
Preface

My primary goal in writing Understanding Analysis was to create an elemen-
tary one-semester book that exposes students to the rich rewards inherent in
taking a mathematically rigorous approach to the study of functions of a real
variable. The aim of a course in real analysis should be to challenge and im-
prove mathematical intuition rather than to verify it. There is a tendency,
however, to center an introductory course too closely around the familiar the-
orems of the standard calculus sequence. Producing a rigorous argument that
polynomials are continuous is good evidence for a well-chosen definition of con-
tinuity, but it is not the reason the subject was created and certainly not the
reason it should be required study. By shifting the focus to topics where an
untrained intuition is severely disadvantaged (e.g., rearrangements of infinite
series, nowhere-differentiable continuous functions, Fourier series), my intent
is to restore an intellectual liveliness to this course by offering the beginning
student access to some truly significant achievements of the subject.

The Main Objectives

In recent years, the standard undergraduate curriculum in mathematics has
been subjected to steady pressure from several different sources. As computers
and technology become more ubiquitous, so do the areas where mathematical
thinking can be a valuable asset. Rather than preparing themselves for graduate
study in pure mathematics, the present majority of mathematics majors look
forward to careers in banking, medicine, law, and numerous other fields where
analytical skills are desirable. Another strong influence on college mathemat-
ics is the ongoing calculus reform effort, now well over ten years old. At the
core of this movement is the justifiable goal of presenting calculus in a more
intuitive way, emphasizing geometric arguments over symbolic ones. Despite
these various trends—or perhaps because of them—nearly every undergraduate
mathematics program continues to require at least one semester of real analysis.
The result is that instructors today are faced with the task of teaching a diffi-
cult, abstract course to a more diverse audience less familiar with the nature of
axiomatic arguments.

The crux of the matter is that any prevailing sentiment in favor of marketing
mathematics to larger groups must at some point be reconciled with the fact
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that theoretical analysis is extremely challenging and even intimidating for some.
One unfortunate resolution of this dilemma has been to make the course easier
by making it less interesting. The omitted material is inevitably what gives
analysis its true flavor. A better solution is to find a way to make the more
advanced topics accessible and worth the effort.

I see three essential goals that a semester of real analysis should try to meet:

1. Students, especially those emerging from a reform approach to calculus,
need to be convinced of the need for a more rigorous study of functions.
The necessity of precise definitions and an axiomatic approach must be
carefully motivated.

2. Having seen mainly graphical, numerical, or intuitive arguments, students
need to learn what constitutes a rigorous mathematical proof and how to
write one.

3. There needs to be significant reward for the difficult work of firming up the
logical structure of limits. Specifically, real analysis should not be just an
elaborate reworking of standard introductory calculus. Students should
be exposed to the tantalizing complexities of the real line, to the subtleties
of different flavors of convergence, and to the intellectual delights hidden
in the paradoxes of the infinite.

The philosophy of Understanding Analysis is to focus attention on questions
that give analysis its inherent fascination. Does the Cantor set contain any
irrational numbers? Can the set of points where a function is discontinuous
be arbitrary? Are derivatives continuous? Are derivatives integrable? Is an
infinitely differentiable function necessarily the limit of its Taylor series? In
giving these topics center stage, the hard work of a rigorous study is justified
by the fact that they are inaccessible without it.

The Structure of the Book

This book is an introductory text. Although some fairly sophisticated topics
are brought in early to advertise and motivate the upcoming material, the main
body of each chapter consists of a lean and focused treatment of the core top-
ics that make up the center of most courses in analysis. Fundamental results
about completeness, compactness, sequential and functional limits, continuity,
uniform convergence, differentiation, and integration are all incorporated. What
is specific here is where the emphasis is placed. In the chapter on integration,
for instance, the exposition revolves around deciphering the relationship be-
tween continuity and the Riemann integral. Enough properties of the integral
are obtained to justify a proof of the Fundamental Theorem of Calculus, but
the theme of the chapter is the pursuit of a characterization of integrable func-
tions in terms of continuity. Whether or not Lebesgue’s measure-zero criterion
is treated, framing the material in this way is still valuable because it is the
questions that are important. Mathematics is not a static discipline. Students
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should be aware of the historical reasons for the creation of the mathematics
they are learning and by extension realize that there is no last word on the
subject. In the case of integration, this point is made explicitly by including
some relatively recent developments on the generalized Riemann integral in the
additional topics of the last chapter.

The structure of the chapters has the following distinctive features.

Discussion Sections: Each chapter begins with the discussion of some mo-
tivating examples and open questions. The tone in these discussions is inten-
tionally informal, and full use is made of familiar functions and results from
calculus. The idea is to freely explore the terrain, providing context for the
upcoming definitions and theorems. A recurring theme is the resolution of the
paradoxes that arise when operations that work well in finite settings are naively
extended to infinite settings (e.g., differentiating an infinite series term-by-term,
reversing the order of a double summation). After these exploratory introduc-
tions, the tone of the writing changes, and the treatment becomes rigorously
tight but still not overly formal. With the questions in place, the need for the
ensuing development of the material is well-motivated and the payoff is in sight.

Project Sections: The penultimate section of each chapter (the final section is
a short epilogue) is written with the exercises incorporated into the exposition.
Proofs are outlined but not completed, and additional exercises are included
to elucidate the material being discussed. The point of this is to provide some
flexibility. The sections are written as self-guided tutorials, but they can also
be the subject of lectures. I have used them in place of a final examination,
and they work especially well as collaborative assignments that can culminate
in a class presentation. The body of each chapter contains the necessary tools,
so there is some satisfaction in letting the students use their newly acquired
skills to ferret out for themselves answers to questions that have been driving
the exposition.

Building a Course

Teaching a satisfying class inevitably involves a race against time. Although
this book is designed for a 12–14 week semester, there are still a few choices to
make as to what to cover.

• The introductions can be discussed, assigned as reading, omitted, or sub-
stituted with something preferable. There are no theorems proved here
that show up later in the text. I do develop some important examples in
these introductions (the Cantor set, Dirichlet’s nowhere-continuous func-
tion) that probably need to find their way into discussions at some point.

• Chapter 3, Basic Topology of R, is much longer than it needs to be. All
that is required by the ensuing chapters are fundamental results about
open and closed sets and a thorough understanding of sequential com-
pactness. The characterization of compactness using open covers as well



viii Preface

as the section on perfect and connected sets are included for their own in-
trinsic interest. They are not, however, crucial to any future proofs. The
one exception to this is a presentation of the Intermediate Value Theorem
(IVT) as a special case of the preservation of connected sets by continu-
ous functions. To keep connectedness truly optional, I have included two
direct proofs of IVT, one using least upper bounds and the other using
nested intervals. A similar comment can be made about perfect sets. Al-
though proofs of the Baire Category Theorem are nicely motivated by the
argument that perfect sets are uncountable, it is certainly possible to do
one without the other.

• All the project sections (1.5, 2.8, 3.5, 4.6, 5.4, 6.6, 7.6, 8.1–8.4) are optional
in the sense that no results in later chapters depend on material in these
sections. The four topics covered in Chapter 8 are also written in this
project-style format, where the exercises make up a significant part of the
development. The only one of these sections that might require a lecture
is the unit on Fourier series, which is a bit longer than the others.

The Audience

The only prerequisite for this course is a robust understanding of the results
from single-variable calculus. The theorems of linear algebra are not needed,
but the exposure to abstract arguments and proof writing that usually comes
with this course would be a valuable asset. Complex numbers are never used in
this book.

The proofs in Understanding Analysis are written with the introductory
student firmly in mind. Brevity and other stylistic concerns are postponed in
favor of including a significant level of detail. Most proofs come with a fair
amount of discussion about the context of the argument. What should the
proof entail? Which definitions are relevant? What is the overall strategy?
Is one particular proof similar to something already done? Whenever there is
a choice, efficiency is traded for an opportunity to reinforce some previously
learned technique. Especially familiar or predictable arguments are usually
sketched as exercises so that students can participate directly in the development
of the core material.

The search for recurring ideas exists at the proof-writing level and also on
the larger expository level. I have tried to give the course a narrative tone by
picking up on the unifying themes of approximation and the transition from the
finite to the infinite. To paraphrase a passage from the end of the book, real
numbers are approximated by rational ones; values of continuous functions are
approximated by values nearby; curves are approximated by straight lines; areas
are approximated by sums of rectangles; continuous functions are approximated
by polynomials. In each case, the approximating objects are tangible and well-
understood, and the issue is when and how well these qualities survive the
limiting process. By focusing on this recurring pattern, each successive topic
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builds on the intuition of the previous one. The questions seem more natural,
and a method to the madness emerges from what might otherwise appear as a
long list of theorems and proofs.

This book always emphasizes core ideas over generality, and it makes no
effort to be a complete, deductive catalog of results. It is designed to capture the
intellectual imagination. Those who become interested are then exceptionally
well prepared for a second course starting from complex-valued functions on
more general spaces, while those content with a single semester come away with
a strong sense of the essence and purpose of real analysis. Turning once more
to the concluding passages of Chapter 8, “By viewing the different infinities of
mathematics through pathways crafted out of finite objects, Weierstrass and
the other founders of analysis created a paradigm for how to extend the scope
of mathematical exploration deep into territory previously unattainable.”

This exploration has constituted the major thrill of my intellectual life. I
am extremely pleased to offer this guide to what I feel are some of the most
impressive highlights of the journey. Have a wonderful trip!
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Chapter 1

The Real Numbers

1.1 Discussion: The Irrationality of
√

2
Toward the end of his distinguished career, the renowned British mathematician
G.H. Hardy eloquently laid out a justification for a life of studying mathematics
in A Mathematician’s Apology, an essay first published in 1940. At the center
of Hardy’s defense is the thesis that mathematics is an aesthetic discipline. For
Hardy, the applied mathematics of engineers and economists held little charm.
“Real mathematics,” as he referred to it, “must be justified as art if it can be
justified at all.”

To help make his point, Hardy includes two theorems from classical Greek
mathematics, which, in his opinion, possess an elusive kind of beauty that,
although difficult to define, is easy to recognize. The first of these results is
Euclid’s proof that there are an infinite number of prime numbers. The second
result is the discovery, attributed to the school of Pythagoras from around 500
B.C., that

√
2 is irrational. It is this second theorem that demands our attention.

(A course in number theory would focus on the first.) The argument uses only
arithmetic, but its depth and importance cannot be overstated. As Hardy says,
“[It] is a ‘simple’ theorem, simple both in idea and execution, but there is no
doubt at all about [it being] of the highest class. [It] is as fresh and significant
as when it was discovered—two thousand years have not written a wrinkle on
[it].”

Theorem 1.1.1. There is no rational number whose square is 2.

Proof. A rational number is any number that can be expressed in the form p/q,
where p and q are integers. Thus, what the theorem asserts is that no matter
how p and q are chosen, it is never the case that (p/q)2 = 2. The line of attack
is indirect, using a type of argument referred to as a proof by contradiction.
The idea is to assume that there is a rational number whose square is 2 and
then proceed along logical lines until we reach a conclusion that is unacceptable.
At this point, we will be forced to retrace our steps and reject the erroneous

1
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assumption that some rational number squared is equal to 2. In short, we will
prove that the theorem is true by demonstrating that it cannot be false.

And so assume, for contradiction, that there exist integers p and q satisfying

(1)
(
p

q

)2

= 2.

We may also assume that p and q have no common factor, because, if they had
one, we could simply cancel it out and rewrite the fraction in lowest terms. Now,
equation (1) implies

(2) p2 = 2q2.

From this, we can see that the integer p2 is an even number (it is divisible by
2), and hence p must be even as well because the square of an odd number is
odd. This allows us to write p = 2r, where r is also an integer. If we substitute
2r for p in equation (2), then a little algebra yields the relationship

2r2 = q2.

But now the absurdity is at hand. This last equation implies that q2 is even,
and hence q must also be even. Thus, we have shown that p and q are both
even (i.e., divisible by 2) when they were originally assumed to have no common
factor. From this logical impasse, we can only conclude that equation (1) cannot
hold for any integers p and q, and thus the theorem is proved.

A component of Hardy’s definition of beauty in a mathematical theorem
is that the result have lasting and serious implications for a network of other
mathematical ideas. In this case, the ideas under assault were the Greeks’ un-
derstanding of the relationship between geometric length and arithmetic number.
Prior to the preceding discovery, it was an assumed and commonly used fact
that, given two line segments AB and CD, it would always be possible to find
a third line segment whose length divides evenly into the first two. In modern
terminology, this is equivalent to asserting that the length of CD is a rational
multiple of the length of AB. Looking at the diagonal of a unit square (Fig.
1.1), it now followed (using the Pythagorean Theorem) that this was not always
the case. Because the Pythagoreans implicitly interpreted number to mean ra-
tional number, they were forced to accept that number was a strictly weaker
notion than length.

Rather than abandoning arithmetic in favor of geometry (as the Greeks seem
to have done), our resolution to this limitation is to strengthen the concept of
number by moving from the rational numbers to a larger number system. From
a modern point of view, this should seem like a familiar and somewhat natural
phenomenon. We begin with the natural numbers

N = {1, 2, 3, 4, 5, . . . }.
The influential German mathematician Leopold Kronecker (1823–1891) once
asserted that “The natural numbers are the work of God. All of the rest is
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Figure 1.1:
√
2 exists as a geometric length.

the work of mankind.” Debating the validity of this claim is an interesting
conversation for another time. For the moment, it at least provides us with
a place to start. If we restrict our attention to the natural numbers N, then
we can perform addition perfectly well, but we must extend our system to the
integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
if we want to have an additive identity (zero) and the additive inverses necessary
to define subtraction. The next issue is multiplication and division. The number
1 acts as the multiplicative identity, but in order to define division we need to
have multiplicative inverses. Thus, we extend our system again to the rational
numbers

Q =
{
all fractions

p

q
where p and q are integers with q �= 0

}
.

Taken together, the properties of Q discussed in the previous paragraph
essentially make up the definition of what is called a field. More formally stated,
a field is any set where addition and multiplication are well-defined operations
that are commutative, associative, and obey the familiar distributive property
a(b+ c) = ab+ ac. There must be an additive identity, and every element must
have an additive inverse. Finally, there must be a multiplicative identity, and
multiplicative inverses must exist for all nonzero elements of the field. Neither
Z nor N is a field. The finite set {0, 1, 2, 3, 4} is a field when addition and
multiplication are computed modulo 5. This is not immediately obvious but
makes an interesting exercise (Exercise 1.3.1).

The set Q also has a natural order defined on it. Given any two rational
numbers r and s, exactly one of the following is true:

r < s, r = s, or r > s.

This ordering is transitive in the sense that if r < s and s < t, then r < t, so
we are conveniently led to a mental picture of the rational numbers as being
laid out from left to right along a number line. Unlike Z, there are no intervals
of empty space. Given any two rational numbers r < s, the rational number



4 Chapter 1. The Real Numbers

1
1.414

√
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Figure 1.2: Approximating
√
2 with rational numbers.

(r+s)/2 sits halfway in between, implying that the rational numbers are densely
nestled together.

With the field properties of Q allowing us to safely carry out the algebraic
operations of addition, subtraction, multiplication, and division, let’s remind
ourselves just what it is that Q is lacking. By Theorem 1.1.1, it is apparent
that we cannot always take square roots. The problem, however, is actually
more fundamental than this. Using only rational numbers, it is possible to
approximate

√
2 quite well (Fig. 1.2). For instance, 1.4142 = 1.999396. By

adding more decimal places to our approximation, we can get even closer to
a value for

√
2, but, even so, we are now well aware that there is a “hole” in

the rational number line where
√
2 ought to be. Of course, there are quite a

few other holes—at
√
3 and

√
5, for example. Returning to the dilemma of the

ancient Greek mathematicians, if we want every length along the number line to
correspond to an actual number, then another extension to our number system
is in order. Thus, to the chain N ⊆ Z ⊆ Q we append the real numbers R.

The question of how to actually construct R from Q is rather complicated
business. It is discussed in Section 1.3, and then again in more detail in Section
8.4. For the moment, it is not too inaccurate to say that R is obtained by
filling in the gaps in Q. Wherever there is a hole, a new irrational number is
defined and placed into the ordering that already exists on Q. The real numbers
are then the union of these irrational numbers together with the more familiar
rational ones. What properties does the set of irrational numbers have? How
do the sets of rational and irrational numbers fit together? Is there a kind
of symmetry between the rationals and the irrationals, or is there some sense
in which we can argue that one type of real number is more common than the
other? The one method we have seen so far for generating examples of irrational
numbers is through square roots. Not too surprisingly, other roots such as 3

√
2

or 5
√
3 are most often irrational. Can all irrational numbers be expressed as

algebraic combinations of nth roots and rational numbers, or are there still
other irrational numbers beyond those of this form?

1.2 Some Preliminaries

The vocabulary necessary for the ensuing development comes from set theory
and the theory of functions. This should be familiar territory, but a brief review
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of the terminology is probably a good idea, if only to establish some agreed-upon
notation.

Sets

Intuitively speaking, a set is any collection of objects. These objects are referred
to as the elements of the set. For our purposes, the sets in question will most
often be sets of real numbers, although we will also encounter sets of functions
and, on a few rare occasions, sets whose elements are other sets.

Given a set A, we write x ∈ A if x (whatever it may be) is an element of A.
If x is not an element of A, then we write x /∈ A. Given two sets A and B, the
union is written A ∪B and is defined by asserting that

x ∈ A ∪B provided that x ∈ A or x ∈ B (or potentially both).

The intersection A ∩B is the set defined by the rule

x ∈ A ∩B provided x ∈ A and x ∈ B.

Example 1.2.1. (i) There are many acceptable ways to assert the contents of
a set. In the previous section, the set of natural numbers was defined by listing
the elements: N = {1, 2, 3, . . . }.

(ii) Sets can also be described in words. For instance, we can define the set
E to be the collection of even natural numbers.

(iii) Sometimes it is more efficient to provide a kind of rule or algorithm for
determining the elements of a set. As an example, let

S = {r ∈ Q : r2 < 2}.

Read aloud, the definition of S says, “Let S be the set of all rational numbers
whose squares are less than 2.” It follows that 1 ∈ S, 4/3 ∈ S, but 3/2 /∈ S
because 9/4 ≥ 2.

Using the previously defined sets to illustrate the operations of intersection
and union, we observe that

N ∪ E = N, N ∩ E = E, N ∩ S = {1}, and E ∩ S = ∅.

The set ∅ is called the empty set and is understood to be the set that contains no
elements. An equivalent statement would be to say that E and S are disjoint.

A word about the equality of two sets is in order (since we have just used
the notion). The inclusion relationship A ⊆ B or B ⊇ A is used to indicate that
every element of A is also an element of B. In this case, we say A is a subset of
B, or B contains A. To assert that A = B means that A ⊆ B and B ⊆ A. Put
another way, A and B have exactly the same elements.

Quite frequently in the upcoming chapters, we will want to apply the union
and intersection operations to infinite collections of sets.
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Example 1.2.2. Let

A1 = N = {1, 2, 3, . . . },
A2 = {2, 3, 4, . . . },
A3 = {3, 4, 5, . . . },

and, in general, for each n ∈ N, define the set

An = {n, n+ 1, n+ 2, . . . }.
The result is a nested chain of sets

A1 ⊇ A2 ⊇ A3 ⊇ A4 ⊇ · · · ,
where each successive set is a subset of all the previous ones. Notationally,

∞⋃
n=1

An,
⋃
n∈N

An, or A1 ∪A2 ∪A3 ∪ · · ·

are all equivalent ways to indicate the set whose elements consist of any element
that appears in at least one particular An. Because of the nested property of
this particular collection of sets, it is not too hard to see that

∞⋃
n=1

An = A1.

The notion of intersection has the same kind of natural extension to infinite
collections of sets. For this example, we have

∞⋂
n=1

An = ∅.

Let’s be sure we understand why this is the case. Suppose we had some natural
number m that we thought might actually satisfy m ∈ ⋂∞

n=1 An. What this
would mean is that m ∈ An for every An in our collection of sets. Because m is
not an element of Am+1, no such m exists and the intersection is empty.

As mentioned, most of the sets we encounter will be sets of real numbers.
Given A ⊆ R, the complement of A, written Ac, refers to the set of all elements
of R not in A. Thus, for A ⊆ R,

Ac = {x ∈ R : x /∈ A}.
A few times in our work to come, we will refer to De Morgan’s Laws, which
state that

(A ∩B)c = Ac ∪Bc and (A ∪B)c = Ac ∩Bc.

Proofs of these statements are discussed in Exercise 1.2.3.
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Admittedly, there is something imprecise about the definition of set pre-
sented at the beginning of this discussion. The defining sentence begins with
the phrase “Intuitively speaking,” which might seem an odd way to embark on a
course of study that purportedly intends to supply a rigorous foundation for the
theory of functions of a real variable. In some sense, however, this is unavoid-
able. Each repair of one level of the foundation reveals something below it in
need of attention. The theory of sets has been subjected to intense scrutiny over
the past century precisely because so much of modern mathematics rests on this
foundation. But such a study is really only advisable once it is understood why
our naive impression about the behavior of sets is insufficient. For the direction
in which we are heading, this will not happen, although an indication of some
potential pitfalls is given in Section 1.6.

Functions

Definition 1.2.3. Given two sets A and B, a function from A to B is a rule or
mapping that takes each element x ∈ A and associates with it a single element
of B. In this case, we write f : A → B. Given an element x ∈ A, the expression
f(x) is used to represent the element of B associated with x by f . The set A is
called the domain of f . The range of f is not necessarily equal to B but refers
to the subset of B given by {y ∈ B : y = f(x) for some x ∈ A}.

This definition of function is more or less the one proposed by Peter Lejeune
Dirichlet (1805–1859) in the 1830s. Dirichlet was a German mathematician who
was one of the leaders in the development of the rigorous approach to functions
that we are about to undertake. His main motivation was to unravel the issues
surrounding the convergence of Fourier series. Dirichlet’s contributions figure
prominently in Section 8.3, where an introduction to Fourier series is presented,
but we will also encounter his name in several earlier chapters along the way.
What is important at the moment is that we see how Dirichlet’s definition
of function liberates the term from its interpretation as a type of “formula.”
In the years leading up to Dirichlet’s time, the term “function” was generally
understood to refer to algebraic entities such as f(x) = x2+1 or g(x) =

√
x4 + 4.

Definition 1.2.3 allows for a much broader range of possibilities.

Example 1.2.4. In 1829, Dirichlet proposed the unruly function

g(x) =
{
1 if x ∈ Q
0 if x /∈ Q.

The domain of g is all of R, and the range is the set {0, 1}. There is no single
formula for g in the usual sense, and it is quite difficult to graph this function
(see Section 4.1 for a rough attempt), but it certainly qualifies as a function
according to the criterion in Definition 1.2.3. As we study the theoretical nature
of continuous, differentiable, or integrable functions, examples such as this one
will provide us with an invaluable testing ground for the many conjectures we
encounter.
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Example 1.2.5 (Triangle Inequality). The absolute value function is so im-
portant that it merits the special notation |x| in place of the usual f(x) or g(x).
It is defined for every real number via the piecewise definition

|x| =
{

x if x ≥ 0
−x if x < 0.

With respect to multiplication and division, the absolute value function satisfies

(i) |ab| = |a||b| and
(ii) |a+ b| ≤ |a|+ |b|
for all choices of a and b. Verifying these properties (Exercise 1.2.4) is just a
matter of examining the different cases that arise when a, b, and a+b are positive
and negative. Property (ii) is called the triangle inequality. This innocuous
looking inequality turns out to be fantastically important and will be frequently
employed in the following way. Given three real numbers a, b, and c, we certainly
have

|a− b| = |(a− c) + (c− b)|.
By the triangle inequality,

|(a− c) + (c− b)| ≤ |a− c|+ |c− b|,

so we get

(1) |a− b| ≤ |a− c|+ |c− b|.

Now, the expression |a − b| is equal to |b − a| and is best understood as the
distance between the points a and b on the number line. With this interpretation,
equation (1) makes the plausible statement that “the distance from a to b is
less than or equal to the distance from a to c plus the distance from c to b.”
Pretending for a moment that these are points in the plane (instead of on the
real line), it should be evident why this is referred to as the “triangle inequality.”

Logic and Proofs

Writing rigorous mathematical proofs is a skill best learned by doing, and there
is plenty of on-the-job training just ahead. As Hardy indicates, there is an
artistic quality to mathematics of this type, which may or may not come easily,
but that is not to say that anything especially mysterious is happening. A
proof is an essay of sorts. It is a set of carefully crafted directions, which,
when followed, should leave the reader absolutely convinced of the truth of
the proposition in question. To achieve this, the steps in a proof must follow
logically from previous steps or be justified by some other agreed-upon set of
facts. In addition to being valid, these steps must also fit coherently together to
form a cogent argument. Mathematics has a specialized vocabulary, to be sure,
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but that does not exempt a good proof from being written in grammatically
correct English.

The one proof we have seen at this point (to Theorem 1.1.1) uses an indirect
strategy called proof by contradiction. This powerful technique will be employed
a number of times in our upcoming work. Nevertheless, most proofs are direct.
(It also bears mentioning that using an indirect proof when a direct proof is
available is generally considered bad manners.) A direct proof begins from
some valid statement, most often taken from the theorem’s hypothesis, and
then proceeds through rigorously logical deductions to a demonstration of the
theorem’s conclusion. As we saw in Theorem 1.1.1, an indirect proof always
begins by negating what it is we would like to prove. This is not always as easy
to do as it may sound. The argument then proceeds until (hopefully) a logical
contradiction with some other accepted fact is uncovered. Many times, this
accepted fact is part of the hypothesis of the theorem. When the contradiction is
with the theorem’s hypothesis, we technically have what is called a contrapositive
proof.

The next proposition illustrates a number of the issues just discussed and
introduces a few more.

Theorem 1.2.6. Two real numbers a and b are equal if and only if for every
real number ε > 0 it follows that |a− b| < ε.

Proof. There are two key phrases in the statement of this proposition that
warrant special attention. One is “for every,” which will be addressed in a
moment. The other is “if and only if.” To say “if and only if” in mathematics
is an economical way of stating that the proposition is true in two directions.
In the forward direction, we must prove the statement:

(⇒) If a = b, then for every real number ε > 0 it follows that |a− b| < ε.
We must also prove the converse statement:

(⇐) If for every real number ε > 0 it follows that |a− b| < ε, then we must
have a = b.

For the proof of the first statement, there is really not much to say. If a = b,
then |a− b| = 0, and so certainly |a− b| < ε no matter what ε > 0 is chosen.

For the second statement, we give a proof by contradiction. The conclusion
of the proposition in this direction states that a = b, so we assume that a �= b.
Heading off in search of a contradiction brings us to a consideration of the phrase
“for every ε > 0.” Some equivalent ways to state the hypothesis would be to
say that “for all possible choices of ε > 0” or “no matter how ε > 0 is selected,
it is always the case that |a− b| < ε.” But assuming a �= b (as we are doing at
the moment), the choice of

ε0 = |a− b| > 0

poses a serious problem. We are assuming that |a − b| < ε is true for every
ε > 0, so this must certainly be true of the particular ε0 just defined. However,
the statements

|a− b| < ε0 and |a− b| = ε0



10 Chapter 1. The Real Numbers

cannot both be true. This contradiction means that our initial assumption that
a �= b is unacceptable. Therefore, a = b, and the indirect proof is complete.

One of the most fundamental skills required for reading and writing analysis
proofs is the ability to confidently manipulate the quantifying phrases “for all”
and “there exists.” Significantly more attention will be given to this issue in
many upcoming discussions.

Induction

One final trick of the trade, which will arise with some frequency, is the use of
induction arguments. Induction is used in conjunction with the natural numbers
N (or sometimes with the set N ∪ {0}). The fundamental principle behind
induction is that if S is some subset of N with the property that

(i) S contains 1 and

(ii) whenever S contains a natural number n, it also contains n+ 1,

then it must be that S = N. As the next example illustrates, this principle can
be used to define sequences of objects as well as to prove facts about them.

Example 1.2.7. Let x1 = 1, and for each n ∈ N define

xn+1 = (1/2)xn + 1.

Using this rule, we can compute x2 = (1/2)(1) + 1 = 3/2, x3 = 7/4, and it is
immediately apparent how this leads to a definition of xn for all n ∈ N.

The sequence just defined appears at the outset to be increasing. For the
terms computed, we have x1 ≤ x2 ≤ x3. Let’s use induction to prove that this
trend continues; that is, let’s show

(2) xn ≤ xn+1

for all values of n ∈ N.
For n = 1, x1 = 1 and x2 = 3/2, so that x1 ≤ x2 is clear. Now, we want to

show that

if we have xn ≤ xn+1, then it follows that xn+1 ≤ xn+2.

Think of S as the set of natural numbers for which the claim in equation (2)
is true. We have shown that 1 ∈ S. We are now interested in showing that if
n ∈ S, then n+1 ∈ S as well. Starting from the induction hypothesis xn ≤ xn+1,
we can multiply across the inequality by 1/2 and add 1 to get

1
2
xn + 1 ≤ 1

2
xn+1 + 1,

which is precisely the desired conclusion xn+1 ≤ xn+2. By induction, the claim
is proved for all n ∈ N.
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Any discussion about why induction is a valid argumentative technique im-
mediately opens up a box of questions about how we understand the natural
numbers. Earlier, in Section 1.1, we avoided this issue by referencing Kro-
necker’s famous comment that the natural numbers are somehow divinely given.
Although we will not improve on this explanation here, it should be pointed out
that a more atheistic and mathematically satisfying approach to N is possible
from the point of view of axiomatic set theory. This brings us back to a recurring
theme of this chapter. Pedagogically speaking, the foundations of mathematics
are best learned and appreciated in a kind of reverse order. A rigorous study of
the natural numbers and the theory of sets is certainly recommended, but only
after we have an understanding of the subtleties of the real number system. It
is this latter topic that is the business of real analysis.

Exercises

Exercise 1.2.1. (a) Prove that
√
3 is irrational. Does a similar argument work

to show
√
6 is irrational?

(b) Where does the proof of Theorem 1.1.1 break down if we try to use it to
prove

√
4 is irrational?

Exercise 1.2.2. Decide which of the following represent true statements about
the nature of sets. For any that are false, provide a specific example where the
statement in question does not hold.

(a) If A1 ⊇ A2 ⊇ A3 ⊇ A4 · · · are all sets containing an infinite number of
elements, then the intersection ∩∞

n=1An is infinite as well.
(b) If A1 ⊇ A2 ⊇ A3 ⊇ A4 · · · are all finite, nonempty sets of real numbers,

then the intersection ∩∞
n=1An is finite and nonempty.

(c) A ∩ (B ∪ C) = (A ∩B) ∪ C.
(d) A ∩ (B ∩ C) = (A ∩B) ∩ C.
(e) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Exercise 1.2.3 (De Morgan’s Laws). Let A and B be subsets of R.
(a) If x ∈ (A ∩ B)c, explain why x ∈ Ac ∪ Bc. This shows that (A ∩ B)c ⊆

Ac ∪Bc.
(b) Prove the reverse inclusion (A ∩ B)c ⊇ Ac ∪ Bc, and conclude that

(A ∩B)c = Ac ∪Bc.
(c) Show (A ∪B)c = Ac ∩Bc by demonstrating inclusion both ways.

Exercise 1.2.4. Verify the triangle inequality in the special cases where
(a) a and b have the same sign;
(b) a ≥ 0, b < 0, and a+ b ≥ 0.

Exercise 1.2.5. Use the triangle inequality to establish the inequalities
(a) |a− b| ≤ |a|+ |b|;
(b) ||a| − |b|| ≤ |a− b|.

Exercise 1.2.6. Given a function f and a subset A of its domain, let f(A)
represent the range of f over the set A; that is, f(A) = {f(x) : x ∈ A}.
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(a) Let f(x) = x2. If A = [0, 2] (the closed interval {x ∈ R : 0 ≤ x ≤ 2})
and B = [1, 4], find f(A) and f(B). Does f(A∩B) = f(A)∩ f(B) in this case?
Does f(A ∪B) = f(A) ∪ f(B)?

(b) Find two sets A and B for which f(A ∩B) �= f(A) ∩ f(B).
(c) Show that, for an arbitrary function g : R → R, it is always true that

g(A ∩B) ⊆ g(A) ∩ g(B) for all sets A,B ⊆ R.
(d) Form and prove a conjecture about the relationship between g(A ∪ B)

and g(A) ∪ g(B) for an arbitrary function g.

Exercise 1.2.7. Given a function f : D → R and a subset B ⊆ R, let f−1(B)
be the set of all points from the domain D that get mapped into B; that is,
f−1(B) = {x ∈ D : f(x) ∈ B}. This set is called the preimage of B.

(a) Let f(x) = x2. If A is the closed interval [0, 4] and B is the closed interval
[−1, 1], find f−1(A) and f−1(B). Does f−1(A ∩B) = f−1(A) ∩ f−1(B) in this
case? Does f−1(A ∪B) = f−1(A) ∪ f−1(B)?

(b) The good behavior of preimages demonstrated in (a) is completely gen-
eral. Show that for an arbitrary function g : R → R, it is always true that
g−1(A ∩B) = g−1(A) ∩ g−1(B) and g−1(A ∪B) = g−1(A) ∪ g−1(B) for all sets
A,B ⊆ R.

Exercise 1.2.8. Form the logical negation of each claim. One way to do this is
to simply add “It is not the case that...” in front of each assertion, but for each
statement, try to embed the word “not” as deeply into the resulting sentence
as possible (or avoid using it altogether).

(a) For all real numbers satisfying a < b, there exists an n ∈ N such that
a+ 1/n < b.

(b) Between every two distinct real numbers, there is a rational number.
(c) For all natural numbers n ∈ N,

√
n is either a natural number or an

irrational number.
(d) Given any real number x ∈ R, there exists n ∈ N satisfying n > x.

Exercise 1.2.9. Show that the sequence (x1, x2, x3, . . . ) defined in Example
1.2.7 is bounded above by 2; that is, prove that xn ≤ 2 for every n ∈ N.

Exercise 1.2.10. Let y1 = 1, and for each n ∈ N define yn+1 = (3yn + 4)/4.
(a) Use induction to prove that the sequence satisfies yn < 4 for all n ∈ N.
(b) Use another induction argument to show the sequence (y1, y2, y3, . . . ) is

increasing.

Exercise 1.2.11. If a set A contains n elements, prove that the number of
different subsets of A is equal to 2n. (Keep in mind that the empty set ∅ is
considered to be a subset of every set.)

Exercise 1.2.12. For this exercise, assume Exercise 1.2.3 has been successfully
completed.

(a) Show how induction can be used to conclude that

(A1 ∪A2 ∪ · · · ∪An)
c = Ac

1 ∩Ac
2 ∩ · · · ∩Ac

n



1.3. The Axiom of Completeness 13

for any finite n ∈ N.
(b) Explain why induction cannot be used to conclude( ∞⋃

n=1

An

)c

=
∞⋂
n=1

Ac
n.

It might be useful to consider part (a) of Exercise 1.2.2.
(c) Is the statement in part (b) valid? If so, write a proof that does not use

induction.

1.3 The Axiom of Completeness

What exactly is a real number? In Section 1.1, we got as far as saying that
the set R of real numbers is an extension of the rational numbers Q in which
there are no holes or gaps. We want every length along the number line—such
as

√
2—to correspond to a real number and vice versa.
We are going to improve on this definition, but as we do so, it is important

to keep in mind our earlier acknowledgment that whatever precise statements
we formulate will necessarily rest on other unproven assumptions or undefined
terms. At some point, we must draw a line and confess that this is what we have
decided to accept as a reasonable place to start. Naturally, there is some debate
about where this line should be drawn. One way to view the mathematics of
the 19th and 20th centuries is as a stalwart attempt to move this line further
and further back toward some unshakable foundation. The majority of the
material covered in this book is attributable to the mathematicians working in
the early and middle parts of the 1800s. Augustin Louis Cauchy (1789–1857),
Bernhard Bolzano (1781–1848), Niels Henrik Abel (1802–1829), Peter Lejeune
Dirichlet, Karl Weierstrass (1815–1897), and Bernhard Riemann (1826–1866) all
figure prominently in the discovery of the theorems that follow. But here is the
interesting point. Nearly all of this work was done using intuitive assumptions
about the nature of R quite similar to our own informal understanding at this
point. Eventually, enough scrutiny was directed at the detailed structure of R
so that, in the 1870s, a handful of ways to rigorously construct R from Q were
proposed.

Following this historical model, our own rigorous construction of R from Q
is postponed until Section 8.4. By this point, the need for such a construction
will be more justified and easier to appreciate. In the meantime, we have many
proofs to write, so it is important to lay down, as explicitly as possible, the
assumptions that we intend to make about the real numbers.

An Initial Definition for R

First, R is a set containing Q. The operations of addition and multiplication
on Q extend to all of R in such a way that every element of R has an additive
inverse and every nonzero element of R has a multiplicative inverse. Echoing
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the discussion in Section 1.1, we assume R is a field, meaning that addition and
multiplication of real numbers is commutative, associative, and the distributive
property holds. This allows us to perform all of the standard algebraic manipu-
lations that are second nature to us. We also assume that the familiar properties
of the ordering on Q extend to all of R. Thus, for example, such deductions as
“If a < b and c > 0, then ac < bc” will be carried out freely without much com-
ment. To summarize the situation in the official terminology of the subject, we
assume that R is an ordered field, which contains Q as a subfield. (A rigorous
definition of “ordered field” is presented in Section 8.4.)

This brings us to the final, and most distinctive, assumption about the real
number system. We must find some way to clearly articulate what we mean by
insisting that R does not contain the gaps that permeate Q. Because this is the
defining difference between the rational numbers and the real numbers, we will
be excessively precise about how we phrase this assumption, hereafter referred
to as the Axiom of Completeness.

Axiom of Completeness. Every nonempty set of real numbers that is bounded
above has a least upper bound.

Now, what exactly does this mean?

Least Upper Bounds and Greatest Lower Bounds

Let’s first state the relevant definitions, and then look at some examples.

Definition 1.3.1. A set A ⊆ R is bounded above if there exists a number b ∈ R
such that a ≤ b for all a ∈ A. The number b is called an upper bound for A.

Similarly, the set A is bounded below if there exists a lower bound l ∈ R
satisfying l ≤ a for every a ∈ A.

Definition 1.3.2. A real number s is the least upper bound for a set A ⊆ R if
it meets the following two criteria:

(i) s is an upper bound for A;

(ii) if b is any upper bound for A, then s ≤ b.

The least upper bound is also frequently called the supremum of the set A.
Although the notation s = lubA is still common, we will always write s = supA
for the least upper bound.

The greatest lower bound or infimum for A is defined in a similar way (Ex-
ercise 1.3.2) and is denoted by inf A (Fig. 1.3).

Although a set can have a host of upper bounds, it can have only one least
upper bound. If s1 and s2 are both least upper bounds for a set A, then
by property (ii) in Definition 1.3.2 we can assert s1 ≤ s2 and s2 ≤ s1. The
conclusion is that s1 = s2 and least upper bounds are unique.
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︸ ︷︷ ︸
lower bounds
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upper bounds✻
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Figure 1.3: Definition of supA and inf A.

Example 1.3.3. Let

A =
{
1
n
: n ∈ N

}
=
{
1,
1
2
,
1
3
, . . .

}
.

The set A is bounded above and below. Successful candidates for an upper
bound include 3, 2, and 3/2. For the least upper bound, we claim supA = 1.
To argue this rigorously using Definition 1.3.2, we need to verify that properties
(i) and (ii) hold. For (i), we just observe that 1 ≥ 1/n for all choices of n ∈ N.
To verify (ii), we begin by assuming we are in possession of some other upper
bound b. Because 1 ∈ A and b is an upper bound for A, we must have 1 ≤ b.
This is precisely what property (ii) asks us to show.

Although we do not quite have the tools we need for a rigorous proof (see
Theorem 1.4.2), it should be somewhat apparent that inf A = 0.

An important lesson to take from Example 1.3.3 is that supA and inf A may
or may not be elements of the set A. This issue is tied to understanding the
crucial difference between the maximum and the supremum (or the minimum
and the infimum) of a given set.

Definition 1.3.4. A real number a0 is a maximum of the set A if a0 is an
element of A and a0 ≥ a for all a ∈ A. Similarly, a number a1 is a minimum of
A if a1 ∈ A and a1 ≤ a for every a ∈ A.

Example 1.3.5. To belabor the point, consider the open interval

(0, 2) = {x ∈ R : 0 < x < 2},
and the closed interval

[0, 2] = {x ∈ R : 0 ≤ x ≤ 2}.
Both sets are bounded above (and below), and both have the same least upper
bound, namely 2. It is not the case, however, that both sets have a maximum.
A maximum is a specific type of upper bound that is required to be an element
of the set in question, and the open interval (0, 2) does not possess such an
element. Thus, the supremum can exist and not be a maximum, but when a
maximum exists then it is also the supremum.
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Let’s turn our attention back to the Axiom of Completeness. Although we
can see now that not every nonempty bounded set contains a maximum, the
Axiom of Completeness asserts that every such set does have a least upper
bound. We are not going to prove this. An axiom in mathematics is an ac-
cepted assumption, to be used without proof. Preferably, an axiom should be
an elementary statement about the system in question that is so fundamental
that it seems to need no justification. Perhaps the Axiom of Completeness fits
this description, and perhaps it does not. Before deciding, let’s remind ourselves
why it is not a valid statement about Q.

Example 1.3.6. Consider again the set

S = {r ∈ Q : r2 < 2},

and pretend for the moment that our world consists only of rational numbers.
The set S is certainly bounded above. Taking b = 2 works, as does b = 3/2. But
notice what happens as we go in search of the least upper bound. (It may be
useful here to know that the decimal expansion for

√
2 begins 1.4142 . . . .) We

might try b = 142/100, which is indeed an upper bound, but then we discover
that b = 1415/1000 is an upper bound that is smaller still. Is there a smallest
one?

In the rational numbers, there is not. In the real numbers, there is. Back
in R, the Axiom of Completeness states that we may set α = supS and be
confident that such a number exists. In the next section, we will prove that
α2 = 2. But according to Theorem 1.1.1, this implies α is not a rational
number. If we are restricting our attention to only rational numbers, then α
is not an allowable option for supS, and the search for a least upper bound
goes on indefinitely. Whatever rational upper bound is discovered, it is always
possible to find one smaller.

The tools needed to carry out the computations described in Example 1.3.6
depend on some results about how Q and N fit inside of R. These are discussed
in the next section.

We now give an equivalent and useful way of characterizing least upper
bounds. Recall that Definition 1.3.2 of the supremum has two parts. Part (i)
says that supA must be an upper bound, and part (ii) states that it must be
the smallest one. The following lemma offers an alternative way to restate part
(ii).

Lemma 1.3.7. Assume s ∈ R is an upper bound for a set A ⊆ R. Then,
s = supA if and only if, for every choice of ε > 0, there exists an element a ∈ A
satisfying s− ε < a.

Proof. Here is a short rephrasing of the lemma: Given that s is an upper bound,
s is the least upper bound if and only if any number smaller than s is not an
upper bound. Putting it this way almost qualifies as a proof, but we will expand
on what exactly is being said in each direction.
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(⇒) For the forward direction, we assume s = supA and consider s−ε, where
ε > 0 has been arbitrarily chosen. Because s− ε < s, part (ii) of Definition 1.3.2
implies that s − ε is not an upper bound for A. If this is the case, then there
must be some element a ∈ A for which s− ε < a (because otherwise s− ε would
be an upper bound). This proves the lemma in one direction.

(⇐) Conversely, assume s is an upper bound with the property that no
matter how ε > 0 is chosen, s − ε is no longer an upper bound for A. Notice
that what this implies is that if b is any number less than s, then b is not an
upper bound. (Just let ε = s− b.) To prove that s = supA, we must verify part
(ii) of Definition 1.3.2. (Read it again.) Because we have just argued that any
number smaller than s cannot be an upper bound, it follows that if b is some
other upper bound for A, then b ≥ s.

It is certainly the case that all of our conclusions to this point about least
upper bounds have analogous versions for greatest lower bounds. The Axiom of
Completeness does not explicitly assert that a nonempty set bounded below has
an infimum, but this is because we do not need to assume this fact as part of
the axiom. Using the Axiom of Completeness, there are several ways to prove
that greatest lower bounds exist for bounded sets. One such proof is explored
in Exercise 1.3.3.

Exercises

Exercise 1.3.1. Let Z5 = {0, 1, 2, 3, 4} and define addition and multiplication
modulo 5. In other words, compute the integer remainder when a+b and ab are
divided by 5, and use this as the value for the sum and product, respectively.

(a) Show that, given any element z ∈ Z5, there exists an element y such that
z + y = 0. The element y is called the additive inverse of z.

(b) Show that, given any z �= 0 in Z5, there exists an element x such that
zx = 1. The element x is called the multiplicative inverse of z.

(c) The existence of additive and multiplicative inverses is part of the def-
inition of a field. Investigate the set Z4 = {0, 1, 2, 3} (where addition and
multiplication are defined modulo 4) for the existence of additive and multi-
plicative inverses. Make a conjecture about the values of n for which additive
inverses exist in Zn, and then form another conjecture about the existence of
multiplicative inverses.

Exercise 1.3.2. (a) Write a formal definition in the style of Definition 1.3.2
for the infimum or greatest lower bound of a set.

(b) Now, state and prove a version of Lemma 1.3.7 for greatest lower bounds.

Exercise 1.3.3. (a) Let A be bounded below, and define B = {b ∈ R :
b is a lower bound for A}. Show that supB = inf A.

(b) Use (a) to explain why there is no need to assert that greatest upper
bounds exist as part of the Axiom of Completeness.

(c) Propose another way to use the Axiom of Completeness to prove that
sets bounded below have greatest lower bounds.
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Exercise 1.3.4. Assume that A and B are nonempty, bounded above, and
satisfy B ⊆ A. Show supB ≤ supA.

Exercise 1.3.5. Let A ⊆ R be bounded above, and let c ∈ R. Define the sets
c+A and cA by c+A = {c+ a : a ∈ A} and cA = {ca : a ∈ A}.

(a) Show that sup(c+A) = c+ supA.
(b) If c ≥ 0, show that sup(cA) = c supA.
(c) Postulate a similar type of statement for sup(cA) for the case c < 0.

Exercise 1.3.6. Compute, without proofs, the suprema and infima of the fol-
lowing sets:

(a) {n ∈ N : n2 < 10}.
(b) {n/(m+ n) : m,n ∈ N}.
(c) {n/(2n+ 1) : n ∈ N}.
(d) {n/m : m,n ∈ N with m+ n ≤ 10}.

Exercise 1.3.7. Prove that if a is an upper bound for A, and if a is also an
element of A, then it must be that a = supA.

Exercise 1.3.8. If supA < supB, then show that there exists an element b ∈ B
that is an upper bound for A.

Exercise 1.3.9. Without worrying about formal proofs for the moment, decide
if the following statements about suprema and infima are true or false. For any
that are false, supply an example where the claim in question does not appear
to hold.

(a) A finite, nonempty set always contains its supremum.
(b) If a < L for every element a in the set A, then supA < L.
(c) If A and B are sets with the property that a < b for every a ∈ A and

every b ∈ B, then it follows that supA < inf B.
(d) If supA = s and supB = t, then sup(A+B) = s+ t. The set A+B is

defined as A+B = {a+ b : a ∈ A and b ∈ B}.
(e) If supA ≤ supB, then there exists an element b ∈ B that is an upper

bound for A.

1.4 Consequences of Completeness

The first application of the Axiom of Completeness is a result that may look
like a more natural way to mathematically express the sentiment that the real
line contains no gaps.

Theorem 1.4.1 (Nested Interval Property). For each n ∈ N, assume we
are given a closed interval In = [an, bn] = {x ∈ R : an ≤ x ≤ bn}. Assume
also that each In contains In+1. Then, the resulting nested sequence of closed
intervals

I1 ⊇ I2 ⊇ I3 ⊇ I4 ⊇ · · ·
has a nonempty intersection; that is,

⋂∞
n=1 In �= ∅.
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Proof. In order to show that
⋂∞

n=1 In is not empty, we are going to use the
Axiom of Completeness (AoC) to produce a single real number x satisfying
x ∈ In for every n ∈ N. Now, AoC is a statement about bounded sets, and the
one we want to consider is the set

A = {an : n ∈ N}
of left-hand endpoints of the intervals.

A={an: n∈N}︷ ︸︸ ︷
a1 a2 a3 · · · an · · · · · · bn · · · b3 b2 b1

[ [ [ [ ] ] ] ]

Because the intervals are nested, we see that every bn serves as an upper bound
for A. Thus, we are justified in setting

x = supA.

Now, consider a particular In = [an, bn]. Because x is an upper bound for A,
we have an ≤ x. The fact that each bn is an upper bound for A and that x is
the least upper bound implies x ≤ bn.

Altogether then, we have an ≤ x ≤ bn, which means x ∈ In for every choice
of n ∈ N. Hence, x ∈ ⋂∞

n=1 In, and the intersection is not empty.

The Density of Q in R

The set Q is an extension of N, and R in turn is an extension of Q. The next
few results indicate how N and Q sit inside of R.

Theorem 1.4.2 (Archimedean Property). (i) Given any number x ∈ R,
there exists an n ∈ N satisfying n > x.

(ii) Given any real number y > 0, there exists an n ∈ N satisfying 1/n < y.

Proof. Part (i) of the proposition states that N is not bounded above. There
has never been any doubt about the truth of this, and it could be reasonably
argued that we should not have to prove it at all. This is a legitimate point
of view, especially in light of the fact that we have decided to assume other
familiar properties of N, Z, and Q as given.

The counterargument is that we will prove it because we can. A set can pos-
sess the Archimedean property without being complete—Q is a fine example—
but a demonstration of this fact requires a good deal of scrutiny into the ax-
iomatic construction of the ordered field in question. In the case of R, the
Axiom of Completeness furnishes us with a very short argument. A large num-
ber of deep results ultimately depend on this relationship between R and N, so
having a proof for it adds a little extra certainty to these upcoming arguments.

And so to the proof. Assume, for contradiction, that N is bounded above.
By the Axiom of Completeness (AoC),N should then have a least upper bound,
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and we can set α = supN. If we consider α − 1, then we no longer have an
upper bound (see Lemma 1.3.7), and therefore there exists an n ∈ N satisfying
α − 1 < n. But this is equivalent to α < n + 1. Because n + 1 ∈ N, we have
a contradiction to the fact that α is supposed to be an upper bound for N.
(Notice that the contradiction here depends only on AoC and the fact that N
is closed under addition.)

Part (ii) follows from (i) by letting x = 1/y.

This familiar property of N is the key to an extremely important fact about
how Q fits inside of R.

Theorem 1.4.3 (Density of Q in R). For every two real numbers a and b
with a < b, there exists a rational number r satisfying a < r < b.

Proof. To simplify matters, let’s assume 0 ≤ a < b. The case where a < 0
follows quickly from this one (Exercise 1.4.1). A rational number is a quotient
of integers, so we must produce m,n ∈ N so that

(1) a <
m

n
< b.

The first step is to choose the denominator n large enough so that consecutive
increments of size 1/n are too close together to “step over” the interval (a, b).

• •
0 a b

1
n

2
n

3
n · · · m−1

n
m
n

Using Theorem 1.4.2, we may pick n ∈ N large enough so that

(2)
1
n

< b− a.

Multiplying inequality (1) by n gives na < m < nb. With n already chosen, the
idea now is to choose m to be the smallest natural number greater than na. In
other words, pick m ∈ N so that

m− 1
(3)
≤ na

(4)
< m.

Now, inequality (4) immediately yields a < m/n, which is half of the battle.
Keeping in mind that inequality (2) is equivalent to a < b− 1/n, we can use (3)
to write

m ≤ na+ 1

< n

(
b− 1

n

)
+ 1

= nb.

Because m < nb implies m/n < b, we have a < m/n < b, as desired.
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Theorem 1.4.3 is paraphrased by saying that Q is dense in R. Without
working too hard, we can use this result to show that the irrational numbers
are dense in R as well.

Corollary 1.4.4. Given any two real numbers a < b, there exists an irrational
number t satisfying a < t < b.

Proof. Exercise 1.4.3.

The Existence of Square Roots

It is time to tend to some unfinished business left over from Example 1.3.6 and
this chapter’s opening discussion.

Theorem 1.4.5. There exists a real number α ∈ R satisfying α2 = 2.

Proof. After reviewing Example 1.3.6, consider the set

T = {t ∈ R : t2 < 2}

and set α = supT . We are going to prove α2 = 2 by ruling out the possibilities
α2 < 2 and α2 > 2. Keep in mind that there are two parts to the definition of
supT , and they will both be important. (This always happens when a supremum
is used in an argument.) The strategy is to demonstrate that α2 < 2 violates
the fact that α is an upper bound for T , and α2 > 2 violates the fact that it is
the least upper bound.

Let’s first see what happens if we assume α2 < 2. In search of an element of
T that is larger than α, write(

α+
1
n

)2

= α2 +
2α
n
+

1
n2

< α2 +
2α
n
+
1
n

= α2 +
2α+ 1

n
.

But now assuming α2 < 2 gives us a little space in which to fit the (2α+ 1)/n
term and keep the total less than 2. Specifically, choose n0 ∈ N large enough
so that

1
n0

<
2− α2

2α+ 1
.

This implies (2α+ 1)/n0 < 2− α2, and consequently that(
α+

1
n0

)2

< α2 + (2− α2) = 2.

Thus, α+1/n0 ∈ T , contradicting the fact that α is an upper bound for T . We
conclude that α2 < 2 cannot happen.



22 Chapter 1. The Real Numbers

Now, what about the case α2 > 2? This time, write(
α− 1

n

)2

= α2 − 2α
n
+

1
n2

> α2 − 2α
n

.

The remainder of the argument is requested in Exercise 1.4.6.

A small modification of this proof can be used to show that
√
x exists for

any x ≥ 0. A formula for expanding (α+ 1/n)m called the binomial formula
can be used to show that m

√
x exists for arbitrary values of m ∈ N.

Countable and Uncountable Sets

The applications of the Axiom of Completeness to this point have basically
served to restore our confidence in properties we already felt we knew about the
real number system. One final consequence of completeness that we are about
to present is of a very different nature and, on its own, represents an astounding
intellectual discovery. The traditional way that mathematics gets done is by
one mathematician modifying and expanding on the work of those who came
before. This model does not seem to apply to Georg Cantor (1845–1918), at
least with regard to his work on the theory of infinite sets.

At the moment, we have an image ofR as consisting of rational and irrational
numbers, continuously packed together along the real line. We have seen that
both Q and I (the set of irrationals) are dense in R, meaning that in every
interval (a, b) there exist rational and irrational numbers alike. Mentally, there
is a temptation to think of Q and I as being intricately mixed together in equal
proportions, but this turns out not to be the case. In a way that Cantor made
precise, the irrational numbers far outnumber the rational numbers in making
up the real line.

Cardinality

The term cardinality is used in mathematics to refer to the size of a set. The
cardinalities of finite sets can be compared simply by attaching a natural number
to each set. The set of Snow White’s dwarfs is smaller than the set of United
States Supreme Court Justices because 7 is less than 9. But how might we
draw this same conclusion without referring to any numbers? Cantor’s idea was
to attempt to put the sets into a 1–1 correspondence with each other. There
are fewer dwarfs than Justices because, if the dwarfs were all simultaneously
appointed to the bench, there would still be two empty chairs to fill. On the
other hand, the cardinality of the Supreme Court is the same as the cardinality
of the set of fielders on a baseball team. This is because, when the judges take
the field, it is possible to arrange them so that there is exactly one judge at
every position.
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The advantage of this method of comparing the sizes of sets is that it works
equally well on sets that are infinite.

Definition 1.4.6. A function f : A → B is one-to-one (1–1) if a1 �= a2 in A
implies that f(a1) �= f(a2) in B. The function f is onto if, given any b ∈ B, it
is possible to find an element a ∈ A for which f(a) = b.

A function f : A → B that is both 1–1 and onto provides us with exactly
what we mean by a 1–1 correspondence between two sets. The property of
being 1–1 means that no two elements of A correspond to the same element of
B (no two judges are playing the same position), and the property of being onto
ensures that every element of B corresponds to something in A (there is a judge
at every position).

Definition 1.4.7. Two sets A and B have the same cardinality if there exists
f : A → B that is 1–1 and onto. In this case, we write A ∼ B.

Example 1.4.8. (i) If we let E = {2, 4, 6, . . . } be the set of even natural num-
bers, then we can show N ∼ E. To see why, let f : N → E be given by
f(n) = 2n.

N : 1 2 3 4 · · · n · · ·
� � � � · · · �

E : 2 4 6 8 · · · 2n · · ·

It is certainly true that E is a proper subset of N, and for this reason it may
seem logical to say that E is a “smaller” set than N. This is one way to look at
it, but it represents a point of view that is heavily biased from an overexposure
to finite sets. The definition of cardinality is quite specific, and from this point
of view E and N are equivalent.

(ii) To make this point again, note that although N is contained in Z as a
proper subset, we can show N ∼ Z. This time let

f(n) =
{
(n− 1)/2 if n is odd
−n/2 if n is even.

The important details to verify are that f does not map any two natural numbers
to the same element of Z (f is 1–1) and that every element of Z gets “hit” by
something in N (f is onto).

N : 1 2 3 4 5 6 7 · · ·
� � � � � � �

Z : 0 −1 1 −2 2 −3 3 · · ·



24 Chapter 1. The Real Numbers

• •−1 1

Figure 1.4: (−1, 1) ∼ R using f(x) = x/(x2 − 1).

Example 1.4.9. A little calculus (which we will not supply) shows that the
function f(x) = x/(x2 − 1) takes the interval (−1, 1) onto R in a 1–1 fashion
(Fig. 1.4). Thus (−1, 1) ∼ R. In fact, (a, b) ∼ R for any interval (a, b).

Countable Sets

Definition 1.4.10. A set A is countable if N ∼ A. An infinite set that is not
countable is called an uncountable set.

From Example 1.4.8, we see that both E and Z are countable sets. Putting
a set into a 1–1 correspondence with N, in effect, means putting all of the
elements into an infinitely long list or sequence. Looking at Example 1.4.8, we
can see that this was quite easy to do for E and required only a modest bit
of shuffling for the set Z. A natural question arises as to whether all infinite
sets are countable. Given some infinite set such as Q or R, it might seem as
though, with enough cleverness, we should be able to fit all the elements of our
set into a single list (i.e., into a correspondence with N). After all, this list is
infinitely long so there should be plenty of room. But alas, as Hardy remarks,
“[The mathematician’s] subject is the most curious of all—there is none in which
truth plays such odd pranks.”

Theorem 1.4.11. (i) The set Q is countable. (ii) The set R is uncountable.

Proof. (i) For each n ∈ N, let An be the set given by

An =
{
±p

q
: where p, q ∈ N are in lowest terms with p+ q = n

}
.
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The first few of these sets look like

A1 =
{
0
1

}
, A2 =

{
1
1
,
−1
1

}
, A3 =

{
1
2
,
−1
2

,
2
1
,
−2
1

}
,

A4 =
{
1
3
,
−1
3

,
3
1
,
−3
1

}
, and A5 =

{
1
4
,
−1
4

,
2
3
,
−2
3

,
3
2
,
−3
2

,
4
1
,
−4
1

}
.

The crucial observation is that each An is finite and every rational number
appears in exactly one of these sets. Our 1–1 correspondence with N is then
achieved by consecutively listing the elements in each An.

N : 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
� � � � � � � � � � � �

Q : 0
1

1
1 − 1

1
1
2 − 1

2
2
1 − 2

1
1
3 − 1

3
3
1 − 3

1
1
4 · · ·︸︷︷︸

A1

︸ ︷︷ ︸
A2

︸ ︷︷ ︸
A3

︸ ︷︷ ︸
A4

Admittedly, writing an explicit formula for this correspondence would be an
awkward task, and attempting to do so is not the best use of time. What
matters is that we see why every rational number appears in the correspondence
exactly once. Given, say, 22/7, we have that 22/7 ∈ A29. Because the set of
elements in A1, . . . , A28 is finite, we can be confident that 22/7 eventually gets
included in the sequence. The fact that this line of reasoning applies to any
rational number p/q is our proof that the correspondence is onto. To verify
that it is 1–1, we observe that the sets An were constructed to be disjoint so
that no rational number appears twice. This completes the proof of (i).

(ii) The second statement of Theorem 1.4.11 is the truly unexpected part,
and its proof is done by contradiction. Assume that there does exist a 1–1,
onto function f : N → R. Again, what this suggests is that it is possible to
enumerate the elements of R. If we let x1 = f(1), x2 = f(2), and so on, then
our assumption that f is onto means that we can write

(1) R = {x1, x2, x3, x4, . . . }
and be confident that every real number appears somewhere on the list. We
will now use the Nested Interval Property (Theorem 1.4.1) to produce a real
number that is not there.

Let I1 be a closed interval that does not contain x1. Next, let I2 be a closed
interval, contained in I1, which does not contain x2. The existence of such an
I2 is easy to verify. Certainly I1 contains two smaller disjoint closed intervals,
and x2 can only be in one of these. In general, given an interval In, construct
In+1 to satisfy

(i) In+1 ⊆ In and

(ii) xn+1 /∈ In+1.
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[ [ ] ]• •
xn+1 xn︸ ︷︷ ︸

In+1

In︷ ︸︸ ︷

We now consider the intersection
⋂∞

n=1 In. If xn0 is some real number from the
list in (1), then we have xn0 /∈ In0 , and it follows that

xn0 /∈
∞⋂
n=1

In.

Now, we are assuming that the list in (1) contains every real number, and this
leads to the conclusion that ∞⋂

n=1

In = ∅.

However, the Nested Interval Property (NIP) asserts that
⋂∞

n=1 In �= ∅. By
NIP, there is at least one x ∈ ⋂∞

n=1 In that, consequently, cannot be on the list
in (1). This contradiction means that such an enumeration of R is impossible,
and we conclude that R is an uncountable set.

What exactly should we make of this discovery? It is an important exercise
to show that any subset of a countable set must be either countable or finite.
This should not be too surprising. If a set can be arranged into a single list, then
deleting some elements from this list results in another (shorter, and potentially
terminating) list. This means that countable sets are the smallest type of infinite
set. Anything smaller is either still countable or finite.

The force of Theorem 1.4.11 is that the cardinality of R is, informally speak-
ing, a larger type of infinity. The real numbers so outnumber the natural num-
bers that there is no way to map N onto R. No matter how we attempt this,
there are always real numbers to spare. The set Q, on the other hand, is count-
able. As far as infinite sets are concerned, this is as small as it gets. What does
this imply about the set I of irrational numbers? By imitating the demonstra-
tion that N ∼ Z, we can prove that the union of two countable sets must be
countable. Because R = Q ∪ I, it follows that I cannot be countable because
otherwise R would be. The inescapable conclusion is that, despite the fact that
we have encountered so few of them, the irrational numbers form a far greater
subset of R than Q.

The properties of countable sets described in this discussion are useful for a
few exercises in upcoming chapters. For easier reference, we state them as some
final propositions and outline their proofs in the exercises that follow.

Theorem 1.4.12. If A ⊆ B and B is countable, then A is either countable,
finite, or empty.

Theorem 1.4.13. (i) If A1, A2, . . . Am are each countable sets, then the union
A1 ∪A2 ∪ · · · ∪Am is countable.

(ii) If An is a countable set for each n ∈ N, then
⋃∞

n=1 An is countable.
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Exercises

Exercise 1.4.1. Without doing too much work, show how to prove Theorem
1.4.3 in the case where a < 0 by converting this case into the one already proven.

Exercise 1.4.2. Recall that I stands for the set of irrational numbers.
(a) Show that if a, b ∈ Q, then ab and a+ b are elements of Q as well.
(b) Show that if a ∈ Q and t ∈ I, then a+ t ∈ I and at ∈ I as long as a �= 0.
(c) Part (a) can be summarized by saying that Q is closed under addition

and multiplication. Is I closed under addition and multiplication? Given two
irrational numbers s and t, what can we say about s+ t and st?

Exercise 1.4.3. Using Exercise 1.4.2, supply a proof for Corollary 1.4.4 by
applying Theorem 1.4.3 to the real numbers a−√

2 and b−√
2.

Exercise 1.4.4. Use the Archimedean Property of R to rigorously prove that
inf{1/n : n ∈ N} = 0.

Exercise 1.4.5. Prove that
⋂∞

n=1(0, 1/n) = ∅. Notice that this demonstrates
that the intervals in the Nested Interval Property must be closed for the con-
clusion of the theorem to hold.

Exercise 1.4.6. (a) Finish the proof of Theorem 1.4.5 by showing that the
assumption α2 > 2 leads to a contradiction of the fact that α = supT .

(b) Modify this argument to prove the existence of
√
b for any real number

b ≥ 0.

Exercise 1.4.7. Finish the following proof for Theorem 1.4.12.
Assume B is a countable set. Thus, there exists f : N → B, which is 1–1

and onto. Let A ⊆ B be an infinite subset of B. We must show that A is
countable.

Let n1 = min{n ∈ N : f(n) ∈ A}. As a start to a definition of g : N → A,
set g(1) = f(n1). Show how to inductively continue this process to produce a
1–1 function g from N onto A.

Exercise 1.4.8. Use the following outline to supply proofs for the statements
in Theorem 1.4.13.

(a) First, prove statement (i) for two countable sets, A1 and A2. Example
1.4.8 (ii) may be a useful reference. Some technicalities can be avoided by first
replacing A2 with the set B2 = A2\A1 = {x ∈ A2 : x /∈ A1}. The point of
this is that the union A1 ∪ B2 is equal to A1 ∪ A2 and the sets A1 and B2 are
disjoint. (What happens if B2 is finite?)

Now, explain how the more general statement in (i) follows.
(b) Explain why induction cannot be used to prove part (ii) of Theorem

1.4.13 from part (i).
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(c) Show how arranging N into the two-dimensional array

1 3 6 10 15 · · ·
2 5 9 14 · · ·
4 8 13 · · ·
7 12 · · ·
11 · · ·
...

leads to a proof of Theorem 1.4.13 (ii).

Exercise 1.4.9. (a) Given sets A and B, explain why A ∼ B is equivalent to
asserting B ∼ A.

(b) For three sets A,B, and C, show that A ∼ B and B ∼ C implies A ∼ C.
These two properties are what is meant by saying that ∼ is an equivalence
relation.

Exercise 1.4.10. Show that the set of all finite subsets of N is a countable set.
(It turns out that the set of all subsets of N is not a countable set. This is the
topic of Section 1.5.)

Exercise 1.4.11. Consider the open interval (0,1), and let S be the set of
points in the open unit square; that is, S = {(x, y) : 0 < x, y < 1}.

(a) Find a 1–1 function that maps (0, 1) into, but not necessarily onto, S.
(This is easy.)

(b) Use the fact that every real number has a decimal expansion to produce
a 1–1 function that maps S into (0, 1). Discuss whether the formulated function
is onto. (Keep in mind that any terminating decimal expansion such as .235
represents the same real number as .234999 . . . .)

The Schröder–Bernstein Theorem discussed in Exercise 1.4.13 to follow can
now be applied to conclude that (0, 1) ∼ S.

Exercise 1.4.12. A real number x ∈ R is called algebraic if there exist integers
a0, a1, a2, . . . , an ∈ Z, not all zero, such that

anx
n + an1x

n−1 + · · ·+ a1x+ a0 = 0.

Said another way, a real number is algebraic if it is the root of a polynomial with
integer coefficients. Real numbers that are not algebraic are called transcenden-
tal numbers. Reread the last paragraph of Section 1.1. The final question posed
here is closely related to the question of whether or not transcendental numbers
exist.

(a) Show that
√
2, 3

√
2, and

√
3 +

√
2 are algebraic.

(b) Fix n ∈ N, and let An be the algebraic numbers obtained as roots of
polynomials with integer coefficients that have degree n. Using the fact that
every polynomial has a finite number of roots, show that An is countable. (For
each m ∈ N, consider polynomials anxn+ an1x

n−1+ · · ·+ a1x+ a0 that satisfy
|an|+ |an−1|+ · · ·+ |a1|+ |a0| ≤ m.)
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(c) Now, argue that the set of all algebraic numbers is countable. What may
we conclude about the set of transcendental numbers?

Exercise 1.4.13 (Schröder–Bernstein Theorem). Assume there exists a 1–
1 function f : X → Y and another 1–1 function g : Y → X. Follow the steps to
show that there exists a 1–1, onto function h : X → Y and hence X ∼ Y .

(a) The range of f is defined by f(X) = {y ∈ Y : y = f(x) for some x ∈ X}.
Let y ∈ f(X). (Because f is not necessarily onto, the range f(X) may not be
all of Y .) Explain why there exists a unique x ∈ X such that f(x) = y. Now
define f−1(y) = x, and show that f−1 is a 1–1 function from f(X) onto X.

In a similar way, we can also define the 1–1 function g−1 : g(X)→ Y .
(b) Let x ∈ X be arbitrary. Let the chain Cx be the set consisting of all

elements of the form

(1) . . . , f−1(g−1(x)), g−1(x), x, f(x), g(f(x)), f(g(f(x))), . . . .

Explain why the number of elements to the left of x in the above chain may be
zero, finite, or infinite.

(c) Show that any two chains are either identical or completely disjoint.
(d) Note that the terms of the chain in (1) alternate between elements of X

and elements of Y . Given a chain Cx, we want to focus on Cx∩Y , which is just
the part of the chain that sits in Y .

Define the set A to be the union of all chains Cx satisfying Cx ∩ Y ⊆ f(X).
Let B consist of the union of the remaining chains not in A. Show that any
chain contained in B must be of the form

y, g(y), f(g(y)), g(f(g(y))), . . . ,

where y is an element of Y that is not in f(X).
(e) Let X1 = A ∩X, X2 = B ∩X, Y1 = A ∩ Y , and Y2 = B ∩ Y . Show that

f maps X1 onto Y1 and that g maps Y2 onto X2. Use this information to prove
X ∼ Y .

1.5 Cantor’s Theorem

Cantor’s work into the theory of infinite sets extends far beyond the conclusions
of Theorem 1.4.11. Although initially resisted, his creative and relentless assault
in this area eventually produced a revolution in set theory and a paradigm shift
in the way mathematicians came to understand the infinite.

Cantor’s Diagonalization Method

The proof presented for Theorem 1.4.11 (ii) is different from any of the argu-
ments that Cantor gave for this result. It was chosen because of how directly
it reveals the connection between the concepts of uncountability and complete-
ness, and because the technique of using nested intervals will be used several
more times in our work ahead.
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Cantor initially published his discovery thatR is uncountable in 1874, but in
1891 he offered another proof of this same fact that is startling in its simplicity.
It relies on decimal representations for real numbers, which we will accept and
use without any formal definitions.

Theorem 1.5.1. The open interval (0, 1) = {x ∈ R : 0 < x < 1} is uncount-
able.

Exercise 1.5.1. Show that (0, 1) is uncountable if and only ifR is uncountable.
This shows that Theorem 1.5.1 is equivalent to Theorem 1.4.11.

Proof. As with Theorem 1.4.11, we proceed by contradiction and assume that
there does exist a function f : N→ (0, 1) that is 1–1 and onto. For each m ∈ N,
f(m) is a real number between 0 and 1, and we represent it using the decimal
notation

f(m) = .am1am2am3am4am5 . . . .

What is meant here is that for each m,n ∈ N, amn is the digit from the set
{0, 1, 2, . . . , 9} that represents the nth digit in the decimal expansion of f(m).
The 1–1 correspondence between N and (0, 1) can be summarized in the doubly
indexed array

N (0, 1)
1 ←→ f(1) = .a11 a12 a13 a14 a15 a16 · · ·
2 ←→ f(2) = .a21 a22 a23 a24 a25 a26 · · ·
3 ←→ f(3) = .a31 a32 a33 a34 a35 a36 · · ·
4 ←→ f(4) = .a41 a42 a43 a44 a45 a46 · · ·
5 ←→ f(5) = .a51 a52 a53 a54 a55 a56 · · ·
6 ←→ f(6) = .a61 a62 a63 a64 a65 a66 · · ·
...

...
...

...
...

...
...

...
. . .

The key assumption about this correspondence is that every real number in
(0, 1) is assumed to appear somewhere on the list.

Now for the pearl of the argument. Define a real number x ∈ (0, 1) with the
decimal expansion x = .b1b2b3b4 . . . using the rule

bn =
{
2 if ann �= 2
3 if ann = 2.

Let’s be clear about this. To compute the digit b1, we look at the digit a11 in
the upper left-hand corner of the array. If a11 = 2, then we choose b1 = 3;
otherwise, we set b1 = 2.

Exercise 1.5.2. (a) Explain why the real number x = .b1b2b3b4 . . . cannot be
f(1).

(b) Now, explain why x �= f(2), and in general why x �= f(n) for any n ∈ N.
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(c) Point out the contradiction that arises from these observations and con-
clude that (0, 1) is uncountable.

Exercise 1.5.3. Supply rebuttals to the following complaints about the proof
of Theorem 1.5.1.

(a) Every rational numbers has a decimal expansion so we could apply this
same argument to show that the set of rational numbers between 0 and 1 is un-
countable. However, because we know that any subset of Q must be countable,
the proof of Theorem 1.5.1 must be flawed.

(b) A few numbers have two different decimal representations. Specifically,
any decimal expansion that terminates can also be written with repeating 9’s.
For instance, 1/2 can be written as .5 or as .4999 . . . . Doesn’t this cause some
problems?

Exercise 1.5.4. Let S be the set consisting of all sequences of 0’s and 1’s. Ob-
serve that S is not a particular sequence, but rather a large set whose elements
are sequences; namely,

S = {(a1, a2, a3, . . . ) : an = 0 or 1}.

As an example, the sequence (1, 0, 1, 0, 1, 0, 1, 0, . . . ) is an element of S, as is the
sequence (1, 1, 1, 1, 1, 1, . . . ).

Give a rigorous argument showing that S is uncountable.

Having distinguished between the countable infinity of N and the uncount-
able infinity ofR, a new question that occupied Cantor was whether or not there
existed an infinity “above” that of R. This is logically treacherous territory.
The same care we gave to defining the relationship “has the same cardinality
as” needs to be given to defining relationships such as “has cardinality greater
than” or “has cardinality less than or equal to.” Nevertheless, without getting
too weighed down with formal definitions, one gets a very clear sense from the
next result that there is a hierarchy of infinite sets that continues well beyond
the continuum of R.

Power Sets and Cantor’s Theorem

Given a set A, the power set P (A) refers to the collection of all subsets of A. It
is important to understand that P (A) is itself considered a set whose elements
are the different possible subsets of A.

Exercise 1.5.5. (a) Let A = {a, b, c}. List the eight elements of P (A). (Do
not forget that ∅ is considered to be a subset of every set.)

(b) If A is finite with n elements, show that P (A) has 2n elements. (Con-
structing a particular subset of A can be interpreted as making a series of
decisions about whether or not to include each element of A.)
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Exercise 1.5.6. (a) Using the particular set A = {a, b, c}, exhibit two different
1–1 mappings from A into P (A).

(b) Letting B = {1, 2, 3, 4}, produce an example of a 1–1 map g : B → P (B).
(c) Explain why, in parts (a) and (b), it is impossible to construct mappings

that are onto.

Cantor’s Theorem states that the phenomenon in Exercise 1.5.6 holds for in-
finite sets as well as finite sets. Whereas mapping A into P (A) is quite effortless,
finding an onto map is impossible.

Theorem 1.5.2 (Cantor’s Theorem). Given any set A, there does not exist
a function f : A → P (A) that is onto.

Proof. This proof, like the others of its kind, is indirect. Thus, assume, for
contradiction, that f : A → P (A) is onto. Unlike the usual situation in which
we have sets of numbers for the domain and range, f is a correspondence between
a set and its power set. For each element a ∈ A, f(a) is a particular subset of
A. The assumption that f is onto means that every subset of A appears as f(a)
for some a ∈ A. To arrive at a contradiction, we will produce a subset B ⊆ A
that is not equal to f(a) for any a ∈ A.

Construct B using the following rule. For each element a ∈ A, consider the
subset f(a). This subset of A may contain the element a or it may not. This
depends on the function f . If f(a) does not contain a, then we include a in our
set B. More precisely, let

B = {a ∈ A : a /∈ f(a)}.

Exercise 1.5.7. Return to the particular functions contructed in Exercise 1.5.6
and construct the subset B that results using the preceding rule. In each case,
note that B is not in the range of the function used.

We now focus on the general argument. Because we have assumed that our
function f : A → P (A) is onto, it must be that B = f(a′) for some a′ ∈ A. The
contradiction arises when we consider whether or not a′ is an element of B.

Exercise 1.5.8. (a) First, show that the case a′ ∈ B leads to a contradiction.
(b) Now, finish the argument by showing that the case a′ /∈ B is equally

unacceptable.

Exercise 1.5.9. As a final exercise, answer each of the following by establishing
a 1–1 correspondence with a set of known cardinality.

(a) Is the set of all functions from {0, 1} to N countable or uncountable?
(b) Is the set of all functions from N to {0, 1} countable or uncountable?
(c) Given a set B, a subset A of P (B) is called an antichain if no element

of A is a subset of any other element of A. Does P (N) contain an uncountable
antichain?
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1.6 Epilogue

The relationship of having the same cardinality is an equivalence relation (see
Exercise 1.4.9), meaning, roughly, that all of the sets in the universe can be
organized into disjoint groups according to their size. Two sets appear in the
same group, or equivalence class, if and only if they have the same cardinality.
Thus, N, Z, and Q are grouped together in one class with all of the other
countable sets, whereas R is in another class that includes the interval (0, 1)
among other uncountable sets. One implication of Cantor’s Theorem is that
P (R)—the set of all subsets of R—is in a different class from R, and there is
no reason to stop here. The set of subsets of P (R)—namely P (P (R))—is in
yet another class, and this process continues indefinitely.

Having divided the universe of sets into disjoint groups, it would be con-
venient to attach a “number” to each collection which could be used the way
natural numbers are used to refer to the sizes of finite sets. Given a set X,
there exists something called the cardinal number of X, denoted cardX, which
behaves very much in this fashion. For instance, two sets X and Y satisfy
cardX = cardY if and only if X ∼ Y . (Rigorously defining cardX requires
some significant set theory. One way this is done is to define cardX to be a
very particular set that can always be uniquely found in the same equivalence
class as X.)

Looking back at Cantor’s Theorem, we get the strong sense that there is
an order on the sizes of infinite sets that should be reflected in our new car-
dinal number system. Specifically, if it is possible to map a set X into Y in
a 1–1 fashion, then we want cardX ≤ cardY . Writing the strict inequality
cardX < cardY should indicate that it is possible to map X into Y but that
it is impossible to show X ∼ Y . Restated in this notation, Cantor’s Theorem
states that for every set A, cardA < cardP (A).

There are some significant details to work out. A kind of metaphysical prob-
lem arises when we realize that an implication of Cantor’s Theorem is that there
can be no “largest” set. A declaration such as, “Let U be the set of all possible
things,” is paradoxical because we immediately get that cardU < cardP (U)
and thus the set U does not contain everything it was advertised to hold. Is-
sues such as this one are ultimately resolved by imposing some restrictions on
what can qualify as a set. As set theory was formalized, the axioms had to
be crafted so that objects such as U are simply not allowed. A more down-to-
earth problem in need of attention is demonstrating that our definition of “≤”
between cardinal numbers really is an ordering. This involves showing that car-
dinal numbers possess a property analogous to real numbers, which states that
if cardX ≤ cardY and cardY ≤ cardX, then cardX = cardY . In the end, this
boils down to proving that if there exists f : X → Y that is 1–1, and if there
exists g : Y → X that is 1–1, then it is possible to find a function h : X → Y
that is both 1–1 and onto. A proof of this fact eluded Cantor but was eventu-
ally supplied independently by Ernst Schröder (in 1896) and Felix Bernstein (in
1898). An argument for the Schröder–Bernstein Theorem is outlined in Exercise
1.4.13.
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There was another deep problem stemming from the budding theory of car-
dinal numbers that occupied Cantor and which was not resolved during his
lifetime. Because of the importance of countable sets, the symbol ℵ0 (“aleph
naught”) is frequently used for cardN. The subscript “0” is appropriate when
we remember that countable sets are the smallest type of infinite set. In terms
of cardinal numbers, if cardX < ℵ0, then X is finite. Thus, ℵ0 is the smallest
infinite cardinal number. The cardinality of R is also significant enough to de-
serve the special designation c = cardR = card(0, 1). The content of Theorems
1.4.11 and 1.5.1 is that ℵ0 < c. The question that plagued Cantor was whether
there were any cardinal numbers strictly in between these two. Put another
way, does there exist a set A ⊆ R with cardN < cardA < cardR? Cantor was
of the opinion that no such set existed. In the ordering of cardinal numbers, he
conjectured, c was the immediate successor of ℵ0.

Cantor’s “continuum hypothesis,” as it came to be called, was one of the
most famous mathematical challenges of the past century. Its unexpected res-
olution came in two parts. In 1940, the German logician and mathematician
Kurt Gödel demonstrated that, using only the agreed-upon set of axioms of set
theory, there was no way to disprove the continuum hypothesis. In 1963, Paul
Cohen successfully showed that, under the same rules, it was also impossible to
prove this conjecture. Taken together, what these two discoveries imply is that
the continuum hypothesis is undecidable. It can be accepted or rejected as a
statement about the nature of infinite sets, and in neither case will any logical
contradictions arise.

The mention of Kurt Gödel brings to mind a final comment about the sig-
nificance of Cantor’s work. Gödel is best known for his “Incompleteness The-
orems,” which pertain to the strength of axiomatic systems in general. What
Gödel showed was that any consistent axiomatic system created to study arith-
metic was necessarily destined to be “incomplete” in the sense that there would
always be true statements that the system of axioms would be too weak to
prove. At the heart of Gödel’s very complicated proof is a type of manipula-
tion closely related to what is happening in the proofs of Theorems 1.5.1 and
1.5.2. Variations of Cantor’s proof methods can also be found in the limita-
tive results of computer science. The “halting problem” asks, loosely, whether
some general algorithm exists that can look at every program and decide if that
program eventually terminates. The proof that no such algorithm exists uses a
diagonalization-type construction at the core of the argument. The main point
to make is that not only are the implications of Cantor’s theorems profound
but the argumentative techniques are as well. As a more immediate example of
this phenomenon, the diagonalization method is used again in Chapter 6—in a
constructive way—as a crucial step in the proof of the Arzela–Ascoli Theorem.



Chapter 2

Sequences and Series

2.1 Discussion: Rearrangements of Infinite
Series

Consider the infinite series
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+
1
3
− 1
4
+
1
5
− 1
6
+
1
7
− 1
8
+ · · · .

If we naively begin adding from the left-hand side, we get a sequence of what
are called partial sums. In other words, let sn equal the sum of the first n terms
of the series, so that s1 = 1, s2 = 1/2, s3 = 5/6, s4 = 7/12, and so on. One
immediate observation is that the successive sums oscillate in a progressively
narrower space. The odd sums decrease (s1 > s3 > s5 > . . . ) while the even
sums increase (s2 < s4 < s6 < . . . ).

0 1
• •• • ••

s1s2 s3s4 s5s6 ❄

S≈.69

s2 < s4 < s6 < · · ·S · · · < s5 < s3 < s1

It seems reasonable—and we will soon prove—that the sequence (sn) eventu-
ally hones in on a value, call it S, where the odd and even partial sums “meet”.
At this moment, we cannot compute S precisely, but we know it falls somewhere
between 7/12 and 5/6. Summing a few hundred terms reveals that S ≈ .69.
Whatever its value, there is now an overwhelming temptation to write

(1) S = 1− 1
2
+
1
3
− 1
4
+
1
5
− 1
6
+
1
7
− 1
8
+ · · ·

meaning, perhaps, that if we could indeed add up all infinitely many of these
numbers, then the sum would equal S. A more familiar example of an equation

35
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of this type might be

2 = 1 +
1
2
+
1
4
+
1
8
+

1
16
+

1
32
+

1
64
+ · · · ,

the only difference being that in the second equation we have a more recognizable
value for the sum.

But now for the crux of the matter. The symbols +, −, and = in the preced-
ing equations are deceptively familiar notions being used in a very unfamiliar
way. The crucial question is whether or not properties of addition and equality
that are well understood for finite sums remain valid when applied to infinite ob-
jects such as equation (1). The answer, as we are about to witness, is somewhat
ambiguous.

Treating equation (1) in a standard algebraic way, let’s multiply through by
1/2 and add it back to equation (1):

(2)

1
2S = 1

2 − 1
4 + 1

6 − 1
8 + 1

10 − 1
12 + · · ·

+ S = 1 − 1
2 +

1
3 − 1

4 +
1
5 − 1

6 +
1
7 − 1

8 +
1
9 − 1

10 +
1
11 − 1

12 +
1
13 − · · ·

3
2 S = 1 + 1

3 − 1
2 +

1
5 + 1

7 − 1
4 +

1
9 + 1

11 − 1
6 +

1
13 · · ·

Now, look carefully at the result. The sum in equation (2) consists precisely
of the same terms as those in the original equation (1), only in a different order.
Specifically, the series in (2) is a rearrangement of (1) where we list the first
two positive terms (1 + 1

3 ) followed by the first negative term (− 1
2 ), followed

by the next two positive terms ( 1
5 +

1
7 ) and then the next negative term (− 1

4 ).
Continuing this, it is apparent that every term in (2) appears in (1) and vice
versa. The rub comes when we realize that equation (2) asserts that the sum of
these rearranged, but otherwise unaltered, numbers is equal to 3/2 its original
value. Indeed, adding a few hundred terms of equation (2) produces partial
sums in the neighborhood of 1.03. Addition, in this infinite setting, is not
commutative!

Let’s look at a similar rearrangement of the series
∞∑
n=0

(−1/2)n.

This series is geometric with first term 1 and common ratio r = −1/2. Using
the formula 1/(1− r) for the sum of a geometric series (Example 2.7.5), we get

1− 1
2
+
1
4
− 1
8
+

1
16

− 1
32
+

1
64

− 1
128

+
1
256

· · · = 1
1− (− 1

2 )
=
2
3
.

This time, some computational experimentation with the “two positives, one
negative” rearrangement

1 +
1
4
− 1
2
+

1
16
+

1
64

− 1
8
+

1
256

+
1

1024
− 1
32

· · ·
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yields partial sums quite close to 2/3. The sum of the first 30 terms, for instance,
equals .666667. Infinite addition is commutative in some instances but not in
others.

Far from being a charming theoretical oddity of infinite series, this phe-
nomenon can be the source of great consternation in many applied situations.
How, for instance, should a double summation over two index variables be de-
fined? Let’s say we are given a grid of real numbers {aij : i, j ∈ N}, where
aij = 1/2j−i if j > i, aij = −1 if j = i, and aij = 0 if j < i.



−1 1
2

1
4

1
8

1
16 · · ·

0 −1 1
2

1
4

1
8 · · ·

0 0 −1 1
2

1
4 · · ·

0 0 0 −1 1
2 · · ·

0 0 0 0 −1 · · ·
...

...
...

...
...
. . .




We would like to attach a mathematical meaning to the summation

∞∑
i,j=1

aij

whereby we intend to include every term in the preceding array in the total.
One natural idea is to temporarily fix i and sum across each row. A moment’s
reflection (and a fact about geometric series) shows that each row sums to 0.
Summing the sums of the rows, we get

∞∑
i,j=1

aij =
∞∑
i=1


 ∞∑

j=1

aij


 =

∞∑
i=1

(0) = 0.

We could just as easily have decided to fix j and sum down each column first.
In this case, we have

∞∑
i,j=1

aij =
∞∑
j=1

( ∞∑
i=1

aij

)
=

∞∑
j=1

( −1
2j−1

)
= −2.

Changing the order of the summation changes the value of the sum. One com-
mon way that double sums arise (although not this particular one) is from the
multiplication of two series. There is a natural desire to write(∑

ai

)(∑
bj

)
=
∑
i,j

aibj ,
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except that the expression on the right-hand side makes no sense at the moment.
It is the pathologies that give rise to the need for rigor. A satisfying resolu-

tion to the questions raised will require that we be absolutely precise about what
we mean as we manipulate these infinite objects. It may seem that progress is
slow at first, but that is because we do not want to fall into the trap of letting
the biases of our intuition corrupt our arguments. Rigorous proofs are meant to
be a check on intuition, and in the end we will see that they actually improve
our mental picture of the mathematical infinite. As a final example, consider
something as intuitively fundamental as the associative property of addition
applied to the series

∑∞
n=1(−1)n. Grouping the terms one way gives

(−1 + 1) + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · · = 0 + 0 + 0 + 0 + · · · = 0,

whereas grouping in another yields

−1 + (1− 1) + (1− 1) + (1− 1) + (1− 1) + · · · = −1 + 0+ 0+ 0+ 0+ · · · = −1.
Manipulations that are legitimate in finite settings do not always extend to
infinite settings. Deciding when they do and why they do not is one of the
central themes of analysis.

2.2 The Limit of a Sequence

An understanding of infinite series depends heavily on a clear understanding of
the theory of sequences. In fact, most of the concepts in analysis can be reduced
to statements about the behavior of sequences. Thus, we will spend a significant
amount of time investigating sequences before taking on infinite series.

Definition 2.2.1. A sequence is a function whose domain is N.

This formal definition leads immediately to the familiar depiction of a se-
quence as an ordered list of real numbers. Given a function f : N→ R, f(n) is
just the nth term on the list. The notation for sequences reinforces this familiar
understanding.

Example 2.2.2. Each of the following are common ways to describe a sequence.

(i) (1, 1
2 ,

1
3 ,

1
4 , · · · ),

(ii) ( 1+n
n )∞n=1 = ( 2

1 ,
3
2 ,

4
3 , · · · ),

(iii) (an), where an = 2n for each n ∈ N,

(iv) (xn), where x1 = 2 and xn+1 = xn+1
2 .

On occasion, it will be more convenient to index a sequence beginning with
n = 0 or n = n0 for some natural number n0 different from 1. These minor
variations should cause no confusion. What is essential is that a sequence be an
infinite list of real numbers. What happens at the beginning of such a list is of
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little importance in most cases. The business of analysis is concerned with the
behavior of the infinite “tail” of a given sequence.

We now present what is arguably the most important definition in the book.

Definition 2.2.3 (Convergence of a Sequence). A sequence (an) converges
to a real number a if, for every positive number ε, there exists an N ∈ N such
that whenever n ≥ N it follows that |an − a| < ε.

To indicate that (an) converges to a, we write either lim an = a or (an)→ a.

In an effort to decipher this complicated definition, it helps first to consider
the ending phrase “|an − a| < ε,” and think about the points that satisfy an
inequality of this type.

Definition 2.2.4. Given a real number a ∈ R and a positive number ε > 0,
the set

Vε(a) = {x ∈ R : |x− a| < ε}
is called the ε-neighborhood of a.

Notice that Vε(a) consists of all of those points whose distance from a is less
than ε. Said another way, Vε(a) is an interval, centered at a, with radius ε.

( )

Vε(a)︷ ︸︸ ︷
a− ε a a+ ε

Recasting the definition of convergence in terms of ε-neighborhoods gives a
more geometric impression of what is being described.

Definition 2.2.3B (Convergence of a Sequence: Topological Version).
A sequence (an) converges to a if, given any ε-neighborhood Vε(a) of a, there
exists a point in the sequence after which all of the terms are in Vε(a). In other
words, every ε-neighborhood contains all but a finite number of the terms of
(an).

✲✛ ( )
a−ε a a+ε

Vε(a)︷ ︸︸ ︷
• ••••••••••••••

a1 a2 a3 · · · ❄

aN

Definition 2.2.3 and Definition 2.2.3B say precisely the same thing; the nat-
ural number N in the original version of the definition is the point where the
sequence (an) enters Vε(a), never to leave. It should be apparent that the value
of N depends on the choice of ε. The smaller the ε-neighborhood, the larger N
may have to be.
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Example 2.2.5. Consider the sequence (an), where an = 1/
√
n.

Our intuitive understanding of limits points confidently to the conclusion
that

lim
(
1√
n

)
= 0.

Before trying to prove this not too impressive fact, let’s first explore the rela-
tionship between ε and N in the definition of convergence. For the moment, take
ε to be 1/10. This defines a sort of “target zone” for the terms in the sequence.
By claiming that the limit of (an) is 0, we are saying that the terms in this
sequence eventually get arbitrarily close to 0. How close? What do we mean
by “eventually”? We have set ε = 1/10 as our standard for closeness, which
leads to the ε-neighborhood (−1/10, 1/10) centered around the limit 0. How
far out into the sequence must we look before the terms fall into this interval?
The 100th term a100 = 1/10 puts us right on the boundary, and a little thought
reveals that

if n > 100, then an ∈
(
− 1
10

,
1
10

)
.

Thus, for ε = 1/10 we choose N = 101 (or anything larger) as our response.
Now, our choice of ε = 1/10 was rather whimsical, and we can do this again,

letting ε = 1/50. In this case, our target neighborhood shrinks to (−1/50, 1/50),
and it is apparent that we must travel farther out into the sequence before an
falls into this interval. How far? Essentially, we require that

1√
n

<
1
50

which occurs as long as n > 502 = 2500.

Thus, N = 2501 is a suitable response to the challenge of ε = 1/50.
It may seem as though this duel could continue forever, with different ε

challenges being handed to us one after another, each one requiring a suitable
value of N in response. In a sense, this is correct, except that the game is
effectively over the instant we recognize a rule for how to choose N given an
arbitrary ε > 0. For this problem, the desired algorithm is implicit in the algebra
carried out to compute the previous response of N = 2501. Whatever ε happens
to be, we want

1√
n

< ε which is equivalent to insisting that n >
1
ε2

.

With this observation, we are ready to write the formal argument.

We claim that

lim
(
1√
n

)
= 0.

Proof. Let ε > 0 be an arbitrary positive number. Choose a natural number N
satisfying

N >
1
ε2

.
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We now verify that this choice of N has the desired property. Let n ≥ N . Then,

n >
1
ε2

implies
1√
n

< ε and hence |an − 0| < ε.

Quantifiers

The definition of convergence given ealier is the result of hundreds of years of
refining the intuitive notion of limit into a mathematically rigorous statement.
The logic involved is complicated and is intimately tied to the use of the quan-
tifiers “for all” and “there exists.” Learning to write a grammatically correct
convergence proof goes hand in hand with a deep understanding of why the
quantifiers appear in the order that they do.

The definition begins with the phrase,

“For all ε, there exists N ∈ N such that ...”

Looking back at our first example, we see that our formal proof begins with, “Let
ε > 0 be an arbitrary positive number.” This is followed by a construction of N
and then a demonstration that this choice of N has the desired property. This,
in fact, is a basic outline for how every convergence proof should be presented.

Template for a proof that (xn)→ x:

- “Let ε > 0 be arbitrary.”

- Demonstrate a choice for N ∈ N. This step usually requires the most
work, almost all of which is done prior to actually writing the formal
proof.

- Now, show that N actually works.

- “Assume n ≥ N.”

- With N well chosen, it should be possible to derive the inequality
|xn − x| < ε.

Example 2.2.6. Show

lim
(
n+ 1
n

)
= 1.

As mentioned, before attempting a formal proof, we first need to do some
preliminary scratch work. In the first example, we experimented by assigning
specific values to ε (and it is not a bad idea to do this again), but let us skip
straight to the algebraic punch line. The last line of our proof should be that
for suitably large values of n, ∣∣∣∣n+ 1n

− 1
∣∣∣∣ < ε.
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Because ∣∣∣∣n+ 1n
− 1
∣∣∣∣ = 1

n
,

this is equivalent to the inequality 1/n < ε or n > 1/ε. Thus, choosing N to be
an integer greater than 1/ε will suffice.

With the work of the proof done, all that remains is the formal writeup.

Proof. Let ε > 0 be arbitrary. Choose N ∈ N with N > 1/ε. To verify that
this choice of N is appropriate, let n ∈ N satisfy n ≥ N . Then, n ≥ N implies
n > 1/ε, which is the same as saying 1/n < ε. Finally, this means∣∣∣∣n+ 1n

− 1
∣∣∣∣ < ε,

as desired.

Divergence

Significant insight into the role of the quantifiers in the definition of convergence
can be gained by studying an example of a sequence that does not have a limit.

Example 2.2.7. Consider the sequence(
1,−1

2
,
1
3
,−1
4
,
1
5
,−1
5
,
1
5
,−1
5
,
1
5
,−1
5
,
1
5
,−1
5
,
1
5
,−1
5
, · · ·
)

.

How can we argue that this sequence does not converge to zero? Looking at the
first few terms, it seems the initial evidence actually supports such a conclusion.
Given a challenge of ε = 1/2, a little reflection reveals that after N = 3 all the
terms fall into the neighborhood (−1/2, 1/2). We could also handle ε = 1/4.
(What is the smallest possible N in this case?)

But the definition of convergence says “For all ε > 0...,” and it should be
apparent that there is no response to a choice of ε = 1/10, for instance. This
leads us to an important observation about the logical negation of the definition
of convergence of a sequence. To prove that a particular number x is not the
limit of a sequence (xn), we must produce a single value of ε for which no N ∈ N
works. More generally speaking, the negation of a statement that begins “For
all P, there exists Q...” is the statement, “For at least one P, no Q is possible...”
For instance, how could we disprove the spurious claim that “At every college
in the United States, there is a student who is at least seven feet tall”?

We have argued that the preceding sequence does not converge to 0. Let’s
argue against the claim that it converges to 1/5. Choosing ε = 1/10 produces
the neighborhood (1/10, 3/10). Although the sequence continually revisits this
neighborhood, there is no point at which it enters and never leaves as the defini-
tion requires. Thus, no N exists for ε = 1/10, so the sequence does not converge
to 1/5.

Of course, this sequence does not converge to any other real number, and it
would be more satisfying to simply say that this sequence does not converge.
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Definition 2.2.8. A sequence that does not converge is said to diverge.

Although it is not too difficult, we will postpone arguing for divergence in general
until we develop a more economical divergence criterion later in Section 2.5.

Exercises

Exercise 2.2.1. Verify, using the definition of convergence of a sequence, that
the following sequences converge to the proposed limit.

(a) lim 1
(6n2+1) = 0.

(b) lim 3n+1)
(2n+5) =

3
2 .

(c) lim 2√
n+3 = 0.

Exercise 2.2.2. What happens if we reverse the order of the quantifiers in
Definition 2.2.3?

Definition: A sequence (xn) verconges to x if there exists an ε > 0 such that
for all N ∈ N it is true that n ≥ N implies |xn − x| < ε.

Give an example of a vercongent sequence. Can you give an example of a
vergonent sequence that is divergent? What exactly is being described in this
strange definition?

Exercise 2.2.3. Describe what we would have to demonstrate in order to dis-
prove each of the following statements.

(a) At every college in the United States, there is a student who is at least
seven feet tall.

(b) For all colleges in the United States, there exists a professor who gives
every student a grade of either A or B.

(c) There exists a college in the United States where every student is at least
six feet tall.

Exercise 2.2.4. Argue that the sequence

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, (5 zeros), 1, . . .

does not converge to zero. For what values of ε > 0 does there exist a response
N . For which values of ε > 0 is there no suitable response?

Exercise 2.2.5. Let [[x]] be the greatest integer less than or equal to x. For ex-
ample, [[π]] = 3 and [[3]] = 3. Find lim an and supply proofs for each conclusion
if

(a) an = [[1/n]],
(b) an = [[(10 + n)/2n]].

Reflecting on these examples, comment on the statement following Definition
2.2.3 that “the smaller the ε-neighborhood, the larger N may have to be.”

Exercise 2.2.6. Suppose that for a particular ε > 0 we have found a suitable
value of N that “works” for a given sequence in the sense of Definition 2.2.3.

(a) Then, any larger/smaller (pick one) N will also work for the same ε > 0.
(b) Then, this same N will also work for any larger/smaller value of ε.
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Exercise 2.2.7. Informally speaking, the sequence
√
n “converges to infinity.”

(a) Imitate the logical structure of Definition 2.2.3 to create a rigorous defi-
nition for the mathematical statement limxn =∞. Use this definition to prove
lim

√
n =∞.

(b) What does your definition in (a) say about the particular sequence
(1, 0, 2, 0, 3, 0, 4, 0, 5, 0, . . . )?

Exercise 2.2.8. Here are two useful definitions:

(i) A sequence (an) is eventually in a set A ⊆ R if there exists an N ∈ N
such that an ∈ A for all n ≥ N .

(ii) A sequence (an) is frequently in a set A ⊆ R if, for every N ∈ N, there
exists an n ≥ N such that an ∈ A.

(a) Is the sequence (−1)n eventually or frequently in the set {1}?
(b) Which definition is stronger? Does frequently imply eventually or does

eventually imply frequently?
(c) Give an alternate rephrasing of Definition 2.2.3B using either frequently

or eventually. Which is the term we want?
(d) Suppose an infinite number of terms of a sequence (xn) are equal to

2. Is (xn) necessarily eventually in the interval (1.9, 2.1)? Is it frequently in
(1.9, 2.1)?

2.3 The Algebraic and Order Limit Theorems

The real purpose of creating a rigorous definition for convergence of a sequence is
not to have a tool to verify computational statements such as lim 2n/(n+2) = 2.
Historically, a definition of the limit like Definition 2.2.3 came 150 years after the
founders of calculus began working with intuitive notions of convergence. The
point of having such a logically tight description of convergence is so that we can
confidently state and prove statements about convergence sequences in general.
We are ultimately trying to resolve arguments about what is and is not true
regarding the behavior of limits with respect to the mathematical manipulations
we intend to inflict on them.

As a first example, let us prove that convergent sequences are bounded. The
term“bounded” has a rather familiar connotation but, like everything else, we
need to be explicit about what it means in this context.

Definition 2.3.1. A sequence (xn) is bounded if there exists a number M > 0
such that |xn| ≤ M for all n ∈ N.

Geometrically, this means that we can find an interval [−M,M ] that contains
every term in the sequence (xn).

Theorem 2.3.2. Every convergent sequence is bounded.
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Proof. Assume (xn) converges to a limit l. This means that given a particular
value of ε, say ε = 1, we know there must exist an N ∈ N such that if n ≥ N ,
then xn is in the interval (l − 1, l + 1). Not knowing whether l is positive or
negative, we can certainly conclude that

|xn| < |l|+ 1

for all n ≥ N .

✲✛ ( )
l−1 l l+1

xn, n≥N︷ ︸︸ ︷
• ••••••••••••
x5 x4x2 x1 x3

0 ✻
M

We still need to worry (slightly) about the the terms in the sequence that
come before the Nth term. Because there are only a finite number of these, we
let

M = max{|x1|, |x2|, |x3|, . . . , |xN−1|, |l|+ 1}.
It follows that |xn| ≤ M for all n ∈ N, as desired.

This chapter began with a demonstration of how applying familiar algebraic
properties (commutativity of addition) to infinite objects (series) can lead to
paradoxical results. These examples are meant to instill in us a sense of caution
and justify the extreme care we are taking in drawing our conclusions. The
following theorems illustrate that sequences behave extremely well with respect
to the operations of addition, multiplication, division, and order.

Theorem 2.3.3 (Algebraic Limit Theorem). Let lim an = a, and lim bn =
b. Then,

(i) lim(can) = ca, for all c ∈ R;

(ii) lim(an + bn) = a+ b;

(iii) lim(anbn) = ab;

(iv) lim(an/bn) = a/b, provided b �= 0.

Proof. (i) Consider the case where c �= 0. We want to show that the sequence
(can) converges to ca, so the structure of the proof follows the template we
described in Section 2.2. First, we let ε be some arbitrary positive number. Our
goal is to find some point in the sequence (can) after which we have

|can − ca| < ε.

Now,
|can − ca| = |c||an − a|.
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We are given that (an) → a, so we know we can make |an − a| as small as we
like. In particular, we can choose an N such that

|an − a| < ε

|c|
whenever n ≥ N. To see that this N indeed works, observe that, for all n ≥ N ,

|can − ca| = |c||an − a| < |c| ε

|c| = ε.

The case c = 0 reduces to showing that the constant sequence (0, 0, 0, . . . )
converges to 0. This is addressed in Exercise 2.3.1.

Before continuing with parts (ii), (iii), and (iv), we should point out that
the proof of (i), while somewhat short, is extremely typical for a convergence
proof. Before embarking on a formal argument, it is a good idea to take an
inventory of what we want to make less than ε, and what we are given can be
made small for suitable choices of n. For the previous proof, we wanted to make
|can− ca| < ε, and we were given |an−a| < anything we like (for large values of
n). Notice that in (i), and all of the ensuing arguments, the strategy each time
is to bound the quantity we want to be less than ε, which in each case is

|(terms of sequence)− (proposed limit)|,
with some algebraic combination of quantities over which we have control.

(ii) To prove this statement, we need to argue that the quantity

|(an + bn)− (a+ b)|
can be made less than an arbitrary ε using the assumptions that |an − a| and
|bn − b| can be made as small as we like for large n. The first step is to use the
triangle inequality (Example 1.2.5) to say

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)| ≤ |an − a|+ |bn − b|.
Again, we let ε > 0 be arbitrary. The technique this time is to divide the ε
between the two expressions on the right-hand side in the preceding inequality.
Using the hypothesis that (an)→ a, we know there exists an N1 such that

|an − a| < ε

2
whenever n ≥ N1.

Likewise, the assumption that (bn) → b means that we can choose an N2 so
that

|bn − b| < ε

2
whenever n ≥ N2.

The question now arises as to which of N1 or N2 we should take to be our
choice of N . By choosing N = max{N1, N2}, we ensure that if n ≥ N , then
n ≥ N1 and n ≥ N2. This allows us to conclude that

|(an + bn)− (a+ b)| ≤ |an − a|+ |bn − b|
<

ε

2
+

ε

2
= ε
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for all n ≥ N , as desired.

(iii) To show that (anbn)→ ab, we begin by observing that

|anbn − ab| = |anbn − abn + abn − ab|
≤ |anbn − abn|+ |abn − ab|
= |bn||an − a|+ |a||bn − b|.

In the initial step, we subtracted and then added abn, which created an oppor-
tunity to use the triangle inequality. Essentially, we have broken up the distance
from anbn to ab with a midway point and are using the sum of the two distances
to overestimate the original distance. This clever trick will become a familiar
technique in arguments to come.

Letting ε > 0 be arbitrary, we again proceed with the strategy of making each
piece in the preceding inequality less than ε/2. For the piece on the right-hand
side (|a||bn − b|), if a �= 0 we can choose N1 so that

n ≥ N1 implies |bn − b| < 1
|a|

ε

2
.

(The case when a = 0 is handled in Exercise 2.3.7.) Getting the term on the
left-hand side (|bn||an − a|) to be less than ε/2 is complicated by the fact that
we have a variable quantity |bn| to contend with as opposed to the constant |a|
we encountered in the right-hand term. The idea is to replace |bn| with a worst-
case estimate. Using the fact that convergent sequences are bounded (Theorem
2.3.2), we know there exists a bound M > 0 satisfying |bn| ≤ M for all n ∈ N.
Now, we can choose N2 so that

|an − a| < 1
M

ε

2
whenever n ≥ N2.

To finish the argument, pick N = max{N1, N2}, and observe that if n ≥ N ,
then

|anbn − ab| ≤ |anbn − abn|+ |abn − ab|
= |bn||an − a|+ |a||bn − b|
≤ M |an − a|+ |a||bn − b|
< M

( ε

M2

)
+ |a|

(
ε

|a|2
)
= ε.

(iv) This final statement will follow from (iii) if we can prove that

(bn)→ b implies
(
1
bn

)
→ 1

b

whenever b �= 0. We begin by observing that∣∣∣∣ 1bn − 1
b

∣∣∣∣ = |b− bn|
|b||bn| .
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Because (bn)→ b, we can make the preceding numerator as small as we like by
choosing n large. The problem comes in that we need a worst-case estimate on
the size of 1/(|b||bn|). Because the bn terms are in the denominator, we are no
longer interested in an upper bound on |bn| but rather in an inequality of the
form |bn| ≥ δ > 0. This will then lead to a bound on the size of 1/(|b||bn|).

The trick is to look far enough out into the sequence (bn) so that the terms
are closer to b than they are to 0. Consider the particular value ε0 = |b|/2.
Because (bn) → b, there exists an N1 such that |bn − b| < |b|/2 for all n ≥ N1.
This implies |bn| > |b|/2.

Next, choose N2 so that n ≥ N2 implies

|bn − b| < ε|b|2
2

.

Finally, if we let N = max{N1, N2}, then n ≥ N implies∣∣∣∣ 1bn − 1
b

∣∣∣∣ = |b− bn| 1
|b||bn| <

ε|b|2
2

1

|b| |b|2
= ε.

Limits and Order

Although there are a few dangers to avoid (see Exercise 2.3.8), the Algebraic
Limit Theorem verifies that the relationship between algebraic combinations of
sequences and the limiting process is as trouble-free as we could hope for. Limits
can be computed from the individual component sequences provided that each
component limit exists. The limiting process is also well-behaved with respect
to the order operation.

Theorem 2.3.4 (Order Limit Theorem). Assume lim an = a and lim bn =
b.

(i) If an ≥ 0 for all n ∈ N, then a ≥ 0.

(ii) If an ≤ bn for all n ∈ N, then a ≤ b.

(iii) If there exists c ∈ R for which c ≤ bn for all n ∈ N, then c ≤ b. Similarly,
if an ≤ c for all n ∈ N, then a ≤ c.

Proof. (i) We will prove this by contradiction; thus, let’s assume a < 0. The
idea is to produce a term in the sequence (an) that is also less than zero. To
do this, we consider the particular value ε0 = |a|. The definition of convergence
guarantees that we can find an N such that |an − a| < |a| for all n ≥ N . In
particular, this would mean that |aN − a| < |a|, which implies aN < 0. This
contradicts our hypothesis that aN ≥ 0. We therefore conclude that a ≥ 0.

( )
a−ε0 a 0=a+ε0

•••• • • • • • •· · · a2 a1❄
aN
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(ii) The Algebraic Limit Theorem ensures that the sequence (bn − an) con-
verges to b−a. Because bn−an ≥ 0, we can apply part (i) to get that b−a ≥ 0.

(iii) Take an = c (or bn = c) for all n ∈ N, and apply (ii).

A word about the idea of “tails” is in order. Loosely speaking, limits and
their properties do not depend at all on what happens at the beginning of
the sequence but are strictly determined by what happens when n gets large.
Changing the value of the first ten—or ten thousand—terms in a particular
sequence has no effect on the limit. Theorem 2.3.4, part (i), for instance, assumes
that an ≥ 0 for all n ∈ N. However, the hypothesis could be weakened by
assuming only that there exists some point N1 where an ≥ 0 for all n ≥ N1.
The theorem remains true, and in fact the same proof is valid with the provision
that when N is chosen it be at least as large as N1.

In the language of analysis, when a property (such as non-negativity) is not
necessarily true about some finite number of initial terms but is true for all
terms in the sequence after some point N , we say that the sequence eventu-
ally has this property. (See Exercise 2.2.8.) Theorem 2.3.4, part (i), could be
restated, “Convergent sequences that are eventually nonnegative converge to
nonnegative limits.” Parts (ii) and (iii) have similar modifications, as will many
other upcoming results.

Exercises

Exercise 2.3.1. Show that the constant sequence (a, a, a, a, . . . ) converges to
a.

Exercise 2.3.2. Let xn ≥ 0 for all n ∈ N.
(a) If (xn)→ 0, show that (

√
xn)→ 0.

(b) If (xn)→ x, show that (
√
xn)→

√
x.

Exercise 2.3.3 (Squeeze Theorem). Show that if xn ≤ yn ≤ zn for all n ∈
N, and if limxn = lim zn = l, then lim yn = l as well.

Exercise 2.3.4. Show that limits, if they exist, must be unique. In other words,
assume lim an = l1 and lim an = l2, and prove that l1 = l2.

Exercise 2.3.5. Let (xn) and (yn) be given, and define (zn) to be the “shuffled”
sequence (x1, y1, x2, y2, x3, y3, . . . , xn, yn, . . . ). Prove that (zn) is convergent if
and only if (xn) and (yn) are both convergent with limxn = lim yn.

Exercise 2.3.6. (a) Show that if (bn)→ b, then the sequence of absolute values
|bn| converges to |b|.

(b) Is the converse of part (a) true? If we know that |bn| → |b|, can we
deduce that (bn)→ b?

Exercise 2.3.7. (a) Let (an) be a bounded (not necessarily convergent) se-
quence, and assume lim bn = 0. Show that lim(anbn) = 0. Why are we not
allowed to use the Algebraic Limit Theorem to prove this?
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(b) Can we conclude anything about the convergence of (anbn) if we assume
that (bn) converges to some nonzero limit b?

(c) Use (a) to prove Theorem 2.3.3, part (iii), for the case when a = 0.

Exercise 2.3.8. Give an example of each of the following, or state that such a
request is impossible by referencing the proper theorem(s):

(a) sequences (xn) and (yn), which both diverge, but whose sum (xn + yn)
converges;

(b) sequences (xn) and (yn), where (xn) converges, (yn) diverges, and (xn+
yn) converges;

(c) a convergent sequence (bn) with bn �= 0 for all n such that (1/bn) diverges;
(d) an unbounded sequence (an) and a convergent sequence (bn) with (an −

bn) bounded;
(e) two sequences (an) and (bn), where (anbn) and (an) converge but (bn)

does not.

Exercise 2.3.9. Does Theorem 2.3.4 remain true if all of the inequalities are
assumed to be strict? If we assume, for instance, that a convergent sequence
(xn) satisfies xn > 0 for all n ∈ N, what may we conclude about the limit?

Exercise 2.3.10. If (an)→ 0 and |bn − b| ≤ an, then show that (bn)→ b.

Exercise 2.3.11 (Cesaro Means). Show that if (xn) is a convergent sequence,
then the sequence given by the averages

yn =
x1 + x2 + · · ·+ xn

n

also converges to the same limit.
Give an example to show that it is possible for the sequence (yn) of averages

to converge even if (xn) does not.

Exercise 2.3.12. Consider the doubly indexed array am,n = m/(m+ n).
(a) Intuitively speaking, what should limm,n→∞ am,n represent? Compute

the “iterated” limits

lim
n→∞ lim

m→∞ am,n and lim
m→∞ lim

n→∞ am,n.

(b) Formulate a rigorous definition in the style of Definition 2.2.3 for the
statement

lim
m,n→∞ am,n = l.

2.4 The Monotone Convergence Theorem and a
First Look at Infinite Series

We showed in Theorem 2.3.2 that convergent sequences are bounded. The
converse statement is certainly not true. It is not too difficult to produce an
example of a bounded sequence that does not converge. On the other hand, if
a bounded sequence is monotone, then in fact it does converge.
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Definition 2.4.1. A sequence (an) is increasing if an ≤ an+1 for all n ∈ N and
decreasing if an ≥ an+1 for all n ∈ N. A sequence is monotone if it is either
increasing or decreasing.

Theorem 2.4.2 (Monotone Convergence Theorem). If a sequence is mono-
tone and bounded, then it converges.

Proof. Let (an) be monotone and bounded. To prove (an) converges using the
definition of convergence, we are going to need a candidate for the limit. Let’s
assume the sequence is increasing (the decreasing case is handled similarly), and
consider the set of points {an : n ∈ N}. By assumption, this set is bounded, so
we can let

s = sup{an : n ∈ N}.
It seems reasonable to claim that lim(an) = s.

✲✛ • • • • • • ••••••••···a2a1 an≤an+1... ❄
s=sup{an;n∈N}

To prove this, let ε > 0. Because s is the least upper bound of {an : n ∈ N},
s − ε is not an upper bound, so there exists a point in the sequence aN such
that s − ε < aN . Now, the fact that (an) is increasing implies that if n ≥ N ,
then aN ≤ an. Hence,

s− ε < aN ≤ an ≤ s < s+ ε,

which implies |an − s| < ε, as desired.

The Monotone Convergence Theorem is extremely useful for the study of
infinite series, largely because it asserts the convergence of a sequence without
explicit mention of the actual limit. This is a good moment to do some prelimi-
nary investigations, so it is time to formalize the relationship between sequences
and series.

Definition 2.4.3. Let (bn) be a sequence. An infinite series is a formal expres-
sion of the form ∞∑

n=1

bn = b1 + b2 + b3 + b4 + b5 + · · · .

We define the corresponding sequence of partial sums (sm) by

sm = b1 + b2 + b3 + · · ·+ bm,

and say that the series
∑∞

n=1 bn converges to B if the sequence (sm) converges
to B. In this case, we write

∑∞
n=1 bn = B.



52 Chapter 2. Sequences and Series

Example 2.4.4. Consider

∞∑
n=1

1
n2 .

Because the terms in the sum are all positive, the sequence of partial sums given
by

sm = 1 +
1
4
+
1
9
+ · · ·+ 1

m2

is increasing. The question is whether or not we can find some upper bound on
(sm). To this end, observe

sm = 1 +
1
2 · 2 +

1
3 · 3 +

1
4 · 4 + · · ·+ 1

m2

< 1 +
1
2 · 1 +

1
3 · 2 +

1
4 · 3 + · · ·+ 1

m(m− 1)

= 1 +
(
1− 1

2

)
+
(
1
2
− 1
3

)
+
(
1
3
− 1
4

)
+ · · ·+

(
1

(m− 1)
− 1

m

)
= 1 + 1− 1

m
< 2.

Thus, 2 is an upper bound for the sequence of partial sums, so by the Monotone
Convergence Theorem,

∑∞
n=1 1/n

2 converges to some (presently unknown) limit
less than 2.

Example 2.4.5 (Harmonic Series). This time, consider the so-called har-
monic series

∞∑
n=1

1
n
.

Again, we have an increasing sequence of partial sums,

sm = 1 +
1
2
+
1
3
+ · · ·+ 1

m
,

that upon naive inspection appears as though it may be bounded. However, 2
is no longer an upper bound because

s4 = 1 +
1
2
+
(
1
3
+
1
4

)
> 1 +

1
2
+
(
1
4
+
1
4

)
= 2.
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A similar calculation shows that s8 > 2 1
2 , and we can see that in general

s2k = 1 +
1
2
+
(
1
3
+
1
4

)
+
(
1
5
+ · · ·+ 1

8

)
+ · · ·+

(
1

2k−1 + 1
+ · · ·+ 1

2k

)

> 1 +
1
2
+
(
1
4
+
1
4

)
+
(
1
8
+ · · ·+ 1

8

)
+ · · ·+

(
1
2k
+ · · ·+ 1

2k

)

= 1 +
1
2
+ 2
(
1
4

)
+ 4
(
1
8

)
+ · · ·+ 2k−1

(
1
2k

)
= 1 +

1
2
+
1
2
+
1
2
+ · · ·+ 1

2

= 1 + k

(
1
2

)
,

which is unbounded. Thus, despite the incredibly slow pace, the sequence of
partial sums of

∑∞
n=1 1/n eventually surpasses every number on the positive real

line. Because convergent sequences are bounded, the harmonic series diverges.

The previous example is a special case of a general argument that can be
used to determine the convergence or divergence of a large class of infinite series.

Theorem 2.4.6 (Cauchy Condensation Test). Suppose (bn) is decreasing
and satisfies bn ≥ 0 for all n ∈ N. Then, the series

∑∞
n=1 bn converges if and

only if the series

∞∑
n=0

2nb2n = b1 + 2b2 + 4b4 + 8b8 + 16b16 + · · ·

converges.

Proof. First, assume that
∑∞

n=0 2
nb2n converges. Theorem 2.3.2 guarantees

that the partial sums

tk = b1 + 2b2 + 4b4 + · · ·+ 2kb2k

are bounded; that is, there exists an M > 0 such that tk ≤ M for all k ∈ N.
We want to prove that

∑∞
n=1 bn converges. Because bn ≥ 0, we know that the

partial sums are increasing, so we only need to show that

sm = b1 + b2 + b3 + · · ·+ bm

is bounded.
Fixm and let k be large enough to ensurem ≤ 2k+1−1. Then, sm ≤ s2k+1−1

and

s2k+1−1 = b1 + (b2 + b3) + (b4 + b5 + b6 + b7) + · · ·+ (b2k + · · ·+ b2k+1−1)
≤ b1 + (b2 + b2) + (b4 + b4 + b4 + b4) + · · ·+ (b2k + · · ·+ b2k)
= b1 + 2b2 + 4b4 + · · ·+ 2kb2k = tk.
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Thus, sm ≤ tk ≤ M , and the sequence (sm) is bounded. By the Monotone
Convergence Theorem, we can conclude that

∑∞
n=1 bn converges.

The proof that
∑∞

n=0 2
nb2n diverges implies

∑∞
n=1 bn diverges is similar to

Example 2.4.5. The details are requested in Exercise 2.4.1.

Corollary 2.4.7. The series
∑∞

n=1 1/n
p converges if and only if p > 1.

A rigorous argument for this corollary requires a few basic facts about geo-
metric series. The proof is requested in Exercise 2.7.7 at the end of Section 2.7
where geometric series are discussed.

Exercises

Exercise 2.4.1. Complete the proof of Theorem 2.4.6 by showing that if the
series

∑∞
n=0 2

nb2n diverges, then so does
∑∞

n=1 bn. Example 2.4.5 may be a
useful reference.

Exercise 2.4.2. (a) Prove that the sequence defined by x1 = 3 and

xn+1 =
1

4− xn

converges.
(b) Now that we know limxn exists, explain why limxn+1 must also exist

and equal the same value.
(c) Take the limit of each side of the recursive equation in part (a) of this

exercise to explicitly compute limxn.

Exercise 2.4.3. Following the model of Exercise 2.4.2, show that the sequence
defined by y1 = 1 and yn+1 = 4− 1/yn converges and find the limit.

Exercise 2.4.4. Show that

√
2,
√
2
√
2,

√
2
√
2
√
2, . . .

converges and find the limit.

Exercise 2.4.5 (Calculating Square Roots). Let x1 = 2, and define

xn+1 =
1
2

(
xn +

2
xn

)
.

(a) Show that x2
n is always greater than 2, and then use this to prove that

xn − xn+1 ≥ 0. Conclude that limxn =
√
2.

(b) Modify the sequence (xn) so that it converges to
√
c.

Exercise 2.4.6 (Limit Superior). Let (an) be a bounded sequence.
(a) Prove that the sequence defined by yn = sup{ak : k ≥ n} converges.
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(b) The limit superior of (an), or lim sup an, is defined by

lim sup an = lim yn,

where yn is the sequence from part (a) of this exercise. Provide a reasonable
definition for lim inf an and briefly explain why it always exists for any bounded
sequence.

(c) Prove that lim inf an ≤ lim sup an for every bounded sequence, and give
an example of a sequence for which the inequality is strict.

(d) Show that lim inf an = lim sup an if and only if lim an exists. In this
case, all three share the same value.

2.5 Subsequences and the Bolzano–Weierstrass
Theorem

In Example 2.4.5, we showed that the sequence of partial sums (sm) of the
harmonic series does not converge by focusing our attention on a particular
subsequence (s2k) of the original sequence. For the moment, we will put the
topic of infinite series aside and more fully develop the important concept of
subsequences.

Definition 2.5.1. Let (an) be a sequence of real numbers, and let n1 < n2 <
n3 < n4 < n5 < · · · be an increasing sequence of natural numbers. Then the
sequence

an1 , an2 , an3 , an4 , an5 , · · ·
is called a subsequence of (an) and is denoted by (anj

), where j ∈ N indexes
the subsequence.

Notice that the order of the terms in a subsequence is the same as in the
original sequence, and repetitions are not allowed. Thus if

(an) =
(
1,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
, · · ·
)

,

then (
1
2
,
1
4
,
1
6
,
1
8
, · · ·
)

and
(
1
10

,
1
100

,
1

1000
,

1
10000

, · · ·
)

are examples of legitimate subsequences, whereas(
1
10

,
1
5
,
1
100

,
1
50

,
1

1000
,
1
500

, · · ·
)

and
(
1, 1,

1
3
,
1
5
,
1
7
,
1
9
, · · ·
)

are not.

Theorem 2.5.2. Subsequences of a convergent sequence converge to the same
limit as the original sequence.



56 Chapter 2. Sequences and Series

Proof. Exercise 2.5.1

This not too surprising result has several somewhat surprising applications.
It is the key ingredient for understanding when infinite sums are associative
(Exercise 2.5.2). We can also use it in the following clever way to compute
values of some familiar limits.

Example 2.5.3. Let 0 < b < 1. Because

b > b2 > b3 > b4 > · · · > 0,

the sequence (bn) is decreasing and bounded below. The Monotone Convergence
Theorem allows us to conclude that (bn) converges to some l satisfying b > l ≥ 0.
To compute l, notice that (b2n) is a subsequence, so (b2n)→ l by Theorem 2.5.2.
But (b2n) = (bn)(bn), so by the Algebraic Limit Theorem, (b2n) → l · l = l2.
Because limits are unique, l2 = l, and thus l = 0.

Without much trouble (Exercise 2.5.5), we can generalize this example to
conclude (bn)→ 0 whenever −1 < b < 1.

Example 2.5.4 (Divergence Criterion). Theorem 2.5.2 is also useful for pro-
viding economical proofs for divergence. In Example 2.2.7, we were quite sure
that (

1,−1
2
,
1
3
,−1
4
,
1
5
,−1
5
,
1
5
,−1
5
,
1
5
,−1
5
,
1
5
,−1
5
,
1
5
,−1
5
, · · ·
)

did not converge to any proposed limit. Notice that(
1
5
,
1
5
,
1
5
,
1
5
,
1
5
, · · ·
)

is a subsequence that converges to 1/5. Also,(
−1
5
,−1
5
,−1
5
,−1
5
,−1
5
, · · ·
)

is a different subsequence of the original sequence that converges to −1/5. Be-
cause we have two subsequences converging to two different limits, we can rig-
orously conclude that the original sequence diverges.

The Bolzano–Weierstrass Theorem

In the previous example, it was rather easy to spot a convergent subsequence
(or two) hiding in the original sequence. For bounded sequences, it turns out
that it is always possible to find at least one such convergent subsequence.

Theorem 2.5.5 (Bolzano–Weierstrass Theorem). Every bounded sequence
contains a convergent subsequence.
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Proof. Let (an) be a bounded sequence so that there exists M > 0 satisfying
|an| ≤ M for all n ∈ N. Bisect the closed interval [−M,M ] into the two closed
intervals [−M, 0] and [0,M ]. (The midpoint is included in both halves.) Now, it
must be that at least one of these closed intervals contains an infinite number of
the points in the sequence (an). Select a half for which this is the case and label
that interval as I1. Then, let an1 be some point in the sequence (an) satisfying
an1 ∈ I1.

−M 0 M✻

an1

❄

an2I1︷ ︸︸ ︷

︸ ︷︷ ︸
I2

• • • • • • •••••••• • • • • • •

Next, we bisect I1 into closed intervals of equal length, and let I2 be a
half that again contains an infinite number of points of the original sequence.
Because there are an infinite number of points from (an) to choose from, we
can select an an2 from the original sequence with n2 > n1 and an2 ∈ I2. In
general, we construct the closed interval Ik by taking a half of Ik−1 containing
an infinite number of points of (an) and then select nk > nk−1 > · · · > n2 > n1
so that ank

∈ Ik.
We want to argue that (ank

) is a convergent subsequence, but we need a
candidate for the limit. The sets

I1 ⊇ I2 ⊇ I3 ⊇ · · ·

form a nested sequence of closed intervals, and by the Nested Interval Property
there exists at least one point x ∈ R contained in every Ik. This provides us
with the candidate we were looking for. It just remains to show that (ank

)→ x.
Let ε > 0. By construction, the length of Ik is M(1/2)k−1 which converges

to zero. (This follows from Example 2.5.3 and the Algebraic Limit Theorem.)
Choose N so that k ≥ N implies that the length of Ik is less than ε. Because x
and ank

are both in Ik, it follows that |ank
− x| < ε.

Exercises

Exercise 2.5.1. Prove Theorem 2.5.2.

Exercise 2.5.2. (a) Prove that if an infinite series converges, then the associa-
tive property holds. Assume a1 + a2 + a3 + a4 + a5 + · · · converges to a limit L
(i.e., the sequence of partial sums (sn)→ L). Show that any regrouping of the
terms

(a1 + a2 + · · ·+ an1) + (an1+1 + · · ·+ an2) + (an2+1 + · · ·+ an3) + · · ·
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leads to a series that also converges to L.
(b) Compare this result to the example discussed at the end of Section 2.1

where infinite addition was shown not to be associative. Why doesn’t our proof
in (a) apply to this example?

Exercise 2.5.3. Give an example of each of the following, or argue that such
a request is impossible.

(a) A sequence that does not contain 0 or 1 as a term but contains subse-
quences converging to each of these values.

(b) A monotone sequence that diverges but has a convergent subsequence.
(c) A sequence that contains subsequences converging to every point in the

infinite set {1, 1/2, 1/3, 1/4, 1/5, . . . }.
(d) An unbounded sequence with a convergent subsequence.
(e) A sequence that has a subsequence that is bounded but contains no

subsequence that converges.

Exercise 2.5.4. Assume (an) is a bounded sequence with the property that
every convergent subsequence of (an) converges to the same limit a ∈ R. Show
that (an) must converge to a.

Exercise 2.5.5. Extend the result proved in Example 2.5.3 to the case |b| < 1.
Show lim(bn) = 0 whenever −1 < b < 1.

Exercise 2.5.6. Let (an) be a bounded sequence, and define the set

S = {x ∈ R : x < an for infinitely many terms an}.
Show that there exists a subsequence (ank

) converging to s = supS. (This is
a direct proof of the Bolzano–Weierstrass Theorem using the Axiom of Com-
pleteness.)

2.6 The Cauchy Criterion

The following definition bears a striking resemblance to the definition of con-
vergence for a sequence.

Definition 2.6.1. A sequence (an) is called a Cauchy sequence if, for every
ε > 0, there exists an N ∈ N such that whenever m,n ≥ N it follows that
|an − am| < ε.

To make the comparison easier, let’s restate the definition of convergence.

Definition 2.2.3 (Convergence of a Sequence). A sequence (an) converges
to a real number a if, for every ε > 0, there exists an N ∈ N such that whenever
n ≥ N it follows that |an − a| < ε.

As we have discussed, the definition of convergence asserts that, given an
arbitrary positive ε, it is possible to find a point in the sequence after which
the terms of the sequence are all closer to the limit a than the given ε. On
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the other hand, a sequence is a Cauchy sequence if, for every ε, there is a
point in the sequence after which the terms are all closer to each other than the
given ε. To spoil the surprise, we will argue in this section that in fact these
two definitions are equivalent: Convergent sequences are Cauchy sequences,
and Cauchy sequences converge. The significance of the definition of a Cauchy
sequence is that there is no mention of a limit. This is somewhat like the
situation with the Monotone Convergence Theorem in that we will have another
way of proving that sequences converge without having any explicit knowledge
of what the limit might be.

Theorem 2.6.2. Every convergent sequence is a Cauchy sequence.

Proof. Assume (xn) converges to x. To prove that (xn) is Cauchy, we must
find a point in the sequence after which we have |xn − xm| < ε. This can be
done using an application of the triangle inequality. The details are requested
in Exercise 2.6.2.

The converse is a bit more difficult to prove, mainly because, in order to prove
that a sequence converges, we must have a proposed limit for the sequence to
approach. We have been in this situation before in the proofs of the Monotone
Convergence Theorem and the Bolzano–Weierstrass Theorem. Our strategy
here will be to use the Bolzano–Weierstrass Theorem. This is the reason for the
next lemma. (Compare this with Theorem 2.3.2.)

Lemma 2.6.3. Cauchy sequences are bounded.

Proof. Given ε = 1, there exists an N such that |xm−xn| < 1 for all m,n ≥ N.
Thus, we must have |xn| < |xN |+ 1 for all n ≥ N . It follows that

M = max{|x1|, |x2|, |x3|, . . . , |xN−1|, |xN |+ 1}
is a bound for the sequence (xn).

Theorem 2.6.4 (Cauchy Criterion). A sequence converges if and only if it
is a Cauchy sequence.

Proof. (⇒) This direction is Theorem 2.6.2.
(⇐) For this direction, we start with a Cauchy sequence (xn). Lemma

2.6.3 guarantees that (xn) is bounded, so we may use the Bolzano–Weierstrass
Theorem to produce a convergent subsequence (xnk

). Set

x = limxnk
.

The idea is to show that the original sequence (xn) converges to this same limit.
Once again, we will use a triangle inequality argument. We know the terms in
the subsequence are getting close to the limit x, and the assumption that (xn)
is Cauchy implies the terms in the “tail” of the sequence are close to each other.
Thus, we want to make each of these distances less than half of the prescribed
ε.
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Let ε > 0. Because (xn) is Cauchy, there exists N such that

|xn − xm| < ε

2

whenever m,n ≥ N . Now, we also know that (xnk
) → x, so choose a term in

this subsequence, call it xnK
, with nK ≥ N and

|xnK
− x| < ε

2
.

To see that nK has the desired property (for the original sequence (xn)), observe
that if n ≥ nK , then

|xn − x| = |xn − xnK
+ xnK

− x|
≤ |xn − xnK

|+ |xnK
− x|

<
ε

2
+

ε

2
= ε.

The Cauchy Criterion is named after the French mathematician Augustin
Louis Cauchy. Cauchy is a major figure in the history of many branches of
mathematics—number theory and the theory of finite groups, to name a few—
but he is most widely recognized for his enormous contributions in analysis,
especially complex analysis. He is deservedly credited with inventing the ε-
based definition of limits we use today, although it is probably better to view
him as a pioneer of analysis in the sense that his work did not attain the level
of refinement that modern mathematicians have come to expect. The Cauchy
Criterion, for instance, was devised and used by Cauchy to study infinite series,
but he never actually proved it in both directions. The fact that there were
gaps in Cauchy’s work should not diminish his brilliance in any way. The issues
of the day were both difficult and subtle, and Cauchy was far and away the
most influential in laying the groundwork for modern standards of rigor. Karl
Weierstrass played a major role in sharpening Cauchy’s arguments. We will
hear a good deal more from Weierstrass, most notably in Chapter 6 when we
take up uniform convergence. Bernhard Bolzano was working in Prague and
was writing and thinking about many of these same issues surrounding limits
and continuity. For whatever reason, his historical reputation does not seem to
do justice to the impressive level of his insights.

Completeness Revisited

In the first chapter, we established the Axiom of Completeness (AoC) to be the
assertion that “sets bounded above have least upper bounds.” We then used this
axiom as the crucial step in the proof of the Nested Interval Property (NIP).
In this chapter, AoC was the central step in the Monotone Convergence Theo-
rem (MCT), and NIP was central to proving the Bolzano–Weierstrass Theorem



2.6. The Cauchy Criterion 61

(BW). Finally, we needed BW in our proof of the Cauchy Criterion (CC) for
convergent sequences. The list of implications then looks like

AoC⇒
{
NIP ⇒ BW ⇒ CC.
MCT.

But this list is not the whole story. Recall that in our original discussions
about completeness, the fundamental problem was that the rational numbers
contained “gaps.” The reason for moving from the rational numbers to the real
numbers to do analysis is so that when we encounter a sequence of numbers
that looks as if it is converging to some number—say

√
2—then we can be

assured that there is indeed a number there that we can call the limit. The
assertion that “sets bounded above have least upper bounds” is simply one
way to mathematically articulate our insistence that there be no “holes” in our
number field, but it is not the only way. Instead, we could have taken NIP to be
an axiom and used it to prove that least upper bounds exist, or we could have
assumed MCT and used it to prove NIP and the rest of the results. In fact,
any of these results could have served as our starting point. The situation is
reminiscent of the adage, “Which came first, the chicken or the egg?” All of the
preceding statements are equivalent in the sense that once we have assumed any
one of them to be true, it is possible to derive the rest. (These implications are
explored in Exercise 2.6.6.) However, because we have an example of an ordered
field that is not complete—namely, the set of rational numbers—we know it is
impossible to prove any of them using only the field and order properties. Just
how we decide which should be the axiom and which then become theorems
depends on preference and context and in the end does not matter all that
much. What is important is that we understand all of these results—AoC,
NIP, MCT, BW, and CC—as belonging to the same family, each asserting the
completeness of R in its own particular language.

Exercises

Exercise 2.6.1. Give an example of each of the following, or argue that such
a request is impossible.

(a) A Cauchy sequence that is not monotone.
(b) A monotone sequence that is not Cauchy.
(c) A Cauchy sequence with a divergent subsequence.
(d) An unbounded sequence containing a subsequence that is Cauchy.

Exercise 2.6.2. Supply a proof for Theorem 2.6.2.

Exercise 2.6.3. (a) Explain how the following pseudo-Cauchy property differs
from the proper definition of a Cauchy sequence: A sequence (sn) is pseudo-
Cauchy if, for all ε > 0, there exists anN such that if n ≥ N , then |sn+1−sn| < ε.

(b) If possible, give an example of a divergent sequence (sn) that is pseudo-
Cauchy.
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Exercise 2.6.4. Assume (an) and (bn) are Cauchy sequences. Use a triangle
inequality argument to prove cn = |an − bn| is Cauchy.
Exercise 2.6.5. If (xn) and (yn) are Cauchy sequences, then one easy way to
prove that (xn + yn) is Cauchy is to use the Cauchy Criterion. By Theorem
2.6.4, (xn) and (yn) must be convergent, and the Algebraic Limit Theorem then
implies (xn + yn) is convergent and hence Cauchy.

(a) Give a direct argument that (xn + yn) is a Cauchy sequence that does
not use the Cauchy Criterion or the Algebraic Limit Theorem.

(b) Do the same for the product (xnyn).

Exercise 2.6.6. (a) Assume the Nested Interval Property (Theorem 1.4.1) is
true and use a technique similar to the one employed in the proof of the Bolzano–
Weierstrass Theorem to give a proof for the Axiom of Completeness. (The
reverse implication was given in Chapter 1. This shows that AoC is equivalent
to NIP.)

(b) Use the Monotone Convergence Theorem to give a proof of the Nested
Interval Property. (This establishes the equivalence of AoC, NIP, and MCT.)

(c) This time, start with the Bolzano–Weierstrass Theorem and use it to
construct a proof of the Nested Interval Property. (Thus, BW is equivalent to
NIP, and hence to AoC and MCT as well.)

(d) Finally, use the Cauchy Criterion to prove the Bolzano–Weierstrass The-
orem. This is the final link in the equivalence of the five characterizations of
completeness discussed at the end of Section 2.6.

2.7 Properties of Infinite Series

Given an infinite series
∑∞

k=1 ak, it is important to keep a clear distinction
between

(i) the sequence of terms: (a1, a2, a3, . . . ) and

(ii) the sequence of partial sums: (s1, s2, s3, . . . ), where sn = a1+a2+ · · ·+an.

The convergence of the series
∑∞

k=1 ak is defined in terms of the sequence (sn).
Specifically, the statement

∞∑
k=1

ak = A means that lim sn = A.

It is for this reason that we can immediately translate many of our results from
the study of sequences into statements about the behavior of infinite series.

Theorem 2.7.1 (Algebraic Limit Theorem for Series). If
∑∞

k=1 ak = A
and

∑∞
k=1 bk = B, then

(i)
∑∞

k=1 cak = cA for all c ∈ R and
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(ii)
∑∞

k=1(ak + bk) = A+B.

Proof. (i) In order to show that
∑∞

k=1 cak = cA, we must argue that the se-
quence of partial sums

tm = ca1 + ca2 + ca3 + · · ·+ cam

converges to cA. But we are given that
∑∞

k=1 ak converges to A, meaning that
the partial sums

sm = a1 + a2 + a3 + · · ·+ am

converge to A. Because tm = csm, applying the Algebraic Limit Theorem for
sequences (Theorem 2.3.3) yields (tm)→ cA, as desired.

(ii) Exercise 2.7.8.

One way to summarize Theorem 2.7.1 (i) is to say that infinite addition still
satisfies the distributive property. Part (ii) verifies that series can be added in
the usual way. Missing from this theorem is any statement about the product of
two infinite series. At the heart of this question is the issue of commutativity,
which requires a more delicate analysis and so is postponed until Section 2.8.

Theorem 2.7.2 (Cauchy Criterion for Series). The series
∑∞

k=1 ak con-
verges if and only if, given ε > 0, there exists an N ∈ N such that whenever
n > m ≥ N it follows that

|am+1 + am+2 + · · ·+ an| < ε.

Proof. Observe that

|sn − sm| = |am+1 + am+2 + · · ·+ an|

and apply the Cauchy Criterion for sequences.

The Cauchy Criterion leads to economical proofs of several basic facts about
series.

Theorem 2.7.3. If the series
∑∞

k=1 ak converges, then (ak)→ 0.

Proof. Consider the special case n = m+1 in the Cauchy Criterion for Conver-
gent Series.

Every statement of this result should be accompanied with a reminder to look
at the harmonic series (Example 2.4.5) to erase any misconception that the
converse statement is true. Knowing (ak) tends to 0 does not imply that the
series converges.

Theorem 2.7.4 (Comparison Test). Assume (ak) and (bk) are sequences
satisfying 0 ≤ ak ≤ bk for all k ∈ N.

(i) If
∑∞

k=1 bk converges, then
∑∞

k=1 ak converges.
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(ii) If
∑∞

k=1 ak diverges, then
∑∞

k=1 bk diverges.

Proof. Both statements follow immediately from the Cauchy Criterion for Series
and the observation that

|am+1 + am+2 + · · ·+ an| ≤ |bm+1 + bm+2 + · · ·+ bn|.

Alternate proofs using the Monotone Convergence Theorem are requested in
the exercises.

This is a good point to remind ourselves again that statements about con-
vergence of sequences and series are immune to changes in some finite number
of initial terms. In the Comparison Test, the requirement that ak ≤ bk does
not really need to hold for all k ∈ N but just needs to be eventually true. A
weaker, but sufficient, hypothesis would be to assume that there exists some
point M ∈ N such that the inequality ak ≤ bk is true for all k ≥ M .

The Comparison Test is used to deduce the convergence or divergence of one
series based on the behavior of another. Thus, for this test to be of any great
use, we need a catalog of series we can use as measuring sticks. In Section 2.4,
we proved the Cauchy Condensation Test, which led to the general statement
that the series

∑∞
n=1 1/n

p converges if and only if p > 1.
The next example summarizes the situation for another important class of

series.

Example 2.7.5 (Geometric Series). A series is called geometric if it is of
the form ∞∑

k=0

ark = a+ ar + ar2 + ar3 + · · · .

If r = 1 and a �= 0, the series evidently diverges. For r �= 1, the algebraic
identity

(1− r)(1 + r + r2 + r3 + · · ·+ rm−1) = 1− rm

enables us to rewrite the partial sum

sm = a+ ar + ar2 + ar3 + · · ·+ arm−1 =
a(1− rm)
1− r

.

Now the Algebraic Limit Theorem (for sequences) and Example 2.5.3 justify
the conclusion ∞∑

k=0

ark =
a

1− r

if and only if |r| < 1.

Although the Comparison Test requires that the terms of the series be posi-
tive, it is often used in conjunction with the next theorem to handle series that
contain some negative terms.
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Theorem 2.7.6 (Absolute Convergence Test). If the series
∑∞

n=1 |an| con-
verges, then

∑∞
n=1 an converges as well.

Proof. This proof makes use of both the necessity (the “if” direction) and the
sufficiency (the “only if” direction) of the Cauchy Criterion for Series. Because∑∞

n=1 |an| converges, we know that, given an ε > 0, there exists an N ∈ N such
that

|am+1|+ |am+2|+ · · ·+ |an| < ε

for all n > m ≥ N . By the triangle inequality,

|am+1 + am+2 + · · ·+ an| ≤ |am+1|+ |am+2|+ · · ·+ |an|,
so the sufficiency of the Cauchy Criterion guarantees that

∑∞
n=1 an also con-

verges.

The converse of this theorem is false. In the opening discussion of this
chapter, we considered the alternating harmonic series

1− 1
2
+
1
3
− 1
4
+
1
5
− 1
6
+ · · · .

Taking absolute values of the terms gives us the harmonic series
∑∞

n=1 1/n,
which we have seen diverges. However, it is not too difficult to prove that with
the alternating negative signs the series indeed converges. This is a special case
of the Alternating Series Test, whose proof is outlined in Exercise 2.7.1.

Theorem 2.7.7 (Alternating Series Test). Let (an) be a sequence satisfy-
ing,

(i) a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ an+1 ≥ · · · and

(ii) (an)→ 0.

Then, the alternating series
∑∞

n=1(−1)n+1an converges.

Proof. Exercise 2.7.1.

Definition 2.7.8. If
∑∞

n=1 |an| converges, then we say that the original series∑∞
n=1 an converges absolutely. If, on the other hand, the series

∑∞
n=1 an con-

verges but the series of absolute values
∑∞

n=1 |an| does not converge, then we
say that the original series

∑∞
n=1 an converges conditionally.

In terms of this newly defined jargon, we have shown that

∞∑
n=1

(−1)n+1

n

converges conditionally, whereas

∞∑
n=1

(−1)n+1

n2 ,

∞∑
n=1

1
2n

and
∞∑
n=1

(−1)n+1

2n
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converge absolutely. In particular, any convergent series with (all but finitely
many) positive terms must converge absolutely.

The Alternating Series Test is the most accessible test for conditional con-
vergence, but several others are explored in the exercises. In particular, Abel’s
Test, outlined in Exercise 2.7.14, will prove useful in our investigations of power
series in Chapter 6.

Rearrangements

Informally speaking, a rearrangement of a series is obtained by permuting the
terms in the sum into some other order. It is important that all of the original
terms eventually appear in the new ordering and that no term gets repeated.
In an earlier discussion, we formed a rearrangement of the alternating harmonic
series by taking two positive terms for each negative term:

1 +
1
3
− 1
2
+
1
5
+
1
7
− 1
4
+ · · · .

There are clearly an infinite number of rearrangements of any sum; however, it
is helpful to see why neither

1 +
1
2
− 1
3
+
1
4
+
1
5
− 1
6
+ · · ·

nor
1 +

1
3
− 1
4
+
1
5
+
1
7
− 1
8
+
1
9
+

1
11

− 1
12
+ · · ·

is considered a rearrangement of the original alternating harmonic series.

Definition 2.7.9. Let
∑∞

k=1 ak be a series. A series
∑∞

k=1 bk is called a rear-
rangement of

∑∞
k=1 ak if there exists a one-to-one, onto function f : N → N

such that bf(k) = ak for all k ∈ N.

We now have all the tools and notation in place to resolve an issue raised
at the beginning of the chapter. In Section 2.1, we constructed a particular
rearrangement of the alternating harmonic series that converges to a limit dif-
ferent from that of the original series. This happens because the convergence is
conditional.

Theorem 2.7.10. If
∑∞

k=1 ak converges absolutely, then any rearrangement of
this series converges to the same limit.

Proof. Assume
∑∞

k=1 ak converges absolutely to A, and let
∑∞

k=1 bk be a rear-
rangement of

∑∞
k=1 ak. Let’s use

sn =
n∑

k=1

ak = a1 + a2 + · · ·+ an

for the partial sums of the original series and use

tm =
m∑
k=1

bk = b1 + b2 + · · ·+ bm
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for the partial sums of the rearranged series. Thus we want to show that (tm)→
A.

Let ε > 0. By hypothesis, (sn)→ A, so choose N1 such that

|sn −A| < ε

2
for all n ≥ N1. Because the convergence is absolute, we can choose N2 so that

n∑
k=m+1

|ak| < ε

2

for all n > m ≥ N2. Now, take N = max{N1, N2}. We know that the finite set
of terms {a1, a2, a3, . . . , aN} must all appear in the rearranged series, and we
want to move far enough out in the series

∑∞
n=1 bn so that we have included all

of these terms. Thus, choose

M = max{f(k) : 1 ≤ k ≤ N}.
It should now be evident that if m ≥ M , then (tm − sN ) consists of a finite
set of terms, the absolute values of which appear in the tail

∑∞
k=N+1 |ak|. Our

choice of N2 earlier then guarantees |tm − sN | < ε/2, and so

|tm −A| = |tm − sN + sN −A|
≤ |tm − sN |+ |sN −A|
<

ε

2
+

ε

2
= ε

whenever m ≥ M .

Exercises

Exercise 2.7.1. Proving the Alternating Series Test (Theorem 2.7.7) amounts
to showing that the sequence of partial sums

sn = a1 − a2 + a3 − · · · ± an

converges. (The opening example in Section 2.1 includes a typical illustration
of (sn).) Different characterizations of completeness lead to different proofs.

(a) Prove the Alternating Series Test by showing that (sn) is a Cauchy
sequence.

(b) Supply another proof for this result using the Nested Interval Property
(Theorem 1.4.1).

(c) Consider the subsequences (s2n) and (s2n+1), and show how the Mono-
tone Convergence Theorem leads to a third proof for the Alternating Series
Test.

Exercise 2.7.2. (a) Provide the details for the proof of the Comparison Test
(Theorem 2.7.4) using the Cauchy Criterion for series.

(b) Give another proof for the Comparison Test, this time using the Mono-
tone Convergence Theorem.
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Exercise 2.7.3. Let
∑

an be given. For each n ∈ N, let pn = an if an is
positive and assign pn = 0 if an is negative. In a similar manner, let qn = an if
an is negative and qn = 0 if an is positive.

(a) Argue that if
∑

an diverges, then at least one of
∑

pn or
∑

qn diverges.
(b) Show that if

∑
an converges conditionally, then both

∑
pn and

∑
qn

diverge.

Exercise 2.7.4. Give an example to show that it is possible for both
∑

xn and∑
yn to diverge but for

∑
xnyn to converge.

Exercise 2.7.5. (a) Show that if
∑

an converges absolutely, then
∑

a2
n also

converges absolutely. Does this proposition hold without absolute convergence?
(b) If

∑
an converges and an ≥ 0, can we conclude anything about

∑√
an?

Exercise 2.7.6. (a) Show that if
∑

xn converges absolutely, and the sequence
(yn) is bounded, then the sum

∑
xnyn converges.

(b) Find a counterexample that demonstrates that part (a) does not always
hold if the convergence of

∑
xn is conditional.

Exercise 2.7.7. Now that we have proved the basic facts about geometric se-
ries, supply a proof for Corollary 2.4.7.

Exercise 2.7.8. Prove Theorem 2.7.1 part (ii).

Exercise 2.7.9 (Ratio Test). Given a series
∑∞

n=1 an with an �= 0, the Ratio
Test states that if (an) satisfies

lim
∣∣∣∣an+1

an

∣∣∣∣ = r < 1,

then the series converges absolutely.
(a) Let r′ satisfy r < r′ < 1. (Why must such an r′ exist?) Explain why

there exists an N such that n ≥ N implies |an+1| ≤ |an|r′.
(b) Why does |aN |∑(r′)n necessarily converge?
(c) Now, show that

∑ |an| converges.
Exercise 2.7.10. (a) Show that if an > 0 and lim(nan) = l with l �= 0, then
the series

∑
an diverges.

(b) Assume an > 0 and lim(n2an) exists. Show that
∑

an converges.

Exercise 2.7.11. Find examples of two series
∑

an and
∑

bn both of which
diverge but for which

∑
min{an, bn} converges. To make it more challenging,

produce examples where (an) and (bn) are positive and decreasing.

Exercise 2.7.12 (Summation by Parts). Let (xn) and (yn) be sequences,
and let sn = x1 + x2 + · · · + xn. Use the observation that xj = sj − sj−1 to
verify the formula

n∑
j=m+1

xjyj = snyn+1 − smym+1 +
n∑

j=m+1

sj(yj − yj+1).
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Exercise 2.7.13 (Dirichlet’s Test). Dirichlet’s Test for convergence states
that if the partial sums of

∑∞
n=1 xn are bounded (but not necessarily conver-

gent), and if (yn) is a sequence satisfying y1 ≥ y2 ≥ y3 ≥ · · · ≥ 0 with lim yn = 0,
then the series

∑∞
n=1 xnyn converges.

(a) Let M > 0 be an upper bound for the partial sums of
∑∞

n=1 xn. Use
Exercise 2.7.12 to show that∣∣∣∣∣∣

n∑
j=m+1

xjyj

∣∣∣∣∣∣ ≤ 2M |ym+1|.

(b) Prove Dirichlet’s Test just stated.
(c) Show how the Alternating Series Test (Theorem 2.7.7) can be derived as

a special case of Dirichlet’s Test.

Exercise 2.7.14 (Abel’s Test). Abel’s Test for convergence states that if the
series

∑∞
n=1 xn converges, and if (yn) is a sequence satisfying

y1 ≥ y2 ≥ y3 ≥ · · · ≥ 0,

then the series
∑∞

n=1 xnyn converges.
(a) Carefully point out how the hypothesis of Abel’s Test differs from that

of Dirichlet’s Test in Exercise 2.7.13.
(b) Assume that

∑∞
n=1 an has partial sums that are bounded by a constant

A > 0, and assume b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0. Use Exercise 2.7.12 to show that∣∣∣∣∣∣
n∑

j=1

ajbj

∣∣∣∣∣∣ ≤ 2Ab1.

(c) Prove Abel’s Test via the following strategy. For a fixed m ∈ N , apply
part (b) to

∑n
j=m+1 xjyj by setting an = xm+n and bn = ym+n. (Argue that

an upper bound on the partial sums of
∑∞

n=1 an can be made arbitrarily small
by taking m to be large.)

2.8 Double Summations and Products
of Infinite Series

Given a doubly indexed array of real numbers {aij : i, y ∈ N}, we discovered
in Section 2.1 that there is a dangerous ambiguity in how we might define∑∞

i,j=1 aij . Performing the sum over first one of the variables and then the
other is referred to as an iterated summation. In our specific example, summing
the rows first and then taking the sum of these totals produced a different result
than first computing the sum of each column and adding these sums together.
In short,

∞∑
j=1

∞∑
i=1

aij �=
∞∑
i=1

∞∑
j=1

aij .
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There are still other ways to reasonably define
∑∞

i,j=1 aij . One natural idea
is to calculate a kind of partial sum by adding together finite numbers of terms
in larger and larger “rectangles” in the array; that is, for m,n ∈ N, set

(1) smn =
m∑
i=1

n∑
j=1

aij .

The order of the sum here is irrelevant because the sum is finite. Of particular
interest to our discussion are the sums snn (sums over “squares”), which form
a legitimate sequence indexed by n and thus can be subjected to our arsenal
of theorems and definitions. If the sequence (snn) converges, for instance, we
might wish to define

∞∑
i,j=1

aij = lim
n→∞ snn.

Exercise 2.8.1. Using the particular array (aij) from Section 2.1, compute
limn→∞ snn. How does this value compare to the two iterated values for the
sum already computed?

There is a deep similarity between the issue of how to define a double summa-
tion and the topic of rearrangements discussed at the end of Section 2.7. Both
relate to the commutativity of addition in an infinite setting. For rearrange-
ments, the resolution came with the added hypothesis of absolute convergence,
and it is not surprising that the same remedy applies for double summations.
Under the assumption of absolute convergence, each of the methods discussed
for computing the value of a double sum yields the same result.

Exercise 2.8.2. Show that if the iterated series
∞∑
i=1

∞∑
j=1

|aij |

converges (meaning that for each fixed i ∈ N the series
∑∞

j=1 |aij | converges to
some real number bi, and the series

∑∞
i=1 bi converges as well), then the iterated

series ∞∑
i=1

∞∑
j=1

aij

converges.

Theorem 2.8.1. Let {aij : i, j ∈ N} be a doubly indexed array of real numbers.
If

∞∑
i=1

∞∑
j=1

|aij |

converges, then both
∑∞

i=1
∑∞

j=1 aij and
∑∞

j=1
∑∞

i=1 aij converge to the same
value. Moreover,

lim
n→∞ snn =

∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij ,
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where snn =
∑n

i=1
∑n

j=1 aij.

Proof. In the same way that we defined the “rectangular partial sums” smn

above in equation (1), define

tmn =
m∑
i=1

n∑
j=1

|aij |.

Exercise 2.8.3. (a) Prove that the set {tmn : m,n ∈ N} is bounded above,
and use this fact to conclude that the sequence (tnn) converges.

(b) Now, use the fact that (tnn) is a Cauchy sequence to argue that (snn) is
a Cauchy sequence and hence converges.

We can now set
S = lim

n→∞ snn.

In order to prove the theorem, we must show that the two iterated sums converge
to this same limit. We will first show that

S =
∞∑
i=1

∞∑
j=1

aij .

Because {tmn : m,n ∈ N} is bounded above, we can let

B = sup{tmn : m,n ∈ N}.

Let ε > 0 be arbitrary. Because B is the least upper bound for this set, we know
there exists a particular tm0n0 that satisfies

B − ε

2
< tm0n0 ≤ B.

Exercise 2.8.4. (a) Argue that there exists an N1 ∈ N such that m,n ≥ N1
implies B − ε

2 < tmn ≤ B.
(b) Now, show that there exists an N such that

|smn − S| < ε

for all m,n ≥ N .

For the moment, consider m ∈ N to be fixed and write smn as

smn =
n∑

j=1

a1j +
n∑

j=1

a2j + · · ·+
n∑

j=1

amj .

Our hypothesis guarantees that for each fixed row i, the series
∑∞

j=1 aij con-
verges absolutely to some real number ri.
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Exercise 2.8.5. (a) Use the Algebraic Limit Theorem (Theorem 2.3.3) and the
Order Limit Theorem (Theorem 2.3.4) to show that for all m ≥ N

|(r1 + r2 + · · ·+ rm)− S| ≤ ε.

Conclude that the iterated sum
∑∞

i=1
∑∞

j=1 aij converges to S.

Exercise 2.8.6. Finish the proof by showing that the other iterated sum,∑∞
j=1
∑∞

i=1 aij , converges to S as well. Notice that the same argument can
be used once it is established that, for each fixed column j, the sum

∑∞
i=1 aij

converges to some real number ci.

One final common way of computing a double summation is to sum along
diagonals where i + j equals a constant. Given a doubly indexed array {aij :
i, j ∈ N}, let

d2 = a11, d3 = a12 + a21, d4 = a13 + a22 + a31,

and in general set

dk = a1,k−1 + a2,k−2 + · · ·+ ak−1,1.

Then,
∑∞

k=2 dk represents another reasonable way of summing over every aij in
the array.

Exercise 2.8.7. (a) Assuming the hypothsis—and hence the conclusion—of
Theorem 2.8.1, show that

∑∞
k=2 dk converges absolutely.

(b) Imitate the strategy in the proof of Theorem 2.8.1 to show that
∑∞

k=2 dk
converges to S = limn→∞ snn.

Products of Series

Conspicuously missing from the Algebraic Limit Theorem for Series (Theorem
2.7.1) is any statement about the product of two convergent series. One way to
formally carry out the algebra on such a product is to write

( ∞∑
i=1

ai

) ∞∑
j=1

bj


 = (a1 + a2 + a3 + · · · )(b1 + b2 + b3 + · · · )

= a1b1 + (a1b2 + a2b1) + (a3b1 + a2b2 + a1b3) + · · ·

=
∞∑
k=2

dk,

where
dk = a1bk−1 + a2bk−2 + · · ·+ ak−1b1.
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This particular form of the product, examined earlier in Exercise 2.8.7, is called
the Cauchy product of two series. Although there is something algebraically
natural about writing the product in this form, it may very well be that com-
puting the value of the sum is more easily done via one or the other iterated
summation. The question remains, then, as to how the value of the Cauchy
product—if it exists—is related to these other values of the double sum. If the
two series being multiplied converge absolutely, it is not too difficult to prove
that the sum may be computed in whatever way is most convenient.

Exercise 2.8.8. Assume that
∑∞

i=1 ai converges absolutely to A, and
∑∞

j=1 bj
converges absolutely to B.

(a) Show that the set 


m∑
i=1

n∑
j=1

|aibj | : m,n ∈ N




is bounded. Use this to show that the iterated sum
∑∞

i=1
∑∞

j=1 |aibj | converges
so that we may apply Theorem 2.8.1.

(b) Let snn =
∑n

i=1
∑n

j=1 aibj , and use the Algebraic Limit Theorem to
show that limn→∞ snn = AB. Conclude that

∞∑
i=1

∞∑
j=1

aibj =
∞∑
j=1

∞∑
i=1

aibj =
∞∑
k=2

dk = AB,

where, as before, dk = a1bk−1 + a2bk−2 + · · ·+ ak−1b1.

2.9 Epilogue

Theorems 2.7.10 and 2.8.1 make it clear that absolute convergence is an ex-
tremely desirable quality to have when manipulating series. On the other hand,
the situation for conditionally convergent series is delightfully pathological. In
the case of rearrangements, not only are they no longer guaranteed to converge
to the same limit, but in fact if

∑∞
n=1 an converges conditionally, then for any

r ∈ R there exists a rearrangement of
∑∞

n=1 an that converges to r. To see why,
let’s look again at the alternating harmonic series

∞∑
n=1

(−1)n+1

n
.

The negative terms taken alone form the series
∑∞

n=1(−1)/2n. The partial
sums of this series are precisely −1/2 the partial sums of the harmonic series,
and so march off (at half speed) to negative infinity. A similar argument shows
that the sum of positive terms

∑∞
n=1 1/(2n − 1) also diverges to infinity. It is

not too difficult to argue that this situation is always the case for conditionally
convergent series (Exercise 2.7.3). Now, let r be some proposed limit, which, for
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the sake of this argument, we take to be positive. The idea is to take as many
positive terms as necessary to form the first partial sum greater than r. We then
add negative terms until the partial sum falls below r, at which point we switch
back to positive terms. The fact that there is no bound on the sums of either the
positive terms or the negative terms allows this process to continue indefinitely.
The fact that the terms themselves tend to zero is enough to guarantee that the
partial sums, when constructed in this manner, indeed converge to r as they
oscillate around this target value.

Perhaps the best way to summarize the situation is to say that the hypothe-
sis of absolute convergence essentially allows us to treat infinite sums as though
they were finite sums. This assessment extends to double sums as well, although
there are a few subtleties to address. In the case of products, we showed in Ex-
ercise 2.8.8 that the Cauchy product of two absolutely convergent infinite series
converges to the product of the two factors, but in fact the same conclusion
follows if we only have absolute convergence in one of the two original series. In
the notation of Exercise 2.8.8, if

∑
an converges absolutely to A, and if

∑
bn

converges (perhaps conditionally) to B, then the Cauchy product
∑

dk = AB.
On the other hand, if both

∑
an and

∑
bn converge conditionally, then it is

possible for the Cauchy product to diverge. Squaring
∑
(−1)n/√n provides an

example of this phenomenon. Of course, it is also possible to find
∑

an = A
conditionally and

∑
bn = B conditionally whose Cauchy product

∑
dk con-

verges. If this is the case, then the convergence is to the right value, namely∑
dk = AB. A proof of this last fact will be offered in Chapter 6, where we

undertake the study of power series. Here is the connection. A power series
has the form a0 + a1x+ a2x

2 + · · · . If we multiply two power series together as
though they were polynomials, then when we collect common powers of x the
result is

(a0 + a1x+ a2x
2 + · · · )(b0 + b1x+ b2x

2 + · · · )
= a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x2 + · · ·
= d0 + d1x+ d2x

2 + · · · ,

which is the Cauchy product of
∑

anx
n and

∑
bnx

n. (The index starts with
n = 0 rather than n = 1.) Upcoming results about the good behavior of power
series will lead to a proof that convergent Cauchy products sum to the proper
value. In the other direction, Exercise 2.8.8 will be useful in establishing a
theorem about the product of two power series.



Chapter 3

Basic Topology of R

3.1 Discussion: The Cantor Set

What follows is a fascinating mathematical construction, due to Georg Cantor,
which is extremely useful for extending the horizons of our intuition about the
nature of subsets of the real line. Cantor’s name has already appeared in the
first chapter in our discussion of uncountable sets. Indeed, Cantor’s proof that
R is uncountable occupies another spot on the short list of the most significant
contributions toward understanding the mathematical infinite. In the words of
the mathematician David Hilbert, “No one shall expel us from the paradise that
Cantor has created for us.”

Let C0 be the closed interval [0, 1], and define C1 to be the set that results
when the open middle third is removed; that is,

C1 = C0\
(
1
3
,
2
3

)
=
[
0,
1
3

]
∪
[
2
3
, 1
]
.

Now, construct C2 in a similar way by removing the open middle third of each
of the two components of C1:

C2 =
([
0,
1
9

]
∪
[
2
9
,
1
3

])
∪
([

2
3
,
7
9

]
∪
[
8
9
, 1
])

.

If we continue this process inductively, then for each n = 0, 1, 2, . . . we get a set
Cn consisting of 2n closed intervals each having length 1/3n. Finally, we define
the Cantor set C (Fig. 3.1) to be the intersection

C =
∞⋂
n=0

Cn.

It may be useful to understand C as the remainder of the interval [0, 1] after
the iterative process of removing open middle thirds is taken to infinity:

C = [0, 1]\
[(

1
3
,
2
3

)
∪
(
1
9
,
2
9

)
∪
(
7
9
,
8
9

)
∪ · · ·

]
.

75
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1/9 2/9 1/3 2/3 7/9 8/9

Figure 3.1: Defining the Cantor set; C =
⋂∞

n=0 Cn.

There is some initial doubt whether anything remains at all, but notice that
because we are always removing open middle thirds, then for every n ∈ N,
0 ∈ Cn and hence 0 ∈ C. The same argument shows 1 ∈ C. In fact, if y is the
endpoint of some closed interval of some particular set Cn, then it is also an
endpoint of one of the intervals of Cn+1. Because, at each stage, endpoints are
never removed, it follows that y ∈ Cn for all n. Thus, C at least contains the
endpoints of all of the intervals that make up each of the sets Cn.

Is there anything else? Is C countable? Does C contain any intervals? Any
irrational numbers? These are difficult questions at the moment. All of the
endpoints mentioned earlier are rational numbers (they have the form m/3n),
which means that if it is true that C consists of only these endpoints, then C
would be a subset of Q and hence countable. We shall see about this. There is
some strong evidence that not much is left in C if we consider the total length of
the intervals removed. To form C1, an open interval of length 1/3 was taken out.
In the second step, we removed two intervals of length 1/9, and to construct
Cn we removed 2n−1 middle thirds of length 1/3n. There is some logic, then,
to defining the “length” of C to be 1 minus the total

1
3
+ 2
(
1
9

)
+ 4
(
1
27

)
+ · · ·+ 2n−1

(
1
3n

)
+ · · · =

1
3

1− 2
3

= 1.

The Cantor set has zero length.
To this point, the information we have collected suggests a mental picture

of C as a relatively small, thin set. For these reasons, the set C is often referred
to as Cantor “dust.” But there are some strong counterarguments that imply
a very different picture. First, C is actually uncountable, with cardinality equal
to the cardinality of R. One slightly intuitive but convincing way to see this is
to create a 1–1 correspondence between C and sequences of the form (an)∞n=1,
where an = 0 or 1. For each c ∈ C, set a1 = 0 if c falls in the left-hand component
of C1 and set a1 = 1 if c falls in the right-hand component. Having established
where in C1 the point c is located, there are now two possible components of
C2 that might contain c. This time, we set a2 = 0 or 1 depending on whether c
falls in the left or right half of these two components of C2. Continuing in this



3.1. Discussion: The Cantor Set 77

• −→ • • • −→ • • • •

−→ �

��

−→ �
��

�
��

�
��

�
��

�
��
�
��

�
��

Figure 3.2: Magnifying sets by a factor of 3.

way, we come to see that every element c ∈ C yields a sequence (a1, a2, a3, . . . )
of zeros and ones that acts as a set of directions for how to locate c within C.
Likewise, every such sequence corresponds to a point in the Cantor set. Because
the set of sequences of zeros and ones is uncountable (Exercise 1.5.4), we must
conclude that C is uncountable as well.

What does this imply? In the first place, because the endpoints of the
approximating sets Cn form a countable set, we are forced to accept the fact
that not only are there other points in C but there are uncountably many of
them. From the point of view of cardinality, C is quite large—as large as R,
in fact. This should be contrasted with the fact that from the point of view of
length, C measures the same size as a single point. We conclude this discussion
with a demonstration that from the point of view of dimension, C strangely
falls somewhere in between.

There is a sensible agreement that a point has dimension zero, a line segment
has dimension one, a square has dimension two, and a cube has dimension three.
Without attempting a formal definition of dimension (of which there are several),
we can nevertheless get a sense of how one might be defined by observing how
the dimension affects the result of magnifying each particular set by a factor
of 3 (Fig. 3.2). (The reason for the choice of 3 will become clear when we
turn our attention back to the Cantor set). A single point undergoes no change
at all, whereas a line segment triples in length. For the square, magnifying
each length by a factor of 3 results in a larger square that contains 9 copies
of the original square. Finally, the magnified cube yields a cube that contains
27 copies of the original cube within its volume. Notice that, in each case, to
compute the “size” of the new set, the dimension appears as the exponent of
the magnification factor.

Now, apply this transformation to the Cantor set. The set C0 = [0, 1]
becomes the interval [0, 3]. Deleting the middle third leaves [0, 1] ∪ [2, 3], which
is where we started in the original construction except that we now stand to
produce an additional copy of C in the interval [2, 3]. Magnifying the Cantor set
by a factor of 3 yields two copies of the original set. Thus, if x is the dimension
of C, then x should satisfy 2 = 3x, or x = ln 2/ ln 3 ≈ .631 (Fig. 3.3).
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dim ×3 new copies
point 0 → 1 = 30

segment 1 → 3 = 31

square 2 → 9 = 32

cube 3 → 27 = 33

C x → 2 = 3x

Figure 3.3: Dimension of C; 2 = 3x ⇒ x = ln 2/ ln 3.

The notion of a noninteger or fractional dimension is the impetus behind
the term “fractal,” coined in 1975 by Benoit Mandlebrot to describe a class
of sets whose intricate structures have much in common with the Cantor set.
Cantor’s construction, however, is over a hundred years old and for us represents
an invaluable testing ground for the upcoming theorems and conjectures about
the often elusive nature of subsets of the real line.

3.2 Open and Closed Sets

Given a ∈ R and ε > 0, recall that the ε-neighborhood of a is the set

Vε(a) = {x ∈ R : |x− a| < ε}.

In other words, Vε(a) is the open interval (a−ε, a+ε), centered at a with radius
ε.

Definition 3.2.1. A set O ⊆ R is open if for all points a ∈ O there exists an
ε-neighborhood Vε(a) ⊆ O.

Example 3.2.2. (i) Perhaps the simplest example of an open set is R itself.
Given an arbitrary element a ∈ R, we are free to pick any ε-neighborhood we
like and it will always be true that Vε(a) ⊆ R. It is also the case that the logical
structure of Definition 3.2.1 requires us to classify the empty set ∅ as an open
subset of the real line.

(ii) For a more useful collection of examples, consider the open interval

(c, d) = {x ∈ R : c < x < d}.

To see that (c, d) is open in the sense just defined, let x ∈ (c, d) be arbitrary. If
we take ε = min{x−c, d−x}, then it follows that Vε(x) ⊆ (c, d). It is important
to see where this argument breaks down if the interval includes either one of its
endpoints.

The union of open intervals is another example of an open set. This obser-
vation leads to the next result.
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Theorem 3.2.3. (i) The union of an arbitrary collection of open sets is open.
(ii) The intersection of a finite collection of open sets is open.

Proof. To prove (i), we let {Oλ : λ ∈ Λ} be a collection of open sets and let
O =

⋃
λ∈Λ Oλ. Let a be an arbitrary element of O. In order to show that O is

open, Definition 3.2.1 insists that we produce an ε-neighborhood of a completely
contained in O. But a ∈ O implies that a is an element of at least one particular
Oλ′ . Because we are assuming Oλ′ is open, we can use Definition 3.2.1 to assert
that there exists Vε(a) ⊆ Oλ′ . The fact that Oλ′ ⊆ O allows us to conclude that
Vε(a) ⊆ O. This completes the proof of (i).

For (ii), let {O1, O2, . . . , ON} be a finite collection of open sets. Now, if
a ∈ ⋂N

k=1 Ok, then a is an element of each of the open sets. By the definition of
an open set, we know that, for each 1 ≤ k ≤ N , there exists Vεk(a) ⊆ Ok. We
are in search of a single ε-neighborhood of a that is contained in every Ok, so
the trick is to take the smallest one. Letting ε = min{ε1, ε2, . . . , εN}, it follows
that Vε(a) ⊆ Vεk(a) for all k, and hence Vε(a) ⊆

⋂N
k=1 Ok, as desired.

Closed Sets

Definition 3.2.4. A point x is a limit point of a set A if every ε-neighborhood
Vε(x) of x intersects the set A in some point other than x.

Limit points are also often referred to as “cluster points” or “accumulation
points,” but the phrase “x is a limit point of A” has the advantage of explicitly
reminding us that x is quite literally the limit of a sequence in A.

Theorem 3.2.5. A point x is a limit point of a set A if and only if x = lim an
for some sequence (an) contained in A satisfying an �= x for all n ∈ N.

Proof. (⇒) Assume x is a limit point of A. In order to produce a sequence
(an) converging to x, we are going to consider the particular ε-neighborhoods
obtained using ε = 1/n. By Definition 3.2.4, every neighborhood of x intersects
A in some point other than x. This means that, for each n ∈ N, we are justified
in picking a point

an ∈ V1/n(x) ∩A

with the stipulation that an �= x. It should not be too difficult to see why
(an) → x. Given an arbitrary ε > 0, choose N such that 1/N < ε. It follows
that |an − x| < ε for all n ≥ N .

The reverse implication is requested as Exercise 3.2.4.

The restriction that an �= x in Theorem 3.2.5 deserves a comment. Given
a point a ∈ A, it is always the case that a is the limit of a sequence in A if
we are allowed to consider the constant sequence (a, a, a, . . . ). There will be
occasions where we will want to avoid this somewhat uninteresting situation, so
it is important to have a vocabulary that can distinguish limit points of a set
from isolated points.
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Definition 3.2.6. A point a ∈ A is an isolated point of A if it is not a limit
point of A.

As a word of caution, we need to be a little careful about how we understand
the relationship between these concepts. Whereas an isolated point is always
an element of the relevant set A, it is quite possible for a limit point of A not
to belong to A. As an example, consider the endpoint of an open interval. This
situation is the subject of the next important definition.

Definition 3.2.7. A set F ⊆ R is closed if it contains its limit points.

The adjective “closed” appears in several other mathematical contexts and
is usually employed to mean that an operation on the elements of a given set
does not take us out of the set. In linear algebra, for example, a vector space
is a set that is “closed” under addition and scalar multiplication. In analysis,
the operation we are concerned with is the limiting operation. Topologically
speaking, a closed set is one where convergent sequences within the set have
limits that are also in the set.

Theorem 3.2.8. A set F ⊆ R is closed if and only if every Cauchy sequence
contained in F has a limit that is also an element of F .

Proof. Exercise 3.2.6.

Example 3.2.9. (i) Consider

A =
{
1
n
: n ∈ N

}
.

Let’s show that each point of A is isolated. Given 1/n ∈ A, choose ε = 1/n −
1/(n+ 1). Then,

Vε(1/n) ∩A =
{
1
n

}
.

It follows from Definition 3.2.4 that 1/n is not a limit point and so is isolated.
Although all of the points of A are isolated, the set does have one limit point,
namely 0. This is because every neighborhood centered at zero, no matter how
small, is going to contain points of A. Because 0 /∈ A, A is not closed. The set
F = A ∪ {0} is an example of a closed set and is called the closure of A. (The
closure of a set is discussed in a moment.)

(ii) Let’s prove that a closed interval

[c, d] = {x ∈ R : c ≤ x ≤ d}
is a closed set using Definition 3.2.7. If x is a limit point of [c, d], then by
Theorem 3.2.5 there exists (xn) ⊆ [c, d] with (xn) → x. We need to prove that
x ∈ [c, d].

The key to this argument is contained in the Order Limit Theorem (Theorem
2.3.4), which summarizes the relationship between inequalities and the limiting
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process. Because c ≤ xn ≤ d, it follows from Theorem 2.3.4 (iii) that c ≤ x ≤ d
as well. Thus, [c, d] is closed.

(iii) Consider the set Q ⊆ R of rational numbers. An extremely important
property of Q is that its set of limit points is actually all of R. To see why this
is so, recall Theorem 1.4.3 from Chapter 1, which is referred to as the density
property of Q in R.

Let y ∈ R be arbitrary, and consider any neighborhood Vε(y) = (y−ε, y+ε).
Theorem 1.4.3 allows us to conclude that there exists a rational number r �= y
that falls in this neighborhood. Thus, y is a limit point of Q. The density
property of Q can now be reformulated in the following way.

Theorem 3.2.10 (Density of Q in R). Given any y ∈ R, there exists a se-
quence of rational numbers that converges to y.

Proof. Combine the preceding discussion with Theorem 3.2.5.

The same argument can also be used to show that every real number is the
limit of a sequence of irrational numbers. Although interesting, part of the
allure of the rational numbers is that, in addition to being dense in R, they are
countable. As we will see, this tangible aspect of Q makes it an extremely useful
set, both for proving theorems and for producing interesting counterexamples.

Closure

Definition 3.2.11. Given a set A ⊆ R, let L be the set of all limit points of
A. The closure of A is defined to be A = A ∪ L.

In Example 3.2.9 (i), we saw that if A = {1/n : n ∈ N}, then the closure
of A is A = A ∪ {0}. Example 3.2.9 (iii) verifies that Q = R. If A is an open
interval (a, b), then A = [a, b]. If A is a closed interval, then A = A. It is not
for lack of imagination that in each of these examples A is always a closed set.

Theorem 3.2.12. For any A ⊆ R, the closure A is a closed set and is the
smallest closed set containing A.

Proof. If L is the set of limit points of A, then it is immediately clear that A
contains the limit points of A. There is still something more to prove, however,
because taking the union of L with A could potentially produce some new limit
points of A. In Exercise 3.2.8, we outline the argument that this does not
happen.

Now, any closed set containing A must contain L as well. This shows that
A = A ∪ L is the smallest closed set containing A.

Complements

The mathematical notions of open and closed are not antonyms the way they are
in standard English. If a set is not open, that does not imply it must be closed.
Many sets such as the half-open interval (c, d] = {x ∈ R : c < x ≤ d} are neither
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open nor closed. The sets R and ∅ are both simultaneously open and closed
although, thankfully, these are the only ones with this unsightly property. There
is, however, an important relationship between open and closed sets. Recall that
the complement of a set A ⊆ R is defined to be the set

Ac = {x ∈ R : x /∈ A}.

Theorem 3.2.13. A set O is open if and only if Oc is closed. Likewise, a set
F is closed if and only if F c is open.

Proof. Given an open set O ⊆ R, let’s first prove that Oc is a closed set. To
prove Oc is closed, we need to show that it contains all of its limit points. If
x is a limit point of Oc, then every neighborhood of x contains some point of
Oc. But that is enough to conclude that x cannot be in the open set O because
x ∈ O would imply that there exists a neighborhood Vε(x) ⊆ O. Thus, x ∈ Oc,
as desired.

For the converse statement, we assume Oc is closed and argue that O is open.
Thus, given an arbitrary point x ∈ O, we must produce an ε-neighborhood
Vε(x) ⊆ O. Because Oc is closed, we can be sure that x is not a limit point of
Oc. Looking at the definition of limit point, we see that this implies that there
must be some neighborhood Vε(x) of x that does not intersect the set Oc. But
this means Vε(x) ⊆ O, which is precisely what we needed to show.

The second statement in Theorem 3.2.13 follows quickly from the first using
the observation that (Ec)c = E for any set E ⊆ R.

The last theorem of this section should be compared to Theorem 3.2.3.

Theorem 3.2.14. (i) The union of a finite collection of closed sets is closed.
(ii) The intersection of an arbitrary collection of closed sets is closed.

Proof. De Morgan’s Laws state that for any collection of sets {Eλ : λ ∈ Λ} it is
true that (⋃

λ∈Λ

Eλ

)c

=
⋂
λ∈Λ

Ec
λ and

(⋂
λ∈Λ

Eλ

)c

=
⋃
λ∈Λ

Ec
λ.

The result follows directly from these statements and Theorem 3.2.3. The
details are requested in Exercise 3.2.10.

Exercises

Exercise 3.2.1. (a) Where in the proof of Theorem 3.2.3 part (ii) does the
assumption that the collection of open sets be finite get used?

(b) Give an example of an infinite collection of nested open sets

O1 ⊇ O2 ⊇ O3 ⊇ O4 ⊇ · · ·

whose intersection
⋂∞

n=1 On is closed and nonempty.
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Exercise 3.2.2. Let

B =
{
(−1)nn
n+ 1

: n = 1, 2, 3, . . .
}

.

(a) Find the limit points of B.
(b) Is B a closed set?
(c) Is B an open set?
(d) Does B contain any isolated points?
(e) Find B.

Exercise 3.2.3. Decide whether the following sets are open, closed, or neither.
If a set is not open, find a point in the set for which there is no ε-neighborhood
contained in the set. If a set is not closed, find a limit point that is not contained
in the set.

(a) Q.
(b) N.
(c) {x ∈ R : x > 0}.
(d) (0, 1] = {x ∈ R : 0 < x ≤ 1}.
(e) {1 + 1/4 + 1/9 + · · ·+ 1/n2 : n ∈ N}.

Exercise 3.2.4. Prove the converse of Theorem 3.2.5 by showing that if x =
lim an for some sequence (an) contained in A satisfying an �= x, then x is a limit
point of A.

Exercise 3.2.5. Let a ∈ A. Prove that a is an isolated point of A if and only
if there exists an ε-neighborhood Vε(a) such that Vε(x) ∩A = {a}.
Exercise 3.2.6. Prove Theorem 3.2.8.

Exercise 3.2.7. Let x ∈ O, where O is an open set. If (xn) is a sequence
converging to x, prove that all but a finite number of the terms of (xn) must be
contained in O.

Exercise 3.2.8. Given A ⊆ R, let L be the set of all limit points of A.
(a) Show that the set L is closed.
(b) Argue that if x is a limit point of A ∪ L, then x is a limit point of A.

Use this observation to furnish a proof for Theorem 3.2.12.

Exercise 3.2.9. (a) If y is a limit point of A ∪B, show that y is either a limit
point of A or a limit point of B (or both).

(b) Prove that A ∪B = A ∪B.
(c) Does the result about closures in (b) extend to infinite unions of sets?

Exercise 3.2.10 (De Morgan’s Laws). A proof for De Morgan’s Laws in the
case of two sets is outlined in Exercise 1.2.3. The general argument is similar.

(a) Given a collection of sets {Eλ : λ ∈ Λ}, show that(⋃
λ∈Λ

Eλ

)c

=
⋂
λ∈Λ

Ec
λ and

(⋂
λ∈Λ

Eλ

)c

=
⋃
λ∈Λ

Ec
λ.

(b) Now, provide the details for the proof of Theorem 3.2.14.
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Exercise 3.2.11. Let A be bounded above so that s = supA exists. Show that
s ∈ A.

Exercise 3.2.12. Decide whether the following statements are true or false.
Provide counterexamples for those that are false, and supply proofs for those
that are true.

(a) For any set A ⊆ R, A
c
is open.

(b) If a set A has an isolated point, it cannot be an open set.
(c) A set A is closed if and only if A = A.
(d) If A is a bounded set, then s = supA is a limit point of A.
(e) Every finite set is closed.
(f) An open set that contains every rational number must necessarily be all

of R.

Exercise 3.2.13. Prove that the only sets that are both open and closed are
R and the empty set ∅.
Exercise 3.2.14. A set A is called an Fσ set if it can be written as the countable
union of closed sets. A set B is called a Gδ set if it can be written as the
countable intersection of open sets.

(a) Show that a closed interval [a, b] is a Gδ set.
(b) Show that the half-open interval (a, b] is both a Gδ and an Fσ set.
(c) Show that Q is an Fσ set, and the set of irrationals I forms a Gδ set.

(We will see in Section 3.5 that Q is not a Gδ set, nor is I an Fσ set.)

3.3 Compact Sets

Definition 3.3.1. A set K ⊆ R is compact if every sequence in K has a sub-
sequence that converges to a limit that is also in K.

Example 3.3.2. The most basic example of a compact set is a closed interval.
To see this, notice that if (an) is contained in an interval [c, d], then the Bolzano–
Weierstrass Theorem guarantees that we can find a convergent subsequence
(ank

). Because a closed interval is a closed set (Example 3.2.9, (ii)), we know
that the limit of this subsequence is also in [c, d].

What are the properties of closed intervals that we used in the preceding
argument? The Bolzano–Weierstrass Theorem requires boundedness, and we
used the fact that closed sets contain their limit points. As we are about to
see, these two properties completely characterize compact sets in R. The term
“bounded” has thus far only been used to describe sequences (Definition 2.3.1),
but an analogous statement can easily be made about sets.

Definition 3.3.3. A set A ⊆ R is bounded if there exists M > 0 such that
|a| ≤ M for all a ∈ A.

Theorem 3.3.4 (Heine–Borel Theorem). A set K ⊆ R is compact if and
only if it is closed and bounded.
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Proof. Let K be compact. We will first prove that K must be bounded, so
assume, for contradiction, that K is not a bounded set. The idea is to produce
a sequence in K that marches off to infinity in such a way that it cannot have a
convergent subsequence as the definition of compact requires. To do this, notice
that because K is not bounded there must exist an element x1 ∈ K satisfying
|x1| > 1. Likewise, there must exist x2 ∈ K with |x2| > 2, and in general, given
any n ∈ N, we can produce xn ∈ K such that |xn| > n.

Now, because K is assumed to be compact, (xn) should have a convergent
subsequence (xnk

). But the elements of the subsequence must necessarily satisfy
|xnk

| > nk, and consequently (xnk
) is unbounded. Because convergent sequences

are bounded (Theorem 2.3.2), we have a contradiction. Thus, K must at least
be a bounded set.

Next, we will show that K is also closed. To see that K contains its limit
points, we let x = limxn, where (xn) is contained in K and argue that x
must be in K as well. By Definition 3.3.1, the sequence (xn) has a convergent
subsequence (xnk

), and by Theorem 2.5.2, we know (xnk
) converges to the same

limit x. Finally, Definition 3.3.1 requires that x ∈ K. This proves that K is
closed.

The proof of the converse statement is requested in Exercise 3.3.2.

There may be a temptation to consider closed intervals as being a kind of
standard archetype for compact sets, but this is misleading. The structure of
compact sets can be much more intricate and interesting. For instance, one
implication of the Heine–Borel Theorem (Theorem 3.3.4) is that the Cantor
set is compact (Exercise 3.3.3). It is more useful to think of compact sets as
generalizations of closed intervals. Whenever a fact involving closed intervals
is true, it is often the case that the same result holds when we replace “closed
interval” with “compact set.” As an example, let’s experiment with the Nested
Interval Property proved in the first chapter.

Theorem 3.3.5. If K1 ⊇ K2 ⊇ K3 ⊇ K4 ⊇ · · · is a nested sequence of
nonempty compact sets, then the intersection

⋂∞
n=1 Kn is not empty.

Proof. In order to take advantage of the compactness of each Kn, we are going
to produce a sequence that is eventually in each of these sets. Thus, for each
n ∈ N, pick a point xn ∈ Kn. Because the compact sets are nested, it follows
that the sequence (xn) is contained in K1. By Definition 3.3.1, (xn) has a
convergent subsequence (xnk

) whose limit x = limxnk
is an element of K1.

In fact, x is an element of every Kn for essentially the same reason. Given
a particular n0 ∈ N, the terms in the sequence (xn) are contained in Kn0 as
long as n ≥ n0. Ignoring the finite number of terms for which nk < n0, the
same subsequence (xnk

) is then also contained in Kn0 . The conclusion is that
x = limxnk

is an element of Kn0 . Because n0 was arbitrary, x ∈ ⋂∞
n=1 Kn and

the proof is complete.
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Open Covers

Defining compactness for sets inR is reminiscent of the situation we encountered
with completeness in that there are a number of equivalent ways to describe this
phenomenon. We demonstrated the equivalence of two such characterizations
in Theorem 3.3.4. What this theorem implies is that we could have decided to
define compact sets to be sets that are closed and bounded, and then proved that
sequences contained in compact sets have convergent subsequences with limits
in the set. There are some larger issues involved in deciding what the definition
should be, but what is important at this moment is that we be versatile enough
to use whatever description of compactness is most appropriate for a given
situation.

To add to the delight, there is a third useful characterization of compactness,
equivalent to the two others, which is described in terms of open covers and finite
subcovers.

Definition 3.3.6. Let A ⊆ R. An open cover for A is a (possibly infinite)
collection of open sets {Oλ : λ ∈ Λ} whose union contains the set A; that is,
A ⊆ ⋃

λ∈Λ Oλ. Given an open cover for A, a finite subcover is a finite sub-
collection of open sets from the original open cover whose union still manages
to completely contain A.

Example 3.3.7. Consider the open interval (0, 1). For each point x ∈ (0, 1),
let Ox be the open interval (x/2, 1). Taken together, the infinite collection
{Ox : x ∈ (0, 1)} forms an open cover for the open interval (0, 1). Notice,
however, that it is impossible to find a finite subcover. Given any proposed
finite subcollection

{Ox1 , Ox2 , . . . , Oxn
},

set x′ = min{x1, x2, . . . , xn} and observe that any real number y satisfying
0 < y ≤ x′/2 is not contained in the union

⋃n
i=1 Oxi .

( )
0 1x2

2
x1
2 x1x2

Ox1︷ ︸︸ ︷

︸ ︷︷ ︸
Ox2

• • • •

Now, consider a similar cover for the closed interval [0, 1]. For x ∈ (0, 1),
the sets Ox = (x/2, 1) do a fine job covering (0, 1), but in order to have an open
cover of the closed interval [0, 1], we must also cover the endpoints. To remedy
this, we could fix ε > 0, and let O0 = (−ε, ε) and O1 = (1− ε, 1 + ε). Then, the
collection

{O0, O1, Ox : x ∈ (0, 1)}
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is an open cover for [0, 1]. But this time, notice there is a finite subcover.
Because of the addition of the set O0, we can choose x′ so that x′/2 < ε. It
follows that {O0, Ox′ , O1} is a finite subcover for the closed interval [0, 1].
Theorem 3.3.8. Let K be a subset of R. All of the following statements are
equivalent in the sense that any one of them implies the two others:

(i) K is compact.

(ii) K is closed and bounded.

(iii) Any open cover for K has a finite subcover.

Proof. The equivalence of (i) and (ii) is the content of Theorem 3.3.4. What
remains is to show that (iii) is equivalent to (i) and (ii). Let’s first assume (iii),
and prove that it implies (ii) (and thus (i) as well).

To show that K is bounded, we construct an open cover for K by defining
Ox to be an open interval of radius 1 around each point x ∈ K. In the language
of neighborhoods, Ox = V1(x). The open cover {Ox : x ∈ K} then must have
a finite subcover {Ox1 , Ox2 , . . . , Oxn}. Because K is contained in a finite union
of bounded sets, K must itself be bounded.

The proof that K is closed is more delicate, and we argue it by contradiction.
Let (yn) be a Cauchy sequence contained in K with lim yn = y. To show that
K is closed, we must demonstrate that y ∈ K, so assume for contradiction that
this is not the case. If y /∈ K, then every x ∈ K is some positive distance away
from y. We now construct an open cover by taking Ox to be an interval of radius
|x−y|/2 around each point x in K. Because we are assuming (iii), the resulting
open cover {Ox : x ∈ K} must have a finite subcover {Ox1 , Ox2 , . . . , Oxn}. The
contradiction arises when we realize that, in the spirit of Example 3.3.7, this
finite subcover cannot contain all of the elements of the sequence (yn). To make
this explicit, set

ε0 = min
{ |xi − y|

2
: 1 ≤ i ≤ n

}
.

Because (yn)→ y, we can certainly find a term yN satisfying |yN −y| < ε0. But
such a yN must necessarily be excluded from each Oxi

, meaning that

yN /∈
n⋃

i=1

Oxi .

Thus our supposed subcover does not actually cover all of K. This contradiction
implies that y ∈ K, and hence K is closed and bounded.

The proof that (ii) implies (iii) is outlined in Exercise 3.3.8.

Exercises

Exercise 3.3.1. Show that if K is compact, then supK and infK both exist
and are elements of K.
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Exercise 3.3.2. Prove the converse of Theorem 3.3.4 by showing that if a set
K ⊆ R is closed and bounded, then it is compact.

Exercise 3.3.3. Show that the Cantor set defined in Section 3.1 is a compact
set.

Exercise 3.3.4. Show that if K is compact and F is closed, then K ∩ F is
compact.

Exercise 3.3.5. Decide which of the following sets are compact. For those that
are not compact, show how Definition 3.3.1 breaks down. In other words, give
an example of a sequence contained in the given set that does not possess a
subsequence converging to a limit in the set.

(a) Q.
(b) Q ∩ [0, 1].
(c) R.
(d) R ∩ [0, 1].
(e) {1, 1/2, 1/3, 1/4, 1/5, . . . }.
(f) {1, 1/2, 2/3, 3/4, 4/5, . . . }.

Exercise 3.3.6. As some more evidence of the surprising nature of the Cantor
set, follow these steps to show that the sum C +C = {x+ y : x, y ∈ C} is equal
to the closed interval [0, 2]. (Keep in mind that C has zero length and contains
no intervals.)

The observation that {x + y : x, y ∈ C} ⊆ [0, 2] passes for obvious, so we
only need to prove the reverse inclusion [0, 2] ⊆ {x+ y : x, y ∈ C}. Thus, given
s ∈ [0, 2], we must find two elements x, y ∈ C satisfying x+ y = s.

(a) Show that there exist x1, y1 ∈ C1 for which x1 + y1 = s. Show in
general that, for an arbitrary n ∈ N, we can always find xn, yn ∈ Cn for which
xn + yn = s.

(b) Keeping in mind that the sequences (xn) and (yn) do not necessarily
converge, show how they can nevertheless be used to produce the desired x and
y in C satisfying x+ y = s.

Exercise 3.3.7. Decide whether the following propositions are true or false.
If the claim is valid, supply a short proof, and if the claim is false, provide a
counterexample.

(a) An arbitrary intersection of compact sets is compact.
(b) Let A ⊆ R be arbitrary, and let K ⊆ R be compact. Then, the inter-

section A ∩K is compact.
(c) If F1 ⊇ F2 ⊇ F3 ⊇ F4 ⊇ · · · is a nested sequence of nonempty closed

sets, then the intersection
⋂∞

n=1 Fn �= ∅.
(d) A finite set is always compact.
(e) A countable set is always compact.

Exercise 3.3.8. Follow these steps to prove the final implication in Theorem
3.3.8.
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Assume K satisfies (i) and (ii), and let {Oλ : λ ∈ Λ} be an open cover for
K. For contradiction, let’s assume that no finite subcover exists. Let I0 be a
closed interval containing K, and bisect I0 into two closed intervals A1 and B1.

(a) Why must either A1 ∩ K or B1 ∩ K (or both) have no finite subcover
consisting of sets from {Oλ : λ ∈ Λ}.

(b) Show that there exists a nested sequence of closed intervals I0 ⊇ I1 ⊇
I2 ⊇ · · · with the property that, for each n, In ∩ K cannot be finitely covered
and lim |In| = 0.

(c) Show that there exists an x ∈ K such that x ∈ In for all n.
(d) Because x ∈ K, there must exist an open set Oλ0 from the original

collection that contains x as an element. Argue that there must be an n0 large
enough to guarantee that In0 ⊆ Oλ0 . Explain why this furnishes us with the
desired contradiction.

Exercise 3.3.9. Consider each of the sets listed in Exercise 3.3.5. For each one
that is not compact, find an open cover for which there is no finite subcover.

Exercise 3.3.10. Let’s call a set clompact if it has the property that every
closed cover (i.e., a cover consisting of closed sets) admits a finite subcover.
Describe all of the clompact subsets of R.

3.4 Perfect Sets and Connected Sets

One of the underlying goals of topology is to strip away all of the extraneous
information that comes with our intuitive picture of the real numbers and isolate
just those properties that are responsible for the phenomenon we are studying.
For example, we were quick to observe that any closed interval is a compact
set. The content of Theorem 3.3.4, however, is that the compactness of a closed
interval has nothing to do with the fact that the set is an interval but is a
consequence of the set being bounded and closed. In Chapter 1, we argued that
the set of real numbers between 0 and 1 is an uncountable set. This turns out to
be the case for any nonempty closed set that does not contain isolated points.

Perfect Sets

Definition 3.4.1. A set P ⊆ R is perfect if it is closed and contains no isolated
points.

Closed intervals (other than the singleton sets [a, a]) serve as the most ob-
vious class of examples of perfect sets, but in fact it is not too difficult to prove
that the Cantor set from Section 3.1 is another example.

Theorem 3.4.2. The Cantor set is perfect.

Proof. The Cantor set is defined as the intersection C =
⋂∞

n=0 Cn, where each
Cn is a finite union of closed intervals. By Theorem 3.2.14, each Cn is closed,
and by the same theorem, C is closed as well. It remains to show that no point
in C is isolated.
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Let x ∈ C be arbitrary. To convince ourselves that x is not isolated, we must
construct a sequence (xn) of points in C, different from x, that converges to x.
From our earlier discussion, we know that C at least contains the endpoints of
the intervals that make up each Cn. In Exercise 3.4.3, we sketch the argument
that these are all that is needed to construct (xn).

One argument for the uncountability of the Cantor set was presented in
Section 3.1. Another, perhaps more satisfying, argument for the same conclusion
can be obtained from the next theorem.

Theorem 3.4.3. A nonempty perfect set is uncountable.

Proof. If P is perfect and nonempty, then it must be infinite because otherwise
it would consist only of isolated points. Let’s assume, for contradiction, that P
is countable. Thus, we can write

P = {x1, x2, x3, . . . },

where every element of P appears on this list. The idea is to construct a sequence
of nested compact sets Kn, all contained in P , with the property that x1 /∈ K2,
x2 /∈ K3, x3 /∈ K4, . . . . Some care must be taken to ensure that each Kn is
nonempty, for then we can use Theorem 3.3.5 to produce an

x ∈
∞⋂
n=1

Kn ⊆ P

that cannot be on the list {x1, x2, x3, . . . }.
Let I1 be a closed interval that contains x1 in its interior (i.e., x1 is not an

endpoint of I1). Now, x1 is not isolated, so there exists some other point y2 ∈ P
that is also in the interior of I1. Construct a closed interval I2, centered on y2,
so that I2 ⊆ I1 but x1 /∈ I2. More explicitly, if I1 = [a, b], let

ε = min{y2 − a, b− y2, |x1 − y2|}.

Then, the interval I2 = [y − ε/2, y + ε/2] has the desired properties.

[ ]
•
x1

[ ]•
y2

I1︷ ︸︸ ︷
︸ ︷︷ ︸

I2

This process can be continued. Because y2 ∈ P is not isolated, there must exist
another point y3 ∈ P in the interior of I2, and we may insist that y3 �= x2.
Now, construct I3 centered on y3 and small enough so that x2 /∈ I3 and I3 ⊆ I2.
Observe that I3 ∩ P �= ∅ because this intersection contains at least y3.

If we carry out this construction inductively, the result is a sequence of closed
intervals In satisfying
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(i) In+1 ⊆ In,

(ii) xn �∈ In+1, and

(iii) In ∩ P �= ∅.
To finish the proof, we let Kn = In ∩ P. For each n ∈ N, we have that Kn is
closed because it is the intersection of closed sets, and bounded because it is
contained in the bounded set In. Hence, Kn is compact. By construction, Kn

is not empty and Kn+1 ⊆ Kn. Thus, we can employ Theorem 3.3.5 to conclude
that the intersection ∞⋂

n=1

Kn �= ∅.

But eachKn is a subset of P , and the fact that xn �∈ In+1 leads to the conclusion
that

⋂∞
n=1 Kn = ∅, which is the sought-after contradiction.

Connected Sets

Although the two open intervals (1, 2) and (2, 5) have the limit point x = 2 in
common, there is still some space between them in the sense that no limit point
of one of these intervals is actually contained in the other. Said another way,
the closure of (1, 2) (see Definition 3.2.11) is disjoint from (2, 5), and the closure
of (2, 5) does not intersect (1, 2). Notice that this same observation cannot be
made about (1, 2] and (2, 5), even though these latter sets are disjoint.

Definition 3.4.4. Two nonempty sets A,B ⊆ R are separated if A ∩ B and
A ∩ B are both empty. A set E ⊆ R is disconnected if it can be written as
E = A ∪B, where A and B are nonempty separated sets.

A set that is not disconnected is called a connected set.

Example 3.4.5. (i) If we let A = (1, 2) and B = (2, 5), then it is not difficult
to verify that E = (1, 2)∪ (2, 5) is disconnected. Notice that the sets C = (1, 2]
and D = (2, 5) are not separated because C∩D = {2} is not empty. This should
be comforting. The union C ∪D is equal to the interval (1, 5), which better not
qualify as a disconnected set. We will prove in a moment that every interval is
a connected subset of R and vice versa.

(ii) Let’s show that the set of rational numbers is disconnected. If we let

A = Q ∩ (−∞,
√
2) and B = Q ∩ (

√
2,∞),

then we certainly have Q = A ∪ B. The fact that A ⊆ (−∞,
√
2) implies

(by the Order Limit Theorem) that any limit point of A will necessarily fall in
(−∞,

√
2]. Because this is disjoint from B, we get A∩B = ∅. We can similarly

show that A ∩B = ∅, which implies that A and B are separated.

The definition of connected is stated as the negation of disconnected, but a
little care with the logical negation of the quantifiers in Definition 3.4.4 results
in a positive characterization of connectedness. Essentially, a set E is connected
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if, no matter how it is partitioned into two nonempty disjoint sets, it is always
possible to show that at least one of the sets contains a limit point of the other.

Theorem 3.4.6. A set E ⊆ R is connected if and only if, for all nonempty
disjoint sets A and B satisfying E = A ∪ B, there always exists a convergent
sequence (xn)→ x with (xn) contained in one of A or B, and x an element of
the other.

Proof. Exercise 3.4.6.

The concept of connectedness is more relevant when working with subsets
of the plane and other higher-dimensional spaces. This is because, in R, the
connected sets coincide precisely with the collection of intervals (with the un-
derstanding that unbounded intervals such as (−∞, 3) and [0,∞) are included).

Theorem 3.4.7. A set E ⊆ R is connected if and only if whenever a < c < b
with a, b ∈ E, it follows that c ∈ E as well.

Proof. Assume E is connected, and let a, b ∈ E and a < c < b. Set

A = (−∞, c) ∩ E and B = (c,∞) ∩ E.

Because a ∈ A and b ∈ B, neither set is empty and, just as in Example 3.4.5
(ii), neither set contains a limit point of the other. If E = A∪B, then we would
have that E is disconnected, which it is not. It must then be that A ∪ B is
missing some element of E, and c is the only possibility. Thus, c ∈ E.

Conversely, assume that E is an interval in the sense that whenever a, b ∈ E
satisfy a < c < b for some c, then c ∈ E. Our intent is to use the characterization
of connected sets in Theorem 3.4.6, so let E = A ∪ B, where A and B are
nonempty and disjoint. We need to show that one of these sets contains a limit
point of the other. Pick a0 ∈ A and b0 ∈ B, and, for the sake of the argument,
assume a0 < b0. Because E is itself an interval, the interval I0 = [a0, b0] is
contained in E. Now, bisect I0 into two equal halves. The midpoint of I0 must
either be in A or B, and so choose I1 = [a1, b1] to be the half that allows us to
have a1 ∈ A and b1 ∈ B. Continuing this process yields a sequence of nested
intervals In = [an, bn], where an ∈ A, bn ∈ B, and the length (bn − an) → 0.
The remainder of this argument should feel familiar. By the Nested Interval
Property, there exists an

x ∈
∞⋂
n=0

In,

and it is straightforward to show that the sequences of endpoints each satisfy
lim an = x and lim bn = x. But now x ∈ E must belong to either A or B, thus
making it a limit point of the other. This completes the argument.

Exercises

Exercise 3.4.1. If P is a perfect set andK is compact, is the intersection P∩K
always compact? Always perfect?



3.4. Perfect Sets and Connected Sets 93

Exercise 3.4.2. Does there exist a perfect set consisting of only rational num-
bers?

Exercise 3.4.3. Review the portion of the proof given for Theorem 3.4.2 and
follow these steps to complete the argument.

(a) Because x ∈ C1, argue that there exists an x1 ∈ C ∩ C1 with x1 �= x
satisfying |x− x1| ≤ 1/3.

(b) Finish the proof by showing that for each n ∈ N, there exists xn ∈ C∩Cn,
different from x, satisfying |x− xn| ≤ 1/3n.

Exercise 3.4.4. Repeat the Cantor construction from Section 3.1 starting with
the open interval [0, 1]. This time, however, remove the open middle fourth from
each component.

(a) Is the resulting set compact? Perfect?
(b) Using the algorithms from Section 3.1, compute the length and dimension

of this Cantor-like set.

Exercise 3.4.5. Let A and B be subsets of R. Show that if there exist disjoint
open sets U and V with A ⊆ U and B ⊆ V , then A and B are separated.

Exercise 3.4.6. Prove Theorem 3.4.6.

Exercise 3.4.7. (a) Find an example of a disconnected set whose closure is
connected.

(b) If A is connected, is A necessarily connected? If A is perfect, is A
necessarily perfect?

Exercise 3.4.8. A set E is totally disconnected if, given any two points x, y ∈
E, there exist separated sets A and B with x ∈ A, y ∈ B, and E = A ∪B.

(a) Show that Q is totally disconnected.
(b) Is the set of irrational numbers totally disconnected?

Exercise 3.4.9. Follow these steps to show that the Cantor set C =
⋂∞

n=0 Cn

described in Section 3.1 is totally disconnected in the sense described in Exercise
3.4.8.

(a) Given x, y ∈ C, with x < y, set ε = y − x. For each n = 0, 1, 2, . . . , the
set Cn consists of a finite number of closed intervals. Explain why there must
exist an N large enough so that it is impossible for x and y both to belong to
the same closed interval of CN .

(b) Argue that there exists a point z /∈ C such that x < z < y. Explain how
this proves that there can be no interval of the form (a, b) with a < b contained
in C.

(c) Show that C is totally disconnected.

Exercise 3.4.10. Let {r1, r2, r3, . . . } be an enumeration of the rational num-
bers, and for each n ∈ N set εn = 1/2n. Define O =

⋃∞
n=1 Vεn(rn), and let

F = Oc.
(a) Argue that F is a closed, nonempty set consisting only of irrational

numbers.
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(b) Does F contain any nonempty open intervals? Is F totally disconnected?
(See Exercise 3.4.8 for the definition.)

(c) Is it possible to know whether F is perfect? If not, can we modify this
construction to produce a nonempty perfect set of irrational numbers?

3.5 Baire’s Theorem

The nature of the real line can be deceptively elusive. The closer we look, the
more intricate and enigmatic R becomes, and the more we are reminded to pro-
ceed carefully (i.e., axiomatically) with all of our conclusions about properties
of subsets of R. The structure of open sets is fairly straightforward. Every open
set is either a finite or countable union of open intervals. Standing in opposition
to this tidy description of all open sets is the Cantor set. The Cantor set is a
closed, uncountable set that contains no intervals of any kind. Thus, no such
characterization of closed sets should be anticipated.

Recall that the arbitrary union of open sets is always an open set. Likewise,
the arbitrary intersection of closed sets is closed. By taking unions of closed
sets or intersections of open sets, however, it is possible to obtain a fairly broad
selection of subsets of R. In Exercises 3.2.14, we introduced the following two
classes of sets.

Definition 3.5.1. A set A ⊆ R is called an Fσ set if it can be written as the
countable union of closed sets. A set B ⊆ R is called a Gδ set if it can be
written as the countable intersection of open sets.

Exercise 3.5.1. Argue that a set A is a Gδ set if and only if its complement
is an Fσ set.

Exercise 3.5.2. Replace each with the word finite or countable, depend-
ing on which is more appropriate.

(a) The union of Fσ sets an in Fσ set.
(b) The intersection of Fσ sets is an Fσ set.
(c) The union of Gδ sets is a Gδ set.
(d) The intersection of Gδ sets is a Gδ set.

Exercise 3.5.3. (This exercise has already appeared as Exercise 3.2.14.)
(a) Show that a closed interval [a, b] is a Gδ set.
(b) Show that the half-open interval (a, b] is both a Gδ and an Fσ set.
(c) Show that Q is an Fσ set, and the set of irrationals I forms a Gδ set.

It is not readily obvious that the class Fσ does not include every subset of
R, but we are now ready to argue that I is not an Fσ set (and consequently
Q is not a Gδ set). This will follow from a theorem due to René Louis Baire
(1874–1932).

Recall that a set G ⊆ R is dense in R if, given any two real numbers a < b,
it is possible to find a point x ∈ G with a < x < b.
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Theorem 3.5.2. If {G1, G2, G3, . . . } is a countable collection of dense, open
sets, then the intersection

⋂∞
n=1 Gn is not empty.

Proof. Before embarking on the proof, notice that we have seen a conclusion
like this before. Theorem 3.3.5 asserts that a nested sequence of compact sets
has a nontrivial intersection. In this theorem, we are dealing with dense, open
sets, but as it turns out, we are going to use Theorem 3.3.5—and actually, just
the Nested Interval Property—as the crucial step in the argument.

Exercise 3.5.4. (a) Starting with n = 1, inductively construct a nested se-
quence of closed intervals I1 ⊇ I2 ⊇ I3 ⊇ · · · satisfying In ⊆ Gn. Give special
attention to the issue of the endpoints of each In.

(b) Now, use Theorem 3.3.5 or the Nested Interval Property to finish the
proof.

Exercise 3.5.5. Show that it is impossible to write

R =
∞⋃
n=1

Fn,

where for each n ∈ N, Fn is a closed set containing no nonempty open intervals.

Exercise 3.5.6. Show how the previous exercise implies that the set I of irra-
tionals cannot be an Fσ set, and Q cannot be a Gδ set.

Exercise 3.5.7. Using Exercise 3.5.6 and versions of the statements in Exercise
3.5.2, construct a set that is neither in Fσ nor in Gδ.

Nowhere-Dense Sets

We have encountered several equivalent ways to assert that a particular set G
is dense in R. In Section 3.2, we observed that G is dense in R if and only if
every point of R is a limit point of G. Because the closure of any set is obtained
by taking the union of the set and its limit points, we have that

G is dense in R if and only if G = R.

The set Q is dense in R; the set Z is clearly not. In fact, in the jargon of
analysis, Z is “nowhere-dense” in R.

Definition 3.5.3. A set E is nowhere-dense if E contains no nonempty open
intervals.

Exercise 3.5.8. Show that a set E is nowhere-dense in R if and only if the
complement of E is dense in R.
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Exercise 3.5.9. Decide whether the following sets are dense in R, nowhere-
dense in R, or somewhere in between.

(a) A = Q ∩ [0, 5].
(b) B = {1/n : n ∈ N}.
(c) the set of irrationals.
(d) the Cantor set.

We can now restate Theorem 3.5.2 in a slightly more general form.

Theorem 3.5.4 (Baire’s Theorem). The set of real numbers R cannot be
written as the countable union of nowhere-dense sets.

Proof. For contradiction, assume that E1, E2, E3, . . . are each nowhere-dense
and satisfy R =

⋃∞
n=1 En.

Exercise 3.5.10. Finish the proof by finding a contradiction to the results in
this section.

3.6 Epilogue

Baire’s Theorem is yet another statement about the size of R. We have al-
ready encountered several ways to describe the sizes of infinite sets. In terms
of cardinality, countable sets are relatively small whereas uncountable sets are
large. We also briefly discussed the concept of “length,” or “measure,” in Sec-
tion 3.1. Baire’s Theorem offers a third perspective. From this point of view,
nowhere-dense sets are considered to be “thin” sets. Any set that is the count-
able union—i.e., a not very large union—of these small sets is called a “meager”
set or a set of “first category.” A set that is not of first category is of “sec-
ond category.” Intuitively, sets of the second category are the “fat” subsets.
The Baire Category Theorem, as it is often called, states that R is of second
category.

There is a significance to the Baire Category Theorem that is difficult to
appreciate at the moment because we are only seeing a special case of this result.
The real numbers are an example of a complete metric space. Metric spaces are
discussed in some detail in Section 8.2, but here is the basic idea. Given a set
of mathematical objects such as real numbers, points in the plane or continuous
functions defined on [0,1], a “metric” is a rule that assigns a “distance” between
two elements in the set. InR, we have been using |x−y| as the distance between
the real numbers x and y. The point is that if we can create a satisfactory notion
of “distance” on these other spaces (we will need the triangle inequality to hold,
for instance), then the concepts of convergence, Cauchy sequences, and open
sets, for example, can be naturally transferred over. A complete metric space is
any set with a suitably defined metric in which Cauchy sequences have limits.
We have spent a good deal of time discussing the fact that R is a complete
metric space whereas Q is not.
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The Baire Category Theorem in its more general form states that any com-
plete metric space must be too large to be the countable union of nowhere-dense
subsets. One particularly interesting example of a complete metric space is the
set of continuous functions defined on the interval [0, 1]. (The distance between
two functions f and g in this space is defined to be sup |f(x) − g(x)|, where
x ∈ [0, 1].) Now, in this space we will see that the collection of continuous func-
tions that are differentiable at even one point can be written as the countable
union of nowhere-dense sets. Thus, a fascinating consequence of Baire’s Theo-
rem in this setting is that most continuous functions do not have derivatives at
any point. Chapter 5 concludes with a construction of one such function. This
odd situation mirrors the roles of Q and I as subsets of R. Just as the familiar
rational numbers constitute a minute proportion of the real line, the differen-
tiable functions of calculus are exceedingly atypical of continuous functions in
general.





Chapter 4

Functional Limits and
Continuity

4.1 Discussion: Examples of Dirichlet
and Thomae

Although it is common practice in calculus courses to discuss continuity before
differentiation, historically mathematicians’ attention to the concept of continu-
ity came long after the derivative was in wide use. Pierre de Fermat (1601–1665)
was using tangent lines to solve optimization problems as early as 1629. On the
other hand, it was not until around 1820 that Cauchy, Bolzano, Weierstrass,
and others began to characterize continuity in terms more rigorous than pre-
vailing intuitive notions such as “unbroken curves” or “functions which have
no jumps or gaps.” The basic reason for this two-hundred year waiting period
lies in the fact that, for most of this time, the very notion of function did not
really permit discontinuities. Functions were entities such as polynomials, sines,
and cosines, always smooth and continuous over their relevant domains. The
gradual liberation of the term function to its modern understanding—a rule
associating a unique output to a given input—was simultaneous with 19th cen-
tury investigations into the behavior of infinite series. Extensions of the power
of calculus were intimately tied to the ability to represent a function f(x) as a
limit of polynomials (called a power series) or as a limit of sums of sines and
cosines (called a trigonometric or Fourier series). A typical question for Cauchy
and his contemporaries was whether the continuity of the limiting polynomials
or trigonometric functions necessarily implied that the limit f would also be
continuous.

Sequences and series of functions are the topics of Chapter 6. What is
relevant at this moment is that we realize why the issue of finding a rigorous
definition for continuity finally made its way to the fore. Any significant progress
on the question of whether the limit of continuous functions is continuous (for

99
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Figure 4.1: Dirichlet’s Function, g(x).

Cauchy and for us) necessarily depends on a definition of continuity that does
not rely on imprecise notions such as “no holes” or “gaps.” With a mathemati-
cally unambiguous definition for the limit of a sequence in hand, we are well on
our way toward a rigorous understanding of continuity.

Given a function f with domain A ⊆ R, we want to define continuity at a
point c ∈ A to mean that if x ∈ A is chosen near c, then f(x) will be near f(c).
Symbolically, we will say f is continuous at c if

lim
x→c

f(x) = f(c).

The problem is that, at present, we only have a definition for the limit of a se-
quence, and it is not entirely clear what is meant by limx→c f(x). The subtleties
that arise as we try to fashion such a definition are well-illustrated via a family
of examples, all based on an idea of the prominent German mathematician, Pe-
ter Lejeune Dirichlet. Dirichlet’s idea was to define a function g in a piecewise
manner based on whether or not the input variable x is rational or irrational.
Specifically, let

g(x) =
{
1 if x ∈ Q
0 if x /∈ Q.

The intricate way that Q and I fit inside of R makes an accurate graph of g
technically impossible to draw, but Figure 4.1 illustrates the basic idea.

Does it make sense to attach a value to the expression limx→1/2 g(x)? One
idea is to consider a sequence (xn) → 1/2. Using our notion of the limit of
a sequence, we might try to define limx→1/2 g(x) as simply the limit of the
sequence g(xn). But notice that this limit depends on how the sequence (xn) is
chosen. If each xn is rational, then

lim
n→∞ g(xn) = 1.

On the other hand, if xn is irrational for each n, then

lim
n→∞ g(xn) = 0.
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Figure 4.2: Modified Dirichlet Function, h(x).

This unacceptable situation demands that we work harder on our definition of
functional limits. Generally speaking, we want the value of limx→c g(x) to be
independent of how we approach c. In this particular case, the definition of a
functional limit that we agree on should lead to the conclusion that

lim
x→1/2

g(x) does not exist.

Postponing the search for formal definitions for the moment, we should
nonetheless realize that Dirichlet’s function is not continuous at c = 1/2. In
fact, the real significance of this function is that there is nothing unique about
the point c = 1/2. Because both Q and I (the set of irrationals) are dense in
the real line, it follows that for any z ∈ R we can find sequences (xn) ⊆ Q and
(yn) ⊆ I such that

limxn = lim yn = z.

(See Example 3.2.9 (iii).) Because

lim g(xn) �= lim g(yn),

the same line of reasoning reveals that g(x) is not continuous at z. In the jargon
of analysis, Dirichlet’s function is a nowhere-continuous function on R.

What happens if we adjust the definition of g(x) in the following way? Define
a new function h (Fig. 4.2) on R by setting

h(x) =
{

x if x ∈ Q
0 if x /∈ Q.

If we take c different from zero, then just as before we can construct sequences
(xn)→ c of rationals and (yn)→ c of irrationals so that

limh(xn) = c and limh(yn) = 0.

Thus, h is not continuous at every point c �= 0.
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Figure 4.3: Thomae’s Function, t(x).

If c = 0, however, then these two limits are both equal to h(0) = 0. In fact,
it appears as though no matter how we construct a sequence (zn) converging to
zero, it will always be the case that limh(zn) = 0. This observation goes to the
heart of what we want functional limits to entail. To assert that

lim
x→c

h(x) = L

should imply that

h(zn)→ L for all sequences (zn)→ c.

For reasons not yet apparent, it is beneficial to fashion the definition for func-
tional limits in terms of neighborhoods constructed around c and L. We will
quickly see, however, that this topological formulation is equivalent to the se-
quential characterization we have arrived at here.

To this point, we have been discussing continuity of a function at a particular
point in its domain. This is a significant departure from thinking of continuous
functions as curves that can be drawn without lifting the pen from the paper,
and it leads to some fascinating questions. In 1875, K.J. Thomae discovered the
function

t(x) =




1 if x = 0
1/n if x = m/n ∈ Q\{0} is in lowest terms with n > 0
0 if x /∈ Q.

If c ∈ Q, then t(c) > 0. Because the set of irrationals is dense in R, we can find
a sequence (yn) in I converging to c. The result is that

lim t(yn) = 0 �= t(c),

and Thomae’s function (Fig. 4.3) fails to be continuous at any rational point.
The twist comes when we try this argument on some irrational point in

the domain such as c =
√
2. All irrational values get mapped to zero by t,

so the natural thing would be to consider a sequence (xn) of rational numbers
that converges to

√
2. Now,

√
2 ≈ 1.414213 . . . so a good start on a particular
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sequence of rational approximations for
√
2 might be(

1,
14
10

,
141
100

,
1414
1000

,
14142
10000

,
141421
100000

, . . .

)
.

But notice that the denominators of these fractions are getting larger. In this
case, the sequence t(xn) begins,(

1,
1
5
,
1
100

,
1
500

,
1

5000
,

1
100000

, . . .

)

and is fast approaching 0 = t(
√
2). We will see that this always happens. The

closer a rational number is chosen to a fixed irrational number, the larger its
denominator must necessarily be. As a consequence, Thomae’s function has
the bizarre property of being continuous at every irrational point on R and
discontinuous at every rational point.

Is there an example of a function with the opposite property? In other
words, does there exist a function defined on all of R that is continuous on Q
but fails to be continuous on I? Can the set of discontinuities of a particular
function be arbitrary? If we are given some set A ⊆ R, is it always possible to
find a function that is continuous only on the set Ac? In each of the examples in
this section, the functions were defined to have erratic oscillations around points
in the domain. What conclusions can we draw if we restrict our attention to
functions that are somewhat less volatile? One such class is the set of so-called
monotone functions, which are either increasing or decreasing on a given domain.
What might we be able to say about the set of discontinuities of a monotone
function on R?

4.2 Functional Limits

Consider a function f : A → R. Recall that a limit point c of A is a point with
the property that every ε-neighborhood Vε(c) intersects A in some point other
than c. Equivalently, c is a limit point of A if and only if c = limxn for some
sequence (xn) ⊆ A with xn �= c. It is important to remember that limit points
of A do not necessarily belong to the set A unless A is closed.

If c is a limit point of the domain of f , then, intuitively, the statement

lim
x→c

f(x) = L

is intended to convey that values of f(x) get arbitrarily close to L as x is chosen
closer and closer to c. The issue of what happens when x = c is irrelevant from
the point of view of functional limits. In fact, c need not even be in the domain
of f .

The structure of the definition of functional limits follows the “challenge–
response” pattern established in the definition for the limit of a sequence. Recall
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c−δ c c+δ

L−ε

L

L+ε

Vε(L)

{

︸︷︷︸
Vδ(c)

Figure 4.4: Definition of Functional Limit.

that given a sequence (an), the assertion lim an = L implies that for every ε-
neighborhood Vε(L) centered at L, there is a point in the sequence—call it aN—
after which all of the terms an fall in Vε(L). Each ε-neighborhood represents
a particular challenge, and each N is the respective response. For functional
limit statements such as limx→c f(x) = L, the challenges are still made in the
form of an arbitrary ε-neighborhood around L, but the response this time is a
δ-neighborhood centered at c.

Definition 4.2.1. Let f : A → R, and let c be a limit point of the domain A.
We say that limx→c f(x) = L provided that, for all ε > 0, there exists a δ > 0
such that whenever 0 < |x− c| < δ (and x ∈ A) it follows that |f(x)− L| < ε.

This is often referred to as the “ε–δ version” of the definition for functional
limits. Recall that the statement

|f(x)− L| < ε is equivalent to f(x) ∈ Vε(L).

Likewise, the statement

|x− c| < δ is satisfied if and only if x ∈ Vδ(c).

The additional restriction 0 < |x− c| is just an economical way of saying x �= c.
Recasting Definition 4.2.1 in terms of neighborhoods—just as we did for the
definition of convergence of a sequence in Section 2.2—amounts to little more
than a change of notation, but it does help emphasize the geometrical nature of
what is happening (Fig. 4.4).

Definition 4.2.1B (Topological Version). Let c be a limit point of the
domain of f : A → R. We say limx→c f(x) = L provided that, for every ε-
neighborhood Vε(L) of L, there exists a δ-neighborhood Vδ(c) around c with
the property that for all x ∈ Vδ(c) different from c (with x ∈ A) it follows that
f(x) ∈ Vε(L).
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The parenthetical reminder “(x ∈ A)” present in both versions of the def-
inition is included to ensure that x is an allowable input for the function in
question. When no confusion is likely, we may omit this reminder, leaving it to
the reader to understand that the appearance of f(x) carries with it the implicit
assumption that x is in the domain of f . On a similar note, there is no reason
to discuss functional limits at isolated points of the domain. Thus, functional
limits will only be considered as x tends toward a limit point of the function’s
domain.

Example 4.2.2. (i) To familiarize ourselves with Definition 4.2.1, let’s prove
that if f(x) = 3x+ 1, then

lim
x→2

f(x) = 7.

Let ε > 0. Definition 4.2.1 requires that we produce a δ > 0 so that 0 <
|x− 2| < δ leads to the conclusion |f(x)− 7| < ε. Notice that

|f(x)− 7| = |(3x+ 1)− 7| = |3x− 6| = 3|x− 2|.

Thus, if we choose δ = ε/3, then 0 < |x−2| < δ implies |f(x)−7| < 3 (ε/3) = ε.

(ii) Let’s show
lim
x→2

g(x) = 4,

where g(x) = x2. Given an arbitrary ε > 0, our goal this time is to make
|g(x)− 4| < ε by restricting |x− 2| to be smaller than some carefully chosen δ.
As in the previous problem, a little algebra reveals

|g(x)− 4| = |x2 − 4| = |x+ 2||x− 2|.

We can make |x− 2| as small as we like, but we need an upper bound on |x+2|
in order to know how small to choose δ. The presence of the variable x causes
some initial confusion, but keep in mind that we are discussing the limit as x
approaches 2. If we agree that our δ-neighborhood around c = 2 must have
radius no bigger than δ = 1, then we get the upper bound |x+ 2| ≤ |3 + 2| = 5
for all x ∈ Vδ(c).

Now, choose δ = min{1, ε/5}. If 0 < |x− 2| < δ, then it follows that

|x2 − 4| = |x+ 2||x− 2| < (5)
ε

5
= ε,

and the limit is proved.

Sequential Criterion for Functional Limits

We worked very hard in Chapter 2 to derive an impressive list of properties
enjoyed by sequential limits. In particular, the Algebraic Limit Theorem (The-
orem 2.3.3) and the Order Limit Theorem (Theorem 2.3.4) proved invaluable in
a large number of the arguments that followed. Not surprisingly, we are going to
need analogous statements for functional limits. Although it is not difficult to
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generate independent proofs for these statements, all of them will follow quite
naturally from their sequential analogs once we derive the sequential criterion
for functional limits motivated in the opening discussion of this chapter.

Theorem 4.2.3 (Sequential Criterion for Functional Limits). Given a
function f : A → R and a limit point c of A, the following two statements are
equivalent:

(i) lim
x→c

f(x) = L.

(ii) For all sequences (xn) ⊆ A satisfying xn �= c and (xn)→ c, it follows that
f(xn)→ L.

Proof. (⇒) Let’s first assume that limx→c f(x) = L. To prove (ii), we consider
an arbitrary sequence (xn), which converges to c and satisfies xn �= c. Our goal
is to show that the image sequence f(xn) converges to L. This is most easily
seen using the topological formulations of the definition.

Let ε > 0. Because we are assuming (i), Definition 4.2.1B implies that
there exists Vδ(c) with the property that all x ∈ Vδ(c) different from c satisfy
f(x) ∈ Vε(L). All we need to do then is argue that our particular sequence (xn)
is eventually in Vδ(c). But we are assuming that (xn) → c. This implies that
there exists a point xN after which xn ∈ Vδ(c). It follows that n ≥ N implies
f(xn) ∈ Vε(L), as desired.

(⇐) For this implication, we intend to argue by contradiction. Thus, we
assume that statement (ii) is true, and (carefully) negate statement (i). To say
that

lim
x→c

f(x) �= L

means that there exists at least one particular ε0 > 0 for which no δ is a suitable
response. In other words, no matter what δ > 0 we try, there will always be at
least one point

x ∈ Vδ(c) with x �= c for which f(x) /∈ Vε0(L).

For each n ∈ N, let δn = 1/n. From the preceding discussion, it follows that for
each n ∈ N we may pick an xn ∈ Vδn(c) with xn �= c and f(xn) /∈ Vε0(L). But
now notice that the result of this is a sequence (xn)→ c with xn �= c, where the
image sequence f(xn) certainly does not converge to L.

Because this contradicts (ii), which we are assuming is true for this argument,
we may conclude that (i) must also hold.

Theorem 4.2.3 has several useful corollaries. In addition to the previously
advertised benefit of granting us some short proofs of statements about how
functional limits interact with algebraic combinations of functions, we also get
an economical way of establishing that certain limits do not exist.

Corollary 4.2.4 (Algebraic Limit Theorem for Functional Limits). Let
f and g be functions defined on a domain A ⊆ R, and assume limx→c f(x) = L
and limx→c g(x) =M for some limit point c of A. Then,
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(i) lim
x→c

kf(x) = kL for all k ∈ R,

(ii) lim
x→c

[f(x) + g(x)] = L+M ,

(iii) lim
x→c

[f(x)g(x)] = LM , and

(iv) lim
x→c

f(x)/g(x) = L/M , provided M �= 0.

Proof. These follow from Theorem 4.2.3 and the Algebraic Limit Theorem for
sequences. The details are requested in Exercise 4.2.5.

Corollary 4.2.5 (Divergence Criterion for Functional Limits). Let Let f
be a function defined on A, and let c be a limit point of A. If there exist two
sequences (xn) and (yn) in A with xn �= c and yn �= c and

limxn = lim yn = c but lim f(xn) �= lim f(yn),

then we can conclude that the functional limit limx→c f(c) does not exist.

Example 4.2.6. Assuming the familiar properties of the sine function, let’s
show that limx→0 sin(1/x) does not exist (Fig. 4.5).

If xn = 1/2nπ and yn = 1/(2nπ + π/2), then lim(xn) = lim(yn) = 0.
However, sin(1/xn) = 0 for all n ∈ N while sin(1/yn) = 1. Thus,

lim sin(1/xn) �= lim sin(1/yn),

so by Corollary 4.2.5, limx→0 sin(1/x) does not exist.

Figure 4.5: The function sin(1/x) near zero.
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Exercises

Exercise 4.2.1. Use Definition 4.2.1 to supply a proof for the following limit
statements.

(a) limx→2(2x+ 4) = 8.
(b) limx→0 x

3 = 0.
(c) limx→2 x

3 = 8.
(d) limx→π[[x]] = 3, where [[x]] denotes the greatest integer less than or

equal to x.

Exercise 4.2.2. Assume a particular δ > 0 has been constructed as a suitable
response to a particular ε challenge. Then, any larger/smaller (pick one) δ will
also suffice.

Exercise 4.2.3. Use Corollary 4.2.5 to show that each of the following limits
does not exist.

(a) limx→0 |x|/x
(b) limx→1 g(x) where g is Dirichlet’s function from Section 4.1.

Exercise 4.2.4. Review the definition of Thomae’s function t(x) from Section
4.1.

(a) Construct three different sequences (xn), (yn), and (zn), each of which
converges to 1 without using the number 1 as a term in the sequence.

(b) Now, compute lim t(xn), lim t(yn), and lim t(zn).
(c) Make an educated conjecture for limx→1 t(x), and use Definition 4.2.1B

to verify the claim. (Given ε > 0, consider the set of points {x ∈ R : t(x) ≥ ε}.
Argue that all the points in this set are isolated.)

Exercise 4.2.5. (a) Supply the details for how Corollary 4.2.4 part (ii) follows
from the sequential criterion for functional limits in Theorem 4.2.3 and the
Algebraic Limit Theorem for sequences proved in Chapter 2.

(b) Now, write another proof of Corollary 4.2.4 part (ii) directly from Defi-
nition 4.2.1 without using the sequential criterion in Theorem 4.2.3.

(c) Repeat (a) and (b) for Corollary 4.2.4 part (iii).

Exercise 4.2.6. Let g : A → R and assume that f is a bounded function on
A ⊆ R (i.e., there exists M > 0 satisfying |f(x)| ≤ M for all x ∈ A). Show that
if limx→c g(x) = 0, then limx→c g(x)f(x) = 0 as well.

Exercise 4.2.7. (a) The statement limx→0 1/x2 =∞ certainly makes intuitive
sense. Construct a rigorous definition in the “challenge–response” style of Def-
inition 4.2.1 for a limit statement of the form limx→c f(x) = ∞ and use it to
prove the previous statement.

(b) Now, construct a definition for the statement limx→∞ f(x) = L. Show
limx→∞ 1/x = 0.

(c) What would a rigorous definition for limx→∞ f(x) = ∞ look like? Give
an example of such a limit.
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Exercise 4.2.8. Assume f(x) ≥ g(x) for all x in some set A on which f and g
are defined. Show that for any limit point c of A we must have

lim
x→c

f(x) ≥ lim
x→c

g(x).

Exercise 4.2.9 (Squeeze Theorem). Let f, g, and h satisfy f(x) ≤ g(x) ≤
h(x) for all x in some common domain A. If limx→c f(x) = L and limx→c h(x) =
L at some limit point c of A, show limx→c g(x) = L as well.

4.3 Combinations of Continuous Functions

Definition 4.3.1. A function f : A → R is continuous at a point c ∈ A if, for
all ε > 0, there exists a δ > 0 such that whenever |x − c| < δ (and x ∈ A) it
follows that |f(x)− f(c)| < ε.

If f is continuous at every point in the domain A, then we say that f is
continuous on A.

The definition of continuity looks much like the definition for functional
limits, with a few subtle differences. The most important is that we require the
point c to be in the domain of f . The value f(c) then becomes the value of
limx→c f(x). With this observation in mind, it is tempting to shorten Definition
4.3.1 to say that f is continuous at c ∈ A if

lim
x→c

f(x) = f(c).

This is fine except for the very minor fact that the definition of functional limits
requires the point c to be a limit point of A, and this is not technically assumed
in Definition 4.3.1. Now one consequence of Definition 4.3.1 is that any function
is continuous at isolated points of its domain (Exercise 4.3.4), but this is hardly
profound. As the name suggests, isolated points are too far from other points
of the domain to contribute to any interesting phenomena.

With our attention firmly focused on limit points of the domain, we sum-
marize several equivalent ways to characterize continuity.

Theorem 4.3.2 (Characterizations of Continuity). Let f : A → R, and
let c ∈ A be a limit point of A. The function f is continuous at c if and only if
any one of the following conditions is met:

(i) For all ε > 0, there exists a δ > 0 such that |x−c| < δ (and x ∈ A) implies
|f(x)− f(c)| < ε;

(ii) lim
x→c

f(x) = f(c);

(iii) For all Vε(f(c)), there exists a Vδ(c) with the property that x ∈ Vδ(c) (and
x ∈ A) implies f(x) ∈ Vε(f(c));

(iv) If (xn)→ c (with xn ∈ A), then f(xn)→ f(c).
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Proof. Statement (i) is just Definition 4.3.1. Statement (ii) is seen to be equiv-
alent to (i) by applying Definition 4.2.1 and observing that the case x = c
(which is excluded in the definition of functional limits) leads to the require-
ment f(c) ∈ Vε(f(c)), which is trivially true. Statement (iii) is the standard
rewording of (i) using topological neighborhoods in place of the absolute value
notation. Finally, statement (iv) follows using an argument nearly identical to
that of Theorem 4.2.3 with some slight modifications for when xn = c.

The length of this list is somewhat deceiving. Statements (i), (ii), and (iii)
are closely related and essentially remind us that functional limits have an ε–δ
formulation as well as a topological description. Statement (iv), however, is
qualitatively different from the first three. As a general rule, the sequential
characterization of continuity is usually the most useful for demonstrating that
a function is not continuous at some point.

Corollary 4.3.3 (Criterion for Discontinuity). Let f : A → R, and let
c ∈ A be a limit point of A. If there exists a sequence (xn) ⊆ A where (xn)→ c
but such that f(xn) does not converge to f(c), we may conclude that f is not
continuous at c.

The sequential characterization of continuity is also important for the other
reasons that it was important for functional limits. In particular, it allows
us to bring our catalog of results about the behavior of sequences to bear on
the study of continuous functions. The next theorem should be compared to
Corollary 4.2.3 as well as to Theorem 2.3.3.

Theorem 4.3.4 (Algebraic Continuity Theorem). Assume f : A → R
and g : A → R are continuous at a point c ∈ A. Then,

(i) kf(x) is continuous at c for all k ∈ R;

(ii) f(x) + g(x) is continuous at c;

(iii) f(x)g(x) is continuous at c; and

(iv) f(x)/g(x) is continuous at c, provided the quotient is defined.

Proof. All of these statments can be quickly derived from Corollary 4.2.4 and
Theorem 4.3.2.

These results provide us with the tools we need to firm up our arguments
in the opening section of this chapter about the behavior of Dirichlet’s function
and Thomae’s function. The details are requested in Exercise 4.3.6. Later, we
provide some more examples of arguments for and against continuity of some
familiar functions.

Example 4.3.5. All polynomials are continuous on R. In fact, rational func-
tions (i.e., quotients of polynomials) are continuous wherever they are defined.
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Figure 4.6: The function x sin(1/x) near zero.

To see why this is so, we begin with the elementary claim that g(x) = x
and f(x) = k, where k ∈ R, are continuous on R (Exercise 4.3.3). Because an
arbitrary polynomial

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

consists of sums and products of g(x) with different constant functions, we may
conclude from Theorem 4.3.4 that p(x) is continuous.

Likewise, Theorem 4.3.4 implies that quotients of polynomials are continuous
as long as the denominator is not zero.

Example 4.3.6. In Example 4.2.6, we saw that the oscillations of sin(1/x) are
so rapid near the origin that limx→0 sin(1/x) does not exist. Now, consider the
function

g(x) =
{

x sin(1/x) if x �= 0
0 if x = 0.

To investigate the continuity of g at c = 0 (Fig. 4.6), we can estimate

|g(x)− g(0)| = |x sin(1/x)− 0| ≤ |x|.
Given ε > 0, set δ = ε, so that whenever |x − 0| = |x| < δ it follows that
|g(x)− g(0)| < ε. Thus, g is continuous at the origin.

Example 4.3.7. The greatest integer function [[x]] is defined for all x ∈ R
by letting [[x]] equal the largest integer n ∈ Z satisfying n ≤ x. This familiar
step function certainly has discontinuous “jumps” at each integer value of its
domain, but it is a good exercise to try and articulate this observation in the
language of analysis.

Given m ∈ Z, define the sequence (xn) by xn = m − 1/n. It follows that
(xn)→ m, but

h(xn)→ (m− 1),
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which does not equal m = h(m). By Corollary 4.3.3, we see that h fails to be
continuous at each m ∈ Z.

Now let’s see why h is continuous at a point c /∈ Z. Given ε > 0, we must
find a δ-neighborhood Vδ(c) such that x ∈ Vδ(c) implies h(x) ∈ Vε(h(c)). We
know that c ∈ R falls between consecutive integers n < c < n + 1 for some
n ∈ Z. If we take δ = min{c−n, (n+1)− c}, then it follows from the definition
of h that h(x) = h(c) for all x ∈ Vδ(c). Thus, we certainly have

h(x) ∈ Vε(h(c))

whenever x ∈ Vδ(c).
This latter proof is quite different from the typical situation in that the value

of δ does not actually depend on the choice of ε. Usually, smaller ε’s require
smaller δ’s in response, but here the same value of δ works no matter how small
ε is chosen.

Example 4.3.8. Consider f(x) =
√
x defined on A = {x ∈ R : x ≥ 0}.

Exercise 2.3.2 outlines a sequential proof that f is continuous on A. Here, we
give an ε–δ proof of the same fact.

Let ε > 0. We need to argue that |f(x)− f(c)| can be made less than ε for
all values of x in some δ neighborhood around c. If c = 0, this reduces to the
statement

√
x < ε, which happens as long as x < ε2. Thus, if we choose δ = ε2,

we see that |x− 0| < δ implies |f(x)− 0| < ε.
For a point c ∈ A different from zero, we need to estimate |√x−√

c|. This
time, write

|√x−√
c| = |√x−√

c|
(√

x+
√
c√

x+
√
c

)
=

|x− c|√
x+

√
c
≤ |x− c|√

c
.

In order to make this quantity less than ε, it suffices to pick δ = ε
√
c. Then,

|x− c| < δ implies

|√x−√
c| < ε

√
c√
c
= ε,

as desired.

Although we have now shown that both polynomials and the square root
function are continuous, the Algebraic Continuity Theorem does not provide
the justification needed to conclude that a function such as h(x) =

√
3x2 + 5 is

continuous. For this, we must prove that compositions of continuous functions
are continuous.

Theorem 4.3.9 (Composition of Continuous Functions). Given f : A →
R and g : B → R, assume that the range f(A) = {f(x) : x ∈ A} is contained
in the domain B so that the composition g ◦ f(x) = g(f(x)) is well-defined on
A.

If f is continuous at c ∈ A, and if g is continuous at f(c) ∈ B, then g ◦ f is
continuous at c.

Proof. Exercise 4.3.2.
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Exercises

Exercise 4.3.1. Let g(x) = 3
√
x.

(a) Prove that g is continuous at c = 0.
(b) Prove that g is continuous at a point c �= 0. (The identity a3 − b3 =

(a− b)(a2 + ab+ b2) will be helpful.)

Exercise 4.3.2. (a) Supply a proof for Theorem 4.3.9 using the ε–δ character-
ization of continuity.

(b) Give another proof of this theorem using the sequential characterization
of continuity (from Theorem 4.3.2 (iv)).

Exercise 4.3.3. Using the ε–δ characterization of continuity (and thus using
no previous results about sequences), show that the linear function f(x) = ax+b
is continuous at every point of R.

Exercise 4.3.4. (a) Show using Definition 4.3.1 that any function f with do-
main Z will necessarily be continuous at every point in its domain.

(b) Show in general that if c is an isolated point of A ⊆ R, then f : A → R
is continuous at c.

Exercise 4.3.5. In Theorem 4.3.4, statement (iv) says that f(x)/g(x) is con-
tinuous at c if both f and g are, provided that the quotient is defined. Show
that if g is continuous at c and g(c) �= 0, then there exists an open interval
containing c on which f(x)/g(x) is always defined.

Exercise 4.3.6. (a) Referring to the proper theorems, give a formal argument
that Dirichlet’s function from Section 4.1 is nowhere-continuous on R.

(b) Review the definition of Thomae’s function in Section 4.1 and demon-
strate that it fails to be continuous at every rational point.

(c) Use the characterization of continuity in Theorem 4.3.2 (iii) to show that
Thomae’s function is continuous at every irrational point in R. (Given ε > 0,
consider the set of points {x ∈ R : t(x) ≥ ε}. Argue that all the points in this
set are isolated.)

Exercise 4.3.7. Assume h : R → R is continuous on R and let K = {x :
h(x) = 0}. Show that K is a closed set.

Exercise 4.3.8. (a) Show that if a function is continuous on all of R and equal
to 0 at every rational point, then it must be identically 0 on all of R.

(b) If f and g are defined on all of R and f(r) = g(r) at every rational point,
must f and g be the same function?

Exercise 4.3.9 (Contraction Mapping Theorem). Let f be a function de-
fined on all of R, and assume there is a constant c such that 0 < c < 1 and

|f(x)− f(y)| ≤ c|x− y|
for all x, y ∈ R.

(a) Show that f is continuous on R.
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(b) Pick some point y1 ∈ R and construct the sequence

(y1, f(y1), f(f(y1)), . . . ).

In general, if yn+1 = f(yn), show that the resulting sequence (yn) is a Cauchy
sequence. Hence we may let y = lim yn.

(c) Prove that y is a fixed point of f (i.e., f(y) = y) and that it is unique in
this regard.

(d) Finally, prove that if x is any arbitrary point in R then the sequence
(x, f(x), f(f(x)), . . . ) converges to y defined in (b).

Exercise 4.3.10. Let f be a function defined on all of R that satisfies the
additive condition f(x+ y) = f(x) + f(y) for all x, y ∈ R.

(a) Show that f(0) = 0 and that f(−x) = −f(x) for all x ∈ R.
(b) Show that if f is continuous at x = 0, then f is continuous at every point

in R.
(c) Let k = f(1). Show that f(n) = kn for all n ∈ N, and then prove that

f(z) = kz for all z ∈ Z. Now, prove that f(r) = kr for any rational number r.
(d) Use (b) and (c) to conclude that f(x) = kx for all x ∈ R. Thus,

any additive function that is continuous at x = 0 must necessarily be a linear
function through the origin.

Exercise 4.3.11. For each of the following choices of A, construct a function
f : R → R that has discontinuities at every point x in A and is continuous on
Ac.

(a) A = Z.
(b) A = {x : 0 < x < 1}.
(c) A = {x : 0 ≤ x ≤ 1}.
(d) A = { 1

n : n ∈ N}.
Exercise 4.3.12. Let C be the Cantor set constructed in Section 3.1. Define
g : [0, 1]→ R by

g(x) =
{
1 if x ∈ C
0 if x /∈ C.

(a) Show that g fails to be continuous at any point c ∈ C.
(b) Prove that g is continuous at every point c /∈ C.

4.4 Continuous Functions on Compact Sets

Definition 4.4.1. Given a function f : A → R and a subset B ⊆ A, let f(B)
represent the range of f over the set B; that is, f(B) = {f(x) : x ∈ B}. We
say f is bounded if f(A) is bounded in the sense of Definition 2.3.1. For a given
subset B ⊆ A, we say f is bounded on B if f(B) is bounded.

The adjectives open, closed, bounded, compact, perfect, and connected are
all used to describe subsets of the real line. An interesting question is to sort
out which, if any, of these properties are preserved when a particular set A ⊆ R
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is mapped to f(A) via a continuous function. For instance, if A is open and f
is continuous, is f(A) necessarily open? The answer to this question is no. If
f(x) = x2 and A is the open interval (−1, 1), then f(A) is the interval [0, 1),
which is not open.

The corresponding conjecture for closed sets also turns out to be false, al-
though constructing a counterexample requires a little more thought. Consider
the function

g(x) =
1

1 + x2

and the closed set A = [0,∞) = {x : x ≥ 0}. Because g(A) = (0, 1] is not
closed, we must conclude that continuous functions do not, in general, map
closed sets to closed sets. Notice, however, that our particular counterexample
required using an unbounded closed set A. This is not incidental. Sets that are
closed and bounded—that is, compact sets—always get mapped to closed and
bounded subsets by continuous functions.

Theorem 4.4.2 (Preservation of Compact Sets). Let f : A → R be con-
tinuous on A. If K ⊆ A is compact, then f(K) is compact as well.

Proof. Let (yn) be an arbitrary sequence contained in the range set f(K). To
prove this result, we must find a subsequence (ynk

), which converges to a limit
also in f(K). The strategy is to take advantage of the assumption that the
domain set K is compact by translating the sequence (yn)—which is in the
range of f—back to a sequence in the domain K.

To assert that (yn) ⊆ f(K) means that, for each n ∈ N, we can find (at least
one) xn ∈ K with f(xn) = yn. This yields a sequence (xn) ⊆ K. Because K is
compact, there exists a convergent subsequence (xnk

) whose limit x = limxnk

is also in K. Finally, we make use of the fact that f is assumed to be continuous
on A and so is continuous at x in particular. Given that (xnk

)→ x, we conclude
that (ynk

)→ f(x). Because x ∈ K, we have that f(x) ∈ f(K), and hence f(K)
is compact.

An extremely important corollary is obtained by combining this result with
the observation that compact sets are bounded and contain their supremums
and infimums (Exercise 3.3.1).

Theorem 4.4.3 (Extreme Value Theorem). If f : K → R is continuous
on a compact set K ⊆ R, then f attains a maximum and minimum value. In
other words, there exists x0, x1 ∈ K such that f(x0) ≤ f(x) ≤ f(x1) for all
x ∈ K.

Proof. Exercise 4.4.3.

Uniform Continuity

Although we have proved that polynomials are always continuous on R, there
is an important lesson to be learned by constructing direct proofs that the
functions f(x) = 3x + 1 and g(x) = x2 (previously studied in Example 4.2.2)
are everywhere continuous.
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Example 4.4.4. (i) To show directly that f(x) = 3x + 1 is continuous at an
arbitrary point c ∈ R, we must argue that |f(x)− f(c)| can be made arbitrarily
small for values of x near c. Now,

|f(x)− f(c)| = |(3x+ 1)− (3c+ 1)| = 3|x− c|,

so, given ε > 0, we choose δ = ε/3. Then, |x− c| < δ implies

|f(x)− f(c)| = 3|x− c| < 3
( ε
3

)
= ε.

Of particular importance for this discussion is the fact that the choice of δ is
the same regardless of which point c ∈ R we are considering.

(ii) Let’s contrast this with what happens when we prove g(x) = x2 is
continuous on R. Given c ∈ R, we have

|g(x)− g(c)| = |x2 − c2| = |x− c||x+ c|.

As discussed in Example 4.2.2, we need an upper bound on |x + c|, which is
obtained by insisting that our choice of δ not exceed 1. This guarantees that all
values of x under consideration will necessarily fall in the interval (c− 1, c+1).
It follows that

|x+ c| ≤ |x|+ |c| ≤ (|c|+ 1) + |c| = 2|c|+ 1.

Now, let ε > 0. If we choose δ = min{1, ε/(2|c|+ 1)}, then |x− c| < δ implies

|f(x)− f(c)| = |x− c||x+ c| <
(

ε

2|c|+ 1
)
(2|c|+ 1) = ε.

Now, there is nothing deficient about this argument, but it is important
to notice that, in the second proof, the algorithm for choosing the response δ
depends on the value of c. The statement

δ =
ε

2|c|+ 1

means that larger values of c are going to require smaller values of δ, a fact
that should be evident from a consideration of the graph of g(x) = x2 (Fig.
4.7). Given, say, ε = 1, a response of δ = 1/3 is sufficient for c = 1 because
2/3 < x < 4/3 certainly implies 0 < x2 < 2. However, if c = 10, then the
steepness of the graph of g(x) means that a much smaller δ is required—δ = 1/21
by our rule—to force 99 < x2 < 101.

The next definition is meant to distinguish between these two examples.

Definition 4.4.5. A function f : A → R is uniformly continuous on A if for
every ε > 0 there exists a δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ε.
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Vε(f(c1))

{

Vε(f(c2))

{

Vε(f(c3))

{

c1︸ ︷︷ ︸
Vδ1 (c1)

c2︸︷︷︸
Vδ2 (c2)

c3︸︷︷︸
Vδ3 (c3)

Figure 4.7: g(x) = x2; A larger c requires a smaller δ.

Recall that to say that “f is continuous on A” means that f is continuous at
each individual point c ∈ A. In other words, given ε > 0 and c ∈ A, we can find
a δ > 0 perhaps depending on c such that if |x − c| < δ then |f(x) − f(c)| < ε.
Uniform continuity is a strictly stronger property. The key distinction between
asserting that f is “uniformly continuous on A” versus simply “continuous on A”
is that, given an ε > 0, a single δ > 0 can be chosen that works simultaneously
for all points c in A. To say that a function is not uniformly continuous on a set
A, then, does not necessarily mean it is not continuous at some point. Rather, it
means that there is some ε0 > 0 for which no single δ > 0 is a suitable response
for all c ∈ A.

Theorem 4.4.6 (Sequential Criterion for Nonuniform Continuity). A
function f : A → R fails to be uniformly continuous on A if there exists a
particular ε0 > 0 and two sequences (xn) and (yn) in A satisfying

|xn − yn| → 0 but |f(xn)− f(yn)| ≥ ε0.

Proof. Take the logical negation of Definition 4.4.5, and consider the particular
values δn = 1/n. The details are requested in Exercise 4.4.5.

Example 4.4.7. The function h(x) = sin(1/x) (Fig. 4.5) is continuous at
every point in the open interval (0, 1) but is not uniformly continuous on this
interval. The problem arises near zero, where the increasingly rapid oscillations
take domain values that are quite close together to range values a distance 2
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apart. To illustrate Theorem 4.4.6, take ε0 = 2 and set

xn =
1

π/2 + 2nπ
and yn =

1
3π/2 + 2nπ

.

Because each of these sequences tends to zero, we have |xn − yn| → 0, and a
short calculation reveals |h(xn)− h(yn)| = 2 for all n ∈ N.

Whereas continuity is defined at a single point, uniform continuity is always
discussed in reference to a particular domain. In Example 4.4.4, we were not
able to prove that g(x) = x2 is uniformly continuous on R because larger values
of x require smaller and smaller values of δ. (As another illustration of Theorem
4.4.6, take xn = n and yn = n+1/n.) It is true, however, that g(x) is uniformly
continuous on the bounded set [−10, 10]. Returning to the argument set forth
in Example 4.4.4 (ii), notice that if we restrict our attention to the domain
[−10, 10] then |x + y| ≤ 20 for all x and y. Given ε > 0, we can now choose
δ = ε/20, and verify that if x, y ∈ [−10, 10] satisfy |x− y| < δ, then

|f(x)− f(y)| = |x2 − y2| = |x− y||x+ y| <
( ε

20

)
20 = ε.

In fact, it is not difficult to see how to modify this argument to show that g(x)
is uniformly continuous on any bounded set A in R.

Now, Example 4.4.7 is included to keep us from jumping to the erroneous
conclusion that functions that are continuous on bounded domains are neces-
sarily uniformly continuous. A general result does follow, however, if we assume
that the domain is compact.

Theorem 4.4.8. A function that is continuous on a compact set K is uniformly
continuous on K.

Proof. Assume f : K → R is continuous at every point of a compact set K ⊆ R.
To prove that f is uniformly continuous on K we argue by contradiction.

By the criterion in Theorem 4.4.6, if f is not uniformly continuous on K,
then there exist two sequences (xn) and (yn) in K such that

lim |xn − yn| = 0 while |f(xn)− f(yn)| ≥ ε0

for some particular ε0 > 0. Because K is compact, the sequence (xn) has a
convergent subsequence (xnk

) with x = limxnk
also in K.

We could use the compactness of K again to produce a convergent subse-
quence of (yn), but notice what happens when we consider the particular sub-
sequence (ynk

) consisting of those terms in (yn) that correspond to the terms
in the convergent subsequence (xnk

). By the Algebraic Limit Theorem,

lim(ynk
) = lim((ynk

− xnk
) + xnk

) = 0 + x.

The conclusion is that both (xnk
) and (ynk

) converge to x ∈ K. Because f is
assumed to be continuous at x, we have lim f(xnk

) = f(x) and lim f(ynk
) =

f(x), which implies
lim(f(xnk

)− f(ynk
)) = 0.
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A contradiction arises when we recall that (xn) and (yn) were chosen to satisfy

|f(xn)− f(yn)| ≥ ε0

for all n ∈ N. We conclude, then, that f is indeed uniformly continuous on
K.

Exercises

Exercise 4.4.1. (a) Show that f(x) = x3 is continuous on all of R.
(b) Argue, using Theorem 4.4.6, that f is not uniformly continuous on R.
(c) Show that f is uniformly continuous on any bounded subset of R.

Exercise 4.4.2. Show that f(x) = 1/x2 is uniformly continuous on the set
[1,∞) but not on the set (0, 1].

Exercise 4.4.3. Furnish the details (including an argument for Exercise 3.3.1
if it is not already done) for the proof of the Extreme Value Theorem (Theorem
4.4.3).

Exercise 4.4.4. Show that if f is continuous on [a, b] with f(x) > 0 for all
a ≤ x ≤ b, then 1/f is bounded on [a, b].

Exercise 4.4.5. Using the advice that follows Theorem 4.4.6, provide a com-
plete proof for this criterion for nonuniform continuity.

Exercise 4.4.6. Give an example of each of the following, or state that such a
request is impossible. For any that are impossible, supply a short explanation
(perhaps referencing the appropriate theorem(s)) for why this is the case.

(a) a continuous function f : (0, 1) → R and a Cauchy sequence (xn) such
that f(xn) is not a Cauchy sequence;

(b) a continuous function f : [0, 1] → R and a Cauchy sequence (xn) such
that f(xn) is not a Cauchy sequence;

(c) a continuous function f : [0,∞) → R and a Cauchy sequence (xn) such
that f(xn) is not a Cauchy sequence;

(d) a continuous bounded function f on (0, 1) that attains a maximum value
on this open interval but not a minimum value.

Exercise 4.4.7. Assume that g is defined on an open interval (a, c) and it is
known to be uniformly continuous on (a, b] and [b, c), where a < b < c. Prove
that g is uniformly continuous on (a, c).

Exercise 4.4.8. (a) Assume that f : [0,∞) → R is continuous at every point
in its domain. Show that if there exists b > 0 such that f is uniformly continuous
on the set [b,∞), then f is uniformly continuous on [0,∞).

(b) Prove that f(x) =
√
x is uniformly continuous on [0,∞).
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Exercise 4.4.9. A function f : A → R is called Lipschitz if there exists a
bound M > 0 such that ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ M

for all x, y ∈ A. Geometrically speaking, a function f is Lipschitz if there is a
uniform bound on the magnitude of the slopes of lines drawn through any two
points on the graph of f .

(a) Show that if f : A → R is Lipschitz, then it is uniformly continuous on
A.

(b) Is the converse statement true? Are all uniformly continuous functions
necessarily Lipschitz?

Exercise 4.4.10. Do uniformly continuous functions preserve boundedness? If
f is uniformly continuous on a bounded set A, is f(A) necessarily bounded?

Exercise 4.4.11 (Topological Characterization of Continuity). Let g be
defined on all of R. If A is a subset of R, define the set g−1(A) by

g−1(A) = {x ∈ R : g(x) ∈ A}.

Show that g is continuous if and only if g−1(O) is open whenever O ⊆ R is an
open set.

Exercise 4.4.12. Construct an alternate proof of Theorem 4.4.8 using the open
cover characterization of compactness from Theorem 3.3.8 (iii).

Exercise 4.4.13 (Continuous Extension Theorem). (a) Show that a uni-
formly continuous function preserves Cauchy sequences; that is, if f : A → R is
uniformly continuous and (xn) ⊆ A is a Cauchy sequence, then show f(xn) is a
Cauchy sequence.

(b) Let g be a continuous function on the open interval (a, b). Prove that
g is uniformly continuous on (a, b) if and only if it is possible to define values
g(a) and g(b) at the endpoints so that the extended function g is continuous on
[a, b]. (In the forward direction, first produce candidates for g(a) and g(b), and
then show the extended g is continuous.)

4.5 The Intermediate Value Theorem

The Intermediate Value Theorem (IVT) is the name given to the very intuitive
observation that a continuous function f on a closed interval [a, b] attains every
value that falls between the range values f(a) and f(b) (Fig. 4.8).

Here is this observation in the language of analysis.

Theorem 4.5.1 (Intermediate Value Theorem). If f : [a, b] → R is con-
tinuous, and if L is a real number satisfying f(a) < L < f(b) or f(a) > L >
f(b), then there exists a point c ∈ (a, b) where f(c) = L.
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•

•

a c b

f(a)

L

f(b)

Figure 4.8: Intermediate Value Theorem.

This theorem was freely used by mathematicians of the 18th century (includ-
ing Euler and Gauss) without any consideration of its validity. In fact, the first
analytical proof was not offered until 1817 by Bolzano in a paper that also con-
tains the first appearance of a somewhat modern definition of continuity. This
emphasizes the significance of this result. As discussed in Section 4.1, Bolzano
and his contemporaries had arrived at a point in the evolution of mathematics
where it was becoming increasingly important to firm up the foundations of the
subject. Doing so, however, was not simply a matter of going back and sup-
plying the missing proofs. The real battle lay in first obtaining a thorough and
mutually agreed-upon understanding of the relevant concepts. The importance
of the Intermediate Value Theorem for us is similar in that our understanding
of continuity and the nature of the real line is now mature enough for a proof to
be possible. Indeed, there are several satisfying arguments for this simple result,
each one isolating, in a slightly different way, the interplay between continuity
and completeness.

Preservation of Connected Sets

The most potentially useful way to understand the Intermediate Value Theorem
(IVT) is as a special case of the fact that continuous functions map connected
sets to connected sets. In Theorem 4.4.2, we saw that if f is a continuous
function on a compact set K, then the range set f(K) is also compact. The
analogous observation holds for connected sets.

Theorem 4.5.2 (Preservation of Connectedness). Let f : A → R be con-
tinuous. If E ⊆ A is connected, then f(E) is connected as well.

Proof. Intending to use the characterization of connected sets in Theorem 3.4.6,
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let f(E) = A ∪ B where A and B are disjoint and nonempty. Our goal is to
produce a sequence contained in one of these sets that converges to a limit in
the other.

Let

C = {x ∈ E : f(x) ∈ A} and D = {x ∈ E : f(x) ∈ B}.

The sets C and D are called the preimages of A and B, respectively. Using the
properties of A and B, it is straightforward to check that C and D are nonempty
and disjoint and satisfy E = C ∪ D. Now, we are assuming E is a connected
set, so by Theorem 3.4.6, there exists a sequence (xn) contained in one of C or
D with x = limxn contained in the other. Finally, because f is continuous at x,
we get f(x) = lim f(xn). Thus, it follows that f(xn) is a convergent sequence
contained in either A or B while the limit f(x) is an element of the other. With
another nod to Theorem 3.4.6, the proof is complete.

In R, a set is connected if and only if it is a (possibly unbounded) interval.
This fact, together with Theorem 4.5.2, leads to a short proof of the Intermediate
Value Theorem (Exercise 4.5.1). We should point out that the proof of Theorem
4.5.2 does not make use of the equivalence between connected sets and intervals
in R but relies only on the general definitions. The previous comment that this
is the most useful way to approach IVT stems from the fact that, although it is
not discussed here, the definitions of continuity and connectedness can be easily
adapted to higher-dimensional settings. Theorem 4.5.2, then, remains a valid
conclusion in higher dimensions, whereas the Intermediate Value Theorem is
essentially a one-dimensional result.

Completeness

A typical way the Intermediate Value Theorem is applied is to prove the exis-
tence of roots. Given f(x) = x2 − 2, for instance, we see that f(1) = −1 and
f(2) = 2. Therefore, there exists a point c ∈ (0, 1) where f(c) = 0.

In this case, we can easily compute c =
√
2, meaning that we really did not

need IVT to show that f has a root. We spent a good deal of time in Chapter 1
proving that

√
2 exists, which was only possible once we insisted on the Axiom of

Completeness as part of our assumptions about the real numbers. The fact that
the Intermediate Value Theorem has just asserted that

√
2 exists suggests that

another way to understand this result is in terms of the relationship between
the continuity of f and the completeness of R.

The Axiom of Completeness (AoC) from the first chapter states that “Sets
which are bounded above have least upper bounds.” Later, we saw that the
Nested Interval Property (NIP) is an equivalent way to assert that the real
numbers have no “gaps.” Either of these characterizations of completeness can
be used as the cornerstone for an alternate proof of Theorem 4.5.1.

Proof. I. (First approach using AoC.) To simplify matters a bit, let’s consider
the special case where f is a continuous function satisfying f(a) < 0 < f(b) and
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show that f(c) = 0 for some c ∈ (a, b). First let

K = {x ∈ [a, b] : f(x) ≤ 0}.

•
a

K

b

f(a)

f(b)

✻

c=supK

❅
❅�

�
�✒✻

Notice that K is bounded above by b, and a ∈ K so K is not empty. Thus we
may appeal to the Axiom of Completeness to assert that c = supK exists.

There are three cases to consider:

f(c) > 0, f(c) < 0, and f(c) = 0.

The fact that c is the least upper bound of K can be used to rule out the first
two cases, resulting in the desired conclusion that f(c) = 0. The details are
requested in Exercise 4.5.5.

II. (Second approach using NIP.) Again, consider the special case where
L = 0 and f(a) < 0 < f(b). Let I0 = [a, b], and consider the midpoint

z = (a+ b)/2.

If f(z) ≥ 0, then set a1 = a and b1 = z. If f(z) < 0, then set a1 = z and b1 = b.
In either case, the interval I1 = [a1, b1] has the property that f is negative at
the left endpoint and nonnegative at the right.

•

•

a z b

f(z)>0

I0

I1

I2

This procedure can be inductively repeated, setting the stage for an applica-
tion of the Nested Interval Property. The remainder of the argument is left as
Exercise 4.5.6.
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The Intermediate Value Property

Does the Intermediate Value Theorem have a converse?

Definition 4.5.3. A function f has the intermediate value property on an in-
terval [a, b] if for all x < y in [a, b] and all L between f(x) and f(y), it is always
possible to find a point c ∈ (x, y) where f(c) = L.

Another way to summarize the Intermediate Value Theorem is to say that
every continuous function on [a, b] has the intermediate value property. There
is an understandable temptation to suspect that any function that has the in-
termediate value property must necessarily be continuous, but that is not the
case. We have seen that

g(x) =
{
sin(1/x) if x �= 0
0 if x = 0

is not continuous at zero (Example 4.2.6), but it does have the intermediate
value property on [0, 1].

The intermediate value property does imply continuity if we insist that our
function is monotone (Exercise 4.5.4).

Exercises

Exercise 4.5.1. Show how the Intermediate Value Theorem follows as a corol-
lary to Theorem 4.5.2.

Exercise 4.5.2. Decide on the validity of the following conjectures.
(a) Continuous functions take bounded open intervals to bounded open in-

tervals.
(b) Continuous functions take bounded open intervals to open sets.
(c) Continuous functions take bounded closed intervals to bounded closed

intervals.

Exercise 4.5.3. Is there a continuous function on all of R with range f(R)
equal to Q?

Exercise 4.5.4. A function f is increasing on A if f(x) ≤ f(y) for all x < y
in A. Show that the Intermediate Value Theorem does have a converse if we
assume f is increasing on [a, b].

Exercise 4.5.5. Finish the proof of the Intermediate Value Theorem using the
Axiom of Completeness started previously.

Exercise 4.5.6. Finish the proof of the Intermediate Value Theorem using the
Nested Interval Property started previously.

Exercise 4.5.7. Let f be a continuous function on the closed interval [0, 1]
with range also contained in [0, 1]. Prove that f must have a fixed point; that
is, show f(x) = x for at least one value of x ∈ [0, 1].
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Exercise 4.5.8. Imagine a clock where the hour hand and the minute hand
are indistinguishable from each other. Assuming the hands move continuously
around the face of the clock, and assuming their positions can be measured with
perfect accuracy, is it always possible to determine the time?

4.6 Sets of Discontinuity

Given a function f : R → R, define Df ⊆ R to be the set of points where
the function f fails to be continuous. In Section 4.1, we saw that Dirichlet’s
function g(x) had Dg = R. The modification h(x) of Dirichlet’s function had
Dh = R\{0}, zero being the only point of continuity. Finally, for Thomae’s
function t(x), we saw that Dt = Q.

Exercise 4.6.1. Using modifications of these functions, construct a function
f : R→ R so that

(a) Df = Z.
(b) Df = {x : 0 < x ≤ 1}.
We concluded the introduction with a question about whether Df could take

the form of any arbitrary subset of the real line. As it turns out, this is not
the case. The set of discontinuities of a real-valued function on R has a specific
topological structure that is not possessed by every subset of R. Specifically,
Df , no matter how f is chosen, can always be written as the countable union
of closed sets. In the case where f is monotone, these closed sets can be taken
to be single points.

Monotone Functions

Classifying Df for an arbitrary f is somewhat involved, so it is interesting that
describing Df is fairly straightforward for the class of monotone functions.

Definition 4.6.1. A function f : A → R is increasing on A if f(x) ≤ f(y)
whenever x < y and decreasing if f(x) ≥ f(y) whenever x < y in A. Amonotone
function is one that is either increasing or decreasing.

Continuity of f at a point c means that limx→c f(x) = f(c). One particular
way for a discontinuity to occur is if the limit from the right at c is different
from the limit from the left at c. As always with new terminology, we need to
be precise about what we mean by “from the left” and “from the right.”

Definition 4.6.2 (Right-hand limit). Given a limit point c of a set A and a
function f : A → R, we write

lim
x→c+

f(x) = L

if for all ε > 0 there exists a δ > 0 such that |f(x)−L| < ε whenever 0 < x−c < δ.
Equivalently, in terms of sequences, limx→c+ f(x) = L if lim f(xn) = L for

all sequences (xn) satisfying xn > c and lim(xn) = c.
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Exercise 4.6.2. State a similar definition for the left-hand limit

lim
x→c−

f(x) = L.

Theorem 4.6.3. Given f : A → R and a limit point c of A, limx→c f(x) = L
if and only if

lim
x→c+

f(x) = L and lim
x→c+

f(x) = L.

Exercise 4.6.3. Supply a proof for this proposition.

Generally speaking, discontinuities can be divided into three categories:

(i) If limx→c f(x) exists but has a value different from f(c), the discontinuity
at c is called removable.

(ii) If limx→c+ f(x) �= limx→c− f(x), then f has a jump discontinuity at c.

(iii) If limx→c f(x) does not exist for some other reason, then the discontinuity
at c is called an essential discontinuity.

We are now equipped to characterize the set Df for an arbitrary monotone
function f .

Exercise 4.6.4. Let f : R → R be increasing. Prove that limx→c+ f(x) and
limx→c− f(x) must each exist at every point c ∈ R. Argue that the only type
of discontinuity a monotone function can have is a jump discontinuity.

Exercise 4.6.5. Construct a bijection between the set of jump discontinuities
of a monotone function f and a subset of Q. Conclude that Df for a monotone
function f must either be finite or countable, but not uncountable.

Df for an Arbitrary Function

Recall that the intersection of an infinite collection of closed sets is closed, but
for unions we must restrict ourselves to finite collections of closed sets in order
to ensure the union is closed. For open sets the situation is reversed. The
arbitrary union of open sets is open, but only finite intersections of open sets
are necessarily open.

Definition 4.6.4. A set that can be written as the countable union of closed
sets is in the class Fσ. (This definition also appeared in Section 3.5.)

To this point, we have constructed functions where the set of discontinu-
ity has been R (Dirichlet’s function), R\{0} (modified Dirichlet function), Q
(Thomae’s function), Z, and (0, 1] (Exercise 4.6.1).

Exercise 4.6.6. Show that in each case we get an Fσ set as the set where each
function is discontinuous.

The upcoming argument depends on a concept called α-continuity.
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Definition 4.6.5. Let f be defined on R, and let α > 0. The function f is
α-continuous at x ∈ R if there exists a δ > 0 such that for all y, z ∈ (x−δ, x+δ)
it follows that |f(y)− f(z)| < α.

The most important thing to note about this definition is that there is no
“for all” in front of the α > 0. As we will investigate, adding this quantifier
would make this definition equivalent to our definition of continuity. In a sense,
α-continuity is a measure of the variation of the function in the neighborhood
of a particular point. A function is α-continuous at a point c if there is some
interval centered at c in which the variation of the function never exceeds the
value α > 0.

Given a function f onR, define Dα to be the set of points where the function
f fails to be α-continuous. In other words,

Dα = {x ∈ R : f is not α-continuous at x}.
Exercise 4.6.7. Prove that, for a fixed α > 0, the set Dα is closed.

The stage is set. It is time to characterize the set of discontinuity for an
arbitrary function f on R.

Theorem 4.6.6. Let f : R → R be an arbitary function. Then, Df is an Fσ

set.

Proof. Recall that

Df = {x ∈ R : f is not continuous at x}.
Exercise 4.6.8. If α1 < α2, show that Dα2 ⊆ Dα1 .

Exercise 4.6.9. Let α > 0 be given. Show that if f is continuous at x, then it
is α-continuous at x as well. Explain how it follows that Dα ⊆ Df .

Exercise 4.6.10. Show that if f is not continuous at x, then f is not α-
continuous for some α > 0. Now explain why this guarantees that

Df =
∞⋃
n=1

D 1
n
.

Because each D 1
n
is closed, the proof is complete.

4.7 Epilogue

Theorem 4.6.6 is only interesting if we can demonstrate that not every subset
of R is in an Fσ set. This takes some effort and was included as an exercise in
Section 3.5 on the Baire Category Theorem. Baire’s Theorem states that if R is
written as the countable union of closed sets, then at least one of these sets must
contain a nonempty open interval. Now Q is the countable union of singleton
points, and we can view each point as a closed set that obviously contains no
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intervals. If the set of irrationals I were a countable union of closed sets, it would
have to be that none of these closed sets contained any open intervals or else they
would then contain some rational numbers. But this leads to a contradiction
to Baire’s Theorem. Thus, I is not the countable union of closed sets, and
consequently it is not an Fσ set. We may therefore conclude that there is no
function f that is continuous at every rational point and discontinuous at every
irrational point. This should be compared with Thomae’s function discussed
earlier.

The converse question is interesting as well. Given an arbitrary Fσ set,
W.H. Young showed in 1903 that it is always possible to construct a function
that has discontinuities precisely on this set. His construction involves the same
Dirichlet-type definitions we have seen but is understandably more intricate. By
contrast, a function demonstrating the converse for the monotone case is not
too difficult to describe. Let

D = {x1, x2, x3, x4, . . . }

be an arbitrary countable set of real numbers. In order to construct a monotone
function that has discontinuities precisely on D, intuitively attach a “weight”
of 1/2n to each point xn ∈ D. Now, define

f(x) =
∑

n:xn<x

1
2n

where for each x ∈ R the sum is intended to be taken over all of those weights
corresponding to points to the left of x. (If there are no points in D to the
left of x, then set f(x) = 0.) Any worries about the order of the sum can be
alleviated by observing that the convergence is absolute. It is not too hard to
show that the resulting function f is monotone and has jump discontinuities of
size 1/2n at each point xn in D, as desired (Exercise 6.4.8).



Chapter 5

The Derivative

5.1 Discussion: Are Derivatives Continuous?

The geometric motivation for the derivative is most likely familiar territory.
Given a function g(x), the derivative g′(x) is understood to be the slope of the
graph of g at each point x in the domain. A graphical picture (Fig. 5.1) reveals
the impetus behind the mathematical definition

g′(c) = lim
x→c

g(x)− g(c)
x− c

.

The difference quotient (g(x) − g(c))/(x − c) represents the slope of the line
through the two points (x, g(x)) and (c, g(c)). By taking the limit as x ap-
proaches c, we arrive at a well-defined mathematical meaning for the slope of
the tangent line at x = c.

The myriad applications of the derivative function are the topic of much
of the calculus sequence, as well as several other upper-level courses in mathe-
matics. None of these applied questions are pursued here in any length, but it
should be pointed out that the rigorous underpinnings for differentiation worked

✲

•
•

�
�
�
�✒

��✠
✮

✶

✏✏✏✏✏✏✏
(c,g(c))

(x,g(x))
m=g′(c)

m= g(x)−g(c)
x−c

c x

Figure 5.1: Definition of g′(c).
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out in this chapter are an essential foundation for any applied study. Eventu-
ally, as the derivative is subjected to more and more complex manipulations,
it becomes crucial to know precisely how differentiation is defined and how it
interacts with other mathematical operations.

Although physical applications are not explicitly discussed, we will encounter
several questions of a more abstract quality as we develop the theory. Most of
these are concerned with the relationship between differentiation and continuity.
Are continuous functions always differentiable? If not, how nondifferentiable can
a continuous function be? Are differentiable functions continuous? Given that
a function f has a derivative at every point in its domain, what can we say
about the function f ′? Is f ′ continuous? How accurately can we describe the
set of all possible derivatives, or are there no restrictions? Put another way, if
we are given an arbitrary function g, is it always possible to find a differentiable
function f such that f ′ = g, or are there some properties that g must possess for
this to occur? In our study of continuity, we saw that restricting our attention
to monotone functions had a significant impact on the answers to questions
about sets of discontinuity. What effect, if any, does this same restriction have
on our questions about potential sets of nondifferentiable points? Some of these
issues are harder to resolve than others, and some remain unanswered in any
satisfactory way.

A particularly useful class of examples for this discussion are functions of
the form

gn(x) =
{

xn sin(1/x) if x �= 0
0 if x = 0.

When n = 0, we have seen (Example 4.2.6) that the oscillations of sin(1/x)
prevent g0(x) from being continuous at x = 0. When n = 1, these oscillations
are squeezed between |x| and −|x|, the result being that g1 is continuous at
x = 0 (Example 4.3.6). Is g′1(0) defined? Using the preceding definition, we get

g′1(0) = lim
x→0

g1(x)
x

= lim
x→0

sin(1/x),

which, as we now know, does not exist. Thus, g1 is not differentiable at x = 0.
On the other hand, the same calculation shows that g2 is differentiable at zero.
In fact, we have

g′2(0) = lim
x→0

x sin(1/x) = 0.

At points different from zero, we can use the familiar rules of differentiation
(soon to be justified) to conclude that g2 is differentiable everywhere in R with

g′2(x) =
{ − cos(1/x) + 2x sin(1/x) if x �= 0
0 if x = 0.

But now consider
lim
x→0

g′2(x).

Because the cos(1/x) term is not preceded by a factor of x, we must conclude
that this limit does not exist and that, consequently, the derivative function is
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Figure 5.2: The function g2(x) = x2 sin(1/x) near zero.

not continuous. To summarize, the function g2(x) is continuous and differen-
tiable everywhere on R (Fig. 5.2), the derivative function g′2 is thus defined
everywhere on R, but g′2 has a discontinuity at zero. The conclusion is that
derivatives need not, in general, be continuous!

The discontinuity in g′2 is essential, meaning limx→0 g
′(x) does not exist as a

one-sided limit. But, what about a function with a simple jump discontinuity?
For example, does there exist a function h such that

h′(x) =
{ −1 if x ≤ 0
1 if x > 0.

A first impression may bring to mind the absolute value function, which has
slopes of −1 at points to the left of zero and slopes of 1 to the right. However, the
absolute value function is not differentiable at zero. We are seeking a function
that is differentiable everywhere, including the point zero, where we are insisting
that the slope of the graph be −1. The degree of difficulty of this request should
start to become apparent. Without sacrificing differentiability at any point, we
are demanding that the slopes jump from −1 to 1 and not attain any value in
between.

Although we have seen that continuity is not a required property of deriva-
tives, the intermediate value property will prove a more stubborn quality to
ignore.

5.2 Derivatives and the Intermediate
Value Property

Although the definition would technically make sense for more complicated do-
mains, all of the interesting results about the relationship between a function
and its derivative require that the domain of the given function be an interval.
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Thinking geometrically of the derivative as a rate of change, it should not be
too surprising that we would want to confine the independent variable to move
about a connected domain.

The theory of functional limits from Section 4.2 is all that is needed to supply
a rigorous definition for the derivative.

Definition 5.2.1. Let g : A → R be a function defined on an interval A. Given
c ∈ A, the derivative of g at c is defined by

g′(c) = lim
x→c

g(x)− g(c)
x− c

,

provided this limit exists. If g′ exists for all points c ∈ A, we say that g is
differentiable on A.

Example 5.2.2. (a) Consider f(x) = xn, where n ∈ N, and let c be any
arbitrary point in R. Using the algebraic identity

xn − cn = (x− c)(xn−1 + cxn−2 + c2xn−3 + · · ·+ cn−1),

we can calculate the familiar formula

f ′(c) = lim
x→c

xn − cn

x− c
= lim

x→c
(xn−1 + cxn−2 + c2xn−3 + · · ·+ cn−1)

= cn−1 + cn−1 + · · ·+ cn−1 = ncn−1.

(b) If g(x) = |x|, then attempting to compute the derivative at c = 0 pro-
duces the limit

g′(0) = lim
x→0

|x|
x

,

which is +1 or −1 depending on whether x approaches zero from the right or
left. Consequently, this limit does not exist, and we conclude that g is not
differentiable at zero.

Example 5.2.2 (b) is a reminder that continuity of g does not imply that g
is necessarily differentiable. On the other hand, if g is differentiable at a point,
then it is true that g must be continuous at this point.

Theorem 5.2.3. If g : A → R is differentiable at a point c ∈ A, then g is
continuous at c as well.

Proof. We are assuming that

g′(c) = lim
x→c

g(x)− g(c)
x− c

exists, and we want to prove that limx→c g(x) = g(c). But notice that the
Algebraic Limit Theorem for functional limits allows us to write

lim
x→c

(g(x)− g(c)) = lim
x→c

(
g(x)− g(c)

x− c

)
(x− c) = g′(c) · 0 = 0.

It follows that limx→c g(x) = g(c).
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Combinations of Differentiable Functions

The Algebraic Limit Theorem (Theorem 2.3.3) led easily to the conclusion
that algebraic combinations of continuous functions are continuous. With only
slightly more work, we arrive at a similar conclusion for sums, products, and
quotients of differentiable functions.

Theorem 5.2.4. Let f and g be functions defined on an interval A, and assume
both are differentiable at some point c ∈ A. Then,

(i) (f + g)′(c) = f ′(c) + g′(c),

(ii) (kf)′(c) = kf ′(c), for all k ∈ R,

(iii) (fg)′(c) = f ′(c)g(c) + f(c)g′(c), and

(iv) (f/g)′ (c) = g(c)f ′(c)−f(c)g′(c)
[g(c)]2 , provided that g(c) �= 0.

Proof. Statements (i) and (ii) are left as exercises. To prove (iii), we rewrite the
difference quotient as

(fg)(x)− (fg)(c)
x− c

=
f(x)g(x)− f(x)g(c) + f(x)g(c)− f(c)g(c)

x− c

= f(x)
[
g(x)− g(c)

x− c

]
+ g(c)

[
f(x)− f(c)

x− c

]
.

Because f is differentiable at c, it is continuous there and thus limx→c f(x) =
f(c). This fact, together with the functional-limit version of the Algebraic Limit
Theorem (Theorem 4.2.4) justifies the conclusion

lim
x→c

(fg)(x)− (fg)(c)
x− c

= f(c)g′(c) + f ′(c)g(c).

A similar proof of (iv) is possible, or we can use an argument based on the
next result. Each of these options is each discussed in Exercise 5.2.2.

The composition of two differentiable functions also fortunately results in
another differentiable function. This fact is referred to as the chain rule. To
discover the proper formula for the derivative of the composition g ◦ f , we can
write

(g ◦ f)′(c) = lim
x→c

g(f(x))− g(f(c))
x− c

= lim
x→c

g(f(x))− g(f(c))
f(x)− f(c)

· f(x)− f(c)
x− c

= g′(f(c)) · f ′(c).

With a little polish, this string of equations could qualify as a proof except for
the pesky fact that the f(x) − f(c) expression causes problems in the denomi-
nator if f(x) = f(c) for x values in arbitrarily small neighborhoods of c. (The
function g2(x) discussed in Section 5.1 exhibits this behavior near c = 0.) The
upcoming proof of the chain rule manages to finesse this problem but in content
is essentially the argument just given.
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Theorem 5.2.5 (Chain Rule). Let f : A → R and g : B → R satisfy f(A) ⊆
B so that the composition g ◦ f is well-defined. If f is differentiable at c ∈ A
and if g is differentiable at f(c) ∈ B, then g ◦ f is differentiable at c with
(g ◦ f)′(c) = g′(f(c)) · f ′(c).

Proof. Because g is differentiable at f(c), we know that

g′(f(c)) = lim
y→f(c)

g(y)− g(f(c))
y − f(c)

.

Another way to assert this same fact is to let d(y) be the difference

(1) d(y) =
g(y)− g(f(c))

y − f(c)
− g′(f(c)),

and observe that limy→f(c) d(y) = 0. At the moment, d(y) is not defined when
y = f(c), but it should seem natural to declare that d(f(c)) = 0, so that d is
continuous at f(c).

Now, we come to the finesse. Equation (1) can be rewritten as

(2) g(y)− g(f(c)) = [g′(f(c)) + d(y)](y − f(c)).

Observe that this equation holds for all y ∈ B including y = f(c). Thus, we
are free to substitute y = f(t) for any arbitrary t ∈ A. If t �= c, we can divide
equation (2) by (t− c) to get

g(f(t))− g(f(c))
t− c

= [g′(f(c)) + d(f(t))]
(f(t)− f(c))

t− c

for all t �= c. Finally, taking the limit as t → c and applying the Algebraic Limit
Theorem yields the desired formula.

Darboux’s Theorem

One conclusion from this chapter’s introduction is that although continuity is
necessary for the derivative to exist, it is not the case that the derivative function
itself will always be continuous. Our specific example was g2(x) = x2 sin(1/x),
where we set g2(0) = 0. By tinkering with the exponent of the leading x2 factor,
it is possible to construct examples of differentiable functions with derivatives
that are unbounded, or twice-differentiable functions that have discontinuous
second derivatives (Exercise 5.2.5). The underlying principle in all of these
examples is that by controlling the size of the oscillations of the original function,
we can make the corresponding oscillations of the slopes volatile enough to
prevent the existence of the relevant limits.

It is significant that for this class of examples, the discontinuities that arise
are never simple jump discontinuities. (A precise definition of “jump discon-
tinuity” is presented in Section 4.6.) We are now ready to confirm our earlier
suspicions that, although derivatives do not in general have to be continuous,
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✲

✲✛ f ′(c)=0

a c b

Figure 5.3: The Interior Extremum Theorem.

they do possess the intermediate value property. (See Definition 4.5.3.) This
surprising observation is a fairly straightforward corollary to the more obvious
observation that differentiable functions attain maximums and minimums at
points where the derivative is equal to zero (Fig. 5.3).

Theorem 5.2.6 (Interior Extremum Theorem). Let f be differentiable on
an open interval (a, b). If f attains a maximum value at some point c ∈ (a, b)
(i.e., f(c) ≥ f(x) for all x ∈ (a, b)), then f ′(c) = 0. The same is true if f(c) is
a minimum value.

Proof. Because c is in the open interval (a, b), we can construct two sequences
(xn) and (yn), which converge to c and satisfy xn < c < yn for all n ∈ N. The
fact that f(c) is a maximum implies that f(yn)− f(c) ≤ 0 for all n, and thus

f ′(c) = lim
n→∞

f(yn)− f(c)
yn − c

≤ 0

by the Order Limit Theorem (Theorem 2.3.4). In a similar way,

f(xn)− f(c)
xn − c

≥ 0

for each xn because both numerator and denominator are negative. This implies
that

f ′(c) = lim
n→∞

f(xn)− f(c)
xn − c

≥ 0,

and therefore f ′(c) = 0, as desired.

The Interior Extremem Theorem is the fundamental fact behind the use of
the derivative as a tool for solving applied optimization problems. This idea,
discovered and exploited by Pierre de Fermat, is as old as the derivative itself.
In a sense, finding maximums and minimums is arguably why Fermat invented
his method of finding slopes of tangent lines. It was 200 years later that the
French mathematician Gaston Darboux (1842–1917) pointed out that Fermat’s
method of finding maximums and minimums carries with it the implication that
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if a derivative function attains two distinct values f ′(a) and f ′(b), then it must
also attain every value in between. The noticeably long delay between these
discoveries is indicative of the difference between the kinds of mathematical
questions that were relevant during these two eras. Whereas Fermat was cre-
ating a tool for solving a computational problem, by the middle of the 19th
century mathematics had become more introspective. Mathematicians were di-
recting their energies toward understanding their subject for its own sake.

Theorem 5.2.7 (Darboux’s Theorem). If f is differentiable on an interval
[a, b], and if α satisfies f ′(a) < α < f ′(b) (or f ′(a) > α > f ′(b)), then there
exists a point c ∈ (a, b) where f ′(c) = α.

Proof. We first simplify matters by defining a new function g(x) = f(x) − αx
on [a, b]. Notice that g is differentiable on [a, b] with g′(x) = f ′(x)−α. In terms
of g, our hypothesis states that g′(a) < 0 < g′(b), and we hope to show that
g′(c) = 0 for some c ∈ (a, b).

The remainder of the argument is outlined in Exercise 5.2.6.

Exercises

Exercise 5.2.1. Supply proofs for parts (i) and (ii) of Theorem 5.2.4.

Exercise 5.2.2. (a) Use Definition 5.2.1 to produce the proper formula for the
derivative of f(x) = 1/x.

(b) Combine the result in part (a) with the chain rule (Theorem 5.2.5) to
supply a proof for part (iv) of Theorem 5.2.4.

(c) Supply a direct proof of Theorem 5.2.4 (iv) by algebraically manipulating
the difference quotient for (f/g) in a style similar to the proof of Theorem 5.2.4
(iii).

Exercise 5.2.3. By imitating the Dirichlet constructions in Section 4.1, con-
struct a function on R that is differentiable at a single point.

Exercise 5.2.4. Let fa(x) =
{

xa if x ≥ 0
0 if x < 0.

(a) For which values of a is f continuous at zero?
(b) For which values of a is f differentiable at zero? In this case, is the

derivative function continuous?
(c) For which values of a is f twice-differentiable?

Exercise 5.2.5. Let

ga(x) =
{

xa sin(1/x) if x �= 0
0 if x = 0.

Find a particular (potentially noninteger) value for a so that
(a) ga is differentiable on R but such that g′a is unbounded on [0, 1].
(b) ga is differentiable on R with g′a continuous but not differentiable at

zero.
(c) ga is differentiable on R and g′a is differentiable on R, but such that g′′a

is not continuous at zero.
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Exercise 5.2.6. (a) Assume that g is differentiable on [a, b] and satisfies g′(a) <
0 < g′(b). Show that there exists a point x ∈ (a, b) where g(a) > g(x), and a
point y ∈ (a, b) where g(y) < g(b).

(b) Now complete the proof of Darboux’s Theorem started earlier.

Exercise 5.2.7. Review the definition of uniform continuity (Definition 4.4.5)
and also the content of Theorem 4.4.8, which states that continuous functions
on compact sets are uniformly continuous.

(a) Propose a definition for what it should mean to say that f : A → R is
uniformly differentiable on A.

(b) Give an example of a uniformly differentiable function on [0, 1].
(c) Is there a theorem analogous to Theorem 4.4.8 for differentiation? Are

functions that are differentiable on a closed interval [a, b] necessarily uniformly
differentiable? The class of examples discussed in Section 5.1 may be useful.

Exercise 5.2.8. Decide whether each conjecture is true or false. Provide an
argument for those that are true and a counterexample for each one that is false.

(a) If a derivative function is not constant, then the derivative must take on
some irrational values.

(b) If f ′ exists on an open interval, and there is some point c where f ′(c) > 0,
then there exists a δ-neighborhood Vδ(c) around c in which f ′(x) > 0 for all
x ∈ Vδ(c).

(c) If f is differentiable on an interval containing zero and if limx→0 f
′(x) =

L, then it must be that L = f ′(0).
(d) Repeat conjecture (c) but drop the assumption that f ′(0) necessarily

exists. If f ′(x) exists for all x �= 0 and if limx→0 f
′(x) = L, then f ′(0) exists

and equals L.

5.3 The Mean Value Theorem

The Mean Value Theorem (Fig. 5.4) makes the geometrically plausible assertion
that a differentiable function f on an interval [a, b] will, at some point, attain a
slope equal to the slope of the line through the endpoints (a, f(a)) and (b, f(b)).
More tersely put,

f ′(c) =
f(b)− f(a)

b− a

for at least one point c ∈ (a, b).
On the surface, there does not appear to be anything especially remarkable

about this observation. Its validity appears undeniable—much like the Inter-
mediate Value Theorem for continuous functions—and its proof is rather short.
The ease of the proof, however, is misleading, as it is built on top of some hard-
fought accomplishments from the study of limits and continuity. In this regard,
the Mean Value Theorem is a kind of reward for a job well done. As we will
see, it is a prize of exceptional value. Although the result itself is geometrically
obvious, the Mean Value Theorem is the cornerstone for almost every major
theorem pertaining to differentiation. We will use it to prove L’Hospital’s rules
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Figure 5.4: The Mean Value Theorem.

regarding limits of quotients of differentiable functions. A rigorous analysis of
how infinite series of functions behave when differentiated requires the Mean
Value Theorem (Theorem 6.4.3), and it is the crucial step in the proof of the
Fundamental Theorem of Calculus (Theorem 7.5.1). It is also the fundamen-
tal concept underlying Lagrange’s Remainder Theorem (Theorem 6.6.1) which
approximates the error between a Taylor polynomial and the function that gen-
erates it.

The Mean Value Theorem can be stated in various degrees of generality,
each one important enough to be given its own special designation. Recall that
the Extreme Value Theorem (Theorem 4.4.3) states that continuous functions
on compact sets always attain maximum and minimum values. Combining this
observation with the Interior Extremum Theorem for differentiable functions
(Theorem 5.2.6) yields a special case of the Mean Value Theorem first noted by
the mathematician Michel Rolle (1652–1719) (Fig. 5.5).

Theorem 5.3.1 (Rolle’s Theorem). Let f : [a, b] → R be continuous on
[a, b] and differentiable on (a, b). If f(a) = f(b), then there exists a point c ∈
(a, b) where f ′(c) = 0.

Proof. Because f is continuous on a compact set, f attains a maximum and a
minimum. If both the maximum and minimum occur at the endpoints, then f
is necessarily a constant function and f ′(x) = 0 on all of (a, b). In this case, we
can choose c to be any point we like. On the other hand, if either the maximum
or minimum occurs at some point c in the interior (a, b), then it follows from
the Interior Extremum Theorem (Theorem 5.2.6) that f ′(c) = 0.

Theorem 5.3.2 (Mean Value Theorem). If f : [a, b]→ R is continuous on
[a, b] and differentiable on (a, b), then there exists a point c ∈ (a, b) where

f ′(c) =
f(b)− f(a)

b− a
.
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a c b

Figure 5.5: Rolle’s Theorem.

Proof. Notice that the Mean Value Theorem reduces to Rolle’s Theorem in the
case where f(a) = f(b). The strategy of the proof is to reduce the more general
statement to this special case.

The equation of the line through (a, f(a)) and (b, f(b)) is

y =
(
f(b)− f(a)

b− a

)
(x− a) + f(a).

✟
✟

✟
✟

✟
✟

✟
✟

✟

•

•d(x)

{

(a,f(a))

(b,f(b))

a x b

We want to consider the difference between this line and the function f(x). To
this end, let

d(x) = f(x)−
[(

f(b)− f(a)
b− a

)
(x− a) + f(a)

]
,

and observe that d is continuous on [a, b], differentiable on (a, b), and satisfies
d(a) = 0 = d(b). Thus, by Rolle’s Theorem, there exists a point c ∈ (a, b) where
d′(c) = 0. Because

d′(x) = f ′(x)− f(b)− f(a)
b− a

,

we get

0 = f ′(c)− f(b)− f(a)
b− a

,

which completes the proof.
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The point has been made that the Mean Value Theorem manages to find its
way into nearly every proof of any statement related to the geometrical nature
of the derivative. As a simple example, if f is a constant function f(x) = k on
some interval A, then a straightforward calculation of f ′ using Definition 5.2.1
shows that f ′(x) = 0 for all x ∈ A. But how do we prove the converse statement?
If we know that a differentiable function g satisfies g′(x) = 0 everywhere on A,
our intuition suggests that we should be able to prove g(x) is constant. It is the
Mean Value Theorem that provides us with a way to articulate rigorously what
seems geometrically valid.

Corollary 5.3.3. If g : A → R is differentiable on an interval A and satisfies
g′(x) = 0 for all x ∈ A, then g(x) = k for some constant k ∈ R.

Proof. Take x, y ∈ A and assume x < y. Applying the Mean Value Theorem to
g on the interval [x, y], we see that

g′(c) =
g(y)− g(x)

y − x

for some c ∈ A. Now, g′(c) = 0, so we conclude that g(y) = g(x). Set k equal
to this common value. Because x and y are arbitrary, it follows that g(x) = k
for all x ∈ A.

Corollary 5.3.4. If f and g are differentiable functions on an interval A and
satisfy f ′(x) = g′(x) for all x ∈ A, then f(x) = g(x) + k for some constant
k ∈ R.

Proof. Let h(x) = f(x) − g(x) and apply Corollary 5.3.3 to the differentiable
function h.

The Mean Value Theorem has a more general form due to Cauchy. It is this
generalized version of the theorem that is needed to analyze L’Hospital’s rules
and Lagrange’s Remainder Theorem.

Theorem 5.3.5 (Generalized Mean Value Theorem). If f and g are con-
tinuous on the closed interval [a, b] and differentiable on the open interval (a, b),
then there exists a point c ∈ (a, b) where

[f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c).

If g′ is never zero on (a, b), then the conclusion can be stated as

f ′(c)
g′(c)

=
f(b)− f(a)
g(b)− g(a)

.

Proof. This result follows by applying the Mean Value Theorem to the function
h(x) = [f(b)−f(a)]g(x)−[g(b)−g(a)]f(x). The details are requested in Exercise
5.3.4.
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L’Hospital’s Rules

The Algebraic Limit Theorem asserts that when taking a limit of a quotient of
functions we can write

lim
x→c

f(x)
g(x)

=
lim
x→c

f(x)

lim
x→c

g(x)
,

provided that each individual limit exists and limx→c g(x) is not zero. If the
denominator does converge to zero and the numerator does not, then it is not
difficult to argue that the quotient f(x)/g(x) grows in absolute value without
bound as x approaches c (Exercise 5.3.9). L’Hospital’s rules are named for
the Marquis de L’Hospital (1661–1704), who learned the results from his tutor,
Johann Bernoulli (1667–1748), and published them in 1696 in what is regarded
as the first calculus text. Stated in different levels of generality, they are a
favorite tool for handling the indeterminant cases when either numerator and
denominator both tend to zero or both tend simultaneously to infinity.

Theorem 5.3.6 (L’Hospital’s Rule: 0/0 case). Assume f and g are con-
tinuous functions defined on an interval containing a, and assume that f and g
are differentiable on this interval, with the possible exception of the point a. If
f(a) = 0 and g(a) = 0, then

lim
x→a

f ′(x)
g′(x)

= L implies lim
x→a

f(x)
g(x)

= L.

Proof. This argument follows from a straightforward application of the Gener-
alized Mean Value Theorem. It is requested as Exercise 5.3.11.

L’Hospital’s rule remains true if we replace the assumption that f(a) =
g(a) = 0 with the hypothesis that limx→a g(x) =∞. To this point we have not
been explicit about what it means to say that a limit equals ∞. The logical
structure of such a definition is precisely the same as it is for finite functional
limits. The difference is that rather than trying to force the function to take
on values in some small ε-neighborhood around a proposed limit, we must show
that g(x) eventually exceeds any proposed upper bound. The arbitrarily small
ε > 0 is replaced by an arbitrarily large M > 0.

Definition 5.3.7. Given g : A → R and a limit point c of A, we say that
limx→c g(x) = ∞ if, for every M > 0, there exists a δ > 0 such that whenever
0 < |x− c| < δ it follows that g(x) ≥ M .

We can define limx→c g(x) = −∞ in a similar way.

The following version of L’Hospital’s rule is referred to as the ∞/∞ case,
although the hypothesis only requires that the function in the denominator tend
to infinity. If the numerator is bounded, then it is a straightforward exercise to
prove that the resulting quotient tends to zero (Exercise 5.3.10). The argument
for the general case is relatively involved when compared to the 0/0 case. To
simplify the notation of the proof, we state the result using a one-sided limit.
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Theorem 5.3.8 (L’Hospital’s Rule: ∞/∞ case). Assume f and g are dif-
ferentiable on (a, b), and that limx→a g(x) =∞ (or −∞). Then

lim
x→a

f ′(x)
g′(x)

= L implies lim
x→a

f(x)
g(x)

= L.

Proof. Because limx→a
f ′(x)
g′(x) = L, there exists a δ1 > 0 such that∣∣∣∣f ′(x)

g′(x)
− L

∣∣∣∣ < ε

2

for all a < x < a+ δ1. For convenience of notation, let t = a+ δ1 and mentally
note that t is fixed for the remainder of the argument.

Our functions are not defined at a, but for any a < x < t we can apply the
Generalized Mean Value Theorem on the interval [x, t] to get

f(x)− f(t)
g(x)− g(t)

=
f ′(c)
g′(c)

for some c ∈ (x, t). Our choice of t then implies

(1) L− ε

2
<

f(x)− f(t)
g(x)− g(t)

< L+
ε

2

for all x in (a, t).
In an effort to isolate the fraction f(x)

g(x) , the strategy is to multiply equation
(1) by (g(x) − g(t))/g(x). We need to be sure, however, that this quantity is
positive, which amounts to insisting that 1 ≥ g(t)/g(x). Because t is fixed and
limx→a g(x) =∞, we can choose δ2 > 0 so that g(x) ≥ g(t) for all a < x < a+δ2.
Carrying out the desired multiplication results in(

L− ε

2

)(
1− g(t)

g(x)

)
<

f(x)− f(t)
g(x)

<
(
L+

ε

2

)(
1− g(t)

g(x)

)
,

which after some algebraic manipulations yields

L− ε

2
+

−Lg(t) + ε
2g(t) + f(t)

g(x)
<

f(x)
g(x)

< L+
ε

2
+

Lg(t)− ε
2g(t) + f(t)
g(x)

.

Again, let’s remind ourselves that t is fixed and that limx→a g(x) = ∞. Thus,
we can choose a δ3 such that a < x < a + δ3 implies that g(x) is large enough
to ensure that both

−Lg(t) + ε
2g(t) + f(t)

g(x)
and

Lg(t)− ε
2g(t) + f(t)
g(x)

are less than ε/2. Putting this all together and choosing δ = min{δ1, δ2, δ3}
guarantees that ∣∣∣∣f(x)g(x)

− L

∣∣∣∣ < ε

for all a < x < a+ δ.
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Exercises

Exercise 5.3.1. Recall from Exercise 4.4.9 that a function f : A → R is “Lip-
schitz on A” if there exists an M > 0 such that∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ M

for all x, y ∈ A. Show that if f is differentiable on a closed interval [a, b] and if
f ′ is continuous on [a, b], then f is Lipschitz on [a, b].

Exercise 5.3.2. Recall from Exercise 4.3.9 that a function f is contractive on
a set A if there exists a constant 0 < s < 1 such that

|f(x)− f(y)| ≤ s|x− y|
for all x, y ∈ A. Show that if f is differentiable and f ′ is continuous and satisfies
|f ′(x)| < 1 on a closed interval, then f is contractive on this set.

Exercise 5.3.3. Let h be a differentiable function defined on the interval [0, 3],
and assume that h(0) = 1, h(1) = 2, and h(3) = 2.

(a) Argue that there exists a point d ∈ [0, 3] where h(d) = d.
(b) Argue that at some point c we have h′(c) = 1/3.
(c) Argue that h′(x) = 1/4 at some point in the domain.

Exercise 5.3.4. (a) Supply the details for the proof of Cauchy’s Generalized
Mean Value Theorem (Theorem 5.3.5).

(b) Give a graphical interpretation of the Generalized Mean Value Theorem
analogous to the one given for the Mean Value Theorem at the beginning of
Section 5.3. (Consider f and g as parametric equations for a curve.)

Exercise 5.3.5. A fixed point of a function f is a value x where f(x) = x.
Show that if f is differentiable on an interval with f ′(x) �= 1, then f can have
at most one fixed point.

Exercise 5.3.6. Let g : [0, 1] → R be twice-differentiable (i.e., both g and g′

are differentiable functions) with g′′(x) > 0 for all x ∈ [0, 1]. If g(0) > 0 and
g(1) = 1, show that g(d) = d for some point d ∈ (0, 1) if and only if g′(1) >
1. (This geometrically plausible fact is used in the introductory discussion to
Chapter 6.)

Exercise 5.3.7. (a) Recall that a function f : (a, b)→ R is increasing on (a, b)
if f(x) ≤ f(y) whenever x < y in (a, b). Assume f is differentiable on (a, b).
Show that f is increasing on (a, b) if and only if f ′(x) ≥ 0 for all x ∈ (a, b).

(b) Show that the function

g(x) =
{

x/2 + x2 sin(1/x) if x �= 0
0 if x = 0

is differentiable on R and satisfies g′(0) > 0. Now, prove that g is not increasing
over any open interval containing 0.
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Exercise 5.3.8. Assume g : (a, b)→ R is differentiable at some point c ∈ (a, b).
If g′(c) �= 0, show that there exists a δ-neighborhood Vδ(c) ⊆ (a, b) for which
g(x) �= g(c) for all x ∈ Vδ(c). Compare this result with Exercise 5.3.7.

Exercise 5.3.9. Assume that limx→c f(x) = L, where L �= 0, and assume
limx→c g(x) = 0. Show that limx→c |f(x)/g(x)| =∞.

Exercise 5.3.10. Let f be a bounded function and assume limx→c g(x) = ∞.
Show that limx→c f(x)/g(x) = 0.

Exercise 5.3.11. Use the Generalized Mean Value Theorem to furnish a proof
of the 0/0 case of L’Hospital’s rule (Theorem 5.3.6).

Exercise 5.3.12. Assume f and g are as described in Theorem 5.3.6, but now
add the assumption that f and g are differentiable at a and f ′ and g′ are
continuous at a. Find a short proof for the 0/0 case of L’Hospital’s rule under
this stronger hypothesis.

Exercise 5.3.13. Review the hypothesis of Theorem 5.3.6. What happens if we
do not assume that f(a) = g(a) = 0, but assume only that limx→a f(x) = 0 and
limx→a g(x) = 0? Assuming we have a proof for Theorem 5.3.6 as it is written,
explain how to construct a valid proof under this slightly weaker hypothesis.

5.4 A Continuous Nowhere-Differentiable
Function

Exploring the relationship between continuity and differentiability has led to
both fruitful results and pathological counterexamples. The bulk of discussion
to this point has focused on the continuity of derivatives, but historically a sig-
nificant amount of debate revolved around the question of whether continuous
functions were necessarily differentiable. Early in the chapter, we saw that con-
tinuity was a requirement for differentiability, but, as the absolute value function
demonstrates, the converse of this proposition is not true. A function can be
continuous but not differentiable at some point. But just how nondifferentiable
can a continuous function be? Given a finite set of points, it is not difficult to
imagine how to construct a graph with corners at each of these points, so that
the corresponding function fails to be differentiable on this finite set. The trick
gets more difficult, however, when the set becomes infinite. For instance, is it
possible to construct a function that is continuous on all of R but fails to be
differentiable at every rational point? Not only is this possible, but the situa-
tion is even more delightful. In 1872, Karl Weierstrass presented an example
of a continuous function that was not differentiable at any point. (It seems to
be the case that Bernhard Bolzano had his own example of such a beast as
early as 1830, but it was not published until much later.) Weierstrass actually
discovered a class of nowhere-differentiable functions of the form

f(x) =
∞∑
n=0

an cos(bnx)
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Figure 5.6: The function h(x).

where the values of a and b are carefully chosen. Such functions are specific
examples of Fourier series discussed in Section 8.3. The details of Weierstrass’
argument are simplified if we replace the cosine function with a piecewise linear
function that has oscillations qualitatively like cos(x).

Define
h(x) = |x|

on the interval [−1, 1] and extend the definition of h to all of R by requiring
that h(x+ 2) = h(x). The result is a periodic “sawtooth” function (Fig. 5.6).

Exercise 5.4.1. Sketch a graph of (1/2)h(2x) on [−2, 3]. Give a qualitative
description of the functions

hn(x) =
1
2n

h(2nx)

as n gets larger.

Now, define

g(x) =
∞∑
n=0

hn(x) =
∞∑
n=0

1
2n

h(2nx).

The claim is that g(x) is continuous on all of R but fails to be differentiable at
any point.

Infinite Series of Functions and Continuity

The definition of g(x) is a significant departure from the way we usually define
functions. For each x ∈ R, g(x) is defined to be the value of an infinite series.

Exercise 5.4.2. Fix x ∈ R. Argue that the series

∞∑
n=0

1
2n

h(2nx)

converges absolutely and thus g(x) is properly defined.
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–1 1 2

Figure 5.7: A sketch of g(x) =
∑∞

n=0(1/2
n)h(2nx).

Exercise 5.4.3. Taking the continuity of h(x) as given, reference the proper
theorems from Chapter 4 that imply that the finite sum

gm(x) =
m∑

n=0

1
2n

h(2nx)

is continuous on R.

This brings us to an archetypical question in analysis: When do conclusions
that are valid in finite settings extend to infinite ones? A finite sum of continuous
functions is certainly continuous, but does this necessarily hold for an infinite
sum of continuous functions? In general, we will see that this is not always the
case. For this particular sum, however, the continuity of the limit function g(x)
can be proved. Deciphering when results about finite sums of functions extend
to infinite sums is one of the fundamental themes of Chapter 6. Although a
self-contained argument for the continuity of g is not beyond our means at this
point, we will nevertheless postpone the proof (Exercise 6.4.4), leaving it as an
enticement for the upcoming study of uniform convergence (or as an exercise
for those who have already covered it).

Nondifferentiability

With the proper tools in place, the proof that g is continuous is quite straight-
forward. The more difficult task is to show that g is not differentiable at any
point in R.

Let’s first look at the point x = 0. Our function g does not appear to be
differentiable here (Fig. 5.7), and a rigorous proof is not too difficult. Consider
the sequence xm = 1/2m, where m = 0, 1, 2, . . . .
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Exercise 5.4.4. Show that

g(xm)− g(0)
xm − 0

= m+ 1,

and use this to prove that g′(0) does not exist.

Any temptation to say something like g′(0) =∞ should be resisted. Setting
xm = −(1/2m) in the previous argument produces difference quotients heading
toward −∞. The geometric manifestation of this is the “cusp” that appears at
x = 0 in the graph of g.

Exercise 5.4.5. (a) Modify the previous argument to show that g′(1) does not
exist. Show that g′(1/2) does not exist.

(b) Show that g′(x) does not exist for any rational number of the form
x = p/2k where p ∈ Z and k ∈ N ∪ {0}.

The points described in Exercise 5.4.5 (b) are called “dyadic” points. If
x = p/2k is a dyadic rational number, then the function hn has a corner at
x as long as n ≥ k. Thus, it should not be too surprising that g fails to be
differentiable at points of this form. The argument is more intricate at points
between the dyadic points.

Assume x is not a dyadic number. For a fixed value of m ∈ N ∪ {0}, x falls
between two adjacent dyadic points,

p

2m
< x <

p+ 1
2m

.

Set xm = p/2m and y = (p + 1)/2m. Repeating this for each m yields two
sequences (xm) and (ym) satisfying

limxm = lim ym = x and xm < x < ym.

Exercise 5.4.6. (a) Without working too hard, explain why the partial sum
gm = h0 + h1 + · · ·+ hm is differentiable at x. Now, prove that, for every value
of m, we have

|g′m+1(x)− g′m(x)| = 1.

(b) Prove the two inequalities

g(ym)− g(x)
ym − x

< g′m(x) <
g(xm)− g(x)

xm − x
.

(c) Use parts (a) and (b) to show that g′(x) does not exist.

Weierstrass’ original 1872 paper contained a demonstration that the infinite
sum

f(x) =
∞∑
n=0

an cos(bnx)
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defined a continuous nowhere-differentiable function provided 0 < a < 1 and
b was an odd integer satisfying ab > 1 + 3π/2. The condition on a is easy to
understand. If 0 < a < 1, then

∑∞
n=0 a

n is a convergent geometric series, and
the forthcoming Weierstrass M-Test (Theorem 6.4.5) can be used to conclude
that f is continuous. The restriction on b is more mysterious. In 1916, G.H.
Hardy extended Weierstrass’ result to include any value of b for which ab ≥ 1.
Without looking at the details of either of these arguments, we nevertheless get
a sense that the lack of a derivative is intricately tied to the relationship between
the compression factor (the parameter a) and the rate at which the frequency
of the oscillations increases (the parameter b).

Exercise 5.4.7. Review the argument for the nondifferentiability of g(x) at
nondyadic points. Does the argument still work if we replace g(x) with the
summation

∑∞
n=0(1/2

n)h(3nx)? Does the argument work for the function∑∞
n=0(1/3

n)h(2nx)?

5.5 Epilogue

Far from being an anomaly to be relegated to the margins of our understanding
of continuous functions, Weierstrass’ example and those like it should actu-
ally serve as a guide to our intuition. The image of continuity as a smooth
curve in our mind’s eye severely misrepresents the situation and is the result
of a bias stemming from an overexposure to the much smaller class of differen-
tiable functions. The lesson here is that continuity is a strictly weaker notion
than differentiability. In Section 3.6, we alluded to a corollary of the Baire
Category Theorem, which asserts that Weierstrass’ construction is actually typ-
ical of continuous functions. We will see that most continuous functions are
nowhere-differentiable, so that it is really the differentiable functions that are
the exceptions rather than the rule. The details of how to phrase this observa-
tion more rigorously are spelled out in Section 8.2.

To say that the nowhere-differentiable function g constructed in the previ-
ous section has “corners” at every point of its domain slightly misses the mark.
Weierstrass’ original class of nowhere-differentiable functions was constructed
from infinite sums of smooth trigonometric functions. It is the densely nested
oscillating structure that makes the definition of a tangent line impossible. So
what happens when we restrict our attention to monotone functions? How non-
differentiable can an increasing function be? Given a finite set of points, it is
not difficult to piece together a monotone function which has actual corners—
and thus is not differentiable—at each point in the given set. A natural ques-
tion is whether there exists a continuous, monotone function that is nowhere-
differentiable. Weierstrass suspected that such a function existed but only man-
aged to produce an example of a continuous, increasing function which failed
to be differentiable on a countable dense set (Exercise 7.5.11). In 1903, the
French mathematician Henri Lebesgue (1875–1941) demonstrated that Weier-
strass’ intuition had failed on this account. Lebesgue proved that a continuous,
monotone function would have to be differentiable at “almost” every point in
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its domain. To be specific, Lebesgue showed that, for every ε > 0, the set
of points where such a function fails to be differentiable can be covered by a
countable union of intervals whose lengths sum to a quantity less than ε. This
notion of “zero length,” or “measure zero” as it is called, was encountered in
our discussion of the Cantor set and is explored more fully in Section 7.6, where
Lebesgue’s substantial contribution to the theory of integration is discussed.

With the relationship between the continuity of f and the existence of f ′

somewhat in hand, we once more return to the question of characterizing the set
of all derivatives. Not every function is a derivative. Darboux’s Theorem forces
us to conclude that there are some functions—those with jump discontinuities
in particular—that cannot appear as the derivative of some other function.
Another way to phrase Darboux’s Theorem is to say that all derivatives must
satisfy the intermediate value property. Continuous functions do possess the
intermediate value property, and it is natural to ask whether every continuous
function is necessarily a derivative. For this smaller class of functions, the
answer is yes. The Fundamental Theorem of Calculus, treated in Chapter 7,
states that, given a continuous function f , the function F (x) =

∫ x
a
f satisfies

F ′ = f . This does the trick. The collection of derivatives at least contains the
continuous functions. The search for a concise characterization of all possible
derivatives, however, remains largely unsuccessful.

As a final remark, we will see that by cleverly choosing f , this technique
of defining F via F (x) =

∫ x
a
f can be used to produce examples of continuous

functions which fail to be differentiable on interesting sets, provided we can show
that

∫ x
a
f is defined. The question of just how to define integration became a

central theme in analysis in the latter half of the 19th century and has continued
on to the present. Much of this story is discussed in detail in Chapter 7 and
Section 8.1.





Chapter 6

Sequences and Series of
Functions

6.1 Discussion: Branching Processes

The fact that polynomial functions are so ubiquitous in both pure and applied
analysis can be attributed to any number of reasons. They are continuous, in-
finitely differentiable, and defined on all of R. They are easy to evaluate and
easy to manipulate, both from the points of view of algebra (adding, multi-
plying, factoring) and calculus (integrating, differentiating). It should be no
surprise, then, that even in the earliest stages of the development of calculus,
mathematicians experimented with the idea of extending the notion of poly-
nomials to functions that are essentially polynomials of infinite degree. Such
objects are called power series, and are formally denoted by

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
4 + · · · .

The basic dilemma from the point of view of analysis is deciphering when the
desirable qualities of the limiting functions (the polynomials in this case) are
passed on to the limit (the power series). To put the discussion in a more con-
crete context, let’s look at a particular problem from the theory of probability.

In 1873, Francis Galton asked the London Mathematical Society to consider
the problem of the survival of surnames (which at that time were passed to
succeeding generations exclusively by adult male children). “Assume,” Galton
said, “that the law of population is such that, in each generation, p0 percent
of the adult males have no male children who reach adult life; p1 have one
such male child; p2 percent have two; and so on... Find [the probability that]
the surname will become extinct after r generations.” We should add (or make
explicit) the assumption that the lives of each offspring, and the descendants
thereof, proceed independently of the fortunes of the rest of the family.

151
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Galton asks for the probability of extinction after r generations, which we
will call dr. If we begin with one parent, then d1 = p0. If p0 = 0, then dr
will clearly equal 0 for all generations r. To keep the problem interesting, we
will insist that from here on p0 > 0. Now, d2, whatever it equals, will certainly
satisfy d1 ≤ d2 because if the population is extinct after one generation it will
remain so after two. By this reasoning, we have a monotone sequence

d1 ≤ d2 ≤ d3 ≤ d4 · · · ,
which, because we are dealing with probabilities, is bounded above by 1. By
the Monotone Convergence Theorem, the sequence converges, and we can let

d = lim
r→∞ dr

be the probability that the surname eventually goes extinct at any time in the
future. Knowing it exists, our task is to find d.

The truly clever step in the solution is to define the function

G(x) = p0 + p1x+ p2x
2 + p3x

3 + · · · .
In the case of producing male offspring, it seems safe to assume that this sum
terminates after five or six terms, because nature would have it that pn = 0 for all
values of n beyond this point. However, if we were studying neutrons in a nuclear
reactor, or heterozygotes carrying a mutant gene (as is often the case with the
theory of branching processes), then the notion of an infinite sum becomes a
more attractive model. The point is this: We will proceed with reckless abandon
and treat the function G(x) as though it were a familiar polynomial of finite
degree. At the end of the computations, however, we will have to again become
well-trained analysts and be prepared to justify the manipulations we have made
under the hypothesis that G(x) represents an infinite sum for each value of x.

The critical observation is that

G(dr) = dr+1.

The way to understand this is to view the expression

G(dr) = p0 + p1dr + p2d
2
r + p3d

3
r + · · ·

as a sum of the probabilities for different distinct ways extinction could occur
in r + 1 generations based on what happens after the first generational step.
Specifically, p0 is the probability that the initial parent has no offspring and
so still has none after r + 1 generations. The term p1dr is the probability
that the initial parent has one male child times the probability that this child’s
own lineage dies out after r generations. Thus, the probability p1dr is another
contribution toward the probability of extinction in r+1 steps. The third term
represents the probability that the initial parent has two children and that the
surnames of each of these two children die out within r generations. Continuing
in this way, we see that every possible scenario for extinction in r + 1 steps is
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accounted for exactly once within the sum G(dr). By the definition of dr+1, we
get G(dr) = dr+1.

Now for some analysis. If we take the limit as r → ∞ on each side of
the equation G(dr) = dr+1, then on the right-hand side we get lim dr+1 = d.
Assuming G is continuous, we have

d = lim
r→∞ dr+1 = lim

r→∞G(dr) = G(d).

The conclusion that d = G(d) means that the point d is a fixed point of G. It
can be located graphically by finding where the graph of G intersects the line
y = x.

1

p0

1
�

�
�

�
�

•

• 1

p0

1d

�
�

�
�

�

•

•

(i) G′(1) ≤ 1 (ii) G′(1) > 1

It is always the case that

G(1) = p0 + p1 + p2 + p3 + · · · = 1

because the probabilities (pk) form a complete distribution. But d = 1 is not
necessarily the only candidate for a solution to G(d) = d. Graph (ii) illustrates
a scenario in which G has another fixed point in the interval (0, 1) in addition
to x = 1.

Treating G as though it were a polynomial, we differentiate term-by-term to
get

G′(x) = p1 + 2p2x+ 3p3x
2 + 4p4x

3 + · · ·
and

G′′(x) = 2p2 + 6p3x+ 12p4x
2 + · · · .

On the interval [0, 1], every term in G′ and G′′ is nonnegative which means G
is an increasing, convex function from G(0) = p0 > 0 up to G(1) = 1. This
suggests that the two preceding graphs form a rather complete picture of the
possibilities for the behavior of G with regard to fixed points. Of particular
interest is graph (ii), where the graph of y = x intersects G twice in [0, 1]. Using
the Mean Value Theorem, we can prove (Exercise 5.3.6) that G(d) = d for some
other point d ∈ (0, 1) if and only if G′(1) > 1.

Now,
G′(1) = p1 + 2p2 + 3p3 + 4p4 + · · ·



154 Chapter 6. Sequences and Series of Functions

has a very interesting interpretation within the language of probability. The sum
is a weighted average, where in each term we have multiplied the number of male
children by the probability of actually producing this particular number. The
result is a value for the expected number of male offspring from a given parent.
Said another way, G′(1) is the average number of male children produced by
the parents in this particular family tree.

It is not difficult to argue that (dr) will converge to the smallest solution to
G(d) = d on [0, 1] (Exercise 6.5.12), and so we arrive at the following conclusion.
If each parent produces, on average, more than one male child, then there is a
positive probability that the surname will survive. The equation G(d) = d will
have a unique solution in (0, 1), and 1 − d represents the probability that the
surname does not become extinct. On the other hand, if the expected number
of male offspring per parent is one or less than one, then extinction occurs with
probability one.

The implications of these results on nuclear reactions and the spread of
cancer are fascinating topics for another time. What is of concern to us here is
whether our manipulations ofG(x) are justified. The assumption that

∑∞
n=0 pn =

1 guarantees that G is at least defined at x = 1. The point x = 0 poses no prob-
lem, but is G necessarily well-defined for 0 < x < 1? If so, how might we prove
that G is continuous on this set? Differentiable? Twice-differentiable? If G
is differentiable, can we compute the derivative by naively differentiating each
term of the series? Our initial attack on these questions will require us to focus
attention on the interval [0, 1). Some interesting subtleties arise when we try to
extend our results to include the endpoint x = 1.

6.2 Uniform Convergence of a Sequence
of Functions

Just as in chapter two, we will initially concern ourselves with the behavior and
properties of converging sequences of functions. Because convergence of infinite
sums is defined in terms of the associated sequence of partial sums, the results
from our study of sequences will be immediately applicable to the questions we
have raised about power series and about infinite series of functions in general.

Pointwise Convergence

Definition 6.2.1. For each n ∈ N, let fn be a function defined on a set A ⊆ R.
The sequence (fn) of functions converges pointwise on A to a function f : A → R
if, for all x ∈ A, the sequence of real numbers fn(x) converges to f(x).

In this case, we write fn → f , lim fn = f , or limn→∞ fn(x) = f(x). This
last expression is helpful if there is any confusion as to whether x or n is the
limiting variable.

Example 6.2.2. (i) Consider

fn(x) = (x2 + nx)/n
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Figure 6.1: f1, f5, f10, and f20 where fn = (x2 + nx)/n.

on all of R. Graphs of f1, f5, f10, and f20 (Fig. 6.1) give an indication of what
is happening as n gets larger. Algebraically, we can compute

lim
n→∞ fn(x) = lim

n→∞
x2 + nx

n
= lim

n→∞
x2

n
+ x = x.

Thus, (fn) converges pointwise to f(x) = x on R.
(ii) Let gn(x) = xn on the set [0, 1], and consider what happens as n tends

to infinity (Fig 6.2). If 0 ≤ x < 1, then we have seen that xn → 0. On the other
hand, if x = 1, then xn → 1. It follows that gn → g pointwise on [0, 1], where

g(x) =
{
0 for 0 ≤ x < 1
1 for x = 1.

0

1

y

1x

Figure 6.2: g(x) = limn→∞ xn is not continuous on [0, 1].
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–1 1x

Figure 6.3: hn → |x| on [−1, 1]; limit is not differentiable.

(iii) Consider hn(x) = x1+ 1
2n−1 on the set [−1, 1] (Fig. 6.3). For a fixed

x ∈ [−1, 1] we have

lim
n→∞hn(x) = x lim

n→∞x
1

2n−1 = |x|.

Examples 6.2.2 (ii) and (iii) are our first indication that there is some difficult
work ahead of us. The central theme of this chapter is analyzing which prop-
erties the limit function inherits from the approximating sequence. In Example
6.2.2 (iii) we have a sequence of differentiable functions converging pointwise
to a limit that is not differentiable at the origin. In Example 6.2.2 (ii), we
see an even more fundamental problem of a sequence of continuous functions
converging to a limit that is not continuous.

Continuity of the Limit Function

With Example 6.2.2 (ii) firmly in mind, we begin this discussion with a doomed
attempt to prove that the pointwise limit of continuous functions is continuous.
Upon discovering the problem in the argument, we will be in a better position
to understand the need for a stronger notion of convergence for sequences of
functions.

Assume (fn) is a sequence of continuous functions on a set A ⊆ R, and
assume (fn) converges pointwise to a limit f . To argue that f is continuous, fix
a point c ∈ A, and let ε > 0. We need to find a δ > 0 such that

|x− c| < δ implies |f(x)− f(c)| < δ.

By the triangle inequality,

|f(x)− f(c)| = |f(x)− fn(x) + fn(x)− fn(c) + fn(c)− f(c)|
≤ |f(x)− fn(x)|+ |fn(x)− fn(c)|+ |fn(c)− f(c)|.
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(We should really call this the “quadralateral inequality” because we are using
three joined “sides” as an overestimate for the length of the fourth.) Our first,
optimistic impression is that each term in the sum on the right-hand side can
be made small—the first and third by the fact that fn → f , and the middle
term by the continuity of fn. In order to use the continuity of fn, we must
first establish which particular fn we are talking about. Because c ∈ A is fixed,
choose N ∈ N so that

|fN (c)− f(c)| < ε

3
.

Now that N is chosen, the continuity of fN implies that there exists a δ > 0
such that

|fN (x)− fN (c)| < ε

3

for all x satisfying |x− c| < δ.
But here is the problem. We also need

|fN (x)− f(x)| < ε

3
for all |x− c| < δ.

The values of x depend on δ, which depends on the choice of N . Thus, we cannot
go back and simply choose a different N . More to the point, the variable x is
not fixed the way c is in this discussion but represents any point in the interval
(c−δ, c+δ). Pointwise convergence implies that we can make |fn(x)−f(x)| < ε/3
for large enough values of n, but the value of n depends on the point x. It is
possible that different values for x will result in the need for different—larger—
choices for n. This phenomenon is apparent in Example 6.2.2 (ii). To achieve
the inequality

|gn(1/2)− g(1/2)| < 1
3
,

we need n ≥ 2, whereas

|gn(9/10)− g(9/10)| < 1
3

is true only after n ≥ 11.

Uniform Convergence

To resolve this dilemma, we define a new, stronger notion of convergence of
functions.

Definition 6.2.3. Let fn be a sequence of functions defined on a set A ⊆ R.
Then, (fn) converges uniformly on A to a limit function f defined on A if, for
every ε > 0, there exists an N ∈ N such that |fn(x)−f(x)| < ε whenever n ≥ N
and x ∈ A.

To emphasize the difference between uniform convergence and pointwise con-
vergence, we restate Definition 6.2.1, being more explicit about the relationship
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between ε,N , and x. In particular, notice where the domain point x is refer-
enced in each definition and consequently how the choice of N then does or does
not depend on this value.

Definition 6.2.1B. Let fn be a sequence of functions defined on a set A ⊆ R.
Then, (fn) converges pointwise on A to a limit f defined on A if, for every
ε > 0 and x ∈ A, there exists an N ∈ N (perhaps dependent on x) such that
|fn(x)− f(x)| < ε whenever n ≥ N .

The use of the adverb uniformly here should be reminiscent of its use in
the phrase “uniformly continuous” from Chapter 4. In both cases, the term
“uniformly” is employed to express the fact that the response (δ or N) to a
prescribed ε can be chosen to work simultaneously for all values of x in the
relevant domain.

Example 6.2.4. (i) Let

gn(x) =
1

n(1 + x2)
.

For any fixed x ∈ R, we can see that lim gn(x) = 0 so that g(x) = 0 is the
pointwise limit of the sequence (gn) on R. Is this convergence uniform? The
observation that 1/(1 + x2) ≤ 1 for all x ∈ R implies that

|gn(x)− g(x)| =
∣∣∣∣ 1
n(1 + x2)

− 0
∣∣∣∣ ≤ 1

n
.

Thus, given ε > 0, we can choose N > 1/ε (which does not depend on x), and
it follows that

n ≥ N implies |gn(x)− g(x)| < ε

for all x ∈ R. By Definition 6.2.3, gn → 0 uniformly on R.

(ii) Look back at Example 6.2.2 (i), where we saw that fn(x) = (x2+nx)/n
converges pointwise on R to f(x) = x. On R, the convergence is not uniform.
To see this write

|fn(x)− f(x)| =
∣∣∣∣x2 + nx

n
− x

∣∣∣∣ = x2

n
,

and notice that in order to force |fn(x) − f(x)| < ε, we are going to have to
choose

N >
x2

ε
.

Although this is possible to do for each x ∈ R, there is no way to choose a single
value of N that will work for all values of x at the same time.

On the other hand, we can show that fn → f uniformly on the set [−b, b].
By restricting our attention to a bounded interval, we may now assert that

x2

n
≤ b2

n
.
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✲︸ ︷︷ ︸
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fn,n≥N
f+ε

f

f−ε

Figure 6.4: fn → f uniformly on A.

︸ ︷︷ ︸
A

g1
g2g3g4

g+ε

g

g−ε

Figure 6.5: gn → g pointwise, but not uniformly.

Given ε > 0, then, we can choose

N >
b2

ε

independently of x ∈ [−b, b].

Graphically speaking, the uniform convergence of fn to a limit f on a set A
can be visualized by constructing a band of radius ±ε around the limit function
f . If fn → f uniformly, then there exists a point in the sequence after which
each fn is completely contained in this ε-strip (Fig. 6.4). This image should be
compared with the graphs in Figures 6.1–6.2 from Example 6.2.2 and the one
in Figure 6.5.

Cauchy Criterion

Recall that the Cauchy Criterion for convergent sequences of real numbers was
an equivalent characterization of convergence which, unlike the definition, did
not make explicit mention of the limit. The usefulness of the Cauchy Criterion
suggests the need for an analogous characterization of uniformly convergent
sequences of functions. As with all statements about uniformity, pay attention
to where the quantifying phrase “for all x ∈ A” appears in the statement.
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Theorem 6.2.5 (Cauchy Criterion for Uniform Convergence). A sequence
of functions (fn) defined on a set A ⊆ R converges uniformly on A if and only
if for every ε > 0 there exists an N ∈ N such that |fn(x) − fm(x)| < ε for all
m,n ≥ N and all x ∈ A.

Proof. Exercise 6.2.6.

Continuity Revisited

The stronger assumption of uniform convergence is precisely what is required to
remove the flaws from our attempted proof that the limit of continuous functions
is continuous.

Theorem 6.2.6. Let (fn) be a sequence of functions defined on A ⊆ R that
converges uniformly on A to a function f . If each fn is continuous at c ∈ A,
then f is continuous at c.

Proof. Fix c ∈ A and let ε > 0. Choose N so that

|fN (x)− f(x)| < ε

3

for all x ∈ A. Because fN is continuous, there exists a δ > 0 for which

|fN (x)− fN (c)| < ε

3

is true whenever |x− c| < δ. But this implies

|f(x)− f(c)| = |f(x)− fN (x) + fN (x)− fN (c) + fN (c)− f(c)|
≤ |f(x)− fN (x)|+ |fN (x)− fN (c)|+ |fN (c)− f(c)|
<

ε

3
+

ε

3
+

ε

3
= ε.

Thus, f is continuous at c ∈ A.

Exercises

Exercise 6.2.1. Let
fn(x) =

nx

1 + nx2 .

(a) Find the pointwise limit of (fn) for all x ∈ (0,∞).
(b) Is the convergence uniform on (0,∞)?
(c) Is the convergence uniform on (0, 1)?
(d) Is the convergence uniform on (1,∞)?

Exercise 6.2.2. Let

gn(x) =
nx+ sin(nx)

2n
.

Find the pointwise limit of (gn) on R. Is the convergence uniform on [−10, 10]?
Is the convergence uniform on all of R?
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Exercise 6.2.3. Consider the sequence of functions

hn(x) =
x

1 + xn

over the domain [0,∞).
(a) Find the pointwise limit of (hn) on [0,∞).
(b) Explain how we know that the convergence cannot be uniform on [0,∞).
(c) Choose a smaller set over which the convergence is uniform and supply

an argument to show that this is indeed the case.

Exercise 6.2.4. For each n ∈ N, find the points on R where the function
fn(x) = x/(1 + nx2) attains its maximum and minimum values. Use this to
prove (fn) converges uniformly on R. What is the limit function?

Exercise 6.2.5. For each n ∈ N, define fn on R by

fn(x) =
{
1 if |x| ≥ 1/n
n|x| if |x| < 1/n.

(a) Find the pointwise limit of (fn) on R and decide whether or not the
convergence is uniform.

(b) Construct an example of a pointwise limit of continuous functions that
converges everywhere on the compact set [−5, 5] to a limit function that is
unbounded on this set.

Exercise 6.2.6. Using the Cauchy Criterion for convergent sequences of real
numbers (Theorem 2.6.4), supply a proof for Theorem 6.2.5. (First, define a
candidate for f(x), and then argue that fn → f uniformly.)

Exercise 6.2.7. Assume that (fn) converges uniformly to f on A and that each
fn is uniformly continuous on A. Prove that f is uniformly continuous on A.

Exercise 6.2.8. Decide which of the following conjectures are true and which
are false. Supply a proof for those that are valid and a counterexample for each
one that is not.

(a) If fn → f pointwise on a compact set K, then fn → f uniformly on K.
(b) If fn → f uniformly on A and g is a bounded function on A, then

fng → fg uniformly on A.
(c) If fn → f uniformly on A, and if each fn is bounded on A, then f must

also be bounded.
(d) If fn → f uniformly on a set A, and if fn → f uniformly on a set B,

then fn → f uniformly on A ∪B.
(e) If fn → f uniformly on an interval, and if each fn is increasing, then f

is also increasing.
(f) Repeat conjecture (e) assuming only pointwise convergence.

Exercise 6.2.9. Assume (fn) converges uniformly to f on a compact set K,
and let g be a continuous function on K satisfying g(x) �= 0. Show (fn/g)
converges uniformly on K to f/g.
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Exercise 6.2.10. Let f be uniformly continuous on all of R, and define a
sequence of functions by fn(x) = f(x + 1

n ). Show that fn → f uniformly.
Give an example to show that this proposition fails if f is only assumed to be
continuous and not uniformly continuous on R.

Exercise 6.2.11. Assume (fn) and (gn) are uniformly convergent sequences of
functions.

(a) Show that (fn + gn) is a uniformly convergent sequence of functions.
(b) Give an example to show that the product (fngn) may not converge

uniformly.
(c) Prove that if there exists an M > 0 such that |fn| ≤ M and |gn| ≤ M

for all n ∈ N, then (fngn) does converge uniformly.

Exercise 6.2.12. Theorem 6.2.6 has a partial converse. Assume fn → f point-
wise on a compact set K and assume that for each x ∈ K the sequence fn(x)
is increasing. Follow these steps to show that if fn and f are continuous on K,
then the convergence is uniform.

(a) Set gn = f − fn and translate the preceding hypothesis into statements
about the sequence (gn).

(b) Let ε > 0 be arbitrary, and define Kn = {x ∈ K : gn(x) ≥ ε}. Argue
that K1 ⊇ K2 ⊇ K3 ⊇ · · · is a nested sequence of compact sets, and use this
observation to finish the argument.

Exercise 6.2.13 (Cantor Function). Review the construction of the Cantor
set C ⊆ [0, 1] from Section 3.1. This exercise makes use of results and notation
from this discussion.

(a) Define f0(x) = x for all x ∈ [0, 1]. Now, let

f1(x) =




(3/2)x for 0 ≤ x ≤ 1/3
1/2 for 1/3 < x < 2/3
(3/2)x− 1/2 for 2/3 ≤ x ≤ 1.

Sketch f0 and f1 over [0, 1] and observe that f1 is continuous, increasing, and
constant on the middle third (1/3, 2/3) = [0, 1]\C1.

(b) Construct f2 by imitating this process of flattening out the middle third
of each nonconstant segment of f1. Specifically, let

f2(x) =




(1/2)f1(3x) for 0 ≤ x ≤ 1/3
f1(x) for 1/3 < x < 2/3
(1/2)f1(3x− 2) + 1/2 for 2/3 ≤ x ≤ 1.

If we continue this process, show that the resulting sequence (fn) converges
uniformly on [0, 1].

(c) Let f = lim fn. Prove that f is a continuous, increasing function on
[0, 1] with f(0) = 0 and f(1) = 1 that satisfies f ′(x) = 0 for all x in the open
set [0, 1]\C. Recall that the “length” of the Cantor set C is 0. Somehow, f
manages to increase from 0 to 1 while remaining constant on a set of “length
1.”
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Exercise 6.2.14. Recall that the Bolzano–Weierstrass Theorem (Theorem 2.5.5)
states that every bounded sequence of real numbers has a convergent subse-
quence. An analogous statement for bounded sequences of functions is not true
in general, but under stronger hypotheses several different conclusions are pos-
sible. One avenue is to assume the common domain for all of the functions in
the sequence is countable. (Another is explored in the next two exercises.)

Let A = {x1, x2, x3, . . . } be a countable set. For each n ∈ N, let fn be define
on A and assume there exists an M > 0 such that |fn(x)| ≤ M for all n ∈ N
and x ∈ A. Follow these steps to show that there exists a subsequence of (fn)
that converges pointwise on A.

(a) Why does the sequence of real numbers fn(x1) necessarily contain a
convergent subsequence (fnk

)? To indicate that the subsequence of functions
(fnk

) is generated by considering the values of the functions at x1, we will use
the notation fnk

= f1,k.
(b) Now, explain why the sequence f1,k(x2) contains a bounded subsequence.
(c) Carefully construct a nested family of subsequences (fm,k), and use Can-

tor’s diagonalization technique (from Theorem 1.5.1) to produce a single subse-
quence of (fn) that converges at every point of A.

Exercise 6.2.15. A sequence of functions (fn) defined on a set E ⊆ R is called
equicontinuous if for every ε > 0 there exists a δ > 0 such that |fn(x)−fn(y)| < ε
for all n ∈ N and |x− y| < δ in E.

(a) What is the difference between saying that a sequence of functions (fn)
is equicontinuous and just asserting that each fn in the sequence is individually
uniformly continuous?

(b) Give a qualitative explanation for why the sequence gn(x) = xn is not
equicontinuous on [0, 1]. Is each gn uniformly continuous on [0, 1]?

Exercise 6.2.16 (Arzela–Ascoli Theorem). For each n ∈ N, let fn be a
function defined on [0, 1]. If (fn) is bounded on [0, 1]—that is, there exists an
M > 0 such that |fn(x)| ≤ M for all n ∈ N and x ∈ [0, 1]—and if the collection
of functions (fn) is equicontinuous (Exercise 6.2.15), follow these steps to show
that (fn) contains a uniformly convergent subsequence.

(a) Use Exercise 6.2.14 to produce a subsequence (fnk
) that converges at

every rational point in [0, 1]. To simplify the notation, set gk = fnk
. It remains

to show that (gk) converges uniformly on all of [0, 1].
(b) Let ε > 0. By equicontinuity, there exists a δ > 0 such that

|gk(x)− gk(y)| < ε

3

for all |x−y| < δ and k ∈ N. Using this δ, let r1, r2, . . . , rm be a finite collection
of rational points with the property that the union of the neighborhoods Vδ(ri)
contains [0,1].

Explain why there must exist an N ∈ N such that

|gs(ri)− gt(ri)| < ε

3
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for all s, t ≥ N and ri in the finite subset of [0, 1] just described. Why does
having the set {r1, r2, . . . , rm} be finite matter?

(c) Finish the argument by showing that, for an arbitrary x ∈ [0, 1],
|gs(x)− gt(x)| < ε

for all s, t ≥ N .

6.3 Uniform Convergence and Differentiation

Example 6.2.2 (iii) imposes some significant restrictions on what we might hope
to be true regarding differentiation and uniform convergence. If hn → h uni-
formly and each hn is differentiable, we should not anticipate that h′

n → h′

because in this example h′(x) does not even exist at x = 0.
The key assumption necessary to be able to prove any facts about the deriva-

tive of the limit function is that the sequence of derivatives be uniformly con-
vergent. This may sound as though we are assuming what it is we would like
to prove, and there is some validity to this complaint. The more hypotheses
a proposition has, the more difficult it is to apply. The content of the next
theorem is that if we are given a pointwise convergent sequence of differentiable
functions, and if we know that the sequence of derivatives converges uniformly
to something, then the limit of the derivatives is indeed the derivative of the
limit.

Theorem 6.3.1. Let fn → f pointwise on the closed interval [a, b], and assume
that each fn is differentiable. If (f ′

n) converges uniformly on [a, b] to a function
g, then the function f is differentiable and f ′ = g.

Proof. Let ε > 0 and fix c ∈ [a, b]. We want to argue that f ′(c) exists and equals
g(c). Because f ′ is defined by the limit

f ′(c) = lim
x→c

f(x)− f(c)
x− c

,

our task is to produce a δ > 0 so that∣∣∣∣f(x)− f(c)
x− c

− g(c)
∣∣∣∣ < ε

whenever 0 < |x− c| < δ. Using the triangle inequality, we can estimate

∣∣∣∣f(x)− f(c)
x− c

− g(c)
∣∣∣∣ ≤

∣∣∣∣f(x)− f(c)
x− c

− fn(x)− fn(c)
x− c

∣∣∣∣
+
∣∣∣∣fn(x)− fn(c)

x− c
− f ′

n(c)
∣∣∣∣+ |f ′

n(c)− g(c)| .

Our intent is to force each of the three terms on the right-hand side to be less
than ε/3. This will not be too difficult in the case of the third term (because
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f ′
n → g uniformly) nor in the case of the second (because f ′

n is differentiable).
Handling the first term requires the most delicate touch, and we tend to this
task first.

Apply the Mean Value Theorem to the function fm−fn on the interval [c, x].
(If x < c, the argument is the same.) By MVT, there exists an α ∈ (c, x) such
that

f ′
m(α)− f ′

n(α) =
(fm(x)− fn(x))− (fm(c)− fn(c))

x− c
.

Now, by the Cauchy Criterion for Uniform Convergence (Theorem 6.2.5), there
exists an N1 ∈ N such that m,n ≥ N1 implies

|f ′
m(α)− f ′

n(α)| <
ε

3
.

We should point out that α depends on the choice of m and n, so it is crucial to
have uniform convergence of (f ′

n) at this point in the argument. Putting these
last two statements together leads to the conclusion that∣∣∣∣fm(x)− fm(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ < ε

3

for all m,n ≥ N1 and all x ∈ [a, b]. Because fm → f , we can take the limit as
m → ∞ and use the Order Limit Theorem (Theorem 2.3.4) to assert that∣∣∣∣f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ ≤ ε

3

for all n ≥ N1.
To complete the proof, choose N2 large enough so that

|f ′
m(c)− g(c)| < ε

3

for all m ≥ N2, and then let N = max{N1, N2}. Having settled on a choice of
N , we use the fact that fN is differentiable to produce a δ > 0 for which∣∣∣∣fN (x)− fN (c)

x− c
− f ′

N (c)
∣∣∣∣ < ε

3

whenever 0 < |x− c| < δ. Finally, we observe that for these values of x,∣∣∣∣f(x)− f(c)
x− c

− g(c)
∣∣∣∣ ≤

∣∣∣∣f(x)− f(c)
x− c

− fN (x)− fN (c)
x− c

∣∣∣∣
+
∣∣∣∣fN (x)− fN (c)

x− c
− f ′

N (c)
∣∣∣∣+ |f ′

N (c)− g(c)|

<
ε

3
+

ε

3
+

ε

3
= ε
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The hypothesis in Theorem 6.3.1 is unnecessarily strong. We actually do
not need to assume that fn(x)→ f(x) at each point in the domain because the
assumption that the sequence of derivatives (f ′

n) converges uniformly is nearly
strong enough to prove that (fn) converges, uniformly in fact. Two functions
with the same derivative may differ by a constant, so we must assume that there
is at least one point x0 where fn(x0)→ f(x0).

Theorem 6.3.2. Let (fn) be a sequence of differentiable functions defined on
the closed interval [a, b], and assume (f ′

n) converges uniformly on [a, b]. If there
exists a point x0 ∈ [a, b] where fn(x0) is convergent, then (fn) converges uni-
formly on [a, b].

Proof. Exercise 6.3.5.

Combining the last two results produces a stronger version of Theorem 6.3.1.

Theorem 6.3.3. Let (fn) be a sequence of differentiable functions defined on
the closed interval [a, b], and assume (f ′

n) converges uniformly to a function g on
[a, b]. If there exists a point x0 ∈ [a, b] for which fn(x0) is convergent, then (fn)
converges uniformly. Moreover, the limit function f = lim fn is differentiable
and satisfies f ′ = g.

Exercises

Exercise 6.3.1. (a) Let

hn(x) =
sin(nx)

n
.

Show that hn → 0 uniformly on R. At what points does the sequence of
derivatives h′

n converge?
(b) Modify this example to show that it is possible for a sequence (fn) to

converge uniformly but for (f ′
n) to be unbounded.

Exercise 6.3.2. Consider the sequence of functions defined by

gn(x) =
xn

n
.

(a) Show (gn) converges uniformly on [0, 1] and find g = lim gn. Show that
g is differentiable and compute g′(x) for all x ∈ [0, 1].

(b) Now, show that (g′n) converges on [0, 1]. Is the convergence uniform?
Set h = lim g′n and compare h and g′. Are they the same?

Exercise 6.3.3. Consider the sequence of functions

fn(x) =
x

1 + nx2 .

Exercise 6.2.4 contains some advice for how to show that (fn) converges uni-
formly on R. Review or complete this exercise.

Now, let f = lim fn. Compute f ′
n(x) and find all the values of x for which

f ′(x) = lim f ′
n(x).
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Exercise 6.3.4. Let

gn(x) =
nx+ x2

2n
,

and set g(x) = lim gn(x). Show that g is differentiable in two ways:
(a) Compute g(x) by algebraically taking the limit as n → ∞ and then find

g′(x).
(b) Compute g′n(x) for each n ∈ N and show that the sequence of derivatives

(g′n) converges uniformly on every interval [−M,M ]. Use Theorem 6.3.3 to
conclude g′(x) = lim g′n(x).

(c) Repeat parts (a) and (b) for the sequence fn(x) = (nx2 + 1)/(2n+ x).

Exercise 6.3.5. Use the following advice to supply a proof for Theorem 6.3.2.
To get started, observe that the triangle inequality implies that, for any x ∈
[a, b],

|fn(x)− fm(x)| ≤ |(fn(x)− fm(x))− (fn(x0)− fm(x0))|+ |fn(x0)− fm(x0)|.
Now, apply the Mean Value Theorem to fn − fm.

6.4 Series of Functions

Definition 6.4.1. For each n ∈ N, let fn and f be functions defined on a set
A ⊆ R. The infinite series

∞∑
n=1

fn(x) = f1(x) + f2(x) + f3(x) + · · ·

converges pointwise on A to f(x) if the sequence sk(x) of partial sums defined
by

sk(x) = f1(x) + f2(x) + · · ·+ fk(x)

converges pointwise to f(x). The series converges uniformly on A to f if the
sequence sk(x) converges uniformly on A to f(x).

In either case, we write f =
∑∞

n=1 fn or f(x) =
∑∞

n=1 fn(x), always being
explicit about the type of convergence involved.

If we have a series
∑∞

n=1 fn where the functions fn are continuous, then
the Algebraic Continuity Theorem (Theorem 4.3.4) guarantees that the partial
sums—because they are finite sums—will be continuous as well. A correspond-
ing observation is true if we are dealing with differentiable functions. As a
consequence, we can immediately translate the results for sequences in the pre-
vious sections into statements about the behavior of infinite series of functions.

Theorem 6.4.2. Let fn be continuous functions defined on a set A ⊆ R, and
assume

∑∞
n=1 fn converges uniformly on A to a function f . Then, f is contin-

uous on A.

Proof. Apply Theorem 6.2.6 to the partial sums sk = f1 + f2 + · · ·+ fk.
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Theorem 6.4.3. Let fn be differentiable functions defined on an interval [a, b],
and assume

∑∞
n=1 f

′
n(x) converges uniformly to a limit g(x) on A. If there exists

a point x0 ∈ [a, b] where
∑∞

n=1 fn(x0) converges, then the series
∑∞

n=1 fn(x)
converges uniformly to a differentiable function f(x) satisfying f ′(x) = g(x) on
[a, b]. In other words,

f(x) =
∞∑
n=1

fn(x) and f ′(x) =
∞∑
n=1

f ′
n(x).

Proof. Apply Theorem 6.3.3 to the partial sums sk = f1+f2+ · · ·+fk. Observe
that Theorem 5.2.4 implies that s′k = f ′

1 + f ′
2 + · · ·+ f ′

k.

In the vocabulary of infinite series, the Cauchy Criterion takes the following
form.

Theorem 6.4.4 (Cauchy Criterion for Uniform Convergence of Series).
A series

∑∞
n=1 fn converges uniformly on A ⊆ R if and only if for every ε > 0

there exists an N ∈ N such that for all n > m ≥ N ,

|fm+1(x) + fm+2(x) + fm+3(x) + · · ·+ fn(x)| < ε

for all x ∈ A.

The benefits of uniform convergence over pointwise convergence suggest the
need for some ways of determining when a series converges uniformly. The
following corollary to the Cauchy Criterion is the most common such tool. In
particular, it will be quite useful in our upcoming investigations of power series.

Corollary 6.4.5 (Weierstrass M-Test). For each n ∈ N, let fn be a func-
tion defined on a set A ⊆ R, and let Mn > 0 be a real number satisfying

|fn(x)| ≤ Mn

for all x ∈ A. If
∑∞

n=1 Mn converges, then
∑∞

n=1 fn converges uniformly on A.

Proof. Exercise 6.4.2.

Exercises

Exercise 6.4.1. Prove that if
∑∞

n=1 gn converges uniformly, then (gn) con-
verges uniformly to zero.

Exercise 6.4.2. Supply the details for the proof of the Weierstrass M-Test
(Corollary 6.4.5).

Exercise 6.4.3. (a) Show that g(x) =
∑∞

n=1 cos(2
nx)/2n is continuous on all

of R.
(b) Prove that h(x) =

∑∞
n=1 x

n/n2 is continuous on [−1, 1].
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Exercise 6.4.4. In Section 5.4, we postponed the argument that the nowhere-
differentiable function

g(x) =
∞∑
n=0

1
2n

h(2nx)

is continuous on R. Use the Weierstrass M-Test to supply the missing proof.

Exercise 6.4.5. Let

f(x) =
∞∑
k=1

sin(kx)
k3 .

(a) Show that f(x) is differentiable and that the derivative f ′(x) is contin-
uous.

(b) Can we determine if f is twice-differentiable?

Exercise 6.4.6. Observe that the series

f(x) =
∞∑
n=1

xn

n
= x+

x2

2
+

x3

3
+

x4

4
+ · · ·

converges for every x in the half-open interval [0, 1) but does not converge when
x = 1. For a fixed x0 ∈ (0, 1), explain how we can still use the Weierstrass
M-Test to prove that f is continuous at x0.

Exercise 6.4.7. Let

h(x) =
∞∑
n=1

1
x2 + n2 .

(a) Show that h is a continuous function defined on all of R.
(b) Is h differentiable? If so, is the derivative function h′ continuous?

Exercise 6.4.8. Let {r1, r2, r3, . . . } be an enumeration of the set of rational
numbers. For each rn ∈ Q, define

un(x) =
{
1/2n for x > rn
0 for x ≤ rn.

Now, let h(x) =
∑∞

n=1 un(x). Prove that h is a monotone function defined on
all of R that is continuous at every irrational point.

6.5 Power Series

It is time to put some mathematical teeth into our understanding of functions
expressed in the form of a power series; that is, functions of the form

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · · .

The first order of business is to determine the points x ∈ R for which the
resulting series on the right-hand side converges. This set certainly contains
x = 0, and, as the next result demonstrates, it takes a very predictable form.
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Theorem 6.5.1. If a power series
∑∞

n=0 anx
n converges at some point x0 ∈ R,

then it converges absolutely for any x satisfying |x| < |x0|.
Proof. If

∑∞
n=0 anx

n
0 converges, then the sequence of terms (anx

n
0 ) is bounded.

(In fact, it converges to 0.) Let M > 0 satisfy |anxn0 | ≤ M for all n ∈ N. If
x ∈ R satisfies |x| < |x0|, then

|anxn| = |anx0|n
∣∣∣∣ xx0

∣∣∣∣n ≤ M

∣∣∣∣ xx0

∣∣∣∣n .

But notice that ∞∑
n=0

M

∣∣∣∣ xx0

∣∣∣∣n
is a geometric series with ratio |x/x0| < 1 and so converges. By the Comparison
Test,

∑∞
n=0 anx

n converges absolutely.

The main implication of Theorem 6.5.1 is that the set of points for which a
given power series converges must necessarily be {0}, R, or a bounded interval
centered around x = 0. Because of the strict inequality in Theorem 6.5.1, there
is some ambiguity about the endpoints of the interval, and it is possible that
the set of convergent points may be of the form (−R,R), [−R,R), (−R,R], or
[−R,R].

The value of R is referred to as the radius of convergence of a power series,
and it is customary to assign R the value 0 or ∞ to represent the set {0}
or R, respectively. Some of the standard devices for computing the radius of
convergence for a power series are explored in the exercises. Of more interest
to us here is the investigation of the properties of functions defined in this way.
Are they continuous? Are they differentiable? If so, can we differentiate the
series term-by-term? What happens at the endpoints?

Establishing Uniform Convergence

The positive answers to the preceding questions, and the usefulness of power
series in general, are largely due to the fact that they converge uniformly on
compact sets contained in their domain of convergent points. As we are about to
see, a complete proof of this fact requires a fairly delicate argument attributed
to the Norwegian mathematician Niels Abel. A significant amount of progress,
however, can be made with the Weierstrass M-Test (Corollary 6.4.5).

Theorem 6.5.2. If a power series
∑∞

n=0 anx
n converges absolutely at a point

x0, then it converges uniformly on the closed interval [−c, c], where c = |x0|.
Proof. This proof requires a straightforward application of the Weierstrass M-
Test. The details are requested in Exercise 6.5.5.

For many applications, Theorem 6.5.2 is good enough. For instance, com-
bining our results about uniform convergence and power series to this point, we
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can now argue that a power series that converges on an open interval (−R,R)
is necessarily continuous on this interval (Exercise 6.5.4).

But what happens if we know that a series converges at an endpoint of
its interval of convergence? Does the good behavior of the series on (−R,R)
necessarily extend to the endpoint x = R? If the convergence of the series at
x = R is absolute convergence, then we can again rely on Theorem 6.5.2 to
conclude that the series converges uniformly on the set [−R,R]. The remaining
interesting open question is what happens if a series converges conditionally
at a point x = R. We may still use Theorem 6.5.1 to conclude that we have
pointwise convergence on the interval (−R,R], but more work is needed to
establish uniform convergence on compact sets containing x = R.

Abel’s Theorem

We should remark that if the power series g(x) =
∑∞

n=0 anx
n converges con-

ditionally at x = R, then it is possible for it to diverge when x = −R. The
series ∞∑

n=1

(−1)nxn
n

with R = 1 is an example. To keep our attention fixed on the convergent
endpoint, we will prove uniform convergence on the set [0, R].

The argument we need is very similar to the proof of Abel’s Test, which is
included in the exercises of Section 2.7. The first step in the proof of Abel’s
Test is an estimate, sometimes called Abel’s Lemma, which we will presently
need again.

Lemma 6.5.3 (Abel’s Lemma). Let bn satisfy b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0, and
let
∑∞

n=1 an be a series for which the partial sums are bounded. In other words,
assume there exists A > 0 such that

|a1 + a2 + · · ·+ an| ≤ A

for all n ∈ N . Then, for all n ∈ N,

|a1b1 + a2b2 + a3b3 + · · ·+ anbn| ≤ 2Ab1.

Proof. This inequality follows from the so-called summation-by-parts formula.
Exercises 2.7.12 and 2.7.14(b) from Section 2.7 contain the relevant definitions
and advice required to complete the argument.

It is worth observing that if A were an upper bound on the partial sums
of
∑ |an| (note the absolute value bars), then the proof of Lemma 6.5.3 would

be a simple exercise in the triangle inequality. (Also, we would not need the
factor of 2, and, actually, it is not needed in general except that our particular
method of proof requires it.) The point of the matter is that because we are
only assuming conditional convergence, the triangle inequality is not going to
be of any use in proving Abel’s Theorem, but we are now in possession of an
inequality that we can use in its place.
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Theorem 6.5.4 (Abel’s Theorem). Let g(x) =
∑∞

n=0 anx
n be a power se-

ries that converges at the point x = R > 0. Then the series converges uniformly
on the interval [0, R]. A similar result holds if the series converges at x = −R.

Proof. To set the stage for an application of Lemma 6.5.3, we first write

g(x) =
∞∑
n=0

anx
n =

∞∑
n=0

(anRn)
( x

R

)n
.

Let ε > 0. By the Cauchy Criterion for Uniform Convergence of Series (Theo-
rem 6.4.4), we will be done if we can produce an N such that n > m ≥ N implies

(1)
∣∣∣∣(am+1R

m+1)
( x

R

)m+1
+ (am+2R

m+2)
( x

R

)m+2
+ · · ·

+(anRn)
( x

R

)n∣∣∣ < ε.

Because we are assuming that
∑∞

n=1 anR
n converges, the Cauchy Criterion for

convergent series of real numbers guarantees that there exists an N such that

|am+1R
m+1 + am+2R

m+2 + · · ·+ anR
n| < ε

2

whenever n > m ≥ N . But now, for any fixed m ∈ N , we can apply Lemma
6.5.3 to the sequences obtained by omitting the first m terms. Using ε/2 as a
bound on the partial sums of

∑∞
j=1 am+jR

m+j and observing that (x/R)m+j is
monotone decreasing, an application of Lemma 6.5.3 to equation (1) yields

∣∣∣∣(am+1R
m+1)

( x

R

)m+1
+ (am+2R

m+2)
( x

R

)m+2
+ · · ·

+ (anRn)
( x

R

)n∣∣∣ ≤ 2
( ε
2

)( x

R

)m+1
≤ ε.

The fact that the inequality is not strict (as the Cauchy Criterion technically
requires) is a distraction but not a real deficiency. We leave it as a point for
discussion.

The Success of Power Series

An economical way to summarize the conclusions of Theorem 6.5.2 and Abel’s
Theorem is with the following statement.

Theorem 6.5.5. If a power series converges pointwise on the set A ⊆ R, then
it converges uniformly on any compact set K ⊆ A.

Proof. Exercise 6.5.6.
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This fact leads to the desirable conclusion that a power series is continuous
at every point at which it converges. To make an argument for differentia-
bility, we would like to appeal to Theorem 6.4.3; however, this result has a
slightly more involved set of hypotheses. In order to conclude that a power
series

∑∞
n=0 anx

n is differentiable, and that term-by-term differentiation is al-
lowed, we need to know beforehand that the differentiated series

∑∞
n=1 nanx

n−1

converges uniformly.

Theorem 6.5.6. If
∑∞

n=0 anx
n converges for all x ∈ (−R,R), then the differ-

entiated series
∑∞

n=1 nanx
n−1 converges at each x ∈ (−R,R) as well. Conse-

quently, the convergence is uniform on compact sets contained in (−R,R).

Proof. Exercise 6.5.7.

We should point out that it is possible for a series to converge at an end-
point x = R but for the differentiated series to diverge at this point. The series∑∞

n=1(−x)n/n has this property when x = 1. On the other hand, if the differ-
entiated series does converge at the point x = R, then Abel’s Theorem applies
and the convergence of the differentiated series is uniform on compact sets that
contain R.

With all the pieces in place, we summarize the impressive conclusions of this
section.

Theorem 6.5.7. Assume

g(x) =
∞∑
n=0

anx
n

converges on an interval A ⊆ R. The function g is continuous on A and differ-
entiable on any open interval (−R,R) ⊆ A. The derivative is given by

g′(x) =
∞∑
n=1

nanx
n−1.

Moreover, g is infinitely differentiable on (−R,R), and the successive derivatives
can be obtained via term-by-term differentiation of the appropriate series.

Proof. The details for why g is continuous are requested in the exercises. The-
orem 6.5.6 justifies the application of Theorem 6.4.3, which verifies the formula
for g′.

A differentiated power series is a power series in its own right, and Theorem
6.5.6 implies that, although the series may no longer converge at a particular
endpoint, the radius of convergence does not change. By induction, then, power
series are differentiable an infinite number of times.
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Exercises

Exercise 6.5.1. Consider the function g defined by the power series

g(x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · · .

(a) Is g defined on (−1, 1)? Is it continuous on this set? Is g defined on
(−1, 1]? Is it continuous on this set? What happens on [−1, 1]? Can the power
series for g(x) possibly converge for any other points |x| > 1? Explain.

(b) For what values of x is g′(x) defined? Find a formula for g′.

Exercise 6.5.2. Find suitable coefficients (an) so that the resulting power se-
ries

∑
anx

n

(a) converges absolutely for all x ∈ [−1, 1] and diverges off of this set;
(b) converges conditionally at x = −1 and diverges at x = 1;
(c) converges conditionally at both x = −1 and x = 1.
(d) Is it possible to find an example of a power series that converges condi-

tionally at x = −1 and converges absolutely at x = 1?

Exercise 6.5.3. Explain why a power series can converge conditionally for at
most two points.

Exercise 6.5.4. (a) By referencing the proper theorems, produce a detailed
argument that a power series that converges on the interval (−R,R) necessarily
represents a continuous function at each point x ∈ (−R,R).

(b) If the series converges at an endpoint x = R, point out how we know
continuity extends to the set (R,R].

Exercise 6.5.5. Use the Weierstrass M-Test to prove Theorem 6.5.2.

Exercise 6.5.6. Show how Theorem 6.5.1, Theorem 6.5.2, and Abel’s Theorem
together imply that if a power series converges pointwise on a compact set, then
the convergence is actually uniform on this set.

Exercise 6.5.7. (a) The Ratio Test (from Exercise 2.7.9) states that if (bn) is
a sequence of nonzero terms satisfying lim |bn+1/bn| = r < 1, then the series∑

bn converges. Use this to argue that if s satisfies 0 < s < 1, then nsn−1 is
bounded for all n ≥ 1.

(b) Given an arbitrary x ∈ (−R,R), pick t to satisfy |x| < t < R. Use the
observation

|nanxn−1| = 1
t

(
n

∣∣∣∣xn−1

tn−1

∣∣∣∣
)
|antn|

to construct a proof for Theorem 6.5.6.

Exercise 6.5.8. Let
∑

anx
n be a power series with an �= 0, and assume

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
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exists.
(a) Show that if L �= 0, then the series converges for all x in (−1/L, 1/L).

(The advice in Exercise 2.7.9 may be helpful.)
(b) Show that if L = 0, then the series converges for all x ∈ R.
(c) Show that (a) and (b) continue to hold if L is replaced by the limit

L′ = lim
n→∞ sn where sn = sup

{∣∣∣∣ak+1

ak

∣∣∣∣ : k ≥ n

}
.

The value L′ is called the “limit superior” or “lim sup” of the sequence |an+1/an|.
It exists if and only if the sequence is bounded (Exercise 2.4.6).

(d) Show that if |an+1/an| is unbounded, then the original series
∑

anx
n

converges only when x = 0.

Exercise 6.5.9. Use Theorem 6.5.7 to argue that power series are unique. If
we have ∞∑

n=0

anx
n =

∞∑
n=0

bnx
n

for all x in an interval (−R,R), prove that an = bn for all n = 0, 1, 2, . . . . (Start
by showing that a0 = b0.)

Exercise 6.5.10. Review the definitions and results from Section 2.8 concern-
ing products of series and Cauchy products in particular. At the end of Section
2.9, we mentioned the following result: If both

∑
an and

∑
bn converge condi-

tionally to A and B respectively, then it is possible for the Cauchy product,∑
dn where dn = a0bn + a1bn−1 + · · ·+ anb0,

to diverge. However, if
∑

dn does converge, then it must converge to AB. To
prove this, set

f(x) =
∑

anx
n, g(x) =

∑
bnx

n, and h(x) =
∑

dnx
n.

Use Abel’s Theorem and the result in Exercise 2.8.8 to establish this result.

Exercise 6.5.11. A series
∑∞

n=0 an is said to be Abel-summable to L if the
power series

f(x) =
∞∑
n=0

anx
n

converges for all x ∈ [0, 1) and L = limx→1− f(x).
(a) Show that any series that converges to a limit L is also Abel-summable

to L.
(b) Show that

∑∞
n=0(−1)n is Abel-summable and find the sum.

Exercise 6.5.12. Consider the function G from the opening discussion on
branching processes, and recall that the increasing monotone sequence of prob-
abilities (dr) has a limit d = lim dr that satisfies G(d) = d. Assume we are in
the situation where there are two fixed points: G(1) = 1 and some other value
0 < d0 < 1 satisfying G(d0) = d0. Formulate an argument for why the sequence
(dr) necessarily converges to the value d = d0 and not to d = 1.



176 Chapter 6. Sequences and Series of Functions

6.6 Taylor Series

Our study of power series has led to some enthusiastic conclusions about the
nature of functions of the form

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + · · · .

Despite their infinite character, power series can be manipulated more or less
as though they are polynomials. On its interval of convergence, a power se-
ries is continuous and infinitely differentiable, and successive derivatives can be
computed by performing the desired operation on each individual term in the
series—just as it is done for polynomials. As we will see in the next chapter,
the situation regarding integrals of power series is just as pleasant. As students
of introductory calculus know well, the processes of integration and differentia-
tion, as well as basic algebraic manipulations, are rather straightforward when
applied only to polynomials. It is the introduction of functions such as sin(x),
ln(x), and arctan(x) that necessitates much of the symbolic acrobatics taught
in first and second semester calculus courses. This phenomenon leads us to ask
whether functions such as arctan(x) and the rest have representations as power
series.

In the examples in this section, we will assume all of the familiar properties of
the trigonometric, inverse trigonometric, exponential, and logarithmic functions.
Rigorously defining these functions is an interesting exercise in analysis. In fact,
one of the most common methods for providing definitions is through power
series. The point of this discussion, however, is to come at this question from
the other direction. Assuming we are in possession of an infinitely differentiable
function such as arctan(x), can we find suitable coefficients an so that

arctan(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + · · ·

for at least some nonzero values of x?

Manipulating Series

We already have one example of a power series expansion of a familiar function.
In the material on infinite series in Example 2.7.5 from Chapter 2, we proved
that

(1)
1

1− t
= 1 + t+ t2 + t3 + t4 + · · ·

for all t ∈ (−1, 1). Substituting −t2 for t yields

1
1 + t2

= 1− t2 + t4 − t6 + t8 − · · · .

But now we can use the fact that

arctan(x) =
∫ x

0

1
1 + t2

dt.
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Although integration has not been rigorously studied at this point, we will see
in Chapter 7 that if fn → f uniformly on an interval [a, b], then

∫ b
a
fn → ∫ b

a
f .

This observation, together with the Fundamental Theorem of Calculus, leads to
the formula

arctan(x) = x− 1
3
x3 +

1
5
x5 − 1

7
x7 + · · · .

Exercise 6.6.1. Upcoming results in Chapter 7 will justify this equation for all
x ∈ (−1, 1), but notice that this series actually converges when x = 1. Assuming
that arctan(x) is continuous, explain why the value of the series at x = 1 must
necessarily be arctan(1). What interesting identity do we get in this case?

Exercise 6.6.2. Starting from the identity in equation (1) of this section, find a
power series representation for ln(1+x). For which values of x is this expression
valid?

Taylor’s Formula for the Coefficients

Manipulating old series to produce new ones was a well-honed craft in the 17th
and 18th centuries when the usefulness of infinite series was first being realized.
But there also emerged a formula for producing the coefficients from “scratch”—
a recipe for generating a power series representation using only the function in
question and its derivatives. The technique is named after the mathematician
Brook Taylor (1685–1731) who published it in 1715, although it was certainly
known previous to this date.

Given an infinitely differentiable function f defined on some interval centered
at zero, the idea is to assume that f has a power series expansion and deduce
what the coefficients must be; that is, write

(2) f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + · · · .

Setting x = 0 in this expression gives f(0) = a0.

Exercise 6.6.3. (a) Take derivatives of each side of equation (2), and deduce
that f ′(0) = a1. In general, prove that if f has a power series expansion, then
the coefficients must be given by the formula

an =
f (n)(0)

n!
.

Supply references to the theorem(s) that justify the manipulations carried out
on the series in equation (2).

Exercise 6.6.4. Use Taylor’s formula for an from the preceding exercise to
produce/verify the so-called Taylor series for sin(x) given by

sin(x) ∼ x− x3

3!
+

x5

5!
− x7

7!
+ · · · .
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Lagrange’s Remainder Theorem

We need to be very clear about what we have proved to this point. To derive
Taylor’s formula, we assumed that f actually had a power series representation.
The conclusion is that if f is infinitely differentiable on an interval centered at
zero, and if f can be expressed in the form

f(x) =
∞∑
n=0

anx
n,

then it must be that

an =
f (n)(0)

n!
.

But what about the converse question? Assume f is infinitely differentiable
in a neighborhood of zero. If we let

an =
f (n)(0)

n!
,

does the resulting series
∞∑
n=0

anx
n

converge to f(x) on some nontrivial set of points? Does it converge at all? If
it does converge, we know that the limit function is a well-behaved, infinitely
differentiable function whose derivatives at zero are exactly the same as the
derivatives of f . Is it possible for this limit to be different from f? In other
words, might the Taylor series of a function f converge to the wrong thing?

Let
SN (x) = a0 + a1x+ a2x

2 + · · ·+ aNxN .

The polynomial SN (x) is a partial sum of the Taylor series expansion for the
function f(x). Thus, we are interested in whether or not

lim
N→∞

SN (x) = f(x)

for some values of x besides zero. A powerful tool for analyzing this question
was provided by Joseph Louis Lagrange (1736–1813). The idea is to consider
the difference

EN (x) = f(x)− SN (x),

which represents the error between f and the partial sum SN .

Theorem 6.6.1 (Lagrange’s Remainder Theorem). Let f be infinitely dif-
ferentiable on (−R,R), define an = f (n)(0)/n!, and let

SN = a0 + a1x+ a2x
2 + · · ·+ aNxN .
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Given x �= 0, there exists a point c satisfying |c| < |x| where the error function
EN (x) = f(x)− SN (x) satisfies

EN (x) =
f (N+1)(c)
(N + 1)!

xN+1.

Before embarking on a proof, let’s examine the significance of this result.
Proving SN (x) → f(x) is equivalent to showing EN (x) → 0. There are three
components to the expression for EN (x). In the denominator, we have (N+1)!,
which helps to make EN small as N tends to infinity. In the numerator, we
have xN+1, which potentially grows depending on the size of x. Thus, we should
expect that a Taylor series is less likely to converge the farther x is chosen from
the origin. Finally, we have f (N+1)(c), which is a bit of a mystery. For functions
with straightforward derivatives, this term can often be handled using a suitable
upper bound.

Example 6.6.2. Consider the Taylor series for sin(x) generated earlier. How
well does

S5(x) = x− 1
3!

x3 +
1
5!

x5

approximate sin(x) on the interval [−2, 2]? Lagrange’s Remainder Theorem
asserts that the difference between these two functions is

E5(x) = sin(x)− S5(x) =
− cos(c)
6!

x6

for some c in the interval (−|x|, |x|). Without knowing the value of c, we can
be quite certain that | cos(c)| ≤ 1. Because x ∈ [−2, 2], we have that

|E5(x)| ≤ 26

6!
≈ .089.

Exercise 6.6.5. Prove that SN (x) converges uniformly to sin(x) on [−2, 2].
Generalize this proof to show that the convergence is uniform on any interval
of the form [−R,R].

Exercise 6.6.6. (a) Generate the Taylor coefficients for the exponential func-
tion f(x) = ex, and then prove that the corresponding Taylor series converges
uniformly to ex on any interval of the form [−R,R].

(b) Verify the formula f ′(x) = ex.
(c) Use a substitution to generate the series for e−x, and then calculate

ex · e−x by multiplying together the two series and collecting common powers
of x.

Proof of Lagrange’s Remainder Theorem: Review the Generalized Mean
Value Theorem (Theorem 5.3.5) from Chapter 5.

Exercise 6.6.7. Explain why the error function EN (x) = fN (x)− SN (x) sat-
isfies

E
(n)
N (0) = 0 for all n = 0, 1, 2, . . . , N .
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To simplify notation, let’s assume x > 0 and apply the Generalized Mean
Value Theorem to the functions EN (x) and xN+1 on the interval [0, x]. Thus,
there exists a point x1 ∈ (0, x) such that

EN (x)
xN+1 =

E′
N (x1)

(N + 1)xN1
.

Exercise 6.6.8. Finish the proof of Lagrange’s Remainder Theorem.

A Counterexample

Lagrange’s Remainder Theorem is extremely useful for determining how well the
partial sums of the Taylor series approximate the original function, but it leaves
unresolved the central question of whether or not the Taylor series necessarily
converges to the function that generated it. The appearance of the nth derivative
f (n)(c) in the error formula makes any general statement impossible. There are,
in fact, several other ways to represent the error between the partial sum SN (x)
and the function f(x), but none lend themselves to a proof that SN → f . This
is because no such proof exists! Let

g(x) =
{

e−1/x2
for x �= 0,

0 for x = 0.

In the exercises that follow we will need the familiar formula d
dxe

x = ex and
the property that e−x = 1/ex. (Note that we could use the series generated in
Exercise 6.6.6 as the definition of the exponential function ex. Parts (b) and (c)
of this exercise verify that this series possesses these properties.) Although we
have proved all of the standard rules of differentiation, none of these rules can
be used to directly compute the derivatives of g at x = 0.

Exercise 6.6.9. Use the ∞/∞ version of L’Hospital’s rule (Theorem 5.3.8) to
prove that g′(0) = 0.

Exercise 6.6.10. Compute g′(x) for x �= 0. Compute g′′(x) and g′′′(x) for
x �= 0. Use these observations and invent whatever notation is needed to give a
general description for the nth derivative g(n)(x) at points different from zero.

Now,

g′′(0) = lim
x→0

g′(x)− g′(0)
x− 0

= lim
x→0

g′(x)
x

.

Exercise 6.6.11. Compute g′′(0). From this example, produce a general argu-
ment for how to compute g(n)(0).

Exercise 6.6.12. Discuss the consequences of this example. Is g infinitely dif-
ferentiable? What does its Taylor series look like? At what points does this
series converge? To what? What are the implications of this example on the
conjecture that every infinitely differentiable function can be represented by its
Taylor series expansion?
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6.7 Epilogue

The fact that power series behave so impeccably well under the operations
of calculus makes the search for Taylor series expansions a worthwhile enter-
prise. As it turns out, the traditional list of functions from calculus—sin(x),
ln(x), arccos(x),

√
1 + x—all have Taylor series representations that converge

on some nontrivial interval to the function from which they were derived. This
fact played a major role in the expanding achievements of calculus in the 17th
and 18th centuries and understandably led to speculation that every function
could be represented in such a fashion. (The term “function” at this time im-
plicitly referred to functions that were infinitely differentiable.) This point of
view effectively ended with Cauchy’s discovery in 1821 of the counterexample
presented at the end of the previous section. So under what conditions does
the Taylor series necessarily converge to the generating function? Lagrange’s
Remainder Theorem states that the difference between the Taylor polynomial
SN (x) and the function f(x) is given by

EN (x) =
f (N+1)(c)
(N + 1)!

xN+1.

The Ratio Test shows that the (N + 1)! term in the denominator grows more
rapidly than the xN+1 term in the numerator. Thus, if we knew for instance
that

|f (N+1)(c)| ≤ M

for all c ∈ (−R,R) and N ∈ N, we could be sure that EN (x) → 0 and hence
that SN (x)→ f(x). This is the case for sin(x), cos(x), and ex, whose derivatives
do not grow at all as N → ∞. It is also possible to formulate weaker conditions
on the rate of growth of f (N+1) that guarantee convergence.

It is not altogether clear whether Cauchy’s counterexample should come as
a surprise. The fact that every previous search for a Taylor series ended in
success certainly gives the impression that a power series representation is an
intrinsic property of infinitely differentiable functions. But notice what we are
saying here. A Taylor series for a function f is constructed from the values
of f and its derivatives at the origin. If the Taylor series converges to f on
some interval (−R,R), then the behavior of f near zero completely determines
its behavior at every point in (−R,R). One implication of this would be that
if two functions with Taylor series agree on some small neighborhood (−ε, ε),
then these two functions would have to be the same everywhere. When it is
put this way, we probably should not expect a Taylor series to always converge
back to the function from which it was derived. As we have seen, this is not
the case for real-valued functions. What is fascinating, however, is that results
of this nature do hold for functions of a complex variable. The definition of the
derivative looks symbolically the same when the real numbers are replaced by
complex numbers, but the implications are profoundly different. In this setting,
a function that is differentiable at every point in some open disc must necessarily
be infinitely differentiable on this set. This supplies the ingredients to construct
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the Taylor series that in every instance converges uniformly on compact sets to
the function that generated it.



Chapter 7

The Riemann Integral

7.1 Discussion: How Should Integration
be Defined?

The Fundamental Theorem of Calculus is a statement about the inverse relation-
ship between differentiation and integration. It comes in two parts, depending
on whether we are differentiating an integral or integrating a derivative. Under
suitable hypotheses on the functions f and F , the Fundamental Theorem of
Calculus states that

(i)
∫ b

a

F ′(x) dx = F (b)− F (a) and

(ii) if G(x) =
∫ x

a

f(t) dt, then G′(x) = f(x).

Before we can undertake any type of rigorous investigation of these statements,
we need to settle on a definition for

∫ b
a
f . Historically, the concept of integration

was defined as the inverse process of differentiation. In other words, the integral
of a function f was understood to be a function F that satisfied F ′ = f . Newton,
Leibniz, Fermat, and the other founders of calculus then went on to explore the
relationship between antiderivatives and the problem of computing areas. This
approach is ultimately unsatisfying from the point of view of analysis because it
results in a very limited number of functions that can be integrated. Recall that
every derivative satisfies the intermediate value property (Darboux’s Theorem,
Theorem 5.2.7). This means that any function with a jump discontinuity cannot
be a derivative. If we want to define integration via antidifferentiation, then we
must accept the consequence that a function as simple as

h(x) =
{
1 for 0 ≤ x < 1
2 for 1 ≤ x ≤ 2

is not integrable on the interval [0, 2].

183
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x0=a x1 x2 x3... xn−1 xn=b
c1 c2 c3 cn
• • • •

Figure 7.1: A Riemann Sum.

A very interesting shift in emphasis occurred around 1850 in the work of
Cauchy, and soon after in the work of Bernhard Riemann. The idea was to
completely divorce integration from the derivative and instead use the notion
of “area under the curve” as a starting point for building a rigorous definition
of the integral. The reasons for this were complicated. As we have mentioned
earlier (Section 1.2), the concept of function was undergoing a transformation.
The traditional understanding of a function as a holistic formula such as f(x) =
x2 was being replaced with a more liberal interpretation, which included such
bizarre constructions as Dirichlet’s function discussed in Section 4.1. Serving as
a catalyst to this evolution was the budding theory of Fourier series (discussed
in Section 8.3), which required, among other things, the need to be able to
integrate these more unruly objects.

The Riemann integral, as it is called today, is the one usually discussed in
introductory calculus. Starting with a function f on [a, b], we partition the
domain into small subintervals. On each subinterval [xk−1, xk], we pick some
point ck ∈ [xk−1, xk] and use the y-value f(ck) as an approximation for f on
[xk−1, xk]. Graphically speaking, the result is a row of thin rectangles con-
structed to approximate the area between f and the x-axis. The area of each
rectangle is f(ck)(xk − xk−1), and so the total area of all of the rectangles is
given by the Riemann sum (Fig. 7.1)

n∑
k=1

f(ck)(xk − xk−1).

Note that “area” here comes with the understanding that areas below the x-axis
are assigned a negative value.

What should be evident from the graph is that the accuracy of the Riemann-
sum approximation seems to improve as the rectangles get thinner. In some
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sense, we take the limit of these approximating Riemann sums as the width of
the individual subintervals of the partitions tends to zero. This limit, if it exists,
is Riemann’s definition of

∫ b
a
f .

This brings us to a handful of questions. Creating a rigorous meaning for
the limit just referred to is not too difficult. What will be of most interest
to us—and was also to Riemann—is deciding what types of functions can be
integrated using this procedure. Specifically, what conditions on f guarantee
that this limit exists?

The theory of the Riemann integral turns on the observation that smaller
subintervals produce better approximations to the function f . On each subin-
terval [xk−1, xk], the function f is approximated by its value at some point
ck ∈ [xk−1, xk]. The quality of the approximation is directly related to the
difference

|f(x)− f(ck)|

as x ranges over the subinterval. Because the subintervals can be chosen to
have arbitrarily small width, this means that we want f(x) to be close to f(ck)
whenever x is close to ck. But this sounds like a discussion of continuity! We
will soon see that the continuity of f is intimately related to the existence of
the Riemann integral

∫ b
a
f .

Is continuity sufficient to prove that the Riemann sums converge to a well-
defined limit? Is it necessary, or can the Riemann integral handle a discontin-
uous function such as h(x) mentioned earlier? Relying on the intuitive notion
of area, it would seem that

∫ 2
0 h = 3, but does the Riemann integral reach this

conclusion? If so, how discontinuous can a function be before it fails to be inte-
grable? Can the Riemann integral make sense out of something as pathological
as Dirichlet’s function on the interval [0, 1]?

A function such as

g(x) =
{

x2 sin( 1
x ) for x �= 0

0 for x = 0

raises another interesting question. Here is an example of a differentiable func-
tion, studied in Section 5.1, where the derivative g′(x) is not continuous. As we
explore the class of integrable functions, some attempt must be made to reunite
the integral with the derivative. Having defined integration independently of
differentiation, we would like to come back and investigate the conditions under
which equations (i) and (ii) from the Fundamental Theorem of Calculus stated
earlier hold. If we are making a wish list for the types of functions that we
want to be integrable, then in light of equation (i) it seems desirable to expect
this set to at least contain the set of derivatives. The fact that derivatives are
not always continuous is further motivation not to content ourselves with an
integral that cannot handle some discontinuities.
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Mk

mk
✻

❄

a=x0 xk−1 xk b=xn

Figure 7.2: Upper and Lower Sums.

7.2 The Definition of the Riemann Integral

Although it has the benefit of some modern polish, the development of the inte-
gral presented in this chapter is closely related to the procedure just discussed.
In place of Riemann sums, we will construct upper sums and lower sums (Fig.
7.2), and in place of a limit we will use a supremum and an infimum.

Throughout this section, it is assumed that we are working with a bounded
function f on a closed interval [a, b], meaning that there exists an M > 0 such
that |f(x)| ≤ M for all x ∈ [a, b].

Partitions, Upper Sums, and Lower Sums

Definition 7.2.1. A partition P of [a, b] is a finite, ordered set

P = {a = x0 < x1 < x2 < · · · < xn = b}.

For each subinterval [xk−1, xk] of P , let

mk = inf{f(x) : x ∈ [xk−1, xk]} and Mk = sup{f(x) : x ∈ [xk−1, xk]}.

The lower sum of f with respect to P is given by

L(f, P ) =
n∑

k=1

mk(xk − xk−1).

Likewise, we define the upper sum of f with respect to P by

U(f, P ) =
n∑

k=1

Mk(xk − xk−1).
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For a particular partition P , it is clear that U(f, P ) ≥ L(f, P ). The fact
that this same inequality holds if the upper and lower sums are computed with
respect to different partitions is the content of the next two lemmas.

Definition 7.2.2. A partition Q is a refinement of a partition P if Q contains
all of the points of P . In this case, we write P ⊆ Q.

Lemma 7.2.3. If P ⊆ Q, then L(f, P ) ≤ L(f,Q), and U(f, P ) ≥ U(f,Q).

Proof. Consider what happens when we refine P by adding a single point z to
some subinterval [xk−1, xk] of P .

m′′
k

m′
k=mk

xk−1 z xk

Focusing on the lower sum for a moment, we have

mk(xx − xk−1) = mk(xk − z) +mk(z − xk−1)
≤ m′

k(xk − z) +m′′
k(z − xk−1),

where

m′
k = inf {f(x) : x ∈ [z, xk]} and m′′

k = inf {f(x) : x ∈ [xk−1, z]}

are each necessarily as large or larger than mk.
By induction, we have L(f, P ) ≤ L(f,Q), and an analogous argument holds

for the upper sums.

Lemma 7.2.4. If P1 and P2 are any two partitions of [a, b], then L(f, P1) ≤
U(f, P2).

Proof. Let Q = P1 ∪ P2 be the so-called common refinement of P1 and P2.
Because Q ⊆ P1 and Q ⊆ P2, it follows that

L(f, P1) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P2).
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Integrability

Intuitively, it helps to visualize a particular upper sum as an overestimate for
the value of the integral and a lower sum as an underestimate. As the partitions
get more refined, the upper sums get potentially smaller while the lower sums
get potentially larger. A function is integrable if the upper and lower sums
“meet” at some common value in the middle.

Rather than taking a limit of these sums, we will instead make use of the
Axiom of Completeness and consider the infimum of the upper sums and the
supremum of the lower sums.

Definition 7.2.5. Let P be the collection of all possible partitions of the in-
terval [a, b]. The upper integral of f is defined to be

U(f) = inf{U(f, P ) : P ∈ P}.
In a similar way, define the lower integral of f by

L(f) = sup{U(f, P ) : P ∈ P}.
The following fact is not surprising.

Lemma 7.2.6. For any bounded function f on [a, b], it is always the case that
U(f) ≥ L(f).

Proof. Exercise 7.2.1.

Definition 7.2.7 (Riemann Integrability). A bounded function f defined
on the interval [a, b] is Riemann-integrable if U(f) = L(f). In this case, we
define

∫ b
a
f or

∫ b
a
f(x) dx to be this common value; namely,∫ b

a

f = U(f) = L(f).

The modifier “Riemann” in front of “integrable” accurately suggests that
there are other ways to define the integral. In fact, our work in this chapter will
expose the need for a different approach, one of which is discussed in Section 8.1.
In this chapter, the Riemann integral is the only method under consideration,
so it will usually be convenient to drop the modifier “Riemann” and simply refer
to a function as being “integrable.”

Criteria for Integrability

To summarize the situation thus far, it is always the case for a bounded function
f on [a, b] that

sup{L(f, P ) : P ∈ P} = L(f) ≤ U(f) = inf{U(f, P ) : P ∈ P}.
The function f is integrable if the inequality is an equality. The major thrust
of our investigation of the integral is to describe, as best we can, the class
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of integrable functions. The preceding inequality reveals that integrability is
really equivalent to the existence of partitions whose upper and lower sums are
arbitrarily close together.

Theorem 7.2.8. A bounded function f is integrable on [a, b] if and only if, for
every ε > 0, there exists a partition Pε of [a, b] such that

U(f, Pε)− L(f, Pε) < ε.

Proof. Let ε > 0. If such a partition Pε exists, then

U(f)− L(f) ≤ U(f, Pε)− L(f, Pε) < ε.

Because ε is arbitrary, it must be that U(f) = L(f), so f is integrable. (To be
absolutely precise here, we could throw in a reference to Theorem 1.2.6.)

The proof of the converse statement is a familiar triangle inequality argument
with parentheses in place of absolute value bars because, in each case, we know
which quantity is larger. Because U(f) is the greatest lower bound of the upper
sums, we know that, given some ε > 0, there must exist a partition P1 such that

U(f, P1) < U(f) +
ε

2
.

Likewise, there exists a partition P2 satisfying

L(f, P2) > L(f)− ε

2
.

Now, let Pε = P1 ∪ P2 be the common refinement. Keeping in mind that the
integrability of f means U(f) = L(f), we can write

U(f, Pε)− L(f, Pε) ≤ U(f, P1)− L(f, P2)
= (U(f, P1)− U(f)) + (L(f)− L(f, P2))

<
ε

2
+

ε

2
= ε.

In the discussion at the beginning of this chapter, it became clear that inte-
grability is closely tied to the concept of continuity. To make this observation
more precise, let P = {a = x0 < x1 < x2 < · · · < xn = b} be an arbitrary
partition of [a, b], and define ∆xk = xk − xk−1. Then,

U(f, P )− L(f, P ) =
n∑

k=1

(Mk −mk)∆xk,

whereMk andmk are the supremum and infimum of the function on the interval
[xk−1, xk] respectively. Our ability to control the size of U(f, P )−L(f, P ) hinges
on the differences Mk−mk, which we can interpret as the variation in the range
of the function over the interval [xk−1, xk]. Restricting the variation of f over
arbitrarily small intervals in [a, b] is precisely what it means to say that f is
uniformly continuous on this set.
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Theorem 7.2.9. If f is continuous on [a, b], then it is integrable.

Proof. The first crucial observation is that because f is continuous on a compact
set, it is uniformly continuous. This means that, given ε > 0, there exists a δ > 0
so that |x− y| < δ guarantees

|f(x)− f(y)| < ε

b− a
.

Now, let P be a partition of [a, b] where ∆xk = xk − xk−1 is less than δ for
every subinterval of P .

Mk=f(zk)

mk=f(yk)

xk−1 zk yk xk︸ ︷︷ ︸
xk−xk−1<δ

Given a particular subinterval [xk−1, xk] of P , we know from the Extreme
Value Theorem (Theorem 4.4.3) that the supremum Mk = f(zk) for some zk ∈
[xk−1, xk]. In addition, the infimum mk is attained at some point yk also in the
interval [xk−1, xk]. But this means |zk − yk| < δ, so

Mk −mk = f(zk)− f(yk) <
ε

b− a
.

Finally,

U(f, P )− L(f, P ) =
n∑

k=1

(Mk −mk)∆xk <
ε

b− a

n∑
k=1

∆xk = ε,

and f is integrable by the criterion given in Theorem 7.2.8.

Exercises

Exercise 7.2.1. Let f be a bounded function on [a, b], and let P be an arbitrary
partition of [a, b]. First, explain why U(f) ≥ L(f, P ). Now, prove Lemma 7.2.6.

Exercise 7.2.2. Consider f(x) = 2x + 1 over the interval [1, 3]. Let P be the
partition consisting of the points {1, 3/2, 2, 3}.

(a) Compute L(f, P ), U(f, P ), and U(f, P )− L(f, P ).
(b) What happens to the value of U(f, P )−L(f, P ) when we add the point

5/2 to the partition?
(c) Find a partition P ′ of [1, 3] for which U(f, P ′)− L(f, P ′) < 2.
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Exercise 7.2.3. Show directly (without appealing to Theorem 7.2) that the
constant function f(x) = k is integrable over any closed interval [a, b]. What is∫ b
a
f?

Exercise 7.2.4. (a) Prove that a bounded function f is integrable on [a, b] if
and only if there exists a sequence of partitions (Pn)∞n=1 satisfying

lim
n→∞ [U(f, Pn)− L(f, Pn)] = 0.

(b) For each n, let Pn be the partition of [0, 1] into n equal subintervals. Find
formulas for U(f, Pn) and L(f, Pn) if f(x) = x. The formula 1+2+3+ · · ·+n =
n(n+ 1)/2 will be useful.

(c) Use the sequential criterion for integrability from (a) to show directly
that f(x) = x is integrable on [0, 1].

Exercise 7.2.5. Assume that, for each n, fn is an integrable function on [a, b].
If (fn)→ f uniformly on [a, b], prove that f is also integrable on this set. (We
will see that this conclusion does not necessarily follow if the convergence is
pointwise.)

Exercise 7.2.6. Let f : [a, b] → R be increasing on the set [a, b] (i.e., f(x) ≤
f(y) whenever x < y). Show that f is integrable on [a, b].

7.3 Integrating Functions with Discontinuities

The fact that continuous functions are integrable is not so much a fortunate
discovery as it is evidence for a well-designed integral. Riemann’s integral is a
modification of Cauchy’s definition of the integral, which was crafted specifically
to work on continuous functions. The interesting issue is discovering just how
dependent the Riemann integral is on the continuity of the integrand.

Example 7.3.1. Consider the function

f(x) =
{
1 for x �= 1
0 for x = 1

on the interval [0, 2]. If P is any partition of [0, 2], a quick calculation reveals
that U(f, P ) = 2. The lower sum L(f, P ) will be less than 2 because any
subinterval of P that contains x = 1 will contribute zero to the value of the
lower sum. The way to show that f is integrable is to construct a partition that
minimizes the effect of the discontinuity by embedding x = 1 into a very small
subinterval.

Let ε > 0, and consider the partition Pε = {0, 1− ε/3, 1 + ε/3, 2}. Then,

L(f, Pε) = 1
(
1− ε

3

)
+ 0(ε) + 1

(
1− ε

3

)
= 2− 2

3
ε.
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Because U(f, Pε) = 2, we have

U(f, Pε)− L(f, Pε) =
2
3
ε < ε.

We can now use Theorem 7.2.8 to conclude that f is integrable.

Although the function in Example 7.3.1 is extremely simple, the method
used to show it is integrable is really the same one used to prove that any
bounded function with a single discontinuity is integrable. The notation in the
following proof is more cumbersome, but the essence of the argument is that the
misbehavior of the function at its discontinuity is isolated inside a particularly
small subinterval of the partition.

Theorem 7.3.2. If f : [a, b] → R is bounded, and f is integrable on [c, b] for
all c ∈ (a, b), then f is integrable on [a, b]. An analogous result holds at the
other endpoint.

Proof. Let M be a bound for f so that |f(x)| ≤ M for all x ∈ [a, b]. If
P = {a = x0 < x1 < x2 < · · ·xn = b}

is a partition of [a, b], then

U(f, P )− L(f, P ) =
n∑

k=1

(Mk −mk)∆xk

= (M1 −m1)(x1 − a) +
n∑

k=2

(Mk −mk)∆xk

= (M1 −m1)(x1 − a) + (U(f, P[x1,b])− L(f, P[x1,b])),

where P[x1,b] = {x1 < x2 < · · · < xn = b} is the partition of [x1, b] obtained by
deleting a from P .

Given ε > 0, the first step is to choose x1 close enough to a so that

(M1 −m1)(x1 − a) <
ε

2
.

This is not too difficult. Because M1 −m1 ≤ 2M , we can pick x1 so that

x1 − a ≤ ε

4M
.

Now, by hypothesis, f is integrable on [x1, b] so there exists a partition P1 of
[x1, b] for which

U(f, P1)− L(f, P1) <
ε

2
.

Finally, we let P2 = {a} ∪ P1 be a partition of [a, b], from which it follows that

U(f, P2)− L(f, P2) ≤ (2M)(x1 − a) + (U(f, P1)− L(f, P1))

<
ε

2
+

ε

2
= ε.
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Theorem 7.3.2 only allows for a discontinuity at the endpoint of an interval,
but that is easily remedied. In the next section, we will prove that integrability
on the intervals [a, b] and [b, d] is equivalent to integrability on [a, d]. This
property, together with an induction argument, leads to the conclusion that
any function with a finite number of discontinuities is still integrable. What if
the number of discontinuities is infinite?

Example 7.3.3. Recall Dirichlet’s function

g(x) =
{
1 for x rational
0 for x irrational

from Section 4.1. If P is some partition of [0, 1], then the density of the rationals
in R implies that every subinterval of P will contain a point where g(x) = 1. It
follows that U(g, P ) = 1. On the other hand, L(g, P ) = 0 because the irrationals
are also dense in R. Because this is the case for every partition P , we see that
the upper integral U(f) = 1 and the lower integral L(f) = 0. The two are not
equal, so we conclude that Dirichlet’s function is not integrable.

How discontinuous can a function be before it fails to be integrable? Before
jumping to the hasty (and incorrect) conclusion that the Riemann integral fails
for functions with more than a finite number of discontinuities, we should realize
that Dirichlet’s function is discontinuous at every point in [0, 1]. It would be
useful to investigate a function where the discontinuities are infinite in number
but do not necessarily make up all of [0, 1]. Thomae’s function, also defined
in Section 4.1, is one such example. The discontinuous points of this function
are precisely the rational numbers in [0, 1]. In Section 7.6, we will see that
Thomae’s function is Riemann-integrable, raising the bar for allowable discon-
tinuous points to include potentially infinite sets.

The conclusion of this story is contained in the doctoral dissertation of Henri
Lebesgue, who presented his work in 1901. Lebesgue’s elegant criterion for
Riemann integrability is explored in great detail in Section 7.6. For the moment,
though, we will take a short detour from questions of integrability and construct
a proof of the celebrated Fundamental Theorem of Calculus.

Exercises

Exercise 7.3.1. Consider the function

h(x) =
{
1 for 0 ≤ x < 1
2 for x = 1

over the interval [0, 1].
(a) Show that L(f, P ) = 1 for every partition P of [0, 1].
(b) Construct a partition P for which U(f, P ) < 1 + 1/10.
(c) Given ε > 0, construct a partition Pε for which U(f, Pε) < 1 + ε.
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Exercise 7.3.2. In Example 7.3.3, we learned that Dirichlet’s function g(x)
is not Riemann-integrable. Construct a sequence gn(x) of integrable functions
with gn → g pointwise on [0, 1]. This demonstrates that the pointwise limit of
integrable functions need not be integrable. Compare this example to the result
requested in Exercise 7.2.5.

Exercise 7.3.3. Here is an alternate explanation for why a function f on [a, b]
with a finite number of discontinuities is integrable. Supply the missing details.

Embed each discontinuity in a sufficiently small open interval and let O be
the union of these intervals. Explain why f is uniformly continuous on [a, b]\O,
and use this to finish the argument.

Exercise 7.3.4. Assume f : [a, b]→ R is integrable.
(a) Show that if one value of f(x) is changed at some point x ∈ [a, b], then

f is still integrable and integrates to the same value as before.
(b) Show that the observation in (a) holds if a finite number of values of f

are changed.
(c) Find an example to show that by altering a countable number of values,

f may fail to be integrable.

Exercise 7.3.5. Let

f(x) =
{
1 if x = 1/n for some n ∈ N
0 otherwise.

Show that f is integrable on [0, 1] and compute
∫ 1
0 f .

Exercise 7.3.6. A set A ⊆ [a, b] has content zero if for every ε > 0 there exists
a finite collection of open intervals {O1, O2, . . . , ON} that contain A in their
union and whose lengths sum to ε or less. Using |On| to refer to the length of
each interval, we have

A ⊆
N⋃

n=1

On and
N∑
k=1

|On| ≤ ε.

(a) Let f be bounded on [a, b]. Show that if the set of discontinuous points
of f has content zero, then f is integrable.

(b) Show that any finite set has content zero.
(c) Content zero sets do not have to be finite. They do not have to be

countable. Show that the Cantor set C defined in Section 3.1 has content zero.
(d) Prove that

h(x) =
{
1 if x ∈ C
0 if x /∈ C.

is integrable, and find the value of the integral.
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7.4 Properties of the Integral

Before embarking on the proof of the Fundamental Theorem of Calculus, we
need to verify what are probably some very familiar properties of the integral.
The discussion in the previous section has already made use of the following
fact.

Theorem 7.4.1. Assume f : [a, b] → R is bounded, and let c ∈ (a, b). Then,
f is integrable on [a, b] if and only if f is integrable on [a, c] and [c, b]. In this
case, we have ∫ b

a

f =
∫ c

a

f +
∫ b

c

f.

Proof. If f is integrable on [a, b], then for ε > 0 there exists a partition P such
that U(f, P ) − L(f, P ) < ε. Because refining a partition can only potentially
bring the upper and lower sums closer together, we can simply add c to P if
it is not already there. Then, let P1 = P ∩ [a, c] be a partition of [a, c], and
P2 = P ∩ [c, b] be a partition of [c, b]. It follows that

U(f, P1)− L(f, P1) < ε and U(f, P2)− L(f, P2) < ε,

implying that f is integrable on [a, c] and [c, b].
Conversely, if we are given that f is integrable on the two smaller intervals

[a, c] and [c, b], then given an ε > 0 we can produce partitions P1 and P2 of [a, c]
and [c, b], respectively, such that

U(f, P1)− L(f, P1) <
ε

2
and U(f, P )− L(f, P ) <

ε

2
.

Letting P = P1 ∪ P2 produces a partition of [a, b] for which

U(f, P )− L(f, P ) < ε.

Thus, f is integrable on [a, b].
Continuing to let P = P1 ∪ P2 as earlier, we have∫ b

a

f ≤ U(f, P ) < L(f, P ) + ε

= L(f, P1) + L(f, P2) + ε

≤
∫ c

a

f +
∫ b

c

f + ε,

which implies
∫ b
a
f ≤ ∫ c

a
f +

∫ b
c
f . To get the other inequality, observe that∫ c

a

f +
∫ b

c

f ≤ U(f, P1) + U(f, P2)

< L(f, P1) + L(f, P2) + ε

= L(f, P ) + ε

≤
∫ b

a

f + ε.
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Because ε > 0 is arbitrary, we must have
∫ c
a
f +

∫ b
c
f ≤ ∫ b

a
f , so

∫ c

a

f +
∫ b

c

f =
∫ b

a

f,

as desired.

The proof of Theorem 7.4.1 demonstrates some of the standard techniques
involved for proving facts about the Riemann integral. Admittedly, manipulat-
ing partitions does not lend itself to a great deal of elegance. The next result
catalogs the remainder of the basic properties of the integral that we will need
in our upcoming arguments.

Theorem 7.4.2. Assume f and g are integrable functions on the interval [a, b].

(i) The function f + g is integrable on [a, b] with
∫ b
a
(f + g) =

∫ b
a
f +

∫ b
a
g.

(ii) For k ∈ R, the function kf is integrable with
∫ b
a
kf = k

∫ b
a
f.

(iii) If m ≤ f ≤ M , then m(b− a) ≤ ∫ b
a
f ≤ M(b− a).

(iv) If f ≤ g, then
∫ b
a
f ≤ ∫ b

a
g.

(v) The function |f | is integrable and | ∫ b
a
f | ≤ ∫ b

a
|f |.

Proof. Properties (i) and (ii) are reminiscent of the Algebraic Limit Theorem
and its many descendants (Theorems 2.3.3, 2.7.1, 4.2.4, and 5.2.4). In fact,
there is a way to use the Algebraic Limit Theorem for this argument as well.
An immediate corollary to Theorem 7.2.8 is that a function f is integrable on
[a, b] if and only if there exists a sequence of partitions (Pn) satisfying

(1) lim
n→∞ [U(f, Pn)− L(f, Pn)] = 0,

and in this case
∫ b
a
f = limU(f, Pn) = limL(f, Pn). (A proof for this was

requested as Exercise 7.2.4.)
To prove (ii) for the case k ≥ 0, first verify that for any partition P we have

U(kf, P ) = kU(f, P ) and L(kf, P ) = kL(f, P ).

Exercise 1.3.5 is used here. Because f is integrable, there exist partitions (Pn)
satisfying (1). Turning our attention to the function (kf), we see that

lim
n→∞ [U(kf, Pn)− L(kf, Pn)] = lim

n→∞ k [U(f, Pn)− L(f, Pn)] = 0,

and the formula in (ii) follows. The case where k < 0 is similar except that we
have

U(kf, Pn) = kL(f, Pn) and L(kf, Pn) = kU(f, Pn).
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A proof for (i) can be constructed using similar methods and is requested in
Exercise 7.4.5.

To prove (iii), observe that

U(f, P ) ≥
∫ b

a

f ≥ L(f, P )

for any partition P . Statement (iii) follows if we take P to be the trivial partition
consisting of only the endpoints a and b.

For (iv), let h = g − f ≥ 0 and use (i) and (iii).

Because −|f | ≤ f ≤ |f |, statement (v) will follow from (iv) provided that
we can show that |f | is actually integrable. The proof of this fact is outlined in
Exercise 7.4.1.

To this point, the quantity
∫ b
a
f is only defined in the case where a < b.

Definition 7.4.3. If f is integrable on the interval [a, b], define∫ a

b

f = −
∫ b

a

f.

Also, define ∫ c

c

f = 0.

Definition 7.4.3 is a natural convention to simplify the algebra of integrals.
If f is an integrable function on some interval I, then it is straightforward to
verify that the equation ∫ b

a

f =
∫ c

a

f +
∫ b

c

f

from Theorem 7.4.1 remains valid for any three points a, b, and c chosen in any
order from I.

Uniform Convergence and Integration

If (fn) is a sequence of integrable functions on [a, b], and if fn → f , then we are
inevitably going to want to know whether

(2)
∫ b

a

fn →
∫ b

a

f.

This is an archetypical instance of one of the major themes of analysis: When
does a mathematical manipulation such as integration respect the limiting pro-
cess?

If the convergence is pointwise, then any number of things can go wrong. It
is possible for each fn to be integrable but for the limit f not to be integrable
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(Exercise 7.3.2). Even if the limit function f is integrable, equation (2) may fail
to hold. As an example of this, let

fn(x) =
{

n if 0 < x < 1/n
0 if x = 0 or x ≥ 1/n.

Each fn has two discontinuities on [0, 1] and so is integrable with
∫ 1
0 fn = 1.

For each x ∈ [0, 1], we have lim fn(x) = 0 so that fn → 0 pointwise on [0, 1].
But now observe that the limit function f = 0 certainly integrates to 0, and

0 �= lim
n→∞

∫ 1

0
fn.

As a final remark on what can go wrong in (2), we should point out that it is
possible to modify this example to produce a situation where lim

∫ 1
0 fn does not

even exist.
One way to resolve all of these problems is to add the assumption of uniform

convergence.

Theorem 7.4.4. Assume that fn → f uniformly on [a, b] and that each fn is
integrable. Then, f is integrable and

lim
n→∞

∫ b

a

fn =
∫ b

a

f.

Proof. The proof that f is integrable was requested as Exercise 7.2.5. The
remainder of this argument is asked for in Exercise 7.4.3.

Exercises

Exercise 7.4.1. (a) Let f be a bounded function on a set A, and set

M = sup{f(x) : x ∈ A}, m = inf{f(x) : x ∈ A},

M ′ = sup{|f(x)| : x ∈ A}, and m′ = inf{|f(x)| : x ∈ A}.
Show that M −m ≥ M ′ −m′.

(b) Show that if f is integrable on the interval [a, b], then |f | is also integrable
on this interval.

(c) Provide the details for the argument that in this case we have | ∫ b
a
f | ≤∫ b

a
|f |.

Exercise 7.4.2. Review Definition 7.4.3. Show that if c ≤ a ≤ b and f is
integrable on the interval [c, b], then it is still the case that

∫ b
a
f =

∫ c
a
f +

∫ b
c
f .

Exercise 7.4.3. Prove Theorem 7.4.4 including an argument for Exercise 7.2.5
if it is not already done.
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Exercise 7.4.4. Decide which of the following conjectures is true and supply
a short proof. For those that are not true, give a counterexample.

(a) If |f | is integrable on [a, b] then f is also integrable on this set.
(b) Assume g is integrable and g ≥ 0 on [a, b]. If g(x) > 0 for an infinite

number of points x ∈ [a, b], then ∫ g > 0.
(c) If g is continuous on [a, b] and g ≥ 0 with g(x0) > 0 for at least one point

x0 ∈ [a, b], then ∫ b
a
g > 0.

(d) If
∫ b
a
f > 0, there is an interval [c, d] ⊆ [a, b] and a δ > 0 such that

f(x) ≥ δ for all x ∈ [c, d].
Exercise 7.4.5. Let f and g be integrable functions on [a, b].

(a) Show that if P is any partition of [a, b], then

U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Provide a specific example where the inequality is strict. What does the corre-
sponding inequality for lower sums look like?

(b) Review the proof of Theorem 7.4.2 (ii), and provide an argument for
part (i) of this theorem.

Exercise 7.4.6. Review the discussion immediately preceding Theorem 7.4.4.
(a) Produce an example of a sequence fn → 0 pointwise on [0, 1] where

limn→∞
∫ 1
0 fn does not exist.

(b) Produce another example (if necessary) where fn → 0 and the sequence∫ 1
0 fn is unbounded.
(c) Is it possible to construct each fn to be continuous in the examples of

parts (a) and (b)?
(d) Does it seem possible to construct the sequence (fn) to be uniformly

bounded? (Uniformly bounded means that there exists a singleM > 0 satisfying
|fn| ≤ M for all n ∈ N.

Exercise 7.4.7. Assume that gn and g are bounded integrable functions with
gn → g on [0, 1]. The convergence is not uniform; however, the convergence is
uniform on any set of the form [δ, 1] where 0 < δ < 1. Show that limn→∞

∫ 1
0 gn =∫ 1

0 g.

7.5 The Fundamental Theorem of Calculus

The derivative and the integral have been independently defined, each in its own
rigorous mathematical terms. The definition of the derivative is motivated by
the problem of finding tangent lines and is given in terms of functional limits
of difference quotients. The definition of the integral grows out of the desire to
describe areas under nonconstant functions and is given in terms of supremums
and infimums of finite sums. The Fundamental Theorem of Calculus reveals the
remarkable inverse relationship between the two processes.
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The result is stated in two parts. The first is a computational statement
that describes how an antiderivative can be used to evaluate an integral over
a particular interval. The second statement is more theoretical in nature, ex-
pressing the fact that every continuous function is the derivative of its indefinite
integral.

Theorem 7.5.1 (Fundamental Theorem of Calculus). (i) If f : [a, b] →
R is integrable, and F : [a, b]→ R satisfies F ′(x) = f(x) for all x ∈ [a, b], then∫ b

a

f = F (b)− F (a).

(ii) Let g : [a, b]→ R be integrable, and define

G(x) =
∫ x

a

g

for all x ∈ [a, b]. Then, G is continuous on [a, b]. If g is continuous at some
point c ∈ [a, b], then G is differentiable at c and G′(c) = g(c).

Proof. (i) Let P be a partition of [a, b] and apply the Mean Value Theorem to
F on a typical subinterval [xk−1, xk] of P . This yields a point tk ∈ (xk−1, xk)
where

F (xk)− F (xk−1) = F ′(tk)(xk − xk−1)
= f(tk)(xk − xk−1).

Now, consider the upper and lower sums U(f, P ) and L(f, P ). Because mk ≤
f(tk) ≤ Mk (where mk is the infimum on [xk−1, xk] and Mk is the supremum),
it follows that

L(f, P ) ≤
n∑

k=1

[F (xk)− F (xk−1)] ≤ U(f, P ).

But notice that the sum in the middle telescopes so that
n∑

k=1

[F (xk)− F (xk−1)] = F (b)− F (a),

which is independent of the partition P . Thus we have

L(f) ≤ F (b)− F (a) ≤ U(f).

Because L(f) = U(f) =
∫ b
a
f , we conclude that

∫ b
a
f = F (b)− F (a).

(ii) To prove the second statement, take x, y ∈ [a, b] and observe that

|G(x)−G(y)| =
∣∣∣∣
∫ x

a

g −
∫ y

a

g

∣∣∣∣ =
∣∣∣∣
∫ x

y

g

∣∣∣∣
≤
∫ x

y

|g|

≤ M |x− y|,
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where M > 0 is a bound on |g|. This shows that G is Lipschitz and so is
uniformly continuous on [a, b] (Exercise 4.4.9).

Now, let’s assume that g is continuous at c ∈ [a, b]. In order to show that
G′(c) = g(c), we rewrite the limit for G′(c) as

lim
x→c

G(x)−G(c)
x− c

= lim
x→c

1
x− c

(∫ x

a

g(t) dt−
∫ c

a

g(t) dt

)

= lim
x→c

1
x− c

(∫ x

c

g(t) dt

)
.

We would like to show that this limit equals g(c). Thus, given an ε > 0, we
must produce a δ > 0 such that if |x− c| < δ then

(1)
∣∣∣∣ 1
x− c

(∫ x

c

g(t) dt
)
− g(c)

∣∣∣∣ < ε.

The assumption of continuity of g gives us control over the difference |g(t)−g(c)|.
In particular, we know that there exists a δ > 0 such that

|t− c| < δ implies |g(t)− g(c)| < ε.

To take advantage of this, we cleverly write the constant g(c) as

g(c) =
1

x− c

∫ x

c

g(c) dt

and combine the two terms in equation (1) into a single integral. Keeping in
mind that |x− c| ≥ |t− c|, we have that for all |x− c| < δ,∣∣∣∣ 1

x− c

(∫ x

c

g(t) dt
)
− g(c)

∣∣∣∣ =
∣∣∣∣ 1
x− c

∫ x

c

[g(t)− g(c)] dt
∣∣∣∣

≤ 1
(x− c)

∫ x

c

|g(t)− g(c)| dt

<
1

(x− c)

∫ x

c

ε dt = ε.

Exercises

Exercise 7.5.1. We have seen that not every derivative is continuous, but ex-
plain how we at least know that every continuous function is a derivative.

Exercise 7.5.2. (a) Let f(x) = |x| and define F (x) =
∫ x
−1 f . Find a formula

for F (x) for all x. Where is F continuous? Where is F differentiable? Where
does F ′(x) = f(x)?

(b) Repeat part (a) for the function

f(x) =
{
1 if x < 0
2 if x ≥ 0.
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Exercise 7.5.3. The hypothesis in Theorem 7.5.1 (i) that F ′(x) = f(x) for all
x ∈ [a, b] is slightly stronger than it needs to be. Carefully read the proof and
state exactly what needs to be assumed with regard to the relationship between
f and F for the proof to be valid.

Exercise 7.5.4 (Natural Logarithm). Let

H(x) =
∫ x

1

1
t
dt,

where we consider only x > 0.
(a) What is H(1)? Find H ′(x).
(b) Show that H is strictly increasing; that is, show that if 0 < x < y, then

H(x) < H(y).
(c) Show that H(cx) = H(c) +H(x). (Think of c as a constant and differ-

entiate g(x) = H(cx).)

Exercise 7.5.5. The Fundamental Theorem of Calculus can be used to supply
a shorter argument for Theorem 6.3.1 under the additional assumption that the
sequence of derivatives is continuous.

Assume fn → f pointwise and f ′
n → g uniformly on [a, b]. Assuming each

f ′
n is continuous, we can apply Theorem 7.5.1 (i) to get∫ x

a

f ′
n = fn(x)− fn(a)

for all x ∈ [a, b]. Show that g(x) = f ′(x).

Exercise 7.5.6. Use part (ii) of Theorem 7.5.1 to construct another proof of
part (i) of Theorem 7.5.1 using the following strategy. Given f and F as in part
(i), set G(x) =

∫ x
a
f . What is the relationship between F and G?

Exercise 7.5.7 (Average Value). If g is continuous on [a, b], show that there
exists a point c ∈ (a, b) where

g(c) =
1

b− a

∫ b

a

g.

Exercise 7.5.8. Given a function f on [a, b], define the total variation of f to
be

V f = sup

{
n∑

k=1

|f(xk)− f(xk−1)|
}

,

where the supremum is taken over all partitions P of [a, b].
(a) If f is continuously differentiable (f ′ exists as a continuous function),

use the Fundamental Theorem of Calculus to show V f ≤ ∫ b
a
|f ′|.

(b) Use the Mean Value Theorem to establish the reverse inequality and
conclude that V f =

∫ b
a
|f ′|.
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Exercise 7.5.9. Let

h(x) =
{
1 if x < 1 or x > 1
0 if x = 1,

and define H(x) =
∫ x
0 h. Show that even though h is not continuous at x = 1,

H(x) is still differentiable at x = 1.

Exercise 7.5.10. Assume f is integrable on [a, b] and has a “jump discontinu-
ity” at c ∈ (a, b). This means that both one-sided limits exist as x approaches
c from the left and from the right, but that

lim
x→c−

f(x) �= lim
x→c+

f(x).

(This phenomenon is discussed in more detail in Section 4.6.)
Show that F (x) =

∫ x
a
f is not differentiable at x = c.

Exercise 7.5.11. The Epilogue to Chapter 5 mentions the existence of a con-
tinuous monotone function that fails to be differentiable on a dense subset of
R. Combine the results of Exercise 7.5.10 and Exercise 6.4.8 to show how to
construct such a function.

7.6 Lebesgue’s Criterion for Riemann
Integrability

We now return to our investigation of the relationship between continuity and
the Riemann integral. We have proved that continuous functions are integrable
and that the integral also exists for functions with only a finite number of discon-
tinuities. At the opposite end of the spectrum, we saw that Dirichlet’s function,
which is discontinuous at every point on [0, 1], fails to be Riemann-integrable.
The next examples show that the set of discontinuities of an integrable function
can be infinite and even uncountable.

Riemann-integrable Functions with Infinite Discontinuities

Recall from Section 4.1 that Thomae’s function

t(x) =




1 if x = 0
1/n if x = m/n ∈ Q\{0} is in lowest terms with n > 0
0 if x /∈ Q

is continuous on the set of irrationals and has discontinuities at every rational
point. Let’s prove that Thomae’s function is integrable on [0, 1] with

∫ 1
0 t = 0.

Let ε > 0. The strategy, as usual, is to construct a partition Pε of [0, 1] for
which U(t, Pε)− L(t, Pε) < ε.
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Exercise 7.6.1. a) First, argue that L(t, P ) = 0 for any partition P of [0, 1].
b) Consider the set of points Dε/2 = {x : t(x) ≥ ε/2}. How big is Dε/2?
c) To complete the argument, explain how to construct a partition Pε of

[0, 1] so that U(t, Pε) < ε.

We first met the Cantor set C in Section 3.1. We have since learned that C
is a compact, uncountable subset of the interval [0, 1]. The request of Exercise
4.3.12 is to prove that the function

g(x) =
{
1 if x ∈ C
0 if x /∈ C

is continuous at every point of the complement of C and has discontinuities at
each point of C. Thus, g is not continuous on an uncountably infinite set.

Exercise 7.6.2. Using the fact that C =
⋂∞

n=0 Cn, where each Cn consists of
a finite union of closed intervals, argue that g is Riemann-integrable on [0, 1].

Sets of Measure Zero

Thomae’s function fails to be continuous at each rational number in [0, 1]. Al-
though this set is infinite, we have seen that any subset of Q is countable.
Countably infinite sets are the smallest type of infinite set. The Cantor set
is uncountable, but it is also small in a sense that we are now ready to make
precise. In the introduction to Chapter 3, we presented an argument that the
Cantor set has zero “length.” The term “length” is awkward here because it
really should only be applied to intervals or unions of intervals, which the Can-
tor set is not. There is a generalization of the concept of length to more general
sets called the measure of a set. Of interest to our discussion are subsets that
have measure zero.

Definition 7.6.1. A set A ⊆ R has measure zero if, for all ε > 0, there exists a
countable collection of open intervals On with the property that A is contained
in the union of all of the intervals On and the sum of the lengths of all of the
intervals is less than or equal to ε. More precisely, if |On| refers to the length of
the interval On, then we have

A ⊆
∞⋃
n=1

On and
∞∑
n=1

|On| ≤ ε.

Example 7.6.2. Consider a finite set A = {a1, a2, . . . , aN}. To show that A
has measure zero, let ε > 0 be arbitrary. For each 1 ≤ n ≤ N , construct the
interval

Gn =
(
an − ε

2N
, an +

ε

2N

)
.

Clearly, A is contained in the union of these intervals, and

N∑
n=1

|Gn| =
N∑

n=1

ε

N
= ε.
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Exercise 7.6.3. Show that any countable set has measure zero.

Exercise 7.6.4. Prove that the Cantor set (which is uncountable) has measure
zero.

Exercise 7.6.5. Show that if two sets A and B each have measure zero, then
A ∪ B has measure zero as well. In addition, discuss the proof of the stronger
statement that the countable union of sets of measure zero also has measure
zero. (This second statement is true, but a completely rigorous proof requires
a result about double summations discussed in Section 2.8.)

α-Continuity

Definition 7.6.3. Let f be defined on [a, b], and let α > 0. The function f is
α-continuous at x ∈ [a, b] if there exists δ > 0 such that for all y, z ∈ (x−δ, x+δ)
it follows that |f(y)− f(z)| < α.

Let f be a bounded function on [a, b]. For each α > 0, define Dα to be the
set of points in [a, b] where the function f fails to be α-continuous; that is,

(1) Dα = {x ∈ [a, b] : f is not α-continuous at x.}.

The concept of α-continuity was previously introduced in Section 4.6. Several
of the ensuing exercises appeared as exercises in this section as well.

Exercise 7.6.6. If α1 < α2, show that Dα2 ⊆ Dα1 .

Now, let

(2) D = {x ∈ [a, b] : f is not continuous at x }.

Exercise 7.6.7. (a) Let α > 0 be given. Show that if f is continuous at
x ∈ [a, b], then it is α-continuous at x as well. Explain how it follows that
Dα ⊆ D.

(b) Show that if f is not continuous at x, then f is not α-continuous for
some α > 0. Now, explain why this guarantees that

D =
∞⋃
n=1

D1/n.

Exercise 7.6.8. Prove that for a fixed α > 0, the set Dα is closed.

Exercise 7.6.9. By imitating the proof of Theorem 4.4.8, show that if, for
some fixed α > 0, f is α-continuous at every point on some compact set K,
then f is uniformly α-continuous on K. By uniformly α-continuous, we mean
that there exists a δ > 0 such that whenever x and y are points in K satisfying
|x− y| < δ, it follows that |f(x)− f(y)| < α.
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Compactness Revisited

Compactness of subsets of the real line can be described in three equivalent
ways. The following theorem appears toward the end of Section 3.3.

Theorem 7.6.4. Let K ⊆ R. The following three statements are all equivalent,
in the sense that if any one is true, then so are the two others.

(i) Every sequence contained in K has a convergent subsequence that con-
verges to a limit in K.

(ii) K is closed and bounded.

(iii) Given a collection of open intervals {Gα : α ∈ Λ} that covers K; that is,
K ⊆ ⋃α∈Λ Gα, there exists a finite subcollection {Gα1 , Gα2 , Gα3 , . . . , GαN

}
of the original set that also covers K.

The equivalence of (i) and (ii) has been used throughout the core material
in the text. Characterization (iii) has been less central but is essential to the
upcoming argument. So that the material in this section is self-contained, we
quickly outline a proof that (i) and (ii) imply (iii). (This also appears as Exercise
3.3.8.)

Proof. Assume K satisfies (i) and (ii), and let {Gα : α ∈ Λ} be an open cover
of K. For contradiction, let’s assume that no finite subcover exists.

Let I0 be a closed interval containing K, and then bisect I0 into two closed
intervals A1 and B1. It must be that either A1 ∩ K or B1 ∩ K (or both) has
no finite subcover consisting of sets from {Gα : α ∈ Λ}. Let I1 be a half
of I0 containing a part of K that cannot be finitely covered. Repeating this
construction results in a nested sequence of closed intervals I0 ⊇ I1 ⊇ I2 ⊇
· · · with the property that, for any n, In ∩ K cannot be finitely covered and
limn |In| = 0.

Exercise 7.6.10. (a) Show that there exists an x ∈ K such that x ∈ In for all
n.

(b) Because x ∈ K, there must exist an open set Gα0 from the original
collection that contains x as an element. Explain why this furnishes us with the
desired contradiction.

Lebesgue’s Theorem

We are now prepared to completely categorize the collection of Riemann-integrable
functions in terms of continuity.

Theorem 7.6.5 (Lebesgue’s Theorem). Let f be a bounded function de-
fined on the interval [a, b]. Then, f is Riemann-integrable if and only if the
set of points where f is not continuous has measure zero.
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Proof. Let M > 0 satisfy |f(x)| ≤ M for all x ∈ [a, b], and let D and Dα be
defined as in the preceding equations (1) and (2). Let’s first assume that D has
measure zero and prove that our function is integrable.

(⇐) Set
α =

ε

2(b− a)
.

Exercise 7.6.11. Show that there exists a finite collection of disjoint open
intervals {G1, G2, . . . , GN} whose union contains Dα and that satisfies

N∑
n=1

|Gn| < ε

4M
.

Exercise 7.6.12. Let K be what remains of the interval [a, b] after the open
intervals Gn are all removed; that is, K = [a, b]\⋃N

n=1 Gn. Argue that f is
uniformly α-continuous on K.

Exercise 7.6.13. Finish the proof in this direction by explaining how to con-
struct a partition Pε of [a, b] such that U(f, Pε)−L(f, Pε) ≤ ε. It will be helpful
to break the sum

U(f, Pε)− L(f, Pε) =
n∑

k=1

(Mk −mk)∆xk

into two parts, one over those subintervals that contain points of Dα and the
other over subintervals that do not.

(⇒) For the other direction, assume f is Riemann-integrable. We must argue
that the set D of discontinuities of f has measure zero.

Fix α > 0, and let ε > 0 be arbitrary. Because f is Riemann-integrable,
there exists a partition Pε of [a, b] such that U(f, Pε)− L(f, Pε) < αε.

Exercise 7.6.14. (a) Use the subintervals of the partition Pε to prove that Dα

has measure zero. Point out that it is possible to choose a cover for Dα that
consists of a finite number of open intervals. (Sets for which this is possible are
sometimes called content zero. See Exercise 7.3.6.)

(b) Show how this implies that D has measure zero.

A Nonintegrable Derivative

To this point, our one example of a nonintegrable function is Dirichlet’s nowhere-
continuous function. We close this section with another example that has special
significance. The content of the Fundamental Theorem of Calculus is that in-
tegration and differentiation are inverse processes of each other. This led us to
ask (in the final paragraph of the discussion in Section 7.1) whether we could
integrate every derivative. For the Riemann integral, the answer is a resounding
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1

Figure 7.3: A preliminary sketch of f1(x).

no. What follows is the construction of a differentiable function whose derivative
cannot be integrated with the Riemann integral.

We will once again be interested in the Cantor set

C =
∞⋂
n=0

Cn,

defined in Section 3.1. As an initial step, let’s create a function f(x) that is
differentiable on [0, 1] and whose derivative f ′(x) has discontinuities at every
point of C. The key ingredient for this construction is the function

g(x) =
{

x2 sin(1/x) if x > 0
0 if x ≤ 0.

Exercise 7.6.15. (a) Find g′(0).
(b) Use the standard rules of differentiation to compute g′(x) for x �= 0.
(c) Explain why, for every δ > 0, g′(x) attains every value between 1 and −1

as x ranges over the set (−δ, δ). Conclude that g′ is not continuous at x = 0.

Now, we want to transport the behavior of g around zero to each of the end-
points of the closed intervals that make up the sets Cn used in the definition of
the Cantor set. The formulas are awkward but the basic idea is straightforward.
Start by setting

f0(x) = 0 on C0 = [0, 1].

To define f1 on [0, 1], first assign

f1(x) = 0 for all x ∈ C1 =
[
0,
1
3

]
∪
[
2
3
, 1
]
.
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1

Figure 7.4: A graph of f2(x).

In the remaining open middle third, put translated “copies” of g oscillating
toward the two endpoints (Fig. 7.3). In terms of a formula, we have

f1(x) =




0 if x ∈ [0, 1/3]
g(x− 1/3) if x is just to the right of 1/3
g(−x+ 1/3) if x is just to the left of 2/3
0 if x ∈ [2/3, 1] .

Finally, we splice the two oscillating pieces of f1 together in such a way that
makes f1 differentiable. This is no great feat, and we will skip the details so as
to keep our attention focused on the two endpoints 1/3 and 2/3. These are the
points where f ′

1(x) fails to be continuous.
To define f2(x), we start with f1(x) and do the same trick as before, this

time in the two open intervals (1/9, 2/9) and (7/9, 8/9). The result (Fig. 7.4)
is a differentiable function that is zero on C2 and has a derivative that is not
continuous on the set

{1/9, 2/9, 1/3, 2/3, 7/9, 8/9}.

Continuing in this fashion yields a sequence of functions f0, f1, f2, . . . defined
on [0, 1].

Exercise 7.6.16. (a) If c ∈ C, what is limn→∞ fn(c)?
(b) Why does limn→∞ fn(x) exist for x /∈ C?

Now, set
f(x) = lim

n→∞ fn(x).

Exercise 7.6.17. (a) Explain why f ′(x) exists for all x /∈ C.
(b) If c ∈ C, argue that |f(x)| ≤ (x − c)2 for all x ∈ [0, 1]. Show how this

implies f ′(c) = 0.
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(c) Give a careful argument for why f ′(x) fails to be continuous on C. Re-
member that C contains many points besides the endpoints of the intervals that
make up C1, C2, C3, . . . .

Let’s take inventory of the situation. Our goal is to create a nonintegrable
derivative. Our function f(x) is differentiable, and f ′ fails to be continuous on
C. We are not quite done.

Exercise 7.6.18. Why is f ′(x) Riemann-integrable on [0, 1]?

The reason the Cantor set has measure zero is that, at each stage, 2n−1 open
intervals of length 1/3n are removed from Cn−1. The resulting sum

∞∑
n=1

2n−1
(
1
3n

)

converges to one, which means that the approximating sets C1, C2, C3, . . . have
total lengths tending to zero. Instead of removing open intervals of length 1/3n

at each stage, let’s see what happens when we remove intervals of length 1/3n+1.

Exercise 7.6.19. Show that, under these circumstances, the sum of the lengths
of the intervals making up each Cn no longer tends to zero as n → ∞. What is
this limit?

If we again take the intersection
⋂∞

n=0 Cn, the result is a Cantor-type set
with the same topological properties—it is closed, compact and perfect. But a
consequence of the previous exercise is that it no longer has measure zero. This
is just what we need to define our desired function. By repeating the preceding
construction of f(x) on this new Cantor-type set of positive measure, we get
a differentiable function whose derivative has too many points of discontinuity.
By Lebesgue’s Theorem, this derivative cannot be integrated using the Riemann
integral.

7.7 Epilogue

Riemann’s definition of the integral was a modification of Cauchy’s integral,
which was originally designed for the purpose of integrating continuous func-
tions. In this goal, the Riemann integral was a complete success. For continuous
functions at least, the process of integration now stood on its own rigorous foot-
ing, defined independently of differentiation. As analysis progressed, however,
the dependence of integrability on continuity became problematic. The last ex-
ample of Section 7.6 highlights one type of weakness: not every derivative can
be integrated. Another limitation of the Riemann integral arises in association
with limits of sequences of functions. To get a sense of this, let’s once again con-
sider Dirichlet’s function g(x) introduced in Section 4.1. Recall that g(x) = 1
whenever x is rational, and g(x) = 0 at every irrational point. Focusing on the
interval [0, 1] for a moment, let

{r1, r2, r3, r4 . . . }
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be an enumeration of the countable number of rational points in this interval.
Now, let g1(x) = 1 if x = r1 and define g1(x) = 0 otherwise. Next, define
g2(x) = 1 if x is either r1 or r2, and let g2(x) = 0 at all other points. In general,
for each n ∈ N, define

gn(x) =
{
1 if x ∈ {r1, r2, . . . , rn}
0 otherwise.

Notice that each gn has only a finite number of discontinuities and so is Riemann-
integrable with

∫ 1
0 gn = 0. But we also have gn → g pointwise on the inter-

val [0, 1]. The problem arises when we remember that Dirichlet’s nowhere-
continuous function is not Riemann-integrable. Thus, the equation

(1) lim
n→∞

∫ 1

0
gn =

∫ 1

0
g

fails to hold, not because the values on each side of the equal sign are different
but because the value on the right-hand side does not exist. The content of The-
orem 7.4.4 is that this equation does hold whenever we have gn → g uniformly.
This is a reasonable way to resolve the situation, but it is a bit unsatisfying
because the deficiency in this case is not entirely with the type of convergence
but lies in the strength of the Riemann integral. If we could make sense of the
right-hand side via some other definition of integration, then maybe equation
(1) would actually be true.

Such a definition was introduced by Henri Lebesque in 1901. Generally
speaking, Lebesgue’s integral is constructed using a generalization of length
called the measure of a set. In the previous section, we studied sets of measure
zero. In particular, we showed that the rational numbers in [0,1] (because they
are countable) have measure zero. The irrational numbers in [0,1] have measure
one. This should not be too surprising because we now have that the measures
of these two disjoint sets add up to the length of the interval [0, 1]. Rather
than chopping up the x-axis to approximate the area under the curve, Lebesgue
suggested partitioning the y-axis. In the case of Dirichlet’s function g, there
are only two range values—zero and one. The integral, according to Lebesgue,
could be defined via∫ 1

0
g = 1 · [measure of set where g = 1] + 0 · [measure of set where g = 0]

= 1 · 0 + 0 · 1 = 0.

With this interpretation of
∫ 1
0 g, equation (1) is now valid!

The Lebesgue integral is presently the standard integral in advanced math-
ematics. The theory is taught to all graduate students, as well as to many
advanced undergraduates, and it is the integral used in most research papers
where integration is required. The Lebesgue integral generalizes the Riemann
integral in the sense that any function that is Riemann-integrable is Lebesgue-
integrable and integrates to the same value. The real strength of the Lebesgue
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integral is that the class of integrable functions is much larger. Most impor-
tantly, this class includes the limits of different types of Cauchy sequences of
integrable functions. This leads to a group of extremely important convergence
theorems related to equation (1) with hypotheses much weaker than the uniform
convergence assumed in Theorem 7.4.4.

Despite its prevalence, the Lebesgue integral does have a few drawbacks.
There are functions whose improper Riemann integrals exist but that are not
Lebesgue-integrable. Another disappointment arises from the relationship be-
tween integration and differentiation. Even with the Lebesgue integral, it is still
not possible to prove ∫ b

a

f ′ = f(b)− f(a)

without some additional assumptions on f . Around 1960, a new integral was
proposed that can integrate a larger class of functions than either the Rie-
mann integral or the Lebesgue integral and suffers from neither of the preceding
weaknesses. Remarkably, this integral is actually a return to Riemann’s orig-
inal technique for defining integration, with some small modifications in how
we describe the “fineness” of the partitions. An introduction to the generalized
Riemann integral is the topic of Section 8.1.



Chapter 8

Additional Topics

The foundation in analysis provided by the first seven chapters is sufficient
background for the exploration of some advanced and historically important
topics. The writing in this chapter is similar to that in the concluding project
sections of each individual chapter. Exercises are included within the exposition
and are designed to make each section a narrative investigation into a significant
achievement in the field of analysis.

8.1 The Generalized Riemann Integral

Chapter 7 concluded with Henri Lebesgue’s elegant result that a bounded func-
tion is Riemann-integrable if and only if its points of discontinuity form a set
of measure zero. To eliminate the dependence of integrability on continuity,
Lebesgue proposed a new method of integration that has become the standard
integral in mathematics. In the Epilogue to Chapter 7, we briefly outlined some
of the strengths and weaknesses of the Lebesgue integral, concluding with a look
back to the Fundamental Theorem of Calculus (Theorem 7.5.1). (Lebesgue’s
measure-zero criterion is not a prerequisite for understanding the material in
this section, but the discussion in Section 7.7 provides some useful context for
what follows.)

If F is a differentiable function on [a, b], then in a perfect world we might
hope to prove that

(1)
∫ b

a

F ′ = F (b)− F (a).

Notice that although this is the conclusion of part (i) of Theorem 7.5.1, there
we needed the additional requirement that F ′ be Riemann-integrable. To drive
this point home, Section 7.6 concluded with an example of a function that has
a derivative that the Riemann integral cannot handle. The Lebesgue integral
alluded to earlier is a significant improvement. It can integrate our example

213
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from Section 7.6, but ultimately it too suffers from the same setback. Not every
derivative is integrable, no matter which integral is used.

What follows is a short introduction to the generalized Riemann integral, dis-
covered independently around 1960 by Jaroslav Kurzweil and Ralph Henstock.
As mentioned in Section 7.7, this lesser-known modification of the Riemann
integral can actually integrate a larger class of functions than Lebesgue’s ubiq-
uitous integral and yields a surprisingly simple proof of equation (1) above with
no additional hypotheses.

The Riemann Integral as a Limit

Let
P = {a = x0 < x1 < x2 < · · · < xn = b}

be a partition of [a, b]. A tagged partition is one where in addition to P we have
chosen points ck in each of the subintervals [xk−1, xk]. This sets the stage for
the concept of a Riemann sum. Given a function f : [a, b] → R, and a tagged
partition (P, {ck}nk=1), the Riemann sum generated by this partition is given by

R(f, P ) =
n∑

k=1

f(ck)(xk − xk−1).

Looking back at the definition of the upper sum

U(f, P ) =
n∑

k=1

Mk(xk − xk−1) where Mk = sup{f(x) : x ∈ [xk−1, xk]},

and the lower sum

L(f, P ) =
n∑

k=1

mk(xk − xk−1) where mk = inf{f(x) : x ∈ [xk−1, xk]},

it should be clear that

L(f, P ) ≤ R(f, P ) ≤ U(f, P )

for any bounded function f . In Definition 7.2.7, we characterized integrability
by insisting that the infimum of the upper sums equal the supremum of the
lower sums. Any Riemann sum is going to fall between a particular upper and
lower sum. If the upper and lower sums are converging on some common value,
then the Riemann sums are also eventually close to this value as well. The next
theorem shows that it is possible to characterize Riemann integrability in a way
equivalent to Definition 7.2.7 using an ε–δ-type definition applied to Riemann
sums.

Definition 8.1.1. Let δ > 0. A partition P is δ-fine if every subinterval
[xk−1, xk] satisfies xk − xk−1 < δ. In other words, every subinterval has width
less than δ.
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Theorem 8.1.2. A bounded function f : [a, b]→ R is Riemann-integrable with∫ b

a

f = A

if and only if, for every ε > 0, there exists a δ > 0 such that, for any tagged
partition (P, {ck}) that is δ-fine, it follows that

|R(f, P )−A| < ε.

Before attempting the proof, we should point out that, in some treatments,
the criterion in Theorem 8.1.2 is actually taken as the definition of Riemann inte-
grability. In fact, this is how Riemann originally defined the concept. The spirit
of this theorem is close to what is taught in most introductory calculus courses.
To approximate the area under the curve, Riemann sums are constructed. The
hope is that as the partitions become finer, the corresponding approximations
get closer to the value of the integral. The content of Theorem 8.1.2 is that if
the function is integrable, then these approximations do indeed converge to the
value of the integral, regardless of how the tags are chosen. Conversely, if the
approximating Riemann sums for finer and finer partitions collect around some
value A, then the function is integrable and integrates to A.

Proof. (⇒) For the forward direction, we begin with the assumption that f is
integrable on [a, b]. Given an ε > 0, we must produce a δ > 0 such that if
(P, {ck}) is any tagged partition that is δ-fine, then |R(f, P )− ∫ b

a
f | < ε.

Because f is integrable, we know there exists a partition Pε such that

U(f, Pε)− L(f, Pε) <
ε

3
.

Let M > 0 be a bound on |f |, and let n be the number of subintervals of Pε (so
that Pε really consists of n+ 1 points in [a, b]). We will argue that choosing

δ = ε/9nM

has the desired property.
Here is the idea. Let (P, {ck}) be an arbitrary tagged partition of [a, b] that

is δ-fine, and let P ′ = P ∪ Pε. The key is to establish the string of inequalities

L(f, P ′)− ε

3
< L(f, P ) ≤ U(f, P ) < U(f, P ′) +

ε

3
.

Exercise 8.1.1. (a) Explain why both the Riemann sum R(f, P ) and
∫ b
a
f fall

between L(f, P ) and U(f, P ).
(b) Explain why U(f, P ′)− L(f, P ′) < ε/3.

By the previous exercise, if we can show U(f, P ) < U(f, P ′) + ε/3 (and
similarly L(f, P ′)− ε/3 < L(f, P )), then it will follow that∣∣∣∣∣R(f, P )−

∫ b

a

f

∣∣∣∣∣ < ε
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and the proof will be done. Thus, we turn our attention toward estimating the
distance between U(f, P ) and U(f, P ′).

Exercise 8.1.2. Explain why U(f, P )− U(f, P ′) ≥ 0.

A typical term in either U(f, P ) or U(f, P ′) has the form Mk(xk − xk−1),
where Mk is the supremum of f over [xk−1, xk]. A good number of these terms
appear in both upper sums and so cancel out.

Exercise 8.1.3. (a) In terms of n, what is the largest number of terms of the
form Mk(xk − xk−1) that could appear in one of U(f, P ) or U(f, P ′) but not
the other?

(b) Finish the proof in this direction by arguing that

U(f, P )− U(f, P ′) < ε/3.

(⇐) For this direction, we assume that the ε–δ criterion in Theorem 8.1.2
holds and argue that f is integrable. Integrability, as we have defined it, depends
on our ability to choose partitions for which the upper sums are close to the
lower sums. We have remarked that given any partition P , it is always the case
that

L(f, P ) ≤ R(f, P ) ≤ U(f, P )

no matter which tags are chosen to compute R(f, P ).

Exercise 8.1.4. (a) Show that if f is continuous, then it is possible to pick
tags {ck}nk=1 so that

R(f, P ) = U(f, P ).

Similarly, there are tags for which R(f, P ) = L(f, P ) as well.
(b) If f is not continuous, it may not be possible to find tags for which

R(f, P ) = U(f, P ). Show, however, that given an arbitrary ε > 0, it is possible
to pick tags for P so that

U(f, P )−R(f, P ) < ε.

The analogous statement holds for lower sums.

Exercise 8.1.5. Use the results of the previous exercise to finish the proof of
Theorem 8.1.2. It may be easier to first argue that f is integrable using the
criterion in Theorem 7.2.8 and then argue that

∫ b
a
f = A.

Gauges and δ(x)-fine Partitions

The key to the generalized Riemann integral is to allow the δ in Theorem 8.1.2
to be a function of x.

Definition 8.1.3. A function δ : [a, b]→ R is called a gauge on [a, b] if δ(x) > 0
for all x ∈ [a, b].
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Definition 8.1.4. Given a particular gauge δ(x), a tagged partition (P, {ck}nk=1)
is δ(x)-fine if every subinterval [xk−1, xk] satisfies xk − xk−1 < δ(ck). In other
words, each subinterval [xk−1, xk] has width less than δ(ck).

It is important to see that if δ(x) is a constant function, then Definition
8.1.4 says precisely the same thing as Definition 8.1.1. In the case where δ(x)
is not a constant, Definition 8.1.4 describes a way of measuring the fineness of
partitions that is quite different.

Exercise 8.1.6. Consider the interval [0, 1].
(a) If δ(x) = 1/9, find a δ(x)-fine tagged partition of [0, 1]. Does the choice

of tags matter in this case?
(b) Let

δ(x) =
{
1/4 if x = 0
x/3 if 0 < x ≤ 1.

Construct a δ(x)-fine tagged partition of [0,1].

The tinkering required in Exercise 8.1.6 (b) may cast doubt on whether
an arbitrary gauge always admits a δ(x)-fine partition. However, it is not too
difficult to show that this is indeed the case.

Theorem 8.1.5. Given a gauge δ(x) on an interval [a, b], there exists a tagged
partition (P, {ck}nk=1) that is δ(x)-fine.

Proof. Let I0 = [a, b]. It may be possible to find a tag such that the trivial
partition P = {a = x0 < x1 = b} works. Specifically, if b − a < δ(x) for some
x ∈ [a, b], then we can set c1 equal to such an x and notice that (P, {c1}) is
δ(x)-fine. If no such x exists, then bisect [a, b] into two equal halves.

Exercise 8.1.7. Apply the previous algorithm to each half and then explain
why this procedure must eventually terminate after some finite number of steps.

Generalized Riemann Integrability

Keeping in mind that Theorem 8.1.2 offers an equivalent way to define Riemann
integrability, we now propose a new method for defining the value of the integral.

Definition 8.1.6 (Generalized Riemann Integrability). A function f on
[a, b] has generalized Riemann integral A if, for every ε > 0, there exists a gauge
δ(x) on [a, b] such that for each tagged partition (P, {ck}nk=1) that is δ(x)-fine,
it is true that

|R(f, P )−A| < ε.

In this case, we write A =
∫ b
a
f .

Theorem 8.1.7. If a function has a generalized Riemann integral, then the
value of the integral is unique.
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Proof. Assume that a function f has generalized Riemann integral A1 and that
it also has generalized Riemann integral A2. We must prove A1 = A2.

Let ε > 0. Definition 8.1.6 assures us that there exists a gauge δ1(x) such
that

|R(f, P )−A1| < ε

2
for all tagged partitions that are δ1(x)-fine. Likewise, there exists another gauge
δ2(x) such that

|R(f, P )−A2| < ε

2
for all δ2(x)-fine tagged partitions.

Exercise 8.1.8. Finish the argument.

The implications of Definition 8.1.6 on the resulting class of integrable func-
tions are far reaching. This is somewhat surprising given that the criteria for
integrability in Definition 8.1.6 and Theorem 8.1.2 differ in such a small way.
One observation that should be immediately evident is the following.

Exercise 8.1.9. Explain why every function that is Riemann-integrable with∫ b
a
f = A must also have generalized Riemann integral A.

The converse statement is not true, and that is the important point. One
example that we have of a non-Riemann-integrable function is Dirichlet’s func-
tion

g(x) =
{
1 if x ∈ Q
0 if x /∈ Q

which has discontinuities at every point of R.

Theorem 8.1.8. Dirichlet’s function g(x) is generalized Riemann-integrable on
[0, 1] with

∫ 1
0 g = 0.

Proof. Let ε > 0. By Definition 8.1.6, we must construct a gauge δ(x) on [0, 1]
such that whenever (P, {ck}nk=1) is a δ(x)-fine tagged partition, it follows that

0 ≤
n∑

k=1

g(ck)(xk − xk−1) < ε.

The gauge represents a restriction on the size of ∆xk = xk − xk−1 in the sense
that ∆xk < δ(ck). The Riemann sum consists of products of the form g(ck)∆xk.
Thus, for irrational tags, there is nothing to worry about because g(ck) = 0 in
this case. Our task is to make sure that any time a tag ck is rational, it comes
from a suitably thin subinterval.

Let {r1, r2, r3, . . . } be an enumeration of the countable set of rational num-
bers contained in [0, 1]. For each rk, set δ(rk) = ε/2k+1. For x irrational, set
δ(x) = 1.
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Exercise 8.1.10. Show that if (P, {ck}nk=1) is a δ(x)-fine tagged partition, then
R(f, P ) < ε. Keep in mind that each rational number rk can show up as a tag
in at most two subintervals of P .

Dirichlet’s function fails to be Riemann-integrable because, given any (un-
tagged) partition, it is possible to make R(f, P ) = 1 or R(f, P ) = 0 by choosing
the tags to be either all rational or all irrational. For the generalized Rie-
mann integral, choosing all rational tags results in a tagged partition that is
not δ(x)-fine (when δ(x) is small on rational points) and so does not have to be
considered. In general, allowing for nonconstant gauges allows us to be more
discriminating about which tagged partitions qualify as δ(x)-fine. The result,
as we have just seen, is that it may be easier to achieve the inequality

|R(f, P )−A| < ε

for the often smaller and more carefully selected set of tagged partitions that
remain.

The Fundamental Theorem of Calculus

We conclude this brief introduction to the generalized Riemann integral with a
proof of the Fundamental Theorem of Calculus. As was alluded to earlier, the
most notable distinction between the following theorem and part (i) of Theorem
7.5.1 is that here we do not need to assume that the derivative function is inte-
grable. Using the generalized Riemann integral, every derivative is integrable,
and the integral can be evaluated using the antiderivative in the familiar way.
It is also interesting to note that in Theorem 7.5.1 the Mean Value Theorem
played the crucial role in the argument, but it is not needed here.

Theorem 8.1.9. Assume F : [a, b]→ R is differentiable at each point in [a, b]
and set f(x) = F ′(x). Then, f has the generalized Riemann integral

∫ b

a

f = F (b)− F (a).

Proof. Let P = {a = x0 < x1 < x2 < · · · < xn = b} be a partition of [a, b].
Both this proof and the proof of Theorem 7.5.1 make use of the following fact.

Exercise 8.1.11. Show that

F (b)− F (a) =
n∑

k=1

[F (xk)− F (xk−1)] .
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If {ck}nk=1 is a set of tags for P , then we can estimate the difference between
the Riemann sum R(f, P ) and F (b)− F (a) by

|F (b)− F (a)−R(f, P )| =

∣∣∣∣∣
n∑

k=1

[F (xk)− F (xk−1)− f(ck)(xx − xk−1)]

∣∣∣∣∣
≤

n∑
k=1

|F (xk)− F (xk−1)− f(ck)(xx − xk−1)| .

Let ε > 0. To prove the theorem, we must construct a gauge δ(c) such that

(2) |F (b)− F (a)−R(f, P )| < ε

for all (P, {ck}) that are δ(c)-fine. (Using the variable c in the gauge function
is more convenient than x in this case.)

Exercise 8.1.12. For each c ∈ [a, b], explain why there exists a δ(c) > 0 (a
δ > 0 depending on c) such that∣∣∣∣F (x)− F (c)

x− c
− f(c)

∣∣∣∣ < ε

for all 0 < |x− c| < δ(c).

This δ(c) is the desired gauge on [a, b]. Let (P, {ck}nk=1) be a δ(c)-fine parti-
tion of [a, b]. It just remains to show that equation (2) is satisfied for this tagged
partition.

Exercise 8.1.13. (a) For a particular ck ∈ [xk−1, xk] of P , show that

|F (xk)− F (ck)− f(ck)(xk − ck)| < ε(xk − ck)

and
|F (ck)− F (xk−1)− f(ck)(ck − xk−1)| < ε(c− xk−1).

(b) Now, argue that

|F (xk)− F (xk−1)− f(ck)(xk − xk−1)| < ε(xk − xk−1),

and use this fact to complete the proof of the theorem.

If we consider the function

F (x) =
{

x(3/2) sin(1/x) if x �= 0
0 if x = 0

then it is not too difficult to show that F is differentiable everywhere, including
x = 0, with

F ′(x) =
{
(3/2)

√
x sin(1/x)− (1/

√
x) cos(1/x) if x �= 0

0 if x = 0.
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What is notable here is that the derivative is unbounded near the origin. The
theory of the ordinary Riemann integral begins with the assumption that we
only consider bounded functions on closed intervals, but there is no such re-
striction for the generalized Riemann integral. Theorem 8.1.9 proves that F ′

has a generalized integral. Now, improper Riemann integrals have been created
to extend Riemann integration to some unbounded functions, but it is another
interesting fact about the generalized Riemann integral that any function hav-
ing an improper integral must already be integrable in the sense described in
Definition 8.1.6.

As a parting gesture, let’s show how Theorem 8.1.9 yields a short verification
of the change-of-variables technique from calculus.

Theorem 8.1.10 (Substitution Formula). Let g : [a, b] → R be differen-
tiable at each point of [a, b], and assume F is differentiable on the set g([a, b]).
If f(x) = F ′(x) for all x ∈ g([a, b]), then

∫ b

a

(f ◦ g) · g′ =
∫ g(b)

g(a)
f.

Proof. The hypothesis of the theorem guarantees that the function (F ◦ g)(x)
is differentiable for all x ∈ [a, b].

Exercise 8.1.14. (a) Why are we sure that (F ◦ g)′(x) has a generalized Rie-
mann integral?

(b) Use the chain rule (Theorem 5.2.5) and Theorem 8.1.9 to prove that

∫ b

a

(f ◦ g) · g′ = F (g(b))− F (g(a)).

(c) Finish the proof by showing that

∫ g(b)

g(a)
f = F (g(b))− F (g(a)).

The impressive properties of the generalized Riemann integral do not end
here. The central source for the material in this section is Robert Bartle’s excel-
lent article “Return to the Riemann Integral,” which appeared in the American
Mathematical Monthly, October, 1996. This article goes on to outline con-
vergence theorems in the spirit of Theorem 7.4.4 for the generalized Riemann
integral as well as its relationship to the theory of the Lebesgue integral. A more
detailed development can be found in the recently published book Integral: An
Easy Approach after Kurzweil and Henstock by Rudolph Výborný and Lee Peng
Yee or in a forthcoming book by Robert Bartle to be published by the American
Mathematical Society.
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8.2 Metric Spaces and the Baire Category
Theorem

A natural question to ask is whether the theorems we have proved about se-
quences, series, and functions inR have analogs in the planeR2 or in even higher
dimensions. Looking back over the proofs, one crucial observation is that most
of the arguments depend on just a few basic properties of the absolute value
function. Interpreting the statement “|x− y|” to mean the “distance from x to
y in R,” our aim is to experiment with other ways of measuring “distance” on
other sets such as R2 and C[0, 1], the space of continuous functions on [0, 1].

Definition 8.2.1. Given a set X, a function d : X ×X → R is a metric on X
if for all x, y ∈ X:

(i) d(x, y) ≥ 0 with d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x), and

(iii) for all z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).

A metric space is a set X together with a metric d.

Property (iii) in the previous definition is the “triangle inequality.” The next
two exercises illustrate the point that the same set X can be home to several
different metrics. When referring to a metric space, we must specify the set and
the particular distance function d.

Exercise 8.2.1. Decide which of the following are metrics on X = R2. For
each, we let x = (x1, x2) and y = (y1, y2) be points in the plane.

(a) d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2.

(b) d(x, y) = 1 if x �= y; and d(x, x) = 0.
(c) d(x, y) = max{|x1 − y1|, |x2 − y2|}.
(d) d(x, y) = |x1x2 + y1y2|.

Exercise 8.2.2. Let C[0, 1] be the collection of continuous functions on the
closed interval [0, 1]. Decide which of the following are metrics on C[0, 1].

(a) d(f, g) = sup{|f(x)− g(x)| : x ∈ [0, 1]}.
(b) d(f, g) = |f(1)− g(1)|.
(c) d(f, g) =

∫ 1
0 |f − g|.

The following distance function is called the discrete metric and can be
defined on any set X. For any x, y ∈ X, let

ρ(x, y) =
{
1 if x �= y
0 if x = y.

Exercise 8.2.3. Verify that the discrete metric is actually a metric.
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Basic Definitions

Definition 8.2.2. Let (X, d) be a metric space. A sequence (xn) ⊆ X con-
verges to an element x ∈ X if for all ε > 0 there exists an N ∈ N such that
d(xn, x) < ε whenever n ≥ N .

Definition 8.2.3. A sequence (xn) in a metric space (X, d) is a Cauchy se-
quence if for all ε > 0 there exists an N ∈ N such that d(xm, xn) < ε whenever
m,n ≥ N .

Exercise 8.2.4. Show that a convergent sequence is Cauchy.

The Cauchy Criterion, as it is called in R, was an “if and only if” statement.
In the general metric space setting, however, the converse statement does not
always hold. Recall that, in R, the assertion that “Cauchy sequences converge”
was shown to be equivalent to the Axiom of Completeness. In order to transport
the Axiom of Completeness into a metric space, we would need to have an
ordering on our space so that we could discuss such things as upper bounds. It
is an interesting observation that not every set can be ordered in a satisfying
way (the points in R2 for example). Even without an ordering, we are still going
to want completeness. For metric spaces, the convergence of Cauchy sequences
is taken to be the definition of completeness.

Definition 8.2.4. A metric space (X, d) is complete if every Cauchy sequence
in X converges to an element of X.

Exercise 8.2.5. (a) Consider R2 with the metric defined in Exercise 8.2.1 (b).
What do Cauchy sequences look like in this space? Is R2 complete with respect
to this metric?

(b) Show that C[0, 1] is complete with respect to the metric in Exercise 8.2.2
(a).

(c) Define C1[0, 1] to be the collection of differentiable functions on [0,1]
whose derivatives are also continuous. Is C1[0, 1] complete with respect to the
metric defined in Exercise 8.2.2 (a)?

(d) What does a convergent sequence in R look like when we consider the
discrete metric ρ(x, y) examined in Exercise 8.2.3?

The metric on C[0, 1] in Exercise 8.2.2 (a) is important enough to have
earned the nickname “sup norm” and is denoted by

d(f, g) = ‖f − g‖∞ = sup{|f(x)− g(x)| : x ∈ [0, 1]}.

In all upcoming discussions, it is assumed that the space C[0, 1] is endowed with
this metric unless otherwise specified.

Definition 8.2.5. Let (X, d) be a metric space. A function f : X → R is
continuous at a point x ∈ X if for all ε > 0 there exists a δ > 0 such that
|f(x)− f(y)| < ε whenever d(x, y) < δ.
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Exercise 8.2.6. Which of these functions on C[0, 1] are continuous?
(a) g(f) =

∫ 1
0 fk, where k is some fixed function in C[0, 1].

(b) g(f) = f(1/2).
(c) g(f) = f(1/2), but this time with respect to the metric in Exercise 8.2.2

(c).

Topology on Metric Spaces

Definition 8.2.6. Given ε > 0 and an element x in the metric space (X, d),
the ε-neighborhood of x is the set Vε(x) = {y ∈ X : d(x, y) < ε}.
Exercise 8.2.7. (a) Describe the ε-neighborhoods in R2 for each of the differ-
ent metrics described in Exercise 8.2.1. How about for the discrete metric?

(b) What do ε-neighborhoods inR look like using the discrete metric ρ(x, y)?

With the definition of an ε-neighborhood, we can now define open sets, limit
points, and closed sets exactly as we did before. A set O ⊆ X is open if for every
x ∈ O we can find a neighborhood Vε(x) ⊆ O. A point x is a limit point of a
set A if every Vε(x) intersects A in some point other than x. A set C is closed
if it contains its limit points.

Exercise 8.2.8. (a) Let (X, d) be a metric space, and pick x ∈ X. Verify that
an ε-neighborhood Vε(x) is an open set. Is the set

Cε(x) = {y ∈ X : d(x, y) ≤ ε}
a closed set?

(b) Show that the set Y = {f ∈ C[0, 1] : ‖f‖∞ ≤ 1} is closed in C[0, 1].
(c) Is the set T = {f ∈ C[0, 1] : f(0) = 0} open, closed, or neither in C[0, 1]?

We define compactness in metric spaces just as we did for R.

Definition 8.2.7. A subset K of a metric space (X, d) is compact if every
sequence in K has a convergent subsequence that converges to a limit in K.

An extremely useful characterization of compactness in R is the proposition
that a set is compact if and only if it is closed and bounded. For abstract metric
spaces, this proposition only holds in the forward direction.

Exercise 8.2.9. (a) Supply a definition for bounded subsets of a metric space
(X, d).

(b) Show that if K is a compact subset of the metric space (X, d), then K
is closed and bounded.

(c) Show that Y ⊆ C[0, 1] from Exercise 8.2.8 (b) is closed and bounded but
not compact.

A good hint for part (c) of the previous exercise can be found in Exercise
6.2.15 from Chapter 6. This exercise defines the concept of an equicontinu-
ous family of functions, which is a key ingredient in the Arzela–Ascoli Theo-
rem (Exercise 6.2.16). The Arzela–Ascoli Theorem states that any bounded,
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equicontinuous collection of functions in C[0, 1] must have a uniformly conver-
gent subsequence. One way to summarize this famous result—which we did not
have the language for in Chapter 6—is as a statement describing a particular
class of compact subsets in C[0, 1]. Looking at the definition of compactness,
and remembering that the uniform limit of continuous functions is continuous,
the Arzela–Ascoli Theorem states that any closed, bounded, equicontinuous
collection of functions is a compact subset of C[0, 1].

Definition 8.2.8. Given a subset E of a metric space (X, d), the closure E is
the union of E together with its limit points. The interior of E is denoted by
E◦ and is defined as

E◦ = {x ∈ E : there exists Vε(x) ⊆ E}.

Closure and interior are dual concepts. Results about these concepts come
in pairs and exhibit an elegant and useful symmetry.

Exercise 8.2.10. (a) Show that E is closed if and only if E = E. Show that
E is open if and only if E◦ = E.

(b) Show that E
c
= (Ec)◦, and similarly that (E◦)c = Ec.

A good hint for the previous exercise is to review the proofs from Chapter
3, where closure at least is discussed. Thinking of all of these concepts as they
relate to R or R2 with the usual metric is not a bad idea. However, it is
important to remember also that rigorous proofs must be constructed purely
from the relevant definitions.

Exercise 8.2.11. To keep things from sounding too familiar, find an example
of a metric space (from somewhere in the preceding discussion) where

Vε(x) �= {y ∈ X : d(x, y) ≤ ε}

for some ε-neighborhood in a metric space (X, d).

We are on our way toward the Baire Category Theorem. The next definitions
provide the final bit of vocabulary needed to state the result.

Definition 8.2.9. A set A ⊆ X is dense in the metric space (X, d) if A = X.
A subset E of a metric space (X, d) is nowhere-dense in X if E

◦
is empty.

Exercise 8.2.12. If E is a subspace of a metric space (X, d), show that E is
nowhere-dense in X if and only if E

c
is dense in X.

The Baire Category Theorem

In Section 3.5, we proved Baire’s Theorem, which states that it is impossible to
write the real numbersR as the countable union of nowhere-dense sets. Previous
to this, we knew thatR was too big to be written as the countable union of single
points (R is uncountable), but Baire’s Theorem improves on this by asserting
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that the only way to make R from a countable union of arbitrary sets is for the
closure of at least one of these sets to contain an interval. The keystone to the
proof of Baire’s Theorem is the completeness of R. The idea now is to replace
R with an arbitrary complete metric space and prove the theorem in this more
general setting. This leads to a statement that can be used to discuss the size
and structure of other spaces such as R2 and C[0, 1]. At the end of Chapter 3,
we mentioned one particularly fascinating implication of this result for C[0, 1],
which is that—despite the substantial difficulty required to produce an example
of one—most continuous functions are nowhere-differentiable. It would be a
good idea at this point to reread Sections 3.6 and 5.5. We are now equipped to
carry out the details promised in these discussions.

Theorem 8.2.10. Let (X, d) be a complete metric space, and let {On} be a
countable collection of dense, open subsets of X. Then,

⋂∞
n=1 On is not empty.

Proof. When we proved this theorem on R, completeness manifested itself in
the form of the Nested Interval Property. We could derive something akin
to NIP in the metric space setting, but instead let’s take an approach that
uses the convergence of Cauchy sequences (because this is how we have defined
completeness).

Pick x1 ∈ O1. Because O1 is open, there exists an ε1 > 0 such that Vε1(x1) ⊆
O1.

Exercise 8.2.13. (a) Give the details for why we know there exists a point
x2 ∈ Vε1(x1) ∩O2 and an ε2 > 0 satisfying ε2 < ε1/2 with Vε2(x2) contained in
O2 and

Vε2(x2) ⊆ Vε1(x1).

(b) Proceed along this line and use the completeness of (X, d) to produce a
single point x ∈ On for every n ∈ N.

Theorem 8.2.11 (Baire Category Theorem). A complete metric space is
not the union of a countable collection of nowhere-dense sets.

Proof. Let (X, d) be a complete metric space.

Exercise 8.2.14. If E is nowhere-dense in X, then what can we say about
(E)c? Now, complete the proof of the theorem.

This result is called the Baire Category Theorem because it creates two
categories of size for subsets in a metric space. A set of “first category” is one
that can be written as a countable union of nowhere-dense sets. These are the
small, intuitively thin subsets of a metric space. We now see that if our metric
space is complete, then it is necessarily of “second category,” meaning it cannot
be written as a countable union of nowhere-dense sets. Given a subset A of a
complete metric space X, showing that A is of first category is a mathematically
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precise way of proving that A constitutes a very minor portion of the set X.
The term “meager” is often used to mean a set of first category.

With the stage set, we now outline the argument that continuous functions
that are differentiable at even one point of [0,1] form a meager subset of the
metric space C[0, 1].

Theorem 8.2.12. The set

D = {f ∈ C[0, 1] : f ′(x) exists for some x ∈ [0, 1]}
is a set of first category in C[0, 1].

Proof. For each pair of natural numbers m,n, define

Am,n = {f ∈ C[0, 1] : there exists x ∈ [0, 1] where∣∣∣∣f(x)− f(t)
x− t

∣∣∣∣ ≤ n whenever 0 < |x− t| < 1
m

}
.

This definition takes some time to digest. Think of 1/m as defining a δ-
neighborhood around the point x, and view n as an upper bound on the mag-
nitude of the slopes of lines through the two points (x, f(x)) and (t, f(t)). The
set Am,n contains any function in C[0, 1] for which it is possible to find at
least one point x where the slopes through (x, f(x)) and points on the function
nearby—within 1/m to be precise—are bounded by n.

Exercise 8.2.15. Show that if f ∈ C[0, 1] is differentiable at a point x ∈ [0, 1],
then f ∈ Am,n for some pair m,n ∈ N.

The collection of subsets {Am,n : m,n ∈ N} is countable, and we have just
seen that the union of these sets contains our set D. Because it is not difficult
to see that a subset of a set of first category is first category, the final hurdle in
the argument is to prove that each Am,n is nowhere-dense in C[0, 1].

Fix m and n. The first order of business is to prove that Am,n is a closed
set. To this end, let (fk) be a sequence in Am,n and assume fk → f in C[0, 1].
We need to show f ∈ Am,n.

Because fk ∈ Am,n, then for each k ∈ N there exists a point xk ∈ [0, 1]
where ∣∣∣∣fk(xk)− fk(t)

xk − t

∣∣∣∣ ≤ n

for all 0 < |x− t| < 1/m.

Exercise 8.2.16. (a) The sequence (xk) does not necessarily converge, but ex-
plain why there exists a subsequence (xkl

) that is convergent. Let x = lim(xkl
).

(b) Prove that fkl
(xkl

)→ f(x).
(c) Let t ∈ [0, 1] satisfy 0 < |x− t| < 1/m. Show that∣∣∣∣f(x)− f(t)

x− t

∣∣∣∣ ≤ n

and conclude that Am,n is closed.
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Because Am,n is closed, Am,n = Am,n. In order to prove that Am,n is
nowhere-dense, we just have to show that it contains no ε-neighborhoods, so
pick an arbitrary f ∈ Am,n, let ε > 0, and consider the ε-neighborhood Vε(f)
in C[0, 1]. To show that this set is not contained in Am,n, we must produce a
function g ∈ C[0, 1] that satisfies ‖f − g‖∞ < ε and has the property that there
is no point x ∈ [0, 1] where∣∣∣∣g(x)− g(t)

x− t

∣∣∣∣ ≤ n for all 0 < |x− t| < 1/m.

Exercise 8.2.17. A function is called piecewise linear if its graph consists of a
finite number of line segments.

(a) Show that there exists a piecewise linear function p ∈ C[0, 1] satisfying
‖f − p‖∞ < ε/2.

(b) Show that if h is any function in C[0, 1] that is bounded by 1, then the
function

g(x) = p(x) +
ε

2
h(x)

satisfies g ∈ Vε(f).
(c) Construct a piecewise linear function h(x) in C[0, 1] that is bounded by

1 and leads to the conclusion g /∈ Am,n, where g is defined as in (b). Explain
how this completes the argument for Theorem 8.2.12.

8.3 Fourier Series

In his famous treatise, Theorie Analytique de la Chaleur (The Analytical The-
ory of Heat), 1822, Joseph Fourier (1768–1830) boldly asserts, “Thus there is
no function f(x), or part of a function, which cannot be expressed by a trigono-
metric series.”1

It is difficult to exaggerate the mathematical richness of this idea. It has been
convincingly argued by mathematical historians that the ensuing investigation
into the validity of Fourier’s conjecture was the fundamental catalyst for the
pursuit of rigor that characterizes 19th century mathematics. Power series had
been in wide use in the 150 years leading up to Fourier’s work, largely because
they behaved so well under the operations of calculus. A function expressed
as a power series is continuous, differentiable an infinite number of times, and
can be integrated and differentiated as though it were a polynomial. In the
presence of such agreeable behavior, there was no compelling reason for mathe-
maticians to formulate a more precise understanding of “limit” or “convergence”
because there were no arguments to resolve. Fourier’s successful implementation
of trigonometric series to the study of heat flow changed all of this. To under-
stand what the fuss was really about, we need to look more closely at what

1Quotes in this section are taken from the article by W.A. Coppel, “J.B. Fourier—On the
Occasion of his Two Hundredth Birthday,” American Mathematical Monthly, 76, 1969.
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Fourier was asserting, focusing individually on the terms “function,” “express,”
and “trigonometric series.”

Trigonometric Series

The basic principle behind any series representations is to express a given func-
tion f(x) as a sum of simpler functions. For power series, the component func-
tions are {1, x, x2, x3, . . . }, so that the series takes the form

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · · .

A trigonometric series is a very different type of infinite series where the func-
tions

{1, cos(x), sin(x), cos(2x), sin(2x), cos(3x), sin(3x), . . . }
serve as the components. Thus, a trigonometric series has the form

f(x) = a0 + a1 cos(x) + b1 sin(x) + a2 cos(2x) + b2 sin(2x) + a3 cos(3x) + · · ·

= a0 +
∞∑
n=1

an cos(nx) + bn sin(nx).

The idea of representing a function in this way was not completely new when
Fourier first publicly proposed it in 1807. About 50 years earlier, Jean Le Rond
d’Alembert (1717–1783) published the partial differential equation

(1)
∂2u

∂x2 =
∂2u

∂t2

as a means of describing the motion of a vibrating string. In this model, the
function u(x, t) represents the displacement of the string at time t ≥ 0 and at
some point x, which we will take to be in the interval [0, π]. Because the string
is understood to be attached at each end of this interval, we have

(2) u(0, t) = 0 and u(π, t) = 0

for all values of t ≥ 0. Now, at t = 0, the string is displaced some initial amount,
and at the moment it is released we assume

(3)
∂u

∂t
(x, 0) = 0,

meaning that, although the string immediately starts to move, it is given no
initial velocity at any point. Finding a function u(x, t) that satisfies equations
(1), (2), and (3) is not too difficult.

Exercise 8.3.1. (a) Verify that

u(x, t) = bn sin(nx) cos(nt)
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satisfies equations (1), (2), and (3) for any choice of n ∈ N and bn ∈ R . What
goes wrong if n /∈ N?

(b) Explain why any finite sum of functions of the form given in part (a)
would also satisfy (1), (2), and (3). (Incidentally, it is possible to hear the
different solutions in (a) for values of n up to 4 or 5 by isolating the harmonics
on a well-made stringed instrument.)

Now, we come to the truly interesting issue. We have just seen that any
function of the form

(4) u(x, t) =
N∑

n=1

bn sin(nx) cos(nt)

solves d’Alembert’s wave equation, as it is called, but the particular solution we
want depends on how the string is originally “plucked.” At time t = 0, we will
assume that the string is given some initial displacement f(x) = u(x, 0). Setting
t = 0 in our family of solutions in (4), the hope is that the initial displacement
function f(x) can be expressed as

(5) f(x) =
N∑

n=1

bn sin(nx).

What this means is that if there exist suitable coefficients b1, b2, . . . , bN so that
f(x) can be written as a sum of sine functions as in (5), then the vibrating-string
problem is completely solved by the function u(x, t) given in (4). The obvious
question to ask, then, is just what types of functions can be constructed as
linear combinations of the functions {sin(x), sin(2x), sin(3x), . . . }. How general
can f(x) be? Daniel Bernoulli (1700–1782) is usually credited with proposing
the idea that by taking an infinite sum in equation (5), it may be possible to
represent any initial position f(x) over the interval [0, π].

Fourier was studying the propagation of heat when trigonometric series
resurfaced in his work in a very similar way. For Fourier, f(x) represented
an initial temperature applied to the boundary of some heat-conducting mate-
rial. The differential equations describing heat flow are slightly different from
d’Alembert’s wave equation, but they still involve the second derivatives that
make expressing f(x) as a sum of trigonometric functions the crucial step in
finding a solution.

Periodic Functions

In the early stages of his work, Fourier focused his attention on even functions
(i.e., functions satisfying f(x) = f(−x)) and sought out ways to represent them
as series of the form

∑
an cos(nx). Eventually, he arrived at the more general

formulation of the problem, which is to find suitable coefficients (an) and (bn)
to express a function f(x) as

(6) f(x) = a0 +
∞∑
n=1

an cos(nx) + bn sin(nx).
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Figure 8.1: f(x) = x2 over (−π, π], extended to be 2π periodic.

As we begin to explore how arbitrary f(x) can be, it is important to notice
that every component of the series in equation (6) is periodic with period 2π.
Turning our attention to the term “function,” it now follows that any function
we hope to represent by a trigonometric series will necessarily be periodic as
well. We will give primary attention to the interval (−π, π]. What this means
is that, given a function such as f(x) = x2, we will restrict our attention to f
over the domain (−π, π] and then extend f periodically to all of R via the rule
f(x) = f(x+ 2kπ) for all k ∈ Z (Fig. 8.1).

This convention of focusing on just the part of f(x) over the interval (−π, π]
hardly seems controversial, but it did generate some confusion in Fourier’s time.
In Sections 1.2 and 4.1, we alluded to the fact that in the early 1800s the term
“function” was used to mean something more like “formula.” It was generally
believed that a function’s behavior over the interval (−π, π] determined its be-
havior everywhere else, a point of view that follows naturally from an overly
zealous faith in Taylor series. The modern definition of function given in Def-
inition 1.2.3 is attributed to Dirichlet from the 1830s, although the idea had
been suggested earlier by others. In Theorie Analytique de la Chaleur, Fourier
clarifies his own use of the term by stating that a “function f(x) represents a
succession of values or ordinates, each of which is arbitrary...We do not suppose
these ordinates to be subject to a common law; they succeed each other in any
matter whatever, and each of them is given as if it were a single quantity.”

In the end, we will need to make a few assumptions about the nature of our
functions, but the requirements we will need are quite mild, especially when com-
pared with restrictions such as “infinitely differentiable,” which are necessary—
but not sufficient—for the existence of a Taylor series representation.

Types of Convergence

This brings us to a discussion of the word “expressed.” The assumptions we
must ultimately place on our function depend on the kind of convergence we
aim to demonstrate. How are we to understand the equal sign in equation (6)?
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Our usual course of action with infinite series is first to define the partial sum

(7) SN (x) = a0 +
N∑

n=1

an cos(nx) + bn sin(nx).

To “express f(x) as a trigonometric series” then means finding coefficients
(an)∞n=0 and (bn)

∞
n=1 so that

(8) f(x) = lim
N→∞

SN (x).

The question remains as to what kind of limit this is. Fourier probably imagined
something akin to a pointwise limit because the concept of uniform convergence
had not yet been formulated. In addition to pointwise convergence and uniform
convergence, there are still other ways to interpret the limit in equation (8).
Although it won’t be discussed here, it turns out that proving∫ π

−π

|SN (x)− f(x)|2 dx → 0

is a natural way to understand equation (8) for a particular class of functions.
This is referred to as L2 convergence. An alternate type of convergence that we
will discuss, called Cesaro mean convergence, relies on demonstrating that the
averages of the partial sums converge, in our case uniformly, to f(x).

Fourier Coefficients

In the discussion that follows, we are going to need a few calculus facts.

Exercise 8.3.2. Using trigonometric identities when necessary, verify the fol-
lowing integrals.

(a) For all n ∈ N,∫ π

−π

cos(nx)dx = 0 and
∫ π

−π

sin(nx)dx = 0.

(b) For all n ∈ N,∫ π

−π

cos2(nx)dx = π and
∫ π

−π

sin2(nx)dx = π.

(c) For all m,n ∈ N, ∫ π

−π

cos(mx) sin(nx)dx = 0.

For m �= n,∫ π

−π

cos(mx) cos(nx)dx = 0 and
∫ π

−π

sin(nx) sin(nx)dx = 0.
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The consequences of these results are much more interesting than their
proofs. The intuition from inner-product spaces is useful. Interpreting the
integral as a kind of dot product, this exercise can be summarized by saying
that the functions

{1, cos(x), sin(x), cos(2x), sin(2x), cos(3x), . . . }

are all orthogonal to each other. The content of what follows is that they in fact
form a basis for a large class of functions.

The first order of business is to deduce some reasonable candidates for the
coefficients (an) and (bn) in equation (6). Given a function f(x), the trick is
to assume we are in possession of a representation described in (6) and then
manipulate this equation in a way that leads to formulas for (an) and (bn).
This is exactly how we proceeded with Taylor series expansions in Section 6.6.
Taylor’s formula for the coefficients was produced by repeatedly differentiating
each side of the desired representation equation. Here, we integrate.

To compute a0, integrate each side of equation (6) from −π to π, brazenly
take the integral inside the infinite sum, and use Exercise 8.3.2 to get

∫ π

−π

f(x)dx =
∫ π

−π

[
a0 +

∞∑
n=1

an cos(nx) + bn sin(nx)

]
dx

=
∫ π

−π

a0dx+
∞∑
n=1

∫ π

−π

[an cos(nx) + bn sin(nx)] dx

= a0(2π) +
∞∑
n=1

an0 + bn0 = a0(2π).

Thus,

(9) a0 =
1
2π

∫ π

−π

f(x)dx.

The switching of the sum and the integral sign in the second step of the previous
calculation should rightly raise some eyebrows, but keep in mind that we are
really working backward from a hypothetical representation for f(x) to get a
proposal for what a0 should be. The point is not to justify the derivation of the
formula but rather to show that using this value for a0 ultimately gives us the
representation we want. That hard work lies ahead.

Now, consider a fixed m ≥ 1. To compute am, we first multiply each side of
equation (6) by cos(mx) and again integrate over the interval [−π, π].

Exercise 8.3.3. Derive the formulas

(10) am =
1
π

∫ π

−π

f(x) cos(mx)dx and bm =
1
π

∫ π

−π

f(x) sin(mx)dx

for all m ≥ 1.
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Let’s take a short break and empirically test our recipes for (am) and (bm)
on a few simple functions.

Example 8.3.1. Let

f(x) =




1 if 0 < x < π
0 if x = 0 or x = π
−1 if −π < x < 0.

The fact that f is an odd function (i.e., f(−x) = −f(x)) means we can avoid
doing any integrals for the moment and just appeal to a symmetry argument to
conclude

a0 =
1
2π

∫ π

−π

f(x)dx = 0 and an =
1
π

∫ π

−π

f(x) cos(nx) = 0

for all n ≥ 1. We can also simplify the integral for bn by writing

bn =
1
π

∫ π

−π

f(x) sin(nx) =
2
π

∫ π

0
sin(nx)dx

=
2
π

(−1
n
cos(nx)|π0

)

=
{
4/nπ if n is odd
0 if n is even.

Proceeding on blind faith, we plug these results into equation (6) to get the
representation

f(x) =
4
π

∞∑
n=0

1
2n+ 1

sin((2n+ 1)x).

A graph of a few of the partial sums of this series (Fig. 8.2) should generate
some optimism about the legitimacy of what is happening.

Exercise 8.3.4. (a) Referring to the previous example, explain why we can be
sure that the convergence of the partial sums to f(x) is not uniform on any
interval containing 0. (b) Repeat the computations of Example 8.3.1 for the
function g(x) = |x| and examine graphs for some partial sums. This time, make
use of the fact that g is even (g(x) = g(−x)) to simplify the calculations. By
just looking at the coefficients, how do we know this series converges uniformly
to something?

(c) Use graphs to collect some empirical evidence regarding the question of
term-by-term differentiation in our two examples to this point. Is it possible to
conclude convergence or divergence of either differentiated series by looking at
the resulting coefficients? In Chapter 6, we have a theorem about the legitimacy
of term-by-term differentiation. Can it be applied to either of these examples?
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–3 –2 –1 1 2 3

Figure 8.2: f , S4, and S20 on [−π, π].

The Riemann–Lebesgue Lemma

In the examples we have seen to this point, the sequences of Fourier coefficients
(an) and (bn) all tend to 0 as n → ∞. This is always the case. Understanding
why this happens is crucial to our upcoming convergence proof.

We start with a simple observation. The reason∫ π

−π

sin(x)dx = 0

is that the positive and negative portions of the sine curve cancel each other
out. The same is true of ∫ π

−π

sin(nx)dx = 0.

Now, when n is large, the period of the oscillations of sin(nx) becomes very
short—2π/n to be precise. If h(x) is a continuous function, then the values of
h do not vary too much as sin(nx) ranges over each short period. The result is
that the successive positive and negative oscillations of the product h(x) sin(nx)
(Fig. 8.3) are nearly the same size so that the cancellation leads to a small value
for ∫ π

−π

h(x) sin(nx)dx.

Theorem 8.3.2 (Riemann–Lebesgue Lemma). Assume h(x) is continuous
on (−π, π]. Then,∫ π

−π

h(x) sin(nx)dx → 0 and
∫ π

−π

h(x) cos(nx)dx → 0

as n → ∞.
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Figure 8.3: h(x) and h(x) sin(nx) for large n.

Proof. Remember that, like all of our functions from here on, we are mentally
extending h to be 2π-periodic. Thus, while our attention is generally focused
on the interval (−π, π], the assumption of continuity is intended to mean that
the periodically extended h is continuous on all of R. Note that in addition to
continuity on (−π, π], this amounts to insisting that limx→−π+ h(x) = h(π).

Exercise 8.3.5. Explain why h is uniformly continuous on R.

Given ε > 0, choose δ > 0 such that |x−y| < δ implies |h(x)−h(y)| < ε/2. The
period of sin(nx) is 2π/n, so choose N large enough so that 2π/n < δ whenever
n ≥ N . Now, consider a particular interval [a, b] of length 2π/n over which
sin(nx) moves through one complete oscillation.

Exercise 8.3.6. Show that
∫ b
a
h(x) sin(nx)dx < ε/n, and use this fact to com-

plete the proof.

Applications of Fourier series are not restricted to continuous functions (Ex-
ample 8.3.1). Even though our particular proof makes use of continuity, the
Riemann–Lebesgue lemma holds under much weaker hypotheses. It is true,
however, that any proof of this fact ultimately takes advantage of the cancella-
tion of positive and negative components. Recall from Chapter 2 that this type
of cancellation is the mechanism that distinguishes conditional convergence from
absolute convergence. In the end, what we discover is that, unlike power series,
Fourier series can converge conditionally. This makes them less robust, perhaps,
but more versatile and capable of more interesting behavior.
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A Pointwise Convergence Proof

Let’s return once more to Fourier’s claim that every “function” can be “ex-
pressed” as a trigonometric series. Our recipe for the Fourier coefficients in
equations (9) and (10) implicitly requires that our function be integrable. This
is the major motivation for Riemann’s modification of Cauchy’s definition of
the integral. Because integrability is a prerequisite for producing a Fourier se-
ries, we would like the class of integrable functions to be as large as possible.
The natural question to ask now is whether Riemann integrability is enough
or whether we need to make some additional assumptions about f in order to
guarantee that the Fourier series converges back to f . The answer depends on
the type of convergence we hope to establish.

f(x) = a0 +
∞∑
n=1

an cos(nx) + bn sin(nx)

f ′ continuous
differentiable
continuous
integrable
bounded

Cesaro mean convergence
L2 convergence
uniform convergence
pointwise convergence

There is no tidy way to summarize the situation. For pointwise convergence,
integrability is not enough. At present, “integrable” for us means Riemann-
integrable, which we have only rigorously defined for bounded functions. In
1966, Lennart Carleson proved (via an extremely complicated argument) that
the Fourier series for such a function converges pointwise at every point in the
domain excluding possibly a set of measure zero. This term surfaced in our
discussion of the Cantor set (Section 3.1) and is defined rigorously in Section
7.6. Sets of measure zero are small in one sense, but they can be uncountable,
and there are examples of continuous functions with Fourier series that diverge
at uncountably many points. Lebesgue’s modification of Riemann’s integral in
1901 proved to be a much more natural setting for Fourier analysis. Carleson’s
proof is really about Lebesgue-integrable functions which are allowed to be
unbounded but for which

∫ π
−π

|f |2 is finite. One of the cleanest theorems in
this area states that, for this class of square Lebesgue-integrable functions, the
Fourier series always converges to the function from which it was derived if
we interpret convergence in the L2 sense described earlier. As a final warning
about how fragile the situation is, there is an example due to A. Kolmogorov
(1903–1987) of a Lebesgue-integrable function where the Fourier series fails to
converge at any point.

Although all of these results require significantly more background to pursue
in any rigorous way, we are in a position to prove some important theorems that
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require a few extra assumptions about the function in question. We will content
ourselves with two interesting results in this area.

Theorem 8.3.3. Let f(x) be continuous on (−π, π], and let SN (x) be the N th
partial sum of the Fourier series described in equation (7), where the coefficients
(an) and (bn) are given by equations (9) and (10). It follows that

lim
N→∞

SN (x) = f(x)

pointwise at any x ∈ (−π, π] where f ′(x) exists.

Proof. Cataloging a few preliminary facts makes for a smoother argument.

Fact 1: (a) cos(α− θ) = cos(α) cos(θ) + sin(α) sin(θ).

(b) sin(α+ θ) = sin(α) cos(θ) + cos(α) sin(θ).

Fact 2: 1
2 + cos(θ) + cos(2θ) + cos(3θ) + · · · + cos(Nθ) =

sin((N + 1/2)θ)
2 sin(θ/2)

for

any θ �= 2nπ.

Facts 1(a) and 1(b) are familiar trigonometric identities. Fact 2 is not as
familiar. Its proof (which we omit) is most easily derived by taking the real part
of a geometric sum of complex exponentials. The function in Fact 2 is called the
Dirichlet kernel in honor of the mathematician responsible for the first rigorous
convergence proof of this kind. Integrating both sides of this identity leads to
our next important fact.

Fact 3: Setting

DN (θ) =

{
sin((N+1/2)θ)

2 sin(θ/2) , if θ �= 2nπ
1/2 +N, if θ = 2nπ

from Fact 2, we see that ∫ π

−π

DN (θ)dθ = π.

Although we will not restate it, the last fact we will use is the Riemann–
Lebesgue lemma.

Fix a point x ∈ (−π, π]. The first step is to simplify the expression for
SN (x). Now x is a fixed constant at the moment, so we will write the integrals
in equations (9) and (10) using t as the variable of integration. Keeping an eye
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on Facts 1(a) and (2), we get that

SN (x) = a0 +
N∑

n=1

an cos(nx) + bn sin(nx)

=
[
1
2π

∫ π

−π

f(t)dt
]
+

N∑
n=1

[
1
π

∫ π

−π

f(t) cos(nt)dt
]
cos(nx)

+
N∑

n=1

[
1
π

∫ π

−π

f(t) sin(nt)dt
]
sin(nx)

=
1
π

∫ π

−π

f(t)

[
1
2
+

N∑
n=1

cos(nt) cos(nx) + sin(nt) sin(nx)

]
dt

=
1
π

∫ π

−π

f(t)

[
1
2
+

N∑
n=1

cos(nt− nx)

]
dt

=
1
π

∫ π

−π

f(t)DN (t− x)dt.

As one final simplification, let u = t− x. Then,

SN (x) =
1
π

∫ π−x

−π−x

f(u+ x)DN (u)du =
1
π

∫ π

−π

f(u+ x)DN (u)du.

The last equality is a result of our agreement to extend f to be 2π-periodic.
Because DN is also periodic (it is the sum of cosine functions), it does not
matter over what interval we compute the integral as long as we cover exactly
one full period.

To prove SN (x)→ f(x), we must show that |SN (x)− f(x)| gets arbitrarily
small when N gets large. Having expressed SN (x) as an integral involving
DN (u), we are motivated to do a similar thing for f(x). By Fact 3,

f(x) = f(x)
1
π

∫ π

−π

DN (u)du =
1
π

∫ π

−π

f(x)DN (u)du,

and it follows that

(11) SN (x)− f(x) =
1
π

∫ π

−π

(f(u+ x)− f(x))DN (u)du.

Our goal is to show this quantity tends to zero as N → ∞. A sketch of
DN (u) (Fig. 8.4) for a few values of N reveals why this might happen. For
large N , the Dirichlet kernel DN (u) has a tall, thin spike around u = 0, but this
is precisely where f(u+x)−f(x) is small (because f is continuous). Away from
zero, DN (u) exhibits the fast oscillations that hearken back to the Riemann–
Lebesgue lemma (Theorem 8.3.2). Let’s see how to use this theorem to finish
the argument.
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Figure 8.4: D6(u) and D16(u).

Using Fact 1(b), we can rewrite the Dirichlet kernel as

DN (u) =
sin((N + 1/2)u)

2 sin(u/2)
=
1
2

[
sin(Nu) cos(u/2)

sin(u/2)
+ cos(Nu)

]
.

Then, equation (11) becomes

SN (x)− f(x) =
1
2π

∫ π

−π

(f(u+ x)− f(x))
[
sin(Nu) cos(u/2)

sin(u/2)
+ cos(Nu)

]
du

=
1
2π

∫ π

−π

(f(u+ x)− f(x))
(
sin(Nu) cos(u/2)

sin(u/2)

)
+(f(u+ x)− f(x)) cos(Nu)du

=
1
2π

∫ π

−π

px(u) sin(Nu)du+
1
2π

∫ π

−π

qx(u) cos(Nu)du,

where in the last step we have set

px(u) =
(f(u+ x)− f(x)) cos(u/2)

sin(u/2)
and qx(u) = f(u+ x)− f(x).

Exercise 8.3.7. (a) First, argue why the integral involving qx(u) tends to zero
as N → ∞.

(b) The first integral is a little more subtle because the function px(u) has
the sin(u/2) term in the denominator. Use the fact that f is differentiable at x
(and a familiar limit from calculus) to prove that the first integral goes to zero
as well.

This completes the argument that SN (x) → f(x) at any point x where
f is differentiable. If the derivative exists everywhere, then we obviously get
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SN → f pointwise. If we add the assumption that f ′ is continuous, then it is
not too difficult to show that the convergence is uniform. In fact, there is a very
strong relationship between the speed of convergence of the Fourier series and
the smoothness of f . The more derivatives f possesses, the faster the partial
sums SN converge to f .

Cesaro Mean Convergence

Rather than pursue the proofs in this interesting direction, we will finish this
very brief introduction to Fourier series with a look at a different type of con-
vergence called Cesaro mean convergence.

Exercise 8.3.8. Prove that if a sequence of real numbers (xn) converges, then
the arithmetic means

yn =
x1 + x2 + x3 + · · ·+ xn

n

also converge to the same limit. Give an example to show that it is possible for
the sequence of means (yn) to converge even if the original sequence (xn) does
not.

The discussion preceding Theorem 8.3.3 is intended to create a kind of rev-
erence for the difficulties inherent in deciphering the behavior of Fourier series,
especially in the case where the function in question is not differentiable. It is
from this humble frame of mind that the following elegant result due to L. Fejér
in 1904 can best be appreciated.

Theorem 8.3.4 (Fejér’s Theorem). Let SN (x) be the N th partial sum of the
Fourier series for a function f on (−π, π]. Define

σN (x) =
1

N + 1

N∑
n=0

SN (x).

If f is continuous on (−π, π], then σN (x)→ f(x) uniformly.

Proof. This argument is patterned after the proof of Theorem 8.3.3 but is ac-
tually much simpler. In addition to the trigonometric formulas listed in Facts
1 and 2, we are going to need a version of Fact 2 for the sine function, which
looks like

sin(θ) + sin(2θ) + sin(3θ) + · · ·+ sin(Nθ) =
sin
(
Nθ
2

)
sin
(
(N + 1) θ2

)
sin
(
θ
2

) .

Exercise 8.3.9. Use the previous identity to show that

1/2 +D1(θ) +D2(θ) + · · ·+DN (θ)
N + 1

=
1

2(N + 1)

[
sin
(
(N + 1) θ2

)
sin
(
θ
2

)
]2

.
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The expression in Exercise 8.3.9 is called the Fejér kernel and will be denoted
by FN (θ). Analogous to the Dirichlet kernel DN (θ) from the proof of Theorem
8.3.3, FN is used to greatly simplify the formula for σN (x).

Exercise 8.3.10. (a) Show that

σN (x) =
1
π

∫ π

−π

f(u+ x)FN (u) du.

(b) Graph the function FN (u) for several values ofN . Where is FN large, and
where is it close to zero? Compare this function to the Dirichlet kernel DN (u).
Now, prove that FN → 0 uniformly on any set of the form {u : |u| ≥ δ}, where
δ > 0 is fixed (and u is restricted to the interval (−π, π]).

(c) Prove that
∫ π
−π

FN (u) du = π.
(d) To finish the proof of Fejér’s theorem, first choose a δ > 0 so that

|u| < δ implies |f(x+ u)− f(x)| < ε.

Set up a single integral that represents the difference σNf(x)− f(x) and divide
this integral into sets where |u| ≤ δ and |u| ≥ δ. Explain why it is possible to
make each of these integrals sufficiently small, independently of the choice of x.

Weierstrass Approximation Theorem

The hard work of proving Fejér’s theorem has many rewards, one of which
is access to a relatively short argument for a profoundly important theorem
discovered by Weierstrass in 1885.

Theorem 8.3.5 (Weierstrass Approximation Theorem). If f is a con-
tinuous function on a closed interval [a, b], then there exists a sequence of poly-
nomials that converges uniformly to f(x) on [a, b].

Proof. We have actually seen a special case of this result once before in Section
6.6 on Taylor series. Even if this material has not been covered, the formula

(12) sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

is probably familiar from a course in calculus. The content of Section 6.6 is that,
by using Lagrange’s Remainder Theorem, we can prove that the Taylor series
in (12) converges uniformly to sin(x) on any bounded subset of R. Uniform
convergence of a series means the partial sums converge uniformly, and the
partial sums in this case are polynomials. Notice that this is precisely what
Theorem 8.3.5 asks us to prove, only we must do it for an arbitrary, continuous
function in place of sin(x).

Using Taylor series will not work in general. The major problem is that to
construct a Taylor series we need the function to be infinitely differentiable, and
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even in this case we might get a series that either does not converge or converges
to the wrong thing. We do plan to use Taylor series, however. The important
point about them for this conversation is that the Taylor series for sin(x) and
cos(x) do converge uniformly to the proper limit on any bounded set.

Exercise 8.3.11. (a) Make use of the previous comments and use Fejér’s The-
orem to complete the proof of Theorem 8.3.5 under the added assumption that
the interval [a, b] is [0, π].

(b) Show how the case for an arbitrary interval [a, b] follows from this one.

It is interesting to juxtapose this result of Weierstrass with his demonstration
of a continuous nowhere-differentiable function. Although there exist continuous
functions that oscillate so wildly that they fail to have a derivative at any
point, these unruly functions are always uniformly within ε of an infinitely
differentiable polynomial.

Approximation as a Unifying Theme

Viewing the last section of this chapter as a kind of appendix (included to
clear up some loose ends from Chapter 1 regarding the definition of the real
numbers), Weierstrass’ Approximation Theorem makes for a fitting close to our
introductory survey of some of the gems of analysis.

The idea of approximation permeates the entire subject. Every real num-
ber can be approximated with rational ones. The value of an infinite sum is
approximated with partial sums, and the value of a continuous function can
be approximated with its values nearby. A function is differentiable when a
straight line is a good approximation to the curve, and it is integrable when
finite sums of rectangles are a good approximation to the area under the curve.
Now, we learn that every continuous function can be approximated arbitrarily
well with a polynomial. In every case, the approximating objects are tangi-
ble and well-understood, and the issue is how well these properties survive the
limiting process. By viewing the different infinities of mathematics through
pathways crafted out of finite objects, Weierstrass and the other founders of
analysis created a paradigm for how to extend the scope of mathematical explo-
ration deep into territory previously unattainable. Although our journey ends
here, the road is long and continues to be written.

8.4 A Construction of R From Q

This entire section is devoted to constructing a proof for the following theorem:

Theorem 8.4.1. There exists an ordered field in which every nonempty set that
is bounded above has a least upper bound. In addition, this field contains Q as
a subfield.
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There are a few terms to define before this statement can be properly under-
stood and proved, but it can essentially be paraphrased as “the real numbers
exist.” In Section 1.1, we encountered a major failing of the rational number
system as a place to do analysis. Without the square root of 2 (and uncount-
ably many other irrational numbers) we cannot confidently move from a Cauchy
sequence to its limit because in Q there is no guarantee that such a number ex-
ists. (A review of Sections 1.1 and 1.3 is highly recommended at this point.)
The resolution we proposed in Chapter 1 came in the form of the Axiom of
Completeness, which we restate.

Axiom of Completeness. Every nonempty set of real numbers that is bounded
above has a least upper bound.

Now let’s be clear about how we actually proceeded in Chapter 1. This is
the property that distinguishes Q from R, but by referring to this property as
an axiom we were making the point that it was not something to be proved.
The real numbers were defined simply as an extension of the rational numbers
in which bounded sets have least upper bounds, but no attempt was made to
demonstrate that such an extension is actually possible. Now, the time has
finally come. By explicitly building the real numbers from the rational ones, we
will be able to demonstrate that the Axiom of Completeness does not need to
be an axiom at all; it is a theorem!

There is something ironic about having the final section of this book be
a construction of the number system that has been the underlying subject of
every preceding page, but there is something perfectly apt about it as well.
Through eight chapters stretching from Cantor’s Theorem to the Baire Category
Theorem, we have come to see how profoundly the addition of completeness
changes the landscape. We all grow up believing in the existence of real numbers,
but it is only through a study of classical analysis that we become aware of their
elusive and enigmatic nature. It is because completeness matters so much, and
because it is responsible for such perplexing phenomena, that we should now
feel obliged—compelled really—to go back to the beginning and verify that such
a thing really exists.

As we mentioned in Chapter 1, proceeding in this order puts us in good
historical company. The pioneering work of Cauchy, Bolzano, Abel, Dirichlet,
Weiestrass, and Riemann preceded—and in a very real sense led to—the host of
rigorous definitions forR that were proposed in 1872. Georg Cantor is a familiar
name responsible for one of these definitions, but alternate constructions of the
real number system also came from Charles Meray (1835–1911), Heinrich Heine
(1821–1881), and Richard Dedekind (1831–1916). The formulation that follows
is the one due to Dedekind. In a sense it is the most abstract of the approaches,
but it is the most appropriate for us because the verification of completeness is
done in terms of least upper bounds.
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Dedekind Cuts

We begin this discussion by assuming that the rational numbers and all of the
familiar properties of addition, multiplication, and order are available to us. At
the moment, there is no such thing as a real number.

Definition 8.4.2. A subset A of the rational numbers is called a cut if it pos-
sesses the following three properties:

(c1) A �= ∅ and A �= Q.

(c2) If r ∈ A, then A also contains every rational q < r.

(c3) A does not have a maximum; that is, if r ∈ A, then there exists s ∈ A
with r < s.

Exercise 8.4.1. (a) Fix r ∈ Q. Show that the set Cr = {t ∈ Q : t < r} is a
cut.

The temptation to think of all cuts as being of this form should be avoided.
Which of the following subsets of Q are cuts?

(b) S = {t ∈ Q : t ≤ 2}
(c) T = {t ∈ Q : t2 < 2 or t < 0}
(d) U = {t ∈ Q : t2 ≤ 2 or t < 0}

Exercise 8.4.2. Let A be a cut. Show that if r ∈ A and s /∈ A, then r < s.

To dispel any suspense, let’s get right to the point.

Definition 8.4.3. Define the real numbers R to be the set of all cuts in Q.

This may feel awkward at first—real numbers should be numbers, not sets
of rational numbers. The counterargument here is that when working on the
foundations of mathematics, sets are about the most basic building blocks we
have. We have defined a set R whose elements are subsets of Q. We now must
set about the task of imposing some algebraic structure on R that behaves in
a way familiar to us. What exactly does this entail? If we are serious about
constructing a proof for Theorem 8.4.1, we need to be more specific about what
we mean by an “ordered field.”

Field and Order Properties

Given a set F and two elements x, y ∈ F , an operation on F is a function that
takes the ordered pair (x, y) to a third element z ∈ F . Writing x + y or xy
to represent different operations reminds us of the two operations that we are
trying to emulate.

Definition 8.4.4. A set F is a field if there exist two operations—addition
(x+ y) and multiplication (xy)—that satisfy the following list of conditions:

(f1) (commutativity) x+ y = y + x and xy = yx for all x, y ∈ F .
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(f2) (associativity) (x+y)+z = x+(y+z) and (xy)z = x(yz) for all x, y, z ∈ F .

(f3) (identities exist) There exist two special elements 0 and 1 with 0 �= 1 such
that x+ 0 = 0 and x1 = x for all x ∈ F .

(f4) (inverses exist) Given x ∈ F , there exists an element −x ∈ F such that
x+ (−x) = 0. If x �= 0, there exists an element x−1 such that xx−1 = 1.

(f5) (distributive property) x(y + z) = xy + xz for all x, y, z ∈ F .

Exercise 8.4.3. Using the usual definitions of addition and multiplication, de-
termine which of these properties are possessed by N, Z, and Q, respectively.

Although we will not pursue this here in any depth, all of the familiar al-
gebraic manipulations in Q (e.g., x + y = x + z implies y = z) can be derived
from this short list of properties.

Definition 8.4.5. An ordering on a set F is a relation, represented by ≤, with
the following three properties:

(o1) For arbitrary x, y ∈ F , at least one of the statements x ≤ y or y ≤ x is
true.

(o2) If x ≤ y and y ≤ x, then x = y.

(o3) If x ≤ y and y ≤ z, then x ≤ z.

We will sometimes write y ≥ x in place of x ≤ y. The strict inequality x < y
is used to mean x ≤ y but x �= y.

A field F is called an ordered field if F is endowed with an ordering ≤ that
satisfies

(o4) If y ≤ z, then x+ y ≤ x+ z.

(o5) If x ≥ 0 and y ≥ 0, then xy ≥ 0.

Let’s take stock of where we are. To prove Theorem 8.4.1, we are accepting
as given that the rational numbers are an ordered field. We have defined the real
numbers R to be the collection of cuts in Q, and the challenge now is to invent
addition, multiplication, and an ordering so that each possesses the properties
outlined in the preceding two definitions. The easiest of these is the ordering.
Let A and B be two arbitrary elements of R.

Define A ≤ B to mean A ⊆ B.

Exercise 8.4.4. Show that this defines an ordering onR by verifying properties
(o1), (o2), and (o3) from Definition 8.4.5.
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Algebra in R

Given A and B in R, define

A+B = {a+ b : a ∈ A and b ∈ B}.

Before checking properties (f1)–(f4) for addition, we must first verify that our
definition really defines an operation. Is A+B actually a cut? To get the flavor
of how these arguments look, let’s verify property (c2) of Definition 8.4.2 for
the set A+B.

Let a + b ∈ A + B be arbitrary and let s ∈ Q satisfy s < a + b. Then,
s− b < a, which implies that s− b ∈ A because A is a cut. But then

s = (s− b) + b ∈ A+B,

and (c2) is proved.

Exercise 8.4.5. (a) Show that (c1) and (c3) also hold for A + B. Conclude
that A+B is a cut.

(b) Check that addition in R is commutative (f1) and associative (f2).
(c) Show that the cut

O = {p ∈ Q : p < 0}

successfully plays the role of the additive identity (f3). (Showing A + O = O
amounts to proving that these two sets are the same. The standard way to
prove such a thing is to show two inclusions: A+O ⊆ O and O ⊆ A+O.)

What about additive inverses? Given A ∈ R, we must produce a cut −A
with the property that A + (−A) = O. This is a bit more difficult than it
sounds. Conceptually, the cut −A consists of all rational numbers less than
− supA. The problem is how to define this set without using suprema, which
are strictly off limits at the moment. (We are building the field in which they
exist!)

Given A ∈ R, define

−A = {r ∈ Q : there exists t /∈ A with t < −r}.

• •
r −r
) )

0︸ ︷︷ ︸
−A

A︷ ︸︸ ︷
❄

t

Exercise 8.4.6. (a) Prove that −A defines a cut.
(b) What goes wrong if we set −A = {r ∈ Q : −r /∈ A}?
(c) If a ∈ A and r ∈ −A, show a+ r ∈ O. This shows A+ (−A) ⊆ O. Now,

finish the proof of property (f4) for addition in Definition 8.4.4.
(d) Show that property (o3) holds.
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Although the ideas are similar, the technical difficulties increase when we
try to create a definition for multiplication in R. This is largely due to the fact
that the product of two negative numbers is positive. The standard method of
attack is first to define multiplication on the positive cuts.

Given A ≥ O and B ≥ O in R, define the product

AB = {ab : a ∈ A, b ∈ B with a, b ≥ 0} ∪ {q ∈ Q : q < 0}.
Exercise 8.4.7. (a) Show that AB is a cut.

(b) Prove property (o4) from Definition 8.4.5.
(c) Propose a good candidate for the multiplicative identity (1) on R and

show that this works for all cuts A ≥ O.
(d) Show that AO = O for all cuts A ≥ O.

Products involving at least one negative factor can be defined in terms of the
product of two positive cuts by observing that −A ≥ 0 whenever A ≤ O. (Given
A ≤ O, property (c4) implies A+ (−A) ≤ O + (−A), which yields O ≤ −A.)

For any A and B in R, define

AB =




as given if A ≥ O and B ≥ O
−[A(−B)] if A ≥ O and B < O
−[(−A)B] if A < O and B ≥ O
(−A)(−B) if A < O and B < O.

Verifying that multiplication defined in this way satisfies all the required field
properties is important but uneventful. The proofs generally fall into cases for
when terms are positive or negative and follow a pattern similar to those for
addition. We will leave them as an unofficial exercise and move on to the punch
line.

Least Upper Bounds

Having proved that R is an ordered field, we now set our sights on showing
that this field is complete. We defined completeness in Chapter 1 in terms of
least upper bounds. Here is a summary of the relevant definitions from that
discussion.

Definition 8.4.6. A set A ⊆ R is bounded above if there exists a B ∈ R such
that A ≤ B for all A ∈ A. The number B is called an upper bound for A.

A real number S ∈ R is the least upper bound for a set A ⊆ R if it meets
the following two criteria:

(i) S is an upper bound for A and

(ii) if B is any upper bound for A, then S ≤ B.

Exercise 8.4.8. Let A ⊆ R be nonempty and bounded above, and let S be
the union of all A ∈ A.

(a) First, prove that S ∈ R by showing that it is a cut.
(b) Now, show that S is the least upper bound for A.
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This finishes the proof that R is complete. Notice that we could have proved
that least upper bounds exist immediately after defining the ordering on R, but
saving it for last gives it the privileged place in the argument it deserves. There
is, however, still one loose end to sew up. The statement of Theorem 8.4.1
mentions that our complete ordered field contains Q as a subfield. This is a
slight abuse of language. What it should say is that R contains a subfield that
looks and acts exactly like Q.

Exercise 8.4.9. Consider the collection of so-called “rational” cuts of the form

Cr = {t ∈ Q : t < r}

where r ∈ Q. (See Exercise 8.4.1.)
(a) Show that Cr + Cs = Cr+s for all r, s ∈ Q. Verify CrCs = Crs for the

case when r, s ≥ 0.
(b) Show that Cr ≤ Cs if and only if r ≤ s in Q.

Cantor’s Approach

As a way of giving Georg Cantor the last word, let’s briefly look at his very
different approach to constructing R out of Q. One of the many equivalent
ways to characterize completeness is with the assertion that “Cauchy sequences
converge.” Given a Cauchy sequence of rational numbers, we are now well aware
that this sequence may converge to a value not in Q. Just as before, the goal is
to create something, which we will call a real number, that can serve as the limit
of this sequence. Cantor’s idea was essentially to define a real number to be the
entire Cauchy sequence. The first problem one encounters with this approach
is the realization that two different Cauchy sequences can converge to the same
real number. For this reason, the elements in R are more appropriately defined
as equivalence classes of Cauchy sequences where two sequences (xn) and (yn)
are in the same equivalence class if and only if (xn − yn)→ 0.

As with Dedekind’s approach, it can be momentarily disorienting to sup-
plant our relatively simple notion of a real number as a decimal expansion with
something as unruly as an equivalence class of Cauchy sequences. But what
exactly do we mean by a decimal expansion? And how are we to understand
the number 1/2 as both .5000... and .4999...? We leave it as an exercise.
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