 An academic department in a university wishes to admit c first-year

graduate students. From past experience it follows that, on the average,
100p % of the students admitted will, actually, accept an admission offer (0 < p
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< 1). It may be assumed that acceptance and rejection of admission offers by
the various students are independent events.

i) How many students n must be admitted, so that the probability P(I.X — cl
< d) is maximum, where X is the number of students actually accepting an
admission, and d is a prescribed number?

ii) What is the value of n for ¢ =20, d =2, and p = 0.6?
iii) What is the maximum value of the probability P(1.X — 20l <2) for p = 0.6?

Hint: For part (i), use the CLT (with continuity correction) in order to find the
approximate value to P(IX — ¢l £ d). Then draw the picture of the normal
curve, and conclude that the probability is maximized when # is close to c/p.
For part (iii), there will be two successive values of n suggesting themselves as
optimal values of n. Calculate the respective probabilities, and choose that
value of n which gives the larger probability.)

8.4 Laws of Large Numbers

THEOREM 4

THEOREM 5

This section concerns itself with certain limit theorems which are known as
laws of large numbers (LLN). We distinguish two categories of LLN: the
strong LLN (SLLN) in which the convergence involved is strong (a.s.), and the
weak LLN (WLLN), where the convergence involved is convergence in prob-
ability.

(SLLN) If X, j=1,..., nare iid. r.v.’s with (finite) mean y, then
X+ +X, s

n—seo
n

X, =
The converse is also true, that is, if X %) to some finite constant y,
then E(X)) is finite and equal to u.

PROOF Omitted; it is presented in a higher level probability course. A
Of course, X, —>— pimplies X, TPQ u. The latter are the weak LLN; that is,
(WLLN) If X, j=1, ..., n, are i.i.d. r.v.’s with (finite) mean u, then

X +---+X, »p

n—seo
n

X, =

L.

PROOF

i) The proofis a straightforward application of Tchebichev’s inequality under
the unnecessary assumption that the r.v.’s also have a finite variance o.
Then EX, = u, 6°(X,) = o°/n, so that, for every &> 0,

P[|)?n—u|2g]sgi2%2—>0 as n— oo,
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ii) This proof is based on ch.f.’s (m.g.f.’s could also be used if they exist). By
Theorems 1(iii) (the converse case) and 2(ii) of this chapter, in order to
prove that X, Ti? U, it suffices to prove that

O% (t) — 9, (t) =e™, for teR.

For simplicity, writing ZX; instead of X7, X, when this last expression
appears as a subscript, we have

05 (1)= 0y (1) = 61 (ﬁ) i [q’)" (%ﬂ

[t (zﬂ
=|1+—iu+o| —
| n n

Pt
= 1+;lﬂ+;0(1)}

-|! +%[i,u + o(l)ﬂ — e A

REMARK 10 An alternative proof of the WLLN, without the use of ch.f.’s,
is presented in Lemma 1 in Section 8.6*. The underlying idea there is that of
truncation, as will be seen.

Both laws of LLN hold in all concrete cases which we have studied except
for the Cauchy case, where E(X) does not exist. For example, in the Binomial
case, we have:

If X;,j=1,..., nare independent and distributed as B(1, p), then
Y - X+ +X,

n
n—eo
n

)4 a.s.

and also in probability.
For the Poisson case we have:
If X, j=1,..., nare independent and distributed as P(4), then:

X+ +X,

n—eo
n

X, = A as.

and also in probability.

8.4.1 An Application of SLLN and WLLN

Let X},j=1,...,nbeiid. with d.f. F. The sample or empirical d.f. is denoted
by F, and is defined as follows:

n

For x e R, F(x)z% [thenumberole,...,XnSx].
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F, is a step function which is a d.f. for a fixed set of values of X, ..., X,. Itis
also an r.v. as a function of the r.v.’s X, ..., X,, for each x. Let
1, X, <
Y,(x)=Y, = =t
! 70, X, >x, ji=1,...,n
Then, clearly,
1 n
F,(x)= R
j=1
On the other hand, Y}, j=1, ..., n are independent since the X’s are, and Y is

B(1, p), where
p=P(Y;=1)=P(X,<x)=F(x)

Hence

n

E(ZY]) =np=nF(x), 62(1

j=1 j=1

It follows that
1
E[Fn (x)] = nF(x) = F(x)
So for each x € R, we get by the LLN
E() 2 F) Bt Pl

n 500

Actually, more is true. Namely,

Y]) = npq = nF(x)[l -F(

I

THEOREM 6 (Glivenko—Cantelli Lemma) With the above notation, we have
Pl:sup{‘Fn (x) - F(x); xe ZR’} — 0:| =1
(that is, F,(x) —=— F(x) uniformly in x € R).
PROOF Omitted.
Exercises

8.4.1 LetX,j=1,...,nbeiid. r.v.’s and suppose that EXf is finite for a

given positive integer k. Set

k) 1S
X =23 x
ns

for the kth sample moment of the distribution of the X’s and show that

X £ 5 EXt
n—>co

842 LetX,j=1,...,nbeiid. r.v.’s with p.d.f. given in Exercise 3.2.14 of
Chapter 3 and show that the WLLN holds. (Calculate the expectation by

means of the ch.f.)



8.5 Further Limit Theorems 199

843 Let X, j=1,..., n be r.v.’s which need be neither independent
nor identically distributed. Suppose that EX; = u, o°(X)) = o3, all finite,
and set

— 1S
.un_;jzz}/vtj-

Then a generalized version of the WLLN states that

Show that if the X’s are pairwise uncorrelated and ;< M(<eo), j > 1, then the
generalized version of the WLLN holds.

844 LetX,j=1,...,n be pairwise uncorrelated r.v.’s such that

P(Xl. =—af)=P(X,. :af):%.

Show that for all s such that 0 < o < 1, the generalized WLLN holds.

8.4.5 Decide whether the generalized WLLN holds for independent r.v.’s
such that the jth r.v. has the Negative Exponential distribution with parameter
A= 2"

J .
8.4.6 Forj=1,2,...,let X;be independent r.v.’s such that X is distributed
as ;(f/\/7 Show that the generalized WLLN holds.

8.4.7 Forj=1,2,...,let X;be independent r.v.’s such that X is distributed
as P(A). If {1/nX} A} remains bounded, show that the generalized WLLN
holds.

8.5 Further Limit Theorems

In this section, we present some further limit theorems which will be used
occasionally in the following chapters.

THEOREM 7 VD LetX,,n>1,and Xber.v.’s,and let g: R— R be continuous, so that g(X,,),
n 21, and g(X) are r.v.’s. Then X, —=— X implies g(X,) —— g(X).

n—oo

ii) More generally, if for j=1,..., k, X\, n 2 1, and X are r.v.’s, and g:
R*—R is continuous, so that g(X", ..., X%) and g(X,, ..., X,) are r.v.’s,
then

XS‘]) nf;e Xf ’
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THEOREM 7

PROOF Follows immediately from the definition of the a.s. convergence and
the continuity of g. A

A similar result holds true when a.s. convergence is replaced by conver-
gence in probability, but a justification is needed.

i) Let X,, n>1, X and g be as in Theorem 7(i), and suppose that X, Tiq_) X.
Then g(X,) —X= g(X).

ii) More generally, let again X, X; and g be as in Theorem 7(ii), and suppose
that X —— X, j=1,..., k. Theng(X\", ..., X\") —— g(X,,..., X))

PROOF

i) We have P(X € R) = 1, and if M, T e(M, > 0), then P(X € [-M,, M,])
—=> 1. Thus there exist n, sufficiently large such that

P([X &(oo =M, )|+[x €(m,, oo)]) =P(|X|> M, )<e/2(M, >1).
Define M = M, ; we then have
P(|X| > M) <eg/2.

g being continuous in [, is uniformly continuous in [-2M, 2M]. Thus for
every €> 0, there exists 6(e, M) = §(¢) (<1) such that Ig(x") — g(x”)! < € for
all X', x” € [-2M, 2M] with Ix" - x| < &(¢). From X, —— X we have that
there exists N(€) > 0 such that

Pllx, - x|= 8(e)| < /2, n=N(e)
Set
A =|x|s M| ay(n)=[jx, - x|<8(e)]
and
A, (n) = ”g(Xn) - g(X)‘ < s] (for n N(s)).

Then it is easily seen that on A; N A,(n), we have -2M < X <2M,-2M < X,
< 2M, and hence

A, " A, (n) € Ay(n),
which implies that

A5(n)  Af U A5(n),
Hence

P[A;‘ (n)] < P(Af ) + P[A;(n)] <ef2+ef2=¢
(for n> N(e)).
That is, for n > N(e),
Pﬂg()(n) - g(X)‘ = s] <&
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The proof is completed. (See also Exercise 8.6.1.)

ii) It is carried out along the same lines as the proof of part (i). (See also
Exercises 8.5.3 and 8.6.2.) A

The following corollary to Theorem 7’ is of wide applicability.
COROLLARY If X, —— X,Y, —— Y, then
)X, +Y, > X+Y.
ii) aX,+DbY, T’L) aX + bY (a, b constants).
i) XY, —— XY.

iv) X,/Y, —2— X/Y, provided P(Y, # 0) = P(Y % 0) = 1.

PROOF In suffices to take g as follows and apply the second part of the
theorem:
i) g(x,y)=x+y,
ii) g(x, y) =ax+ by,
i) g(x, y) = xy,
iv) g(x, y) =xly, y#0. A
The following is in itself a very useful theorem.
THEOREM 8 1If X, %w) Xand Y, TPN) ¢, constant, then
i) X, +Y, = X+,
ii) XY, %}; cX,
iii) X,/Y, —— X, provided P(Y,#0)=1,  ¢#0.
Equivalently,
i) P(X,+Y,<z)=Fy  (2) — Fy..(2)
:P(X+CSZ):P(XSZ—C):FX(Z—C);
i (XY, 5)= P ) o Pl

=P(£Sz)— P(X£cz)=FX(cz), c>0
P(X2cz)=1-F(cz-). <0,
provided P(Y, #0) = 1.



202

8 Basic Limit Theorems

REMARK 11 Of course, Fy(z/c—) = Fy(z/c) and Fy(cz—) = Fx(cz), if F is
continuous.

PROOF As anillustration of how the proof of this theorem is carried out, we
proceed to establish (iii) under the (unnecessary) additional assumption that
F is continuous and for the case that ¢ > 0. The case where ¢ < 0 is treated
similarly.

We first notice that Y, —> ¢ (>0) implies that P(Y, >0) —— 1. In fact,
Y, —£— c is equivalent to P(IY —cd<e — 1 for every e> 0, or
P(c— €< Y,<c+é& —— 1.Thus,if we choose e< c we obtain the result. Next,
since P(Y, #0) =1, We may divide by Y, except perhaps on a null set. Outside

this null set, we have then

P(A):: Sz)=PK);: Sz]ﬂ(Yn >O)}+P|:();: Sz)ﬂ(Yn <0)}

< PK ); < zJﬂ(Yn > 0):|+P(Yn <0).

n

In the following, we will be interested in the limit of the above probabilities as
n — oo. Since P(Y, < 0) — 0, we assume that Y, > 0. We have then

o N A ot oy s TR

§(|Yn —c|2 S)U(Xn <zY, )ﬂ(|Yn —c|<g).

But 1Y, — cl < €is equivalent to ¢ — e < Y, < ¢ + & Therefore
(Xn SzY) (|Y —C|<8) [X <Z(C+8)] if z20,
and
(Xn SzYn)m(|Yn —c|< e)g[Xn Sz(c—s)], if z<O.
That is, for every z € R,
(X, <27, )A(|Y, - <e) <[, <z(cxe)]

and hence

(); < z]g (v, -z e)J[x, <z(cte)] zem

n

Thus

P();: < )SP(|Yn—c|23)+P[XnsZ(cis)], zeR.

Letting n — oo and taking into consideration the fact that P(IY, —cl > ¢€) — 0
and P[X, < z(c + €)] = Fy[z(c * €)], we obtain

n—eo

lim sup P();: < Z) <F, [z(c + 8)], zeR.
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Since, as € — 0, Fy[z(c + €)] = Fy(zc), we have

lim sup P(% < z) <F, (zc), ZeR. (6)

n—yoc0

| [Xn Sz(cie)]:[Xn Sz(cie)]m(|Yn—c|28)+[Xn Sz(cie)]

ol

U[Xn Sz(cie)]m“Yn —c|<£).

Yn—c|<e)<;(|Yn—c|2£)

By choosing € < ¢, we have that 1Y, — ¢l < €is equivalent to 0 <c - e< Y, <
¢ + € and hence

[ %, <dc-g)|N(¥, - c[<e) < ();— < z), if 70,

and

[XnsZ(c+e)]ﬂ(|Yn—c|<e)g(%31} if z<0.

That is, for every z € R,

[X, <dcxe)|N(¥.-o|<e)c (); < z)

and hence

(X, <dce)|c(, - s)U();” < z), zeR.
Thus
PlX, <z(cxe)|< Py, —c>¢)+ P();—: < z].

Letting n — oo and taking into consideration the fact that P(I1Y, —cl > ¢€) = 0
and P[X, < z(c + €)] = F,[z(c £ €)], we obtain

n—eo

F, [z(c + s)] <lim inf P();—: < z], zeR

Since, as € = 0, Fy[z(c + €)] = Fy(zc), we have

Fy(zc) <lim inf P( ); n < z], zeR. (7)

n—eo n

Relations (6) and (7) imply that lim P(X,/Y, < z) exists and is equal to

Fy(z¢)=P(X <zc)= P(% < z) = Fy.(z)

Thus
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COROLLARY
TO THEOREM 8

n—soo

& <)ol k) <em

n

as was to be seen. A
REMARK 12 Theorem 8 is known as Slutsky’s theorem.

Now, if X, j =1,..., n, are ii.d. r.v.’s, we have seen that the sample
variance

S? :li(xj—)?n) ZXZ X2
nis nis
Next, the r.v.’s X2 j=1,...,nareii.d., since the X’s are, and
E(x?)=0" (Xj)+(EX/.)2 =o’+u’, it u=E(X) o’=c*(X)

(which are assumed to exist). Therefore the SLLN and WLLN give the result
that

—ZXZ — 0o’ +u’ as.

/ 1
and also in probability. On the other hand, X — @ as. and also in
probability, and hence X — 1 a.s. and also in probablhty (by Theorems
7(i) and 7’(i)). Thus

—ZXZ X2 sol+u’-u’=0 as.

] 1
and also in probability (by the same theorems just referred to). So we have
proved the following theorem.

Let X, j=1,...,n beiid. r.v. s with E(X)) =y, 0°(X;)=0,j=1,...,n. Then
S —= o’ as. and also in probability.

REMARK 13 Of course,

2

§2—L>0" implies —- L1,
n—eo n— 1 0.2 n—eo
since n/(n —1) ——> 1.
If X,,..., X, areiid. r.v.’s with mean u and (positive) variance ¢’, then
Vn-1(X, - Vn(X, -
g . ,u) niw N(O, 1) and also ( ‘ ,u) nim N(O, 1).

PROOF 1In fact,
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by Theorem 3, and
An_s, Py,
dn_lo ™
by Remark 13. Hence the quotient of these r.v.’s which is
Vn-1(X, - p)
Sn

converges in distribution to N(0, 1) as n — oo, by Theorem 9. A

The following result is based on theorems established above and it is of
significant importance.

Forn=1,2,...,let X, and X be r.v.’s, let g: R — R be differentiable, and let
its derivative g’(x) be continuous at a point d. Finally, let ¢, be constants such
that 0 # ¢, — oo, and let ¢, (X, — d) —%— X as n — . Then ¢,[g(X,) — g(d)]
— 5 g(d)X as n — oo.

PROOF In this proof, all limits are taken as n — oo. By assumption,
c(X,-d) —— X and c¢,' — 0. Then, by Theorem 8(ii), X, —d —%— 0, or
equivalently, X, — d —2— 0, and hence, by Theorem 7’(i),
X, —d—>0. (8)
Next, expand g(X,) around d according to Taylor’s formula in order to obtain
, £
8(X,) = gld)+(X, - d)g'(X7).
where X is an r.v. lying between d and X,. Hence
c.[8(X.)-g(d)]=c.(x, -d)e(x) )
However, |X#* —dl <1X, — dl —*— 0 by (8), so that X* —£— d, and therefore,
by Theorem 7'(i) again,
g(x5) > gla) (10)
By assumption, convergence (10) and Theorem 8(ii), we have c,(X, — d)

g (X¥*) — g’(d)X. This result and relation (9) complete the proof of the
theorem. A

Let the r.v.’s X}, ..., X, be i.i.d. with mean g € R and variance 6° € (0, ),
and let g: R — R be differentiable with derivative continuous at u. Then, as
1 —> oo,

Unlg(%,)- gl = (0o (W] )

PROOF By the CLT, Vn(X, - u) —“— X ~ N(0, 6°), so that the theorem
applies and gives
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Vnf(%,)- g~ (ux - N{0.[o ()] } &
APPLICATION Ifther.v.’s X;,j=1,...,nin the corollary are distributed as
B(1, p), then, as n — o,

\/;[)_(n(l —)_(n)— pq] —4 N(O, pq(l —2p)2).
Here u=p, 6° = pq, and g(x) = x(1 — x), so that g’(x) = 1 — 2x. The result
follows.

Exercises

8.5.1 Use Theorem 8(ii) in order to show that if the CLT holds, then so does
the WLLN.

8.5.2 Refer to the proof of Theorem 7'(i) and show that on the set A, N
A,(n), we actually have 2M < X < 2M.

8.5.3 Carry out the proof of Theorem 7’(ii). (Use the usual Euclidean
distance in R*.)

8.6* Pdlya’s Lemma

LEMMA 1

and Alternative Proof of the WLLN

The following lemma is an analytical result of interest in its own right. It was
used in the corollary to Theorem 3 to conclude uniform convergence.

(Pdlya). Let F and {F,} be d.f.’s such that F,(x) —— F(x), x € R, and let F be
continuous. Then the convergence is uniform in x € R. That is, for every £ >0
there exists V(&) > 0 such that n > N(¢) implies that |F,(x) — F(x)!| < € for every
xe R

PROOF Since F(x) — 0 as x — —o, and F(x) — 1, as x — oo, there exists an
interval [e, ] such that

Fla)<g/2, F(B)>1-¢/2. (11)

The continuity of F implies its uniform continuity in [¢, f]. Then there is a
finite partition o =x,<x, <---<x,= B of [a, ff] such that

Flx;,)-F(x;)<e/2, j=1,...,r-1 (12)

Next, F,(x;) —= F(x;) implies that there exists N(¢) > 0 such that for all
n = Nje),

n

F (xj)—F(xj)‘<8/2, ji=1...,r.
By taking
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nz N(s) = max(Nl(e), . ,N,(S)),

we then have that

F (xj)—F(xj)‘<6/2, j=1,...,r (13)

n

Let x,=—o0, x,,, = . Then by the fact that F(—e) =0 and F(e) =1, relation (11)
implies that

Flx,)- F(x,)<&/2, F(x,,)-F(x,)<¢/2. (14)
Thus, by means of (12) and (14), we have that
[F(x) - Flx))|<ef2, j=0.1,...,r (15)
Also (13) trivially holds for j =0 and j = r + 1; that is, we have
Fn(xj)—F(xj)‘<e/2, j=0,1,...,r+l. (16)
Next, let x be any real number. Then x; < x <x;,, forsome j=0, 1, ..., r. By (15)

and (16) and for n > N(¢), we have the following string of inequalities:

F(x;)-&/2 < F,(x;) < F,(x) S F,(x ) < F(x;,) + /2

<F(x,.)+£SF(x)+sSF(x,.+1)+e.
Hence

OSF(x)+e—Fn(x)SF(x )+3—F(x/.)+e/2<23
and therefore IF,(x) — F(x)| < & Thus for n > N(¢), we have

F (x) - F(x)‘ <e forevery xeR. 17)

n

JH

Relation (17) concludes the proof of the lemma. A

Below, a proof of the WLLN (Theorem 5) is presented without using
ch.f.’s. The basic idea is that of suitably truncating the r.v.’s involved, and is
due to Khintchine; it was also used by Markov.

ALTERNATIVE PROOF OF THEOREM 5 We proceed as follows: For any
6> 0, we define

Lo Jx it |x|<6en
Y(”)_Yf_{(),] if |Xj.|>6‘n
and
. ]o, it |XA|S5-n
Z,(n)—Z,-—{X/_’ if |Xi_|>5.n, j=1,..., n

Then, clearly, X; = Y, + Z, j = 1,..., n. Let us restrict ourselves to the
continuous case and let f be the (common) p.d.f. of the X’s. Then,
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= E(v?)-(EY,) < E(})
:E{X1 Ijfcoa] ( )}
:fwle\ [[¢<5] ( )£ (x)ex

= [ f(x)dx <6-nf"] f|f(x)dx <8-n[” |x|f(x)d

=5-nEX,|
that is,

o’(v,)<5-n-E|X,| (18)
Next,
E(Y,)=E(Y,)= E{XJHX (e )}
= L@ xlﬂx‘ga_n](x)f(x)dx.
Now,
xlﬂx\ga.n](X)f(x) < |x|f(x), xlﬂx‘qn]( )f(x)mxf(x),
and
j: |x| f (x)dx < oo,

Therefore

J: xl[‘x‘gan](x)f(x)dx K)J: xf(x)dx =u
by Lemma C of Chapter 6; that is,
E(Y)—u (19)

>e|=P > ne
j=1

s

XYL,

L
nig
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by (18); that is,

> e} < §E|X1 | (20)

> 28]

> e] + P|EY, - > £]

Thus,

zzg}z P: %;1’1 - E(Yj)j+(E(Yl)—/,t)

11
<P ;gyj—Ex

+|EY1 —u|22£]

<P —zY - EY,

]—1

<5 E|X1 |
for n sufficiently large, by (19) and (20); that is,
P[z
n J=
for n large enough. Next,

P(2;#0)=P(Z,|>5n)

> 23} < 832 E|X,| (21)

= P(|x,|>8-n)

= [ p(o)ax+ [ 1
= [y Pl
J.(\XHM) Flx)ax
M

<_[(‘ bon) 5 (x)dx

1
= EJ.(‘X‘>5'H) x|f(x)dx

5
<5-n

= é, since J‘(‘x‘>6_n)|x|f(x)dx <8

n

for n sufficiently large. So P(Z; # 0) < §/n and hence

P[izj 7:0}5 nP(Z; #0)<5 (22)
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for n sufficiently large. Thus,

P lZX,—u >4e|=P lZYj+lZZi—,u >4¢
niy [ j=1 nj=1
SPl Y/.—y+l Z,|z4¢e
_n]:1 nio
1 13
SPI|—) Y —uy=z2|+Pl|l—) Z.|=22¢
J J
_nf=] ni5
<pl|t Y, —u=2e|+P| Y Z #0
n =1 j=1

for n sufficiently large, by (21), (22).
Replacing & by €, for example, we get

1 n
P|:;]2;X/.—u

for n sufficiently large. Since this is true for every & > 0, the result
follows. A

24»3:|SSE|X1|+£3

This section is concluded with a result relating convergence in probability
and a.s. convergence. More precisely, in Remark 3, it was stated that X, pr)
X does not necessarily imply that X, —>— X. However, the following is
always true.

If X, Tix_) X, then there is a subsequence {n,} of {n} (that is, n, T co, k — o)
such that X, —>— X.
PROOF Omitted.
As an application of Theorem 11, refer to Example 2 and consider the
subsequence of r.v.’s {X,,}, where

Xy =1 2 )

zkfl

Then for £ > 0 and large enough k, so that 1/2°" < &, we have

P(X,|>¢e)=P(X, =1)= 21—1 <e.

Hence the subsequence {X,,} of {X,} converges to 0 in probability.
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Exercises
8.6.1 Use Theorem 11 in order to prove Theorem 7°(i).
8.6.2 Do likewise in order to establish part (ii) of Theorem 7.



Chapter 9

Transformations of Random Variables
and Random Vectors

9.1 The Univariate Case

212

THEOREM 1

The problem we are concerned with in this section in its simplest form is the
following:

Let X be an r.v. and let 4 be a (measurable) function on R into R, so
that Y = A(X) is an r.v. Given the distribution of X, we want to determine
the distribution of Y. Let P,, P, be the distributions of X and Y, respectively.
That is, Py(B) = P(X € B), Py(B) = P(Y € B), B (Borel) subset of K. Now
(Ye By=[h(X) e B]=(X e A), where A =h'(B) =[x € R, h(x) € B}.
Therefore P,(B)=P(Y € B)=P(X e A)=P,(A). Thus we have the following
theorem.

Let X be anr.v. and let i: R — R be a (measurable) function, so that Y = A(X)
is an r.v. Then the distribution P, of the r.v. Y'is determined by the distribution
P of the r.v. X as follows: for any (Borel) subset B of R, P,(B) = P,(A), where
A =h"(B).

9.1.1 Application 1: Transformations of
Discrete Random Variables

Let X be a discrete r.v. taking the values x;,j=1,2, ..., and let Y = A(X). Then
Y is also a discrete r.v. taking the values y, j=1,2,.... We wish to determine
Hy)=P(Y=y),j=1,2,.... By taking B = {y;}, we have

A= {x,—;h(x,.) = yj},
and hence

Koy)=P(¥ =y) =B ({v}) = Pe(4) = T filx.):

x,€A
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where
fX(xl.) = P(X = xl.).

Let X take on the values —n,...,—1,1,..., n each with probability 1/2n, and
let Y = X°. Then Y takes on the values 1, 4, . .., n* with probability found as
follows: If B = {r’}, r =1, ..., +n, then

A:h"l(B):(x2 :rz):(x:—r or x:r)

= (x = r) + (x = —r) = {—r} + {r}
Thus
1 1 1

P,(B) = P(4)= P({~r})+ Pc({r}) = =

That is,

P(Y:rz)zl/n, r=1,...,n
Let X be P(A) and let Y = h(X) = X* + 2X — 3. Then Y takes on the values
{y=x2+2x—3; x=0, 1,...}:{—3, 0.5 12,..}.
From
x*+2x-3=y,

we get

x2+2x_(y+3):0, so that x:_li\"““y+4'

Hence x =-1+,y+4, the root —1-.,/y+4 being rejected, since it is nega-
tive. Thus, if B = {y}, then

A= (B)={-1+y+4},
and

e—ﬂ, . A—1+\/‘yﬁ

Py(B)=P(Y = y)=Py(A)= m.

For example, for y = 12, we have P(Y = 12) = e "A’/3!.

It is a fact, proved in advanced probability courses, that the distribution P, of
an r.v. X is uniquely determined by its d.f. X. The same is true for r. vectors.
(A first indication that such a result is feasible is provided by Lemma 3 in
Chapter 7.) Thus, in determining the distribution P, of the r.v. Y above, it
suffices to determine its d.f., F,. This is easily done if the transformation 4 is
one-to-one from S onto 7 and monotone (increasing or decreasing), where §
is the set of values of X for which fy is positive and 7 is the image of S, under
h: that is, the set to which S is transformed by 4. By “one-to-one” it is meant
that for each y € T, there is only one x € S such that 4(x) = y. Then the inverse
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transformation, 4", exists and, of course, 4™'[(x)] = x. For such a transforma-
tion, we have

where x = h7'(y) and & is increasing. In the case where / is decreasing, we have
£ ()= u(x) < )=l x|z ()
= P[X > h’l(y)] = P(X > x)
=1-P(X <x)=1-Fy(x-),
where F(x—) is the limit from the left of Fy at x; Fy(x—) = limFy(y), y T x.

REMARK 1 Figure 9.1 points out why the direction of the inequality is re-
versed when A" is applied if 4 in monotone decreasing.

y

y = h(x)

Yo
(y < yp) corresponds, —_|
under 4, to (x = xp) —_|

-~ x

0 xo = h~" (o)
Figure 9.1
Thus we have the following corollary to Theorem 1.

Let i: S — T be one-to-one and monotone. Then Fy(y) = Fy(x) if 4 is increas-
ing, and Fy(y) = 1 — Fy(x-) if h is decreasing, where x = 47'(y) in either case.

REMARK 2 Of course, it is possible that the d.f. F, of Y can be expressed in
terms of the d.f. Fy of X even though % does not satisty the requirements of the
corollary above. Here is an example of such a case.

Let Y = h(X) = X*. Then for y >0,
Fo(y)=P(¥ < 3)= Pl(X) <] = P(x? < y)= Py < X <y
=P(XS\G)—P(X<—\f';)=Fx(\/;)—Fx(—\f'J’— ;

that is,

()= Fe[\)- e[y -]

for y > 0 and, of course, it is zero for y < 0.
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We will now focus attention on the case that X has a p.d.f. and we will
determine the p.d.f. of Y = h(X), under appropriate conditions.

One way of going about this problem would be to find the d.f. F, of the r.v.
Y by Theorem 1 (take B = (-, y], y € R), and then determine the p.d.f. f, of
Y, provided it exists, by differentiating (for the continuous case) Fy at continu-
ity points of f,. The following example illustrates the procedure.

In Example 3, assume that X is N(0, 1), so that

)=

Then, if Y = X?, we know that

RO)-R()-R-b) vzo

—x2/2

e

Next,
d d — 1 [ 1 _
_FX(\/;):fX(\/;)_\ﬁy :_fX(XU’):—e y/2,
dy dy " 2y 22myy
and
d 1 1 _
L)) e
dy 2y 227y
so that

1 1 1 i
T S R U
\y N2 r(i)z:
y >0 and zero otherwise. We recognize it as being the p.d.f. of a y; distributed
r.v. which agrees with Theorem 3, Chapter 4.

Another approach to the same problem is the following. Let X be an r.v.
whose p.d.f. fy is continuous on the set S of positivity of fy. Let y = h(x) be a
(measurable) transformation defined on [ into R which is one-to-one on the
set S onto the set T (the image of S under /). Then the inverse transformation
x=h"'(y) exists for y € T. It is further assumed that 4™ is differentiable and its
derivative is continuous and different from zero on 7. Set Y = h(X), so that Y
is an r.v. Under the above assumptions, the p.d.f. f, of Y is given by the
following expression:

d

o (5) = {0 0)

0, otherwise.

For a sketch of the proof, let B = [c, d] be any interval in T and set A = h™'(B).
Then A is an interval in S and

P&eﬁzﬂwmeqzﬂxeﬁzhﬁ@ﬂn

, yveT

Under the assumptions made, the theory of changing the variable in the
integral on the right-hand side above applies (see for example, T. M. Apostol,
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Mathematical Analysis, Addison-Wesley, 1957, pp. 216 and 270-271) and
gives

()

dy.
dy 4

JuIxlx)ax = [, ()

That is, for any interval B in 7,

dy.

Py e 8)= [, 1 ()5 (0)

Since for (measurable) subsets B of T, P(Y e B)=P[X e h"(B)]< P(X e §°)
= 0, it follows from the definition of the p.d.f. of an r.v. that f, has the
expression given above. Thus we have the following theorem.

Let the r.v. X have a continuous p.d.f. f, on the set S on which it is positive, and
let y = h(x) be a (measurable) transformation defined on [ into R, so that
Y = h(X) is an r.v. Suppose that 4 is one-to-one on S onto 7' (the image of S
under 4), so that the inverse transformation x = h™'(y) exists for y € T. It
is further assumed that 4" is differentiable and its derivative is continuous
and # 0 on 7. Then the p.d.f. f, of Y is given by

S OO e

0, otherwise.

Let X be N(u, 0°) and let y = h(x) = ax + b, where a, b € R, a # 0, are constants,
so that Y =aX + b. We wish to determine the p.d.f. of the r.v. Y.

Here the transformation h: R — R, clearly, satisfies the conditions of
Theorem 2. We have

h(y) :%(y—b) and ih-l(y) -1

dy a
Therefore,
_ (% -4)| 1
fy()’) = Y exp| — P |Ll|
1 —[y—(au+b)]2

which is the p.d.f. of a normally distributed r.v. with mean au + b and variance
a’c’. Thus, if X is N(u, 0°), then aX + b is N(ay + b, a’c).

Now it may happen that the transformation / satisfies all the requirements
of Theorem 2 except that it is not one-to-one from S onto 7. Instead, the
following might happen: There is a (finite) partition of S, which we denote by
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{S,j=1,...,r}, and there are r subsets of 7, which we denote by 7},j=1, ...,
r, (note that U, 7, = T, but the 7}’s need not be disjoint) such that h: S, > T},
j=1,..., ris one-to-one. Then by an argument similar to the one used in

proving Theorem 2, we can establish the following theorem.

Let the r.v. X have a continuous p.d.f. fy on the set S on which it is positive, and
let y = h(x) be a (measurable) transformation defined on R into R, so that
Y = h(X) is an r.v. Suppose that there is a partition {S;, j=1,..., r} of S and
subsets 7,j=1,...,rof T (the image of S under /), which need not be distinct
or disjoint, such that U, T; = T and that 4 defined on each one of S, onto T},
j=1,...,r, is one-to-one. Let A, be the restriction of the transformation 4 to
S;and let /' be its inverse, j = 1,.. ., r. Assume that 4;' is differentiable and
its derivative is continuous and #0 on 7, j=1, ..., r. Then the p.d.f. f; of Y'is
given by

fr(v)= ;51@)& (). yer

0, otherwise,

where forj=1,...,r,

) e,

)= 5 OIS

and 6(y) = 1if y € T, and §(y) = 0 otherwise.

This result simply says that for each one of the r pairs of regions (S, 7)),
j=1,...,r, we work as we did in Theorem 2 in order to find

£ (¥)= Fie [hﬁ(y)]‘diy h,-l(y)‘;

then if a y in T belongs to k of the regions 7}, j=1,...,r (0 <k <r), we find
J¥(y) by summing up the corresponding f,(y)’s. The following example will
serve to illustrate the point.

Consider the r.v. X and let Y = 2(X) = X>. We want to determine the p.d.f. f
of the r.v. Y. Here the conditions of Theorem 3 are clearly satisfied with

Si=(= 0l 8=(0.=)  T=[0.x) T, =(0,)
by assuming that fy(x) > 0 for every x € R. Next,

)=y, K(¥)=+y.
so that

Therefore,
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1 — 1
le(y):fX(_\/;)—Z\/;a I, (Y):fx(\rY)%/—,;,
and for y > 0, we then get

#(y)= ﬁ[fx (Vo) £ul=0)]

provided +\y are continuity points of fy. In particular, if X is N(0, 1), we arrive
at the conclusion that fy(y) is the p.d.f. of a 7 r.v., as we also saw in Example
4 in a different way.

Exercises

9.1.1 Let X be an r.v. with p.d.f. f given in Exercise 3.2.14 of Chapter 3 and
determine the p.d.f. of the r.v. Y = X°.

9.1.2 Let X be an r.v. with p.df. of the continuous type and set

Y=2X7cl(X), where B, j=1,. .., n, are pairwise disjoint (Borel) sets and c;,

j=1,..., n, are constants.

i) Express the p.d.f. of Y in terms of that of X, and notice that Y'is a discrete

r.v. whereas X is an r.v. of the continuous type;

ii) If n =3, X is N(99, 5) and B, = (95, 105), B, = (92, 95) + (105, 107),
B = (=0, 92] 4+ [107, =), determine the distribution of the r.v. Y defined
above;

iii) If X is interpreted as a specified measurement taken on each item of a
product made by a certain manufacturing process and c;, j = 1, 2, 3 are the
profit (in dollars) realized by selling one item under the condition that
Xe B;,j=1,2,3,respectively, find the expected profit from the sale of one
item.

9.1.3 Let X, Y be r.v.’s representing the temperature of a certain object
in degrees Celsius and Fahrenheit, respectively. Then it is known that Y =% X
+32. If X is distributed as N(u, °), determine the p.d.f. of Y, first by determin-
ing its d.f., and secondly directly.

9.1.4 If the r.v. X is distributed as Negative Exponential with parameter 4,

find the p.d.f. of each one of the r.v.’s Y, Z, where Y = ¢*, Z = log X, first by

determining their d.f.’s, and secondly directly.

9.1.5 If the r.v. X is distributed as U(c, f):

i) Derive the p.d.f.’s of the following r.v.’s: aX + b (a > 0), 1/(X + 1), X* +1,

e, log X (for > 0), first by determining their d.f.’s, and secondly directly;

ii) What do the p.d.f.’s in part (i) become for oc=0 and f=1?

iii) For o=0and f=1, let Y =logX and suppose that ther.v.’s Y, j=1,...,
n, are independent and distributed as the r.v. Y. Use the ch.f. approach to
determine the p.d.f. of -2, Y,.
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9.1.6 If the r.v. X is distributed as U(—%m, $7), show that the r.v. Y = tan X is
distributed as Cauchy. Also find the distribution of the r.v. Z = sin X.

9.1.7 If the r.v. X has the Gamma distribution with parameters «, 3, and Y =
2X/B, show that Y ~ y3,, provided 2« is an integer.

9.1.8 If X is an r.v. distributed as y2, set Y = X/(1 + X) and determine the
p-d.f. of Y.

9.1.9 Ifther.v. Xis distributed as Cauchy with =0 and o=1, show that the
r.v. Y = tan"' X is distributed as U(—5, 7).

9.1.10 Let X be an r.v. with p.d.f. f given by
L o o]
f(x)= x e , xelR
()=
and show that the r.v. Y = 1/X is distributed as N(0, 1).
9.1.11 Suppose that the velocity X of a molecule of mass m is an r.v. with

p.d.f. fgiven in Exercise 3.3.13(ii) of Chapter 3. Derive the distribution of the
r.v. Y =+mX" (which is the kinetic energy of the molecule).

9.1.12 If the r.v. X is distributed as N(u, 6°), show, by means of a transforma-
tion, that the r.v. Y = [(X — u)/o]’ is distributed as y7.

9.2 The Multivariate Case

THEOREM 1

EXAMPLE 7

What has been discussed in the previous section carries over to the multidi-
mensional case with the appropriate modifications.

Let X = (X,,..., X,) be a k-dimensional r. vector and let h: R* — R"™ be
a (measurable) function, so that Y = 4(X) is an r. vector. Then the distribu-
tion Py of the r. vector Y is determined by the distribution Py of the r. vector
X as follows: For any (Borel) subset B of R", Py(B) = Px(A), where
A =h"(B).

The proof of this theorem is carried out in exactly the same way as that of
Theorem 1. As in the univariate case, the distribution Py of the r. vector Y is
uniquely determined by its d.f. Fy.

Let X}, X, be independent r.v.’s distributed as U(¢o, 8). We wish to determine
the d.f. of the r.v. Y = X, + X,. We have

Fy(y) = P(X1 +X,< y) = j.[{x,+ngy}fX1»Xz (xl, xz)dxlde.
From Fig. 9.2, we see that for y <20, Fy(y) = 0. For

2a<y<2B,  F(y)=——7A
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where A is the area of that part of the square lying to the left of the line
X, +x,=y.Since fory < a+ B, A= (y — 2a)°/2, we get

Fy(y)zﬂ for 2a0<y<a+p.
Z(ﬁ—a)

For o+ <y <2p, we have

(B-2) ? 2(8-a)
Thus we have:
0, y<2a
(y—Zoc)z’ 20<y<a+pf
2B -
Fy(y)= (ﬁza) 2
(B_y)z, a+B<y<2B
Z(ﬁ—a)
1, y>28.
2B
AN

N2a

Figure 9.2

REMARK 3 The d.f. of X| + X, for any two independent r.v.’s (not necessarily
U(a, p) distributed) is called the convolution of the d.f.’s of X, X, and is
denoted by Fy .y = Fy, * Fy. We also write fy .y = fy * fy, for the corresponding
p.d.f.’s. These concepts generalize to any (finite) number of r.v.’s.
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EXAMPLE 8 Let X, be B(n,, p), X, be B(n,, p) and independent. Let Y, = X, + X, and
Y, = X,. We want to find the joint p.d.f. of Y}, Y, and also the marginal p.d.f.
of Y, and the conditional p.d.f. of Y,, given Y, = y,.

Fry, ()ﬁ» Y2):P(Y1 =y, Y, ZY2):P(X1 =y -y X, ZY2)a

since X; = Y, — Y, and X, = Y,. Furthermore, by independence, this is

equal to
P(Xl =N —yz)P(Xz = yz)
:( m P qnn-(yl—yz) (nz )pyz A
M= Y,
=( n n, ]pqu(n,+nZ )*YI;
N =2 N\ D)2
that is
le,Yz (yl’ YZ) = " )[le Jphq(”l"'”z )—y. ’
N =2 N\ )2
0<y <n+n,
u :maX(O, Y —nl) <y, Smin(yl, "z) =.
Thus
&Oﬂ=dﬁ=%y=Zﬁwxhdgzpmwﬂﬁhz[ n, Im}
2= =\ Y1 — V2 \ V2

Next, for the four possible values of the pair, (u, v), we have
208, £ )
=0\ V2 \Y2 ) mo\ Vi = Y2 NY2 ) nma \ V1 Y2 A\ D2
LA
A\ ) U
thatis, Y, = X, + X is B(n, + n,, p). (Observe that this agrees with Theorem 2,

Chapter 7.)
Finally, with y, and y, as above, it follows that

.

the hypergeometric p.d.f., independent, of p!.

P(Yz :)’2|Y1 :)’1):

We next have two theorems analogous to Theorems 2 and 3 in Section 1.
That is,
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THEOREM 2’

Let the k-dimensional r. vector X have continuous p.d.f. fx on the set S on
which it is positive, and let

y= h(x) = (hl(x)’ s ’hk(x)),

be a (measurable) transformation defined on R* into R*, so that Y = h(X) is a
k-dimensional r. vector. Suppose that /4 is one-to-one on S onto 7 (the image
of S under 4), so that the inverse transformation

x=h" (y) = (g1 (y), 8 (y)) exists for yeT.

It is further assumed that the partial derivatives

gj,-(y)zggj(yl,...,yk), hj=1,...,k

exist and are continuous on 7. Then the p.d.f. fy of Y is given by
Fuly)= {fx[h_l WV=rle) - el ver |
0, otherwise,

where the Jacobian J is a function of y and is defined as follows

8 82 0 8k
J= g.21 S.'zz : g.2k
g k2 T 8k

and is assumed to be #0 on 7.

REMARK 4 In Theorem 2’, the transformation /4 transforms the k-dimen-
sional r. vector X to the k-dimensional r. vector Y. In many applications,
however, the dimensionality m of Y is less than k. Then in order to determine
the p.d.f. of Y, we work as follows. Let y = (h(x), ..., h,(x))" and choose
another k — m transformations defined on R* into R, N J=1,... . k—m,
say, so that they are of the simplest possible form and such that the
transformation

h=(hys o By by )

satisfies the assumptions of Theorem 2". Set Z=(Y,,..., Y, Y,i1,-.-, Yo,
where Y=(Y,,...,Y,)andY, =h, (X),j=1,...,k—m. Then by applying
Theorem 2’, we obtain the p.d.f. f, of Z and then integrating out the last k —m

arguments y,,..,j=1,..., k —m, we have the p.d.f. of Y.

A number of examples will be presented to illustrate the application of
Theorem 2" as well as of the preceding remark.



9.2 The Multivariate Case 223

EXAMPLE 9 Let X,, X, be i.i.d. r.v.’s distributed as U(e, B). Set Y, = X, + X, and find the
p-df. of Y,.
We have

1
fx,x, (xl’xz) = (ﬁ—a)z ’

0, otherwise.

o<x,x, <p

Consider the transformation

Y, =X, +X,

=X +
gt Th xz’ a<x,x,<p; then
Y, = X,.

Y2 =X,

From h, we get

NERTN Then ]=‘1 _1‘=1
X2 =Ys- 0

and also o< y, < . Since y, — y, = x;, @< x; < B, we have o< y, — y, < B. Thus
the limits of y,, y, are specified by o< y, < 8, a <y, — y, < B. (See Figs. 9.3 and

9.4.)
Xy h
/\
B (Fig. 9.4) T
S Figure 9.3 S={(x, %) fx x, (X, X)) > 0}
X1
a 0 B
o

2ar

| S0 atp /B 8
| e
1 Z yi—»n=p8

/ o

Figure 9.4 T =image of S under the transformation h.
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Thus we get
; (yy)— ﬁ, 20<y, <2B, o<y, <fB, a<y -y, <p
Y, Y, \Y12 02 ) — %4
0, otherwise.
Therefore
1 Y- v, —20
J- y, =——=, for 2a<y <a+p
(-a) ™ (B-0)
Iy (Y1) = 1 P u 2B-y f
‘ =—, B 2p
(ﬁ—a)z J-y.—ﬁ v, (ﬂ—a)z or a+f<y <
0, otherwise.

The graph of f,, is given in Fig. 9.5.

fyl()’1)

. Figure 9.5

B -

|
|
|
|
|
|
i
2a 0 a+p 28 .

REMARK 5 This density is known as the triangular p.d.f.

EXAMPLE 10 Let X, X, be i.i.d. r.v.’s from U(1, §). Set Y, = X\ X, and find the p.d.f. of Y.
Consider the transformation

h: {)ﬁ =X Xy, then {)]1 =X X,
Yo =X, Y, =X,.

From A, we get

Wi 1y
X, == — == 1
'y, and J=ly, 2 =y—.
X=X 0 1 ’

Now

S = {(xl,xz),;thx2 (xl,x2)>0}

is transformed by 4 onto

T={(y1,y2) ; 1<;)—1<ﬂ, 1<y2<ﬁ}

2
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(See Fig. 9.6.) Thus, since

B
1
0 Y1
Figure 9.6
1 1 !
-, , T
le,YZ(YH}’z): (ﬂ—l)z 2 (yl y2) ©
0, otherwise,
we have
(13_11)2 J-]y.%:(ﬂ_ll)2 logy, l<y<p
fy,()’1)= 1 5 dy, 1 i
(ﬂ_l)z J.yl/ﬁy_z = W(Zlogﬁ_logyl)a ﬂ =n< ﬂ >
that is
(/3 11)210gy1’ I<y <B
le()ﬁ): 5 11)2 (210g/3—10gy1), B<y <P
10, otherwise.

EXAMPLE 11 Let X,, X, be iid. r.v.’s from N(0, 1). Show that the p.d.f. of the r.v.
Y, = X\/X, is Cauchy with u =0, o= 1; that is,

1

We have

Y, = X|/X,. Let Y, = X, and consider the transformation
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h: {}ﬁ :xl/xz’ x, 20 then {x1 =)

Y2 = X35 X2 =Y
and
J= 2))2 il =y,, so that |]|=|y2|.

Since —eo < X, X, < co implies —eo < y;, ¥, < oo, we have

2.2 2
N e

and therefore

. 2.2 2 . 241
fyl(y‘) :ijexp(_%}yzw)’z :%J‘O cXp _()’14'—)3’2 2dy;.

2 2
Set
2
(y1+1) ) 2t
=¢, sothat y>=——
2 y2 yZ y12+1
and
2dt dt
2y,dy, =———, or dy,=——, te|0,].
Y, a4y, Vil Y4y, Vil [ )

Thus we continue as follows:

Lpend L1 (gt L
o T 1

yitl m oyl+ Toyl+l
since
re”dz=1;
0
that is,
1 1
le(yl)_n_ y12+1

EXAMPLE 12 Let X, X, be independent r.v.’s distributed as Gamma with parameters (o, 2)
and (B, 2), respectively. Set Y, = X|/(X, + X,) and prove that Y, is distributed
as Beta with parameters o, S.
We set Y, = X, + X, and consider the transformation:

B X, +x,, X,x,>0; then {xl N2
Xy, =Y, = V1)s-

Y, =Xt x,
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Hence
Y
J= Y lZ)’z‘)’l)’z"')ﬁ)’z:)’z and |J|ZY2-
-y, 1=y
Next,
;xl_1 - 1exp( M] X%, >0
Feox, (%15%,) =4 T(a)r()2°2” 2
0, otherwise, o, f>0.

From the transformation, it follows that for x; = 0, y, = 0 and for x; — oo,
X 1

X +x, - 1+(x2/x1) — 1

=

Thus 0 <y, <1 and, clearly, 0 < y, < eo. Therefore, for 0 <y, <1,0 <y, < e, we

get
Frov, (o) = e )r(lﬂ)za”’ iy (1= yl)ﬁ_lexp(_%)h

e )rlﬁ)zmﬂ e

Hence
f(w)= Wﬁ (-n)”
X [ yerbe iy,
But
[ ysiePay, =28 [P e e =2 T (o0 + B).

Therefore

0. otherwise.

EXAMPLE 13 Let X, X,, X; be i.i.d. r.v.’s with density
e’, x>0
fx)=1
( ) 0, x<0.
Set
Y, = X, Y, = X, +X, ’
X +X, X +X,+X,

Y, =X +X,+X,
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and prove that Y, is U(0, 1), Y; is distributed as Gamma with =3, f=1, and
Y., Y,, Y, are independent.
Consider the transformation

X
N x

! x —|2-x X1 =NV

h:qy, = ——"—"2— x,,x,,x;,>0; then <x,=-yy,y;+,y,
X, +Xx, X, B
X3 ==Y,Y3 T3
»y3 =X1 +x2 +x3
and
Y23 WY Y1Y2
J=2y; VY +Ys —NnY, Y= yZY32'
0 -y yn+l

Now from the transformation, it follows that x,, x,, x; € (0, o) implies that
b2 e(O, 1), Y, e(O, 1), Y, € (0, oo).
Thus

2,-Vs
e, 0<y <1, 0<y, <1, O0<y,<oo
fY1~Yz»Y3(y1’y2’y3):{y2y3 N Ys Y3

0, otherwise.
Hence
oo @] _
Fo(n)= [ [yavie " dydy, =1, 0<y <1,
oo el _ oo _
Fro(v2)= [ [yoyie ™ dvidy; = y, [ yie™dy,
= 2y2’ 0 < y2 < 1
and
1 o1 B ol
Fr, ()= [ [[y2y3e ™ dydy, = yie™ | y,dy,
=%y32e’y3, 0<y; <eco.
Since

Frv oy, (Y1’Y2’y3) =, (Jﬁ)fyz (yz)fy3 ()’3),

the independence of Y), Y,, Y; is established. The functional forms of fy, fy.
verify the rest.
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9.2.1 Application 2: The t and F Distributions

The density of the t distribution with r degrees of freedom (t,). Let the indepen-
dent r.v.’s X and Y be distributed as N(0, 1) and y?, respectively, and set T =
XNYIr. The r.v. T'is said to have the (Student’s) t-distribution with r degrees of
freedom (d.f) and is often denoted by ¢,. We want to find its p.d.f. We have:

&(x):%e(vz)xz, en
2r

1 (rf2)1 _yy
f(v)= Wy e, y>0
> y<0.

Set U = Y and consider the transformation

r= il x:%t\/;

h: \fy/rQ then Jr
u=y y=u

and

Then fort e R, u >0, we get

froltu) =B Lk e N

Jor r(r/2)2" ! Jr
_ ; (1/2)(r+1)1 u 1 +i] '
2w (r/2)2" ¢ eXp{ 2( r

Hence

e 1 (1/2)(r+1)-1 u t?
fT(t) = J;) WU expl_z{l + THdu

u t? Y Y
—|1+—|=2z, sothat u=2z]1+—| ,du=2|1+—| dz,
2 r r r

and z €[0, «). Therefore we continue as follows:

We set
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(1/2)(r+1)—1
- 1 ‘V 2z e’z—2 4
fil)=] @F(r/z)zr/ztu(ﬁ/r) 1+(t2/r)d

1 2(1/2)(r+1)

~amr(r/2p " [ ()

: e 0+ 1

- \/;r(r/z) [1 +(tz/r)](1/z)(r+1)

Jm Z(1/2)(r+1)716,1dZ

0

that is
1—‘[% (r + 1)] 1

- \/;r(r/z) [1+(tz/r)](l/2)(r+1) ,

telR.

i (1)

The probabilities P(T < t) for selected values of ¢ and r are given in tables (the
t-tables). (For the graph of f;, see Fig. 9.7.)

fr(®

t(N(0, 1))

Figure 9.7

The density of the F distribution with r,, r, d.f. (F, ). Let the independent r.v.’s
X and Y be distributed as x; and y;, respectively, and set F = (X/r,)/(Y/r,). The
r.v. Fis said to have the F distribution with r,, r, degrees of freedom (d.f.) and

is often denoted by F, .
We want to find its p.d.f. We have:
1
fx(x) = F(%rl)Z”/z
0, x<0,

x(r'/z)fle”‘/z, x>0
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1 (n/2)1 _yp2
R B — eV, y>0
() =1r(Enp ™ g
0, y<0.
We set Z =Y, and consider the transformation
_x/n _h
h: f_ y/rz; then = fZ
z=y y=z

and

s i
h p ;
J=|r, P f =-1z sothat |J|=—lz.

T
o 1] " "
For f, z > 0, we get:
1 r; (/21 (nf2)4_(rn/2)1_(r/2)
fp,Z(f,Z) ; - ) ( l) f 1 " z"’
r(tn)r(srn 2!
X ex ( fz e’Z/z—z
2

~ (a/n ),,/2 W s [ 2
e

Therefore

Fe(£)= ] fralf2)dz

r1/2 rl/z
__ R exp[-é(%f“ﬂdz

F(%’i)r(%rz)z(l/z)(rﬁq) o

Set
-1

E(r—‘f+1]:t, so that z:Zt[r—‘f+1J,
2\r, r,

-1
dz=2(r—1f+1J dr, 1|0, =)
r

Thus continuing, we have
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THEOREM 3’

( / )r1/2 (nf2h (1/2)(r+7 1[}’
= 2 ! 1
g (f) ) (%rz)2 (72)(ri+r) I+

L
2
( ) J‘ t1/2 r,+r2) ,[dt

l"[ ! (”1 +r, )](r1 /r, )r,/z . f(rl/z)q
(]E ’z) [1 + (rl /rz)f](]/zxrl”z} '

] (1/2)(ryry J1

Therefore

F[% (r1 +7, )](rl/rz)r]/2 f(r1/2)f1
fF(f)= F(%’l)r(%rz) [1+ rl/r2 f] (/2)res)”
0, for f<0.

for f>0

The probabilities P(F < f) for selected values of f and r,, r, are given by
tables (the F-tables). (For the graph of f;, see Fig. 9.8.)

fe(f)
Fio, 10

Fio,4

Figure 9.8

REMARK 6

i) If Fis distributed as F, ,I,, then, clearly, 1/F is distributed as F, ,.

i) If X is N(0, 1), Y is y. and X, Y are independent, so that 7 = XN Y/r is
distributed as ¢,, the n 7 is distributed as F, ,, since X is y.

We consider the multidimensional version of Theorem 3.

Let the k-dimensional r. vector X have continuous p.d.f. fx on the set S on
which it is positive, and let y = A(x) = (h,(x), ..., h(x)) be a (measurable)
transformation defined on R* into R*, so that Y = h(X) is a k-dimensional r.
vector. Suppose that there is a partition {S;, j=1,..., r} of S and subsets T},
j=1,...,rof T (the image of S under /), which need not be distinct or dis-

joint, such that U_, 7, = T and that & defined on each one of §; onto T;,
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j=1,...,ris one-to-one. Let h; be the restriction of the transformation 4 to
S;and let 2;'(y) = (gy(y), - - - . 8y(y))’ be its inverse, j=1, ..., r. Assume that
the partial derivatives g;(y) = (d/0y)gi(yi, =" yi)- i, [=1,..., k,j=1,...,
r exist and for each j, g;;, i, [=1,..., k are continuous, j =1, ..., . Then the
p.d.f. fy of Y is given by

fy(y) = /_i;af(y)ij (Y)» yeT

0, otherwise,

where for j=1,....r, fy(y) = x[h' WV, y € T}, 6(y) = 1 if y € T and §(y) =
0 otherwise, and the Jacobians J; which are functions of y are defined by

S 8p2 0 8k
J,' _ gsm gsjzz ':’ : g:jZk ’
S k2 7 jkk
and are assumed tobe #0on 7},j=1,...,r.

In the next chapter (Chapter 10) on order statistics we will have the
opportunity of applying Theorem 3.

Exercises

9.2.1 Let X, X, be independent r.v.’s taking on the values 1,..., 6 with
probability f(x) =+, x =1, ..., 6. Derive the distribution of the r.v. X, + X..

9.2.2 Let X, X, be r.v.’s with joint p.d.f. f given by

f(xl’xz):%IA(xlvxz)’

where

’

A= {(x1 ,xz)
Set Z* = X7 + X; and derive the p.d.f. of the r.v. Z°. (Hint: Use polar co-
ordinates.)
9.2.3 Let X, X, be independent r.v.’s distributed as N(0, 1). Then:

i) Find the p.d.f. of the r.v.’s X| + X, and X, — X;
ii) Calculate the probability P(X, — X, <0, X, + X, > 0).

eR*; xT +x; Sl}.

9.24 Let X,, X, be independent r.v.’s distributed as Negative Exponential
with parameter A = 1. Then:
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i) Derive the p.d.f.’s of the following r.v.’s:
X, +X,, X,-X,, and X,/X,;
ii) Show that X + X, and X,/X, are independent.
9.2.5 Let X;, X, be independent r.v.’s distributed as U(c, o+ 1). Then:

i) Derive the p.d.f.’s of the r.v.’s X, + X, and X, — X);
ii) Determine whether these r.v.’s are independent or not.

9.2.6 Let the independent r.v.’s X, X, have p.d.f. f given by

f(x)ZLzI(Lw)(x)'

X
Determine the distribution of the r.v. X = X,/ X,.

9.2.7 Let X be an r.v. distributed as ¢,

i) For r = 1, show that the p.d.f. of X becomes a Cauchy p.d.f;;
1
ii) Also show that the r.v. ¥ = —7 57 is distributed as Beta.
1+(X / r)

9.2.8 If the r.v. X is distributed as F|

1

then:

i) Find its expectation and variance;
ii) If r, = r,, show that its median is equal to 1;

iii) The p.d.f. of Y = is Beta;

1+ (r1 /r, )X
iv) The p.d.f. of r; X converges to that of %i as r, — oo,
(Hint: For part (iv), use Stirling’s formula (see, for example, W. Feller’s book

An Introduction to Probability Theory, Vol. 1, 3rd ed., 1968, page 50) which
states that, as n — eo, I'(n)/(2m)"*n** %™ tends to 1.)

9.2.9 Let X}, X, be independent r.v.’s distributed as Xi and )(fz, respectively,
and set X = X, + X,, Y = X|/X,. Then show that:
i) The r.v. X is distributed as x; ., (as anticipated);
ii) The r.v. Y is distributed as %Z, where Z has the F, , distribution;
iii) The r.v.’s X and Y are independent.

9.2.10 Let X,, X, be independent r.v.’s distributed as N(0, ¢°). Then show
that:

i) Ther.v. X;+ X; has the Negative Exponential distribution with parameter
A=1120%

ii) The r.v. X|/X, has the Cauchy distribution with =0 and o= 1;
iii) The r.v.’s X} + X3 and X,/X, are independent.
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9.2.11 Let X, be an r.v. distributed as ¢,. Then show that:

EX, =0, rz2; O'Z(X,)=rj2, r>3.

9.2.12 Let X, , be an r.v. distributed as F, ,. Then show that:
2r%(r1 +r, — 2)
2
ifr=2) (- 4)

9.2.13 Let X, be anr.v. distributed as ¢,, and let f, be its p.d.f. Then show that:

f,(x)—) L exp) —x—z, xelR.
r—eo \/g 2

(Hint: Use Stirling’s formula given as a hint in Exercise 9.2.8(iv).)

9.2.14 Let X, and X, be r.v.’s distributed as y; and F,

,.» Tespectively, and,
for ae (0, 1), let x; ., and F, , , be defined by: P(X, > x;..) = &, P(X,, 2F,,.,)
= o. Then show that:

p) .os2 _
X,, = . n23 ol(X,, )= , 25

o —

1,
F,l,,z;a—>7)5,1;a as r, —> oo,
1

9.3 Linear Transformations of Random Vectors

In this section we will restrict ourselves to a special and important class of
transformations, the linear transformations. We first introduce some needed
notation and terminology.

9.3.1 Preliminaries

A transformation 4: R* — R* which transforms the variables x,, . . ., x, to the
variables y,, . . ., y, in the following manner:
k
Y, = ch.jxj ,c; Trealconstants, i,j=1,2,... .k (1)
j=1

is called a linear transformation. Let C be the k x k matrix whose elements are
¢;- That is, C = (c;), and let A = |C| be the determinant of C. If A # 0, we can
uniquely solve for the x’s in (1) and get

k
X, = zfdijy]., d; realconstants, i,j=1,... k. (2)
iz

Let D = (d;) and A* = IDI. Then, as is known from linear algebra (see also
Appendix 1), A* = 1/A. If, furthermore, the linear transformation above is
such that the column vectors (¢, ¢y, ..., ¢y), j=1,..., k are orthogonal,
that is
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k
Ycic; =0 for j#j
and il 3)

zk“ci?:l, j=1,...,k,

then the linear transformation is called orthogonal. The orthogonality

relations (3) are equivalent to orthogonality of the row vectors (c;, . . . , i)’
i=1 , k. That is,

k

2 c;¢; =0 for i=#i’
and o (4)

It is known from linear algebra that IAl = 1 for an orthogonal transformation.
Also in the case of an orthogonal transformation, we have d; =c;,i,j=1,...,
k, so that

k

(=20, i=1 k.

j=1

This is seen as follows:

S-S (S|SB Ee[See )+

j=11=1 =

by means of (3). Thus, for an orthogonal transformation, if

k
Zcu x;, then x zzcﬁyj, i=1,... k.
j=1
According to what has been seen so far, the Jacobian of the transforma-
tion (1) is J = A* = 1/A, and for the case that the transformation is orthogonal,
we have J = %1, so that I/l = 1. These results are now applied as follows:
Consider the r. vector X = (X, ..., X,)" with p.d.f. fx and let S be the
subset of R* over which fx > 0. Set

k
}/ZZZCUX/, izl,...,k,

j=1
where we assume A =1(c;)| #0. Then the p.d.f. of the r. vector Y = (Y, ..., Y,)’
is given by

fY()’w---,yk) fx(zdljy],.. de]y]J | | (yl,...,yk) eT
0, otherwise,

where T is the image of S under the transformation in question. In particular,
if the transformation is orthogonal,
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’

k k
fY(yl7~-"yk)_ fx[zcﬂy‘,,...,;cﬂ{yj} (yl,...,yk) eT

= <
0, otherwise.

Another consequence of orthogonality of the transformation is that

In fact,
k 5 k k 2 k k k
Svi-5[Sex | -5[Sex | o]
i=1 i=1\j=1 i=1\j=1 =1
k k k k k k
S35 aex x5 05/ Soc
i=1j=11=1 j=11=1 i=1
:i){f
i=1
because

k
Ycic,=1 for j=I and 0 for j=l
i=1

We formulate these results as a theorem.

THEOREM 4 Consider the r. vector X = (X, . .., X,)’ with p.d.f. fx which is >0 on S ¢ R".
Set

Y = zk:cl.X

[/

i=1,...k,

j=1

where I(c;)l = A # 0. Then

k
X, :Zl‘dif}]f’ i=1,... .k,

and the p.d.f. of the r. vector Y = (Y}, ..., Y,) is

k B 1 ,
fY(yl’ o ’yk): fx[;dljyj’ . ,;Ckfyj}m, (Y1> e ,yk) eT
0, otherwise.

where T is the image of S under the given transformation. If, in particular, the
transformation is orthogonal, then

’

k k
fY(yU-“’yk): fx[gcﬂyj,...,;c,kyj} (yl,...,yk) eT

0, otherwise.
Furthermore, in the case of orthogonality, we also have
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J 2 & 2
ZXJ=ZYI'

j=1 j=1
The following theorem is an application of Theorem 4 to the normal case.

Let the r.v.’s X, be N(u, o), i=1,...,
orthogonal transformation

Yz‘icifo’

=1

k, and independent. Consider the

i=1,...,k

Then the r.v.’s Y),..., Y, are also independent, normally distributed with
common variance ¢~ and means given by

dmzi%m,ﬁL”qk
j=1

PROOF With X=(X,,...,X,) andY =

Al ,xk)=[

(Y, ..., Y, we have

k
1 1 <& 2
271'0') eXp|:— 20_2 ;(xi _:ui) :|a

and hence

k 2
1 1 &
fY(yl""’yk)=(\/Eo_) eXp _20_2 zl(zcﬂy] ul) -

Now

i(Zw, 4 i (icﬂy,

i=1 i=1] \j=1

k
12 - zﬂizcﬁ)’j
j=1

k
( Sussnst-uger)

11=1 j=1

lec/l +Zlut _222#1 ]zy]
1i=1

Ly

I= i=

23

j=

j=1li=1

1l
EME LM»

%M%+Zul

and this is equal to

K k 2
2;()’,' _zl‘cjill'ti] >
j= i=

since expanding this last expression we get:
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k k k k
z( S, ,luiu,—zzcﬁu,.y,)
j=1 i=11 i
1 ]ly] +zz:uuu12CﬂC//

i=1[=1

l ]ty]+z‘ul’

&M* lM*

k k
—2) >
j=li=1
k k

—2) >
j=li=1
as was to be seen. A

As a further application of Theorems 4 and 5, we consider the following
result. Let Z,, ..., Z, be independent N(0, 1), and set

1 1 1
Y="+Z+—Z,+ - - +—Z
e NP
Yzz;zl_Lzz
Va1t
Yoot 7z L, 2 5
3.\55 Y32 32
o 1 k-1
Y= ———Z 4 Z - Z,.
(k1) \/k(k—l) Jk(k—l)

We thus have
,j=1,...,k, andfor i=2,... .k

¢;=—F7——, for j=1,...,i-1, and
=
o - i—1
)
Hence
& k
2cf«=—=1, and for i=2,... .k,
=k
2N 2 1 (i_l)z
;C"’ :,;C"" =(i-1) i(i-1) ! i(i-1)
Ll
i
while for i =2 , k, we get
1< 1 < 1 i-1 i—-1
Yo=Y =—| ——- =0,
S xk;f’ UeB | ) )
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THEOREM 6

and for i, [ = k(i # 1) we have

ZCUCIJ chlcl] it i<l

and

!
ZCiiclj if i>l
j=1

%[(f—l)—(f—l)]zo,

\z(z ~1)i(1-1)

For i <[, this is

and for i > [, this is

\i(l__llﬁ[(l—l)—(z—l)]:o.

Thus the transformation is orthogonal. It follows, by Theorem 5, that
Y,,..., Y, are independent N(O 1), and that

ZYZ ZZZ by Theorem 4.

i=1

Thus
k k K 2
ZY?:ZY?—Y%:EZ%—(«/;Z)
i=2
_zzz k7 =3 (2,- 7).

i=1
Since Y, is independent of Y;,Y?;, we conclude that Z is independent of
*(Z,— Z)*. Thus we have the following theorem.

Let X,, ..., X, beindependent r.v.’s distributed as N(u, 6°). Then X and S” are
independent.

PROOF SetZ,=(X,—u)/o,j=1,...,k. Then the Z’s are as above, and hence
— 1,—= k —\2 1 & —\2
Z=—(X-u) and Y (Z,-Z) ==Y (X,-X)

(o) j=1 0" j=1

are independent. Hence X and S” are independent. A

Exercises

9.3.1 Fori=1,2,3,let X;be independent r.v.’s distributed as N(u;, o°), and

set:
1 1 1 1 1
=X +—X,, Y, = X +—X,,
RNt TS 5
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Then:

i) Show that the r.v.’s Y}, Y,, Y; are also independent normally distributed
with variance o’, and specify their respective means.
(Hint: Verify that the transformation is orthogonal, and then use Theorem
5);

ii) If y, = u, = u; = 0, use a conclusion in Theorem 4 in order to show that
Yi+ Y5+ Y~ o'y

9.3.2 If the pair of r.v.’s (X, Y) has the Bivariate Normal distribution with
parameters U, i, O}, O3, p, that is, (X, Y) ~ N(u,, i,, 61, 05, p), then show that
(x—ul Y*i“e)'~ N(0,0, 1, 1, p), and vice versa.

o ’ o,

9.3.3 If(X,Y) ~N(0,0,1,1, p),and c, d are constants with cd # 0, then show
that (cX, dY) ~ N(0, 0, ¢, d°, p,), where p, = pif cd >0, and p, = —p if cd < 0.

9.3.4 If(X,Y) ~ N(0,0,1,1, p), show that X + Y ~ N(0,2(1 - p)), X - Y ~

N(0,2(1 - p)), and X + Y, X — Y are independent.

9.3.5 If (X, Y) ~ N(W;, t, 03, 03, p), and U=~y =% then:

i) Determine the distribution of the r.v.’s U + V, U — V, and show that these
r.v.’s are independent;

ii) In particular, for o] = 05 = ¢, say, specify the distributions of the r.v.’s
X+ Y, X-Y, and show that r.v.’s are independent.

9.3.6 Let (X, Y) ~ N(0,0, o1, 03, p). Then:
i) (X+Y,X-Y) ~N(0,O0, 11, 3, p,), where

70 =0, +05+2p0,0,, T, =0, +05 —2p0,0,, and p, =(0'f —O'%)/T{L’z;

ii) X+ Y ~ N, 7)) and X - Y ~ N(0, 73);
iii) The r.v.’s X+ Y and X — Y are independent if and only if 0, = 0,. (Compare
with the latter part of Exercise 9.3.5.)

9.3.7 Let (X,Y) ~ N(u,, i, o1, 65, p), and let ¢, d be constants with cd # 0.
Then:

i) (cX,dY) ~ N(cu,, du,, c’o7, d* 03, £p), with +p if cd > 0, and —p if cd < 0;
i) (cX+dY,cX~-dY) ~ N(cu, + du,, cu, — du,, T5, 75, p,), Where

70 =c’0; +d’0) +2pcdo,o,, T, =c’o; +d’0; —2pcdo,o,,

c’o? —d*c?
and p, = ——;
7T,

iii) The r.v.’s ¢X + dY and cX — dY are independent if and only if £ =+

o
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iv) The r.v.’s in part (iii) are distributed as N(cu, + du,, 7;), and N(cu, — dp,,
77), respectively.

9.3.8 Refer to Exercise 9.3.7 and:

i) Provide an expression for the probability P(cX + dY > A);
ii) Give the numerical value of the probability in part (i) for ¢ = 2, d = 3,
A=15u,=35u,=15,0,=1, 0,=0.9, and p =-0.5.

9.3.9 Forj=1,...,n,let(X, Y, beindependent r. vectors with distribution
N(u,, u,, 07, 03, p). Then:

i) Determine the distribution of the r.v. X — Y;
ii) What does this distribution become for y, = 1, and o7 = 6; = &, say?

9.4 The Probability Integral Transform

THEOREM 7

In this short section, we derive two main results. According to the first
result, if X is any r.v. with continuous d.f. F, and if Y = F(X), then surprisingly
enough Y ~ U(0, 1). The name of this section is derived from the transforma-
tion Y = F(X), since F is represented by the integral of a p.d.f. (in the
absolutely continuous case). Next, in several instances a statement has been
made to the effect that X is an r.v. with d.f. F. The question then arises as to
whether such an r.v. can actually be constructed. The second result resolves
this question as follows: Let F be any d.f. and let Y ~ U(0, 1). Set X = F'(Y).
Then X ~ F.

The proof presented is an adaptation of the discussion in the Note “The
Probability Integral Transformation: A Simple Proof” by E. F. Schuster, pub-
lished in Mathematics Magazine, Vol. 49 (1976) No. 5, pages 242-243.

Let X be an r.v. with continuous d.f. F, and define the r.v. Y by Y = F(X). Then
the distribution of Y is U(0, 1).

PROOF Let G be the d.f. of Y. We will show that G(y) =y, 0 <y < 1;
G(0) = 0; G(1) = 1. Indeed, let y € (0, 1). Since F(x) — 0 as x — —oo, there
exists a such that (0 <)F(a) < y; and since F(x) — 1 as x — oo, there exists
e>0such that y+ e<1and F(y) < F(y + &)( 1). Set F(a) =c,y + €=b,
and F(b) = d. Then the function F is continuous in the closed interval
[a, b] and all y of the form y + % (n > 2 integer) lie in (¢, d). Therefore, by the
Intermediate Value Theorem (see, for example, Theorem 3(ii) on page 95
in Calculus and Analytic Geometry, 3rd edition (1966), by George B.
Thomas, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts)
there exist x, and x, (n > 2) in (a, b) such that F(x,) = y and F(x,) =y + .
Then
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= [F(x)< F(x,)] (Since Flx)= er%)

c (X < xn) (by the fact that F is nondecreasing
and by contradiction).

That is (X < x,) < [F(X) <y] € (X £x,). Hence
P(X <x,)< PlF(X)<y|< P(X <x,),

€
ory=F <Gly|< F =y+—.
y="Fx)<Gly)< Flx,)=y+
Letting n — oo, we obtain G(y) = y. Next, G is right-continuous, being a d.f.
Thus, as y L 0, G(0) = lim G(y) = limy = 0. Finally, as y T 1, G(1-) = lim G(y)
=limy =1, so that G(1) = 1. The proof is completed. A
For the formulation and proof of the second result, we need some notation

and a preliminary result. To this end, let X be an r.v. with d.f. F. Set y = F(x)
and define F' as follows:

F (y) = inf{x eR; F(x)> y}. 5)
From this definition it is then clear that when F is strictly increasing, for each

x € R, there is exactly one y € (0, 1) such that F(x) = y. It is also clear that, if
F is continuous, then the above definition becomes as follows:

F! (y) = inf{x eR; F(x) = y}. (6)
(See also Figs. 9.9, 9.10 and 9.11.)

;T
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Figure 9.9 Figure 9.10 Figure 9.11
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LEMMA 1

THEOREM 8

We now establish the result to be employed.
Let F' be defined by (5). Then F'(y) <t if and only if y < F(¢).

PROOF We have F'(y) = inf{x € R; F(x) > y}. Therefore there exists x, €
{x € R; F(x,) >y} such that x, L F'(y). Hence F(x,) — F[F(y)], by the right
continuity of F, and
FlF(y)]2 » (7)

Now assume that F'(y) < . Then F[F'(y)] < F(¢), since F is nondecreasing.
Combining this result with (7), we obtain y < F(¢).

Next assume, that y < F(¢). This means that ¢ belongs to the set {x € R, F(x)
>y} and hence F'(y) < t. The proof of the lemma is completed. A

By means of the above lemma, we may now establish the following result.

Let Y be an r.v. distributed as U(0, 1), and let F be a d.f. Define the r.v. X by
X = F'(Y), where F' is defined by (5). Then the d.f. of X is F.

PROOF We have

P(X <x)= P[F" (v)< x] - P[Y < F(x)] = F(x),
where the last step follows from the fact that Y is distributed as U(0, 1) and the
one before it by Lemma 1. A

REMARK 7 As has already been stated, the theorem just proved provides a
specific way in which one can construct an r.v. X whose d.f. is a given d.f. F.

Exercise

9.41 LetX,j=1,...,nbeindependent r.v.’s such that X, has continuous
and strictly increasing d.f. F,. Set Y, = F,(X)) and show that the r.v.

X= —2ilog(1 -Y;)
j=1

is distributed as x3,.



Chapter 10

Order Statistics and Related Theorems

In this chapter we introduce the concept of order statistics and also derive
various distributions. The results obtained here will be used in the second part
of this book for statistical inference purposes.

10.1 Order Statistics and Related Distributions

THEOREM 1

Let X, X,, ..., X, beiid.r.v.’s with d.f. F. The jth order statistic of X, X,, . . .,
X, is denoted by X;, or Y, for easier writing, and is defined as follows:

Y, = jth smallest of the X, X,,..., X,,j=1,..., n;

(that is, for each s € S, look at X,(s), X,(s), . .., X,(s), and then Y/(s) is defined
to be the jth smallest among the numbers X,(s), X,(s), ..., X, (s),j=1,2,...,
n). It follows that Y, < Y, <---< Y, and, in general, the Y’s are not
independent.

We assume now that the X’s are of the continuous type with p.d.f. f such
that f(x) > 0, (—e S)a < x < b(< =) and zero otherwise. One of the problems we
are concerned with is that of finding the joint p.d.f. of the Y’s. By means of
Theorem 3’, Chapter 9, it will be established that:

If Xi,..., X, are i.i.d. r.v.’s with p.d.f. f which is positive for a <x < b and 0
otherwise, then the joint p.d.f. of the order statistics Y, ..., Y, is given by:

g(y y)= n!f(yl)"’f(yn), a<y <y,<---<y <b
o 0, otherwise.

PROOF The proof is carried out explicitly for n = 3, but it is easily seen, with
the proper change in notation, to be valid in the general case as well. In the first
place, since for i # j,

245
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P(x,=x;)=]f (xlle)f(x,.)f(xl.)dxidx/ = jg (%) f(x;)dx; dx; =0,

and therefore P(X; = X; = X)) = 0 for i # j # k, we may assume that the joint
p.d.f, f(-, -, ), of X}, X,, X is zero if at least two of the arguments x,, x,, x; are
equal. Thus we have

f(xl, X5, x3):{f(x1)f(xz)f(x3), A<X Xy ZX3 < b

0, otherwise.

Thus f(x,, x,, x;) is positive on the set S, where

S={(xl, Xy, x3)

Let S, < S be defined by

S ik ={(x1, X2 x3)

Then we have

’

eR’;a<x;<b, i=1,2,3, x, x,, x, all different}.

’

;a<xi<xf<xk<b}, Lj, k=123 i#j+k.

S= 5123 + S132 + S213 + S231 + S312 + S321‘

Now on each one of the S;;’s there exists a one-to-one transformation from the
x’s to the y’s defined as follows:

Szt =X, Yy =X, V=X
St M=X, Y =X, V=X,
Syst =Xy Yo =X, V=X
Syt M =Xy, Ya=X3, Vi=X
St M=X3, V=X, Y3 =X,
S

Rt N1 =Xz, Vo =Xy, Y3 =X

Solving for the x’s, we have then:

St XM=V, X =Yy, X3 =)
St X =Y, X =Y, X3 =Y,
Syt X =Yy X =Y, X3 =)
Suit X =Yy, X =Y, X3 =Y,
Sint X =Yy, X, =Y, X3 =Y
S

Rt X1 =Vi X2 =Yy, X3 =Y

The Jacobians are thus given by:
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100 0 0 1

S Jis=[0 1 0|=1 Sy Sy =1 0 0]=1
0 01 0 10
1 00 0 10

Sip: Jip=[0 0 1j=-1;  S;,: J;,=0 0 1j=1
010 100
010 0 01

Szt Jos=[1 0 0]=-1  S;,: J; =0 1 0|=-1.
0 01 100

Hence |[Jip3| =+ - = /34| = 1, and Theorem 3", Chapter 9, gives

FOn) ()£ (s )+ £ ) £ (5 ) £ () + (32 ) £ (1) £(35)
+ £ ) £ )£ (2) + () F (0 )£ (1) + £ (5 ) £ (3 ) £ (n):

a<y <y, <y;<b

AL

0, otherwise.

This is,

_ 3!f(Y1)f(yZ)f(Y3)’ a<y <y, <y;<b
g(yl, - y3) {O, otherwise. A

Notice that the proof in the general case is exactly the same. One has n!
regions forming S, one for each permutation of the integers 1 through #n. From
the definition of a determinant and the fact that each row and column contains
exactly one 1 and the rest all 0, it follows that the n! Jacobians are either 1 or
—1 and the remaining part of the proof is identical to the one just given except
one adds up n! like terms instead of 3!.

Let X,,..., X, beiid.r.v.’s distributed as N(u, 6°). Then the joint p.d.f. of the
order statistics Yy, ..., Y, is given by

g(yl,...,yn)=n!( 1 J CXP[— 2(1;2 n (yf_“)z}

\2ro =1
if o<y, <-+-<y, <eoand zero otherwise.

Let X, ..., X, beiid.r.v.’s distributed as U(c, B). Then the joint p.d.f. of the
order statistics Yy, ..., Y, is given by

gy )= :
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THEOREM 2

if <y <---<y,<Band zero otherwise.

Another interesting problem is that of finding the marginal p.d.f. of each
Y,j=1,...,n,as well as the joint p.d.f. of any number of the Y}’s. As a partial
answer to this problem, we have the following theorem.

Let X,,..., X, be iid. r.v.’s with d.f. F and p.d.f. f which is positive and
continuous for (—e <) a < x < b(< ) and zero otherwise, and let Y, ..., Y, be
the order statistics. Then the p.d.f. g;of Y,,j=1,2,...,n,is given by:

s o) = T O BP0 s <

0, otherwise.
In particular,

) &)= n[l_F(yl)]nilf(M)’ a<y<b
0, otherwise

and

) g,(y,)= {1100 S0 e <o

0, otherwise.

The joint p.d.f. g; of any Y, Y, with 1 <i <j < n, is given by:

ii) gij(yi9 Yil=

(=1pi- = () [F)] [F()- PO
(

% [1_F(yf)]n_i'f(yi)f v a<yi<y<b

0, otherwise.

In particular,

) (1 0)= nn=D[F(y,)-Fu)] £ (n)f(). a<m<y, <b
0, otherwise.

PROOF From Theorem 1, we have that g(y,,..., y,) = n'f(y,) - - - f(y,) for
a<y,<---<y,<bandequals 0 otherwise. Since fis positive in (a, b), it follows
that F is strictly increasing in (a, b) and therefore F' exists in this interval.
Hence if u = F(y), y €(a, b), then y = F' (1), u €(0, 1) and

ﬂ:;, ue(O, 1).

du f[ Ffl(u)]
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Therefore by setting U; = F(Y)),j=1, ..., n, one has that the joint p.d.f. & of
the U’s is given by

h@v~wUJ=mﬂFW%ﬂ“'4F%%ﬂfh*wﬁ.?ﬂF%%ﬂ

for 0 <u, <---<u, <1 and equals 0 otherwise; that is, h(u,, ..., u,) = n! for
0<u,<---<u,<1and equals 0 otherwise. Hence for u; € (0, 1),

h(uj): ”!JOW. . _'[0“2 '[; _ J‘il du, - du, du - -du,,.

The first n — j integrations with respect to the variables u,, ..., u;,, yield
[1/(n—j)!] (1 — u;)"” and the last j — 1 integrations with respect to the variables
Upy ooy U y1eld [1/(j - 1)!] u/". Thus

)=y ()

for u; € (0, 1) and equals 0 otherwise. Finally, using once again the transforma-
tion U, = F(Y;), we obtain

)=t ] T )

for y; € (a, b) and 0 otherwise. This completes the proof of (i).

Of course, (i") and (i”) follow from (i) by setting j = 1 and j = n, res-
pectively. An alternative and easier way of establishing (i’) and (i”) is the
following:

bl ]—

G,(y,)=P(Y,<y,)=Pall X s<y,)=F"(y,)
Thus g,(y,) = n[F(,)]"" f(v,). Similarly,
1-Gy(n)=P (¥ >n)=P(all X 5> y)=[1- F(n )]
Then
& (n) == F()] [ A0)) or sln)=A[t-F()] #().

The proof of (ii) is similar to that of (i), and in fact the same method can be

used to find the joint p.d.f. of any number of Y)’s (see also Exercise
10.1.19). A

EXAMPLE 3 Refer to Example 2. Then

0, x<«o
F(x)= ;:Z, a<x<pf
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and therefore

» n! y,—« a B-y; " a<y . <p
gi(v,)= (j-1(n-j) B-a o) B-o’ ’

0 otherwise
! - o
e R L G TR
o otherwise.
Thus
» ﬂ - yl " 1 — n _ n-1
ain)= n( —Of] -a (ﬁ—a)"(ﬂ w) . a<y<p
- otherwise,
[ n-1
Yo - 1 __n N
gn(y")= n( _a) ﬂ_a (ﬂ—a)n(yn a) ’ a<yn<ﬂ
- otherwise,
| ( 1)( Yn =N )nz 1 n(n B 1) ( )n—2
e - n yn - yl )
gy v)= ~«) (g-a) (B-0)
a<y <y,<p
- otherwise.

In particular, for o= 0, B = 1, these formulas simplify as follows:

n! g e
g(v)= myf 1-y,)7, o<y, <1
0 otherwise.
Since T'(m) = (m — 1)!, this becomes
F(n + 1) » -
gi(yj)= W}’,’ (1_)’/') , O<y;<1
0 otherwise,

which is the density of a Beta distribution with parameters o=, f=n—j+ 1.
Likewise
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n-1
gl(yl):{n(l—yl) , O<y <1

0, otherwise,
n-1
ny,”, O<y, <1
8\ V| = .
( ) {O, otherwise

and
& ()’1»)’ )= n(n_l)(yn_yl)niz’ O<y <y, <1
" " 0, otherwise.

The r.v. Y=Y, - Y, is called the (sample) range and is of some interest in
statistical applications. The distribution of Y is found as follows. Consider the
transformation

{y =Ya N Then {yl =2 and hence |J| =1
= }ﬁ. )/n = ))_F <

Therefore

Fr.2(v 2)=8u(2 y+2)
Y

a<z<b-y
and zero otherwise. Integrating with respect to z, one obtains

b n-2

f, (y) _ n(n—l)L y[F(y+ z)—F(z)] f(z)f(y+z)dz, O<y<b-a
0, otherwise.
In particular, if X is an r.v. distributed as U(0, 1), then
fy(y) = n(n - 1) :_y y*ldz = n(n - 1)y”’2 (1 - y), O<y<l;
that is
fy(y)= n(n—l)y"'z(l—y), 0<y<1
0, otherwise.

Let now U be j’ and independent of the sample range Y. Set

We are interested in deriving the distribution of the r.v. Z. To this end, we
consider the transformation
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__J _
= M Then {u B rwﬁ and hence |]| = r«/;.
y

=zVw
w = u/ r.
Therefore

Iz, W(Z’ W) =fy (Z“/;)fu (”W)”\“"‘;,

if 0 < z, w < 0 and zero otherwise. Integrating out w, we get

fz(z) = J.: fy(Z\f';)fU (rw)r\/; dw,

if 0 < z < o and zero otherwise.

Now ifther.v.’s X}, ..., X, arei.i.d. N(0, 1) and Y'is as above, then the r.v.
Z is called the Studentized range. Tts density is given by f,(z) above and the
values of the points z, for which P(Z > z,,) = o are given by tables for selected
values of o. (See, for example, Donald B. Owen’s Handbook of Statistical
Tables, pp. 144-149, published by Addison-Wesley.)

Exercises

Throughout these exercises, X, j=1,...,n, are i.i.d. r.v.’s and Y; = X, is the
jth order statistic of the X’s. The r.v.’s X, j =1, ..., n may represent various
physical quantities such as the breaking strength of certain steel bars, the
crushing strength of bricks, the weight of certain objects, the life of certain
items such as light bulbs, vacuum tubes, etc. From these examples, it is then
clear that the distribution of the Y’s and, in particular, of Y,, Y, as well as
Y, — Y,, are quantities of great interest.

10.1.1 Let X, j=1,...,nbeiid. r.v.’s with d.f. and p.d.f. F and f, respec-
tively, and let m be the median of F. Use Theorem 2(i”) in order to calculate
the probability that all X)’s exceed m; also calculate the probability P(Y, < m).

10.1.2 Let X, X,, X; be independent r.v.’s with p.d.f. f given by:
—(x—0
f(x)ze ( )I(g)m)(xl).

Use Theorem 2(i”) in order to determine the constant ¢ = ¢(6) for which
P(6<Y;<c)=0.90.

10.1.3 If the independent r.v.’s X, ..., X, are distributed as U(e, B), then:

i) Calculate the probability that all X’s are greater than (o + )/2;
ii) In particular, for =0, B =1, and n = 2, derive the p.d.f. of the r.v. Y,/Y,.

10.1.4 LetX,j=1,...,nbeindependentr.v.’s distributed as U(e, f8). Then:
i) Use the p.d.f. derived in Example 3 in order to show that
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(B-a) ifn-i+1).
(n + 1)2 (n + 2)
ii) Derive EY}, 6°(Y)), and EY,, 6°(Y,) from part (i);

iii) What do the quantities in parts (i) and (ii) become for o = 0 and

B =1? (Hint: In part (i), use the appropriate Beta p.d.f.’s to facilitate
the integrations.)

10.1.5

EY.:(ﬁ_a)j
/ n+1

+o and az(Yj =

i) Refer to the p.d.f. g, derived in Theorem 2(ii), and show that, if X, ..., X,
are independent with distribution U(¢, ), then:

n(n - 1)
(B-a)
ii) Set Y=Y, - Y}, and show that the p.d.f. of Y is given by:
-1
fy(y)=n(n—2(ﬁ—a—y)y"'2, O<y<p-o
(B-2)

iii) For a and b with 0 < a < b < - ¢, show that:

gy v.)= (vo-»)" @<y <y <p

Pla<y <b)=—" —a-b)b"" - _a_aa"71+bn_an.
o <) e - £

iv) What do the quantities in parts (i)—(iii) become for ¢ =0 and = 1?

10.1.6 Let X|,..., X, be independent r.v.’s distributed as U(0, 1), and let
1<i<j<n.

i) Refer to the p.d.f. g; derived in Theorem 2(ii), and show that, in the
present case:

! . i n-j
s )= (i—l)!(j—?— i(n=J) =) ()

O<y <y <l
ii) Integrating by parts repeatedly, show that:

. i AMj—i-1 - a n—j j+1{n—=j)
.[)Zy (Z_y)j ldy: ( 7! )Z]’ ()Z] 1(1_2) jdz=( (n)-fZ)! ) ‘
iii) Use parts (i) and (ii) to show that
i(j+1)

ST re)
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iv) By means of part (iii) and Exercise 1.4(i), show that:
i(n—j+1)
(n + 1)2 (n + 2)

i(n—j+1)
1/2 ;
[i(n—i+1)j(n—j+1)]
v) From part (iv), derive Cov(Y,, Y,) and p(Y, Y,).

10.1.7 Letthe independentr.v.’s X, ..., X, be distributed as U(0, 1), and let
1 <j < n. Use the relevant results in Example 3, and Exercise 1.6(i) in order to
derive:

Cov(Y;. Y;)= and p(Y,.Y))=

i) The conditional p.d.f. of Y}, given Y;;
ii) The conditional p.d.f. of Y,, given Y;
iii) The conditional p.d.f. of Y,, given Y|; and the conditional p.d.f. of Y,
given Y,,.

10.1.8 Let the independent r.v.’s X, ..., X, be distributed as U(0, 1), and
define therv’s Z,j=1,...,nasfollows: Z,=Y,, Z;=Y, - Y, ,,j=2,...,n.
Then use the result in Theorem 1 in order to show that the r.v.’s Z,j=1,...,
n are uniformly distributed over the set

{(zl, o Z,)

(For n = 2, this set is a triangle in R?.)

10.1.9

’

eR"; z;20,j=1,...,nand 21]51}.
j=1

i) Lettheindependentr.v.’s X, ..., X, have the Negative Exponential distri-
bution with parameter A. Then show that Y, has the same distribution with
parameter ni;

ii) Let F be the (common) d.f. of the independent r.v.’s X|,..., X,, and
suppose that their first order statistic Y, has the Negative Exponential
distribution with parameter nA. Then F is the Negative Exponential d.f.
with parameter A.

10.1.10 Let the independent r.v.’s X,,..., X, have the Negative Expon-
ential distribution with parameter A. Then:

i) Use Theorem 2(i’) in order to show that the p.d.f. of Y, is given by:

gu(y)=nie (1= e )1 v, >0;

ii) Let Y be the (sample) range; thatis, Y =Y, — Y}, and then use Theorem 2
(ii") in order to show that the p.d.f. of Y is given by:

n-2

H(y)=(r-1)2e P (1), y>0;
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iii) Calculate the probability P(a < Y < b) for 0 < a < b;

iv) For a=1/A, b =2/A, and n = 10, find a numerical value for the probability
in part (iii).

10.1.11 Let the independent r.v.’s X}, ..., X, have the Negative Exponen-

tial distribution with parameter A, and let 1 < j < n. Use Theorem 2(ii) and

Exercises 1.9(i) and 1.10(i) in order to determine:

i) The conditional p.d.f. of Y}, given Y;

ii) The conditional p.d.f. of Y}, given Y;

iii) The conditional p.d.f. of Y,, given Y|; and the conditional p.d.f. of Y,
given Y,

10.1.12 Let the independent r.v.’s X, ..., X, have the Negative Exponen-
tial distribution with parameter A, and set: Z, =Y, Z;=Y, - Y, ,,j=2,...,n.
Then:
i) Forj=1,..., n, show that Z; has the Negative Exponential distribution
with parameter (n — j + 1)A, and that these r.v.’s are independent;

ii) From the definition of the Z’s, it follows that Y, = Z, +---+ Z, j=1,.. .,
n. Use this expression and part (i) in order to conclude that:

EY:l l+ 1 oo+ 1 :
o Aln n-1 n—j+1

iii) Use part (i) in order to show that, for ¢ > 0:

P[m.in

#]

X, — Xj| > c] = exp[—/ln(n - 1) c/2].
10.1.13 Refer to Exercise 10.1.12 and show that:

i) o°(Y)=Y)_ 0}, where o =[A(n—i+1)]°, i=1,...,m
ii) For1 <i<j<n, Cov(Y, Y)=3i_0:;

iii) From parts (i) and (ii), conclude that:

2
0'2[2 c]-Yj) = ZGJ?(ZCLJ , ¢; € Rconstants;
j=1 j=1 i=j

iv) Also utilize parts (i) and (ii) in order to show that:

Cov(icﬂ’i, ide,J = iof(icjd,. +2 chd,}
i=1 j=1 i=1 j=i

1<k <i<n

where ¢; € R, d; € R constants.

Let X, j=1,...,nbeiid.r.v.’s. Then the sample median S, is defined as
follows:



256 10 Order Statistics and Related Theorems

Y. if n is odd
=, Y, +Y..) ifni y
B ’zl + % 1I n 1S even.

10114 If X, j=1,...,nareiid. r.v.’s,and n is odd, determine the p.d.f. of
S when the underlying distribution is:

i) U(e, p);
ii) Negative Exponential with parameter A.
10.1.15 Ifther.v.’s X),j=1,...,nare independently distributed as N(u, o),

show that the p.d.f. of S,, is symmetric about u, where S,, is defined by (*).
Without integration, conclude that ES,, = u.

10.1.16 For n odd, let the independent r.v.’s X;,j=1, ..., n have p.d.f. fwith
median m. Then determine the p.d.f. of S,,, and also calculate the probability
P(S,, > m) in each one of the following cases:

i) flx) = 2x1g,)(x);
i) fx) = 2(2 = X)L 5(x);
i) f() = 2(1 — ) ,(0);
iv) What do parts (i)—(iii) become for n = 3?
10.1.17 Refer to Exercise 10.1.2 and derive the p.d.f. of §,,, where S, is
defined by (*).

10.1.18 Let X, j=1,..., 6 be iid. r.v.’s with p.d.f. f given by f(x) = 4
x=1,..., 6. Find the p.d.f’s of Y, and Y,. Also, observe that P(Y, = y) =
P(Ys=7-y),y=1,...,6.

10.1.19 Carry out the proof of part (ii) of Theorem 2.

10.2 Further Distribution Theory: Probability of Coverage of a
Population Quantile

THEOREM 3

It has been shown in Theorem 7, Chapter 9, that if X is an r.v. with continuous
d.f. F, then the r.v. Y= F(X) is U(0, 1). This result in conjunction with Theorem
1 of the present chapter gives the following theorem.

Let X, ..., X, beiid.r.v.’s with continuous d.f. Fand let Z;,= F(Y)), where Y,
j=1,2,..., n are the order statistics. Then Z,,..., Z, are order statistics
from U(0, 1), and hence their joint p.d.f., & is given by:

h(zl,...

Z)_ n!a 0<Z1<"-<Zn<1
5 - .
" 0, otherwise.
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THEOREM 4

PROOF Set W;=F(X)),j=1,2,...,n. Then the W/s are independent, since
the X’s are, and also distributed as U(0, 1), by Theorem 7, Chapter 9. Because
F is nondecreasing, to each ordering of the X}’s, X;, < X, <---< X, there
corresponds the ordering F(X|;)) < F(X,) <---< F(X,,) of the F(X))’s, and
conversely. Therefore W, = F(Y,), j=1, 2,..., n. That the joint p.d.f. of the
Zs is the one given above follows from Theorem 1 of this chapter. A

The distributions of Z;, Z,, Z, and (Z,, Z,) are given in Example 3 of this
chapter.

Let now X be an r.v. with d.f. F. Consider a number p, 0 < p < 1. Then in
Chapter 4, a pth quantile, x,, of F was defined to be a number with the
following properties:

i) P(X<x,)2pand
ii) P(X>x,)>21-p.

Now we would like to establish a certain theorem to be used in a sub-

sequent chapter.

Let X,..., X, be i.i.d. r.v.’s with continuous d.f. F and let Y}, ..., Y, be the
order statistics. For p, 0 < p <1, let x, be the (unique by assumption) pth
quantile. Then we have

-1
P(Y,<x,<Y,)=(1)p'q"™", where gq=1-p.

PROOF Define the r.v’s W, j=1,2,..., n as follows:
W - {1, X <x,
] 7 —
0, X;>x,, j=12,...,n
Then W, ..., W, are i.i.d. r.v.’s distributed as B(1, p), since
P(W, =1)=P(X, <x,)=F(x,)=p.

Therefore

P(atleastiole, X, Sxp)= > (Z)qun_k;

k=i

or equivalently,

P(Yi <xp) = P(Yi Sxp) = i(ﬁ) prq"t.

k=i
Next, for 1 <i <j<n, we get

P(Y,<x,)=P(Y,<x,, Y;2x,)+P(Y,<x,, Y,<x,)
=P(Y,<x,<Y;)+P(Y,<x,),
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since
(v,<x,)c(Yi<x,)
Therefore

P(Y,<x,<Y))=P(Y,<x,)-P(Y;<x,)

By means of (1), this gives

P(Y,sx, <) =3 (1) p'a =X () pa

Exercise

10.2.1 Let X, j=1,...,nbeiid.r.v.’s with continuous d.f. F. Use Theorem
3 and the relevant part of Example 3 in order to determine the distribution of
the r.v. F(Y,) and find its expectation.



Chapter 11

Sufficiency and Related Theorems

Let X be an r.v. with p.d.f. f(:; 0) of known functional form but depending upon
an unknown r-dimensional constant vector © = (6, ..., 8,)” which is called a
parameter. We let Q stand for the set of all possible values of 0 and call it the
parameter space. So Q < R’, r > 1. By F we denote the family of all p.d.f.’s we
get by letting 0 vary over Q; that is, F = {f(; 0); 6 € Q}.

Let X,,..., X, be a random sample of size n from f(-; 0), that is, n
independent r.v.’s distributed as X above. One of the basic problems of
statistics is that of making inferences about the parameter 0 (such as estimat-
ing 0, testing hypotheses about 0, etc.) on the basis of the observed values
Xy, ..., X,, the data, of the r.v.’s X,..., X,. In doing so, the concept of
sufficiency plays a fundamental role in allowing us to often substantially con-
dense the data without ever losing any information carried by them about the
parameter 6.

In most of the textbooks, the concept of sufficiency is treated exclusively
in conjunction with estimation and testing hypotheses problems. We propose,
however, to treat it in a separate chapter and gather together here all relevant
results which will be needed in the sequel. In the same chapter, we also
introduce and discuss other concepts such as: completeness, unbiasedness and
minimum variance unbiasedness.

Forj=1,...,m,let T;be (measurable) functions defined on R" into R and
not depending on 0 or any other unknown quantities, and set T= (T4, ..., T,)".
Then

4

(X, X,)=(G(X s X, ) (XL X))

is called an m-dimensional statistic. We shall write 7(X,, ..., X,) rather than
T(X,,..., X, if m = 1. Likewise, we shall write 6 rather than 8 when r = 1.
Also, we shall often write T instead of T(X,, ..., X,), by slightly abusing the
notation.

259
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The basic notation and terminology introduced so far is enough to allow us
to proceed with the main part of the present chapter.

11.1 Sufficiency: Definition and Some Basic Results

EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

Let us consider first some illustrative examples of families of p.d.f.’s.

Let X = (X),..., X,)” have the Multinomial distribution. Then by setting
0=p,j=1,...,r, we have

0=(6,..... 9,),, 9:{(91,..., 9,)’61;@; 0,>0,j=1,....r
and 29]:1}
j=1
and /
-0 :Le)“ 0T = i
f(x ) Xl!“'X,! ! ' A(X) H;:xj!(n_xl_'”_xr*])!
x 07 - 0 (1-0,~ - ~6,,) "L (x),

A={x=(x1,...,x,) eR"; x;20,j=1,..., r,ixl:n}.
j=1

For example, for r = 3, Q is that part of the plane through the points (1, 0, 0),
(0, 1, 0) and (0, 0, 1) which lies in the first quadrant, whereas for r = 2, the
distribution of X = (X, X,)” is completely determined by that of X;= X which
is distributed as B(n, 6,) = B(n, 6).

Let X be U(e, B). By setting 6, = ¢, 6, = 3, we have 8 = (6,,0,)’, Q={(6,, 8,)
eR* 0, 6, R, 6, < 6,) (that is, the part of the plane above the main diagonal)
and

1
f(x: 0)= g L (x). A=[8,.6,]
27 Y1
If o is known and we put 8= 6, then Q = (¢, =) and
1
f(x, 6)=m1A(X), A=[Ol, 9]
Similarly, if B is known and o = 6.
Let X be N(u, o°). Then by setting 6, = u, 6, = o°, we have 8= (6,, 6,),
Q:{(Gl, 0,) €R’; 6, R, 0, >0}

(that is, the part of the plane above the horizontal axis) and
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(x - 01)2
: exp| —————— |
\3“‘277:92 20,

flx: )=

If o is known and we set y = 6, then Q = R and

1 x—0
f(x; 9)= - exp| —%

Similarly if i is known and ¢~ = 6.

Let X = (X}, X,)" have the Bivariate Normal distribution. Setting 6, = 1, 6, = i,,
0, =01, 6,= 05, 6; = p, we have then @ =(6,,..., 6;) and

Q:{(el,..., 95),e/z;e5; 6,. 6, R, 6,, 6, (0, =), 65 (-1, 1)}
and
1
;)= ————— ",
f(x ) 2716,0,1-p* ’
where

2 2
q= 1 X~ My ~2p) YT Xl | | T
1-p? 0y o, o 0, ,

’
x:(xl, xz) .

Before the formal definition of sufficiency is given, an example will be
presented to illustrate the underlying motivation.

Let X, ..., X, be ii.d. r.v.’s from B(1, 0); that is,
X; l—xj .
ij(xj; 9)=0 ’(1—0) IA(xj), ji=1,...,n,
where A ={0,1}, 0eQ=(0,1). Set =3}, X;. Then T'is B(n, 6), so that

il )= -0 1,0,
where B={0, 1, ..., n}. We suppose that the Binomial experiment in question
is performed and that the observed values of X; are x;,j=1, ..., n. Then the
problem is to make some kind of inference about 6 on the basis of x;,j=1, ...,
n. As usual, we label as a success the outcome 1. Then the following question
arises: Can we say more about 6 if we know how many successes occurred and
where rather than merely how many successes occurred? The answer to this
question will be provided by the following argument. Given that the number
of successes is t, that is, given that T=1,¢t=0, 1, . .., n, find the probability of
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each one of the () different ways in which the ¢ successes can occur. Then, if
there are values of 6 for which particular occurrences of the ¢ successes can
happen with higher probability than others, we will say that knowledge of the
positions where the ¢ successes occurred is more informative about 6 than
simply knowledge of the total number of successes . If, on the other hand, all
possible outcomes, given the total number of successes ¢, have the same
probability of occurrence, then clearly the positions where the ¢ successes
occurred are entirely irrelevant and the total number of successes ¢ provides all
possible information about 6. In the present case, we have

B(X,=x..... X, =x, |T=t)=P"(X‘ :xl’l'p'(;)_(:):x”’ =)
(T =
_PR(X,=x,...,X,=x,)
- P(T=1)

ifx, +---+x, =t
and zero otherwise, and this is equal to

1-x,

6" (1-0) " - 6%(1-0) o'(1-6)" 4

(’:JG‘(l -6)"”" ) (?]9[(1 -6)" . @

if x, + - - - + x, =t and zero otherwise. Thus, we found that for all x,, . . ., x, such
that x;=0or 1,j=1,...,n and

ix,:z, P(X,=x.....X,=x, IT:t):l/(nJ
j=1

t

independent of 6, and therefore the total number of successes ¢ alone provides
all possible information about 6.

This example motivates the following definition of a sufficient statistic.

Let X, j=1,...,nbeiid. r.v.’s withp.d.f. f(;0),0=(6,,...,6) € Qc R’ and
letT=(T,,...,T,), where

T=T(X.....X,), j=l...m

are statistics. We say that T is an m-dimensional sufficient statistic for the
family F={f(-;0); 8 € Q}, or for the parameter 0, if the conditional distribution
of (X),...,X,), given T =t, is independent of 0 for all values of t (actually, for
almost all (a.a.)t, that is, except perhaps for a set N in R™ of values of t such
that Pg(T € N) = 0 for all © € Q, where P, denotes the probability function
associated with the p.d.f. f(:; 0)).

REMARK 1 Thus, T being a sufficient statistic for @ implies that every (meas-
urable) set A in R", Pg[(X}, ..., X,) € AIT =t] is independent of 0 for a.a.
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t. Actually, more is true. Namely, if T* = (T%,..., T%)" is any k-dimensional
statistic, then the conditional distribution of T*, given T = t, is independent of
0 for a.a. t. To see this, let B be any (measurable) set in R* and let A = T*™ (B).
Then

PO(T*eB|T=t)=P{(X], L X,,), eA|T:t]

and this is independent of 0 for a.a. t.
We finally remark that X = (X|,..., X,)" is always a sufficient statistic
for @.

Clearly, Definition 1 above does not seem appropriate for identifying a
sufficient statistic. This can be done quite easily by means of the following
theorem.

(Fisher-Neyman factorization theorem) Let X, ..., X, be ii.d. r.v.’s with
p.d.f. f(;0),0=(6,...,0) € Qc R An m-dimensional statistic

4

T:T(Xl,...,Xn):(Tl(Xl,...,Xn),..., Tm(Xl,---,Xn))

is sufficient for @ if and only if the joint p.d.f. of X, ..., X, factors as follows,
f(xl, T e)zg[T(xl, R xn); e]h(xl, ce xn),

where g depends on x,, . . ., x, only through T and /4 is (entirely) independent
of 6.

PROOF The proof is given separately for the discrete and the continuous
case.

Discrete case: In the course of this proof, we are going to use the notation
T(x,,...,x,) =t In connection with this, it should be pointed out at the outset
that by doing so we restrict attention only to those x,,---, x, for which
T(x,...,x,) =t

Assume that the factorization holds, that is,

f(xl,...,xn; e)zg[T(xl,...,xn); e]h(xl, ...,xn),

with g and £ as described in the theorem. Clearly, it suffices to restrict atten-
tion to those t’s for which P, (T =t) > 0. Next,

B(T=t)=R[T(X,,..., X,)=t|=F A(X,=x,..., X, =x]),

where the summation extends over all (x1, . . ., x,)" for which T(x{,...,x))=t.
Thus

Py(T=t)=Y f(x{: 8)--- f(x]: )= g(t: O)A(x].. ... x])
=g(t: )X A(xi, ... x))

Hence
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R(X =x,..., X, =x,

T=t

P(X,=x,..., X, =x, T=t] P(X,=x,...,X,=x,)
- Py(T=t) - Py(T=t)
~ g(t; (-))h(xl,...,xn) h(xl,..,,xn)

Tt O (k. x) S, x,)

and this is independent of .
Now, let T be sufficient for 8. Then Py (X, = x,..., X, = x,/T = t) is
independent of 0; call it k[x,, ..., x,, T(x;, ..., x,)]. Then

Pe(Xlle,...,Xn =xn)

Py(T=t)
:k[xl,...,xn, T(xl,...,x,,)]

Pe(Xlle,...,Xn =X,

Tzqz

if and only if
f(xl; (-)) e f(xn; 9)=P(,(X1 =Xx,..., X, =xn)
=P9(T=t)k[xl, cees Xy, T(xl, ces xn)].

Setting
g[T(xl,...,xn); 9]=P9(T=t) and h(xl,...,xn)
=k[x1,...,xn,T(xl,...,xn)],

we get

f(xl; (-)) e f(xn; 9)=g[T(x1, e x,,); B]h(xl, c x,,),

as was to be seen.

Continuous case: The proof in this case is carried out under some further
regularity conditions (and is not as rigorous as that of the discrete case). It
should be made clear, however, that the theorem is true as stated. A proof
without the regularity conditions mentioned above involves deeper concepts
of measure theory the knowledge of which is not assumed here. From Remark
1, it follows that m <n. Thenset T;=T(X,,..., X,),j=1,...,m, and assume
that there exist other n — m statistics 7, = T)(X,, ..., X,),j=m+1,...,n,such

that the transformation
tj=Tj(x1,...,xn), j=1,...,n,

is invertible, so that

X=Xt byt ) j=Lon t=(00,)
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It is also assumed that the partial derivatives of x; with respect to #,i,j=1, . ..,
n, exist and are continuous, and that the respective Jacobian J (which is
independent of ) is different from 0.

Let first

f(xl; 0) . f(xn; 9)=g[T(x1, RV xn); e]h(xl, RN xn).
Then
Jroo, oo ,Tn(t, Loats -+ - 13 9)
=g(t; e)h[xl(t, Loels -+ o s tn), R xn(t, Loels - - v s t,,)]|J|
=g(t: O)h*(r, 1,0, ... 1,),
where we set

Rt s tn):h[xl(t, bt byl X (6 t)]|J|

Hence

fi(te)=]" -

~f_:g(t; O)h*(t, bsts o5 by )dtm+1 coedt, = g(t; e)h**(t),

where

Res(t)= [ [ bt )t -
That is, fi(t; ) = g(t; ©)A**(t) and hence
gt 0)n* (et t,) h*(tt,....0t,)

O I )

which is independent of 8. That is, the conditional distributionof 7., ..., T,
given T =t, is independent of 0. It follows that the conditional distribution of
T,7,. -,T,gvenT=t,is independent of 0. Since, by assumption, there is
a one-to-one correspondence between T, 7,.,,..., T,, and X,,..., X,, it
follows that the conditional distribution of X}, . .., X,, given T =t, is indepen-
dent of 0.

Let now T be sufficient for 8. Then, by using the inverse transformation of
the one used in the first part of this proof, one has

A28 =Frr g (Gt b e)\rl\
= Hltwas - 1]t O)f(t W) 7|
But f(t,.,, - - . , t,It; ©) is independent of @ by Remark 1. So we may set
f(tm+1, Lt 9)‘]‘1‘:h*(t pit)=h(x, .. x,).

If we also set

f(tmﬂ,..., t, It 0):

,t

mls

fr (t; O) = g[T(xl, ce xn); (-)],
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we get
f(xl, R 0)=g[T(x1, R xn); O]h(xl, R xn),
as was to be seen. A

Let ¢: R" — R™ ((measurable and independent) of 8) be one-to-one, so that
the inverse ¢ exists. Then, if T is sufficient for 6, we have that T = ¢(T) is also
sufficient for @ and T is sufficient for 8 = y(0), where y: R" — R’ is one-to-one
(and measurable).

PROOF We have T =¢'[¢(T)] = ¢"'(T). Thus
Flxnx e)zg[T(xl, ) e]h(xl, )
- g{q)"l[’i‘(xl, o) e}h(xl, )
which shows that T is sufficient for 8. Next,
o=y [v(0)]-v (@)
Hence

f(xl, R (-))zg[T(xl, R xn); (-)]h(xl,. C, xn)

becomes

f(xl, B 6)=§[T(x1, cl, xn); é]h(xl, R xn),
where we set
f(xl,. X é)zf[xl, Xy 1//'](6)]
and
g[T(xl, R xn); 6] = g[T(xl, cey X, ); y/’l(é)].
Thus, T is sufficient for the new parameter 0. A

We now give a number of examples of determining sufficient statistics by
way of Theorem 1 in some interesting cases.

Refer to Example 1, where
(s 0)-

Then, by Theorem 1, it follows that the statistic (X, . . ., X,)’ is sufficient for 0
=(6,,...,6). Actually, by the fact that >_;0,=1 and X_, x, = n, we also have

(s 0)-

n! X x
o - 071 ,(x)
x!ox,!

n!
r-1 ' '
1_[],:196/..(11—161 - —xH).

X0 -9y (1 -6, - — 9,71)"_2;% I (")
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from which it follows that the statistic (X, ..., X,_;) is sufficient for (6,, ...,
6,_,)". In particular, for r = 2, X,= X is sufficient for 6, = 6.

Let X, ..., X, be i.i.d. r.v.’s from U(6,, 6,). Then by setting x = (x,, ..., x,)
and 0 = (6, 6,)’, we get

s 0)=—

1
e o o]
(6.-6))
where g[x), 0] =I5 ., (X(1)), &:[*n), 8] = 1. o1(x(,)- It follows that (X ,), X,))" is
sufficient for @. In particular, if 6, = «is known and 6, = 6, it follows that X,
is sufficient for ©. Similarly, if 6, = Bis known and 6, = 6, X, is sufficient for 6.

Let X,,..., X, beiid. r.v.’s from N(u, ¢°). By setting x = (x,, ..., x,), u=6,
o =6,and 0 = (0, 6,)’, we have

But

i=1 j=1 j=1

flx e)=[ L] exp[_%i(xj_z)Z_%(x_el)Z].

\3“0271'92 2 j=1 2

It follows that (X, 2i(X; - X )?) is sufficient for 6. Since also

1 ' né; 0, < 1 <&
flx; 6)= exp| —— lexp| L) x,—— x.}
(x:9) \276, 26, 92]-2::‘ =

it follows that, if 8, = o° is known and 6, = 6, then 21X, is sufficient for 6,
whereas if 6, = 41 is known and 6, = 6, then X, (X; — u)’ is sufficient for 6, as

follows from the form of f(x; €) at the beginning of this example. By the
corollary to Theorem 1, it also follows that ( X, S”)’ is sufficient for 6, where

s =li(X/’ _)_()2’ and li(Xf _”)2
ni nis

is sufficient for 6, = 0 if 6, = p is known.

REMARK 2 In the examples just discussed it so happens that the
dimensionality of the sufficient statistic is the same as the dimensionality of the
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parameter. Or to put it differently, the number of the real-valued statistics
which are jointly sufficient for the parameter 0 coincides with the number of
independent coordinates of 8. However, this need not always be the case. For
example, if X}, ..., X, arei.i.d. r.v.’s from the Cauchy distribution with param-
eter ® = (u, 0°), it can be shown that no sufficient statistic of smaller
dimensionality other than the (sufficient) statistic (X, ..., X)) exists.

If m is the smallest number for which T=(T\,..., T,), T, = T(X,, ...,
X,),j=1,...,m,is a sufficient statistic for 0= (6,, ..., 6,), then T is called a
minimal sufficient statistic for .

REMARK 3 In Definition 1, suppose that m = r and that the conditional
distribution of (X, ..., X,)’, given T; = t, is independent of . In a situation
like this, one may be tempted to declare that 7 is sufficient for6,. This outlook,
however, is not in conformity with the definition of a sufficient statistic. The
notion of sufficiency is connected with a family of p.d.f.’s F = {f(:; 0); 6 € Q},
and we may talk about T} being sufficient for 6, if all other 6, i # j, are known;
otherwise 7;is to be either sufficient for the above family F or not sufficient at
all.

As an example, suppose that X, ..., X, are i.i.d. r.v.’s from N(6,, 6,).
Then ( X, %) is sufficient for (6,, 6,)’, where

ﬁ:liuﬁfﬁ
e

Now consider the conditional p.d.f. of (X,,..., X,,)’, given ¥/_ X, = y,. By
using the transformation

y]‘:xj7j:1""’ I’Z—l, Y :fo’
j=1

one sees that the above mentioned conditional p.d.f. is given by the quotient of
the following p.d.f.’s:

[\/2;792] exp{—lez[(yl —9])2+ S _91)2
'%”‘%"“‘hl—@f”

and

1 1 2
——exp|— y,—noé :|
27n0, [ 2n6, ( ])
This quotient is equal to
\ 270,

(\527:02 )

2

eXp{anBz [(yn _”91)2 _”(Y1 _91)2 - _”(yn-l _91)

—dn—%—~~—n4—@fﬂ
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and
(yn _”91)2 _”(Y1 _01)2 - _n(yn—l _91)2 _”(yn VT T Ve _91)2
=y, —n[yf+ TR LA UEERy —yn_l)z],

independent of 6,. Thus the conditional p.d.f. under consideration is indepen-
dent of 6, but it does depend on 6,. Thus X7, X, or equivalently, X is not
sufficient for (6,, 6,). The concept of X being sufﬁ01ent for 6, is not valid
unless 6, is known.

Exercises

11.1.1 In each one of the following cases write out the p.d.f. of the r.v. X and
specify the parameter space Q of the parameter involved.

i) X is distributed as Poisson,;

ii) X is distributed as Negative Binomial;
iii) X is distributed as Gamma;
iv) X is distributed as Beta.

11.1.2 Let X,,..., X, be iid. r.v.’s distributed as stated below. Then use
Theorem 1 and its corollary in order to show that:

i) Z;‘:l X; or X is a sufficient statistic for 0, if the X’s are distributed as
Poisson;

i) X7, X, or X is a sufficient statistic for 6, if the X’s are distributed as
Negative Binomial;

i) (IT, X, X7, X)) or (TT7_, X, )7 ) is a sufficient statistic for (6,, 8,) = (¢,
B) if the X’s are distributed as Gamma. In particular, IT;_, X; is a sufficient
statistic for o= @if Bis known, and 3_, X, or X isa sufﬁ01ent statistic for
B=0if ais known. In the latter case, take o =1 and conclude that 3_,
or X is a sufficient statistic for the parameter 8 = 1/ of the Negatlve
Exponential distribution;

iv) (IT_, X, IT}_, (1 - X)) is a sufficient statistic for (6,, 6,)" = (c, B)” if the X’s
are distributed as Beta. In particular, IT}_, X; or =X}, log X; is a sufficient
statistic for ov= @if Bis known, and IT}_, (1 - X)) is a sufficient statistic for
B=0if o is known.

11.1.3 (Truncated Poisson r.v.’s) Let X, X, be i.i.d. r.v.’s with p.d.f. f(-; 6)
given by:

f(O; 0)=e’9, f(l; 9)=0€’9, f(2; 0)=1—e’9—66’9,
flx: 0)=0.  x=0,1,2,

where 6> 0. Then show that X, + X, is not a sufficient statistic for 6.
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11.1.4 LetX,, ..., X, beiid.r.v.’s with the Double Exponential p.d.f. f(-; 6)
given in Exercise 3.3.13(iii) of Chapter 3. Then show that ¥_,|.X]| is a sufficient
statistic for 6.

1115 IfX =(X,, X,),j=1,...,n, is a random sample of size n from the
Bivariate Normal distribution with parameter 8 as described in Example 4,
then, by using Theorem 1, show that:

_ _ n 2 n 2 n
(Xl’ X5, ZXU’ZXZJ"ZXUXZJJ
j=1 j=1 j=1
is a sufficient statistic for 0.

11.1.6 If X,..., X, is a random sample of size n from U(-6, 6), 6 € (0, ),
show that (X, X,))" is a sufficient statistic for 6. Furthermore, show that this
statistic is not minimal by establishing that 7" = max(lX/l,..., |X,]) is also a
sufficient statistic for 6.

11.1.7 If X,,..., X, is a random sample of size n from N(6, &), 6 € R, show
that

Sx. 5] o (% 5]

j=1 j=1 j=1

is a sufficient statistic for 6.

11.1.8 If X,..., X, is a random sample of size n with p.d.f.
f(x; 0) = e_(x_e)l(eﬁw)(x), 8eR,

show that X, is a sufficient statistic for 6.

11.1.9 Let X,,..., X, be a random sample of size n from the Bernoulli
distribution, and set 7 for the number of X’s which are equal to 0 and 7, for
the number of X’s which are equal to 1. Then show that T = (7}, T,)" is a
sufficient statistic for 6.

11110 If X,,..., X, are iid. r.v.’s with p.d.f. f(-; 6) given below, find a
sufficient statistic for 6.

i) f(x; 9) = Oxe’ll(o, 1)(x), fe (0, oo);
i) (x5 6)===(0=)1 () 0 €(0. =)

i) f(x; 0) = 617)636%/91(0,&)()6)’ Oe (0, oo);

iv) f(x: 6) = (g]{%)m L (%) 0€(0, )
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11.2 Completeness

DEFINITION 2

EXAMPLE 9

EXAMPLE 10

In this section, we introduce the (technical) concept of completeness which we
also illustrate by a number of examples. Its usefulness will become apparent in
the subsequent sections. To this end, let X be a k-dimensional random vector
with p.d.f. f(; 8), 0 Q < R/, and let g: R* — R be a (measurable) function,
so that g(X) is an r.v. We assume that E, g(X) exists for all 6 € Q and set
F=1{f(50):0eQ}.

With the above notation, we say that the family F (or the random vector X) is
complete if for every g as above, E,g(X) =0 for all e Q implies that g(x) =0
except possibly on a set NV of x’s such that Py(X € N) = 0 for all 6 € Q.

The examples which follow illustrate the concept of completeness. Mean-
while let us recall that if 37, ¢, ;x"” = 0 for more than n values of x, then

¢;=0,j=0,...,n Also,if ¥,_, ¢,x" = 0 for all values of x in an interval for
which the series converges, thenc,=0,n=0,1,....
Let

F= {f(-; 0); f(x: 6)= (Z]O"(l -6)""1,(x). 6<(0, 1)}

where A ={0, 1, ..., n}. Then Fis complete. In fact,
Fus(x) = S| Jr1-0) ~(1-0) St "
x=0 x=0
where p = 6/(1 — ). Thus E,g(X) =0 for all 6 € (0, 1) is equivalent to
Zg(X)("]P" =0
x=0 X

for every p € (0, =), hence for more than n values of p, and therefore

g(x)(2)=0,x=0, 1,...,n

which is equivalent to g(x) =0,x=0,1,..., n.
Let

Fe { 1s 6 s 0) = 1, (x) 00, m)},

where A ={0, 1,...}. Then Fis complete. In fact,
SR R C) S
Eeg(X)=§6g(x)e 9;=e 92670 =0

for 0 € (0, ) implies g(x)/x! =0 for x =0, 1, ... and this is equivalent to g(x)
=0forx=0,1,....
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EXAMPLE 11

EXAMPLE 12

THEOREM 2

Let

F= { f(: 6): f(x: 0)= ﬁl[a.e](x), 0o oo)}

Then Fis complete. In fact,

)= 5 [l

Thus, if E,g(X) = 0 for all 6 € (a, ), then [° g(x)dx = 0 for all > o which
intuitively implies (and that can be rigorously justified) that g(x) = 0 except
possibly on a set N of x’s such that Py(X € N) =0 for all 6 € Q, where X is an
r.v. with p.d.f. f(:; 8). The same is seen to be true if f(-; 0) is U(6, ).

Let X, ..., X, beiid. r.v.’s from N(u, 02). If ois known and u = 6, it can be
shown that

(o)

1
F= f(.; 9); f(x; 9)= 2m)_exp et | OeR
is complete. If u is known and ¢” = 6, then
(v-)
F= f('; 9); f(x; 0)=\/2m9 expl——— | 96(0, oo)

is not complete. In fact, let g(x) = x — pt. Then Eg(X) = Ey(X — 1) = 0 for all
6 e (0, =), while g(x) = 0 only for x = u. Finally, if both i and ¢ are unknown,
it can be shown that ( X, $°)’ is complete.

In the following, we establish two theorems which are useful in certain
situations.

Let X, ..., X, beiid. rv.’s with p.d.f. (1;0),0 e Qc R andlet T=(T,,...,
T,) be a sufficient statistic for @, where 7, = T(X,,---, X,),j=1,---, m. Let
g(+; 0) be the p.d.f. of T and assume that the set S of positivity of g(-; 0) is the
same forall®@e Q. Let V=(V,,..., V), V,=V(X,,...,X,),j=1,...,k, be
any other statistic which is assumed to be (stochastically) independent of T.
Then the distribution of V does not depend on ©.

PROOF We have that for t € S, g(t; 0) > 0 for all @ € Q and so f(vlt) is well
defined and is also independent of 0, by sufficiency. Then

fV,T(v7 t; 9)=f(v|t)g(t; (-))
for all v and t € S, while by independence

fV,T(v’ t; O)va(v; e)g(t; 0)

for all v and t. Therefore
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u(v: 0)s(t: 8)={vlt)s(t: o)
for all vand t € S. Hence fy(v; 0) = f(v/t) for all v and t € S; that is, fy(v; 0) =
fv(v) is independent of 6. A

REMARK 4 The theorem need not be true if S depends on 6.

Under certain regularity conditions, the converse of Theorem 2 is true
and also more interesting. It relates sufficiency, completeness, and stochastic
independence.

(Basu) Let X|,..., X, be ii.d. r.v.’s with p.d.f. f(:; 0), 8 €eQ < R" and let
T =(T,..., T,) be a sufficient statistic of , where T, = T(X,,..., X,),
j=1,...,m. Let g(-; 0) be the p.d.f. of T and assume that C = {g(:; 0); 8 €Q}
iscomplete. Let V=(V,,...,V,),V,=V(X,,...,X,),j=1,...,kbeany other
statistic. Then, if the distribution of V does not depend on 6, it follows that V
and T are independent.

PROOF 1t suffices to show that for every t € R™ for which f(vlt) is defined,
one has fy(v) = f(vlt), v € R*. To this end, for an arbitrary but fixed v, consider
the statistic ¢(T; v) = fy(v) — f(vIT) which is defined for all t’s except perhaps
for a set N of t’s such that Py(T € N) =0 for all 8 € Q. Then we have for the
continuous case (the discrete case is treated similarly)

E(T; v) = Eo[ £y (v) - F(¥{T) | = 1 (¥) - Eof (v/1)
:fv(v)—j_m...j_mf(vhl, o tm)g(tl, b e)dt1 dt,
=fv(v)—Ji...JZf(v, fo.o.o b, O)dt - dt,

=K (V)-~(v)=0:
that is, Ee¢(T; v) = 0 for all @ € Q and hence ¢(t; v) = 0 for all t € N° by

completeness (N is independent of v by the definition of completeness). So
fyv(v) = f(vit), t e N°, as was to be seen. A

Exercises

11.2.1 If Fis the family of all Negative Binomial p.d.f.’s, then show that F'is
complete.

11.2.2 If Fis the family of all U(-6, 6) p.d.f.’s, 8 € (0, =), then show that F
is not complete.

11.2.3 (Basu) Consider an urn containing 10 identical balls numbered 6 + 1,
0+2,...,0+10, where 0 € Q=1{0, 10, 20, ... }. Two balls are drawn one by
one with replacement, and let X; be the number on the jth ball, j=1, 2. Use this
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example to show that Theorem 2 need not be true if the set S in that theorem
does depend on 6.

11.3 Unbiasedness—Uniqueness

DEFINITION 3

THEOREM 4

In this section, we shall restrict ourselves to the case that the parameter is real-
valued. We shall then introduce the concept of unbiasedness and we shall
establish the existence and uniqueness of uniformly minimum variance un-
biased statistics.

Let X,,..., X, beiid. rv.’swithp.d.f. f(;0),0e Qc Randlet U= U(X,, ...,
X,) be astatistic. Then we say that U is an unbiased statistic for 6 if E,U = 6 for
every 6 € Q, where by E,U we mean that the expectation of U is calculated by
using the p.d.f. f(-; 6).

We can now formulate the following important theorem.

(Rao-Blackwell) Let X, . .., X, be i.i.d. r.v.’s with p.d.f. f(-; 0), 0 € Q c R, and
letT=(T,...,7T,), T,=T(X,,...,X,),j=1,...,m,be a sufficient statistic
for 6. Let U = U(X,, ..., X,) be an unbiased statistic for 6 which is not a
function of T alone (with probability 1). Set ¢(t) = E,(UIT = t). Then we have
that:

i) The r.v. ¢(T) is a function of the sufficient statistic T alone.
ii) ¢(T) is an unbiased statistic for 6.
iii) o3[¢(T)] < o3(U), 8 €Q, provided E,U° < co.

PROOF

i) That ¢(T) is a function of the sufficient statistic T alone and does not
depend on 6 is a consequence of the sufficiency of T.

ii) That ¢(T) is unbiased for 6, that is, E,(T) = 6 for every 6 € Q, follows
from (CE1), Chapter 5, page 123.

iii) This follows from (CV), Chapter 5, page 123. A

The interpretation of the theorem is the following: If for some reason one
is interested in finding a statistic with the smallest possible variance within the
class of unbiased statistics of 6, then one may restrict oneself to the subclass of
the unbiased statistics which depend on T alone (with probability 1). This is so
because, if an unbiased statistic U is not already a function of T alone (with
probability 1), then it becomes so by conditioning it with respect to T. The
variance of the resulting statistic will be smaller than the variance of the
statistic we started out with by (iii) of the theorem. It is further clear that
the variance does not decrease any further by conditioning again with respect
to T, since the resulting statistic will be the same (with probability 1) by
(CE2’), Chapter 5, page 123. The process of forming the conditional expecta-
tion of an unbiased statistic of 6, given T, is known as Rao-Blackwellization.



THEOREM 5

DEFINITION 4

EXAMPLE 13

EXAMPLE 14
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The concept of completeness in conjunction with the Rao—Blackwell theo-
rem will now be used in the following theorem.

(Uniqueness theorem: Lehmann-Scheffé) Let X, ..., X, be ii.d. r.v.’s with
pdf. f(:0),0eQc R andlet F={f(-;60);0eQ}. Let T=(T,,...,T,),T,=
T(X,,...,X,),j=1,..., m, be asufficient statistic for  and let g(-; 6) be its
p.d.f. Set C={g(:; 0); 6 € Q} and assume that Cis complete. Let U = U(T) be
an unbiased statistic for  and suppose that E,U° < o for all 8 € Q. Then U is
the unique unbiased statistic for 8 with the smallest variance in the class of all
unbiased statistics for 6 in the sense that, if V = V(T) is another unbiased
statistic for 6, then U(t) = V(t) (except perhaps on a set N of t’s such that
P4T e N) =0 for all 6 € Q).

PROOF By the Rao-Blackwell theorem, it suffices to restrict ourselves in the
class of unbiased statistics of 8 which are functions of T alone. By the
unbiasedness of U and V, we have then E,U(T) = E,V(T) = 6, 6 € Q;
equivalently,

EB[U(T) - V(T)] =0, 8eQ, or E(T)=0, 0eQ,

where ¢(T) = U(T) — V(T). Then by completeness of C, we have ¢(t) = 0 for
all t € R" except possibly on a set N of t’s such that P,(T € N) = 0 for all
0ecQ. A

An unbiased statistic for 6 which is of minimum variance in the class of all
unbiased statistics of 0 is called a uniformly minimum variance (UMV) unbi-
ased statistic of 6 (the term “uniformly” referring to the fact that the variance
is minimum for all 6 € Q).

Some illustrative examples follow.

Let X,,..., X, be iid. r.v.’s from B(1, 0), 6 € (0, 1). Then T =3}, X, is a
sufficient statistic for 6, by Example 5, and also complete, by Example 9. Now
X = (1/n)T is an unbiased statistic for 6 and hence, by Theorem 5, UMV
unbiased for 6.

Let X,,..., X, beiid. r.v.’s from N(u, ¢°). Then if ¢ is known and u = 6, we
have that 7'= Y7, X; is a sufficient statistic for 6, by Example 8. It is also
complete, by Example 12. Then, by Theorem 5, X = (1/n)T is UMYV unbiased
for 6, since it is unbiased for 6. Let i be known and without loss of generality
set u=0and o’ = 6. Then 7=, X;is a sufficient statistic for 6, by Example
8. Since T is also complete (by Theorem 8 below) and S* = (1/n) T is unbiased
for 6, it follows, by Theorem 5, that it is UMV unbiased for 6.

Here is another example which serves as an application to both Rao—
Blackwell and Lehmann—Scheffé theorems.

Let X, X,, X; be i.i.d. r.v.’s from the Negative Exponential p.d.f. with param-
eter A. Setting 8= 1/A, the p.d.f. of the X’s becomes f(x; ) = 1/6¢™%, x > 0. We
have then that E,(X;) = 6 and oy(X)) = &, j=1, 2, 3. Thus X,, for example, is an
unbiased statistic for 8 with variance &. It is further easily seen (by Theorem
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8 below) that T'= X, + X, + X, is a sufficient statistic for 6 and it can be shown
that it is also complete. Since X, is not a function of 7, one then knows that
X, is not the UMYV unbiased statistic for 6. To actually find the UMV unbiased
statistic for 6, it suffices to Rao—Blackwellize X;. To this end, it is clear that, by
symmetry, one has E(X,IT) = EfX,IT) = EfX,T). Since also their sum is
equal to E,(T1T) = T, one has that their common value is 7/3. Thus E (X,IT) =
T/3 which is what we were after. (One, of course, arrives at the same result by
using transformations.) Just for the sake of verifying the Rao-Blackwell theo-
rem, one sees that

Ee[g):e and o;g}%(«;z), 0e(0, ).

Exercises

11.3.1 If X,,..., X, is a random sample of size n from P(6), then use
Exercise 11.1.2(i) and Example 10 to show that X is the (essentially) unique
UMYV unbiased statistic for 6.

11.3.2 Refer to Example 15 and, by utilizing the appropriate transformation,
show that X is the (essentially) unique UMV unbiased statistic for 6.

11.4 The Exponential Family of p.d.f.’s: One-Dimensional Parameter Case

A large class of p.d.f.’s depending on a real-valued parameter 6 is of the
following form:

f(x; 9) = C(O)eQ(Q)T(X)h(x), xeR, 6Oe Q(g R’), (1)

where C(6) >0, 6 € Q and also h(x) > 0 for x € S, the set of positivity of f(x; 0),
which is independent of 6. It follows that

c (6) = z eQ(g)T(x)h(x)
xeS§

for the discrete case, and
c (0) = JSeQ(G)T(X)h(x)dx

for the continuous case. If X, ..., X, are i.i.d. r.v.’s with p.d.f. f(-; 6) as above,
then the joint p.d.f. of the X’s is given by

Htree. x5 0)=C (e)exp[g(e)gT(x, ):lh(xl) ),

x;eR, j=1,...,n, 6eQ. (2)
Some illustrative examples follow.
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Let

15 0)=( (-0 1,5,

where A ={0, 1, ..., n}. This p.d.f. can also be written as follows,

f(x: 0)=(1-8) exp[[log e e)x](szA () 0e(o. 1)

and hence is of the exponential form with
c(e)=(1-6)". 0fe)=toe = 7(sx)-x. H{s)- (:)IA (+)
Let now the p.d.f. be N(u, ¢°). Then if ¢ is known and u = 6, we have

1 6> 0 1,
x; 0)= exp| — exp| — x |exp| — x“ |, 0eR,
f( ) 2no p( 20° J p( o’ ) p( 20° J

and hence is of the exponential form with

T(x)=x. hlx)= exp(_ L xzj.

If now u is known and ¢ = 6, then we have

o)L LA o
f(x, 6)— mexp( Y (x ,u) ], 96(0, ),
and hence it is again of the exponential form with

(o), 0(0) =55 T(x)=(v-1)" and A(x)=1,

If the parameter space Q of a one-parameter exponential family of p.d.f.’s
contains a non-degenerate interval, it can be shown that the family is com-
plete. More precisely, the following result can be proved.

Let X be an r.v. with p.d.f. f(-; 6), 6 € Q < R given by (1) and set C= {g(-; 0);
0 €Q}, where g(+; 0) is the p.d.f. of T(X). Then C is complete, provided Q
contains a non-degenerate interval.

Then the completeness of the families established in Examples 9 and 10
and the completeness of the families asserted in the first part of Example 12
and the last part of Example 14 follow from the above theorem.

In connection with families of p.d.f.’s of the one-parameter exponential
form, the following theorem holds true.



278 11 Sufficiency and Related Theorems

THEOREM 7 LetX,,...,X,beiid.r.v.’swith p.d.f. of the one-parameter exponential form.
Then

i) 7% =27, T(X)) is a sufficient statistic for 6.
ii) The p.d.f. of T* is of the form
g(t; 9) = C”(O)eQ(g)lh * (t),
where the set of positivity of 4*(¢) is independent of 6.
PROOF

i) This is immediate from (2) and Theorem 1.

ii) First, suppose that the X’s are discrete, and then so is T*. Then we have
g(t; ) =Py(T*=1t)=2f(x,, ..., x,; 0), where the summation extends over
all (x,,...,x,) for which 7, T(x;) = t. Thus

s 0)- S ()| (oS 1) [Tt

where

Next, let the X’s be of the continuous type. Then the proof is carried out under
certain regularity conditions to be spelled out. We set Y, = ¥7_, T(X)) and let

Y,=X,j=2,..., n. Then consider the transformation
»=27(x) T(x )=y -2T(y)
j=1 j=2
hence
yi=X,j=2,...,m X;=y,J=2,...,nm,
and thus

X =T_1{Y1_ZT(3’1)}
i=2
xj:yj5j:27'.'7n’

where we assume that y = T(x) is one-to-one and hence the inverse 7'
exists. Next,
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%:m, where z=y1—j§T(yj),
provided we assume that the derivative T’ of T exists and T’[T'(z)] # 0.
Since for j=2,..., n, we have
%:—1 ﬁ:——T,(yf) and %:1
¥, T|r7(=)|w Tr(e)] w;
forj=2,...,nand dx/dy, =0 for 1 <i,j,i# j, we have that

B E ) NEZ PR Py e by

Therefore, the joint p.d.f. of Y}, ..., Y, is given by

gy v, 6)=C"(0)exp{0(6)] v, ~T(v2) -~ T(»,)
+T(y,)+ - +T(y, )]}
N TR (T
-C" (e)eQ(">”iz{T-1 [y =7(92) = =T (y, )]}
x ]; h(y; )|J |

So if we integrate with respect to y,, ... y,, set

wv)= [ L )= -1
<L e -

and replace y,, by ¢, we arrive at the desired result. A

REMARK 5 The above proof goes through if y = 7(x) is one-to-one on each
set of a finite partition of R.

We next set C = {g(-; 6 € Q}, where g(-; 6) is the p.d.f. of the sufficient
statistic 7*. Then the following result concerning the completeness of C
follows from Theorem 6.

The family C={g(-; 8 € Q} is complete, provided Q contains a non-degenerate
interval.

Now as a consequence of Theorems 2, 3, 7 and 8, we obtain the following
result.
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THEOREM 9

APPLICATION

Let ther.v. X, ..., X, be iid. from a p.d.f. of the one-parameter exponential
form and let 7* be defined by (i) in Theorem 7. Then, if V is any other statistic,
it follows that V and 7% are independent if and only if the distribution of V
does not depend on 6.

PROOF In the first place, T* is sufficient for 6, by Theorem 7(i), and the set
of positivity of its p.d.f. is independent of 6, by Theorem 7(ii). Thus the
assumptions of Theorem 2 are satisfied and therefore, if V is any statistic which
is independent of 7%, it follows that the distribution of V is independent of 6.
For the converse, we have that the family C of the p.d.f.’s of T* is complete, by
Theorem 8. Thus, if the distribution of a statistic V does not depend on 6,
it follows, by Theorem 3, that V and 7% are independent. The proof is
completed. A

Let X,,..., X, be iid. r.v.’s from N(u, °). Then
)_(leX, and Szle(X,.—)_()z
n <

are independent.

PROOF We treat u as the unknown parameter 6 and let ¢° be arbitrary (>0)
but fixed. Then the p.d.f. of the X’s is of the one-parameter exponential form
and 7= X is both sufficient for 8 and complete. Let

1 —\2
V=V(X,.. ..X,)=Y(x,-X).
j=1
Then V and T will be independent, by Theorem 9, if and only if the distribution
of V does not depend on 6. Now X; being N(6, ¢°) implies that Y, = X, — 0 is

N(0, ¢°). Since Y = X — 6, we have

u —\2 & —\2

Z(Xi _X) zz(yi _Y) .

i1 j=1
But the distribution of X7, (Y, - Y ) does not depend on 6, because PIY (Y,
- Y )’ e B]is equal to the integral of the joint p.d.f. of the Y’s over B and this

p.d.f. does not depend on 6. A

Exercises

11.4.1 In each one of the following cases, show that the distribution of the
r.v. X is of the one-parameter exponential form and identify the various
quantities appearing in a one-parameter exponential family.

i) X is distributed as Poisson;

ii) X is distributed as Negative Binomial;
iii) X is distributed as Gamma with 8 known;
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iii’) X is distributed as Gamma with o known;
iv) X is distributed as Beta with 3 known;
iv’) X is distributed as Beta with o known.

11.4.2 Let X,,..., X, be iid. r.v.’s with p.d.f. f(-; 6) given by
o\ Y x’
f(x, 9) —gx" exp[—;]l(o’w)(x), 6>0,y>0 (known).

i) Show that f{(-; 0) is indeed a p.d.f;
ii) Show that 37, X7 is a sufficient statistic for 6;
iii) Is f(-; 6) a member of a one-parameter exponential family of p.d.f.’s?
11.4.3 Use Theorems 6 and 7 to discuss:
i) The completeness established or asserted in Examples 9, 10, 12 (for u= 6
and o known), 15;

ii) Completeness in the Beta and Gamma distributions when one of the
parameters is unknown and the other is known.

11.5 Some Multiparameter Generalizations

EXAMPLE 18

Let X,..., X, beiid. r.v.’s and set X = (X, ..., X;)". We say that the joint
p-d.f. of the X’s, or that the p.d.f. of X, belongs to the r-parameter exponential
family if it is of the following form:

15 0)=c{o)eso| £0 (07 o)

where x = (x),...,x),x,e R j=1,...,k,k>21,0=(6,...,6) e Qc R,
C(0)>0,0 e Q and h(x) >0 for x € S, the set of positivity of f(-; 8), which is
independent of ©.

The following are examples of multiparameter exponential families.

Let X = (X, ..., X,) have the multinomial p.d.f. Then
o ox:6,...,6,)=(1-6,----06,,)

C 0; n!
><exp(2:leog1_91 - .J. . _erljxx ' IA(xl, o xr),

j=1 !

where A ={(x;, --,x) € R;x;20,j=1,...,rand ¥/_, x;=n}. Thus this p.d.f.
is of exponential form with
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h(xl,...

Let X be N(6,, 6,). Then,

2
1 [7) [7) 1
; o s 0,|=— _ 1 e A
f(x 1 2) \/27r02 exp{ zez]exp(ez * 20, * ]

and hence this p.d.f. is of exponential form with

C(6)=

1 6; 6, 1
e[ -2 | 0f0)=2. 0=
\/271'92 ( 292] 1( ) 6, ? 20,

Tz(x)z—x2 and h(x)zl.

For multiparameter exponential families, appropriate versions of Theo-
rems 6, 7 and 8 are also true. This point will not be pursued here, however.

Finally, if X, ..., X, are i.i.d. r.v.’s with p.d.f. f(-;0),0=(6,,...,0,) € Q
c R', not necessarily of an exponential form, the r-dimensional statistic U =
U,,....,U0),U=U(X,,...,X,),j=1,...,r, is said to be unbiased if E,U;=
0,j=1,...,rforall e Q. Again, multiparameter versions of Theorems 4-9
may be formulated but this matter will not be dealt with here.

Exercises

11.5.1 In each one of the following cases, show that the distribution of the
r.v. X and the random vector X is of the multiparameter exponential form and
identify the various quantities appearing in a multiparameter exponential
family.

i) X is distributed as Gamma;

ii) X is distributed as Beta;

iii) X = (X}, X,) is distributed as Bivariate Normal with parameters as de-
scribed in Example 4.

11.5.2 If the r.v. X is distributed as U(¢, ), show that the p.d.f. of X is not
of an exponential form regardless of whether one or both of ¢, § are unknown.

11.5.3 Use the not explicitly stated multiparameter versions of Theorems 6
and 7 to discuss:
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i) The completeness asserted in Example 15 when both parameters are
unknown;

ii) Completeness in the Beta and Gamma distributions when both parameters
are unknown.

11.5.4 (A bio-assay problem) Suppose that the probability of death p(x) is
related to the dose x of a certain drug in the following manner

1
P(x)=1+e_m,

where o > 0, B € R are unknown parameters. In an experiment, k different
doses of the drug are considered, each dose is applied to a number of animals
and the number of deaths among them is recorded. The resulting data can be
presented in a table as follows.

Dose X, X, - X

Number of animals used
(n) n n, . n,

Number of deaths
(Y) Y, Y, ... Y

Xy, X5 ..., X, and ny, n,, ..., n, are known constants, Y, Y,,..., Y, are
independent r.v.’s; Y; is distributed as B(n,, p(x;)). Then show that:

i) The joint distribution of Y}, Y,, ..., Y, constitutes an exponential family;
ii) The statistic

k k '
2V 2%,
j=1  j=1
is sufficient for 0 = (o, B)".

(REMARK In connection with the probability p(x) given above, see also
Exercise 4.1.8 in Chapter 4.)
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Point Estimation

12.1 Introduction

DEFINITION 1

Let X be an r.v. with p.d.f. f(:; 8), where 8 e Q < R". If 8 is known, we can
calculate, in principle, all probabilities we might be interested in. In practice,
however, 0 is generally unknown. Then the problem of estimating 0 arises; or
more generally, we might be interested in estimating some function of 6, g(0),
say, where g is (measurable and) usually a real-valued function. We now
proceed to define what we mean by an estimator and an estimate of g(0). Let
X, ..., X, beiid. r.v’s with p.d.f. f(-; ©). Then

Any statistic U = U(X,, ..., X,) which is used for estimating the unknown
quantity g(0) is called an estimator of g(0). The value U(x,, ..., x,) of U for
the observed values of the X’s is called an estimate of g(0).

For simplicity and by slightly abusing the notation, the terms estimator and
estimate are often used interchangeably.

Exercise

284

1211 LetX,, ..., X, beiid. r.v.’s having the Cauchy distribution with o=
1 and g unknown. Suppose you were to estimate y; which one of the estimators
X,, X would you choose? Justify your answer.

(Hint: Use the distributions of X, and X as a criterion of selection.)
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12.2 Criteria for Selecting an Estimator: Unbiasedness, Minimum Variance

DEFINITION 2

DEFINITION 3

From Definition 1, it is obvious that in order to obtain a meaningful estimator
of g(8), one would have to choose that estimator from a specified class of
estimators having some optimal properties. Thus the question arises as to how
a class of estimators is to be selected. In this chapter, we will devote ourselves
to discussing those criteria which are often used in selecting a class of
estimators.

Let g be as above and suppose that it is real-valued. Then the estimator U =
U(X,,..., X)) is called an unbiased estimator of g(0) if E,U(X,,..., X,) =
g(0) for all @ € Q.

Let g be as above and suppose it is real-valued. g(0) is said to be estimable if
it has an unbiased estimator.

According to Definition 2, one could restrict oneself to the class of unbi-
ased estimators. The interest in the members of this class stems from the
interpretation of the expectation as an average value. Thus if U =
U(X,, ..., X, is an unbiased estimator of g(0), then, no matter what 8 € Q is,
the average value (expectation under 0) of U is equal to g(0).

Although the criterion of unbiasedness does specify a class of estimators
with a certain property, this class is, as a rule, too large. This suggests that a
second desirable criterion (that of variance) would have to be superimposed
on that of unbiasedness. According to this criterion, among two estimators of
g(0) which are both unbiased, one would choose the one with smaller
variance. (See Fig. 12.1.) The reason for doing so rests on the interpretation
of variance as a measure of concentration about the mean. Thus, if U =

U(X,,..., X,) is an unbiased estimator of g(0), then by Tchebichev’s
inequality,
oU
PeHU—g(e)‘Se]zl—?.

Therefore the smaller o,U is, the larger the lower bound of the probability of
concentration of U about g(0) becomes. A similar interpretation can be given
by means of the CLT when applicable.

hl(u; 0) hz(u; 0)

(@) (b)
Figure 12.1 (a) p.d.f. of U, (for a fixed 0). (b) p.d.f. of U, (for a fixed 8).
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DEFINITION 4

Following this line of reasoning, one would restrict oneself first to the class
of all unbiased estimators of g(0) and next to the subclass of unbiased estima-
tors which have finite variance under all ® € Q. Then, within this restricted
class, one would search for an estimator with the smallest variance. Formaliz-
ing this, we have the following definition.

Let g be estimable. An estimator U = U(X, . .., X,) is said to be a uniformly
minimum variance unbiased (UMVU) estimator of g(0) if it is unbiased and
has the smallest variance within the class of all unbiased estimators of g(0)
under all ® € Q. That is, if U, = U,(X,, . . ., X,,) is any other unbiased estimator
of g(0), then o,U, > o,U for all ® € Q.

In many cases of interest a UMV U estimator does exist. Once one decides
to restrict oneself to the class of all unbiased estimators with finite variance,
the problem arises as to how one would go about searching for a UMVU
estimator (if such an estimator exists). There are two approaches which may
be used. The first is appropriate when complete sufficient statistics are avail-
able and provides us with a UMVU estimator. Using the second approach, one
would first determine a lower bound for the variances of all estimators in the
class under consideration, and then would try to determine an estimator whose
variance is equal to this lower bound. In the second method just described, the
Cramér-Rao inequality, to be established below, is instrumental.

The second approach is appropriate when a complete sufficient statistic is
not readily available. (Regarding sufficiency see, however, the corollary to
Theorem 2.) It is more effective, in that it does provide a lower bound for the
variances of all unbiased estimators regardless of the existence or not of a
complete sufficient statistic.

Lest we give the impression that UMV U estimators are all-important, we
refer the reader to Exercises 12.3.11 and 12.3.12, where the UMV U estimators
involved behave in a rather ridiculous fashion.

Exercises

12.2.1 Let X be anr.v. distributed as B(n, 6). Show that there is no unbiased
estimator of g(6) = 1/6 based on X.

In discussing Exercises 12.2.2-12.2.4 below, refer to Example 3 in Chapter 10
and Example 7 in Chapter 11.

12.2.2 Let X|,..., X, be independent r.v.’s distributed as U(0, 0), 0 Q=
(0, =). Find unbiased estimators of the mean and variance of the X’s depend-
ing only on a sufficient statistic for 6.

12.2.3 LetX,,..., X, beiid. r.v.’s from U(6,, 6,), 6, < 6, and find unbiased
estimators for the mean (6, + 6,)/2 and the range 6, — 6, depending only on a
sufficient statistic for (6,, 6,)".
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12.24 Let X|,..., X, be iid. r.v.’s from the U(6, 20), 0 € Q = (0, =)
distribution and set
u=""Lx and v, =t [ZX +X ]
2n+1" (") Sn+4 () (1)

Then show that both U, and U, are unbiased estimators of 6 and that U, is
uniformly better than U, (in the sense of variance).

12.2.5 LetX,,..., X, beiid. r.v.’s from the Double Exponential distribu-
tion f(x; 6) = 1e*™%, 6 e Q=R Then show that (X, + X,,)/2 is an unbiased
estimator of 6.

12.2.6 LetX,...,X,andY,,..., Y, be two independent random samples
with the same mean 6 and known variances o; and o3, respectively. Then show
that for every c € [0, 1], U=cX + (1 — ¢)Y is an unbiased estimator of 6. Also
find the value of ¢ for which the variance of U is minimum.

12.2.7 Let X,..., X, be_ iid. r.v.’s with mean y and variance ¢, both
unknown. Then show that X is the minimum variance unbiased linear estima-
tor of u.

12.3 The Case of Availability of Complete Sufficient Statistics

The first approach described above will now be looked into in some detail. To
thisend, let T=(T},..., T,), T,=T(X,,..., X,),j=1,..., m, be a statistic
which is sufficient for @ and let U= U(X|, . . ., X,) be an unbiased estimator of
g(0), where g is assumed to be real-valued. Set ¢(T') = E4(U|T). Then by the
Rao-Blackwell theorem (Theorem 4, Chapter 11) (or more precisely, an
obvious modification of it), ¢(T) is also an unbiased estimator of g(0) and
furthermore o3(9) < oU for all @ €Q with equality holding only if U is a
function of T (with Pg-probability 1). Thus in the presence of a sufficient
statistic, the Rao-Blackwell theorem tells us that, in searching for a UMVU
estimator of g(@), it suffices to restrict ourselves to the class of those unbiased
estimators which depend on T alone. Next, assume that T is also complete.
Then, by the Lehmann—Scheffé theorem (Theorem 5, Chapter 11) (or rather,
an obvious modification of it), the unbiased estimator ¢(T) is the one with
uniformly minimum variance in the class of all unbiased estimators. Notice
that the method just described not only secures the existence of a UMVU
estimator, provided an unbiased estimator with finite variance exists, but also
produces it. Namely, one starts out with any unbiased estimator of g(0) with
finite variance, U say, assuming that such an estimator exists. Then Rao-
Blackwellize it and obtain ¢(T). This is the required estimator. It is essentially
unique in the sense that any other UMV U estimators will differ from ¢(T) only
on a set of Py-probability zero for all @ € Q. Thus we have the following result.
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EXAMPLE 1

EXAMPLE 2

Let g be as in Definition 2 and assume that there exists an unbiased estimator
U=U(X,..., X, of g(8) with finite variance. Furthermore, let T = (T}, ...,
T,),T,=T(X,...,X,),j=1,...,mbe asufficient statistic for ® and suppose
that it is also complete. Set ¢(T) = E4(U|T). Then ¢(T) is a UMVU estimator
of g(8) and is essentially unique.

This theorem will be illustrated by a number of concrete examples.

Let X,..., X, be i.i.d. r.v.’s from B(1, p) and suppose we wish to find a
UMVU estimator of the variance of the X’s.

The variance of the X’s is equal to pg. Therefore,if wesetp =6, 6 Q=
(0,1) and g(6) = 6(1 — 0), the problem is that of finding a UMVU estimator for
g(6). We know that, if

v=—13(x,-xV,
n-143

then E,U = g(0). Thus U is an unbiased estimator of g(6). Furthermore,
2
n —\2 n _ n 1 n
Z(X/ ‘X) =2 X;-nX’=3 X, ‘”(_ZX/‘)
j=1 j=1 j=1 niio

because X; takes on the values 0 and 1 only and hence X; = X, By setting
T=3%)_, X, we have then

n 2 2
Z(Xi—)?)Z:T—T—, so that UzL(T—T—].
n

= n-1 n

But T'is a complete, sufficient statistic for 6 by Examples 6 and 9 in Chapter 11.
Therefore U is a UMVU estimator of the variance of the X’s according to
Theorem 1.

Let X be an r.v. distributed as B(n, 0) and set

g(0)=P,(Xx<2)= i(”]ex (1-6)"

x=0\X
n n-1 n n-2
=(1-6) +n6(1-6) +| _|g*(1-6) ".
(-0 +nofu-o) " +( 21~
On the basis of r independent r.v.’s X, . . ., X, distributed as X, we would like

to find a UMVU estimator of g(6), if it exists. For example, 6 may represent
the probability of an item being defective, when chosen at random from a lot
of such items. Then g(6) represents the probability of accepting the entire lot,
if the rule for rejection is this: Choose at random 7 (>2) items from the lot and
then accept the entire lot if the number of observed defective items is <2. The
problem is that of finding a UMVU estimator of g(6), if it exists, if the
experiment just described is repeated independently r times.

Now the r.v.’s X, j=1,...,r are independent B(n, 0), so that T'=3%_, X;
is B(nr, ). T is a complete, sufficient statistic for 6. Set
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it x, <2
0 if X,>2.

Then E,U = g(0) but it is not a function of 7. Then one obtains the required
estimator by Rao-Blackwellization of U.
To this end, we have

E,(Ulr =1)=P, (U =1T =)
Py(X, <2, X+ + X, =1)
P,(T=1)

=P, (X, <2T=1)=

_P(T—t[P (X,=0, X,+- +X, =)

+P(X =L X,+ - +X, =t— 1)
+By (X, =2, X2+-»~+X,:z—2)]
1
:Pg(T—:t[PQ(Xl:O)PQ(X2+-~~+X,:t)
+P (X, = 1)y (X, + -+ X, =1-1)
By (X, =2)By (Xy -+ X, =1-2)]

- [(’;’ ]9‘(1 o) T [(1 o)’ [n(r[— D)y (1o
+n6(1-6)" 1[”(’ - 1)]9t (1-6f (1)

efE e
[ el

Therefore
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EXAMPLE 4

is a UMVU estimator of g(6) by Theorem 1.

Consider certain events which occur according to the distribution P(A). Then
the probability that no event occurs is equal to ¢ ™. Let now X, ..., X, (n>2)
be i.i.d. r.v.’s from P(A). Then the problem is that of finding a UMVU estima-
tor of e™.

Set

T:iX]., A=0, g(@):e’o

j=1

and define U by
U< 1 if X, =0

0 if X, =21
Then

E,U=PF,(U=1)=F,(X,=0)=g(6):

that is, U is an unbiased estimator of g(6). However, it does not depend on T’
which is a complete, sufficient statistic for 6, according to Exercise 11.1.2(i)
and Example 10 in Chapter 11. It remains then for us to Rao—Blackwellize U.

For this purpose we use the fact that the conditional distribution of X, given
T =t,is B(t, 1/n). (See Exercise 12.3.1.) Then

E,(UT=t)=P,(X, =0|T :t)z(l—%)t,

so that

is a UMVU estimator of ¢ ™

Let X,, ..., X, beiid.r.v.’s from N(u, 6°) with 6> unknown and u known. We
are interested in finding a UMVU estimator of o.

Set 62 = 6 and let g(6) = V0. By Corollary 5, Chapter 7, we have that
10X (X, — )’ is x5 So, if we set

§? = lZ(X]. —,u)z,
ni

then nS%6 is y*, so that \nSAB is distributed as y,. Then the expectation
E (\nSN@) can be calculated and is independent of 8; call it ¢, (see Exercise

12.3.2). That is,
nS) , /nS
E, (NW) =c/, sothat E, (\c_’ =10,

Setting finally ¢, = ¢/,/\n, we obtain

n
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Eg[i]zx/é;

that is, S/c, is an unbiased estimator of g(0). Since this estimator depends on
the complete, sufficient statistic (see Example 8 and Exercise 11.5.3(ii), Chap-
ter 11) S” alone, it follows that S/c, is a UMVU estimator of ©.

Let again X, . .., X, beiid.r.v.’s from N(u, 6°) with both g and ¢” unknown.
We are interested in finding UMV U estimators for each one of u and o”.
Here 0 = (u, 6°) and let g,(8) = u, g,(8) = 6”. By setting
1< —=\2
==Y (X -X),
L 2% = X)
we have that (X, S%) is a sufficient statistic for 8. (See Example 8, Chapter 11.)
Furthermore, it is complete. (See Example 12, Chapter 11.) Let U, = X and U,
=nS?/(n —1). Clearly, E,U, = u. By Remark 5 in Chapter 7,

Therefore

2
Ee( ns J:O'Z.
n-1

So U, and U, are unbiased estimators of u and 0_2, respectively. Since they
depend only on the complete, sufficient statistic (X, S*)’, it follows that they
are UMVU estimators.

Let X,,..., X, be iid.r.v.’s from N(u, o%) with both y and ¢° unknown, and
set &, for the upper pth quantile of the distribution (0 < p < 1). The problem is
that of finding a UMVU estimator of &,.

Set © = (1, 0°)". From the definition of &, one has P,(X, > &) = p. But

P(-)(Xl ng):Pe(MZé:p—_‘uJ=1—q{—§p _'u],

o o o

CI{—SP _'u]zl—p.
o

SpH_ :

”7:(13 1(1—p) and &, =u+o® 1(1—p).

Of course, since p is given, ®'(1 — p) is a uniquely determined number. Then
by setting g(8) = u + c®'(1 — p), our problem is that of finding a UMVU
estimator of g(0). Let

so that

Hence
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U:)?+iq>4(1—p),
Cﬂ
where ¢, is defined in Example 4. Then by the fact that E,X = y and E,(S/c,)
= o (see Example 4), we have that E;U = g(8). Since U depends only on the
complete, sufficient statistic (X, S°)’, it follows that U is a UMVU estimator

of &,

Exercises

12.3.1 LetX,, ..., X,beiid.r.v.’s from P(A) and set T=2_, X;. Then show
that the conditional p.d.f. of X}, given T = ¢, is that of B(t, 1/n). Furthermore,
observe that the same is true if X is replaced by any one of the remaining X’s.

12.3.2 Refer to Example 4 and evaluate the quantity c¢;, mentioned there.

1233 If Xj,..., X, are i.id. r.v.’s from B(1, 6), 6 € Q = (0, 1), by using
Theorem 1, show that X is the UMVU estimator of 6.

1234 1If X, ..., X, areiid. r.v.’s from P(0), 6 € Q = (0, o), use Theorem
1 in order to determine the UMVU estimator of 6.

12.3.5 LetX,,...,X,beiid.r.v.’s from the Negative Exponential distribu-
tion with parameter 6 € Q = (0, ). Use Theorem 1 in order to determine the
UMVU estimator of 6.

12.3.6 Let X be an r.v. having the Negative Binomial distribution with
parameter 8 € Q = (0, 1). Find the UMVU estimator of g(6) = 1/6 and
determine its variance.

12.3.7 LetX,,..., X, beindependentr.v.’s distributed as N(6, 1). Show that
X ?— (1/n) is the UMVU estimator of g(6) = 6°.

12.3.8 Let X|,..., X, be independent r.v.’s distributed as N(y, 0’), where
both u and ¢ are unknown. Find the UMVU estimator of u/c.

12.3.9 Let (X, Y)),j=1,...,n beindependent random vectors having the
Bivariate Normal distribution with parameter 0 = (u,, i, 6;, 0,, p)’. Find the
UMVU estimators of the following quantities: po,0,, W, PO,/ C;.

12.3.10 Let X be anr.v. denoting the life span of a piece of equipment. Then
the reliability of the equipment at time x, R(x), is defined as the probability
that X > x. If X has the Negative Exponential distribution with parameter
6 Q= (0, ), find the UMVU estimator of the reliability R(x; 8) on the basis
of n observations on X.

12.3.11 Let X be an r.v. having the Geometric distribution; that is,

f(x: 0)=06(1-0)", x=0,1,.... 8eQ=(0, 1),
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and let U(X) be defined as follows: U(X) =1if X=0and U(X) =0 if X # 0.
By using Theorem 1, show that U(X) is a UMVU estimator of 6 and conclude
that it is an unreasonable one.

12.3.12 Let X be an r.v. denoting the number of telephone calls which arrive
at a given telephone exchange, and suppose that X is distributed as P(6),
where 0 € Q = (0, «) is the number of calls arriving at the telephone exchange
under consideration within a 15 minute period. Then the number of calls which
arrive at the given telephone exchange within 30 minutes is an r.v. Y distrib-
uted as P(26), as can be shown. Thus P,(Y = 0) = ¢’ = g(0). Define U(X) by
U(X) = (-1)*. Then show that U(X) is the UMVU estimator of g(8) and
conclude that it is an entirely unreasonable estimator. (Hint: Use Theorem 1.)

12.3.13 Use Example 11, Chapter 11, in order to show that the unbiased
estimator constructed in Exercise 12.2.2 is actually UMVU.

12.3.14 Use Exercise 11.1.4, Chapter 11, in order to conclude that the un-
biased estimator constructed in Exercise 12.2.5 is not UMVU.

12.4 The Case Where Complete Sufficient Statistics Are Not Available or
May Not Exist: Cramér—Rao Inequality

When complete, sufficient statistics are available, the problem of finding a
UMVU estimator is settled as in Section 3. When such statistics do not exist,
or it is not easy to identify them, one may use the approach described here in
searching for a UMVU estimator. According to this method, we first establish
alower bound for the variances of all unbiased estimators and then we attempt
to identify an unbiased estimator with variance equal to the lower bound
found. If that is possible, the problem is solved again. At any rate, we do have
alower bound of the variances of a class of estimators, which may be useful for
comparison purposes.

The following regularity conditions will be employed in proving the main
result in this section. We assume that Q < R and that g is real-valued and
differentiable for all 8 € Q.

12.4.1 Regularity Conditions
Let X be an r.v. with p.d.f. f(:; 0), 6 € Q c [R. Then it is assumed that
i) f(x; 0) is positive on a set S independent of 6 € Q.

ii) Qs an open interval in [ (finite or not).

iii) (9/00) f(x; 0) exists for all e Q and all x € S except possibly on a set
N c S which is independent of 6 and such that P,(X € N) =0 for all 6 € Q.

iv) L J'Sf(xl; 9) o f(xn§ 9)dx1 -dx,
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or Z---Zf(x];e)--~f(xn;9)
N N
may be differentiated under the integral or summation sign, respectively.
V) E,[(9/06)logf(X; 6)]’, to be denoted by 1(8), is >0 for all 6 € Q.

vi) JS LU(xl, ces x,,)f(xl; 9) "‘f(an O)dxl cdx,
or D ...ZU(xl,...,x,,)f(xl; 9)"'f(xn; 9)

may be differentiated under the integral or summation sign, respectively,
where U(X,, ..., X,) is any unbiased estimator of g(0). Then we have the
following theorem.

(Cramér-Rao inequality.) Let X, ..., X, be i.i.d. r.v.’s with p.d.f. f(-; 6) and
assume that the regularity conditions (i)—(vi) are fulfilled. Then for any un-
biased estimator U = U(X|, ..., X,) of g(6), one has

2

[5e)]
ni(0)
PROOF 1f o;U = or I(6) = = for some 0 e Q, the inequality is trivially true
for those @’s. Hence we need only consider the case where o3U < o and 1(8)
<o for all 6 € Q. Also it suffices to discuss the continuous case only, since the
discrete case is treated entirely similarly with integrals replaced by summation
signs.
We have

EE,U(X],...,Xn)
:L . .[sU(xl’ cees xn)f(xl; 9) . f(xn; G)dxl - dx, =g(9). (1)

Now restricting ourselves to S, we have
d
%[f(xl; 0) - fx; 9)]
d d
| s 0Tt 0| 25 105 0)

j#l

s o)+ +| 2 (05 0) (50

j#2

I EVE U

i#]

dg(@)

o2U> =
dae

, 6eQ, where g’(0)=

n

[t

i=1

= {i%logf(x,; G)hjf(xi; 9). (2)

j=1
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Differentiating with respect to 6 both sides of (1) on account of (vi) and
utilizing (2), we obtain

el0)=f, - [Ufe...x )[z%log s )]H o O, - ds,
=E9{U(X1,...,Xn)|:28—10gf( )”=E9(UV9), @

j=1

where we set

V,=V,(X,..... X,)= i(%logf(Xj; 0)

j=1

Next,
L . js f(xl; 9) . f(xn; Q)dx1 coedx, =1,

Therefore differentiating both sides with respect to 6 by virtue of (iv), and
employing (2),

o=[ - [|> [ —1ogf( 9)]ﬁf(xi; 0)dx, - dx, =EV,.  (4)
i=1
From (3) and (4), it follows that
Covy(U, V,) = E, (UV, )~ (EU)EsV,) = E, (UV,) = g(6)- (5)
From (4) and the definition of V,, it further follows that

0=E9V9=E9[i%10gf()( )} ZE{ log (X ; )}

j=1
=nk, ilogf(Xl; 6) ,
00
so that
E i1ogf(X- 0)|=0.
I 96 v
Therefore

oV, :oﬁ{i%logf(Xj; 9)}: ioﬁ[(%logf()(j; 9)]

j=1 j=1

d
=no, [%logf( 9)}

9 ’ ?
=nkE, |:£logf(X1; 0):| =nk, [%logf(X; 0):| . (6)
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But
Cov(U, V,)
Uu,Vv,|]=———-—=
o[- Vo) (0,0 0aV%)
and p;(U, V,) < 1, which is equivalent to
Cov,(U, V,)<(03U)02V,) (7

Taking now into consideration (5) and (6), relation (7) becomes

[g’(e)]z = (GéU)nEe [a%log X 9)}2,

or by means of (v),

I 0 8
o= nEe[(&/(?G)logf(X; 9)]2 B nI(G) . ®

The proof of the theorem is completed. A

The expression E,[(0/00)logf(X; 6)]’, denoted by 1(8), is called Fisher’s infor-
mation (about 8) number; nE,[(9/00)log f(X; 6)]’ is the information (about 6)
contained in the sample X, ..., X,

n*

(For an alternative way of calculating /(6), see Exercises 12.4.6 and 12.4.7.)
Returning to the proof of Theorem 2, we have that equality holds in (8) if
and only if Cov,(U, V,) = (62U)(02V,) because of (7). By Schwarz inequality
(Theorem 2, Chapter 5), this is equivalent to
V, = E,V, +k(6)(U - E,U) with P,~probability 1, 9)

where

ko) =+,

o, U
Furthermore, because of (i), the exceptional set for which (9) does not hold is
independent of 6 and has P probability O for all 6 Q. Taking into considera-

tion (4), the fact that E,U = g(0) and the definition of V,, equation (9) becomes
as follows:

Ztog[[1(x;: 6)=K(OJU(X,.... X,)-g(6)(6) (10)
j=1
outside a set N in R" such that Py(X,,..., X,) € N] =0 for all 8 € Q.

Integrating (10) (with respect to 0) and assuming that the indefinite integrals
Jk(6)d6 and [g(6)k(6)d6 exist, we obtain

logt[f(X,.; 0)=U(X,, ..., X,)[k(6)d6 - [g(0)k(6)d0+A(X,, ..., X,),
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where (X, . .., X,) is the “constant” of the integration, or

1ogg flx; 8)=U(x, ... x,)[ k(oo [ g(0)c(6)do+i(x,..... x,). (1)

Exponentiating both sides of (11), we obtain

T17(x: 6)=c(6)exp[Q(O)U(x,. ... v )i{xroo ook, ) (12)

j=1
where

c(o)= exp[— [5(6)k(e) de], 0(6) = [ k(6)de
and
h(xl, e xn):exp[fz(xl, cee xn)].

Thus, if equality occurs in the Cramér-Rao inequality for some unbiased
estimator, then the joint p.d.f. of the X’s is of the one-parameter exponential

form, provided certain conditions are met. More precisely, we have the follow-
ing result.

COROLLARY If in Theorem 2 equality occurs for some unbiased estimator U = U
(X,, ..., X,) of g(8) and if the indefinite integrals [k(8)d6, Jg(8)k(6)d0 exist,
where

then

gf(x,; 6)=C(6)expl(6)U(x.. .. x,Ji(x1v- . x,)

outside a set N in R" such that P,[(X], ..., X,) € N] =0 for all 6 € Q; here C(6)
= exp[-Ig(0)k(0)d6] and Q(6) = [k(6)d6. That is, the joint p.d.f. of the X’s is
of the one-parameter exponential family (and hence U is sufficient for 6).

REMARK 1 Theorem 2 has a certain generalization for the multiparameter
case, but this will not be discussed here.

In connection with the Cramér—Rao bound, we also have the following
important result.

THEOREM 3 Let X|,..., X, be ii.d. r.v.’s with p.d.f. f(; ) and let g be an estimable real-
valued function of 6. For an unbiased estimator U= U(X}, - - -, X,,) of g(6), we
assume that regularity conditions (i)-(vi) are satisfied. Then o,U is equal to
the Cramér—Rao bound if and only if there exists a real-valued function of 6,
d(8), such that U = g(6) + d(6)V, except perhaps on a set of P, -probability
zero for all 6 € Q.

PROOF Under the regularity conditions (i)—(vi), we have that
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g . [s@)]
nl(e)’ or GQUZW

o,U>

]

since nl(0) = o3V, by (6). Then o,U is equal to the Cramér—Rao bound if and

[s@)] =(os0)(ov.).

2
[¢(6)] =Couv,(U, V) by (3)

Thus o,U is equal to the Cramér—Rao bound if and only if Cy(U, V,) = (c,U)
x (o3V,), or equivalently, if and only if U = a(8) + d(8)V, with P, -probability
1 for some functions of 6, a(6) and d(6). Furthermore, because of (i), the
exceptional set for which this relationship does not hold is independent of 6
and has P, probability 0 for all 6 € Q. Taking expectations and utilizing the
unbiasedness of U and relation (4), we get that U = g(0) + d(0)V, except
perhaps on a set of Pgprobability O for all 8 € Q. The proof of the theorem is
completed. A

The following three examples serve to illustrate Theorem 2. The checking
of the regularity conditions is left as an exercise.

Let X,,..., X, beiid.r.v.’s from B(1, p), p € (0, 1). By setting p = 6, we have
flx: 6)=07(1-6) ", x=0.1

so that
log f(x; 0) =xlogf+ (1 - x)log(l - 9).
Then
0 1-
ﬁlogf(x; 9)=%— 1_;
and

2 1og s )] = s (1 -2 of1x)
(

Since
E,X*=0, E,(1-X) =1-0 and E,[X(1-X)|=0
(see Chapter 5), we have
2

d 1

)

so that the Cramér—Rao bound is equal to 6(1 — 6)/n.
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EXAMPLE 8

EXAMPLE 9

Now X is an unbiased extimator of 6 and its variance is oy(X) =
6(1 — 6)/n, that is, equal to the Cramér—Rao bound. Therefore X is a UMVU
estimator of 6.

Let X, ..., X, beiid.r.v.’s from P(1), A > 0. Again by setting A = 6, we have

f(x; 0)=e'90—', x=0,1,... sothat logf(x; 9)=—9+xlog0—logx!.
x!
Then
d X
ﬁlogf(x; 9)=—1+5
and
J ’ 1, 2
. _ 2
[%logf(x, 9):| —1+9—2X —gx.

Since E,X = 6 and E,X* = 6(1 + 6) (see Chapter 5), we obtain

2
d 1
E,| =1 X; 0)| ==,
| s )| -1
so that the Cramér—Rao bound is equal to @/n. Since again X is an unbiased

estimator of 6 with variance 6/n, we have that X is a UMVU estimator of 6.

Let X, ..., X, beiid.r.v.’s from N(u, 6°). Assume first that ¢” is known and
set 1= 6. Then
2
x—0
f(x; 9): i exp—( 2) xelR
N2mo 20
and hence
2
x—0
logf(x; 9)=log i —( 2) .
\N2no 20
Next,
0 1x-6
—Ilog flx; 6)=— ,
d0 8 f( ) c o
so that
2 1 0 2
X—
et o] - 5)
Then
P o
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since (X — 0)/ois N(0, 1) and hence

2
E, = (%J =1. (See Chapter 5.)

Thus the Cramér-Rao bound is ¢*/n. Once again, X is an unbiased esti-
mate of @ and its variance is equal to ¢’/n, that is, the Cramér—Rao bound.
Therefore, X is a UMVU estimator. This was also shown in Example 5.

Suppose now that g is known and set ¢° = 6. Then

2
1 (x—y)
; 0)= - i
f(x ) N 270 P 20
so that
(x-n)
logf(x; 9)=—%log(2n)—%log9_%
and
J 1 (xmw)
%logf(X, 0)——%4- YE .
Then

2 2 4
96 46° 20\ o 40°
and since (X — 1)@ is N(0, 1), we obtain

2 4
EH[X—;M) =1, EQ[MJ =3. (See Chapter 5.)

\O \/5

Therefore

2
Eg[%log f(X; 9):| = 2;2

and the Cramér—Rao bound is 26%/n. Next,

2
n X._
2( ]f'u) is%ﬁ
=AY

(see first corollary to Theorem 5, Chapter 7), so that

2 2
nX__'u nX__‘u
E - = d o? / =2
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(see Remark 5 in Chapter 7). Therefore (1/n)X,(X; — 1)* is an unbiased
estimator of @ and its variance is 26°/n, equal to the Cramér—Rao bound. Thus
(1/n)XL (X, — p)* is a UMVU estimator of 6.

Finally, we assume that both g and ¢” are unknown and set = 6,, 6° = 6,.
Suppose that we are interested in finding a UMVU estimator of 6,. By using
the generalization we spoke of in Remark 1, it can be seen that the Cramér—
Rao bound is again equal to 205/n. As a matter of fact, we arrive at the same
conclusion by treating 6, as a constant and 6, as the (unknown) parameter 6
and calculating the Cramér—Rao bound, provided by Theorem 2. Now it has
been seen in Example 5 that

1 <& —\2
mizl( = X)

is a UMVU estimator of 6,. Since

—\2
X -X
2 ]“f is )ijl
A A0,

(see second corollary to Theorem 5, Chapter 7), it follows that

13 V| 265 _ 26;
o 37 |- 22

j=1
the Cramér—Rao bound.

This then is an example of a case where a UMV U estimator does exist but
its variance is larger than the Cramér—Rao bound.

A UMVU estimator of g(0) is also called an efficient estimator of g(0) (in
the sense of variance). Thus if U is a UMVU estimator of g(0) and U* is any
other unbiased estimator of g(@), then the quantity o;U/(o;U*) may serve as
a measure of expressing the efficiency of U* relative to that of U. It is known
as relative efficiency (r.eff.) of U* and, clearly, takes values in (0, 1].

REMARK 2 Corollary D in Chapter 6 indicates the sort of conditions which
would guarantee the fulfillment of the regularity conditions (iv) and (vi).

Exercises

1241 Let X,..., X, be iid. r.v.’s from the Gamma distribution with o
known and = 6 € Q (0, «) unknown. Then show that the UMVU estimator
of O1is

15
(04

S

j=1
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and its variance attains the Cramér—Rao bound.

12.4.2 Refer to Exercise 12.3.5 and investigate whether the Cramér-Rao
bound is attained.

12.4.3 Refer to Exercise 12.3.6 and investigate whether the Cramér-Rao
bound is attained.

12.4.4 Refer to Exercise 12.3.7 and show that the Cramér—Rao bound is not
attained for the UMVU estimator of g(6) = 6°.

12.4.5 Refer to Exercise 12.3.11 and investigate whether the Cramér—Rao
bound is attained.

12.4.6 Assume conditions (i) and (ii) listed just before Theorem 2, and also
suppose that the %f(x; 0) exists for all 8 € Q and all x € § except, perhaps,
on a set N ¢ § with P,(X € N) =0 for all 8 € Q. Furthermore, suppose that,
respectively,

J‘S¢992 x; de 0 or Z—f( ) 0.

Then show that 1(9) =-F, [;—;log f(X; 0):|

12.4.7 In Exercises 12.4.1-12.4.4, recalculate /(0) and the Cramér-Rao
bound by utilizing Exercise 12.4.6 where appropriate.

12.4.8 Let X,,..., X, be ii.d. r.v.’s with p.d.f. f(r; 0), 6 € Q c R. For an
estimator V =V(X|,..., X,) of 6 for which E,V is finite, write E,V = 0+ b(0).
Then b(6) is called the bias of V. Show that, under the regularity conditions
(1)—(vi) preceding Theorem 2—where (vi) is assumed to hold true for all
estimators for which the integral (sum) is finite—one has

[1+6(0)]
nE,|(2/06)log (X 6)]

Here X is an r.v. with p.d.f. f(:; 0) and b’(0) = db(0)/d6. (This inequality is
established along the same lines as those used in proving Theorem 2.)

oV >

k]

12.5 Criteria for Selecting an Estimator: The Maximum Likelihood Principle

So far we have concerned ourselves with the problem of finding an estimator
on the basis of the criteria of unbiasedness and minimum variance. Another
principle which is very often used is that of the maximum likelihood.

Let X}, ..., X, beiid.r.v.’s with p.d.f. f(-; 0), 0 € Q — R" and consider the
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joint p.d.f. of the X’s f(x,; 0) - - - f(x,; 0). Treating the x’s as if they were
constants and looking at this joint p.d.f. as a function of 8, we denote it by
L(®lx,, ..., x,) and call it the likelihood function.

The estimate = 6 (xy, ..., x,) is called a maximum likelihood estimate (MLE)
of 0 if

A

L(Oxl, Cee, xn):max[L((-)|x1, R xn); (‘)EQ];
é(Xl, ..., X,) is called an ML estimator (MLE for short) of 0.

REMARK 3 Since the function y =logx, x > 0 is strictly increasing, in order
to maximize (with respect to®) L(0|x,, .. ., x,) in the case that Qe R, it suffices
to maximize log L(0|x,, . . ., x,). This is much more convenient to work with, as
will become apparent from examples to be discussed below.

In order to give an intuitive interpretation of a MLE, suppose first that the
X’s are discrete. Then

L((—)le, R xn):P(,(X1 =X,..., X, =x,,);

that is, L(@]x,, ..., x,) is the probability of observing the x’s which were
acutally observed. Then it is intuitively clear that one should select as an
estimate of 0 that ® which maximizes the probability of observing the x’s which
were actually observed, if such a 0 exists. A similar interpretation holds true

for the case that the X’s are continuous by replacing L(8|x,, . .., x,) with the
probability element L(0|x,, . .., x,)dx, - - - dx, which represents the probability
(under P,) that X; lies between x; and x; + dx;, j=1,..., n.

In many important cases there is a unique MLE, which we then call the
MLE and which is often obtained by differentiation.

Although the principle of maximum likelihood does not seem to be justi-
fiable by a purely mathematical reasoning, it does provide a method for
producing estimates in many cases of practical importance. In addition, an
MLE is often shown to have several desirable properties. We will elaborate on
this point later.

The method of maximum likelihood estimation will now be applied to a
number of concrete examples.

Let X, ..., X, beiid. r.v.’’s from P(0). Then
ne 1

H;‘I:I X !

L(9|x1, N xn) =e PeRaEt

and hence

logL(6|x1, cee x,,)=—log(ﬁxj!)—n9+(§n:xjjlog6.
j=1 j=1

Therefore the likelihood equation
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%10gL(9|x1, e, xn)=0 becomes —n+n)_c%=0

which gives 6 = X. Next,

9|x1, ...,xn)=—n)_c%<0 forall 6>0
0

and hence, in particular, for 6 = 6. Thus 6 = ¥ is the MLE of 6.

EXAMPLE 11 Let X|,..., X, be multinomially distributed r.v.’s with parameter 0= (p,, - - -
p,) € Q, where Q is the (r — 1)-dimensional hyperplane in R" defined by

Q:{Gz(pl, . p,)

’

eR"; p;>0,j=1,...,r and ijzl}

J=1

Then
L(Ox,...,x, - e ;
(6. - x.) . "
:,L!pf‘ copi(l=pi =)
x.!

j=177"

where n =27, x;. Then

logL(9|x1, ey x,)=10g:1—!+x1 logp, +---
x.!

j=177"

+x,,logp, , +x,log(l=p, =+~ =p, ).
Differentiating with respect to p;, j=1,...,r — 1 and equating the resulting
expressions to zero, we get
1 1 .
x;—-x,—=0, j=1,...,r-1
p/’ pr
This is equivalent to
X.
_/:xr’ ]:19 ’r_lv
p] r
that is,
Moot X
p] pr—l r '

and this common value is equal to
X+ X, tX,
P +oo +pr—1 +pr

n
T
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Hence x/p;=nand p,=x/n,j=1,...,r Itcan be seen that these values of the
p’s actually maximize the likelihood function, and therefore 13,- =xi/n,j=1,...,
r are the MLE’s of the p’s. (See Exercise 12.5.4.)

EXAMPLE 12 Let X,,..., X, beiid. r.v.’s from N(u, o°) with parameter = (1, 6°)’. Then

L(6fx, ..., x,)= [Jzi?] eXP[— 2;2 2(x]. - ’“‘)2}

EDACEIE

=1

so that

logL((-)|x1, RN xn)z—nlog«/g—nlog\sﬁg— 5

Differentiating with respect to 4 and ¢” and equating the resulting expressions
to zero, we obtain

%logL((ﬂxl, ce xn)zﬁ(f—,u)zO

J 1
FlogL(0|x1, R xn)=—222 + = ]Z::'(xf _.U)z =0.

Then
g=Xx and 6'2:li(xj—)?)2
n=

are the roots of these equations. It is further shown that i and & actually
maximize the likelihood function (see Exercise 12.5.5) and therefore

a=Xx and &zzig(xj—)?)z

are the MLE’s of u and o, respectively.
Now, if we assume that ¢” is known and set 1 = 6, then we have again that
[l = x is the root of the equation

%logL(0|xl, %) =0,

In this case it is readily seen that
9 n
wlogL(GPcl, e, xn)— —? <0
and hencefl = x is the MLE of p.
On the other hand, if u is known and we set ¢° = 6, then the root of

(%logL(9|xl,...,xn)=0

is equal to



306

12

Point Estimation

EXAMPLE 13

Next,
J’ 1ln 13 2
—logL|Blx,,...,x |=—|———) |x. -
892 g ( | 1 n) O'4|:2 0_2 i:I( ] /“l'):l
which, for ¢” equal to
1< 2
— x_ﬂ .
y 2l =4)
becomes
1(n
—|z—-n|=- <0
0'4(2 n) 20"
So
o 1& 2
6r==)(x,-
po R

is the MLE of ¢” in this case.

Let X, ..., X, be iid. r.v.’s from U(e, ). Here 8 = (¢, )’ € Q which is the
part of the plane above the main diagonal.
Then

1
E{ofs )= o )
(B-2)

Here the likelihood function is not differentiable with respect to o and S, but
it is, clearly, maximized when 8 — & is minimum, subject to the conditions that
o < xq and B> x,,. This happens when & = x,, and B= X(,- Thus & = x;) and
B = x, are the MLE’s of a and f3, respectively.

In particular, if o= 60— ¢, B= 0+ ¢, where c is a given positive constant, then

L(9|x1, ces xn)=%l[gfcvw)(x(l))l(7m, 9+c](x(n)).
(2¢)

The likelihood function is maximized, and its maximum is 1/(2c¢)", for any 6
such that 6 c <x(;,and 6+ c > x,; equivalently, < x,, + c and 6> x,, — c. This
shows that any statistic that lies between X|;, + ¢ and X|,, — ¢ is an MLE of 6.
For example, 5[ X|;, + X,] is such a statistic and hence an MLE of 6.

If Bis known and o = 6, or if ¢ is known and = 6, then, clearly, x,, and
X, are the MLE’s of o and 3, respectively.

REMARK 4

i) The MLE may be a UMVU estimator. This, for instance, happens in
Example 10, for 4 in Example 12, and also for 6” in the same example
when u is known.
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ii) The MLE need not be UMVU. This happens, e.g., in Example 12 for °
when u is unknown.

iii) The MLE is not always obtainable by differentiation. This is the case in
Example 13.

iv) There may be more than one MLE. This case occurs in Example 13 when
a=0-c,f=60+c,c>0

In the following, we present two of the general properties that an MLE enjoys.

Let X,,..., X, beiid. r.v’swithp.df. f(-;0),0e Qc R, andletT=(T},...,

T,),T= Ti(Xla' .. ,Xﬂ),j: 1,...,rbe asufficient statistic for @ = (6,...,6).

Then, if 8 = (6,,...,0,) is the unique MLE 6, it follows that 0 is a function

of T.

PROOF Since T is sufficient, Theorem 1 in Chapter 11 implies the following
factorization:

f(xl; (-)) . f(xn; (-))zg[T(xl, e, xn); e]h(xl, e, xn),
where 4 is independent of 6.
Therefore

max[f(xl; 9) e f(xn; 9); OEQ]
:h(xl, e, xn)max{g[T(xl, R xn); 0]; BGQ}.

Thus, if a unique MLE exists, it will have to be a function of T, as it follows
from the right-hand side of the equation above. A

REMARK 5 Notice that the conclusion of the theorem holds true in all
Examples 10-13. See also Exercise 12.3.10.

Another optimal property of an MLE is invariance, as is proved in the
following theorem.

LetX,,..., X, beiid. r.v.’s with p.d.f. f(x;0),0 € Qc R’, and let ¢ be defined
on Q onto Q* ¢ K™ and let it be one-to-one. Suppose 8 is an MLE of 6. Then
#(0) is an MLE of ¢(0). That is, an MLE is invariant under one-to-one
transformations.

PROOF Set 0% = ¢(0), so that © = ¢"'(8*). Then

L(9|x1, e, xn)= L[¢’1(9*)|x1, e, xn],
call it L*(0*|x,, ..., x,). It follows that

max[L((-)|x1,...,x ); eeQ]=max[L*((-)*|x1,...,x ); 9*6!2*].

n n

By assuming the existence of an MLE, we have that the maximum at the
left-hand side above is attained at an MLE @. Then, clearly, the right-hand
side attains its maximum at@*, where@* = ¢@). Thus ¢(0) is an MLE of ¢(0). A

For instance, since
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1< _\2
=3 (x,—X
25 -7)
is the MLE of ¢” in the normal case (see Example 12), it follows that
_—

"li("j‘f)z

|
\» na
is the MLE of o.

Exercises

1251 If X,,..., X, areiid. r.v.’s from B(m, 6), 6 € Q = (0, «), show that
X/m is the MLE of 6.

12.5.2 If Xj,..., X, are iid. r.v.’s from the Negative Binomial distribution
with parameter 6 € Q = (0, 1), show that r/(r + X ) is the MLE of 6.

12.5.3 If Xj,..., X, are i.id. r.v.’s from the Negative Exponential distribu-
tion with parameter 6 € Q = (0, o), show that 1/X') is the MLE of 6.

12.5.4 Refer to Example 11 and show that the quantities p; = x;/n,j=1,...,
r indeed maximize the likelihood function.

12.5.5 Refer to Example 12 and consider the case that both u and ¢ are
unknown. Then show that the quantities i = X and

- 1 2
2 _ —
o = ;Z(xf -X )
j=1
indeed maximize the likelihood function.

12.5.6 Suppose that certain particles are emitted by a radioactive source
(whose strength remains the same over a long period of time) according to a
Poisson distribution with parameter 6 during a unit of time. The source in
question is observed for n time units, and let X be the r.v. denoting the number
of times that no particles were emitted. Find the MLE of 6 in terms of X.

12.5.7 Let X,,..., X, be iid. r.v.’s with p.d.f. f(:; 6,, 68,) given by

f(x: 6, 6,) =912exp(—x;291 ) x26, 8=(6, 92)' eQ=Rx(0, =)
Find the MLE’s of 6,, 6,.

12.5.8 Refer to Exercise 11.4.2, Chapter 11, and find the MLE of 6.

12.5.9 Refer to Exercise 12.3.10 and find the MLE of the reliability R(x; 6).

12510 Let X,,..., X, beiid. r.v’s from the U(6- 1,0+ 1),0e Qc R
distribution, and let
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0=6(x,.....X,)= (X(”) - %JJF (cosle )(X(l) X+ 1).

Then show that@is an MLE of 6 but it is not a function only of the sufficient
statistic (X(;), X{,))". (Thus Theorem 4 need not be correct if there exists more
than one MLE of the parameters involved. For this, see also the paper Maxi-
mum Likelihood and Sufficient Statistics by D. S. Moore in the American
Mathematical Monthly, Vol. 78, No. 1, January 1971, pp. 42-45.)

12.6 Criteria for Selecting an Estimator: The Decision-Theoretic Approach

DEFINITION 7

DEFINITION 8

DEFINITION 9

We will first develop the general theory underlying the decision-theoretic
method of estimation and then we will illustrate the theory by means of
concrete examples. In this section, we will restrict ourselves to a real-valued
parameter. So let X, ..., X, be ii.d. r.v.’s with p.df. f(:; ), 6 € Q c R. Our
problem is that of estimating 6.

A decision function (or rule) dis a (measurable) function defined on R" into [R.

The value §(x,, ..., x,) of dat (x,...,x,) is called a decision.
For estimating 6 on the basis of X, . .., X, and by using the decision function
0, a loss function is a nonnegative function in the arguments 6 and §(x,, . . . , x,,)

which expresses the (financial) loss incurred when 6 is estimated by

O(xy, ..., X,).
The loss functions which are usually used are of the following form:

L[G; 5(x1, ey xn)]:‘G—S(xl, ...,xn)

i

or more generally,

1]6: 8(xi..... x, )] =v(0)o-8(xi.... x, )

, k>0

or L[ 8(x,, ..., x,)]is taken to be a convex function of 6. The most convenient
form of a loss function is the squared loss function; that is,

L[G; 5(x1, R xn)]:[e—é(xl, R xn)]z.

The risk function corresponding to the loss function L(-; -) is denoted by
R (v +) and is defined by

R(6; 8)=E,L[6; 8(X,,..., X,)|
) J: . -EOL[G; 5(x1, C X, )]f(x1§ 9) e f(xn; G)dxl - dx,
; o ;L[G; 5(x1, cees X, )]f(x1; 9) . f(an 9)‘
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DEFINITION 10

DEFINITION 11

That is, the risk corresponding to a given decision function is simply the
average loss incurred if that decision function is used.

Two decision functions § and 6* such that
R(6; 6):E6L[0; 8(X,..., Xn)]:EeL[O; §*(X,.. .. Xn)]:R(e; 5%

for all 6 € Q are said to be equivalent.

In the present context of (point) estimation, the decision 6= d(x,, .. ., x,
will be called an estimate of 6, and its goodness will be judged on the basis of
its risk R(+; 0). It is, of course, assumed that a certain loss function is chosen
and then kept fixed throughout. To start with, we first rule out those estimates
which are not admissible (inadmissible), where

The estimator 6 of 6 is said to be admissible if there is no other estimator 6*
of 6 such that R(6; 6*) < R(6; §) for all 6 € Q with strict inequality for at least
one 6.

Since for any two equivalent estimators § and 6* we have R(6; ) =
R(6; 6*) for all 6 € Q, it suffices to restrict ourselves to an essentially complete
class of estimators, where

A class D of estimators of 6 is said to be essentially complete if for any
estimator 6* of O not in D one can find an estimator J in D such that R(6; §*)
=R(6, o) for all 6 € Q.

Thus, searching for an estimator with some optimal properties, we confine
our attention to an essentially complete class of admissible estimators. Once
this has been done the question arises as to which member of this class is to be
chosen as an estimator of 6. An apparently obvious answer to this question
would be to choose an estimator 6 such that R(6; §) < R(6; 6*) for any other
estimator &* within the class and for all 8 € Q. Unfortunately, such estimators
do not exist except in trivial cases. However, if we restrict ourselves only to the
class of unbiased estimators with finite variance and take the loss function to
be the squared loss function (see paragraph following Definition 8), then,
clearly, R(6; &) becomes simply the variance of 6(X,, ..., X,). The criterion
proposed above for selecting 6 then coincides with that of finding a UMVU
estimator. This problem has already been discussed in Section 3 and Section 4.
Actually, some authors discuss UMV U estimators as a special case within the
decision-theoretic approach as just mentioned. However, we believe that the
approach adopted here is more pedagogic and easier for the reader to follow.

Setting aside the fruitless search for an estimator which would uniformly
(in 0) minimize the risk within the entire class of admissible estimators, there
are two principles on which our search may be based. The first is to look for an
estimator which minimizes the worst which could happen to us, that is, to
minimize the maximum (over ) risk. Such an estimator, if it exists, is called a
minimax (from minimizing the maximum) estimator. However, in this case,
while we may still confine ourselves to the essentially complete class of estima-
tors, we may not rule out inadmissible estimators, for it might so happen that
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R(-; §), 6 = minimax

0
Figure 12.2

DEFINITION 12

DEFINITION 13

0
Figure 12.3

a minimax estimator is inadmissible. (See Fig. 12.2.) Instead, we restrict our
attention to the class D, of all estimators for which R(6; §) is finite for all 6 €
Q. Then we have the following definition:

Within the class D, the estimator ¢ is said to be minimax if for any other
estimator &%, one has

sup[R(G; 6); 0e Q] < sup[R(O; o *); e Q]
Figure 12.2 illustrates the fact that a minimax estimator may be inadmissible.

Now one may very well object to the minimax principle on the grounds
that it gives too much weight to the maximum risk and entirely neglects its
other values. For example, in Fig. 12.3, whereas the minimax estimate § is
slightly better at its maximum R(8,; ), it is much worse than §* at almost all
other points.

Legitimate objections to minimax principles like the one just cited
prompted the advancement of the concept of a Bayes estimate. To see what
this is, some further notation is required. Recall that Q < R, and suppose now
that 6 is an r.v. itself with p.d.f. A, to be called a prior p.d.f. Then set

jQR(e; 8)A(6)de
%R(e; 8)A(6)-

Assuming that the quantity just defined is finite, it is clear that R(9) is
simply the average (with respect to 1) risk over the entire parameter space Q
when the estimator ¢ is employed. Then it makes sense to choose that o for
which R(6) < R(6*) for any other &*. Such a dis called a Bayes estimator of 6,
provided it exists. Let D, be the class of all estimators for which R(9) is finite
for a given prior p.d.f. A on Q. Then

R(8)=E,R(6; 5)=

Within the class D,, the estimator 0 is said to be a Bayes estimator (in the
decision-theoretic sense and with respect to the prior p.d.f. A on Q) if R(J) <
R(6*) for any other estimator &*.

It should be pointed out at the outset that the Bayes approach to estima-
tion poses several issues that we have to reckon with. First, the assumption of
0 being an r.v. might be entirely unreasonable. For example, 6 may denote the
(unknown but fixed) distance between Chicago and New York City, which is
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to be determined by repeated measurements. This difficulty may be circum-
vented by pretending that this assumption is only a mathematical device, by
means of which we expect to construct estimates with some tangible and
mathematically optimal properties. This granted, there still is a problem in
choosing the prior 2 on Q. Of course, in principle, there are infinitely many
such choices. However, in concrete cases, choices do suggest themselves. In
addition, when choosing A we have the flexibility to weigh the parameters the
way we feel appropriate, and also incorporate in it any prior knowledge we
might have in connection with the true value of the parameter. For instance,
prior experience might suggest that it is more likely that the true parameter
lies in a given subset of Q rather than in its complement. Then, in choosing A,
it is sensible to assign more weight in the subset under question than to its
complement. Thus we have the possibility of incorporating prior information
about 6 or expressing our prior opinion about 6. Another decisive factor in
choosing A is that of mathematical convenience; we are forced to select A so
that the resulting formulas can be handled.

We should like to mention once and for all that the results in the following
two sections are derived by employing squared loss functions. It should be
emphasized, however, that the same results may be discussed by using other
loss functions.

12.7 Finding Bayes Estimators

Let X,,..., X, be ii.d. r.v.’s with p.d.f. f(; 6), 6 € Q < R, and consider the
squared loss function. That is, for an estimate

525()61, e, xn), L(G; 5):L[9; 6(x1, e, xn)]:[e—(‘j(xl, e, xn)]z.

Let 6 be an r.v. with prior p.d.f. . Then we are interested in determining o so
that it will be a Bayes estimate (of 0 in the decision-theoretic sense). We
consider the continuous case, since the discrete case is handled similarly with
the integrals replaced by summation signs. We have

R(6: 8)= E[0-5(X,..... X, )
=.[:’ --~J‘:Q[G—6(x],...,xn)rf(xl; 9).-.f(xn; G)dxl - dx,.

Therefore
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N J:{ [[o-6(x....x)]
xA(6)f(x;: 6) - f(x,: (9)01(9}dx1 - dx,. (13)

(As can be shown, the interchange of the order of integration is valid here
because the integrand is nonnegative. The theorem used is known as the
Fubini theorem.)

From (13), it follows that if & is chosen so that

[[o-8(x .. % ) 2(0)f(x:: 0) - F(x,: 6)do
is minimized for each (x, ..., x,)’, then R(J) is also minimized. But
[[o-8(x .. % ) 2(0)f(xi: 6) - f(x,: 6)ao
=5"(x...., x,) jﬂ f(x: 0)- - f(x,: 0)A(0)dO-25(x,. . .., x,)
X jgef(xl; 0) - f(x,: 6)A(6)d0 + jﬂ(f f(x: 0) - f(x,: 0)A(6)do,  (14)
and the right-hand side of (14) is of the form

g(t) =at> -2bt+c (a > 0)
which is minimized for ¢ = b/a. (In fact, g’(¢) = 2at — 2b = 0 implies ¢ = b/a and
g'(t)=2a>0.)
Thus the required estimate is given by
S ) =T O Sl OP(E)dD
[ A% 0) -+ f(x,; 0)A(6)d0

Formalizing this result, we have the following theorem:

A Bayes estimate d(x, . . ., x,) (of ) corresponding to a prior p.d.f. A on Q for
which

UQ Of (xi: 6) -+ £l G)A(e)de‘ < oo,
0< IQ f(xl; 6) o f(xn; e),l(e)de < oo,
and
[,6°1(x: 8) - f(x,: 6)A(6)d0 <.
for each (x,, ..., x,)’, is given by
8(x.....x,)= JLor(xi 6) -+ 1, 9)/1(9)416’
[,/ (xi: 8) - f(x,: 0)2(6)de

provided A is of the continuous type. Integrals in (15) are to be replaced by
summation signs if A is of the discrete type.

(15)
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Now, if the observed value of X is x;, j = 1,..., n, we determine the
conditional p.d.f. of 6, given X, =x,, ..., X, = x,. This is called the posterior
p.d.f. of 8 and represents our revised opinion about 6 after new evidence (the
observed X’s) has come in. Setting X = (x,, .. ., x,,)” and denoting by A(:|x) the
posterior p.d.f. of 6, we have then

0.%) 1l 0)4(0)_slv: 0)--- sl o) o
) ) () |

h(6jx)=

where
h(x)=[ f(x; 0)a(0)a0=[ f(x;; 6)--- f(x,: 6)A(6)d0
for the case that A is of the continuous type. By means of (15) and (16), it

follows then that the Bayes estimate of 6 (in the decision-theoretic sense)
o(x,, . . ., x,) is the expectation of 6 with respect to its posterior p.d.f., that is,

8(x,, - x,) = |, on(6]x)de.

Another Bayesian estimate of 6 could be provided by the median of A(-[x),
or the mode of A(:[x), if it exists.

REMARK 6 At this point, let us make the following observation regarding
the maximum likelihood and the Bayesian approach to estimation problems.
As will be seen, this observation establishes a link between maximum likeli-
hood and Bayes estimates and provides insight into each other. To this end, let
h(:|x) be the posterior p.d.f. of 6 given by (16) and corresponding to the prior
p.d.f. 4. Since f(x; 0) = L(6]x), h(|x) may be written as follows:

o)

h(x)
Now let us suppose that Q is bounded and let A be constant on Q, A(6) =c, say,
0 € Q. Then it follows from (17) that the MLE of 6, if it exists, is simply that
value of © which maximizes A(:|x). Thus when no prior knowledge about 6
is available (which is expressed by taking A(6) = ¢, 6 € Q), the likelihood
function is maximized if and only if the posterior p.d.f. is.

h(9|x) = (17)

Some examples follow.

Let X),..., X, be i.id. r.v.’s from B(1, 0), 6 € Q = (0, 1). We choose 4 to be
the Beta density with parameters o and f3; that is,

F(OH-ﬂ) -l 1 .
A(6)- WG (1-0)". if 6<(0.1)
0, otherwise.

Now, from the definition of the p.d.f. of a Beta distribution with param-
eters o and f3, we have
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J.(l)x"”l (1 - x)[de = —1;((2)1;(5)) ; (18)

and, of course I'(y) = (y— 1)I'(y— 1). Then, for simplicity, writing >x; rather
than X7 x; when this last expression appears as an exponent, we have
L= f(xs 6)-- f(x.; 0)A(6)d0
F(Ol+ﬂ) 15, n-¥x o -1
= 6= (1-06 0 (1-6) de
_ F(a+ ﬂ) J.
r{e)r(s)

19(a+2/x/)—1(1 _9)(ﬁ+n—z,xj)-1d9,

0

which by means of (18) becomes as follows:

. F(a+[3) .F(a+2j=1xj)l"(/3+n—2j=1xj)'
" T(a)r(B) (c+B+n)

(19)
Next,
L =] 6f(x; 0)-- f(x,; 6)A(6)d0
F((Z-l—ﬂ) 1 asx n=3;% o1 p-1
66~ (1-6 6“7 (1-6) db
agrge) 00
1"(06 + ﬁ) 1 (a3 1)1
= Q\ "=
ey
Once more relation (18) gives
. I(a+p) . F(O‘ SIS 1)1"([3 +n=-3 xf) . 20)
F(a)l“(ﬂ) F(a+ﬁ+n+1)
Relations (19) and (20) imply, by virtue of (15),
F(a +B+ n)l“((x + ijl X; + 1) o+ Z’lexj

S(x,, ..., = = ,
(X1 x) F(a+ﬁ+n+1)l‘(a+z;xi) a+f+n

)(ﬁ+n—2,xj)—l

(1 -0 de.

that is,

eay
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REMARK 7 We know (see Remark 4 in Chapter 3) that if = f=1, then the
Beta distribution becomes U(0, 1). In this case the corresponding Bayes esti-
mate is

n

5(x1, e xn)z—’:f;-'-l,

as follows from (21).

EXAMPLE 15 Let X,,..., X, be i.id. r.v.’s from N(6, 1). Take A to be N(u, 1), where u is
known. Then

I =] f(x:; 6)-- f(x,: 6)A(6)d6

2
= %Jiexp{—%i(xi - g)z]exp _@ do

x fmexp{—%[(n+l)92 ~2(n¥ + u)@]}de.

But
(n+1)0* —2(nx + )0 = (n+1) 92—2%9J
:(n+1) 02—2nf+“0+(nf+“)z—{nf+u]z}
n+1 n+l n+1
of{o-rme) e |
n+1 n+1 i
Therefore i
P W | O Gadl

* exp| - 1 _nX+pu ’
@(l/vm)L’ ’ 2(1/ n+1)2[6 ””J

1 neX X+ el B
"+ {an) " 22)
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Next,

Il
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+
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-
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>
se)
—_
|
=
S—
(3]
(ea)

_ 2
1 1 e, , (F+u) || nx+u
= cX - X, + — .
/ p g{ i TH n+1 n+1

By means of (22) and (23), one has, on account of (15),

5(x1, e xn)=%.

317

(23)

(24)

Exercises

12.7.1 Refer to Example 14 and:
i) Determine the posterior p.d.f. A(6x);

ii) Construct a 100(1 — @)% Bayes confidence interval for 0; that is, deter-
mine a set {6 € (0, 1); h(6]x) > c(x)}, where c(x) is determined by the

requirement that the P,-probability of this set is equal to 1 — ¢;

iii) Derive the Bayes estimate in (21) as the mean of the posterior p.d.f.

h(x).
(Hint: For simplicity, assign equal probabilities to the two tails.)
12.7.2 Refer to Example 15 and:
i) Determine the posterior p.d.f. #(6[x);

ii) Construct the equal-tail 100(1 — )% Bayes confidence interval for 6,

iii) Derive the Bayes estimate in (24) as the mean of the posterior p.d.f.

h(0]x).
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12.7.3 Let X be an r.v. distributed as P(0), and let the prior p.d.f. 1 of 6 be
Negative Exponential with parameter 7. Then, on the basis of X:
i) Determine the posterior p.d.f. #(6|x);
ii) Construct the equal-tail 100(1 — )% Bayes confidence interval for 6;
iii) Derive the Bayes estimates §(x) for the loss functions L(8; §) = [0 - §(x)]’
as well as L(0; 8) = [0 — 8(x)]/6;
iv) Do parts (i)—(iii) for any sample size n.
12.7.4 Let X be an r.v. having the Beta p.d.f. with parameters o= 6 and 8=
1, and let the prior p.d.f. A of 6 be the Negative Exponential with parameter .
Then, on the basis of X:
i) Determine the posterior p.d.f. #(6x);
ii) Construct the equal-tail 100(1 — )% Bayes confidence interval for 0;
iii) Derive the Bayes estimates §(x) for the loss functions L(8; §) = [6— &(x)]’
as well as L(6; ) = [0 - §(x)]"/6;
iv) Do parts (i)—(iii) for any sample size n;
v) Do parts (i)—(iv) for any sample size n when A is Gamma with parameters
k (positive integer) and S.

(Hint: If Y is distributed as Gamma with parameters k and 3, then it is easily
seen that ¥ ~ )szk)

12.8 Finding Minimax Estimators

THEOREM 7

Although there is no general method for deriving minimax estimates, this can
be achieved in many instances by means of the Bayes method described in the
previous section.

Let X, ..., X, be iid. r.v.’s with p.d.f. f(:; 0), 6 € Q (c [R) and let A be a
prior p.d.f. on Q. Then the posterior p.d.f. of 6, given X = (X,,..., X)) =
(xy,...,x,) =x, h(|x), is given by (16), and as has been already observed, the
Bayes estimate of 6 (in the decision-theoretic sense) is given by

6(x1, R xn) = Leh(9|x)d9,
provided A is of the continuous type. Then we have the following result.
Suppose there is a prior p.d.f. A on Q such that for the Bayes estimate  defined
by (15) the risk R(8; 8) is independent of 6. Then 6 is minimax.

PROOF By the fact that dis the Bayes estimate corresponding to the prior A,
one has
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[ R(6: 8)A(6)do < [ R(6; 5+)4(6)do
for any estimate 6*. But R(6; d) = ¢ by assumption. Hence
sup[R(O; 6); e Q] =c< J;)R(O; o *)/I(O)de < sup[R(G; 1) *); 6e Q]
for any estimate o*. Therefore § is minimax. The case that A4 is of the discrete
type is treated similarly. A

The theorem just proved is illustrated by the following example.

Let X,,..., X, and A4 be as in Example 14. Then the corresponding Bayes
estimate Jis given by (21). Now by setting X = ¥, X; and taking into consid-
eration that E,X = nf and E,X* = n6(1 — 6 + n6), we obtain

2
DA _ X+a
(6’ 5)_E9(0 n+a+ﬁ)

- ;)2{[((” B)’ -n]e2 ~(20%+ 2aﬂ—n)6+a2}.

(n+a+ﬁ

By taking o= f3 = %\/1—1 and denoting by 6* the resulting estimate, we have

(a+B) —n=0, 20> +20p-n=0,
so that

o’ n 1

R(6; 5%)= = =
(”+O‘+ﬂ)2 4n+n ’ 4 1+xs“;)

Since R(6; 6*) is independent of 6, Theorem 6 implies that
2 +2\” 2InF+1

5(x,, ... x, 2 -
()Cl )C) n+n 2(14‘\/”)

P

1S minimax.

Let X,,..., X, beiid. r.v.’s from N(u, 6°), where ¢ is known and u = 6.

It was shown (see Example 9) that the estimator X of § was UMVU. It can
be shown that it is also minimax and admissible. The proof of these latter two
facts, however, will not be presented here.

Now a UMVU estimator has uniformly (in ) smallest risk when its
competitors lie in the class of unbiased estimators with finite variance. How-
ever, outside this class there might be estimators which are better than a
UMVU estimator. In other words, a UMVU estimator need not be admissible.
Here is an example.
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EXAMPLE 18

Let X,,..., X, be iid. r.v.’s from N(0, 6°). Set 6 = 6. Then the UMVU
estimator of 6 is given by

Iy
_n;){,.

(See Example 9.) Its variance (risk) was seen to be equal to 26°/n; that is,
R(6; U) = 26%n. Consider the estimator § = aU. Then its risk is

R(6; 8)=E, (aU~6)" = E,[o(U~6)+ (- 19] [n+2)a ~2n0+n)

The value o = n/(n + 2) minimizes this risk and the minimum risk is equal to
260%/(n + 2) < 26%n for all 6. Thus U is not admissible.

Exercise

12.8.1 Let X,,..., X, be independent r.v.’s from the P(0) distribution, and
consider the loss function L(6; §) = [6— 5(x)]*/6. Then for the estimate §(x) =
%, calculate the risk R(6; §) = 1/6E,[0 — §(X)]’, and conclude that §(x) is
minimax.

12.9 Other Methods

of Estimation

Minimum chi-square method. This method of estimation is applicable in
situations which can be described by a Multinomial distribution. Namely,
consider n independent repetitions of an experiment whose possible outcomes
are the k pairwise disjoint events A, j , k. Let X; be the number of trials
which result in A; and let p; be the probablhty that any one of the trials results
in A;. The probab111t1es p; may be functions of r parameters; that is,

p;=p;(6). 0=(6,.....6,). j=1....k

Then the present method of estimating @ consists in minimizing some
measure of discrepancy between the observed X’s and the expected values of
them. One such measure is the following:

[ X, -np,(0)]
IRl

Often the p’s are differentiable with respect to the 6’s, and then the minimiza-
tion can be achieved, in principle, by differentiation. However, the actual
solution of the resulting system of r equations is often tedious. The solution
may be easier by minimizing the following modified }* expression:
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2
2= i [, —np,(0)]
mod = X]'
provided, of course, all X;>0,j=1,..., k.

Under suitable regularity conditions, the resulting estimators can be
shown to have some asymptotic optimal properties. (See Section 12.10.)

The method of moments. Let X, ..., X, be iid. r.v.’s with p.d.f. f(:; 0)
and for a positive integer r, assume that EX" =m, is finite. The problem is that
of estimating m,. According to the present method, m, will be estimated by the
corresponding sample moment

1 n
X
n3
The resulting moment estimates are always unbiased and, under suitable

regularity conditions, they enjoy some asymptotic optimal properties as well.
On the other hand the theoretical moments are also functions of 6 =

(6, ...,06,). Then we consider the following system
lzxf =m(6.....6,), k=1,....r,
nis
the solution of which (if possible) will provide estimators for 6,j=1,...,r.
Let X, ..., X,beiid.r.v.’s from N(u, 6°), where both g and ¢~ are unknown.
By the method of moments, we have
X=u
13 X?=0’+u?, hence fi=X 62:1i(X.—)_()2.
n “~ j s ) “~ j
Let X}, ..., X, beiid. r.v.’s from U(e, ), where both o and 8 are unknown
Since
o+ (a-B)
EX, = and o’(X,)=
2 12
(see Chapter 5), we have
voot B
2
2 —
1 o, ((x—,B) ((x+[3) Bro=2X
=X/ = + , Or
n= 12 4 B-a=S\12,

where
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Hence & = X —Sv3, ﬁzz\_’+Sv’§.

REMARK 8 In Example 20, we see that the moment estimators &, 3 of o, 3,
respectively, are not functions of the sufficient statistic (X,), X,,)" of (e, B)’.
This is a drawback of the method of moment estimation. Another obvious
disadvantage of this method is that it fails when no moments exist (as in the
case of the Cauchy distribution), or when not enough moments exist.

Least square method. This method is applicable when the underlying
distribution is of a certain special form and it will be discussed in detail in
Chapter 16.

Exercises

12.9.1 Let X,,..., X, be independent r.v.’s distributed as U(6 — a, 6 + b),
where a, b > 0 are known and 6 € Q = [R. Find the moment estimator of 6 and
calculate its variance.

12.9.2 If X,..., X, are independent r.v.’s distributed as U(-6, 0), 6 Q=
(0, o), does the method of moments provide an estimator for 6?

1293 IfX,,...,X,areiid.r.v.’s from the Gamma distribution with param-
eters a and f3, show that &= X*/S* and 3= S/X are the moment estimators of
o and B, respectively, where

13 =
SZ:;;(X]'_X)Z'

12.9.4 Let X, X, be independent r.v.’s with p.d.f. f(-; 0) given by

I 0)=(0= )1y x). Oc2=(0. ).
Find the moment estimator of 6.

12.9.5 Let X,,..., X, beii.d. r.v.’s from the Beta distribution with param-
eters ¢, 3 and find the moment estimators of o and .

12.9.6 Refer to Exercise 12.5.7 and find the moment estimators of 6, and 6,.

12.10 Asymptotically Optimal Properties of Estimators

So far we have occupied ourselves with the problem of constructing an estima-
tor on the basis of a sample of fixed size n, and having one or more of the
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following properties: Unbiasedness, (uniformly) minimum variance, minimax,
minimum average risk (Bayes), the (intuitively optimal) property associated
with an MLE. If however, the sample size n may increase indefinitely, then
some additional, asymptotic properties can be associated with an estimator.
To this effect, we have the following definitions.

Let X, ..., X, be iid. r.v.’s with p.d.f. f(:; 0),0e Q c R.

The sequence of estimators of 6, {V,} ={V(X|, ..., X,)}, is said to be consistent
in probability (or weakly consistent) if V, —2— @ as n — oo, for all 8 € Q.
It is said to be a.s. consistent (or strongly consistent) if V, % fas n — oo,
for all 0 € Q. (See Chapter 8.) ’

From now on, the term “consistent” will be used in the sense of “weakly
consistent.”

The following theorem provides a criterion for a sequence of estimates to
be consistent.

If, as n — oo, E,V, — 6 and 02V, — 0, then V,, —*— 6.

PROOF For the proof of the theorem the reader is referred to Remark 5,
Chapter 8. A

The sequence of estimators of 0, {V,} ={V(X,, ..., X,)}, properly normalized,
is said to be asymptotically normal N(0, 6*(0)), if, as n — oo, \n(V, — 0)
Td)> X for all 8 € Q, where X is distributed (under Py) as N(0, 6°(6)). (See
Chgpter 8.)

This is often expressed (loosely) by writing V, = N(6, 6°(6)/n).
If

Vn(V, - 6)#N(0, 02(9)), as 1 — oo,

it follows that V, %) 6 (see Exercise 12.10.1).

The sequence of estimators of 6, {V,} = {V(X,,..., X,)}, is said to be best
asymptotically normal (BAN) if:

i) It is asymptotically normal and

ii) The variance ¢°(6) of its limiting normal distribution is smallest for all
0 € Q in the class of all sequences of estimators which satisfy (i).

A BAN sequence of estimators is also called asymptotically efficient (with
respect to the variance). The relative asymptotic efficiency of any other se-
quence of estimators which satisfies (i) only is expressed by the quotient of the
smallest variance mentioned in (ii) to the variance of the asymptotic normal
distribution of the sequence of estimators under consideration.

In connection with the concepts introduced above, we have the following
result.
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Let X|,..., X, be iid. r.v.’s with p.d.f. f(; 6), 6 € Q < R. Then, if certain
suitable regularity conditions are satisfied, the likelihood equation

0
ﬁlogL(9|X1, o X,)=0
has a root 6% = 6*(X,,..., X,), for each n, such that the sequence {63 of
estimators is BAN and the variance of its limiting normal distribution is equal
to the inverse of Fisher’s information number

1(6)= Eg[a%log f(x: e)T,

where X is an r.v. distributed as the X’s above.

In smooth cases, 6} will be an MLE or the MLE. Examples have been
constructed, however, for which {6%} does not satisfy (ii) of Definition 16 for
some exceptional 6’s. Appropriate regularity conditions ensure that these
exceptional 6’s are only “a few” (in the sense of their set having Lebesgue
measure zero). The fact that there can be exceptional &s, along with other
considerations, has prompted the introduction of other criteria of asymptotic
efficiency. However, this topic will not be touched upon here. Also, the proof
of Theorem 9 is beyond the scope of this book, and therefore it will be omitted.

i) Let X|,..., X, be i.id. r.v.’s from B(1, 6). Then, by Exercise 12.5.1, the
MLE of 6 is X, which we denote by X, here. The weak and strong
consistency of X, follows by the WLLN and SLLN, respectively (see
Chapter 8). That Vn(X, — 6) is asymptotically normal N(0, I"'(6)), where
I&@: 1/[6(1 — 6)] (see Example 7), follows from the fact that

n(X,-6) /6(1-06) is asymptotically N(0, 1) by the CLT (see Chapter

ii) If X,,..., X, are i.i.d. r.v.’s from P(0), then the MLE X = X, of 0 (see
Example 10) is both (strongly) consistent and asymptotically normal by
the same reasoning as above, with the variance of limiting normal distribu-
tion being equal to I"'(8) = 0 (see Example 8).

iii) The same is true of the MLE X = X, of u and (1/n)X,(X; — 1)’ of o if
X, ..., X,areiid.r.v.’s from N(u, o°) with one parameter known and the
other unknown (see Example 12). The variance of the (normal) distribu-
tion of Vn(X, — i) is I"'(1) = 0%, and the variance of the limiting normal
distribution of

\/;[lZ(X] - ,u)2 —02] is I (02) =20 (see Example 9).
ni

It can further be shown that in all cases (i)—(iii) just considered the regu-
larity conditions not explicitly mentioned in Theorem 9 are satisfied, and
therefore the above sequences of estimators are actually BAN.
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Exercise

12.10.1 LetX,,..., X, beiid. r.v.’s withp.d.f. f(:; 0); 0 Q c Randlet {V,}
={V,(X,,...,X,)}be asequence of estimators of 8such that \n(V, — ) —:ﬁ
Y as n — oo, where Y is an r.v. distributed as N(0, 6%(8)). Then show it
V, —2 6. (That is, asymptotic normality of {V,} implies its consistency in

]

probability.)

12.11 Closing Remarks

DEFINITION 17

The following definition serves the purpose of asymptotically comparing two
estimators.

Let X, ..., X, be iid. r.v.’s with p.d.f. f(:; 0), 6 € Q c R and let

wl={u.(xi..... x,)} and {v,}={v,(x,..... x,)}

be two sequences of estimators of 6. Then we say that {U,} and {V,} are
asymptotically equivalent if for every 0 € Q,

Jn(U, -V, )0,
N—>o0

For an example, suppose that the X’s are from B(1, 6). It has been shown
(see Exercise 12.3.3) that the UMVU estimator of 0is U, = X, (= X ) and this
coincides with the MLE of 6 (Exercise 12.5.1). However, the Bayes estimator
of 6, corresponding to a Beta p.d.f. 4, is given by

Z:ilX i
== 25
n+a+p 25)
and the minimax estimator is
zril X/. +\e"‘;/2
W= (26)

n+@n

That is, four different methods of estimation of the same parameter 6 pro-
vided three different estimators. This is not surprising, since the criteria
of optimality employed in the four approaches were different. Next, by the
CLT, \/};(U,, - 0) P—d> Z, as n — oo, where Z is an r.v. distributed as
N(0, 6(1 - 6)), and it ®an also be shown (see Exercise 11.1), that \n(V, — 6)
ﬁ Z, as n — oo, for any arbitrary but fixed (that is, not functions of n)
valies of o and B. It can also be shown (see Exercise 12.11.2) that \n(U, — V)
%) 0. Thus {U,} and {V,} are asymptotically equivalent according to Defi-
nition 17. As for W, it can be established (see Exercise 12.11.3) that \n(W, —

0) ﬁ W, as n — oo, where W is an r.v. distributed as N(% -6, 6(1 - 9))
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Thus {U,} and {W,} or {V,} and {W,} are not even comparable on the basis of
Definition 17.

Finally, regarding the question as to which estimator is to be selected in a
given case, the answer would be that this would depend on which kind of
optimality is judged to be most appropriate for the case in question.

Although the preceding comments were made in reference to the Bino-
mial case, they are of a general nature, and were used for the sake of definite-
ness only.

Exercises

12.11.1 In reference to Example 14, the estimator V, given by (25) is the
Bayes estimator of 6, corresponding to a prior Beta p.d.f. Then show that
\n(V, - 6) T’e) Z as n — oo, where Z is an r.v. distributed as N(0, 8(1 — 9)).

12.11.2 Inreference to Example 14, U, = X, is the UMVU (and also the ML)
estimator of 6, whereas the estimator V/, is given by (25). Then show that \i(U,
-V,) L 0.

12.11.3 In reference to Example 14, W,, given by (26), is the minimax

estimator of 6. Then show that \n(W, — 6) P%) W as n — e, where W is an
r.v. distributed as (N1 - 6, 6(1 - 0).) o



Chapter 13

Testing Hypotheses

Throughout this chapter, X}, . . ., X, will be i.i.d. r.v.’s defined on a probability
space (S, class of events, P,), 0 € Q c R" and having p.d.f. f(-; 0).

13.1 General Concepts of the Neyman—Pearson Testing Hypotheses Theory

DEFINITION 1

DEFINITION 2

In this section, we introduce the basic concepts of testing hypotheses theory.

A statement regarding the parameter 0, such as 6 € @ c Q, is called a (statis-
tical) hypothesis (about 0) and is usually denoted by H (or H,). The statement
that @ € @ (the complement of @ with respect to Q) is also a (statistical)
hypothesis about 0, which is called the alternative to H (or H,) and is usually
denoted by A. Thus

H(H,): 6c®
A:0co.

Often hypotheses come up in the form of a claim that a new product, a
new technique, etc., is more efficient than existing ones. In this context, H (or
H,) is a statement which nullifies this claim and is called a null hypothesis.

If @ contains only one point, that is, ® = {6,}, then H is called a simple
hypothesis, otherwise it is called a composite hypothesis. Similarly for
alternatives.

Once a hypothesis H is formulated, the problem is that of festing H on the
basis of the observed values of the X’s.

A randomized (statistical) test (or test function) for testing H against the
alternative A is a (measurable) function ¢ defined on R", taking values in [0, 1]
and having the following interpretation: If (x,, . . ., x,)" is the observed value of
(X, ..., X,) and ¢(x,..., x,) =y, then a coin, whose probability of falling

327
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DEFINITION 3

heads is y, is tossed and H is rejected or accepted when heads or tails appear,
respectively. In the particular case where y can be either 0 or 1 for all (x, ...,
x,)’, then the test ¢ is called a nonrandomized test.

Thus a nonrandomized test has the following form:

¢(X1,...,xn)= 1 if (x1»-..,x,,),€B
0 if (x.....x,) eB.

In this case, the (Borel) set B in R" is called the rejection or critical region and
B is called the acceptance region.

In testing a hypothesis H, one may commit either one of the following two
kinds of errors: to reject H when actually H is true, that is, the (unknown)
parameter 6 does lie in the subset w specified by H; or to accept H when H is
actually false.

Let B(0) = P, (rejecting H), so that 1 — () = P, (accepting H), 6 € Q. Then
B(0) with 8 € @ is the probability of rejecting H, calculated under the assump-
tion that H is true. Thus for 8 € @, 5(0) is the probability of an error, namely,
the probability of type-I error. 1 — (0) with 6 € @° is the probability of
accepting H, calculated under the assumption that H is false. Thus for 8 € @,
1 — B(0) represents the probability of an error, namely, the probability of type-
11 error. The function f restricted to @ is called the power function of the test
and f(0) is called the power of the test at © € . The sup [(0); 0 € ] is denoted
by o and is called the level of significance or size of the test.

Clearly, o is the smallest upper bound of the type-I error probabilities. It
is also plain that one would desire to make o as small as possible (preferably
0) and at the same time to make the power as large as possible (preferably 1).
Of course, maximizing the power is equivalent to minimizing the type-1I
error probability. Unfortunately, with a fixed sample size, this cannot be done,
in general. What the classical theory of testing hypotheses does is to fix the
size o at a desirable level (which is usually taken to be 0.005, 0.01, 0.05, 0.10)
and then derive tests which maximize the power. This will be done explicitly in
this chapter for a number of interesting cases. The reason for this course
of action is that the roles played by H and A are not at all symmetric. From
the consideration of potential losses due to wrong decisions (which may or
may not be quantifiable in monetary terms), the decision maker is somewhat
conservative for holding the null hypothesis as true unless there is overwhelm-
ing evidence from the data that it is false. He/she believes that the conse-
quence of wrongly rejecting the null hypothesis is much more severe to him/
her than that of wrongly accepting it. For example, suppose a pharmaceutical
company is considering the marketing of a newly developed drug for treat-
ment of a disease for which the best available drug in the market has a cure
rate of 60%. On the basis of limited experimentation, the research division
claims that the new drug is more effective. If, in fact, it fails to be more
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effective or if it has harmful side effects, the loss sustained by the company due
to an immediate obsolescence of the product, decline of the company’s image,
etc., will be quite severe. On the other hand, failure to market a truly better
drug is an opportunity loss, but that may not be considered to be as serious as
the other loss. If a decision is to be made on the basis of a number of clinical
trials, the null hypothesis H should be that the cure rate of the new drug is no
more than 60% and A should be that this cure rate exceeds 60%.

We notice that for a nonrandomized test with critical region B, we have

ﬁ(e):a,[(xl, LX) eB]=1-P9|:(X1, LX) eB:|
+ O-Pe[(Xl, LX) eBC:|:Ee¢(X1, LX),
and the same can be shown to be true for randomized tests (by an appropriate
application of property (CE1) in Section 3 of Chapter 5). Thus

B,(6)=B(0)=Eeo(X,..... X,). 0eQ. (1)

A level-o test which maximizes the power among all tests of level « is said to
be uniformly most powerful (UMP). Thus ¢ is a UMP, level-o test if (i) sup
[B4(0); © € ®] = cx and (ii) B,(0) = B,(0), € @ for any other test ¢* which
satisfies (i).

If o consists of a single point only, a UMP test is simply called most
powerful (MP). In many important cases a UMP test does exist.

Exercise

13.1.1 In the following examples indicate which statements constitute a
simple and which a composite hypothesis:
i) X is an r.v. whose p.d.f. fis given by f(x) = 2¢ .., (x);
ii) When tossing a coin, let X be the r.v. taking the value 1 if head appears and
0 if tail appears. Then the statement is: The coin is biased;

iii) X is an r.v. whose expectation is equal to 5.

13.2 Testing a Simple Hypothesis Against a Simple Alternative

In the present case, we take Q to consist of two points only, which can be
labeled as 0, and 0,; that is, Q = {0, 0,}. In actuality, Q may consist of more
than two points but we focus attention only on two of its points. Let f, and fg,
be two given p.d.f.’s. We set f; = f(+; 6,), fi =f(;0,) and let X, ..., X, be i.i.d.
r.v.’s with p.d.f., f(+; 8), 8 € Q. The problem is that of testing the hypothesis H:
0 € @ = {0,} against the alternative A:0 € ®° = {0,} at level a. In other words,
we want to test the hypothesis that the underlying p.d.f. of the X’s is f; against
the alternative that it is f,. In such a formulation, the p.d.f.’s f; and f; need not
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even be members of a parametric family of p.d.f.’s; they may be any p.d.f.’s
which are of interest to us.

In connection with this testing problem, we are going to prove the follow-
ing result.

(Neyman-Pearson Fundamental Lemma) Let X, ..., X, be ii.d. r.v.’s with
p.d.f. f(-; 8), 0 € Q = {6,, 0,}.We are interested in testing the hypothesis H:
0 = 0, against the alternative A:0 =0, at level & (0 < a < 1). Let ¢ be the test
defined as follows:

Lodf fx; 0,) - f(x,: 8,)>Cf(x;: 8,) - f(x,: 8)
o, x,) =3y, i fx:0) - flx,: 0)=Cf(x): 8y) - f(x,: 6)
0, otherwise, 2)

where the constants y(0 < y< 1) and C(>0) are determined so that
E,0(X,..... X,)=ca. (3)

Then, for testing H against A at level ¢, the test defined by (2) and (3) is MP
within the class of all tests whose level is <c.

The proof is presented for the case that the X’s are of the continuous type,
since the discrete case is dealt with similarly by replacing integrals by summa-
tion signs.

PROOF For convenient writing, we set

’ ’

z=(x1,...,x,,), dz=dx, ---dx,, Z=(X1,...,Xn)

n

and f(z; 0), f(Z; 0) for f(x;; 0) - - - f(x,; ), f(X;; 0) --- f(X,; 0), respectively.
Next, let T be the set of points z in R” such that f,(z) > 0 and let D = Z'(T*).
Then

P (D)=, (2eT<) =] fi(z)z=0,

and therefore in calculating P, -probabilities we may redefine and modify r.v.’s
on the set D°. Thus we have, in particular,

Al i i)
f(Z)>cr(z)N D} 1P, {[ f(Z)=ch(z)N D}

A
o]
GE( >C)ND]+78, (v =c)N D]

) + ’}/Peu (Y = C)’ (4)
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a(C)

™

Figure 13.1
a(C-) *}\;

where Y =f(Z)/f,(Z) on D and let Y be arbitrary (but measurable) on D°. Now
let a(C) = Py, (Y > C), so that G(C) =1 —a(C) = P, (Y < C) is the d.f. of the r.v.
Y. Since G is a d.f., we have G(—) = 0, G(=) = 1, G is nondecreasing and
continuous from the right. These properties of G imply that the function a is
such that a(—e) =1, a(e) =0, a is nonincreasing and continuous from the right.
Futhermore,

B, (Y =€)=6(C)-G(C-)=[1-a(C)|-[1-a(C-)| = a(C-)-d(c),

and a(C) = 1 for C <0, since Py, (Y 20) =1

Figure 13.1 represents the graph of a typical function a. Now for any o (0
< o< 1) there exists C, (20) such that a(C,) < o< a(C, —). (See Fig. 13.1.) At
this point, there are two cases to consider. First, a(C,) = a(C, —-); that is, C, is
a continuity point of the function a. Then, o= a(C,) and if in (2) C is replaced
by C, and y= 0, the resulting test is of level ¢. In fact, in this case (4) becomes

Eo9(Z)=P, (Y >C,)=a(C,) =,

as was to be seen.
Next, we assume that C, is a discontinuity point of a. In this case, take
again C = C, in (2) and also set
o- a(CO)
a(Co —) - a(CO)
(so that 0 < y< 1). Again we assert that the resulting test is of level o. In the
present case, (4) becomes as follows:

’}/:

Equ)(Z) =P, (Y >Cy )+ 7P (Y = CO)
o— a(CO)
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Summarizing what we have done so far, we have that with C = C, as
defined above, and

o— a(CO)
a(Cy-)-a(G)
(which it is to be interpreted as 0 whenever is of the form 0/0), the test defined
by (2) is of level a. That is, (3) is satisfied.

Now it remains for us to show that the test so defined is MP, as described
in the theorem. To see this, let ¢* be any test of level <o and set

B* ={zeR’"; ¢(z)—¢*(z)>0}=(¢—¢*>0),

B ={zeR"; §(z)-9*(z) <0} =(¢p-¢*<0).
Then B N B” = J and, clearly,

B =(0>9*)c(o=1)0(0=7)=(12C%)

’y:

)

Therefore

(2)- ][ - (2)}iz
J, [ ][ﬁ Cfo (2))ez
+ ], [¢ *(2)][4(z) - i 2) e

and this is >0 on account of (5). That is,

[ [9(z)-0#(2)] £i(2) - i (2)|dz =0,

which is equivalent to

Jo[o(e) =0 @) ()= [, [olz) -0* (2]} 12}z ©

Julo

But

and similarly,

J.[ol2)-0* ()] (2)dz = Eo0(Z) - Eo0*(Z) = Bu(0.) - B0} ®)

Relations (6), (7) and (8) yield ,(8,) — B,(8,) = 0, or B,8,) = B,:(6,). This
completes the proof of the theorem. A

The theorem also guarantees that the power [3,(0,) is at least o. That is,
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COROLLARY Let ¢ be defined by (2) and (3). Then ,8,) > c.

EXAMPLE 1

PROOF The test ¢*(z) = aris of level ¢, and since ¢ is most powerful, we have
By(8)) = B,:(8,) = . A
REMARK 1

i) The determination of C and yis essentially unique. In fact, if C = C; is a
discontinuity point of a, then both C and yare uniquely defined the way it
was done in the proof of the theorem. Next, if the (straight) line through
the point (0, ) and parallel to the C-axis has only one point in common
with the graph of a, then y= 0 and C is the unique point for which a(C) =
o. Finally, if the above (straight) line coincides with part of the graph of a
corresponding to an interval (b,, b,], say, then ¥ =0 again and any C in (b,,
b,] can be chosen without affecting the level of the test. This is so because

B [Y € (by, b, ]| < G(b,)-G(b,)

= [1 - a(b2 )] - [1 - a(bl)] = a(bz) - a(bl) =0.

ii) The theorem shows that there is always a test of the structure (2) and (3)
which is MP. The converse is also true, namely, if ¢ is an MP level « test,
then ¢ necessarily has the form (2) unless there is a test of size <o with
power 1.

This point will not be pursued further here.

The examples to be discussed below will illustrate how the theorem is
actually used in concrete cases. In the examples to follow, Q = {6,, 6,} and the
problem will be that of testing a simple hypothesis against a simple alternative
at level of significance c. It will then prove convenient to set

f(x1; 91)"'f(xn; 91)
f(xl; 9()"'f(xn; 90)

whenever the denominator is greater than 0. Also it is often more convenient
to work with log R(z; 6,; 6,) rather than R(z; 6,, 0,) itself, provided, of course,
R(z; 6,, 6,) > 0.

R(z; 0,, 91) =

Let X, ..., X, be iid. r.v.’s from B(1, 6) and suppose 6, < 6,. Then

. — 91 _91
log R(z, 0,, 91)— X 10g9—0+(n—x) log =8,
where x =X7_x; and therefore, by the fact that 6, < 6,, R(z; 6,, 6,) > C is
equivalent to

0

- 6,(1-6
x>C,, where C,= logC—nlogl 6, log 1( 0)'
1-6 6,(1-6,)
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EXAMPLE 2

Thus the MP test is given by
Lot Y x>C,
o(z)=4y. if % =G )

0, otherwise,

where C, and y are determined by
E,0(Z)=P, (X >C,)+ 7P, (X =C, )=, (10)

and X =X, X;is B(n, 6),i=0, 1. If 6,> 6,, the inequality signs in (9) and (10)
are reversed.

For the sake of definiteness, let us take 6, = 0.50, 6,= 0.75, a = 0.05 and
n =25. Then

0.05=PB5(X >Cy)+Rs(X =C))=1-Rs(X <C, )+ 7R3 (X =C,)
is equivalent to
Fys (X S Co) —7hs (X = Co) =0.95.

For C, =17, we have, by means of the Binomial tables, P 5;(X < 17) = 0.9784
and P,s(X =17) =0.0323. Thus yis defined by 0.9784 — 0.0323y= 0.95, whence
y=0.8792. Therefore the MP test in this case is given by (2) with C; =17 and
y=0.882. The power of the test is P,5(X > 17) + 0.882 P, (X = 17) = 0.8356.

Let X, ..., X, be ii.d. r.v.’s from P(6) and suppose 6, < 6,. Then
: _ 6,
logR(z; ,. 6,)= xloge—o— n(6, - 6,).

where

and hence, by using the assumption that 6, < 6,, one has that R(z; 9, 8,) > C'is
equivalent to x > C, , where

log[Ce"(e‘fe“)]

log(6,/6,)
Thus the MP test is defined by

C, =

Lot Y >C

o(z)=1v. it X x=C (11)

0, otherwise,
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where C, and y are determined by
E,§(Z)=P, (X >C,)+1P, (X =C)) =0, (12)

and X =X, X;is P(n6,),i=0, 1. If 6,> 6, the inequality signs in (11) and (12)
are reversed.

As an application, let us take 6,= 0.3, 6, = 0.4, = 0.05 and n = 20. Then
(12) becomes

Py(X <C,)-1R,(X =C,)=095.

By means of the Poisson tables, one has that for C, = 10, P,;(X < 10) = 0.9574
and Py;(X = 10) = 0.0413. Therefore yis defined by 0.9574 — 0.0413y = 0.95,
whence y=0.1791.

Thus the test is given by (11) with C;=10 and y=0.1791. The power of the
test is

P, (X >10)+0.1791 B, (X =10)=0.2013.
Let X, ..., X, beiid. r.v.’s from N(6, 1) and suppose 6, < 6,. Then
18 2 2
logR(z; 0,, 01)=§2[(xj—00) —(xj—el) ]
j=1

and therefore R(z; 6,, 6,) > C is equivalent to X > C,, where

o _1[logcC +n(90+91)
*n|6 -6, 2

by using the fact that 6, < 6,.
Thus the MP test is given by

1, if x>C,
z)= 13
¢( ) {O, otherwise, (13)
where C; is determined by
E,0(Z)=P, (X >C,)=0. (14)

and X is N(6, 1/n),i=0, 1. If 6, > 6,, the inequality signs in (13) and (14) are
reversed.
Let, for example, 6,=-1, 6,,=1, «=0.001 and n =9. Then (14) gives
P, (X >C)=P,[3(X +1)>3(C, +1)] = P[N(0, 1)>3(C, +1)| = 0.001,

whence C, = 0.03. Therefore the MP test in this case is given by (13) with
C, =0.03. The power of the test is

R(X >0.03)= B[3(X -1)>-291|= P[N(0, 1)>-2.91] = 0.9982.
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EXAMPLE 4 Let X,,..., X, beiid.r.v.’s from N(0, 6) and suppose 6, < 6,. Here

0‘_9°x+llog&,
26,6, 2 °6

logR(z; 0,, 01) =

where x = Zjllx?, so that, by means of 6, < 6,, one has that R(z; 6,, 6,) > C is
equivalent to x > C,, where

¢ _ﬂlog[ i}

- 91 - 90 V 00
Thus the MP test in the present case is given by
. n 2
(D(Z) _ 1, if szl X; > CO (15)
0, otherwise,

where C, is determined by

E,¢(P)=E, [2 X?> COJ =a, (16)

and 3 is distributed as j, i = 0, 1, where X = ¥, X2 If 6, > 6,, the inequal-
ity signs in (15) and (16) are reversed. For an example, let 6, =4, §, = 16, o =
0.01 and n = 20. Then (16) becomes

P(X>C)) :P4(§>%):P(;(§O >%)=0.01,

whence C; = 150.264. Thus the test is given by (15) with C, = 150.264. The
power of the test is

X 150264
16~ 16

Bo(X >150.264) = Pm( ] = P(x3,>9:3915) = 0.977.

Exercises

13.2.1 If X,,..., X, are independent r.v.’s, construct the MP test of the
hypothesis H that the common distribution of the X’s is N(0, 9) against the
alternative A that it is N(1, 9) at level of significance a = 0.05. Also find
the power of the test.

13.2.2 Let X,,..., X, be independent r.v.’s distributed as N(u, 6°), where u
is unknown and o is known. Show that the sample size n can be determined so
that when testing the hypothesis H:u = 0 against the alternative A:u =1, one
has predetermined values for o and . What is the numerical value of n if
o=0.05 =09 and c=1?
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13.2.3 Let X,,..., X, be independent r.v.’s distributed as N(u, 6°), where
is unknown and o is known. For testing the hypothesis H:u = u, against the
alternative A:u = y,, show that o can get arbitrarily small and § arbitrarily
large for sufficiently large n.

13.2.4 Let X,,..., X, be independent r.v.’s distributed as N(u, o). If
¥ = 3.2, construct the MP test of the hypothesis H:u = 3, 0 = 4 against the
alternative A:u = 3.5, o> = 4 at level of significance o = 0.01.

13.2.5 Let X,,..., X5, be independent r.v.’s distributed as Gamma with o=
10 and S unknown. Construct the MP test of the hypothesis H: 3 = 2 against
the alternative A:f =3 at level of significance 0.05.

13.2.6 Let X be an r.v. whose p.d.f. is either the U(0, 1) p.d.f. denoted by f;,
or the Triangular p.d.f. over the [0, 1] interval, denoted by f; (that is, f;(x) = 4x
for0<x< %,fl(x) =4 —4x for 15 <x <1 and 0 otherwise). On the basis of one
observation on X, construct the MP test of the hypothesis H: f= f, against the
alternative A:f = f; at level of significance o = 0.05.

13.2.7 Let X be an r.v. with p.d.f. f which can be either f; or else f;, where
fois P(1) and f; is the Geometric p.d.f. with p = 15 For testing the hypothesis
H:f = f, against the alternative A:f = fi:

i) Show that the rejection region is defined by: {x >0 integer; 1.36 x 2i' > C} for
some positive number C;

ii) Determine the level of the test o when C = 3.

(Hint: Observe that the function x!/2" is nondecreasing for x integer >1.)

13.3 UMP Tests for Testing Certain Composite Hypotheses

In the previous section an MP test was constructed for the problem of testing
a simple hypothesis against a simple alternative. However, in most problems of
practical interest, at least one of the hypotheses H or A is composite. In cases
like this it so happens that for certain families of distributions and certain H
and A, UMP tests do exist. This will be shown in the present section.

Let X, ..., X, be i.id. r.v.’s with p.d.f. f(:; 6), 6 € Q c R. It will prove
convenient to set

g(z; 6)=f(x1; 0)---f(x1; 0), z=(x1,...,xn) . (17)

AlsoZ =(X,,..., X))

In the following, we give the definition of a family of p.d.f.’s having the
monotone likelihood ratio property. This definition is somewhat more restric-
tive than the one found in more advanced textbooks but it is sufficient for our
purposes.
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DEFINITION 5 The family {g(-; 0); 8 € Q} is said to have the monotone likelihood ratio (MLR)

PROPOSITION 1

EXAMPLE 5

property in V'if the set of z’s for which g(z; 6) > 0 is independent of 6 and there
exists a (measurable) function V defined in R" into R such that whenever 6, 6
e Q with 6 < 6 then: (i) g(-; 6) and g(-; 6") are distinct and (ii) g(z; 6")/g(z; 6)
is a monotone function of V(z).

Note that the likelihood ratio (LR) in (ii) is well defined except perhaps on
a set N of z’s such that Py(Z € N) =0 for all 6 € Q. In what follows, we will
always work outside such a set.

An important family of p.d.f.’s having the MLR property is a one-
parameter exponential family.

Consider the exponential family
f(x: 8)=c(6)e®" " n(x),

where C(6) > 0 for all 8 € Q c R and the set of positivity of 4 is independent
of 0. Suppose that Q is increasing. Then the family {g(-;6); 6 € Q} has the MLR
property in V, where V(z) = X1, T(x;) and g(-;0) is given by (17). If Q is
decreasing, the family has the MLR property in V’'=-V.

PROOF We have
g(z : 9) = C(](O)eg(g)v(z)h * (z),

where C\(0) = C'(0), V(z) = Z_,T(x;) and h*(z) = h(x,) - - - h(x,). Therefore on
the set of z’s for which #*(z) > 0 (which set has P, probability 1 for all 6),
one has

g(z; 9,) _ Co(e,)eQ(ef)V(l) _ Co(e’) [Q(e')-Q(Q)]V(z)‘
g(z 8) ¢, (6)e?M Cofe)

Now for 6 < €, the assumption that Q is increasing implies that g(z; 6")/g(z; 6)
is an increasing function of V(z). This completes the proof of the first assertion.
The proof of the second assertion follows from the fact that

[2(6)-0(O)](z)=[2le)-0(e)]V (z). A
From examples and exercises in Chapter 11, it follows that all of the
following families have the MLR property: Binomial, Poisson, Negative Bino-
mial, N(6, 6°) with " known and N(u, 6) with 4 known, Gamma with o= 6 and
B known, or 8= 6 and o known. Below we present an example of a family
which has the MLR property, but it is not of a one-parameter exponential
type.

Consider the Logistic p.d.f. (see also Exercise 4.1.8(i), Chapter 4) with param-
eter 0; that is,

e—x—e

(1+e"“9)

f(x; 9): xeR, 0eQ=R. (18)

2
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Then

f(x; 0’) B ee_e,(1+e“’ ]Z and f(x; 9’)

1 —-x—0 2 1 -x'-0 2
e —| <e — |-
1+e™ 1+e

However, this is equivalent to e (¢ — ¢ ) < e™(e”* - ™). Therefore if 6< 6,
the last inequality is equivalent to e™ < ™ or —x < —x”. This shows that the
family {f(-; 6); 6 € R} has the MLR property in —x.

if and only if

For families of p.d.f.’s having the MLR property, we have the following
important theorem.

Let X,,..., X, beiid. r.v.’s with p.d.f. f(x; 6), 0 Q c R and let the family {g(-;
0); 6 € Q) have the MLR property in V, where g(-; 0) is defined in (17). Let 6,
€ Qand set = {0 e Q; 6< ). Then for testing the (composite) hypothesis
H:6€ wagainst the (composite) alternative A: 6 € o at level of significance o,
there exists a test ¢ which is UMP within the class of all tests of level <c. In the
case that the LR is increasing in V/(z), the test is given by
L it V(z)>C
o(z)=1y. if V(z)=C (19)

0, otherwise,

where C and yare determined by
E,¢(2)= P, [V(2)>C|+w,[V(Z)=C]=0. (19)
If the LR is decreasing in V(z), the test is taken from (19) and (19’) with
the inequality signs reversed.

The proof of the theorem is a consequence of the following two lemmas.

Under the assumptions made in Theorem 2, the test ¢ defined by (19) and (19")
is MP (at level «) for testing the (simple) hypothesis H,: 6 = 6, against the
(composite) alternative A:0 € ®° among all tests of level < .

PROOF Let 6’ be an arbitrary but fixed point in ®° and consider the problem
of testing the above hypothesis H, against the (simple) alternative A”: 0= 6"at
level o. Then, by Theorem 1, the MP test ¢”is given by

1, if g(z; 0’)>C’g(z; 90)

¢’(z)= ¥, if g(z; 0’)=C’g(z; 00)
0, otherwise,
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where C”and y” are defined by
E,¢'(Z)=a.

Let g(z; 0")/g(z; 6,) =y[V(z)]. Then in the case under consideration y is
defined on R into itself and is increasing. Therefore

y[V(z)]>C" itandonlyit  V(z)>y7(C)=C,

(20)
l//[V(z)] =C’ ifandonlyif  V(z)=C,.
In addition,
E,¢(Z)=P, {w[v(z)] > C’} +yP, {y/[v(z)] - C'}
=R, [V(z)>¢,|+yp [vV(Z)=C,)
Therefore the test ¢’ defined above becomes as follows:
L it V(z)>G,
o'(z)=1y, it V(z)=C, (21)
0, otherwise,
and
E,¢'(Z)=P, [V(Z) > CO] +7'P, [V(z) - CO] -a, (21"

so that C, = C and y”= yby means of (19) and (19").

It follows from (21) and (21°) that the test ¢”is independent of 6" ®°. In
other words, we have that C = C;and y=y”and the test given by (19) and (19”)
is UMP for testing H,: 6 = 6, against A:0 e o° (at level 7). A

Under the assumptions made in Theorem 2, and for the test function ¢ defined
by (19) and (19’), we have E,¢(Z) < o for all 8’ ¢ w.

PROOF Let 6’be an arbitrary but fixed point in w and consider the problem
of testing the (simple) hypothesis H”: 0 = 0" against the (simple) alternative
Ay(=H,):0=0,atlevel o0’ = Eo¢(Z). Once again, by Theorem 1, the MP test
¢’ 1is given by

1, if g(z; 90)>C’g(z; 9’)
‘P'(Z): Y if g(l; 90)=C'g(z; 9’)
0, otherwise,

where C”and y” are determined by

E,¢(Z)= Pg,{y/[V(Z)] > C’} + yPe,{y/[V(Z)] - C'} = a(0).
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On account of (20), the test ¢”above also becomes as follows:

L it V(z)>C

o'(z)=1y. it V(z)=C; (22)
0, otherwise,
E,'(2)=R,|V(2)> Ct|+v R [V(2)= )| = o), (22

where Cj =y '(C).

Replacing 6, by 6’ in the expression on the left-hand side of (19”) and
comparing the resulting expression with (22"), one has that C{= C and y’=y.
Therefore the tests ¢” and ¢ are identical. Furthermore, by the corollary to
Theorem 1, one has that o(6") < «, since o is the power of the test ¢”. A

PROOF OF THEOREM 2 Define the classes of test C and G, as follows:

C= {all level a tests for testing H:6 < 6, },
G = {all level o tests for testing H,:0 = 6, }

Then, clearly, C c C,. Next, the test ¢, defined by (19) and (19”), belongs in C
by Lemma 2, and is MP among all tests in C,, by Lemma 1. Hence it is MP
among tests in C. The desired result follows. A

REMARK 2 For the symmetric case where @ = {6 € Q; 6 > 6}, under the
assumptions of Theorem 2, a UMP test also exists for testing H:0 € @ against
A:6e€ o The testis given by (19) and (19") if the LR is decreasing in V(z) and
by those relationships with the inequality signs reversed if the LR is increasing
in V (z). The relevant proof is entirely analogous to that of Theorem 2.

Let X, ..., X, be ii.d. r.v.’s with p.d.f. f(-; 6) given by
f(x; 6) = C(B)eQ(G)T(X)h(x),

where Q is strictly monotone. Then for testing H: 0 w={06¢c Q; 6< ,} against
A:0ew at level of significance o, there is a test ¢ which is UMP within the
class of all tests of level <c. This test is given by (19) and (19’) if Q is increasing
and by (19) and (19) with reversed inequality signs if Q is decreasing.

Also for testing H: 0 w={6€c Q; 6< 6} against A: 0 o atlevel o, there
is a test ¢ which is UMP within the class of all tests of level <c. This test is given
by (19) and (19') if Q is decreasing and by those relationships with reversed
inequality signs if Q is increasing.

In all tests, V(z) = Z_, T(x;).

PROOF Tt is immediate on account of Proposition 1 and Remark 2. A

It can further be shown that the function 3(0) = E,0(Z), 6 € Q, for the
problem discussed in Theorem 2 and also the symmetric situation mentioned
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B©) B)
1~ 1=
o @
L 0 0
0 6 0 6,
Figure 13.2 H:0<6,, A:0>6, Figure 13.3 H:0>6,, A:6<6,

in Remark 2, is increasing for those €s for which it is less than 1 (see Figs. 13.2
and 13.3, respectively).
Another problem of practical importance is that of testing

H:Gea):{eeQ; 6<6, or 0292}

against A: 0 € ©‘, where 6,, 6, € Q and 6, < 6,. For instance, 6 may represent a
dose of a certain medicine and 6,, 6, are the limits within which 6is allowed to
vary. If 6 < 6, the dose is rendered harmless but also useless, whereas if 6> 6,
the dose becomes harmful. One may then hypothesize that the dose in ques-
tion is either useless or harmful and go about testing the hypothesis.

If the underlying distribution of the relevant measurements is assumed to
be of a certain exponential form, then a UMP test for the testing problem
above does exist. This result is stated as a theorem below but its proof is not
given, since this would rather exceed the scope of this book.

Let X, ..., X, be ii.d. r.v.’s with p.d.f. f(-; ), given by
f(x; 0) = C(G)eQ(B)T(x)h(x), (23)

where Q is assumed to be strictly monotone and 8 € Q = R.

Set w={0e Q; 6< 6, or 6> 6,}, where 0,, 6, Q and 6, < 6,. Then for testing
the (composite) hypothesis H: 6 € o against the (composite) alternative A: 60
€ o° at level of significance ¢, there exists a UMP test ¢. In the case that Q is
increasing, ¢ is given by

L it ¢ <V(z)<C,
o(z)=1v, if V(z)=C, (i=12)(C <C,) (24)
0, otherwise,

where C,, C, and ¥, 7y are determined by

E,0(Z)=P,[C, <V(2)<C.|+1,R,[V(Z)=C ]
1B |V(Z)=C)=e, i=1,2, and V(z)= iT(xl.). (25)

j=1
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B(0)
1+

| a

\
U \ 4
[
0 0, 0, 6,

Figure 13.4 H:6<0,0r 62 0,, A:6, <0< 6,.

If Q is decreasing, the test is given again by (24) and (25) with C, <V (z) < C,
replaced by V(z) < C, or V(z) > C,.

It can also be shown that (in nondegenerate cases) the function B(6) =
E(Z), 6 e Q for the problem discussed in Theorem 3, increases for 6< 6, and
decreases for 6 > 6, for some 6, < 6, < 6, (see also Fig. 13.4).

Theorems 2 and 3 are illustrated by a number of examples below. In order
to avoid trivial repetitions, we mention once and for all that the hypotheses to
be tested are H:0 e w={0€Q; 0< )} against A:0cw and H:0cw={0e Q;
0 < 6, or 02 6,) against A0 €« 6, 6, 6, €Q and 6, < 6,. The level of
significance is o0 < or < 1).

Let X, ..., X, be iid. r.v.’s from B(1, 0), 6 Q= (0, 1). Here

V(z) = ix]. and Q(O) =log 18

is increasing since 6/(1 — 6) is so. Therefore, on account of the corollary to
Theorem 2, the UMP test for testing H is given by

Lot Y7 x>C
o(z)=jr. it Xlx=C 26)

0, otherwise,

where C and y are determined by
E,0(Z)=P, (X >C)+yP, (X =C)=a. 27)
and
X:ixj is  B(n. o)
j=1

For a numerical application, let 6, = 0.5, o = 0.01 and n = 25. Then one
has
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B(X >C)+yhs(X =C)=0.01

The Binomial tables provided the values C = 18 and y= % The power of the
test at 6=0.75 is

B,(0.75) = Ps(X > 18)+ %z)m (x =18)=0.5923.

By virtue of Theorem 3, for testing H”the UMP test is given by
Lif <Y x;<C,
o(z)=1y, it X' x,=C, (i=12)

=
0, otherwise,

with C,, C, and ¥, 7y, defined by
E,0(Z)=P,(C <X <C,)+1,P (X =C)+7,P(X=C,)=a, i=12.

Again for a numerical application, take 6, = 0.25, 6, = 0.75, oo = 0.05 and
n =25. One has then
Fyos (Cl <X <G, ) +71Bs (X =G ) +72 s (X = Cz) =0.05
Fyzs (Cl <X <C, ) +7 B (X =C ) +72 B (X = Cz) =0.05.
For C, =10 and C, = 15, one has after some simplifications

416y, +2y, =205
2y, +416y, =205,

from which we obtain

205
—y, =22 _0.4904.
Y1=72 418

The power of the test at 8= 0.5 is

B,(0.5)= B5(10 < X <15)+ %[PM (X =10)+ B(x =15)]= 0.6711.

EXAMPLE 7 LletX,, ..., X, beiid.rv.’s from P(6), 0 €Q = (0, ). Here V(z) = Z}_, x; and
Q(0) =log Ois increasing. Therefore the UMP test for testing H is again given
by (26) and (27), where now X is P(n6).

For a numerical example, take 6,=0.5, =0.05 and n =10. Then, by means
of the Poisson tables, we find C =9 and
182

182 45014,
=363
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The power of the test at 8= 11is B,(1) = 0.6048.
Let X,,..., X, be iid. r.v.’s from N(6, 0°) with 6" known. Here

V(z) = ng and Q(O) =—0

o

is increasing. Therefore for testing H the UMP test is given by (dividing by n)

¢(Z) _ {1, if x>C

0, otherwise,
where C is determined by
E,§(2)=P, (X >C)=a,

and X is N(6, o’/n). (See also Figs. 13.5 and 13.6.)
The power of the test, as is easily seen, is given by

/3¢(9)=1—<DM.

o

For instance, for =2 and 6,=20, oc=0.05 and n =25, one has C =20.66. For
0 =21, the power of the test is

B,(21) = 0.8023.
On the other hand, for testing H” the UMP test is given by
R A
where C,, C, are determined by
E,¢(Z)=P,(C <X <C))=a, i=12

(See also Fig. 13.7.)
The power of the test is given by

b6)=0 n(C,-0)|_ |n(ci-0)|

o (o

NG %) N, 2)

n

* @

‘ 0 A ‘ 6
0 0, c 0 c 6,

Figure 13.5 H:6< 6,, A: 6> 6,. Figure 13.6 H:0> 6,, A:0< 6,.
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/N(ﬁo’ 077)

-

0 C, 6, C,
Figure 13.7 H':6<0,0r 6> 6,, A’:0, < 6< 0,.

For instance, for c=2 and 6, = -1, 6, =1, o« = 0.05 and n = 25, one has C, =
—0.344, C, = 0.344, and for 6 = 0, the power of the test is 3,(0) = 0.610.

EXAMPLE 9 Let Xi,..., X, be iid. r.v.’s from N(u, 6) with u known. Then V(z) =
20, (x;— p)* and Q(6) =—1/(26) is increasing. Therefore for testing H, the UMP
test is given by

. n 2

(I)(Z) _ 1, if zj:](xj —,LL) >C
0, otherwise,

where C is determined by

n

E,¢(Z)= Pgnl (X, -u) > C] —a.

j=1
The power of the test, as is easily seen, is given by
B, (0) =1- P( x:<C/ 0) (independent of ,u!).

(See also Figs. 13.8 and 13.9; y stands for an r.v. distribution as y..)

For a numerical example, take 6, = 4, oo = 0.05 and n = 25. Then one has
C =150.608, and for 6 = 12, the power of the test is 8,(12) = 0.980.

On the other hand, for testing H” the UMP test is given by

ofa)- {1, it G <Y (x- ) <c,
0, otherwise,

where C,, C, are determined by

a J— &
0 Z 4
0 /6, 0 /o,

Figure 13.8 H:6< 6,, A: 0> 6,. Figure 13.9 H:62> 6,, A:6 < 6,.
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E,(Z) =Po,[C1 < i(x, ) <C2]=(x, i=1, 2.

j=1

The power of the test, as is easily seen, is given by
C C
_ 2 2 2 1 s
ﬁe(e) = P( X < 7) - P( X < ?J (mdependent of ,u!).
For instance, for 6, =1, 6, =3, a=0.01 and n =25, we have

P23 <Cy)=P3s <€) =001, P(;(zzs < %)—P(x; < %) =0.01

and C,, G, are determined from the Chi-square tables (by trial and error).

Exercises

13.3.1 Let X|,..., X, be ii.d. r.v.’s with p.d.f. f given below. In each case,
show that the joint p.d.f. of the X’s has the MLR property in V=V(x,,...,x,)
and identity V.

o

D £ e):Fe(a)xa-le-exz(oyw)(x), 6cQ=(0, =), a=known (>0)

i) £ e)=er(’+X‘1J(1_e)"zA(x), A=fo.1...). 6ea=(0.1)

X

13.3.2 Refer to Example 8 and show that, for testing the hypotheses H and
H’ mentioned there, the power of the respective tests is given by

/3¢(9) =1-@ M

and

as asserted.

13.3.3 The length of life X of a 50-watt light bulb of a certain brand may be
assumed to be a normally distributed r.v. with unknown mean g and known
s.d. 0 =150 hours. Let X}, ..., X,s be independent r.v.’s distributed as X and
suppose that ¥ = 1,730 hours. Test the hypothesis H:u = 1,800 against the
alternative A:u < 1,800 at level of significance o = 0.01.
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13.3.4 The rainfall X at a certain station during a year may be assumed to be
a normally distributed r.v. with s.d. o= 3 inches and unknown mean u. For the
past 10 years, the record provides the following rainfalls: x, = 30.5, x, = 34.1,
x;=27.9, x, =294, x; =35.0, x; = 26.9, x, = 30.2, x; = 28.3, x, = 31.7, x,,=25.8.
Test the hypothesis H:u = 30 against the alternative A:u < 30 at level of
significance o = 0.05.

13.3.5 Refer to Example 9 and show that, for testing the hypotheses H and
H’ mentioned there, the power of the respective tests is given by

ﬁ¢(9)=1—P(xﬁ<%) and ﬁ¢(0):P(12<%)—P()(5<%)

as asserted.

13.3.6 LetX,,..., X, be independent r.v.’s distributed as N(0, o°). Test the
hypothesis H: o < 2 against the alternative A: o > 2 at level of significance o =
0.05. What does the relevant test become for X x7 = 120, where x; is the
observed value of X, j = , 25.

13.3.7 In a certain university 400 students were chosen at random and it was
found that 95 of them were women. On the basis of this, test the hypothesis H
that the proportion of women is 25% against the alternative A that is less than
25% at level of significance o = 0.05. Use the CLT in order to determine the
cut-off point.

13.3.8 LetX,,... ,X be independentr.v.’s distributed as B(1, p). For testing
the hypothesis H:p<l 5 against the alternative A:p > =, suppose that az=0.05
and ﬁ( ) = 0.95. Use the CLT in order to determine the required sample
size n.

13.3.9 Let X be an r.v. distributed as B(n, 6), 6 €Q = (0, 1).

i) Derive the UMP test for testing the hypothesis H:6 < 6, against the
alternative A: 0> 6, at level of significance o.

ii) What does the test in (i) become for n = 10, 6, = 0.25 and o = 0.05?
iii) Compute the power at 6, = 0.375, 0.500, 0.625, 0.750, 0.875.

Now let 6, =0.125 and o= 0.1 and suppose that we are interested in securing
power at least 0.9 against the alternative 6, = 0.25.

iv) Determine the minimum sample size n required by using the Binomial
tables (if possible) and also by using the CLT.

13.3.10 The number X of fatal traffic accidents in a certain city during a year
may be assumed to be an r.v. distributed as P(A). For the latest year x = 4,
whereas for the past several years the average was 10. Test whether it has been
an improvement, at level of significance o = 0.01. First, write out the expres-
sion for the exact determination of the cut-off point, and secondly, use the
CLT for its numerical determination.
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13.3.11 Let X be the number of times that an electric light switch can be
turned on and off until failure occurs. Then X may be considered to be an r.v.
distributed as Negative Binomial with » =1 and unknown p. Let X, ..., X|s be
independent r.v.’s distributed as X and suppose that x = 15,150. Test the
hypothesis H:p = 10~ against the alternative A:p > 10~ at level of significance
o =0.05.

13.3.12 Let X|,..., X, be independent r.v.’s with p.d.f. f given by
. R - —
f(x, 9) = Ee I(o,x)(x), 0eQ= (O, oo).

i) Derive the UMP test for testing the hypothesis H: 6 > 6, against the alter-
native A: 0 < 6, at level of significance «;

ii) Determine the minimum sample size n required to obtain power at least
0.95 against the alternative 6, = 500 when 6, = 1,000 and o = 0.05.

13.4 UMPU Tests for Testing Certain Composite Hypotheses

DEFINITION 6

DEFINITION 7

In Section 13.3, it was stated that under the assumptions of Theorem 3, for
testing H:0 e w={0e Q; 6< 6, or 0> 6,} against A: 60 € ©°, a UMP test exists.
It is then somewhat surprising that, if the roles of H and A are interchanged,
a UMP test does not exist any longer. Also under the assumptions of Theorem
2, for testing H,: 0 = 6, against A”:0 # 6, a UMP does not exist. This is so
because the test given by (19) and (19") is UMP for 6> 6, but is worse than the
trivial test ¢(z) = o for 0 < 6,. Thus there is no unique test which is UMP for all
6 # 6,

The above observations suggest that in order to find a test with some
optimal property, one would have to restrict oneself to a smaller class of tests.
This leads us to introducing the concept of an unbiased test.

Let X|, ..., X, beiid.r.v’s with p.df. f(-;0),0 €eQ and let @ c Q c R". Then
for testing the hypothesis H:0 €  against the alternative A:0 € o at level of
significance ¢, a test ¢ based on X, . . ., X, is said to be unbiased if E,p(X,, . . .,
X,) <oforall®e wand Egp(X,, ..., X,) = o for all 0 e

That is, the defining property of an unbiased test is that the type-I error
probability is at most o and the power of the test is at least c.

In the notation of Definition 6, a test is said to be uniformly most powerful
unbiased (UMPU) if it is UMP within the class of all unbiased tests.

REMARK 3 A UMP test is always UMPU. In fact, in the first place it is
unbiased because it is at least as powerful as the test which is identically equal
to a. Next, it is UMPU because it is UMP within a class including the class of
unbiased tests.
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THEOREM 4

For certain important classes of distributions and certain hypotheses,
UMPU tests do exist. The following theorem covers cases of this sort, but it
will be presented without a proof.

Let X, ..., X, be i.i.d. r.v.’s with p.d.f. f(-; 6) given by
f(x; 9) = C(O)eeT(x)h(x), 0eQcR. (28)

Let 0={60€Q; 6, <6< 6,) and w, = {6,}, where 6,, 6,, 6, € Q and 6, < 6,.
Then for testing the hypothesis H: 6 € w against A: 6 € " and the hypoth-
esis H,: 0 € w, against A,: 0 € ®° at level of significance ¢, there exist UMPU
tests which are given by
L if V(z)<C, or V(z)>C,

o(z)=4y.. it V(z)=C, (i=1,2) (C,<C,)

0, otherwise,

where the constants C, ¥, i = 1, 2 are given by
Eolq)(Z) =a, i=1,2 for H,
and
E,9(2)=a. E,[V(2)§(2)|=aE,V(2) for H,.

(Recall that z = (x,,...,x,), Z=(X,,..., X,) and V(z) = X}_, T(x;).)

Furthermore, it can be shown that the function B,(6) = E,N(Z), 6 €Q
(except for degenerate cases) is decreasing for 6 < 6, and increasing for 6> 6,
for some 6, < 6, < 6, (see also Fig. 13.10).

REMARK 4 We would expect that cases like Binomial, Poisson and Normal
would fall under Theorem 4, while they seemingly do not. However, a simple
reparametrization of the families brings them under the form (28). In fact, by
Examples and Exercises of Chapter 11 it can be seen that all these families are
of the exponential form

B()
1+

|

|

1)
0 0, 0, 0,
Figure 13.10 H:0, <0< 6,, A:0< 6, or 6> 6,.
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iv)
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f(x; 9) = C(Q)eQ(g)T(X)h(x).

For the Binomial case, Q(6) =10g[6/(1 — 6)]. Then by setting log[0/(1 — 6)]
= 7, the family is brought under the form (28). From this transformation,
we get 6 = e/(1 + ¢') and the hypotheses 6, < 6 < 6,, 0 = 6, become
equivalently, 7, < < 1,, 7= 7, where

TiZIOg%, i=0, 1, 2.

i

For the Poisson case, Q(6) =log 6 and the transformation log 6 = 7 brings
the family under the form (28). The transformation implies 8 = e’ and the
hypotheses 6, < 6 < 6,, 6 = 6, become, equivalently, 7, < 1< 1, T= 7, with
7,=logh,i=0,1, 2.

For the Normal case with ¢ known and u= 6, Q(6) = (1/6°)6 and the factor
1/6® may be absorbed into T(x).

For the Normal case with u known and o = 6, Q(6) = —1/(26) and the
transformation —1/(26) = 7 brings the family under the form (28) again.
Since 6 = —1/(27), the hypotheses 6, < 6 < 6, and 6 = 6, become, equiva-
lently, 7, < 7< 7, and 7= 1), where 7,=-1/(26,),i=0, 1, 2.

As an application to Theorem 4 and for later reference, we consider the

following example. The level of significance will be o

Suppose X, ..., X, are i.i.d. r.v.’s from N(u, o°). Let o be known and set
u= 6. Suppose that we are interested in testing the hypothesis H: 6= 6, against
the alternative A: 6 # 6,. In the present case,

so that

Therefore, by Theorem 4, the UMPU test is as follows:

n n
1, if —x<C, or —x>C
9(2) o’ ] o’ ?

0, otherwise,

where C,, C, are determined by

E 9(2)=c, E,|V(2)o(2)]=cE,V(2)

Now ¢ can be expressed equivalently as follows:
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~ n(z-6 n(z-6
¢(z)= 1, if ¥<Cl’ or ¥>Cg
0, otherwise,
where
_C,_n, ., _0C, _nf

Cl, > Cé =

Jn © Jn ©

On the other hand, under H, \/ﬁ()? — 6,)/ois N(0, 1). Therefore, because of
symmetry C; = —-C; =-C, say (C > 0). Also

In(x-8,) e o Vn(x-8,) o
c c
is equivalent to
\ff;(f - 00) ’ oC
o

and, of course, [\n(X — 6,)/c]’ is 2, under H. By summarizing then, we have

2

In(s-a)

¢(Z): 1, if > >C
0, otherwise,
where C is determined by
P( x> C) =q.

In many situations of practical importance, the underlying p.d.f. involves
a real-valued parameter 6 in which we are exclusively interested, and in
addition some other real-valued parameters ¥, ..., @ in which we have no
interest. These latter parameters are known as nuisance parameters. More
explicitly, the p.d.f. is of the following exponential form:

flx6.0,.....09)=Cl6.v,.... 19k)exp[9T(x)
+ 0T, (x)+ - + 0,7, ()| (), (29)
where 0eQ c R, ¥, ..., ¥, are real-valued and /(x) > 0 on a set independent

of all parameters involved.
Let 6,, 6, 6, € Q with 0, < 6,. Then the (composite) hypotheses of interest
are the following ones, where ¥, ..., ¥ are left unspecified.
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H:0co={0cQ; 0<6,}
H:0co={0cQ; 626,}
H,:0ecw={0eQ; 0<0, or 026,}:A(A)):0c0w’, i=1,..., 4
Hy:0ew={0eQ; 6,<0<0,]

H,:0cn= {6,} | (30)

We may now formulate the following theorem, whose proof is omitted.

Let X|,..., X, be iid. r.v.’s with p.d.f. given by (29). Then, under some
additional regularity conditions, there exist UMPU tests with level of signifi-
cance o for testing any one of the hypotheses H,(H7) against the alternatives
A(A),i=1,...,4, respectively.

Because of the special role that normal populations play in practice, the
following two sections are devoted to presenting simple tests for the hypoth-
eses specified in (30). Some of the tests will be arrived at again on the basis of
the principle of likelihood ratio to be discussed in Section 7. However, the
optimal character of the tests will not become apparent by that process.

Exercises

13.4.1 A coin, with probability p of falling heads, is tossed independently 100
times and 60 heads are observed. Use the UMPU test for testing the hypoth-
esis H:p = . against the alternative A:p # > at level of significance o= 0.1.

13.4.2 Let X, X,, X, be independent r.v.’s distributed as B(1, p). Derive the
UMPU test for testing H:p =0.25 against A :p # 0.25 at level of significance o.
Determine the test for o= 0.05.

13.5 Testing the Parameters of a Normal Distribution

In the present section, X, . .., X, are assumed to be i.i.d. r.v.’s from N(u, &),
where both y and ¢® are unknown. One of the parameters at a time will be the
parameter of interest, the other serving as a nuisance parameter. Under appro-
priate reparametrization, as indicated in Remark 5, the family is brought
under the form (29). Also the remaining (unspecified) regularity conditions in
Theorem 5 can be shown to be satisfied here, and therefore the conclusion of
the theorem holds.

All tests to be presented below are UMPU, except for the first one which
is UMP. This is a consequence of Theorem 5 (except again for the UMP test).
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PROPOSITION 2

PROPOSITION 3

Whenever convenient, we will also use the notation z and Z instead of (x, . . .,
x,) and (X, ..., X,), respectively. Finally, all tests will be of level o.

13.5.1 Tests about the Variance

For testing H,:0 < ¢, against A,: 0> 0, the test given by

. n —\2
¢(z) _ 1, if Zle(xf —x) >C (31)
0, otherwise,
where C is determined by
P(xﬁ_l > C/Gj) =a, (32)
is UMP. The test given by (31) and (32) with reversed inequalities is UMPU
for testing H:0 > o, against A{:0 < 0,.

The power of the tests is easily determined by the fact that (/%) =,
(X;— X )’ is x,., when o obtains (that is, o is the true s.d.). For example, for
n =25, 0,=3 and a = 0.05, we have for H,, C/9 = 36.415, so that C = 327.735.
The power of the test at o =5 is equal to P(j5, > 13.1094) = 0.962.

For Hi, C/9 = 13.848, so that C = 124.632, and the power at 6 =2 is Py
(< 31.158) = 0.8384.

For testing H,: 0 < 0, or 02 0,, against A,: 0, < 0< 0,, the test given by

. n —\2
o) = Lot <Y (x-%) <G 33)
0, otherwise,
where C,, C, are determined by
P(Cl/cr,.2 <xl, <C2/G,.2) =a, i=1,2, (34)

is UMPU. The test given by (33) and (34), where the inequalities C, < X7,
(x; — ¥)’ < C, are replaced by

Z(x, —)?)2 <C, or Z(xl. —)?)2 >C,,
= j=1
and similarly for (34), is UMPU for testing H;: 0, < 0 < 0, against A;:0< 0
or o > 0,. Again, the power of the tests is determined by the fact that
(1/6°) =, (X; - X )’ is x,., when o obtains.
For example, for H, and for n =25, 0, =2, 0, =3 and a = 0.05, C,, C, are
determined by

P(;(224 > %J - P(xi > %] =0.05

P( 13> %] - P( 213, > %) =0.05
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from the Chi-square tables (by trial and error).

For testing H,: 0 = o, against A,: 0 # 0,, the test given by

ofa)- 1, if ijl(xj—)?)z <C, or Z:_‘zl(x].—x)2 >C,
0, otherwise,

where C,, C, are determined by

[ b= 50wl =1

g being the p.d.f. of a ., distribution, is UMPU.
The power of the test is determined as in the previous cases.

REMARK 5 The popular equal tail test is not UMPU; it is a close approxima-
tion to the UMPU test when # is large.

13.5.2 Tests about the Mean

In connection with the problem of testing the mean, UMPU tests exist in a
simple form and are explicitly given for the following three cases: u < i, 4=
and u = U,.

To facilitate the writing, we set

t(z)= J &(f_” ) . (35)

1 -
E;(xf —x)2

For testing H,: 1 < p, against A, : u > u,, the test given by
1, if #z)>C
9(z) ={ 5 (36)

0, otherwise,
where C is determined by
Plt,, >C)=a, (37)

is UMPU. The test given by (36) and (37) with reversed inequalities is UMPU
for testing H1: > u, against A{: u < oy; /(z) is given by (35). (See also Figs. 13.11
and 13.12; ¢, , stands for an r.v. distributed as ¢, ;.)

For n=25 and a=0.05, we have P(t,,> C) =0.05; hence C =1.7109 for H,,
and C =-1.7109 for H;.

For testing H,:u = y, against A,: u # l,, the test given by
ofa)- {1, it (z)<-C or f(z)>C (C>0)

0, otherwise,
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Figure 13.11 H,:u < uo, Ajipt > L. Figure 13.12 Hj:u 2> uo, At:p < U.

where C is determined by
P(t,, >C)=0/2,
is UMPU; #(z) is given by (35). (See also Fig. 13.13.)

Figure 13.13 H,:u = o, Ayt # Uo.

For example, for n =25 and o = 0.05, we have C = 2.06309.

In both these last two propositions, the determination of the power in-
volves what is known as non-central t-distribution, which is defined in
Appendix II.

Exercises

13.5.1 The diameters of bolts produced by a certain machine are r.v.’s dis-
tributed as N(u, ¢°). In order for the bolts to be usable for the intended
purpose, the s.d. o must not exceed 0.04 inch. A sample of size 16 is taken and
is found that s = 0.05 inch. Formulate the appropriate testing hypothesis
problem and carry out the test if o= 0.05.

13.5.2 Let X,,..., X, be iid. r.v.’s from N(u, ¢°), where both u and o are
unknown.

i) Derive the UMPU test for testing the hypothesis H:o = ¢, against the
alternative A: o # g, at level of significance o;
ii) Carry out the test if n =25, 0, =2, =7, (x;, — X)° = 24.8, and a = 0.05.

13.5.3 Discuss the testing hypothesis problem in Exercise 13.3.4 if both u
and o are unknown.
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13.5.4 A manufacturer claims that packages of certain goods contain 18
ounces. In order to check his claim, 100 packages are chosen at random from
a large lot and it is found that

100 100
Yx;=1752  and Y x;=31,157.

j=1 =1

Make the appropriate assumptions and test the hypothesis H that the manu-
facturer’s claim is correct against the appropriate alternative A at level of
significance o = 0.01.

13.5.5 The diameters of certain cylindrical items produced by a machine are
r.v.’s distributed as N(u, 0.01). A sample of size 16 is taken and is found that
X=2.48 inches. If the desired value for u is 2.5 inches, formulate the appropri-
ate testing hypothesis problem and carry out the test if oo = 0.05.

13.6 Comparing the

PROPOSITION 7

Parameters of Two Normal Distributions

Let X,..., X,, be i.i.d. r.v.’s from N(u,, 0;) and let Y,, ..., Y, be iid. r.v.’s
from N(u,, 03). It is assumed that the two random samples are independent
and that all four parameters involved are unknown. Set yt = u, — 11, and 7= 65/
0,. The problem to be discussed in this section is that of testing certain
hypotheses about u and 7. Each time either u or 7 will be the parameter of
interest, the remaining parameters serving as nuisance parameters.

Writing down the joint p.d.f. of the X’s and Y’s and reparametrizing the
family along the lines suggested in Remark 4 reveals that this joint p.d.f. has
the form (29), in either one of the parameters u or 7. Furthermore, it can be
shown that the additional (but unspecified) regularity conditions of Theorem
5 are satisfied and therefore there exist UMPU tests for the hypotheses speci-
fied in (30). For some of these hypotheses, the tests have a simple form to
be explicitly mentioned below. For convenient writing, we shall employ the
notation

’ ’

z=(X,,....Xx,), W=(v,....v,)

for the X’s and Y’s, respectively, and

4 4

z=(x1,...,xm), W=(}’1,---’yn)

for their observed values.

13.6.1 Comparing the Variances of Two Normal Densities

For testing H,:7 < 7, against A,: 7> 7, the test given by
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0 G,
Figure 13.14 H,:7< 1, A1 7> 1. Figure 13.15 H{:t2> 15, Al:7< 1.

n _\2
o(z. w)= Lo zzfxyf_yl 7€ (38)
P zi:l (xi - E)
0, otherwise,
where C is determined by
o (m-1)c
- (n— 1)10 '

is UMPU. The test given by (38) and (39) with reversed inequalities is UMPU
for testing H': 7> 1, against A}: 7 < 7,. (See also Figs. 13.14 and 13.15; F,
stands for an r.v. distributed as F,_;,,_;.)

P(F,,,,>C,)=a,

n

(39)

—1,m-1

The power of the test is easily determined by the fact that

is F,_, ., distributed when 7 obtains. Thus the power of the test depends only
on 7. For m =25, n =21, 7,=2 and o = 0.05, one has P(F,,,, > 5C/12) = 0.05,
hence 5C/12 = 2.0267 and C = 4.8640 for H; for Hj,

5C 12
P(F20,24 < E] = P(Fzzt.zo > EJ =0.05

implies 12/5C = 2.0825 and hence C = 1.1525.
Now set

= . (40)

Then we have the following result.
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PROPOSITION 8 For testing H,: 7= 1, against A,: 7# T, the test given by
1, if V(z, w) <C, or V(z, w) >C,
0, otherwise,

where C,, C, are determined by

PI:C1<B1 1 <C2]:P[C1<B1 <G, |=1-a,

L) 2 m) Sns1)S(m1)

is UMPU; V(z, w) is defined by (40). (B,,,, stands for an r.v. distributed as Beta
with ry, r, degrees of freedom.) For the actual determination of C,, C,, we use
the incomplete Beta tables. (See, for example, New Tables of the Incomplete
Gamma Function Ratio and of Percentage Points of the Chi-Square and Beta
Distributions by H. Leon Harter, Aerospace Research Laboratories, Office of
Aerospace Research; also, Tables of the Incomplete Beta-Function by Karl

Pearson, Cambridge University Press.)

13.6.2 Comparing the Means of Two Normal Densities

In the present context, it will be convenient to set

y—x . (41)

(z, w)= - -
IS 2 ()

We shall also assume that o7 = o, = ¢~ (unspecified).

PROPOSITION 9 For testing H,:u < 0 against A,:u >0, where u = u, — u,, the test given by

1, if tlz, w)>C
¢(z, w) = ( . ) (42)
0, otherwise,
where C is determined by
Pty >Cy) =0, C,=C | mtn=-2 (43)

\(1/m)+(1/n)’

is UMPU. The test given by (42) and (43) with reversed inequalities is UMPU
for testing H7: >0 against A7: u<0;t(z, w) is given by (41). The determination
of the power of the test involves a non-central ¢-distribution, as was also the
case in Propositions 5 and 6.

For example, for m = 15, n = 10 and o = 0.05, one has for H,:
P(t;; > CN23%6) = 0.05; hence CV23x6 = 1.7139 and C = 0.1459. For H;,
C =-0.1459.

PROPOSITION 10 For testing H,: =0 against A,:u # 0, the test given by
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¢(z w)— 1, if t(z, w)<—C or t(z, w)>C
’ 0, otherwise,

where C is determined by
Plt,,,»>Cy)=0/2,

C, as above, is UMPU.
Again with m =15, n =10 and o= 0.05, one has P(t,; > Cv23x6) =0.025
and hence CV23x6 =2.0687 and C = 0.1762.

Once again the determination of the power of the test involves the non-
central ¢-distribution.

REMARK 6 In Propositions 9 and 10, if the variances are not equal, the tests
presented above are not UMPU. The problem of comparing the means of two
normal densities when the variances are unequal is known as the Behrens—
Fisher problem. For this case, various tests have been proposed but we will not
discuss them here.

Exercises

13.6.1 Let X,i=1,...,9and Y, j=1,..., 10 be independent random
samples from the distributions N(u;, 0;) and N(u,, 03), respectively. Suppose
that the observed values of the sample s.d.’s are sy = 2, s, = 3. At level of
significance o= 0.05, test the hypothesis: H: 0, = 0, against the alternative A : o,
# 0, and find the power of the test at 0, =2, 0, = 3. (Compute the value of the
test statistic, and set up the formulas for determining the cut-off points and the
power of the test.)

13.6.2 LetX,j=1,...,4andY,j=1,...,4 be two independent random
samples from the distributions N(u,, 07) and N(u,, 0), respectively. Suppose
that the observed values of the X’s and Y’s are as follows:

x; =10.1, x, =84, x; =14.3, x, =117,

» =9.0, v, =82, v, =121, v, =10.3.
Test the hypothesis H:0, = 0, against the alternative A:o; # o, at level of

significance o = 0.05. (Compute the value of the test statistic, and set up the
formulas for determining the cut-off points and the power of the test.)

13.6.3 Five resistance measurements are taken on two test pieces and the
observed values (in ohms) are as follows:

X, =0118, x,=0125 x,=0121, x,=0117, x,=0.120
y=0114, y,=0115, y,=0119, y,=0.120, y, =0.110,

Make the appropriate assumptions and test the hypothesis H: o, = o, against
the alternative A: 0, # 0, at level of significance o = 0.05. (Compute the value
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of the test statistic, and set up the formulas for determining the cut-off points
and the power of the test.)

13.6.4 Refer to Exercise 13.6.2 and suppose it is known that o, =4 and o, =
3. Test the hypothesis H that the two means do not differ by more than 1 at
level of significance o = 0.05.

13.6.5 The breaking powers of certain steel bars produced by processes A
and B are r.v.’s distributed as normal with possibly different means but the
same variance. A random sample of size 25 is taken from bars produced by
each one of the processes, and it is found that ¥ = 60, sy= 6, y = 65,
sy="7.Test whether there is a difference between the two processes at the level
of significance o = 0.05.

13.6.6 Refer to Exercise 13.6.3, make the appropriate assumptions, and
test the hypothesis H:u, = u, against the alternative A:u, # u, at level of
significance o = 0.05.

13.6.7 Let X,,i=1,...,nand Y, i=1,..., n be independent random
samples from the distributions N(u,, 07) and N(u,, 03), respectively, and sup-
pose that all four parameters are unknown. By setting Z, = X, — Y,, we have
that the paired r.v’s Z,,i=1, ..., n, are independent and distributed as N(u,
0°) with g = u, — u, and " = o; + 0. Then one may use Propositions 5 and 6 to
test hypotheses about p.

Test the hypotheses H,:u < 0 against A,:u > 0 and H,:u = 0 against
A,:u#0atlevel of significance or=0.05 for the data given in (i) Exercise 13.6.2;
(ii) Exercise 13.6.3.

13.7 Likelihood Ratio Tests

Let X, ..., X, be ii.d. r.v.’s with p.d.f. f(-;0),0 € Q c R and let ® c Q. Set
L(®)=f(x;0) - - - f(x,;0) whenever 8 € @, and L(®") =f(x;0) - - - f(x,; 0) when
0 is varying over ®". Now, when both @ and @ consist of a single point, then
L(w) and L(®°) are completely determined and for testing H:0 € ® against
A:0e of, the MP test rejects when the likelihood ratio (LR) L(®°)/L(®) is too
large (greater than or equal to a constant C determined by the size of the test.)
However, if ® and @° contain more than one point each, then neither L(®) nor
L(®°) is determined by H and A and the above method of testing does not
apply. The problem can be reduced to it though by the following device. L(®)
is to be replaced by L(®) = max[L(8); 8 € 0] and L(®") is to be replaced by
L(®°) = max[L(8); 8 € o). Then for setting up a test, one would compare the
quantities Z(@) and L(®°). In practice, however, the statistic L(®)/L(Q) is
used rather than L(®°)/L(®), where, of course, L() = max[L(0); 6 €Q].
(When we talk about a statistic, it will be understood that the observed values
have been replaced by the corresponding r.v.’s although the same notation will
be employed.) In terms of this statistic, one rejects H if L(®)/L(Q) is too small,
that is, <C, where C is specified by the desired size of the test. For obvious
reasons, the test is called a likelihood ratio (LR) test. Of course, the test
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specified by the Neyman—-Pearson fundamental lemma is also a likelihood
ratio test. )

Now the likelihood ratio test which rejects H whenever L(®)/L() is too
small has an intuitive interpretation, as follows: The quantity L(®) and the
probability element L(®)dx; - - - dx, for the discrete and continuous case, re-
spectively, is the maximum probability of observing x;, ..., x, if 8 lies in o.
Similarly, L(Q) and L(Q)dx, - - - dx, represent the maximum probability for
the discrete and continuous case, respectively, of observing x,, . . ., x, withoyt
restrictions on 0. Thus, if @ € @, as specified by H, the quantities L(®) and L(Q)
will tend to be close together (by an assumed continuity (in 0) of the likelihood
function L(01x,, ..., x,)), and therefore A will be close to 1. Should A be too
far away from 1, the data would tend to discredit H, and therefore H is to be
rejected. .

The notation A = L(®)/L(Q) has been in wide use. (Notice that 0 < 1< 1.)
Also the statistic —2log A rather than A itself is employed, the reason being
that, under certain regularity conditions, the asymptotic distribution of
—2log A, under H, is known. Then in terms of this statistic, one rejects H
whenever —2log A > C, where C is determined by the desired level of the test.
Of course, this test is equivalent to the LR test. In carrying out the likelihood
ratio test in actuality, one is apt to encounter two sorts of difficulties. First is
the problem of determining the cut-off point C and second is the problem of
actually determining L(®) and L(€Q). The first difficulty is removed at the
asymptotic level, in the sense that we may use as an approximation (for
sufficiently large n) the limiting distribution of —2log A for specifying C. The
problem of finding L(€) is essentially that of finding the MLE of 0. Calculating
L(®) is a much harder problem. In many cases, however, H is simple and then
no problem exists.

In spite of the apparent difficulties that a likelihood ratio test may present,
it does provide a unified method for producing tests. Also in addition to its
intuitive interpretation, in many cases of practical interest and for a fixed
sample size, the likelihood ratio test happens to coincide with or to be close to
other tests which are known to have some well defined optimal properties such
as being UMP or being UMPU. Furthermore, under suitable regularity condi-
tions, it enjoys some asymptotic optimal properties as well.

In the following, a theorem referring to the asymptotic distribution of
—2log A is stated (but not proved) and then a number of illustrative examples
are discussed.

Let X, ..., X, be ii.d. r.v.’s with p.d.f. f(:; 8), 8 €Q, where Q is an r-dimen-
sional subset of R and let @ be an m-dimensional subset of Q. Suppose also
that the set of positivity of the p.d.f. does not depend on 0. Then under some
additional regularity conditions, the asymptotic distribution of —2log A is x-_,,,
provided 0 € ®; that is, as n — oo,

Py(-2logA<x)>G(x), x>0 forall @cwm,
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where G is the d.f. of a y/,, distribution.

Since in using the LR test, or some other test equivalent to it, the alterna-

tive A specifies that 8 € @, this will not have to be mentioned explicitly in the
sequel. Also the level of significance will always be c.

(Testing the mean of a normal distribution) Let X, .. ., X, be i.i.d. r.v.’s from
N(u, 0°), and consider the following testing hypotheses problems.

i)

ii)

Let o be known and suppose we are interested in testing the hypothesis
H:pew={u,.
Since the MLE of u is fio = X (see Example 12, Chapter 12), we have

oo s |

and

o 2l m)

In this example, it is much easier to determine the distribution of —21log 4
rather than that of A. In fact,

L(a)=

—2log A :ﬁ(f—,uo)z

and the LR test is equivalent to

2

. \/Z(f - .uo)
¢(z) _ 1, if EE— >C

0, otherwise,
where C is determined by
P( x> C) =0

(Recall thatz = (x,, ..., x,)".)

Notice that this is consistent with Theorem 6. It should also be pointed
out that this test is the same as the test found in Example 10 and therefore
the present test is also UMPU.

Consider the same problem as in (i) but suppose now that ¢ is also un-
known. We are still interested in testing the hypothesis H: it = u, which now
is composite, since o is unspecified.
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Now the MLE’s of ¢, under Q= {0 = (1, 0); e R, 6>0} and ® =
{6=(u, 0); u=u, o> 0} are, respectively,

Ny 1 _ A 1S
Gézzé(xj—x)z and Gi:;j=1(xf_/“‘o)2

(see Example 12, Chapter 12). Therefore

n

A 1 2 1
LIQ)= - epr:— ~ Z(x —)_c) :|=—ne"'/2
i (oraa) L 2% 0] (J2ne,)
and
~ 1 & 2 1 _n/2
Lio)= - o =
. (v“zn&m)n exp{ 26, f:l(x’ uo)} ( 2nam)ne
Then
/,L:(OA'éJn/z or /12/;1 Zj:l(xf x) )
~ ” 2
%o 2,‘:1()61' ‘u")
But

and therefore

2 =141 rE ) :(1+ & )1,

where
\/;f_ 0
r=ife) = (n o) .
\/“HZ("/"_‘)

=1

Then A < A, is equivalent to > C for a certain constant C. That is, the LR
test is equivalent to the test

1, if t<-C or t>C
9(z) = .
0, otherwise,
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where C is determined by

P(t,, >C)=a/2.
Notice that, by Proposition 6, the test just derived is UMPU.

EXAMPLE 12 (Comparing the parameters of two normal distributions) Let X, ..., X,, be
iid.r.v.’s from N(u;, ;) and Yy, ..., Y, beiid. r.v.’s from N(u, 035). Suppose
that the X’s and Y’s are independent and consider the following testing hy-
potheses problems. In the present case, the joint p.d.f. of the X’s and Y’s is
given by

2 j=1

1 1 1 & 2 1 2
m+n m _n exp{_ ZZ(xi_‘ul) - zz(y/_lu“Z) }
(@) 0-1 0-2 2 1 i=1 O
i) Assume that o, = 0, = o unknown and we are interested in testing the

hypothesis H: 1, = u, (= punspecified). Under Q = {0 = (u,, b, 0)’; W, i, € R,
o> 0}, the MLE’s of the parameters involved are given by

S 5057 |

A A g
Ho=X, WUhe=Y, Og=
as is easily seen. Therefore

i E—

/ N m+n
(v 27[69)

Under o = {0 = (1, 1, 0); 1, =, € R, o> 0}, we have

i (Zx +2ij mT+ny

m+n m+n

and by setting v, =x;,, k=1,...,mand v,,, =y, k=1,..., n, one has

_ 1 m+n 1 m n R

AL ORI
and

&2 = 1 m+n(v —5)2: 1 i()&—ﬂ )2+i(y [L )2
® m+n& m+n| GV 0 HY e
Therefore
L((I)): 1 (m+n)/2

It follows that
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Next

Y i) =Y (v, -7+ (x-5)
j=1 j=1 (m+n
so that
(m+n)6'i :(m+n)6'f) + ()_c—y)z = i(xl —x)2 +i(y] —y)2
m+ i1 =
- mm+nn ()?_y)z

where

) el S o1

Therefore the LR test which rejects H whenever A < A, is equivalent to the
following test:

ofa. w)- 1, if t<-C or t>C (C>0)
’ 0, otherwise,

where C is determined by

P(t,.,,>C)=0/2,

m+n—

andz = (x,...,x,),w=(,...,V,), because, under H, ¢ is distributed as
t..o We notice that the test ¢ above is the same as the UMPU test found in
Proposition 10.
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ii) Now we are interested in testing the hypothesis H: 0, = 0, (= o un-
specified). Under Q = {0 = (u,, b, 0}, 05); WUy, I, € R, 0,, 0, > 0}, we have

1< 2

A — A~ — A2 -_—

tho=%X, Ho=DY, 0'1,Q=_2(xi_x)
mio

and

6-5.9 :%i(yi _y)z’

j=1

Whlle under o= {e = (‘ul’ .u/Z’ 61’ 62),; .ul’ .uQ € R» 61 = 62 > 0}’

He=Wag UHe=Hg

and

62 = minli(x _%) +;(y] 5y
Therefore

oo 1 1 ~(m4n)/2

( ) (m)"ﬁn (0'1 n)m/z(&gn) "
and

(&) = 1 1 ~(m+n)/2

((D) (m)m+n (O_i)(mm)/z
so that
(] (%)

o) 2
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m-—1 "
(men)™ (n—l f]
- m/2_ n/2 ’ (m+n)/2 ’
m"n (1+m_1f)

n-1

where f= [£2,(x, — £1(m — DY[ZL(y; ~ 7)/(n - D].
Therefore the LR test, which rejects H whenever A < A, is equivalent to
the test based on f and rejecting H if

m/2
m-—1
=

(m+n)/2
[

<C for a certain constant C.

n—-1

Setting g(f) for the left hand side of this last inequality, we have that g(0) =0
and g(f) — 0 as f— oo. Furthermore, it can be seen (see Exercise 13.7.4) that
g(f) has a maximum at the point

m(n - 1)
fmax = —;
n(m - 1)
it is increasing between 0 and f,,, and decreasing in (f,,,,, «). Therefore
g(f)<C ifandonlyif f<C, or f>C,

for certain specified constants C, and C,.

Now, if in the expression of f the x’s and y’s are replaced by X’s and Y’s,
respectively, and denote by F the resulting statistic, it follows that, under H, F
is distributed as F,,_,,_,. Therefore the constants C, and C, are uniquely deter-
mined by the following requirements:

P(F aaa <C oor F, >C2) =o and g(Cl) = g(Cz).

n

However, in practice the C, and C, are determined so as to assign probability
0/2 to each one of the two tails of the F,,_,,_, distribution; that is, such that

P(F,.,,<C)=P(F,,,,>C,)=af2

m—-1,n-1

(See also Fig. 13.16.)

Figure 13.16




Exercises 369

Exercises

13.7.1 Refer to Exercise 13.4.2 and use the LR test to test the hypothesis
H:p = 0.25 against the alternative A:p # 0.25. Specifically, set A(¢) for the
likelihood function, where ¢ = x; + x, + x;, and:

i) Calculate the values A(¢) for ¢t = 0, 1, 2, 3 as well as the corresponding
probabilities under H;
ii) Set up the LR test, in terms of both A(f) and #;
iii) Specify the (randomized) test of level of significance o = 0.05;
iv) Compare the test in part (iii) with the UMPU test constructed in Exercise
13.4.2.

13.7.2 A coin, with probability p of falling heads, is tossed 100 times and 60
heads are observed. At level of significance o= 0.1:

i) Test the hypothesis H:p = % against the alternative A:p # % by using the
LR test and employ the appropriate approximation to determine the cut-
off point;

ii) Compare the cut-off point in part (i) with that found in Exercise 13.4.1.

13.7.3 IfX,,..., X, areiid.r.v.’s from N(u, ¢°), derive the LR test and the
test based on —21log A for testing the hypothesis H: o = o, first in the case that
u is known and secondly in the case that y is unknown. In the first case,
compare the test based on —2log A with that derived in Example 11.

13.7.4 Consider the function

t20,m,n>2, integers, and show that g(f) — 0 as t — e,

mm/Z

max [g(t); t=z 0] = [1 N (m/n

)](”’*”)/2

and that g is increasing in

[0, %} and decseasing i [M w].
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13.8 Applications of LR Tests: Contingency Tables, Goodness-of-Fit Tests

Now we turn to a slightly different testing hypotheses problem, where the LR
is also appropriate. We consider an r. experiment which may result in &
possibly different outcomes denoted by O,, j = 1,..., k. In n independent
repetitions of the experiment, let p; be the (constant) probability that each one
of the trials will result in the outcome O, and denote by X; the number of trials
which result in O;, j = 1,..., k. Then the joint distribution of the X’s is the
Multinomial distribution, that is,

P(X1=x1,..., Xk=xk)=%x!pf‘ R AN

where x;20,j=1,..., k, £ ,x; = n and

’

k
Q={9=(P1’-~’pk) ;pj>0,j=1,...,k, ijzl}
j=1

We may suspect that the p’s have certain specified values; for example, in
the case of a die, the die may be balanced. We then formulate this as a
hypothesis and proceed to test it on the basis of the data. More generally, we
may want to test the hypothesis that 6 lies in a subset ® of Q.

Consider the case that H:0 € ® = {0,} = {(P10, - - - » Pro)’}- Then, under o,

L6 = n! X X,
@)= 1P Pros
x!-ox,!
while, under Q,
N n! ax ax
x!ox,!

where p; = x/n are the MLE’s of p,, j=1, ..., k (see Example 11, Chapter 12).
Therefore

k A\
L=n" H Pio
X

and H is rejected if —21log A > C. The constant C is determined by the fact that
—2log A is asymptotically y;_, distributed under H, as it can be shown on the
basis of Theorem 6, and the desired level of significance a.

Now consider r events A, i=1, ..., r which form a partition of the sample
space Sand let {B,j=1,...,s} be another partition of S. Let p,; = P(A; " B)
and let

b= Eipiﬂ D= zl,pij'
j= i=
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Then, clearly, p, = P(A,), p, = P(B)) and

zl,Pi. = ;P.,‘ = Zzpij =1
i= j=

i=1j=1

Furthermore, the events {A,, ..., A,} and {B,, ..., B,} are independent if and
onlyifp,=p,p,i=1,...,r,j=1,...,s.

A situation where this set-up is appropriate is the following: Certain
experimental units are classified according to two characteristics denoted
by A and B and let A, ..., A, be the r levels of A and By, ..., B, be the J
levels of B. For instance, A may stand for gender and A,, A, for male and
female, and B may denote educational status comprising the levels B, (el-
ementary school graduate), B, (high school graduate), B, (college graduate),
B, (beyond).

We may think of the rs events A;n B; being arranged in an r X s rectangular
array which is known as a contingency table; the event A; N B, is called the
(i, )th cell.

Again consider n experimental units classified according to the character-
istics A and B and let X;; be the number of those falling into the (i, j)th cell. We
set

X; :iX” and X‘]. =2Xi,.
j=1

i=1
It is then clear that

X, =2 X,;=n
i=1 j=1
Let®@=(p,,i=1,...,r,j=1,...,s). Then the set Q of all possible values of
0 is an (rs —1)-dimensional hyperplane in R". Namely, Q ={0 =(p;, i=1,...,
rj=1,...,8) e R p;>0,i=1,...,rj=1,...,5 XX p;=1}.

Under the above set-up, the problem of interest is that of testing whether
the characteristics A and B are independent. That is, we want to test the
existence of probabilities p;, g;,i=1,...,r,j=1,...,ssuch that H:p,=pg;
i=1,...,rj=1,...,s.Sincefori=1,...,r—1andj=1,...,5s—1 we have
the r + s — 2 independent linear relationships

Z‘;pi]‘ =D z}pij =4,
i= i=

it follows that the set ®, specified by H, is an (r + s — 2)-dimensional subset
of Q.
Next, if x; is the observed value of X;; and if we set

S r
%= X X;=Dx
j=1 i=1
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the likelihood function takes the following forms under  and w, respectively.
Writing IT;; instead of IT_, IT;_,, we have

L( ) H le,,

1/ ij

L(m):HL!X‘H(p"qJ) H,, Hp, “= HZ!XU!(HP?J[UCI;/]

ij /MRS ijtoig

since

e a7 =1111p" e’ =I1p"a" - o
i i i

(o M {1 1)

Now the MLE’s of p;, p; and ¢, are, under Q and , respectively,

xij ~ X; ~ xAj

Pie="> Pie=" > 4jo= >
n n n

as is easily seen (see also Exercise 13.8.1). Therefore

e SRR 1 e 1 O]

and hence

ij

It can be shown that the (unspecified) assumptions of Theorem 6 are
fulfilled in the present case and therefore —2log 4 is asymptotically 47, under @,
where f=(rs—1) - (r+s—-2) = (r—1)(s — 1) according to Theorem 6. Hence
the test for H can be carried out explicitly.

Now in a multinomial situation, as described at the beginning of this
section and in connection with the estimation problem, it was seen (see Section
12.9, Chapter 12) that certain chi-square statistics were appropriate, in a sense.
Recall that

z i( _np’)-

/
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This 4’ r.v. can be used for testing the hypothesis

H:eea)z{eo}:{(pm, . pko),},

where 0 = (py, . . ., p,)’. That is, we consider

2N (xf_”Pf0)2
o= z

=1 np;q
and reject H if y,, is too large, in the sense of being greater than a certain
constant C which is specified by the desired level of the test. It can further be
shown that, under , y,, is asymptotically distributed as y;_,. In fact, the present
test is asymptotically equivalent to the test based on —2log A.

For the case of contingency tables and the problem of testing indepen-
dence there, we have

2

2 (xij - npiqj)

Xo=2
i np,q;

where @ is as in the previous case in connection with the contingency tables.

However, x, is not a statistic since it involves the parameters p,, g;- By replac-

ing them by their MLE’s, we obtain the statistic

A A 2
X, —np; P; )
2 ( ij iof jo
Xo=2,— = -
ij np; 4w

By means of ¥, one can test H by rejecting it whenever yx; > C. The constant
Cis to be determined by the significance level and the fact that the asymptotic
distribution of x;, under @, is y; with f= (r — 1)(s — 1), as can be shown. Once
more this test is asymptotically equivalent to the corresponding test based on
—2logA.

Tests based on chi-square statistics are known as chi-square tests or
goodness-of-fit tests for obvious reasons.

Exercises

13.8.1 Show that p,, =2, p, =%, §,,=" as claimed in the discussion in
this section.

In Exercises 13.8.2-13.8.9 below, the test to be used will be the appropriate y*
test.

13.8.2 Refer to Exercise 13.7.2 and test the hypothesis formulated there at
the specified level of significance by using a y’-goodness-of-fit test. Also,
compare the cut-off point with that found in Exercise 13.7.2(i).
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13.8.3 A die is cast 600 times and the numbers 1 through 6 appear with the
frequencies recorded below.

1 2 3 4 5 6
100 | 94 | 103 | 89 | 110 | 104

At the level of significance o = 0.1, test the fairness of the die.

13.8.4 In a certain genetic experiment, two different varieties of a certain
species are crossed and a specific characteristic of the offspring can only occur
at three levels A, B and C, say. According to a proposed model, the probabili-
ties for A, B and C are 1]*2’ % and %, respectively. Out of 60 offsprings, 6, 18,
and 36 fall into levels A, B and C, respectively. Test the validity of the
proposed model at the level of significance o = 0.05.

13.8.5 Course work grades are often assumed to be normally distributed. In
a certain class, suppose that letter grades are given in the following manner: A
for grades in [90, 100], B for grades in [75, 89], C for grades in [60, 74], D for
grades in [50, 59] and F for grades in [0, 49]. Use the data given below to check
the assumption that the data is coming from an N(75, 9°) distribution. For this
purpose, employ the appropriate y* test and take a = 0.05.

B|C|D|F
3 11211014 |1

13.8.6 It is often assumed that [.Q. scores of human beings are normally
distributed. Test this claim for the data given below by choosing appropriately
the Normal distribution and taking o = 0.05.

x<90]|90<x <100 |100 <x <110 |110 < x <120|120 <x <130 | x > 130
10 18 23 22 18 9

(Hint: Estimate g and ¢ from the grouped data; take the midpoints for the
finite intervals and the points 65 and 160 for the leftmost and rightmost
intervals, respectively.)

13.8.7 Consider a group of 100 people living and working under very similar
conditions. Half of them are given a preventive shot against a certain disease
and the other half serve as control. Of those who received the treatment, 40
did not contract the disease whereas the remaining 10 did so. Of those not
treated, 30 did contract the disease and the remaining 20 did not. Test effec-
tiveness of the vaccine at the level of significance o = 0.05.
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13.8.8 On the basis of the following scores, appropriately taken, test
whether there are gender-associated differences in mathematical ability (as is
often claimed!). Take o = 0.05.

Boys: 80 96 98 87 75 83 70 92 97 82
Girls: 82 90 8 70 80 97 76 90 88 86

(Hint: Group the grades into the following six intervals: [70, 75), [75, 80), [80,
85), [85, 90), [90, 100).)

13.8.9 From each of four political wards of a city with approximately the
same number of voters, 100 voters were chosen at random and their opinions
were asked regarding a certain legislative proposal. On the basis of the data
given below, test whether the fractions of voters favoring the legislative pro-
posal under consideration differ in the four wards. Take o = 0.05.

WARD Totals
1 2 3 4
Favor
Proposal 371 29| 32| 21 119
Do not favor
proposal 63 | 71| 68| 79| 281
Totals 100 | 100 | 100 | 100 400

13.8.10 Let X,..., X, be independent r.v.’s with p.d.f. f(;0),0 € Q c R".
For testing a hypothesis H against an alternative A at level of significance «, a
test ¢ is said to be consistent if its power fB,, evaluated at any fixed 0 € Q,
converges to 1 as n — oo. Refer to the previous exercises and find at least one
test which enjoys the property of consistency. Specifically, check whether the
consistency property is satisfied with regards to Exercises 13.2.3 and 13.3.2.

13.9 Decision-Theoretic Viewpoint of Testing Hypotheses

For the definition of a decision, loss and risk function, the reader is referred to
Section 6, Chapter 12.

Let X,,..., X, be i.i.d. r.v.’s with p.d.f. f(1;0),0 € Q c R’, and let @ be a
(measurable) subset of Q. Then the hypothesis to be tested is H:0 € @ against
the alternative A:0 € ®°. Let B be a critical region. Then by setting z= (x,, . . .,
x,)’, in the present context a non-randomized decision function § = §(z) is

defined as follows:
6(1):{1’ if ze?
0, otherwise.
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THEOREM 7

We shall confine ourselves to non-randomized decision functions only. Also an
appropriate loss function, corresponding to 6, is of the following form:

0, if Be®w and 6=0, or0ecw® and 6 =1.
., if 6ew and 6=1
95 if 0e® and 6=0,

L(6; 8)=1L

L

where L,, L, > 0.
Clearly, a decision function in the present framework is simply a test

function. The notation ¢ instead of d could be used if one wished.
By setting Z = (X, . . ., X,))’, the corresponding risk function is

R(6; 6)=L(6; 1)P,(Z e B)+L(6; 0)R,(Ze B"),
or
R (6 )= LP(ZeB), if Oco
In particular, if ® = {0,}, ®° = {0,} and P, (Z € B) = o, P (Z € B) = f3, we have
{Lla, it 0=,

LP(ZeB), if 6co. ()

R(6; 5)= (45)

L(1-B). if 6=6,

As in the point estimation case, we would like to determine a decision
function 6 for which the corresponding risk would be uniformly (in 8) smaller
than the risk corresponding to any other decision function &*. Since this is not
feasible, except for trivial cases, we are led to minimax decision and Bayes
decision functions corresponding to a given prior p.d.f. on Q. Thus in the case
that @ = {6,} and ®° = {0,}, & is minimax if

max[R((—)O; 6), R(Bl; 5)]S max[R(GO; 5*), R((—)l; 6*)]

for any other decision function &*.
Regarding the existence of minimax decision functions, we have the result
below. The r.v.’s X, ..., X, is a sample whose p.d.f. is either f{(-; 6,) or else

(5 8,). By setting f, = f(; 8,) and f, = f(-; 8,), we have

Let X,,..., X, be iid. r.v.’s with p.d.f. f(-; 8), 6 € Q = {6, 0,}. We are
interested in testing the hypothesis /:0 = 6, against the alternative A:0=20, at
level o. Define the subset B of R" as follows: B = {z € R"; f(z; 0,) > Cf(z; 6,)}
and assume that there is a determination of the constant C such that

LRy (ZeB)=L,P, (ZeB) (equivalently, R(6,; §)=R(8;; 5)). (46)

Then the decision function 6 defined by
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6(z)={1’ if zeB 47)

0, otherwise,
1S minimax.

PROOF For simplicity, set P,and P, for P, and P,, respectively, and similarly
R(0; 8), R(1; ) for R(8,; 0) and R(8;; O). Also set Py(Z € B) = o and
P\(Z € B°) =1 - B. The relation (45) implies that

R(O; 6)=Lla and R(l; 5)=L2(1—ﬂ).

Let A be any other (measurable) subset of R" and let 6* be the corresponding
decision function. Then

R(0; 6%)=L,R(ZeA) and R(1; §%)=L,P(Ze A},

Consider R(0; 6) and R(0; 6*) and suppose that R(0; 6*) < R(0; o). This is
equivalent to L,P((Z € A) < L,P(Z € B), or

P(zeA)<a.

Then Theorem 1 implies that P,(Z € A) < P,(Z € B) because the test defined
by (47) is MP in the class of all tests of level <o. Hence

R(2eA’)2P(2eB), or LP(ZeA)>L.P(2eB),
or equivalently, R(1; 6*) = R(1; 8). That is, if
R(o; 5*)SR(O; 6), then R(l; S)SR(l; 5*). (48)
Since by assumption R(0; ) = R(1; §), we have
maX[R(O; 5*), R(l; 5*)]:R(1; 5*)2R(1; 5) = max[R(O; 5), R(l; 6)],
(49)
whereas if R(0; 8) < R(0; &%), then
maX[R(O; 6*), R(l; 6*)]2R(0; 6*)>R(0; 5) = maX[R(O; 6), R(l; 6)]
(50)
Relations (49) and (50) show that J is minimax, as was to be seen. A

REMARK 7 It follows that the minimax decision function defined by (46) is
an LR test and, in fact, is the MP test of level P, (Z € B) constructed in
Theorem 1.

We close this section with a consideration of the Bayesian approach. In
connection with this it is shown that, corresponding to a given p.d.f. on Q =
{0, ,}, there is always a Bayes decision function which is actually an LR test.
More precisely, we have
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THEOREM 8 Let X|,..., X, beii.d.r.v.’s with p.d.f. f(:; 0), 8 € Q =1{0,, 0,} and let A, = {p,,

P} (0 < p, < 1) be a probability distribution on Q. Then for testing the
hypothesis H:0 = 0, against the alternative A:0 = 0,, there exists a Bayes
decision function &, corresponding to A, = {p,, p;}, that is, a decision rule which
minimizes the average risk R(0,; o)p,+ R(6,; d)p,, and is given by

1 if zeB
d,(z)=¢"
2“( ) {0, otherwise,
where B = {z € R"; f(z; 8,) > Cf(z; 8,)} and C = p,L,/p,L,.

PROOF Let R, (0) be the average risk corresponding to A,. Then by virtue of
(44), and by employing the simplified notation used in the proof of Theorem
7, we have

R, (8)=L,R(ZeB)p,+L,P(Ze B )p,
= poLBy(Z € B)+p,L,[1 - P,(Ze B)|
= piLy +[poLiPy(Z.€ B)- p,L,P,(Z < B)| (51)
and this is equal to
Lo+ [ [poLuf(z: 0,)-piLof(2; 8,z
for the continuous case and equal to

pL,+ 2[poL1f(Z; 90)—p1L2f(z; 9, )]

for the discrete case. In either case, it follows that the 6 which minimizes R, ()
is given by

5% (Z) _ {1, if P0L1f(z; 90) —plef(z; 91) <0

0, otherwise;
equivalently,
5&(z): 1, if ze?
' 0, otherwise,
where

B={ze/]@"; f(z; (-)1)> polil f(z; 00)},

Py
as was to be seen. A
REMARK 8 It follows that the Bayesian decision function is an LR test and

is, in fact, the MP test for testing H against A at the level P(Z € B), as follows
by Theorem 1.
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The following examples are meant as illustrations of Theorems 7 and 8.

EXAMPLE 13 Let X|,..., X, be i.i.d. r.v.’s from N(6, 1). We are interested in determining
the minimax decision function 6 for testing the hypothesis H: 6= 6, against the
alternative A:0= 6,. We have

f(z6) _ expln(0-0,)]
f (z; 90) exp[; n(ef _902)}

so that f(z; 0,) > Cf(z; 6,) is equivalent to

exp[n(e1 -6, ))? ] >C exp[% n(@f -6; )] or Xx>C,,
where

1

_1 logC
2

G, n(@l ~ 90) (for 6,>0, )

(91+00)+

Then condition (46) becomes
L P, (X >Cy)=L,P, (X <C,))

As a numerical example, take 6,=0, 6, =1,n=25and L, =5, L,=2.5. Then
LP,(X>C,)=L,P, (X <C,))

becomes
P, (X <C,)=2P, (X >C,).
or
P, [JZ (X-6)<5(C, - 1)] 2P, [&(}? -6,)> SCO],
or

©(5C, - 5)=2[1-(5C, )], or 20(5C,)-®(5-5C,)=1

Hence C, = 0.53, as is found by the Normal tables.
Therefore the minimax decision function is given by

5(1) _ 1, if x>0.53
0, otherwise.

The type-I error probability of this test is

P, (X >053)= P[N(0, 1)>0.53x 5] =1~ ®(2.65) = 1-0.996 = 0.004
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EXAMPLE 14

EXAMPLE 15

and the power of the test is
P, (X >0.53)= P[N(0, 1)>5(0.53-1)| = ®(2.35) = 0.9906.
Therefore relation (44) gives
R(6,: 8)=5x0.004=0.02 and R(6,: §)=2.5x0.009 =0.0235.
Thus
maX[R(HU; 8). R(6: 6)] =0.0235,
corresponding to the minimax & given above.

Refer to Example 13 and determine the Bayes decision function correspond-

ing to A = {py, p1 }-
From the discussion in the previous example it follows that the Bayes
decision function is given by

6%(1):{1, it ¥x>C,

0, otherwise,
where
C, = l(91 +90)+& and cPoli,
2 n(@l - 00) P1L2

Suppose p, = %, P = % Then C =4 and C, = 0.555451 (=0.55). Therefore the
Bayes decision function corresponding to A = {%, %} is given by

1 if x>0.55
o; (z)=1"
%( ) {0, otherwise.
The type-I error probability of this test is Py (X > 0.55) = P[N(0, 1) > 2.75] =
1 — ®(2.75) = 0.003 and the power of the test is Py (X > 0.55) = P[N(1, 1) > —
2.25] = ®(2.25) = 0.9878. Therefore relation (51) gives that the Bayes risk
corresponding to {2, 1} is equal to 0.0202.

Let X, ..., X,beiid.r.v.’s from B(1, 6). We are interested in determining the
minimax decision function & for testing H:6 = 6, against A: 0= 6,.
We have
Z; 6 X _ n—x B
—f( 1) :(i) (—1 91) , where x=2x,,
f(Z; 90) 6, 1-6, j=1
so that f(z; 8,) > Cf(z; 8,) is equivalent to

(1—«90)91 )

6,(1-6,) > Co

xlog
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where

1-6
C; =logC -nlog—=.
i =logC—nlog—

0

Let now 6, =0.5, 8, = 0.75, n = 20 and L, = 1071/577 = 1.856, L, = 0.5. Then
1-6,)6,
@ =3 (> 1)

6,(1-6,)

and therefore f(z; 6,) > Cf(z; 6,) is equivalent to x > C,, where

_ 0,(1-6,
C, =|logC —nlog 1-6, logM.
1-6, 0,(1-6,)
Next, X = X7_ X, is B(n, 6) and for C, =13, we have P;5(X > 13) = 0.0577 and
Py,5(X >13) =0.7858, so that P ,5(X < 13) = 0.2142. With the chosen values of

L, and L,, it follows then that relation (46) is satisfied. Therefore the minimax
decision function is determined by

5(2) :{1, if x>13

0, otherwise.
Furthermore, the minimax risk is equal to 0.5 x 0.2142 = 0.1071.
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Sequential Procedures

14.1 Some Basic Theorems of Sequential Sampling

382

DEFINITION 1

DEFINITION 2

In all of the discussions so far, the random sample Z,, . . . , Z,, say, that we have
dealt with was assumed to be of fixed size n. Thus, for example, in the point
estimation and testing hypotheses problems the sample size n was fixed be-
forehand, then the relevant random experiment was supposed to have been
independently repeated n times and finally, on the basis of the outcomes, a
point estimate or a test was constructed with certain optimal properties.

Now, whereas in some situations the random experiment under considera-
tion cannot be repeated at will, in many other cases this is, indeed, the case. In
the latter case, as a rule, it is advantageous not to fix the sample size in
advance, but to keep sampling and terminate the experiment according to a
(random) stopping time.

Let {Z,} be a sequence of r.v.’s. A stopping time (defined on this sequence) is
a positive integer-valued r.v. N such that, for each n, the event (N =n) depends
ontherv’s Z,..., Z, alone.

REMARK 1 In certain circumstances, a stopping time N is also allowed to
take the value « but with probability equal to zero. In such a case and when
forming EN, the term oo- 0 appears, but that is interpreted as 0 and no problem
arises.

Next, suppose we observe the r.v.’s Z,, Z,, . . . one after another, a single
one at a time (sequentially), and we stop observing them after a specified event
occurs. In connection with such a sampling scheme, we have the following
definition.

A sampling procedure which terminates according to a stopping time is called
a sequential procedure.



THEOREM 1

LEMMA 1

14.1 Some Basic Theorems of Sequential Sampling 383

Thus a sequential procedure terminates with the r.v. Z,, where Z, is
defined as follows:

the value of Z, ats € Sis equal to ZN(S)(S). (1)

Quite often the partial sums Sy = Z, +- - - + Z, defined by
SN(S)=Z1(5)+-"+ZN(S)(S), seS ()

are of interest and one of the problems associated with them is that of finding
the expectation ES, of the r.v. . Under suitable regularity conditions, this
expectation is provided by a formula due to Wald.

(Wald’s lemma for sequential analysis) For j > 1, let Z; be independent r.v.’s
(not necessarily identically distributed) with identical first moments such that
ElZ| =M < e, so that EZ; = u is also finite. Let N be a stopping time, defined
on the sequence {Z}, j > 1, and assume that EN is finite. Then EIS,| < e and
ESy = UEN, where Sy is defined by (2) and Z, is defined by (1).

The proof of the theorem is simplified by first formulating and proving a
lemma. For this purpose, set Y;= Z, — u, j 2 1. Then the r.v.’s Y, Y,, .. . are
independent, EY;=0 and have (common) finite absolute moment of first order
to be denoted by m; that is, EIY| =m <. Also set Ty=Y, +---+ Y, where
Yyand Ty are defined in a way similar to the way Z, and Sy are defined by (1)
and (2), respectively. Then we will show that

E[Ty|<e and ET,=0. 3)

In all that follows, it is assumed that all conditional expectations, given N = n,
are finite for all n for which P(N = n) > 0. We set E(YIN = n) =0 (accordingly,
E(IY/IN = n) = 0 for those n’s for which P(N =n) = 0).

In the notation introduced above:
i) 22 E(IY|IN = n)P(N = n) = m EN(<e);
ii) X, 2L E(IYIIN =n)P(N =n) =272, E(Y|IN = n)P(N = n).

PROOF
i) Forj>2,
(=l = [ )= 5 £y v = o =)
-5 E(Y,|N =n)P(N =n)+ iE(|Y,||N =n)P(N=n). 4
n=1 n=j
The event (N = n) depends only on Yy,..., Y, and hence, for j > n,
E(IY/IN = n) = EIY|| = m. Therefore (4) becomes

m= mlz‘i P(N=n) +§‘7E(|Y]||N =n|P(N =n)
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or
mP(N > j)= iE(|YI||N =n)P(N = n). (5)
Equality (5) is also true for j 1 as
mP(N 21)=m=E|Y,|= 2E(|YI||N =n)P(N =n).
Therefore
) E([Y N =n)P(N =n)=mP(N 2j), j=1,
=

and hence

22E(|Y||N n) (N=n)= mzP(N> j)= mZ;P(N j)=mEN, (6)

j=ln=j

where the equality .7, P(N > j) = X7_,jP(N =) is shown in Exercise 14.1.1.
Relation (6) establishes part (i).

ii) By setting p;, = E(IY/IN = n)P(N = n), this part asserts that
ni]i,l?,-n =pu+(PotPn)t A (P Pt D)
and
g;pm (Pt Pt )+ (Pt Pt ) (P Pt

are equal. That this is, indeed, the case follows from part (i) and calculus
results (see, for example, T.M. Apostol, Theorem 12-42, page 373, in
Mathematical Analysis, Addison-Wesley, 1957). A

PROOF OF THEOREM 1 Since Ty = Sy — uN, it suffices to show (3). To this
end, we have

= E{ BTV = S £ = (v =n) )

)y

28
A S = oo =)= S5y )y

ni‘ (|Y ||N n) (N n) (by Lemma 1(ii))

I
&Mz

Nn)Nn)

IN

M qu

=mEN (< oo) (by Lemma 1(i)).
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ii) Here

ET, = E[E(TN |N)] = EE(TN [N =n)P(N =n)

- iE(iYJN:n}P(Nz n)= EZE(YJN =n|P(N =n)

n=1j=1
=Y > E(Y|N =n)P(N = n). ()
j=ln=j
This last equality holds by Lemma 1(ii), since

3y E(Y|N =n)P(N = n)‘sgiEqY]"N: n)P(N = n)<es

j=1n=j

by Lemma 1(i). Next, forj>1,

0=EY, = E[E(Y/|N)] = iE(Y/.|N =n)P(N =n), (8)
n=1
whereas, for j > 2, relation (8) becomes as follows:

0= lzle(Y]|N =n)P(N =n)+ i‘;E(YJN =n)P(N =n)

- i E(Yj|N = n)P(N =n). )

n=j

This is so because the event (N = n) depends only on Y}, ..., Y,, so that, for
j>n, E(YIN =n)=EY,=0. Therefore (9) yields

Y E(Y|N =n)P(N=n)=0, j=2. (10)
n=j
By (8), this is also true for j = 1. Therefore
ZE(Yj|N = n)P(N =n)=0, j>1. (11)
n=j
Summing up over j > 1 in (11), we have then
Y > E(Y|N =n)P(N =n)=0. (12)
j=ln=j
Relations (7) and (12) complete the proof of the theorem. A
Now consider any r.v.’s Z,, Z,, . . . and let C,, C, be two constants such that
C,<C,.SetS,=27,+---+ Z, and define the random quantity N as follows: N
is the smallest value of n for which §, < C,or S, 2 C,. If C, < S, < C, for all n,
then set N = . In other words, for each s € S, the value of N at s, N(s), is
assigned as follows: Look at S,(s) for n > 1, and find the first n, N = N(s), say,

for which Sy(s) < C, or Sy(s) > C,. If C, < S,(s) < C, for all n, then set N(s) = oo.
Then we have the following result.
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THEOREM 2 let Z,, Z,,...beiid.r.v.’ssuch that P(Z,=0)#1.Set S,=Z, +---+ Z, and

for two constants C;, C,with C, < C,, define the r. quantity N as the smallest n
for which §, < C, or S, 2 C,;set N = if C, < §, < C, for all n. Then there exist
¢>0and 0 <r <1 such that

P(N > n) <cr" forall n (13)

PROOF The assumption P(Z;=0) # 1 implies that P(Z;>0) >0, or P(Z;<0)
> 0. Let us suppose first that P(Z; > 0) > 0. Then there exists £ > 0 such that
P(Z; > €) = 6> 0. In fact, if P(Z; > €) = 0 for every € > 0, then, in particular,
P(Z,>1/n) =0 for all n. But (Z,> 1/n) T (Z;> 0) and hence 0= P(Z; > 1/n) -
P(Z;>0) >0, a contradiction.

Thus for the case that P(Z; > 0) > 0, we have that

There exists € >0 such that P(Z > 8) =6>0. (14)

With C,, G, as in the theorem and € as in (14), there exists a positive integer m
such that

me>C, -C,. (15)
For such an m, we shall show that
k+m
P( sz>cz—c1J>6m for k=0. (16)
j=k+1

We have
k+m k+m k+m
N (Zj>e)g(zzj>me]g{EZ,->C2—C1} (17)
j=k+1 j=k+1 j=k+1

the first inclusion being obvious because there are m Z’s, each one of which is
greater than &, and the second inclusion being true because of (15). Thus

P(kfzj >C, —ClJzP[kﬁn (z, >g)]= ﬁ P(Z;>€)=5",
j=k+1 j=k+1 j=k+1

the inequality following from (17) and the equalities being true because of the
independence of the Z’s and (14). Clearly

k-1
Sim = Z[ijﬂ +o +Z(j+1)m ]
j=0

Now we assert that
C <S8 <C,, i=1,..., km
implies
ij+1+-~-+Z(j+1)mSC2—Cl, j=0,1,..., k-1 (18)
This is so because, if for some j=0,1,...,k—1, we suppose that Z,,,, +- - - +
Zym > C, = Cy, this inequality together with §;,, > C; would imply that S,
> C,, which is in contradiction to C,; < S; < C,,i=1, ..., km. Next,
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(Nzkm+1)c(C <S8, <Cy.j=1,..., km)

< r][ZIVWr1 +- (/+1)m = CZ - Cl ]’

j=0
the first inclusion being obvious from the definition of N and the second one
following from (18). Therefore

P(Nka+1)S {k 7
=0

(Zina 2 €G- €, ]}

—1

=

P[zjm+1+-.-+z( scz—cl]

j+1)m

<Fj{1-57)-(-2)"

the last inequality holding true because of (16) and the equality before it by the
independence of the Z’s. Thus

»\.
HO

j 0

P(N2 km+1)s(1—6’”)k. (19)

Now set ¢ = 1/(1 — 8"), r = (1 — §)"", and for a given n, choose k so that
km < n < (k+ 1)m. We have then

P(N 2 n)<P(N 2 km+1)<(1-8")

1 ke i U (k+1)m
=(1—5”‘)(1_5 | =c[(1-5 ) ]

(k+l )m

=cr <cr';

these inequalities and equalities are true because of the choice of k, relation
(19) and the definition of ¢ and r. Thus for the case that P(Z; > 0) > 0, relation
(13) is established. The case P(Z;<0) > 0 is treated entirely symmetrically, and
also leads to (13). (See also Exercise 14.1.2.) The proof of the theorem is then
completed. A

The theorem just proved has the following important corollary.

COROLLARY Under the assumptions of Theorem 2, we have (i) P(N < «) = 1 and (ii)
EN < oo,

PROOF
i) Set A = (N =) and A, = (N = n). Then, clearly, A = N;_A,. Since also
A, DA, D -+, we have A = lim A, and hence

n—o

P(A)= P(lim An) = lim P(A, )

n—eo n—eo
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by Theorem 2 in Chapter 2. But P(A,) < c¢r" by the theorem. Thus lim
P(A,) =0, so that P(A) =0, as was to be shown.

ii) We have

EN:inP(N =n)=iP(N Zn)gicrn =Cir"
n=1 n=1

n=1 n=l1

< oo

=c
1-r

as was to be seen. A

REMARK 2 Ther.v. Nis positive integer-valued and it might also take on the
value o but with probability 0 by the first part of the corollary. On the other
hand, from the definition of N it follows that for each n, the event (N = n)
depends only on the r.v.’s Z,, ..., Z,. Accordingly, N is a stopping time by
Definition 1 and Remark 1.

Exercises

14.1.1 For a positive integer-valued r.v. N show that EN =% P(N 2= n).
14.1.2 In Theorem 2, assume that P(Z; < 0) > 0 and arrive at relation (13).

14.2 Sequential Probability Ratio Test

Although in the point estimation and testing hypotheses problems discussed in
Chapter 12 and 13, respectively (as well as in the interval estimation problems
to be dealt with in Chapter 15), sampling according to a stopping time is, in
general, profitable, the mathematical machinery involved is well beyond the
level of this book. We are going to consider only the problem of sequentially
testing a simple hypothesis against a simple alternative as a way of illustrating
the application of sequential procedures in a concrete problem.

To this end, let X}, X,, ... be i.i.d. r.v.’s with p.d.f. either f; or else f;, and
suppose that we are interested in testing the (simple) hypothesis H: the true
density is f; against the (simple) alternative A: the true density is f;, at level of
significance o (0 < o < 1) without fixing in advance the sample size n.

In order to simplify matters, we also assume that {x € R; fj(x) > 0} =
{x e R fi(x) > 0}.

Let a, b, be two numbers (to be determined later) such that 0 < a < b, and
for each n, consider the ratio

(Ko X, 0,1)= ;g; - ;((f())
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We shall use the same notation 4, for 4, (x, ..., x,; 0, 1), where x,, . . ., x, are
the observed values of X, ..., X,.

For testing H against A, consider the following sequential procedure: As
long as a < A, < b, take another observation, and as soon as A, < a, stop
sampling and accept H and as soon as 4, > b, stop sampling and reject H.

By letting N stand for the smallest # for which A, <a or 4, > b, we have that
N takes on the values 1,2, . . . and possibly «, and, clearly, for each n, the event
(N =n) depends only on X, ..., X,. Under suitable additional assumptions,
we shall show that the value - is taken on only with probability 0, so that N will
be a stopping time.

Then the sequential procedure just described is called a sequential prob-
ability ratio test (SPRT) for obvious reasons.

In what follows, we restrict ourselves to the common set of positivity of
foand fi, and forj=1,..., n, set

Z, :Zj(Xj; 0, 1):logf1(X]), so that logA, :zZI..
h(x))
Clearly, the Z’s are i.i.d. since the X’s are so, and if S, = 27, Z,, then N is
redefined as the smallest n for which S, <loga or S, > logb.

At this point, we also make the assumption that P,[f(X)) # f,(X;)] > 0 for
i=0, 1; equivalently, if Cis the set over which f; and f; differ, then it is assumed
that J.f,(x)dx > 0 and | .f,(x)dx > 0 for the continuous case. This assumption is
equivalent to P(Z, # 0) > 0 under which the corollary to Theorem 2 applies.

Summarizing, we have the following result.

Let X}, X,, ... be iid. r.v.’s with p.d.f. either f; or else f;, and suppose that
{x eR; fo(x)> 0}= {x e R fl(x)> 0}

and that P;[fy(X)) # fi(X;)] >0, =0, 1. For each n, set

A ax) )

A = = , =1...
AX) - h(x) TR

n

, n

and

S, =2Zj =log4,.
j=1
For two numbers a and b with 0 < a < b, define the random quantity N as the
smallest n for which A, < a or A, > b; equivalently, the smallest n for which
S, <loga or S, > logb for all n. Then

P(N<w)=1 and EN<ew, i=0,1

Thus, the proposition assures us that N is actually a stopping time with
finite expectation, regardless of whether the true density is f; or f;. The impli-
cation of P(N <) =1,i=0, 11is, of course, that the SPRT described above will
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terminate with probability one and acceptance or rejection of H, regardless of
the true underlying density.

In the formulation of the proposition above, the determination of a and b
was postponed until later. At this point, we shall see what is the exact determi-
nation of a and b, at least from theoretical point of view. However, the actual
identification presents difficulties, as will be seen, and the use of approximate
values is often necessary.

To start with, let zand 1 — 8 be prescribed first and second type of errors,
respectively, in testing H against A, and let o < § < 1. From their own defini-
tion, we have

a:P(rejectingH when H is true)
=B[(h 2b)+(a<h <b A, 2b)+
+(a<21<b,...,a<ln71<b, /lnzb)+-~-]
=P(](/112b)+Po(a</’11<b, AZZb)+
+Po(a<2,l<b,...,a<ln_l<b,),nzb)+~-- (20)
and
1—ﬁ=P(acceptingH when H is false)
[/11<a a<ﬂ,1<b A, £ )
+( <A <b,. ,a</ln_1<b,lnga)+-~-]
R(ﬂ.l Sa)+ﬂ(a<ﬂ.l<b, /IZSa)+
+Pl(a<ll<b,...,a<ln4<b,)L,,Sa)+---. (21)

Relations (20) and (21) allow us to determine theoretically the cut-off points
a and b when o and f3 are given.

In order to find workable values of a and b, we proceed as follows. For
each n, set

fo=flx.....x,:i0) i=0,1

and in terms of them, define 77, and T, as below; namely
X
T/ = {xl eR; Ju < a}, T/=4x, € R; M >b (22)
01 fol(xl)

and forn > 2,

0j On

T,:={(xl,...,xn) e R"; a<&<b,j=1,...,n—1and ?—”Sa}, (23)

T;’:{(xl,...,xn) eR"; a<&<b,j=1,...,n—1and ]]E—"Zb} (24)

0j On
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In other words, 77, is the set of points in R" for which the SPRT terminates
with n observations and accepts H, while 77, is the set of points in R" for which
the SPRT terminates with n observations and rejects H.

In the remainder of this section, the arguments will be carried out for the
case that the X;’s are continuous, the discrete case being treated in the same
way by replacing integrals by summation signs. Also, for simplicity, the differ-
entials in the integrals will not be indicated.

From (20), (22) and (23), one has

a=ZLﬁw
But on 77, f,,/f., = b, so that f,, < (1/b)f,,. Therefore

. .
a=X ] sy 2] (25)

On the other hand, we clearly have
P(N =n) :Jr; fo +sz for i=0,1,
and by Proposition 1,
1= ZPN n) j fut Zj frr =0, 1. (26)
From (21), (22), (24) and (26) (w1th i=1), we have
1—[3=;J.T;fln =1—gJ‘T:f1n, s0 that gjmﬁn -8

Relation (25) becomes then

a<p/b, (27)
and in a very similar way (see also Exercise 14.2.1), we also obtain
1-az(1-p)/a. (28)
From (27) and (28) it follows then that
azi:g, bsg. (29)

Relation (29) provides us with a lower bound and an upper bound for the
actual cut-off points a and b, respectively.
Now set

a’=—1_l3, and b’=ﬁ
l-a o
(so that 0 <a’ < b’ by the assumption o < < 1), (30)

and suppose that the SPRT is carried out by employing the cut-off points a’
and b’ given by (30) rather than the original ones a and b. Furthermore, let o
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and 1 — 8’ be the two types of errors associated with @ and b’. Then replacing
o, B, a and b by o, B’, @’ and b’, respectively, in (29) and also taking into
consideration (30), we obtain

ﬂSa'=i_—ﬁ and ﬁ:b'sﬁ—,
- a o

1-o
and hence
, _1- A 1- , ,
1-8 sl_g(l—a)sl_g and as%/} s%. (31)
That is,
a’s% and l—ﬁ’Si:g. (32)
From (31) we also have
(1-a)(1-p)<(1-B)(1-«) and o’B<of’,
or
(1—[3’)—a+a[3’s (1—/3)—a’+a’[3 and —-off’ <-a’B,
and by adding them up,
o +(1-p)<o+(1-B). (33)

Summarizing the main points of our derivations, we have the following result.

For testing H against A by means of the SPRT with prescribed error probabili-
ties ov and 1 — B such that oz < < 1, the cut-off points @ and b are determined
by (20) and (21). Relation (30) provides approximate cut-off points a” and b’
with corresponding error probabilities " and 1 — 8/, say. Then relation (32)
provides upper bounds for o” and 1 — 8’ and inequality (33) shows that their
sum o + (1 — ) is always bounded above by o+ (1 — fj).

REMARK 3 From (33) it follows that &’ > ovand 1 — 8’ > 1 — fcannot happen
simultaneously. Furthermore, the typical values of ezand 1 — S are such as 0.01,
0.05 and 0.1, and then it follows from (32) that o” and 1 — 3’ lie close to @ and
1 — B, respectively. For example, for o= 0.01 and 1 — = 0.05, we have o <
0.0106 and 1 — 8 < 0.0506. So there is no serious problem as far as o” and 1 —
[ are concerned. The only problem which may arise is that, because a” and b’
are used instead of a and b, the resulting o” and 1 — 3" are too small compared
to o and 1 — S, respectively. As a consequence, we would be led to taking a
much larger number of observations than would actually be needed to obtain
ocand . It can be argued that this does not happen.

Exercise

14.2.1 Derive inequality (28) by using arguments similar to the ones em-
ployed in establishing relation (27).
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14.3 Optimality of the SPRT-Expected Sample Size

THEOREM 3

An optimal property of the SPRT is stated in the following theorem, whose
proof is omitted as being well beyond the scope of this book.

For testing H against A, the SPRT with error probabilities & and 1 — f8
minimizes the expected sample size under both H and A (that is, it minimizes
E,N and E/N) among all tests (sequential or not) with error probabilities
bounded above by o and 1 — B and for which the expected sample size is finite
under both H and A.

The remaining part of this section is devoted to calculating the expected
sample size of the SPRT with given error probabilities, and also finding ap-
proximations to the expected sample size.

So consider the SPRT with error probabilities ocand 1 — 8, and let N be the
associated stopping time. Then we clearly have

EN = inP,.(N =n)=1P(N =1)+ inP,.(N =n)
n=l1 n=2

:Pi(/'gSaor/'g2b)+inP,.(a<7Lj<b,j=1,...,n—l,
n=2

A, <a or A,2b). i=0,1. (34)

Thus formula (34) provides the expected sample size of the SPRT under both
H and A, but the actual calculations are tedious. This suggests that we should
try to find an approximate value to E; N, as follows. By setting A = loga and
B =logb, we have the relationships below:

(a<A;<b,j=1,....n-1, A, <aor A>b)

:(A<iz,.<3,j=1,..., n—1, iZiSA or iZizB), n>2 (35

i=1 i=1 i=1
and
(}ﬁSaorﬂﬂzb)=(leAoerzB). (36)

From the right-hand side of (35), all partial sums >/, Z,j=1,...,n -1 lie
between A and B and it is only the X7, Z; which is either <A or 2B, and this is
due to the nth observation Z,. We would then expect that 3.7, Z, would not be
too far away from either A or B. Accordingly, by letting Sy =Y ,Z,, we are led
to assume as an approximation that S, takes on the values A and B with
respective probabilities

P(Sy<A) and P(Sy=B) i=0, 1
But
B(Sy<A)=1-a, B(S,=B)

Il
Q

and
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Therefore we obtain
ESy=(1-a)A+oB and ES,=(1-pB)A+pB. (37)

On the other hand, by assuming that E; |Z,] < e, i = 0, 1, Theorem 1 gives
ES, = (EN)(E.Z)). Hence, if also E; Z, # 0, then EN = (ES,)/(E.Z,). By
virtue of (37), this becomes
1-a)A+oB 1-B)A+ B
E,N = ()—, E N = w (38)
E()Zl Elzl
Thus we have the following result.

In the SPRT with error probabilities o and 1 — 3, the expected sample size E.N,
i=0,11is given by (34). If furthermore E|Z,| <~ and E,Z, #0, i =0, 1, relation
(38) provides approximations to E;N, i =0, 1.

REMARK 4 Actually, in order to be able to calculate the approximations
given by (38), it is necessary to replace A and B by their approximate values
taken from (30), that is,

Azloga’zlogi_ﬂ and leogb’zﬁ. (39)
- o
In utilizing (39), we also assume that o < 8 < 1, since (30) was derived under
this additional (but entirely reasonable) condition.

Exercises

14.3.1 Let X, X,,...be independent r.v.’s distributed as P(0), 6 € Q =
(0, ). Use the SPRT for testing the hypothesis H: 8= 0.03 against the alterna-
tive A:6=0.05 with ¢=0.1, 1 — B=0.05. Find the expected sample sizes under
both H and A and compare them with the fixed sample size of the MP test for
testing H against A with the same o and 1 — 3 as above.

14.3.2 Discuss the same questions as in the previous exercise if the X;’s
are independently distributed as Negative Exponential with parameter 6 €
Q = (0, o).

14.4 Some Examples

This chapter is closed with two examples. In both, the r.v.’s X}, X,, . . . are i.i.d.
with p.d.f. f(-; 0), 6 Q c R, and for 6,, 6, € Q with 6, < 6,, the problem is that
of testing H: 0= 6, against A: 6= 6, by means of the SPRT with error probabili-
ties o and 1 — . Thus in the present case f; = f(*; 6,) and f; = f(*; 6,).



EXAMPLE 1

14.4 Some Examples 395

What we explicitly do, is to set up the formal SPRT and for selected
numerical values of o and 1 — f3, calculate a’, b’, upper bounds for ¢ and
1 - [, estimate EN, i =0, 1, and finally compare the estimated E,N, i =0, 1
with the size of the fixed sample size test with the same error probabilities.

Let X}, X,,...be iid. r.v.’s with p.d.f.
flx: 0)=67(1-6)", x=0,1, 9e=(0, 1)
Then the test statistic 4, is given by
X n-%;X;
A= 0, 1-6,
0, 1-6,

and we continue sampling as long as

1-6 6,(1-6,)
(A—nlogl_g(l) J/logeo(l_el)
" _ 0,(1-6
<ZXi<(B—nlog1_zl)/log9:)((l_0?;. (40)

j=1 0

Next,
_ fl(Xl) _ 61(1_90) 1-6
Z, =log fo(Xl) =X, log 60(1—91) +10g1_60 ,
so that
EZ, =6,log 61(1_00)“0 120 o 1. (41)

6(1-6) “1-6,

For a numerical application, take oc= 0.01 and 1 — 8= 0.05. Then the cut-off
points a and b are approximately equal to a” and b’, respectively, where a” and
b’ are given by (30). In the present case,

o 0.05 0.05 095

= =——=0.0505 and b'=—+-
1-0.01 0.99 0.01

For the cut-off points a” and b’, the corresponding error probabilities o and
1 — 3 are bounded as follows according to (32):

a’' < 001 0.0105 and 1-p8'< 005 = 0.0505.
0.95 0.99

Next, relation (39) gives

95.

A=log % =-1.29667 and B=log95=1.97772. (42)

At this point, let us suppose that 6, =% and 6, =+. Then
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6,(1-6 _
1ogu = 1og§ ~022185 and log+—r —log % = —0.09691,
6,(1-6,) 3 1-6, 5
so that by means of (41), we have
E,Z, =-0.13716 and EZ, = 0.014015. (43)

Finally, by means of (42) and (43), relation (38) gives
EN =925 and EN =1294

On the other hand, the MP test for testing H against A based on a fixed
sample size n is given by (9) in Chapter 13. Using the normal approximation,
we find that for the given o= 0.01 and = 0.95, n has to be equal to 244.05.
Thus both E,N and E|N compare very favorably with it.

Let X, X, ...be iid. r.v.’s with p.d.f. that of N(6, 1). Then

A, = exp[(@l —eo)i X, —%n(@f —93)]
j=1

and we continue sampling as long as

{A+Z(9f —eg)}/(e1 —00)<§X/. <[B+’21(9§ —93)}/(91 -6,). (44

Next,
X
Z, =log% =(6,-6,)X, —%(ei -6;),
so that
EZ =66, —90)—%(% -6;), i=0, 1. (45)

By using the same values of o and 1 — 3 as in the previous example, we have
the same A and B as before. Taking 6,=0 and 6, = 1, we have

EZ =-05 and EZ =05.
Thus relation (38) gives
E,N =253 and E/N =3.63.

Now the fixed sample size MP test is given by (13) in Chapter 13. From this
we find that n = 15.84. Again both E N and E,N compare very favorably with
the fixed value of n which provides the same protection.



Chapter 15

Confidence Regions—Tolerance
Intervals

15.1 Confidence Intervals

DEFINITION 1

DEFINITION 2

Let X, ..., X, be i.id. r.v.’s with p.d.f. f(; 0) 8 € Q c R". In Chapter 12, we
considered the problem of point estimation of a real-valued function of @, g(6).
That is, we considered the problem of estimating g(0) by a statistic (based on
the X’s) having certain optimality properties.

In the present chapter, we return to the estimation problem, but in a
different context. First, we consider the case that 8is a real-valued parameter
and proceed to define what is meant by a random interval and a confidence
interval.

A random interval is a finite or infinite interval, where at least one of the end
points is an r.v.

Let L(X,,...,X,) and U(X,, ..., X,) be two statistics such that L(X,, ..., X))
<U(X,,...,X,). We say that the r. interval [L(X], ..., X,), U(X,,..., X,)]is
a confidence interval for 6 with 