

Table of Contents

Copyright... 1
About the Author.. 2
Production.. 2
Introduction... 3

The Structure of the Book... 5
Acknowledgements... 7

Python Programming.. 8
Data Types and Data Structures... 8

Executing Python Code... 8
Variables and Objects.. 12
Numbers and Strings... 16
Collections... 32
Built-in Functions... 42
Summary.. 45
Exercises.. 46

Control Structures... 48
Conditional Branching.. 49
Looping.. 52
Functions... 58
Exception Handling... 70
Summary.. 76
Exercises.. 77

Classes and Modules... 80
Creating Instances... 82
Methods and Special Methods.. 84
Inheritance and Polymorphism... 105
Modules and Multi-File Applications... 111
Summary.. 114
Exercises... 115

Basic GUI Programming.. 116
Introduction to GUI Programming... 116

A Pop-up Alert in 25 Lines... 117
An Expression Evaluator in 30 Lines.. 122
A Currency Converter in 70 Lines... 129
Signals and Slots.. 134
Summary.. 144
Exercise.. 145

Dialogs... 145
Dumb Dialogs... 147
Standard Dialogs.. 154
Smart Dialogs... 161
Summary.. 169
Exercise.. 170

Main Windows... 172
Creating a Main Window... 174
Handling User Actions.. 201
Summary.. 212
Exercise.. 214

Using Qt Designer.. 215
Designing User Interfaces.. 217
Implementing Dialogs... 228
Testing Dialogs.. 233
Summary... 234
Exercise.. 235

Data Handling and Custom File Formats... 236

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Main Window Responsibilities... 239
Data Container Responsibilities... 244
Saving and Loading Binary Files.. 250
Saving and Loading Text Files.. 258
Saving and Loading XML Files... 266
Summary.. 275
Exercise.. 276

Intermediate GUI Programming... 276
Layouts and Multiple Documents... 277

Layout Policies... 278
Tab Widgets and Stacked Widgets.. 279
Splitters... 288
Single Document Interface (SDI).. 291
Multiple Document Interface (MDI).. 298
Summary... 308
Exercise... 309

Events, the Clipboard, and Drag & Drop.. 310
The Event Handling Mechanism... 310
Reimplementing Event Handlers.. 312
Using the Clipboard... 318
Drag and Drop... 319
Summary... 325
Exercise.. 326

Custom Widgets.. 327
Using Widget Style Sheets.. 328
Creating Composite Widgets... 331
Subclassing Built-in Widgets.. 333
Subclassing QWidget... 335
Summary.. 351
Exercise.. 352

Item-Based Graphics... 353
Custom and Interactive Graphics Items... 355
Animation and Complex Shapes... 373
Summary... 382
Exercise... 384

Rich Text and Printing.. 384
Rich Text Editing... 386
Printing Documents.. 402
Summary.. 415
Exercise.. 416

Model/View Programming.. 417
Using the Convenience Item Widgets... 419
Creating Custom Models... 427
Creating Custom Delegates... 439
Summary... 446
Exercise.. 447

Databases.. 447
Connecting to the Database.. 448
Executing SQL Queries... 449
Using Database Form Views... 454
Using Database Table Views... 460
Summary.. 473
Exercise.. 474

Advanced GUI Programming... 475
Advanced Model/View Programming.. 475

Custom Views.. 476
Generic Delegates.. 483
Representing Tabular Data in Trees... 492
Summary... 506
Exercise... 506

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Online Help and Internationalization.. 508
Online Help... 509
Internationalization... 512
Summary... 520
Exercise.. 521

Networking.. 521
Creating a TCP Client.. 523
Creating a TCP Server... 529
Summary... 534
Exercise.. 535

Multithreading.. 536
Creating a Threaded Server... 538
Creating and Managing Secondary Threads... 543
Implementing a Secondary Thread... 552
Summary.. 557
Exercise.. 558
This Is Not Quite The End... 559

Installing... 560
Installing on Windows.. 560
Installing on Mac OS X... 565
Installing on Linux and Unix.. 570

Selected PyQt Widgets... 574
Selected PyQt Class Hierarchies.. 579

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data

Summerfield, Mark
 Rapid GUI programming with Python and Qt / Mark Summerfield.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-235418-7 (pbk.: alk. paper)
 1. Graphical user interfaces (Computer systems) 2. C++ (Computer program language)
 QA76.9.????? 2006
 005.4'37—dc22
 ?????

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 1 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #905221

http://safari.informit.com/mailto:corpsales@pearsontechgroup.com
http://safari.informit.com/mailto:international@pearsoned.com
http://www.prenhallprofessional.com

Trolltech®, Qt®, Qtopia®, and the Trolltech and Qtopia logos are registered trademarks
of Trolltech ASA.

Text printed in the United States on recycled paper at Courier in Stoughton,
Massachusetts.

First printing, November 2007

Dedication

This book is dedicated to Andrea Summerfield

About the Author

Mark Summerfield

Mark graduated in computer science with first class honors from the University of Wales
Swansea. He followed this with a year's postgraduate research before going into industry.
He spent many years working as a software engineer for a variety of firms before joining
Trolltech. He spent almost three years as Trolltech's documentation manager, during
which he founded and edited Trolltech's technical journal, Qt Quarterly, and co-wrote C
++ GUI Programming with Qt 3, and later C++ GUI Programming with Qt 4. Mark owns
Qtrac Ltd., www.qtrac.eu, where he works as an independent author, editor, trainer, and
consultant, specializing in C++, Qt, and Python.

Production

The text was written using gvim and marked up with the Lout typesetting language. The
index was compiled by the author, with the assistance of a PyQt program developed for
the purpose. All the diagrams were produced using Lout. Almost all of the code snippets
were extracted directly from the example programs using Lout in conjunction with a
Python script. The icons used in the example programs are mostly from KDE (The "K"
Desktop Environment), with a few created by the author. The images used in the book's
margins are from the Open Clip Art Library, with some other images coming from Project
Gutenberg. SVG images were converted to EPS using Inkscape. The Linux screenshots
were taken with KSnapshot, and the Windows screenshots were captured and saved using
a tiny PyQt application; in both cases the .png images were converted to .eps using
ImageMagick. The monospaced font used for code is derived from Crystal, modified using
FontForge. Wikipedia proved itself to be useful in all kinds of ways, including being the
source of the flag images, and was frequently referred to for ideas, information, and sample
data. The marked-up text was previewed using gv and evince, and converted to PostScript
by Lout, then to PDF by Ghostscript.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 2 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.qtrac.eu

All the editing and processing was done on Fedora and Kubuntu systems. The cover was
provided by the publisher, with the picture suggested by the author in view of the fact that
Python is used to calibrate and analyze data from the Hubble Space Telescope. The
screenshots were taken on Windows XP, Mac OS X, and Linux/KDE. All the example
programs have been tested on Windows, Linux, and Mac OS X, using Python 2.5, Qt 4.2,
and PyQt 4.2, and additionally on Linux using Qt 4.3.

Introduction
This book teaches how to write GUI applications using the Python programming language
and the Qt application development framework. The only prior knowledge assumed is that
you can program in some object-oriented programming language, such as C++, C#, Java,
or of course Python itself. A slight familiarity with HTML is also assumed, and some
knowledge of regular expresssions would be beneficial. A knowledge of GUI programming
is not required since all the key concepts are covered.

The book will be useful to people who program professionally as part of their job, whether
as full-time software developers, or those from other disciplines who need to do some
programming in support of their work. It is also suitable for undergraduate and post-
graduate students, particularly those doing courses or research that includes a substantial
computing element. The exercises (with solutions) are provided especially to help
students.

Python is probably the easiest to learn and nicest scripting language in widespread use,
and Qt is probably the best library for developing GUI applications. The combination of
Python and Qt, "PyQt", makes it possible to develop applications on any supported
platform and run them unchanged on all the supported platforms, for example, all modern
versions of Windows, Linux, Mac OS X, and most Unix-based systems. No compilation is
required thanks to Python being interpreted, and no source code changes to adapt to
different operating systems are required thanks to Qt abstracting away the platform-
specific details. We only have to copy the source file or files to a target machine that has
both Python and PyQt installed and the application will run.

If you are new to Python: Welcome! You are about to discover a language that is clear to
read and write, and that is concise without being cryptic. Python supports many
programming paradigms, but because our focus is on GUI programming, we will take an
object-oriented approach everywhere except in the very early chapters.

Python is a very expressive language, which means that we can usually write far fewer lines
of Python code than would be required for an equivalent application written in, say, C++
or Java. This makes it possible to show some small but complete examples throughout the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 3 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

text, and makes PyQt an ideal tool for rapidly and easily developing GUI applications,
whether for prototyping or for production use.

Since the emphasis of the book is on GUI programming, although Part I provides a fast-
paced Python tutorial, it also includes some PyQt coverage. This material is clearly marked
(just like this paragraph, with "Qt" in the margin) to make it easy for experienced Python
programmers to skip the Python they already know. Parts II, III, and IV of the book are
all PyQt-specific and assume that readers can already program in Python, whether from
previous experience or from reading Part I.

Figure 1. The eric4 IDE—a PyQt4 application

Quite often in programming we reach decision points when there are several possible
approaches we could take. Reference books and the online documentation identify what
classes, methods, and functions are available, and in some cases provide examples, but
such documents rarely provide a broader context. This book gives the necessary context,
highlighting the key decision points for GUI programming, and offering insights into the
pros and cons, so that you can decide for yourself what the right policy is for your particular

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 4 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

circumstances. For example, when you create a dialog, should it be modal, modeless, or
global modal? (See Chapter 5 for an explanation and policy recommendations on this
issue.)

PyQt is used to write all kinds of GUI applications, from visualization tools used by
scientists and engineers, to accounting applications. It is possible to write PyQt
applications that are just tens of lines long, and medium sized projects of 1 000 to 10 000
lines are very common. Some commercial companies have built 100 000 line PyQt
applications, with programming teams varying in size from just one person to more than
a dozen people. Many in-house tools are written using PyQt, but because these are often
used to gain competitive advantage, the companies involved generally do not permit their
use of PyQt to be made public. PyQt is also widely used in the open source world, with
games, utilities, visualization tools, and IDEs, all written using it.

This book is specifically about PyQt4, the Python bindings for the Qt 4 C++ application
development framework.[*] PyQt4 is provided in the form of 10 Python modules which
between them contain around 400 classes and about 6 000 methods and functions. All
the example programs have been tested on Windows, Linux, and Mac OS X using Python
2.5, Qt 4.2, and PyQt 4.2. Back-porting to earlier versions may be possible in some cases,
but we recommend using the most up-to-date versions of Python, Qt, and PyQt.

[*] There are also Python bindings for the older Qt 3 library, but there is no reason to use that library for new projects, especially since Qt 4 offers far more functionality.

Python, PyQt, and Qt can be used free of charge for non-commercial purposes, but the
license used by Python is different from that used by PyQt and Qt. Python is available with
a very liberal license that allows it to be used to develop both commercial and non-
commercial applications. Both PyQt and Qt are dual-licensed: This essentially allows for
them to be used to develop noncommercial applications—which must in turn be licensed
using an acceptable Open Source license such as the GNU General Public License (GPL);
or to be used to develop commercial applications—in this case a commercial PyQt license
and a commercial Qt license must be purchased.

The Structure of the Book
The book is divided into five parts. Part I is primarily a rapid conversion course aimed at
non-Python programmers who are familiar with an object-oriented language, although it
also has some (clearly marked) PyQt content. Because the core Python language is mostly
simple and is quite small, these chapters can teach the basics of Python, to a sufficient
extent that real Python applications can be written. Where more advanced Python
techniques are used in later parts of the book, they are explained at the point where they
are needed.

If you think that you could pick up the Python syntax simply through reading it, you might
be tempted to skip Part I and dive straight into the GUI programming that begins in Part

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 5 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

II. The early chapters in Part II include back-references to the relevant pages in Part I to
support readers who choose this approach. However, even for readers familiar with
Python, we recommend reading about QString in Chapter 1. If you are unfamiliar with
partial function application (currying), it is important to read the sub-section that covers
this in Chapter 2, since this technique is sometimes used in GUI programming.

Part II begins by showing three tiny PyQt GUI applications to give an initial impression of
what PyQt programming is like. It also explains some of the fundamental concepts involved
in GUI programming, including PyQt's high-level signals and slots communication
mechanism. Chapter 5 (Dialogs) shows how to create dialogs and how to create and lay
out widgets ("controls" in Windows-speak—the graphical elements that make up a user
interface such as buttons, listboxes, and similar) in a dialog. Dialogs are central to GUI
programming: Most GUI applications have a single main window, and dozens or scores of
dialogs, so this topic is covered in depth.

After, the dialogs chapter comes, Chapter 6, which covers main windows, including menus,
toolbars, keyboard shortcuts, and also loading and saving application settings. Part II
concludes with Chapter 7 which shows how to create dialogs using Qt Designer, Qt's visual
design tool.

Part III gives deeper coverage of some of the topics covered in Part II and introduces new
topics. Chapter 9 shows how to lay out widgets in quite sophisticated ways. Chapter 10
gives more formal coverage of event handlers, and also shows the powerful technique of
event filtering. Chapter 10 shows how to use the clipboard and how to drag and drop both
text and arbitrary data. Chapter 12 covers painting with QPainter and also the
QGraphicsView and QGraphicsScene classes introduced in Qt 4.2. It also covers
printing both to paper and to PDF files. Chapter 11 shows how to create custom widgets,
starting simply by modifying the properties of existing widgets, and working up to
implementing widgets from scratch with complete control over their appearance and
behavior. Part III concludes with Chapter 14 which introduces Qt's model/view
architecture and shows how to use Qt's built-in views and how to create custom data
models.

Part IV begins by showing more advanced model/view techniques, in particular how to
achieve complete control over the editing and presentation of data items. Chapter 13
introduces Qt's HTML-capable text engine, and shows how to create and render rich text.
Chapter 17 explains how to make an application translatable, including how to use Qt's
translation tools to create translation files. Python provides its own classes for networking
and for threading, but in the last two chapters of this part we show how to do networking
and threading using the PyQt classes.

Appendix A explains where Python, PyQt, and Qt can be obtained, and how to install them
on Windows, Linux, and Mac OS X.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 6 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If you find errors in the text or the examples, or have other comments, please write to
pyqt@qtrac.eu. The book's home page, where any corrections will be published, is
http://www.qtrac.eu/pyqtbook.html.

Acknowledgements
I have many people to thank, and will begin with those who have been intimately involved
with the book.

Jasmin Blanchette is a Senior Software Developer at Trolltech, a Qt expert, and a fine editor
and writer in his own right. I have co-written two C++/Qt books with him. Jasmin has
made a huge number of suggestions and criticisms that have immensely improved the
quality of this book.

David Boddie, Trolltech's Documentation Manager, is an active PyQt open-source
developer who has made many contributions to PyQt itself. His input has helped ensure
that I have covered everything necessary, and done so in a sensible order.

Richard Chamberlain, works as a programmer in the geology and instrumentation fields.
His feedback and insights have helped ensure that the book is as broadly accessible as
possible. He has also helped refine and improve the code used in the examples and
exercises.

Trenton Schulz is a Trolltech developer who has been a valuable reviewer of my previous
books. For this book he has brought his Python and Qt knowledge to bear, giving
considerable feedback on the manuscript. Along with Richard, he also ensured that Mac
OS X users were never forgotten. He also spotted many subtle errors that I had missed.

Phil Thompson is PyQt's creator and maintainer. He has been supportive of the book from
the beginning, even adding features and improvements to PyQt as a direct result of
discussions we have had regarding the book. He has made numerous suggestions for the
book's improvement, and corrected many mistakes and misunderstandings.

Thanks are also due to Guido van Rossum, creator of Python, as well as to the wider Python
community who have contributed so much to make Python, and especially its libraries, so
useful and enjoyable to use.

Thanks also to Trolltech, for developing and maintaining Qt, and in particular to the
Trolltech developers both past and present, many of whom I have had the pleasure of
working with, and who ensure that Qt is the best cross-platform GUI development
framework in existence.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 7 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.qtrac.eu/pyqtbook.html

Special thanks also to Jeff Kingston, creator of the Lout typesetting markup language. I
use Lout for all my books and for most of my other writing projects. Over the years Jeff
has made many improvements and added numerous features to Lout in response to
feedback from users, including many that I have asked for myself.

The publisher, in the person of Editor-in-Chief Karen Gettman, was supportive of this book
from the start. And particular thanks are due to my editor, Debra Williams-Cauley, for her
support and for making the process was as smooth as possible.

My last but not least acknowledgement is of my wife, Andrea. Her love, loyalty, and
support, always give me strength and hope.

Part I: Python Programming

1. Data Types and Data Structures
• Executing Python Code
• Variables and Objects
• Numbers and Strings
• Collections
• Built-in Functions

In this chapter we begin a Python conversion course that shows non-Python programmers
how to program Python. We introduce some fundamental data types and data structures,
as well as some of Python's procedural syntax. The approach taken throughout is to
emphasize realistic code like that used in practice rather than giving the formal definitions
and explanations that are already available in the documentation that is supplied with
Python, and available online at http://www.python.org.

If you have not already installed Python and PyQt, it would be a good idea to do so: That
way you will be able to try out the examples that accompany this book (downloadable from
http://www.qtrac.eu/pyqtbook.html). See Appendix A for installation details. One
advantage of installing the software is that the IDLE integrated development environment
is installed along with Python.

Executing Python Code
Before we can really explore the Python language we need to know how to execute Python
code. We will show this by reviewing a tiny example program that is just one line long.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 8 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.python.org
http://www.qtrac.eu/pyqtbook.html

We must use a plain text editor for working with Python files.[*] On Windows it is possible
to use Notepad, but IDLE includes a suitable Python editor designed specifically for editing
Python code: Simply start IDLE and then click File New Window.

[*] The programs in this book are written using ASCII characters, with escape sequences where Unicode is required. It is possible to use Latin-1, UTF-8, or other
encodings for strings and comments in Python programs, as explained in the documentation: Look for "Encoding declarations".

We will type the following line into a file, called hello.py:

print "Hello World"

Note that no semi-colon is necessary: In Python newline acts as a statement separator.
Also, we do not need a newline, "\n", in the string since print automatically adds a newline
unless we suppress it with a trailing comma.

Assuming that we have saved the code in the file hello.py (in directory C:\pyqt
\chap01 if using Windows), we can start up a console (click Start All Programs
Accessories Console on Windows XP—sometimes Console is called Command
Prompt; or run Terminal.app from /Applications/Utilities on Mac OS X),
change to that directory, and execute the program like this:

C:\>cd c:\pyqt\chap01
C:\pyqt\chap01>hello.py

So long as Python is correctly installed, Windows will recognize the .py file extension and
give the file to python.exe to execute. The program will print "Hello World" on the
console as we would expect.

On Linux we must explicitly run the interpreter, by typing its name and the file's name at
the console's prompt, like this:

% python hello.py

This will work providing that Python is installed and in your PATH. Alternatively, for Linux
we can add an additional "shebang" (shell execute) comment line which tells the operating
system to use a Python interpreter, making the hello.py file two lines long:

#!/usr/bin/env python
 print "Hello World"

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 9 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The IDLE Development Environment

The full installation of Python includes IDLE, a basic but very useful Integrated
Development Environment. When IDLE is launched (click Start All
Programs Python 2.x IDLE on Windows, or run idle & in a console on
Linux), it presents its Python Shell window.

As the screenshot in Figure 1.1 shows, IDLE has a rather retro Windows 95 look.
This is because it is written in Tkinter rather than in PyQt. The reason we've
chosen to use IDLE is that IDLE comes as standard with Python and is very
simple to learn and use. If you want to use a much more powerful and modern-
looking IDE, then you might prefer eric4 which is written in PyQt, or one of the
other Python IDEs that are available. However, if you are new to Python, we
recommend starting out with the simpler IDLE, and once you are more
experienced with PyQt, then trying the other IDEs to see if you prefer one of
them. And of course, you could simply use a plain text editor and debug using
print statements and not use an IDE at all.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 10 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 1.1. The IDLE Python Shell window

IDLE provides three key facilities: The ability to enter Python expressions and
code and to see the results directly in the Python Shell; a code editor that
provides Python-specific color syntax highlighting; and a debugger that can be
used to step through code to help identify and kill bugs. The Shell is especially
useful for trying out simple algorithms, snippets of code, and regular
expressions, and can also be used as a very powerful and flexible calculator.

For this to work on Linux, the file's permissions must be set correctly, for example, at the
console prompt in the same directory as the file enter chmod +x hello.py to make the
file executable.

Python comments start with "#" and continue until the end of the line. This means that it
is perfectly safe to add the "shebang" line to all Python programs since the comment is
ignored on Windows, but on Linux tells the operating system to execute the file using a
Python interpreter.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 11 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When we speak of executing a Python program, what happens behind the scenes is that
Python reads the .py (or .pyw) file into memory, and parses it, to get a byte-code program
that it then goes on to execute. For each module that is imported by the program, Python
first checks to see if there is a pre-compiled byte-code version (in a .pyo or .pyc file) that
has a timestamp which corresponds to its .py file. If there is, Python uses the byte-code
version; otherwise it parses the module's .py file, saves it into a .pyc file, and uses the
byte-code it just generated. So unlike Java, we don't have to explicitly byte-code compile
any modules, whether they are supplied with Python, or are ones we have written ourselves.
And in most Python installations, the supplied modules are compiled as part of the
installation process so as to avoid having to compile them whenever a Python application
that uses them is run.

Variables and Objects
In most programming languages, including C++ and Java, we must declare each variable,
specifying its type, before it can be used. This is called static typing because the compiler
knows at compile-time what type each variable is. Python, like most very high level
languages, uses a different approach: Variables have no type restrictions (dynamic typing),
and they don't need to be declared.

We could learn about Python's variables and identifiers by creating and executing a file as
we did with hello.py in the previous section. But for trying out small code snippets we
don't need to create a file at all, we can just enter the lines directly in the IDLE Python
Shell window at the >>> prompt:

>>> x = 71
>>> y = "Dove"

The whitespace around operator = is optional but is included because it makes the code
easier to read. As a matter of style we will always put one space before and after binary
operators. On the other hand, it is important that each statement occupies its own line and
has no extraneous leading whitespace. This is because Python uses indentation and line
breaks to signify its block structure, rather than the braces and semi-colons used by many
other programming languages.

Now we are ready to review what the two lines actually do. The first line creates an object
of type int and binds the name x to it.[*] The second line creates an object of type str (an
8-bit string type), and binds the name y to it.

[*] This is similar to the Java assignment Integer x = new Integer(71); for C++ a near-equivalent would be int xd = 71; int &x = xd;.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 12 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 1.2. Object References and Objects

Some Python programmers refer to names (such as the x and y used earlier), as object
references since they refer to objects rather than being objects in their own right. For basic
data types like int and str it makes no difference whether we see their variables as
"objects" or as "object references"; they behave in the same way as they do in other
programming languages:

>>> x = 82
>>> x += 7
>>> x
89

Later on we will see cases where the fact that Python variables are object references makes
a difference.

Lists 31

Python has two ways of comparing objects: by "identity" and by "value". An object's identity
is effectively its address in memory, and this is what an object reference holds. If we use
the comparison operators, such as == and <, we get value comparison. For example, two
strings are equal using == if they both contain the same text. If we use is we get identity
comparison, which is fast because we are just comparing two addresses and don't have to
look at the objects themselves. An object's identity can be obtained by calling id() on an
object reference.

Python has a special object called None. This can be assigned to any variable and means
that the variable has no value. There is only ever one instance of the None object, so we
can always use the fast is and is not comparisons when testing for it.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 13 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Notice that we wrote x on its own. If we write an expression or variable in IDLE, its value
is automatically printed. In a program we must use an explicit print statement to print
an expression, for example:

print x

Python's print statement is an operator, not a function, and for this reason is invoked
without using parentheses (just as we use + and other operators without them).

Earlier we said that Python uses dynamic typing. There are two factors involved in this.
Firstly we can assign any object to any variable; for example, we could write:

x = 47
x = "Heron"

After the first line, x's type is int, and after the second line x's type is str, so clearly the
type associated with the name x is determined by what the name is bound to, and not by
any intrinsic property of its own. It is for this reason that we do not need to associate a
particular type with a particular name.

The second aspect of Python's dynamic typing is that the typing is strong: Python does not
permit operations between incompatible types, as the following example, typed into IDLE,
shows:

>>> x = 41
>>> y = "Flamingo"
>>> x + y

Traceback (most recent call last):
 File <pyshell#2>, line 1, in <module>
 x + y
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 14 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Functions, Methods, and Operators Terminology

The term function is used to refer to a subroutine that can be executed
independently, and the term method is used to refer to a function that can only
be executed when bound to an object, i.e., called on an instance of a particular
class.

An operator may be independent or it may be bound to an object, but unlike
functions and methods, operators do not use parentheses. Operators that are
represented by symbols such as +, *, and < are rather obviously called operators,
but operators that have names such as del and print, are often called
statements.

Python functions do not have to be pure in the mathematical sense: They do not
have to return a value and they can modify their arguments. Python functions
are like C and C++ functions, or like Pascal functions that take var parameters.
Python methods are like C++ or Java member functions.

When we attempted to apply the binary + operator, Python raised a TypeError exception
and refused to perform the operation.[*] (Exceptions are covered in Chapter 2.)

[*] The line of the traceback, File "<pyshell#2>", etc., varies every time, so your line may be different from the one shown here.

If we were to assign to y a type compatible with x's type, such as an int or float, the
addition would work fine:

>>> x = 41
>>> y = 8.5
>>> x + y
49.5

Although x and y are of different types (int and float), Python provides the same kind
of automatic type-promotion that other languages use, so the x is converted to a float
and the calculation performed is actually 41.0 + 8.5.

Assigning a value to a variable is called binding, since we bind names to objects. If we
assign a new object to an existing variable, we are said to be rebinding the name. When
we do this, what happens to the object the name was originally bound to? For example:

>>> x = "Sparrow"
>>> x = 9.8

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 15 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

What has happened to the str object that holds the text "Sparrow"? Once an object has
no names bound to it, it is scheduled for garbage collection, and in due course may be
deleted from memory. This is very similar to how things work in Java.

Python variable names consist of ASCII letters, digits, and underscores (_). Variable names
should begin with a letter, and they are case-sensitive (rowan, Rowan, and roWan are three
different variables). No Python variable should be given the name of any of Python's
keywords (see Table 1.1), nor of Python's built-in constants such as None, True, or
False.

Table 1.1. Python's Keywords[*]

and class elif finally if lambda print while

as2.6 continue else for import not raise with2.6

assert1.5 def except from in or return yield2.3

break del exec global is pass try

[*] The numbers beside some of the keywords indicate the version of Python that introduced them.

Numbers and Strings
Python provides several numeric types and two string types. What all these types have in
common is that they are immutable. This means that in Python, numbers and strings
cannot be changed. This sounds rather limiting, but thanks to Python's augmented
assignment operators (+=, *=, and so on), it simply is not a problem.

Before looking at the specific data types we will look at one important consequence of the
immutability. Let us type some simple expressions into IDLE:

>>> x = 5
>>> y = x
>>> x, y
(5, 5)

Here we have created an object of type int with value 5 and bound the name x to it. We
have then assigned x to y which has the effect of binding y to the same object that x is
bound to. So when we print them in IDLE (in a program we would have to write print
x, y, but in IDLE we just write an expression and IDLE automatically prints it), IDLE
outputs the values as a tuple—essentially a read-only list of values.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 16 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Tuples 29

Now let us increment y.

>>> y += 1
>>> x, y
(5, 6)

We might have expected both x and y to have the value 6 since both referred to the same
integer object. But because Python numbers (and strings) are immutable, this does not
happen. The augmented assignment operators when applied to immutable objects are
mere syntactic sugar: They do not change the objects they are applied to. So what really
happened is this: y = y + 1, so a new integer object was created (with value 6), and y
was bound to this new object. So when we asked IDLE to print x and y, they were referring
to different objects, each with a different value.

Shallow and Deep Copying sidebar 33

We need to bear in mind this fact that the = operator performs a binding operation rather
than an assignment. The name on the left-hand side is bound (or re-bound if the name
already exists) to the object on the right-hand side. For immutable objects it makes no
difference at all as we will see in a moment. But for mutable objects, it means that using
= will not give us a copy (it just binds another name to the original object), so when we
really need a copy we must use a copy() method, or a function from Python's copy
module as discussed shortly.

In practice the immutability of numbers and strings is very convenient. For example:

>>> s = "Bath"
>>> t = " Hat"
>>> u = s
>>> s += t
>>> s, t, u
('Bath Hat', ' Hat', 'Bath')

Notice that we assigned string s to u. Intuitively we would expect that u holds the value
"Bath" that was in effect assigned to it, and we do not expect that applying += to s will have
any side-effects, even though both s and u refer to the same string. And our intuition is
correct, u's value is not changed because when += is applied to s, a new string object is

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 17 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

created and bound to s and u is left as the only object now referring to the original "Bath"
string.

Integers and Long Integers
Python provides three integral types, bool, int and long. The bool type can only take
the values True or False, and when used in a numeric context these are treated as 1 and
0. The long type can hold an integer whose size is only limited by the machine's available
memory, so integers hundreds of digits long can be created and processed. The only down-
side is that the long type is slower to process than the int type. The int type is the same
signed integer type provided by most programming languages; however, if an operation
is applied to an int that would make its value exceed its range (for example, a value greater

than 231 - 1 or less than -231 on some machines), the int is automatically transformed
into a long.

Python uses the suffix L to signify a long, and we can do the same in code when necessary,
for example:

>>> p = 5 ** 35
>>> q = 7L
>>> r = 2 + q
>>> p, q, r
(2910383045673370361328125L, 7L, 9L)

Integer literals are assumed to be base 10 (decimal) numbers, except those that start with
a 0x which are treated as hexadecimal (base 16), for example 0x3F which is decimal 63,
and those that start with 0 which are treated as octal (base 8). Any kind of integer literal
can have L appended to it to make it into a long.

Python supports the common operators that we would expect for numbers, including +,
-, *, /, %, and their augmented cousins, +=, -=, *=, /=, and %=. Python also provides **
for raising a number to a power.

By default, Python's / division operator performs truncating division when both operands
are of type int, for example, 5 / 3, produces 1. This is the norm in most programming
languages, but can be inconvenient in Python since dynamic typing means that a variable
might be an int or a float at different times. The solution is to tell Python to always do
"true division" which produces floating-point results whenever necessary, and to use
the // operator when we really want truncation to occur. We will see how to do this in
Chapter 4.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 18 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Floats and Decimals
Python provides three kinds of floating-point value: float, Decimal, and complex. Type
float holds double precision floating point numbers whose range depends on the C (or
Java) compiler Python was built with; they have limited precision and cannot be reliably
compared for equality. Numbers of type float are written with a decimal point, or using
scientific notation, for example, 0.0, 5.7, 8.9e-4. It is salutary to type these into IDLE:

>>> 0.0, 5.7, 8.9e-4
(0.0, 5.7000000000000002, 0.00088999999999999995)

The inaccuracy is not a Python-specific problem: Computers represent floating-point
numbers using base 2 which can represent some decimals exactly (such as 0.5), but others
only approximately (such as 0.1). Furthermore, the representation uses a fixed number of
bits so there is a limit to the number of digits that can be held.

In practice this is rarely a problem since most floating-point numbers use 64-bits which
is more than sufficient in most cases. But if we need high precision then Python's
Decimal numbers from the decimal module can be used. These perform calculations
that are accurate to the level of precision we specify (by default to 28 decimal places) and
can represent periodic numbers like 0.1 exactly; but processing is a lot slower than with
normal floats. Because of their accuracy, Decimal numbers are suitable for financial
calculations.

Before Decimal numbers can be used, the decimal module must be imported. The syntax
for doing this is the same whether we are writing code in a .py file, or typing in IDLE as
we are here:

>>> import decimal

Here we have imported the decimal module into our IDLE Shell window. (The import
semantics are explained in the "Importing Objects" sidebar.) Integer literals can be passed
to the Decimal constructor, but because Decimals are high-precision and floats are
not, we cannot pass floats; instead we must provide floating-point values as strings, for
example:

>>> decimal.Decimal(19), decimal.Decimal("5.1"),
decimal.Decimal("8.9e-4")
(Decimal("19"), Decimal("5.1"), Decimal("0.00089"))

The number decimal.Decimal("5.1") is held exactly; as a float it would probably
be something like 5.0999999999999996. Similarly, decimal.Decimal
("0.00089") would be something like 0.00088999999999999995. We can easily
convert from Decimal to float, although we may lose precision by doing so:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 19 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

>>> d = decimal.Decimal("1.1")
>>> f = float(d)
>>> f
1.1000000000000001

Python also provides complex numbers as a built-in data type. These numbers consist of
a real and an imaginary component, the latter indicated by the suffix j.[*] For example:

[*] Mathematicians are used to using i for imaginary numbers, but Python follows the engineering tradition of using j instead.

>>> c = 5.4+0.8j
>>> type(c)
<type 'complex'>

Here we have entered a complex number (with the syntax real part + imaginary part),
and used Python's type() function to tell us what type the c is bound to.

Python's floating-point numbers provide the same basic operations as its integral
numbers, with integers being promoted to floating-point when numeric types are mixed
in the same expression.

Bytestrings, Unicode Strings, and QStrings
There are two built-in string types in Python: str which holds bytes, and unicode which
holds Unicode characters. Both types support a common set of string-processing
operations. Like numbers, Python strings are immutable. They are also sequences, so can
be passed to functions that accept sequences and can use Python's sequence operations,
for example the len() function which returns the length of a sequence. PyQt provides a
third string type, QString.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 20 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Importing Objects

Python has a large and comprehensive library of modules that provides a huge
amount of pre-defined functionality. We can make use of this functionality by
importing the constants, variables, functions, and classes, that we want. The
general syntax for importing is:

import moduleName

We can then access objects inside the module using the dot operator. For
example, the random module provides the randint() function, which can be
imported and used like this:

import random
x = random.randint(1, 10)

Note that it is common to put import statements at the beginning of .py files,
but they can be put elsewhere, for example, inside a function definition.

One benefit of Python's module system is that each module acts as a names-
pace so we avoid name collisions effortlessly. For example, we may have defined
our own randint() function, but there is no name conflict because the
imported one in the example, is accessed using the fully-qualified name
random.randint(). And as we will in Chapter 3, we can create our own
modules and import our own objects.

Modules themselves can contain other modules, and in some cases, especially
for very large modules, it is more convenient to import objects directly into the
current namespace. Python provides a syntax for this, for example:

from PyQt4.QtCore import *
x = QString()
y = QDate()

Here we have imported every object, i.e., all the classes from the PyQt4 module's
QtCore module, and this allows us to use their unqualified names. Using this
syntax is frowned on by some developers, but since we know that all the PyQt
objects begin with capital "Q", providing we don't create any of our own objects
with names beginning with "Q", we will not get any name collisions, and can
type far less. However, for those who prefer to use fully qualified names in all
cases, the plain import syntax can be used:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 21 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

import PyQt4
x = PyQt4.QtCore.QString()
y = PyQt4.QtCore.QDate()

For the sake of brevity we will use the from ... import syntax for the PyQt4
modules, although we will use the plain import syntax for everything else.

QString 26

If we only deal with 7-bit ASCII characters, i.e., characters in the range 0–127, and if we
want to save some memory, we can use strs. However, if we use an 8-bit character set
then we must be careful that we know which codec we are using. In Western Europe for
example, 8-bit strings are often encoded using the Latin-1 encoding. In general it is not
always possible simply by examining the bytes to determine which 8-bit encoding is used
for a particular string (or file). Modern GUI libraries, including Qt, use Unicode strings,
so the safest route is to use strs for 7-bit ASCII and for raw binary 8-bit bytes, and
unicode or QString otherwise.

Python strings are created by using quotes:

>>> g = "Green"
>>> t = ' trees'
>>> g + t
'Green trees'

Python does not mind whether we use double or single quotes so long as we use the same
kind at both ends.

To force a string literal to be of type unicode, we precede its initial quote with u:

>>> bird = "Sparrow"
>>> beast = u"Unicorn"
>>> type(bird), type(beast), type(bird + beast)
(<type 'str'>, <type 'unicode'>, <type 'unicode'>)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 22 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Notice that we can use binary + to concatenate strings, and that if we involve str and
unicode objects in the same operation the str operands are promoted to unicode and
the resultant object is of type unicode. (If the str contains characters outside the 7-bit
ASCII range, Python raises a UnicodeEncodeError exception; exceptions are covered
in Chapter 2.)

In Python there is no separate "character" type: A single character is a string of length 1.
We can get a character from a byte value using chr() which accepts an integer value in
the range 0–255. The Python documentation does not specify which encoding is used for
values outside the ASCII range, i.e., above 127. For Unicode we can use unichr() which
accepts an integer in the range 0–65 535.[*] To convert the other way, from a character to
its integer value (ASCII value or Unicode code point), we can use ord(), for example:

[*] The range will actually extend to 1 114 111 if Python was configured to use the UCS-4 Unicode representation.

>>> euro = unichr(8364)
>>> print euro
€
>>> ord(euro)
8364

Why did we use print instead of letting IDLE output the result? Because IDLE shows
non-ASCII characters in strings using hexadecimal escapes, so without print IDLE will
output u'\u20ac'.

It is also possible to access Unicode characters by name:

>>> euro = u"\N{euro sign}"
>>> print euro
€

If we need to include special characters in a string we can escape them using a backslash,
("\"). Table 1.2 shows the escapes available; the Unicode ones only make sense inside
unicode strings.

Table 1.2. Python's String Escapes

Escape Meaning

\newline Escape (i.e., ignore) the newline

\\ Backslash (\)

\' Single quote (')

\" Double quote (")

\a ASCII bell (BEL)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 23 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Escape Meaning

\b ASCII backspace (BS)

\f ASCII formfeed (FF)

\n ASCII linefeed (LF)

\N{name} Unicode character name

\r ASCII carriage return (CR)

\t ASCII tab (TAB)

\uhhhh Unicode character with the given 16-bit hexadecimal value

\Uhhhhhhhh Unicode character with the given 32-bit hexadecimal value

\v ASCII vertical tab (VT)

\ooo Character with the given octal value

\xhh Character with the given hexadecimal value

Here are two examples that show how to escape quotes:

"He said \"No you don't!\" again."
'What\'s up with him?'

We don't need to escape single quotes inside strings delimited by double quotes, and we
don't need to escape double quotes inside strings delimited by single quotes.

For multi-line strings we can use "triple" quotes.

'''This string has three lines in it, with a 'quote',
another "quote", and with just one embedded newline \
since we have escaped one of them.'''

These kinds of strings can include escaped characters just like normal strings, and can be
delimited by three single quotes as shown, or by three double quotes. Newlines in triple
quoted strings, and in Python code, can be escaped by preceding them with a backslash.
(This works correctly on Windows too, even though Windows uses two characters at the
end of lines rather than one.)

Python strings are sequences where individual characters can be accessed by positional
indexing, with the first character at index position 0. It is also possible to index from the
end of the string, with the last character's index position being -1. For example:

>>> phrase = "The red balloon"
>>> phrase[0], phrase[5], phrase[-1]
('T', 'e', 'n')

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 24 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Negative indexes are used to access characters from right-to-left, with the rightmost
character position being -1, the one to the left of that at position -2, and so on.

Python sequences support slicing, which means that we can copy sub-sequences from a
sequence. A slice has one, two, or three components, the start (which defaults to index 0),
the end (which defaults to the length of the sequence), and another one which we will
ignore. Slices are taken from and including the start index up to but excluding the end
index. Here are some examples:

>>> phrase = "The red balloon"
>>> phrase[:3]
'The'
>>> phrase[-3:]
'oon'
>>> phrase[4:7]
'red'

Since Python strings are immutable it is not possible to assign to a character or slice inside
a string:

>>> p = "pad"
>>> p[1] = "o" # WRONG

Traceback (most recent call last):
 File <pyshell#64>, line 1, in <module>
 p[1] = o
TypeError: object does not support item assignment

The easiest way to insert a character into a string is by using the slicing syntax:

>>> p = "pad"
>>> p = p[:1] + "o" + p[2:]
>>> p
'pod'

It may appear annoying that we have to specify literal numbers, but in practical
programming we normally get the indexes using method calls, for example using the find
() method.

Other approaches are possible, for example:

>>> p = "pad"
>>> p = "o".join((p[:1], p[2:]))
>>> p
'pod'

Programmers from a Pascal or C++ background who are used to mutable strings may find
the immutability of strings awkward at first. Python does of course offer mutable strings;
they are provided by the StringIO module and the (faster) cStringIO module. PyQt's

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 25 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

QString class is also mutable. But with practice the Python way of working with
immutable strings, and in particular the idiom shown above, concatenating using the join
() method, will soon become second nature. We will look at another idiom, used for
"composing" strings, shortly.

Python strings have many useful methods, but we will concentrate on the most commonly
used ones. In Python, methods are invoked on object references by using the dot . operator
to access the method, and parentheses () to signify that we are performing a method
(member function) call,[*] for example:

[*] As noted earlier, parentheses are not used with operators such as + or print.

>>> line = "The quick brown fox."
>>> line.find("q")
4

The find() method returns the index position of the leftmost occurrence of the string it
is given as argument, inside the string it is applied to. It returns -1 on failure.

Python also provides an index() method that has identical usage, but which raises a
ValueError exception on failure. Other sequence classes (such as lists) also have an
index() method, so having one for strings gives consistency.

Since we can use either find() or index() on strings is there any reason to prefer one
over the other? For one-off searches it is often convenient to use find() and just check
the return value. But if we have a block of code where we are performing lots of searches,
using find() forces us to check the return value of every search, whereas using index
() allows us to assume the result is always valid and if it isn't, to handle any errors in a
single exception handler. Of course, if we don't catch the exception, it will be passed up
the call stack, and if it isn't caught anywhere will cause the application to terminate. We
use both approaches throughout the book, using whichever one is most appropriate on a
case-by-case basis.

Exceptions vs. testing for errors 66

String methods can be applied both to string objects and to string literals:

>>> "malthusian catastrophe".title()
'Malthusian Catastrophe'

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 26 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The title() method returns a string that is a copy of the string it is applied to but with
the first letter of every word capitalized. Python provides string formatting of data types
using a syntax that is very similar to the C library's printf() function.

To achieve formatting we use the binary % operator which takes a format string left-hand
argument and a right-hand object, (often a tuple of objects), which are to be formatted.
For example:

Tuples 29

>>> "There are %i items" % 5
'There are 5 items'

The %i in the string is replaced by the number 5. The letter following the % in a string
format specifies the type of object that is expected, with %i signifying an integer.

Here is an example that shows three different types being replaced, with arrows showing
which % item is replaced by which tuple element:

The % items are called format specifiers, and format strings contain at least one. Format
specifiers consist of a percent (%) symbol followed by a formatting character. The percent
symbol itself is specified by using %%. In the example above we used %i which is the format
specifier for an int, %s which is the specifier for a string, and %f which is the specifier for
a float.

Earlier we looked at how to insert a sub-string into a string. We showed how to do this
using slicing, and also the more Pythonic way using the string join() method. Here is a
third way, using format specifiers:

Table 1.3. Common String Methods and Functions

Syntax Description

x in s Returns True if string x is a sub-string of string s

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 27 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Syntax Description

x not in s Returns True if x is not a sub-string of s

x + s Returns the concatenation of x and s

s * i Returns a string consisting of i concatenations of s. For example, "Abc" * 3 produces
"AbcAbcAbc"

len(s) Returns the length of s; this is a byte count if s is of type str and a character count if s is of type
unicode

s.count(x) Returns the number of times x occurs in s. This method, and several others, can take optional start
and end arguments to restrict the search to a slice of the string they are called on

s.endswith(x) Returns True if s ends with x

s.startswith(x) Returns True if s starts with x

s.find(x) Returns the index position of the leftmost occurrence of x in s; returns -1 if no x is found

s.rfind(x) Like find(), but searches from right to left

s.index(x) Returns the index position of the leftmost occurrence of x in s; raises a ValueError exception if
no x is found

s.rindex(x) Like index(), but searches from right to left

s.isdigit() Returns True if the string is not empty and the character or characters it contains are all digits

s.isalpha() Like isdigit(), but checks for letters

s.join((x, y,...)) Returns a string which is the concatenation of the given sequence delimited by the string on which
the method is called. For example, ":".join(("A", "BB", "CCC")) returns "A:BB:CCC". The
delimiter can be empty

s.lower() Returns a lower-cased copy of s

s.upper() Returns an upper-cased copy of s

s.replace(x, y) Returns a copy of s with any occurrences of string x replaced by copies of string y

s.split() Returns a list of strings, splitting on whitespace. For example, "ab\tc d e".split() returns
["ab", "c", "d", "e"]. This method can be given a first argument which is a string to split on, and a
second argument which is the maximum number of splits to make

s.strip() Returns a copy of the string with leading and trailing whitespace removed. Accepts an optional
string argument specifying which characters should be removed

>>> p = "pad"
>>> p = "%so%s" % (p[:1], p[2:])
>>> p
'pod'

Here we create a new string which consists of a string (which comes from the first slice of
p), "o", and another string (from the second slice of p). The join() approach shown earlier
is used for concatenating strings; this approach is used for "composing" strings.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 28 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We can exercise some control over the formatting of % items by putting some information
between the % and the letter. For example, to only show two digits after the decimal place
for a float we can use the specifier %.2f:

>>> "The length is %.2f meters" % 72.8958
'The length is 72.90 meters'

Here are a few more examples, two of which show the use of the % operator in conjunction
with the print statement:

>>> print "An integer", 5, "and a float", 65.3
An integer 5 and a float 65.3
>>> print "An integer %i and a float %f" % (5, 65.3)
An integer 5 and a float 65.300000
>>> print "An integer %i and a float %.1f" % (5, 65.3)
An integer 5 and a float 65.3

In many cases %i (and its synonym %d), %f, and %s suffice. The full details of what format
specifiers are available and how they can be modified to give specific results are given in
the Python documentation; in this case look for "String formatting operations". Other
approaches to string formatting are also possible with Python, for example, Perl-like
interpolation is provided by the Template class in the string module. It is even possible
to use a C++-like syntax; see the "Using a C++-like iostream Syntax", in the Python
Cookbook. (See the "Python Documentation" sidebar.)

Notice that the print statement automatically outputs a space between each argument it
prints. It is possible to avoid this using sys.stdout.write() instead of print; more
coverage of write() is given in Chapter 6.

When using PyQt we have access to an additional string type, QString. Unlike Python's
str and unicode, QString is mutable; this means that we can change QStrings in
place, inserting and removing sub-strings, and changing individual characters.
QString has a rather different API from that provided by str and unicode.[*]

[*] The reason that Qt provides QString is because Qt is written in C++ which does not yet have built-in Unicode support.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 29 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Python Documentation

Python is supplied with a large amount of documentation. Most of the
documentation is of good quality, but there are a few areas where the coverage
is rather thin. Navigating the documentation using the HTML version takes
practice because it is organized more like a physical book than an online
document and has far too few cross-reference links between pages.

Windows users are fortunate here because for them the documentation is
supplied in Windows help file format. Click Start All Programs Python 2.x

Python Manuals to launch the Windows help browser. This tool has both an
Index and a Search function that makes finding documentation easy. For
example, to find the information about string format specifiers, simply enter
"formatting" in the Index line edit and the entry "formatting, string (%)" will
appear.

It is well worth skimming through the documentation. We suggest spending an
hour or so looking through the "Library reference" page to see what Python's
library offers, and clicking through to the documentation of whichever modules
are of interest. This should provide an initial impression of what is available and
should also help establish a mental picture of where the documentation you are
interested in can be found.

For those who prefer printed information, the following books are worth
considering:

• Core PYTHON Programming by Wesley Chun. This is a Python tutorial
that may be suitable if you are completely new to Python and want a slower
pace than Part I of this book provides.

• Python in a Nutshell by Alex Martelli. This is an excellent reference book
that gives detailed and accurate coverage of the Python language and
Python's standard library.

• Python Cookbook 2nd Edition, edited by Alex Martelli, Anna Martelli
Ravenscroft, and David Ascher. This book provides lots of small practical
functions, classes, snippets, and ideas, and will help broaden any Python
programmer's awareness of what can be done with Python. The recipes are
also available online at http://aspn.activestate.com/ASPN/Python/
Cookbook.

For online Python information, the starting point is http://www.python.org.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 30 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://aspn.activestate.com/ASPN/Python/Cookbook
http://aspn.activestate.com/ASPN/Python/Cookbook
http://www.python.org

QString holds Unicode characters, but depending on which version of Python we are
using, the internal representation may be different from Python's unicode representation;
this doesn't really matter since PyQt can easily convert between unicode and QString,
for example:

>>> from PyQt4.QtCore import *
>>> a = QString("apple")
>>> b = unicode("baker")
>>> print a + b
applebaker
>>> type(a + b)
<class 'PyQt4.QtCore.QString'>

Here we import all the classes from the QtCore module, made available to us through the
PyQt4 module. When we perform operations involving QStrings and Python strings, the
resultant strings are always QStrings as the type() function reveals.

When using PyQt, Qt methods that take string arguments can be given str, unicode or
QString types and PyQt will perform any necessary conversion automatically. Qt
methods that return strings always return QStrings. In view of Python's dynamic typing,
we can easily become confused and not be sure whether we have a QString or a Python
string. For this reason it is wise to decide on a policy for string usage so that we always
know where we stand.

The policy we use with PyQt is as follows:

• Only use type str when working with strictly 7-bit ASCII strings or with raw 8-bit
data, i.e., with raw bytes.

• For strings that will only be used by Qt functions, for example, strings that are returned
by one Qt function only to be passed at some point to another Qt function, do not
convert such strings, simply keep them as QStrings.

• In all other cases use unicode strings, converting QStrings to unicode as soon as
possible, i.e., as soon as a QString has been returned from a Qt function, always
immediately convert it to type unicode.

This policy means that we avoid making incorrect assumptions about 8-bit string
encodings (because we use Unicode). It also ensures that the strings we pass to Python
functions have the methods that Python expects: QStrings have different methods from

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 31 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

str and unicode, so passing them to Python functions can lead to errors. (The reason
that PyQt uses QString is that when PyQt was first created, Python's Unicode support
was nowhere near as good as it is today.)

Collections
Once we have variables, i.e., individual named object references to objects of particular
types, it is natural to want to have entire collections of object references. Python's standard
collection types hold object references, so they can in effect hold collections of any type of
object. Another consequence of collections using object references is that they can refer to
objects of any type: They are not restricted to holding items that are all of a single type.

The built-in collection types are: tuple, list, dict (dictionary), set, and
frozenset. All except tuple and frozenset are mutable, so items can be added and
deleted from lists, dictionaries, and sets. Some additional mutable collection types are
provided in the collections module.[*]

[*] The Qt library provides its own rich set of container classes for C++, but these are not available in PyQt, and in any case, Python's own collection classes are perfectly
good to use.

Python has one collection type in its standard library that does not hold object references;
instead it holds numbers of a specified type. This is the array type and it is used in
situations where large numbers of numbers need to be stored and processed as efficiently
as possible.

In this section we will look at Python's built-in collection types.

Tuples
A tuple is an ordered sequence of zero or more object references. Like strings (and as we
will see shortly, like lists), tuples support the sequence functions like len() and also the
same slicing syntax that we saw earlier. This makes it really easy to extract items from a
tuple. However, tuples are immutable so we cannot replace or delete any of their items. If
we want to be able to modify an ordered sequence then we simply use a list instead of a
tuple; or if we already have a tuple but want to modify it, we just convert it to a list and
then apply our changes.

String slicing 22

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 32 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We have already had some informal exposure to tuples; for example, some of our
interactions in IDLE produced results that were wrapped up as tuples, and we also used
tuples to provide multiple arguments to the % operator.

Here are some examples that show how to construct tuples:

>>> empty = ()
>>> type(empty)
<type 'tuple'>
>>> one = ("Canary")
>>> type(one)
<type 'str'>
>>> one = ("Canary",)
>>> type(one)
<type 'tuple'>

Creating an empty tuple is simple, but for a one item tuple we must use a comma to
distinguish it from a parenthesized expression.

>>> things = ("Parrot", 3.5, u"\u20AC")
>>> type(things)
<type 'tuple'>

Tuples can hold items of any type; here we have str, float, and unicode items. It is
also possible to drop the parentheses for tuples that have at least two items and where the
meaning is unambiguous.

>>> items = "Dog", 99, "Cow", 28
>>> type(items)
<type 'tuple'>

Tuples can be arbitrarily nested and can be sliced, as these examples show:

>>> names = "Albert", "Brenda", "Cecil", "Donna"
>>> names[:3]
('Albert', 'Brenda', 'Cecil')
>>> names[1]
'Brenda'

We create a tuple of names, then take a slice of the first three items, and then look at the
item at index position 1. Like all Python sequences, the first item is at position 0.

>>>names = names[0], names[1], "Bernadette", names[2], names[3]
>>> names
('Albert', 'Brenda', 'Bernadette', 'Cecil', 'Donna')

Now we have changed the names tuple to refer to a new tuple with an extra item in the
middle. It might be tempting to write names[:1] instead of names[0], names[1], and

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 33 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

similarly names[2:] for the last two names, but if we did so we would end up with a three
item tuple:

(('Albert', 'Brenda'), 'Bernadette', ('Cecil', 'Donna'))

This is because when we use slicing on a tuple the slices are always tuples themselves.

>>> names
('Albert', 'Brenda', 'Bernadette', 'Cecil', 'Donna')
>>> names = names[:4]
>>> names
('Albert', 'Brenda', 'Bernadette', 'Cecil')

Here we have in effect chopped off the last name by taking a tuple of the first 4 items, i.e.,
those with index positions, 0, 1, 2, and 3. In slicing, the first number is the first index and
this item is included in the result, and the second number is the last index and this item
is excluded from the result.

>>> names
('Albert', 'Brenda', 'Bernadette', 'Cecil')
>>> names = names[:-1]
>>> names
('Albert', 'Brenda', 'Bernadette')

Another way of chopping off the last item is to index from the end; this way we don't have
to know what the length of the tuple is. But if we want to know the length we can use the
len() function.

>>> pets = (("Dog", 2), ("Cat", 3), ("Hamster", 14))
>>> len(pets)
3
>>> pets
(('Dog', 2), ('Cat', 3), ('Hamster', 14))
>>> pets[2][1]
14
>>> pets[1][0:2]
('Cat', 3)
>>> pets[1]
('Cat', 3)

Tuples can be nested and items accessed using as many square brackets as necessary.

Any sequence can be given to the tuple constructor to create a tuple. For example:

>>> tuple("some text")
('s', 'o', 'm', 'e', ' ', 't', 'e', 'x', 't')

Tuples are useful when we need fixed ordered collections of objects. They are also used as
arguments to some functions and methods. For example, starting with Python 2.5, the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 34 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

str.endswith() method accepts either a single string argument, e.g., ".png", or a tuple
of strings, e.g., (".png", ".jpg", ".jpeg").

Lists
The list type is an ordered sequence type similar to the tuple type. All the sequence
functions and the slicing that we have seen working with strings and tuples works in exactly
the same way for lists. What distinguishes the two types is that lists are mutable and have
methods that we can use to modify them. And whereas tuples are created using
parentheses, lists are created using square brackets (or by using the list() constructor).

Let us look at some slicing examples that extract parts of a list:

>>> fruit = ["Apple", "Hawthorn", "Loquat", "Medlar", "Pear", "Quince"]
>>> fruit[:2]
['Apple', 'Hawthorn']
>>> fruit[-1]
'Quince'
>>> fruit[2:5]
['Loquat', 'Medlar', 'Pear']

Here we have used the familiar slicing syntax that we have already used for strings and
tuples.

Because lists are mutable we can insert and delete list items. This is achieved by using
method calls, or by using the slicing syntax where slices are used on both sides of the
assignment operator. First we will look at the method calls.

>>> fruit.insert(4, "Rowan")
>>> fruit
['Apple', 'Hawthorn', 'Loquat', 'Medlar', 'Rowan', 'Pear',
'Quince']
>>> del fruit[4]
>>> fruit
['Apple', 'Hawthorn', 'Loquat', 'Medlar', 'Pear', 'Quince']

We have inserted a new item and then deleted it, using a method call and an operator. The
del statement is used to remove an item at a particular index position, whereas the
remove() method is used to remove an item that matches remove()'s parameter. So in
this example we could also have deleted using fruit.remove("Rowan").

Now we will do the same thing using slicing:

>>> fruit[4:4] = ["Rowan"]
>>> fruit
['Apple', 'Hawthorn', 'Loquat', 'Medlar', 'Rowan', 'Pear',
'Quince']
>>> fruit[4:5] = []

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 35 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

>>> fruit
['Apple', 'Hawthorn', 'Loquat', 'Medlar', 'Pear', 'Quince']

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 36 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Shallow and Deep Copying

We saw earlier (on page 16) that if we have two variables referring to the same
string and change one of them, for example using += to concatenate, Python
creates a new string. This occurs because Python strings are immutable. For
mutable types such as lists (and dictionaries, covered shortly), the situation is
different.

For example, if we create a list with two variables referring to it, and change the
list through one of the variables, both variables now refer to the same changed
list:

>>> seaweed = ["Aonori", "Carola", "Dulse"]
>>> macroalgae = seaweed
>>> seaweed, macroalgae
(['Aonori', 'Carola', 'Dulse'], ['Aonori', 'Carola', 'Dulse'])
>>> macroalgae[2] = "Hijiki"
>>> seaweed, macroalgae
(['Aonori', 'Carola', 'Hijiki'], ['Aonori', 'Carola', 'Hijiki'])

This is because by default Python uses shallow copying when copying mutable
data. We can force Python to do a deep copy by taking a slice that consists of the
entire list:

>>> seaweed = ["Aonori", "Carola", "Dulse"]
>>> macroalgae = seaweed[:]
>>> seaweed, macroalgae
(['Aonori', 'Carola', 'Dulse'], ['Aonori', 'Carola', 'Dulse'])
>>> macroalgae[2] = "Hijiki"
>>> seaweed, macroalgae
(['Aonori', 'Carola', 'Dulse'], ['Aonori', 'Carola', 'Hijiki'])

Slices always copy the items sliced, whether we slice a part of a list, or the whole
list as we have done here. However, this only works one level deep, so if we had
a list of lists, the sub-lists would only be shallow copied. Some other collection
types, for example, dict, provide a copy() method which is their equivalent
of [:].

For deep copying that works to any depth we must import the copy module and
use the deepcopy() function. In practice though, this is very rarely a problem,
and when it does trip us up, using deepcopy() sorts it out for us.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 37 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When we assigned "Rowan" we used square brackets because we were inserting a list slice
(a one item list) into a list slice. If we had omitted the brackets, Python would have treated
the word "Rowan" as a list in its own right, and would have inserted "R", "o", and so on,
as separate items.

When inserting using slices, the source and target slices can be of different lengths. If the
target slice is of zero length, such as fruit[4:4], then only insertion takes place; but if
the target's length is greater than zero, then the number of items in the target slice are
replaced by the items in the slice that is inserted. In this example, we replaced a one item
slice with a zero item slice; effectively deleting the one item.

Here are a few more examples:

>>> fruit[2:3] = ["Plum", "Peach"]
>>> fruit
['Apple', 'Hawthorn', 'Plum', 'Peach', 'Medlar', 'Quince']
>>> fruit[4:4] = ["Apricot", "Cherry", "Greengage"]
>>> fruit
['Apple', 'Hawthorn', 'Plum', 'Peach', 'Apricot', 'Cherry',
'Greengage', 'Medlar', 'Quince']
>>> bag = fruit[:]
>>> bag
['Apple', 'Hawthorn', 'Plum', 'Peach', 'Apricot', 'Cherry',
'Greengage', 'Medlar', 'Quince']

We have replaced a slice of length one, fruit[2:3] ("Loquat"), with a slice of length two.
We have also inserted a slice of three items without removing any. In the last example we
copied all of fruit's items to bag; this could have been done using bag = fruit, but
with subtly different semantics; see the sidebar on page 33 for more about copying lists.

Multiple consecutive items can be deleted using del on a slice, or by assigning a zero length
slice to a slice. For inserting multiple items we can use slicing, slicing with operator +, and
to add at the end we can use extend(). See Table 1.4 for a summary of the methods and
functions applicable to lists.

Table 1.4. Common List Methods and Functions

Syntax Description

x in a Returns True if item x is in list a

x not in a Returns True if x is not in a

a + b Returns a list containing all the items of list a and of list b; the extend() method does the same and
is more efficient

len(a) Returns the length of a

a.count(x) Returns the number of times x occurs in a

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 38 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Syntax Description

a.index(x) Returns the index position of the leftmost occurrence of x in a; raises a ValueError exception if no
x is found

a.append(x) Appends item x to the end of a

a.extend(b) Appends all b's items to the end of a

a.insert(i, x) Inserts item x into a at index position i

a.remove(x) Removes the leftmost occurrence of x from a; raises a ValueError exception if no x is found

a.pop() Returns and removes the rightmost item of a

a.pop(i) Returns and removes the item at index position i

a.reverse() Reverses the list in-place

a.sort() Sorts the list in-place; this method accepts optional arguments such as a comparison function or a
"key" to facilitate DSU (decorate, sort, undecorate) sorting

Dictionaries
The dict type is a data dictionary, also known as an associative array. A dictionary holds
a set of unordered key–value pairs and provides very fast key lookup. Keys are unique and
must be of an immutable type, such as a Python string, a number, or a tuple; the value can
be of any type including collection types, so it is possible to create arbitrarily nested data
structures. Although dictionaries are not sequences, we can get sequences of their keys
and values as we will see in the next chapter.

Similar data structures exist in other languages, for example, Perl's hash, Java's
HashMap, and C++'s unordered_map.

Notice that a tuple can be a dictionary key, but a list cannot, since a dictionary's keys must
be immutable. In languages that only offer simple keys like strings and numbers,
programmers who want multi-item keys must resort to converting their items into a string,
but thanks to tuples this kind of hack is not necessary in Python.

Here are some examples that show how to create a dictionary and access items in it:

>>> insects = {"Dragonfly": 5000, "Praying Mantis": 2000,
"Fly": 120000, "Beetle": 350000}
>>> insects
{'Fly': 120000, 'Dragonfly': 5000, 'Praying Mantis': 2000,
'Beetle': 350000}
>>> insects["Dragonfly"]
5000
>>> insects["Grasshopper"] = 20000
>>> insects
{'Fly': 120000, 'Dragonfly': 5000, 'Praying Mantis': 2000,
'Grasshopper': 20000, 'Beetle': 350000}

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 39 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Items can be deleted from a dictionary in the same way as they can be deleted from a list,
for example:

>>> del insects["Fly"]
>>> insects
{'Dragonfly': 5000, 'Praying Mantis': 2000, 'Grasshopper': 20000,
'Beetle': 350000}
>>> insects.pop("Beetle")
350000
>>> insects
{'Dragonfly': 5000, 'Praying Mantis': 2000, 'Grasshopper': 20000}

Dictionaries can be constructed using the dict() constructor, and if the keys happen to
be valid identifiers (i.e., alphanumeric beginning with an alphabetic character and with no
whitespace), we can use a more convenient syntax:

>>> vitamins = dict(B12=1000, B6=250, A=380, C=5000, D3=400)
>>> vitamins
{'A': 380, 'C': 5000, 'B12': 1000, 'D3': 400, 'B6': 250}

We mentioned earlier that dictionary keys can be tuples; here is one last example to show
this in action:

>>> points3d = {(3, 7, -2): "Green", (4, -1, 11): "Blue",
(8, 15, 6): "Yellow"}
>>> points3d
{(4, -1, 11): 'Blue', (8, 15, 6): 'Yellow', (3, 7, -2): 'Green'}
>>> points3d[(8, 15, 6)]
'Yellow'

Table 1.5. Common Dictionary Methods and Functions

Syntax Description

x in d Returns True if item x is in dictionary d

x not in d Returns True if x is not in d

len(d) Returns the number of items in d

d.clear() Removes all items from d

d.copy() Returns a shallow copy of d

d.keys() Returns a list of all the keys in d

d.values() Returns a list of all the values in d

d.items() Returns a list of tuples of all the (key, value) pairs in d

d.get(k) Returns the value with key k, or None

d.get(k, x) Returns the value with key k if k is in d; otherwise returns x

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 40 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Syntax Description

d.setdefault(k,
x)

The same as the get() method except that if the key is not in the dictionary a new item is inserted
with the given key and a value of None or x if x is given

d.pop(k) Returns and removes the item with key k; raises a KeyError exception if there is no such key

d.pop(k, x) Returns and removes the item with key k if k is in d; otherwise returns x

In Chapter 2 we will see how to iterate over dictionaries in their "natural" arbitrary order,
and also in key order.

Sets
Python provides two set types, set and frozenset. Both are unordered, so neither is a
sequence. Sets are mutable so items can be added and removed. Frozensets are immutable
and cannot be changed; however, this means that they are suitable for use as dictionary
keys.

Every item in a set is unique; if we try to add an item that is already in a set the add() call
does nothing. Two sets are equal if they contain the same items, no matter what order
those items were inserted in. Sets are similar to dictionaries that have only keys and no
values. Lists on the other hand keep their items in insertion order (unless they are sorted),
and allow duplicates.

A frozenset is constructed with a single sequence parameter, for example a tuple or a list.
A set can be constructed in the same way, for example:

>>> unicorns = set(("Narwhal", "Oryx", "Eland"))
>>> "Mutant Goat" in unicorns
False
>>> "Oryx" in unicorns
True

Since we created a set rather than a frozenset we can add and remove items, for example:

>>> unicorns.add("Mutant Goat")
>>> unicorns
set(['Oryx', 'Mutant Goat', 'Eland', 'Narwhal'])
>>> unicorns.add("Eland")
>>> unicorns
set(['Oryx', 'Mutant Goat', 'Eland', 'Narwhal'])
>>> unicorns.remove("Narwhal")
>>> unicorns
set(['Oryx', 'Mutant Goat', 'Eland'])

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 41 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The set classes also support the standard set operations, for example, union, intersection,
and difference, and for some operations provide both methods and operators, as Table
1.6 shows.

Table 1.6. Common Set Methods and Functions

Syntax Description

x in s Returns True if item x is in set s

x not in s Returns True if x is not in s

len(s) Returns the number of items in s

s.clear() Removes all items from s

s.copy() Returns a shallow copy of s

s.add(x) Adds x to s if it is not already in s

s.remove(x) Removes x from s; raises a KeyError exception if x is not in s

s.discard(x) Removes x from s if it is in s

s.issubset(t) s <= t Returns True if s is a subset of set t

s.issuperset(t) s >= t Returns True if s is a superset of set t

s.union(t) s | t Returns a new set that has all the items from s and t

s.intersection(t) s & t Returns a new set that has each item that is both in s and in t

s.difference(t) s - t Returns a new set that has every item that is in s that is not in t

Built-in Functions
As we have already seen, Python has a number of built-in functions and operators, for
example, del, print, len(), and type(). The tables in this section show some others
that are useful, some of which we will discuss here.

In IDLE, or when using the Python interpreter directly, we can use the help() function
to get information about an object, or to enter Python's interactive help system, for
example:

>>> help(str)

This will display all the str class's methods with a brief explanation of each. Quite a lot of
information is provided, so we often have to scroll up using the PageUp key or using the
scrollbar.

>>> help()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 42 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

With no arguments the help() function takes us into the interactive help system. Type
quit to return to normal IDLE interaction.

Once we are familiar with Python's classes, and just need a quick reminder, we can use
dir() to get a bare list of a class's methods, for example:

>>> dir(str)

The range() function is covered in Chapter 2 when we look at looping, and the open
() function is covered in Chapter 6 when we look at reading and writing files. The hasattr
() and isinstance() functions are covered in Chapter 3 (Classes and Modules).

For the sequence-related functions, max() and min() work on sequences that contain
strings as well as those that contain numbers, but may give suprising results:

>>> x = "Zebras don't sail"
>>> max(x), min(x)
('t', ' ')

The ordering is based on the byte values for str strings and on code points for
unicode strings.

Some of Python's built-in mathematical functions are shown in Table 1.9. Python is also
supplied with a mathematics library that has all the standard functions we would expect.
We can discover what they are by importing the math module, and using dir():

>>> import math
>>> dir(math)
['__doc__', '__file__', '__name__', 'acos', 'asin', 'atan',
'atan2', 'ceil', 'cos', 'cosh', 'degrees', 'e', 'exp', 'fabs', 'floor',
'fmod', 'frexp', 'hypot', 'ldexp', 'log', 'log10', 'modf', 'pi', 'pow',
'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh']

Table 1.7. Some Useful Built-ins

Syntax Description

chr(i) Returns a one character str whose ASCII value is given by integer i

unichr(i) Returns a one character unicode string whose Unicode value is given by integer i

ord(c) Returns the integer that is the byte value (0–255) if c is a one character 8-bit string, or the integer
for the Unicode code point if c is a one character Unicode string

dir(x) Returns a list of object x's attributes, including all its method names

help(x) In IDLE, prints a brief description of object x's type and a list of its attributes including all its methods

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 43 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Syntax Description

hasattr(x,
attr)

Returns True if the object x has the attribute called attr

id(x) Returns the unique ID of the object that object reference x refers to

isinstance(x,
C)

Returns True if x is an instance of class C or of a subclass of class C

type(x) Returns the type of x; isinstance() is preferred since it accounts for inheritance; type() is most
often used for debugging

eval(s) Returns the result of evaluating the string s which can contain an arbitrary Python expression

open(name,
mode)

Opens the file called name using the given mode and returns its file handle; covered in Chapter 6

range(i) Returns a list of i integers numbered from 0 to i - 1; additional arguments can be used to specify
start, end, and step values

range() examples 48

The first three items are special methods (indicated by leading and trailing double
underscores); we will learn a more about special methods in Chapter 3. All the rest are
functions, except for math.e and math.pi, which are constants. We can find out what
type an item is interactively, for example:

>>> import math
>>> type(math.pi), type(math.sin)
(<type 'float'>, <type 'builtin_function_or_method'>)
>>> math.pi, math.sin
(3.1415926535897931, <built-in function sin>)
>>> math.sin(math.pi)
1.2246063538223773e-16[*]

[*] The value 1.2246063538223773e-16 is 0. 00000000000000012246063538223773 which is close to 0 as expected.

Table 1.8. Common Sequence-Related Built-ins

Syntax Description

all(q) Returns True if all items in q are True; q is an iterable, for example a sequence such as a string or a list

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 44 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Syntax Description

any(q)

Returns True if any item in q is True

x in q Returns True if item x is in sequence q; also works for dictionaries

x not in q Returns True if item x is not in sequence q; also works for dictionaries

len(q) Returns the number of items in sequence q; also works for dictionaries

max(q) Returns the maximum item of sequence q

min(q) Returns the minimum item of sequence q

sum(q) Returns the sum of the items in sequence q

Table 1.9. Common Maths-Related Built-ins

Syntax Description

abs(n) Returns the absolute value of number n

divmod(i, j) Returns a tuple containing the quotient and remainder that result from dividing i by j

hex(i) Returns a hexadecimal string representing number i

oct(i) Returns an octal string representing number i

float(x) Returns x converted to a float; x may be a string or a number

int(x) Returns x converted to an int; x may be a string or a number

long(x) Returns x converted to a long; x may be a string or a number

pow(x, y) Returns x raised to the power y; can accept a third modulo argument—the two-argument form is the
same as using operator **

round(x, n) Returns float value x rounded to n digits after the decimal place

At first it is quite useful to explore what Python offers in this interactive way, but reading
the documentation, particularly skimming the "Library Reference" will provide a broad
overview of what Python's standard libraries have to offer.

Summary
In this chapter, we have seen the use of the assignment using operator =, numeric addition
using + (with type-promotion of an int to a float), and augmented assignment with
+=. We have also seen the print operator and learnt that since IDLE automatically prints
expressions, we use print much less often when using IDLE. We have also seen that
comments are introduced by a # and continue until the end of the line. In fact Python can

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 45 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

separate statements with semi-colons but it is very unusual to do this: In Python a
statement occupies a single line; newline is the statement separator.

We have learnt how Python strings are created by using quotes, and how strings can be
sliced and concatenated using the [] and + operators. We have also summarised some of
the key methods that Python strings provide: We will see numerous examples of their use
in working code throughout the book. We have seen that QString is a distinct Unicode
string type and that we need to have a policy governing our use of QStrings and Python
strings (normally unicode strings) when programming using PyQt.

The chapter has introduced Python's major collection types. Tuples provide a nice way of
grouping items together and can be used as dictionary keys. Lists are ordered and can hold
duplicates. They provide fast insertions and deletions, and fast index-based lookup.
Dictionaries are unordered and have unique keys. Like lists they provide fast insertions
and deletions. They also provide fast key-based lookup. Sets can be thought of as
dictionaries that don't hold values. We will make great use of all these types in the rest of
the book.

Finally, we had a quick glimpse at some of Python's built-in functionality and at one of its
mathematics modules. In Chapter 3 we will see how to create our own modules, and also
take a brief tour of Python's modules, and PyQt's non-GUI modules. But before that, we
need to learn about Python's control structures so that we can branch, loop, call our own
functions, and handle exceptions—all of which are the subject of the next chapter.

Exercises
The purpose of the exercises here, and throughout the book, are to encourage you to try
out Python, and from Part II onwards, PyQt, to get some hands-on experience. The
exercises are designed to require as little typing as possible, and they are graded, from least
to most challenging.

The exercises for this chapter can all be tried out directly in IDLE; from Chapter 2 onwards,
they are slightly longer and will need to be typed into files, as we will explain.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 46 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

1. Run IDLE, and type in the following:

one = [9, 36, 16, 25, 4, 1]
two = dict(india=9, golf=17, juliet=5, foxtrot=61, hotel=8)
three = {11: "lima", 13: "kilo", 12: "mike"}

Try to predict what the len(), max(), min(), and sum() functions will
produce for each of the three collections, then apply the functions and see the
results. Do they do what you expected?

2. Continuing in IDLE, assign a dictionary's keys to two variables, and then
change one of them like this:

d = dict(november=11, oscar=12, papa=13, quebec=14)
v1 = v2 = d.keys()
v1, v2 # This will show the contents of the lists
v1[3] = "X"

After this, do you expect v1 and v2 to be the same or different? Why? Print
out v1 and v2 to see. Now try assigning to v1 and v2 separately, and again
change one:

v1 = d.keys()
v2 = d.keys()
v1[3] = "X"

Will v1 and v2 be the same as before? Print them out to see. If any of this is
mysterious try re-reading the sidebar on page 33.

3. In the documentation, string-related methods and functions are covered in
several places—find and read or skim these pages: "Sequence types", "String
methods", "String formatting operations", and "String constants". If you are
comfortable with regular expressions, also look at the "Regular expression
operations" pages.
Still in IDLE, create two floating point values:

f = -34.814
g = 723.126

Based on your reading of the string formatting documentation, create a single
format string that when used with the % operator will produce the string "<
-34.81>" when applied to f and "<+723.13>" when applied to g.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 47 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Solutions to the exercises, and all the source code for the examples, is available online from
the author's website at http://www.qtrac.eu/pyqtbook.html. In the pyqtbook.zip file
there are subdirectories, chap01, chap02, etc., and in these are the relevant examples
and answers. This chapter's answers are in chap01/answers.txt.

2. Control Structures
• Conditional Branching
• Looping
• Functions
• Exception Handling

To write programs we need data types, with variables and data structures in which to store
them, and we need control structures such as branches and loops to provide control of
program flow and iteration. In this chapter, we will learn how to use Python's if statement
and how to loop using for and while loops. Exceptions can affect the flow of control, so
we also cover both handling and creating exceptions.

One fundamental way of encapsulating functionality is to put it into functions and
methods. This chapter shows how to define functions, and the next chapter shows how to
define classes and methods. Programmers coming from a C++ or similar background are
used to functions being defined just once. The same is true in Python, but with an additional
possibility: In Python, we can create functions at runtime in a way that reflects the current
circumstances, as we will see later in this chapter.

In the previous chapter, we used IDLE to experiment with snippets of Python code. In this
chapter, we will almost always simply show the code as it would be written in a file as part
of a program. However, it is perfectly possible to type the snippets used in this chapter into
IDLE to see the results "live", and this is certainly worth doing for anything covered that
you are not sure about.

Some of Python's functions and operators work on Boolean values, for example the binary
operator in returns True if its left-hand operand is in its right-hand operand. Similarly
the if and while statements evaluate the expressions they are given, as we will see shortly.

In Python, a value evaluates to False if it is the predefined constant False, numeric 0,
the special object None, an empty sequence (for example, an empty string or list), or an
empty collection; otherwise the value is True.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 48 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.qtrac.eu/pyqtbook.html

In PyQt an empty QString and any "null" object, i.e., any object of a PyQt data type that
has an isNull() method (and where isNull() returns True) evaluates to False. For
example, an empty QStringList, a null QDate, a null QDateTime, and a null QTime,
are all False. Correspondingly, non-empty and non-null PyQt objects are True.

We can test any object to see its Boolean value by converting it to a bool type, for example:

from PyQt4.QtCore import *
now = QDate.currentDate()
never = QDate()
print bool(now), bool(never) # Prints "True False"

The QDate() constructor with no arguments creates a null date; the QDate.
currentDate() static method returns today's date which of course is not null.

Conditional Branching
Python provides an if statement with the same semantics as languages like C++ and Java,
although with its own sparse syntax:

if expression1:
 suite1
elif expression2:
 suite2
else:
 suite3

The first thing that stands out to programmers used to C++ or Java is that there are no
parentheses and no braces. The other thing to notice is the colon: This is part of the syntax
and easy to forget when starting out. Colons are used with else, elif, and in many other
places to indicate that a block of code (a suite in Python-speak) is to follow. As we would
expect, there can be any number of elifs (including none), and optionally, there can be
a single else at the end.

Unlike most other programming languages, Python uses indentation to signify its block
structure. Some programmers don't like this, at least at first, and some get quite emotional
about the issue. But it just takes a few days to get used to, and after a few months, brace-
free code seems much nicer and less cluttered to read than code that uses braces.

Since suites are indicated using indentation, the question that naturally arises is, "What
kind of indentation?" And the answer is: The Python style guidelines recommend four
spaces per level of indentation, and only spaces (no tabs). Most modern text editors can
be set up to handle this automatically (IDLE's editor does of course). Python will work fine
with any number of spaces or with tabs, providing that the indentation used is consistent.
In this book, we will follow the official Python guidelines.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 49 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table 2.1. Logical Operations

Group Operators Description

Comparison <, <=, ==, !=, >=, > The <> operator is also permitted as a synonym for != but is deprecated

Identity is, is not These are used to determine if two object references refer to the same underlying object

Membership in, not in These are used on lists, dictionaries, and strings, as we saw in Chapter 1

Logical not, and, or Both and and or short-circuit; the bit-wise equivalents are: ~ (not), & (and), | (or),
and ^ (xor)

Let's begin with a very simple example:

if x > 0:
 print x

In this case, the suite is just one statement (print x). In general, a suite is a single
statement, or an indented block of statements (which themselves may contain nested
suites), or the keyword pass which does absolutely nothing. The reason we need pass is
because Python's syntax requires a suite, so if we want to put in a stub, or indicate that we
are handling a "do nothing" case, we must use something, so Python provides pass; for
example:

if x == 5:
 pass # do nothing in this case

In general, whenever Python's syntax has a colon followed by a suite, the suite can be on
the same line if it is just a single statement. For example:

if x == 5: pass

If the suite is more than a single statement, it must begin on the following line at the next
level of indentation.

Python supports the standard comparison operators, and for logical operations it uses
names (not, and, and or) rather than symbols. It is also possible to combine comparison
expressions in a way that is familiar to mathematicians:

if 1 <= x <= 10:
 print x

Here, we print x if it is between 1 and 10. If x is an expression with no side effects, the
above statement is equivalent to:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 50 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

if 1 <= x and x <= 10:
 print x

No Dangling Else Trap

One additional benefit of using indentation is that the "dangling else ambiguity"
is impossible in Python. For example, here is some C++ code:

if (x > 0)
 if (y > 0)
 z = 1;
else
 z = 5;

The code sets z to 1 if both x and y are greater than 0, and it looks like it will set
z to 5 if x is less than or equal to 0. But in fact it only sets z to 5 if x is greater
than 0 and if y is less than or equal to 0. Here is what it means in Python:

if x > 0:
 if y > 0:
 z = 1
 else:
 z = 5

And if we really want z set to 5 if x is less than or equal to 0, we would write
this:

if x > 0:
 if y > 0:
 z = 1
else:
 z = 5

Thanks to Python's indentation-based block structure, we avoid the "dangling
else" trap.

The first form is preferred: It is clearer and simpler, it is more efficient (since x may be a
complex expression involving some overhead to evaluate), and it is easier to maintain
(again because the x is only used once rather than twice).

Python provides multi-way branching using elif and else; there is no case (or switch)
statement.

if x < 10:
 print "small"
elif x < 100:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 51 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 print "medium"
elif x < 1000:
 print "large"
else:
 print "huge"

Python introduced a ternary operator with version 2.5. This is a kind of if statement that
can be used in expressions. The Python syntax is quite different from C++'s and Java's
which use ? : for their ternary operator, and has the form trueResult if expression
else falseResult; so the expression is in the middle:

print "x is zero or positive" if x >= 0 else "x is negative"

This will print "x is zero or positive" if x >= 0 evaluates to True; otherwise it will print
"x is negative".

Looping
Python provides two loop constructs. One is the while loop, whose basic syntax is:

while expression :
 suite

Here is an example:

count = 10
while count != 0:
 print count,
 count -= 1

This will print "10 9 8 7 6 5 4 3 2 1"—all on one line, due to the print statement's trailing
comma. Notice that we must have a colon before the indented suite.

Loops can be broken out of prematurely, using the break statement. This is particularly
helpful in loops which will not otherwise terminate, i.e., because their conditional
expression is always true:

while True:
 item = getNextItem()
 if not item:
 break
 processItem(item)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 52 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Python's while loop can have an associated else statement using the following syntax:

while expression:
 suite1
else:
 suite2

The else clause (with its associated suite) is optional. It is executed if the loop terminates
at the condition, rather than due to a break statement. It is not often used, but can be
useful in some situations:

i = 0
while i < len(mylist):
 if mylist[i] == item:
 print "Found the item"
 break
 i += 1
else:
 print "Didn't find the item"

The while loop is very versatile, but since it is so common to want to loop over all the
items in a list, or to loop a specific number of times, Python provides an additional loop
construct which is more convenient in such cases. This is the for loop, whose syntax is:

for variable in iterable:
 suite1
else:
 suite2

The else works the same as in the while loop, i.e., its suite is executed if the for loop
completes, but not if it was terminated by a break statement. An iterable is an item that
can be iterated over, such as a string, a tuple, a list, a dictionary, or an iterator (such as a
generator, covered later). In the case of a dictionary, it is the keys that are iterated over.

Here is an example where we iterate over a string, i.e., over each character in the string.

for char in "aeiou":
 print "%s=%d" % (char, ord(char)),

This prints "a=97 e=101 i=105 o=111 u=117". The variable char takes each value from the
iterable in turn (in this case "a", then "e", and so on up to "u"), and for each iteration
executes the associated suite.

The range() built-in function returns a list of integers that can conveniently be used in
for loops. For example:

for i in range(10):
 print i,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 53 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This prints "0 1 2 3 4 5 6 7 8 9". By default the range() function returns a list of integers
starting at 0, increasing by 1, up to but excluding the given value. It also has two and three
argument forms:

range(3, 7) # Returns [3, 4, 5, 6]
range(-4, 12, 3) # Returns [-4, -1, 2, 5, 8, 11]

Python also provides an xrange() function with the same semantics, but which is more
memory efficient in a for loop, because it evaluates lazily rather than generating the entire
list of integers in one go. We will normally use range() and only substitute it with xrange
() if it makes a significant difference to performance.

If the for loop's iterable is mutable (for example, a list or a dictionary), it must not be
changed inside the loop. If we want to change a list or dictionary as we iterate over it, we
must iterate over a list of the list's indexes or a list of the dictionary's keys, or use a shallow
copy, rather than working directly on the collections themselves. For example:

presidents = dict(Washington=(1789, 1797), Adams=(1797, 1801),
 Jefferson=(1801, 1809), Madison=(1809, 1817))
for key in presidents.keys():
 if key == "Adams":
 del presidents[key]
 else:
 print president, presidents[key]

This prints

Madison (1809, 1817)
Jefferson (1801, 1809)
Washington (1789, 1797)

and removes "Adams" (and its associated value) from the presidents dictionary.

Notice that although Python normally uses newline as a statement separator, this does
not occur inside parentheses. The same is true when we create lists in square brackets or
dictionaries in braces. This is why we can spread the construction of the presidents
dictionary over a couple of lines without having to escape the intervening newline with a
backslash (\).

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 54 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Since dictionaries hold pairs of keys and values, Python provides methods for iterating
over the keys, the values, and the pairs. And as a convenience, if we simply iterate over a
dictionary, we don't even have to call the keys() method to get the keys:

presidents = dict(Washington=(1789, 1797), Adams=(1797, 1801),
 Jefferson=(1801, 1809), Madison=(1809, 1817))
for key in presidents:
 print "%s: %d-%d" % (key, presidents[key][0], presidents[key][1])

This prints (not necessarily in this order):

Madison: 1809-1817
Jefferson: 1801-1809
Washington: 1789-1797
Adams: 1797-1801

When we iterate over a dictionary in a for loop the variable is set to each dictionary key
in turn.[*] Dictionaries are unordered so the keys are in an undefined order.

[*] Note for C++/Qt programmers: Python's for loop iterates over a dictionary's keys, whereas Qt's foreach loop iterates over a QMap's values.

To get the values rather than the keys we can use the values() method, for example, for
dates in presidents.values(): and to get pairs we can use the items() method,
for example:

for item in presidents.items():
 print "%s: %d-%d" % (item[0], item[1][0], item[1][1])

This produces the same output as the previous example, as does the following:

for president, dates in presidents.items():
 print "%s: %d-%d" % (president, dates[0], dates[1])

Here we have unpacked each pair returned by the items() method, the dates being the
two element tuple of dates.

If we want to iterate in order we must explicitly sort the list before we iterate on it. For
example, to iterate in name order we can do this:

for key in sorted(presidents):
 print "%s: %d-%d" % (key, presidents[key][0], presidents[key][1])

Both for loops and the sorted() function can work on sequences or on iterators.
Iterators are objects that support Python's iterator protocol, which means that they provide
a next() method, and raise a StopIteration exception when they have no more items.
Unsurprisingly lists and strings implement the protocol: A list iterator returns each item
in the list in turn, and a string iterator returns each character of the string in turn.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 55 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Dictionaries also support the protocol: They return each of their keys in turn (in an
arbitrary order). So when we use a for loop or call sorted() on a dictionary, what we
actually operate on are the dictionary's keys. For example:

names = list(presidents)
names == ['Madison', 'Jefferson', 'Washington', 'Adams']

So in the for loop, we effectively called sorted(list(presidents)) which is the same
as sorted(presidents.keys()). If we want to be more explicit, we could break things
down into steps:

keys = presidents.keys() # Or: keys = list(presidents)
keys.sort()
for key in keys:
 print "%s: %d-%d" % (key, presidents[key][0], presidents[key][1])

Python's sort() method and sorted() function can take additional arguments, so for
example, we could sort the presidents dictionary by dates.

In addition to the keys(), values(), and items() methods, dictionaries also provide
iterkeys(), itervalues(), and iteritems() methods. These additional methods
can be used just like the plain versions, and they provide better performance. However,
they cannot be used to iterate over a dictionary whose keys will change during the iteration.

Just like while loops, we can use break to leave a for loop before the iterations are
complete. We can also use continue in both kinds of loop to immediately jump to the
next iteration. For example:

for x in range(-5, 6):
 if x == 0:
 continue # goes directly to the next iteration
 print 1.0 / x,

This will produce output like this: "-0.2 -0.25 -0.333333333333 -0.5 -1.0 1.0 0.5
0.333333333333 0.25 0.2". Without the continue we would eventually attempt division
by zero and get an exception.

As mentioned earlier, Python's loops can have an optional else clause that is executed
only if the loop completed, i.e., the else clause will not be executed if break was called
inside the loop. An example will make this clearer; here is an inefficient way of generating
a list of primes:

primes = [2]
for x in range(2, 50):
 if x % 2:
 for p in primes:
 if x % p == 0:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 56 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 break # exits the loop and skips the else
 else:
 primes.append(x)

At the end the primes list is: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47]. The append() method is only called if the iteration over the primes list
completes, i.e., if x is not divisible by any previous prime.

List Comprehensions and Generators
Producing lists using a for loop in conjunction with range() is easy. In addition, Python
provides an alternative approach called list comprehensions—these are expressions that
generate lists.[*]

[*] This is an advanced section (as indicated by the rocket in the margin) and can be skipped. Back-references to this section are given where appropriate.

Let us generate a list of numbers divisible by 5:

fives = []
for x in range(50):
 if x % 5 == 0:
 fives.append(x)
fives = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

This involves the familiar combination of for and range().

Now we will see how to generate a simple list of consecutive numbers using a list
comprehension:

[x for x in range(10)]

This produces the list: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. List comprehensions can
have conditions attached:

fives = [x for x in range(50) if x % 5 == 0]

This generates the same fives list as our original for loop. More complex list
comprehensions with nested for loops are perfectly possible, although the more
conventional syntax may be easier to read in such cases.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 57 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

One drawback of list comprehensions is that they generate the entire list in one go, which
can consume a lot of memory if the list is very large. This problem also applies to the
conventional syntax, but can be got around by using xrange() instead of range().
Python generators provide another solution. These are expressions that work like list
comprehensions, except that they generate their lists lazily.

fives = (x for x in range(50) if x % 5 == 0)

This is almost identical to the list comprehension (the only obvious difference being the
use of parentheses rather than square brackets), but the object returned is not a list!
Instead a generator is returned. A generator is an iterator, so we can do things like this:

for x in (x for x in range(50) if x % 5 == 0):
 print x,

which will print "0 5 10 15 20 25 30 35 40 45".

List comprehensions are not strictly necessary in Python programming; the coverage here
is mostly to ensure that they are recognizable when reading other people's code, and to
provide a taste of some of Python's more advanced features. When we use them later on,
we will generally show equivalent code that uses for loops for example. On the other hand,
generators, although an advanced and relatively new feature of Python, cannot easily be
mimicked. We will create a simple generator function in the next section, and some very
short generator methods in an example class in Chapter 3.

Functions
In general, functions allow us to package up and parameterize commonly used
functionality. Python provides three types of function: ordinary functions, lambda
functions, and methods. In this section, we will concentrate on ordinary functions, with a
very brief mention of lambda functions; we will cover methods in Chapter 3.

In Python, every function has either "global" or "local" scope. Broadly speaking, global
scope means that the function is visible within the file in which it is defined and is accessible
from any file which imports that file. Local scope means that the function was defined
inside another scope (for example, inside another function) and is only visible within the
enclosing local scope. We will not concern ourselves further with this issue here, but will
return to it in Chapter 3.

Functions are defined using the def statement, using the syntax:

def functionName(optional_parameters) :
 suite

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 58 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For example:

def greeting():
 print "Welcome to Python"

The function name must be a valid identifier. Functions are called using parentheses, so
to execute the greeting() function we do this:

greeting() # Prints "Welcome to Python"

A function's name is an object reference to the function, and like any other object reference
it can be assigned to another variable or stored in a data structure:

g = greeting
g() # Prints "Welcome to Python"

This makes keeping lists or dictionaries of functions trivial in Python.

Functions that accept parameters can be given the parameter values by position
("positional arguments"), by name ("keyword arguments"; but nothing to do with the
language's keywords), or by a combination of both. Let us look at a concrete example:
Python does not provide a range() function that operates on floats, so we will create
one ourselves.[*]

[*] For a more sophisticated frange() see "Writing a range-like Function with Float Increments" in the Python Cookbook.

def frange(start, stop, inc):
 result = []
while start < stop:
 result.append(start)
 start += inc
return result

If we call this function as frange(0, 5, 0.5) the list we get back is [0, 0.5, 1.0,
1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5], as we expect.

Like normal Python variables, we do not specify types for our parameters. And since we
have not given any default arguments, every parameter must be specified, otherwise we
will get a TypeError exception. For those unfamiliar with default arguments, Python
allows us to give values to parameters in a function's signature. Each such value is a "default
argument", and it is used if the corresponding argument is not given when the function is
called.

In many cases we create functions where one or more arguments will almost always have
the same values. Python allows us to provide default arguments for such situations, and

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 59 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

we have taken advantage of this to provide a default argument for the third parameter as
this revised def line shows:

def frange(start, stop, inc=1.0):

This works fine; for example, we can now call frange(0, 5) to get [0, 1.0, 2.0,
3.0, 4.0] since the increment defaults to 1.0. In common with other languages that
allow default arguments, Python does not permit a parameter without a default argument
to follow one that has a default argument; so we could not have frange(start=0, 5).
Nor does Python allow overloaded functions. Neither of these restrictions is ever a problem
in practice, as we will see shortly when we discuss keyword arguments.

Unfortunately, our frange() function does not provide the same argument logic as
range() provides. For range() if one argument is given it is the upper bound, if two are
given they are the lower and upper bounds, and if three are given they are the bounds and
the step size. So we will create a final frange() function, which more carefully mimics
range()'s behavior:

def frange(arg0, arg1=None, arg2=None):
 """Returns a list of floats using range-like syntax

 frange(start, stop, inc) # start = arg0 stop = arg1 inc = arg2
 frange(start, stop) # start = arg0 stop = arg1 inc = 1.0
 frange(stop) # start = 0.0 stop = arg0 inc = 1.0
 """
 start = 0.0
 inc = 1.0
 if arg2 is not None: # 3 arguments given
 start = arg0
 stop = arg1
 inc = arg2
 elif arg1 is not None: # 2 arguments given
 start = arg0
 stop = arg1
 else: # 1 argument given
 stop = arg0
 # Build and return a list
 result = []
 while start < (stop - (inc / 2.0)):
 result.append(start)
 start += inc
 return result

For example, frange(5) returns [0.0, 1.0, 2.0, 3.0, 4.0], frange(5, 10)
returns [5, 6.0, 7.0, 8.0, 9.0], and frange(2, 5, 0.5) returns [2, 2.5,
3.0, 3.5, 4.0, 4.5].

The loop condition is different from the one we used earlier. It is designed to prevent
accidentally reaching the stop value due to floating-point rounding errors.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 60 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

After the def line, we have a triple quoted string—and the string is not assigned to
anything. An unassigned string that follows a def statement—or that is the first thing in
a .py or .pyw file or that follows a class statement, as we will see later on in Part I—is
called a "docstring".It is the natural place to document functions. By convention, the first
line is a brief summary, separated from the rest by a blank line.

In most of the examples shown in the rest of the book, we will omit the docstrings to save
space. They are included in the source code that accompanies the book where appropriate.

The use of None is a more convenient default than, say, 0 since 0 might be a legitimate
upper bound. We could have compared to None using the syntax arg2 != None, but
using is not is more efficient and better Python style. This is because if we use is we get
identity comparison rather than value comparison, which is fast because we are just
comparing two addresses and don't have to look at the objects themselves. Python has one
global None object, so comparing with it using is or is not is very fast.

The parameters passed to Python functions are always object references. In the case of
references to immutable objects like strings and numbers, we can treat the parameters as
if they were passed by value. This is because if an immutable parameter is "changed" inside
a function, what happens is that the parameter is simply bound to a new object, and the
original object it referred to is left intact. Conversely, mutable objects, i.e., parameters that
are object references to mutable types like lists and dictionaries, can be changed inside
functions. These parameter passing behaviors are the same as in Java.[*]

[*] Mutable parameters in Python are a bit like Pascal's var parameters and C++'s non-const references.

All Python functions return a value. This is done either explicitly by using a return or
yield statement (covered next), or implicitly, in which case Python will return None for
us. Unlike C++ or Java, we are not tied down to specifying one particular return type: We
can return any type we want since what we return is an object reference that is bound to
a variable of any type. Python functions always return a single value, but because that value
can be a tuple or a list or any other collection, for all practical purposes, Python functions
can return any number of values.

Generator Functions

If we replace the code at the end of the frange() function as shown below, we will turn
the function into a generator. Generators do not have return statements; instead they
have yield statements. If a generator runs out of values, i.e., if control reaches the end of

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 61 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the function, instead of returning, Python automatically raises a StopIteration
exception.

Now if we call frange(5) we will get back a generator object, not a list. We can force the
generator to give us a list by doing this: list(frange(5)) but a more common use of
generators is in loops:

for x in frange(10):
 print x,

This will output "0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0" whichever version we use. But for
long lists the generator version will be much more efficient, because rather than creating
the whole list in memory like the list version, it only creates one item at a time.

The yield statement behaves like a return statement, but for one crucial difference:
After yield has returned a value, when the generator is next called it will continue from
the statement following the yield with all its previous state intact. So the first time the
frange() generator is called, assuming, say frange(5), it returns 0.0; the second time
it returns 1.0, and so on. After returning 9.0 the while expression evaluates to False and
the function terminates.

Because the function is a generator (and this is the case purely because we have used
yield), when it finishes it does not return a value, but instead raises a
StopIteration exception. In the context of a for loop, the for gracefully handles this
particular exception, taking it not as an error, but as an indication that the iteration has
completed, so the for loop ends and the flow of control moves to the for loop's else
suite, or to the statement following the for loop's suite, if there is no else. Similarly, if
we coerce a generator into a list, the list constructor will automatically handle the
StopIteration exception.

A generator is an object that has a next() function, so we can explore the behavior of our
frange() generator interactively if we wish:

>>> list(frange(1, 3, 0.75))
[1, 1.75, 2.5]
>>> gen = frange(1, 3, 0.75)
>>> gen.next()
1

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 62 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

>>> gen.next()
1.75
>>> gen.next()
2.5
>>> gen.next()
Traceback (most recent call last):
 File <pyshell#126>, line 1, in -toplevel
 gen.next()
StopIteration

We generated the whole three-item list using list(), and then we used the generator
returned by frange() to produce each successive value in the same way that a for loop
does.

Using Keyword Arguments
Python's argument-handling abilities are very versatile. So far we have provided
parameters using positional syntax. For example, the first parameter we gave to our
frange() function always went to arg0, the second to arg1, and the third to arg2. We
have also used default arguments so that some arguments could be omitted. But what
happens if we want to pass say the first and third argument, but accept the default second
argument? In the next example we will see how we can achieve this.

Python provides a strip() method for stripping whitespace (or other unwanted
characters) from the ends of a string, but it does not provide a function for cleaning up the
whitespace inside a string; something that we often need to do when we get strings from
users. Here is a function that strips whitespace from both ends of a string and replaces
each sequence of internal whitespace with a single space:[*]

[*] The QString.simplified() method is similar to our simplify() function, except that it does not have the space or delete parameters.

def simplify(text, space=" \t\r\n\f", delete=""):
 result = []
 word = ""
 for char in text:
 if char in delete:
 continue
 elif char in space:
 if word:
 result.append(word)
 word = ""
 else:
 word += char
 if word:
 result.append(word)
 return " ".join(result)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 63 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Experimenting with Functions in Files

Both frange() and a generator version, gfrange(), are in the file chap02/
frange.py. If we want to try these or any other functions interactively, we can
start up IDLE, and append the path where the file we want to use is located to
the paths it searches; for example:

>>> import sys
>>> sys.path.append("C:/pyqt/chap02")

Now the relevant module can be loaded into IDLE:

>>> import frange

The file we wish to import from must have a .py extension, and we must not
include the extension in the from ... import line. Now we can use frange()
and gfrange() inside IDLE:

>>> frange.frange(3, 5, 0.25)
[3, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75]

The first name frange is the module name, and within that module we wish to
access the frange function, which is why we write frange.frange(). We did
the same thing a moment ago, when we imported the sys module and accessed
its path list using sys.path.

Importing Objects sidebar 19

Although we prefer to use IDLE, it is also possible to directly use the Python
interpreter when experimenting interactively. If we simply run the Python
executable itself (python.exe for example) in a console, we will get the familiar
>>> prompt and be able to use the interpreter interactively.

The function iterates over every character in the text string. If the character is in the
delete string (which by default is empty), then we ignore it. If it is a "space" (i.e., is in
the space string), we append the word we have been building up to our list of words, and
set the next word to be empty. Otherwise we append the character to the word we are
building up. At the end, we tack on the last word to our list of words. Finally, we return the
list of words as a single string with each word separated by a single space.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 64 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Now let us look at how we can use the function:

simplify(" this and\n that\t too") # Returns "this and that too"
simplify(" Washington D.C.\n",
 delete=",;:.") # Returns "Washington DC"
simplify(delete="aeiou", text=" disemvoweled ") # Returns "dsmvwld"

In the first case, we use the default arguments for the space and delete parameters. In
the second case, we use Python's keyword argument syntax to specify the third parameter
while accepting the default for the second parameter. In the last case, we use keyword
syntax for both the arguments we want to use. Notice that if we use keyword syntax, the
order of the keyword arguments is up to us—providing that if we also use positional
arguments, that these precede the keyword arguments, as the second case shows.

The code we have used for simplify() is not as Pythonic as it could be. For example, we
should really store word as a list of characters rather than as a string, and we don't need
the space parameter since we could use the string object's isspace() method instead.
The file chap02/simplified.py contains the simplify() shown here and a similar
function, simplified(), which uses the more Pythonic approach. And as noted earlier,
although we usually don't show the doc strings in the book, they are in the files.

Python's argument passing is even more sophisticated than we have shown so far. In
addition to named arguments, Python functions can be given signatures that accept a
variable number of positional arguments and a variable number of keyword arguments.
This is a much more versatile and powerful version of C++'s and Java's variable argument
lists, but is rarely needed, so we will not cover it.

Lambda Functions

So far, we've always defined functions using def, but Python provides a second way of
creating functions:

cube = lambda x: pow(x, 3)

The lambda keyword is used to create simple anonymous functions. Lambda functions
cannot contain control structures (no branches or loops), nor do they have a return
statement:The value returned is simply whatever the expression evaluates to. Lambda
functions can be closures, a topic covered later. In this example we have assigned the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 65 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

lambda function to the variable cube, which we can now use, for example: cube(3) which
will return 27.

Closures 62

Some Python programmers dislike lambda; certainly it is not needed since def can be used
to create any function we want. However, when we start on GUI programming we will see
one context where lambda can be useful, although we will also show alternatives that don't
make use of it.

Dynamic Function Creation
The Python interpreter starts reading from the top of the .py file. When the interpreter
encounters a def statement it executes the statement, thereby instantiating the function
and binding the name following the def to it. Any code that is not inside a def statement
(or inside a class statement as we will see in the next chapter), is executed directly.

Python cannot call functions or use objects that have not been defined. So Python programs
that occupy a single file tend to have a Pascal-like structure with lots of function definitions
from the top down, and at the end a call to one of them to start the processing off.

Unlike C++ and Java, Python programs do not have a fixed entry point, and the name
"main" is not special. The Python interpreter simply executes the code it encounters from
the first line down. For example, here is a complete Python program:

#!/usr/bin/env python

def hello():
 print "Hello"

def world():
 print "World"

def main():
 hello()
 world()

main()

The interpreter executes def hello(), i.e., creates the hello() function, then creates
the world() function, and then creates the main() function. Finally the interpreter
reaches a function call, to main() in this case, so the interpreter executes the function
call, at which point what we normally think of as program execution commences.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 66 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Python programmers usually only put one statement at the top level, a call to the first
function they want to execute. They usually call this function main(), and call their other
functions from it, resulting in a structure similar to that used by C++ or Java.

Since def statements are executed at runtime it is possible to use different definitions
depending on the situation. This is especially useful when we want to use functionality in
one version of Python that is not available in an earlier one, without forcing our users to
upgrade.

For example, Python 2.4 introduced the sorted() function. What if we had some code
that needed sorted(), but some of our users were using Python 2.3 and some using 2.4
or later? We could simply rely on the sorted() method for 2.4 or later, and provide our
own equivalent function for older Pythons.

import sys

if sys.version_info[:2] < (2, 4):
 def sorted(items):
 items = list(items)
 items.sort()
 return items

We begin by importing the sys module, which provides the version_info tuple. Then
we use this tuple to get the major and minor version numbers. Only if the version is lower
than 2.4 do we define our own sorted() function. Notice also that we can compare tuples:
Python can compare data structures, including nested ones, providing all the types they
contain can be compared.

Partial Function Application
As we will see when we begin on GUI programming, we sometimes have situations where
we need to call a particular function, but we actually know what one of the parameters will
be when we are writing the code. For example, we might have several buttons that all need
to invoke the same function, but parameterized in some way by which particular button is
the cause of the invocation.

In the simplest case what we want to do is store a function (i.e., an object reference to a
function), that we can then call later. A function stored like this is known as a callback.
Here is a trivial example:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 67 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def hello(who):
 print "Hello", who

def goodbye(who):
 print "Goodbye", who

funclist = [hello, goodbye]
Some time later
for func in funclist:
 func("Me")

This prints "Hello Me", and then "Goodbye Me". What we have done here is stored two
functions and then called them later on. Notice that we passed the same argument, "Me",
each time we called func(). Since we know what the argument is in advance, it would be
nice to be able to somehow package up both the function to be called and the parameter
we want to use into a single callable object.

A solution to this is partial function application (also known as "currying"), which simply
means that we take a function and zero, one, or more parameters for it, and wrap them up
into a new function which when invoked will call the original function with the parameters
we wrapped, and with any others that are passed at call time. Such wrapped functions are
called closures because they encapsulate some of their calling context when they are
created.

To get a flavor for how this works, let us imagine a very simple GUI program where we
have two buttons that when pressed will call the same action() function. (We won't
worry about how we transform button presses into function calls right now; it is very easy,
and fully explained in Chapter 4.)

def action(button):
 print "You pressed button", button

Now when we create our buttons, naturally we know which ones they are, so we want to
tell the first button to make the call action("One"), and the second to call action
("Two"). But this presents us with a problem. We know what we want called, but we don't
want the call to take place until a button is pressed. So, for example, we want to give the
first button a function which wraps action() and the parameter "One", so that when
the first button is pressed it can call action() with the right parameter.

So what we need is a function that will take a function and an argument and return a
function that when called will call the original function with the original argument.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 68 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In Python 2.5 this is easy, and assuming our previous definition of action():

import functools

buttonOneFunc = functools.partial(action, "One")
buttonTwoFunc = functools.partial(action, "Two")

The functools.partial() function takes a function as first argument, and then any
number of other arguments, and returns a function that when called will call the passed
function with the passed arguments, and with any additional arguments that are given at
call time.

So when buttonOneFunc() is called, it will simply call action("One") just as we want.
As we mentioned earlier, a function's name is simply an object reference that happens to
refer to a function, so it can be passed as a parameter like any other object reference.

But where does this leave users of earlier versions of Python? We could provide our own
very simple and less powerful version of partial(), for example:

def partial(func, arg):
 def callme():
 return func(arg)
 return callme

Inside the partial() function we create an inner function, callme(), that when called
will call the function and argument that were passed to the partial() function. After
creating the callme() function, we then return an object reference to it, so that it can be
called later.

This means that we can now write:

buttonOneFunc = partial(action, "One")
buttonTwoFunc = partial(action, "Two")

Ideally, it would be nice to use functools.partial() when it is available, and fall back
on our own simple partial() function otherwise. Well, since we can define functions at
runtime, this is perfectly possible:

import sys

if sys.version_info[:2] < (2, 5):
 def partial(func, arg):
 def callme():
 return func(arg)
 return callme
else:
 from functools import partial

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 69 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

What the if statement does is ensure that if we are using a version of Python older than
2.5 we create a partial() function that takes a function and a single argument, and
returns a function that when called will call the function passed in with the argument. But
if we are using a later version of Python we use the functools.partial() function, so
in our code we can always call partial(), and whichever version was created will be the
one used.

Now, just as before, we can now write:

buttonOneFunc = partial(action, "One")
buttonTwoFunc = partial(action, "Two")

Only this time the code will work with both old and new versions of Python.

The partial() function we have defined is just about the simplest possible. It is also
possible to create much more sophisticated wrappers that can take positional and keyword
arguments at the time they are wrapped, and additional positional and keyword arguments
at the time they are called; functionality that functools.partial() already provides.
We make use of partial() in several places from Part II onwards, but in each case the
simple partial() function shown above could be used if Python 2.5 or later was not
available.

In the next section, we will continue to take a fairly high-level view of functions, and look
at the possibilities that are available to us for the notification and handling of error
conditions.

Exception Handling
Many primers push exception handling quite far back, often after covering object-oriented
programming. We put them here in the "Control Structures" chapter, because exception
handling is relevant both in procedural and object-oriented programming, and because
exception handling can cause the flow of execution to change dramatically, which certainly
qualifies exception handlers as a kind of control structure.

An exception is an object that is "raised" (or "thrown") under some specific circumstances.
When an exception is raised, the normal flow of execution ceases and the interpreter looks
for a suitable exception handler to pass the exception to. It begins by looking at the
enclosing block and works its way out. If no suitable exception handler is found in the
current function, the interpreter will go up the call stack, looking for a handler in the
function's caller, and if that fails in the caller's caller, and so on.

As the interpreter searches for a suitable exception handler it may encounter finally
blocks; any such blocks are executed, after which the search for an exception handler is

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 70 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

resumed. (We use finally blocks for cleaning up, for example to ensure that a file is
closed, as we will see shortly.)

If a handler is found, the interpreter passes control to the handler, and execution continues
from there. If, having gone all the way up the call stack to the top-level, no handler is found,
the application will terminate and report the exception that was the cause.

In Python, exceptions can be raised by built-in or library functions and methods, or by us
in our code. The exceptions that are raised can be of any of the built-in exception types or
our own custom exception types.

Exception handlers are blocks with the general syntax:

try:
 suite1
except exceptions:
 suite2
else:
 suite3

What happens here is that the code in suite1 is executed, and if an exception occurs control
will pass to the except statement. If the except statement is suitable then suite2 will be
executed; we will discuss what happens otherwise shortly. If no exception occurs, suite3
is executed after suite1 is finished.

The except statement has more than one syntax; here are some examples:

except IndexError: pass
except ValueError, e: pass
except (IOError, OSError), e: pass
except: pass

In the first case we are asking to handle IndexError exceptions but do not require any
information about the exception if it is raised. In the second case we handle
ValueError exceptions, and we want the exception object (which is put in variable e).
In the third case we handle both IOError and OSError exceptions, and if either occurs,
we also want the exception object, and again this is put in variable e. The last case should
not be used, since it will catch any exception: Using such a broad exception handler is
usually unwise because it will catch all kinds of exception, including those we don't expect,
thereby masking logical errors in our code. Because we have used pass for the suites, if
an exception is caught, no further action is taken, and execution will continue from the
finally block if there is one, and then from the statement following the try block.

It is also possible to have more than one exception handler in a single try block:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 71 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

try:
 process()
except IndexError, e:
 print "Error: %s" % e
except LookupError, e:
 print "Error: %s" % e

The order of the handlers is important. In this case, IndexError is a subclass of
LookupError, so if we had LookupError first, control would never pass to the
IndexError handler. This is because LookupError matches both itself and all its
subclasses. Just like C++ and Java, when we have multiple exception handlers for the same
try block they are examined in the order that they appear. This means that we must order
them from most specific to least specific. Python's exception hierarchy is shown in Figure
2.1; the least specific exception is at the top, going down to the most specific at the bottom.

Figure 2.1. Some of Python's Exception Hierarchy

Now that we have a broad overview of exceptions, let's see how their use compares with a
more conventional error handling approach; this will also give us a feel for their use and
syntax. We will look at two code snippets that have the same number of lines and that do
exactly the same thing: They extract the first square-bracketed item from a string. In both
cases we assume that the variable text holds the string we are going to search.

Testing for errors
result = ""
i = text.find("[")
if i > -1:
 j = text.find("]", i + 1)
 if j > -1:
 result = text[i:j + 1]
print result

 # Exception handling
 try:
 i = text.index("[")
 j = text.index("]", i + 1)
 result = text[i:j + 1]
 except ValueError:
 result = ""
 print result

Both approaches ensure that result is an empty string if no bracketed substring is found.
However, the right-hand snippet focuses on the positive with each line in the try block

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 72 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

able to assume that the previous lines executed correctly—because if they hadn't they
would have raised an exception and execution would have jumped to the except block.

If we were searching for a single sub-string, then using find() would be more convenient
than using the exception handling machinery; but as soon as we need to do two or more
things that could fail, then exception handling, as here, usually results in cleaner code with
a clear demarcation between the code we are expecting to execute and the code we've
written to cope with errors and out-cases.

When we write our own functions, we can have them raise exceptions in failure cases if we
wish; for example, we could put a couple of lines at the beginning of the simplify()
function we developed in a previous section:

def simplify(text, space=" \t\r\n\f", delete=""):
 if not space and not delete:
 raise Exception, "Nothing to skip or delete"

This will work, but unfortunately, the Exception class (which is the conventional base
class for Python exceptions) isn't specific to our circumstances. This is easily solved by
creating our own custom exception and raising that instead:

class SimplifyError(Exception): pass

def simplify(text, space=" \t\r\n\f", delete=""):
 if not space and not delete:
 raise SimplifyError, "Nothing to skip or delete"

Exceptions are class instances, and although we don't cover classes until Chapter 3, the
syntax for creating an exception class is so simple that there seems no reason not to show
it here. The class statement has a similar structure to a def statement, with the class
keyword, followed by the name, except that in the parentheses we put the base classes
rather than parameter names. We've used pass to indicate an empty suite, and we have
chosen to inherit Exception. We could have inherited from one of Exception's
subclasses instead, for example, ValueError.

In practice, though, raising an exception in this particular case may be overkill. We could
take the view that the function will always be called with space or delete or both non-
empty, and we can assert this belief rather than use an exception:

def simplify(text, space=" \t\r\n\f", delete=""):
 assert space or delete

This will raise an AssertionError exception if both space and delete are empty, and
probably expresses the logic of the function's preconditions better than the previous two
attempts. If the exception is not caught (and an assertion should not be) then the program

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 73 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

will terminate and issue an error message saying that an AssertionError was the cause
and providing a traceback that identifies the file and line where the assertion failed.

Another context where exception handling can be useful is breaking out of deeply nested
loops. For example, imagine that we have a three dimensional grid of values and we want
to find the first occurrence of a particular target item. Here is the conventional approach:

found = False
for x in range(len(grid)):
 for y in range(len(grid[0])):
 for z in range(len(grid[0][0])):
 if grid[x][y][z] == target:
 found = True
 break
 if found:
 break
 if found:
 break
if found:
 print "Found at (%d, %d, %d)" % (x, y, z)
else:
 print "Not found"

This is 15 lines long. It is easy to understand, but tedious to type and rather inefficient.
Now we will use an approach that uses exception handling:

class FoundException(Exception): pass

try:
 for x in range(len(grid)):
 for y in range(len(grid[0])):
 for z in range(len(grid[0][0])):
 if grid[x][y][z] == target:
 raise FoundException
except FoundException:
 print "Found at (%d, %d, %d)" % (x, y, z)
else:
 print "Not found"

This version is only 11 lines long. If the target is found we raise the exception and handle
that situation. If no exception is raised the try block's else suite is executed.

In some situations, we want some cleanup code to be called no matter what. For example,
we may want to guarantee that we close a file or a network or database connection even if
our code has a bug. This is achieved using a try ... finally block, as the next example
shows:

filehandle = open(filename)
try:
 for line in filehandle:
 process(line)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 74 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

finally:
 filehandle.close()

Here we open a file with the given filename and get a file handle. We then iterate over the
filehandle—which is a generator and gives us one line at a time in the context of a for loop.
If any exception occurs, the interpreter looks for the except or finally that is nearest
in scope. In this case it does not find an except, but does find a finally, so the
interpreter switches control to the finally suite and executes it. If no exception occurs,
the finally block will be executed after the try suite has finished. So either way the file
will be closed.

Python versions prior to 2.5 do not support try ... except ... finally blocks. So if we
need both except and finally we must use two blocks, a try ... except and a try ...
finally, with one nested inside the other. For example, in Python versions up to 2.4, the
most robust way to open and process a file is like this:

fh = None
try:
 try:
 fh = open(fname)
 process(fh)
 except IOError, e:
 print "I/O error: %s" % e
finally:
 if fh:
 fh.close()

This code only makes use of things we have already discussed, but to make sure we have
a firm grip on exception handling, we will consider the code in detail.

If the file can't be opened in the first place, the except block is executed and then the
finally block—which will do nothing since the file handle will still be None because the
file could not be opened. On the other hand, if the file is opened and processing commences,
there might be an I/O error. If this happens the except block is executed, and again,
control will then pass to the finally block, and the file will be closed.

If an exception occurs that is not an IOError, nor an IOError subclass, for example,
perhaps a ValueError occurs in our process() function, then the interpreter will
consider the except block to be unsuitable and will look for the nearest enclosing
exception handler that is suitable. As it looks, the interpreter will first encounter the
finally block which it will then execute, after which, i.e., after closing the file, it will then
look for a suitable exception handler.

If the file is opened and processing completes with no exception being raised, the
except block is skipped, but the finally block is still executed since finally blocks

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 75 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

are executed no matter what happens. So, in all cases, apart from the interpreter being
killed by the user (or, in very rare cases, crashing), if the file was opened, it will be closed.

In Python 2.5 and later we can use a simpler approach that has the same semantics because
we can have try ... except ... finally blocks:

fh = None
try:
 fh = open(fname)
 process(fh)
except IOError, e:
 print "I/O error: %s" % e
finally:
 if fh:
 fh.close()

Using this syntax, it is still possible to have an else block for when no exception occurred;
it is placed after the last except block and before the one and only finally block. We
will revisit this topic in the context of files in Chapter 6.

No matter what version of Python we use, finally blocks are always executed whether
an exception occurs or not, exactly once, either when the try suite is finished, or when an
exception is raised that shifts the flow of control outside the try block.

Summary
In this chapter we have seen how to branch using if, and how to create multi-way branches
using if with elifs and optionally with else. We have also seen how to loop using
while and for, and how to generate lists of integers using range(). We have learnt about
the dictionary methods that provide a dictionary's keys, values, and key–value pairs
(items), and we have taken a brief look at sorting. We have also had a glimpse at how to
use Python's list comprehensions and generators.

We have seen how to create functions using def (and with lambda). We have used
positional and keyword arguments, and we have developed two useful functions, frange
() and simplify(). We have seen how Python creates functions dynamically as it reads
a .py file, and how we can use this dynamism to provide similar functionality in older
Python versions to that which is available in newer versions. And we have also seen how
to use partial function application to create wrapper functions that encapsulate a function
with its argument (closures).

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 76 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We have also learnt how to raise exceptions, how to create custom exceptions, and how to
handle exceptions. We have seen how to use finally to guarantee cleanup, and we have
discussed some of the more complex exception handling possibilities that Python offers.
We have also seen that exception handling can lead to cleaner code when we have suites
where multiple exceptions could occur, and how they can be used to cleanly exit a set of
deeply nested loops.

Creating custom exceptions led us on to creating simple classes; classes that have no
attributes (no member data) and no methods. In the next chapter we will look more
formally at classes, and learn how to create them and instantiate instances of them, with
any attributes and methods we wish.

Exercises
In Chapter 1, the exercises were short enough to be typed into IDLE. From now on we
recommend typing your solutions into a file with a .py extension, and adding some test
calls at the end. For example, you might write a file with this structure:

#!/usr/bin/env python

def mysolution(arg0, arg1):
 pass # Whatever code is needed

mysolution(1, 2) # Call with one set of parameters
mysolution("a", "b") # Call with another set of parameters
Additional calls to make sure all boundary cases are tested

If you are using Windows, make sure that you run your test programs inside a console
window. You may also need to include print statements so that you can see the results.
(Exercises involving GUI applications begin in Part II.)

If you look at the book's source code, including this chapter's answers.py file, you will
find that the code often has long docstrings, in many cases occupying far more lines than
the code itself. This is because the docstrings usually include usage examples which do
double duty as unit tests, as we will see in Chapter 3's "Using the doctest Module" sub-
section.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 77 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

1. Write a function with signature:

valid(text, chars="ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789")

The function should return a (possibly empty) string which is a copy of text
that only contains characters in chars. For example:

valid("Barking!") # Returns "B"
valid("KL754", "0123456789") # Returns "754"
valid("BEAN", "abcdefghijklmnopqrstuvwxyz") # Returns ""

It can be done in half a dozen lines, using a for loop and an if statement, not
counting the docstring, which should also be written.

2. Write a function with signature:

charcount(text)

This should return a dictionary with 28 keys, "a", "b", ..., "z", plus "whitespace"
and "others". For every lower-cased character in text, if the character is
alphabetic increment the corresponding key; if the character is whitespace,
increment the "whitespace" key; otherwise increment the "others" key. For
example, the call

stats = charcount("Exceedingly Edible")

will mean that stats is a dictionary with the following contents:

{'whitespace': 1, 'others': 0, 'a': 0, 'c': 1, 'b': 1, 'e': 5,
'd': 2, 'g': 1, 'f': 0, 'i': 2, 'h': 0, 'k': 0, 'j': 0, 'm': 0,
'l': 2, 'o': 0, 'n': 1, 'q': 0, 'p': 0, 's': 0, 'r': 0, 'u': 0,
't': 0, 'w': 0, 'v': 0, 'y': 1, 'x': 1, 'z': 0}

Using a dictionary and a for loop, it can be done in just over a dozen lines of
code.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 78 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

3. Create a function with signature:

integer(number)

The number parameter is either a number or a string that can be converted to
a number. The function should return the number as type int, rounding it if
the number passed in is a float. If the conversion fails, catch the
ValueError exception, and return 0. Make sure it works for both strings and
literal numbers, such as 4.5, 32, "23", and "-15.1", and that it correctly returns
zero for invalid numbers like "tonsils". This can be done in half a dozen lines.
(Hint: To work with all the cases you'll always need to convert to type float
first.)

4. Now write a function with signature:

incrementString(text="AAAA")

The function must "increment" the given string. Here are some examples:

incrementString("A") # Returns "B"
incrementString("Z") # Returns "AA"
incrementString("AM") # Returns "AN"
incrementString("AZ") # Returns "BA"
incrementString("BA") # Returns "BB"
incrementString("BZ") # Returns "CA"
incrementString("ZZA") # Returns "ZZB"
incrementString("ZZZ") # Returns "AAAA"
incrementString("AAAA") # Returns "AAAB"
incrementString("AAAZ") # Returns "AABA"
incrementString("ABC2") # Raises a ValueError

The characters in text must be A-Z (or a-z, in which case the function must
upper-case them); otherwise the function should raise a ValueError
exception.

This is a bit more challenging than the previous exercises. The code can be
written in under twenty lines if you use a couple of list comprehensions,
although it can also be written without them. It is a bit tricky to get right. (Hint:
The reversed() function returns a sequence in reverse order.)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 79 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5. If you read the section on function generators, try writing a generator with
signature:

leapyears(yearlist)

The yearlist parameter is a sequence of year numbers, for example [1600,
1604, 1700, 1704, 1800, 1900, 1996, 2000, 2004]. Given this input the output
would be the years, 1600, 1604, 1704, 1996, 2000, and 2004, one at a time.
This can be done in about half a dozen lines. (Hint: Leap years are divisible by
4, but if divisible by 100, must also be divisible by 400.)

Model answers for this chapter's exercises are in the file chap02/
answers.py.

3. Classes and Modules
• Creating Instances
• Methods and Special Methods
• Inheritance and Polymorphism
• Modules and Multi-File Applications

Python fully supports procedural and object-oriented programming, and leaves us free to
use either approach, or to combine the two. So far we have done procedural programming,
although we have already used some Python classes, for example, the str string class.
What we have not yet done is defined our own classes. In this chapter we will learn how
to create classes and methods, and how to do object-oriented programming with Python.
And in all subsequent chapters we will almost always use an object-oriented approach in
the programs we write.

We assume that you are familiar with object-oriented programming, for example using C
++ or Java, but will take the opportunity to clarify our terminology. We use the term
"object", and occasionally the term "instance", to refer to an instance of a particular class.
We use the terms, "class", "type", and "data type", interchangeably. Variables that belong
to a specific instance are called "attributes" or "instance variables". Variables that are used
inside methods that are not instance variables are called "local variables", or simply
"variables". We use the term "base class" to refer to a class that is inherited from; a base
class may be the immediate ancestor, or may be further up the inheritance tree. Some

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 80 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

people use the term "super class" for this concept. We use the terms "subclass" and "derived
class" for a class that inherits from another class.

In Python, any method can be overridden (reimplemented) in a subclass; this is the same
as Java (apart from Java's "final" methods).[*] Overloading, that is, having methods with
the same name but with different parameter lists in the same class, is not supported,
although this is no limitation in practice because of Python's versatile argument handling
capabilities. In fact, the underlying Qt C++ API makes extensive use of overloading, but
PyQt handles this seamlessly behind the scenes, so in practice we can call any "overloaded"
Qt method and rely on PyQt to do the right thing.

[*] In C++ terminology, all Python methods are virtual.

This chapter begins with the basic syntax for creating classes. We then look at how to
construct and initialize objects, and how to implement methods. One of the nicest features
of Python's object-oriented support is that it allows us to reimplement "special methods".
This means we can make our classes seamlessly blend in so that they behave just like built-
in classes. For example, it is easy to make our classes work with the comparison operators
such as == and <. We then look at the numeric special methods: these allow us to overload
operators such as + and += which can be useful when creating complete custom data types,
especially numeric ones. If our class is a collection, there are some additional special
methods we can reimplement so that, for example, our collection will support the in
operator and the len() function. The chapter concludes with a section on Python's
support for inheritance and polymorphism.

For historical reasons, there are two kinds of user-defined types (classes) that Python
provides: "old-style" and "new-style". The only obvious difference is that old-style classes
either have no base class, or only have old-style base classes. New-style classes always
derive from a new-style class, for example, object, Python's ultimate base class. Since
there is no reason to use old-style classes, and because they are expected to eventually be
dropped from the language, we will always use new-style classes.

The syntax for creating a class is simple:

class className(base_classes):
 suite

In the class's suite we can have def statements; and in such a context they create methods
for their enclosing class rather than functions.

It is also possible to have "empty" classes, with no methods or attributes (data members)
of their own, as we saw at the end of the previous chapter when we derived our own custom
exception class.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 81 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

New-style classes always have at least one base class, for example, object. Unlike Java,
Python supports multiple inheritance, i.e., Python classes can inherit from one, two, or
more base classes. We will mostly avoid this feature because it can lead to unnecessary and
confusing complexity. Python does not support abstract classes (classes that cannot be
instantiated, and that can only be derived from—useful for defining interfaces), but the
effect of having an abstract class can be achieved all the same. We will look at a small
example of multiple inheritance where one of the base classes is "abstract" and is used
purely to provide an API (rather like a Java interface).

In Python, all methods and attributes are accessible both from inside and outside the class;
there are no access specifiers such as "public" and "private". Python does have a concept
of "private"—objects with names that begin with a single leading underscore are considered
to be private. As far as methods and instance variables are concerned, their privacy is
merely a convention that we are invited to respect. And as for modules, private classes and
functions, i.e., those whose name begins with a leading underscore, are not imported when
using the from moduleName import * syntax. Python also has a concept of "very
private"—methods and attributes with names that begin with two leading underscores.
Very private objects are still accessible, but the Python interpreter mangles their names to
make it difficult to access them by mistake.

Now that we know the basic syntax for creating a class and have a broad overview of
Python's object-oriented features, we are ready to see how to create a class and some
instances.

Creating Instances
In most object-oriented languages, objects are created in two steps: Firstly, the object is
constructed, and secondly, the object is initialized. Some languages merge these two steps
into one, but Python keeps them separate. Python has the __new__() special method
which is called to construct an object, and the __init__() special method which is called
to initialize a newly constructed object. It is very rare to actually need to implement
__new__() ourselves; not one of the custom classes in this book needs it—and older
versions of Python did not even have the __new__() special method. Python is perfectly
capable of constructing our objects for us, so in almost every case the only method we need
to implement is __init__().

In view of Python's two-step object creation, we will normally talk of object creation rather
than construction. Also, we will generally refer to a class's initializer (its __init__()
method), since that is the method that is normally reimplemented in custom classes and
the one that is closer to the idea of a constructor that is used in languages like C++ and
Java.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 82 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Let's see how to create a class in practice. We will create one that stores a string (the name
of a kind of chair) and a number (how many legs the chair has).

class Chair(object):
 """This class represents chairs."""

 def __init__(self, name, legs=4):
 self.name = name
 self.legs = legs

It is conventional to follow a class statement with a docstring as shown above. We will
not normally show docstrings in the book, but they are included where appropriate in the
accompanying example code. The blank line is purely for aesthetics and clarity.

Methods with names beginning and ending with two underscores are "special" methods.
Python uses such methods to integrate custom classes so that they can have the same usage
patterns as built-in classes, as we will soon see.

The __init__() method, and indeed all methods, have a first parameter that is the
Python equivalent to the C++ or Java this variable, i.e., a variable that refers to the object
itself. We must put self as the first item of every (non-stat- ic[*]) method's parameter list,
although we never need to pass it since Python will do that for us.

[*] A static method is one that can be called on a class or an instance and has no self parameter. Normal methods are non-static, i.e., they have a self parameter and
must be called on instances.

The name "self" is merely conventional, but we will always use it. Inside the object we must
use self explicitly when we want to refer to instance methods or attributes. For example,
in the Chair class's initializer, we have created two data attributes using self. Thanks to
Python's dynamic nature, it is possible to create additional attributes in other methods,
and even to add additional attributes to particular instances if we wish; but we will take a
more conservative line that is sufficient for the GUI programming we are working towards.

To create an instance of a class, we use the following syntax:

instance = className(arguments)

The parentheses are mandatory, even if we don't pass any arguments. Behind the scenes
Python constructs the object by calling the class's static __new__() method (which is
inherited from object, or in rare cases is implemented by us), and then calls __init__
() on the newly constructed object. The resulting initialized object is returned.

In the case of our Chair class, we must pass either one or two arguments (Python passes
the first self argument automatically for us); for example:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 83 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

chair1 = Chair("Barcelona")
chair2 = Chair("Bar Stool", 1)

Since the attributes are public, they can be read or assigned to using the dot (.) operator;
for example: print chair2.name will print "Bar Stool", and chair1.legs = 2 will
change chair1's legs attribute's value from 4 to 2.

Object-oriented purists will no doubt be uncomfortable with this kind of direct access to
attributes from outside the instance, while those with a taste for extreme programming
may be perfectly happy with it since we can always add accessor methods later. We will
almost always use accessor methods rather than direct attribute access.

Now that we have seen how construction and initialization is handled, we need to consider
object destruction. C++ programmers are used to using destructors and relying on the fact
that they can delete objects at a time of their own choosing. Java and Python programmers
do not have that particular luxury. Instead, they have automatic garbage collection which
makes programming much easier in general, but with the one drawback of not giving fine
control over the time objects are deleted. If resources need to be protected the solution is
normally to use a try ... finally block to guarantee cleanup. When an object is about to
be garbage collected its __del__() special method is called, with self as its only
argument. As is common practice in Python (and in Java regarding the finalize() method),
we very rarely use this particular special method. To put this in perspective, out of about
a hundred classes in this book's examples, only three reimplement __del__().

We have now learned how to create and initialize an object of a custom class. Next, we will
see how to provide additional methods to give our class distinctive behavior. We will also
learn how to ensure that our classes smoothly integrate with the rest of Python, and act
just like built-in classes where that is appropriate.

Methods and Special Methods
We will begin by looking at a class that uses accessor methods to get and set the value of
attributes, rather than using direct attribute access.

class Rectangle(object):

 def __init__(self, width, height):
 self.width = width
 self.height = height

 def getWidth(self):
 return self.width

 def setWidth(self, width):
 self.width = width

 def getHeight(self):

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 84 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 return self.height

 def setHeight(self, height):
 self.height = height

 def area(self):
 return self.getWidth() * self.getHeight()

We have chosen to use a Java-style naming convention for both getters and setters. Now
we can write code like this:

rect = Rectangle(50, 10)
print rect.area() # Prints "500"
rect.setWidth(20)

We could just as easily have implemented the area() method like this:

def area(self):
 return self.width * self.height

Writing trivial accessor methods as we have done here is the right approach for languages
like C++ because it provides maximum flexibility, and no overhead in the compiled code.
And if at a later stage we needed to perform some computation in an accessor, we can
simply add in the functionality without requiring users of our class to change their code.
But in Python, it is not necessary to write such accessors. Instead, we can directly read and
write attributes, and if at a later stage we need to perform some computation, we can use
Python's property() function. This function allows us to create named properties that
can replace attributes. Properties are accessed just like attributes, but behind the scenes
they call the methods that we specify to get and set the value.

Here is a second version of the Rectangle class, this time using direct attribute access
for the width and height, and a property for the area:

class Rectangle(object):

 def __init__(self, width, height):
 self.width = width
 self.height = height

 def _area(self):
 return self.width * self.height
 area = property(fget=_area)

This allows us to write code like this:

rect = Rectangle(5, 4)
print rect.width, rect.height, rect.area # Prints (5, 4, 20)
rect.width = 6

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 85 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Python's property() function can be used to specify a getter, a setter, a deletion method,
and a doc string. Since we only specified a getter, the area property is read-only. If later
on we needed to perform some computation when the width was accessed, we could simply
turn it into a property, like this:

def _width(self):
 return self.__width

def _setWidth(self, width):
 # Perform some computation
 self.__width = width

width = property(fget=_width, fset=_setWidth)

Notice that we have changed the name of the instance variable from width to __width
to avoid a name collision with the width property. In general, properties whose values are
held in instance variables use Private names (names with two leading underscores) for the
instance variables, to avoid name collisions with the property name that the class's user
uses. For example, users of the Rectangle class with the width property, can get and set
the width attribute exactly the same as before, only now, the _width() and _setWidth
() methods are used behind the scenes to perform these operations, and the attribute's
data is held in the __width instance variable.

private names 86

Python offers even more control over attribute access than we have shown here, but since
this is not necessary to our goal of GUI programming, we will leave this as a topic to look
up if it ever becomes of interest. The starting point is the documentation for the
__getattr__(), __getattribute__(), and __setattr__() special methods.

The mechanics of Python methods, including special methods, are exactly the same as for
functions, but with the addition of the self first argument, and the ability to access
self's attributes and call self's methods. We just have to remember that when we call
methods or access instance variables, we must specify the instance using self. For
example, in the Rectangle class's setHeight() method we used self.height to refer
to the instance variable, and plain height to refer to the parameter, i.e., to a local variable.
Similarly, in the area() method, we call two Rectangle methods, again using self.
This is quite different from C++ or Java, where the instance is assumed.

In C++ it is possible to overload operators, that is, to provide our own implementations of
operators for our data types. The C++ syntax uses the keyword operator followed by the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 86 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

operator itself, for example operator+(), but in Python every operator has a name, so
to overload a class's + operator in Python we would implement an __add__() method.
All the Python methods for operator overloading are special methods, and this is signified
by them having names that begin and end with two underscores.

To better integrate our custom classes into Python, there are some additional general
special methods which may be worth implementing. For example, we might want to
provide support for the comparison operators, and a Boolean value for instances of our
class. We will add a few more methods to the Rectangle class to show the possibilities
in action, but for brevity we won't repeat the class statement and the methods we have
already implemented. We will start with comparisons:

def __cmp__(self, other):
 return cmp(self.area(), other.area())

If we want we can implement a special method for every one of the comparison operators.
For example, if we implement __lt__() "less than", we will be able to compare instances
of our class with the < operator. However, if we don't want to implement the comparison
operators individually, we can simply implement __cmp__() as we have done here.
Python will use the specific special method for comparisons if it has been implemented,
but will fall back on __cmp__() otherwise. So just by implementing this one special
method, all the comparison operators (<, <=, ==, !=, >=, >) will work with Rectangle
objects:

rectA = Rectangle(4, 4)
rectB = Rectangle(8, 2)
rectA == rectB # True because both have the same area
rectA < rectB # False

We have used the built-in cmp() function to implement __cmp__(). The cmp() function
takes two objects and returns -1 if the first is less than the second, 0 if they are equal, and
1 otherwise. We have used the rectangles' areas as the basis for comparison which is why
we got the rather surprising True result in our example. A stricter, and perhaps better
implementation might be:

def __cmp__(self, other):
 if (self.width != other.width):
 return cmp(self.width, other.width)
 return cmp(self.height, other.height)

Here we return the result of comparing the heights if the widths are the same; otherwise
we return the result of comparing the widths.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 87 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If we do not reimplement any comparison special methods, in most cases Python will
happily perform comparisons for us, although not necessarily in the way we would want.
If we are creating a class where comparisons make sense, we ought to implement __cmp__
(). For other classes the safest thing to do is to implement __cmp__() with a body of
return NotImplementedError.

def __nonzero__(self):
 return self.width or self.height

This special method is used when the object is in a Boolean context; for example bool
(rectA), or if rectB: and returns True if the object is "non-zero".

def __repr__(self):
 return "Rectangle(%d, %d)" % (self.width, self.height)

The "representation" special method must return a string which if evaluated, e.g., using
eval(), will result in the construction of an object with the same properties as the object
it is called on. Some objects are too complex to support this, and for some objects such as
a window or a button in a GUI, it doesn't make sense; so such classes don't provide a
__repr__() implementation. In a % operator's format string we use %r to get the result
of this special method; we can also use the repr() function or the backticks '' operator.
Backticks are just a syntactic alternative to using repr(), for example, repr(x) and
'x' both return identical results: The representation of object x as returned by x's
__repr__() method.

There is also a __str__() special method that must return a string representation of the
object it is called on (like Java's toString() method), but unlike __repr__(), the
representation is meant to be human readable, and does not have to be eval()-able. If,
as in this case, the __str__() method is not implemented, Python will use the __repr__
() method instead. For example:

rect = Rectangle(8, 9)
print rect # Prints "Rectangle(8, 9)" using __repr__()

If we want a human readable Unicode string representation of our class we can implement
__unicode__().

There are a few more general special methods that we could implement, but which are not
appropriate for the Rectangle class. All the commonly implemented general special
methods are listed in Table 3.1.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 88 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table 3.1. Basic Special Methods

Method Syntax Description

__init__(self,
args)

x = X() Initializes a newly created instance

__call__(self,
args)

x() Makes instances callable, i.e., turns them into functors. The args are
optional. (Advanced)

__cmp__(self,
other)

x == y

x < y

etc

Returns -1 if self < other, 0 if they are equal, and 1 otherwise. If
implemented Python will use it for any comparison operator that isn't
explicitly implemented

__eq__(self,
other)

x == y Returns True if x is equal to y

__ne__(self,
other)

x != y Returns True if x is not equal to y

__le__(self,
other)

x <= y Returns True if x is less than or equal to y

__lt__(self,
other)

x < y Returns True if x is less than y

__ge__(self,
other)

x >= y Returns True if x is greater than or equal to y

__gt__(self,
other)

x > y Returns True if x is greater than y

__nonzero__(self) if x: pass Returns True if x is non-zero

__repr__(self) y = eval('x') Returns an eval()-able representation of x. Using backticks is the same as
calling repr()

__str__(self) print x Returns a human readable representation of x

__unicode__(self) print x Returns a human readable Unicode representation of x

At this point C++ programmers might be wondering where the copy constructor and
assignment operators are, and Java programmers might be wondering about the clone
() method. Python does not use a copy constructor and reimplementing the assignment
operator is not necessary. If we want to do an assignment we just use = and Python will
bind a new name to our existing object. If we really do need a copy of our object we can
use the copy() or deepcopy() functions from the copy module, the first for objects that
have don't have nested attributes or when a shallow copy suffices, the second for objects
that must be copied in full. Alternatively we can provide our own copy method, which we
usually call copy() since this is conventional Python practice.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 89 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For numerical classes, it is often convenient to provide functionality to support the
standard numeric operators, such as + and +=. This is achieved in Python's usual way, by
implementing various special methods. If we only implement +, Python will use it to
provide +=, but it is often best to implement both since that gives us finer control and
makes it easier to optimize the operations.

The most commonly implemented numeric special methods are listed in Table 3.2. Those
not listed include bit-shifting operators and hexadecimal and octal conversion operators.

Table 3.2. Common Numeric Special Methods

Method Syntax Method Syntax

__float__(self) float(x) __int__(self) int(x)

__abs__(self) abs(x) __neg__(self) -x

__add__(self, other) x + y __sub__(self, other) x - y

__iadd__(self, other) x += y __isub__(self, other) x -= y

__radd__(self, other) y + x __rsub__(self, other) y - x

__mul__(self, other) x * y __mod__(self, other) x % y

__imul__(self, other) x *= y __imod__(self, other) x %= y

__rmul__(self, other) y * x __rmod__(self, other) y % x

__floordiv__(self, other) x // y __truediv__(self, other) x / y

__ifloordiv__(self, other) x //= y __itruediv__(self, other) x /= y

__rfloordiv__(self, other) y // x __rtruediv__(self, other) y / x

The reason for two different division operators is that Python can perform either integer
or floating-point division, as explained on page 17.

Some special methods have two or three versions, for example __add__(), __radd__
(), and __iadd__(). The reason for the "r" versions, e.g., __radd__(), is for situations
where the left-hand operand does not have a suitable method, but the right-hand operand
does. For example, if we have the expression x + y, with x and y of types X and Y, Python
will first try to evaluate the expression by calling X.__mul__(x, y). But if type X does
not have this method, Python will then try Y.__rmul(x, y). If Y has no such method,
then an exception will be raised.

In the "i" versions, the "i" stands for "in-place". They are used for augmented operators
such as +=. We will shortly see an example that shows many of these methods in practice,
but first we must learn how to create static data and static methods.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 90 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Static Data, and Static Methods and Decorators
In some situations it is useful to have data that is associated with a class as a whole rather
than with its instances. For example, if we have a Balloon class, we might want to know
how many unique colors have been used:

class Balloon(object):

 unique_colors = set()

 def __init__(self, color):
 self.color = color
 Balloon.unique_colors.add(color)

 @staticmethod
 def uniqueColorCount():
 return len(Balloon.unique_colors)

 @staticmethod
 def uniqueColors():
 return Balloon.unique_colors.copy()

Static data is created inside a class block, but outside of any def statements. To access
static data, we must qualify the name, and the easiest way to do so is by using the class
name, as we do in the Balloon class's static methods. We will see static data and methods
in more realistic contexts in the next sub-section.

The @staticmethod is a decorator. A decorator is a function that takes a function as
argument, wraps it in some way, and assigns the wrapped function back to the original
function's name, so it has the same effect as writing this:

def uniqueColors():
 return Balloon.unique_colors.copy()
uniqueColors = staticmethod(uniqueColors)

The @ symbol is used to signify a decorator. The staticmethod() function is one of
Python's built-in functions.

We can use more than one decorator. For example, A suitable decorator could be written
to instrument functions and methods, or to log each time a method is called. For example:

@logger
@recalculate
def changeWidth(self, width):
 self.width = width

Here, whenever the object's width is changed two decorators are applied, logger() which
might record the change in a log file or database, and recalculate(), which might
update the object's area.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 91 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In addition to static methods, Python also supports "class methods". These are similar to
static methods in that they do not have a self first argument, and so can be called using
a class or an instance. What distinguishes them from static methods is that they have a
Python-supplied first argument, the class they are called on. This is conventionally called
cls.

Example: The Length Class
Now that we have seen a lot of Python's general and numerical special methods, we are in
a position to create a complete custom data type. We will create the Length class to hold
physical lengths. We want to be able to create lengths using syntax like this: distance =
Length("22 miles"), and to be able to retrieve lengths in the units we prefer, for
example, km = distance.to("km"). The class must not support the multiplication of
lengths by lengths (since that would produce an area), but should support multiplication
by amounts, for example distance * 2.

As usual, although the source code has docstrings, we will not show them in the following
snippets, both to save space and to avoid distracting us from the code itself.

from __future__ import division

The first statement in the file is rather intriguing. The from __future__ import syntax
is used to switch on Python features that will be on by default in a later version. They must
always come first. In this case we are saying that we want to switch on Python's future
division behavior, which is for / to do "true", i.e., floating-point, division rather than what
it does normally, i.e., truncating division. (The // operator does truncating division, if that
is what we really need.)

Truncating division 17

class Length(object):

 convert = dict(mi=621.371e-6, miles=621.371e-6, mile=621.371e-6,
 yd=1.094, yards=1.094, yard=1.094,
 ft=3.281, feet=3.281, foot=3.281,
 inches=39.37, inch=39.37,
 mm=1000, millimeter=1000, millimeters=1000,
 millimetre=1000, millimetres=1000,
 cm=100, centimeter=100, centimeters=100,
 centimetre=100, centimetres=100,
 m=1.0, meter=1.0, meters=1.0, metre=1.0, metres=1.0,
 km=0.001, kilometer=0.001, kilometers=0.001,
 kilometre=0.001, kilometres=0.001)
 convert["in"] = 39.37
 numbers = frozenset("0123456789.eE")

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 92 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We begin with a class statement to give our class a name, and to provide a context in
which we can create static data and methods. We have inherited from object so our class
is new-style. Then we create some static data. First we create a dictionary that maps names
to conversion factors. We can't use "in" as an argument name because it is a Python
keyword, so we insert it into the dictionary separately using the [] operator. We also create
a set of the characters that are valid in floating-point numbers.

def __init__(self, length=None):
 if length is None:
 self.__amount = 0.0
 else:
 digits = ""
 for i, char in enumerate(length):
 if char in Length.numbers:
 digits += char
 else:
 self.__amount = float(digits)
 unit = length[i:].strip().lower()
 break
 else:
 raise ValueError, "need an amount and a unit"
 self.__amount /= Length.convert[unit]

Inside the initializer, the local variables length, digits, i, char, and unit, all go out
of scope at the end of the method. We only refer to one instance variable,
self.__amount. This variable always holds the given length in meters, no matter what
units were used in the initializer, and is accessible from any method. We also refer to two
static variables, Length.numbers and Length.convert.

When a Length object is created, Python will call the __init__() method. We give the
user two options: They can pass no arguments in which case the length will be 0 meters,
or they can pass a string that specifies an amount and a unit with optional whitespace
separating the two.

If a string is given we want to iterate over the characters that are valid in numbers, and
then take the remainder to be the units. Python's enumerate() function returns an
iterator that returns a tuple of two values on each iteration, an index number starting from
0, and the corresponding item from the sequence. So if the string in length was "7 mi",
the tuples returned would be (0, "7"), (1, ""), (2, "m"), and (3, "i"). We can unpack a tuple
in a for loop simply by providing enough variables.

So long as we retrieve characters that are in the numbers set we add them to our
digits string. Once we reach a character that isn't in the set we attempt to convert the
digits string to a float, and take the rest of the length string to be the units. We strip
off any leading and trailing whitespace from the units string, and lower-case the string.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 93 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Finally we calculate how many meters the given length is by using the conversion factor
from the static convert dictionary.

The reason we have called our data attribute __amount, rather than say, amount, is that
we want this data to be private. Python will name-mangle any name in a class that begins
with two underscores (and which does not end in two underscores) to be preceded by an
underscore and the class name to make the attribute's name unique. In this case
__amount will be mangled to be _Length__amount. When we look at some of the special
methods, we will see a practical reason why this is beneficial.

Clearly there are many things that could go wrong. The floating-point conversion could
fail, there may be no units given (in which case we raise an exception, along with a "reason"
string), or the units may not match any in the convert dictionary. In this method we have
chosen to let the possible exceptions be raised, and can document them in the method's
docstring so that users of the class know what to expect.

def set(self, length):
 self.__init__(length)

We want our lengths to be mutable so we have provided a set() method. It takes the same
argument as __init__(), and because __init__() is an initializer rather than a
constructor, we can safely pass the work on to it.

def to(self, unit):
 return self.__amount * Length.convert[unit]

We store lengths inside the class as meters. This means that we only need to maintain a
single floating-point value, rather than say, a value and a unit. But just as we can specify
our preferred units when we create a length, we also want to be able to retrieve a length as
a value in the units of our choice. This is what the to() method achieves. It uses the
convert dictionary to convert the meters value to the units specified.

def copy(self):
 other = Length()
 other.__amount = self.__amount
 return other

As we know, if we use the = operator we will simply bind (or rebind) a name, so if we want
a genuine copy of a length we need some means of doing it. Here we have chosen to provide
a copy() method. But we did not have to: Instead we could have simply relied on the
copy module, for example:

import copy
import length

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 94 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

x = length.Length("3 km")
y = copy.copy(x)

We have imported both the standard copy module and our own length module,
(assuming that chap03 is in sys.path, and that the module is called length.py).

Then we created two independent lengths. If, instead, we had done y = x and then
changed x using the set() method, y would have changed too. Of course, since we have
implemented our own copy() method, we could also have copied by writing y = x.copy
().

We could have implemented the copy() method differently, for example:

def copy(self): # Alternative #1
 import copy
 return copy.copy(self)

def copy(self): # Alternative #2
 return eval(repr(self))

The first of these uses Python's standard copy module to implement the copy() method.
The second uses the repr() method to provide an eval()-able string version of the
length, e.g., Length('3000.000000m'), and then uses eval() to evaluate this code;
in this case it constructs a new length of the same size as the original.

@staticmethod
def units():
 return Length.convert.keys()

We have provided this static method to give users of our class access to the names of the
units we support. By using keys() we ensure that a list of unit names is returned, rather
than an object reference to our static dictionary.

With the exception of the __init__() initialization method, none of the methods we
have looked at so far have been special methods. But we want our Length class to work
like a standard Python class, so that it can be used with operators like * and *=, compared,
and converted to suitable compatible types. All these things are achievable be
implementing special methods. We will begin with comparisons.

def __cmp__(self, other):
 return cmp(self.__amount, other.__amount)

This method is easy to implement since we can just compare how long each length is.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 95 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The other object could be an object of any type. Thanks to Python's name-mangling, the
actual comparison is made between self._Length__amount and
other._Length__amount. If the other object does not have a _Length__amount
attribute, i.e., if it is not a length, Python will raise an AttributeError which is what
we want. This is true of all the other methods that take a length argument in addition to
self.

Without the name-mangling there is a small risk of the other object not being a length,
yet happening to have an __amount attribute. To prevent this risk we might have used
type-testing, even though this is often poor practice in object-oriented programming.

def __repr__(self):
 return "Length('%.6fm')" % self.__amount

def __str__(self):
 return "%.3fm" % self.__amount

Python's floating-point accuracy depends on the compiler it was built with, but is very
likely to be accurate to much more than the six decimal places we have chosen to use for
our "representation" method.

For the string representation, we don't need to be as accurate, nor do we need to return a
string that can be eval()'d, so we just return the raw length and the meters unit. If users
of our Length class want a string representation with a different unit they can use to
(), for example, "%s miles" %length.Length("200 ft").to("miles").

def __add__(self, other):
 return Length("%fm" % (self.__amount + other.__amount))

def __iadd__(self, other):
 self.__amount += other.__amount
 return self

We have used two special methods to support addition. The first supports binary + with a
length operand on either side. It constructs and returns a new Length object. The second
supports += for incrementing a length by another length.

They allow us to write code like this:

x = length.Length("30ft")
y = length.Length("250cm")
z = x + y # z == Length('11.643554m')
x += y # x == Length('11.643554m')

It is also possible to implement __radd__() for mixed type arithmetic, but we have not
done so because it does not make sense for the Length class.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 96 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We will omit the code that provides support for subtraction since it is almost identical to
the code for addition (and is in the source file).

def __mul__(self, other):
 if isinstance(other, Length):
 raise ValueError, \
 "Length * Length produces an area not a Length"
 return Length("%fm" % (self.__amount * other))

def __rmul__(self, other):
 return Length("%fm" % (other * self.__amount))

def __imul__(self, other):
 self.__amount *= other
 return self

For the multiplication methods we provide support for multiplying a length by a number.
If we assume that x is a length, then __mul__() supports uses like x * 5, and __rmul__
() supports uses like 5 * x. We must explicitly disallow multiplying lengths together in
__mul__() since the result would be an area not a length. We do not need to do this in
__rmul__() because __mul__() is always tried first, and if it raises an exception, Python
does not try __rmul__(). The __imul__() method supports in-place (augmented)
multiplication, for example x *= 5.

def __truediv__(self, other):
 return Length("%fm" % (self.__amount / other))

def __itruediv__(self, other):
 self.__amount /= other
 return self

The implementation of the division special methods has a similar structure to the other
arithmetic methods. One reason for showing them is to remind ourselves that the reason
the / and /= operators perform floating-point division is because of the from
__future__ import division directive at the beginning of the length.py file. It is
also possible to reimplement truncating division, but that isn't appropriate for the
Length class.

Another reason for showing them is that they are subtly different from the addition
methods we have just seen. Although addition and subtraction operate only on lengths,
multiplication and division operate on a length and a number.

def __float__(self):
 return self.__amount

def __int__(self):
 return int(round(self.__amount))

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 97 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We have chosen to support two type conversions, both of which are easy to write and
understand. The __str__() method implemented earlier is also a type conversion (to
type str).

Now that we have seen how to implement a custom data type, we will turn our attention
to implementing a custom collection class.

Collection Classes
In Python, collections are sequences such as lists and strings, mappings such as
dictionaries, or sets. If we implement our own collection classes we can use special methods
to make our collections usable with the same syntax and semantics as the built-in collection
types. Table 3.3 lists the special methods common to collections, and below we discuss
some of the specifics of each kind of collection.

Table 3.3. Common Collection Special Methods

Method Syntax Description

__contains__
(self, item)

x in y Returns True if x is in sequence y or if x is a key in dictionary y. This method is
also used for not in

__len__(self) len(y) Returns the number of items in y

__getitem__
(self, key)

y[k] Returns the k-th item of sequence y or the value for key k in dictionary y

__setitem__
(self, key,
value)

y[k] = v Sets the k-th item of sequence y or the value for key k in dictionary y, to v

__delitem__
(self, key)

del y[k] Deletes the k-th item of sequence y or the item with key k in dictionary y

__iter__(self) for i in
y: pass

Returns an iterator into collection y

In the case of sequences, it is common to implement __add__() and __radd__() to
support concatenation with +, and in the case of a mutable collection, to implement
__iadd__(), for +=, too. Similarly, the __mul__() methods should be implemented to
support * for repeating the collection. If an invalid index is given, we should raise an
IndexError exception. In addition to special methods, a custom sequence collection
ought to implement append(), count(), index(), insert(), extend(), pop(),
remove(), reverse(), and sort().

For mappings, we should raise KeyError if an invalid key is given, and in addition to the
special methods, we should at least implement copy() and get(), along with items
(), keys(), and values(), and their iterator versions, such as iteritems(). A Python

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 98 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

iterator is a function or method that returns successive values, for example, each character
in a string, or each item in a list or dictionary. They are often implemented by generators.

Generator Function 56

For sets, we should also raise KeyError if an invalid key is used; for example, when calling
remove(). Set collections should implement issubset(), issuperset(), union(),
intersection(), difference(), symmetric_difference(), and copy(). For
mutable sets, additional methods should be provided, including add(), remove(), and
discard().

Example: The OrderedDict Class
A rare omission from Python's library is an ordered dictionary. Plain dictionaries provide
very fast lookup, but do not provide ordering. For example, if we wanted to iterate over a
dictionary's values in key order, we would copy the keys to a list, sort the list, and iterate
over the list, using the list's elements to access the dictionary's values. For small
dictionaries, or where we do this rarely, sorting may be fine, but when the dictionary is
large or sorted frequently, sorting every time may be computationally expensive.

An obvious solution is to create an ordered dictionary, and that is what we will do here.

Understanding the OrderedDict example is not necessary for learning GUI
programming, but we do make use of the techniques and methods explained here in some
of the programs that we will cover later on. For now though, you could safely skip to the
next section, and then return here to understand the techniques when you encounter them
in later chapters.

One approach would be to inherit dict, but we will instead use aggregation (also called
composition), and defer consideration of inheritance until the next section.

To get an ordered dictionary, we will create a class that stores a normal dictionary, and
alongside it, an ordered list of the dictionary's keys. We will implement all of the dict
application programmers interface (API), but we will not show update() or fromkeys
() because they both go beyond what we have covered and what we need for GUI
programming. (Both these methods are in the source code though.)

The first executable statement in the file is an import statement.

import bisect

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 99 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The bisect module provides methods for searching ordered sequences such as lists using
the binary chop algorithm. We will discuss it shortly when we see it in use.

For this class we don't need any static data, so we will begin by looking at both the
class statement, and the definition of __init__().

class OrderedDict(object):

 def __init__(self, dictionary=None):
 self.__keys = []
 self.__dict = {}
 if dictionary is not None:
 if isinstance(dictionary, OrderedDict):
 self.__dict = dictionary.__dict.copy()
 self.__keys = dictionary.__keys[:]
 else:
 self.__dict = dict(dictionary).copy()
 self.__keys = sorted(self.__dict.keys())

We create a list called __keys and a dictionary called __dict. If the OrderedDict is
initialized with another dictionary we need to get that dictionary's data. The simplest and
most direct way of doing this is how we do it in the else suite. We convert the object to a
dictionary (which costs nothing if it is already a dictionary), and take a shallow copy of it.
Then we take a sorted list of the dictionary's keys.

The approach used in the else suite works in all cases, but purely for efficiency, we have
introduced a type-test using isinstance(). This function returns True if its first
argument is an instance of the class or classes (passed as a tuple) given as its second
argument, or any of their base classes. So if we are initializing from another
OrderedDict (or from an OrderedDict subclass) we can simply shallow copy its
dictionary which costs the same as before, and shallow copy its keys, which is cheaper
because they are already sorted.

Since our dictionary is ordered, in addition to the normal dictionary methods we should
also be able to access the value of a dictionary item at a particular index (or offset) into the
dictionary. That is what the first two methods we are going to implement provide.

def getAt(self, index):
 return self.__dict[self.__keys[index]]

def setAt(self, index, value):
 self.__dict[self.__keys[index]] = value

The getAt() method returns the index-th item in the dictionary. It does this by accessing
the dictionary using the key the list holds in the index-th position. The setAt() method
uses the same logic, except that it sets the value for the dictionary item that is at the
index-th offset.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 100 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def __getitem__(self, key):
 return self.__dict[key]

If we have a dictionary, d, and use the syntax value = d[key], the __getitem__()
special method is called. We simply pass the work on to the dictionary we are holding inside
our OrderedDict class. If the key is not in __dict it will raise a KeyError, which is
what we want, since we want OrderedDict to have the same behavior as a dict, except
when key order is an issue.

Dictionary methods 36

def __setitem__(self, key, value):
 if key not in self.__dict:
 bisect.insort_left(self.__keys, key)
 self.__dict[key] = value

If the user assigns to a dictionary using the syntax d[key] = value, we again rely on
the __dict to do the work. But if the key is not already in the __dict, it can't be in the
list of keys either, so we must add it.

The insort_left() function takes a sorted sequence, such as a sorted list, and an item
to insert. It locates the position in the sequence where the item should go to preserve the
sequence's order, and inserts the item there. The insort_left() function, like all the
bisect module's functions, uses a binary chop, so performance is excellent even on very
long sequences.

Another approach would have been to simply append the new key and then call sort()
on the list. Python's sorting functionality is highly optimized for partially sorted data, so
performance might not be too bad, but we prefer the more efficient solution.

def __delitem__(self, key):
 i = bisect.bisect_left(self.__keys, key)
 del self.__keys[i]
 del self.__dict[key]

Deleting an item is quite simple. The bisect_left() function takes a sorted sequence,
such as a sorted list, and an item. It returns the index position where the item is in the
sequence (or where the item would have been if it was in the sequence). We assume the
key is in the list, relying on an exception being raised if it isn't. We delete the key by index
position from the keys list, and delete the (key, value) by key from the dictionary.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 101 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We could instead have deleted the key from the keys list with a single statement,
self.__keys.remove(key), but that would have used a slow linear search.

def get(self, key, value=None):
 return self.__dict.get(key, value)

This method returns the value for the given key, unless the key is not present in the
dictionary, in which case it returns the specified value (which defaults to None). Since key
order is not involved we can simply pass on the work.

def setdefault(self, key, value):
 if key not in self.__dict:
 bisect.insort_left(self.__keys, key)
 return self.__dict.setdefault(key, value)

This method is similar to get(), but with one important difference: If the key is not in the
dictionary, it is inserted with the given value. And in the case of a key that isn't in the
dictionary, we must of course insert it into our key list.

def pop(self, key, value=None):
 if key not in self.__dict:
 return value
 i = bisect.bisect_left(self.__keys, key)
 del self.__keys[i]
 return self.__dict.pop(key, value)

This method is also similar to get(), except that it removes the item with the given key
if it is in the dictionary. Naturally, if a key is removed from the dictionary, we must also
remove it from the list of keys.

def popitem(self):
 item = self.__dict.popitem()
 i = bisect.bisect_left(self.__keys, item[0])
 del self.__keys[i]
 return item

This method removes and returns an arbitrary item, i.e., a (key, value) tuple. We first
remove the arbitrary item from the dictionary (since we don't know what it will be in
advance), then remove its key from our list of keys, and finally return the item that was
removed.

def has_key(self, key):
 return key in self.__dict

def __contains__(self, key):
 return key in self.__dict

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 102 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The has_key() method is supported for backward compatibility; nowadays
programmers use in, which is implemented by the __contains__() method.

def __len__(self):
 return len(self.__dict)

This returns how many items are in the dictionary. We could just as easily have returned
len(self.__keys).

def keys(self):
 return self.__keys[:]

We return our dictionary's keys as a shallow copy of our key list, so they are in key order.
Using a standard dict the order of the keys returned is arbitrary.

def values(self):
 return [self.__dict[key] for key in self.__keys]

We return the dictionary's values in key order. To do this we create a list of the values by
iterating over the key list in a list comprehension. This could also be done using a for loop:

List comperhensions 51

result = []
for key in self.__keys:
 result.append(self.__dict[key])
return result

Writing one line of code rather than four obviously makes the list comprehension more
appealing, although the syntax can take some getting used to.

def items(self):
 return [(key, self.__dict[key]) for key in self.__keys]

We use a similar approach for returning items, as (key, value) tuples, and again we could
use a conventional loop instead:

result = []
for key in self.__keys:
 result.append((key, self.__dict[key]))
return result

By now though, list comprehensions should be becoming more familiar.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 103 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def __iter__(self):
 return iter(self.__keys)

def iterkeys(self):
 return iter(self.__keys)

An iterator is a "callable object" (typically a function or method) that returns the "next"
item each time it is called. (Such objects have a next() function which is what Python
calls.)

An iterator for a sequence such as a string, list, or tuple, can be obtained by using the iter
() function, which is what we do here. For dictionaries, when an iterator is requested, an
iterator to the dictionary's keys is returned, although for consistency, the dict API also
provides an iterkeys() method, since it also provides itervalues() and iteritems
() methods. If iter() is called on a dictionary, such as an OrderedDict instance,
Python uses the __iter__() special method.

def itervalues(self):
 for key in self.__keys:
 yield self.__dict[key]

If itervalues() is called we must return a generator that returns the dictionary's values.
For a plain dict, the generator returns each value in an arbitrary order, but for the
OrderedDict we want to return the values in key order.

Any function or method that contains a yield statement is a generator. The yield
statement behaves like a return statement, except that after the yield has returned a
value, when the generator is next called it will continue from the statement following the
yield with all its previous state intact. So in this method, after each dictionary value is
returned, the next iteration of the for loop takes place, until all the values have been
returned.

Generator function 56

def iteritems(self):
 for key in self.__keys:
 yield key, self.__dict[key]

This is almost identical to itervalues() except that we return a (key, value) tuple. (We
don't need to use parentheses to signify a tuple here, because there is no ambiguity.)

def copy(self):
 dictionary = OrderedDict()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 104 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 dictionary.__keys = self.__keys[:]
 dictionary.__dict = self.__dict.copy()
 return dictionary

For copying we perform a shallow copy of the keys list and of the internal dictionary, so
the cost is proportional to the dictionary's size.

def clear(self):
 self.__keys = []
 self.__dict = {}

This is the easiest function. We could have used list() and dict() rather than [] and
{}.

def __repr__(self):
 pieces = []
 for key in self.__keys:
 pieces.append("%r: %r" % (key, self.__dict[key]))
 return "OrderedDict({%s})" % ", ".join(pieces)

We have chosen to provide an eval()-able form of our dictionary. (And since we have
not implemented __str__(), this will also be used when the dictionary is required as a
string, for example in a print statement.) For each (key, value) pair we use the %r
"representation" format, so for example, strings will be quoted, but numbers will not be.
Here are two examples that show repr() in action:

d = OrderedDict(dict(s=1, a=2, n=3, i=4, t=5))
print repr(d)
Prints "OrderedDict({'a': 2, 'i': 4, 'n': 3, 's': 1, 't': 5})"
d = OrderedDict({2: 'a', 3: 'm', 1: 'x'})
print 'd' # Same as print repr(d)
Prints "OrderedDict({1: 'x', 2: 'a', 3: 'm'})"

Naturally, this method could have been implemented using a list comprehension, but in
this case a for loop seems to be easier to understand.

We have now completed our review of the OrderedDict class. One piece of functionality
that may appear to be missing from this and the other Python collections is the ability to
load and save to file. In fact, Python has the ability to load and save collections, including
nested collections, to bytestrings and to files, providing they contain objects that can be
represented, such as Booleans, numbers, strings, and collections of such objects. (Actually,
Python can even load and save functions, classes, and in some cases instances.) We will
learn about this functionality in Chapter 8.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 105 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Inheritance and Polymorphism
Just as we would expect from a language that supports object-oriented programming,
Python supports inheritance and polymorphism. We have already used inheritance
because the classes we have created so far have inherited object, but in this section we
will go into more depth. All Python methods are virtual so if we reimplement a method in
a base class the reimplemented method will be the one called. We will see shortly how we
can access base class methods, for example, when we want to use them as part of a
reimplemented method.

Let us begin with a simple class that holds some basic information about a work of art.

class Item(object):

 def __init__(self, artist, title, year=None):
 self.__artist = artist
 self.__title = title
 self.__year = year

We have inherited the object base class and given our class three private data attributes.
Since we have made the attributes private, we must either provide accessors for them, or
create properties through which we can access them. In this example we have chosen to
use accessors.

def artist(self):
 return self.__artist

def setArtist(self, artist):
 self.__artist = artist

The accessors for the __title and __year attributes are structurally the same as those
for the __artist attribute, so we have not shown them.

def __str__(self):
 year = ""
 if self.__year is not None:
 year = " in %d" % self.__year
 return "%s by %s%s" % (self.__title, self.__artist, year)

If a string representation is required we return a string in the form "title by artist" if
__year is None, and "title by artist in year" otherwise.

Now that we can encapsulate some basic information about a work of art, we can create a
Painting subclass to hold information on paintings.

class Painting(Item):

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 106 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 def __init__(self, artist, title, year=None):
 super(Painting, self).__init__(artist, title, year)

The code above is the entire subclass. We have not added any data attributes or new
methods, so we just use the super() built-in function to initialize the Item base class.
The super() function takes a class and returns the class's base class. If the function is
also passed an instance (as we do here), the returned base class object is bound to the
instance we passed in, which means we can call (base class) methods on the instance.

It is also possible to call the base class by naming it explicitly, for example,
Item.__init__(self, artist, title, year); notice that we must pass the
self parameter ourselves if we use this approach.

We don't have to call the base class __init__() at all, for example, if the base class has
no data attributes. And if we do call it, the super() call does not have to be the first call
we make, although it usually is in __init__() implementations.

Now we will look at a slightly more elaborate subclass.

class Sculpture(Item):

 def __init__(self, artist, title, year=None, material=None):
 super(Sculpture, self).__init__(artist, title, year)
 self.__material = material

The Sculpture class has an additional attribute, so after initializing through the base
class we also initialize the extra attribute.

We won't show the accessors since they are structurally the same as those used for the
artist's name.

def __str__(self):
 materialString = ""
 if self.__material is not None:
 materialString = " (%s)" % self.__material
 return "%s%s" % (super(Sculpture, self).__str__(),
 materialString)

The __str__() method uses the base class's __str__() method, and if the material is
known, tacks it on to the end of the resultant string. We cannot call str(self) because
that would lead to an infinite recursion (calling __str__() again and again), but there is
no problem calling a special method explicitly when necessary, as we do here.

Because of Python's polymorphism, the right __str__() method will always be called.
For example:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 107 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

a = Painting("Cecil Collins", "The Sleeping Fool", 1943)
print a # Prints "The Sleeping Fool by Cecil Collins in 1943"
b = Sculpture("Auguste Rodin", "The Secret", 1925, "bronze")
print b # Prints "The Secret by Auguste Rodin in 1925 (bronze)"

Although we have shown polymorphism using a special method, it works exactly the same
for ordinary methods.

Python uses dynamic typing, also called duck typing ("If it walks like a duck and it quacks
like a duck, it is a duck"). This is very flexible. For example, suppose we had a class like
this:

class Title(object):

 def __init__(self, title)
 self.__title = title

 def title(self):
 return self.__title

Now we could do this:

items = []
items.append(Painting("Cecil Collins", "The Poet", 1941))
items.append(Sculpture("Auguste Rodin", "Naked Balzac", 1917,
 "plaster"))
items.append(Title("Eternal Springtime"))
for item in items:
 print item.title()

This will print the title of each item, even though the items are of different types. All that
matters to Python is that they all support the required method, in this case title().

But what if we had a collection of items, but we were not sure if all of them supported the
title() method? With the code as it stands we would get an AttributeError as soon
as we reached an item that didn't support title(). One solution is to use exception
handling:

try:
 for item in items:
 print item.title()
except AttributeError:
 pass

That contains the problem, but stops the loop as soon as an unsuitable item is encountered.
This might tempt us towards using type-checking, with type() or isintance(), for
example:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 108 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

for item in items:
 if isinstance(item, Item):
 print item.title()

This will work perfectly for Paintings and Sculptures since they are both Item
subclasses, but will fail on Title objects. Furthermore this approach is not really good
object-oriented style. What we really want to do is say "can it quack?", and we can do this
using hasattr():

for item in items:
 if hasattr(item, "title"):
 print item.title()

Now our items can be Paintings, Sculptures, Titles, or even strings (since strings
have a title() method).

One question remains, though: How do we know that the attribute is a method, i.e.,
callable, rather than a data attribute? One approach is to use callable(), for example:

for item in items:
 if hasattr(item, "title") and callable(item.title):
 print item.title()

We still need to use hasattr() because we must only call callable() on something
that exists (otherwise we will get an exception), in this case an instance attribute that is a
method.

Python's introspection is very powerful, and has more features than those we have covered
here. But whether or not it is wise to use it, apart perhaps from isinstance(), is
debatable.

Sometimes it is useful to define an abstract base class (an interface) that simply defines a
particular API. For example, works of art and other kinds of items have dimensions, so it
might be useful to have a Dimension interface that had area() and volume() methods.
Although Python provides no formal support for interfaces we can achieve what we want
by implementing a class that has no data attributes, and whose methods raise the
NotImplementedError exception. For example:

class Dimension(object):

 def area(self):
 raise NotImplementedError, "Dimension.area()"

 def volume(self):
 raise NotImplementedError, "Dimension.volume()"

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 109 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This defines the Dimension interface as having the two methods we want. If we multiply
inherit Dimension and forget to reimplement the methods we will get a
NotImplementedError exception if we try to use them. Here is a new version of the
Painting class that makes use of the interface:

class Painting(Item, Dimension):

 def __init__(self, artist, title, year=None, width=None,
 height=None):
 super(Painting, self).__init__(artist, title, year)
 self.__width = width
 self.__height = height

To calculate a painting's area we need its width and height, so we add these to the
constructor, and assign them to suitable attributes.

def area(self):
 if self.__width is None or self.__height is None:
 return None
 return self.__width * self.__height

def volume(self):
 return None

We must implement area() and volume(). Although the volume() method does not
make sense for a painting we must provide an implementation anyway (since the interface
requires one), so we do so and return None. An alternative would have been to have raised
an exception, for example, ValueError.

It would be natural to rework the Sculpture class to accept width, height, and depth
arguments, and to provide a volume() implementation. But an area() implementation
may or may not make sense for a sculpture. We might mean the overall area of the total
volume, or the area of a face from a particular viewpoint. Since there is ambiguity we could
either pass an additional argument to disambiguate, or we could give up and either return
None or raise an exception.

Multiply inheriting just involves listing two or more base classes in the class statement.
The order in which the base classes appear does not matter in our example, but can matter
in more complex hierarchies.

Python's object-oriented functionality goes beyond what we have covered in this chapter.
Python supports "properties", that are accessed just like data attributes, but which use the
methods we specify to get and set the attributes behind-the-scenes. For instances that need
to store a fixed set of attributes as compactly as possible, it is possible to use the
__slots__ class attribute. Signals and slots We only mention this to highlight the fact
that this is completely different from the PyQt slots (which are functions and more

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 110 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

commonly methods), that we will encounter in the GUI chapters. It is also possible to create
meta-classes, but again this is beyond the scope of what we need for GUI programming,
so we do not need to cover the topic here.

Modules and Multi-File Applications
Object-oriented programming allows us to package up functionality, e.g., methods and
data attributes, into classes. Python modules allow us to package up functionality at a
higher level, for example, entire sets of classes, functions, and instance variables. A module
is simply a file with a .py extension. Modules may have code that is executed when they
are imported, but more commonly simply provide functions and classes which are
instantiated when they are imported. We have already seen examples of this: The
Length class is in a file called length.py, and is therefore accessible in the length
module. When importing a module, we specify the name of the module file without the
extension. For example:

Importing objects sidebar 19

import length
a = length.Length("4.5 yd")

Only modules that are in the current directory, or in Python's sys.path list can be
imported. If we need access to modules that are elsewhere in the filesystem we can add
additional paths to sys.path. In addition to a file, a module can be an entire directory of
files. In these cases, the directory must contain a file called __init__.py. This file can
be (and often is) empty; it is simply used as a marker to tell Python that the directory
contains .py files and that the directory name is the top-level module name. For example,
we might create a directory called mylibrary and put length.py, ordereddict.py,
and an empty __init__.py in it. So long as we add the directory that contains the
mylibrary directory to Python's path we could do this:

import mylibrary.length
a = mylibrary.length.Length("14.3 km")

In practice we might prefer to alias mylibrary.length to something shorter, for
example:

import mylibrary.length as length
a = length.Length("948mm")

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 111 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Python's module handling is a lot more sophisticated than we have shown, but what we
have covered is sufficient for the GUI programming which is our main concern.[*] Python
and PyQt applications can be written in a single file or can be spread over multiple files.
We will show both approaches in the coming chapters.

[*] The module import semantics are due to change in Python 2.7, with imports becoming absolute rather than relative. See http://www.python.org/dev/peps/
pep-0328 for details.

Using the doctest Module
Python has considerable support for testing, with the doctest and unittest modules
for unit testing and the test module for regression testing. PyQt also provides unit testing
functionality with the QtTest module.

When we create modules, such as the length and ordereddict modules we wrote
earlier, they are designed to be imported and the objects they provide, e.g., the Length
and OrderedDict classes, used by the importing application. But since .py files can also
be executables, we can easily include unit testing code: When the module is imported the
unit testing code is simply ignored; but when the module is run the unit tests are executed.
This approach is supported by the doctest module.

The doctest module makes unit testing as simple and painless as possible. To use it all
we need to do is add examples to our docstrings, showing what we would type into the
interactive Python interpreter (or IDLE) and what response we expect back. For example,
here is the OrderedDict class's get() method in full:

def get(self, key, value=None):
 """Returns the value associated with key or value if key isn't
 in the dictionary

 >>> d = OrderedDict(dict(s=1, a=2, n=3, i=4, t=5, y=6))
 >>> d.get("X", 21)
 21
 >>> d.get("i")
 4
 """
 return self.__dict.get(key, value)

The docstring contains a brief description of the method's purpose, and then some
examples written as if they were typed into the interpreter. We begin by creating an
OrderedDict object; we don't need to import or qualify since we are inside the
ordereddict module. We then write a call to the method we are testing and what the
interpreter (or IDLE) is expected to respond. And then we do another call and response.

The doctest module uses this syntax because it is so familiar to Python programmers
through their use of the interactive Python interpreter or of IDLE, or of any other Python

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 112 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.python.org/dev/peps/pep-0328
http://www.python.org/dev/peps/pep-0328

IDE, such as eric4, that embeds a Python interpreter. When the tests are run, the
doctest module will import the module itself, then read every docstring (using Python's
introspection capabilities) and then execute each statement that begins with the >>>
prompt. It then checks the result against the expected output (which may be nothing), and
will report any failures.

To make a module able to use doctest like this we just need to add three lines at the end
of the module:

if __name__ == "__main__":
 import doctest
 doctest.testmod()

Whether a module is imported by being the subject of an import statement, or is invoked
on the command line, all the module's code is executed. This causes the module's functions
and classes to be created ready for use.

We can tell if a module was imported because in this case its __name__ attribute is set to
the module's name. On the other hand, if a module is invoked its __name__ attribute is
set to "__main__".

As shown above, we can use an if statement to see whether the module was imported, in
which case we do nothing else. But if the module was invoked on the command line, we
import the doctest module and execute the testmod() function which performs all our
tests.

We can perform a test run from inside a console window, for example:

C:\>cd c:\pyqt\chap03
C:\pyqt\chap03>ordereddict.py

If there are no test failures, the module will run silently. If there are any errors, these will
be output to the console. We can force the doctest module to be more verbose by using
the -v flag:

C:\pyqt\chap03>ordereddict.py -v

This shows every single test that is performed, and a summary at the end.

It is also possible to test for expected failures, for example, out-cases where we expect an
exception to be raised. For these we just write the first and last lines of the expected output
(because the traceback in the middle may vary) and use an ellipsis, ..., to indicate the
traceback. For example, here is the OrderedDict class's setAt() method in full:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 113 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def setAt(self, index, value):
 """Sets the index-th item's value to the given value

 >>> d = OrderedDict(dict(s=1, a=2, n=3, i=4, t=5, y=6))
 >>> d.getAt(5)
 6
 >>> d.setAt(5, 99)
 >>> d.getAt(5)
 99
 >>> d.setAt(19, 42)
 Traceback (most recent call last):
 ...
 IndexError: list index out of range
 """
 self.__dict[self.__keys[index]] = value

We created an OrderedDict of six items, but in the last test attempted to set the non-
existent twentieth item's value. This causes the dictionary to raise an IndexError, so we
write what the interactive Python interpreter would output and the doctest module
understands this and will pass the test if the exception was correctly raised.

The doctest module is less sophisticated than the unittest module, but it is both easy
to use and unobtrusive. We have used it in all the examples shown so far, as can be seen
by looking at the book's source code.

Summary
This chapter has taken us from being users of classes to being creators of classes. We have
seen how to initialize newly created instances using the __init__() special method, and
how to implement many of the other special methods so that our custom data types
(classes) can behave just like Python's built-in classes. We have also learnt how to create
both ordinary methods, and static methods, and how to store and access both per-instance
and static data.

We have reviewed two complete examples. The Length class, a numeric data type, and
the OrderedDict class, a collection class. We have also made use of much of the
knowledge gained from the previous chapters, including some of Python's advanced
features, such as list comprehensions and generator methods.

This chapter has also shown how to do both single and multiple inheritance, and given an
example of how to create a simple interface class. We have learnt more about using
isinstance() for type-testing, and about hasattr() and duck typing.

We concluded the chapter with an overview of how Python modules and multi-file
applications work. We also looked at the doctest module and saw how easy it is to create
unit tests that look like examples in our docstrings.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 114 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We now know the Python language fundamentals. We can create variables, use collections,
and create our own data types and collection types. We can branch, loop, call functions
and methods, and raise and handle exceptions. Clearly there is a lot more to learn, but we
can cover everything else we require as the need arises. We are now ready to start GUI
application programming, a topic that begins in the next chapter and which occupies the
rest of the book.

Exercises

1. Implement a Tribool data type. This is a data type that can have one of three
values, True, False, and unknown (for which use None). In addition to
__init__(), implement __str__(), __repr__(), __cmp__(),
__nonzero__() for conversion to bool(), __invert__() for logical not
(~), __and__() for logical and (&), and __or__() for logical or (|). There
are two possible logics that can be used: propagating, where any expression
involving unknown (i.e., None) is unknown, and non-propagating where any
expression involving unknown that can be evaluated is evaluated. Use non-
propagating logic so that your Tribools match the truth table, and where t
is Tribool(True), f is Tribool(False) and n is Tribool(None) (for
unknown):

Expression Result Expression Result Expression Result

~t False ~f True ~n None
t & t True t & f False t & n None
f & f False f & n False n & n None
t | t True t | f True t | n True
f | f False f | n None n | n None

For example, with non-propagating logic, True | None, is True, because so
long as one operand to logical or is true, the expression is true. But False |
None is None (unknown), because we cannot determine the result.

Most of the methods can be implemented in just a few lines of code. Make sure
you use the doctest module and write unit tests for all the methods.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 115 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

2. Implement a Stack class and an EmptyStackError exception class. The
Stack class should use a list to store its items, and should provide pop() to
return and remove the item at the top of the stack (the right-most item), top
() to return the item at the top of the stack, and push() to push a new item
onto the stack. Also provide special methods so that len() and str() will
work sensibly. Make sure that pop() and top() raise EmptyStackError if
the stack is empty when they are called. The methods can be written using very
few lines of code. Make sure you use the doctest module and write unit tests
for all the methods.

The model answers are provided in the files chap03/tribool.py and chap03/
stack.py.

Part II: Basic GUI Programming

4. Introduction to GUI Programming
• A Pop-up Alert in 25 Lines
• An Expression Evaluator in 30 Lines
• A Currency Converter in 70 Lines
• Signals and Slots

In this chapter we begin with brief reviews of three tiny yet useful GUI applications written
in PyQt. We will take the opportunity to highlight some of the issues involved in GUI
programming, but we will defer most of the details to later chapters. Once we have a feel
for PyQt GUI programming we will discuss PyQt's "signals and slots" mechanism—this is
a high-level communication mechanism for responding to user interaction that allows us
to ignore irrelevant detail.

Although PyQt is used commercially to build applications that vary in size from hundreds
of lines of code to well over 100 000 lines of code, the applications we will build in this
chapter are all under 100 lines, and show just how much can be done with very little code.

In this chapter, and the one following, we will design our user interfaces purely by writing
code, but in Chapter 7, we will learn how to create user interfaces using Qt's visual design
tool, Qt Designer.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 116 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Python console applications and Python module files always have a .py extension, but for
Python GUI applications we use a .pyw extension. Both .py and .pyw are fine on Linux,
but on Windows, .pyw ensures that Windows uses the pythonw.exe interpreter instead
of python.exe, and this in turn ensures that when we execute a Python GUI application,
no unnecessary console window will appear. On Mac OS X, it is essential to use
the .pyw extension.

The PyQt documentation is provided as a set of HTML files, independent of the Python
documentation. The most commonly referred to documents are those covering the PyQt
API. These files have been converted from the original C++/Qt documentation files, and
their index page is called classes.html; Windows users will find a link to this page in
their Start button's PyQt menu. It is well worth looking at this page to get an overview of
what classes are available, and of course to dip in and read about those classes that seem
interesting.

The first application we will look at is an unusual hybrid: A GUI application that must be
launched from a console because it requires command line arguments. We have included
it because it makes it easier to explain how the PyQt event loop works (and what that is),
without having to go into any other GUI details. The second and third examples are both
very short but standard GUI applications. They both show the basics of how we can create
and lay out widgets ("controls" in Windows-speak)—labels, buttons, comboboxes, and
other on-screen elements that users can view and in most cases interact with. They also
show how we can respond to user interactions, for example, how to call a particular
function or method when the user performs a particular action.

In the last section we will cover handling user interactions in more depth, and in the next
chapter we will cover layouts and dialogs much more thoroughly. Use this chapter to get
a feel for how things work, without worrying about the details: The chapters that follow
will fill in the gaps and will familiarize you with standard PyQt programming practices.

A Pop-up Alert in 25 Lines
Our first GUI application is a bit odd. Firstly, it must be run from the console, and secondly
it has no "decorations"—no title bar, no system menu, no X close button. What Figure
4.1 shows really is the whole thing.

Figure 4.1. The Alert program

To get the output displayed, we could enter a command line like this:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 117 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

C:\>cd c:\pyqt\chap04
C:\pyqt\chap04>alert.pyw 12:15 Wake Up

When run, the program executes invisibly in the background, simply marking time until
the specified time is reached. At that point it pops up a window with the message text.
About a minute after showing the window, the application will automatically terminate.

The specified time must use the 24 hour clock. For testing purposes we can use a time that
has just gone, for example, by using 12:15 when it is really 12:30, the window will pop up
immediately (well, within less than a second).

Now that we know what it does and how to run it, we will review the implementation. The
file is a few lines longer than 25 lines because we have not counted comment lines and
blank lines in the total—but there are only 25 lines of executable code. We will begin with
the imports.

import sys
import time
from PyQt4.QtCore import *
from PyQt4.QtGui import *

We import the sys module because we want to access the command line arguments it
holds in the sys.argv list. The time module is imported because we need its sleep()
function, and we need the PyQt modules for the GUI and also for the QTime class.

app = QApplication(sys.argv)

We begin by creating a QApplication object. Every PyQt GUI application must have a
QApplication object. This object provides access to global-like information such as the
application's directory, the screen size (and which screen the application is on, in a multi-
head system), and so on. This object also provides the event loop, discussed shortly.

When we create a QApplication object we pass it the command line arguments; this is
because PyQt recognizes some command line arguments of its own, such as -geometry
and -style, so we ought to give it the chance to read them. If QApplication recognizes
any of the arguments, it acts on them, and removes them from the list it was given. The
list of arguments that QApplication recognizes are given in the QApplication's
initializer's documentation.

try:
 due = QTime.currentTime()
 message = "Alert!"
 if len(sys.argv) < 2:
 raise ValueError
 hours, mins = sys.argv[1].split(":")
 due = QTime(int(hours), int(mins))

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 118 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 if not due.isValid():
 raise ValueError
 if len(sys.argv) > 2:
 message = " ".join(sys.argv[2:])
except ValueError:
 message = "Usage: alert.pyw HH:MM [optional message]" # 24hr clock

At the very least the application requires a time, so we set the due variable to the time right
now. We also provide a default message. If the user has not given at least one command
line argument (a time), we raise a ValueError exception. This will result in the time being
now and the message being the "usage" error message.

If the first argument does not contain a colon, a ValueError will be raised when we
attempt to unpack two items from the split() call. If the hours or minutes is not a valid
number a ValueError will be raised by int(), and if the hours or minutes is out of range,
due will be an invalid QTime, and we raise a ValueError ourselves. Although Python
provides its own date and time classes, the PyQt date and time classes are often more
convenient (and in some respects more powerful), so we tend to prefer them.

If the time is valid, we set the message to be the space-separated concatenation of the other
command line arguments if there are any, otherwise we leave it as the default "Alert!" that
we set at the beginning. (When a program is executed on the command line, it is given a
list of arguments, the first being the invoking name, and the rest being each sequence of
non-whitespace characters, i.e., each "word", entered on the command line. The words
may be changed by the shell, e.g., by applying wildcard expansion. Python puts the words
it is actually given in the sys.argv list.)

Now we know when the message must be shown and what the message is.

while QTime.currentTime() < due:
 time.sleep(20) # 20 seconds

We loop continuously comparing the current time with the target time. The loop will
terminate if the current time is later than the target time. We could have simply put a
pass statement inside the loop, but if we did that Python would loop as quickly as possible,
gobbling up processor cycles for no good reason. The time.sleep() command tells
Python to suspend processing for the specified number of seconds, 20 in this case. This
gives other programs more opportunity to run and makes sense since we don't want to
actually do anything while we wait for the due time to arrive.

Apart from creating the QApplication object, what we have done so far is standard
console programming.

label = QLabel("" + message + "")
label.setWindowFlags(Qt.SplashScreen)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 119 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

label.show()
QTimer.singleShot(60000, app.quit) # 1 minute
app.exec_()

We have created a QApplication object, have a message, and the due time has arrived,
so now we can begin to create our application. A GUI application needs widgets, and in
this case we need a label to show the message. A QLabel can accept HTML text, so we give
it an HTML string that tells it to display bold red text of size 72 points.[*]

[*] The supported HTML tags are listed at http://doc.trolltech.com/richtext-html-subset.html.

In PyQt, any widget can be used as a top-level window, even a button or a label. When a
widget is used like this, PyQt automatically gives it a title bar. We don't want a title bar for
this application, so we set the label's window flags to those used for splash screens since
they have no title bar. Once we have set up the label which will be our window, we call
show() on it. At this point the label window is not shown! The call to show() merely
schedules a "paint event", i.e., it adds a new event to the QApplication object's event
queue that is a request to paint the specified widget.

Next we set up a single-shot timer. Whereas the Python library's time.sleep() function
takes a number of seconds, the QTimer.singleShot() function takes a number of
milliseconds. We give the singleShot() method two arguments:How long until it
should time out (1 minute in this case), and a function or method for it to call when it times
out.

In Qt terminology, the function or method we have given is called a "slot", although in the
PyQt documentation the terms "callable", "Python slot", and "Qt slot", are used to
distinguish slots from Python's __slots__, a feature of new-style classes that is described
in the Python Language Reference. In this book we will usually use the Qt terminology,
since we never use __slots__.

Signals and slots 125

So now we have two events scheduled: A paint event that wants to take place immediately,
and a timer timeout event that wants to take place in a minute's time.

The call to app.exec_() starts off the QApplication object's event loop.[*] The first
event it gets is the paint event, so the label window pops up on-screen with the given
message. About one minute later the timer timeout event occurs and the
QApplication.quit() method is called. This method performs a clean termination of

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 120 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://doc.trolltech.com/richtext-html-subset.html

the GUI application. It closes any open windows, frees up any resources it has acquired,
and exits.

[*] PyQt uses exec_() rather than exec() to avoid conflicting with Python's built-in exec statement.

Event loops are used by all GUI applications. In pseudo-code, an event loop looks like this:

while True:
 event = getNextEvent()
 if event:
 if event == Terminate:
 break
 processEvent(event)

When the user interacts with the application, or when certain other things occur, such as
a timer timing out, or the application's window being uncovered (maybe because another
application was closed), an event is generated inside PyQt and added to the event queue.
The application's event loop continuously checks to see if there is an event to process, and
if there is it processes it (or passes it on to the event's associated function or method for
processing).

Although complete, and quite useful if you use consoles, the application only uses a single
widget. Also, we have not given it any ability to respond to user interaction. It also works
rather like traditional batch processing programs. It is invoked, performs some processing
(waits, then shows a message), and terminates. Most GUI programs work differently. Once
invoked they run their event loop and respond to events. Some events come from the user,
for example key presses and mouse clicks, and some from the system, for example timers
timing out and windows being revealed. They process in response to requests that are the
result of events such as button clicks and menu selections, and only terminate when told
to do so.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 121 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 4.2. Batch processing applications vs. GUI applications

The next application we will look at is much more conventional than the one we've just
seen, and is typical of many very small GUI applications generally.

An Expression Evaluator in 30 Lines
This application is a complete dialog style application written in 30 lines of code (excluding
blank and comment lines). "Dialog style" means an application that has no menu bar, and
usually no toolbar or status bar, most commonly with some buttons (as we will see in the
next section), and with no central widget. In contrast, "main window style" applications
normally have a menu bar, toolbars, a status bar, and in some cases buttons too; and they
have a central widget (which may contain other widgets of course). We will look at main
window style applications in Chapter 6.

This application uses two widgets: A QTextBrowser which is a read-only multi-line text
box that can display both plain text and HTML, and a QLineEdit which is a single line
text box that displays plain text. All text in PyQt widgets is Unicode, although it can be
converted to other encodings when necessary.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 122 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 4.3. The Calculate application

The Calculate application can be invoked just like any normal GUI application by clicking
(or double-clicking depending on platform and settings) its icon. (It can also be launched
from a console of course.) Once running, the user can simply type mathematical
expressions into the line edit and when they press Enter (or Return), the expression and
its result are appended to the QTextBrowser. Any exceptions that are raised due to invalid
expressions or invalid arithmetic (such as division by zero) are caught and turned into
error messages that are simply appended to the QTextBrowser.

As usual, we will look at the code in sections. This example follows the pattern that we will
use for all future GUI applications: A form is represented by a class, behavior in response
to user interaction is handled by methods, and the "main" part of the program is tiny.

from __future__ import division
import sys
from math import *
from PyQt4.QtCore import *
from PyQt4.QtGui import *

Since we are doing mathematics and don't want any surprises like truncating division, we
make sure we get floating-point division. Normally we import non-PyQt modules using
the import moduleName syntax; but since we want all of the math module's functions
and constants available to our program's users we simply import them all into the current
namespace. As usual we import sys to get the sys.argv list, and we import everything
from both the QtCore and the QtGui modules.

Truncating division 17

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 123 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

class Form(QDialog):

 def __init__(self, parent=None):
 super(Form, self).__init__(parent)
 self.browser = QTextBrowser()
 self.lineedit = QLineEdit("Type an expression and press Enter")
 self.lineedit.selectAll()
 layout = QVBoxLayout()
 layout.addWidget(self.browser)
 layout.addWidget(self.lineedit)
 self.setLayout(layout)
 self.lineedit.setFocus()
 self.connect(self.lineedit, SIGNAL("returnPressed()"),
 self.updateUi)
 self.setWindowTitle("Calculate")

As we have seen, any widget can be used as a top-level window. But in most cases when
we create a top-level window we subclass QDialog, or QMainWindow, or occasionally,
QWidget. Both QDialog and QMainWindow, and indeed all PyQt's widgets are derived
from QWidget, and all are new-style classes. By inheriting QDialog we get a blank form,
i.e., a grey rectangle, and some convenient behaviors and methods. For example, if the
user clicks the close X button, the dialog will close. By default, when a widget is closed it
is merely hidden; we can of course change this behavior, as we will see in the next chapter.

We give our Form class's __init__() method a default parent of None, and use super
() to initialize it. A widget that has no parent becomes a top-level window, which is what
we want for our form. We then create the two widgets we need and keep references to them
so that we can access them later, outside of __init__(). Since we did not give these
widgets parents it would seem that they will become top-level windows—which would not
make sense. We will see shortly that they get parents later on in the initializer. We give the
QLineEdit some initial text to show, and select it all. This will ensure that as soon as the
user starts typing the text we gave will be overwritten.

We want the widgets to appear vertically one above the other in the window. We achieve
this by creating a QVBoxLayout and adding our two widgets to it, and then setting the
layout on the form. If you run the application and resize it you will find that any extra
vertical space is given to the QTextBrowser, and that both widgets will grow horizontally.
This is all handled automatically by the layout manager, and can be fine-tuned by setting
layout policies.

One important side-effect of using layouts is that PyQt automatically reparents the widgets
that are laid out. So although we did not give our widgets a parent of self (the Form
instance), when we call setLayout() the layout manager gives ownership of the widgets
and of itself to the form, and takes ownership of any nested layouts itself. This means that
none of the widgets that are laid out are top-level windows, and all of them have parents,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 124 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

which is what we want. So when the form is deleted, all its child widgets and layouts will
be deleted with it, in the correct order.

The widgets on a form can be laid out using a variety of techniques. We can use the resize
() and move() methods to give them absolute sizes and positions; we can reimplement
the resizeEvent() method and calculate their sizes and positions dynamically, or we
can use PyQt's layout managers. Using absolute sizes and positions is very inconvenient.
For one thing we have to perform lots of manual calculations, and for another, if we change
the layout we have to redo the calculations. Calculating the sizes and positions dynamically
is a better approach, but still requires us to write quite a lot of tedious calculating code.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 125 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Object Ownership

All PyQt classes that derive from QObject—and this includes all the widgets,
since QWidget is a QObject subclass—have the possibility of having a "parent".
The parent–child relationship is used for two complementary purposes. A
widget that has no parent is a top-level window, and a widget that has a parent
(always another widget), is contained (displayed) within its parent. The
relationship also defines ownership, with parents owning their children.

PyQt uses the parent–child ownership model to ensure that if a parent, for
example, a top-level window, is deleted, all its children, for example, all the
widgets the window contains, are automatically deleted as well. To avoid
memory leaks, we should always make sure that any QObject, including all
QWidgets, has a parent, the sole exception being top-level windows.

Most PyQt QObject subclasses have constructors that take a parent object as
their last (optional) argument. But for widgets we generally do not (and need
not) pass this argument. The reason for this is that widgets used in dialogs are
laid out with layout managers, and when this occurs they are automatically
reparented to the widget in which they are laid out, so they end up with the
correct parent without requiring us to take any special action.

There are some cases where we must explicitly pass a parent, for example when
constructing QObject subclass objects that are not widgets, or that are widgets
but which will not be laid out (such as dock widgets); we will see several
examples of such cases in later chapters.

One final point is that it is possible to get situations where a Python variable is
referring to an underlying PyQt object that no longer exists. This issue is covered
in Chapter 9, in the "aliveness" discussion starting on page 278.

Using layout managers makes things a lot easier. And layout managers are quite smart:
They automatically adapt to resize events and to content changes. Anyone used to dialogs
in many versions of Windows will appreciate the benefits of having dialogs that can be
resized (and that do so sensibly), rather than being forced to use small non-resizable
dialogs which can be very inconvenient when their contents are too large to fit. Layout
managers also make life easier for internationalized programs since they adapt to content,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 126 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

so translated labels will not be "chopped off" if the target language is more verbose than
the original language.

PyQt provides three layout managers: one for vertical layouts, one for horizontal layouts,
and one for grid layouts. Layouts can be nested, so quite sophisticated layouts are possible.
And there are other ways of laying out widgets, such as using splitters or tab widgets. All
these approaches are considered in more depth in Chapter 9.

As a courtesy to our users we want the focus to start in the QLineEdit; we call setFocus
() to achieve this. We must do this after setting the layout.

The connect() call is something we will look at in depth later in this chapter. Suffice to
say that every widget (and some other QObjects) announce state changes by emitting
"signals". These signals (which are nothing to do with Unix signals) are usually ignored.
However, we can choose to take notice of any signals we are interested in, and we do this
by identifying the QObject that we want to know about, the signal it emits that we are
interested in, and the function or method we want called when the signal is emitted.

Signals and slots 125

So in this case, when the user presses Enter (or Return) in the QLineEdit, the
returnPressed() signal will be emitted as usual, but because of our connect() call,
when this occurs, our updateUi() method will be called. We will see what happens then
in a moment.

The last thing we do in __init__() is set the window's title.

As we will see shortly, the form is created and show() is called on it. Once the event loop
begins, the form is shown—and nothing more appears to happen. The application is simply
running the event loop waiting for the user to click the mouse or press a key. Once the user
starts interacting, the results of their interaction are processed. So if the user types in an
expression, the QLineEdit will take care of displaying what they type, and if they press
Enter, our updateUi() method will be called.

def updateUi(self):
 try:
 text = unicode(self.lineedit.text())
 self.browser.append("%s = %s" % (text, eval(text)))
 except:
 self.browser.append(
 "%s is invalid!" % text)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 127 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When updateUi() is called it retrieves the text from the QLineEdit, immediately
converting it to a unicode object. We then use Python's eval() function to evaluate the
string as an expression. If this is successful we append a string to the QTextBrowser that
has the expression text, an equals sign, and then the result in bold. Although we normally
convert QStrings to unicode as soon as possible, we can pass QStrings, unicodes,
and strs to PyQt methods that expect a QString, and PyQt will automatically perform
any necessary conversion. If any exception occurs we append an error message instead.
Using a catch-all except block like this is not good general practice, but for a 30 line
program it seems reasonable.

PyQt string policy 28

By using eval() we avoid all the work of parsing and error checking that we would have
to do ourselves if we were using a compiled language.

app = QApplication(sys.argv)
form = Form()
form.show()
app.exec_()

Now that we have defined our Form class, at the end of the calculate.pyw file, we create
the QApplication object, instantiate an instance of our form, schedule it to be painted,
and start off the event loop.

And that is the complete application. But it isn't quite the end of the story. We have not
said how the user can terminate the application. Because our form derives from
QDialog, it inherits some behavior. For example, if the user clicks the close button X, or
if they press the Esc key, the form will close. When a form closes, it is hidden. When the
form is hidden PyQt will detect that the application has no visible windows and that no
further interaction is possible. It will therefore delete the form and perform a clean
termination of the application.

In some cases we want an application to continue even if it is not visible, for example a
server. For these cases we can call QApplication.setQuitOnLastWindowClosed
(False). It is also possible, although rarely necessary, to be notified when the last window
is closed.

On Mac OS X, and some X Windows window managers, like twm, an application like this
will not have a close button, and on the Mac, choosing Quit on the menu bar will not work.
In such cases pressing Esc will terminate the application, and in addition on the Mac,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 128 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Command+. will also work. In view of this, for applications that are likely to be used on
the Mac or with twm or similar, it is best to provide a Quit button. Adding buttons to dialogs
is covered in this chapter's last section.

We are now ready to look at the last small complete example that we will present in this
chapter. It has more custom behavior, a more complex layout, and does more sophisticated
processing, but its fundamental structure is very similar to the Calculate application, and
indeed to that of many other PyQt dialogs.

A Currency Converter in 70 Lines
One small utility that is often useful is a currency converter. But since exchange rates
frequently change, we cannot simply create a static dictionary of conversion rates as we
did for the units of length in the Length class we created in the previous chapter.
Fortunately, the Bank of Canada provides exchange rates in a file that is accessible over
the Internet, and which uses an easy-to-parse format. The rates are sometimes a few days
old, but are good enough for estimating the cash required for trips or how much a foreign
contract is likely to pay.

Figure 4.4. The Currency application

The application must first download and parse the exchange rates. Then it must create a
user interface which the user can manipulate to specify the currencies and the amount that
they are interested in.

As usual, we will begin with the imports.

import sys
import urllib2
from PyQt4.QtCore import *
from PyQt4.QtGui import *

Both Python and PyQt provide classes for networking. In Chapter 18 we will use PyQt's
classes, but here we will use Python's urllib2 module because it provides a very useful
convenience function that makes it easy to grab a file over the Internet.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 129 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

class Form(QDialog):

 def __init__(self, parent=None):
 super(Form, self).__init__(parent)

 date = self.getdata()
 rates = sorted(self.rates.keys())

 dateLabel = QLabel(date)
 self.fromComboBox = QComboBox()
 self.fromComboBox.addItems(rates)
 self.fromSpinBox = QDoubleSpinBox()
 self.fromSpinBox.setRange(0.01, 10000000.00)
 self.fromSpinBox.setValue(1.00)
 self.toComboBox = QComboBox()
 self.toComboBox.addItems(rates)
 self.toLabel = QLabel("1.00")

After initializing our form using super(), we call our getdata() method. As we will
soon see, this method gets the exchange rates, populates the self.rates dictionary, and
returns a string holding the date the rates were in force. The dictionary's keys are currency
names, and the values are the conversion factors. We take a sorted copy of the dictionary's
keys so that we can present the user with sorted lists of currencies in the comboboxes. The
date and rates variables, and the dateLabel are only referred to inside __init__
(), so we do not keep references to them in the class instance. On the other hand we do
need to access the comboboxes and the toLabel (which displays the amount of the target
currency), so we make these instance variables by using self.

We add the same sorted list of currencies to both comboboxes, and we create a
QDoubleSpinBox, a spinbox that handles floating-point values. We provide a minimum
and maximum value for the spinbox, and also an initial value. It is good practice to always
set a spinbox's range before setting its value, since if we set the value first and this happens
to be outside the default range, the value will be reduced or increased to fit the default
range.

Since both comboboxes will initially show the same currency and the initial value to convert
is 1.00, the result shown in the toLabel must also be 1.00, so we set this explicitly.

grid = QGridLayout()
grid.addWidget(dateLabel, 0, 0)
grid.addWidget(self.fromComboBox, 1, 0)
grid.addWidget(self.fromSpinBox, 1, 1)
grid.addWidget(self.toComboBox, 2, 0)
grid.addWidget(self.toLabel, 2, 1)
self.setLayout(grid)

A grid layout seems the simplest solution to laying out the widgets. When we add a widget
to a grid we give the row and column position it should occupy, both of which are 0-based.
The layout is shown schematically in Figure 4.5. Much more can be done with grid layouts,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 130 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

for example we can have spanning rows and columns; all of this is covered later, in Chapter
9.

Figure 4.5. The Currency application's grid layout

dateLabel (0,0)

self.fromComboBox (1,0) self.fromSpinBox (1,1)

self.toComboBox (2,0) self.toLabel (2,1)

If we look at the screenshot, or run the application, it is clear that column 0 of the grid
layout is much wider than column 1. But there is nothing in the code that specifies this, so
why does it happen? Layouts are smart enough to adapt to their environment, both to the
space available, and to the contents and size policies of the widgets they are managing. In
this case the comboboxes are stretched horizontally to be wide enough to show the widest
currency text in full, and the spinbox is stretched horizontally to be wide enough to show
its maximum value. Since comboboxes are the widest items in column 0, they effectively
set that column's minimum width; and similarly for the spinbox in column 1. If we run the
application and try to make the window narrower, nothing will happen because it is already
at its minimum width. But we can make the window wider and both columns will stretch
to occupy the extra space. It is of course possible to bias the layout so that it gives more
horizontal space to say, column 0, when extra space is available.

None of the widgets are initially stretched vertically because that is not necessary for any
of them. But if we increase the window's height, the extra space will all go to the
dateLabel because that is the only widget on the form that likes to grow in every direction
and has no other widgets to constrain it.

Now that we have created, populated, and laid out the widgets, it is time to set up the form's
behavior.

self.connect(self.fromComboBox,
 SIGNAL("currentIndexChanged(int)"), self.updateUi)
self.connect(self.toComboBox,
 SIGNAL("currentIndexChanged(int)"), self.updateUi)
self.connect(self.fromSpinBox,
 SIGNAL("valueChanged(double)"), self.updateUi)
self.setWindowTitle("Currency")

If the user changes the current item in one of the comboboxes, the relevant combobox will
emit a currentIndexChanged() signal with the index position of the new current item.
Similarly, if the user changes the value held by the spinbox, a valueChanged() signal
will be emitted with the new value. We have connected all these signals to just one Python
slot: updateUi(). This does not have to be the case, as we will see in the next section, but
happens to be a sensible choice for this application.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 131 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

And at the end of __init__() we set the window's title.

def updateUi(self):
 to = unicode(self.toComboBox.currentText())
 from_ = unicode(self.fromComboBox.currentText())
 amount = (self.rates[from_] / self.rates[to]) * \
 self.fromSpinBox.value()
 self.toLabel.setText("%0.2f" % amount)

This method is called in response to the currentIndexChanged() signal emitted by the
comboboxes, and in response to the valueChanged() signal emitted by the spinbox. All
the signals involved also pass a parameter. As we will see in the next section, we can ignore
signal parameters as we do here.

No matter which signal was involved, we go through the same process. We extract the "to'
and "from" currencies, calculate the "to" amount, and set the toLabel's text accordingly.
We have given the "from" text's variable the name from_ because from is a Python
keyword and therefore not available to us. We had to escape a newline when calculating
the amount to make the line narrow enough to fit on the page; and in any case we prefer
to limit line lengths to make it easier to read two files side-by-side on the screen.

def getdata(self): # Idea taken from the Python Cookbook
 self.rates = {}
 try:
 date = "Unknown"
 fh = urllib2.urlopen("http://www.bankofcanada.ca"
 "/en/markets/csv/exchange_eng.csv")
 for line in fh:
 if not line or line.startswith("#") or \
 line.startswith("Closing "):
 continue
 fields = line.split(", ")
 if line.startswith("Date "):
 date = fields[-1]
 else:
 try:
 value = float(fields[-1])
 self.rates[unicode(fields[0])] = value
 except ValueError:
 pass
 return "Exchange Rates Date: " + date
 except Exception, e:
 return "Failed to download:\n%s" % e

This method is where we get the data that drives the application. We begin by creating a
new instance attribute, self.rates. Unlike C++, Java, and similar languages, Python
allows us to create instance attributes as and when we need them, for example, in the
constructor, in the initializer, or in any other method. We can even add attributes to specific
instances on the fly.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 132 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Since a lot can go wrong with network connections, for example, the network might be
down, the host might be down, the URL may have changed, and so on, we need to make
the application more robust than in the previous two examples. Another possible problem
is that we may get an invalid floating point value such as the "NA" (Not Available) that the
currency data sometimes contains. We have an inner try ... except block that catches
invalid numbers. So if we fail to convert a currency value to a floating point number, we
simply skip that particular currency and continue.

We handle every other possibility by wrapping almost the entire method in an outer try ...
except block. (This is too general for most applications, but seems acceptable for a tiny
70 line application.) If a problem occurs we catch the exception raised, and return it as a
string to the caller, __init__(). The string that is returned by getdata() is shown in
the dateLabel, so normally this label will show the date applicable to the exchange rates,
but in an error situation it will show the error message instead.

Notice that we have split the URL string into two strings over two lines because it is so long
—and we did not need to escape the newline. This works because the strings are within
parentheses. If that wasn't the case we would either have to escape the newline or
concatenate them using + (and still escape the newline).

We initialize the date variable with a string indicating that we don't know what dates the
rates were calculated. We then use the urllib2.urlopen() function to give us a file
handle to the file we are interested in. The file handle can be used to read the entire file in
one go using its read() method, but in this case we prefer to read line-by-line using
readlines().

Here is the data from the exchange_eng.csv file on one particular day. Some columns,
and most rows, have been omitted; these are indicated by ellipses.

...
#
Date (<m>/<d>/<year>),01/05/2007,...,01/12/2007,01/15/2007
Closing Can/US Exchange Rate,1.1725,...,1.1688,1.1667
U.S. Dollar (Noon),1.1755,...,1.1702,1.1681
Argentina Peso (Floating Rate),0.3797,...,0.3773,0.3767
Australian Dollar,0.9164,...,0.9157,0.9153
...
Vietnamese Dong,0.000073,...,0.000073,0.000073

The exchange_eng.csv file's format uses several different kinds of lines. Comment lines
begin with "#", and there may also be blank lines; we ignore all these. The exchange rates
are listed by name, followed by rates, all comma-separated. The rates are those applying
on particular dates, with the last one on each line being the most recent. We split each of
these lines on commas and take the first item to be the currency name, and the last item
to be the exchange rate. There is also a line that begins with "Date"; this lists the dates

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 133 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

applying to each column. When we encounter this line we take the last date since that is
the one that corresponds with the exchange rates we are using. There is also a line that
begins "Closing"; we ignore it.

For each exchange rate line we insert an item into the self.rates dictionary, using the
currency's name for the key and the exchange rate as the value. We have assumed that the
file's text is either 7-bit ASCII or Unicode; if it isn't one of these we may get an encoding
error. If we knew the encoding we could specify it as a second argument when we call
unicode().

app = QApplication(sys.argv)
form = Form()
form.show()
app.exec_()

We have used exactly the same code as the previous example to create the
QApplication object, instantiate the Currency application's form, and start off the event
loop.

As for program termination, just like the previous example, because we have subclassed
QDialog, if the user clicks the close X button or presses Esc, the window will close and
then PyQt will terminate the application. In Chapter 6 we will see how to provide more
explicit means of termination, and how to ensure that the user has the opportunity to save
any unsaved changes and program settings.

By now it should be clear that using PyQt for GUI programming is straightforward.
Although we will see more complex layouts later on, they are not intrinsically difficult, and
because the layout managers are smart, in most cases they "just work". Naturally, there is
a lot more to be covered, for example, creating main window style applications, creating
dialogs that the user can popup for interaction, and so on. But we will begin with something
fundamental to PyQt, that so far we have glossed over: The signals and slots
communication mechanism, which is the subject of the next section.

Signals and Slots
Every GUI library provides the details of events that take place such as mouse clicks and
key presses. For example, if we had a button with the text Click Me, and the user clicked
it, all kinds of information becomes available. The GUI library can tell us the coordinates
of the mouse click relative to the button, relative to the button's parent widget, and relative
to the screen; it can tell us the state of the Shift, Ctrl, Alt, and NumLock keys at the time
of the click; and the precise time of the click and of the release; and so on. Similar
information can be provided if the user "clicked" the button without using the mouse. They
may have pressed the Tab key enough times to move the focus to the button and then
pressed Spacebar, or maybe they pressed Alt+C. Although the outcome is the same in all

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 134 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

these cases, each different means of clicking the button produces different events and
different information.

The Qt library was the first to recognize that in almost every case, programmers don't need
or even want all the low-level details: They don't care how the button was pressed, they
just want to know that it was pressed, so that they can respond appropriately. For this
reason Qt, and therefore PyQt, provides two communication mechanisms: A low-level
event handling mechanism which is similar to those provided by all the other GUI libraries,
and a high-level mechanism which Trolltech (makers of Qt) have called "signals and slots".
We will look at the low-level mechanism in Chapter 10, and again in Chapter 11, but in this
section we will focus on the high-level mechanism.

Every QObject—including all PyQt's widgets since they derive from QWidget, a
QObject subclass—supports the signals and slots mechanism. In particular they are
capable of announcing state changes, for example when a checkbox becomes checked or
unchecked, and other important occurrences, for example when a button is clicked (by
whatever means). All of PyQt's widgets have a set of predefined signals.

Whenever a signal is emitted, by default, PyQt simply throws it away! To take notice of a
signal we must connect it to a slot. In C++/Qt, slots are methods that must be declared
with a special syntax; but in PyQt they can be any callable we like, e.g., any function or
method, and no special syntax is required when defining them.

Most widgets also have predefined slots, so in some cases we can connect a predefined
signal to a predefined slot and not have to do anything else to get the behavior we want.
PyQt is more versatile than C++/Qt in this regard, because we can connect not just to slots,
but to any callable, and, from PyQt 4.2, it is possible to dynamically add "predefined"
signals and slots to QObjects. Let's see how signals and slots works in practice with the
Signals and Slots program.

Figure 4.6. The Signals and Slots Program

Both the QDial and QSpinBox widgets have valueChanged() signals that when
emitted carry the new value. And they both have setValue() slots that take an integer
value. We can therefore connect these two widgets to each other so that whichever one the
user changes, will cause the other to be changed correspondingly:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 135 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

class Form(QDialog):

 def __init__(self, parent=None):
 super(Form, self).__init__(parent)

 dial = QDial()
 dial.setNotchesVisible(True)
 spinbox = QSpinBox()

 layout = QHBoxLayout()
 layout.addWidget(dial)
 layout.addWidget(spinbox)
 self.setLayout(layout)

 self.connect(dial, SIGNAL("valueChanged(int)"),
 spinbox.setValue)
 self.connect(spinbox, SIGNAL("valueChanged(int)"),
 dial.setValue)
 self.setWindowTitle("Signals and Slots")

Since the two widgets are connected in this way, if the user moves the dial, say to value 20,
then the dial will emit a valueChanged(20) signal which will in turn cause a call to the
spinbox's setValue() slot with 20 as argument. But then, since its value has now been
changed, the spinbox will emit a valueChanged(20) signal which will in turn cause a
call to the dial's setValue() slot with 20 as argument. So it looks like we will get an
infinite loop. But what happens is that the valueChanged() signal is not emitted if the
value is not actually changed. This is because the standard approach to writing value
changing slots is to begin by comparing the new value with the existing one. If the values
are the same we do nothing and return, otherwise we apply the change and emit a signal
to announce the change of state.

Figure 4.7. The Signals and Slots Connections

Now let's look at the general syntax for connections. We assume that the PyQt modules
have been imported using the from ... import * syntax, and that s and w are widgets
(with s usually being self).

s.connect(w, SIGNAL("signalSignature"), functionName)
s.connect(w, SIGNAL("signalSignature"), instance .methodName)
s.connect(w, SIGNAL("signalSignature"),
 instance, SLOT("slotSignature"))

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 136 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The signalSignature is the name of the signal and a (possibly empty) comma-separated
list of parameter type names in parentheses. If the signal is a Qt signal the type names
must be the C++ type names, such as int and QString. C++ type names can be rather
complex, with each type name possibly including one or more of, const, *, and &. When
we write them as signal (or slot) signatures we can drop any consts and &s, but must keep
any *s. For example, almost every Qt signal that passes a QString uses a parameter type
of const QString&, but in PyQt, just using QString alone is sufficient. On the other
hand, the QListWidget has a signal with signature itemActivated
(QListWidgetItem*), and we must use this exactly as written.

PyQt signals are defined when they are actually emitted and can have any number of any
type of parameters, as we will see shortly.

The slotSignature has the same form as a signalSignature except that the name is of a Qt
slot. A slot may not have more arguments than the signal that is connected to it, but may
have less; the additional parameters are then discarded. Corresponding signal and slot
arguments must have the same types, so for example, we could not connect a QDial's
valueChanged(int) signal to a QLineEdit's setText(QString) slot.

In our dial and spinbox example we used the instance.methodName syntax as we did with
the example applications shown earlier in the chapter. But when the slot is actually a Qt
slot rather than a Python method, it is more efficient to use the SLOT() syntax:

self.connect(dial, SIGNAL("valueChanged(int)"),
 spinbox, SLOT("setValue(int)"))
self.connect(spinbox, SIGNAL("valueChanged(int)"),
 dial, SLOT("setValue(int)"))

We have already seen that it is possible to connect multiple signals to the same slot. It is
also possible to connect a single signal to multiple slots. Although rare, we can also connect
a signal to another signal: In such cases when the first signal is emitted, it will cause the
signal it is connected to to be emitted.

Connections are made using QObject.connect(); they can be broken using
QObject.disconnect(). In practice we rarely need to break connections ourselves
since, for example, PyQt will automatically disconnect any connections involving an object
that has been deleted.

So far we have seen how to connect to signals, and how to write slots—which are ordinary
functions or methods. And we know that signals are emitted to signify state changes or
other important occurrences. But what if we want to create a component that emits its own
signals? This is easily achieved using QObject.emit(). For example, here is a complete

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 137 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

QSpinBox subclass that emits its own custom atzero signal, and that also passes a
number:

class ZeroSpinBox(QSpinBox):

 zeros = 0

 def __init__(self, parent=None):
 super(ZeroSpinBox, self).__init__(parent)
 self.connect(self, SIGNAL("valueChanged(int)"), self.checkzero)

 def checkzero(self):
 if self.value() == 0:
 self.zeros += 1
 self.emit(SIGNAL("atzero"), self.zeros)

We connect to the spinbox's own valueChanged() signal and have it call our checkzero
() slot. If the value happens to be 0, the checkzero() slot emits the atzero signal, along
with a count of how many times it has been zero—passing additional data like this is
optional. The lack of parentheses for the signal is important: It tells PyQt that this is a
"short-circuit" signal.

A signal with no arguments (and therefore no parentheses) is a short-circuit Python signal.
When such a signal is emitted, any data can be passed as additional arguments to the emit
() method, and they are passed as Python objects. This avoids the overhead of converting
the arguments to and from C++ data types, and also means that arbitrary Python objects
can be passed, even ones which cannot be converted to and from C++ data types. A signal
with at least one argument is either a Qt signal or a non-short-circuit Python signal. In
these cases, PyQt will check to see if the signal is a Qt signal, and if it is not will assume
that it is a Python signal. In either case the arguments are converted to C++ data types.

Here is how we connect to the signal in the form's __init__() method:

zerospinbox = ZeroSpinBox()
...
self.connect(zerospinbox, SIGNAL("atzero"), self.announce)

Again, we must not use parentheses because it is a short-circuit signal. And for
completeness, here is the slot it connects to in the form:

def announce(self, zeros):
 print "ZeroSpinBox has been at zero %d times" % zeros

If we use the SIGNAL() function with an identifier but no parentheses, we are specifying
a short-circuit signal as described above. We can use this syntax both to emit short-circuit
signals, and to connect to them. Both uses are shown in the example.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 138 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If we use the SIGNAL() function with a signalSignature (a possibly empty parenthesized
list of comma-separated PyQt types), we are specifying either a Python or a Qt signal. (A
Python signal is one that is emitted in Python code; a Qt signal is one emitted from an
underlying C++ object.) We can use this syntax both to emit Python and Qt signals, and
to connect to them. These signals can be connected to any callable, i.e., to any function or
method, including Qt slots; they can also be connected using the SLOT() syntax, again
with a signalSignature. PyQt checks to see if the signal is a Qt signal, and if it is not it
assumes it is a Python signal. If we use parentheses, even for Python signals, the arguments
must be convertible to C++ data types.

We will now look at another example, a tiny custom non-GUI class that has a signal and a
slot and which shows that the mechanism is not limited to GUI classes—any QObject
subclass can use signals and slots.

class TaxRate(QObject):

 def __init__(self):
 super(TaxRate, self).__init__()
 self.__rate = 17.5

 def rate(self):
 return self.__rate

 def setRate(self, rate):
 if rate != self.__rate:
 self.__rate = rate
 self.emit(SIGNAL("rateChanged"), self.__rate)

Both the rate() and setRate() methods can be connected to since any Python callable
can be used as a slot. If the rate is changed, we update the private __rate value, and emit
a custom rateChanged signal, giving the new rate as a parameter. We have also used the
faster short-circuit syntax. If we wanted to use the standard syntax, the only difference
would be that the signal would be written as SIGNAL("rateChanged(float)"). If we
connect the rateChanged signal to the setRate() slot, because of the if statement, no
infinite loop will occur. Let us look at the class in use. First we will declare a function to be
called when the rate changes:

def rateChanged(value):
 print "TaxRate changed to %.2f%%" % value

And now we will try it out:

vat = TaxRate()
vat.connect(vat, SIGNAL("rateChanged"), rateChanged)
vat.setRate(17.5) # No change will occur (new rate is the same)
vat.setRate(8.5) # A change will occur (new rate is different)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 139 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This will cause just one line to be output to the console, "TaxRate changed to 8.50%".

In earlier examples where we connected multiple signals to the same slot, we did not care
who emitted the signal. But sometimes we want to connect two or more signals to the same
slot, and have the slot behave differently depending on who called it. In this section's last
example we will address this issue.

Figure 4.8. The Connections Program

The Connections program has five buttons and a label. When one of the buttons is clicked
the signals and slots mechanism is used to update the label's text. Here is how the first
button is created in the form's __init__() method:

button1 = QPushButton("One")

All the other buttons are created in the same way, differing only in their variable name and
the text that is passed to them.

We will start with the simplest connection, which is used by button1: Here is the
__init__() method's connect() call:

self.connect(button1, SIGNAL("clicked()"), self.one)

We have used a dedicated method for this button:

def one(self):
 self.label.setText("You clicked button 'One'")

Connecting a button's clicked() signal to a single method that responds appropriately
is probably the most common connection scenario.

But what if most of the processing was the same, with just some parameterization
depending on which particular button was pressed? In such cases it is usually best to
connect each button to the same slot. There are two approaches to doing this. One is to
use partial function application to wrap a slot with a parameter so that when the slot is
invoked it is parameterized with the button that called it. The other is to ask PyQt to tell
us which button called the slot. We will show both approaches, starting with partial
function application.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 140 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Partial function application 61

Back on page 63 we created a wrapper function which used Python 2.5's
functools.partial() function or our own simple partial() function:

import sys

if sys.version_info[:2] < (2, 5):
 def partial(func, arg):
 def callme():
 return func(arg)
 return callme
else:
 from functools import partial

Using partial() we can now wrap a slot and a button name together. So we might be
tempted to do this:

self.connect(button2, SIGNAL("clicked()"),
 partial(self.anyButton, "Two")) # WRONG!

Unfortunately this won't work. The wrapper function is created in the connect() call,
but as soon as the connect() call completes, the wrapper goes out of scope and is garbage
collected. The solution is easy: We just need to keep a reference to the wrapper—we will
not use the reference except for the connect() call, but the fact that it is an attribute of
the form instance will ensure that the wrapper function will not go out of scope while the
form exists, and will therefore work. So the connection is actually made like this:

self.button2callback = partial(self.anyButton, "Two")
self.connect(button2, SIGNAL("clicked()"),
 self.button2callback)

When button2 is clicked, the anyButton() method will be called with a string
parameter containing the text "Two". Here is what this method looks like:

def anyButton(self, who):
 self.label.setText("You clicked button '%s'" % who)

We could have used this slot for all the buttons using the partial() function that we
have just shown. And in fact we could avoid using partial() at all and get the same
results:

self.button3callback = lambda who="Three": self.anyButton(who)
self.connect(button3, SIGNAL("clicked()"),
 self.button3callback)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 141 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here we've created a lambda function that is parameterized by the button's name. It works
the same as the partial() technique, and calls the same anyButton() method. Only
it does not require a wrapping function.

Lambda functions 59

Both button2callback() and button3callback() call anyButton(); the only
difference between them is that the first passes "Two" as its parameter and the second
passes "Three".

If we are using PyQt 4.1.1 or later, and we use lambda callbacks, we don't have to keep a
reference ourselves. This means that we can use lambda directly in the connect() calls:

self.connect(button3, SIGNAL("clicked()"),
 lambda who="Three": self.anyButton(who))

The wrapping technique works perfectly well, but there is an alternative approach that is
slightly more involved, but which may be useful in some cases, particularly when we don't
want to wrap our calls. This other technique is used to respond to button4 and to
button5. Here are their connections:

self.connect(button4, SIGNAL("clicked()"), self.clicked)
self.connect(button5, SIGNAL("clicked()"), self.clicked)

Notice that we do not wrap the clicked() method that they are both connected to, so at
first sight it looks like there is no way to tell which button called the clicked() method.
[*] However, the implementation makes clear that we can distinguish if we want to:

[*] It is conventional PyQt programming style to give a slot the same name as the signal that connects to it.

def clicked(self):
 button = self.sender()
 if button is None or not isinstance(button, QPushButton):
 return
 self.label.setText("You clicked button '%s'" % button.text())

Inside a slot we can always call sender() to discover which QObject the invoking signal
came from. (This could be None if the slot was called using a normal method call.) Although

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 142 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

we know that we have only connected buttons to this slot we still take care to check. We
have used isinstance(), but could have used hasattr(button, "text") instead.
If we had connected all the buttons to this slot, it would have worked correctly for them
all.

Some programmers don't like using sender() because they feel that it isn't good object-
oriented style, so they tend to use partial function application when needs like this arise.

There is actually one other technique that can be used to get the effect of wrapping a
function and a parameter. It makes use of the QSignalMapper class, and an example of
its use is shown in Chapter 9.

QsignalMapper 289

It is possible to get situations where a slot is called as the result of a signal, and that the
processing performed in the slot, directly or indirectly, causes the signal that originally
called the slot to be called again, leading to an infinite cycle. Such cycles are rare in practice.
Two factors help reduce the possibility of cycles. Firstly, some signals are only emitted if
a real change takes place. For example, if the value of a QSpinBox is changed by the user,
or programmatically by a setValue() call, it only emits its valueChanged() signal if
the new value is different from the current value. Secondly, some signals are only emitted
as the result of user actions. For example, QLineEdit only emits its textEdited()
signal when the text is changed by the user, and not when changed in code by a setText
() call.

If a signal–slot cycle does seem to have occurred, naturally, the first thing to check is that
the code's logic is correct: Are we actually doing the processing we thought we were. If the
logic is right, and we still have a cycle, we might be able to break the cycle by changing the
signals that we connect to, for example, replacing signals that are emitted as a result of
programmatic changes, with those that are only emitted as a result of user interaction. If
the problem persists, we could stop signals being emitted at certain places in our code
using QObject.blockSignals(), which is inherited by all QWidget classes, and is
passed a Boolean, True to stop the object emitting signals, and False to resume
signalling.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 143 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This completes our formal coverage of the signals and slots mechanism. We will see many
more examples of signals and slots in practice in almost all the examples shown in the rest
of the book. Most other GUI libraries have copied the mechanism in some form or other.
This is because the signals and slots mechanism is very useful and powerful, and leaves
programmers free to focus on the logic of their applications rather than having to concern
themselves with the details of how the user invoked a particular operation.

Summary
In this chapter we have seen that it is possible to create hybrid console–GUI applications.
This can actually be taken much further, for example by including all the GUI code within
the scope of an if block and only executing it if PyQt is installed. This would allow us to
create a GUI application that could fall-back to "console mode" if some of our users did
not have PyQt.

We have also seen that unlike conventional batch processing programs, GUI applications
have an event loop that runs continuously, checking for user events like mouse clicks and
key presses, and system events like timers timing out or windows being revealed, and only
terminating when requested to do so.

The Calculate application showed us a very simple but structurally typical dialog
__init__() method. The widgets are created, laid out, and connected, and one or more
other methods are used to respond to user interaction. The Currency application used the
same approach, only with a more sophisticated interface, and more complex behavior and
processing. The Currency application also showed that we can connect multiple signals to
a single slot without formality.

PyQt's signals and slots mechanism allows us to handle user interaction at a much higher
level of abstraction than the specific details of mouse clicks and key presses. It lets us focus
on what the user wants to do rather than on how they asked to do it. All the PyQt widgets
emit signals to notify of state changes and other important occurrences; and most of the
time we can ignore the signals. But for those signals that we are interested in, it is easy to
use QObject.connect() to ensure that the function or method of our choice is called
when the signal is emitted so that we can respond to it. Unlike C++/Qt which must
designate certain methods specially as slots, in PyQt we are free to use any callable, i.e.,
any function or method, as a slot.

We have also seen how to connect multiple signals to a single slot, and how to use partial
function application or the sender() method so that the slot can respond appropriately
depending on which widget signalled it.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 144 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We have also learnt that we do not have to formally declare our own custom signals: We
can simply emit them using QObject.emit(), along with any additional parameters we
want to pass.

Exercise
Write a dialog style application that calculates compound interest. The application should
be very similar in style and structure to the Currency application, and should look like this:

The amount should be automatically recalculated every time the user changes one of the
variable factors, i.e., the principle, rate, or years. The years combobox should have the texts
"1 year", "2 years", "3 years", and so on, so the number of years will be the combobox's
current index + 1. The compound interest formula in Python is amount = principal
* ((1 + (rate / 100.0)) ** years). The QDoubleSpinBox class has
setPrefix() and setSuffix() methods which can be used for the "$" and "%"
symbols. The whole application can be written in around 60 lines

Hint: The updating can be done by connecting suitable spinbox and combobox signals to
an updateUi() slot where the calculations are performed and the amount label updated.

A model answer is provided by the file chap04/interest.pyw.

5. Dialogs
• Dumb Dialogs
• Standard Dialogs
• Smart Dialogs

Almost every GUI application has at least one dialog, and the majority of GUI applications
have one main window with dozens or scores of dialogs. Dialogs can be used to make

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 145 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

announcements that are too important to put in the status bar or into a log file. In such
cases they typically just have a label for the text and an OK button for the user to press
when they've read the message. Mostly, dialogs are used to ask users questions. Some are
simple and need just a yes or no answer. Others ask the user to make another kind of choice,
for example, what file, folder, color, or font, do they want to use. For all these, PyQt provides
built-in dialogs.

Our focus in this chapter is on creating custom dialogs, so that we can ask the user for their
requirements and preferences when none of the built-in dialogs is suitable.

PyQt is supplied with Qt Designer, a visual design tool that makes it easy to "draw" dialogs
without having to write any code for creating and laying out their widgets. It can also be
used to set up some of a dialog's behavior. We cover Qt Designer later, in Chapter 7. In
this chapter we will create all the dialogs in code. Some developers make all their dialogs
this way, while others prefer to use Qt Designer. This book shows both approaches so that
you can decide which is best to use on a case by case basis.

One way of classifying dialogs is by their "intelligence", where they may be "dumb",
"standard", or "smart", depending on how much knowledge about the application's data
is built into them. These classifications affect how we implement and instantiate (create
instances of) dialogs, and for each one we have devoted a section of this chapter. Each of
these sections begins with an explanation of what the classification means, and explains
the pros and cons through a worked example.

In addition to an intelligence classification, dialogs can also be categorized by their
modality. An application modal dialog is a dialog that once invoked is the only part of an
application that the user can interact with. Until the user closes the dialog, they cannot
use the rest of the application. The user is of course free to interact with other applications
though.

A window modal dialog is one that works in a similar way to an application modal dialog,
except that it only prevents interaction with its parent window, parent's parent window,
and so on up to the top-level parent, as well as the parent windows' sibling windows. For
applications that have a single top-level window there is no practical difference between
application modality and window modality. When referring to a "modal" window without
specifying which kind, window modality is assumed.

The opposite of a modal dialog is a modeless dialog. When a modeless dialog is invoked,
the user can interact with the dialog, and with the rest of the application. This has
implications for how we design our code, since it may be that the user can affect program
state both in the main window and in the modeless dialog, which then has an effect on the
other.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 146 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Another important aspect of writing dialogs is how we handle validation. Wherever
possible we try to choose suitable widgets and set their properties to avoid having to write
any validation code ourselves. For example, if we need an integer we could use a
QSpinBox and use its setRange() method to constrain the range to the values that are
acceptable to us. We call validation that applies to individual widgets "widget-level"
validation; database programmers often call this "field-level" validation. Sometimes we
need to go further than widget-level validation, particularly when there are inter-
dependencies. For example, a theater booking system might have two comboboxes, one to
select a floor and the other to select a seat row. If the ground floor had seat rows A–R, and
the first floor had seat rows M–T, then clearly only some floor and seat row combinations
are valid. For these cases we must perform "form-level" validation; database programmers
often call this "record-level" validation.

Another validation issue is when does the validation take place. Ideally we don't want users
to be able to enter invalid data at all, but sometimes this can be quite tricky to prevent. We
break validation into two broad categories, "post-mortem", which is validation that takes
place at the point when the user wants to have their settings accepted, and "preventative",
which takes place as the user manipulates editing widgets.

Since dialogs can have different levels of intelligence, three kinds of modality, and a variety
of validation strategies, it would appear that there are many possible combinations to
choose from. In practice, the combinations we use tend to be the same ones each time. For
example, in most situations we might make dumb and standard dialogs modal and smart
dialogs modeless. As for validation, the right strategy is very dependant on circumstances.
We will see examples of the most common usage cases in this chapter, and will see further
dialog examples throughout the rest of the book.

Dumb Dialogs
We define a "dumb" dialog to be a dialog whose widgets are set to their initial values by
the dialog's caller, and whose final values are obtained directly from the widgets, again by
the dialog's caller. A dumb dialog has no knowledge of what data its widgets are used to
present and edit. We can apply some basic validation to a dumb dialog's widgets, but it is
not common (or always possible) to set up validation that incorporates inter-dependencies
between widgets, i.e., form-level validation is not usually done in dumb dialogs. Dumb
dialogs are normally modal dialogs with an "accept" button (e.g., OK) and a "reject" button
(e.g., Cancel).

The main advantages of using dumb dialogs are that we do not have to write any code to
provide them with an API, nor any code for additional logic. Both these benefits are a
consequence of all their widgets being publically accessible. The main disadvantages are
that the code that uses them is tied to their user interface (because we access the widgets

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 147 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

directly), that we cannot easily implement complex validation, and they are much less
convenient than a standard or smart dialog if needed in more than one place.

We will begin with a concrete example. Suppose we have a graphics application and we
want to let the user set some pen properties, for example, the pen's width, style, and
whether or not lines drawn with it should have beveled edges. Figure 5.1 shows what we
want to achieve.

Figure 5.1. The Pen Properties dialog

In this case we don't need "live" or interactive updating of the pen's properties, so a modal
dialog is sufficient. And since the validation required is quite simple, we can use a dumb
dialog in this situation.

The way we would use the dialog is to pop it up modally in a slot that is connected to a
menu option, toolbar button, or dialog button. If the user clicked OK we would then update
our pen properties; and if they clicked Cancel we would do nothing. Here is what the calling
slot might look like:

def setPenProperties(self):
 dialog = PenPropertiesDlg(self)
 dialog.widthSpinBox.setValue(self.width)
 dialog.bevelledCheckBox.setChecked(self.bevelled)
 dialog.styleComboBox.setCurrentIndex(
 dialog.styleComboBox.findText(self.style))
 if dialog.exec_():
 self.width = dialog.widthSpinBox.value()
 self.bevelled = dialog.bevelledCheckBox.isChecked()
 self.style = unicode(dialog.styleComboBox.currentText())
 self.updateData()

We begin by creating a PenPropertiesDlg dialog—we will see the details of this shortly;
all we need to know now is that it has a width spinbox, a beveled checkbox, and a style
combobox. The reasons we pass a parent, self (the calling form), to the dialog, are to take
advantage of the fact that by default PyQt centers a dialog over its parent, and also because
dialogs that have a parent do not get a separate entry in the taskbar. We then access the
widgets directly, setting their values to those held by the calling form. The

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 148 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

QComboBox.findText() method returns the index position of the item with the
matching text.

When we call exec_() on a dialog, the dialog is shown modally. This means that the
dialog's parent windows and their siblings are blocked until the dialog is closed. Only when
the user closes the dialog (either by "accepting" or by "rejecting" it) does the exec_() call
return. The return value evaluates to True if the user accepted the dialog; otherwise it
evaluates to False. So if the user accepted the dialog we know that they want their settings
to take effect, so we read them out of the dialog's widgets and update our application's
data. The updateData() call at the end is just one of our own custom methods that makes
the application show the pen properties in the main window.

At the end of the setPenProperties() method the PenPropertiesDlg will go out of
scope and will become a candidate for garbage collection. For this reason, we must always
create a new dialog and populate its widgets whenever setPenProperties() is called.
This approach saves memory, at the price of some speed overhead. For tiny dialogs like
this, the overhead is too small for the user to notice, but later on we will show an alternative
approach that avoids creating and destroying dialogs every time.

Using a dumb dialog means that the dialog is quite loosely coupled to the application. We
could completely decouple it by making the labels accessible as instance variables. Then
we could use the PenPropertiesDlg to edit any kind of data that required a spinbox, a
checkbox, and a combobox, simply by changing the labels. For example, we could use it to
record a weather reading with a "Temperature" spinbox, an "Is raining" checkbox, and a
"Cloud cover" combobox.

Now that we have seen how we can use the dialog, let's look at the code that implements
it. The PenPropertiesDlg has a single method, __init__(), which we will look at in
parts.

class PenPropertiesDlg(QDialog):

 def __init__(self, parent=None):
 super(PenPropertiesDlg, self).__init__(parent)

Unsurprisingly our dialog is a QDialog subclass, and we initialize it in the way we have
seen a few times already.

widthLabel = QLabel("&Width:")
self.widthSpinBox = QSpinBox()
widthLabel.setBuddy(self.widthSpinBox)
self.widthSpinBox.setAlignment(Qt.AlignRight)
self.widthSpinBox.setRange(0, 24)
self.bevelledCheckBox = QCheckBox("&Bevelled edges")
styleLabel = QLabel("&Style:")
self.styleComboBox = QComboBox()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 149 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

styleLabel.setBuddy(self.styleComboBox)
self.styleComboBox.addItems(["Solid", "Dashed", "Dotted",
 "DashDotted", "DashDotDotted"])
okButton = QPushButton("&OK")
cancelButton = QPushButton("Cancel")

For each editing widget we also create a corresponding label, so that the user can tell what
they are editing. When we put an ampersand (&) in a label's text it can have two possible
meanings. It can simply be a literal ampersand. Or it can signify that the ampersand should
not be shown, but instead the letter following it should be underlined and should be a
keyboard accelerator. For example, in the case of the widthLabel, its text of "&Width:"
will appear as Width: and its accelerator will be Alt+W. On Mac OS X the default behavior
is to ignore accelerators; for this reason PyQt does not display the underlines on this
platform.

What distinguishes between a literal ampersand and an accelerator ampersand is if the
label has a "buddy": If it does, then the ampersand signifies an accelerator. A buddy is a
widget that PyQt will pass the keyboard focus to when the corresponding label's accelerator
is pressed. So, when the user presses Alt+W, the keyboard focus will be switched to the
widthSpinBox. This in turn means that if the user presses the up and down arrow keys
or PageUp or PageDown, these will affect the widthSpinBox since it has the keyboard
focus.

In the case of buttons, an underlined letter in the button's text is used to signify an
accelerator. So in this case the okButton's text, "&OK" appears as OK, and the user can
press the button by clicking it with the mouse, by tabbing to it and pressing Spacebar, or
by pressing Alt+O. It is not common to provide an accelerator for Cancel (or Close) buttons
since these are normally connected to the dialog's reject() slot, and QDialog provides
a keyboard shortcut for that, Esc.[*] Checkboxes and radio buttons are somewhat similar
to buttons in that they have text that can have an accelerator. For example, the beveled
checkbox has an underlined "B", so the user can toggle the checkbox's checked state by
pressing Alt+B.

[*] We use the terms "keyboard accelerator" and "accelerator" for the Alt+Letter key sequences that can be used to click buttons and switch focus in dialogs, and to pop
up menus. We use the term "keyboard shortcut" for any other kind of key sequence, for example, the key sequence Ctrl+S, which is often used to save files. We will see
how to create keyboard shortcuts in Chapter 6.

One disadvantage of creating buttons like this is that when we come to lay them out we
will do so in one particular order. For example, we might put OK to the left of Cancel. But
on some windowing systems this order is wrong. PyQt has a solution for this, covered in
the sidebar.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 150 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Dialog Button Layout sidebar 143

We have aligned the spinbox's number to the right and set its valid range to be 0–24. In
PyQt a pen width (i.e., a line width) of 0 is allowed and signifies a 1 pixel wide width
regardless of any transformations. Pen widths of 1 and above are drawn at the given width,
and respect any transformations, such as scaling, that are in force.

By using a spinbox and setting a range for it we avoid the possibility of invalid pen widths
that might have been entered had we used, for example, a line edit. Very often, simply
choosing the right widget and setting its properties appropriately provides all the widget-
level validation that is needed. This is also shown by our use of the beveled checkbox: Either
the pen draws lines with beveled edges or it doesn't. And the same is true again, with our
use of a combobox of line styles—the user can only choose a valid style, i.e., a style from a
list that we have provided.

buttonLayout = QHBoxLayout()
buttonLayout.addStretch()
buttonLayout.addWidget(okButton)
buttonLayout.addWidget(cancelButton)
layout = QGridLayout()
layout.addWidget(widthLabel, 0, 0)
layout.addWidget(self.widthSpinBox, 0, 1)
layout.addWidget(self.bevelledCheckBox, 0, 2)
layout.addWidget(styleLabel, 1, 0)
layout.addWidget(self.styleComboBox, 1, 1, 1, 2)
layout.addLayout(buttonLayout, 2, 0, 1, 3)
self.setLayout(layout)

We have used two layouts, one nested inside the other, to get the layout we want. We begin
by laying out the buttons horizontally, beginning with a "stretch". The stretch will consume
as much space as possible, which has the effect of pushing the two buttons as far to the
right as they can go, and still fit.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 151 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Dialog Button Layout

In some of our early examples, we have put the buttons on the right of the
dialogs, with the OK button first and then the Cancel button next. This is the
most common layout on Windows, but is not always correct, for example, for
Mac OS X or for the GNOME desktop environment, where they should be
swapped.

If we want our applications to have the most native look and feel possible and
expect to deploy them on different platforms, issues like button ordering and
positioning will matter to us. Qt 4.2 (PyQt 4.1) provides a solution for this
particular problem: the QDialogButtonBox class.

Instead of creating OK and Cancel buttons directly, we instead create a
QDialogButtonBox, for example:

buttonBox = QDialogButtonBox(QDialogButtonBox.Ok|
 QDialogButtonBox.Cancel)

To make a button the "default" button, i.e., the one that is pressed when the user
presses Enter (assuming that the widget with keyboard focus does not handle
Enter key presses itself), we can do this:

buttonBox.button(QDialogButtonBox.Ok).setDefault(True)

Since a button box is a single widget (although it contains other widgets), it can
be added directly to the dialog's existing layout rather than having to be put in
its own layout and having that added to the dialog's layout. Here is what we
would do in the PenPropertiesDlg example's grid layout:

layout.addWidget(buttonBox, 3, 0, 1, 3)

And instead of connecting from the buttons' clicked() signals, we make
connections from the button box, which has its own signals that correspond to
user actions:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 152 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

self.connect(buttonBox, SIGNAL("accepted()"),
 self, SLOT("accept()"))
self.connect(buttonBox, SIGNAL("rejected()"),
 self, SLOT("reject()"))

The QDialogButtonBox defaults to using a horizontal layout, but can be set
to use a vertical layout by passing Qt.Vertical to its constructor, or by calling
setOrientation().

We use QDialogButtonBox for most of the examples, but it could always be
replaced by individual QPushButtons if backward compatibility was an issue.

The width label, width spinbox, and bevel checkbox, are laid out side-by-side in three
columns using a grid layout. The style label and style combobox are put on the next row,
with the style combobox set to span two columns. The arguments to the
QGridLayout.addWidget() method are: the widget, the row, and the column, and then
optionally, the number of rows to span, followed by the number of columns to span. We
add the button layout as a third row to the grid layout, having it span all three columns.
Finally, we set the layout on the dialog. The layout is shown schematically in Figure 5.2;
the grid layout is shown shaded.

Figure 5.2. The Pen Properties dialog's layout

self.connect(okButton, SIGNAL("clicked()"),
 self, SLOT("accept()"))
self.connect(cancelButton, SIGNAL("clicked()"),
 self, SLOT("reject()"))
self.setWindowTitle("Pen Properties")

At the end of __init__() we make the necessary connections. We connect the OK
button's clicked() signal to the dialog's accept() slot: This slot will close the dialog
and return a True value. The Cancel button is connected in a corresponding way. Finally,
we set the window's title.

For small dumb dialogs that are only ever called from one place, it is possible to avoid
creating a dialog class at all. Instead we can simply create all the widgets in the invoking
method, lay them out, connect them, and call exec_(). If exec_() returns True we can

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 153 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

then extract the values from the widgets and we are done. The file chap05/pen.pyw
contains the pen properties dialog and also a dummy program with two buttons, one to
invoke the PenPropertiesDlg we have just reviewed, and another that does everything
inline. Creating dialogs inline is not an approach that we would recommend, so we will not
review the code for doing it, but it is mentioned, and provided in the example's
setPenInline() method, for completeness.

Dumb dialogs are easy to understand and use, but setting and getting values using a dialog's
widgets is not recommended except for the very simplest dialogs, for example, where only
one, two, or at most a few, values are involved. We have shown them primarily as a gentle
introduction to dialogs, since creating, laying out, and connecting the widgets is the same
in any kind of dialog. In the next section we will look at standard dialogs, both modal and
modeless ones.

Standard Dialogs
We consider a dialog to be a "standard" dialog if it initializes its widgets in accordance with
the values set through its initializer or though its methods, and whose final values are
obtained by method calls or from instance variables—not directly from the dialog's
widgets. A standard dialog can have both widget-level and form-level validation. Standard
dialogs are either modal, with "accept" and "reject" buttons, or (less commonly) modeless,
in which case they have "apply" and "close" buttons and notify state changes through signal
and slot connections.

One key advantage of standard dialogs are that the caller does not need to know about
their implementation, only how to set the initial values, and how to get the resultant values
if the user clicked OK. Another advantage, that applies to modal standard dialogs, is that
the user cannot interact with the dialog's parent windows and their siblings, so the relevant
parts of the application's state will probably not change behind the dialog's back. The main
drawback of using a standard dialog is most apparent when it must handle lots of different
data items, since all the items must be fed into the dialog, and the results retrieved on each
invocation, and this may involve many lines of code.

As with the previous section, we will explain by means of a simple example. In this case
the example will be used both in this section and in the next section, so that we can see the
different approaches and trade-offs between standard and smart dialogs more clearly.

Let us imagine that we have an application that needs to display a table of floating-point
numbers, and that we want to give users some control over the format of the numbers.
One way of achieving this is to provide a menu option, toolbar button, or keyboard shortcut
that will invoke a modal dialog which the user can interact with to set their formatting
preferences. Figure 5.3 shows a number format dialog that has been popped up over a table
of numbers.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 154 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 5.3. The modal Set Number Format dialog in context

The data that we want the dialog to make available to the user is held in a dictionary in the
main form. Here is how the dictionary is initialized:

self.format = dict(thousandsseparator=",",
 decimalmarker=".", decimalplaces=2,
 rednegatives=False)

Using a dictionary like this is very convenient, and makes it easy to add additional items.

We have put the dialog in its own file, numberformatdlg1.py, which the application,
numbers.pyw, imports. The number "1" in the file name distinguishes it from the other
two versions of the dialog covered in the next section.

Modal OK/Cancel-Style Dialogs
Let us begin by seeing how the dialog is used; we assume that the setNumberFormat1
() method is called in response to some user action.

def setNumberFormat1(self):
 dialog = numberformatdlg1.NumberFormatDlg(self.format, self)
 if dialog.exec_():
 self.format = dialog.numberFormat()
 self.refreshTable()

We start by creating the dialog and passing it the format dictionary from which the dialog
will initialize itself, and self so that the dialog is tied to the calling form—centered over
it and not having its own taskbar entry.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 155 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

As we mentioned earlier, calling exec_() pops up the dialog it is called on as a modal
dialog, so the user must either accept or reject the dialog before they can interact with the
dialog's parents and their siblings. In the next section, we will use modeless versions of
the dialog that don't impose this restriction.

If the user clicks OK, we set the format dictionary to have the values set in the dialog, and
update the table so that the numbers are displayed with the new format. If the user cancels,
we do nothing. At the end of the method, the dialog goes out of scope and is therefore
scheduled for garbage collection.

To save space, and to avoid needless repetition, from now on we will not show any
import statements, unless their presence is not obvious. So, for example, we will no longer
show from PyQt4.QtCore import * or the PyQt4.QtGui import.

We are now ready to see the implementation of the dialog itself.

class NumberFormatDlg(QDialog):

 def __init__(self, format, parent=None):
 super(NumberFormatDlg, self).__init__(parent)

The __init__() method begins in the same way as all the other dialogs we have seen so
far.

thousandsLabel = QLabel("&Thousands separator")
self.thousandsEdit = QLineEdit(format["thousandsseparator"])
thousandsLabel.setBuddy(self.thousandsEdit)
decimalMarkerLabel = QLabel("Decimal &marker")
self.decimalMarkerEdit = QLineEdit(format["decimalmarker"])
decimalMarkerLabel.setBuddy(self.decimalMarkerEdit)
decimalPlacesLabel = QLabel("&Decimal places")
self.decimalPlacesSpinBox = QSpinBox()
decimalPlacesLabel.setBuddy(self.decimalPlacesSpinBox)
self.decimalPlacesSpinBox.setRange(0, 6)
self.decimalPlacesSpinBox.setValue(format["decimalplaces"])
self.redNegativesCheckBox = QCheckBox("&Red negative numbers")
self.redNegativesCheckBox.setChecked(format["rednegatives"])

buttonBox = QDialogButtonBox(QDialogButtonBox.Ok|
 QDialogButtonBox.Cancel)

For each aspect of the format that we want the user to be able to change we create a label
so that they know what they are editing, and a suitable editing widget. Since the format
argument is mandatory we assume that it has all the values we need, so we use it to initialize
the editing widgets. We also use setBuddy() calls to support keyboard users since not
all users are able to use the mouse.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 156 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Buddies 141

The only validation we have put in place is to limit the range of the decimal places spinbox.
We have chosen to do "post-mortem" validation, i.e., to validate after the user has entered
values, at the point where they click OK to accept their edits. In the next section, we will
see "preventative" validation, that prevents invalid edits in the first place.

self.format = format.copy()

We need to take a copy of the format dictionary that was passed in, since we want to be
able to change the dictionary inside the dialog without affecting the original dictionary.

grid = QGridLayout()
grid.addWidget(thousandsLabel, 0, 0)
grid.addWidget(self.thousandsEdit, 0, 1)
grid.addWidget(decimalMarkerLabel, 1, 0)
grid.addWidget(self.decimalMarkerEdit, 1, 1)
grid.addWidget(decimalPlacesLabel, 2, 0)
grid.addWidget(self.decimalPlacesSpinBox, 2, 1)
grid.addWidget(self.redNegativesCheckBox, 3, 0, 1, 2)
grid.addWidget(buttonBox, 4, 0, 1, 2)
self.setLayout(grid)

The layout is very similar in appearance to the one we used for the Pen Properties dialog,
except that this time we have a QDialogButtonBox widget rather than a layout for the
buttons. This makes it possible to create the endire layout using a single QGridLayout.

Both the "red negatives" checkbox, and the button box, are laid out so that they each span
one row and two columns. Row and column spans are specified by the last two arguments
to the QGridLayout's addWidget() and addLayout() methods. The layout is shown
in Figure 5.4, with the grid shown shaded.

Figure 5.4. The Set Number Format dialog's layout

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 157 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

self.connect(buttonBox, SIGNAL("accepted()"),
 self, SLOT("accept()"))
self.connect(buttonBox, SIGNAL("rejected()"),
 self, SLOT("reject()"))
self.setWindowTitle("Set Number Format (Modal)")

The connections and setting the window's title are similar to those we used for the Pen
Properties dialog, only this time we use the button box's signals rather than connecting
directly to the buttons themselves.

def numberFormat(self):
 return self.format

If the user clicks OK, the dialog is accepted and returns a True value. In this case the calling
form's method overwrites its format dictionary with the dialog's dictionary, by calling the
numberFormat() method. Since we have not made the dialog's self.format attribute
very private (i.e., by calling it __format), we could have accessed it from outside the form
directly; we will take that approach in a later example.

When the user clicks OK, because we are using post-mortem validation, it is possible that
some of the editing widgets contain invalid data. To handle this, we reimplement
QDialog.accept(), and do our validation there. Because the method is quite long we
will look at it in parts.

def accept(self):
 class ThousandsError(Exception): pass
 class DecimalError(Exception): pass
 Punctuation = frozenset(" ,;:.")

We begin by creating two exception classes that we will use inside the accept() method.
These will help to keep our code cleaner and shorter than would otherwise be possible. We
also create a set of the characters that we will allow to be used as thousands separators and
decimal place markers.

The only editing widgets we are concerned with validating are the two line edits. This is
because the decimal places spinbox is already limited to a valid range, and because the
"red negatives" checkbox can only be checked or unchecked, both of which are valid.

thousands = unicode(self.thousandsEdit.text())
decimal = unicode(self.decimalMarkerEdit.text())
try:
 if len(decimal) == 0:
 raise DecimalError, ("The decimal marker may not be "
 "empty.")
 elif len(thousands) > 1:
 raise ThousandsError, ("The thousands separator may "
 "only be empty or one character.")
 elif len(decimal) > 1:
 raise DecimalError, ("The decimal marker must be "

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 158 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 "one character.")
 elif thousands == decimal:
 raise ThousandsError, ("The thousands separator and "
 "the decimal marker must be different.")
 elif thousands and thousands not in Punctuation:
 raise ThousandsError, ("The thousands separator must "
 "be a punctuation symbol.")
 elif decimal not in Punctuation:
 raise DecimalError, ("The decimal marker must be a "
 "punctuation symbol.")
except ThousandsError, e:
 QMessageBox.warning(self, "Thousands Separator Error",
 unicode(e))
 self.thousandsEdit.selectAll()
 self.thousandsEdit.setFocus()
 return
except DecimalError, e:
 QMessageBox.warning(self, "Decimal Marker Error",
 unicode(e))
 self.decimalMarkerEdit.selectAll()
 self.decimalMarkerEdit.setFocus()
 return

We begin by getting the text from the two line edits. Although it is acceptable to have no
thousands separator, a decimal marker must be present, so we begin by checking that the
decimalMarkerEdit has at least one character. If it doesn't we raise our custom
DecimalError, with a suitable error text. The reason we have used parentheses around
the two parts of the error string is to turn them into a single expression; an alternative
syntax would have been to drop the parentheses, and instead concatenate the two parts
and escape the newline. We also raise exceptions if either of the texts is longer than one
character, or if they are the same character, or if either contains a character that is not in
our Punctuation set. The reason the if statements differ regarding punctuation is that
the thousands separator is allowed to be empty, but the decimal place marker is not.

Figure 5.5. A QMessageBox warning

Depending on whether we get a ThousandsError or a DecimalError, we display a
"warning" message box with an appropriate error text. We must convert the exception
object e to be a string (we have used unicode() to do this), so that it is suitable as an

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 159 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

argument to the QMessageBox's static warning() method. We will make more use of
the QMessageBox static methods, including the use of additional arguments, both in this
chapter and throughout the book.

QMessageBox sidebar 184

Once the user has acknowledged the error message by closing the message box, we select
the text in the invalid line edit, and give the focus to the line edit, ready for the user to make
their correction. Then we return—so the dialog is not accepted and the user must either
fix the problem or click Cancel to close the dialog and abandon their changes.

self.format["thousandsseparator"] = thousands
self.format["decimalmarker"] = decimal
self.format["decimalplaces"] = \
 self.decimalPlacesSpinBox.value()
self.format["rednegatives"] = \
 self.redNegativesCheckBox.isChecked()
QDialog.accept(self)

If no exception is raised neither of the return statements is executed and execution falls
through to this final part of the accept() method. Here we update the dialog's format
dictionary with the values from the editing widgets, and call the base class's accept()
method. The form will be closed (i.e., hidden) and a True value returned from the exec_
() statement. As we saw earlier, the caller on receiving a True value from exec_(), goes
on to retrieve the dialog's format using the numberFormat() method.

Why didn't we use super() to call the base class's accept() at the end instead of naming
QDialog explicitly? The short answer is that using super() in this context won't work.
PyQt tries to be as efficient as possible by using lazy attribute lookup, but the result is that
super() does not work as we would expect in PyQt subclasses.[*]

[*] See the PyQt documentation, pyqt4ref.html, section 7.7, "super and PyQt classes" for details.

Although the dialog is only hidden when it is accepted (or rejected), once it goes out of
scope, i.e., at the end of the caller's setNumberFormat1() method, the dialog is
scheduled for garbage collection.

Creating modal dialogs like this one is usually straightforward. The only complications
involved are if we have layouts and validation that require some care to get right, as we do
here.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 160 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In some cases the user will want to be able to see the results of their choices, perhaps
changing their choices a few times until they are satisfied. For these situations modal
dialogs can be inconvenient since the user must invoke the dialog, perform their edits,
accept, see the results, and then repeat the cycle until they are happy. If the dialog was
modeless and was able to update the application's state without being closed, the user
could simply invoke the dialog once, perform their edits, see the effects, and then do more
edits, and so on: A much faster cycle. We will see how to achieve this in the next section;
and we will also look at a much simpler and more active validation strategy—preventative
validation.

Smart Dialogs
We define a "smart" dialog to be one that initializes its widgets in accordance with data
references or data structures that are passed to its initializer, and which is capable of
updating the data directly in response to user interaction. Smart dialogs can have both
widget-level and form-level validation. Smart dialogs are usually modeless, with "apply"
and "close" buttons, although they can also be "live", in which case they may have no
buttons, with changes to widgets reflected directly into the data they have access to. Smart
modeless dialogs that have "apply" buttons notify state changes through signal and slot
connections.

The main benefit of using a smart modeless dialog is seen at the point of use. The dialog
is created and passed references to the calling form's data structures which the dialog can
update directly with no further code required at the call point. The downsides are that the
dialog must have knowledge of the calling form's data structures, so that it correctly reflects
the data values into its widgets and only applies changes that are valid, and that being
modeless there is a risk of the data the dialog depends on being changed from under it if
the user interacts with some other part of the application.

In this section we are going to continue with the theme of number format dialogs, so that
we can compare the various approaches.

Modeless Apply/Close-Style Dialogs
If we want our users to be able to repeatedly change the number format and see the results,
it will be much more convenient for them if they could do so without having to keep
invoking and accepting the number format dialog. The solution is to use a modeless dialog
which allows them to interact with the number format widgets and to apply their changes
and to see the effect, as often as they like. Dialogs like this usually have an Apply button
and a Close button. Unlike a modal OK/Cancel style dialog which can be canceled leaving
everything as it was before, once Apply has been clicked the user cannot revert their
changes. Of course we could provide a Revert button or a Defaults button, but this would
require more work.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 161 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Superficially, the only difference between the modeless and the modal versions of the
dialog are the button texts. However, there are two other important differences: The calling
form's method creates and invokes the dialog differently, and the dialog must make sure
it is deleted, not just hidden, when it is closed. Let us begin by looking at how the dialog
is invoked.

def setNumberFormat2(self):
 dialog = numberformatdlg2.NumberFormatDlg(self.format, self)
 self.connect(dialog, SIGNAL("changed"), self.refreshTable)
 dialog.show()

We create the dialog in the same way we created the modal version earlier. We then connect
the dialog's changed Python signal to the calling form's refreshTable() method, and
then we just call show() on the dialog. When we call show(), the dialog is popped up as
a modeless dialog. Application execution continues concurrently with the dialog, and the
user can interact with both the dialog and other windows in the application.

Whenever the dialog emits its changed signal, the main form's refreshTable()
method is called, and this will reformat all the numbers in the table using the format
dictionary's settings. We can imagine that this means that when the user clicks the
Apply button the format dictionary will be updated and the changed signal emitted. We
will see shortly that this is indeed what happens.

Although the dialog variable goes out of scope, PyQt is smart enough to keep a reference
to modeless dialogs, so the dialog continues to exist. But when the user clicks Close, the
dialog would normally only be hidden, so if the user invoked the dialog again and again,
more and more memory would be needlessly consumed, as more dialogs would be created
but none deleted. One solution to this is to make sure that the dialog is deleted, rather than
hidden, when it is closed. (We will see another solution when we look at a "live" dialog,
shortly.)

We shall start with the dialog's __init__() method.

def __init__(self, format, parent=None):
 super(NumberFormatDlg, self).__init__(parent)
 self.setAttribute(Qt.WA_DeleteOnClose)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 162 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 5.6. The modeless Set Number Format dialog

After calling super(), we call setAttribute() to make sure that when the dialog is
closed it will be deleted rather than merely hidden.

punctuationRe = QRegExp(r"[,;:.]")

thousandsLabel = QLabel("&Thousands separator")
self.thousandsEdit = QLineEdit(format["thousandsseparator"])
thousandsLabel.setBuddy(self.thousandsEdit)
self.thousandsEdit.setMaxLength(1)
self.thousandsEdit.setValidator(
 QRegExpValidator(punctuationRe, self))

decimalMarkerLabel = QLabel("Decimal &marker")
self.decimalMarkerEdit = QLineEdit(format["decimalmarker"])
decimalMarkerLabel.setBuddy(self.decimalMarkerEdit)
self.decimalMarkerEdit.setMaxLength(1)
self.decimalMarkerEdit.setValidator(
 QRegExpValidator(punctuationRe, self))
self.decimalMarkerEdit.setInputMask("X")

decimalPlacesLabel = QLabel("&Decimal places")
self.decimalPlacesSpinBox = QSpinBox()
decimalPlacesLabel.setBuddy(self.decimalPlacesSpinBox)
self.decimalPlacesSpinBox.setRange(0, 6)
self.decimalPlacesSpinBox.setValue(format["decimalplaces"])

self.redNegativesCheckBox = QCheckBox("&Red negative numbers")
self.redNegativesCheckBox.setChecked(format["rednegatives"])

buttonBox = QDialogButtonBox(QDialogButtonBox.Apply|
 QDialogButtonBox.Close)

The creation of the form's widgets is very similar to what we did before, but this time we
are using preventative validation almost exclusively. We set a one character maximum
length on the thousands separator and decimal marker line edits, and in both cases we
also set a QRegExpValidator. A validator will only allow the user to enter valid

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 163 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

characters, and in the case of a regular expression validator, only characters that match
the regular expression.[*] PyQt uses a regular expression syntax that is essentially a subset
of the syntax offered by Python's re module.

[*] The QRegExp documentation provides a brief introduction to regular expressions. For in-depth coverage see Mastering Regular Expressions by Jeffrey E. Friedl.

The QRegExpValidator's initializer requires both a regular expression and a parent,
which is why we have passed self in addition to the regular expression.

In this case we have set the validation regular expression to be "[,;:.]". This is a character
class and means that the only characters that are valid are those contained in the square
brackets, i.e., space, comma, semi-colon, colon, and period. Notice that the regular
expression string is preceded by "r". This signifies a "raw" string and means that all the
characters inside the string are to be taken as literals. This considerably reduces the need
to escape special characters, although here it does not matter. Nonetheless, we always use
"r" with regular expression strings as a matter of good practice.

Although we are happy to accept an empty thousands separator, we require a decimal
marker. For this reason we have used an input mask. A mask of "X" says that one character
of any kind is required—we don't have to concern ourselves with what the character will
be because the regular expression validator will ensure that it is valid. Format masks are
explained in the QLineEdit.inputMask property's documentation.[*]

[*] Every PyQt QObject and QWidget has "properties". These are similar in principle to Python properties, except that they can be accessed using the property()
and setProperty() methods.

The only other difference to how we created the widgets in the modal version of the dialog
is that we create Apply and Close buttons rather than OK and Cancel buttons.

self.format = format

In the modal dialog we took a copy of the caller's format dictionary; here we take a
reference to it, so we can change it directly from within the dialog.

We will not show the dialog's layout since it is identical to the layout used in the modal
dialog shown earlier.

self.connect(buttonBox.button(QDialogButtonBox.Apply),
 SIGNAL("clicked()"), self.apply)
self.connect(buttonBox, SIGNAL("rejected()"),
 self, SLOT("reject()"))
self.setWindowTitle("Set Number Format (Modeless)")

We create two signal–slot connections. The first one is between the Apply button's
clicked() signal and the apply() method. To make this connection, we must retrieve
a reference to the button from the button box using its button() method, passing the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 164 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

same argument, QDialogButtonBox.Apply, that we used to create the button in the
first place.

The connection to reject() will cause the dialog to close, and because of the
Qt.WA_DeleteOnClose attribute, the dialog will be deleted rather than hidden. There
is no connection to the dialog's accept() slot, so the only way to get rid of the dialog is
to close it. If the user clicks the Apply button, the apply() slot, shown next, will be called.
Naturally, we also set a window title.

The final method in this class is apply() which we will review in two parts.

def apply(self):
 thousands = unicode(self.thousandsEdit.text())
 decimal = unicode(self.decimalMarkerEdit.text())
 if thousands == decimal:
 QMessageBox.warning(self, "Format Error",
 "The thousands separator and the decimal marker "
 "must be different.")
 self.thousandsEdit.selectAll()
 self.thousandsEdit.setFocus()
 return
 if len(decimal) == 0:
 QMessageBox.warning(self, "Format Error",
 "The decimal marker may not be empty.")
 self.decimalMarkerEdit.selectAll()
 self.decimalMarkerEdit.setFocus()
 return

Form-level validation is normally necessary when two or more widgets' values are inter-
dependent. In this example, we do not want to allow the thousands separator to be the
same as the decimal place marker, so we check for this situation in the apply() method,
and if it has occurred we notify the user, put the focus in the thousands separator line edit,
and return without applying the user's edits. We could have avoided this by connecting
both line edits' textEdited() signals to a "check and fix" slot—we will do this in the next
example.

We must also check that the decimal marker isn't empty. Although the decimal place
marker's line edit regular expression validator wants a single character, it allows the line
edit to be empty. This is because an empty string is a valid prefix for a string that has a
valid character. After all, the line edit may have been empty when the user switched the
focus into it.

self.format["thousandsseparator"] = thousands
self.format["decimalmarker"] = decimal
self.format["decimalplaces"] = \
 self.decimalPlacesSpinBox.value()
self.format["rednegatives"] = \
 self.redNegativesCheckBox.isChecked()
self.emit(SIGNAL("changed"))

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 165 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If there are no validation problems, neither of the return statements are executed and
we fall through to the end of the accept() slot. Here we update the format dictionary.
The self.format variable is a reference to the caller's format dictionary so the changes
are applied directly to the caller's data structure. Finally, we emit a changed signal, and
as we have seen, this causes the caller's refreshTable() method to be called, which in
turn formats all the numbers in the table using the caller's format dictionary.

This dialog is smarter than the standard one we created in the previous section. It works
directly on the caller's data structure (the format dictionary), and notifies the caller when
the data structure has changed so that the changes can be applied. We could have made it
smarter still and given it a reference to the caller's refreshTable() method and had the
dialog execute it directly: We will use this approach in the next example.

In situations where the user wants to repeatedly apply changes it may be inconvenient for
them to keep having to click an Apply button. They may just want to manipulate a dialog's
widgets and see the effects immediately. We will see how to do this next.

Modeless "Live" Dialogs
For our last number format example, we will review a smart modeless "live" dialog—a
dialog that works very similarly to the one we have just seen, but which has no buttons,
and where changes are applied automatically and immediately. In the modal version of
the dialog we used post-mortem validation, and in the smart modeless version we used a
mixture of post-mortem and preventative validation. In this example, we will use
preventative validation exclusively. Also, instead of creating a signal–slot connection so
that the dialog can notify the caller of changes, we give the dialog the method to call when
there are changes to be applied, so that it can call this method whenever necessary.

We could create this dialog in exactly the same way as the previous dialog, but we will
instead demonstrate a different approach. Rather than creating the dialog when it is
needed and then destroying it, creating and destroying on every use, we will create it just
once, the first time it is needed, and then hide it when the user is finished with it, showing
and hiding on every use.

def setNumberFormat3(self):
 if self.numberFormatDlg is None:
 self.numberFormatDlg = numberformatdlg3.NumberFormatDlg(
 self.format, self.refreshTable, self)
 self.numberFormatDlg.show()
 self.numberFormatDlg.raise_()
 self.numberFormatDlg.activateWindow()

In the calling form's initializer, we have the statement self.numberFormatDlg =
None. This ensures that the first time this method is called the dialog is created. Then, we

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 166 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

show the dialog as before. But in this case when the dialog is closed it is merely hidden
(because we do not set the WA_DeleteOnClose widget attribute). So when this method
is called, we may be creating and showing the dialog for the first time, or we may be showing
a dialog that was created earlier and subsequently hidden. To account for the second
possibility, we must both raise (put the dialog on top of all the other windows in the
application), and activate (give the focus to the dialog); doing these the first time is
harmless.[*]

[*] PyQt uses raise_() rather than raise() to avoid conflict with the built-in raise statement.

Figure 5.7. The "live" Set Number Format dialog

Also, we have made the dialog even smarter than the previous one, and instead of setting
up a signal–slot connection, we pass the bound refreshTable() method to the dialog
as an additional parameter.

The __init__() method is almost the same as before with just three differences. Firstly,
it does not set the WA_DeleteOnClose attribute, so that when closed the dialog will be
hidden, not deleted. Secondly, it keeps a copy of the method it is passed (i.e., it keeps a
reference to self.refreshTable() in self.callback), and thirdly, its signal and
slot connections are slightly different than before. Here are the connection calls:

self.connect(self.thousandsEdit,
 SIGNAL("textEdited(QString)"), self.checkAndFix)
self.connect(self.decimalMarkerEdit,
 SIGNAL("textEdited(QString)"), self.checkAndFix)
self.connect(self.decimalPlacesSpinBox,
 SIGNAL("valueChanged(int)"), self.apply)
self.connect(self.redNegativesCheckBox,
 SIGNAL("toggled(bool)"), self.apply)

As before we can rely on the decimal places spinbox to ensure that only a valid number of
decimal places is set, and similarly the "red negatives" checkbox can only be in a valid state,
so changes to either of these can be applied immediately.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 167 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

But for the line edits we now connect their textEdited() signals. These signals are
emitted whenever the user types in a character or deletes a character from them. The
checkAndFix() slot will both ensure that the line edits hold valid text and apply the
change immediately. There are no buttons in this dialog: The user can close it by pressing
Esc which will then hide it. The dialog will only be deleted when its calling form is deleted,
because at that point the caller's self.numberFormatDlg instance attribute will go out
of scope, and with no other reference to the dialog, it will be scheduled for garbage
collection.

def apply(self):
 self.format["thousandsseparator"] = \
 unicode(self.thousandsEdit.text())
 self.format["decimalmarker"] = \
 unicode(self.decimalMarkerEdit.text())
 self.format["decimalplaces"] = \
 self.decimalPlacesSpinBox.value()
 self.format["rednegatives"] = \
 self.redNegativesCheckBox.isChecked()
 self.callback()

The apply() method is the simplest we have seen so far. This is because it is only called
when all the editing widgets hold valid data, so no post-mortem validation is required. It
no longer emits a signal to announce a state change—instead it calls the method it was
given and this applies the changes directly in the caller.

def checkAndFix(self):
 thousands = unicode(self.thousandsEdit.text())
 decimal = unicode(self.decimalMarkerEdit.text())
 if thousands == decimal:
 self.thousandsEdit.clear()
 self.thousandsEdit.setFocus()
 if len(decimal) == 0:
 self.decimalMarkerEdit.setText(".")
 self.decimalMarkerEdit.selectAll()
 self.decimalMarkerEdit.setFocus()
 self.apply()

This method applies preventative validation as the user types in either of the line edits.
We still rely on the line edit validators, maximum length property, and in the case of the
decimal place marker line edit, an input mask, and all these combined provide almost all
the validation that we need. But it is still possible for the user to set the same text in both
—in which case we delete the thousands separator and move the focus to its line edit, or
(if the user tries hard) for the decimal place marker to be empty—in which case we set a
valid alternative, select it and give it the keyboard focus. At the end we know that both line
edits are valid, so we call apply() and apply the changes.

One benefit of using the show/hide approach is that the dialog's state is maintained
automatically. If we have to create the dialog each time it is used we must populate it with

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 168 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

data, but for this dialog, whenever it is shown (after the first time), it already has the correct
data. Of course, in this particular example we have three dialogs that are all used to edit
the same data, which means that this dialog could become out of sync; we ignore this issue
because having multiple dialogs editing the same data is not something we would do in a
real application.

By passing in both the data structure (the format dictionary), and the caller's update
method (refreshTable(), passed as self.callback), we have made this dialog very
smart—and very tightly coupled to its caller. It is for this reason that many programmers
prefer the "middle way" of using standard dialogs—dumb dialogs are too limited and can
be inconvenient to use, while smart dialogs can be more work to maintain because of the
tight coupling their knowledge of their caller's data structures implies.

Summary
We have categorized dialogs into three "intelligences", dumb, standard, and smart, and
shown that they can be used modally or modelessly. Dumb dialogs are easy to create, and
perfectly adequate for doing widget-level validation. Dumb dialogs are normally used
modally, and if we are careful can be generalized since they can be very loosely coupled to
the application's logic. Nonetheless, using dumb dialogs usually ends up leading to
programmer frustration and the need to rewrite in the form of a standard or smart dialog,
so it is often best to avoid them except for those very simple cases where just one or two
values are required and the built-in QInputDialog static dialogs are not suitable.

The most common choice is between a standard modal dialog and a smart modeless dialog,
and in the latter case between the "apply" and "live" styles of updating. Modal dialogs are
the easiest to program because they block any other interaction with the dialog's parent
windows and their siblings thereby reducing the risk that the data they are working on is
changed from under them. But modeless dialogs are preferred by some users, and are
particularly convenient when users want to try out various options before deciding which
ones they want. Modal dialogs can also be used for this purpose if they provide some kind
of preview; for example, font dialogs are often modal, and show a sample text that reflects
the user's font settings as they change them.

The two validation strategies that we have looked at, post-mortem and preventative, can
be used on their own or in combination. From a usability point of view preventative is often
considered to be superior, although it can lead to user frustration, for example, a user might
complain ("I want to set this to five but it won't let me") when the setting is invalid because
of another setting elsewhere on the form.

It is possible to design a dialog so that it can be used both for adding and for editing items.
These add/edit dialogs are no different from other kinds of dialog when it comes to the
creation, layout, and connection of their widgets. The key difference is that they may need

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 169 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

to behave in different ways depending on whether they are adding or editing. When editing,
the widgets are populated from the item passed in, and when adding, the widgets are
populated with default values. If the dialog is accepted, it may simply provide accessors
through which the values set can be retrieved leaving the work to the caller, or it may be
smart, able to update edited items directly, and to create new items if the user is adding.
See the AddEditMovieDlg class in chap08/additemmoviedlg.py (its design is in
chap08/additemmoviedlg.ui), and the TextItemDlg class in chap12/
pagedesigner.pwy for add/edit item example code.

Another possibility is to avoid using a dialog at all and to allow the user to edit data in-
place, for example, in a list or table. This approach is covered in Chapter 14, Chapter 15,
and Chapter 16.

Dialogs can be used both for an application's "main window", as we have done in all the
examples shown so far, and to provide the user with the opportunity to express their
choices. One problem that we can come up against in more complex dialogs is having
enough space for all the buttons we need. Using a tabbed widget can help in such cases,
but once the number of options becomes large, a system of menus can be much more
compact and easier for users to navigate. In the next chapter we will see how to create a
main window style application with menus, toolbars, and so on, and that has several
supporting dialogs, some built-in (such as the file open dialog), and others custom dialogs
that we will create as we need them. And in Chapter 7 we will return to dialogs, to see how
they can be "drawn" using Qt Designer, PyQt's visual design tool.

Exercise
Write a stand-alone string list editing dialog. The dialog should use if __name__ ==
"__main__": so that it can be run and tested independently. It should look like the dialog
shown in Figure 5.8.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 170 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 5.8. The String List dialog with an item being added

The strings should be held in a QListWidget. The Sort button is easy to implement since
we can connect its clicked() signal directly to the QListWidget.sortItems()
method.

The dialog should work on its own string list (either a copy of one passed in, or one it creates
itself), and when accepted should emit a signal containing the list (as a QStringList),
and also have a publically accessible data attribute, stringlist.

The reject() slot should be implemented like this:

def reject(self):
 self.accept()

For testing purposes put the following code at the end of the file:

if __name__ == "__main__":
 fruit = ["Banana", "Apple", "Elderberry", "Clementine", "Fig",
 "Guava", "Mango", "Honeydew Melon", "Date", "Watermelon",
 "Tangerine", "Ugli Fruit", "Juniperberry", "Kiwi",
 "Lemon", "Nectarine", "Plum", "Raspberry", "Strawberry",
 "Orange"]
 app = QApplication(sys.argv)
 form = StringListDlg("Fruit", fruit)
 form.exec_()
 print "\n".join([unicode(x) for x in form.stringlist])

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 171 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This creates a StringListDlg instance, with a string that names the kind of things in
the list, and a list of strings, and then calls it modally. When the user closes the dialog we
print the list of strings on the console so that we can see the effects of our edits.

You will need to read the documentation for QListWidget, and for
QInputDialog.getText() which can be used for getting a string to be added and for
editing an existing string. This exercise can be done in about 120 lines of code.

A model answer is provided by the file chap05/stringlistdlg.py. The program can
be tested by running it. (On Windows it should be run from a console.)

6. Main Windows
• Creating a Main Window
• Handling User Actions

Most applications are main window style, that is, they have a menu bar, toolbars, a status
bar, a central area, and possibly dock windows, to provide the user with a rich yet navigable
and comprehensible user interface. In this chapter we will see how to create a main window
style application which demonstrates how to create and use all of these features.

We will use the Image Changer application shown in Figure 6.1 to demonstrate how to
create a main window style application. Like most such applications it has menus, toolbars,
and a status bar; it also has a dock window. In addition to seeing how to create all these
user interface elements, we will also cover how to relate user interactions with them, to
methods that perform the relevant actions.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 172 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 6.1. The Image Changer Application

This chapter also explains how to handle the creation of new files and the opening of
existing files, including keeping the user interface synchronized with the application's
state. Also covered is how to give the user the opportunity to save unsaved changes, and
how to manage a recently used files list. We will also show how to save and restore user
preferences, including the sizes and positions of the main window and of the toolbars and
dock windows.

Most applications have a data structure for holding their data, and use one or more widgets
through which users can view and edit the data. The Image Changer application holds its
data in a single QImage object, and uses a QLabel widget as its data viewer. In Chapter
8 we will see a main window style application that is used to present and edit lots of data
items, and in Chapter 9 we will see how to create main window applications that can handle
multiple documents.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 173 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 6.2. The Image Changer's Modules, Classes, and Functions

Before looking at how to create the application, we will discuss some of the state that a
user interface must maintain. Quite often, some menu options and toolbar buttons are
"checkable", that is they can be in one of two states. For example, in a word-processor, a
toolbar button for toggling italic text could be "on" (pushed down), or "off". If there is also
an italic menu option, then we must make sure that the menu option and the toolbar button
are kept in sync. Fortunately, PyQt makes it easy to automate such synchronization.

Some options may be inter-dependent. For example, we can have text left aligned or
centered or right aligned, but only one of these can be "on" at any one time. So if the user
switched on centered alignment, the left and right alignment toolbar buttons and menu
options must be switched off. Again, PyQt makes it straightforward to synchronize such
inter-dependent options. In this chapter we will cover options that are non-checkable, such
as "file open", and both independent and inter-dependent checkable options.

While some menu and toolbar options can have an immediate effect on the application's
data, others are used to invoke dialogs through which users can specify precisely what they
want done. Since we have given so much coverage to dialogs in the preceding two chapters,
here we will concentrate on how they are used rather than on how they are created. In this
chapter we will see how to invoke custom dialogs, and also how to use many of PyQt's built-
in dialogs, including dialogs for choosing a filename, the print dialog, and dialogs for asking
the user for an item of data, such as a string or a number.

Creating a Main Window
For most main window style applications, the creation of the main window follows a similar
pattern. We begin by creating and initializing some data structures, then we create a
"central widget" which will occupy the main window's central area, then we create and set
up any dock windows. Next we create "actions" and insert them into menus and toolbars.
It is quite common to also read in the application's settings, and for applications that

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 174 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

restore the user's workspace, to load the files that the application had open when it was
last terminated.

This application's main window class is in the file chap06/imagechanger.pyw. The
initializer is quite long, so we will look at it in pieces. But first we will look at the imports
that precede the class definition.

import os
import platform
import sys
from PyQt4.QtCore import *
from PyQt4.QtGui import *
import helpform
import newimagedlg
import qrc_resources

__version__ = "1.0.0"

In this book the practice is to import Python's standard modules, then third party modules
(such as PyQt), and then our own modules. We will discuss the items we use from the os
and platform modules when we make use of them in the code. The sys module is used
to provide sys.argv as usual. The helpform and newimagedlg modules provide the
HelpForm and NewImageDlg classes. We will discuss the qrc_resources module later
on.

It is common for applications to have a version string, and conventional to call it
__version__; we will make use of it in the application's about box.

Now we can look at the beginning of the MainWindow class.

class MainWindow(QMainWindow):

 def __init__(self, parent=None):
 super(MainWindow, self).__init__(parent)

 self.image = QImage()
 self.dirty = False
 self.filename = None
 self.mirroredvertically = False
 self.mirroredhorizontally = False

The initializer begins conventionally with the super() call. Next we create a null
QImage that we will use to hold the image the user loads or creates. A QImage is not a
QObject subclass so it does not need a parent; instead we can leave its deletion to Python's
normal garbage collection when the application terminates. We also create some instance
variables. We use dirty as a Boolean flag to indicate whether or not the image has unsaved
changes. The filename is initially set to None which we use to signify that either there is
no image, or that there is a newly created image that has never been saved.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 175 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

PyQt provides various mirroring capabilities, but for this example application we have
limited ourselves to just three possibilities: Having the image mirrored vertically, having
it mirrored horizontally, or not being mirrored at all. We need to keep track of the mirrored
state so that we can keep the user interface in sync, as we will see when we discuss the
mirroring actions.

self.imageLabel = QLabel()
self.imageLabel.setMinimumSize(200, 200)
self.imageLabel.setAlignment(Qt.AlignCenter)
self.imageLabel.setContextMenuPolicy(Qt.ActionsContextMenu)
self.setCentralWidget(self.imageLabel)

In some applications the central widget is a composite widget (a widget that is composed
of other widgets, laid out just like those in a dialog), or an item-based widget (such as a
list or table), but here a single QLabel is sufficient. A QLabel can display plain text, or
HTML, or an image in any of the image formats that PyQt supports; later on we will see
how to discover what these formats are, since they can vary. We have set a minimum size
because initially the label has nothing to show, and would therefore take up no space, which
would look peculiar. We have chosen to align our images vertically and horizontally
centered.

PyQt offers many ways of creating context menus, but we are going to use the easiest and
most common approach. First we must set the context menu policy for the widget which
we want to have a context menu. Then we must add some actions to the widget—something
we will do further on. When the user invokes the context menu, the menu will pop up
displaying the actions that were added.

Unlike dialogs where we use layouts, in a main window style application we only ever have
one central widget—although this widget could be composite, so there is no limitation in
practice. We only need to call setCentralWidget() and we are done. This method both
lays out the widget in the main window's central area, and reparents the widget so that the
main window takes ownership of it.

Object ownership sidebar 119

Toolbars are suitable for holding toolbar buttons, and some other kinds of widgets such
as comboboxes and spinboxes. For larger widgets, for tool palettes, or for any widget that
we want the user to be able to drag out of the window to float freely as an independent
window in its own right, using a dock window is often the right choice.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 176 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Dock windows are windows that can appear in the dock areas shown in Figure 6.3. They
have a small caption, and restore and close buttons, and they can be dragged from one
dock area to another, or to float freely as independent top-level windows in their own right.
When they are docked they automatically provide a splitter between themselves and the
central area, and this makes them easy to resize.

Figure 6.3. QMainWindow's Areas

In PyQt, dock windows are instances of the QDockWidget class. We can add a single
widget to a dock widget, just as we can have a single widget in a main window's central
area, and in the same way this is no limitation, since the widget added can be composite.

logDockWidget = QDockWidget("Log", self)
logDockWidget.setObjectName("LogDockWidget")
logDockWidget.setAllowedAreas(Qt.LeftDockWidgetArea|
 Qt.RightDockWidgetArea)
self.listWidget = QListWidget()
logDockWidget.setWidget(self.listWidget)
self.addDockWidget(Qt.RightDockWidgetArea, logDockWidget)

Dock widgets are not put into a layout, so when we create them, in addition to providing
their window caption, we must give them a parent. By setting a parent we ensure that the
dock widget does not go out of scope and get garbage collected by Python at the wrong
time. Instead, the dock widget will be deleted when its parent, the top-level window (the
main window), is deleted.

Every PyQt object can be given an object name, although up to now we have never done
so. Object names can sometimes be useful in debugging, but the reason we have set one
here is that we want PyQt to save and restore the dock widget's size and position, and since

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 177 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

there could be any number of dock widgets, PyQt uses the object name to distinguish
between them.

By default dock widgets can be dragged into any dock area and are movable, floatable, and
closable. Since our dock widget is going to be used to store a list—a widget that is usually
tall and narrow—it only makes sense for it to be in the left or right dock areas (or to float),
so we use setAllowedAreas() to restrict the areas. Dock widgets also have a
setFeatures() method which is used to control whether or not the dock widget can be
moved, floated, or closed, but we do not need to use it here because the defaults are fine.

Once the dock widget has been set up, we create the widget it will hold, in this case a list
widget. Then we add the widget to the dock widget, and the dock widget to the main
window. We did not have to give the list widget a parent because when it is added to the
dock widget the dock widget takes ownership of it.

self.printer = None

We want users to be able to print out their images. To do this we need to create a
QPrinter object. We could create the printer whenever we need it and leave it to be
garbage collected afterwards. But we prefer to keep an instance variable, initially set to
None. The first time the user asks to print we will create a QPrinter and assign it to our
printer variable. This has two benefits. Firstly, we only create the printer object when it
is needed, and secondly, because we keep a reference to it, it stays around—and keeps all
its previous state such as the user's choice of printer, paper size, and so on.

self.sizeLabel = QLabel()
self.sizeLabel.setFrameStyle(QFrame.StyledPanel|QFrame.Sunken)
status = self.statusBar()
status.setSizeGripEnabled(False)
status.addPermanentWidget(self.sizeLabel)
status.showMessage("Ready", 5000)

For the application's status bar we want the usual message area on the left, and also a status
indicator showing the width and height of the current image. We do this by creating a
QLabel widget and adding it to the status bar. We also switch off the status bar's size grip
since that seems inappropriate when we have an indicator label that shows the image's
dimensions. The status bar itself is created for us the first time we call the
QMainWindow's statusBar() method. If we call the status bar's showMessage()
method with a string, the string will be displayed in the status bar, and will remain on
display until either another showMessage() call supplants it or until clearMessage
() is called. We have used the two-argument form, where the second argument is the
number of milliseconds (5 000, i.e., 5 seconds), that the message should be shown for;
after this time the status bar will clear itself.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 178 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

So far we have seen how to create the main window's central widget, create a dock widget,
and set up the status bar. Now we are almost ready to create the menus and toolbars, but
first we must understand what PyQt actions are, and then take a brief detour to learn about
resources.

Actions and Key Sequences
Qt's designers recognized that user interfaces often provide several different ways for the
user to achieve the same thing. For example, creating a new file in many applications can
be done via the File New menu option, or by clicking the "New File" toolbar button, or
by using the Ctrl+N keyboard shortcut. In general, we do not care how the user asked to
perform the action, we only care what action they asked to be done. PyQt encapsulates
user actions using the QAction class. So, for example, to create a "file new" action we
could write code like this:

fileNewAction = QAction(QIcon("images/filenew.png"), "&New", self)
fileNewAction.setShortcut(QKeySequence.New)
helpText = "Create a new image"
fileNewAction.setToolTip(helpText)
fileNewAction.setStatusTip(helpText)
self.connect(fileNewAction, SIGNAL("triggered()"), self.fileNew)

This assumes that we have a suitable icon and a fileNew() method. The ampersand in
the menu item's text means that the menu item will appear as New (except on Mac OS X
or unless the windowing system is set to suppress underlines), and that keyboard users
will be able to invoke it by pressing Alt+F, N, assuming that the File menu's text is
"&File" so that it appears as File. Alternatively, the user could use the shortcut that was
created by setShortcut(), and simply press Ctrl+N instead.

Many key sequences are standardized, some even across different windowing systems. For
example, Windows, KDE, and GNOME, all use Ctrl+N for "new", and Ctrl+S for "save".
Mac OS X is similar, with Command+N and Command+S for these actions. The
QKeySequence class in PyQt 4.2 provides constants for the standardized key sequences,
such as QKeySequence.New. This is especially useful when the standardized key
sequences differ across windowing systems, or where more than one key sequence is
associated with an action. For example, if we set a shortcut to QKeySequence.Paste,
PyQt will trigger a "paste" action in response to Ctrl+V or Shift+Ins on Windows, Ctrl
+V, Shift+Ins, or F18 on KDE and GNOME, and Command+V on Mac OS X.

For key sequences that are not standardized (or if we want backward compatibility with
earlier PyQt releases), we can provide the shortcut as a string,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 179 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

for example, setShortcut("Ctrl+Q"). This book uses the standardized key sequences
that are available, and otherwise falls back to using strings.

Table 6.1. Selected QAction Methods

Syntax Description

a.data() Returns QAction a's user data as a QVariant

a.setData(v) Sets QAction a's user data to QVariant v

a.isChecked() Returns True if QAction a is checked

a.setChecked(b) Checks or unchecks QAction a depending on bool b

a.isEnabled() Returns True if QAction a is enabled

a.setEnabled(b) Enables or disables QAction a depending on bool b

a.setSeparator(b) Sets QAction a to be a normal action or a separator depending on bool b

a.setShortcut(k) Sets QAction a's keyboard shortcut to QKeySequence k

a.setStatusTip(s) Sets QAction a's status tip text to string s

a.setText(s) Sets QAction a's text to string s

a.setToolTip(s) Sets QAction a's tool tip text to string s

a.setWhatsThis(s) Sets QAction a's What's This? text to string s

a.toggled(b) This signal is emitted when QAction a's checked status changes; bool b is True if the action
is checked

a.triggered(b) This signal is emitted when QAction a is invoked; the optional bool b is True if QAction a
is checked

Notice that we give the QAction a parent of self (the form in which the action is
applicable). It is important that every QObject subclass (except top-level windows) has
a parent; for widgets this is usually achieved by laying them out, but for a pure data object
like a QAction, we must provide the parent explicitly.

Object ownership sidebar 119

Once we have created the action, we can add it to a menu and to a toolbar like this:

fileMenu.addAction(fileNewAction)
fileToolbar.addAction(fileNewAction)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 180 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Now whenever the user invokes the "file new" action (by whatever means), the fileNew
() method will be called.

Resource Files
Unfortunately, there is a small problem with the code we have written above. It assumes
that the application's working directory is the directory where it is located. This is the
normal case under Windows where the .pyw (or a shortcut to it) is clicked (or double-
clicked). But if the program is executed from the command line from a different directory,
for example ./chap06/imagechanger.pyw, then none of the icons will appear. This is
because we gave the icon's path as images, i.e., a path relative to the application's working
directory, so when invoked from elsewhere, the icons were looked for in the ./images
directory (which might not even exist), when in fact they are in the ./chap06/images
directory.

We might be tempted to try to solve the problem using Python's os.getcwd() function;
but this returns the directory where we invoked the application, which as we have noted,
may not be the directory where the application actually resides. Nor does PyQt's
QApplication.applicationDirPath() method help, since this returns the path to
the Python executable, not to our application itself. One solution is to use
os.path.dirname(__file__) to provide a prefix for the icon file names, since the
__file__ variable holds the full name and path of the current .py or .pyw file.

Another solution is to put all our icons (and help files, and any other small resources) into
a single .py module and access them all from there. This not only solves the path problem
(because Python knows how to look for a module to be imported), but also means that
instead of having dozens of icons, help files, and similar, some of which could easily become
lost, we have a single module containing them all.

To produce a resource module we must do two things. Firstly, we must create a .qrc file
that contains details of the resources we want included, and then we must run pyrcc4
which reads a .qrc file and produces a resource module. The .qrc file is in a simple XML
format that is easy to hand write. Here is an extract from the resources.qrc file used
by the Image Changer application:

<!DOCTYPE RCC><RCC version="1.0">
<qresource>
<file alias="filenew.png">images/filenew.png</file>
<file alias="fileopen.png">images/fileopen.png</file>
...
<file alias="icon.png">images/icon.png</file>

<file>help/editmenu.html</file>
<file>help/filemenu.html</file>
<file>help/index.html</file>

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 181 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

</qresource>
</RCC>

The ellipsis represents many lines that have been omitted to save space because they are
all very similar. Each <file> entry must contain a filename, with its relative path if it is
in a subdirectory. Now, if we want to use the "file new" action's image we could write QIcon
(":/images/filenew.png"). But thanks to the alias, we can shorten this to QIcon
(":/filenew.png"). The leading :/ tells PyQt that the file is a resource. Resource files
can be treated just like normal (read-only) files in the file system, the only difference being
that they have the special path prefix. But before we can make use of resources we must
make sure we generate the resource module and import it into our application.

Earlier we showed the imports for the Image Changer application, and the last one was
import qrc_resources. The qrc_resources.py module was generated by
pyrcc4 using the following command line:

C:\pyqt\chap06>pyrcc4 -o qrc_resources.py resources.qrc

We must run this command whenever we change the resources.qrc file.

As a convenience for readers, two small Python programs are provided with the examples
to make using pyrcc4, and some other PyQt command line programs, much easier. One
is mkpyqt.py, itself a command line program, and the other is Make PyQt, a GUI
application written in PyQt4. This means, for example, that instead of running pyrcc4
ourselves, we can simply type this:

mkpyqt.py and Make PyQt sidebar 207

C:\pyqt\chap06>mkpyqt.py

Both mkpyqt.py and Make PyQt do the same thing: They run pyuic4 and other PyQt
tools, and for each one they automatically use the correct command line arguments; they
are described in the next chapter.

Creating and Using Actions
The code we saw earlier for creating a "file new" action required six lines to create and set
up the action. Most main window style applications have scores of actions, so typing six
lines for each one would soon become very tedious. For this reason we have created a helper

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 182 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

method which allows us to reduce the code for creating actions to just two or three lines.
We will look at the helper, and then see how it is used in the main window's initializer.

def createAction(self, text, slot=None, shortcut=None, icon=None,
 tip=None, checkable=False, signal="triggered()"):
 action = QAction(text, self)
 if icon is not None:
 action.setIcon(QIcon(":/%s.png" % icon))
 if shortcut is not None:
 action.setShortcut(shortcut)
 if tip is not None:
 action.setToolTip(tip)
 action.setStatusTip(tip)
 if slot is not None:
 self.connect(action, SIGNAL(signal), slot)
 if checkable:
 action.setCheckable(True)
 return action

This method does everything that we did by hand for the "file new" action, and in addition
handles cases where there is no icon, and also "checkable" actions.

Icons are optional, although for actions that will be added to a toolbar it is conventional
to provide one. An action is checkable if it can have "on" and "off" states like the Bold or
Italic actions that word-processors normally provide.

Notice that the last argument to the QAction constructor is self; this is the action's
parent (the main window) and ensures that the action will not be garbage collected when
it goes out of the initializer's scope. In some cases we make actions instance variables so
that we can access them outside the form's initializer, something we don't need to do in
this particular example.

Here is how we can create the "file new" action using the createAction() helper
method:

fileNewAction = self.createAction("&New...", self.fileNew,
 QKeySequence.New, "filenew", "Create an image file")

With the exception of the "file quit" action, (and "file save as" for which we don't provide
a shortcut), the other file actions are created in the same way, so we won't waste space by
showing them.

fileQuitAction = self.createAction("&Quit", self.close,
 "Ctrl+Q", "filequit", "Close the application")

The QKeySequence class does not have a standardized shortcut for application
termination, so we have chosen one ourselves and specified it as a string. We could have
just as easily used a different shortcut, for example Alt+X or Alt+F4.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 183 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The close() slot is inherited from QMainWindow. If the main window is closed by
invoking the "file quit" action (which we have just connected to the close() slot), for
example, by clicking File Quit or by pressing Ctrl+Q, the base class's close() method
will be called. But if the user clicks the application's close button, X, the close() method
is not called.

The only way we can be sure of intercepting attempts to close the window, is to reimplement
the close event handler. Whether the application is closed by the close() method or via
the close button, the close event handler is always called. So by reimplementing this event
handler we can give the user the opportunity to save any unsaved changes, and we can save
the application's settings.

In general we can implement an application's behavior purely through the high-level
signals and slots mechanism, but in this one important case we must use the lower-level
event handling mechanism. However, reimplementing the close event is no different from
reimplementing any other method, and is not difficult as we will see when we cover it
further on. (Event handling is covered in Chapter 10.)

The editing actions are created in a similar way, but we will look at a few of them because
of subtle differences.

editZoomAction = self.createAction("&Zoom...", self.editZoom,
 "Alt+Z", "editzoom", "Zoom the image")

It is convenient for users to be able to zoom in and out to see an image in more or less
detail. We have provided a spinbox in the toolbar to allow mouse users to change the zoom
factor (and which we will come to shortly), but we must also support keyboard users, so
for them we create an "edit zoom" action which will be added to the edit menu. When
triggered, the method connected to this action will pop up a dialog box where the user can
enter a zoom percentage.

There are standardized key sequences for zoom in and for zoom out, but not one for
zooming generally, so we have chosen to use Alt+Z in this case. (We did not use Ctrl+Z
since that is the standardized key sequence for undo on most platforms.)

editInvertAction = self.createAction("&Invert",
 self.editInvert, "Ctrl+I", "editinvert",
 "Invert the image's colors", True, "toggled(bool)")

The "edit invert" action is a toggle action. We could still use the triggered() signal, but
then we would need to call isChecked() on the action to find out its state. It is more
convenient for us to use the toggled(bool) signal since that not only tells us that the
action has been invoked, but also whether it is checked or not. Actions also have a
triggered(bool) signal that is only emitted for user changes, but that is not suitable

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 184 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

here, because whether the checked status of the invert action is changed by the user or
programmatically, we want to act on it.

The "edit swap red and blue" action is similar to the "edit invert" action, so we won't show
it.

Like the "edit invert" action and the "edit swap red and blue" action, the mirror actions
are also checkable, but unlike the "invert" and "swap red and blue" actions which are
independent, we have chosen to make the mirror actions mutually exclusive, allowing only
one to be "on" at any one time. To get this behavior we create the mirror actions in the
normal way, but add each of them to an "action group". An action group is a class which
manages a set of checkable actions and ensures that if one of the actions it manages is set
to "on", the others are all set to "off".

mirrorGroup = QActionGroup(self)

An action group is a QObject subclass that is neither a top-level window nor a widget that
is laid out, so we must give it an explicit parent to ensure that it is deleted by PyQt at the
right time.

Object ownership sidebar 119

Once we have created the action group, we create the actions in the same way as before,
only now we add each one to the action group.

editUnMirrorAction = self.createAction("&Unmirror",
 self.editUnMirror, "Ctrl+U", "editunmirror",
 "Unmirror the image", True, "toggled(bool)")
mirrorGroup.addAction(editUnMirrorAction)

We have not shown the code for the "edit mirror vertically" or "edit mirror horizontally"
actions since it is almost identical to the code shown above.

editUnMirrorAction.setChecked(True)

Checkable actions default to being "off", but when we have a group like this where exactly
one must be "on" at a time, we must choose one to be on in the first place. In this case the
"edit unmirror" action is the most sensible to switch on initially. Checking the action will
cause it to emit its toggled() signal, but at this stage the QImage is null, and as we will
see, no change is applied to a null image.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 185 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We create two more actions, "help about", and "help help", with code very similar to what
we have already seen.

Although the actions are all in existence, none of them actually work! This is because they
only become operational once they have been added to a menu or to a toolbar or to both.

Menus in the menu bar are created by accessing the main window's menu bar (which is
created the first time menuBar() is called, just like the status bar). Here is the code for
creating the Edit menu:

editMenu = self.menuBar().addMenu("&Edit")
self.addActions(editMenu, (editInvertAction,
 editSwapRedAndBlueAction, editZoomAction))

We have created the Edit menu, and then used addActions() to add some actions to it.
This is sufficient to produce the Edit menu shown in Figure 6.4, apart from the Mirror
option which we will look at in a moment.

Figure 6.4. The Edit Menu and the Mirror Sub-Menu

Actions are added to menus and toolbars using addAction(). To reduce typing we have
created a tiny helper method which can be used to add actions to a menu or to a toolbar,
and which can also add separators. Here is its code:

def addActions(self, target, actions):
 for action in actions:
 if action is None:
 target.addSeparator()
 else:
 target.addAction(action)

The target is a menu or toolbar, and actions is a list or tuple of actions or Nones. We
could have used the built-in QWidget.addActions() method, but in that case we would
have to create separator actions (shown later) rather than use Nones.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 186 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The last option on the edit menu, Mirror, has a small triangle on its right. This signifies
that it has a sub-menu.

mirrorMenu = editMenu.addMenu(QIcon(":/editmirror.png"),
 "&Mirror")
self.addActions(mirrorMenu, (editUnMirrorAction,
 editMirrorHorizontalAction, editMirrorVerticalAction))

Sub-menus are populated in exactly the same way as any other menu, but they are added
to their parent menu using QMenu.addMenu() rather than to the main window's menu
bar using QMainWindow.menuBar().addMenu(). Having created the mirror menu, we
add actions to it using our addActions() helper method, just as we did before.

Most menus are created and then populated with actions in the same way as the edit menu,
but the file menu is different.

self.fileMenu = self.menuBar().addMenu("&File")
self.fileMenuActions = (fileNewAction, fileOpenAction,
 fileSaveAction, fileSaveAsAction, None,
 filePrintAction, fileQuitAction)
self.connect(self.fileMenu, SIGNAL("aboutToShow()"),
 self.updateFileMenu)

We want the file menu to show recently used files. For this reason we do not populate the
file menu here, but instead generate it dynamically whenever the user invokes it. This is
why we made the file menu an instance variable, and also why we have an instance variable
holding the file menu's actions. The connection ensures that whenever the file menu is
invoked our updateFileMenu() slot will be called. We will review this slot later on.

The help menu is created conventionally, in the same way as the edit menu, so we won't
show it.

With the menus in place we can now turn to the toolbars.

fileToolbar = self.addToolBar("File")
fileToolbar.setObjectName("FileToolBar")
self.addActions(fileToolbar, (fileNewAction, fileOpenAction,
 fileSaveAsAction))

Creating a toolbar is similar to creating a menu:We call addToolBar() to create a
QToolBar object and populate it using addActions(). We can use our addActions
() method for both menus and toolbars because their APIs are very similar, with both
providing addAction() and addSeparator() methods. The reason we set an object
name is so that PyQt can save and restore the toolbar's position—there can be any number
of toolbars and PyQt uses the object name to distinguish between them, just as it does for
dock widgets. The resulting toolbar is shown in Figure 6.5.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 187 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 6.5. The File Toolbar

The edit toolbar and the checkable actions ("edit invert", "edit swap red and blue", and the
mirror actions) are all created in the same way. But as Figure 6.6 shows, the edit toolbar
has a spinbox in addition to its toolbar buttons. In view of this, we will show the code for
this toolbar in full, showing it in two parts for ease of explanation.

Figure 6.6. The Edit Toolbar

editToolbar = self.addToolBar("Edit")
editToolbar.setObjectName("EditToolBar")
self.addActions(editToolbar, (editInvertAction,
 editSwapRedAndBlueAction, editUnMirrorAction,
 editMirrorVerticalAction,
 editMirrorHorizontalAction))

Creating the toolbar and adding actions to it is the same as for any other toolbar.

We want to provide the user with a quick means of changing the zoom factor, so we provide
a spinbox in the edit toolbar to make this possible. Earlier, we put a separate "edit zoom"
action in the edit menu, to cater for keyboard users.

self.zoomSpinBox = QSpinBox()
self.zoomSpinBox.setRange(1, 400)
self.zoomSpinBox.setSuffix(" %")
self.zoomSpinBox.setValue(100)
self.zoomSpinBox.setToolTip("Zoom the image")
self.zoomSpinBox.setStatusTip(self.zoomSpinBox.toolTip())
self.zoomSpinBox.setFocusPolicy(Qt.NoFocus)
self.connect(self.zoomSpinBox,
 SIGNAL("valueChanged(int)"), self.showImage)
editToolbar.addWidget(self.zoomSpinBox)

The pattern for adding widgets to a toolbar is always the same: We create the widget, set
it up, connect it to something to handle user interaction, and add it to the toolbar. We have
made the spinbox an instance variable because we will need to access it outside the main
window's initializer. The addWidget() call passes ownership of the spinbox to the
toolbar.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 188 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We have now fully populated the menus and toolbars with actions. While every action was
added to the menus, some were not added to the toolbars. This is quite conventional;
usually only the most frequently used actions are added to toolbars.

Earlier we saw the following line of code:

self.imageLabel.setContextMenuPolicy(Qt.ActionsContextMenu)

This tells PyQt that if actions are added to the imageLabel widget, they are to be used
for a context menu.

self.addActions(self.imageLabel, (editInvertAction,
 editSwapRedAndBlueAction, editUnMirrorAction,
 editMirrorVerticalAction, editMirrorHorizontalAction))

Figure 6.7. The Image Label's Context Menu

We can reuse our addActions() method to add actions to the label widget, providing we
don't pass Nones since QWidget does not have an addSeparator() method. Setting the
policy and adding actions to a widget are all that is necessary to get a context menu for that
widget.

The QWidget class has an addAction() method that is inherited by the QMenu,
QMenuBar, and QToolBar classes. This is why we can add actions to any of these classes.
Although the QWidget class does not have an addSeparator() method, one is provided
for convenience in the QMenu, QMenuBar, and QToolBar classes. If we want to add a
separator to a context menu, we must do so by adding a separator action, for example:

separator = QAction(self)
separator.setSeparator(True)
self.addActions(editToolbar, (editInvertAction,
 editSwapRedAndBlueAction, separator, editUnMirrorAction,
 editMirrorVerticalAction, editMirrorHorizontalAction))

If we need more sophisticated context menu handling, for example, where the menu's
actions vary depending on the application's state, we can reimplement the relevant

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 189 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

widget's contextMenuEvent() event handling method. Event handling is covered in
Chapter 10.

contextMenu-Event() 307

When we create a new image or load an existing image, we want the user interface to revert
to its original state. In particular we want the "edit invert" and "edit swap red and green"
actions to be "off", and the mirror action to be "edit unmirrored".

self.resetableActions = ((editInvertAction, False),
 (editSwapRedAndBlueAction, False),
 (editUnMirrorAction, True))

We have created an instance variable holding a tuple of pairs, with each pair holding an
action and the checked state it should have when a new image is created or loaded. We will
see resetableActions in use when we review the fileNew() and loadFile() slots.

In the Image Changer application, all of the actions are enabled all of the time. This is fine
since we always check for a null image before performing any action, but has the
disadvantage that, for example, "file save" will be enabled if there is no image or if there
is an unchanged image, and similarly, the edit actions will be enabled even if there is no
image. The solution is to enable or disable actions depending on the application's state, as
the sidebar in Chapter 13 shows.

Enabling and Disabling Actions sidebar 382

Restoring and Saving the Main Window's State
Now that the main window's user interface has been fully set up, we are almost ready to
finish the initializer method, but before we do we will restore the application's settings
from the previous run (or use default settings if this is the very first time the application
has been run).

Before we can look at application settings though, we must make a quick detour and look
at the creation of the application object and how the main window itself is created. The
very last executable statement in the imagechanger.pyw file is the bare function call:

main()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 190 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

As usual we have chosen to use a conventional name for the first function we execute. Here
is its code:

def main():
 app = QApplication(sys.argv)
 app.setOrganizationName("Qtrac Ltd.")
 app.setOrganizationDomain("qtrac.eu")
 app.setApplicationName("Image Changer")
 app.setWindowIcon(QIcon(":/icon.png"))
 form = MainWindow()
 form.show()
 app.exec_()

The function's first line is one we have seen many times before. The next three lines are
new. Our primary use of them is for loading and saving application settings. If we create
a QSettings object without passing any arguments, it will make use of the organization
name or domain (depending on platform), and the application name that we have set here.
So by setting these once on the application object, we don't have to remember to pass them
whenever we need a QSettings instance.

But what do these names mean? They are used by PyQt to save the application's settings
in the most appropriate place, for example in the Windows registry, or in a directory under
$HOME/.config on Linux, or in $HOME/Library/Preferences on Mac OS X. The
registry keys or file and directory names are derived from the names we give to the
application object.

We can tell that the icon file is loaded from the qrc_resources module because its path
begins with :/.

After we have set up the application object, we create the main window, show it, and start
off the event loop, in just the same way as we have done in examples in previous chapters.

Now we can return to where we got up to in the MainWindow.__init__() method, and
see how it restores system settings.

settings = QSettings()
self.recentFiles = settings.value("RecentFiles").toStringList()
size = settings.value("MainWindow/Size",
 QVariant(QSize(600, 500))).toSize()
self.resize(size)
position = settings.value("MainWindow/Position",
 QVariant(QPoint(0, 0))).toPoint()
self.move(position)
self.restoreState(
 settings.value("MainWindow/State").toByteArray())

self.setWindowTitle("Image Changer")
self.updateFileMenu()
QTimer.singleShot(0, self.loadInitialFile)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 191 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We begin by creating a QSettings object. Since we passed no arguments, the names held
by the application object are used to locate the settings information. We begin by retrieving
the recently used files list. The QSettings.value() method always returns a
QVariant, so we must convert it to the data type we are expecting.

Next we use the two-argument form of value(), where the second argument is a default
value. This means that the very first time the application is run, it has no settings at all, so
we will get a QSize() object with a width of 600 pixels, and a height of 500 pixels.[*] On
subsequent runs the size returned will be whatever the size of the main window was when
the application was terminated—so long as we remember to save the size when the
application terminates. Once we have a size we resize the main window to the given size.
After getting the previous (or default) size, we retrieve and set the position in exactly the
same way.

[*] PyQt's documentation rarely gives units of measurement because it is assumed that the units are pixels, except for QPrinter, which uses points.

There is no flickering, because the resizing and positioning are done in the main window's
initializer, before the window is actually shown to the user.

Qt 4.2 introduced two new QWidget methods for saving and restoring a top-level window's
geometry. Unfortunately, a bug meant that they were not reliable in all situations on X11-
based systems, and for this reason we have restored the window's size and position as
separate items. Qt 4.3 has fixed the bug, so if using Qt 4.3 (e.g., with PyQt 4.3), instead of
retrieving the size and position and calling resize() and move(), everything can be done
using a single line:

self.restoreGeometry(settings.value("Geometry").toByteArray())

This assumes that the geometry was saved when the application was terminated, as we will
see when we look at the closeEvent().

closeEvent() 185

The QMainWindow class provides a restoreState() method and a saveState()
method; these methods restore from and save to a QByteArray. The data they save and
restore are the dock window sizes and positions, and the toolbar positions—but they only
work for dock widgets and toolbars that have unique object names.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 192 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

After setting the window's title, we call updateFileMenu() to create the file menu.
Unlike the other menus, the file menu is generated dynamically; this is so that it can show
any recently used files. The connection from the file menu's aboutToShow() signal to
the updateFileMenu() method means that the file menu is created afresh whenever the
user clicks File in the menu bar, or presses Alt+F. But until this method has been called
for the first time, the file menu does not exist—which means that the keyboard shortcuts
for actions that have not been added to a toolbar, such as Ctrl+Q for "file quit", will not
work. In view of this, we explicitly call updateFileMenu() to create an initial file menu
and to activate the keyboard shortcuts.

The initializer's last line looks rather peculiar. A single shot timer takes a timeout argument
(in milliseconds), and a method to call when the timeout occurs. So it looks as if the line
could have been written like this instead:

self.loadInitialFile()

In this application, where we only load at most one initial file, and where that file is very
unlikely to be as big even as 1 MB, we could use either approach without noticing any
difference. Nonetheless, calling the method directly is not the same as using a single shot
timer with a zero timeout, as the "Doing Lots of Processing at Start Up" sidebar on page
184 explains.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 193 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Doing Lots of Processing at Start Up

If we need to do lots of processing at start up, for example, if we need to load in
lots of large files, we always do so in a separate loading method. At the end of
the main form's constructor, the loading method is called through a zero timeout
single shot timer.

What would happen if we didn't use a single shot timer? Imagine, for example,
that the method was loadInitialFiles() and that it loaded lots of multi-
megabyte-sized files. The file loading would be done when the main window
was being created, i.e., before the show() call, and before the event loop (exec_
()) had been started. This means that the user might experience a long delay
between launching the application and actually seeing the application's window
appear on screen. Also, if the file loading might result in message boxes being
popped up, for example, to report errors, it makes more sense to have these
appear after the main window is shown, and when the event loop is running.

What we want to happen is for the main window to appear as quickly as possible
so that the user knows that the launch was successful, and so that they can see
any long-running processes, like loading large files, through the main window's
user interface. This is achieved by using a single shot timer as we did in the
Image Changer example.

The reason this works is that a single shot timer with a timeout of zero does not
execute the slot it is given immediately. Instead, it puts the slot to be called in
the event queue and then simply returns. At this point the end of the main
window's initializer is reached and the initialization is complete. The very next
statement (in main()) is a show() call on the main window, and this does
nothing except add a show event to the event queue. So now the event queue
has a timer event and a show event. A timer event with a timeout of zero is taken
to mean, "do this when the event queue has nothing else to do", so when the
next statement, exec_(), is reached and starts off the event loop, it always
chooses to handle the show event first, so the form appears, and then, with no
other events left, the single shot timer's event is processed, and the
loadInitialFiles() call is made.

We have now finished reviewing the code for initializing the main window, so now we can
begin looking at the other methods that must be implemented to provide the application's
functionality. Although the Image Changer application is just one specific example, to the
greatest extent possible we have made the code either generic, or easily adaptable, so that

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 194 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

it could be used as the basis for other main window style applications, even ones that are
completely different.

In view of the discussions we have just had, it seems appropriate to begin our coverage
with the loadInitialFile() method.

def loadInitialFile(self):
 settings = QSettings()
 fname = unicode(settings.value("LastFile").toString())
 if fname and QFile.exists(fname):
 self.loadFile(fname)

This method uses a QSettings object to get the last image that the application used. If
there was such an image, and it still exists, the program attempts to load it. We will review
loadFile() when we cover the file actions.

We could just as easily have written if fname and os.access(fname,
os.F_OK): It makes no noticable difference here, but for multi-person projects it may be
wise to have a policy of preferring PyQt over the standard Python libraries or vice versa in
cases like this, just to keep things as simple and clear as possible.

We discussed restoring the application's state a little earlier on, so it seems appropriate to
cover the close event, since that is where we save the application's state.

def closeEvent(self, event):
 if self.okToContinue():
 settings = QSettings()
 filename = QVariant(QString(self.filename)) \
 if self.filename is not None else QVariant()
 settings.setValue("LastFile", filename)
 recentFiles = QVariant(self.recentFiles) \
 if self.recentFiles else QVariant()
 settings.setValue("RecentFiles", recentFiles)
 settings.setValue("MainWindow/Size", QVariant(self.size()))
 settings.setValue("MainWindow/Position",
 QVariant(self.pos()))
 settings.setValue("MainWindow/State",
 QVariant(self.saveState()))
 else:
 event.ignore()

If the user attempts to close the application, by whatever means (apart from killing or
crashing it), the closeEvent() method is called. We begin by calling our own custom
okToContinue() method; this returns True if the user really wants to close, and
False otherwise. It is inside okToContinue() that we give the user the chance to save

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 195 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

unsaved changes. If the user does want to close, we create a fresh QSettings object, and
store the "last file" (i.e., the file the user has open), the recently used files, and the main
window's state. The QSettings class only reads and writes QVariant objects, so we must
be careful to provide either null QVariants (created with QVariant()), or QVariants
with the correct information in them.

Table 6.2. Selected QMainWindow Methods

Syntax Description

m.addDockWidget(a, d) Adds QDockWidget d into Qt.QDockWidgetArea a in QMainWindow m

m.addToolBar(s) Adds and returns a new QToolBar called string

m.menuBar() Returns QMainWindow m's QMenuBar (which is created the first time this method is called)

m.restoreGeometry(ba) Restores QMainWindow m's position and size to those encapsulated in QByteArray ba

m.restoreState(ba) Restores QMainWindow m's dock widgets and toolbars to the state encapsulated in
QByteArray ba

m.saveGeometry()

Returns QMainWindow m's position and size encapsulated in a QByteArray

m.saveState() Returns the state of QMainWindow m's dock widgets and toolbars, i.e., their sizes and
positions, encapsulated in a QByteArray

m.setCentralWidget(w) Set's QMainWindow m's central widget to be QWidget w

m.statusBar() Returns QMainWindow m's QStatusBar (which is created the first time this method is
called)

m.setWindowIcon(i) Sets QMainWindow m's icon to QIcon i; this method is inherited from QWidget

m.setWindowTitle(s) Sets QMainWindow m's title to string s; this method is inherited from QWidget

If the user chose not to close, we call ignore() on the close event. This will tell PyQt to
simply discard the close event and to leave the application running.

If we are using Qt 4.3 (e.g., with PyQt 4.3) and have restored the main window's geometry
using QWidget.restoreGeometry(), we can save the geometry like this:

settings.setValue("Geometry", QVariant(self.saveGeometry()))

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 196 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If we take this approach we do not need to save the main window's size or position
separately.

def okToContinue(self):
 if self.dirty:
 reply = QMessageBox.question(self,
 "Image Changer - Unsaved Changes",
 "Save unsaved changes?",
 QMessageBox.Yes|QMessageBox.No|
 QMessageBox.Cancel)
 if reply == QMessageBox.Cancel:
 return False
 elif reply == QMessageBox.Yes:
 self.fileSave()
 return True

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 197 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The Static QMessageBox Methods

The QMessageBox class offers several static convenience methods that pop up
a modal dialog with a suitable icon and buttons. They are useful for offering
users dialogs that have a single OK button, or Yes and No buttons, and similar.

The most commonly used QMessageBox static methods are critical(),
information(), question(), and warning(). The methods take a parent
widget (over which they center themselves), a window title text, a message text
(which can be plain text or HTML), and zero or more button specifications. If
no buttons are specified, a single OK button is provided.

The buttons can be specified using constants, or we can provide our own texts.
In Qt 4.0 and Qt 4.1, it was very common to bitwise OR
QMessageBox.Default with OK or Yes buttons—this means the button will
be pressed if the user presses Enter, and to bitwise OR
QMessageBox.Escape with the Cancel or No buttons, which will then be
pressed if the user presses Esc. For example:

reply = QMessageBox.question(self,
 "Image Changer - Unsaved Changes", "Save unsaved changes?",
 QMessageBox.Yes|QMessageBox.Default,
 QMessageBox.No|QMessageBox.Escape)

The methods return the constant of the button that was pressed.

From Qt 4.2 the QMessageBox API has been simplified so that instead of
specifying buttons and using bitwise ORs, we can just use buttons. For example,
for a yes/no/cancel dialog we could write:

reply = QMessageBox.question(self,
 "Image Changer - Unsaved Changes", "Save unsaved changes?",
 QMessageBox.Yes|QMessageBox.No|QMessageBox.Cancel)

In this case, PyQt will automatically make the Yes (accept) button the default
button, activated by the user pressing Enter, and the Cancel (reject) button the
escape button, activated by the user pressing Esc. The QMessageBox methods
also make sure that the buttons are shown in the correct order for the platform.
We use the Qt 4.2 syntax for the examples in this book.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 198 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The message box is closed by the user clicking the "Accept" button (often Yes or
OK) or the "Reject" button (often No or Cancel). The user can also in effect press
the "Reject" button by clicking the window's close button, X, or by pressing
Esc.

If we want to create a customized message box, for example using custom button
texts and a custom icon, we can create a QMessageBox instance. We can then
use methods such as QMessageBox.addButton(), and
QMessageBox.setIcon(), and pop up the message box by calling
QMessageBox.exec_().

This method is used by the closeEvent(), and also by the "file new" and "file open"
actions. If the image is "dirty", i.e., has unsaved changes, we pop up a message box and
ask the user what they want to do. If they say yes, we save the image to disk and return
True. If they say no, we simply return True, so the unsaved changes will be lost. If they
say cancel, we return False which means that the unsaved changes are not saved, but the
current image will remain current, so it could be saved later.

The recently used files list is part of the application's state that must not only be saved and
restored when the application is terminated and executed, but also kept current at runtime.
Earlier on we connected the fileMenu's aboutToShow() signal to a custom
updateFileMenu() slot. So when the user presses Alt+F, or clicks the File menu, this
slot is called, before the File menu is shown.

def updateFileMenu(self):
 self.fileMenu.clear()
 self.addActions(self.fileMenu, self.fileMenuActions[:-1])
 current = QString(self.filename) \
 if self.filename is not None else None
 recentFiles = []
 for fname in self.recentFiles:
 if fname != current and QFile.exists(fname):
 recentFiles.append(fname)
 if recentFiles:
 self.fileMenu.addSeparator()
 for i, fname in enumerate(recentFiles):
 action = QAction(QIcon(":/icon.png"), "&%d %s" % (
 i + 1, QFileInfo(fname).fileName()), self)
 action.setData(QVariant(fname))
 self.connect(action, SIGNAL("triggered()"),
 self.loadFile)
 self.fileMenu.addAction(action)
 self.fileMenu.addSeparator()
 self.fileMenu.addAction(self.fileMenuActions[-1])

We begin by clearing all the file menu's actions. Then we add back the original list of file
menu actions, such as "file new" and "file open", but excluding the last one, "file quit".

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 199 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Then we iterate over the recently used files list creating a local list which only contains files
that still exist in the file system, and excluding the current file. Although it does not seem
to make much sense, many applications include the current file, often showing it first in
the list.

Now, if there are any recently used files in our local list, we add a separator to the menu,
and then create an action for each one with a text that just contains the filename (without
the path), preceded by a numbered accelerator 1, 2, ..., 9. PyQt's QFileInfo class provides
information on files similar to some of the functions offered by Python's os module. The
QFileInfo.fileName() method is equivalent to os.path.basename(). For each
action we also store an item of "user data"—in this case, the file's full name including its
path. Finally, we connect each recently used filename's action's triggered() signal to
the loadFile() slot, and add the action to the menu. (We cover loadFile() in the next
section.) At the end we add another separator, and the file menu's last action, "file quit".

But how is the recently used files list created and maintained? We saw in the form's
initializer, that we initially populate the recentFiles string list from the application's
settings. We have also seen that the list is correspondingly saved in the closeEvent().
New files are added to the list using addRecentFile().

def addRecentFile(self, fname):
 if fname is None:
 return
 if not self.recentFiles.contains(fname):
 self.recentFiles.prepend(QString(fname))
 while self.recentFiles.count() > 9:
 self.recentFiles.takeLast()

This method prepends the given filename, and then pops off any excess files from the end
(the ones added longest ago), so that we never have more than nine filenames in our list.
We keep the recentFiles variable as a QStringList, which is why we have used
QStringList methods rather than Python list methods on it.

The addRecentFile() method itself is called inside the fileNew(), fileSaveAs(),
and loadFile() methods; and indirectly from loadInitialFile(), fileOpen(),
and updateFileMenu(), all of which either call or connect to loadFile(). So when we
save an image for the first time, or under a new name, or create a new image or open an
existing image, the filename is added to the recently used files list. However, the newly
added filename will not appear in the file menu, unless we subsequently create or open
another image, since our updateFileMenu() method does not display the current
image's filename in the recently used files list.

The approach to handling recently used files that we have taken here is just one of many
possibilities. An alternative is to create the file menu just once, with a set of actions at the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 200 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

end for recently used files. When the menu is updated, instead of being cleared and
recreated, the actions set aside for recently used files are simply hidden or shown, in the
latter case, having had their filenames updated to reflect the current set of recently used
files. From

Figure 6.8. The File Menu with some Recently Used Files

the user's point of view, there is no discernable difference whichever approach we take
under-the-hood.

Both approaches can be used to implement recently used files in a file menu, adding the
list at the end as we have done in the Image Changer application, just before the Quit
option. They can also both be used to implement the Open Recent File menu option that
has all the recent files as a sub-menu, as used by OpenOffice.org and some other
applications. The benefits of using a separate Open Recent File option is that the File menu
is always the same, and full paths can be shown in the sub-menu—something we avoid
when putting recently used files directly in the File menu to avoid it becoming extremely
wide (and therefore ugly).

Handling User Actions
In the previous section we created the appearance of our main window style application
and provided its behavioral infrastructure by creating a set of actions. We also saw how to
save and restore application settings, and how to manage a recently used files list.

Some of an application's behavior is automatically handled by PyQt, for example, window
minimizing, maximizing, and resizing, so we do not have to do this ourselves. Some other

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 201 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

behaviors can be implemented purely through signals and slots connections. In this section
we are concerned with the actions that are directly under the control of the user and which
can be used to view, edit, and output, their data.

Handling File Actions
The File menu is probably the most widely implemented menu in main window style
applications, and in most cases offers, at the least, "new", "save", and "quit" (or "exit")
options.

def fileNew(self):
 if not self.okToContinue():
 return
 dialog = newimagedlg.NewImageDlg(self)
 if dialog.exec_():
 self.addRecentFile(self.filename)
 self.image = QImage()
 for action, check in self.resetableActions:
 action.setChecked(check)
 self.image = dialog.image()
 self.filename = None
 self.dirty = True
 self.showImage()
 self.sizeLabel.setText("%d x %d" % (self.image.width(),
 self.image.height()))
 self.updateStatus("Created new image")

When the user asks to work on a new file we begin by seeing if it is "okay to continue". This
gives the user the chance to save or discard any unsaved changes, or to change their mind
entirely and cancel the action.

okToContinue() 188

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 202 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 6.9. The New Image Dialog

If the user continues, we pop up a modal NewImageDlg in which they can specify the size,
color, and brush pattern of the image they want to create. This dialog is created and used
just like the dialogs we created in the previous chapter. However, the new image dialog's
user interface was created using Qt Designer, and the user interface file must be converted
into a module file, using pyuic4, for the dialog to be usable. This can be done directly by
running pyuic4, or by running either mkpyqt.py or Make PyQt, both of which are easier
since they work out the correct command line arguments automatically. We will cover all
these matters in the next chapter.

mkpyqt.py and Make PyQt sidebar 207

If the user accepts the dialog, we add the current filename (if any) to the recently used files
list. Then we make the current image null to ensure that any changes to checkable actions
have no effect on the image. Next we go through the actions that we want to be reset when
a new image is created or loaded, setting each one to our preferred default value. Now we
can safely set the image to the one created by the dialog.

We set the filename to be None and the dirty flag to be True to ensure that the user will
be prompted to save the image and asked for a filename, if they terminate the application
or attempt to create or load another image.

We then call showImage() which displays the image in the imageLabel, scaled
according to the zoom factor. Finally, we update the size label in the status bar, and call
updateStatus().

def updateStatus(self, message):
 self.statusBar().showMessage(message, 5000)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 203 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 self.listWidget.addItem(message)
 if self.filename is not None:
 self.setWindowTitle("Image Changer - %s[*]" % \
 os.path.basename(self.filename))
 elif not self.image.isNull():
 self.setWindowTitle("Image Changer - Unnamed[*]")
 else:
 self.setWindowTitle("Image Changer[*]")
 self.setWindowModified(self.dirty)

We begin by showing the message that has been passed, with a timeout of five seconds.
We also add the message to the log widget to keep a log of every action that has taken place.

If the user has opened an existing file, or has saved the current file, we will have a filename.
We put the filename in the window's title using Python's os.path.basename() function
to get the filename without the path. We could just as easily have written QFileInfo
(fname).fileName() instead, as we did earlier. If there is no filename and the image
variable is not null, it means that the user has created a new image, but has not yet saved
it; so we use a fake filename of "Unnamed". The last case is where no file has been opened
or created.

Regardless of what we set the window title to be, we include the string "[*]" somewhere
inside it. This string is never displayed as it is: Instead it is used to indicate whether the
file is dirty or not. On Linux and Windows this means that the filename will be shown
unadorned if it has no unsaved changes, and with an asterisk "*" replacing the "[*]" string
otherwise. On Mac OS X, the close button will be shown with a dot in it if there are unsaved
changes. The mechanism depends on the window modified status, so we make sure we set
that to the state of the dirty flag.

def fileOpen(self):
 if not self.okToContinue():
 return
 dir = os.path.dirname(self.filename) \
 if self.filename is not None else "."
 formats = ["*.%s" % unicode(format).lower() \
 for format in QImageReader.supportedImageFormats()]
 fname = unicode(QFileDialog.getOpenFileName(self,
 "Image Changer - Choose Image", dir,
 "Image files (%s)" % " ".join(formats)))
 if fname:
 self.loadFile(fname)

If the user asks to open an existing image, we first of all make sure that they have had the
chance to save or discard any unsaved changes, or to cancel the action entirely.

If the user has decided to continue, as a courtesy, we want to pop up a file open dialog set
to a sensible directory. If we already have an image filename, we use its path, otherwise
we use ".", the current directory. We have also chosen to pass in a file filter string that

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 204 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

limits the image file types the file open dialog can show. Such file types are defined by their
extensions, and passed as a string. The string may specify multiple extensions for a single
type, and multiple types. For example, a text editor might pass a string of:

"Text files (*.txt)\nHTML files (*.htm *.html)"

If there is more than one type, we must separate them with newlines. If a type can handle
more than one extension we must separate the extensions with spaces. The string shown
will produce a file type combobox with two items, "Text files" and "HTML files", and will
ensure that the only file types shown in the dialog are those that have an extension
of .txt, .htm, or .html.

In the case of the Image Changer application, we use the list of image type extensions for
the image types that can be read by the version of PyQt that the application is using. At the
very least this is likely to include .bmp, .jpg (and .jpeg, the same as .jpg), and .png.

List comprehensions 53

The list comprehension iterates over the readable image extensions, and creates a list of
strings, of the form "*.bmp", "*.jpg", and so on; these are joined, space-separated, into a
single string by the string join() method.

The QFileDialog.getOpenFileName() method returns a QString which either
holds a filename (with full path), or is empty (if the user canceled). If the user chose a
filename we call loadFile() to load it.

Here, and throughout the program, when we have needed the application's name we have
simply written it. But since we set the name in the application object in main() to simplify
our QSettings usage, we could instead retrieve the name whenever it was required. In
this case the relevant code would then become:

fname = unicode(QFileDialog.getOpenFileName(self,
 "%s - Choose Image" % QApplication.applicationName(),
 dir, "Image files (%s)" % " ".join(formats)))

It is surprising how frequently the name of the application is used. The file
imagechanger.pyw is less than 500 lines, but uses the application's name a dozen times.
Some developers prefer to use the method call to guarantee consistency. We will discuss
string handling further in Chapter 17 when we cover internationalization.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 205 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If the user opens a file, the loadFile() method is called to actually perform the loading.
We will look at this method in two parts.

def loadFile(self, fname=None):
 if fname is None:
 action = self.sender()
 if isinstance(action, QAction):
 fname = unicode(action.data().toString())
 if not self.okToContinue():
 return
 else:
 return

If the method is called from the fileOpen() or loadInitialFile() methods, it is
passed the filename to open. But if it is called from a recently used file action, no filename
is passed. We can use this difference to distinguish the two cases. If a recently used file
action was invoked, we retrieve the sending object. This should be a QAction, but we
check to be safe, and then extract the action's user data, in which we stored the recently
used file's full name including its path. User data is held as a QVariant, so we must convert
it to a suitable type. At this point, we check to see if it is okay to continue. We do not have
to make this test in the file open case, because there, the check is made before the user is
even asked for the name of a file to open. So now, if the method has not returned, we know
that we have a filename in fname that we must try to load.

if fname:
 self.filename = None
 image = QImage(fname)
 if image.isNull():
 message = "Failed to read %s" % fname
 else:
 self.addRecentFile(fname)
 self.image = QImage()
 for action, check in self.resetableActions:
 action.setChecked(check)
 self.image = image
 self.filename = fname
 self.showImage()
 self.dirty = False
 self.sizeLabel.setText("%d x %d" % (
 image.width(), image.height()))
 message = "Loaded %s" % os.path.basename(fname)
 self.updateStatus(message)

We begin by making the current filename None and then we attempt to read the image
into a local variable. PyQt does not use exception handling, so errors must always be
discovered indirectly. In this case a null image means that for some reason we failed to
load the image. If the load was successful we add the new filename to the recently used
files list, where it will only appear if another file is subsequently opened, or if this one is
saved under another name. Next, we set the instance image variable to be null: This leaves

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 206 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

us free to reset the checkable actions to our preferred defaults without any actions taking
place as a result of any state changes.

add-Recent-File() 189

After the preliminaries, we assign the local image to the image instance variable and the
local filename to the filename instance variable. Next we call showImage() to show the
image at the current zoom factor, clear the dirty flag, and update the size label. Finally, we
call updateStatus() to show the message in the status bar, and to update the log widget.

def fileSave(self):
 if self.image.isNull():
 return
 if self.filename is None:
 self.fileSaveAs()
 else:
 if self.image.save(self.filename, None):
 self.updateStatus("Saved as %s" % self.filename)
 self.dirty = False
 else:
 self.updateStatus("Failed to save %s" % self.filename)

The fileSave() method, and many others, act on the application's data (a QImage
instance), but make no sense if there is no image data. For this reason, many of the methods
do nothing and return immediately if there is no image data for them to work on.

If there is image data, and the filename is None, then the user must have invoked the "file
new" action, and is now saving their image for the first time. For this case, we pass on the
work to the fileSaveAs() method.

If we have a filename we attempt to save the image using QImage.save().[*] This method
returns a Boolean success/failure flag, in response to which we update the status
accordingly.

[*] We will cover loading and saving custom file formats in Chapter 8, since we are concentrating purely on main window functionality in this chapter.

def fileSaveAs(self):
 if self.image.isNull():
 return
 fname = self.filename if self.filename is not None else "."
 formats = ["*.%s" % unicode(format).lower() \
 for format in QImageWriter.supportedImageFormats()]
 fname = unicode(QFileDialog.getSaveFileName(self,
 "Image Changer - Save Image", fname,
 "Image files (%s)" % " ".join(formats)))
 if fname:
 if "." not in fname:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 207 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 fname += ".png"
 self.addRecentFile(fname)
 self.filename = fname
 self.fileSave()

When the "file save as" action is triggered we begin by retrieving the current filename. If
the filename is None we set it to be ".", the current directory. We then use the
QFileDialog.getSaveFileName() dialog to prompt the user to give us a filename to
save under. If the current filename is not None, we use that as the default name—the file
save dialog takes care of giving a warning yes/no dialog if the user chooses the name of a
file that already exists. We use the same technique for setting the file filters string as we
used for the "file open" action, but this time using the list of image formats that this version
of PyQt can write (which may be different from the list of formats it can read).

If the user entered a filename that does not include a dot, i.e., it has no extension, we set
the extension to be .png. Next we add the filename to the recently used files list (so that
it will appear if a different file is subsequently opened, or this one saved under a new name),
set the filename instance variable to the name, and pass the work of saving to the
fileSave() method that we have just reviewed.

The last file action we must consider is "file print". When this action is invoked the
filePrint() method is called. This method paints the image on a printer. Since the
method uses techniques that we have not covered yet, we will defer discussion of it until
later. The technique it uses is shown in the printing images sidebar, and coverage of the
filePrint() method itself is in Chapter 13 (from page 397) where we also discuss
approaches to printing documents in general.

Printing Images sidebar 359

The only file action we have not reviewed is the "file quit" action. This action is connected
to the main window's close() method which in turn causes a close event to be put on the
event queue. We provided a reimplementation of the closeEvent() handler in which
we made sure the user had the chance to save unsaved changes, using a call to
okToContinue(), and where we saved the application's settings.

close-Event() 186

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 208 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Handling Edit Actions
Most of the functionality of the file actions was provided by the MainWindow subclass
itself. The only work passed on was the image loading and saving which the QImage
instance variable was required to do. This particular division of responsibilities between
a main window and the data structure that holds the data that is being viewed and edited,
where the main window handles the high-level file new, open, save, and recently used files
functionality, and the data structure handles loading and saving, is very common.

It is also common for most, or even all, of the editing functionality being passed either to
the view widget, or to the data structure. In the Image Changer application, all the data
manipulation is handled by the data structure (the image QImage), while the
presentation of the data is handled by the data viewer (the imageLabel QLabel). Again,
this is a very common separation of responsibilities.

In this section we will review most of the edit actions, omitting a couple that are almost
identical to ones that are shown. We will be quite brief here, since the functionality is
specific to the Image Changer application.

def editInvert(self, on):
 if self.image.isNull():
 return
 self.image.invertPixels()
 self.showImage()
 self.dirty = True
 self.updateStatus("Inverted" if on else "Uninverted")

If the user invokes the "edit invert" action it will be checked (or unchecked). In either case
we simply invert the image's pixels using the functionality provided by QImage, show the
changed image, set the dirty flag, and call updateStatus() so that the status bar briefly
shows the action that was performed, and an additional item is added to the log.

The editSwapRedAndBlue() method (not shown) is the same except that it uses the
QImage.rgbSwapped() method, and has different status texts.

def editMirrorHorizontal(self, on):
 if self.image.isNull():
 return
 self.image = self.image.mirrored(True, False)
 self.showImage()
 self.mirroredhorizontally = not self.mirroredhorizontally
 self.dirty = True
 self.updateStatus("Mirrored Horizontally" \
 if on else "Unmirrored Horizontally")

This method is structurally the same as editInvert() and editSwapRedAndBlue().
The QImage.mirrored() method takes two Boolean flags, the first for horizontal

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 209 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

mirroring, and the second for vertical mirroring. In the Image Changer application we
have deliberately restricted what mirroring is allowed, so users can only have no mirroring,
vertical mirroring, or horizontal mirroring, but not a combination of vertical and
horizontal. We also keep an instance variable that keeps track of whether or not the image
is horizontally mirrored.

The editMirrorVertical() method, not shown, is virtually identical.

def editUnMirror(self, on):
 if self.image.isNull():
 return
 if self.mirroredhorizontally:
 self.editMirrorHorizontal(False)
 if self.mirroredvertically:
 self.editMirrorVertical(False)

This method switches off whichever mirroring is in force, or does nothing if the image is
not mirrored. It does not set the dirty flag or update the status: It leaves that for
editMirrorHorizontal() or editMirrorVertical(), if it calls either of them.

The application provides two means by which the user can change the zoom factor. They
can interact with the zoom spinbox in the toolbar—its valueChanged() signal is
connected to the showImage() slot that we will review shortly—or they can invoke the
"edit zoom" action in the Edit menu. If they use the "edit zoom" action, the editZoom
() method is called.

def editZoom(self):
 if self.image.isNull():
 return
 percent, ok = QInputDialog.getInteger(self,
 "Image Changer - Zoom", "Percent:",
 self.zoomSpinBox.value(), 1, 400)
 if ok:
 self.zoomSpinBox.setValue(percent)

We begin by using one of the QInputDialog class's static methods to obtain a zoom factor.
The getInteger() method takes a parent (over which the dialog will center itself), a
caption, a text describing what data is wanted, an initial value, and, optionally, minimum
and maximum values.

The QInputDialog provides some other static convenience methods, including,
getDouble() to get a floating-point value, getItem() to choose a string from a list, and
getText() to get a string. For all of them, the return value is a two-tuple, containing the
value and a Boolean flag indicating whether or not the user canceled.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 210 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If the user clicked OK we set the zoom spinbox's value to the given integer. If this value is
different from the current value, the spinbox will emit a valueChanged() signal. This
signal is connected to the showImage() slot, so the slot will be called if the user chose a
new zoom percentage value.

def showImage(self, percent=None):
 if self.image.isNull():
 return
 if percent is None:
 percent = self.zoomSpinBox.value()
 factor = percent / 100.0
 width = self.image.width() * factor
 height = self.image.height() * factor
 image = self.image.scaled(width, height, Qt.KeepAspectRatio)
 self.imageLabel.setPixmap(QPixmap.fromImage(image))

This slot is called when a new image is created or loaded, whenever a transformation is
applied, and in response to the zoom spinbox's valueChanged() signal. This signal is
emitted whenever the user changes the toolbar zoom spinbox's value, either directly using
the mouse, or indirectly through the "edit zoom" action described above.

We retrieve the percentage and turn it into a zoom factor that we can use to produce the
image's new width and height. We then create a copy of the image scaled to the new size
and preserving the aspect ratio, and set the imageLabel to display this image. The label
requires an image as a QPixmap, so we use the static QPixmap.fromImage() method
to convert the QImage to a QPixmap.

Notice that zooming the image in this way has no effect on the original image; it is purely
a change in view, not an edit. This is why the dirty flag does not need to be set.

According to PyQt's documentation, QPixmaps are optimized for on-screen display (so
they are fast to draw), and QImages are optimized for editing (which is why we have used
them to hold the image data).

Handling Help Actions
When we created the main window's actions, we provided each with a help text, and set it
as their status text and as their tooltip text. This means that when the user navigates the
application's menu system, the status text of the currently highlighted menu option will
automatically appear in the status bar. Similarly, if the user hovers the mouse over a toolbar
button, the corresponding tooltip text will be displayed in a tooltip.

For an application as small and simple as the Image Changer, status tips and tooltips might
be entirely adequate. Nonetheless, we have provided an online help system to show how
it can be done, although we defer coverage until Chapter 17 (from page 506).

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 211 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 6.10. The Image Changer About Box

Whether or not we provide online help, it is always a good idea to provide an "about" box.
This should at least show the application's version and copyright notice.

def helpAbout(self):
 QMessageBox.about(self, "About Image Changer",
 """Image Changer v %s
 <p>Copyright © 2007 Qtrac Ltd.
 All rights reserved.
 <p>This application can be used to perform
 simple image manipulations.
 <p>Python %s - Qt %s - PyQt %s on %s""" % (
 __version__, platform.python_version(),
 QT_VERSION_STR, PYQT_VERSION_STR, platform.system()))

The QMessageBox.about() static convenience method pops up a modal OK-style
message box with the given caption and text. The text can be HTML, as it is here. The
message box will use the application's window icon if there is one.

We display the application's version, and also version information about the Python, Qt,
and PyQt libraries, as well as the platform the application is running on. The library version
information is probably of no direct use to the user, but may be very helpful to support
staff who are being asked for help by the user.

Summary
Main window style applications are created by subclassing QMainWindow. The window
has a single widget (which may be composite and so contain other widgets) as its central
widget.

Actions are used to represent the functionality the application provides to its users. These
actions are held as QAction objects which have texts (used in menus), icons (used in both
menus and toolbars), tool tips and status tips, and that are connected to slots which when
invoked will perform the appropriate action. Usually, all the actions are added to the main
window's menus, and the most commonly used ones are added to toolbars. To support

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 212 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

keyboard users, we provide keyboard shortcuts for frequently used actions, and menu
accelerators to make menu navigation as quick and convenient as possible.

Some actions are checkable, and some groups of checkable actions may be mutually
exclusive, i.e., one and only one may be checked at any one time. PyQt supports checkable
actions by the setting of a simple property, and supports mutually exclusive groups of
actions through QActionGroup objects.

Dock windows are represented by dock widgets and are easy to create and set up. Arbitrary
widgets can be added to dock widgets and to toolbars, although in practice we only usually
add small or letter-box shaped widgets to toolbars.

Actions, action groups, and dock windows, must all be given a parent explicitly, for
example, the main window, to ensure that they are deleted at the right time. This is not
necessary for the application's other widgets and QObjects because they are all owned
either by the main window, or by one of the main window's children. The application's
non-QObject objects can be left to be deleted by Python's garbage collector.

Applications often use resources (small files, such as icons, and data files), and PyQt's
resource mechanism makes accessing and using them quite easy. They do require an extra
build step though, either using PyQt's pyrcc4 console application, or using the
mkpyqt.py or Make PyQt programs supplied with the book's examples.

Dialogs can be created entirely in code as we did in the previous chapter, or using Qt
Designer, as we will see in the next chapter. If we need to incorporate Qt Designer user
interface files in our application, like resources they require an extra build step, either
using PyQt's pyuic4 console application, or again, using mkpyqt.py or Make PyQt.

Once the main window's visual appearance has been created by setting its central widget
and by creating menus, toolbars, and perhaps dock windows, we can concern ourselves
with loading and saving application settings. Many settings are commonly loaded in the
main window's initializer, and settings are normally saved (and the user given the chance
to save unsaved changes) in a reimplementation of the closeEvent() method.

If we want to restore the user's workspace, loading in the files they had open the last time
they ran the application, it is best to use a single-shot timer at the end of the main window's
initializer to load the files.

Most applications usually have a data set and one or more widgets that are used to present
and edit the data. Since the focus of the chapter has been on the main window's user
interface infrastructure, we opted for the simplest possible data and visualization widget,
but in later chapters the emphasis will be the other way around.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 213 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It is very common to have the main window take care of high-level file handling and the
list of recently used files, and for the object holding the data to be responsible for loading,
saving, and editing the data.

At this point in the book you now know enough Python and PyQt to create both dialog style
and main window style GUI applications. In the next chapter we will show Qt Designer in
action, an application that can considerably speed up the development and maintenance
of dialogs. And in the last chapter of Part II we will explore some of the key approaches to
saving and loading custom file formats, using both the PyQt and the Python libraries. In
Parts III and IV we will explore PyQt both more deeply, looking at event handling and
creating custom widgets for example, and also more broadly, learning about PyQt's model/
view architecture, and other advanced features, including threading.

Exercise
Create the dialog shown in Figure 6.11. It should have the class name ResizeDlg, and its
initializer should accept an initial width and height. The dialog should provide a method
called result() which must return a two-tuple of the width and height the user has
chosen. The spinboxes should have a minimum of 4 and a maximum of four times the
width (or height) passed in. Both should show their contents right-aligned.

Figure 6.11. The Image Changer Resize Dialog

Modify the Image Changer application so that it has a new "edit resize" action. The action
should appear on the Edit menu (after the "edit zoom" action). An icon called
editresize.png is in the images subdirectory, but will need to be added to the
resources.qrc file. You will also need to import the resize dialog you have just created.

The resize dialog should be used in an editResize() slot that the "edit resize" action
should be connected to. The dialog is used like this:

form = resizedlg.ResizeDlg(self.image.width(),
 self.image.height(), self)
if form.exec_():
 width, height = form.result()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 214 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Unlike the editZoom() slot, the image itself should be changed, so the size label, status
bar, and dirty status must all be changed if the size is changed. On the other hand, if the
"new" size is the same as the original size, no resizing should take place.

The resize dialog can be written in less than 50 lines, and the resize slot in less than 20
lines, with the new action just requiring an extra one or two lines in a couple of places in
the main window's initializer.

A model solution is in the files chap06/imagechanger_ans.pyw, and chap06/
resizedlg.py.

7. Using Qt Designer
• Designing User Interfaces
• Implementing Dialogs
• Testing Dialogs

In Chapter 5 we created dialogs purely by writing code. In our initializers we created the
widgets we needed and set their initial properties. Then we created one or more layout
managers to which we added the widgets to get the appearance we wanted. In some cases
when working with vertical or horizontal layouts we added a "stretch" which would expand
to fill unwanted space. And after laying out the widgets we connected the signals we were
interested in to the slots we wanted to handle them.

Some programmers prefer to do everything in code, while others prefer to use a visual
design tool to create their dialogs. With PyQt, we can do either, or even both—the Image
Changer application from the previous chapter had two custom dialogs, one of which was
created purely in code, and the other using Qt Designer. We showed how to do things in
code first, so that you would get a strong sense of how the layout managers work. But in
this chapter we are going to create dialogs using Qt Designer.

Qt Designer can be used to create user interfaces for dialogs, custom widgets, and main
windows. We will only cover dialogs; custom widgets are almost the same, only they are
based on the "Widget" template rather than one of the "Dialog" templates. Using Qt
Designer for main windows offers fewer advantages, apart from the convenience of a visual
QAction editor.

The user interfaces are stored in .ui files, and include details of a form's widgets and
layouts. In addition, Qt Designer can be used to associate labels with their "buddies", and
to set the tab-order, i.e., the order in which widgets get the keyboard focus when the user
presses the Tab key. This can also be done in code with QWidget.setTabOrder(), but

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 215 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

is rarely necessary for hand-coded forms, since the default is the order of widget creation
which is usually what we want. Qt Designer can also be used to make signal–slot
connections, but only between built-in signals and slots.

Buddies 141

Once a user interface has been designed and saved in a .ui file, it must be converted into
code before it can be used. This is done using the pyuic4 command line program, for
example:

C:\pyqt\chap07>pyuic4 -o ui_findandreplacedlg.py findandreplacedlg.ui

As mentioned in the previous chapter, the mkpyqt.py program looks for any .ui files in
the current directory (and in subdirectories with the -r option), and then runs pyuic4
on them, creating modules with the extension changed from .ui to .py and with the
filename prefixed with ui_. However, this alone is not enough to make the user interface
usable.[*] Note that the generated code (in the ui_*.py files) should never be hand-edited
because any changes will be overwritten the next time that pyuic4 or mkpyqt.py is run.

[*] It is possible, though uncommon, to load and use the .ui file directly using PyQt4.uic.loadUi().

mkpyqt.py 171

There are three different ways of using the code generated from a .ui file, but we will only
show the most convenient approach.

It makes no difference whether a dialog's user interface is hand-coded or created with Qt
Designer, as far as the use of the dialog is concerned. However, there is a significant
difference in the implementation of a dialog's initializer, since we must create, lay out, and
connect the dialog's widgets if hand-coding, but only need to call a particular method to
achieve the same using a dialog that uses a Qt Designer user interface.

One great benefit of using Qt Designer, in addition to the convenience of designing dialogs
visually, is that if we change the design, we only have to re-generate the user interface
module (using pyuic4 or mkpyqt.py), and we do not need to change our code. The only
time we must change our code is if we add, delete, or rename widgets that we refer to in
our code. This means that using Qt Designer is much quicker and easier for experimenting

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 216 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

with designs than editing hand-coded layouts, and also helps maintain a separation
between the visual design created using Qt Designer, and the behavior implemented in
code.

In this chapter we will create an example dialog, using it to learn how to use Qt Designer
to create and lay out widgets, and to set buddies, tab order, and to make signal–slot
connections. We will also see how to make use of the user interface modules generated by
pyuic4, and how to create connections to our custom slots automatically without having
to use connect() calls in the initializer.

For the examples, we have used the Qt Designer that comes with Qt 4.2. Earlier versions
of Qt Designer do not have the QFontComboBox or QCalendarWidget widgets, and their
"Dialog" templates use QPushButtons rather than a QDialogButtonBox.

Designing User Interfaces
Before we can begin we must start Qt Designer. On Linux, run designer & in a console
(assuming it is in your path), or invoke it from your menu system. On Windows XP, click
Start Qt by Trolltech Designer. Qt Designer starts with a New Form dialog; click
"Dialog with Buttons Bottom" and then click Create. This will create a new form with a
caption of "untitled", and with the QDialogButtonBox as shown in Figure 7.2.

Figure 7.1. Qt Designer

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 217 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When Qt Designer is run for the first time it defaults to "Multiple Top-Level Windows"
mode, which can be confusing. To get everything in one window as shown in Figure 7.1,
click Edit User Interface Mode Docked Window. Qt Designer will remember this
setting, so it only needs to be done once.

Figure 7.2. A Dialog with Buttons Bottom dialog

Qt Designer is not difficult to use, but it does take some initial practice, and can be
frustrating at first until you have become used to it. One thing that helps is to do things in
a particular order, as shown below. For steps 1 and 2, always work from "back" to "front",
i.e., always start with containers (group boxes, tab widgets, frames), and then go on to the
normal widgets that belong inside, i.e., on top of, them. We will go through an example
step-by-step in a moment, but first here is a general description of how to create a dialog
using Qt Designer:

1. Drag a widget onto the form and place it in approximately the right position; there
is no need to place it exactly, and normally only container widgets need to be resized

2. Set the widget's properties if necessary; if the widget will be referred to in code, at
least give it a sensible name

3. Repeat steps 1 and 2 until all the required widgets are on the form

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 218 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

4. If there are large gaps, drag in horizontal or vertical spacers (these appear as blue
springs) to fill them; sometimes, when gaps are obvious, these are added during
steps 1 and 2

5. Select two or more widgets (or spacers or layouts) to be laid out (Shift+Click each
one), then lay them out using a layout manager or a splitter

6. Repeat step 5 until all the widgets and spacers are in layouts

7. Click the form (to de-select everything) and lay out the form by using one of the
layout managers

8. Create buddies for the form's labels

9. Set the form's tab-order if the order is wrong

10. Create signal–slot connections between built-in signals and slots if necessary

11. Preview the form and check that everything works as intended

12. Set the form's object name (this will be used in its class name), and title, and save
it so that it has a filename. For example, if the object name is "PaymentDlg", we
would probably give it a title of "Payment", and a filename of paymentdlg.ui

If the layout is wrong, use undo to go back to where you think you could start laying things
out again, and have another go. If that is not possible or does not work, or if the layout is
being changed some time after it was originally created, simply break the layouts that need
changing and then redo them. Usually it is necessary to break the form's layout (click the
form, then the Break Layout toolbar button), before changing the layouts within the form;
so at the end the form itself must be laid out again.

Although it is possible to drag layouts onto the form and then drag widgets into the layouts,
this approach is not recommended—instead, always drag widgets and spacers, and then
select the widgets and spacers and apply layouts to them.

Now that we have the overall principles in mind, we will go step-by-step through the design
of the "Find and Replace" dialog shown in Figure 7.3.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 219 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 7.3. A Find and Replace dialog

Create a new form based on one of the Dialog templates. This will give us a form with a
button box. The button box has two buttons, OK and Cancel, with signal–slot connections
already set up.

Click the button box and then click Edit Delete. This will leave us with a completely
blank form. For this example we will use QPushButtons instead of a
QDialogButtonBox. This will allow us to to exercise finer control than can be achieved
using a QDialogButtonBox inside Qt Designer, and also gives us the chance to do signal–
slot button connections in Qt Designer. In most of the other examples, and in the exercise,
we use a QDialogButtonBox.

By default, Qt Designer has a dock window on the left called "Widget Box". This contains
all the widgets that Qt Designer can handle. The widgets are grouped into sections, and
towards the end is a group called "Display Widgets"; this contains the "Label" widget. (Qt
Designer does not use class names for its widgets, at least not in the user interface it
presents to us, but in almost every case it is obvious which class a particular name refers
to.)

Click and drag a Label onto the form, towards the top left. We don't care what this label is
called because we will not refer to it in code, but the default text "TextLabel" is not what
we want. When a widget is first dragged and dropped it is automatically selected, and the
selected widget is always the one whose properties are shown in the property editor. Go
to the "Property Editor" dock window (normally on the right), and scroll down to the "text"
property. Change this to "Find &what:". It does not matter that the text now appears to be
truncated on the form; once the label is laid out the layout manager will make sure that
the text is displayed in full.

Now drag a Line Edit (from the "Input Widgets" group, the group above the "Display
Widgets"), and put this to the right of the Label. Go to the property editor and change the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 220 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Line Edit's "objectName" (the very first property of all widgets) to "findLineEdit". We are
giving it a sensible name because we want to refer to this line edit in our code.

Now drag another Label and another Line Edit below the first two. The second Label should
have the text "Replace w&ith", and the second Line Edit should be called "replaceLineEdit".
The form should now look very similar to Figure 7.4.

Figure 7.4. Two Labels and Two Line Edits

At any time we can save the form by pressing Ctrl+S or File Save. When we save we will
use the filename, findandreplacedlg.ui.

Every editable property (and some read-only properties) are shown in the property editor.
But in addition Qt Designer provides a context menu. The first option in the context menu
is normally one that allows us to change the widget's most "important" property (e.g., a
Label's or a Line Edit's "text" property), and a second option that allows us to change the
widget's object name. If we change a checkbox, radio button, or push button's text using
the context menu, the editing is done in-place, in which case we must press Enter to finish.
We will always talk of changing properties in the property editor, but you can of course
use the context menu if you prefer.

We will now add the two checkboxes. Drag a Check Box from the "Buttons" group (near
the top of the Widget Box), and put it underneath the second Label. Change its object name
to "caseCheckBox", and its text to "&Case sensitive", by using the property editor or the
context menu. Drag a second Check Box to the right of the first: change its object name to

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 221 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

"wholeCheckBox", its text to "Wh&ole words", and set its "checked" state to "true". The
form should now be similar to the one shown in Figure 7.5.

Figure 7.5. Two Labels, Two Line Edits, and Two Check Boxes

Now we will add the "Syntax" label and combobox. Drag a Label below the case sensitive
check box and set its text to "&Syntax". Now drag a Combo Box (from the "Input Widgets"
group) to the right of the syntax Label. Change the Combo Box's object name to
"syntaxComboBox". Right-click the Combo Box and choose the first menu option, Edit
Items. Click the "+" icon, and type in "Literal text". Repeat this to add "Regular expression".
Click the OK button to finish.

If the user resizes the form we want the widgets to stay neatly together rather than
spreading out, so drag a Vertical Spacer (from the "Spacers" group near the top of the
Widget Box) and put it below the Combo Box. When we design forms using code we use
stretches, but when we design them visually we use spacers: They both expand to fill empty
space.

To make the buttons visually separate from the widgets we have just created, we will put
a vertical line between them and the other widgets. Drag a Vertical Line (actually a
QFrame) from the "Display Widgets" group (near the bottom of the Widget Box) and put
it to the right of all the widgets in the form, but leaving space to its right for the buttons.
Now the form should look like Figure 7.6.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 222 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 7.6. A Find and Replace Dialog without Buttons

We are now ready to create the buttons. Drag a Push Button (from the "Buttons" group
near the top of the Widget Box) to the top right of the form. Change its object name to
"findButton", its text to "&Find", and its focus policy to "No Focus". Drag another button
beneath the find button, and give it the object name "replaceButton", set its text to be
"&Replace", and its focus policy to "No Focus". Create a third button, below the replace
button. Give it an object name of "replaceAllButton", a text of "Replace &All", and a focus
policy of "No Focus".Now drag a Vertical Spacer under the replace all button. Finally, drag
a fourth button below the spacer. Give this button the object name "closeButton", a text of
"Close", and a focus policy of "No Focus".

Setting a dialog's buttons' focus policies to "No Focus" makes no difference to mouse users,
but is often helpful to keyboard users. It means that pressing Tab moves the keyboard focus
only among the editing widgets, in this example, the find line edit, the replace line edit,
the check boxes and the combobox, which is usually more convenient than having to
Tab over the buttons too. Keyboard users can still press any button using its keyboard
accelerator (Esc in the case of the close button).

Now we have all the widgets and spacers we need and we have set all their properties
appropriately. The form should look like that shown in Figure 7.7.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 223 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 7.7. A Find and Replace Dialog that is not Laid Out

How is it best to lay out this form? What is the best design for this form? The answer to
these questions are matters of taste and practice. Here, we simply show the mechanics,
and leave the aesthetics to you.

We will begin by laying out the first two Labels and their Line Edits. Click the form to de-
select everything, then Shift+Click the find what Label and its Line Edit, and the replace
with Label and its Line Edit. Once these four widgets are selected, click Form Lay Out
in a Grid (or click the corresponding toolbar button). The layout is indicated by a red line;
layouts are never visible (except for their effects) at runtime.

Now de-select everything (by clicking the form), and select the two Check Boxes. Click
Form Lay Out Horizontally. Again, de-select everything, and this time lay out the syntax
Label and Combo Box using a horizontal layout. There should now be three layouts—a grid
and two horizontal layouts, like those shown in Figure 7.8.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 224 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 7.8. A Find and Replace Dialog with Some Layouts

We can now lay out the layouts on the left hand side of the form. Click the form to de-select
everything. It can be tricky to select layouts (rather than widgets), so instead of selecting
by using Shift+Click, we will use a selection rectangle. Click near the bottom left of the
form, and drag the selection rectangle: This rectangle only needs to touch an object to
select it, so drag up and right so that it touches the left-hand Vertical Spacer and the three
layouts—and nothing else (not the Vertical Line for example). Now, release and click Form

Lay Out Vertically.

We can use the same selection technique to lay out the buttons. Click the form to de-select
everything. Now click the bottom right of the form and drag so that the selection rectangle
touches the Close button, the right hand Vertical Spacer, and the other three buttons—and
nothing else. Now, release and click Form Lay Out Vertically. We should now have a
form with every widget in the left or right hand layout and a Vertical Line in the middle,
as shown in Figure 7.9.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 225 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 7.9. A Find and Replace Dialog Almost Laid Out

We are now ready to lay out the form itself. De-select everything by clicking the form. Now
click Form Lay Out Horizontally. The form will now look a bit too tall, so just drag the
bottom of the form up until the form looks better. If you drag a lot, the spacers may
"disappear"; they are still there, but just too small to be seen.

We can now preview the form to see what the layout really looks like, and during the
preview we can drag the form's corner to make it smaller and larger to check that its resizing
behavior is sensible. To preview, click Form Preview (or press Ctrl+R). It is also possible
to preview in different styles using the Form Preview in menu option. The form should
now look like the one in Figure 7.10. If this is not the case, use Edit Undo to unwind
your changes, and then lay things out again. If you have to redo a layout, it sometimes
helps to resize and reposition some of the widgets to give Qt Designer more of a clue about
how you want the layout to go, especially when using a grid layout.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 226 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 7.10. A Laid Out Find and Replace Dialog

We are now ready to set the labels' buddies, set the form's tab order, do any connections
we need, and name and save the form.

We will start with buddies. Click Edit Edit Buddies to switch on buddy mode. To set up
buddy relationships we click a label and drag to the widget we want to be its buddy. So in
this example, we must click the find what Label and drag to its Line Edit, and then do the
same for the replace with Label and Line Edit, and then for the syntax Label and Combo
Box. To leave buddy mode, press F3. Now, no ampersands (&) should be visible in the
labels.

Next we will set the form's tab order. Click Edit Edit Tab Order, and then click each
numbered box in turn, in the tab order that you want. To leave tab order mode, press F3.

The find, replace, and replace all buttons will need to be connected to our own custom
slots; we will do this outside of Qt Designer. But the Close button can be connected to the
dialog's reject() slot. To do this, click Edit Edit Signals/Slots, then drag from the
Close button to the form. When you release, the Configure Connection dialog will pop up.
Click the (no-argument) clicked() signal from the list of signals on the left, and the
reject() slot from the list of slots on the right, then click OK. To leave signal–slot mode,
press F3.

Click the form to de-select everything. This also has the effect of making the property editor
show the form's properties. Set the dialog's object name (which will be used in its class
name) to "FindAndReplaceDlg", and set the "windowTitle" property to "Find and Replace".
Now click File Save to save the user interface, giving it a filename of
findandreplacedlg.ui.

Having designed a user interface, the next step is to make it usable in our code. This covered
in the next section.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 227 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In this section, we have confined ourselves to using Qt Designer to create a custom dialog
using one of the Dialog templates, since this is sufficient to learn the basics of how to use
Qt Designer. However, Qt Designer can be used to create much more complex dialogs than
the one we have created here, including dialogs with tab widgets and widget stacks that
are often used for configuration dialogs that have dozens or even scores of options. It is
also possible to extend Qt Designer with plugins that contain custom widgets. These
widgets are normally written in C++, but from PyQt 4.2, it is possible to incorporate custom
widgets written in Python.

Another use case that uses exactly the same techniques that we have shown, is to use the
Widget template to create composite widgets (widgets made up of two or more other
widgets laid out together). In some cases these widget designs can be used for entire forms,
and in other cases they can be used as components of forms, for example, to provide the
page of a tab widget or of a widget stack. Or two or more composite widgets could be laid
out together in a form to create a more complex form. This use is possible by using Qt
Designer and generating the Python modules in the normal way. Then we can import the
generated modules, and in our form class, call each custom widget's setupUi() method
(covered in the next section) to create the user interface.

The Qt documentation includes a comprehensive Qt Designer manual that goes into more
depth and covers more of the facilities available. The material covered in this section is
sufficient to get started, but the only way to learn Qt Designer properly is to use it.

Implementing Dialogs
When we create a user interface with Qt Designer, we always create a subclass using
multiple inheritance in which we put the code we need to give the user interface the
behavior we need.[*] The first class we inherit is QDialog. If we were using the "Widget"
template our first inherited class would be QWidget, and if we were using the "Main
Window" template our first inherited class would be QMainWindow. The second class we
inherit is the class that represents the user interface we designed using Qt Designer.

[*] Two other approaches are possible and covered in the online documentation, but neither is quite as convenient at the approach we have chosen to use.

In the previous section we created a user interface with a form object name of
"FindAndReplaceDlg", stored in the file findandreplacedlg.ui. We must run
pyuic4 (directly, or by using mkpyqt.py), to generate the
ui_findandreplacedlg.py module file. The module has a class in it whose name is
the form's object name with a "Ui_" prefix, so in this case the class name is
Ui_FindAndReplaceDlg.

We will call our subclass FindAndReplaceDlg, and put it in the file
findandreplacedlg.py.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 228 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Before we look at the class declaration and initializer, we will look at the imports.

import re
from PyQt4.QtCore import *
from PyQt4.QtGui import *
import ui_findandreplacedlg

The first import is the regular expression module that we will use in the code. The second
two imports are the usual ones for PyQt programming. The last import is of the generated
user interface module. Now we can look at our subclass.

class FindAndReplaceDlg(QDialog,
 ui_findandreplacedlg.Ui_FindAndReplaceDlg):

 def __init__(self, text, parent=None):
 super(FindAndReplaceDlg, self).__init__(parent)
 self.__text = unicode(text)
 self.__index = 0
 self.setupUi(self)
 self.updateUi()

We multiply inherit from QDialog and from Ui_FindAndReplaceDlg. We rarely need
to use multiple inheritance in Python programming, but for this situation it makes things
much easier than would otherwise be the case. Our FindAndReplaceDlg subclass is in
effect the union of the two classes it inherits from and can access their attributes directly,
prefixed with self of course.

We have set our initializer to accept a text that is the data the dialog will work on, and a
parent widget. The super() call is made on the first inherited class, QDialog. We keep
a copy of the text, and also an index position, in case the user clicks Find more than once
to find subsequence occurrences of the same find text.

The call to the setupUi() method is something we have not seen before. This method is
provided by the generated module. When called it creates all the widgets specified in the
user interface file, lays them out according to our design, sets their buddies and tab order,
and makes the connections we set. In other words, it recreates the form we designed in Qt
Designer.

In addition, the setupUi() method calls
QtCore.QMetaObject.connectSlotsByName(), a static method that creates signal–
slot connections between form widget signals and methods in our subclass that follow a
particular naming convention. Any method whose name is of the form,
on_widgetName_signalName, will have the named widget's named signal connected to
it.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 229 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For example, our form has a widget called findLineEdit of type QLineEdit. One of
the signals emitted by a QLineEdit is textEdited(QString). So, if we want to connect
this signal, without calling the connect() method in the initializer, we can leave the work
to setupUi(). This will work so long a we call the slot we want the signal to connect to,
on_findLineEdit_textEdited. This is the approach we have used for all the
connections in the form, apart from the Close button's clicked() signal that we
connected visually in Qt Designer.

@pyqtSignature("QString")
def on_findLineEdit_textEdited(self, text):
 self.__index = 0
 self.updateUi()

Thanks to setupUi(), this method is automatically connected to by the
findLineEdit's textEdited() signal. Whenever we want an automatic connection we
use the @pyqtSignature decorator to specify the signal's arguments. The purpose of the
decorator is to distinguish between signals that have the same name but different
parameters. In this particular case, there is only one textEdited() signal, so the
decorator is not strictly necessary; but we always use the decorator as a matter of good
practice. For example, if a later version of PyQt introduced another signal with the same
name but with different arguments, code that used the decorator would continue to work,
but code without it would not.

Decorators 83

Since this slot is called when the user changes the find text we reset the index position from
which to start the search to 0 (the start). Here, and in the initializer, we end with a call to
updateUi().

def updateUi(self):
 enable = not self.findLineEdit.text().isEmpty()
 self.findButton.setEnabled(enable)
 self.replaceButton.setEnabled(enable)
 self.replaceAllButton.setEnabled(enable)

We have already seen many examples of a method of this kind. Here, we enable the find,
replace, and replace all buttons, if the user has entered a find text. It does not matter
whether or not there is any replace text, since it is perfectly valid to replace something with
nothing, i.e., to delete the text that is found. This method is the reason why the form starts
with every button except the close button disabled.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 230 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When the user closes the form, the text it holds (which may be different from the original
text if the user has used replace or replace all), is accessible using the text() method.

def text(self):
 return self.__text

Some Python programmers would not provide a method for this; instead they would have
a self.text variable (rather than self.__text), and access the variable directly.

The rest of the dialog's functionality is implemented in slots that are invoked as a result of
the user pressing one of the buttons (other than the close button), plus a helper method.
Their implementation is not specifically relevant to using Qt Designer, but we will briefly
review them for completeness.

@pyqtSignature("")
def on_findButton_clicked(self):
 regex = self.makeRegex()
 match = regex.search(self.__text, self.__index)
 if match is not None:
 self.__index = match.end()
 self.emit(SIGNAL("found"), match.start())
 else:
 self.emit(SIGNAL("notfound"))

A button's clicked() signal has an optional Boolean argument that we are not interested
in, so we specify an empty parameter list for the @pyqtSignature decorator. In contrast,
we could not have used an empty parameter list for the on_findLineEdit_textEdited
() slot's decorator, because the textEdited() signal's argument is not optional, so must
be included.

To perform the search we create a regular expression to specify the find text and some of
the search's characteristics. Then we search the text using the regular expression, from the
current index position. If a match was found we update the index position to be at the
match's end, ready for a subsequent search, and emit a signal with the position in the text
where the find text was found.

def makeRegex(self):
 findText = unicode(self.findLineEdit.text())
 if unicode(self.syntaxComboBox.currentText()) == "Literal":
 findText = re.escape(findText)
 flags = re.MULTILINE|re.DOTALL|re.UNICODE
 if not self.caseCheckBox.isChecked():
 flags |= re.IGNORECASE
 if self.wholeCheckBox.isChecked():
 findText = r"\b%s\b" % findText
 return re.compile(findText, flags)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 231 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We begin by getting the find text the user has entered. We know that it cannot be empty
because the buttons (apart from the close button) are only enabled if there is some find
text. If the user has chosen a literal text search we use the re.escape() function to escape
any regular expression metacharacters (like "\") that may be in the user's find text. Then
we initialize our search flags. We supplement the flags with the re.IGNORECASE flag if
the caseCheckBox is unchecked. If the user has asked to search for whole words, we put
a \b before and after the find text: This is a token in Python's regular expression language
that specifies a word boundary. The r in front of the string literal indicates a "raw" string
in which we can write characters like "\" unescaped. It is common to use this for regular
expression strings since "\" is so often used in regular expressions. Finally we return the
regular expression in compiled (ready to use) form.[*]

[*] The QRegExp documentation provides a brief introduction to regular expressions. Python's regular expression engine is covered in the re module documentation.
For in-depth coverage see Mastering Regular Expressions by Jeffrey E. Friedl.

If we knew that the text to be searched was normally going to be a QString rather than a
unicode it might be preferable to use the PyQt QRegExp class rather than the Python
standard library's re class.

@pyqtSignature("")
def on_replaceButton_clicked(self):
 regex = self.makeRegex()
 self.__text = regex.sub(unicode(self.replaceLineEdit.text()),
 self.__text, 1)

This method is quite simple because it passes on its preparation work to the makeRegex
() method. We use the sub method ("substitute") to replace the first occurrence of the
find text with the replacement text. The replacement text could be empty. The 1 is the
maximum number of replacements to make.

@pyqtSignature("")
def on_replaceAllButton_clicked(self):
 regex = self.makeRegex()
 self.__text = regex.sub(unicode(self.replaceLineEdit.text()),
 self.__text)

This method is almost identical to the one above. The only difference is that we do not
specify a maximum number of replacements, so sub() will replace as many (non-
overlapping) occurrences of the find text as it finds.

We have now implemented the FindAndReplaceDlg. The implementation of the dialog's
methods is not really any different from what we have done before, except for our use of
the decorator and setupUi() to provide automatic connections.

To make use of the dialog in an application we must make sure that the
ui_findandreplacedlg.py module file is generated, and must import the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 232 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

findandreplacedlg module we have just written. We will see how the form is created
and used in the next section.

Testing Dialogs
When using pyuic4 we can specify a command line option of -x to get the form generated
with a bit of extra code so that it can be tested stand-alone. In practice this is fine for simple
dialogs, but often we need to go a bit further.

In the case of the find and replace dialog, we need some initial text, and we need to check
that the connections work and that the find and replace methods work.

So at the end of the findandreplacedlg.py file, we add some extra code. This code is
only executed if the file is run stand-alone, so does not affect performance or interfere with
the use of the dialog when it is used in an application.

if __name__ == "__main__":
 import sys

 text = """There are signs of unease about the tone of these laws
...
Quoted from Henry Porter, The Observer, December 31, 2006."""

 def found(where):
 print "Found at %d" % where

 def nomore():
 print "No more found"

 app = QApplication(sys.argv)
 form = FindAndReplaceDlg(text)
 form.connect(form, SIGNAL("found"), found)
 form.connect(form, SIGNAL("notfound"), nomore)
 form.show()
 app.exec_()
 print form.text()

We begin by importing the sys module, and then we create a piece of text to work on. (We
have omitted most of the text.) Then we create a couple of simple functions to act as slots
for the dialog's signals to be connected to.

We create the QApplication object in the normal way, and then we create an instance
of our dialog, passing it our test text. We connect the dialog's two signals to our slots, and
call show(). Then we start off the event loop. When the event loop terminates we print
the dialog's text: This will be different from the original text if the user replaced some text.

The dialog can now be run from a console and tested.

C:\pyqt\chap07>python findandreplacedlg.py

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 233 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Unless using automated testing tools, it is often helpful to add testing functionality to
dialogs. It does not take too much time or effort to write them, and running them whenever
a change is made to the dialog's logic will help minimize the introduction of bugs.

Sometimes we pass complex objects to dialogs that may appear to make testing impossible.
But thanks to Python's duck typing we can always create a fake class that simulates enough
behavior to be usable for testing. For example, in Chapter 12, we use a property editor
dialog. This dialog operates on "Node" objects, so in the testing code we create a
FakeNode class that provides the methods for setting and getting a node's properties that
the dialog makes use of. (The relevant files are chap12/propertiesdlg.ui, from which
ui_propertiesdlg.py is generated, and chap12/propertiesdlg.py where the
PropertiesDlg is implemented.)

Summary
Qt Designer provides a quick and easy way of creating user interfaces. Using a visual design
tool makes it much easier to see whether a design "works" or not. Another benefit of Qt
Designer is that if we change a design, providing we have not added, removed, or renamed
any widgets we refer to in code, our code will not need to be changed at all. And even if we
do add, rename, or remove widgets, the changes to our code may be quite small since Qt
Designer handles all the widget creation and laying out for us.

The fundamental principles of using Qt Designer are always the same: We drag widgets
onto a form, containers (such as frames, group boxes, and tab widgets) first, then ordinary
widgets, and we set their properties. Then we add spacers to occupy gaps. Next we select
particular widgets and spacers and apply layouts to them, repeating this process until
everything is laid out. Then we lay out the form itself. At the end we set buddies, the tab
order, and the signal–slot connections.

Implementing dialogs with user interfaces that have been created by Qt Designer is similar
to implementing them by hand. The biggest difference is in the initializer, where we simply
call setupUi() to create and lay out the widgets, and to create the signal–slot
connections. The methods we implement can be done just as we have done them before
(and their code will be no different), but usually we use the
on_widgetName_signalName naming convention, along with the @pyqtSignature
decorator to take advantage of setupUi()'s ability to automatically create connections.

The questions about how smart a dialog is, what modality it should have, and how it
validates, are no different for dialogs created with Qt Designer than for those created by
hand. The only exception being that we can set widget properties in Qt Designer, for
example, we could set a spinbox's range and initial value, so some of the simple validation
that we normally put in code can be done directly in Qt Designer.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 234 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If we are not using testing tools, adding testing code that is only executed if the form is run
stand-alone does not affect the performance of our dialogs, and can be very convenient
both during development and when maintaining a dialog. If complex objects that the dialog
depends on are not available, we can often create a "fake" class that provides the same
methods as the complex object, and pass an instance of the fake class for testing purposes.

All PyQt programs can be written by hand; there is never any necessity to use Qt
Designer. However, designing dialogs with a visual design tool can be very helpful, since
the results can be seen immediately, and changes to designs can be made quickly and easily.
Another benefit of using Qt Designer is that a lot of fairly repetitive code for creating, laying
out, and connecting widgets can be automatically generated rather than written by hand.
Qt Designer was used to create a dialog both in this chapter, and in the previous one. We
will see many more examples of dialogs created with Qt Designer in the following chapters.

Exercise
Use Qt Designer to create a user interface with one of the designs shown in Figure 7.11, or
with a design of your own. You will probably need to use a Grid Layout, as well as Vertical
and Horizontal Layouts. For Grid Layouts you may have to try a few times, perhaps resizing
and positioning widgets to help Qt Designer create the grid you want. Use
QDialogButtonBoxs for the buttons.

Figure 7.11. A Dialog with Two Different Designs

The price spinbox should have a range of 0.00 to 5 000.00, be right-aligned, and have a
prefix of "$", as shown in Figure 7.11. The quantity spinbox should have a range of 1 to 50
and also be right-aligned. Set the date format to be whatever you prefer if you don't like
the default.

The widgets you will refer to in code should have sensible names, for example,
customerLineEdit and priceSpinBox.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 235 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Make the appropriate buddies, i.e., from the customer label to its line edit, from the when
label to the date time edit, and so on. Also make sure that the Tab order is customer, when
date, price, quantity, button box.

Create a subclass to make use of the user interface. The code should ensure that the OK
button is only enabled if the customer line edit is not empty, and if the amount is greater
than zero. To access a button in a QDialogButtonBox, use the button() method with
the button's constant as argument, for example, buttonBox.button
(QDialogButtonBox.Ok).

The amount should be re-calculated and shown in the amount label every time the user
changes one of the spinbox values. Set the when date's range to be from tomorrow, until
next year. Provide a result() method that returns a 4-tuple (unicode,
datetime.datetime, float, int) for the customer, when date, price, and quantity.
(If you are using a PyQt version prior to 4.1, then return the date as a QDateTime;
otherwise use the QDateTime.toPyDateTime() method to get a
datetime.datetime.)

Include enough test code at the end to create and show a TicketOrderDlg so that you
can interact with it. After the event loop has finished print the value returned by the
result() method on the console.

The subclass, including the test code, can be written in about 60 lines. If this is the first
time you have use Qt Designer it may take 15-20 minutes to get the design right, but with
practice a dialog like this should take just a few minutes.

Model solutions are provided in chap07/ticketorderdlg1.ui and chap07/
ticketorderdlg2.ui, with a test program in chap07/ticketorderdlg.py.

8. Data Handling and Custom File Formats
• Main Window Responsibilities
• Data Container Responsibilities
• Saving and Loading Binary Files
• Saving and Loading Text Files
• Saving and Loading XML Files

Most applications need to load and save data. Often the data format is predetermined
because the application is reading data produced by some other application over which it

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 236 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

has no control. But for applications where we create our own file formats there are a lot of
options available.

In Chapter 6 we created a main window style application from which we learned how to
create menus and toolbars, and how to handle file loading and saving. In this chapter we
will work on another main window style application, but this time our focus will be on the
application's data.

Figure 8.1. The My Movies Application

The application we will take as our example is called My Movies. It is used to store some
basic information about the movies we might have in our collection.

The application will allow us to view and edit a collection of custom Movie objects (or
movie records as we will call them), and to load and save these records from and to disk
in a variety of formats.

If you just want to dive straight into file handling, you could jump ahead to the relevant
sections. Coverage of saving and loading binary files begins on page 240, of text files on
page 249, and of XML files on page 256. You can always come back to the first two sections
to cover the relationship between the GUI and file handling, later on.

In all the previous examples we usually kept as much data as possible in Python data types
and converted to and from PyQt types only when necessary. And for strings in particular,
we proposed a policy which meant that we always converted QStrings to unicodes as
soon as possible and always operated on uni-code strings. But in this chapter we are

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 237 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

going to take the opposite approach, and keep all our data in PyQt types, only converting
to Python types when necessary. One reason for doing this is that PyQt provides excellent
support for binary data, and uses the same binary formats as C++/Qt, which is useful when
working with files that must be accessed by both C++ and Python programs. Another
reason is that this will also provide a contrast that will help us understand the pros and
cons of each approach, so that we can make the right decisions in applications we later
work on.

string policy 27

One immediate benefit of holding data in PyQt types is that we do not have to keep
converting data that we give to or get from the widgets we use for viewing and editing.
When dealing with a large collection of data, this could be a significant saving of processing
overhead.

When we have custom data to load and save there are five options available to us. We can
use binary, plain text, or XML files, or we can use QSettings objects with an explicit
filename, or we can use a database. In this chapter we will cover the first three options,
and briefly mention the fourth, QSettings, here. We will defer coverage of databases
until Chapter 15.

All the options apart from QSettings can be implemented either using Python's standard
library or by using PyQt. In this chapter we will show loading and saving both binary and
text formats using both libraries, so that we can compare and contrast them. For XML we
will use PyQt for loading and parsing, and will do the saving ourselves. Python's standard
library also provides considerable XML support, but covering it would not show anything
that cannot be done with PyQt's XML classes.

In Chapter 6 we saw how to use a QSettings object to save and load user settings, such
as the main window's size and position, and a list of recently used files. The class stores all
data as QVariants, but this is perfectly acceptable for small amounts of data. We can use
this class to store custom data by creating a QSettings instance with a filename, for
example, iniFile = QSettings("curvedata.ini", QSettings.IniFormat).
Now we can use the iniFile object to write data using setValue() and to read data
using value(), in both cases converting between QVariant and the relevant type.

In the following section we will look at the high-level file handling and data presentation
that are performed by the application's main window subclass. In the second section we
will look at the application's data module, including the implementation of individual data
items, and of the data item container in which the application's data is held.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 238 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Then, in the subsequent sections, we will look at saving and loading data in various formats.
In the section on binary files we will look at how to use PyQt's QDataStream class and
also the standard Python library's cPickle module to load and save our collection of
movie records. In the section on text files, we will see how to load and save our movie
records in plain text using PyQt's QTextStream and the Python standard library's
codecs module. And in the last section we will write the code to save the records as XML
by hand, and see how to use both DOM and SAX parsers to read back the XML data.

Main Window Responsibilities
The main window is usually given responsibility for offering the user the high level file
handling actions, and for presenting the application's data. In this section we will focus
particularly on the file actions, since they differ from what we did in Chapter 6's Image
Changer application, and are more representative of what happens in larger applications.
We will also look at how the data is presented to the user. In the My Movies application,
the data is held in a "container" (a MovieContainer), and all the work of saving and
loading (and exporting and importing) are passed on to the container by the main window.
We will look at the container in the next section, and at the container's saving and loading
code in the sections that follow that.

The source code is in the chap08 directory, and includes a Qt Designer designed user
interface for adding and editing movie records. Figure 8.2 shows the application's Python
modules.

Figure 8.2. The My Movie Application's Modules, Classes, and Functions

We have chosen to make a distinction between saving and exporting, and between loading
and importing. When we load a file, the filename we used becomes the application's current
filename for when we save. If we save a file, we use the application's current filename, so
subsequent saves will be to the same file. We can change the current filename by using the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 239 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

"save as" action. When we import a file, we clear the current filename; this means that the
data must be given a new filename if the user wants to save it. If the user exports the data,
they are asked for a new filename, and the current filename is not affected.

Now we are ready to look at the main window's file handling functionality. We will begin
by looking at the start of the main window's initializer, to see the creation of the data-
holding movie container, and of the data-presenting QTableWidget.

class MainWindow(QMainWindow):

 def __init__(self, parent=None):
 super(MainWindow, self).__init__(parent)

 self.movies = moviedata.MovieContainer()
 self.table = QTableWidget()
 self.setCentralWidget(self.table)

After calling super(), we create a new empty movies container. (We will look at the
Movie and MovieContainer classes shortly.) Then we create a QTableWidget. This
widget is used to present and optionally to edit tabular data. The table is set up and
populated in updateTable(). We have omitted the rest of the initializer, since we already
know from Chapter 6 how to set up the status bar, create the file, edit, and help actions,
populate the menus and toolbars, and restore the application's state from the previous
session's settings.

For completeness, we will now take a brief detour to review updateTable() to see how
the table widget is set up and populated. (You could skip ahead to the fileNew() method
on page 232 if you prefer to focus purely on the file handling.) The approach we are using
is very simple and direct. PyQt also offers a more sophisticated approach to populating
and editing item-based widgets such as lists, tables, and trees, using PyQt's model/view
architecture—we will learn about this in Chapter 14.

def updateTable(self, current=None):
 self.table.clear()
 self.table.setRowCount(len(self.movies))
 self.table.setColumnCount(5)
 self.table.setHorizontalHeaderLabels(["Title", "Year", "Mins",
 "Acquired", "Notes"])
 self.table.setAlternatingRowColors(True)
 self.table.setEditTriggers(QTableWidget.NoEditTriggers)
 self.table.setSelectionBehavior(QTableWidget.SelectRows)
 self.table.setSelectionMode(QTableWidget.SingleSelection)
 selected = None

This method is quite long, so we will review it in three parts. It can be called with no
argument, in which case it simply populates the table, or with the id() of the current
Movie; in which case it makes the specified movie's row selected and visible (scrolling if

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 240 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

necessary), after populating the table. A current movie is passed if a movie has just been
added or edited.

We begin by clearing the table; this gets rid of both the data and the headings. Next we set
the row and column counts, and the column headers. We set the table's properties so that
the user cannot edit anything in-place, since we prefer to use a separate add/edit dialog in
this particular application. We also ensure that users can only select a single row at a time.
The selected variable holds the QTableWidgetItem that holds the title and id() of
the current movie, if there is one.

for row, movie in enumerate(self.movies):
 item = QTableWidgetItem(movie.title)
 if current is not None and current == id(movie):
 selected = item
 item.setData(Qt.UserRole, QVariant(long(id(movie))))
 self.table.setItem(row, 0, item)
 year = movie.year
 if year != movie.UNKNOWNYEAR:
 item = QTableWidgetItem("%d" % year)
 item.setTextAlignment(Qt.AlignCenter)
 self.table.setItem(row, 1, item)
 minutes = movie.minutes
 if minutes != movie.UNKNOWNMINUTES:
 item = QTableWidgetItem("%d" % minutes)
 item.setTextAlignment(Qt.AlignRight|Qt.AlignVCenter)
 self.table.setItem(row, 2, item)
 item = QTableWidgetItem(movie.acquired.toString(
 moviedata.DATEFORMAT))
 item.setTextAlignment(Qt.AlignRight|Qt.AlignVCenter)
 self.table.setItem(row, 3, item)
 notes = movie.notes
 if notes.length() > 40:
 notes = notes.left(39) + "..."
 self.table.setItem(row, 4, QTableWidgetItem(notes))

Each cell in a QTableWidget is represented by a QTableWidgetItem. These items can
hold displayable text, and also "user" data. We iterate over every movie in the movie
container, creating one row of items for each one. We store the movie's title in the first cell
(item) of each row, and set this item's user data to hold the movie's id(). We must convert
the ID to be a long, to ensure that it is held correctly inside the QVariant. Once the item
has been created and set up, we put it in the table at the appropriate row and column.

We only bother to populate the year and minutes cells if we have data for them. For the
notes, we truncate and add an ellipsis if the data is long, since notes could be many
paragraphs in size.

self.table.resizeColumnsToContents()
if selected is not None:
 selected.setSelected(True)
 self.table.setCurrentItem(selected)
 self.table.scrollToItem(selected)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 241 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Once all the table items have been added, we resize the table's columns to match their
contents.

When we iterate over the movies in the movie container, the movies are returned in
alphabetical order (but ignoring leading "A", "An", and "The", words). If the user adds a
new movie, or edits an existing movie, we want to ensure that the movie they have just
added or edited is both selected and visible. This is achieved by calling updateTable()
after the add or edit, with the ID of the movie they added or edited. At the end of
updateTable(), if a movie ID was passed in, the selected variable will hold the item
corresponding to the movie's title cell, and this item (and therefore the item's row) will be
made both current and selected, and if necessary the table widget will scroll to make sure
that the row is visible to the user.

def fileNew(self):
 if not self.okToContinue():
 return
 self.movies.clear()
 self.statusBar().clearMessage()
 self.updateTable()

This method is similar to the method of the same name used for the Image Changer
application. The key difference is that instead of the main window being responsible for
the data, the work is delegated to the movie container held in self.movies. When
updateTable() is called, there will be no movie records, so the widget will just show the
column headers and nothing else.

The okToContinue() method is almost the same as the one we used in the Image
Changer application. The only difference is that instead of the condition checking
self.dirty (since the Image Changer's main window held the application's data) it calls
self.movies.isDirty(), because in this application the movies container holds the
data.

def fileOpen(self):
 if not self.okToContinue():
 return
 path = QFileInfo(self.movies.filename()).path() \
 if not self.movies.filename().isEmpty() else "."
 fname = QFileDialog.getOpenFileName(self,
 "My Movies - Load Movie Data", path,
 "My Movies data files (%s)" % \
 self.movies.formats())
 if not fname.isEmpty():
 ok, msg = self.movies.load(fname)
 self.statusBar().showMessage(msg, 5000)
 self.updateTable()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 242 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The file open method is structurally the same as we have seen before. The movie container
holds the current filename as a QString. Normally, an application has just one custom
file format, but for the sake of illustration the My Movies application supports several, so
we have provided a formats() method to return the extensions that can be used.

The main window subclass passes on the work of loading to the movies container. We have
designed our movie container's load and save methods to return a Boolean success/failure
flag and a message. The message is either an error message, or a report of how many movie
records were loaded or saved. In the My Movies application we only make use of the
message.

If the load is successful, the movie container will contain the new movie records and
updateTable() will display them. If the load failed, the movie container will be empty,
and updateTable() will only show the column headers.

def fileSave(self):
 if self.movies.filename().isEmpty():
 self.fileSaveAs()
 else:
 ok, msg = self.movies.save()
 self.statusBar().showMessage(msg, 5000)

Again, the logic for this method is the same as we have seen before. The code used for
saving and loading depends on the filename extension, as we will see later.

We will skip the code for fileSaveAs(); it is the same as for the Image Changer
application, except that we use QString rather than unicode methods with the filename,
and use a default extension of .mqb (My Movies in Qt binary format).

def fileImportDOM(self):
 self.fileImport("dom")

def fileImportSAX(self):
 self.fileImport("sax")

def fileImport(self, format):
 if not self.okToContinue():
 return
 path = QFileInfo(self.movies.filename()).path() \
 if not self.movies.filename().isEmpty() else "."
 fname = QFileDialog.getOpenFileName(self,
 "My Movies - Import Movie Data", path,
 "My Movies XML files (*.xml)")
 if not fname.isEmpty():
 if format == "dom":
 ok, msg = self.movies.importDOM(fname)
 else:
 ok, msg = self.movies.importSAX(fname)
 self.statusBar().showMessage(msg, 5000)
 self.updateTable()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 243 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Normally we would provide a single import method and either use a SAX or a DOM parser.
Here we have chosen to show both parsers in use, so we provide two separate import
actions. They both produce the same results.

The file action code for importing is very similar to the "file open" action, only we use the
import parser specified by the user. And as with all the file handling code, we pass on the
work to the movie container.

def fileExportXml(self):
 fname = self.movies.filename()
 if fname.isEmpty():
 fname = "."
 else:
 i = fname.lastIndexOf(".")
 if i > 0:
 fname = fname.left(i)
 fname += ".xml"
 fname = QFileDialog.getSaveFileName(self,
 "My Movies - Export Movie Data", fname,
 "My Movies XML files (*.xml)")
 if not fname.isEmpty():
 if not fname.contains("."):
 fname += ".xml"
 ok, msg = self.movies.exportXml(fname)
 self.statusBar().showMessage(msg, 5000)

We only provide one XML export method. The code is similar to the "file save as" action.
Notice that we must use QString methods to ensure that the filename has the .xml
extension, rather than the unicode methods we used in the Image Changer application,
because the filename is held as a QString.

Data Container Responsibilities
The application's data container is responsible for holding all the data items, i.e., the movie
records, and for saving and loading them to and from disk. We saw in the previous section
when we looked at the MainWindow.updateTable() method how the container could
be iterated over using a for loop to get all the movies so that they could be displayed in
the application's QTableWidget. In this section we will look at the functionality provided
by the moviedata module, including the data structures used to hold the movie data, how
we provide support for ordered iteration, and other aspects, but excluding the actual saving
and loading code since that is covered in the sections that follow.

Why use a custom data container at all, after all we could simply use one of Python's built-
in data structures, such as a list or a dictionary? We prefer to take an approach where we
wrap a standard data structure in a custom container class. This ensures that accesses to
the data are controlled by our class which helps to maintain data integrity. It also makes
it easier to extend the container's functionality, and to replace the underlying data

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 244 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

structure in the future, without affecting existing code. In other words, this is an object-
oriented approach that avoids the disadvantages of simply using, say, a list, with some
global functions.

We will begin with the moviedata module's imports and constants.

import bisect
import codecs
import copy_reg
import cPickle
import gzip
from PyQt4.QtCore import *
from PyQt4.QtXml import *

We store the movies in canonicalized title order, ignoring case, and ignoring leading "A",
"An", and "The" words. To minimize insertion and lookup times we maintain the order
using the bisect module, using the same techniques we used for the OrderedDict we
implemented in Chapter 3.

OrderedDict 92

The codecs module is necessary for reading and writing Python text files using a specific
text codec. The copy_reg and cPickle modules are used for saving and loading Python
"pickles"—these are files that contain arbitrary Python data structures. The gzip module
is used to compress data; we will use it to compress and decompress our pickled data. The
PyQt4.QtCore import is familiar, but we must also import the PyQt4.QtXml module
to give us access to PyQt's SAX and DOM parsers. We will see all these modules in use in
the following sections. Note that we do not need the PyQt4.QtGui module since the
moviedata module is a pure data handling module with no GUI functionality.

CODEC = "UTF-8"
NEWPARA = unichr(0x2029)
NEWLINE = unichr(0x2028)

We want to use the UTF-8 codec for text files. This is an 8-bit Unicode encoding that uses
one byte for each ASCII character, and two or more bytes for any other character. It is
probably the most widely used Unicode text encoding used in files. By using Unicode we
can store text written in just about any human language in use today.

Although "\n" is a valid Unicode character, we will need to use the Unicode-specific
paragraph break and line break characters when we use XML. This is because XML parsers
do not normally distinguish between one ASCII whitespace character, such as newline,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 245 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

and another, such as space, which is not convenient if we want to preserve the user's line
and paragraphs breaks.

class Movie(object):
 UNKNOWNYEAR = 1890
 UNKNOWNMINUTES = 0

 def __init__(self, title=None, year=UNKNOWNYEAR,
 minutes=UNKNOWNMINUTES, acquired=None, notes=None):
 self.title = title
 self.year = year
 self.minutes = minutes
 self.acquired = acquired \
 if acquired is not None else QDate.currentDate()
 self.notes = notes

The Movie class is used to hold the data about one movie. We use instance variables
directly rather than providing simple getters and setters. The title and notes are stored as
QStrings, and the date acquired as a QDate. The year the movie was released and its
duration in minutes are held as ints. We provide two static constants to indicate that we
do not know when the movie was released or how long it is.

We are now ready to look at the movie container class. This class holds an ordered list of
movies, and provides functionality for saving and loading (and exporting and importing)
movies in a variety of formats.

class MovieContainer(object):
 MAGIC_NUMBER = 0x3051E
 FILE_VERSION = 100

 def __init__(self):
 self.__fname = QString()
 self.__movies = []
 self.__movieFromId = {}
 self.__dirty = False

The MAGIC_NUMBER and FILE_VERSION are both used for saving and loading files using
PyQt's QDataStream class.

The filename is held as a QString. Each element of the __movies id list is itself a two-
element list, the first element being a sort key and the second a Movie. This is the class's
main data structure, and is used to hold the movies in order. The __movieFromId
dictionary's keys are the id()s of Movie objects, and the values are Movies. As we saw
in Chapter 1, every Python object very conveniently has a unique ID, available by calling
id() on it. This dictionary is used to provide fast movie lookup when a movie's ID is
known. For example, the main window stores movie IDs as "user" data in its first column
of QTableWidgetItems. There is no duplication of data of course since the two data
structures really hold references to Movie objects rather than Movie objects themselves.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 246 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def __iter__(self):
 for pair in iter(self.__movies):
 yield pair[1]

id()function 13

Object references 12

When the MainWindow.updateTable() method iterated over the movie container
using a for loop, Python used the container's __iter__() method. Here we can see that
we iterate over the ordered list of [key, movie] lists, returning just the movie item each
time.

def __len__(self):
 return len(self.__movies)

This method allows us to use the len() function on movie containers.

In the following sections we will see the code for loading and saving the movies held in a
movie container in various formats. But first we will look at how the container is cleared,
and how movies are added, deleted, and updated, so that we can get a feel for how the
container works, particularly regarding ordering.

def clear(self, clearFilename=True):
 self.__movies = []
 self.__movieFromId = {}
 if clearFilename:
 self.__fname = QString()
 self.__dirty = False

This method is used to clear all the data, possibly including the filename. It is called from
MainWindow.fileNew(), which does clear the filename, and from the various save and
load methods, which leave the filename untouched. The movie container maintains a dirty
flag so that it always knows if there are unsaved changes.

def add(self, movie):
 if id(movie) in self.__movieFromId:
 return False
 key = self.key(movie.title, movie.year)
 bisect.insort_left(self.__movies, [key, movie])
 self.__movieFromId[id(movie)] = movie

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 247 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 self.__dirty = True
 return True

The first if statement ensures we don't add the same movie twice. We use the key()
method to generate a suitable order key, and then use the bisect module's insort_left
() function to insert the two element [key, movie] list into the __movies list. This is very
fast because the bisect module uses the binary chop algorithm. We also make sure that
the __movieFromId dictionary is up-to-date, and set the container to be dirty.

def key(self, title, year):
 text = unicode(title).lower()
 if text.startswith("a "):
 text = text[2:]
 elif text.startswith("an "):
 text = text[3:]
 elif text.startswith("the "):
 text = text[4:]
 parts = text.split(" ", 1)
 if parts[0].isdigit():
 text = "%08d " % int(parts[0])
 if len(parts) > 1:
 text += parts[1]
 return u"%s\t%d" % (text.replace(" ", ""), year)

This method generates a key string suitable for ordering our movie data. We do not
guarantee key uniqueness (although it would not be difficult to do), because the ordered
data structure is a list in which duplicate keys are not a problem. The code is English-
specific, eliminating the definite and indefinite article from movie titles. If the movie's title
begins with a number we pad the number with leading zeros so that, for example, "20" will
come before "100". We do not need to pad the year, because years are always exactly four
digits. All the other data is stored using PyQt data types, but we have chosen to use
unicode for the key strings.

def delete(self, movie):
 if id(movie) not in self.__movieFromId:
 return False
 key = self.key(movie.title, movie.year)
 i = bisect.bisect_left(self.__movies, [key, movie])
 del self.__movies[i]
 del self.__movieFromId[id(movie)]
 self.__dirty = True
 return True

To delete a movie we must remove it from both data structures, and in the case of the
__movies list, we must first find the movie's index position.

def updateMovie(self, movie, title, year, minutes=None,
 notes=None):
 if minutes is not None:
 movie.minutes = minutes
 if notes is not None:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 248 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 movie.notes = notes
 if title != movie.title or year != movie.year:
 key = self.key(movie.title, movie.year)
 i = bisect.bisect_left(self.__movies, [key, movie])
 self.__movies[i][0] = self.key(title, year)
 movie.title = title
 movie.year = year
 self.__movies.sort()
 self.__dirty = True

If the user edits a movie, the application always calls this method with the user's changes.
If the minutes or notes are passed as None, we take that to mean that they have not been
changed. If the movie's title or year has changed, then the movie may now be in the wrong
position in the __movies list. In these cases we find the movie using its original title and
year, set the new title and year, and then re-sort the list. This is not as expensive in practice
as it may at first appear. The list will contain at most one incorrectly sorted item, and
Python's sort algorithm is highly optimized for partially sorted data.

If we ever found that we had a performance problem here, we could always reimplement
updateMovie() using delete() and add() instead.

@staticmethod
def formats():
 return "*.mqb *.mpb *.mqt *.mpt"

Normally, we would provide one, or at most two, custom data formats for an application,
but for the purposes of illustration we provide three formats using four extensions.
Extension .mqb is Qt binary format, and uses the QDataStream class, and
extension .mpb is Python pickle format (using gzip compression). Extension .mqt is Qt
text format, and uses the QTextStream class, and extension .mpt is Python text format.
Both text formats are identical, but by using different extensions we can use different save
and load code for the purposes of comparison.

def save(self, fname=QString()):
 if not fname.isEmpty():
 self.__fname = fname
 if self.__fname.endsWith(".mqb"):
 return self.saveQDataStream()
 elif self.__fname.endsWith(".mpb"):
 return self.savePickle()
 elif self.__fname.endsWith(".mqt"):
 return self.saveQTextStream()
 elif self.__fname.endsWith(".mpt"):
 return self.saveText()
 return False, "Failed to save: invalid file extension"

When the user invokes the "file save" action we would expect the data container's save
() method to be invoked. This is indeed what happens in My Movies and is the normal

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 249 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

practice. However, here, instead of performing the save itself, the save() method hands
on the work to a method that is specific to the filename's extension. This handing on is
purely so that we can show how to save in the different formats; in a real application we
would normally only use one format.

File Error Handling sidebar 244

There is a corresponding load() method, that has exactly the same logic as the save()
method, and which passes its work on to load methods that are extension-specific. All the
load and save methods return a two element tuple, the first element a Boolean success/
failure flag, and the second a message, either an error message or a report of what
successfully occurred.

We have now seen the application's infrastructure for file handling, and the container's
data structures that hold the data in memory. In the following sections we will look at the
code that performs the saving and loading of the container's data to and from disk.

Saving and Loading Binary Files
Both PyQt and the Python standard library provide facilities for writing and reading binary
files. PyQt uses the QDataStream class, and the Python standard library uses the file
class, either directly or in conjunction with the pickle module.

Binary formats are not human readable but they are the easiest to code and the fastest to
write and read to and from disk. No parsing is necessary: numbers, dates, and many PyQt
types, including images, can be read and written without formality. PyQt's support for
binary files is very strong: PyQt ensures that binary files are platform-independent, and it
isn't difficult to version our binary file types so that we can extend our file format when
required. The Python standard library's pickle module (and its faster cPickle
counterpart) also provides fast platform-independent loading and saving, but may not be
as efficient as PyQt's QDataStream for handling complex PyQt types, such as images.

Writing and Reading Using QDataStream
The QDataStream class can read and write Python Boolean and numeric types, and PyQt
types, including images, in binary format. Files written by QDataStream are platform-
independent; the class automatically takes care of endianness and word-size.

Almost every new version of PyQt has a QDataStream that uses a new binary format for
data storage—this is done so that QDataStream can accommodate new data types, and

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 250 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

to support enhancements to existing data types. This is not a problem because every
version of QDataStream can read data stored in the formats used by all its previous
versions. And in addition, QDataStream always stores integers the same way, no matter
which version of QDataStream is being used.

def saveQDataStream(self):
 error = None
 fh = None
 try:
 fh = QFile(self.__fname)
 if not fh.open(QIODevice.WriteOnly):
 raise IOError, unicode(fh.errorString())
 stream = QDataStream(fh)
 stream.writeInt32(MovieContainer.MAGIC_NUMBER)
 stream.writeInt32(MovieContainer.FILE_VERSION)
 stream.setVersion(QDataStream.Qt_4_2)

Since PyQt uses return values rather than exceptions, if the file cannot be opened we raise
an exception ourselves since we prefer the exception-based approach to error handling.
Having opened the file, we create a QDataStream object to write to it.

PyQt cannot guess what size integer we want to use to store int and long integers, so we
must write integer values using the writeIntn() and writeUIntn() methods, where
n is 8, 16, 32, or 64, i.e., the number of bits to use to store the integer. For floating-point
numbers, QDataStream provides the writeDouble() and readDouble() methods.
These operate on Python floats (equivalent to C and C++ doubles), and are stored as 64-
bit values in IEEE-754 format.

The first integer we write is the "magic number". This is an arbitrary number that we use
to identify My Movies data files. This number will never change. We should give any custom
binary data file a unique magic number, since filename extensions cannot always be relied
upon to correctly identify a file's type. Next we write a "file version". This is the version of
our file format (we have set it to be 100). If later on, we decide to change the file format,
the magic number will remain the same—after all the file will still hold movie data—but
the file format will change (e.g., to 101) so that we can execute different code to load it to
account for the difference in format.

Since integers are always saved in the same format, we can safely write them before setting
the QDataStream version. But once we have written the magic number and file version,
we should set the QDataStream version to the one that PyQt should use for writing and
reading the rest of the data. If we want to take advantage of a later version we could use
our original file format for version Qt_4_2, and another file format for the later version.
Then, when we come to load the data, we could set the QDataStream version depending
on our file format number.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 251 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Setting the QDataStream version is very important, since it will ensure that any PyQt data
type is saved and loaded correctly. The only situation where it does not matter is if we are
only saving and loading integers, since their representation never changes.

for key, movie in self.__movies:
 stream << movie.title
 stream.writeInt16(movie.year)
 stream.writeInt16(movie.minutes)
 stream << movie.acquired << movie.notes

Now we iterate over the movie data, writing each movie's data to the data stream. The
QDataStream class overloads the << operator for many PyQt classes, including for
example, QString, QDate, and QImage, so we must use a C++-like streaming syntax to
write our data. The << operator writes its right operand to the data stream that is its left
operand. It can be applied repeatedly to the same stream, since it returns the stream it is
applied to, but for integers, we must use the writeIntn() and writeUIntn() methods.

Figure 8.3. The QDataStream My Movies File Format

Since we are writing binary data, we do not have to do any formatting. We just have to
ensure that when we load the data back, we use the same QDataStream version, and that
we load in the same data types in the same order as we saved. So, in this case, we will load
back two integers (the magic and file version numbers), then any number of movie records
each comprising a string, two integers, a date, and a string.

except (IOError, OSError), e:
 error = "Failed to save: %s" % e
finally:
 if fh is not None:
 fh.close()
 if error is not None:
 return False, error
 self.__dirty = False
 return True, "Saved %d movie records to %s" % (
 len(self.__movies),
 QFileInfo(self.__fname).fileName())

If there are any errors, we simply give up and return a failure flag and an error message.
Otherwise we clear the dirty flag and return a success flag and a message indicating how
many records were saved.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 252 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The corresponding load method is just as straightforward, although it does have to do more
error handling.

def loadQDataStream(self):
 error = None
 fh = None
 try:
 fh = QFile(self.__fname)
 if not fh.open(QIODevice.ReadOnly):
 raise IOError, unicode(fh.errorString())
 stream = QDataStream(fh)
 magic = stream.readInt32()
 if magic != MovieContainer.MAGIC_NUMBER:
 raise IOError, "unrecognized file type"
 version = stream.readInt32()
 if version < MovieContainer.FILE_VERSION:
 raise IOError, "old and unreadable file format"
 elif version > MovieContainer.FILE_VERSION:
 raise IOError, "new and unreadable file format"
 stream.setVersion(QDataStream.Qt_4_2)
 self.clear(False)

We create the QFile object and QDataStream object the same as before, except this time
using ReadOnly rather than WriteOnly mode. Then we read in the magic number. If
this is not the unique My Movies data file number, we raise an exception. Next we read the
file version, and make sure it is one that we can handle. It is at this point that we would
branch depending on the file version, if we had more than one version of this file format
in use. Then we set the QDataStream version.

The next step is to clear the movies data structures. We do this as late as possible so that
if an exception was raised earlier, the original data would be left intact. The False
argument tells the clear() method to clear __movies and __movieFromId, but not
the filename.

while not stream.atEnd():
 title = QString()
 acquired = QDate()
 notes = QString()
 stream >> title
 year = stream.readInt16()
 minutes = stream.readInt16()
 stream >> acquired >> notes
 self.add(Movie(title, year, minutes, acquired, notes))

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 253 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Approaches to File Error Handling

The approach used for handling file errors in this chapter has the structure
shown below on the left. Another equally valid approach, used for example, in
chap09/textedit.py and chap14/ships.py, is shown below on the right.

error = None
fh = None
try:
 # open file and read data
except (IOError, OSError), e:
 error = unicode(e)
finally:
 if fh is not None:
 fh.close()
 if error is not None:
 return False, error
 return True, "Success"

exception = None
fh = None
try:
 # open file and read data
except (IOError, OSError), e:
 exception = e
finally:
 if fh is not None:
 fh.close()
 if exception is not None:
 raise exception

At the call point, and assuming we are dealing with a load() method, we might
use code like this for the left-hand approach:

ok, msg = load(args)
if not ok:
 QMessageBox.warning(self, "File Error", msg)

And for the right-hand approach we could use code like this:

try:
 load(args)
except (IOError, OSError), e:
 QMessageBox.warning(self, "File Error", unicode(e))

Another approach, used for example in chap09/sditexteditor.pyw and
chap12/pagedesigner.pyw, is to do all the error handling inside the file
handling method itself:

fh = None
try:
 # open file and read data
except (IOError, OSError), e:
 QMessageBox.warning(self, "File Error", unicode(e))
finally:
 if fh is not None:
 fh.close()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 254 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

At the call point we simply call load(args), leaving the load() method itself
to report any problems to the user.

Table 8.1. Selected QDataStream Methods

Syntax Description

s.atEnd() Returns True if the end of QDataStream s has been reached

s.setVersion(v) Sets QDataStream s's version to v, where v is one of Qt_1_0, ..., Qt_4_2, Qt_4_3

s << x Writes object x to QDataStream s; x can be of type QBrush, QColor, QDate, QDateTime,
QFont, QIcon, QImage, QMatrix, QPainterPath, QPen, QPixmap, QSize, QString,
QVariant etc.

s.readBool() Reads a bool from QDataStream s

s.readDouble() Reads a float from QDataStream s

s.readInt16() Reads a 16-bit int from QDataStream s. There is also readUInt16()

s.readInt32() Reads a 32-bit int from QDataStream s. There is also readUInt32()

s.readInt64() Reads a 64-bit long from QDataStream s. There is also a readUInt64() method

x = QString() s >>
x

Reads object x from QDataStream s; x must already exist (so that the data stream knows what
data type to read), and can be any of the types writeable by <<

s.writeBool(b) Writes bool b to QDataStream s

s.writeDouble(f) Writes float f to QDataStream s

s.writeInt16(i) Writes int i to QDataStream s. There is also writeUInt16()

s.writeInt32(i) Writes int i to QDataStream s. There is also writeUInt32()

s.writeInt64(l) Writes long l to QDataStream s. There is also writeUInt64()

We could have stored the number of movies at the beginning of the file, after the file
version. But instead we simply iterate over the data stream until we reach the end. For
non-numeric data types we must create variables that hold empty values of the correct
type. Then we use the >> operator which takes a data stream as its left operand and a
variable as its right operand; it reads a value of the right operand's type from the stream
and puts it into the right operand. The operator returns the file stream, so it can be applied
repeatedly.

For integers we must always read using the readIntn() and readUIntn() methods
with the same number of bits as we specified when writing.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 255 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Once we have read in a single movie's data, we create a new Movie object and immediately
add it to the container's data structures using the add() method we reviewed in the
previous section.

except (IOError, OSError), e:
 error = "Failed to load: %s" % e
finally:
 if fh is not None:
 fh.close()
 if error is not None:
 return False, error
 self.__dirty = False
 return True, "Loaded %d movie records from %s" % (
 len(self.__movies),
 QFileInfo(self.__fname).fileName())

The error handling, and the final return statement is structurally the same as we used
for the save method.

Using the PyQt QDataStream class to write binary data is not very different in principle
from using Python's file class. We must be careful to use the correct QDataStream
version, and ought to use a magic number and file version, or some equivalent approach.
The use of the << and >> operators is not very Pythonic, but it is easy to understand.

We could have put code for writing a movie in the Movie class itself, perhaps with a method
that took a QDataStream argument and wrote the movie's data to it. In practice it is
usually more convenient, and almost always more flexible, to have the data container do
the file handling rather than the individual data items.

Writing and Reading Using the pickle Module
Python's standard pickle module, and its faster cPickle counterpart, can save arbitrary
Python data structures to disk and load them back again. These modules provide exactly
the same functions and functionality as each other. The only difference between them is
that the pickle module is implemented purely in Python, and the cPickle module is
implemented in C. These modules only understand the data types in the Python standard
library, and classes that are built from them. If we want to pickle PyQt-specific data types
with PyQt versions prior to PyQt 4.3, we must tell the pickle (or cPickle) module how
to handle them.

def _pickleQDate(date):
 return QDate, (date.year(), date.month(), date.day())

def _pickleQString(qstr):
 return QString, (unicode(qstr),)

copy_reg.pickle(QDate, _pickleQDate)
copy_reg.pickle(QString, _pickleQString)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 256 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The copy_reg module is used to specify how to read and write non-standard data types.
The information is provided by calling copy_reg.pickle() with two arguments. The
first argument is the new-style class that we want to be able to pickle, and the second is a
function. The function must take a single argument, an instance of the class we want to
pickle, and should return a two-tuple, whose first element is the class, and whose second
element is a tuple of standard Python types that can be fed into the class's constructor to
create an instance that has the same value as the instance passed in.

With this information the pickle module can store instances of our class by storing the
class name as text and the arguments as a tuple of standard Python types. Then, when we
want to unpickle (load) the data back, Python can use eval() to recreate our instances.

PyQt 4.3 includes support for pickling basic Qt data types, including: QByteArray,
QChar, QColor, QDate, QDateTime, QKeySequence, QLine, QLineF, QMatrix,
QPoint, QPointF, QPolygon, QRect, QRectF, QSize, QSizeF, QString, and
QTime. This means that we can "pickle" any of these types without having to write and
register our own pickling functions.

def savePickle(self):
 error = None
 fh = None
 try:
 fh = gzip.open(unicode(self.__fname), "wb")
 cPickle.dump(self.__movies, fh, 2)
 except (IOError, OSError), e:
 error = "Failed to save: %s" % e
 finally:
 if fh is not None:
 fh.close()
 if error is not None:
 return False, error
 self.__dirty = False
 return True, "Saved %d movie records to %s" % (
 len(self.__movies),
 QFileInfo(self.__fname).fileName())

We can easily save any Python data structure, including recursive data structures as a
pickle. We do this by opening a file in binary mode and using the dump() function. In this
example we have chosen to save our pickle compressed (which may reduce file size by
around 50%), but we could have avoided using compression like this:

fh = open(unicode(self.__fname), "wb")

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 257 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We must convert the filename to unicode because it is held as a QString. The "wb"
argument to open() means "write binary". The dump() function takes a Python data
structure, in this case our list of [key, movie] lists, a file handle, and a format code. We
always use format code 2 which means pickle binary format.

Since the keys are generated by the key() method, we only really need to save the
Movie instances, rather than the [key, movie] lists. If disk space was at a premium we
might do this, but it would require us to regenerate the keys when the data was loaded, so
represents a trade-off between disk space and speed of saving and loading. We have opted
to sacrifice disk space for the sake of faster and easier saving and loading.

def loadPickle(self):
 error = None
 fh = None
 try:
 fh = gzip.open(unicode(self.__fname), "rb")
 self.clear(False)
 self.__movies = cPickle.load(fh)
 for key, movie in self.__movies:
 self.__movieFromId[id(movie)] = movie
 except (IOError, OSError), e:
 error = "Failed to load: %s" % e
 finally:
 if fh is not None:
 fh.close()
 if error is not None:
 return False, error
 self.__dirty = False
 return True, "Loaded %d movie records from %s" % (
 len(self.__movies),
 QFileInfo(self.__fname).fileName())

Unpickling is almost as easy as pickling. We must remember to open the file using gzip
so that it gets uncompressed. The "rb" argument to open() means "read binary". We use
the pickle load() function to retrieve the data; it takes a file handle and returns the entire
data structure. We assign the data structure directly to our __movies list. Then we iterate
over the movies to populate the __movieFromId dictionary: This cannot be saved because
it depends on Movie id()s which will vary every time the application is run.

Pickling and unpickling is the easiest approach to saving and loading binary data, and is
ideal for situations when our data is held in standard Python data types. If we hold our
data as PyQt data types, then it is usually best to use QDataStream. This class is more
efficient than the pickle module at storing complex PyQt data types like images (because
there is none of the conversion overhead that is required when pickling), and it produces
more compact files than the pickle module produces (unless the pickled data is
compressed). It also makes it easy to provide seamless data format inter-operability with
C++/Qt applications.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 258 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Saving and Loading Text Files
PyQt and the Python standard library provide facilities for writing and reading text files.
PyQt uses the QTextStream class, and the Python standard library uses the codecs
module.

Plain text formats are usually human readable, in a text editor for example, and are usually
easy to write. Any kind of data can be written as plain text one way or another. Numbers
and dates can be written quite easily and compactly by using their string representations,
and other types, such as images, can be written in more verbose forms, for example,
using .xpm format.

Reading plain text that includes non-textual data or that has structure (for example a
record structure) means that we must write a parser, and this can be quite difficult,
especially for complex data or complex data structures. Plain text formats can also be quite
tricky to extend in a way that remains compatible with earlier formats, and they are
vulnerable to being misread due to differences between the encoding read and the encoding
written, since a user might edit them using a text editor that assumes a different encoding
from the one that was actually used. These formats are most useful for simple file structures
that store simple data types.[*]

[*] If the format is very simple, it may be easiest to use a QSettings object and have it read and write to a specified file rather than to hand code.

The data we need to write only contains simple types: strings, integers, and a date. But we
still need to structure the text file so that each movie record can be distinguished, and we
must account for the fact that the notes texts may extend over multiple lines.

The structure we have chosen is shown in Figure 8.4. In the Format column on the left,
spaces are indicated by " "s and newlines by " "s.

Figure 8.4. The My Movies Text Format

Format Example

{{MOVIE}} title
{{MOVIE}} 12 Monkeys

year minutes acquired
1995 129 2001-06-21

{NOTES} {NOTES}

notes Based on La Jetée

{{ENDMOVIE}} {{ENDMOVIE}}

The notes may span multiple lines, but we have assumed that no line of notes begins with
the text "{{ENDMOVIE}}". A more robust solution would involve escaping. For example

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 259 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

we could assume that for any line that begins with, say "\", we ignore the "\" and take the
rest of the line as literal text. This would allow us to include a line with the text
"{{ENDMOVIE}}", by writing it as "\{{ENDMOVIE}}".

Writing and Reading Using QTextStream
The code for writing in text format using QTextStream is very similar to the code we used
for writing using QDataStream.

def saveQTextStream(self):
 error = None
 fh = None
 try:
 fh = QFile(self.__fname)
 if not fh.open(QIODevice.WriteOnly):
 raise IOError, unicode(fh.errorString())
 stream = QTextStream(fh)
 stream.setCodec(CODEC)
 for key, movie in self.__movies:
 stream << "{{MOVIE}} " << movie.title << "\n" \
 << movie.year << " " << movie.minutes << " " \
 << movie.acquired.toString(Qt.ISODate) \
 << "\n{NOTES}"
 if not movie.notes.isEmpty():
 stream << "\n" << movie.notes
 stream << "\n{{ENDMOVIE}}\n"

There are two crucial points to note. Firstly we must specify the encoding we want to use.
We are using UTF-8 in all cases; (CODEC holds the text "UTF-8"). If we do not do this,
PyQt will use the local 8-bit encoding, which could be any of ASCII, Latin-1, or UTF-8 in
the U.S., Latin-1 or UTF-8 in Western Europe, and EUC-JP, JIS, Shift-JIS, or UTF-8 in
Japan. By specifying the encoding we ensure that we always write and read using the
encoding we have specified, so that characters are not misinterpreted. Unfortunately, we
cannot guarantee that users will edit our text file using the correct encoding. If the files
are likely to be edited, we could write the encoding on the first line in ASCII, for example
as encoding="UTF-8" in a similar way to XML, to at least provide a hint to the editor.
This problem should diminish in the coming years since UTF-8 is becoming the de facto
global standard for encoding text files.

The second point should be obvious: All data must be written as text. QTextStream
overloads operator << to handle Booleans, numbers, and QStrings automatically, but
other data types must be converted to their string representations. For dates we have
chosen to use ISO (YYYY-MM-DD) format. We have also chosen to avoid having a blank
line after the "{NOTES}" marker if the notes are empty.

We have omitted the code for the except and finally blocks since it is the same as we
have seen a few times before, for example in the saveQDataStream() method.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 260 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Although writing in text format is straightforward, reading it back is not so easy. For one
thing, we will have to read all the integers (year, minutes, and components of the acquired
date), as text and convert them to the integers their texts represent. But the main issue is
that we must correctly parse the file to pick out each movie's record attributes.

Handling integers is not too difficult since QString provides a toInt() method; but the
method returns a success/failure flag rather than raising an exception, and checking for
this every time we handle a number will mean that we need three lines of code per number
instead of one. For this reason we have created a more Pythonic wrapper function for
reading integers.

def intFromQStr(qstr):
 i, ok = qstr.toInt()
 if not ok:
 raise ValueError, unicode(qstr)
 return i

This function simply calls QString.toInt(), and raises an exception on failure, or
returns the integer on success.

Figure 8.5. The My Movies Text Format's Finite State Automaton for Each Movie

To parse our movies text file we will use a finite state automaton to gather each movie's
data. This just means that before we read each line we have an expectation of what the line
will contain. If the expectation is not met, then we have an error, otherwise we read the
expected data, and set the expectation for what the next line should contain.

def loadQTextStream(self):
 error = None
 fh = None
 try:
 fh = QFile(self.__fname)
 if not fh.open(QIODevice.ReadOnly):
 raise IOError, unicode(fh.errorString())
 stream = QTextStream(fh)
 stream.setCodec(CODEC)
 self.clear(False)
 lino = 0

The method begins familiarly enough. Once we have opened the file, created the
QTextStream, and set the codec, we clear the existing movie data ready to read in the
data from disk.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 261 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For each movie we first expect a "title" line containing "{{MOVIE}}" followed by a space
and the movie's title, then a "numbers" line that will have the year, minutes, and acquired
date, then a "notes" line that just contains "{NOTES}", then zero or more lines of notes
text, and finally an "end" line containing just "{{ENDMOVIE}}". We begin by expecting a
"title" line.

To help the user find format errors we keep track of the current line number in the lino
variable, which we will use in error messages.

The body of the while loop that we use to read through the file is quite long, so we will
look at it in parts.

while not stream.atEnd():
 title = year = minutes = acquired = notes = None
 line = stream.readLine()
 lino += 1
 if not line.startsWith("{{MOVIE}}"):
 raise ValueError, "no movie record found"
 else:
 title = line.mid(len("{{MOVIE}}")).trimmed()

We begin by initializing the variables that will hold one movie's attributes to None so that
it is easy to tell if we have read them all or not.

We iterate over each line in the file. Unlike the Python standard library's file.readline
() method, PyQt's QTextStream.readLine() strips off the line's trailing newline. Each
time we read a line we increment lino.

The first line we expect for any movie is one beginning with the "{{MOVIE}}" marker. If
the line is wrong we raise an exception with an error message; the exception handler will
add in the line number in the message passed up to the user. If we have a correct line, we
extract the movie's title by reading the text that follows the "{{MOVIE}}" marker at the
beginning of the line, stripping off any leading and trailing whitespace.

The QString.mid(n) method is the equivalent of unicode[n:], and
QString.trimmed() is the same as unicode.strip().

Now we are ready to read the "numbers" line.

if stream.atEnd():
 raise ValueError, "premature end of file"
line = stream.readLine()
lino += 1
parts = line.split(" ")
if parts.count() != 3:
 raise ValueError, "invalid numeric data"
year = intFromQStr(parts[0])
minutes = intFromQStr(parts[1])

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 262 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

ymd = parts[2].split("-")
if ymd.count() != 3:
 raise ValueError, "invalid acquired date"
acquired = QDate(intFromQStr(ymd[0]),
 intFromQStr(ymd[1]),
 intFromQStr(ymd[2]))

We begin by checking that we haven't prematurely reached the end of the file, and if we
have, we raise an exception. Otherwise, we read in the "numbers" line. This line should
have an integer (the year), a space, an integer (the minutes), a space, and the acquired date
in YYYY-MM-DD format. We initially split the line on the space character and this should
give us three strings, year, minutes, and acquired date. We use our intFromQStr()
function to convert each text to the integer it represents; if any conversion fails an exception
is raised and handled in this method's exception handler. We convert the year and minutes
directly, but for the acquired date we must split the string again, this time on the hyphen
character, and then construct a QDate using the integer values extracted from each part.

Now we are ready to read the "{NOTES}" marker, optionally followed by lines of notes,
and finally the "{{ENDMOVIE}}" marker.

if stream.atEnd():
 raise ValueError, "premature end of file"
line = stream.readLine()
lino += 1
if line != "{NOTES}":
 raise ValueError, "notes expected"
notes = QString()
while not stream.atEnd():
 line = stream.readLine()
 lino += 1
 if line == "{{ENDMOVIE}}":
 if title is None or year is None or \
 minutes is None or acquired is None or \
 notes is None:
 raise ValueError, "incomplete record"
 self.add(Movie(title, year, minutes,
 acquired, notes.trimmed()))
 break
 else:
 notes += line + "\n"
else:
 raise ValueError, "missing endmovie marker"

Table 8.2. Selected QTextStream Methods

Syntax Description

s.atEnd() Returns True if the end of QTextStream s has been reached

s.setCodec(c) Sets QTextStream s's text codec to the one specified in c —this can be a string, e.g., "UTF-8", or a
QTextCodec object

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 263 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Syntax Description

s << x Writes object x to QTextStream s; x can be of type bool, float, int, long, QString, str,
unicode, and a few others

s.readLine() Reads one line, returning it as a QString stripped of any end of line characters

s.readAll() Reads the entire file, returning it as a QString

We expect to get a single line containing the "{NOTES}" marker. At this point we set the
notes variable to be an empty QString. Even if no notes text is added, the fact that we
have a QString rather than a None is enough to tell us that we read the notes, even if they
were empty.

Now there are two possibilities. Either we have the "{{ENDMOVIE}}" marker, or we are
reading a line of notes. In the latter case we simply append the line to the notes we have
accumulated so far, adding back the newline that PyQt's readLine() method stripped
off. Then we loop, and either have the "{{ENDMOVIE}}" marker, or another line of notes.

If we get the marker, we check that none of our variables is None to ensure that we have
read all the data for a movie record, and then we create and add a new movie with the data
we have gathered. Now we break out of the inner while loop ready to read another movie,
or to finish if the one just read was the last one in the file.

If we never get the "{{ENDMOVIE}}" marker, at some point the end of the file will be
reached and the inner while loop will terminate. If this occurs the while loop's else
suite will execute and raise a suitable exception. A while or for loop's else suite is only
executed if the loop completes, not if it is terminated by a break statement.

While loop's else clause 49

except (IOError, OSError, ValueError), e:
 error = "Failed to load: %s on line %d" % (e, lino)
finally:
 if fh is not None:
 fh.close()
 if error is not None:
 return False, error
 self.__dirty = False
 return True, "Loaded %d movie records from %s" % (
 len(self.__movies),
 QFileInfo(self.__fname).fileName())

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 264 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The error handling is almost identical to what we have seen before, only this time we
include the line number where the error occurred.

Writing and Reading Using the codecs Module
An alternative to using the PyQt classes is to use Python's built-in and standard library
classes for writing and reading text files. Files can be written and read directly using the
file class, but if we want to specify the encoding, we must use the codecs module instead.

def saveText(self):
 error = None
 fh = None
 try:
 fh = codecs.open(unicode(self.__fname), "w", CODEC)
 for key, movie in self.__movies:
 fh.write(u"{{MOVIE}} %s\n" % unicode(movie.title))
 fh.write(u"%d %d %s\n" % (movie.year, movie.minutes,
 movie.acquired.toString(Qt.ISODate)))
 fh.write(u"{NOTES}")
 if not movie.notes.isEmpty():
 fh.write(u"\n%s" % unicode(movie.notes))
 fh.write(u"\n{{ENDMOVIE}}\n")

We have used exactly the same text format as we used when writing with a
QTextStream, so the code is very similar to saveQTextStream(). We open the file
using the codecs.open() function rather than the open() function; we do not have to
specify a "binary" flag. We have omitted the code from the except block to the end since
it is the same as we have seen before.

def loadText(self):
 error = None
 fh = None
 try:
 fh = codecs.open(unicode(self.__fname), "rU", CODEC)
 self.clear(False)
 lino = 0
 while True:
 title = year = minutes = acquired = notes = None
 line = fh.readline()
 if not line:
 break
 lino += 1
 if not line.startswith("{{MOVIE}}"):
 raise ValueError, "no movie record found"
 else:
 title = QString(line[len("{{MOVIE}}"):].strip())

We have only shown the first few lines of the loadText() method that corresponds to
saveText(). This is because the method uses the same algorithm and almost the same
code as the loadQTextStream() method. The only significant differences are due to the
fact that we read in the lines as Python unicodes, so we must convert the title and notes

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 265 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

to QStrings. Also, Python keeps the newlines rather than discarding them, and returns
an empty string to signify that the end of the file has been reached, so we must slightly
modify the code to account for this. For the integers we can use Python's int() function
rather than the intFromQStr() function we needed for QStrings.

We have chosen to read back in "rU" mode, "read universal newlines" rather than plain
"r" mode "read". This just means that the lines will be read correctly even if written on
say, Linux, and read back on say, Windows, even though the two operating systems use
different line ending conventions.

Saving and Loading XML Files
Both PyQt and the Python standard library can read and write XML files. PyQt provides
two parsers for reading, and can write XML using its QDomDocument class. PyQt 4.3 adds
two new XML classes. The QXmlStreamReader class is lightweight like SAX, but easier
to use, and the QXmlStreamWriter class is much easier and more efficient for writing
than writing by hand or using DOM. The Python standard library also provides extensive
XML support, but in this section we will confine ourselves to the functionality offered by
the PyQt library, since Python's XML classes are well covered by Python's documentation
and in such books as Python and XML and XML Processing in Python.

XML formats tend to be a lot more verbose than plain text formats, and not so easy for
humans to read. On the other hand, encoding issues are taken care of so hand editing can
be more reliable than with plain text, and the parsing of the overall file structure is usually
a lot easier using a suitable XML library than for plain text files. XML formats are generally
simpler to extend than either binary or plain text formats, although care must be taken
when writing XML to ensure that data does not contain XML metacharacters. Writing
XML is straightforward, but reading it requires the use of a parser. There are two very
different and widely used XML parser APIs: DOM (Document Object Model), which loads
entire XML documents into memory and is well suited to editing a document's structure,
and SAX (Simple API for XML), which works incrementally, so is less resource hungry and
is suitable for searching and processing XML documents. We will show both kinds of parser
in action.

Writing XML
If we have read an XML document into a QDomDocument, or if we have created and
populated a QDomDocument in code, the easiest way to save the document to disk is to use
QDomDocument.toString() to get a QString of the entire document in XML format,
and to save the string to disk. In practice though, we often only use XML as a data-
interchange format, and hold our data in custom data structures. In these cases we need
to write the XML ourselves, and that is what we will look at in a moment.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 266 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In XML, sequences of "whitespace" characters, such as newlines, tabs, and spaces, are
usually treated as a single space. This is often convenient, but not in the case of our movie
notes, since for the notes we want to preserve the newlines and paragraph breaks that the
user has inserted.

def encodedNewlines(text):
 return text.replace("\n\n", NEWPARA).replace("\n", NEWLINE)

def decodedNewlines(text):
 return text.replace(NEWPARA, "\n\n").replace(NEWLINE, "\n")

The two functions show above can be used to preserve the users' paragraph breaks and
newlines. The first function encodes paragraph breaks and newlines into the Unicode
character that represents them, and the second one decodes Unicode paragraph breaks
and newlines back to the familiar "\n" character.

With these two functions available, we are ready to see how to export our movie data in
XML format. Let us begin by looking at the format we are aiming to produce:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE MOVIES>
<MOVIES VERSION='1.0'>
...
<MOVIE YEAR='1951' MINUTES='100' ACQUIRED='2002-02-07'>
<TITLE>The African Queen</TITLE>
<NOTES>
Katherine Hepburn, Humphrey Bogart
</NOTES>
</MOVIE>
...
</MOVIES>

The ellipses represent movie records that have been omitted to save space and are not part
of the format. Although we will always write the <MOVIE> tag's attributes in the same
order, as far as the XML parsers are concerned the order is arbitrary. Attribute values
should not contain single or double quotes, or the XML metacharacters, "<", ">", or "&".
[*] This means that for attribute values, we should either escape them, or ensure that we
only use values that we know do not contain these characters, for example, numbers, dates
and times in ISO format, and Booleans. For character data such as the title and notes, we
can include quotes since only the metacharacters are not permitted.

[*] To escape XML text we must convert "<" to "<", ">" to ">", and "&" to "&". In attribute values, in addition to these conversions, we must convert "'" to
"'" and """ to """.

def exportXml(self, fname):
 error = None
 fh = None
 try:
 fh = QFile(fname)
 if not fh.open(QIODevice.WriteOnly):
 raise IOError, unicode(fh.errorString())

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 267 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 stream = QTextStream(fh)
 stream.setCodec(CODEC)
 stream << ("<?xml version='1.0' encoding='%s'?>\n"
 "<!DOCTYPE MOVIES>\n"
 "<MOVIES VERSION='1.0'>\n" % CODEC)

We have chosen to use PyQt's QTextStream to write our XML file; we could just as easily
have used the codecs module, although in that case we would need to convert the
QStrings to unicodes.[*]

[*] PyQt 4.0 has a bug which prevents QTextStream from writing correctly, so for PyQt 4.0 we must use the codecs module. The problem does not exist in PyQt 4.1
and later versions.

The method starts off in the now familiar way. Once the QTextStream has been created,
we set its codec to UTF-8 as usual, then we output the first three lines—these are always
the same.

for key, movie in self.__movies:
 stream << ("<MOVIE YEAR='%d' MINUTES='%d' "
 "ACQUIRED='%s'>\n" % (
 movie.year, movie.minutes,
 movie.acquired.toString(Qt.ISODate))) \
 << "<TITLE>" << Qt.escape(movie.title) \
 << "</TITLE>\n<NOTES>"
 if not movie.notes.isEmpty():
 stream << "\n" << Qt.escape(
 encodedNewlines(movie.notes))
 stream << "\n</NOTES>\n</MOVIE>\n"
stream << "</MOVIES>\n"

We iterate over our movie data in the same way as we have done previously. The
Qt.escape() function takes a QString and returns it with any XML metacharacters
properly escaped. And we use our encodedNewlines() function to convert any
paragraph and line breaks in the notes to their Unicode equivalents. We do not perform
any escaping on the attributes because we know that they cannot contain any unacceptable
characters. We have omitted the end of the method since the exception handling and return
are structurally the same as those we have seen before.

Reading and Parsing XML with PyQt's DOM classes
PyQt's QDomDocument class can be used to read in an entire (well-formed) XML document
in one go. But once we have a QDomDocument, we must be able to make use of it. Some
applications reflect the document into a widget, often a QTreeWidget, while others, like
My Movies which use XML purely as a data-interchange format, traverse the document
populating their data structures as they go.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 268 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def importDOM(self, fname):
 dom = QDomDocument()
 error = None
 fh = None
 try:
 fh = QFile(fname)
 if not fh.open(QIODevice.ReadOnly):
 raise IOError, unicode(fh.errorString())
 if not dom.setContent(fh):
 raise ValueError, "could not parse XML"
 except (IOError, OSError, ValueError), e:
 error = "Failed to import: %s" % e
 finally:
 if fh is not None:
 fh.close()
 if error is not None:
 return False, error
 try:
 self.populateFromDOM(dom)
 except ValueError, e:
 return False, "Failed to import: %s" % e
 self.__fname = QString()
 self.__dirty = True
 return True, "Imported %d movie records from %s" % (
 len(self.__movies), QFileInfo(fname).fileName())

The first part of the load method should appear familiar, but notice that the entire file is
read when we call QDomDocument.setContent(). If this method succeeds (returns
True) then we know that the XML was successfully parsed.

Once we have a QDomDocument, we need to extract our data from it, and that is what the
populateFromDOM() method does.

The end of the method is different from what we have seen before. We clear the filename
and set the dirty flag to True. This will ensure that if the user tries to save the XML movie
data they have just imported, or if they try to quit the application, they will be given a "save
as" dialog so that they get the chance to save the data in one of the application's binary or
text formats.

Earlier it was mentioned that a QDomDocument could easily be written to file. Here is how
we could do it, assuming that dom is a QDomDocument, and filename is a valid filename,
but with no error checking:

codecs.open(filename, "w", "utf-8").write(unicode(dom.toString()))

This will produce a file that is slightly different to the one produced by the exportXml
() method. For example, the QDomDocument.toString() method indents nested tags,
uses double quotes, ("), rather than single quotes for attributes, and may order the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 269 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

attributes differently. Nonetheless, the XML document produced is canonically identical
to the one produced by exportXml().

Once the QDomDocument has read in the XML file we need to traverse its contents to
populate the application's data structures, and to do this we begin by calling
populateFromDOM() on the document.

def populateFromDOM(self, dom):
 root = dom.documentElement()
 if root.tagName() != "MOVIES":
 raise ValueError, "not a Movies XML file"
 self.clear(False)
 node = root.firstChild()
 while not node.isNull():
 if node.toElement().tagName() == "MOVIE":
 self.readMovieNode(node.toElement())
 node = node.nextSibling()

We start by checking that the XML file we read is indeed a movies XML file. If it is not we
raise an exception, and if it is, we clear our data structures ready for them to be populated
by the data extracted from the DOM document.

DOM documents are composed of "nodes", each of which represents an XML tag or the
text between tags. A node may have children and it may have siblings. In the case of the
movies XML format, we have sibling <MOVIE> nodes that have <TITLE> and <NOTES>
child nodes, and these child nodes in turn have child text nodes. So to extract our data we
iterate over the <MOVIE> nodes, and for each one we encounter, we extract its attributes
and the data from its child nodes.

def readMovieNode(self, element):
 def getText(node):
 child = node.firstChild()
 text = QString()
 while not child.isNull():
 if child.nodeType() == QDomNode.TextNode:
 text += child.toText().data()
 child = child.nextSibling()
 return text.trimmed()

The readMovieNode() begins with a nested function definition. The getText()
function takes a node as argument, for example a <TITLE> or <NOTES> opening tag, and
iterates over its child text nodes, accumulating their text. Finally, it returns the text, with
whitespace stripped from either end. As noted earlier, the QString.trimmed() method
does the same job as unicode.strip().

year = intFromQStr(element.attribute("YEAR"))
minutes = intFromQStr(element.attribute("MINUTES"))
ymd = element.attribute("ACQUIRED").split("-")
if ymd.count() != 3:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 270 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 raise ValueError, "invalid acquired date %s" % \
 unicode(element.attribute("ACQUIRED"))
acquired = QDate(intFromQStr(ymd[0]), intFromQStr(ymd[1]),
 intFromQStr(ymd[2]))

The readMovieNode() method itself begins by extracting the <MOVIE> tag's attribute
data and converting it from text into ints for the year and minutes, and into a QDate for
the date acquired.

We could have avoided having to handle the details of the acquired date ourselves, and
pushed the work onto the parser. For example, instead of having a single ACQUIRED
attribute, we could have had ACQUIREDYEAR, ACQUIREDMONTH, and ACQUIREDDAY, each
with an integer value. With these three attributes we would not need to do the split on
hyphens, but the format would have been more verbose.

title = notes = None
node = element.firstChild()
while title is None or notes is None:
 if node.isNull():
 raise ValueError, "missing title or notes"
 if node.toElement().tagName() == "TITLE":
 title = getText(node)
 elif node.toElement().tagName() == "NOTES":
 notes = getText(node)
 node = node.nextSibling()
if title.isEmpty():
 raise ValueError, "missing title"
self.add(Movie(title, year, minutes, acquired,
 decodedNewlines(notes)))

Each <MOVIE> node has two child nodes, <TITLE> and <NOTES>. Although we always
write them in the same order in the exportXml() method, we don't want to force the
child nodes to have a particular order. For this reason we iterate over the child nodes, and
use the nested getText() method to gather the text for whichever child node we
encounter.

At the end, providing the movie has a title, we create a new Movie object and immediately
add it to our data structures using add().

Using a DOM parser for importing XML into custom data structures works fine, although
we often need to write small helper functions like getText(). DOM is best used in
situations where we want to hold and manipulate the XML data inside a
QDomDocument itself, rather than converting it into other data structures.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 271 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Reading and Parsing XML with PyQt's SAX classes
Importing XML using a SAX parser works quite differently than using a DOM parser. With
SAX, we define a handler class that implements just the methods that we are interested
in, and then give an instance of the handler to the SAX parser to use as it parses the XML.
Parsing is not done in one go as it is with DOM, but rather piece by piece, with our handler's
methods being called when the data they handle is encountered. Any methods that we do
not implement are provided by the base class, and in all cases they safely do nothing.

def importSAX(self, fname):
 error = None
 fh = None
 try:
 handler = SaxMovieHandler(self)
 parser = QXmlSimpleReader()
 parser.setContentHandler(handler)
 parser.setErrorHandler(handler)
 fh = QFile(fname)
 input = QXmlInputSource(fh)
 self.clear(False)
 if not parser.parse(input):
 raise ValueError, handler.error
 except (IOError, OSError, ValueError), e:
 error = "Failed to import: %s" % e
 finally:
 if fh is not None:
 fh.close()
 if error is not None:
 return False, error
 self.__fname = QString()
 self.__dirty = True
 return True, "Imported %d movie records from %s" % (
 len(self.__movies), QFileInfo(fname).fileName())

We begin by creating an instance of a custom SaxMovieHandler and of a SAX XML
parser. The parser can be given a content handler, an error handler, and some other
handlers; we have chosen to create just one handler, one that can handle both content and
errors, so we set this same handler for these two purposes.

We get a QFile file handle and turn this into an XML "input source". At this point we clear
our data structures, again as late as possible, and then we tell the parser to parse the XML
file. The parser returns True on success and False on failure.

There is no separate phase for populating our data structures since we handle all of this
inside our SaxMovieHandler class as parsing progresses. At the end we clear the
filename and set the dirty flag to True, just as we did at the end of the importDOM()
method.

The SaxMovieHandler class is a QXmlDefaultHandler subclass. For content handling
it would normally implement at least startElement(), endElement() and

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 272 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

characters(), to handle start tags with their attributes, end tags, and the text between
tags. If we use the same handler for handling errors as we do here, we must also at least
implement the fatalError() method.

class SaxMovieHandler(QXmlDefaultHandler):

 def __init__(self, movies):
 super(SaxMovieHandler, self).__init__()
 self.movies = movies
 self.text = QString()
 self.error = None

The super() call ensures that the base class is properly initialized. The movies parameter
is the movie container itself. The text instance variable is used to hold between tags text,
for example the title or notes text, and the error variable will be given an error message
if something goes wrong.

def clear(self):
 self.year = None
 self.minutes = None
 self.acquired = None
 self.title = None
 self.notes = None

The first time this method is called it creates an instance variable for each of a movie's
attributes. Every time it is called it sets the variables to None; this will make it easy to test
whether we have read all of a movie's attributes or not.

def startElement(self, namespaceURI, localName, qName, attributes):
 if qName == "MOVIE":
 self.clear()
 self.year = intFromQStr(attributes.value("YEAR"))
 self.minutes = intFromQStr(attributes.value("MINUTES"))
 ymd = attributes.value("ACQUIRED").split("-")
 if ymd.count() != 3:
 raise ValueError, "invalid acquired date %s" % \
 unicode(attributes.value("ACQUIRED"))
 self.acquired = QDate(intFromQStr(ymd[0]),
 intFromQStr(ymd[1]),
 intFromQStr(ymd[2]))
 elif qName in ("TITLE", "NOTES"):
 self.text = QString()
 return True

This method is reimplemented from the base class, and for this reason we must use the
same signature. We are only interested in the last two parameters, qName "qualified name"
that holds the tag's name, and attributes that hold's the tag's attribute data. This
method is called whenever a new start tag is encountered.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 273 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If a new <MOVIE> tag is encountered we clear the corresponding instance variables, then
populate the year, minutes, and acquired date, from the tag's attribute data. This leaves
the title and notes variables both set to None.

If the tag is a <TITLE> or <NOTES> tag, then we can expect to get their corresponding text
(if there is any), so we set the text variable to be an empty string, ready to be appended
to.

Every reimplemented method must return True on success or False on failure; so we
return True at the end.

def characters(self, text):
 self.text += text
 return True

Whenever text is encountered between tags the characters() method is called. We
simply append the text to the text variable. The end tag will tell us whether we are
accumulating title or notes text.

def endElement(self, namespaceURI, localName, qName):
 if qName == "MOVIE":
 if self.year is None or self.minutes is None or \
 self.acquired is None or self.title is None or \
 self.notes is None or self.title.isEmpty():
 raise ValueError, "incomplete movie record"
 self.movies.add(Movie(self.title, self.year,
 self.minutes, self.acquired,
 decodedNewlines(self.notes)))
 self.clear()
 elif qName == "TITLE":
 self.title = self.text.trimmed()
 elif qName == "NOTES":
 self.notes = self.text.trimmed()
 return True

This method is called whenever an end tag is reached. The tag's name is in the qName
parameter. If the end tag is </MOVIE>, then none of the movie data instance variables
should be None (although the title or notes could be empty QStrings). If none of the
variables is None, and providing the movie has a title, we create a new Movie object and
immediately add it to the movies container.

If we have reached a title or notes end tag, we know that the text that has been accumulated
in the text QString has the text between the corresponding start and end tags, so we
assign this text accordingly. If there was no text, the assignment will be of an empty
QString.

def fatalError(self, exception):
 self.error = "parse error at line %d column %d: %s" % (

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 274 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 exception.lineNumber(), exception.columnNumber(),
 exception.message())
 return False

If a parsing error occurs, the fatalError() method is called. We reimplement it to
populate the handler's error text, and return False to indicate failure. This will cause
the parser to finish parsing and to return False to its caller.

Using PyQt's SAX parser requires us to create at least one separate handler subclass. This
is not difficult, especially since we only need to reimplement the methods we want to make
use of. Parsing with SAX is also less memory hungry than using DOM, since SAX works
incrementally, and is noticeably faster, especially for larger documents.

Summary
With all the choices available, which is the best format to use, and should we use the Python
or the PyQt classes?

Using a binary format is best for performance and platform-independence, and is also the
simplest to implement. Using a plain text format is appropriate for small files that typically
only hold simple values like strings, numbers, and dates, and that are intended to be hand
edited. Even so, there is a risk that the user's text editor will assume a different encoding
from the one we have used. We recommend using UTF-8 for all plain text formats, since
it is becoming the de facto standard encoding. Reading and writing XML is a lot slower
than reading and writing binary files (except for small files, i.e., less than ~1 MB), but is
worth offering, at least as export and import formats. After all, if our users can export and
import their data in XML format, it gives them the ability to export their data, process it
with some other tool, and then import back the processed data, without having to know
or care about the details of the binary format our application normally uses.

As for whether we use the Python or PyQt classes, it probably does not matter at all for
small files holding simple data types. If we want to minimize our programming effort, using
the cPickle module is probably the easiest route. But if we have large files (multi-
megabytes) or if we use complex PyQt types like QBrush, QCursor, QFont, QIcon,
QImage, and so on, then it is easiest and most efficient to use QDataStream since it can
read and write all these types directly.

The one drawback of using a binary format is that if we want to change our format, we
must at least change our load method so that it can load both our new and our old formats.
This is not a problem in practice, so long as we include a file version at the start of our data
after the magic number, since we can use this to determine which loading code to use.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 275 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

At this stage we have covered the fundamentals of GUI programming. We can create main
window applications, with menus, toolbars, and dock windows, and can create and pop up
any kind of dialog we like. We have also learned how to use Qt Designer to simplify and
speed up dialog design, and seen how to load and save application data in various formats.
In Part III we will both deepen and broaden our GUI programming knowledge, learning
how to handle multiple documents and how to create complex dialogs that are manageable
for the user. We will also explore some of PyQt's major architectural features, from its low-
level event handling mechanism to the creation of custom widgets, including coverage of
2D graphics, as well as higher-level features including item-based graphics, rich text
(HTML) handling, and model/view programming.

Exercise
Modify the My Movies application so that each Movie object can store an extra piece of
information, a QString called "location", which is where the movie is located, for example,
the room and shelf. Only provide saving and loading of binary Qt format .mqb files and
export and import of XML files, so remove the code for saving and loading pickles and text
files. Make sure that your new My Movies application can still read the original
application's .mqb, and .xml files, i.e., files that do not have location data.

The moviedata module's Movie class will need an extra QString attribute,
location. The MovieContainer class will need several small changes. You will need to
have both an old and a current file version number so you know which kind you are dealing
with. The formats() method should now only return the string "*.mqb", or could be
eliminated entirely. The save() and load() methods only need to handle .mqb files,
and must account for the location and the different file versions. Similarly the exportXml
() method and the two import XML methods must also account for the possible presence
of <LOCATION> tags. The changes to the user interface should be obvious, so we won't list
them.

None of these changes involves many lines of code, but some are subtle and will take a bit
of care to get right. Make sure that you test your changes. For example, load in an old file
in .mqb format, and also import a file in the old .xml format. Add some locations and
save the data in a new .mqb file and export as XML. Read both these back in to check that
everything works properly.

A model solution is provided in the files, chap08/mymovies_ans.pyw, chap08/
moviedata_ans.pyw, chap08/addeditmoviedlg_ans.ui, and chap08/
addeditmoviedlg_ans.py.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 276 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Part III: Intermediate GUI Programming

9. Layouts and Multiple Documents
• Layout Policies
• Tab Widgets and Stacked Widgets
• Splitters
• Single Document Interface (SDI)
• Multiple Document Interface (MDI)

In every dialog we have created so far, all the widgets have been visible at the same time.
But in some cases, for example, complex configuration dialogs or property editors, so many
widgets are required that showing them all at once could confuse the user. For such
situations we can use tab widgets or stacked widgets that allow us to group related widgets
together, and only show the relevant group, or we can use extension dialogs that can show
extra options on demand. These techniques can help make dialogs smaller and easier for
users to navigate and use; we will cover them in this chapter's second section.

In the main window style applications we have created, we had one central widget. But in
some situations, we need to show two or more widgets in the central area, and often want
to give the user some control over their relative sizes. One way of achieving this is to use
a single central widget with dock windows; we saw this approach in Chapter 6. Another
approach is to use splitters, the subject of this chapter's third section.

Another issue that arises with main window style applications, is how we deal with multiple
documents. There are four main approaches to this. One is to use multiple instances of the
application. In this approach the user launches one instance of the application for each
document they wish to work on. In theory this requires no programming effort at all, but
in practice, we might want to implement some kind of file locking scheme or use inter-
process communication to ensure that the user does not start the application twice or more
on the same document. All the applications we have created so far are of this kind, although
none of them have used file locking.[*]

[*] For file locking code, see "File Locking Using a Cross-Platform API" in the Python Cookbook.

A second approach is to use SDI (Single Document Interface). This means that the user is
expected to only run one instance of the application, but can use that application instance
to create as many main windows as they need to handle all the documents they wish to
work on. (It is possible to ensure that the user can only have one instance of an application

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 277 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

running at the same time, but the technique varies from platform to platform and is beyond
the scope of this book.) This approach is quite fashionable, and is recommended by the
Apple Human Interface Guidelines for "document-style" applications. It is covered in the
fourth section.

A third approach is to use MDI (Multiple Document Interface). Again, the user is expected
to only run one instance of the application, but here, all the documents are kept within a
single "workspace", i.e., in child windows inside the main window's central area. MDI is
less fashionable than SDI, and is also less resource hungry. For MDI applications, there is
just one main window, no matter how many documents are being worked on, compared
to SDI that has a main window with its menu bar, toolbars, and so on, for every document.
The final section of this chapter will show how to implement an MDI application.

A fourth alternative is to use a tab widget with each document occupying its own tab page.
This approach is used by many modern web browsers. We will only cover tab widgets in
the context of dialogs, although in the exercise you will get the chance to create a tab widget
based main window application, and perhaps surprisingly, the code required is very similar
to that used for an MDI application.

But before looking at tab widgets and stacked widgets in dialogs, and handling multiple
documents, we will take a brief diversion to discuss layouts in a bit more depth than when
we first encountered them.

Layout Policies
In earlier chapters we saw many examples of PyQt's layout managers in action. It is possible
in PyQt to set specific fixed sizes and positions for widgets, or to handle layouts manually
by reimplementing each widget's resizeEvent() handler. But using layout managers is
by far the easiest approach, and offers additional benefits compared with manual
approaches.

Layout managers allow widgets to grow and shrink to make the best use of the space
available to them, dynamically responding to the user changing the containing form's size.
Layout managers provide a minimum size for a form based on all the widgets' minimum
sizes. This ensures that the form cannot be made too small to be usable, and is not fixed,
but dependent on the widgets' contents—for example, a label might need more or less width
depending on whether the text it is displaying is in English or German.

The QVBoxLayout, QHBoxLayout, and QGridLayout layout managers are very
versatile. The box layouts can include "stretches" that consume space between widgets to
prevent widgets growing too tall or wide. And grid layouts can have widgets that span
multiple rows and columns. All the layout managers can be nested inside each other, so
very sophisticated layouts can be created.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 278 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Nonetheless, sometimes, the layout managers alone are not sufficient to achieve the layout
we want. One simple way to help the layout managers is to set the size policies of those
widgets that are not being laid out satisfactorily. Every widget has vertical and horizontal
size policies that can be set independently. (Every widget can also have a fixed minimum
and maximum size, but using size policies usually provides better resizing behavior.) In
addition, two sizes are associated with every widget: A size hint and a minimum size hint.
The former is the widget's preferred size, and the latter is the smallest size the widget can
be shrunk to. The sizes are used by the size policies as shown in Table 9.1.

Table 9.1. PyQt's Size Policies

Policy Effect

Fixed The widget has the size specified by its size hint and never changes size

Minimum The widget's size hint is its minimum size; it cannot be shrunk smaller than this, but it can grow bigger

Maximum The widget's size hint is its maximum size; it cannot grow bigger than this, but can shrink down to its
minimum size hint

Preferred The widget's size hint is its preferred size; it can be shrunk down to its minimum size hint, or it can
grow bigger than its size hint

Expanding The widget can be shrunk down to its minimum size hint, or it can grow bigger than its size hint, but
it prefers to grow bigger

For example, a QLineEdit might have a default horizontal policy of Expanding and a
vertical policy of Fixed. This would mean that the line edit will take up as much horizontal
space as it can get, but will always have the same vertical size. Every built-in PyQt widget
has sensible size hints and size policies already set, so normally we only need to change
them for one or two widgets when tweaking a layout.

Size policies also store a "stretch factor" in addition to a policy. This is used to indicate how
layout managers should share space between widgets. For example, if we had a
QVBoxLayout that contained two QListWidgets, both would want to grow in both
directions. But if we wanted the bottom one to grow faster than the top one, we could give
the top one a stretch factor of 1 and the bottom one a stretch factor of 3. This will ensure
that if the user resizes, the extra space will be distributed between the two widgets in the
proportions 1:3.

If setting size policies and stretch factors is still not enough, we can always create a subclass
and reimplement the sizeHint() and minimumSizeHint() methods to return the size
we want. We will see examples of this in Chapter 11.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 279 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Tab Widgets and Stacked Widgets
Some dialogs require so many widgets to present all the options that they make available
that they become difficult for the user to understand. The most obvious way to deal with
this is to create two or more dialogs and to divide the options between them. This is a good
approach when it is possible since it minimizes the demands made on the user, and may
also be easier from a maintenance point of view than a single complex dialog. But often
we need to use a single dialog because the options we are presenting to the user are related
and need to be presented together.

When we must use a single dialog, there are two kinds of groups of options that we must
consider. One kind is simply a group of related options. This is most easily handled by
using a QTabWidget. A tab widget can have as many "pages" (child widgets and tab
captions) as necessary, each one laid out with the widgets that are needed to present the
relevant options. Figure 9.1 shows a PaymentDlg, an example of a three page tab widget
that was created using Qt Designer.

Figure 9.1. A Dialog that uses a Tab Widget for Choosing a Payment Method

In Qt Designer's Widget Box's Containers section there is a Tab Widget. This can be
dragged onto a form like any other widget. Like most container widgets, and unlike most
other widgets, we normally have to manually resize the tab widget after dropping it on the
form, to roughly the size we want. In Qt Designer, the tab widget has context menu options
for deleting and adding pages. The current page can be set by clicking the relevant tab or
by setting the "currentIndex" property. The current page's tab text can be set by setting
the "currentTabText" property.

Once a tab widget has been dragged onto a form and resized, we can drag other widgets
onto its pages. These widgets can be laid out in the normal way, and each tab page can be
laid out in a similar way to the form itself, by deselecting all the widgets, then clicking the
tab page, then applying a layout manager.

Thanks to their labelled tabs, tab widgets make it obvious to the user that there are more
options on other tab pages, and provide an easy means by which the user can navigate

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 280 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

between pages. Tab widgets can have rounded or angled tab corners, and can have the tabs
at the top, bottom, left or right.

Although using Qt Designer is quicker and easier than creating the dialog by hand, it is
interesting and useful to know how to achieve the same thing purely in code. We won't
show the creation of the ordinary widgets, since we have seen that enough times by now;
instead we will focus on the tab widget and the form's overall layout. The following extracts
are all from the PaymentDlg class's initializer in chap09/paymentdlg.pyw. (The Qt
Designer version is in files paymentdlg.ui and paymentdlg.py).

tabWidget = QTabWidget()
cashWidget = QWidget()
cashLayout = QHBoxLayout()
cashLayout.addWidget(self.paidCheckBox)
cashWidget.setLayout(cashLayout)
tabWidget.addTab(cashWidget, "Cas&h")

We create the tab widget just like any other widget. Each page in a tab widget must contain
a widget, so we create a new widget, cashWidget, and create a layout for it. Then we add
the relevant widgets, in this case, just one, paidCheckBox, to the layout, and then set the
layout on the containing widget. Finally, we add the containing widget as a new tab to the
tab widget, along with the tab's label text.[*]

[*] In the PyQt documentation and to some extent in the QTabWidget's API, the term "tab" is used to refer both to a tab's label alone, and to a tab's label and page
together.

checkWidget = QWidget()
checkLayout = QGridLayout()
checkLayout.addWidget(checkNumLabel, 0, 0)
checkLayout.addWidget(self.checkNumLineEdit, 0, 1)
checkLayout.addWidget(bankLabel, 0, 2)
checkLayout.addWidget(self.bankLineEdit, 0, 3)
checkLayout.addWidget(accountNumLabel, 1, 0)
checkLayout.addWidget(self.accountNumLineEdit, 1, 1)
checkLayout.addWidget(sortCodeLabel, 1, 2)
checkLayout.addWidget(self.sortCodeLineEdit, 1, 3)
checkWidget.setLayout(checkLayout)
tabWidget.addTab(checkWidget, "Chec&k")

This tab is created in exactly the same way as the first one. The only difference is that we
have used a grid layout, and have more widgets to put in the layout.

We won't show the code for the third tab, because it is structurally the same as the ones
we have already seen.

layout = QVBoxLayout()
layout.addLayout(gridLayout)
layout.addWidget(tabWidget)
layout.addWidget(self.buttonBox)
self.setLayout(layout)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 281 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For completeness, we have shown the heart of the dialog's layout, omitting only the
creation of the grid layout that holds the labels, line edits, and spinboxes at the top of the
form. The buttons are provided by a QDialogButtonBox, a widget that can be laid out
like any other. Finally, we lay the whole form out in a vertical box layout, first the grid at
the top, then the tab widget in the middle, and then the button box at the bottom.

Another kind of options group is one that is only applicable in certain circumstances. In
the simple case where a group of options is applicable or not, we can use a checkable
QGroupBox. If the user unchecks the group box all the widgets it contains are disabled.
This means that the user can see what options the group contains, even when they are
unavailable, which is often helpful. In other cases, we might have two or more groups of
options, only one of which is applicable at any one time. For this situation a
QStackedWidget provides a solution. Conceptually, a stacked widget is a tab widget that
has no tabs. So the user has no visual clue that a stacked widget is present, and has no
means of navigating between the stacked widget's pages.

To use a stacked widget, we can drag a Stacked Widget onto a form in Qt Designer, and
resize it in the same way as for a tab widget. Inside Qt Designer a stacked widget is indicated
by two tiny arrowheads in its top-right hand corner. These arrowheads are also present
when the form is previewed, but they do not appear at runtime—they are shown at the top-
right of the color combobox in the first two screenshots in Figure 9.2. Widgets can be
dragged onto stacked widget pages and laid out in exactly the same way as for tab widgets.
Stacked widgets have a context menu that has options for adding and deleting pages, just
like a tab widget, and also additional options for navigating between pages and for
changing the page order.

Figure 9.2. A Dialog that uses a Stacked Widget

Since stacked widgets have no tabs, we must provide the user with a means of navigating
between pages. In the VehicleRentalDlg shown in Figure 9.2, the vehicle type
combobox is used as a page selector. The way this works is that in Qt Designer we have

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 282 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

connected the combobox's currentIndexChanged(int) signal to the stacked widget's
setCurrentIndex(int) slot. Another commonly used approach, that lets users see all
the pages available, is to use a QListWidget containing the name of each page, and
connecting its currentRowChanged(int) signal in the same way as we connected the
combobox's signal.

We will now see how to create a stacked widget in code. The following extracts are all from
the VehicleRentalDlg class's initializer in chap09/vehicle-rentaldlg.pyw. (The
Qt Designer version is in files vehiclerentaldlg.ui and vehiclerentaldlg.py).

self.stackedWidget = QStackedWidget()
carWidget = QWidget()
carLayout = QGridLayout()
carLayout.addWidget(colorLabel, 0, 0)
carLayout.addWidget(self.colorComboBox, 0, 1)
carLayout.addWidget(seatsLabel, 1, 0)
carLayout.addWidget(self.seatsSpinBox, 1, 1)
carWidget.setLayout(carLayout)
self.stackedWidget.addWidget(carWidget)

Adding a "page" to a stacked widget is very similar to adding a tab to a tab widget. We begin
by creating a plain widget, then create a layout for it, and lay out the widgets we want. Then
we set the layout on the plain widget, and add this widget to the widget stack. We have not
shown the code for the vanWidget, because it is structurally identical.

topLayout = QHBoxLayout()
topLayout.addWidget(vehicleLabel)
topLayout.addWidget(self.vehicleComboBox)
bottomLayout = QHBoxLayout()
bottomLayout.addWidget(mileageLabel)
bottomLayout.addWidget(self.mileageLabel)
layout = QVBoxLayout()
layout.addLayout(topLayout)
layout.addWidget(self.stackedWidget)
layout.addLayout(bottomLayout)
layout.addWidget(self.buttonBox)
self.setLayout(layout)

Once again, for completeness we have shown the whole dialog's layout. We begin with a
top layout that has the combobox that is used to set the stacked widget's current widget.
Then we create a bottom layout of the mileage labels, and then a button layout for the
buttons. Then we add all these layouts, and the stacked widget itself, to a vertical box layout.

self.connect(self.buttonBox, SIGNAL("accepted()"), self.accept)
self.connect(self.buttonBox, SIGNAL("rejected()"), self.reject)
self.connect(self.vehicleComboBox,
 SIGNAL("currentIndexChanged(QString)"),
 self.setWidgetStack)
self.connect(self.weightSpinBox, SIGNAL("valueChanged(int)"),
 self.weightChanged)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 283 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We must provide the user with a navigation mechanism, and we do this by connecting the
vehicle combobox's currentIndexChanged() signal to a custom setWidgetStack
() slot. The last slot is simply part of the form's validation; it is there to set the maximum
mileage which is fixed for cars, but for vans is dependent on their weight.

def setWidgetStack(self, text):
 if text == "Car":
 self.stackedWidget.setCurrentIndex(0)
 self.mileageLabel.setText("1000 miles")
 else:
 self.stackedWidget.setCurrentIndex(1)
 self.weightChanged(self.weightSpinBox.value())

def weightChanged(self, amount):
 self.mileageLabel.setText("%d miles" % (8000 / amount))

The setWidgetStack() slot makes the appropriate widget visible, and also handles part
of the mileage setting since this varies depending on whether the vehicle is a car or a van.

We have used the combobox's current text to determine which widget to make visible. A
possibly more robust approach would be to associate a data item with each combobox item
(using the two-argument QComboBox.addItem() method), and use the current item's
data item to choose which widget to show.

Extension Dialogs
There is another approach that we can take for complex dialogs: Extension dialogs. These
are typically used for cases where the dialog has "Simple" and "Advanced" options. Initially
the dialog is shown with the simple options, but a toggle button is provided to show or hide
the advanced options.

The extension dialog shown in Figure 9.3 shows the extra checkboxes when the More toggle
button is depressed. Any QPushButton can be made into a toggle button by calling
setCheckable(True) on it, or by setting its "checkable" property to True in Qt
Designer.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 284 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 9.3. An Extension Dialog

To make the extension dialog work we have used two "tricks". The first trick is to put all
the advanced options' widgets inside a QFrame. This means that we only need to hide and
show the frame since PyQt will automatically hide and

show all the widgets inside the frame to reflect the frame's state of visibility. If we don't
want the user to see the frame's outline when it is visible, we can simply set its
"frameShape" property to QFrame.NoFrame.

The second trick is to make the dialog fixed size. This will ensure that the dialog shrinks
as small as possible (but keeping its margins), and takes account of the dialog's visible
contents. The effect of this is to make the dialog short when the advanced options are
hidden, and tall enough to show the advanced options when they are visible. We must also
hide the frame when the dialog is created. Here is the code for the dialog's initializer (from
chap09/findandreplacedlg.py):

class FindAndReplaceDlg(QDialog,
 ui_findandreplacedlg.Ui_FindAndReplaceDlg):

 def __init__(self, parent=None):
 super(FindAndReplaceDlg, self).__init__(parent)
 self.setupUi(self)
 self.moreFrame.hide()
 self.layout().setSizeConstraint(QLayout.SetFixedSize)

But how do we relate the More button to the shown/hidden state of the frame? Simply by
connecting the moreButton's toggled(bool) signal to the moreFrame's setVisible
(bool) slot. Note that if this connection is made in Qt Designer, we must check the
Configure Connection dialog's "Show all signals and slots" checkbox, otherwise the
setVisible() slot will not appear.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 285 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For this section's final example, we will again look at how to achieve the layout in code.
Unlike the previous two layouts which showed the use of new widgets (QTabWidget and
QStackedWidget), this dialog's layout only uses widgets we have seen before—but does
so in new ways. The following extracts are all from the FindAndReplaceDlg class's
initializer in chap09/findandreplacedlg.pyw. (The Qt Designer version is in files
findandreplacedlg.ui and findandreplacedlg.py).

We will only show the creation of those of the form's widgets that are specifically relevant
to extension dialogs.

moreFrame = QFrame()
moreFrame.setFrameStyle(QFrame.StyledPanel|QFrame.Sunken)

We create a frame in which we will put the extra checkboxes. If we didn't do the
setFrameStyle() call, the frame would have no outline.

line = QFrame()
line.setFrameStyle(QFrame.VLine|QFrame.Sunken)

The line that we "draw" to visually separate the dialog's main widgets on the left from the
buttons on the right is also a frame. Horizontal lines can be created by using a frame style
of QFrame.HLine.

moreButton = QPushButton("&More")
moreButton.setCheckable(True)

The More button is different from other buttons in one respect: It is checkable. This means
that it acts like a toggle button, staying down when clicked the first time, then coming up
when clicked the next time, and so on.

Figure 9.4. The Find and Replace Dialog's Layout

The labels and line edits are laid out in a grid; we will not show the code since we have seen
this kind of layout many times before.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 286 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

frameLayout = QVBoxLayout()
frameLayout.addWidget(self.backwardsCheckBox)
frameLayout.addWidget(self.regexCheckBox)
frameLayout.addWidget(self.ignoreNotesCheckBox)
moreFrame.setLayout(frameLayout)

We want the extra checkboxes to be laid out inside the more frame. To do this we create a
layout, in this case a vertical box layout, and add the checkboxes to it. Then we set the
layout on the frame. In previous examples we have added layouts to layouts to achieve
nesting, but here we nest by adding a layout to a frame. So in addition to being able to nest
layouts inside one another, we can also nest frames and group boxes inside layouts, which
gives us a great deal of flexibility.

leftLayout = QVBoxLayout()
leftLayout.addLayout(gridLayout)
leftLayout.addWidget(self.caseCheckBox)
leftLayout.addWidget(self.wholeCheckBox)
leftLayout.addWidget(moreFrame)

The left layout is a vertical box layout to which we add the grid layout (with the labels and
line edits), the case sensitivity and whole words checkboxes, and then the more frame (that
contains the extra checkboxes in a vertical box layout).

buttonLayout = QVBoxLayout()
buttonLayout.addWidget(self.findButton)
buttonLayout.addWidget(self.replaceButton)
buttonLayout.addWidget(closeButton)
buttonLayout.addWidget(moreButton)
buttonLayout.addStretch()

The button layout is very similar to ones we have seen before, only this time it is using a
vertical box layout rather than a horizontal box layout.

mainLayout = QHBoxLayout()
mainLayout.addLayout(leftLayout)
mainLayout.addWidget(line)
mainLayout.addLayout(buttonLayout)
self.setLayout(mainLayout)

The dialog's main layout is a horizontal box layout, with the left layout on the left, then the
dividing line, and then the button layout. The line will grow and shrink vertically according
to whether or not the more frame is visible (and therefore whether the dialog is tall or
short).

moreFrame.hide()
mainLayout.setSizeConstraint(QLayout.SetFixedSize)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 287 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We initially hide the more frame (and therefore the widgets it contains), and we use the
set fixed size trick to ensure that the dialog resizes itself according to whether the more
frame is visible or not.

self.connect(moreButton, SIGNAL("toggled(bool)"),
 moreFrame, SLOT("setVisible(bool)"))

The last thing we must do is connect the more button's toggled() signal to the more
frame's setVisible() slot. When the frame is hidden (or shown), it will in turn hide (or
show) all the widgets laid out inside it, because when show() or hide() are called on a
widget, PyQt automatically propagates these calls to all the widget's children.

We have noted that there are two versions of each of the dialogs shown in this section. One
version is written entirely in code, for example, paymentdlg.pyw, and the other version
has a Qt Designer user interface, with code in a module file, for example
paymentdlg.ui and paymentdlg.py. By comparing the "all in code" (.pyw) versions
with the Qt Designer and module versions (.py), we can see clearly how much code writing
we can avoid by using Qt Designer. An additional benefit of using Qt Designer, especially
for complex widgets, is that it makes changing the design much easier than is the case
when we do things manually.

Splitters
Some main window style applications need to use more than one widget in their central
area. Two common types of application that need to do this are email clients and network
news readers. There are three approaches we can take to handle this. One is to create a
composite widget, i.e., a widget that is composed of other widgets (created and laid out
like a dialog, but inheriting from QWidget instead of QDialog), and use this widget as
the main window's central widget. Another approach is to have just one central widget and
put the other widgets inside dock windows—we have already seen this in Chapter 6. The
third approach is to use splitters, the topic of this section.

Composite widgets 324

Figure 9.5 shows a mock-up of a news reader application. Splitters are fully supported by
Qt Designer, and are used in much the same way as vertical and horizontal box layouts:
We select two or more widgets, and click Form Lay Out Horizontally in Splitter or Form

Lay Out Vertically in Splitter.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 288 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 9.5. The News Reader Application Mock-up

In this section we will show how to create splitters in code, including how to save and
restore their relative positions. We will begin by looking at the relevant parts of the News
Reader mock-up's initializer.

class MainWindow(QMainWindow):

 def __init__(self, parent=None):
 super(MainWindow, self).__init__(parent)
 self.groupsList = QListWidget()
 self.messagesList = QListWidget()
 self.messageView = QTextBrowser()

The initializer begins conventionally with the call to super(). The next three lines are
slightly unusual, since although this is a main window, we have created three widgets
instead of just one.

self.messageSplitter = QSplitter(Qt.Vertical)
self.messageSplitter.addWidget(self.messagesList)
self.messageSplitter.addWidget(self.messageView)
self.mainSplitter = QSplitter(Qt.Horizontal)
self.mainSplitter.addWidget(self.groupsList)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 289 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

self.mainSplitter.addWidget(self.messageSplitter)
self.setCentralWidget(self.mainSplitter)

We now create two splitters. The first is the messageSplitter; this holds the message
list and message view widgets vertically, one above the other. The second splitter,
mainSplitter, splits horizontally, with the group list widget on its left, and the message
splitter on its right. Like box layouts, splitters can hold more than two widgets, in which
case they place a splitter in between each pair of widgets. The main splitter holds one widget
and the other splitter, which in turn holds the other two widgets. So the main splitter
ultimately holds everything else, and since splitters are widgets (unlike box layouts which
are layouts), a splitter can be added as a main window's central widget, as we have done
here.

Some users find splitters annoying because they can only be resized by using the mouse.
We will minimize this annoyance by saving and restoring the user's splitter sizes. This is
helpful since the user can simply set their sizes once, and from then on the sizes they set
will be honored.

settings = QSettings()
size = settings.value("MainWindow/Size",
 QVariant(QSize(600, 500))).toSize()
self.resize(size)
position = settings.value("MainWindow/Position",
 QVariant(QPoint(0, 0))).toPoint()
self.move(position)
self.restoreState(
 settings.value("MainWindow/State").toByteArray())
self.messageSplitter.restoreState(
 settings.value("MessageSplitter").toByteArray())
self.mainSplitter.restoreState(
 settings.value("MainSplitter").toByteArray())

Figure 9.6. The News Reader's Splitters and Widgets

Saving the user's main window settings begins with some familiar code for restoring the
window's size, position, and the state of any toolbars and dock windows it may have.
Splitters too have a state, and this is restored and saved in the same way as the main
window's state.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 290 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def closeEvent(self, event):
 if self.okToContinue():
 settings = QSettings()
 settings.setValue("MainWindow/Size", QVariant(self.size()))
 settings.setValue("MainWindow/Position",
 QVariant(self.pos()))
 settings.setValue("MainWindow/State",
 QVariant(self.saveState()))
 settings.setValue("MessageSplitter",
 QVariant(self.messageSplitter.saveState()))
 settings.setValue("MainSplitter",
 QVariant(self.mainSplitter.saveState()))
 else:
 event.ignore()

In the main window's close event, again the code begins in a familiar way, only we now
save the state of the splitters in addition to the main window's size, position, and state.

When the News Reader application is run for the very first time, by default the main splitter
gives exactly half its width to the group list widget, and half to the message splitter.
Similarly, the message splitter gives half its height to the message list widget and half to
the message view widget. We want to change these proportions, making the group list
narrower and the message viewer taller, and we can do so by applying stretch factors, for
example:

self.mainSplitter.setStretchFactor(0, 1)
self.mainSplitter.setStretchFactor(1, 3)
self.messageSplitter.setStretchFactor(0, 1)
self.messageSplitter.setStretchFactor(1, 2)

The first argument to setStretchFactor() is the 0-based index position of the widget
(from left-to-right, or from top-to-bottom), and the second argument is the stretch factor
to be applied. In this case we have said that the zero-th widget (the group list widget) should
have a stretch factor of 1 and the first widget (the message splitter) should have a stretch
factor of 3, thus dividing the horizontal space in the proportion of 1:3. Similarly, for the
message splitter we split the vertical space in the proportion 1:2 in favor of the message
view widget. Since we save and restore the splitters' sizes, the stretch factors only have an
effect the first time the application is run.

Single Document Interface (SDI)
For some applications, users want to be able to handle multiple documents. This can
usually be achieved simply by running more than one instance of an application, but this
can consume a lot of resources. Another disadvantage of using multiple instances is that
it is not easy to provide a common Window menu that the user can use to navigate between
their various documents.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 291 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

There are three commonly used solutions to this. One is to use a single main window with
a tab widget, and with each tab holding one document. This approach is fashionable for
web browsers, but can be inconvenient when editing documents since it isn't possible to
see two or more documents at once. We will not show this approach since the coverage of
tab widgets in this chapter's second section is sufficient, and because you'll have the chance
to try it for yourself in the exercise. The other two approaches are SDI, which we will cover
in this section, and MDI, which we will cover in the next section.

The key to creating an SDI application, is to create a window subclass that handles
everything itself, including loading, saving, and cleanup, reducing the application to be
essentially a collection of one or more such windows.

We will begin by looking at some extracts from the SDI Text Editor's initializer.

class MainWindow(QMainWindow):

 NextId = 1
 Instances = set()

 def __init__(self, filename=QString(), parent=None):
 super(MainWindow, self).__init__(parent)
 self.setAttribute(Qt.WA_DeleteOnClose)
 MainWindow.Instances.add(self)

Figure 9.7. SDI Text Editor with Three Documents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 292 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The NextId static variable is used to provide numbers for new empty windows,
"Unnamed-1.txt", "Unnamed-2.txt", and so on.

The application consists of one or more MainWindow instances, each of which must be
able to act independently. However, there are three common situations where we need to
access all of the instances from inside any one of them. One is to provide a "save all" option,
another is to provide a Window menu through which the user can switch between the
window instances, and another is to provide a "quit" option that the user can use to
terminate the application, and which must implicitly close every window. The
Instances static variable is what we use to keep track of all the instances.

When a new window instance is created, we set it to delete itself when closed. This means
that windows can be closed directly by the user or indirectly by other instances (when the
application is terminated for example). One implication of using
Qt.WA_DeleteOnClose is that the window should take care of saving unsaved changes
and cleaning up itself. We also add the window to the static set of window instances, so
that any window instance can gain access to all the other windows. We will look into all
these matters further on.

self.editor = QTextEdit()
self.setCentralWidget(self.editor)

The QTextEdit is the ideal widget for our central widget, with some actions being able
to be passed directly to it as we will see in a moment. We will now look at just a few of the
actions, but skipping the createAction() method that we have seen before.

create-Action() 174

fileSaveAllAction = self.createAction("Save A&ll",
 self.fileSaveAll, icon="filesave",
 tip="Save all the files")

This action is similar to almost all the other file actions, with a connection to one of the
MainWindow subclass's methods.

fileCloseAction = self.createAction("&Close", self.close,
 QKeySequence.Close, "fileclose",
 "Close this text editor")

The close action is similar to those we have seen before. As usual we do not reimplement
the close() method, but instead reimplement the closeEvent() handler, so that we
can intercept any clean closure of the window. What is different is that this action only
closes the current window, not the application (unless this is the application's only
window).

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 293 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

fileQuitAction = self.createAction("&Quit", self.fileQuit,
 "Ctrl+Q", "filequit", "Close the application")

The quit action terminates the application, and does so by closing each of the SDI Text
Editor's windows, as we will see when we review the file-Quit() method.

editCopyAction = self.createAction("&Copy", self.editor.copy,
 QKeySequence.Copy, "editcopy",
 "Copy text to the clipboard")

This action connects to the QTextEdit's relevant slot. The same is true of the cut and
paste actions.

The menus, toolbars, and status bar are all created in ways that we have seen previously,
except for the Window menu which we will look at now.

self.windowMenu = self.menuBar().addMenu("&Window")
self.connect(self.windowMenu, SIGNAL("aboutToShow()"),
 self.updateWindowMenu)

We do not add any actions to the window menu at all. Instead we simply connect the menu's
aboutToShow() method to our custom updateWindowMenu() method, which as we
will see, populates the menu with all the SDI Text Editor windows.

self.connect(self, SIGNAL("destroyed(QObject*)"),
 MainWindow.updateInstances)

When the user closes a window, thanks to the Qt.WA_DeleteOnClose flag, the window
will be deleted. But because we have a reference to the window in the static Instances
set, the window cannot be garbage collected. For this reason we connect the window's
destroyed() signal to a slot that updates the Instances by removing any windows that
have been closed. We will discuss this in more detail when we look at the
updateInstances() method.

Since each window is responsible for a single file, we can have a single filename associated
with each window. The filename can be passed to the window's initializer, and defaults to
an empty QString. The last lines of the initializer handle the filename.

self.filename = filename
if self.filename.isEmpty():
 self.filename = QString("Unnamed-%d.txt" % \
 MainWindow.NextId)
 MainWindow.NextId += 1
 self.editor.document().setModified(False)
 self.setWindowTitle("SDI Text Editor - %s" % self.filename)
else:
 self.loadFile()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 294 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If the window has no filename, either because the application has just been started or
because the user has invoked the "file new" action, we create a suitable window title;
otherwise we load the given file.

The closeEvent(), loadFile(), fileSave(), and fileSaveAs() methods are all
very similar to ones we have seen before, so we will not describe them here. (They are in
the source code in chap09/sditexteditor.pyw of course.) Instead we will focus on
those things that are special for an SDI application.

def fileNew(self):
 MainWindow().show()

When the user invokes the "file new" action, this method is called. Another instance of this
class is created, and show() called on it (so it is shown modelessly). At the end of the
method we would expect the window to go out of scope and be destroyed since it does not
have a PyQt parent, and is not an instance variable. But inside the main window's
initializer, the window adds itself to the static Instances set, so an object reference to
the window still exists and therefore the window is not destroyed.

def fileOpen(self):
 filename = QFileDialog.getOpenFileName(self,
 "SDI Text Editor -- Open File")
 if not filename.isEmpty():
 if not self.editor.document().isModified() and \
 self.filename.startsWith("Unnamed"):
 self.filename = filename
 self.loadFile()
 else:
 MainWindow(filename).show()

This method is slightly different from similar ones we have seen before. If the user gives a
filename, and the current document is both unmodified and unnamed (i.e., a new empty
document), then we load the file into the existing window; otherwise we create a new
window, passing it the filename to load.

def fileSaveAll(self):
 count = 0
 for window in MainWindow.Instances:
 if isAlive(window) and \
 window.editor.document().isModified():
 if window.fileSave():
 count += 1
 self.statusBar().showMessage("Saved %d of %d files" % (
 count, len(MainWindow.Instances)), 5000)

As a courtesy to users we provide a Save All menu option. When it is invoked we iterate
over every window in the Instances set, and for each window that is "alive" and modified,
we save it.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 295 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A window is alive if it has not been deleted. Unfortunately, this is not quite as simple as it
seems. There are two lifetimes associated with a QWidget: The lifetime of the Python
variable that refers to the widget, (in this case the Main-Window instances in the
Instances set), and the lifetime of the underlying PyQt object that is the widget as far as
the computer's window system is concerned.

Normally, the lifetime of a PyQt object and its Python variable are exactly the same. But
here they may not be. For example, suppose we started the application, and clicked File

New a couple of times, so that we had three windows, and then navigated to one of
them and closed it. At this point the window that is closed (thanks to the
Qt.WA_DeleteOnClose attribute) will be deleted.

What happens under the hood is that PyQt actually calls the deleteLater() method on
the deleted window. This gives the window the chance to finish anything it is in the middle
of, so that it can be cleanly deleted. This will normally be all over in less than a millisecond,
at which point the underlying PyQt object is deleted from memory and no longer exists.
But the Python reference in the Instances set will still be in place, only now referring to
a PyQt object that has gone. For this reason, we must always check any window in the
Instances set for aliveness before accessing it.

def isAlive(qobj):
 import sip
 try:
 sip.unwrapinstance(qobj)
 except RuntimeError:
 return False
 return True

The sip module is one of PyQt's supporting modules that we do not normally need to
access directly. But in cases where we need to dig a bit deeper, it can be useful. Here, the
method tries to access a variable's underlying PyQt object. If the object has been deleted
a RuntimeError exception is raised, in which case we return False; otherwise the object
still exists and we return True.[*] By performing this check we ensure that a window that
has been closed and deleted is not inadvertently accessed, even if we have not yet deleted
the variable that refers to the window.

[*] The isAlive() function is based on Giovanni Bajo's PyQt (then, PyKDE) mailing list posting, "How to detect if an object has been deleted". The list is used for both
PyQt and PyKDE.

@staticmethod
def updateInstances(qobj):
 MainWindow.Instances = set([window for window \
 in MainWindow.Instances if isAlive(window)])

Whenever a window is closed (and therefore deleted), it emits a destroyed() signal,
which we connected to the updateInstances() method in the initializer. This method

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 296 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

overwrites the Instances set with a set that only contains those window instances that
are still alive.

So why do we need to check for aliveness when we iterate over the instances, for example,
in the fileSaveAll() method, since this method ensures that the Instances set is
kept up-to-date and only holding live windows? The reason is that it is theoretically
possible that between the time when a window is closed and the Instances set is updated,
the window is iterated over in some other method.

Whenever the user clicks the Window menu in any SDI Text Editor window, a menu listing
all the current windows appears. This occurs because the windowMenu's aboutToShow
() signal is connected to the updateWindowMenu() slot that populates the menu.

def updateWindowMenu(self):
 self.windowMenu.clear()
 for window in MainWindow.Instances:
 if isAlive(window):
 self.windowMenu.addAction(window.windowTitle(),
 self.raiseWindow)

Firstly any existing menu entries are cleared; there will always be at least one, the current
window. Next we iterate over all the window instances, and add an action for any that are
alive. The action has a text that is simply the window's title (the filename), and a slot—
raiseWindow()—to be called when the menu option is invoked by the user.

def raiseWindow(self):
 action = self.sender()
 if not isinstance(action, QAction):
 return
 for window in MainWindow.Instances:
 if isAlive(window) and \
 window.windowTitle() == action.text():
 window.activateWindow()
 window.raise_()
 break

This method could be called by any of the Window menu's entries. We begin with a sanity
check, and then we iterate over the window instances to see which one has a title whose
text matches the action's text. If we find a match, we make the window concerned the
"active" window (the application's top-level window that has the keyboard focus), and also
raise it to be on top of all other windows, so that the user can see it.

In the MDI section that follows we will see how to create a more sophisticated Window
menu, with accelerators, and some additional menu options.

def fileQuit(self):
 QApplication.closeAllWindows()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 297 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

PyQt provides a convenient method for closing all of an application's top-level windows.
This method calls close() on all the windows, which in turn causes each window to get
a closeEvent(). In this event (not shown), we check to see if the QTextEdit's text has
unsaved changes, and if it has we pop up a message box asking the user if they want to
save.

app = QApplication(sys.argv)
app.setWindowIcon(QIcon(":/icon.png"))
MainWindow().show()
app.exec_()

At the end of the sditexteditor.pyw file, we create a QApplication instance, and a
single MainWindow instance, and then start off the event loop.

Using the SDI approach is very fashionable, but has some drawbacks. Since each main
window has its own menu bar, toolbar, and possibly dock windows, there is more resource
overhead than for a single main window.[*] Also, although it is easy to switch between
windows using the Window menu, if we wanted more control over window sizing and
positioning, we would have to write the code ourselves.These problems can be solved by
using the less fashionable MDI approach that we cover in the next section.

[*] On Mac OS X there is only one menu bar, at the top of the screen. It changes to reflect whichever window currently has the focus.

Multiple Document Interface (MDI)
MDI offers many benefits compared with SDI or with running multiple application
instances. MDI applications are less resource hungry, and they make it much easier to offer
the user the ability to lay out their document windows in relation to each other. One
drawback however, is that you cannot switch between MDI windows using Alt+Tab
(Command+Tab on Mac OS X), although this is rarely a problem in practice since for MDI
applications, programmers invariably implement a Window menu for navigating between
windows.

The key to creating MDI applications is to create a widget subclass that handles everything
itself, including loading, saving, and cleanup, with the application holding these widgets
in an MDI "workspace", and passing on to them any widget-specific actions.

In this section we will create a text editor that offers the same kind of functionality as the
SDI Text Editor from the previous section, except that this time we will make it an MDI
application.

Each document is presented and edited using an instance of a custom TextEdit widget,
a QTextEdit subclass. The widget has the Qt.WA_DeleteOnClose attribute set, has a
filename instance variable, and loads and saves the filename it is given. If the widget is

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 298 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

closed (and therefore deleted), its close event handler gives the user the opportunity to
save any unsaved changes. The TextEdit implementation is straightforward, and quite
similar to code we have seen before, so we will not review it here; its source code is in the
module chap09/textedit.py.

The code for the application proper, is in file chap09/texteditor.pyw. We will review
the code for this, starting with some extracts from the MainWindow subclass's initializer.

class MainWindow(QMainWindow):

 def __init__(self, parent=None):
 super(MainWindow, self).__init__(parent)

 self.mdi = QWorkspace()
 self.setCentralWidget(self.mdi)

PyQt's MDI widget is called QWorkspace.[*] Like a tab widget or a stacked widget, a
QWorkspace can have widgets added to it. These widgets are laid out by the workspace
rather like a miniature desktop, with the widgets, tiled, cascaded, iconized, or dragged and
resized by the user, within the workspace's area.

[*] From Qt 4.3, MDI is provided by the QMdiArea class with a similar API to QWorkspace.

Figure 9.8. MDI Text Editor with Four Documents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 299 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It is possible to have a workspace that is larger than its window by calling
QWorkspace.setScrollBarsEnabled(True). The workspace's background can be
set by specifying a background brush.

fileNewAction = self.createAction("&New", self.fileNew,
 QKeySequence.New, "filenew", "Create a text file")

Most of the file actions are created as we have seen before. But as we will see, the MDI
editor, like the SDI editor, does not have an okToContinue() method because each
document window takes care of itself.

fileQuitAction = self.createAction("&Quit", self.close,
 "Ctrl+Q", "filequit", "Close the application")

If we close the application's window, the application will terminate. All the document
windows will be closed, and any with unsaved changes are responsible for prompting the
user and saving if asked to do so.

editCopyAction = self.createAction("&Copy", self.editCopy,
 QKeySequence.Copy, "editcopy",
 "Copy text to the clipboard")

In the SDI editor we passed on the copy, cut, and paste actions to each window's
QTextEdit to handle. This is not possible in the MDI application because when the user
triggers one of these actions it must be applied to whichever TextEdit window is active.
For this reason the main window must do some work itself as we will see when we review
the implementation of these actions.

We have not shown the code for the other file and edit actions, because they all follow the
same pattern as those shown above.

self.windowNextAction = self.createAction("&Next",
 self.mdi.activateNextWindow, QKeySequence.NextChild)
self.windowPrevAction = self.createAction("&Previous",
 self.mdi.activatePreviousWindow,
 QKeySequence.PreviousChild)
self.windowCascadeAction = self.createAction("Casca&de",
 self.mdi.cascade)
self.windowTileAction = self.createAction("&Tile",
 self.mdi.tile)
self.windowRestoreAction = self.createAction("&Restore All",
 self.windowRestoreAll)
self.windowMinimizeAction = self.createAction("&Iconize All",
 self.windowMinimizeAll)
self.windowArrangeIconsAction = self.createAction(
 "&Arrange Icons", self.mdi.arrangeIcons)
self.windowCloseAction = self.createAction("&Close",
 self.mdi.closeActiveWindow, QKeySequence.Close)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 300 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

All the window actions are created as instance variables because we will be accessing them
in another method. For some of the actions we can pass the work directly onto the mdi
workspace instance, but minimizing and restoring all the MDI windows we must handle
ourselves.

self.windowMapper = QSignalMapper(self)
self.connect(self.windowMapper, SIGNAL("mapped(QWidget*)"),
 self.mdi, SLOT("setActiveWindow(QWidget*)"))

In the Window menu that we will create, we need some way of making the window that
the user chooses the active window. We saw a very simple solution to this problem in the
previous section. Another approach is to use partial function application, connecting each
window action to QWorkspace.setActiveWindow() with the relevant TextEdit as
argument. Here we have taken a pure PyQt approach, and use the QSignalMapper class.
We will explain its use when we review the updateWindowMenu() method.

self.windowMenu = self.menuBar().addMenu("&Window")
self.connect(self.windowMenu, SIGNAL("aboutToShow()"),
 self.updateWindowMenu)

The connection to aboutToShow() ensures that our updateWindowMenu() method is
called before the menu is shown.

self.updateWindowMenu()
self.setWindowTitle("Text Editor")
QTimer.singleShot(0, self.loadFiles)

At the end of the constructor we call updateWindowMenu() to force the window menu
to be created. This may seem strange, after all it will be created anyway when the user tries
to use it, so why do so now? The reason is that if we automatically load in some documents
at startup, the user might want to navigate between them using our keyboard shortcuts
(F6 and Shift+F6), but the shortcuts will only become active once the menu has been
created.

def closeEvent(self, event):
 failures = []
 for textEdit in self.mdi.windowList():
 if textEdit.isModified():
 try:
 textEdit.save()
 except IOError, e:
 failures.append(str(e))
 if failures and \
 QMessageBox.warning(self, "Text Editor -- Save Error",
 "Failed to save%s\nQuit anyway?" % \
 "\n\t".join(failures),
 QMessageBox.Yes|QMessageBox.No) == QMessageBox.No:
 event.ignore()
 return
 settings = QSettings()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 301 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 settings.setValue("MainWindow/Size", QVariant(self.size()))
 settings.setValue("MainWindow/Position",
 QVariant(self.pos()))
 settings.setValue("MainWindow/State",
 QVariant(self.saveState()))
 files = QStringList()
 for textEdit in self.mdi.windowList():
 if not textEdit.filename.startsWith("Unnamed"):
 files.append(textEdit.filename)
 settings.setValue("CurrentFiles", QVariant(files))
 self.mdi.closeAllWindows()

When the application is terminated we give the user the opportunity to save any unsaved
changes. Then we save the main window's size, position, and state. We also save a list of
all the filenames from all the MDI windows. At the end we call
QWorkspace.closeAllWindows() which will result in each of the windows receiving
a close event.

If any save fails, we take note, and after all the files have been processed, if there were
errors, we pop up a message box informing the user and give them the chance to cancel
terminating the application.

In the TextEdit's close event there is code to give the user the chance to save any unsaved
changes, but at this point there can't be any because we have already handled this by saving
unsaved changes at the beginning of this method. The reason we have the code in the
TextEdit's close event is because the user can close any window at any time, so each
window must be able to cope with being closed. And the reason we do not make use of this
when the application is terminated, and instead call save() for modified files, is because
we want to keep a current files list, and to do that every file must have a proper filename
before we reach the code for saving the current files list, and calling save() earlier on
achieves this.

def loadFiles(self):
 if len(sys.argv) > 1:
 for filename in sys.argv[1:31]: # Load at most 30 files
 filename = QString(filename)
 if QFileInfo(filename).isFile():
 self.loadFile(filename)
 QApplication.processEvents()
 else:
 settings = QSettings()
 files = settings.value("CurrentFiles").toStringList()
 for filename in files:
 filename = QString(filename)
 if QFile.exists(filename):
 self.loadFile(filename)
 QApplication.processEvents()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 302 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We have designed this application so that it will load back all the files that were open the
last time the application was run. However, if the user specifies one or more files on the
command line, we ignore the previously opened files, and just open those the user has
specified. In this case we have chosen to arbitrarily limit the number of files to 30, to protect
the user against themselves inadvertently giving a file specification of *.* in a directory
with hundreds or thousands of files.

The QApplication.processEvents() calls temporarily yield control to the event loop
so that any events that have accumulated—such as paint events—can be handled. Then
processing resumes from the next statement. The effect in this application is that an editor
window will pop up immediately after each file has been loaded, rather than the windows
only appearing after all the files have been loaded. This makes it clear to the user that the
application is doing something, whereas a long delay at the beginning might make the user
think that the application has crashed. Another benefit of using processEvents() is
that the user's mouse and keyboard events will get some processor time, keeping the
application responsive even if a lot of other processing is taking place.

Lots of Processing at Start Up sidebar 184

Using processEvents() to keep an application responsive during long running
operations is much easier than using threading. Nonetheless, this method must be used
with care because it could lead to events being handled that cause problems for the long
running operations themselves. One way to help reduce the risk is to pass extra parameters,
for example, a flag that limits the kind of events that should be processed, and a maximum
time to be spent processing events. We will see another example of the use of
processEvents() in Chapter 12; threading is the subject of Chapter 19.

def loadFile(self, filename):
 textEdit = textedit.TextEdit(filename)
 try:
 textEdit.load()
 except (IOError, OSError), e:
 QMessageBox.warning(self, "Text Editor -- Load Error",
 "Failed to load %s: %s" % (filename, e))
 textEdit.close()
 del textEdit
 else:
 self.mdi.addWindow(textEdit)
 textEdit.show()

When a file is loaded, either as a result of loadFiles(), or fileOpen(), it creates a new
TextEdit, with the given filename, and tells the editor to load the file. If loading fails, the
user is informed in a message box, and the editor is closed and deleted. If loading succeeds,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 303 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the editor is added to the workspace and shown. We do not need a static instances variable
to keep the TextEdit instances alive, since QWorkspace takes care of this automatically
for us.

def fileNew(self):
 textEdit = textedit.TextEdit()
 self.mdi.addWindow(textEdit)
 textEdit.show()

This method simply creates a new editor, adds it to the workspace, and shows it. The
editor's window title will be "Unnamed-n.txt", where n is an incrementing integer starting
from one. If the user types in any text and attempts to close or save the editor, they will be
prompted to choose a proper filename.

def fileOpen(self):
 filename = QFileDialog.getOpenFileName(self,
 "Text Editor -- Open File")
 if not filename.isEmpty():
 for textEdit in self.mdi.windowList():
 if textEdit.filename == filename:
 self.mdi.setActiveWindow(textEdit)
 break
 else:
 self.loadFile(filename)

If the user chooses to open a file, we check to see if it is already in one of the workspace's
editors. If it is we simply make that editor's window the active window. Otherwise we load
the file into a new editor window. If our users wanted to be able to load the same file more
than once—for example to look at different parts of a long file—we could simply call
loadFile() every time and not bother to see if the file is in an existing editor.

def fileSave(self):
 textEdit = self.mdi.activeWindow()
 if textEdit is None or not isinstance(textEdit, QTextEdit):
 return
 try:
 textEdit.save()
 except (IOError, OSError), e:
 QMessageBox.warning(self, "Text Editor -- Save Error",
 "Failed to save %s: %s" % (textEdit.filename, e))

When the user triggers the file save action, we determine which file they want to save by
calling QWorkspace.activeWindow(). If this returns a TextEdit, we call save() on
it.

def fileSaveAll(self):
 errors = []
 for textEdit in self.mdi.windowList():
 if textEdit.isModified():
 try:
 textEdit.save()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 304 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 except (IOError, OSError), e:
 errors.append("%s: %s" % (textEdit.filename, e))
 if errors:
 QMessageBox.warning(self, "Text Editor -- Save All Error",
 "Failed to save\n%s" % "\n".join(errors))

As a convenience, we have provided a save all action. Since there might be a lot of windows,
and if there is a problem saving one (for example, lack of disk space), the problem might
affect many. So instead of giving error messages when each save() fails, we accumulate
the errors in a list, and show them all at the end, if there are any to show.

def editCopy(self):
 textEdit = self.mdi.activeWindow()
 if textEdit is None or not isinstance(textEdit, QTextEdit):
 return
 cursor = textEdit.textCursor()
 text = cursor.selectedText()
 if not text.isEmpty():
 clipboard = QApplication.clipboard()
 clipboard.setText(text)

This method starts the same as the previous one—and the same as all the methods that
apply to one particular window—by retrieving the editor that the user is working on. The
QTextCursor returned by QTextEdit.textCursor() is a programmatic equivalent
to the cursor the user uses, but independent of the user's cursor; this class is discussed
more fully in Chapter 13. If there is selected text we copy it to the system's global clipboard.
[*]

[*] X Window System users have two clipboards, the default one and the mouse selection one. Mac OS X also has a "Find" clipboard. PyQt provides access to all the
available clipboards using an optional "mode" second argument to setText() and text().

def editCut(self):
 textEdit = self.mdi.activeWindow()
 if textEdit is None or not isinstance(textEdit, QTextEdit):
 return
 cursor = textEdit.textCursor()
 text = cursor.selectedText()
 if not text.isEmpty():
 cursor.removeSelectedText()
 clipboard = QApplication.clipboard()
 clipboard.setText(text)

This method is almost the same as the copy method. The only difference is that if there is
selected text we remove it from the editor.

def editPaste(self):
 textEdit = self.mdi.activeWindow()
 if textEdit is None or not isinstance(textEdit, QTextEdit):
 return
 clipboard = QApplication.clipboard()
 textEdit.insertPlainText(clipboard.text())

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 305 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If the clipboard has text, whether from a copy or cut operation in this application, or from
another application, we insert it into the editor at the editor's current cursor position.

All the basic MDI window operations are provided by QWorkspace slots, so we do not
need to provide tiling, cascading, or window navigation, ourselves. But we do have to
provide the code for minimizing and restoring all windows.

def windowRestoreAll(self):
 for textEdit in self.mdi.windowList():
 textEdit.showNormal()

The windowMinimizeAll() method (not shown) is the same except that we call
showMinimized() instead of showNormal().

A QSignalMapper object is one that emits a mapped() signal whenever its map() slot
is called. The parameter it passes in its mapped() signal is the one that was set to
correspond with whichever QObject called the map() slot. We use a signal mapper to
relate actions in the Window menu with TextEdit widgets, so that when the user chooses
a particular window, the appropriate TextEdit will become the active window. This is
set up in two places: The form's initializer, and in the updateWindowMenu() method.

Figure 9.9. The General Operation of a QSignalMapper

In the form's initializer we made a signal–slot connection from the signal mapper's
mapped(QWidget*) signal to the MDI workspace's setActiveWindow(QWidget*)
slot. To make use of this, the signal mapper must emit a signal that corresponds to the
MDI window the user has chosen from the Window menu, and this is set up in the
updateWindowMenu() method.

def updateWindowMenu(self):
 self.windowMenu.clear()
 self.addActions(self.windowMenu, (self.windowNextAction,
 self.windowPrevAction, self.windowCascadeAction,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 306 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 self.windowTileAction, self.windowRestoreAction,
 self.windowMinimizeAction,
 self.windowArrangeIconsAction, None,
 self.windowCloseAction))
 textEdits = self.mdi.windowList()
 if not textEdits:
 return

We begin by clearing all the actions from the window menu, and then we add back all the
standard actions. Then we get the list of TextEdit windows; if there are none we are
finished and simply return, otherwise we must add an entry for each window.

self.windowMenu.addSeparator()
i = 1
menu = self.windowMenu
for textEdit in textEdits:
 title = textEdit.windowTitle()
 if i == 10:
 self.windowMenu.addSeparator()
 menu = menu.addMenu("&More")
 accel = ""
 if i < 10:
 accel = "&%d " % i
 elif i < 36:
 accel = "&%c " % chr(i + ord("@") - 9)

We iterate over all the windows. For the first nine, we create an "accel" string of &1, &2,
and so on, to produce 1, 2, ..., 9. If there are ten or more windows, we create a sub-menu
with a text of More, and add the tenth and subsequent windows to this sub-menu. For the
tenth to thirty-sixth windows we create accel strings of &A, &B, ..., &Z; for any other
windows we do not provide an accel string. (The %c format string is used to specify a single
character.) The More sub-menu's accelerators are English-specific; other languages may
need different treatment.

action = menu.addAction("%s%s" % (accel, title))
self.connect(action, SIGNAL("triggered()"),
 self.windowMapper, SLOT("map()"))
self.windowMapper.setMapping(action, textEdit)
i += 1

We create a new action with the (possibly empty) accel text and the title text—the window's
title, which is the filename without the path. Then we connect the action's triggered
() signal to the signal mapper's map() slot. This means that whenever the user chooses
a window from the Window menu, the signal mapper's map() slot will be called. Notice
that neither the signal nor the slot have parameters; it is up to the signal mapper to figure
out which action triggered it; it could use sender(), for example. After the signal–slot
connection we set up a mapping inside the signal mapper from the action to the
corresponding TextEdit.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 307 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 9.10. The MDI Editor's Signal Mapper

When the signal mapper's map() slot is called, the signal mapper will find out which action
called it, and use the mapping to determine which TextEdit to pass as parameter. Then
the signal mapper will emit its own mapped(QWidget*) signal, with the parameter. We
connected the mapped() signal to the MDI workspace's setActiveWindow() slot, so
this slot is in turn called, and the TextEdit passed as parameter will become the active
window.

That completes our review of the MDI Text Editor. We have skipped the code for creating
the application object and the main window since it is just the same as many we have seen
in previous examples.

Summary
When we have dialogs with lots of options, we can often make things more manageable
for the user by using tab widgets and stacked widgets. Tab widgets are especially useful
for when we want the user to be able to view and edit all the available options. Stacked
widgets are suitable for when we only want the user to see the currently relevant page of
options. For stacked widgets we must provide a means by which the user can select the
current page, for example, a combobox or a list widget of page names. When some of a
dialog's options are "advanced" or infrequently needed, we can use an extension dialog,
hiding the extra options unless the user asks to see them. Checked group boxes can be used
to enable or disable the widgets they contain; this is useful if we want the user to be able
to see the options available, even when they are disabled. For some dialogs, all of these
approaches can be used in combination, although in such complex cases, the validation
logic might become rather convoluted.

Splitters are very useful for creating multiple-widget main windows and give the user
control over the relative sizes of the widgets. An alternative approach is to have a single
central widget, and to put the other widgets in dock windows. Dock windows automatically

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 308 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

put a splitter between themselves and the central widget when docked, and can be dragged
from one dock area to another or floated free.

SDI makes it easy for users to open multiple documents inside the same application. SDI
also makes possible some interaction across the windows, such as having "save all" and
"quit" actions, and a Window menu, that are not very easily achieved using a separate
application instance for each document. The SDI approach is very fashionable, and
although more resource hungry than MDI, it is probably easier for very inexperienced users
to understand than MDI.

MDI provides the same benefits as SDI, except that the document windows are all
constrained to appear within a single main window's central area. This avoids duplicating
menus and toolbars, and makes it easier to arrange windows in relation to one another.
One drawback of MDI is that some users find it more difficult to understand that SDI, at
least at first. MDI is not limited to having windows of just one widget type, although most
modern MDI applications that use more than one widget type in the main window have
one type for document windows, and the other types are put in dock windows.

In both the SDI and MDI example applications, all of the actions are enabled all of the
time. This is not a problem since any actions that don't make sense, harmlessly do nothing.
However, to avoid confusing some users, it might be better to enable or disable actions
depending on the application's state; the sidebar in Chapter 13 shows how this can be done.

Enabling and Disabling Actions sidebar 382

Layouts, splitters, tab widgets, stacked widgets, dock windows, SDI, and MDI, together
provide a wide range of user interface design options. In addition it is possible to create
our own layouts in code, or to create our own layout managers, so the possibilities really
are limitless.

Exercise
Modify the MDI Text Edit application (texteditor.pyw), so that instead of using MDI
it uses a QTabWidget and becomes a tabbed editor.

The Window menu will not be required, so all the code associated with it can be removed.
A new "file close tab" action will be needed, as will a corresponding method to handle it.
Instead of using QWorkspace.windowList(), use a for loop to iterate from 0 to
QTabWidget.count(), and use QTabWidget.widget() to access each window in
turn.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 309 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The closeEvent() will need changing, and is probably the trickiest to get right. Change
loadFiles() to limit the number of files loaded on the command line to 10. fileNew
() will need to create a TextEdit as before, and then add it to the tab widget using
QTabWidget.addTab(), giving the widget and its window title as parameters. Instead
of calling show() on the widget, use QTabWidget.setCurrentWidget(). The
fileOpen(), loadFile(), fileSave(), fileSaveAs(), fileSaveAll() methods
will all need small changes. The edit methods only need to change their first line of code
to use QTabWidget.currentWidget() instead of QWorkspace.activeWindow().

Once everything is working, add two keyboard shortcuts, one for
QKeySequence.PreviousChild, and the other for QKeySequence.NextChild,
along with suitable methods, prevTab() and nextTab(), to make them work.

The changes amount to about a dozen lines, plus an extra twenty lines or so for the shortcuts
and their methods; as always the emphasis is on thought and understanding rather than
on typing.

A model solution is provided in the file chap09/tabbededitor.pyw.

10. Events, the Clipboard, and Drag & Drop
• The Event Handling Mechanism
• Reimplementing Event Handlers
• Using the Clipboard
• Drag and Drop

In this short chapter we begin by describing the key concepts involved in event handling.
In the second section we build on this knowledge to show how to control a widget's behavior
and appearance by reimplementing low-level event handlers. Later chapters build on the
material covered in the first two sections, particularly Chapter 11, which shows how to
create custom widgets.

The chapter's third section shows how to use the clipboard, and in particular how to pass
and retrieve plain text, HTML, and images to and from the system's global clipboard. The
last section shows how to implement drag and drop, both by using PyQt's easy to use built-
in functionality, and also by handling it ourselves to drag and drop custom data. The
exercise builds on the coverage of dragging and dropping custom data to allow the user to
choose whether to move or copy when dropping.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 310 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The Event Handling Mechanism
PyQt provides two mechanisms for dealing with events, the high-level signals and slots
mechanism, and low-level event handlers. The signals and slots approach is ideal when we
are concerned with what actions the user wants to perform, without getting bogged down
in the details of how specifically they asked. Signals and slots can also be used to customize
some aspects of how widgets behave. But when we need to go deeper, particularly when
creating custom widgets, we need to use low-level event handlers.

Signals and slots 127

PyQt provides a rich variety of event handlers, some concerned with widget behavior, such
as those that handle key presses and mouse events, and others concerned with widget
appearance, such as those that handle paint events and resize events.

PyQt's event handling mechanism works in the logical way we would expect. For example,
if the user clicks the mouse or presses a key on a widget with key board focus, the widget
is given the event. If the widget handles the event, that is the end of the story. But if the
widget does not handle the event, the event is propagated to the widget's parent—another
benefit of PyQt's parent–child hierarchy. This passing of unhandled events from child to
parent continues right up to the top-level widget, and if that doesn't handle the event, the
event is simply thrown away.

PyQt provides five different ways of intercepting and handling events. The first two
approaches are the most heavily used, with the others rarely if ever needed.

The simplest approach is to reimplement a specific event handler. So far we have seen just
one example of this, the reimplementation of a widget's closeEvent(). As we will see in
this chapter and in subsequent chapters, we can control a widget's behavior by
reimplementing other event handlers, for example, keyPressEvent(),
mousePressEvent(), and mouseReleaseEvent(). We can also control a widget's
appearance by reimplementing resizeEvent() and paintEvent(). When we
reimplement these events we often don't call the base class implementation since we only
want our own code executed as a result of the event handler being called.

Before any specific event handler is called, the event() event handler is called.
Reimplementing this method allows us to handle events that cannot be handled properly
in the specific event handlers (in particular, overriding the Tab key's keyboard focus
changing behavior), or to implement events for which no specific handler exists, such as

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 311 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

QEvent.ToolBarChange. When we reimplement this handler, we call the base class
implementation for any events we don't handle ourselves.

The third and fourth approaches both use event filters. We can call
installEventFilter() on any QObject. This will mean that all events for the
QObject are passed to our event filter first: We can discard or modify any of the events
before they reach the target object. An even more powerful version of this approach is to
install an event filter on the QApplication object, although its only practical uses are for
debugging and for handling mouse events sent to disabled widgets. It is possible to install
multiple event filters on an object or on QApplication, in which case they are executed
in order from most to least recently installed.

Event filters provide a very powerful means of handling events, and new-comers to PyQt
programming are often tempted to use them. But we recommend avoiding the use of event
filters, at least until you have a lot of PyQt programming experience. If very large numbers
of event filters are installed, application performance can suffer; also they can considerably
increase code complexity compared with simply reimplementing specific event handlers,
or the event() handler. We will not look at any event filter examples, since they should
be avoided in general PyQt programming—they are only really relevant when creating
custom widgets—and even then they are rarely necessary.

The fifth approach is to subclass QApplication and reimplement its notify() method.
This method is called before any event filter or event handler, so provides the ultimate in
control. In practice this would only be done for debugging, and even then, using event
filters is probably more flexible.

Reimplementing Event Handlers
The screenshot in Figure 10.1 shows a QWidget subclass that has some reimplemented
event handlers. The Events application, in chap10/events.pyw, reports certain events
and conditions, and we will use it to see how event handling is done in PyQt. Later chapters
will use the same techniques that we describe here to do much more sophisticated and
realistic event handling. We will begin by looking at an extract from the application's
initializer to see the instance data it holds.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 312 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 10.1. Testing Custom Event Handlers

class Widget(QWidget):

 def __init__(self, parent=None):
 super(Widget, self).__init__(parent)
 self.justDoubleClicked = False
 self.key = QString()
 self.text = QString()
 self.message = QString()

We hold the text of the most recent key press in key, the text to be painted, for example,
"The mouse is at ...", in text, and a message text in message. We also keep track of
whether the user has just done a double-click.

The first event handler we will consider is the paint event. We will defer a proper discussion
of painting to Chapter 11.

def paintEvent(self, event):
 text = self.text
 i = text.indexOf("\n\n")
 if i >= 0:
 text = text.left(i)
 if not self.key.isEmpty():
 text += "\n\nYou pressed: %s" % self.key
 painter = QPainter(self)
 painter.setRenderHint(QPainter.TextAntialiasing)
 painter.drawText(self.rect(), Qt.AlignCenter, text)
 if self.message:
 painter.drawText(self.rect(),
 Qt.AlignBottom|Qt.AlignHCenter, self.message)
 QTimer.singleShot(5000, self.message.clear)
 QTimer.singleShot(5000, self.update)

The text to be displayed consists of two parts. The first part usually contains the mouse
coordinates, and the second part (which may be empty) contains the last key that the user
pressed. In addition a message text may be painted at the bottom of the widget, in which
case the single shot timers clear the message text after 5 seconds, and schedule a paint
event to repaint the widget without the message text.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 313 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In paint events it is quite common to ignore the event as we have done here. (The event
can tell us the exact region that needs repainting so can be used to optimize painting by
just painting the region that needs updating, a technique we will use in Chapter 16.) The
rect() method returns a QRect with the widget's dimensions, so we simply draw the text
centered in the given rectangle. We do not call the base class's paint event; this is standard
practice in PyQt paint event handlers, and in any case the QWidget paint event does
nothing.

def resizeEvent(self, event):
 self.text = QString("Resized to QSize(%d, %d)" % (
 event.size().width(),
 event.size().height()))
 self.update()

Whenever the widget is resized, for example, by the user dragging a corner or side, a resize
event is generated. We set our instance text to show the new size, and call update() to
schedule a paint event. A resize event also has the previous size, available from the
QResizeEvent.oldSize() method. We do not call the base class's resize event since it
does nothing.

def keyPressEvent(self, event):
 self.key = QString()
 if event.key() == Qt.Key_Home:
 self.key = "Home"
 elif event.key() == Qt.Key_End:
 self.key = "End"
 elif event.key() == Qt.Key_PageUp:
 if event.modifiers() & Qt.ControlModifier:
 self.key = "Ctrl+PageUp"
 else:
 self.key = "PageUp"
 elif event.key() == Qt.Key_PageDown:
 if event.modifiers() & Qt.ControlModifier:
 self.key = "Ctrl+PageDown"
 else:
 self.key = "PageDown"
 elif Qt.Key_A <= event.key() <= Qt.Key_Z:
 if event.modifiers() & Qt.ShiftModifier:
 self.key = "Shift+"
 self.key += event.text()
 if self.key:
 self.key = QString(self.key)
 self.update()
 else:
 QWidget.keyPressEvent(self, event)

If the user presses a key, we get informed through the keyPressEvent(). There is also
a corresponding keyReleaseEvent(), but that is rarely reimplemented. The
QKeyEvent parameter provides several useful methods, including a key() method that

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 314 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

returns the key code for the key that was pressed, and a modifiers() method that returns
a bit-flag indicating the state of the Shift, Ctrl, and Alt keys.

We have chosen to handle the Home, End, PageUp, Ctrl+PageUp, PageDown, and Ctrl
+PageDown key sequences, and the alphabetic keys A...Z, and Shift+A... Shift+Z. We store
a textual representation of what was pressed in the key variable and call update() to
schedule a paint event. If the user pressed a key that we do not handle, we pass on the key
press to the base class implementation, a practice that is common when handling key
events.

def contextMenuEvent(self, event):
 menu = QMenu(self)
 oneAction = menu.addAction("&One")
 twoAction = menu.addAction("&Two")
 self.connect(oneAction, SIGNAL("triggered()"), self.one)
 self.connect(twoAction, SIGNAL("triggered()"), self.two)
 if not self.message:
 menu.addSeparator()
 threeAction = menu.addAction("Thre&e")
 self.connect(threeAction, SIGNAL("triggered()"),
 self.three)
 menu.exec_(event.globalPos())

The easiest way to create a context menu is to add actions to a widget using
QWidget.addAction(), and to set the widget's context menu policy to Qt.Actions-
ContextMenu; we saw how this was done in Chapter 6 on page 180. But if we want to
exercise fine control over what happens as a result of a context menu event, for example,
offering different options depending on the application's state, we can reimplement the
context menu event handler as we have done here.

The globalPos() method returns the mouse position at the time the context menu was
invoked; we pass the position to QMenu.exec_() to ensure that the menu is popped up
where the user expects it.

def mouseDoubleClickEvent(self, event):
 self.justDoubleClicked = True
 self.text = QString("Double-clicked.")
 self.update()

If the user double-clicks, this event handler is called. In this example we need to keep track
of whether or not the user has just double-clicked because we are also reimplementing the
mouse release and mouse move events. A mouse release event will occur as the result of a
double-click, and a mouse move event is almost certain to occur on a double-click because
the user's hand is unlikely to be perfectly steady.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 315 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We take the same approach as we have done in the other event handlers: We set the text
and schedule a repaint to show it. It is quite common not to call the base class for mouse
events that we handle ourselves.

def mouseReleaseEvent(self, event):
 if self.justDoubleClicked:
 self.justDoubleClicked = False
 else:
 self.setMouseTracking(not self.hasMouseTracking())
 if self.hasMouseTracking():
 self.text = QString("Mouse tracking is on.\n"
 "Try moving the mouse!\n"
 "Single click to switch it off")
 else:
 self.text = QString("Mouse tracking is off.\n"
 "Single click to switch it on")
 self.update()

If the user has just released the mouse, except straight after a double-click, we toggle mouse
tracking. When mouse tracking is on, mouse move events are produced for all mouse
movements; when mouse tracking is off, mouse move events are only produced when the
mouse is dragged. By default mouse tracking is off. Here we use a mouse click (i.e., the
release after a click) to toggle mouse tracking on or off. As before, we set the text, and
schedule a paint event to show it.

def mouseMoveEvent(self, event):
 if not self.justDoubleClicked:
 globalPos = self.mapToGlobal(event.pos())
 self.text = QString("The mouse is at\nQPoint(%d, %d) "
 "in widget coords, and\n"
 "QPoint(%d, %d) in screen coords" % (
 event.pos().x(), event.pos().y(),
 globalPos.x(), globalPos.y()))
 self.update()

Table 10.1. Selected QWidget Event andling Methods

Syntax Description

w.closeEvent(e) Reimplement to give the user the opportunity to save unsaved changes and to save
user settings; w is a custom QWidget subclass, and e is a handler-specific QEvent
subclass

w.contextMenuEvent(e) Reimplement to provide custom context menus. An easier alternative is to call
setContextMenuPolicy(Qt.ActionsContextMenu) and add actions to the
widget using QWidget.addAction()

w.dragEnterEvent(e) Reimplement to indicate whether the widget will accept or reject the drop in
QDragEnterEvent e

w.dragMoveEvent(e) Reimplement to set the acceptable drop actions, e.g., not accepted, or one or more of,
move, copy, and link, for QDragMoveEvent e

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 316 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Syntax Description

w.dropEvent(e) Reimplement to handle the drop in QDropEvent e

w.event(e) Reimplement for events that don't have specific event handlers, e.g., for Tab key
handling. This is inherited from QObject

w.keyPressEvent(e) Reimplement to respond to key presses

w.mouseDoubleClickEvent(e) Reimplement to respond to double-clicks specified in QMouseEvent e

w.mouseMoveEvent(e) Reimplement to respond to mouse moves specified in QMouseEvent e. This event
handler is affected by QWidget.setMouseTracking()

w.mousePressEvent(e) Reimplement to respond to mouse presses

w.mouseReleaseEvent(e) Reimplement to respond to mouse releases

w.paintEvent(e) Reimplement to draw the widget

w.resizeEvent(e) Reimplement to resize the widget

If the user has toggled mouse tracking on (by clicking the mouse), mouse move events will
be produced and this method will be called for each of them. We retrieve the mouse's
position in screen coordinates, i.e., coordinates relative to the top-left of the screen, and
in widget coordinates, i.e., coordinates relative to the top-left of the widget. Both
coordinate systems have a top-left of (0, 0), with y coordinates increasing downwards and
x coordinates increasing rightwards.

def event(self, event):
 if event.type() == QEvent.KeyPress and \
 event.key() == Qt.Key_Tab:
 self.key = QString("Tab captured in event()")
 self.update()
 return True
 return QWidget.event(self, event)

When an event is passed to a widget the widget's event() method is called first. This
method returns True if it handled the event, and False otherwise. In the case of returning
False, PyQt will send the event to the widget's parent, and then to the parent's parent,
until one of the handlers returns True, or until it reaches the top-level (no parent), in
which case the event is thrown away. The event() method may handle the event itself,
or may delegate the work to a specific event handler like paintEvent() or
mousePressEvent().

When the user presses Tab, in almost every case, the widget with the keyboard focus's
event() method will call setFocus() on the next widget in the tab order and will return
True without passing the event to any of the key handlers. (The QTextEdit class
reimplements the event handler to insert literal tabs into the text, but can be told to revert
to the normal focus switching behavior.)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 317 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We cannot stop Tab from changing keyboard focus by reimplementing a key even handler,
because the key press is never passed onto them. So we must instead reimplement the
event() method and handle Tab presses there.

In this example, if the user presses Tab, we simply update the text that is displayed. We
also return True indicating that we have handled the event. This prevents the event being
propagated any further. For all other events we call the base class implementation.

Realistic event handlers are often more sophisticated than the ones shown here, but our
purpose at the moment is just to see how the event handling mechanism works. In the next
chapter, and subsequent chapters, we will often reimplement event handlers including
paintEvent() and resizeEvent(), as well as contextMenuEvent(), wheelEvent
(), keyPressEvent(), and mousePressEvent(), all in realistic contexts. And in the
last section of this chapter we will reimplement some of the drag and drop related events.

Using the Clipboard
PyQt provides clipboard support for text in QTextEdit, QLineEdit, QTableWidget,
and the other widgets where textual data can be edited. PyQt's clipboard and drag and
drop systems use data in MIME (Multipurpose Internet Mail Extensions) format, a format
that can be used to store any arbitrary data.

Occasionally it is convenient to pass data to the clipboard or retrieve data from the
clipboard directly in code. PyQt makes this easy. The QApplication class provides a
static method that returns a QClipboard object, and we can set or get text, images, or
other data to or from the clipboard through this object.

The clipboard only holds one object at a time, so if we set, say a string, and then set an
image, only the image will be available because the string will be deleted when we set the
image.

Here is how we set text on the clipboard:

clipboard = QApplication.clipboard()
clipboard.setText("I've been clipped!")

The text is set as plain text; we will see how to handle HTML shortly.

clipboard = QApplication.clipboard()
clipboard.setPixmap(QPixmap(os.path.join(
 os.path.dirname(__file__), "images/gvim.png")))

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 318 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Image data can be set on the clipboard using setImage() for QImages, or setPixmap
() for pixmaps, as we have done here. Both QImage and QPixmap can handle a wide
variety of standard image formats.

Retrieving data from the clipboard is just as easy:

clipboard = QApplication.clipboard()
self.textLabel.setText(clipboard.text())

If the clipboard has no text, for example, if it has an image, or some custom data type, then
QClipboard.text() will return an empty string.

clipboard = QApplication.clipboard()
self.imageLabel.setPixmap(clipboard.pixmap())

If the clipboard has no image, for example, if it has text, or some custom data type, then
QClipboard.pixmap() will return a null image.

In addition to handling plain text and images we can handle some other kinds of data. For
example here is how we would copy HTML text to the clipboard:

mimeData = QMimeData()
mimeData.setHtml(
 "Bold and Red")
clipboard = QApplication.clipboard()
clipboard.setMimeData(mimeData)

If we want to retrieve HTML text, including HTML wrapped in a QMimeData object, we
can use QClipboard.text("html"). This will return an empty string if there is no text,
or if the text is not in HTML format, for example, if it is plain text. The generic way to
retrieve data that has been wrapped in a QMimeData object is like this:

clipboard = QApplication.clipboard()
mimeData = clipboard.mimeData()
if mimeData.hasHtml():
self.textLabel.setText(mimeData.html())

In some situations we want to set and get our own custom data formats to and from the
clipboard. We can do this using the QMimeData class, as we will see in the next section.

Data set on or retrieved from the clipboard usually works on the operating system's global
clipboard. In addition, by specifying the clipboard mode, it is possible to use the selection
clipboard (an additional clipboard that exists on Linux and other systems that use the X
Window System), or the find pasteboard used on Mac OS X.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 319 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Drag and Drop
Many PyQt widgets support drag and drop out-of-the-box, only requiring us to switch on
the support to make it work. For example, the application shown in Figure 10.2 starts out
with items in the left hand QListWidget, and with nothing in the QListWidget in the
middle or in the QTableWidget on the right. The screenshot shows the application after
some items have been dragged and dropped. The application's source code is in the file
chap10/draganddrop.pyw. The drag and drop functionality is achieved purely by
setting properties on the widgets involved. Here is the code that created the left hand list
widget:

listWidget = QListWidget()
listWidget.setAcceptDrops(True)
listWidget.setDragEnabled(True)

Figure 10.2. PyQt's Built-in Drag and Drop Facilities

The middle list widget is similar, except that we have set it to icon view mode instead of
list view mode:

iconListWidget = QListWidget()
iconListWidget.setAcceptDrops(True)
iconListWidget.setDragEnabled(True)
iconListWidget.setViewMode(QListWidget.IconMode)

Making the QTableWidget support drag and drop is achieved in exactly the same way,
with a call of setAcceptDrops(True), and a call of setDragEnabled(True).

No other code is necessary; what is shown is sufficient to allow users to drag icon and text
items from one list widget to another, and to and from cells in the table.

The built-in drag and drop facilities are very convenient, and often sufficient. But if we
need to be able to handle our own custom data, we must reimplement some event handlers,
as we will see in the following sub-section.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 320 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Handling Custom Data
The application shown in Figure 10.3 supports drag and drop for custom data, in particular
icons and text. (The source code is in chap10/customdraganddrop.pyw.) Although
this is the same functionality as the built-in drag and drop facilities offer, the techniques
used are generic and can be applied to any arbitrary data we like.

Figure 10.3. Dragging and Dropping Custom Data

The icons and text can be dragged from the list widget on the left to the list widget on the
right (which is in icon mode), or to the custom widget at the bottom left, or to the custom
line edit at the bottom right—although in this last case only the text is used.

For custom data that is put on the clipboard or used by PyQt's drag and drop system, we
use QMimeData objects, with our own custom MIME types. MIME is a standardized
format for handling multipart custom data. MIME data has a type and a subtype, for
example text/plain, text/html, or image/png. To handle custom MIME data we
must choose a custom type and subtype, and wrap the data in a QMimeData object.

For this example we have created a MIME type of application/x-icon-and-text. It
is good practice for custom MIME subtypes to begin "x-". We have stored the data in a
QByteArray, a resizable array of bytes, and which for this example holds a QString and
a QIcon, although it could hold any arbitrary data.

We will begin by seeing how to make a QLineEdit subclass that can accept drops of MIME
type application/x-icon-and-text, making use of the text and ignoring the icon.

class DropLineEdit(QLineEdit):

 def __init__(self, parent=None):

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 321 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 super(DropLineEdit, self).__init__(parent)
 self.setAcceptDrops(True)

The initializer simply sets the line edit to accept drops.

def dragEnterEvent(self, event):
 if event.mimeData().hasFormat("application/x-icon-and-text"):
 event.accept()
 else:
 event.ignore()

When the user drags over the line edit we want to display an icon if the MIME data being
dragged is a type that we can handle; otherwise the line edit will display the "no drop" icon
(which often appears as). By accepting the drag enter event we signify that we can accept
drops of the type of MIME data on offer; by ignoring we say that we cannot accept such
data. The icon used for acceptable data is set when the drag is initiated as we will see later
on.

The drag-related event handlers are called automatically by PyQt when necessary because
we set accept drops in the initializer.

def dragMoveEvent(self, event):
 if event.mimeData().hasFormat("application/x-icon-and-text"):
 event.setDropAction(Qt.CopyAction)
 event.accept()
 else:
 event.ignore()

As the user drags over the widget dragMoveEvent()s occur; we want the data to be copied
(rather than moved), so we set the drop action accordingly.

def dropEvent(self, event):
 if event.mimeData().hasFormat("application/x-icon-and-text"):
 data = event.mimeData().data("application/x-icon-and-text")
 stream = QDataStream(data, QIODevice.ReadOnly)
 text = QString()
 stream >> text
 self.setText(text)
 event.setDropAction(Qt.CopyAction)
 event.accept()
 else:
 event.ignore()

If the user drops the data on the widget we must handle it. We do this by extracting the
data (a QByteArray), and then creating a QDataStream to read the data. The

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 322 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

QDataStream class can read and write from and to any QIODevice including files,
network sockets, external processes, and byte arrays. Since we are only interested in the
string, that is all that we extract from the byte array. Note that to be able to stream
QIcons to or from a QDataStream we must use PyQt 4.1 or later.

Streaming to QData-Stream 242

The DropLineEdit only supports dropping, so for our next example, we will create a
QListWidget subclass which supports both dragging and dropping.

class DnDListWidget(QListWidget):

 def __init__(self, parent=None):
 super(DnDListWidget, self).__init__(parent)
 self.setAcceptDrops(True)
 self.setDragEnabled(True)

The initializer is similar to before except that we enable both dragging and dropping.

def dragMoveEvent(self, event):
 if event.mimeData().hasFormat("application/x-icon-and-text"):
 event.setDropAction(Qt.MoveAction)
 event.accept()
 else:
 event.ignore()

This is almost identical to the DropLineEdit's dragMoveEvent(); the difference is that
here we set the drop action to be Qt.MoveAction rather than Qt.CopyAction. The code
for the dragEnterEvent() is not shown: It is the same as for the DropLineEdit.

def dropEvent(self, event):
 if event.mimeData().hasFormat("application/x-icon-and-text"):
 data = event.mimeData().data("application/x-icon-and-text")
 stream = QDataStream(data, QIODevice.ReadOnly)
 text = QString()
 icon = QIcon()
 stream >> text >> icon
 item = QListWidgetItem(text, self)
 item.setIcon(icon)
 event.setDropAction(Qt.MoveAction)
 event.accept()
 else:
 event.ignore()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 323 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This code is again similar to the DropLineEdit, only now we want the icon as well as the
text. To add an item to a QListWidget we must create a new QListWidgetItem and
pass the list widget (self) as the item's parent.

Streaming from QData-Stream 245

def startDrag(self, dropActions):
 item = self.currentItem()
 icon = item.icon()
 data = QByteArray()
 stream = QDataStream(data, QIODevice.WriteOnly)
 stream << item.text() << icon mimeData = QMimeData()
 mimeData.setData("application/x-icon-and-text", data)
 drag = QDrag(self)
 drag.setMimeData(mimeData)
 pixmap = icon.pixmap(24, 24)
 drag.setHotSpot(QPoint(12, 12))
 drag.setPixmap(pixmap)
 if drag.start(Qt.MoveAction) == Qt.MoveAction:
 self.takeItem(self.row(item))

This is the only method that is not in the DropLineEdit, and is the one that makes it
possible to drag from DnDListWidgets. We don't have to check the return value of
currentItem() because only items can be dragged, so we know that if startDrag()
is called there will be an item to drag. The startDrag() method is called automatically
by PyQt when needed because we set drag enabled in the initializer.

We create a new empty byte array, and use QDataStream to populate it with the
QListWidgetItem's icon and text. There is no need to call setVersion() on
QDataStream when we use it purely for handling in-memory data that only exists during
the runtime of the application, and that is not exchanged with any other application. Once
we have populated the byte array, we wrap it in a QMimeData object. Then we create a
QDrag object, and give it the MIME data. We have chosen to use the data's icon as the icon
to be used for the drag: If we had not done so PyQt would provide a default icon. We have
also set the drag's "hotspot" to be the center of the icon. The mouse's hotspot will always
coincide with the icon's hotspot.

The call to QDrag.start() initiates the drag; we give as parameter the action or actions
that we will accept. If the drag succeeds, i.e., if the data is successfully dropped, the start

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 324 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

() method returns the action that occurred, for example, copy or move. If the action was
move, we remove the dragged QListWidgetItem from this list widget. From Qt 4.3,
QDrag.exec_() should be used instead of QDrag.start().

The setAcceptDrops() method is inherited from QWidget, but setDragEnabled
() is not, so by default it is only available in certain widgets. If we want to create a custom
widget that supports drops, we can simply call setAcceptDrops(True) and
reimplement dragEnterEvent(), dragMoveEvent(), and dropEvent(), as we have
done in the examples above. If we also want the custom widget to support drags, and the
widget inherits QWidget or some QWidget subclass that does not have
setDragEnabled() then we must do two things to make the widget support dragging.
One is to provide a startDrag() method so that a QDrag object can be created, and
another is to make sure the startDrag() method is called at an appropriate time. The
easiest way to ensure that startDrag() is called is to reimplement the
mouseMoveEvent():

def mouseMoveEvent(self, event):
 self.startDrag()
 QWidget.mouseMoveEvent(self, event)

The widget at the bottom left of the example application is a direct QWidget subclass and
uses this technique. Its startDrag() method is very similar to the one we have just seen,
only a tiny bit simpler because it initiates copy drags rather than move drags, so we don't
have to do anything whether or not the drag is dropped successfully.

Summary
When we make use of existing widgets, PyQt's signals and slots mechanism is often all we
need to get the behaviors we need. But when we create custom widgets, for example, to
exercise fine control over the appearance and behavior of a widget, we must reimplement
low-level event handlers.

For appearance, reimplementing paintEvent() is often sufficient, although in some
cases we may also need to reimplement resizeEvent(). We normally don't call the base
class implementation for these events. For behavior it is common to reimplement
keyPressEvent() and some of the mouse events such as mousePressEvent() or
mouseMoveEvent(). We often don't call the base class implementation for mouse events,
although it is usually harmless to do so. If we exercise lower-level control by
reimplementing QWidget.event(), we must return True for those events that we
handle ourselves, and must return the result of calling the base class implementation for
those events we don't handle.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 325 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We don't often need to handle the clipboard in our own code since most of PyQt's text
editing widgets automatically interact with the clipboard in the way we would expect. But
if we do want to work with the clipboard in code, setting and getting text and image data
is straightforward, using the QClipboard object returned by
QApplication.clipboard(). Setting HTML data is slightly more involved since we
must wrap the HTML in a QMimeData object, although retrieving HTML is easy. When
we use MIME data with the clipboard we are not limited to HTML; we can store and retrieve
any kind of data by using the same techniques we used to handle drag and drop data.

The built-in drag and drop support provided by the standard PyQt widgets is very easy to
set up and use. In some cases though, we need to drag and drop our own custom data types.
The code required to do so is not difficult to write, and using QByteArray ensures that
we can drag and drop any amount of data of any C++ or PyQt data type. However, if the
amount of data is very large, it may be faster and less memory demanding to pass a token
to stand for the data (say an index position in a data structure), rather than the data itself,
and only actually copy data when necessary.

It is also possible to bypass PyQt's drag and drop facilities entirely, and implement our
own drag and drop system by reimplementing the mouse event handlers. This is not as
difficult as it sounds, but is clearly less convenient than using what PyQt already provides.

PyQt's event handling system is very powerful, and yet quite easy to use. In most cases
using the higher level signals and slots mechanism is much easier and is more appropriate.
But when we need fine control and customization, reimplementing event handlers will let
us get the precise appearance and behavior we want—and we will see this in action in the
next chapter, when we implement some custom widgets.

Exercise
Modify the DnDListWidget class so that when the user drops they get a pop-up menu at
the mouse position with two options, Copy and Move. Modify the dragMoveEvent() to
have a drop action of move rather than copy. The menu will need to go in the dropEvent
(), before creating the new list item.

The QMenu.exec_() method takes a QPoint argument which tells it where to pop up;
the QCursor.pos() method provides the current mouse position. The drop event's drop
action must be set to copy or move depending on what the user chose.

The startDrag() method will need to be modified slightly: The start() call must be
given both move and copy actions as acceptable actions, and should only remove the item
if the user chose to move.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 326 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The trickiest part is deciding how to respond to the menu actions. You could use
functools.partial() or lambda functions for example. In the model solution we
simply use an instance variable that holds the drop action and have two methods, one that
sets the drop action to be move and the other to be copy, and simply connect the menu
actions to these methods.

A more subtle approach is also possible. Instead of using a pop-up menu, in the drag move
event examine the keyboard modifiers and set the drop action to move by default, or to
copy if the Ctrl key is pressed. Similarly, in the drop event set the drop action depending
on the state of the Ctrl key. This is less intrusive than a pop-up menu, but also less obvious
for casual or naive users.

In the solution we have created two QListWidget subclasses, DnDMenuListWidget and
DndCtrlListWidget to show both these approaches. Only about 25 lines need to be
added or changed (once you have copy/pasted DndListWidget and renamed each of the
two versions) to implement both of the approaches described here.

A model solution is provided in the file chap10/customdraganddrop_ans.pyw.

11. Custom Widgets
• Using Widget Style Sheets
• Creating Composite Widgets
• Subclassing Built-in Widgets
• Subclassing QWidget

One of PyQt's greatest and longest standing strengths is the ease with which it is possible
to create custom widgets. The custom widgets we create with PyQt are made the same way
as the standard built-in widgets, so they integrate seamlessly, and have no arbitrary
restrictions on their appearance or behavior. Creating custom widgets in PyQt is not a
matter of "one size fits all", but rather we can choose from a number of approaches which
give us increasing levels of control over our widgets' behavior and appearance.

The most basic level of customization is to simply set some of the properties of an existing
widget. We have already done this a number of times in earlier chapters. For example, in
the previous chapter we enabled PyQt's default drag and drop behavior simply by calling
setAcceptDrops(True) and setDragEnabled(True) on our widgets. For spinboxes
we can constrain their behavior, for example by calling setRange() to set a minimum
and maximum value, and can affect their appearance by using setPrefix() and

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 327 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

setSuffix(). We will not show examples of this approach in this chapter because we
have already seen it in action many times before.

If setting the properties of an existing widget is insufficient, we can use a style sheet to
customize the widget's appearance, and some aspects of its behavior. The ability to set style
sheets on widgets was introduced with Qt 4.2, and we will see a simple example to give a
taste of what is possible in this chapter.

Sometimes, what we need is not so much to customize a particular widget, but to create a
composite widget that combines two or more other widgets. We will look at a simple
example of how this can be done.

If we need to change the behavior of an existing widget beyond what can be achieved by
setting properties, we can subclass the widget and reimplement whichever event handlers
are necessary to achieve the control we want.

But in some cases, we need a widget that is different from any of the standard built-in
widgets. For these situations we can subclass QWidget directly and can completely define
the behavior and appearance of the widget ourselves. We will show two examples of this,
the first a "generic" widget that might be used in many places and many applications, and
the second an application-specific widget of the kind that might be created just for one
program.

Using Widget Style Sheets

We have already seen many examples of customizing widgets by changing their properties.
Some of these have affected widget behavior, for example setting a QSpinBox's range, and
others have affected widget appearance, for example, setting a QLabel's frame. Qt 4.2
introduced a new widget property, the style sheet property. This property holds a
QString and uses a syntax borrowed from HTML's CSS (Cascading Style Sheets).[*]

[*] Style sheets are not officially supported on Mac OS X, so they may not behave predictably. They are expected to be supported from Qt 4.4 onwards.

The screenshot in Figure 11.1 shows a dialog that has a style sheet set. Style sheets apply
to the widget they are set on, and all the widget's child widgets. In this case we have set the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 328 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

combobox to use dark blue text and the line edits to used dark green text. We have also set
line edits that are "mandatory" to have a yellow background.

Figure 11.1. A Dialog Customized Using a Style Sheet

No PyQt widget has a "mandatory" property, but from Qt 4.2 it is possible to add properties
dynamically to QObjects. Note that Qt properties are different from Python properties—
for example, they are accessed using property() and setProperty(). From PyQt 4.2,
the QtCore.pyqtProperty() function can be used to create properties that are both
Python and Qt properties at the same time.

self.mandatory = (self.forenameEdit, self.surnameEdit,
 self.phoneEdit, self.emailEdit)
for lineEdit in self.mandatory:
 lineEdit.setProperty("mandatory", QVariant(True))

The code shown above is from the form's initializer. It adds a "mandatory" property to
those line edits that we do not want the user to be able to leave blank. All Qt properties are
held as QVariants.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 329 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Later on in the constructor we create a style sheet and set it on the form. We could just as
easily have read the style sheet from a file (since it is simply plain text), or from a PyQt
resource.

styleSheet = """
QComboBox { color: darkblue; }
QLineEdit { color: darkgreen; }
QLineEdit[mandatory="true"] {
 background-color: rgb(255, 255, 127);
 color: darkblue;
}
"""

self.setStyleSheet(styleSheet)

The style sheet syntax essentially consists of "selectors" and property name: value pairs.
In the snippet above, the first line has a selector of QComboBox, which means that its
property values will apply to any QComboBox or QComboBox subclass that is a child of the
widget on which the style sheet is set. In this case the effect is to set the text color to dark
blue. The second selector is a QLineEdit, and this works similarly.

The third selector is more specific: It specifies both a class, and a property of that class
whose state must be matched. In other words, this third selector will only apply to
QLineEdit and QLineEdit subclasses that have a "mandatory" property, and where that
property's value is True. For such cases, the background color is set to yellow (specified
as an RGB triple), and the text color is set to dark blue.

Style sheets have a much richer syntax, and are much more powerful, than this simple
example might suggest. For example, if we precede a selector with a dot, for
example, .QLineEdit, the selector will only apply to the class specified and not to its
subclasses. If we want to a selector to apply to one specific widget we can call
setObjectName() on the widget and then use that name as part of the selector. For
example, if we had a button with an object name of "findButton", the selector that would
apply only to that button would be QPushButton#findButton.

Some widgets have "sub-controls". For example a QComboBox has an arrow that the user
can click to make its list drop down. Sub-controls can be specified as part of the selector,
for example QComboBox::drop-down. Widgets also have "pseudo states" for example,
whether or not they are checked, or if the mouse is hovering over them. States can be
specified using a single colon, for example, QCheckBox:checked.

In addition to setting colors, style sheets can also be used to set fonts, borders, margins,
paddings, and backgrounds. One quick and easy way to experiment with simple style sheets
is to run Qt Designer, create a new form, drag some widgets onto the form, and then enter
and edit a style sheet for the form.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 330 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A style sheet can be set on a particular widget in a form, or on the form (QDialog or
QMainWindow) itself. In either case, the style sheet will automatically be applied to any
child widgets. It is also possible (and quite common) to set a single style sheet for the entire
application, in which case we set it on the QApplication object.

Creating Composite Widgets
A composite widget is a widget that is composed of two or more other widgets. We are
already experienced composite widget creators: For example, every dialog we have created
is a composite widget. The reason for dedicating some space to a topic we have already
covered, is that unlike the dialogs we have created (which were all QDialog subclasses),
we want to create composite widgets that are not dialogs, and that instead can be used
inside dialogs (or as a main window's central widget).

The kind of composite widgets we want are very similar to dialogs: We create their child
widgets, lay them out, and do any signal–slot connections we need. The main difference
is that we inherit from QWidget rather than from QDialog.

The screenshot in Figure 11.2 shows what looks like a conventional dialog, but in fact we
have only explicitly created six widgets, rather than twelve. This is because we have used
four custom LabelledLineEdits, and one custom LabelledTextEdit, along with a
QDialogButtonBox.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 331 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 11.2. A Dialog Using Labelled Widgets

Our labelled editors are special in two ways. Firstly, they automatically set up buddy
relationships, and secondly, they can lay out the label either to the left or above their editing
widget.

self.zipcode = LabelledLineEdit("&Zipcode:")
self.notes = LabelledTextEdit("&Notes:", ABOVE)

Creating labelled editors is easy, as this snippet from the form's initializer shows. The
LabelledLineEdit exposes its widgets as instance variables, so we can access its
QLabel as LabelledLineEdit.label and its QLineEdit as
LabelledLineEdit.lineEdit. The LabelledTextEdit has the same label, and
has a textEdit for its QTextEdit. The ABOVE is just a module constant; there is also a
corresponding LEFT.

class LabelledLineEdit(QWidget):

 def __init__(self, labelText=QString(), position=LEFT,
 parent=None):
 super(LabelledLineEdit, self).__init__(parent)
 self.label = QLabel(labelText)
 self.lineEdit = QLineEdit()
 self.label.setBuddy(self.lineEdit)
 layout = QBoxLayout(QBoxLayout.LeftToRight \
 if position == LEFT else QBoxLayout.TopToBottom)
 layout.addWidget(self.label)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 332 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 layout.addWidget(self.lineEdit)
 self.setLayout(layout)

The code shown above is the complete LabelledLineEdit class. If we want to connect
signals and slots to its label or line edit, we can do so by accessing them directly since they
are held as public instance variables. Instead of using a QVBoxLayout or a
QHBoxLayout, we have used their base class so that we can set the layout direction when
the labelled line edit is created. We won't show the code for the LabelledTextEdit since
it only differs in that we create a QTextEdit instead of a QLineEdit and call it
textEdit instead of lineEdit.

Although we have created the composite labelled editing widgets purely in code, it is
possible to create composite widgets using Qt Designer, basing them on the Widget
template.

Creating composite widgets that are used repeatedly can save time in large projects. They
are also useful when we want to create a main window style application whose central
widget must consist of two or more widgets, and where using an MDI workspace, or
splitters, or dock windows, is not a suitable solution.

Subclassing Built-in Widgets
Sometimes we need a widget that is similar in appearance and behavior to an existing
widget, but with more customization required than can be achieved by using a style sheet
or by setting other widget properties. In these cases we can subclass the similar widget and
customize it to our needs.[*]

[*] Appendix B provides screenshots and brief descriptions of selected PyQt widgets, and Appendix C shows selected PyQt class hierarchies.

Figure 11.3. A Roman Spinbox

To show how to subclass an existing widget, let us imagine that we need a spinbox that
works on Roman numerals rather than on decimals. Providing we know how to convert
integers to Roman numeral strings and back again, it is straightforward to subclass
QSpinBox for this purpose.

When subclassing a spinbox we will need to reimplement three methods: validate()
which is used by the spinbox to prevent invalid data being entered, valueFromText()
which is used to convert text entered by the user into an integer, and textFromValue

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 333 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

() which is used to convert an integer into its textual representation. We will also need to
do some setting up in the initializer, so it is with that method that we will begin.

class RomanSpinBox(QSpinBox):

 def __init__(self, parent=None):
 super(RomanSpinBox, self).__init__(parent)
 regex = QRegExp(r"^M?M?M?(?:CM|CD|D?C?C?C?)"
 r"(?:XC|XL|L?X?X?X?)(?:IX|IV|V?I?I?I?)$")
 regex.setCaseSensitivity(Qt.CaseInsensitive)
 self.validator = QRegExpValidator(regex, self)
 self.setRange(1, 3999)
 self.connect(self.lineEdit(), SIGNAL("textEdited(QString)"),
 self.fixCase)

PyQt provides its own regular expression class, with a syntax very similar to that used by
Python's re module. The main difference is that QRegExp does not support non-greedy
quantifiers, although it will allow the entire regular expression to be non-greedy. The
regular expression sets out which combinations of letters constitute valid Roman numbers
in the range 1–3 999.[*]

[*] The regular expression is adapted from one given in Dive into Python by Mark Pilgrim.

We make the regular expression case insensitive because we don't mind whether the user
enters lower or uppercase—and anyway we will force the input to be uppercase ourselves.
Validators can either be one of PyQt's predefined validators (for integers and for floating-
point numbers), or based on a regular expression such as the one we have used here. The
signal–slot connection is set up so that whenever the user enters any text we can force it
to be uppercase.

def fixCase(self, text):
 self.lineEdit().setText(text.toUpper())

A QSpinBox has a QLineEdit component, and provides an accessor method to retrieve
it. We use this to uppercase whatever the user has typed in. (The user cannot type invalid
letters like "A", "B", "1", or "2", because the validator will not accept them.)

def validate(self, text, pos):
 return self.validator.validate(text, pos)

We must provide a validate() method. This will automatically be called whenever the
user changes the text, since this behavior is part of the QSpinBox's API. We can simply
pass on the work to the validator object we created in the initializer.

def valueFromText(self, text):
 return intFromRoman(unicode(text))

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 334 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If the user enters text, the spinbox needs to know the integer value it represents. We simply
pass this on to an intFromRoman() function adapted from the "Roman Numerals" recipe
in the Python Cookbook.

def textFromValue(self, value):
 return romanFromInt(value)

The spinbox must be able to convert integers to their textual representation, for example
when setValue() is called or when the user increments or decrements the value using
the spinbox buttons. Again we pass on the work, this time to a romanFromInt() function,
adapted from the feedback given on the "Decimal to Roman Numerals" recipe in the
Python Cookbook.

The RomanSpinBox can be used anywhere a conventional QSpinBox is used, the only
limitation being the range of numbers it can cope with. A much more complex example of
subclassing an existing widget is presented in Chapter 13, where a QTextEdit is used to
create a RichTextLineEdit.

Subclassing QWidget
When none of setting properties, using a style sheet, or subclassing an existing widget can
provide the custom widget we need, we can create the widget we need from scratch. In
practice we always create custom widgets by subclassing QWidget since this provides a
lot of behind the scenes convenience that we don't need or want to worry about, leaving
us free to focus on what matters: The appearance and behavior of our custom widget.

In this section we will look at two different custom widgets. The first,
FractionSlider, is a generic "range control" type widget that might be used many times.
The second, YPipeWidget, is an application-specific widget that may only be needed in
one particular program.

Before we go into the details of these two widgets, we will first discuss painting in PyQt,
and in particular the coordinate systems that are used by QPainter. A QPainter has two
separate coordinate systems, a device (physical) coordinate system that matches the pixels
in the widget's area, and a logical coordinate system. By default the logical coordinate
system is set to exactly match the physical coordinate system.

In fact, the physical coordinates are not necessarily pixels since they depend on the
underlying paint device. This can be a QGLPixelBuffer (for 2D and 3D painting), a
QImage, a QPicture, a QPixmap, a QPrinter (in which case the coordinates are points,

), a QSvgGenerator (introduced with Qt 4.3), or a QWidget.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 335 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In PyQt terminology the physical coordinate system is called the "viewport", and
confusingly, the logical coordinate system is called the "window".

In Figure 11.4, we have a physical widget size of 800 x 600. By calling setWindow(-60,
-60, 120, 120) we can create a "window" with top-left coordinate of (-60, -60), a width
of 120, a height of 120, and centered at point (0, 0). The window's coordinate system is a
logical coordinate system that QPainter automatically maps to the underlying physical
device. After the setWindow() call, all our painting takes place using the logical (window)
coordinate system.

Figure 11.4. The Viewport and Window Coordinate Systems

In this case the widget is rectangular, but our window has the same width and height. This
means that the items we paint will be stretched out horizontally since coordinates in the
y axis will be scaled by QPainter in the ratio 120:600 (1:5), whereas those in the x axis

will be scaled in the ratio 120:800 ().

For most widgets, a rectangular region works perfectly well, but in some cases, for example,
if we really want our logical window to be square, we can change the viewport so that we
only operate on a proportion of the widget's area.

side = min(self.width(), self.height())
painter.setViewport((self.width() - side) / 2,
 (self.height() - side) / 2, side, side)

Table 11.1. Selected QWidget Methods

Syntax Description

w.addAction(a) Add QAction a to QWidget w; useful for context menus

w.close() Hides QWidget w; or deletes it if Qt.WA_DeleteOnClose is set

w.hasFocus() Returns True if QWidget w has the keyboard focus

w.height() Returns QWidget w's height

w.hide() Hides QWidget w

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 336 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Syntax Description

w.move(x, y) Moves the top-level QWidget w to position (x, y)

w.raise_() Raises QWidget w to the top of the parent widget's stack

w.rect() Returns QWidget w's dimensions as a QRect

w.restore-Geometry
(ba)

Restores QWidget w's geometry to that encoded in QByte-Array ba

w.save-Geometry() Returns a QByte-Array that encode QWidget w's geometry

w.setAcceptDrops(b) Sets whether or not Qt.WidgetAttribute wa on or off depending on bool b.

w.Sets Attribute(wa,
b)

sets Qt.widgetAttribute wa on or off depending on bool b. The most common
attribute used is Qt.wa_Deleteonclose

w.Set Context-
Menupolicy(p)

Sets QWidget w's context menu policy to policy p. Policies include Qt.NoContextMenu
and Qt.ActionsContextMenu

W.setCursor(c) Sets QWidget w's cursor to QCursor or Qt.CursorShape, c

w.setEnabled(b) Sets QWidget w to be enabled or disabled depending on b

w.setFocus() Gives the keyboard focus to QWidget w

w.setFont(f) Sets QWidget w's font to QFont f

w.setLayout(l) Sets QWidget w's layout to QLayout l

w.setSizePolicy(hp,
vp)

Sets QWidget w's horizontal and vertical QSizePolicys to hp and vp

w.setStyleSheet(s) Sets QWidget w's Style Sheet to the CSS text in string s

w.setWindowIcon(i) Sets QWidget w's icon to QIcon i

w.setWindowTitle(s) Sets QWidget w's title to string s

w.show() Shows QWidget w modelessly. It can be shown modally by using setWindowModality
()

w.update() Schedules a paint event for QWidget w

w.updateGeometry() For non-top-level widgets, notifies any containing layouts that QWidget w's geometry may
have changed

w.width() Returns QWidget w's width

This code, executed inside a widget's paintEvent(), changes the widget's view-port to
be the largest centered square region that will fit. In the example above, this will produce
a viewport of 600 x 600 pixels with no top or bottom margins, but with a 100 pixel margin
on the left and on the right. The window will now be an exact square, and the aspect ratio
of anything we paint in it will be preserved.

The main benefit of using a window is that it allows us to paint using logical coordinates.
This is very convenient because it means that all the scaling that is needed, for example

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 337 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

when the user resizes the widget, is taken care of automatically by PyQt. This benefit also
turns out to have a drawback: If we want to paint text, the text will be scaled along with
everything else. For this reason it is often easiest to work in physical (viewport) coordinates
for custom widgets that paint text, and logical (window) coordinates otherwise. We show
both approaches, with the FractionSlider using viewport coordinates, and the
YPipeWidget using window coordinates.

Example: A Fraction Slider
The FractionSlider is a widget that allows the user to choose a fraction between 0 and
1 inclusive. We will allow programmers who use our slider to set a denominator in the
range 3–60, and will emit valueChanged(int, int) signals (with the numerator and
denominator), whenever the user changes the fraction. We provide both mouse and
keyboard control, and we paint the entire widget ourselves. We also ensure that the
widget's minimum size hint is always proportional to the size of the denominator, so that
the widget cannot be resized to be too small to show the fraction texts.

Figure 11.5. A Dialog Using a Fraction Slider

We will begin by looking at the static data and the initializer.

class FractionSlider(QWidget):

 XMARGIN = 12.0
 YMARGIN = 5.0
 WSTRING = "999"

 def __init__(self, numerator=0, denominator=10, parent=None):
 super(FractionSlider, self).__init__(parent)
 self.__numerator = numerator
 self.__denominator = denominator
 self.setFocusPolicy(Qt.WheelFocus)
 self.setSizePolicy(QSizePolicy(QSizePolicy.MinimumExpanding,
 QSizePolicy.Fixed))

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 338 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The XMARGIN and YMARGIN are used to give some horizontal and vertical spacing around
the edges of the widget. The WSTRING is a string containing a text that is the longest we
could possibly need: Two digits to display, and an extra digit to provide some margin.

We provide default values which start the widget off as showing zero tenths. We chose a
focus policy of Qt.WheelFocus because that is the "strongest" one, which means that the
widget will accept focus if tabbed to, clicked on, or if the user uses the mouse wheel on it.
We set the size policies for the horizontal and vertical directions. By doing this we help
ensure that our widget will cooperate properly with the layout managers. Here we have
said that in the horizontal direction, the widget can be shrunk to its minimum size, but
prefers to grow, and in the vertical direction the widget has a fixed size of whatever height
its sizeHint() method returns.

Size policies 271

def decimal(self):
 return self.__numerator / float(self.__denominator)

def fraction(self):
 return self.__numerator, self.__denominator

We provide two convenience methods for returning the value, the first returning a floating-
point value, and the second a pair of integers.

def setFraction(self, numerator, denominator=None):
 if denominator is not None:
 if 3 <= denominator <= 60:
 self.__denominator = denominator
 else:
 raise ValueError, "denominator out of range"
 if 0 <= numerator <= self.__denominator:
 self.__numerator = numerator
 else:
 raise ValueError, "numerator out of range"
 self.update()
 self.updateGeometry()

This method can be used just to set the numerator, or to set both numerator and
denominator. Once the fraction has been changed we call update() to schedule a paint
event, so that the gold triangle that marks the current fraction is repainted in the right
place.

We also call updateGeometry(). This is to tell any layout manager that is responsible
for this widget that the widget's geometry might have changed. This may appear strange,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 339 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

after all we have only changed the fraction. But if we changed the denominator, then the
widget's size hint will have changed to allow for more (or less) fractions to be displayed.
As a result, if there is a layout manager for the widget, it will recalculate its layout, asking
the widget for its size hints and adjusting the layout if necessary.

We have chosen to deal with invalid values by raising exceptions. This is because
setFraction() is normally called programmatically, and so should never be given out
of range values in the normal run of things. An alternative approach would be to force the
numerator and denominator to be within range: This approach is taken in the keyboard
and mouse event handlers that give the widget its behavior, and it is to these that we now
turn.

def mousePressEvent(self, event):
 if event.button() == Qt.LeftButton:
 span = self.width() - (FractionSlider.XMARGIN * 2)
 offset = span - event.x() + FractionSlider.XMARGIN
 numerator = int(round(self.__denominator * \
 (1.0 - (offset / span))))
 if numerator < 0:
 numerator = 0
 elif numerator > self.__denominator:
 numerator = self.__denominator
 if numerator != self.__numerator:
 self.__numerator = numerator
 self.emit(SIGNAL("valueChanged(int,int)"),
 self.__numerator, self.__denominator)
 self.update()
 event.accept()
 else:
 QWidget.mousePressEvent(self, event)

If the user clicks the widget we want to set the numerator to the nearest fraction. We begin
by calculating the "span" of the widget, excluding the horizontal margins. Then we find
how far along the x axis the mouse was clicked and calculate the numerator as a proportion
of the widget's width. If the user clicked in the left margin area we set the numerator to 0,
and if they clicked in the right margin area we set it to equal the denominator (so the
fraction will be 1). If the numerator has changed from before, we set the instance variable
accordingly and emit a signal announcing that the value has changed. We then call update
() to schedule a paint event (to move the gold triangle), and accept the event since we have
handled it. If we don't handle the click we call the base class implementation, although
this is not strictly necessary.

We have chosen to emit a Python non-short-circuit signal; we could just as easily have
made it a short-circuit signal by dropping the "(int, int)". It is also possible to define
signals using the __pyqtSignals__ class attribute, although this is only really useful for
custom widgets written in PyQt that are to be integrated with Qt Designer.[*]

[*] See the PyQt pyqt4ref.html documentation, under "Writing Qt Designer Plugins".

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 340 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Short-circuit signals 130

def keyPressEvent(self, event):
 change = 0
 if event.key() == Qt.Key_Home:
 change = -self.__denominator
 elif event.key() in (Qt.Key_Up, Qt.Key_Right):
 change = 1
 elif event.key() == Qt.Key_PageUp:
 change = (self.__denominator // 10) + 1
 elif event.key() in (Qt.Key_Down, Qt.Key_Left):
 change = -1
 elif event.key() == Qt.Key_PageDown:
 change = -((self.__denominator // 10) + 1)
 elif event.key() == Qt.Key_End:
 change = self.__denominator
 if change:
 numerator = self.__numerator
 numerator += change
 if numerator < 0:
 numerator = 0
 elif numerator > self.__denominator:
 numerator = self.__denominator
 if numerator != self.__numerator:
 self.__numerator = numerator
 self.emit(SIGNAL("valueChanged(int,int)"),
 self.__numerator, self.__denominator)
 self.update()
 event.accept()
 else:
 QWidget.keyPressEvent(self, event)

For keyboard support, we want Home to set the fraction to 0, End to set it to 1, up or right
arrow keys to move to the next fraction up, and down or left arrow keys to move to the next
fraction down. We have also set PageUp to move one tenth of the way up and PageDown
to move one tenth of the way down.

The code for ensuring that the numerator is in range, and for setting the instance variable,
and so on, is identical to what we did in the mouse press event handler. And again we pass
on unhandled key presses to the base class implementation—which does nothing, just as
the base class mouse click handler does nothing.

def sizeHint(self):
 return self.minimumSizeHint()

We have decided that the widget's preferred size is its minimum size. Strictly speaking we
did not have to reimplement this method, but by doing so we make our intention clear.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 341 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Thanks to the size policies we set in the initializer, the widget can grow horizontally to
occupy as much horizontal space as is available.

def minimumSizeHint(self):
 font = QFont(self.font())
 font.setPointSize(font.pointSize() - 1)
 fm = QFontMetricsF(font)
 return QSize(fm.width(FractionSlider.WSTRING) * \
 self.__denominator,
 (fm.height() * 4) + FractionSlider.YMARGIN)

A QFontMetricsF object is initialized by a QFont object, in this case the widget's default
font.[*] This font is inherited from the widget's parent, which in turn inherits from its parent,
and so on, with top-level widgets inheriting their fonts (and color schemes and other user
settings) from the QApplication object, which itself takes them from the user
preferences reported by the underlying windowing system. We can of course ignore the
users' preferences and set an explicit font in any widget.

[*] PyQt also has a QFontMetrics class which gives integer rather than floating-point values. Similarly PyQt has QLine, QLineF, QPoint, QPointF, QPolygon,
QPolygonF, QRect, QRectF, and some others.

The QFontMetricsF object provides the real metrics, i.e., those of the font actually used
—and this may be different from the font that was specified. For example, if the Helvetica
font is used, it will almost certainly be found and used on Linux or Mac OS X, but on
Windows, Ariel is likely to be used in its place. We have chosen to use a font size one less
than the user's preferred font size to show the fractions, which is why we call
setPointSize().

We set the widget's minimum width to be the width necessary to display all the fractions,
assuming that each one is three digits wide, i.e., two digits plus some empty margin either
side. The overall width is actually slightly less than this because we don't include the
horizontal margins. We set the widget's minimum height to be four times the height of one
character, i.e., enough vertical space for the fraction "segments" (the rectangles that signify
each fraction), the vertical lines, the numerator, and the denominator. And just as for the
width, the actual height is slightly less than this, because we only account for half of the
vertical margin.

Having implemented the key and mouse event handlers, set the size policies, and
implemented the size hint methods, we have made the widget have appropriate behavior
for user interaction and in relation to any layout manager that might be asked to lay out
the widget. There is only one thing left to do: We must paint the widget when required to
do so. The paintEvent() is rather long, so we will look at it in pieces.

def paintEvent(self, event=None):
 font = QFont(self.font())
 font.setPointSize(font.pointSize() - 1)
 fm = QFontMetricsF(font)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 342 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 fracWidth = fm.width(FractionSlider.WSTRING)
 leftOffset, rightOffset = (2, 0)
 if platform.system() != "Linux":
 fracWidth *= 1.5
 leftOffset, rightOffset = (1, -1)
 span = self.width() - (FractionSlider.XMARGIN * 2)
 value = self.__numerator / float(self.__denominator)

We begin by getting the font we want to use, and also its font metrics. Then we calculate
fracWidth, the width of one fraction, and also some offsets. The if statement is used to
compensate for differences between the font metrics on the X Window System and other
window systems such as Windows and Mac OS X. The span is the width of the widget
excluding the horizontal margins, and the value is the floating-point value of the fraction.

painter = QPainter(self)
painter.setRenderHint(QPainter.Antialiasing)
painter.setRenderHint(QPainter.TextAntialiasing)
painter.setPen(self.palette().color(QPalette.Mid))
painter.setBrush(self.palette().brush(QPalette.AlternateBase))
painter.drawRect(self.rect())

We create a QPainter and set its render hints to give us antialiased drawing. Then we set
the pen (which is used for shape outlines and for drawing text), and the brush (which is
used for fills), and draw a rectangle over the entire widget. Because we used different
shades for the pen and brush this has the effect of giving the widget a border and a slightly
indented look.

segColor = QColor(Qt.green).dark(120)
segLineColor = segColor.dark()
painter.setPen(segLineColor)
painter.setBrush(segColor)
painter.drawRect(FractionSlider.XMARGIN,
 FractionSlider.YMARGIN, span, fm.height())

We create a dark green color for the segments, and an even darker green for the vertical
lines that mark them out. Then we draw a rectangle that encompasses all the segments.

textColor = self.palette().color(QPalette.Text)
x = FractionSlider.XMARGIN
segWidth = span / self.__denominator
segHeight = fm.height() * 2
yOffset = segHeight + fm.height()

Here we work out the width and height of each segment, and set an initial x position and
yOffset.

for i in range(self.__denominator + 1):
 painter.setPen(segLineColor)
 painter.drawLine(x, FractionSlider.YMARGIN, x, segHeight)
 painter.setPen(textColor)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 343 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 y = segHeight
 painter.drawText(x - FractionSlider.XMARGIN, y,
 fracWidth, fm.height(), Qt.AlignCenter,
 QString.number(i))
 y = yOffset
 rect = painter.drawText(x - FractionSlider.XMARGIN, y,
 fracWidth, fm.height(), Qt.AlignCenter,
 QString.number(self.__denominator))
 painter.drawLine(QPointF(rect.left() + leftOffset, y),
 QPointF(rect.right() + rightOffset, y))
 x += segWidth

In this loop we draw the vertical lines that mark out each segment, and also the numerator
below each segment, and the denominator below each numerator, and the dividing line
between them. For the drawText() calls we provide an (x, y) position, and a width and
height—this describes a rectangle in which the text should be drawn, and by using
Qt.AlignCenter, we ensure that the text is vertically and horizontally centered inside
the specified rectangle. The drawText() method returns the bounding rectangle of the
text that was actually drawn; we use this to calculate the end points of the dividing line,
which we then draw. The y offsets are fixed for the lines, numerators, and denominators,
but the x offsets increase by one segment width after drawing each fraction.

span = int(span)
y = FractionSlider.YMARGIN - 0.5
triangle = [QPointF(value * span, y),
 QPointF((value * span) + \
 (2 * FractionSlider.XMARGIN), y),
 QPointF((value * span) + \
 FractionSlider.XMARGIN, fm.height())]
painter.setPen(Qt.yellow)
painter.setBrush(Qt.darkYellow)
painter.drawPolygon(QPolygonF(triangle))

At the end we draw the gold triangle that shows the user which fraction is selected. We
specify polygons by providing a list of points. We don't have to duplicate the first point at
the end since if we use drawPolygon(), PyQt will automatically joint the first and last
points and fill the enclosed area. In the next chapter we will see more advanced drawing
techniques, including the use of the very versatile QPainterPath class.

We have now completed the generic FractionSlider widget. It has both keyboard and
mouse support, looks reasonable on all platforms, and interacts properly with the layout
managers.

The QPainter class offers many more possibilities than we have needed for this widget,
but in the next sub-section we will see more of what can be done, including drawing unfilled
polygons, and polygons that use gradient fills. We will also see how to include other widgets
inside a custom widget.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 344 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example: A Flow Mixing Widget
It is sometimes appropriate to create custom widgets for particular applications. For this
example we will assume that we have an application in which we are modelling the flow
of fluid through a "Y"-shaped pipe, as depicted in Figure 11.6.

Figure 11.6. A YPipe Widget

The widget must draw three gradient filled polygons, three black outlines (to give a clear
border to the pipe shapes), and must also allow the user to set the left and right flows, and
show the combined flow. We have chosen to provide spinboxes for the user to set the flows
and to use a label to show the resultant flow. The advantages of using these built-in widgets
include that we only need concern ourselves with their positioning and connections; we
can leave PyQt to provide mouse and keyboard interaction and to display them properly.
Another benefit is that we can paint our custom widget using a "window", i.e., using logical
rather than device (viewport) coordinates, and do not have to worry about scaled text
because the text only appears in widgets which are overlaid on top of the custom widget,
and are not affected by the window settings.

We will start by looking at the initializer, taking it in two parts.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 345 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

class YPipeWidget(QWidget):

 def __init__(self, leftFlow=0, rightFlow=0, maxFlow=100,
 parent=None):
 super(YPipeWidget, self).__init__(parent)

 self.leftSpinBox = QSpinBox(self)
 self.leftSpinBox.setRange(0, maxFlow)
 self.leftSpinBox.setValue(leftFlow)
 self.leftSpinBox.setSuffix(" l/s")
 self.leftSpinBox.setAlignment(Qt.AlignRight|Qt.AlignVCenter)
 self.connect(self.leftSpinBox, SIGNAL("valueChanged(int)"),
 self.valueChanged)

After the super() call we create the left spinbox, set some of its parameters, and connect
it to a valueChanged() method that we will look at in a moment. Notice that we give the
spinbox a parent of self (the YPipeWidget instance); this is because the spinbox will
not be laid out, so no layout manager will reparent the spinbox to the parent widget for us.
We have omitted the creation and set up of the right spinbox because the code is almost
identical.

self.label = QLabel(self)
self.label.setFrameStyle(QFrame.StyledPanel|QFrame.Sunken)
self.label.setAlignment(Qt.AlignCenter)
fm = QFontMetricsF(self.font())
self.label.setMinimumWidth(fm.width(" 999 l/s "))

self.setSizePolicy(QSizePolicy(QSizePolicy.Expanding,
 QSizePolicy.Expanding))
self.setMinimumSize(self.minimumSizeHint())
self.valueChanged()

We create the label that we will use to show the combined flow, and set some of its
properties. We give it a minimum width so that it will not resize disconcertingly, for
example if the flow rate changes between 9 and 10, or 99 and 100. We set the size policies
of the YPipeWidget to expanding which means that the widget wants to grow in both
directions as much as possible. We also set the widget's minimum size to its minimum size
hint, and call valueChanged() to give the label an initial value.

def valueChanged(self):
 a = self.leftSpinBox.value()
 b = self.rightSpinBox.value()
 self.label.setText("%d l/s" % (a + b))
 self.emit(SIGNAL("valueChanged"), a, b)
 self.update()

Whenever the user changes one of the flow spinboxes, this method is called. It updates the
label, emits its own valueChanged Python signal, which any external widget could
connect to, and schedules a repaint. The reason for the repaint is that the gradient fills are
colored in proportion to the spinbox values.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 346 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def values(self):
 return self.leftSpinBox.value(), self.rightSpinBox.value()

This method provides the flow spinbox values as a two-tuple.

def minimumSizeHint(self):
 return QSize(self.leftSpinBox.width() * 3,
 self.leftSpinBox.height() * 5)

We have made the widget's minimum width and height proportional to the spinboxes. This
ensures that the "Y"-shape never becomes too small to be understandable.

def resizeEvent(self, event=None):
 fm = QFontMetricsF(self.font())
 x = (self.width() - self.label.width()) / 2
 y = self.height() - (fm.height() * 1.5)
 self.label.move(x, y)
 y = self.height() / 60.0
 x = (self.width() / 4.0) - self.leftSpinBox.width()
 self.leftSpinBox.move(x, y)
 x = self.width() - (self.width() / 4.0)
 self.rightSpinBox.move(x, y)

The resize event is particularly important for widgets that contain other widgets and that
do not have a layout. This is because we use this event to position the child widgets. A resize
event is always called before a widget is first shown, so we automatically get the chance to
position the child widgets before the widget is seen by the user for the first time.

The label is horizontally centered, and drawn near the bottom of the widget. (The y
coordinates increase downwards, so self.height() returns the greatest—bottom-most

—y value.) The two spinboxes are drawn near the top, of the height below the least—
top-most—y value, and ¼ of the widget's width in from the left or right edge.

Because we have used QSpinBoxs and a QLabel, along with a couple of signal–slot
connections, all the user interaction is taken care of, so we only need concern ourselves
with resizing, and with painting. Although the painting is simplified by having the
spinboxes and label drawn by PyQt, it is still a little involved, so we will look at the paint
event in pieces.

def paintEvent(self, event=None):
 LogicalSize = 100.0

 def logicalFromPhysical(length, side):
 return (length / side) * LogicalSize
 fm = QFontMetricsF(self.font())
 ymargin = (LogicalSize / 30.0) + \
 logicalFromPhysical(self.leftSpinBox.height(),
 self.height())
 ymax = LogicalSize - \
 logicalFromPhysical(fm.height() * 2, self.height())

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 347 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 width = LogicalSize / 4.0
 cx, cy = LogicalSize / 2.0, LogicalSize / 3.0
 ax, ay = cx - (2 * width), ymargin
 bx, by = cx - width, ay
 dx, dy = cx + width, ay
 ex, ey = cx + (2 * width), ymargin
 fx, fy = cx + (width / 2), cx + (LogicalSize / 24.0)
 gx, gy = fx, ymax
 hx, hy = cx - (width / 2), ymax
 ix, iy = hx, fy

Rather than work in device (physical) coordinates and have to scale all the coordinates
ourselves, we have created a logical coordinate system, with a top-left of (0, 0), and width
and height both 100 (LogicalSize). We have defined a tiny helper function used to
calculate a y margin above which the spinboxes are drawn, and a maximum y, below which
the label is drawn.

As Figure 11.7 indicates, we do all our painting in terms of the points needed to draw the
"Y"-shape. For each point in the figure, we calculate an x coordinate and a y coordinate.
For example, the top-left point is a, and so its coordinates in the code are ax and ay. Most
of the calculations are done in terms of point c, (cx, cy).

Figure 11.7. The Y-Pipe's Coordinate Points

painter = QPainter(self)
painter.setRenderHint(QPainter.Antialiasing)
side = min(self.width(), self.height())
painter.setViewport((self.width() - side) / 2,
 (self.height() - side) / 2, side, side)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 348 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table 11.2. Selected QPainter Methods (Excluding Drawing Methods)

Syntax Description

p.restore() Restores QPainter p's state to the last saved state

p.rotate(a) Rotates QPainter p by int a°

p.save() Saves QPainter p's state, including its transformation matrix, pen, and brush

p.scale(x, y) Scales QPainter p horizontally by float x and vertically by float y; 1.0 is unscaled, 0.5
is half size, 3.0 is three times the size

p.setMatrix(m) Sets QPainter p's transformation matrix to QMatrix m

p.setRenderHint(h) Turns on the QPainter.RenderHint h. Hints include QPainter.Antialiasing,
QPainter.TextAntialiasing, and QPainter.SmoothPixmapTransform

p.setViewport(x,
y, w, h)

Constrains QPainter p's viewport (physical coordinates) to the rectangle with top-left corner
at point (x, y), and with width w and height h; all the arguments are ints

p.setWindow(x, y,
w, h)

Sets QPainter p's logical coordinate system to the rectangle with top-left corner at point (x,
y), and with width w and height h; all the arguments are ints

p.shear(x, y) Shears QPainter p's coordinate system horizontally by float x and vertically by float y

p.translate(dx,
dy)

Moves QPainter p's coordinate system horizontally by int dx and vertically by int dy

painter.setWindow(0, 0, LogicalSize, LogicalSize)

We create the painter and set its viewport to be the largest centered square area that will
fit inside its rectangle. We then set a window, i.e., impose our own logical coordinate
system, leaving PyQt to take care of transforming logical to physical coordinates.

painter.setPen(Qt.NoPen)

We turn off the pen because we do not want an outline around the polygons we will draw
for each part of the pipe. Instead we will draw in the lines we want at the end of the paint
event.

gradient = QLinearGradient(QPointF(0, 0), QPointF(0, 100))
gradient.setColorAt(0, Qt.white)
a = self.leftSpinBox.value()
gradient.setColorAt(1, Qt.red if a != 0 else Qt.white)
painter.setBrush(QBrush(gradient))
painter.drawPolygon(

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 349 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table 11.3. Selected QPainter Drawing-Related Methods

Syntax Description

p.drawArc(r, a, s) Draws an arc on QPainter p in the circle bounded by QRect r, starting at angle int

a°, and spanning

p.drawChord(r, a, s) Draws a chord on QPainter p in the circle bounded by QRect r, starting at angle int

a°, and spanning

p.drawConvexPolygon(pl) Draws a convex polygon on QPainter p connecting the list of QPoints in pl, and
connects the last point back to the first

p.drawEllipse(r) Draws an ellipse on QPainter p bounded by QRect r; draws a circle if r is square

p.drawImage(pt, i) Draws QImage i at QPoint pt on QPainter p; different arguments allow drawing
just part of the image

p.drawLine(p1, p2) Draws a line between QPoints p1 and p2 on QPainter p. Many argument variations
are possible; there are also drawLines() methods

p.drawPath(pp) Draws the QPainterPath pp on QPainter p

p.drawPie(r, a, s) Draws a pie segment in the circle bounded by QRect r, starting at angle int a°, and

spanning

p.drawPixmap(pt, px) Draws QPixmap px at QPoint pt on QPainter p; different arguments allow drawing
just part of the pixmap

p.drawPoint(pt) Draws QPoint pt on QPainter p; there are also draw-Points() methods

p.drawPolygon(pl) Draws a polygon on QPainter p connecting the list of QPoints in pl, and connects
the last point back to the first

p.drawPolyline(pl) Draws a poly line on QPainter p connecting the list of QPoints in pl; does not
connect the last point to the first

p.drawRect(r) Draws a QRect r on QPainter p

p.drawRoundRect(r, x,
y)

Draws a rounded rectangle on QPainter p bounded by QRect r, and using rounding
factors ints x and y

p.drawText(r, s, o) Draws string s on QPainter p bounded by QRect r, and using the optional
QTextOption o

p.drawText(x, y, s) Draws string s on QPainter p at point (x, y)

p.fillPath(pp, b) Fills QPainterPath pp with QBrush b on QPainter p

p.fillRect(r, b) Fills QRect r with QBrush b on QPainter p

p.setBrush(b) Sets the brush for filled shapes to QBrush b

p.setPen(pn) Sets the pen for lines and outlines to QPen pn

p.setFont(f) Sets QPainter p's text font to QFont f

QPolygon([ax, ay, bx, by, cx, cy, ix, iy]))

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 350 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For the left part of the "Y"-shape representing the left spinbox—the shape (a, b, c, i)—we
use a linear color gradient going from white to red.

gradient = QLinearGradient(QPointF(0, 0), QPointF(0, 100))
gradient.setColorAt(0, Qt.white)
b = self.rightSpinBox.value()
gradient.setColorAt(1, Qt.blue if b != 0 else Qt.white)
painter.setBrush(QBrush(gradient))
painter.drawPolygon(
 QPolygon([cx, cy, dx, dy, ex, ey, fx, fy]))

The right part—shape (d, e, f, c)—is very similar to the left part, only it uses a gradient going
from white to blue.

if (a + b) == 0:
 color = QColor(Qt.white)
else:
 ashare = (a / (a + b)) * 255.0
 bshare = 255.0 - ashare
 color = QColor(ashare, 0, bshare)
gradient = QLinearGradient(QPointF(0, 0), QPointF(0, 100))
gradient.setColorAt(0, Qt.white)
gradient.setColorAt(1, color)
painter.setBrush(QBrush(gradient))
painter.drawPolygon(
 QPolygon([cx, cy, fx, fy, gx, gy, hx, hy, ix, iy]))

The stem of the "Y"—shape (c, f, g, h, i)—is drawn with a linear gradient that goes from
white to a red/blue color that is proportional to the left/right flow rates.

painter.setPen(Qt.black)
painter.drawPolyline(QPolygon([ax, ay, ix, iy, hx, hy]))
painter.drawPolyline(QPolygon([gx, gy, fx, fy, ex, ey]))
painter.drawPolyline(QPolygon([bx, by, cx, cy, dx, dy]))

We finish by drawing the lines that represent the sides of the pipe. The first line goes from
a to i to h, marking out the left of the pipe, the second from g to f to e, marking out the
right of the pipe, and the third, from b to c to d, marks the "V"-shaped part at the top.

Just like the built-in PyQt widgets, both the YPipeWidget and the Fraction-Slider
can be used as top-level widgets, and this is particularly useful when developing and testing
custom widgets. Both chap11/fractionslider.py and chap11/ypipewidget.py
can be run as stand-alone programs because both have an if __name__ ==
"__main__": statement after the QWidget subclass, with code that creates a
QApplication, and that creates and shows the custom widget.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 351 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Summary
PyQt offers several different ways of customizing widget appearance and behavior. The
simplest and most frequently used approach is to set existing widget properties to the
values we want. From Qt 4.2, the style sheet property is available, and this allows us to
have a dramatic effect on the appearance of our widgets simply by entering plain text using
the CSS syntax. One common and very easy use of style sheets is to set the background
color of mandatory widgets.

Composite widgets allow us to lay out two or more widgets together and to then treat the
resultant widget as a single widget. This can save time if the composite widget is used a
lot, and also provides a way of having more than one widget in a main window style
application's central area. Some programmers make the constituent widgets private and
forward their signals and slots, but in many cases the simplest approach is to leave the
constituent widgets as public instance variables and to access and connect to them directly.

Subclassing existing widgets to adapt their appearance and especially their behavior is a
lot easier than creating a QWidget subclass and doing everything ourselves. This approach
works well with almost every PyQt widget since most of them are designed to be subclassed.
The only limitation of this approach is that it can only be applied to widgets that are similar
enough to the widget we want, to make the adaptation feasible.

If we need to create a widget unlike any other, or if we want complete control over the
appearance and behavior of our custom widget, then we can subclass QWidget. Our
subclass must reimplement paintEvent(), sizeHint(), and minimum-SizeHint
(), and will almost always reimplement keyPressEvent() and some of the mouse event
handlers. Most of the built-in widgets are created in this way, with the rest being subclasses
of other built-in widgets.

All the widgets we have customized or created in this chapter, and indeed throughout the
book, are quite conventional in their appearance and behavior. PyQt does not enforce such
conservatism, and we are free to create widgets with any appearance and any behaviors
we can imagine.

Exercise
Create the Counters custom widget shown in Figure 11.8. The widget should show a 3 x 3
grid, with each square either blank (just showing the background color), or with a red or
yellow ellipse. The state of any grid square should change from blank to red to yellow and
back to blank in an endless cycle. Changes of state should occur when the user clicks a
square or presses space-bar on a square. The keyboard focus should be shown by drawing
the square with a thick blue pen instead of the normal thin black pen used for the other

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 352 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

squares. The user should be able to change the focused square by clicking a square or by
using the up, down, left, and right arrow keys to move the focus.

Figure 11.8. The Counters Custom Widget

Make sure that you provide a size hint and minimum size hint so that the widget has good
resizing behavior and cannot be shrunk too small. The paint event is quite short, but
slightly subtle; you will probably need to save and restore the painter's state, using
QPainter.save() and QPainter.restore(), so that pen and brush colors intended
for one square don't propagate to others.

Include an if __name__ == "__main__": statement at the end, and create a
QApplication object and an instance of the Counters widget so that you can test it. The
whole thing can be done in less than 130 lines.

A solution is given in chap11/counters.py.

12. Item-Based Graphics
• Custom and Interactive Graphics Items
• Animation and Complex Shapes

If we create a custom widget and reimplement its paint event, we can draw any graphics
we like. This approach was shown in the previous chapter, and is ideal for drawing custom
widgets, for drawing graphs, and for drawing small numbers of items. But if we need to
draw lots of independent items, anything from dozens to tens of thousands of them, or if
we need to draw items that the user can interact with individually, for example, clicking,
dragging, and selecting them, or if we need to animate items, then PyQt's graphics view
classes are a much better choice than reimplementing a custom widget's paint event.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 353 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The graphics view classes, QGraphicsView, QGraphicsScene, QGraphicsItem, and
the QGraphicsItem subclasses, were introduced with Qt 4.2, so the examples in this
chapter will only work with a version of PyQt that has bindings to Qt 4.2 or later, such as
PyQt 4.1. However, we strongly recommend using PyQt 4.2 or later for graphics view-based
applications.

To use the graphics view classes we must create a scene, represented by a
QGraphicsScene object. Scenes are pure data, and can only be visualized by associating
them with one or more QGraphicsView objects. The items that are drawn in a scene are
QGraphicsItem subclasses. PyQt provides several predefined subclasses, including
QGraphicsLineItem, QGraphicsPixmapItem, QGraphicsSimpleTextItem (plain
text), and QGraphicsTextItem (HTML). It is also possible to create custom graphics
item subclasses, as we will see later on in this chapter.

Once a scene has been created, and has had items added to it, it can be visualized using a
QGraphicsView. One powerful feature of graphics views is that we can apply
transformations to them, such as scaling and rotation, that change how the scene appears,
but without changing any of the scene's items themselves. It is also possible to associate
more than one graphics view with a particular scene, to allow different parts of the scene
to be viewed, and with each view having its own independent transformations.

The graphics view classes are essentially two-dimensional; nonetheless, every item has a
z value, with higher z valued items being drawn on top of those with lower z values. Collision
detection is based on item (x, y) positions.In addition to information about collisions, the
scene can tell us which items contain a particular point, or are in a particular region, and
which are selected. Scenes have a foreground layer, useful for example, to draw a grid that
overlays all the items in the scene; they also have a background layer that is drawn
underneath all the items, useful for providing a background image or color.

Items are either children of the scene (rather like PyQt's normal parent–child widget
relationships), or a child of another item. When transformations are applied to an item,
they are automatically applied to all the item's children, recursively to the greatest
grandchild. This means that if an item is moved, for example, dragged by the user, all its
children will be dragged with it. It is also possible to have groups of peer items, i.e.,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 354 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

transformations on one item in the group only affect that item's children, not the other
members of the group.

Figure 12.1. Graphics Items Use Local Logical Coordinates

The graphics view classes use three different coordinate systems, although in practice we
only usually care about two of them. Views use the physical coordinate system. Scenes use
a logical coordinate system that we choose when we create them. PyQt automatically maps
scene coordinates to view coordinates. In essence, scenes use "window" coordinates and
views use "viewport" coordinates. So when we are positioning items we place them in terms
of scene coordinates. The third coordinate system is the one used by items. This is
particularly convenient because it is a logical coordinate system centered on point (0, 0).
Each item's (0, 0) is actually at the item's position in the scene. What this means in practice
is that we can always draw items in terms of their center point—and we do not have to care
about any transformations that have been applied to them by parent items, since the scene
will automatically take care of these for us.

Window and View-port coordinates 328

In this chapter we will look at two examples that between them show many different
aspects of the graphics view classes. The first example is typical of the kind of application
where the user creates items one by one, and manipulates items either individually or in
selected groups. This application also shows user interaction, including selecting, moving,
and resizing items. The second example shows animated composite items with complex
shapes. It also shows how to minimize the work done to draw items depending on the
scene's level of detail (how zoomed in or out it is).

Custom and Interactive Graphics Items
The predefined graphics items can be made movable, selectable, and focusable, by calling
setFlags() on them with suitable constants. Users can drag movable items with the
mouse, and they can select selectable items by clicking them, and by using Ctrl+Click to

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 355 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

select multiple items. Focusable items will receive key events, but will ignore them unless
we create an item subclass with a key event handler. Similarly, we can make items
responsive to mouse events by subclassing and implementing appropriate mouse event
handlers.

In this section we will use two of the predefined graphics items, and create two custom
graphics item subclasses to show how to use graphics items, and how to control their
behavior and appearance. We will also see how to load and save scenes, and how to print
them. To do these things we will look at the Page Designer application. This program allows
the user to create a page that can contain text, images, and boxes. They can also create
lines—these are just boxes that are one pixel wide or high. The images created by the user
can be saved and loaded as .pgd files, a custom file format specific to this application, and
they can be printed (or saved as PDF files) using a print dialog.

For the text items, a QGraphicsTextItem subclass is used, extended to allow the user
to set the item's font and text by double-clicking. For the box (and line) items a
QGraphicsItem subclass is used. This has a context menu, plus keyboard support for
resizing, and in addition it handles all its own drawing. The pixmap items simply use the
built-in QGraphicsPixmapItem class, and the page and margin guidelines use the built-
in QGraphicsRectItem class. The view that shows the scene is a QGraphicsView
subclass that supports rubber-band selection and mouse-wheel scaling.

We will begin by looking at the QGraphicsView subclass. Then we will review the main
form, and finally we will review the custom QGraphicsItem subclasses.

class GraphicsView(QGraphicsView):

 def __init__(self, parent=None):
 super(GraphicsView, self).__init__(parent)
 self.setDragMode(QGraphicsView.RubberBandDrag)
 self.setRenderHint(QPainter.Antialiasing)
 self.setRenderHint(QPainter.TextAntialiasing)

 def wheelEvent(self, event):
 factor = 1.41 ** (-event.delta() / 240.0)
 self.scale(factor, factor)

The code above is the complete GraphicsView subclass. In the initializer we set the drag
mode: This means that dragging on the view will cause PyQt to give us a rubber band, and
every item touched by the rubber band will be selected. The render hints are propagated
to any item that is painted inside the view so we do not need to set the hints for each
individual graphics item.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 356 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 12.2. The Page Designer Application

The wheel event is called whenever the user rolls the mouse wheel, and will cause the view
to scale smaller or larger depending on which way the wheel is rolled. The effect of this is
to change the apparent size of the page—the underlying scene is not changed at all. The
maths used in this event handler is rather tricky, but this isn't a problem since the method
can be copied and pasted as-is.

Near the top of chap12/pagedesigner.pyw we have some global declarations.

PageSize = (612, 792)
PointSize = 10

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 357 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

MagicNumber = 0x70616765
FileVersion = 1

Dirty = False

The page size is in points for US Letter sized paper. (The source code also has the A4 page
size, commented out.) The magic number and file version are used by QDataStream as
we have seen in Chapter 8 and elsewhere. We also have a global dirty flag.

We have not shown the imports, but they include functools. This is needed because in
the context menu we use the functools.partial() function to wrap the methods to
call with a suitable argument.

Partial Function Application 63

The main form's initializer is quite long, so we will look at it in parts, but omitting code
that is similar to what we have seen elsewhere, for example where we create and lay out
the form's buttons.

class MainForm(QDialog):
 def __init__(self, parent=None):
 super(MainForm, self).__init__(parent)

 self.filename = QString()
 self.copiedItem = QByteArray()
 self.pasteOffset = 5
 self.prevPoint = QPoint()
 self.addOffset = 5
 self.borders = []

 self.printer = QPrinter(QPrinter.HighResolution)
 self.printer.setPageSize(QPrinter.Letter)

The copied item is essentially a lump of binary data that describes the most recent item to
be cut or copied. We store this data inside the application rather than on the clipboard
because it is of no use to any other application. The paste offset is used when the user
repeatedly pastes the same item, and the previous point and add offset are used when the
user repeatedly adds the same item type. In both cases the newly added items are added
at offset positions rather than exactly on top of the previous item. This makes it easier for
the user to see where they are.

The borders list will contain two graphics items, both yellow rectangles, one giving the
page outline and the other giving an outline inside the page allowing for some margin
space. They are used as guidelines and are not saved or printed.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 358 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

While it is possible to create a QPrinter object when it is needed, by creating one and
keeping it as an instance variable, we ensure that the user's settings, such as page size, are
preserved between uses in the same session.

self.view = GraphicsView()
self.scene = QGraphicsScene(self)
self.scene.setSceneRect(0, 0, PageSize[0], PageSize[1])
self.addBorders()
self.view.setScene(self.scene)

We create an instance of our custom GraphicsView class, and also a standard
QGraphicsScene. The rectangle we set on the scene is the "window", i.e., the logical
coordinate system that the scene will use, in this case a rectangle with a top-left point of
(0, 0), and a width and height corresponding to the page's size in points.

The rest of the initializer creates and connects the buttons, and lays out the buttons and
the view.

def addBorders(self):
 self.borders = []
 rect = QRectF(0, 0, PageSize[0], PageSize[1])
 self.borders.append(self.scene.addRect(rect, Qt.yellow))
 margin = 5.25 * PointSize
 self.borders.append(self.scene.addRect(
 rect.adjusted(margin, margin, -margin, -margin),
 Qt.yellow))

This method creates two QGraphicsRectItems, the first corresponding to the size of a
page, and the second (indicating the margins), inside the first. The QRect.adjusted
() method returns a rectangle with its top-left and bottom-right points adjusted by the
two sets of dx and dy pairs. In this case the top-left is moved right and down (by each being
increased by margin amount) and the bottom-right is moved left and up (by each being
reduced by margin amount).

def removeBorders(self):
 while self.borders:
 item = self.borders.pop()
 self.scene.removeItem(item)
 del item

When we print or save we do not want to include the borders. This method destructively
retrieves each item from the self.borders list (in a random order), and removes the
item from the scene. When an item is removed from a scene the scene automatically notifies
its views so that they can repaint the uncovered area. An alternative to deleting is to call
setVisible(False) to hide the borders.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 359 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The call to QGraphicsScene.removeItem() removes the item (and its children) from
the scene, but it does not delete the item, instead passing ownership to its caller. So after
the removeItem() call, the item still exists. We could just leave the item to be deleted
when each item reference goes out of scope, but we prefer to explicitly delete the items to
make clear that we have taken ownership and really are deleting them.

def addPixmap(self):
 path = QFileInfo(self.filename).path() \
 if not self.filename.isEmpty() else "."
 fname = QFileDialog.getOpenFileName(self,
 "Page Designer - Add Pixmap", path,
 "Pixmap Files (*.bmp *.jpg *.png *.xpm)")
 if fname.isEmpty():
 return
 self.createPixmapItem(QPixmap(fname), self.position())

When the user clicks the Add Pixmap button this method is called. We simply obtain the
name of the image file the user wants to add to the page, and pass the work on to a
createPixmapItem() method. The reason we don't do everything in one method is
because splitting the functionality is more convenient, for example, for when we load
pixmaps from a Page Designer .pgd file. The position() method is used to get the
position where an item should be added; we will review it shortly.

def createPixmapItem(self, pixmap, position, matrix=QMatrix()):
 item = QGraphicsPixmapItem(pixmap)
 item.setFlags(QGraphicsItem.ItemIsSelectable|
 QGraphicsItem.ItemIsMovable)
 item.setPos(position)
 item.setMatrix(matrix)
 self.scene.clearSelection()
 self.scene.addItem(item)
 item.setSelected(True)
 global Dirty
 Dirty = True

The graphics view classes include QGraphicsPixmapItem which is perfect for showing
images in scenes. QGraphicsItem's have three flags in Qt 4.2, ItemIs-Movable,
ItemIsSelectable and ItemIsFocusable. (Qt 4.3 adds ItemClipsToShape,
ItemClipsChildrenToShape, and ItemIgnoresTransformations, this last
particularly useful for showing text that we don't want the view to transform.)

Having created the item we set its position in the scene. The setPos() method is the only
item method that works in terms of scene coordinates; all the others work in item local
logical coordinates. We do not have to set a transformation matrix (and the one returned
by QMatrix() is the identity matrix), but we want an explicit matrix so that we can use
it when we come to save and load (or copy and paste) the scene's items.[*]

[*] An identity matrix in this context is one that when set, causes no transformations to occur.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 360 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The QMatrix class holds a 3 x 3 matrix and is specifically designed for graphical
transformations, rather than being a general matrix class. As such it is a rare example of
a poorly named Qt class. From Qt 4.3, QMatrix has been superceded by the more sensibly
named QTransform class, which is also capable of more powerful transformations since
it uses a 4 x 4 matrix.

Once the item is set up, we clear any existing selections, and add the item to the scene.
Then we select it, ready for the user to interact with it.

def position(self):
 point = self.mapFromGlobal(QCursor.pos())
 if not self.view.geometry().contains(point):
 coord = random.randint(36, 144)
 point = QPoint(coord, coord)
 else:
 if point == self.prevPoint:
 point += QPoint(self.addOffset, self.addOffset)
 self.addOffset += 5
 else:
 self.addOffset = 5
 self.prevPoint = point
 return self.view.mapToScene(point)

This method is used to provide a position in the scene where a newly added item should
go. If the mouse is over the view, we use the mouse position provided by QCursor.pos
()—"cursor" in this context means mouse cursor—but add an offset if an item has just
been added at the same place. This means that if the user repeatedly presses an Add button,
each successive item will be offset from the one before making it easier for the user to see
and interact with them. If the mouse is outside the view we put the item at a semi-random
position near the top-left of the scene.

The mapFromGlobal() method converts a screen coordinate into a physical widget
coordinate as used by the view. But scenes use their own logical coordinate system, so we
must use QGraphicsView.mapToScene() to convert the physical coordinate into a
scene coordinate.

def addText(self):
 dialog = TextItemDlg(position=self.position(),
 scene=self.scene, parent=self)
 dialog.exec_()

This method is called when the user clicks the Add Text button. It pops up a smart add/
edit item dialog, and if the user clicks OK, a new item is added with the text and font of
their choice. We won't discuss the dialog since it isn't relevant to graphics programming;
its source code is in chap12/pagedesigner.pyw.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 361 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We do not need to keep a reference to the added item because we pass ownership of it to
the scene inside the smart dialog.

def addBox(self):
 BoxItem(self.position(), self.scene)

This method is called when the user clicks the Add Box button. The user can resize the box,
even turning it into a line (by reducing the width or height to 1 pixel), by using the arrow
keys, as we will see.

Again, we don't need to keep a reference to the added box item, because ownership is given
to the scene.

Figure 12.3. Adding a New Text Item

We want the user to be able to cut, copy, and paste items inside Page Designer, but since
the items are not meaningful for other applications we will not use the clipboard.

def copy(self):
 item = self.selectedItem()
 if item is None:
 return
 self.copiedItem.clear()
 self.pasteOffset = 5
 stream = QDataStream(self.copiedItem, QIODevice.WriteOnly)
 self.writeItemToStream(stream, item)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 362 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If the user invokes the copy action we start by seeing if there is exactly one selected item.
If there is we clear the copied item byte array, and create a data stream to write to the byte
array. There is no need to use QDataStream.setVersion() because the data stream is
only used for cutting, copying, and pasting during a single run of the application, so using
whatever happens to be the current version is fine. We will look at the
writeItemToStream() and the corresponding readItemFromStream() methods
later.

def selectedItem(self):
 items = self.scene.selectedItems()
 if len(items) == 1:
 return items[0]
 return None

This method returns the one selected item, or None if there are no selected items, or if
there are two or more selected items. The QGraphicsScene.selected-Items()
method returns a list of the selected items. There are also items() methods that return
lists of the items that intersect a particular point, or that are inside a particular rectangle
or polygon, and also a collidingItems() method to report collisions.

def cut(self):
 item = self.selectedItem()
 if item is None:
 return
 self.copy()
 self.scene.removeItem(item)
 del item

This method copies the selected item using copy(), and then removes it from the scene.
As mentioned when we discussed removing the border rectangles, removeItem() only
removes an item from the scene, it does not delete the item. We could leave the item to be
deleted when the item reference goes out of scope, but we prefer to explicitly delete it to
make it clear that we have taken ownership and are really deleting the item.

def paste(self):
 if self.copiedItem.isEmpty():
 return
 stream = QDataStream(self.copiedItem, QIODevice.ReadOnly)
 self.readItemFromStream(stream, self.pasteOffset)

If an item has been cut or copied to the copied item, we simply create a data stream and
read the item's data from the copied item byte array. The readItemFromStream()
method takes care of creating the item and adding it to the scene.

def writeItemToStream(self, stream, item):
 if isinstance(item, QGraphicsTextItem):
 stream << QString("Text") << item.pos() << item.matrix() \
 << item.toPlainText() << item.font()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 363 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 elif isinstance(item, QGraphicsPixmapItem):
 stream << QString("Pixmap") << item.pos() \
 << item.matrix() << item.pixmap()
 elif isinstance(item, BoxItem):
 stream << QString("Box") << item.pos() << item.matrix() \
 << item.rect
 stream.writeInt16(item.style)

This method is used by copy(), cut() (indirectly), and by save(). For each item it writes
a string that describes the item's type, then the item's position and transformation matrix,
and then any extra item-specific data. For text items, the extra data is the item's text and
font, for pixmap items, the extra data is the pixmap itself—which means that the .pgd file
could be quite large—and for boxes the extra data is the box's rectangle and line style.

def readItemFromStream(self, stream, offset=0):
 type = QString()
 position = QPointF()
 matrix = QMatrix()
 stream >> type >> position >> matrix
 if offset:
 position += QPointF(offset, offset)
 if type == "Text":
 text = QString()
 font = QFont()
 stream >> text >> font
 TextItem(text, position, self.scene, font, matrix)
 elif type == "Box":
 rect = QRectF()
 stream >> rect
 style = Qt.PenStyle(stream.readInt16())
 BoxItem(position, self.scene, style, rect, matrix)
 elif type == "Pixmap":
 pixmap = QPixmap()
 stream >> pixmap
 self.createPixmapItem(pixmap, position, matrix)

This method is used both by paste() and by open() (which loads a .pgd file). It begins
by reading in the type, position, and matrix which are stored for every type of item. Then,
it adjusts the position by the offset—this is only used if the item is being pasted. Next, the
item-specific data is read and a suitable item created using the data that has been gathered.

The TextItem and BoxItem initializers, and the createPixmapItem() method, all
create the appropriate graphics items, and pass ownership to the scene.

def rotate(self):
 for item in self.scene.selectedItems():
 item.rotate(30)

If the user clicks Rotate, any selected items are rotated by 30°. There are no child items
used in this application, but if any of the rotated items had child items, these too would be
rotated.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 364 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def delete(self):
 items = self.scene.selectedItems()
 if len(items) and QMessageBox.question(self,
 "Page Designer - Delete",
 "Delete %d item%s?" % (len(items),
 "s" if len(items) != 1 else ""),
 QMessageBox.Yes|QMessageBox.No) == QMessageBox.Yes:
 while items:
 item = items.pop()
 self.scene.removeItem(item)
 del item
 global Dirty
 Dirty = True

Table 12.1. Selected QGraphicsScene Methods

Syntax Description

s.addEllipse(r, pn, b) Adds an ellipse bounded by QRectF r, outlined by QPen pn, and filled with QBrush
b, to QGraphics-Scene s

s.addItem(g) Adds QGraphicsItem g to QGraphicsScene s. The other add*() methods are
conveniences for creating and adding some of the built-in graphics items

s.addLine(l, pn) Adds QLineF l, drawn with QPen pn, to s

s.addPath(pp, pn, b) Adds QPainterPath pp, outlined by QPen pn, and filled with QBrush b, to
QGraphicsScene s

s.addPixmap(px) Adds QPixmap px to QGraphicsScene s

s.addPolygon(pg, pn, b) Adds QPolygon pg, outlined by QPen pn, and filled with QBrush b, to
QGraphicsScene s

s.addRect(r, pn, b) Adds QRect r, outlined by QPen pn, and filled with QBrush b, to QGraphicsScene
s

s.addText(t, f) Adds text t using QFont f, to QGraphicsScene s

s.collidingItems(g) Returns a (possibly empty) list of the QGraphics-Item's that QGraphicsItem g
collides with

s.items() Returns all the QGraphicsItems in QGraphicsScene s; using different arguments,
those items that are at a particular point, or that are within or that intersect with, a
given rectangle, polygon, or painter path, can be returned

s.removeItem(g) Removes QGraphicsItem g from QGraphicsScene s; ownership passes to the
caller

s.render(p) Renders QGraphicsScene s on QPainter p; additional arguments can be used to
control the source and destination rectangle

s.setBackgroundBrush(b) Sets QGraphicsScene s's background to QBrush b

s.setScene Rect(x, y, w,
h)

Sets QGraphicsScene s's rectangle to position (x, y), with width w and height h; the
arguments are floats

s.update() Schedules a paint event for QGraphicsScene s

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 365 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Syntax Description

s.views() Returns a (possibly empty) list of QGraphicsViews that are showing
QGraphicsScene s

If the user clicks Delete and there is at least one selected item, they are asked if they want
to delete the selected items, and if they do, each selected item is deleted.

def print_(self):

Printing Images

Printing images in general is just as simple as printing scenes. Here is a
printImage() method that will print any QImage or QPixmap (both of which
can load .bmp, .png, .jpg, and various other graphics file types), on a single
page, assuming that printer is a QPrinter:

def printImage(image, printer, scaleToFillPage=False):
 dialog = QPrintDialog(printer)
 if dialog.exec_():
 painter = QPainter(printer)
 painter.setRenderHint(QPainter.Antialiasing)
 rect = painter.viewport()
 size = image.size()
 size.scale(rect.size(), Qt.KeepAspectRatio)
 painter.setViewport(rect.x(), rect.y(),
 size.width(), size.height())
 if scaleToFillPage:
 painter.setWindow(image.rect())
 if isinstance(image, QPixmap):
 painter.drawPixmap(0, 0, image)
 else:
 painter.drawImage(0, 0, image)

Printing a QPicture is very similar, except that we must calculate the size
ourselves based on the picture's bounding rectangle, and call
QPainter.drawPicture() to do the drawing.

SVG images can also be printed. The approach is very similar to that used for
drawing QGraphicsScenes. The QSvgRenderer class can load in an SVG
image and has a render() method that can paint the image on any paint device,
including a QPrinter. And with Qt 4.3 it is now possible to create SVG images
by painting using the QSvgGenerator class which is a paint device.[*]

[*] Printing documents, including images, is covered in the next chapter.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 366 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

dialog = QPrintDialog(self.printer)
if dialog.exec_():
 painter = QPainter(self.printer)
 painter.setRenderHint(QPainter.Antialiasing)
 painter.setRenderHint(QPainter.TextAntialiasing)
 self.scene.clearSelection()
 self.removeBorders()
 self.scene.render(painter)
 self.addBorders()

A QPrinter is a paint device, just like a QWidget or a QImage, so we can easily paint
onto a printer. Here we have taken advantage of the QGraphicsScene.render()
convenience method, that paints the entire scene (or a selected portion of it) onto a paint
device. Before painting, we remove the borders (the yellow rectangles), and after painting
we restore the borders. We also clear the selection before painting, since some items may
be rendered differently if they are selected. There is a similar QGraphicsView.render
() method that can be used to render the scene (or a selected portion of it) as seen.

We will omit the code for saving and loading .pgd files, since it is very similar to what we
have seen before when working with binary files. For saving, we create a QDataStream,
call setVersion() on it, and write a magic number and a file version. Then we iterate
over all the items in the scene calling writeItemToStream() parameterized by the data
stream and by the item for each call. For loading, we also create a QDataStream. Then
we read in the magic number and file version, and if they are correct, we delete all the
existing items, and so long as the file has data in it, we call readItemFromStream()
parameterized by the stream. This method reads the item data and creates the items,
adding them to the scene as it goes.

We have seen how the application works as a whole, and how to create and use items of
two of the predefined graphics item classes, namely, QGraphicsRectItem and
QGraphicsPixmapItem. Now we will turn our attention to custom graphics view items.
We will begin by looking at the TextItem subclass; this extends the
QGraphicsTextItem class with additional behavior, but leaves all the drawing to the
base class. Then we will look at the BoxItem class; this class has code for both behavior
and drawing.

class TextItem(QGraphicsTextItem):
 def __init__(self, text, position, scene,
 font=QFont("Times", PointSize), matrix=QMatrix()):
 super(TextItem, self).__init__(text)
 self.setFlags(QGraphicsItem.ItemIsSelectable|
 QGraphicsItem.ItemIsMovable)
 self.setFont(font)
 self.setPos(position)
 self.setMatrix(matrix)
 scene.clearSelection()
 scene.addItem(self)
 self.setSelected(True)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 367 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 global Dirty
 Dirty = True

The TextItem's initializer is very similar to the createPixmapItem() method that
creates and initializes QGraphicsPixmapItems. We provide a default font and a default
matrix (the identity matrix) if none are supplied to the initializer.

def parentWidget(self):
 return self.scene().views()[0]

An item's parent is either another item or a scene. But sometimes we need to know the
visible widget in which the item appears, i.e., the item's view. The scene is available to
items, and can return a list of the views that are showing the scene. For convenience we
have assumed that there is always at least one view showing our scene and that we consider
the first view to be the "parent" view.

def itemChange(self, change, variant):
 if change != QGraphicsItem.ItemSelectedChange:
 global Dirty
 Dirty = True
 return QGraphicsTextItem.itemChange(self, change, variant)

If the user interacts with an item, for example, moving or selecting it, this method is called.
If the interaction is not merely a change in selection status we set the global dirty flag.

Two caveats apply to itemChange() reimplementations. Firstly, we must always return
the result of calling the base class implementation, and secondly, we must never do
anything inside this method that will lead to another (recursive) itemChange() call. In
particular we must never call setPos() inside itemChange().

def mouseDoubleClickEvent(self, event):
 dialog = TextItemDlg(self, self.parentWidget())
 dialog.exec_()

If the user double-clicks the item, we pop up a smart dialog through which the user can
change the item's text and font. This is the same dialog that we used for adding a text item.

This completes the text item class. It is quite small because we were only concerned with
changing its behavior. For the BoxItem class that we will look at next, we provide code to
govern both its behavior and its appearance.

class BoxItem(QGraphicsItem):

 def __init__(self, position, scene, style=Qt.SolidLine,
 rect=None, matrix=QMatrix()):
 super(BoxItem, self).__init__()
 self.setFlags(QGraphicsItem.ItemIsSelectable|
 QGraphicsItem.ItemIsMovable|

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 368 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 QGraphicsItem.ItemIsFocusable)
 if rect is None:
 rect = QRectF(-10 * PointSize, -PointSize,
 20 * PointSize, 2 * PointSize)
 self.rect = rect
 self.style = style
 self.setPos(position)
 self.setMatrix(matrix)
 scene.clearSelection()
 scene.addItem(self)
 self.setSelected(True)
 self.setFocus()
 global Dirty
 Dirty = True

Box items must be able to receive keyboard focus because we want users to be able to resize
boxes by using the arrow keys. If no explicit size is given, for example when the user clicks
Add Box, rather than when a box is being recreated from file or being pasted from the
copied item, we provide a default size which gives a letter-box shape. We also provide a
default line style of a solid line, and a default identity matrix. The rest of the initializer is
the same as we used before for text items.

We will omit the code for parentWidget() and itemChange() because their
implementations are the same as the ones we used for the TextItem class.

def setStyle(self, style):
 self.style = style
 self.update()
 global Dirty
 Dirty = True

This method is used to set the box's line style. It notifies the scene that the item needs
repainting, and sets the dirty flag since we record box line styles when we save
into .pgd files.

def contextMenuEvent(self, event):
 wrapped = []
 menu = QMenu(self.parentWidget())
 for text, param in (
 ("&Solid", Qt.SolidLine),
 ("&Dashed", Qt.DashLine),
 ("D&otted", Qt.DotLine),
 ("D&ashDotted", Qt.DashDotLine),
 ("DashDo&tDotted", Qt.DashDotDotLine)):
 wrapper = functools.partial(self.setStyle, param)
 wrapped.append(wrapper)
 menu.addAction(text, wrapper)
 menu.exec_(event.screenPos())

If the user invokes the context menu on the item (for example, by right-clicking on some
platforms) this method will be called.[*] This context menu uses partial function application

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 369 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

to wrap a method to be called, setStyle(), and a parameter to call it with, one of PyQt's
built-in line styles. The wrappers must stay alive long enough for the menu to finish, since
it is only at that point that one of them will be called. For this reason we keep a local list
of the wrappers; the list will only go out of scope after the menu's exec_() call has finished,
when the contextMenuEvent() itself completes.

[*] Note that this method will not be called if the view has been told to handle context menu events, for example, by having its context menu policy set to
Qt.ActionsContextMenu.

def keyPressEvent(self, event):
 factor = PointSize / 4
 changed = False
 if event.modifiers() & Qt.ShiftModifier:
 if event.key() == Qt.Key_Left:
 self.rect.setRight(self.rect.right() - factor)
 changed = True
 elif event.key() == Qt.Key_Right:
 self.rect.setRight(self.rect.right() + factor)
 changed = True
 elif event.key() == Qt.Key_Up:
 self.rect.setBottom(self.rect.bottom() - factor)
 changed = True
 elif event.key() == Qt.Key_Down:
 self.rect.setBottom(self.rect.bottom() + factor)
 changed = True
 if changed:
 self.update()
 global Dirty
 Dirty = True
 else:
 QGraphicsItem.keyPressEvent(self, event)

If the user presses the arrow keys and the view has scrollbars, the view will scroll
appropriately. This method interceptsarrow key presses that are pressed with the Shift key
when the item has the keyboard focus, to give the user a means of resizing the box. The
QRect.setRight() and QRect.setBottom() methods change the size of the
rectangle because they change the width and height. If we handled the key press event we
call update() to schedule a paint event, and mark the page as dirty; otherwise we call the
base class implementation.

Now that we have seen how the box's behavior is implemented, we are ready to turn our
attention to how the box is drawn. When subclassing QGraphicsItem we must at least
provide implementations of the boundingRect() and paint() methods. It is also
common to reimplement shape(), but we will defer that to the example in the next
section.

def boundingRect(self):
 return self.rect.adjusted(-2, -2, 2, 2)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 370 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This method should return the bounding rectangle of the item, plus half the pen width if
the item has an outline. Here we have cheated and made the

Table 12.3. Selected QGraphicsItem Methods #2

Syntax Description

g.boundingRect() Returns QGraphicsItem g's bounding QRectF; subclasses should reimplement this

g.collidesWithPath(pp) Returns True if QGraphicsItem g collides with QPainterPath pp

g.collidingItems() Returns a (possibly empty) list of the QGraphicsItem's that QGraphicsItem g collides
with

g.contains(pt) Returns True if QGraphicsItem g contains QPointF pt

g.isObscured() Returns True if QGraphicsItem g is obscured by its colliding items, providing their z
values are larger

g.isSelected() Returns True if QGraphicsItem g is selected

g.itemChange(c, v) Does nothing; subclasses can reimplement this method to detect changes, e.g., in selected
status or position. Do not call QGraphicsItem.setPos() directly or indirectly in this
method

g.moveBy(dx, dy) Moves QGraphicsItem g by float dx horizontally and by float dy vertically in scene
coordinates

g.paint(p, o) Does nothing; subclasses should reimplement this to draw themselves on QPainter p
and with options QStyleOptionGraphicsItem o; painting is done in local logical
coordinates, by default centered at (0, 0)

g.pos() Returns QGraphicsItem g's position as a QPointF. If g is a child of another
QGraphicsItem, the point is in terms of the parent item's local logical coordinates;
otherwise in terms of scene coordinates

g.resetMatrix()

Resets QGraphicsItem g's transformation matrix to the identity matrix; for PyQt 4.3 use
resetTransform() instead

g.rotate(a) Rotates QGraphicsItem g by float a°

g.scale(x, y) Scales QGraphicsItem g horizontally by float x and vertically by float y; 1.0 is
unscaled, 0.5 is half size, 3.0 is three times the size

g.scene() Returns QGraphicsItem g's QGraphicsScene or None if it has not been added to a
scene

g.sceneBoundingRect() Returns QGraphicsItem g's bounding QRectF in scene coordinates—this accounts for
transformations

g.setCursor(c) Sets g's cursor to QCursor or Qt.CursorShape, c

g.setEnabled(b) Sets g to be enabled or disabled depending on b

g.setFocus() Gives the keyboard focus to QGraphicsItem g

g.setFlag(f) Sets the given QGraphicsItem.ItemFlag f on g

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 371 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Syntax Description

g.setMatrix(m)

Sets QGraphicsItem g's matrix to QMatrix m; for PyQt 4.3 use setTransform() with
a QTransform argument

g.setPos(x, y) Sets QGraphicsItem g's position. If g is a child of another QGraphicsItem, the position
is in the parent item's local logical coordinates; otherwise it is in scene coordinates

g.setSelected(b) Sets QGraphicsItem g to be selected or unselected depending on bool b

g.setZValue(z) Sets QGraphicsItem g's z value to float z. The default is 0; items with higher values
appear in front of those with lower values

g.shape() Returns QGraphicsItem g's shape as a QPainterPath. The default implementation
calls boundingRect() to determine the painter path to return; reimplementations
normally create and return the exact shape. By default collision detection is based on shape

g.shear(x, y) Shears QGraphicsItem g's coordinate system horizontally by float x and vertically
by float y

g.translate(dx, dy) Moves QGraphicsItem g's coordinate system horizontally by int dx and vertically by
int dy

g.update() Schedules a paint event for QGraphicsItem g where it is visible in the scene's views

g.zValue() Returns QGraphicsItem g's z value

bounding rectangle a bit larger. This makes it much easier for the user to click the box,
even if they have reduced it to being a line with a height or width of just 1 pixel.

We have not implemented the shape() method, so the base class's shape() method will
be used, and will produce a shape that is based on the bounding rectangle. Since we have
given a larger rectangle than is really the case, the shape will also be larger. The shape is
used when determining collision detection, but does not matter here because we don't
make use of collision detection in this application; we will in the next one though.

def paint(self, painter, option, widget):
 pen = QPen(self.style)
 pen.setColor(Qt.black)
 pen.setWidth(1)
 if option.state & QStyle.State_Selected:
 pen.setColor(Qt.blue)
 painter.setPen(pen)
 painter.drawRect(self.rect)

Painting the box is quite easy. We begin by creating a pen based on the line style the user
has set and with a fixed width of 1 logical unit. We change the pen's color if the rectangle
is selected, then we set the pen and draw the rectangle.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 372 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Using the graphics view classes and painting graphics items is often easier than
reimplementing paint events. This is because each item has its own paint() method, and
because the items use a local logical coordinate system whose center is (0, 0), which is
especially convenient for rotation.

In this section we have seen the use of predefined graphics items, and also custom items,
both of which provide custom behavior, and the second of which, BoxItem, also does
custom drawing. In the example covered in the next section, we will see more sophisticated
item painting, and also collision detection and a simple form of animation.

Animation and Complex Shapes
In the previous section we looked at a graphics view application in which user interaction
was central. In this section we will look at a very different kind of application, one where
we simulate a population of creatures, "multipedes", by visualizing each member of the
population using a set of graphics items. Each multipede has internal timers. At each time
interval the multipede moves, and if it has collisions, its coloring is changed slightly, and
eventually it disappears.

We will begin by looking at an extract from the main form's initializer. Then we will review
the form's populate() method which is used to create and position the multipedes. Next
we will look at the action of the Pause/Resume button and at the implementation of the
zoom slider. Then we will look at the form's timer event, a kind of event handler we have
not used before. Once we can see how the application works as a whole, we will look at the
implementations of the graphics item subclasses that are used to visualize the multipedes.

class MainForm(QDialog):

 def __init__(self, parent=None):
 super(MainForm, self).__init__(parent)

 self.scene = QGraphicsScene(self)
 self.scene.setSceneRect(0, 0, SCENESIZE, SCENESIZE)
 self.view = QGraphicsView()
 self.view.setRenderHint(QPainter.Antialiasing)
 self.view.setScene(self.scene)
 self.view.setFocusPolicy(Qt.NoFocus)
 zoomSlider = QSlider(Qt.Horizontal)
 zoomSlider.setRange(5, 200)
 zoomSlider.setValue(100)
 self.pauseButton = QPushButton("Pa&use")

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 373 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 12.4. The Multipedes Application

quitButton = QPushButton("&Quit")

The form begins by creating a graphics scene. As usual for non-visual QObject subclasses,
we give the scene a parent. The SCENESIZE is a global integer of value 500. Setting up the
view is similar to what we saw in the previous example. The zoom slider is used to zoom
the scene in or out. We set its initial value to 100 (100%), and give it a range of 5% to 200%.
The pause button is used to pause and resume the animation.

self.connect(zoomSlider, SIGNAL("valueChanged(int)"),
 self.zoom)
self.connect(self.pauseButton, SIGNAL("clicked()"),
 self.pauseOrResume)
self.connect(quitButton, SIGNAL("clicked()"), self.accept)

self.populate()
self.startTimer(INTERVAL)
self.setWindowTitle("Multipedes")

We have omitted the layout since we have seen so many before, and this one is not unusual.
The connections contain no surprises, but are shown so that we can see how the user
interaction is handled.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 374 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Every QObject subclass (which includes all QWidgets since they are QObject
subclasses), can set off a timer which causes a timer event to occur at every time interval.
Here the INTERVAL is 200 milliseconds. The accuracy of timers depends on the underlying
operating system, but should be at least as good as 20 milliseconds unless the machine is
very heavily loaded. The startTimer() method returns a timer ID which is useful if we
want to call the method more than once to set up multiple timers; we ignore it here because
we just want one timer.

At the end of the initializer, we call populate() to create the multipedes, and set the
application's window title as usual.

def pauseOrResume(self):
 global Running
 Running = not Running
 self.pauseButton.setText("Pa&use" if Running else "Res&ume")

If the user clicks the pause button, we set the global Running Boolean to the opposite of
what it was, and change the button's caption. The form's timer and the multipede timers
refer to this variable, doing nothing if it is False.

def zoom(self, value):
 factor = value / 100.0
 matrix = self.view.matrix()
 matrix.reset()
 matrix.scale(factor, factor)
 self.view.setMatrix(matrix)

To zoom the scene, all that we need to do is change the scale of the view that shows the
scene. This is achieved by getting the view's current transformation matrix, clearing any
transformations (i.e., scaling) that may be in force, and then rescaling it to a factor that is
proportional to the slider's setting.

Zooming has a significant affect on how the multipedes are drawn. This is because in the
QGraphicsItem.paint() method we can find out how zoomed in or out a scene is and
can use this information to determine how much detail to draw. This means, for example,
that we can draw in a faster and more simplified way if the scene is zoomed out with users
unable to discern the details anyway, and that we can draw in increasing detail as users
zoom in.

def populate(self):
 red, green, blue = 0, 150, 0
 for i in range(random.randint(6, 10)):
 angle = random.randint(0, 360)
 offset = random.randint(0, SCENESIZE // 2)
 half = SCENESIZE / 2
 x = half + (offset * math.sin(math.radians(angle)))
 y = half + (offset * math.cos(math.radians(angle)))
 color = QColor(red, green, blue)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 375 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 head = Head(color, angle, QPointF(x, y))
 color = QColor(red, green + random.randint(10, 60), blue)
 offset = 25
 segment = Segment(color, offset, head)
 for j in range(random.randint(3, 7)):
 offset += 25
 segment = Segment(color, offset, segment)
 head.rotate(random.randint(0, 360))
 self.scene.addItem(head)
 global Running
 Running = True

This method is used to generate a random population of 6–10 multipedes. Each multipede
is made up of a head, and between four and eight body segments. For each multipede, the
head is created first, with a semi-random color, a random angle of direction, and at a
random position inside a circle with its center in the middle of the scene. Then the
multipede's first segment is created, with the head being its parent. This means that
whatever transformation is applied to the head, for example, moving or rotating it, will
also be applied to the first segment. Next, 3–7 additional segments are created. Each one
is made a child of its preceding segment. The effect of this is that if the head is transformed,
the first segment is transformed correspondingly, and so is the first segment's child
segment, and so on, for all the multipede's segments.

Once the head and segments have been created, we rotate the head and add it to the scene.
Adding a graphics item to a scene, automatically adds all the item's children, recursively,
so by adding just the head, the entire multipede is added.

At the end we set the global Running Boolean to True. In addition to the form's timer,
each multipede part has a timer, and so long as Running is True, the part will move at
each time interval.

Figure 12.5. Multipedes at Two Different Zoom Levels

The red color we have used is significant for head items. The red color component is set to
0 for all multipedes when they are first created. If a multipede's head's red color component

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 376 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

reaches the maximum (255)—which can occur as the result of collisions—the multipede
will "die", i.e., be removed. The culling is done in the timer event.

def timerEvent(self, event):
 if not Running:
 return
 dead = set()
 items = self.scene.items()
 if len(items) == 0:
 self.populate()
 return
 heads = set()
 for item in items:
 if isinstance(item, Head):
 heads.add(item)
 if item.color.red() == 255:
 dead.add(item)
 if len(heads) == 1:
 dead = heads
 del heads
 while dead:
 item = dead.pop()
 self.scene.removeItem(item)
 del item

At every time interval the form's timerEvent() method is called. If the Running Boolean
is False the method does nothing and returns immediately. If there are no items in the
scene (they all died), we call populate() and begin a fresh run. Otherwise we iterate over
all the items in the scene, populating two sets, one the set of head items that have a red
color component with value 255, and the other with the set of all head items in the scene.

If there is just one head item, we overwrite the dead set with the heads set containing the
one remaining head. This ensures that if there is just one multipede left it will be killed off.
We then delete the heads set so that there are no references that could keep items alive.
Finally, we iterate over the dead items, removing each one from the scene at random, and
since ownership passes to us, deleting each one that we remove. Thanks to the parent–
child relationships, when we delete a multipede's head, the head's child (the first segment)
is deleted, and in turn the first segment's child (the second segment) is deleted, and so on,
to the greatest grandchild, so that simply by deleting a multipede's head, we delete all the
segments too.

We have now seen how the application works, so we can turn our attention to the
implementation of the multipedes themselves. As the population() method shows,
multipedes are made up of one Head and at least four Segments—both these classes are
QGraphicsItem subclasses, and both are smart enough to draw only the amount of detail
that makes sense for the current zoom level. We will look at the Head first, and then at
Segment.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 377 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

class Head(QGraphicsItem):
 Rect = QRectF(-30, -20, 60, 40)

 def __init__(self, color, angle, position):
 super(Head, self).__init__()
 self.color = color
 self.angle = angle
 self.setPos(position)
 self.timer = QTimer()
 QObject.connect(self.timer, SIGNAL("timeout()"), self.timeout)
 self.timer.start(INTERVAL)

All heads have the same shape: An ellipse that fits inside the static Rect rectangle. When
the head is initialized we record its color and angle in instance variables and move it to the
given position in the scene.

The QGraphicsItem class is not a QObject subclass and does not provide built-in timers.
This is no problem since we can simply use a QTimer as we have done here.[*] A
QTimer's timeouts do not result in timer events, but instead are signified by timeout
() signals being emitted. Here we create a timer which will timeout every INTERVAL (200)
milliseconds, i.e., 5 times per second. We have connected the timer's timeout() signal
to our own timeout() method; we will review this method shortly.

[*] C++/Qt programmers might be tempted to multiply inherit from QGraphicsItem and QObject, but PyQt only permits inheritance from a single Qt class.

def boundingRect(self):
 return Head.Rect

The bounding rectangle is easy—it is simply the static Rect rectangle, that serves as the
basic shape for all multipede heads.

def shape(self):
 path = QPainterPath()
 path.addEllipse(Head.Rect)
 return path

This method is the default one used for collision detection, unless we specify a coarser-
grained approach that just uses the bounding rectangle. A painter path is a series of
rectangles, ellipses, arcs, and other shapes (including painter paths), that together
completely describe an item's shape. In this case the path is just one ellipse.

Using a painter path for a graphics item's shape ensures that collisions are detected
accurately. For example, two multipede heads may cross at the corners of their rectangles
without colliding, since their ellipses don't occupy the corners.

def paint(self, painter, option, widget=None):
 painter.setPen(Qt.NoPen)
 painter.setBrush(QBrush(self.color))
 painter.drawEllipse(Head.Rect)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 378 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 if option.levelOfDetail > 0.5:
 painter.setBrush(QBrush(Qt.yellow)) # Outer eyes
 painter.drawEllipse(-12, -19, 8, 8)
 painter.drawEllipse(-12, 11, 8, 8)
 if option.levelOfDetail > 0.9:
 painter.setBrush(QBrush(Qt.darkBlue)) # Inner eyes
 painter.drawEllipse(-12, -19, 4, 4)
 painter.drawEllipse(-12, 11, 4, 4)
 if option.levelOfDetail > 1.3:
 painter.setBrush(QBrush(Qt.white)) # Nostrils
 painter.drawEllipse(-27, -5, 2, 2)
 painter.drawEllipse(-27, 3, 2, 2)

The head in full detail is an ellipse, two eyes, each of which is two ellipses, one inside the
other, and two tiny nostrils, again ellipses. The paint() method begins by getting rid of
the pen and by setting a solid brush to the multipede's color. Then the basic head shape is
drawn.

The option variable is of type QStyleOptionGraphicsItem, and holds various useful
information, including the item's transformation matrix, font metrics, palette, and state
(selected, "on", "off", and many others). It also holds the "level of detail", a measure of how
zoomed in or out the scene is. If the scene is not zoomed at all the level of detail is 1.0; if
it is zoomed in to be twice the size the level of detail will be 2.0, and if it is zoomed out to
half the size the level of detail will be 0.5.

If the scene is being shown at 50% of its natural size or larger, we draw the multipede's
yellow outer eyes. We can hard-code the coordinates because graphics items use their own
local logical coordinate system and any externally applied transformations are taken care
of automatically for us. If the scene is being show at 90% of its natural size or larger, we
also draw the inner eyes, and if the scene is zoomed in enough to be viewed at 130% or
larger, we also draw the multipedes' tiny nostrils.

The last method we must consider is the timeout() method that is called every
INTERVAL milliseconds by the timer. We will look at the method in two parts since there
are two aspects to what it does.

def timeout(self):
 if not Running:
 return
 angle = self.angle
 while True:
 angle += random.randint(-9, 9)
 offset = random.randint(3, 15)
 x = self.x() + (offset * math.sin(math.radians(angle)))
 y = self.y() + (offset * math.cos(math.radians(angle)))
 if 0 <= x <= SCENESIZE and 0 <= y <= SCENESIZE:
 break
 self.angle = angle
 self.rotate(random.randint(-5, 5))
 self.setPos(QPointF(x, y))

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 379 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If the global Running Boolean is False we do nothing and return. Otherwise we calculate
a new position for the head based on a small random change to its angle of direction (±9°),
and a small movement (3–15 logical units). To avoid the multipede wandering out of the
scene, we keep moving and turning it until its new (x, y) position is within the scene's
boundaries.

Once we have the new coordinates we record the angle that was used, rotate the head
slightly, and set the head's position. At this point collisions may have occurred as a result
of the movement.

for item in self.scene().collidingItems(self):
 if isinstance(item, Head):
 self.color.setRed(min(255, self.color.red() + 1))
 else:
 item.color.setBlue(min(255, item.color.blue() + 1))

We ask the scene for all the items that the head has collided with. If it has hit another head
we make this head a bit redder, and if it has hit a segment we make the segment it has hit
a bit bluer. If a head's red color component reaches 255, the head (and therefore the entire
multipede including all the segments) will be removed from the scene. The removals take
place in the form's timer event, as we saw earlier (page 370).

Now we will look at the Segment implementation. Its initializer is a bit longer than the
Head's initializer, but the boundingRect(), shape(), and paint() methods are all
much simpler as a result.

class Segment(QGraphicsItem):

 def __init__(self, color, offset, parent):
 super(Segment, self).__init__(parent)
 self.color = color
 self.rect = QRectF(offset, -20, 30, 40)
 self.path = QPainterPath()
 self.path.addEllipse(self.rect)
 x = offset + 15
 y = -20
 self.path.addPolygon(QPolygonF([QPointF(x, y),
 QPointF(x - 5, y - 12), QPointF(x - 5, y)]))
 self.path.closeSubpath()
 y = 20
 self.path.addPolygon(QPolygonF([QPointF(x, y),
 QPointF(x - 5, y + 12), QPointF(x - 5, y)]))
 self.path.closeSubpath()
 self.change = 1
 self.angle = 0
 self.timer = QTimer()
 QObject.connect(self.timer, SIGNAL("timeout()"), self.timeout)
 self.timer.start(INTERVAL)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 380 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The first thing to notice is that we accept a parent parameter and pass it on to the base
class. We did not do this for the Head because when an item is added to a scene, the scene
automatically takes ownership of the item, so there was no need. But segments are not
explicitly added to the scene since they are all children of other items. The first segment's
parent is the multipede's head, the second segment's parent is the first segment, the third
segment's parent is the second segment, and so on. When the head is added to the scene
the segments are added too; but the scene only takes ownership of the head. Although we
could have given the segments no parent and added them directly to the scene, it is much
more convenient to make them child items. In particular, the parent–child relationship
between graphics items is used to propagate transformations from parent to child.

The offset is an x offset relative to the head, no matter which segment we are initializing.
The rectangle is used to draw the segment's ellipse, but unlike the head, it does not
encompass the entire shape because segments have protruding legs. Because the segment's
shape isn't simple, we create it using a painter path. We begin with the segment's "body",
a simple ellipse. Then we draw one leg (a very flat triangle), then the other leg. The
addPolygon() method takes a QPolygonF(), which itself is constructed with a list of
QPointF objects. After each leg is added we call closeSubpath(); alternatively we could
simply have added an extra point at the end, a copy of the first point. The change and
angle instance variables are used for movement; we will cover them in the timeout()
event.

def boundingRect(self):
 return self.path.boundingRect()

The bounding rectangle must account for the entire shape, including the legs, but is easy
to obtain using QPainterPath.boundingRect().

def shape(self):
 return self.path

The shape isn't straightforward, but thanks to the path being calculated in the initializer,
this method is simple.

def paint(self, painter, option, widget=None):
 painter.setPen(Qt.NoPen)
 painter.setBrush(QBrush(self.color))
 if option.levelOfDetail < 0.9:
 painter.drawEllipse(self.rect)
 else:
 painter.drawPath(self.path)

Thanks to pre-calculating the rectangle and painter path, the paint() method is much
easier and faster than it would otherwise have been. If the scene is zoomed in to 90% or

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 381 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

less, we just draw an ellipse; otherwise we draw the shape in full detail using the painter
path.

def timeout(self):
 if not Running:
 return
 matrix = self.matrix()
 matrix.reset()
 self.setMatrix(matrix)
 self.angle += self.change
 if self.angle > 5:
 self.change = -1
 self.angle -= 1
 elif self.angle < -5:
 self.change = 1
 self.angle += 1
 self.rotate(self.angle)

When a multipede's head moves, its first (child) segment moves with it, and that segment's
child segment moves with it, and so on. This is fine, but means that the multipede's shape
is rigid. We want the segments to gently sway from side to side as the multipede moves,
and for this reason we have given the segments their own timers.

We retrieve the segment's transformation matrix, clear any transformations (rotations)
that have been applied, and then rotate the segment. The change variable starts out as 1
and the rotation angle starts out at 0°. At every time interval the change is added to the
angle. If the angle reaches 6 (or -6), we make it 5 (or -5) and negate the change value. This
means that the angle has the sequence, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -4, -3, -2,
-1, 0, 1, 2, and so on, which produces a nice swaying effect.

This completes our review of animating complex shapes. Using painter paths, shapes of
arbitrary complexity can be created, and by storing the paths as static or as instance
variables, a lot of calculation can be done one-off rather than in every call to a paint method.
The approach we have used to achieve animation is not the only one possible. For example
we could use QGraphicsItemAnimation items in conjunction with a QTimeLine.
Another approach would be to take the timers out of the items themselves and instead
keep a set of references to them. Then a timer in the form could be used and at each interval
each item in the set moved and collisions resolved from the form's timeout handler. There
is no one and only right approach, but rather, the best approach will depend on the needs
of the application itself.

Summary
The graphics view classes are ideal for situations where we have lots of individual items to
draw, from dozens to hundreds of thousands. They are also perfect for when we want to

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 382 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

allow the user to interact with items, for example, clicking, dragging, and selecting them,
as well as being ideal for doing animation.

Scenes use their own logical coordinate system and contain graphics items. Scenes are
viewed using QGraphicsView, and more than one view can be associated with a scene if
we want the user to be able to view the scene using two or more different transformations
(for example, at different zoom levels or rotation angles).

The graphics view classes include a number of useful predefined items that can be used
as-is. We can also subclass QGraphicsItem or one of its subclasses to provide custom
behavior (for example context menus, and key event handling), and custom painting, so
that we can draw any shapes we like.

If we want to save and load scenes to and from files, one simple approach is to make sure
that every item has a transformation matrix, and to save an item description, the item's
position in the scene, the item's matrix, and any additional item-specific data that may be
necessary. Doing this using QDataStream is very easy.

Any scene can be drawn on any paint device, including a printer, a PDF file, or a QImage
(for example to save as a .png file), by using the render() methods provided by the scene
and view classes. And from Qt 4.3, scenes can also be rendered in SVG format using the
QSvgGenerator paint device class.

Painting graphics view items is made as easy as possible because of the convenient local
coordinate system that allows us to ignore any externally applied transformations, for
example, from parent items. The QPainter class offers many convenient drawing
methods, for example, to draw arcs, chords, ellipses, polygons, lines, polylines, rectangles,
images, and text. In addition complex shapes can be created using QPainterPath objects,
and these can be painted directly using QPainter.drawPath().

Even more complex shapes can be created by composing two or more items together using
parent–child relationships. Such relationships ensure that transformations applied to a
parent item are automatically applied to the child items, down to the furthest grandchild.
This, in conjunction with the use of local logical coordinates, makes animating complex
shapes much easier than having to orchestrate all the transformations manually ourselves.

Simulations, games, and the visualization of time series data can all be done using the
graphics view classes. One simple approach to animation is to give each item its own timer
and to move it whenever the timer times out, although several other approaches are
possible. For painting, using pre-calculated shapes can save time in the paint methods, as
can using the view's level of detail to decide how much detail to draw.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 383 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For graphing, creating a custom widget and reimplementing its paint event, as described
in the previous chapter, is probably the best approach. For general scientific and
engineering applications the PyQwt library (Qt Widgets for Technical Applications)
provides a lot of functionality out of the box, including 2D plotting, while the PyQwt3D
bindings extend PyQwt to include 3D plotting. To get the best out of these add-ons, and
for fast numerical processing, installing the NumPy package is also recommended. See
http://pyqwt.sourceforge.net and http://numpy.scipy.org for more information.

PyQt's graphics view classes have even more to offer than we have had the space to cover
here. In addition to many more features offered by the graphics view classes, it is also
possible to do both 2D and 3D graphics using the QtOpenGL module. In addition, this
module can be used in conjunction with PyQt's other graphics classes. For example, we
can use a QGLWidget instead of a QWidget for painting on by calling
QGraphicsView.setViewport(QGLWidget()), and we can use QPainter to overlay
a QGLWidget with annotations.

Exercise
Enhance the Page Designer application by adding a new button, Align, which has a pop-
up menu of Align Left, Align Right, Align Top, and Align Bottom. Provide a single method,
setAlignment(), that takes an alignment argument. Be sure to keep an instance variable
with the wrappers so they don't get garbage collected. To perform the alignment there must
be at least two items selected (because items are aligned with respect to each other).

The algorithm in the solution has two phases: first it finds the item to align every other
item in relation to; for example, if doing Align Left, it finds the left-most item. Note that
this must be done in terms of the sceneBoundingRect(), not the boundingRect()
(which is different if the item is rotated). Second, it works out the x or y difference to be
applied to the other items and then applies it. Adding the extra button and its menu will
take less than 15 lines of code, and setAlignment() can be written in under 45 lines, so
the whole thing can be done in about 60 lines.

A solution is provided in chap12/pagedesigner_ans.pyw.

13. Rich Text and Printing
• Rich Text Editing
• Printing Documents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 384 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://pyqwt.sourceforge.net
http://numpy.scipy.org

PyQt supports rich text, essentially a subset of HTML, that also includes some support for
cascading style sheets (CSS).[*] What this means in practice is that we can pass strings that
contain HTML markup to many of PyQt's text handling classes and rely on PyQt to render
the HTML properly in the user interface.

[*] The list of supported HTML tags and CSS properties is given at http://doc.trolltech.com/richtext-html-subset.html.

We have already seen examples of passing HTML to QLabels. The graphics item class
QGraphicsTextItem, can also accept HTML. The QTextBrowser class supports basic
HTML display including hyperlinks, and although it is by no means a full-blown web
browser, many developers find it sufficient for displaying help text. For editing HTML,
PyQt provides the QTextEdit class. Although this class can render all the Qt supported
HTML tags, it does not provide users with the means to create or edit some of the tags—
for example, it can show but not provide editing of HTML tables. These deficiencies can
of course be remedied by subclassing and providing the functionality ourselves.

Another use case for QTextEdit is to provide source code editing, with syntax highlighting
provided by custom QSyntaxHighlighter subclasses. A dedicated open source
component specifically designed for source code editing is also available. This component
is called Scintilla (http://www.scintilla.org), and the Qt port of it, QScintilla, can also
be used with PyQt.

All of the widgets which can handle rich text, store the text internally in a
QTextDocument. This pure data class is also available for our own use.

In this chapter we will explore some of the features of QTextEdit, including its use as a
source code editor using QSyntaxHighlighter. Although PyQt provides a set of widgets
that covers most situations, from simple labels and frames all the way to tab widgets, tree
views, and more, it does not include a one line HTML text editing widget. We will create
our own widget for this purpose by subclassing QTextEdit; this will deepen our
knowledge of QTextEdit and QTextDocument, and be a useful widget in later chapters
when we want to provide the ability for users to edit single lines of HTML text in database
type applications.

This chapter's second section is devoted to printing. We have already seen how to print
images and graphics scenes on a page, but in this section we will see how to print multiple
page documents, including embedded images. PyQt provides three different techniques
for printing documents, one based on composing and printing HTML, another based on
creating and printing QTextDocuments, and another based on using QPainter to paint
directly onto the printer's pages. We will show and discuss all three approaches.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 385 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://doc.trolltech.com/richtext-html-subset.html
http://www.scintilla.org

Printing images 359

Rich Text Editing
In this section we will look at rich text editing from two different perspectives. In the first
sub-section we will create a plain text editor that uses QSyntaxHigh-lighter to provide
syntax highlighting for Python source code. In the second sub-section we will create a
single line rich text editor similar to QLineEdit, that has a format menu, a color menu,
and that supports various formatting shortcuts such as Ctrl+B and Ctrl+I to toggle bold
and italic on and off. In both cases we use QTextEdit as the foundation on which we will
build.

Using QSyntaxHighlighter
If we want a Python-savvy text editor with syntax highlighting, we need not create one
ourselves. The Tkinter-based IDLE application provides both a "sandbox" in which we can
experiment with Python code, and also a perfectly good Python code editor. And for more
power, there is always the eric4 IDE, itself written in PyQt, and using QScintilla for its
text editing. However, no off-the-shelf editor will necessarily work in just the way we want,
and since creating our own is instructive and revealing of what is involved, we will create
a simple Python Editor to learn how to use QTextEdit and QSyntaxHighlighter. As
the screenshot in Figure 13.1 shows, the Python Editor is a simple main window style
application with two menus and toolbars. Since we have covered the creation of such
applications before, we will just focus on those parts that are relevant to rich text editing,
starting with the beginning of the main window's initializer.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 386 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 13.1. The Python Editor Editing Itself

class MainWindow(QMainWindow):

 def __init__(self, filename=None, parent=None):
 super(MainWindow, self).__init__(parent)

 font = QFont("Courier", 11)
 font.setFixedPitch(True)
 self.editor = TextEdit()
 self.editor.setFont(font)
 self.highlighter = PythonHighlighter(self.editor.document())
 self.setCentralWidget(self.editor)

We begin by creating a fixed pitch font. Then we create a TextEdit, a custom
QTextEdit class that differs from QTextEdit in that it converts Tab key presses into
insertions of four spaces. Next we create a PythonHighlighter, a
QSyntaxHighlighter subclass, passing it the text editor's QTextDocument—this is the
object in which the editor's text and formatting is actually stored. We make the editor the
main window's central widget.

The rest of the initializer is concerned with the creation of the actions, menus, and toolbars,
things that we are very familiar with and can therefore skip. The only other methods we
will look at are two of the three basic file handling ones, since they involve the text editor.

def fileNew(self):
 if not self.okToContinue():
 return
 document = self.editor.document()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 387 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 document.clear()
 document.setModified(False)
 self.filename = None
 self.setWindowTitle("Python Editor - Unnamed")
 self.updateUi()

This method simply retrieves and clears the QTextDocument that actually holds the text,
and sets the modified flag to False. The result is a blank QTextEdit with no unsaved
changes. The updateUi() method is used to enable/disable actions depending on the
application's state; see the "Enabling and Disabling Actions" sidebar.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 388 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Enabling and Disabling Actions

Sometimes, particular actions are only applicable in certain circumstances. For
example, it doesn't make much sense to allow "file save" on a document with no
unsaved changes, or arguably, to allow "file save as" on an empty document.
Similarly, neither "edit copy" nor "edit cut" make sense if there is no selected
text. One way of dealing with this is to leave all the actions enabled all of the
time, but to make sure that they do nothing in cases where they don't make
sense; for example, if we call QTextEdit.cut(), it will safely do nothing if
there is no selected text.

Another solution is to enable and disable actions depending on the application's
state. This can be achieved by doing three things: Firstly, making those actions
that will be enabled and disabled into instance variables so that they can be
accessed outside of the initializer; secondly, creating a method, e.g., updateUi
(), that enables and disables actions depending on the application's state; and
thirdly, making suitable application-specific signal–slot connections to
updateUi() so that it is called whenever the application's state changes.

Using the Python Editor as an example, we need these connections:

self.connect(self.editor,
 SIGNAL("selectionChanged()"), self.updateUi)
self.connect(self.editor.document(),
 SIGNAL("modificationChanged(bool)"), self.updateUi)
self.connect(QApplication.clipboard(),
 SIGNAL("dataChanged()"), self.updateUi)

These connections mean that if the editor's selection changes, or if the document
is modified, or if the clipboard's data changes, we can enable or disable the
relevant actions.

def updateUi(self, arg=None):
 self.fileSaveAction.setEnabled(
 self.editor.document().isModified())
 self.fileSaveAsAction.setEnabled(
 not self.editor.document().isEmpty())
 enable = self.editor.textCursor().hasSelection()
 self.editCopyAction.setEnabled(enable)
 self.editCutAction.setEnabled(enable)
 self.editPasteAction.setEnabled(self.editor.canPaste())

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 389 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This method is called in response to the signal–slot connections above. It is also
called explicitly at the end of the initializer to set the user inter-face's initial
state, and also at the end of the fileNew() method. The
QTextEdit.canPaste() method was introduced with Qt 4.2; for earlier
versions use not QApplication.clipboard().text().isEmpty().
The text cursor and text document classes are covered later in this chapter.

def loadFile(self):
 fh = None
 try:
 fh = QFile(self.filename)
 if not fh.open(QIODevice.ReadOnly):
 raise IOError, unicode(fh.errorString())
 stream = QTextStream(fh)
 stream.setCodec("UTF-8")
 self.editor.setPlainText(stream.readAll())
 self.editor.document().setModified(False)
 self.setWindowTitle("Python Editor - %s" % \
 QFileInfo(self.filename).fileName())
 except (IOError, OSError), e:
 QMessageBox.warning(self, "Python Editor -- Load Error",
 "Failed to load %s: %s" % (self.filename, e))
 finally:
 if fh is not None:
 fh.close()

If a file is loaded, for example by the user invoking the File Open action, this method is
called. The file handling code is similar to what we have seen before, the only real difference
being that we set the QTextDocument's modified flag to False.

The code for saving is very similar to that for loading. We get the file handle, create a
QTextStream, set the encoding to UTF-8, and output the entire text using
QTextEdit.toPlainText(). We also set the QTextDocument's modified flag to
False.

class TextEdit(QTextEdit):

 def __init__(self, parent=None):
 super(TextEdit, self).__init__(parent)

 def event(self, event):
 if event.type() == QEvent.KeyPress and \
 event.key() == Qt.Key_Tab:
 cursor = self.textCursor()
 cursor.insertText(" ")
 return True
 return QTextEdit.event(self, event)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 390 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The complete TextEdit subclass is shown above. Every QTextDocument can be
manipulated through a QTextCursor object, which is the programmatic equivalent of a
user interacting with the document using key presses and mouse actions.

The event() handler is called before any of the specific key and mouse event handlers,
and is the only place where we can intercept and handle Tab key presses. If the user pressed
Tab we get a QTextCursor from the QTextEdit; this allows us to programmatically
interact with the underlying QTextDocument that holds the text. By default the text cursor
returned by a text edit is at the current insertion point (also called the cursor position), so
we can simply insert four spaces. Then we return True to tell the event handling system
that we have handled the Tab key press and that no further action (such as changing focus)
should take place.

QWidget. event() 310

Inserting text with QText-Cursor 401

To provide syntax highlighting we must create a QSyntaxHighlighter subclass,
reimplement the highlightBlock() method, and create an instance of our highlighter
with the QTextDocument we want it to apply to as argument. We did the last part in the
MainWindow's initializer, so now we will turn to our QSyntaxHigh-lighter subclass.

The QSyntaxHighlighter works on a line-by-line basis, and also provides a simple
means of keeping track of state across multiple lines. For the Python Editor we will use
regular expressions to identify the Python keywords, comments, and strings, including
triple-quoted strings that span multiple lines, so that we can apply highlighting to them.
We begin by setting up the regular expressions in the subclass's initializer, which we will
look at in two parts.

class PythonHighlighter(QSyntaxHighlighter):

 Rules = []

 def __init__(self, parent=None):
 super(PythonHighlighter, self).__init__(parent)

 keywordFormat = QTextCharFormat()
 keywordFormat.setForeground(Qt.darkBlue)
 keywordFormat.setFontWeight(QFont.Bold)
 for pattern in ((r"\band\b", r"\bas\b", r"\bassert\b",
 ...

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 391 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 r"\byield\b")):
 PythonHighlighter.Rules.append((QRegExp(pattern),
 keywordFormat))

The Rules static list holds a list of pairs. The first element of each pair is a regular
expression (a QRegExp) that is used to match a syntactic construct that can only occupy
a single line (such as a Python keyword). The second element is a QTextCharFormat, an
object that can hold information on how a piece of text can be formatted, such as its font
and the pen that should be used to paint it.

We have created a rule for each Python keyword, giving each one the same
keywordFormat format. (Most of the keywords are not shown in the snippet as indicated
by the ellipsis.) Each keyword has a "\b" before and after it; this is a regular expression
symbol that does not match any text, but rather matches at a word boundary. This means
for example, that in the expression a and b, "and" will be recognized as a keyword, while
in the expression a = band, the "and" in "band" will (correctly) not be recognized.

commentFormat = QTextCharFormat()
commentFormat.setForeground(QColor(0, 127, 0))
commentFormat.setFontItalic(True)
PythonHighlighter.Rules.append((QRegExp(r"#.*"),
 commentFormat))
self.stringFormat = QTextCharFormat()
self.stringFormat.setForeground(Qt.darkYellow)
stringRe = QRegExp(r"""(?:'[^']*'|"[^"]*")""")
stringRe.setMinimal(True)
PythonHighlighter.Rules.append((stringRe, self.stringFormat))
self.stringRe = QRegExp(r"""(:?"["]".*"["]"|'''.*''')""")
self.stringRe.setMinimal(True)
PythonHighlighter.Rules.append((self.stringRe,
 self.stringFormat))
self.tripleSingleRe = QRegExp(r"""'''(?!")""")
self.tripleDoubleRe = QRegExp(r'''"""(?!')''')

After the keywords we create a format and regular expression for handling Python
comments. The regular expression is not perfect; it does not account for quoted "#"s for
example.

For strings we keep the string format as an instance variable since we will need that in the
highlightBlock() method where we handle multi-line strings. Single line strings are
handled by naive (but fast) regular expressions set up in the initializer and added to the
Rules list. At the end we create two more regular expressions. These both use negative
lookahead, for example (?!") means "not followed by "". They are for use in the
highlightBlock() method which we will review next, in two parts.

def highlightBlock(self, text):
 NORMAL, TRIPLESINGLE, TRIPLEDOUBLE = range(3)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 392 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 for regex, format in PythonHighlighter.Rules:
 i = text.indexOf(regex)
 while i >= 0:
 length = regex.matchedLength()
 self.setFormat(i, length, format)
 i = text.indexOf(regex, i + length)

The highlightBlock() method is called for every line that is displayed with the line in
the text argument.

We begin by setting three possible states, normal, inside a triple quoted string, and inside
a triple double-quoted string. Then we iterate over every rule and wherever we find a match
to the rule's regular expression, we set the text's format to the corresponding format for
the length of the regular expression's match. The combination of a list of regular expression
and format pairs and the for loop shown above is sufficient for all syntax highlighting
where each syntactic component only ever occupies a single line and where each is capable
of being represented by a regular expression.

self.setCurrentBlockState(NORMAL)
if text.indexOf(self.stringRe) != -1:
 return
for i, state in ((text.indexOf(self.tripleSingleRe),
 TRIPLESINGLE),
 (text.indexOf(self.tripleDoubleRe),
 TRIPLEDOUBLE)):
 if self.previousBlockState() == state:
 if i == -1:
 i = text.length()
 self.setCurrentBlockState(state)
 self.setFormat(0, i + 3, self.stringFormat)
 elif i > -1:
 self.setCurrentBlockState(state)
 self.setFormat(i, text.length(), self.stringFormat)

Next we set the current block's state to normal. The state is an integer of our choice that
the QSyntaxHighlighter will associate with the current line. We then test to see if we
have a complete triple quoted string, i.e., one that begins and ends in the line; if we do we
have already formatted it, so we are finished and can return.

We now have three cases to deal with. We are either in a triple quoted string that began
on a previous line and that has not finished in this line; or we have the beginning or end
of a triple quoted string in this line.

If the previous line was in a triple quoted string and there is no triple quote in this line
then this entire line is still in a triple quoted string, so we set the current block state to the
same value as the previous line and format the entire line as triple quoted. If the previous
line's state is triple quoted and we have a triple quote, it must be the closing triple quote,
so we format triple quoted up to and including the triple quote. In this case we leave the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 393 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

state as normal since that will apply from the end of the triple quoted string onwards. On
the other hand, if the previous line's state was not triple quoted and we find triple quotes,
we set the state to triple quoted and format from these quotes to the end of the line.

This completes our syntax highlighting example. Clearly we could use more sophisticated
regular expressions, or even avoid them altogether and use a finite state automata or a
parser to identify which portions of each line require particular formatting. For large texts
with complex syntaxes, syntax highlighting can be computationally expensive, but
QSyntaxHighlighter helps to keep the overheads down by only formatting enough
lines to correctly highlight the lines that are visible.

A Rich Text Line Edit
In some applications it is a requirement that users can enter single lines of rich text. For
example, a database application may have a "description" field where we want the user to
be able to use bold, italic, and colors for particular words if they want. We will see examples
of this in Chapter 14 and Chapter 16. Unfortunately, PyQt does not provide such a widget.
In this sub-section we will create a RichTextLineEdit, a subclass of QTextEdit that
provides the functionality we need. In the process we will learn how to programmatically
format pieces of text in a QTextEdit, and how to iterate over a QTextEdit's
QTextDocument to extract the text and its formatting.

Figure 13.2. The Rich Text Line Edit

The rich text line edit will support the most common kinds of text formatting that apply
to single lines: bold, italic, underline, strikeout, superscript, and subscript. In addition,
three font styles will be supported, monospaced, sans serif, and serif, and also the ability
to set the text's color to a limited range of colors. We will begin with some static constants
and the initializer.

class RichTextLineEdit(QTextEdit):

 (Bold, Italic, Underline, StrikeOut, Monospaced, Sans, Serif,
 NoSuperOrSubscript, Subscript, Superscript) = range(10)

 def __init__(self, parent=None):
 super(RichTextLineEdit, self).__init__(parent)

 self.monofamily = QString("courier")
 self.sansfamily = QString("helvetica")
 self.seriffamily = QString("times")
 self.setLineWrapMode(QTextEdit.NoWrap)
 self.setTabChangesFocus(True)
 self.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
 self.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 394 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 fm = QFontMetrics(self.font())
 h = int(fm.height() * (1.4 if platform.system() == "Windows" \
 else 1.2))
 self.setMinimumHeight(h)
 self.setMaximumHeight(int(h * 1.2))
 self.setToolTip("Press Ctrl+M for the text effects "
 "menu and Ctrl+K for the color menu")

We begin by setting some default font families. Nowadays, every platform can be expected
to provide Courier, Helvetica, and Times fonts (or fonts for which these names are aliases).
Since the widget is a single line, we switch off line wrapping and scrollbars. We also ensure
that Tab causes a change of focus rather than the insertion of a Tab character. Calculating
a minimum and maximum height will help when we implement the size hint methods, but
is complicated slightly by differences in font metrics across platforms. The tooltip is there
to give users a hint that the widget has some special key presses.

def sizeHint(self):
 return QSize(self.document().idealWidth() + 5,
 self.maximumHeight())

The preferred size is the "ideal" width of the text (taking into account font sizes and
attributes like bold and italic), with a bit of padding to give a little margin, and the
maximum height.

def minimumSizeHint(self):
 fm = QFontMetrics(self.font())
 return QSize(fm.width("WWWW"), self.minimumHeight())

For the minimum size we take the width of four "W" characters in the widget's default font.
Alternatively we could have simply used an arbitrary amount, say 40 pixels.

One thing that distinguishes the RichTextLineEdit from a QLineEdit is the user's
ability to change the format and color of words and characters. To support this we must
provide some means by which the user can apply such changes. We have done this by
providing a text effects menu and a color menu, and by supporting some key sequences
for formatting. Both menus are invoked by particular key sequences, and the text effects
menu is also popped up when a context menu event occurs.

def contextMenuEvent(self, event):
 self.textEffectMenu()

A context menu event occurs when the user right-clicks on some platforms, or presses a
particular key or key sequence on others. In this case we simply call the custom
textEffectMenu() method which will pop up a suitable menu. By default
QTextEdit provides its own context menu, but by reimplementing the context menu
event handler, our code takes precedence.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 395 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def keyPressEvent(self, event):
 if event.modifiers() & Qt.ControlModifier:
 handled = False
 if event.key() == Qt.Key_B:
 self.toggleBold()
 handled = True
 elif event.key() == Qt.Key_I:
 self.toggleItalic()
 handled = True
 elif event.key() == Qt.Key_K:
 self.colorMenu()
 handled = True
 elif event.key() == Qt.Key_M:
 self.textEffectMenu()
 handled = True
 elif event.key() == Qt.Key_U:
 self.toggleUnderline()
 handled = True
 if handled:
 event.accept()
 return
 if event.key() in (Qt.Key_Enter, Qt.Key_Return):
 self.emit(SIGNAL("returnPressed()"))
 event.accept()
 else:
 QTextEdit.keyPressEvent(self, event)

Since users are typing in text it is natural to provide a keyboard interface for changing the
text's format. We have set Ctrl+B to toggle bold, Ctrl+I to toggle italic, and Ctrl+U to toggle
underlining. In addition, Ctrl+K invokes the color menu, and Ctrl+M invokes the text
effects menu (in addition to being invoked by a context menu event). By calling accept
() on the key presses we handle ourselves we are indicating that no further event handling
of these key presses is necessary.

If the user presses Return we emit a returnPressed() signal since this can be useful;
no newline is inserted into the text. Any other key presses are passed on to the base class.
The QTextEdit class supports its own key sequences, for example Ctrl+Left Arrow for
move left one word, and Ctrl+Del for delete the word to the right, and of course simple
letters, a, b, Shift+A, Shift+B, that are inserted literally.

def toggleBold(self):
 self.setFontWeight(QFont.Normal \
 if self.fontWeight() > QFont.Normal else QFont.Bold)

PyQt supports several levels of boldness, but we have chosen to take a simple bold on or
off approach. The QTextEdit.fontWeight() method returns the font weight at the
current insertion point, and similarly the setFontWeight() method is applied at the
current insertion point or to the selected text. The QTextEdit is quite smart about
formatting, at least on Linux. For example, if text is selected the formatting is only applied
to the selection, whereas if there is no selection and the insertion point is at the end of the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 396 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

text, the formatting is applied from that point onwards, and if there is no selection and the
insertion point is in the middle of a word the formatting is applied to the whole word.

def toggleItalic(self):
 self.setFontItalic(not self.fontItalic())

def toggleUnderline(self):
 self.setFontUnderline(not self.fontUnderline())

Both italic and underline are simple on/off settings, and on Linux, toggling them works in
the same smart way as applying bold or other formatting.

def colorMenu(self):
 pixmap = QPixmap(22, 22)
 menu = QMenu("Colour")
 for text, color in (("&Black", Qt.black), ("B&lue", Qt.blue),
 ("Dark Bl&ue", Qt.darkBlue), ("&Cyan", Qt.cyan),
 ("Dar&k Cyan", Qt.darkCyan), ("&Green", Qt.green),
 ("Dark Gr&een", Qt.darkGreen),
 ("M&agenta", Qt.magenta),
 ("Dark Mage&nta", Qt.darkMagenta),
 ("&Red", Qt.red), ("&Dark Red", Qt.darkRed)):
 color = QColor(color)
 pixmap.fill(color)
 action = menu.addAction(QIcon(pixmap), text, self.setColor)
 action.setData(QVariant(color))
 self.ensureCursorVisible()
 menu.exec_(self.viewport().mapToGlobal(
 self.cursorRect().center()))

The color menu is invoked by Ctrl+K. To create the menu we iterate over a list of text's and
color constants, adding a new menu option for each one. We set the data of each action to
be the relevant color and use this in the setColor() implementation.

We want the menu to pop up at the insertion point, i.e., at the text cursor position. This is
not necessarily straightforward, because it is possible for the RichTextLineEdit to have
more text than it is wide enough to show, and the insertion point could be outside the
visible area.

We solve this problem by doing two things. Firstly, we call the base class's
QTextEdit.ensureCursorVisible() method; this has the effect of scrolling the
editor so that the insertion point is in the visible area—and does nothing if the insertion
point is already visible. Secondly, we pop up the menu at the center of the insertion point's
rectangle. The cursorRect() method returns a QRect that is in widget coordinates, so
we must convert the coordinates of the QPoint we get from QRect.center()
accordingly. We do this by calling viewport(), which effectively returns a widget that
has the exact dimensions of the visible area, and that knows what region of the editor it
represents. We then use the viewport widget's mapToGlobal() method to convert the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 397 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

point from the widget coordinate system to the global (screen) coordinate system that is
used by QMenu.exec_() to position itself.

def setColor(self):
 action = self.sender()
 if action is not None and isinstance(action, QAction):
 color = QColor(action.data())
 if color.isValid():
 self.setTextColor(color)

If the user chooses a color the setColor() method is called. We retrieve the color that
was stored in the calling action's user data, and apply that color to the text. Again, the same
logic used for bold, italic, and underlining is used to apply the color to the selected text, or
to the current word, or from the end of the text onwards.

def textEffectMenu(self):
 format = self.currentCharFormat()
 menu = QMenu("Text Effect")
 for text, shortcut, data, checked in (
 ("&Bold", "Ctrl+B", RichTextLineEdit.Bold,
 self.fontWeight() > QFont.Normal),
 ("&Italic", "Ctrl+I", RichTextLineEdit.Italic,
 self.fontItalic()),
 ...
 ("Subs&cript", None, RichTextLineEdit.Subscript,
 format.verticalAlignment() == \
 QTextCharFormat.AlignSubScript)):
 action = menu.addAction(text, self.setTextEffect)
 if shortcut is not None:
 action.setShortcut(QKeySequence(shortcut))
 action.setData(QVariant(data))
 action.setCheckable(True)
 action.setChecked(checked)
 self.ensureCursorVisible()
 menu.exec_(self.viewport().mapToGlobal(
 self.cursorRect().center()))

The text effects menu method, invoked by Ctrl+M or by a context menu event, is similar
in structure to the color menu method, but slightly more involved. We begin by retrieving
the text formatting that is currently in force, since we need this information to determine
whether to check the various menu options. Then we create a menu made from a list of
quadruples (text, shortcut, constant, checked status).

We have set keyboard shortcuts for some of the actions, for example, Ctrl+B for bold. The
reason we have not used standardized key sequences is that we have hard-coded the key
presses in the key press event handler shown earlier, and so we must be sure to match the
key presses that the handler is expecting.

In fact, these shortcuts have no effect in practice because they only exist for the lifetime of
the actions they are associated with and the actions only exist

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 398 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 13.3. The Text Effects Menu

while the menu exists, i.e., for the duration of the textEffectMenu() method. But this
does not matter since we have reimplemented the key event handler to provide these
shortcuts ourselves. Shortcuts in menus are only useful for permanent menus such as those
added to a main window's menu bar. So why do we bother with shortcuts in the menu at
all? Because adding the shortcuts makes them appear in the menu which helps the user to
learn them. It doesn't solve the problem of how the user finds out about the Ctrl+M and
Ctrl+K menus in the first place, but hopefully they will see the tooltip or read about them
in the application's manual.

The menu itself is created and popped up in exactly the same way as the color menu. If the
user clicks any of the text effects options the setTextEffect() method is called. We will
look at this method in two parts.

def setTextEffect(self):
 action = self.sender()
 if action is not None and isinstance(action, QAction):
 what = action.data().toInt()[0]
 if what == RichTextLineEdit.Bold:
 self.toggleBold()
 return
 if what == RichTextLineEdit.Italic:
 self.toggleItalic()
 return
 if what == RichTextLineEdit.Underline:
 self.toggleUnderline()
 return

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 399 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Each text effect menu action had a constant stored in its user data; this constant is retrieved
and held in the what variable. For the simple toggle actions, we only need to call the
appropriate toggle method and we are finished.

format = self.currentCharFormat()
if what == RichTextLineEdit.Monospaced:
 format.setFontFamily(self.monofamily)
elif what == RichTextLineEdit.Serif:
 format.setFontFamily(self.seriffamily)
elif what == RichTextLineEdit.Sans:
 format.setFontFamily(self.sansfamily)
if what == RichTextLineEdit.StrikeOut:
 format.setFontStrikeOut(not format.fontStrikeOut())
if what == RichTextLineEdit.NoSuperOrSubscript:
 format.setVerticalAlignment(
 QTextCharFormat.AlignNormal)
elif what == RichTextLineEdit.Superscript:
 format.setVerticalAlignment(
 QTextCharFormat.AlignSuperScript)
elif what == RichTextLineEdit.Subscript:
 format.setVerticalAlignment(
 QTextCharFormat.AlignSubScript)
self.mergeCurrentCharFormat(format)

To change the font family, strikeout format, or vertical alignment, we must retrieve the
current formatting, apply the change that the user has asked for, and then merge the
updated format with the current format to make it take effect.

We have now covered all the formatting options that the rich text line edit supports. Once
the user has entered their rich text we will no doubt want to retrieve it so that we can store
it, search it, or manipulate it. We could use the QTextEdit.toPlainText() method—
but that will strip out all the HTML leaving us no better off than if we had used a
QLineEdit. A more suitable alternative is to use QTextEdit.toHtml(), but the HTML
returned by this method is quite verbose since it must be general enough to cater for all
the Qt-supported HTML tags.

To put this in perspective, if we have the text, "The bold cat." (13 characters), where the
word "bold" is in bold and the word cat is colored red, the toHtml() method returns 503
characters:

<html><head><meta name="qrichtext" content="1" />
<style type="text/css"> p, li { white-space: pre-wrap; } </style>
</head>
<body style=" font-family:'Nimbus Sans L'; font-size:11pt;
font-weight:400; font-style:normal; text-decoration:none;">
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px;
margin-right:0px; -qt-block-indent:0; text-indent:0px;">The
bold
cat
.</p></body></html>

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 400 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

(We have added some newlines to make the output fit neatly on the page.) Since the rich
text line edit only needs to support a limited subset of tags, a simpler HTML could be used,
for example:

The bold cat.

This is a mere 49 characters. To achieve this simpler HTML format we have provided a
toSimpleHtml() method; it is a bit long so we will review it in three parts.

def toSimpleHtml(self):
 html = QString()
 black = QColor(Qt.black)
 block = self.document().begin()

We begin by creating an empty target QString and assuming that the text color is black.
The QTextDocument class, returned by QTextEdit.document(), provides a means of
iterating over the text and formatting that it contains. Essentially each major text
component, for example, a paragraph or a table, is contained in a "block", and we can
traverse the blocks using QTextDocument.begin() to retrieve the first block, and
QTextBlock.next() to retrieve each subsequent block. An empty document will have
an invalid first block.

Each text block contains one or more text "fragments", each of which has its own formatting
characteristics. In fact the structure of QTextDocuments is more complicated than this,
but we can ignore the additional details, for example, tables, lists, and images, since they
are not used in the rich text line edit.

while block.isValid():
 iterator = block.begin()
 while iterator != block.end():
 fragment = iterator.fragment()
 if fragment.isValid():
 format = fragment.charFormat()
 family = format.fontFamily()
 color = format.foreground().color()
 text = Qt.escape(fragment.text())
 if format.verticalAlignment() == \
 QTextCharFormat.AlignSubScript:
 text = QString("_{%1}").arg(text)
 elif format.verticalAlignment() == \
 QTextCharFormat.AlignSuperScript:
 text = QString("^{%1}").arg(text)
 if format.fontUnderline():
 text = QString("<u>%1</u>").arg(text)
 if format.fontItalic():
 text = QString("<i>%1</i>").arg(text)
 if format.fontWeight() > QFont.Normal:
 text = QString("%1").arg(text)
 if format.fontStrikeOut():
 text = QString("<s>%1</s>").arg(text)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 401 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For each text fragment in the current block we extract the character formatting, font family,
and text color. Then we extract the text itself with any HTML characters ("&", "<", and ">")
converted to the appropriate entities ("&", "<", and ">") by the Qt.escape()
function. We then check to see if the fragment is a subscript or superscript, surrounding
the text with appropriate HTML tags if necessary. Then, similar tests are done for other
formatting characteristics, specifically, underlining, italics, bold, and strikeout, and in
each case the text has the appropriate HTML tags added to it.

 if color != black or not family.isEmpty():
 attribs = ""
 if color != black:
 attribs += ' color="%s"' % color.name()
 if not family.isEmpty():
 attribs += ' face="%s"' % family
 text = QString("<font%1>%2")\
 .arg(attribs).arg(text)
 html += text
 iterator += 1
 block = block.next()
return html

If the font family is not empty, or if the color is not black, we must use a tag with
the face or color (or both) attributes. At the end of the fragment we append the text
that represents the fragment to the html string that holds the entire line of rich text. Since
each block may contain one or more fragments, we increment the iterator, dropping out
of the inner while loop when it equals QTextBlock.end(), i.e., after we have processed
the last fragment in the block. Then we call QTextBlock.next(), and process the next
block's fragments, finally dropping out of the outer while loop when we reach an invalid
block which signifies that all the blocks have been processed. And at the very end we return
the html string that contains the valid (but minimal) HTML necessary to represent the
rich text line edit's line of rich text.

This concludes the RichTextLineEdit class. We will make use of it in a couple of later
chapters. Although this subclass only provides a single line HTML editor, the techniques
we have seen can easily be applied to a QTextEdit subclass that is designed to edit entire
HTML documents. In such cases we would probably still provide some additional keyboard
support, for example Ctrl+B and Ctrl+I for bold and italic, and perhaps even the text effects
context menu. But the other text effects, colors, and formatting that is more appropriate
to larger documents such as lists and tables, we would provide through menu options and
toolbar buttons like any conventional HTML editor or word-processor.

Printing Documents
Getting printed output from PyQt applications can be achieved in a number of ways. One
approach is to produce output in a form that another program can print, for example

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 402 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

produce HTML for a web browser to print, or SVG for an SVG-savvy drawing program to
print. But this is not as convenient for users as having a printing facility within the
application itself, and to do this PyQt offers three main choices:

1. We can generate HTML, give it to a QTextDocument, and use
QTextDocument.print_() passing in a QPrinter, or
QTextDocument.drawContents(), passing in a QPainter to render the
document.

2. We can create a QTextDocument and retrieve a QTextCursor from it through which
we can generate the document programmatically, and again using the print_() or
drawContents() methods to render it.

3. We can create a QPainter to paint directly onto a QPrinter, i.e., on to the printed
pages. This is the most tedious approach, but provides the greatest level of control.

From Qt 4.2, users can produce PDF documents through the print dialog by checking the
print to file option. It is also possible to produce PDF documents programmatically. For
example, assuming that document is a QTextDocument:

printer = QPrinter()
printer.setPageSize(QPrinter.Letter)
printer.setOutputFormat(QPrinter.PdfFormat)
printer.setOutputFileName(filename)
document.print_(printer)

We will begin this section by looking at how to print images, in particular showing the
implementation of the filePrint() method used by the Image Changer application that
we covered in Chapter 6. In the rest of this section we will look at the three general printing
techniques listed above, and show how to print multi-page documents that include text,
tables, and images. For the general techniques we will show how to produce pages that
look like the one shown in Figure 13.4.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 403 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 13.4. A Page Printed using QPainter

The example application used to show the three general techniques is designed to print
customer statements, with each Statement object holding a company name, contact
name, address, and list of transactions, each of which is a (QDate, float) tuple. The
Statement class also provides a balance() method that returns the sum of the
transactions. We want to print the issuer's logo and address at the top right, below that
the date, and on the left, the customer's address, then a form letter where the contents
varies depending on whether the customer is in credit or debit, then a table of transactions,
and a closing paragraph. Naturally we also want each statement to begin on a fresh page.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 404 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We will assume that all the statements are held in a list called self.statements, and
that our printing is done using the methods of a form that holds these statements.

Printing Images
Back in Chapter 6 we had a MainWindow.filePrint() method for printing an image,
but we did not look at its implementation at that point because we had not covered
QPainter. Now that we have seen QPainter in Chapter 11, and have seen a generic "print
image" function, we can look at the implementation of the filePrint() method used by
the Image Changer application. (The source code is in chap06/imagechanger.pyw.)

Printing Images sidebar 359

def filePrint(self):
 if self.image.isNull():
 return
 if self.printer is None:
 self.printer = QPrinter(QPrinter.HighResolution)
 self.printer.setPageSize(QPrinter.Letter)
 form = QPrintDialog(self.printer, self)
 if form.exec_():
 painter = QPainter(self.printer)
 rect = painter.viewport()
 size = self.image.size()
 size.scale(rect.size(), Qt.KeepAspectRatio)
 painter.setViewport(rect.x(), rect.y(), size.width(),
 size.height())
 painter.drawImage(0, 0, self.image)

If this is the first time the user has tried to print an image the printer instance variable
will be None, so we instantiate it and provide a sensible default for the page size. (The
default page size is QPrinter.A4.) Once we have a printer object we create and pop up
a modal QPrintDialog; the user can use this to choose the printer they want to print on
and various other print-related options. This dialog varies from system to system since
PyQt uses the system's native print dialog if one is available. If the user clicks Print, we are
able to print the image.

PyQt has a notion of a "paint device", something on which lines, text, shapes, and images
can be painted. As we will see later, a widget is a paint device—its appearance is drawn,
with the illusions of depth achieved by drawing shadows and highlights. A QImage is a
paint device, and so is a QPrinter. All paint devices can be drawn on using a
QPainter, so we create a new QPainter primed to paint on the QPrinter.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 405 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We get the rectangle that represents the painter's viewport. The viewport is the painter's
drawing area, and in the case of a painter that is tied to a printer, this means the area of
the page that can actually be drawn on. (Many printers cannot draw right up to the edges
of the paper.) We then obtain the image's size as a QSize object, and then scale that object
to fit inside the printer's view-port rectangle while preserving the size's aspect ratio. This
has no effect if the image is already small enough to fit. Next, we change the printer's
viewport rectangle to match our scaled rectangle, preserving its original origin, but with
the scaled width and height. Finally we draw the image at the painter's origin and we are
done.

Viewport and Window coordinates 328

If the user wants a PDF file, they can invoke the print action, and choose the "print to file"
option. On some platforms it is also possible to get PostScript output by changing the print
to file filename's extension to .ps.

Printing Documents using HTML and QTextDocument
The first approach we will show is to create a string containing HTML, and use a
QTextDocument to render the HTML to a QPrinter. The printViaHtml() method is
quite long so we will look at it in three parts.

def printViaHtml(self):
 html = u""
 for statement in self.statements:
 date = QDate.currentDate().toString(DATE_FORMAT)
 address = Qt.escape(statement.address).replace(",", "
")
 contact = Qt.escape(statement.contact)
 balance = statement.balance()
 html += ("<p align=right></p>"
 "<p align=right>Greasy Hands Ltd."
 "
New Lombard Street"
 "
London
WC13 4PX
%s</p>"
 "<p>%s</p><p>Dear %s,</p>"
 "<p>The balance of your account is %s.") % (
 date, address, contact,
 QString("$ %L1").arg(float(balance), 0, "f", 2))
 if balance < 0:
 html += (" <p>Please remit the "
 "amount owing immediately.")
 else:
 html += (" We are delighted to have done business "
 "with you.")
 html += ("</p><p> </p><p>"
 "<table border=1 cellpadding=2 "
 "cellspacing=2><tr><td colspan=3>"
 "Transactions</td></tr>")

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 406 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We create an empty unicode variable called html. Then we iterate over all the statements.
The contact and address contain text so we take the precaution of escaping any HTML
characters. The address is stored as a single line with commas separating each part; we
replace commas with line breaks. The logo is in a resource file, as indicated by the :/ prefix;
it could have been any file in the filesystem, and could be in any of the image formats that
PyQt supports.

Up to now we have formatted strings using Python's % operator. But in some cases, using
PyQt's string formatting is advantageous. The QString class has an arg() method that
can be given an object, usually a string or a number, with some optional parameters. Each
arg() call replaces the left-most % n item in the QString with a suitable text. For example:

QString("Copied %1 bytes to %2").arg(5387).arg("log.txt")

results in the string

Copied 5387 bytes to log.txt

The % n items have no formatting syntax like Python's % operator, but formatting can be
achieved by passing additional arguments to the arg() method. It is also possible to
localize the formatting by using %Ln, for example

QString("Copied %L1 bytes to %2").arg(5387).arg("log.txt")

results in the string

Copied 5,387 bytes to log.txt

in the US and the UK, with the number coming out as 5.387 in some other countries.

In the case of our example, we want to print the amounts using two decimal digits, and
with the whole number part having its digits grouped in threes. This can be achieved by
using arg() with four arguments—the amount as a float, the minimum number of
characters for the number to occupy, the output format, "f" for normal floating-point
numbers, "e" for scientific notation, and the number of digits after the decimal place. It is
also possible to give a fifth argument, a padding character, to be used when the second
argument is used.

In the example we have used:

QString("$ %L1").arg(float(balance), 0, "f", 2))

which for a balance of 64 325.852 would output the string "$ 64,325.85" in the US.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 407 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We add some text which varies depending on whether the customer is in debit or credit.
Then we create the head of an HTML table with three columns with the first row spanning
all the columns and containing the title, "Transactions". The is an HTML entity
that signifies a non-breaking space.

for date, amount in statement.transactions:
 color, status = "black", "Credit"
 if amount < 0:
 color, status = "red", "Debit"
 html += ("<tr><td align=right>%s</td>"
 "<td>%s</td><td align=right>"
 "%s</td></tr>" % (
 date.toString(DATE_FORMAT), status, color,
 QString("$ %L1").arg(
 float(abs(amount)), 0, "f", 2)))
html += ("</table></p><p style='page-break-after=always;'>"
 "We hope to continue doing "
 "business with you,
Yours sincerely,"
 "

K. Longrey, Manager</p>")

We iterate over each transaction, adding a new row to the table for each one. Then we add
the closing table tag and add the final paragraph. We want a page break to follow the last
paragraph, and this can be achieved by setting the page-break-after style option to
always. This style option was added in Qt 4.2 and is ignored in earlier versions.

dialog = QPrintDialog(self.printer, self)
if dialog.exec_():
 document = QTextDocument()
 document.setHtml(html)
 document.print_(self.printer)

At the end we simply pop up a print dialog, and if the user clicks Print, we create a new
QTextDocument, set its text to the HTML we have generated in the html string, and tell
the document to print itself on the printer.

Creating an HTML string and printing it using a QTextDocument is probably the quickest
and easiest way to produce printed output in PyQt. The only downside is that it can be
tricky to exercise fine control, although we can use style attributes and set a style sheet.

Printing Documents using QCursor and QTextDocument
We will now see how to achieve the same thing by creating a QTextDocument
programmatically. The code is more than twice as long (as is the code that uses
QPainter that follows) but we cannot infer from this particular example that these other
techniques will necessarily require more code in general.

def printViaQCursor(self):
 dialog = QPrintDialog(self.printer, self)
 if not dialog.exec_():
 return

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 408 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 logo = QPixmap(":/logo.png")
 headFormat = QTextBlockFormat()
 headFormat.setAlignment(Qt.AlignLeft)
 headFormat.setTextIndent(
 self.printer.pageRect().width() - logo.width() - 216)
 bodyFormat = QTextBlockFormat()
 bodyFormat.setAlignment(Qt.AlignJustify)
 lastParaBodyFormat = QTextBlockFormat(bodyFormat)
 lastParaBodyFormat.setPageBreakPolicy(
 QTextFormat.PageBreak_AlwaysAfter)
 rightBodyFormat = QTextBlockFormat()
 rightBodyFormat.setAlignment(Qt.AlignRight)
 headCharFormat = QTextCharFormat()
 headCharFormat.setFont(QFont("Helvetica", 10))
 bodyCharFormat = QTextCharFormat()
 bodyCharFormat.setFont(QFont("Times", 11))
 redBodyCharFormat = QTextCharFormat(bodyCharFormat)
 redBodyCharFormat.setForeground(Qt.red)
 tableFormat = QTextTableFormat()
 tableFormat.setBorder(1)
 tableFormat.setCellPadding(2)

We have chosen to create the document only if the user clicks Print in the print dialog,
rather than creating it and only asking them at the end as we did before. We create a set
of text formats, some are QTextBlockFormats that have attributes that are applicable
to entire paragraphs, and others are QTextCharFormats with attributes that are
applicable to parts of paragraphs, such as words and individual characters. We use the
paragraph formats to set up text alignments, and the character formats to set up fonts and
colors.

The programmatic equivalent of setting the page-break-after style option in an HTML
<p> tag is to use the QTextBlockFormat.setPageBreakPolicy() method on a
paragraph format, but this is only available from Qt 4.2. In addition to the text and table
formats used in this example, there are also formats for lists, frames, and images.

document = QTextDocument()
cursor = QTextCursor(document)
mainFrame = cursor.currentFrame()
page = 1

Once we have the formats ready we create a QTextDocument. Then we create a
QTextCursor for the document which gives us the programmatic equivalent of the user's
insertion point in a QTextEdit.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 409 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Earlier we mentioned that QTextDocuments consist of a series of blocks; in fact they
consist of a root frame that itself contains a series of items which can be blocks (e.g., text
blocks and table blocks), or frames, in a potentially recursive structure. In our case we have
a document with a single root frame that contains a series of text blocks and tables. Each
cell in our tables holds a text block, and when we have finished inserting the cells in a table
we need to go back up the document's hierarchy to the point that follows the table (but is
not inside the table), so that we can insert the text that follows each table. It is for this
reason that we keep a reference to the currentFrame(), the one frame we are using, in
the mainFrame variable.

for statement in self.statements:
 cursor.insertBlock(headFormat, headCharFormat)
 cursor.insertImage(":/logo.png")
 for text in ("Greasy Hands Ltd.", "New Lombard Street",
 "London", "WC13 4PX",
 QDate.currentDate().toString(DATE_FORMAT)):
 cursor.insertBlock(headFormat, headCharFormat)
 cursor.insertText(text)
 for line in statement.address.split(", "):
 cursor.insertBlock(bodyFormat, bodyCharFormat)
 cursor.insertText(line)
 cursor.insertBlock(bodyFormat)
 cursor.insertBlock(bodyFormat, bodyCharFormat)
 cursor.insertText("Dear %s," % statement.contact)
 cursor.insertBlock(bodyFormat)
 cursor.insertBlock(bodyFormat, bodyCharFormat)
 balance = statement.balance()
 cursor.insertText(QString(
 "The balance of your account is $ %L1.").arg(
 float(balance), 0, "f", 2))
 if balance < 0:
 cursor.insertBlock(bodyFormat, redBodyCharFormat)
 cursor.insertText("Please remit the amount owing "
 "immediately.")
 else:
 cursor.insertBlock(bodyFormat, bodyCharFormat)
 cursor.insertText("We are delighted to have done "
 "business with you.")
 cursor.insertBlock(bodyFormat, bodyCharFormat)
 cursor.insertText("Transactions:")
 table = cursor.insertTable(len(statement.transactions), 3,
 tableFormat)

Once the document is set up and we have a QTextCursor through which we can insert
items into the document, we are ready to iterate over each of the statements.

For each paragraph we want to insert, we insert a new block with a paragraph and a
character format. We then insert the text or image we want the paragraph to contain. We
can insert empty paragraphs (to consume vertical space) by inserting a block without
inserting anything into it.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 410 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

To insert a table we must specify how many rows and columns it should have, as well as
its format.

row = 0
for date, amount in statement.transactions:
 cellCursor = table.cellAt(row, 0).firstCursorPosition()
 cellCursor.setBlockFormat(rightBodyFormat)
 cellCursor.insertText(date.toString(DATE_FORMAT),
 bodyCharFormat)
 cellCursor = table.cellAt(row, 1).firstCursorPosition()
 if amount > 0:
 cellCursor.insertText("Credit", bodyCharFormat)
 else:
 cellCursor.insertText("Debit", bodyCharFormat)
 cellCursor = table.cellAt(row, 2).firstCursorPosition()
 cellCursor.setBlockFormat(rightBodyFormat)
 format = bodyCharFormat
 if amount < 0:
 format = redBodyCharFormat
 cellCursor.insertText(QString("$ %L1").arg(
 float(amount), 0, "f", 2), format)
 row += 1

Each row of the table represents a single transaction, with a date, a text ("Debit" or
"Credit"), and the amount, colored red in the case of debits. To insert items into a table we
must obtain a QTextCursor that gives access to a cell at a specified row and column. We
do not have to insert a new block into a cell (unless we want more than one paragraph in
a cell), so we simply set the cell's paragraph format and insert the text we want.

cursor.setPosition(mainFrame.lastPosition())
cursor.insertBlock(bodyFormat, bodyCharFormat)
cursor.insertText("We hope to continue doing business "
 "with you,")
cursor.insertBlock(bodyFormat, bodyCharFormat)
cursor.insertText("Yours sincerely")
cursor.insertBlock(bodyFormat)
if page == len(self.statements):
 cursor.insertBlock(bodyFormat, bodyCharFormat)
else:
 cursor.insertBlock(lastParaBodyFormat, bodyCharFormat)
cursor.insertText("K. Longrey, Manager")
page += 1

Once we have finished populating a table and want to add items after it we must reset the
position of our text cursor to be just after the table. If we do not do this the cursor will
simply insert inside the table and we will end up with the rest of the first page inside the
table, and the second page inside the first, and so on recursively! To avoid this problem
we set the text cursor to be at the last position in the document, which is the position
following the last thing we inserted, i.e., just after the table.

Finishing the page is simply a matter of inserting additional blocks with the appropriate
formats, followed by inserting the relevant texts. For all pages except the last we set the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 411 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

last block's format to be lastParaBodyFormat which (using Qt 4.2) will ensure that
what follows will be on a fresh page.

document.print_(self.printer)

The very last statement is where we print the document on the printer. At this point the
document is complete, so we could call toHtml() on it to get it in HTML format if that
was preferred. It also means that we can use a QTextCursor in conjunction with a
QTextDocument to create HTML pages programmatically if we wanted.

The advantage of using QTextDocument, whether we give it an HTML string or whether
we populate it using a QTextCursor, is that we can avoid doing lots of calculations to see
where text should be placed on the page. The disadvantage is that PyQt puts page numbers
on our documents whether we like them or not, and does not give us fine positional control.

Printing Documents using QPainter
We will conclude this section by looking at how to print using QPainter. We have to do
all the position calculations ourselves, but can draw anything anywhere on the page,
without being limited to what can be represented by HTML or by a QTextDocument. Also,
the painting itself uses the same methods and techniques that we have seen in the previous
two chapters, since PyQt has a uniform approach to painting whether to widgets, to images,
or to printed pages.

def printViaQPainter(self):
 dialog = QPrintDialog(self.printer, self)
 if not dialog.exec_():
 return
 LeftMargin = 72
 sansFont = QFont("Helvetica", 10)
 sansLineHeight = QFontMetrics(sansFont).height()
 serifFont = QFont("Times", 11)
 fm = QFontMetrics(serifFont)
 DateWidth = fm.width(" September 99, 2999 ")
 CreditWidth = fm.width(" Credit ")
 AmountWidth = fm.width(" W999999.99 ")
 serifLineHeight = fm.height()
 logo = QPixmap(":/logo.png")
 painter = QPainter(self.printer)
 pageRect = self.printer.pageRect()
 page = 1

We begin by presenting the user with the print dialog, bailing out if they click Cancel. If
the print is to go ahead, we set up some fonts, widths, and line heights, and create a
QPainter to draw directly on the printer.

for statement in self.statements:
 painter.save()
 y = 0

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 412 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 x = pageRect.width() - logo.width() - LeftMargin
 painter.drawPixmap(x, 0, logo)
 y += logo.height() + sansLineHeight
 painter.setFont(sansFont)
 painter.drawText(x, y, "Greasy Hands Ltd.")
 y += sansLineHeight
 painter.drawText(x, y, "New Lombard Street")
 y += sansLineHeight
 painter.drawText(x, y, "London")
 y += sansLineHeight
 painter.drawText(x, y, "WC13 4PX")
 y += sansLineHeight
 painter.drawText(x, y,
 QDate.currentDate().toString(DATE_FORMAT))
 y += sansLineHeight
 painter.setFont(serifFont)
 x = LeftMargin
 for line in statement.address.split(", "):
 painter.drawText(x, y, line)
 y += serifLineHeight
 y += serifLineHeight

For each statement we print the logo, address, date, and customer's address. We save the
painter's state at the beginning of each statement and restore it at the end of each statement
so that we always start with a clean slate.

painter.drawText(x, y, "Dear %s," % statement.contact)
y += serifLineHeight
balance = statement.balance()
painter.drawText(x, y, QString("The balance of your "
 "account is $ %L1").arg(float(balance), 0, "f", 2))
y += serifLineHeight
if balance < 0:
 painter.setPen(Qt.red)
 text = "Please remit the amount owing immediately."
else:
 text = ("We are delighted to have done business "
 "with you.")
painter.drawText(x, y, text)

After the addresses we print the form letter with its text depending on the state of the
account as usual.

painter.setPen(Qt.black)
y += int(serifLineHeight * 1.5)
painter.drawText(x, y, "Transactions:")
y += serifLineHeight
option = QTextOption(Qt.AlignRight|Qt.AlignVCenter)

For the table of transactions we begin by writing the table's title and then we create a
QTextOption object. These objects can be used to specify a variety of text options
including alignment and word-wrapping.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 413 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

for date, amount in statement.transactions:
 x = LeftMargin
 h = int(fm.height() * 1.3)
 painter.drawRect(x, y, DateWidth, h)
 painter.drawText(
 QRectF(x + 3, y + 3, DateWidth - 6, h - 6),
 date.toString(DATE_FORMAT), option)
 x += DateWidth
 painter.drawRect(x, y, CreditWidth, h)
 text = "Credit"
 if amount < 0:
 text = "Debit"
 painter.drawText(
 QRectF(x + 3, y + 3, CreditWidth - 6, h - 6),
 text, option)
 x += CreditWidth
 painter.drawRect(x, y, AmountWidth, h)
 if amount < 0:
 painter.setPen(Qt.red)
 painter.drawText(
 QRectF(x + 3, y + 3, AmountWidth - 6, h - 6),
 QString("$ %L1").arg(float(amount), 0, "f", 2),
 option)
 painter.setPen(Qt.black)
 y += h

To draw the transactions table we must draw both the text and the lines ourselves. We
have cheated slightly by drawing a rectangle for each of the table's cells rather than just
drawing the lines that separate the cells. This means that rectangles that share common
lines, for example the right edge of one rectangle and the left edge of the rectangle beside
it, will overstrike one another—but visually this is not noticable.

y += serifLineHeight
x = LeftMargin
painter.drawText(x, y, "We hope to continue doing "
 "business with you,")
y += serifLineHeight
painter.drawText(x, y, "Yours sincerely")
y += serifLineHeight * 3
painter.drawText(x, y, "K. Longrey, Manager")

The final paragraph is the same as the one in the previous two methods, but this time we
will add a disclaimer at the bottom of the page.

x = LeftMargin
y = pageRect.height() - 72
painter.drawLine(x, y, pageRect.width() - LeftMargin, y)
y += 2
font = QFont("Helvetica", 9)
font.setItalic(True)
painter.setFont(font)
option = QTextOption(Qt.AlignCenter)
option.setWrapMode(QTextOption.WordWrap)
painter.drawText(
 QRectF(x, y,
 pageRect.width() - 2 * LeftMargin, 31),

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 414 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 "The contents of this letter are for information "
 "only and do not form part of any contract.",
 option)

It is much easier adding footers when using a QPainter because we know exactly what
the page's dimensions are and can paint at any (x, y) position we like.

page += 1
if page <= len(self.statements):
 self.printer.newPage()
painter.restore()

Finally, we switch to a new page after every statement except the last one. This works with
all Qt 4 versions, unlike the previous two approaches that can only paginate properly with
Qt 4.2 or later.

Although printing using a QPainter requires more care and calculation than using a
QTextDocument, it does give us complete control over the output.

Summary
Using QSyntaxHighlighter to provide syntax highlighting for plain text that has a
regular syntax, such as source code, is quite straightforward. Handling multi-line
constructs can also be done quite easily. The hardest part is handling ambiguous and some
special cases, such as quotes inside quoted strings or start of comment symbols that are
inside quotes or other constructs that cancel their syntactic meaning.

The QTextEdit class is very powerful and versatile. Out of the box it can be used to edit
both plain text and HTML. It is not difficult to create QTextEdit subclasses that provide
key and context menu event handlers to give the user basic formatting options, and the
techniques can easily be extended to provide menus and toolbars through which users
could add, edit, and delete, lists, tables, and images, and could apply formatting whether
at the character level, such as underlining and strikeout, or at the paragraph level, such as
aligning left, right, centered, or justified.

The HTML returned by QTextEdit.toHtml() is rather verbose because it must support
a wide range of HTML tags. We can provide our own methods to traverse a
QTextDocument's structure and output our own format. In the example we output a much
simpler and shorter HTML, but the same approach could be used to output XML, or other
kinds of markup.

Applying most simple formatting to the underlying QTextDocument used by
QTextEdit, QTextBrowser, QLabel, and QGraphicsTextItem is quite

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 415 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

straightforward. Applying more advanced formatting, such as tables can be trickier
because we must be careful not to keep nesting blocks inside each other.

Printed documents can be produced indirectly by outputting HTML or SVG, or directly by
using a QPrinter to print on a physical printer, or from Qt 4.2, to output PDF files. Printed
documents can be produced by creating a string of HTML and giving that to a
QTextDocument, or by programmatically inserting items into a blank
QTextDocument. In both cases the QTextDocument can be asked to print itself on a
printer, or to draw itself on a QPainter.

Using HTML is the easiest approach for those familiar with HTML tags and a fair amount
of control can be achieved by using style attributes and a style sheet. Using a
QTextCursor to insert into a QTextDocument makes finer control quite easy to achieve,
especially for those unfamiliar with style sheets. The greatest control over page appearance
is achieved by using a QPainter directly. This is also the easiest approach for those who
are comfortable using the QPainter API, or who want to reuse the same code for painting
and for printing. Such code reuse can also be achieved using a QTextDocument, since
they can be rendered in QLabels and other widgets that use QTextDocuments, drawn
onto arbitrary paint devices such as widgets using a QPainter, and also printed.

Exercise
Add two new actions, Indent and Unindent, with shortcuts Ctrl+] and Ctrl+[. Suitable
icons are provided in the images subdirectory, and are already in the resources.qrc
file. Both actions should be added to the edit menu and to the edit toolbar. Implement the
methods editIndent() and editUnindent(). They should indent or unindent the
current line by inserting or removing four spaces at the beginning of the line, no matter
where the insertion point is in the line. At the end, the insertion point should be at the
same relative position as it was before the indent or unindent. The actions should be
instance variables and should only be enabled if the document is not empty.

Make sure that you use QTextCursor.beginEditBlock() and
QTextCursor.endEdit-Block() so that the indent or unindent can be undone as a
single action—QTextEdit supports Ctrl+Z for undo. The two methods can be written in
a total of about 20 lines.

If you want to achieve something more ambitious, try extending the two methods so that
if there is a selection, the indent or unindent is applied to all the lines in the selection. This
will add about another 40 lines, and is slightly tricky. Make sure that at the end the original
selection is in place.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 416 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

You will need to read the documentation for QTextCursor and especially the anchor
(), position(), setPosition(), and movePosition() methods.

A solution is provided in chap13/pythoneditor_ans.pyw.

14. Model/View Programming
• Using the Convenience Item Widgets
• Creating Custom Models
• Creating Custom Delegates

Model/view programming is a technique that involves separating data from its visual
representation. It was first popularized as the MVC (model/view/controller) paradigm
used in the Smalltalk programming language.

A "model" is a class that provides a uniform interface through which data items can be
accessed. A "view" is a class that can present the data items from a model to the user on-
screen. A "controller" is a class that mediates between the user interface (e.g., mouse events
and key presses) to provide a means by which users can manipulate data items.

The MVC approach offers several benefits. For example, huge datasets can be handled,
because only the data that is actually displayed or edited is read or written from or to the
data source. Different views of the same dataset access the same underlying data with no
data duplication: This is useful for viewing the same data in different ways using two or
more views, or for viewing different parts of a large dataset. Also, if we change how the
dataset is stored, for example, from a binary file to a database, only the model needs to be
adapted—all the logic in the view and the controller will continue to work because the
model fully insulates them from the data.

PyQt uses a slight variation on MVC, called model/view/delegate, that provides all the
same benefits as MVC. Both are depicted schematically in Figure 14.1. The key difference
is that some of the functionality that classic MVC reserves for the controller can be
implemented either in the delegate or in the model with the model/view/delegate
approach.

Figure 14.1. Model/View/Controller and Model/View/Delegate

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 417 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Conceptually the model/view/delegate approach works like this: The data is read and
written from and to the data source by the model. The view asks the model for the data
items that the view wants to display, i.e., those that are visible in the user interface. For
each item that the view displays, it gives the item and a painter to the delegate, and asks
the delegate to paint the item. Similarly, if the user initiates editing, the view asks the
delegate to provide a suitable editor, and if the user accepts their edit (i.e., if the user does
not press Esc to cancel), the updated data is passed back to the model. An editor can be
any widget, and is drawn in-place exactly on top of the item, giving the application's user
the illusion that the item has become editable.

Every data item in the model (and therefore implicitly every item of data in the dataset),
can be identified by a unique QModelIndex. Each model index has three important
attributes: a row, a column, and a parent.

1. For one dimensional models (e.g., lists) only the row is used.
2. For two dimensional models (e.g., tables, including database tables) only the row and

column are used.
3. For hierarchical models (e.g., trees) all three attributes are used.

Although QModelIndexes can refer to any data item in any model, we need to bear in
mind that conceptually there are really two kinds of model. The first kind are tables, which
includes lists since these are just tables with a single column. When we work with tables
we work in terms of rows and columns. The second kind are trees. For trees we work in
terms of parents and children. (It is possible to take a rows and columns approach with
trees, but this goes against the grain and will lead to slow and difficult to maintain code.)

No matter what the underlying dataset, whether the data is in memory, databases, or files,
PyQt models provide the same uniform interface for data access—in particular the
QAbstractItemModel.data() and QAbstractItemModel.setData() methods. It
is also possible to create custom models that contain the dataset inside themselves, for
example a model that is a wrapper around a dictionary or a list.

All data held in a model is stored as QVariants. This does not mean that all the dataset's
data must be QVariants—the model is an interface to a dataset and in any given session
may only ever access a small portion of the entire dataset, so only those data items that
are actually used will be stored as QVariants, and then only in the model. The model is
responsible for converting from the underlying dataset's data types to and from the
QVariants the model uses internally.

Some PyQt widgets, including QListWidget, QTableWidget, and QTreeWidget, are
views with models and delegates aggregated inside them. These are the convenience item

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 418 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

view widgets and they are especially useful for small and ad-hoc datasets. We will see them
in use in this chapter's first section.

PyQt also provides some pure view widgets, including QListView, QTableView, and
QTreeView. These must be used in conjunction with external models, either ones we
create ourselves, or one of the built-in models such as QStringListModel,
QDirModel, or QSqlTableModel. In the second section we will see how to create a
custom model that can be used with a view widget.

All the convenience views and pure views make use of a default delegate that controls how
data items are presented and edited. In this chapter's last section we will see how to create
a custom delegate to exercise complete control over the editing and presentation of data
items. Custom delegates can be used with any view, whether it is a convenience view or a
pure view.

This chapter provides a foundation in using PyQt's model/view classes. In Chapter 15, we
will see how to use the model/view classes to work with databases, and in Chapter 16, we
will cover more advanced uses, including the creation of custom views, improving code
reuse in delegates, and presenting tabular data in trees.

We use the same dataset for all the examples in this chapter to make it easier to compare
and contrast the techniques used. The dataset's items are described in the first section.

Using the Convenience Item Widgets
The convenience item widgets are view widgets that have built-in models. They use a
default delegate for presenting and editing data, but this can be replaced by a custom
delegate if we wish.

The screenshot in Figure 14.2 shows the same dataset in three different convenience view
widgets. This means that the data is copied into each widget separately, so there is
considerable data duplication. Another issue is that if we allow the user to edit the data,
we must write code to ensure that all the views stay in sync. These problems would not
exist if we used a custom model, as we will see in the next section.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 419 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 14.2. QListWidget, QTableWidget, and QTreeWidget in Action

The dataset we are using is a set of information about container ships. Each ship is
represented by a Ship object, defined in the chap14/ships.py module.

class Ship(object):

 def __init__(self, name, owner, country, teu=0, description=""):
 self.name = QString(name)
 self.owner = QString(owner)
 self.country = QString(country)
 self.teu = teu
 self.description = QString(description)

 def __cmp__(self, other):
 return QString.localeAwareCompare(self.name.toLower(),
 other.name.toLower())

The code above is the complete Ship class. The integer teu attribute stands for "twenty-
foot equivalent units", i.e., how many 20' containers can the ship hold. (Nowadays most
containers are 40', so each counts as 2 TEUs.) The name, owner, and country attributes
are all plain text, but the description attribute holds one line of HTML.

The __cmp__() special method provides a means of comparison for the purpose of
sorting. The QString.localeAwareCompare() method does string comparisons in a
locale-sensitive way, for example, correctly handling accented characters.

Since we are using convenience views with no custom delegates, we only have limited
control over the editing of the data items. For example, we cannot offer drop-down
comboboxes for editing owners and countries, or use spinboxes for editing TEUs. Also, the
description texts are shown raw, rather than being interpreted as HTML. We will of course
solve all these problems as the chapter progresses, but for now we will just focus on using
the convenience views.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 420 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For the list, table, and tree items, that are used with the convenience view widgets, it is
possible to set their font, text alignment, text color, and background color, and to give them
an icon or make them checkable. For the pure view widgets we can exercise similar control
over the appearance of items through the custom model; or exercise complete control over
both the appearance and editing of items by using a custom delegate.

The code for this section's example is in chap14/ships-dict.pyw. The data is held in
a Python dictionary that itself is wrapped in the ships.ShipContainer class. We will
only discuss the code relevant to model/view programming here—the rest of the code uses
ideas and idioms that we have already seen earlier in the book, for example in Chapter 8,
and is not hard to follow.

class MainForm(QDialog):

 def __init__(self, parent=None):
 super(MainForm, self).__init__(parent)
 listLabel = QLabel("&List")
 self.listWidget = QListWidget()
 listLabel.setBuddy(self.listWidget)

 tableLabel = QLabel("&Table")
 self.tableWidget = QTableWidget()
 tableLabel.setBuddy(self.tableWidget)

 treeLabel = QLabel("Tre&e")
 self.treeWidget = QTreeWidget()
 treeLabel.setBuddy(self.treeWidget)

For each convenience view we create a label and set up a buddy to make keyboard
navigation easier. The layout code is similar to what we have seen before so we have omitted
it and will just concern ourselves with the connections and creating the data structure.

self.connect(self.tableWidget,
 SIGNAL("itemChanged(QTableWidgetItem*)"),
 self.tableItemChanged)
self.connect(addShipButton, SIGNAL("clicked()"), self.addShip)
self.connect(removeShipButton, SIGNAL("clicked()"),
 self.removeShip)
self.connect(quitButton, SIGNAL("clicked()"), self.accept)

self.ships = ships.ShipContainer(QString("ships.dat"))
self.setWindowTitle("Ships (dict)")

By default list widgets are not editable, so all users can do is select an item. This is also
true of tree widgets. But table widgets are editable by default, with users able to initiate
editing by pressing F2 or by double-clicking a cell. We can exercise full control over whether
a view widget is editable using QAbstractItemView.setEditTriggers(), so for
example, we can make tables read-only or lists editable.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 421 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This application allows users to edit ships data in the table, and to add and remove ships.
It also keeps all three views up-to-date by repopulating them after the data is loaded, and
whenever a change occurs.

def populateList(self, selectedShip=None):
 selected = None
 self.listWidget.clear()
 for ship in self.ships.inOrder():
 item = QListWidgetItem(QString("%1 of %2/%3 (%L4)") \
 .arg(ship.name).arg(ship.owner).arg(ship.country) \
 .arg(ship.teu))
 self.listWidget.addItem(item)
 if selectedShip is not None and selectedShip == id(ship):
 selected = item
 if selected is not None:
 selected.setSelected(True)
 self.listWidget.setCurrentItem(selected)

This method, like the other populating methods, is used both to populate the widget, and
also to select the item that corresponds to the selectedShip—a Ship's id()—if one is
passed in.

We begin by clearing the widget. Then we iterate over every ship in the ships container.
The inOrder() method is provided by our custom ShipContainer class. For each ship
we create a single list widget item that holds a single string. We use QString.arg() so
that we can use %L to show the TEU's with the appropriate digit separators (e.g., commas).

QString .arg() 398

If we reach a list widget item that is showing the selected ship, we keep a reference to the
item in selected, and after the list widget has been populated we make the selected item
both current and selected.

def populateTable(self, selectedShip=None):
 selected = None
 self.tableWidget.clear()
 self.tableWidget.setSortingEnabled(False)
 self.tableWidget.setRowCount(len(self.ships))
 headers = ["Name", "Owner", "Country", "Description", "TEU"]
 self.tableWidget.setColumnCount(len(headers))
 self.tableWidget.setHorizontalHeaderLabels(headers)

The populate table method is quite similar to the populate list method. We begin by
clearing the table—this clears both the cells and also the vertical and horizontal headers
(the row numbers and column titles). We then set the number of rows and columns, as
well as the column titles.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 422 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We want users to be able to click a column to have the table sort by that column's contents.
This functionality is built into QTableWidget, but must be switched off before populating
the table.[*] We will switch sorting back on once the table is populated.

[*] In Qt 4.0 and 4.1, forgetting to switch off sorting before repopulating a table is harmless, but from Qt 4.2 it must be done.

for row, ship in enumerate(self.ships):
 item = QTableWidgetItem(ship.name)
 item.setData(Qt.UserRole, QVariant(long(id(ship))))
 if selectedShip is not None and selectedShip == id(ship):
 selected = item
 self.tableWidget.setItem(row, ships.NAME, item)
 self.tableWidget.setItem(row, ships.OWNER,
 QTableWidgetItem(ship.owner))
 self.tableWidget.setItem(row, ships.COUNTRY,
 QTableWidgetItem(ship.country))
 self.tableWidget.setItem(row, ships.DESCRIPTION,
 QTableWidgetItem(ship.description))
 item = QTableWidgetItem(QString("%L1") \
 .arg(ship.teu, 8, 10, QChar(" ")))
 item.setTextAlignment(Qt.AlignRight|Qt.AlignVCenter)
 self.tableWidget.setItem(row, ships.TEU, item)
self.tableWidget.setSortingEnabled(True)
self.tableWidget.resizeColumnsToContents()
if selected is not None:
 selected.setSelected(True)
 self.tableWidget.setCurrentItem(selected)

For each ship we must create a separate table item for each cell in the row that is used to
show its data. The column indexes, NAME, OWNER, and so on, are integers from the
ships module.

In the first item of each row we set the text (the ship's name), and also as user data, the
ship's ID. Storing the ID gives us a means of going from a table item to the ship that the
item's row represents. This works because the ShipContainer is a dictionary whose keys
are ship IDs and whose values are ships.

For simple text items we can usually create the item and insert it into the table in a single
statement: We have done this for the owner, country, and description attributes. But if we
want to format the item or store user data in it, we must create the item separately, then
call its methods, and finally put it in the table with setItem(). We used this second
approach to store the ships' IDs as user data, and also to right-align the TEU values.

The TEU values are integers, and the QString.arg() method used takes four arguments:
an integer, a minimum field width, a number base, and a character to pad with, should
padding be necessary to reach the minimum field width.

Once the table is populated we switch sorting back on, resize each column to the width of
its widest cell, and make the selected item (if any) current and selected.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 423 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Populating lists and tables is very similar because they both use a rows and columns
approach. Populating trees is quite different because we must use a parents and children
approach. The tree view of the ships data has two columns. The first column is the tree
with the root items being countries, the next level items being owners, and the bottom level
items being the ships themselves. The second column just shows the TEUs. We could have
added a third column to show the descriptions, but doing so does not make any difference
to understanding how the tree widget works.

def populateTree(self, selectedShip=None):
 selected = None
 self.treeWidget.clear()
 self.treeWidget.setColumnCount(2)
 self.treeWidget.setHeaderLabels(["Country/Owner/Name", "TEU"])
 self.treeWidget.setItemsExpandable(True)
 parentFromCountry = {}
 parentFromCountryOwner = {}

We start off in a similar way to before, clearing the tree, and setting up its columns and
column titles. We also set the tree's items to be expandable. We will explain the two
dictionaries in a moment.

for ship in self.ships.inCountryOwnerOrder():
 ancestor = parentFromCountry.get(ship.country)
 if ancestor is None:
 ancestor = QTreeWidgetItem(self.treeWidget,
 [ship.country])
 parentFromCountry[ship.country] = ancestor
 countryowner = ship.country + "/" + ship.owner
 parent = parentFromCountryOwner.get(countryowner)
 if parent is None:
 parent = QTreeWidgetItem(ancestor, [ship.owner])
 parentFromCountryOwner[countryowner] = parent
 item = QTreeWidgetItem(parent, [ship.name,
 QString("%L1").arg(ship.teu)])
 item.setTextAlignment(1, Qt.AlignRight|Qt.AlignVCenter)
 if selectedShip is not None and selectedShip == id(ship):
 selected = item
 self.treeWidget.expandItem(parent)
 self.treeWidget.expandItem(ancestor)

Each ship must have an owner parent in the tree, and each owner must have a country
parent in the tree.

For each ship we check to see if there is an item in the tree for the ship's country. We do
this by looking in the parentFromCountry dictionary. If there is not, then we create a
new country item with the tree widget as its parent, and keep a reference to the item in the
dictionary. At this point we have either retrieved or created the country (ancestor) item.

Then we check to see if there is an item for the ship's owner in the tree. We look in the
parentFromCountryOwner dictionary for this. Again, if there is not, we create a new

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 424 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

owner item, with a parent of the country (ancestor) item we just found or created, and
keep a reference to the owner item in the dictionary. At this point we have either retrieved
or created the owner (parent) item. Now we create a new item for the ship with the owner
as its parent.

The reason that we have a parentFromCountryOwner rather than a
parentFromOwner dictionary is that a particular owner may operate in more than one
country.

Tree widget items can have multiple columns, which is why we pass them a list in addition
to their parent when we create them. We only use the additional columns for ships, just
one extra column in fact, to store the ships' TEUs. We right align the TEU number by calling
QTreeWidgetItem.setTextAlignment() passing the column number as its first
argument.

When adding items to convenience view widgets, we can either create the items with no
parent and then add them, for example using QTableWidget.setItem(), or we can
create them with a parent, in which case PyQt will add them for us. We have chosen this
second approach for populating the tree.

We have also opted to expand every item so that the tree is fully expanded from the start.
This is fine for relatively small trees, but not recommended for large ones.

self.treeWidget.resizeColumnToContents(0)
self.treeWidget.resizeColumnToContents(1)
if selected is not None:
 selected.setSelected(True)
 self.treeWidget.setCurrentItem(selected)

We finish by resizing the two columns and making the selected item (if any) current and
selected.

We have left the list and tree views in their default read-only state. This means that the
only way that data can be changed is if the user edits items in the table or if they add or
remove ships, so in all these cases we must make sure that we keep the views in sync. In
the case of editing, the tableItemChanged() method is called whenever an edit is
completed. Users complete an edit by changing focus, for example, clicking outside the
item or by pressing Tab, or by pressing Enter; they cancel an edit by pressing Esc.

def tableItemChanged(self, item):
 ship = self.currentTableShip()
 if ship is None:
 return
 column = self.tableWidget.currentColumn()
 if column == ships.NAME:
 ship.name = item.text().trimmed()
 elif column == ships.OWNER:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 425 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 ship.owner = item.text().trimmed()
 elif column == ships.COUNTRY:
 ship.country = item.text().trimmed()
 elif column == ships.DESCRIPTION:
 ship.description = item.text().trimmed()
 elif column == ships.TEU:
 ship.teu = item.text().toInt()[0]
 self.ships.dirty = True
 self.populateList()
 self.populateTree()

If the user edits an item in the table we retrieve the corresponding ship and update the
appropriate attribute. We use QString.trimmed() to get rid of any leading and trailing
whitespace.[*] We don't have to do anything to the table itself since the edit has already
updated it, so we simply repopulate the list and the tree. Repopulating like this is fine for
small datasets (up to hundreds of items), but for larger datasets it can be noticably slow.
The solution is to only update those items that have been changed and that are visible in
the widget. This is done automatically if we use a custom model with a view widget, as we
will see in the next section.

[*] The QString.simplified() method is also very handy. It removes whitespace from the ends and also reduces each internal sequence of one or more whitespace
characters to a single space.

def currentTableShip(self):
 item = self.tableWidget.item(self.tableWidget.currentRow(), 0)
 if item is None:
 return None
 return self.ships.ship(item.data(Qt.UserRole).toLongLong()[0])

The QTableWidget.item() method returns the table item for the given row and
column. We always want the item for the current row and the first column since it is in
these items that we store each row's corresponding ship ID.

We then use the ShipContainer.ship() method to retrieve the ship with the given ID.
This is fast because the ships are held in a dictionary whose keys are their IDs.

def addShip(self):
 ship = ships.Ship(" Unknown", " Unknown", " Unknown")
 self.ships.addShip(ship)
 self.populateList()
 self.populateTree()
 self.populateTable(id(ship))
 self.tableWidget.setFocus()
 self.tableWidget.editItem(self.tableWidget.currentItem())

Adding a new ship is comparatively easy, in part because we don't do any validation. We
simply create a new ship with "unknown" values (the leading spaces are to make the values
stand out), and add the ship to the ships dictionary. Then we repopulate the list, tree,
and table, all of which will retrieve all the ships, including the one we have just created.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 426 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We pass the new ship's ID to the populate table method to make sure that its first column
is the current and selected table item, and give it the keyboard focus. The editItem()
call is the programmatic equivalent of the user pressing F2 or double-clicking to initiate
editing, and results in the first field, the ship's name, being editable. The user can edit the
remaining fields just by pressing Tab, since the editing state will be preserved until they
leave the row or press Enter (or cancel by pressing Esc).

def removeShip(self):
 ship = self.currentTableShip()
 if ship is None:
 return
 if QMessageBox.question(self, "Ships - Remove",
 QString("Remove %1 of %2/%3?").arg(ship.name) \
 .arg(ship.owner).arg(ship.country),
 QMessageBox.Yes|QMessageBox.No) == QMessageBox.No:
 return
 self.ships.removeShip(ship)
 self.populateList()
 self.populateTree()
 self.populateTable()

Removing ships is even easier than adding them. We retrieve the current ship and then
pop up a message box asking the user if they are sure they want to remove the ship. If they
say yes we remove the ship from the ShipContainer and then repopulate the view
widgets.

Although using three different views as we have done here is unconventional, the
techniques we have used, particularly with the QTableWidget are perfectly general.

The convenience widgets are very useful for small and ad-hoc datasets, and can be used
without necessarily having a separate dataset, but being used to show, edit, and store the
data themselves. The reason we chose to separate out the data in this example was to
prepare the ground for using the model/view techniques, and in particular custom models,
the subject of the next section.

Creating Custom Models
In this section we will create a custom model to hold the ship data, and display the same
model in two different table views. The user can scroll the tables independently, and can
edit the data in either of them, safe in the knowledge that any changes will be automatically
reflected in both views.

We will begin by showing extracts from the application's main form. This will show us
some of the model/view API in use. Then we will look at the implementation of the model
itself. One important benefit of PyQt's model/view architecture is that the same coding

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 427 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

patterns are used again and again, so once we know how to create one table model, we
know how to create any table (or list) model.

The model is provided by class ShipTableModel in chap14/ships.py and the
application is in chap14/ships-model.pyw. We have improved the appearance of the
data in the view by setting background and foreground colors, but these could have been
done in the convenience views by calling the appropriate methods on the table items. The
problems that existed in the previous example, in particular no comboboxes for owners or
countries, no spinbox for TEUs, and showing the HTML description text raw, remain.
These can only be solved by using a delegate, something we will do in the next section.

Figure 14.3. A Custom Table Model in Two QTableViews

Implementing the View Logic
Superficially it would appear that there is no difference between what we can achieve using
a convenience view with its built-in model, and a pure view with a separate model. In the
previous example we had three views presenting the same underlying data, and it was our
responsibility to keep them in sync. In this example we will use two views on the same
data, and can leave the work of synchronization to PyQt since both views use the same
model. Another benefit is that the views only retrieve or store data that is actually seen or
edited, and this can give considerable performance benefits when using large datasets.

We will begin with some extracts from the form's initializer.

class MainForm(QDialog):

 def __init__(self, parent=None):
 super(MainForm, self).__init__(parent)

 self.model = ships.ShipTableModel(QString("ships.dat"))
 tableLabel1 = QLabel("Table &1")
 self.tableView1 = QTableView()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 428 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 tableLabel1.setBuddy(self.tableView1)
 self.tableView1.setModel(self.model)
 tableLabel2 = QLabel("Table &2")
 self.tableView2 = QTableView()
 tableLabel2.setBuddy(self.tableView2)
 self.tableView2.setModel(self.model)

First we create a new model. Then we create two table views and accompanying labels to
ease navigation. Each of the table views is given the same model to work on. We have
omitted the layout code since it is not relevant.

for tableView in (self.tableView1, self.tableView2):
 header = tableView.horizontalHeader()
 self.connect(header, SIGNAL("sectionClicked(int)"),
 self.sortTable)
self.connect(addShipButton, SIGNAL("clicked()"), self.addShip)
self.connect(removeShipButton, SIGNAL("clicked()"),
 self.removeShip)
self.connect(quitButton, SIGNAL("clicked()"), self.accept)

self.setWindowTitle("Ships (model)")

When we use a custom model we must handle sorting ourselves. We connect each table
view's horizontal (columns) header to a sortTable() method. The other connections are
similar to what we had before. But notice that we have no connection for when a table item
is edited: There is no need since the view will handle editing for us, automatically reflecting
changes back into the model which in turn will keep both views up-to-date.

def accept(self):
 if self.model.dirty and \
 QMessageBox.question(self, "Ships - Save?",
 "Save unsaved changes?",
 QMessageBox.Yes|QMessageBox.No) == QMessageBox.Yes:
 try:
 self.model.save()
 except IOError, e:
 QMessageBox.warning(self, "Ships - Error",
 "Failed to save: %s" % e)
 QDialog.accept(self)

If the user terminates the application and there are unsaved changes we give them the
chance to save before exiting. The model's dirty attribute and its save() method are
our own extensions to the QAbstractTableModel's API, so that the model can load and
save its data from and to files.

The base class for models is QAbstractItemModel, but rows/columns based models
normally inherit QAbstractTableModel, one of QAbstractItemModel's subclasses.

def sortTable(self, section):
 if section in (ships.OWNER, ships.COUNTRY):
 self.model.sortByCountryOwner()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 429 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 else:
 self.model.sortByName()
 self.resizeColumns()

We have only provided two sorts but there is no reason why more could not be supported.
Again, the sortBy*() methods are extensions that we have added to the standard API.
When the user sorts we take the opportunity to resize the columns. We do this because
editing may have changed the widths that the columns need, and since the sort will change
the view anyway, it seems a sensible place to resize without disturbing the user.

def resizeColumns(self):
 for tableView in (self.tableView1, self.tableView2):
 for column in (ships.NAME, ships.OWNER, ships.COUNTRY,
 ships.TEU):
 tableView.resizeColumnToContents(column)

Here we have chosen to resize every column except the description column in both table
views.

def addShip(self):
 row = self.model.rowCount()
 self.model.insertRows(row)
 index = self.model.index(row, 0)
 tableView = self.tableView1
 if self.tableView2.hasFocus():
 tableView = self.tableView2
 tableView.setFocus()
 tableView.setCurrentIndex(index)
 tableView.edit(index)

Adding a new ship is similar to what we did in the previous section, but a little neater. We
insert a new row as the last row in the model. Then we retrieve a model index that refers
to the first column of the new row. We then find out which table view has (or last had) the
keyboard focus, and set the focus back to that view. We set the view's index to the model
index we have retrieved and initiate editing on it.

The rowCount(), insertRows(), and index() methods are part of the standard
QAbstractTableModel's API.

def removeShip(self):
 tableView = self.tableView1
 if self.tableView2.hasFocus():
 tableView = self.tableView2
 index = tableView.currentIndex()
 if not index.isValid():
 return
 row = index.row()
 name = self.model.data(
 self.model.index(row, ships.NAME)).toString()
 owner = self.model.data(
 self.model.index(row, ships.OWNER)).toString()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 430 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 country = self.model.data(
 self.model.index(row, ships.COUNTRY)).toString()
 if QMessageBox.question(self, "Ships - Remove",
 QString("Remove %1 of %2/%3?").arg(name).arg(owner) \
 .arg(country),
 QMessageBox.Yes|QMessageBox.No) == QMessageBox.No:
 return
 self.model.removeRows(row)
 self.resizeColumns()

If the user clicks the Remove button we retrieve the model index for the current table view's
current item. We extract the row from this model index and use it with the
QAbstractTableModel.data() method to retrieve the ship's name, owner, and
country. The data() method takes a model index as a mandatory argument and returns
a QVariant. We use QAbstractTableModel.index() to create model indexes for the
row/column combinations we want, and use QVariant.toString() to convert the
returned values to QStrings.

If the user confirms their deletion, we simply remove the relevant row from the model.
The model will automatically notify the views which in turn will update themselves. We
have added a call to resizeColumns() since the maximum column widths may have
changed after the deletion.

Implementing the Custom Model
We have now seen some of the QAbstractTableModel's API in use, along with some
extensions of our own. The methods in a model subclass can be divided into three
categories:

• Methods that are necessary for implementing read-only models.
• Methods that are necessary for implementing editable models.
• Methods that we need to extend the API for particular circumstances.

The essential methods for read-only table models are data(), rowCount(), and
columnCount(), although headerData() is almost always implemented too.

Editable models require reimplementations of the same methods as those needed for read-
only models, and in addition, flags() and setData(). If the model is to support adding
and removing rows as well as editing existing data, then insertRows() and removeRows
() must also be implemented.

There are other methods that can be implemented, but those listed above are the only
essential ones.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 431 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For the ship model we store the ships in a list in memory and in a binary file on disk. To
support this functionality we have extended the model API by adding sortByName(),
sortByCountryOwner(), load(), and save().

The ShipTableModel is in chap14/ships.py.

class ShipTableModel(QAbstractTableModel):

 def __init__(self, filename=QString()):
 super(ShipTableModel, self).__init__()
 self.filename = filename
 self.dirty = False
 self.ships = []
 self.owners = set()
 self.countries = set()

We want to load and save the model's data from and to a binary file, so we keep an instance
variable with the filename. The ships themselves are stored in a list which is initially
unordered. We also keep two sets, one of owners and the other of countries: These will be
used to populate comboboxes when we create a custom delegate in the next section.

def rowCount(self, index=QModelIndex()):
 return len(self.ships)

def columnCount(self, index=QModelIndex()):
 return 5

The row and column counts are easy to provide. It is very common for table models to have
a fixed column count.

def data(self, index, role=Qt.DisplayRole):
 if not index.isValid() or \
 not (0 <= index.row() < len(self.ships)):
 return QVariant()
 ship = self.ships[index.row()]
 column = index.column()
 if role == Qt.DisplayRole:
 if column == NAME:
 return QVariant(ship.name)
 elif column == OWNER:
 return QVariant(ship.owner)
 elif column == COUNTRY:
 return QVariant(ship.country)
 elif column == DESCRIPTION:
 return QVariant(ship.description)
 elif column == TEU:
 return QVariant(QString("%L1").arg(ship.teu))

The data() method has one mandatory argument—the model index of the item
concerned, and one optional argument—the "role". The role is used to indicate what kind

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 432 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

of information is required. The default role, Qt.DisplayRole means that the data as
displayed is wanted.

If the model index is invalid or if the row is out of range we return an invalid QVariant.
PyQt's model/view architecture does not raise exceptions or give error messages, it simply
uses invalid QVariants. If the index is valid we retrieve the ship at the row corresponding
to the index's row. If the role is Qt.DisplayRole we return the data for the requested
column as a QVariant. In the case of the TEU, instead of returning an integer, we return
the number as a localized string.

elif role == Qt.TextAlignmentRole:
 if column == TEU:
 return QVariant(int(Qt.AlignRight|Qt.AlignVCenter))
 return QVariant(int(Qt.AlignLeft|Qt.AlignVCenter))
elif role == Qt.TextColorRole and column == TEU:
 if ship.teu < 80000:
 return QVariant(QColor(Qt.black))
 elif ship.teu < 100000:
 return QVariant(QColor(Qt.darkBlue))
 elif ship.teu < 120000:
 return QVariant(QColor(Qt.blue))
 else:
 return QVariant(QColor(Qt.red))
elif role == Qt.BackgroundColorRole:
 if ship.country in (u"Bahamas", u"Cyprus", u"Denmark",
 u"France", u"Germany", u"Greece"):
 return QVariant(QColor(250, 230, 250))
 elif ship.country in (u"Hong Kong", u"Japan", u"Taiwan"):
 return QVariant(QColor(250, 250, 230))
 elif ship.country in (u"Marshall Islands",):
 return QVariant(QColor(230, 250, 250))
 else:
 return QVariant(QColor(210, 230, 230))
return QVariant()

If data() is being called with the Qt.TextAlignmentRole, we return a right-alignment
for TEUs and a left-alignment for the other columns. QVariant cannot accept alignments
so we must convert them to an integer value.

For the Qt.TextColorRole, we return a color for the TEU column and ignore other
columns. This means that the non-TEU columns will have the default text color, usually
black. For the Qt.BackgroundColorRole we provide different colored backgrounds
depending on which group of countries the ship belongs to.

There are several other roles that we can handle if we wish, including
Qt.DecorationRole (the item's icon), Qt.ToolTipRole, Qt.StatusTipRole, and
Qt.WhatsThisRole. And for controlling appearance, in addition to the alignment and
color roles we have seen above, there is Qt.FontRole and Qt.CheckStateRole.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 433 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We return an invalid QVariant for all the cases we choose not to handle. This tells the
model/view architecture to use a default value in these cases.

Some developers don't like mixing appearance-related information with the data as we
have done here in our data() implementation. PyQt is neutral on this issue: It gives us
the flexibility to mix, but if we prefer data() to be purely concerned with data we can do
that too, and leave all appearance-related issues to the delegate.

def headerData(self, section, orientation, role=Qt.DisplayRole):
 if role == Qt.TextAlignmentRole:
 if orientation == Qt.Horizontal:
 return QVariant(int(Qt.AlignLeft|Qt.AlignVCenter))
 return QVariant(int(Qt.AlignRight|Qt.AlignVCenter))
 if role != Qt.DisplayRole:
 return QVariant()
 if orientation == Qt.Horizontal:
 if section == NAME:
 return QVariant("Name")
 elif section == OWNER:
 return QVariant("Owner")
 elif section == COUNTRY:
 return QVariant("Country")
 elif section == DESCRIPTION:
 return QVariant("Description")
 elif section == TEU:
 return QVariant("TEU")
 return QVariant(int(section + 1))

Although not essential it is good practice to provide a headerData() implementation.
The section is a row offset when the orientation is Qt.Vertical, and a column
offset when the orientation is Qt.Horizontal. Here we provide column headers, and
number the rows from 1.

Like data() this method accepts a role, and we use this to make the row numbers right-
aligned and the column headers left-aligned.

The methods we have looked at so far are enough to implement read-only table models.
Now we will look at the additional methods that must be implemented to make a model
editable.

def flags(self, index):
 if not index.isValid():
 return Qt.ItemIsEnabled
 return Qt.ItemFlags(QAbstractTableModel.flags(self, index)|
 Qt.ItemIsEditable)

If we have a valid model index we return a Qt.ItemFlags that combines the existing item
flags with the Qt.ItemIsEditable flag. We can use this method to make items read-

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 434 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

only by only applying the Qt.ItemIsEditable flag when the model index is for a row
and column that we want to be editable.

def setData(self, index, value, role=Qt.EditRole):
 if index.isValid() and 0 <= index.row() < len(self.ships):
 ship = self.ships[index.row()]
 column = index.column()
 if column == NAME:
 ship.name = value.toString()
 elif column == OWNER:
 ship.owner = value.toString()
 elif column == COUNTRY:
 ship.country = value.toString()
 elif column == DESCRIPTION:
 ship.description = value.toString()
 elif column == TEU:
 value, ok = value.toInt()
 if ok:
 ship.teu = value
 self.dirty = True
 self.emit(SIGNAL("dataChanged(QModelIndex,QModelIndex)"),
 index, index)
 return True
 return False

This method is called when the user completes an edit. In this case we ignore the role,
although it is possible to have separate display and edit data (for example a spreadsheet's
result and the formula behind it). If the index is valid and the row is in range we retrieve
the relevant ship and update the column that has been edited. In the case of the TEU, we
only apply the change if what the user typed in was converted successfully to an integer.

The dataChanged() signal must be emitted if a change has taken place. The model/view
architecture depends on this signal to ensure that all the views are kept up-to-date. The
reason we must pass the model index of the changed item twice is that the signal can be
used to indicate a block of changes with the first index the top-left item and the second
index the bottom-right item. We must return True if the change was accepted and applied,
and False otherwise.

Implementing flags() and setData() (in addition to the methods necessary for a read-
only model) is sufficient to make a model editable. But to make it possible for users to add
or delete entire rows we need to implement two additional methods.

def insertRows(self, position, rows=1, index=QModelIndex()):
 self.beginInsertRows(QModelIndex(), position,
 position + rows - 1)
 for row in range(rows):
 self.ships.insert(position + row,
 Ship(" Unknown", " Unknown", " Unknown"))
 self.endInsertRows()
 self.dirty = True
 return True

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 435 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The call to beginInsertRows() is essential when we want to insert one or more rows
into a model. The position is the row we want to insert at. The call to beginInsertRows
() is taken straight from the PyQt documentation and should not need to be changed for
any table model insertRows() implementation. After the insertions we must call
endInsertRows(). The model will automatically notify the views that the changes have
been made, and the views will ask for new data if the relevant rows are visible to the user.

def removeRows(self, position, rows=1, index=QModelIndex()):
 self.beginRemoveRows(QModelIndex(), position,
 position + rows - 1)
 self.ships = self.ships[:position] + \
 self.ships[position + rows:]
 self.endRemoveRows()
 self.dirty = True
 return True

This method is similar to the previous one. The call to beginRemoveRows() is taken from
the documentation and is standard for table model reimplementations. After the relevant
rows have been removed we must call endRemoveRows(). The model will automatically
notify the views about the changes.

We have now implemented the essential methods for an editable table model. Some models
are merely interfaces to external data sources such as database tables (covered in the next
chapter), or to external files or processes. In this case we have stored the data inside the
model itself and for this reason we must provide some extra methods, in particular load
() and save(). We have also provided a couple of sorting methods as a convenience for
the user. Sorting is expensive for large datasets, and in such cases using an ordered data
structure, such as an OrderedDict, or using a list in conjunction with the bisect
module's functions may prove beneficial.

Order-edDict 90

def sortByName(self):
 self.ships = sorted(self.ships)
 self.reset()

When sort() is called on a list it uses the items' __lt__() special method for
comparisons, falling back to use the __cmp__() special method if __lt__() has not been
implemented. We provided Ship.__cmp__() which does a locale-aware comparison of
ships' names.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 436 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Sorting the data makes all model indexes invalid and means that the views are now showing
the wrong data. The model must notify the views that they need to update themselves by
retrieving fresh data. One way of doing this is to emit a dataChanged() signal, but for
big changes it is more efficient to call QAbstractTableModel.reset(); this tells all
associated views that everything is out-of-date and forces them to update themselves.

Table 14.1. Selected QAbstractItemModel Methods #1

Syntax Description

m.beginInsertRows(p,
f, l)

Call in reimplementations of insertRows() before inserting data. The arguments are the
parent QModelIndex p and the first and last row numbers the new rows will occupy; m is a
QAbstractItemModel subclass

m.beginRemoveRows(p,
f, l)

Call in reimplementations of removeRows() before removing data. The arguments are the
parent QModelIndex p and the first and last row numbers to be removed; m is a
QAbstractItemModel subclass

m.columnCount(p) Subclasses must reimplement this; the parent QModelIndex p only matters to tree models

m.create-Index(r, c,
p)

Subclasses must use this to create QModelIndexes with row int r, column int c, and
parent QModelIndex p

m.data(i, rl) Returns the data as a QVariant for QModelIndex i and Qt.ItemDataRole rl;
subclasses must reimplement this

m.endInsertRows() Call in reimplementations of insertRows() after inserting new data; m is a
QAbstractItemModel subclass

m.endRemoveRows() Call in reimplementations of removeRows() after removing data; m is a
QAbstractItemModel subclass

m.flags(i) Returns the Qt.ItemFlags for QModelIndex i; these govern whether the item is
selectable, editable, etc. Editable model subclasses must reimplement this

m.hasChildren(p) Returns True if parent QModelIndex p has children; only meaningful for tree models

m.header-Data(s, o,
rl)

Returns a QVariant for "section" (row or column) int s, with Qt.Orientation o
indicating row or column, and with Qt.ItemDataRole rl. Subclasses normally
reimplement this; m is a QAbstractItemModel subclass

m.index(r, c, p) Returns the QModelIndex for the given row int r, column int c, and parent
QModelIndex p; subclasses must reimplement this and must use createIndex()

m.insertRow(r, p) Inserts one row before row int r. In tree models the row is inserted as a child of parent
QModelIndex p.

m.insert-Rows(r, n,
p)

Inserts int n rows before row int r. In tree models the rows are inserted as children of
parent QModelIndex p. Editable subclasses often reimplement this—reimplementations
must call beginInsertRows() and endInsertRows()

m.parent(i) Returns the parent QModelIndex of QModelIndex i. Tree model subclasses must
reimplement this

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 437 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table 14.2. Selected QAbstractItemModel Methods #2

Syntax Description

m.removeRow(r, p) Removes row int r. The parent QModelIndex p is only relevant to tree models; m is a
QAbstractItemModel subclass

m.removeRows(r, n,
p)

Removes int n rows from row int r. The parent QModelIndex p is only relevant to tree
models. Editable model subclasses often reimplement this method—reimplementations must
call beginRemoveRows() and endRemoveRows()

m.reset() Notify all associated views that the model's data has radically changed—this forces views to
refetch all their visible data

m.rowCount(p) Subclasses must reimplement this; the parent QModelIndex p only matters to tree models

m.setData(i, v,
rl)

Sets QModelIndex i's data for Qt.ItemDataRole rl to QVariant v. Editable model
subclasses must reimplement this—reimplementations must emit the dataChanged() signal
if data was actually changed

m.setHeaderData(s,
o, v, rl)

Sets the header data for section int s with Qt.Orientation o (i.e., for row or column), for
Qt.ItemDataRole rl to QVariant v

def sortByCountryOwner(self):
 def compare(a, b):
 if a.country != b.country:
 return QString.localeAwareCompare(a.country, b.country)
 if a.owner != b.owner:
 return QString.localeAwareCompare(a.owner, b.owner)
 return QString.localeAwareCompare(a.name, b.name)
 self.ships = sorted(self.ships, compare)
 self.reset()

Here we provide a custom sort method, sorting by country, by owner, and by ship's name.
For a large dataset it might be more efficient to use DSU (decorate, sort, undecorate), for
example:

def sortByCountryOwner(self):
 ships = []
 for ship in self.ships:
 ships.append((ship.country, ship.owner, ship.name, ship))
 ships.sort()
 self.ships = [ship for country, owner, name, ship in ships]
 self.reset()

This uses the normal QString.compare(), so it might be better to have used unicode
(ship.country), unicode(ship.owner), and unicode(ship.name). Of course
for very large datasets it is probably better to avoid sorting altogether and to use ordered
containers instead.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 438 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Saving and Loading Binary Files 238

The save() and load() methods are very similar to ones we have seen before for
handling binary data using QDataStream, so we will just show an extract from the heart
of each, starting with the save() method.

for ship in self.ships:
 stream << ship.name << ship.owner << ship.country \
 << ship.description
 stream.writeInt32(ship.teu)

Thanks to using QDataStream we don't have to worry about how long the strings are or
about encoding issues.

The ships are loaded in correspondingly: Here is an extract from the load() method:

self.ships = []
while not stream.atEnd():
 name = QString()
 owner = QString()
 country = QString()
 description = QString()
 stream >> name >> owner >> country >> description
 teu = stream.readInt32()
 self.ships.append(Ship(name, owner, country, teu,
 description))
 self.owners.add(unicode(owner))
 self.countries.add(unicode(country))

As noted earlier, the reason we keep sets of owners and countries is to make them available
in comboboxes when we add a custom delegate.

Implementing custom models, particularly list and table models, is quite straightforward.
For read-only models we only need to implement three methods, although normally we
implement four. For editable models we normally implement a total of eight methods.
Once you have created a couple of models, creating others will become easy, because all
list and table models follow the same pattern. Implementing tree models is more
challenging; the topic is covered in the last section of Chapter 16.

Creating Custom Delegates
If we want to exercise complete control over the presentation and editing of data items we
must create a custom delegate. A delegate can be used purely to control appearance, for
example, for read-only views, or to control editing by providing custom editors, or both.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 439 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 14.4 looks similar to earlier screenshots, the only noticable difference being that
the description text is properly formatted rather than shown as raw HTML. However, the
differences go much deeper. For example, if we edit the owner or country fields we will get
comboboxes populated with the current owners and countries, and if we edit the TEU we
will get a spinbox. All this control over the appearance and editing is achieved by using a
delegate—and the delegate can be used with convenience views or with pure views,
although in this case we have used the delegate with pure views.

Figure 14.4. A Custom Delegate in Action

For this section we are using the chap14/ships-delegate.pyw application. This is
almost identical to ships-model.pyw, differing only in the window title, the fact that we
resize all columns rather than skipping the description column, and the fact that we use a
custom delegate. The delegate class, ShipDelegate is in chap14/ships.py. Note that
this class requires PyQt 4.1 or later.

Like model subclasses, delegates follow a fixed pattern. In the case of delegates for read-
only models, the only method we must reimplement is paint(). For editable models we
must reimplement createEditor(), setEditorData(), and setModelData(). It is
also common to reimplement commitAndCloseEditor() if we use QLineEdits or
QTextEdits for editing. Finally, it is sometimes necessary to reimplement sizeHint
(), as we will see.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 440 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It is quite common to create delegates that only handle some of the columns, particularly
when it comes to painting, leaving the base class to handle columns where the default
behavior is sufficient.

We will begin by looking at a small extract from the main form's constructor to see the
creation of the first table:

class MainForm(QDialog):

 def __init__(self, parent=None):
 super(MainForm, self).__init__(parent)

 self.model = ships.ShipTableModel(QString("ships.dat"))
 tableLabel1 = QLabel("Table &1")
 self.tableView1 = QTableView()
 tableLabel1.setBuddy(self.tableView1)
 self.tableView1.setModel(self.model)
 self.tableView1.setItemDelegate(ships.ShipDelegate(self))

The only difference from the previous section is that we have called setItemDelegate
(), passing it a newly constructed ship.ShipDelegate. The delegate must be given the
form as parent to keep it alive while the form is in use. The code for the second table is just
the same, with the same model being set, but with its own ship.ShipDelegate. This is
the only change that's necessary—and now all the work of presenting and editing the data
will be handled by the delegates.

class ShipDelegate(QItemDelegate):

 def __init__(self, parent=None):
 super(ShipDelegate, self).__init__(parent)

Quite often a delegate's constructor does not need to do anything, beyond initializing the
base class which is all that we do here. In fact, for cases like this we can omit the __init__
() altogether.

def paint(self, painter, option, index):
 if index.column() == DESCRIPTION:
 text = index.model().data(index).toString()
 palette = QApplication.palette()
 document = QTextDocument()
 document.setDefaultFont(option.font)
 if option.state & QStyle.State_Selected:
 document.setHtml(QString("%2") \
 .arg(palette.highlightedText().color().name())\
 .arg(text))
 else:
 document.setHtml(text)
 color = palette.highlight().color() \
 if option.state & QStyle.State_Selected \
 else QColor(index.model().data(index,
 Qt.BackgroundColorRole))
 painter.save()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 441 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 painter.fillRect(option.rect, color)
 painter.translate(option.rect.x(), option.rect.y())
 document.drawContents(painter)
 painter.restore()
 else:
 QItemDelegate.paint(self, painter, option, index)

For plain text strings, numbers, dates, and so on, the base class QItemDelegate.paint
() method works perfectly well, so it is very common not to reimplement it at all. However,
in this example, the description column holds HTML, and this we must render ourselves.

The paint() method is called with a painter ready to draw on, a
QStyleOptionViewItem which holds various pieces of information including the
rectangle in which the painting should take place, and the model index of the item to be
drawn.

We begin by retrieving the HTML text using the model's data() method, and relying on
the Qt.DisplayRole default that we set in the model, for the second argument. Notice
that a model index can give us a reference to the model it refers to with the
QModelIndex.model() method.

We then retrieve the application's palette—this is based on the user's theme color
preferences. If the item is selected we apply the palette's highlighted text color to the
HTML; otherwise we use the HTML "as is". The QColor.name() method returns the
color as a hexadecimal string; for example, red would be returned as the string
"#FF0000", which is the same format used for HTML color specifications. Similarly, we
use the palette's highlighted background color if the item is selected, otherwise we use the
background color that the model specifies by calling the data() method with the
Qt.BackgroundColorRole.

The QTextDocument.drawContents() method draws relative to the painter's top-left
(0, 0), coordinate. For this reason we move (translate) the painter's top-left to the style
option rectangle's (x, y) position, and then tell the document to paint itself on the painter.

In many cases we don't have to bother saving and restoring the painter's state between
paint events, but in this case we must. Some Qt programmers consider it good practice to
always save and restore the painter's state, while others prefer to do so only when
necessary, i.e., only when they apply a lasting change to the painter's state, such as applying
a transformation, like translation, to it.

Unfortunately, this is not quite the end of the story for drawing HTML. When the view
asks for the size hint of an HTML column, the default behavior will be to return a size hint
based on the view's font and the number of characters. Because HTML is rather verbose,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 442 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the number of characters used in the calculation is likely to be far more than the number
that are actually displayed.

There are two solutions to this problem, both of which require us to calculate the size hint
for the HTML text ourselves. One solution is to change the
QAbstractTableModel.data() method and to return a suitable size hint when data
() is called with the Qt.SizeHintRole. The other solution is to reimplement the
QItemDelegate.sizeHint() method. We prefer to reimplement sizeHint() since
that keeps the problem and its solution in the same class.

def sizeHint(self, option, index):
 fm = option.fontMetrics
 if index.column() == TEU:
 return QSize(fm.width("9,999,999"), fm.height())
 if index.column() == DESCRIPTION:
 text = index.model().data(index).toString()
 document = QTextDocument()
 document.setDefaultFont(option.font)
 document.setHtml(text)
 return QSize(document.idealWidth() + 5, fm.height())
 return QItemDelegate.sizeHint(self, option, index)

The option argument is a QStyleOptionViewItem, a QStyleOption subclass that
has several useful properties. In this method we have actually taken responsibility for two
columns' size hints. For the TEU we return a size hint wide enough for the largest TEU we
expect to handle. For the description we use a QTextDocument() to calculate the text's
"ideal" width based on its fonts and font attributes, plus a small margin of 5 pixels. For the
other columns we pass the work on to the base class.

Quite often, delegates don't reimplement the paint() method at all, relying on the
perfectly good default behavior for painting, and instead just providing custom methods
for editing data items.

def createEditor(self, parent, option, index):
 if index.column() == TEU:
 spinbox = QSpinBox(parent)
 spinbox.setRange(0, 200000)
 spinbox.setSingleStep(1000)
 spinbox.setAlignment(Qt.AlignRight|Qt.AlignVCenter)
 return spinbox
 elif index.column() == OWNER:
 combobox = QComboBox(parent)
 combobox.addItems(sorted(index.model().owners))
 combobox.setEditable(True)
 return combobox
 elif index.column() == COUNTRY:
 combobox = QComboBox(parent)
 combobox.addItems(sorted(index.model().countries))
 combobox.setEditable(True)
 return combobox
 elif index.column() == NAME:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 443 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 editor = QLineEdit(parent)
 self.connect(editor, SIGNAL("returnPressed()"),
 self.commitAndCloseEditor)
 return editor
 elif index.column() == DESCRIPTION:
 editor = richtextlineedit.RichTextLineEdit(parent)
 self.connect(editor, SIGNAL("returnPressed()"),
 self.commitAndCloseEditor)
 return editor
 else:
 return QItemDelegate.createEditor(self, parent, option,
 index)

When the user initiates editing on a data item, typically by pressing F2 or double-clicking,
the view asks the delegate to provide an editor for the item. For any items we don't want
or need to handle ourselves, we can just pass on the work to the base class, but in this
delegate we prefer to deal with every column ourselves.

RichTextLineEdit 385

For the TEU column we create and return a spinbox. We can use any widget, whether built-
in like QSpinBox, or a custom editor, such as the RichTextLineEdit that we created
in the previous chapter. In all cases the procedure is the same: Create the editor with the
given parent, then set it up and return it.

We have populated the comboboxes with sorted lists and have also made them editable so
that users can add new entries. If we only wanted users to be able to choose from the list
we specify we would simply omit the setEditable(True) calls.

In the case of QLineEdit, QTextEdit, and other classes that have a return-Pressed
() signal to indicate that editing has been completed, we connect the signal to a
reimplementation of the commitAndCloseEditor() method.

def commitAndCloseEditor(self):
 editor = self.sender()
 if isinstance(editor, (QTextEdit, QLineEdit)):
 self.emit(SIGNAL("commitData(QWidget*)"), editor)
 self.emit(SIGNAL("closeEditor(QWidget*)"), editor)

Previously we have always used the built-in isinstance() function to consider an object
in relation to a single class, but here we have provided a tuple of two classes. This method
is called when the user presses Enter and in turn emits signals to the editor telling it to
save its data to the model and to close itself.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 444 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def setEditorData(self, editor, index):
 text = index.model().data(index, Qt.DisplayRole).toString()
 if index.column() == TEU:
 value = text.replace(QRegExp("[.,]"), "").toInt()[0]
 editor.setValue(value)
 elif index.column() in (OWNER, COUNTRY):
 i = editor.findText(text)
 if i == -1:
 i = 0
 editor.setCurrentIndex(i)
 elif index.column() == NAME:
 editor.setText(text)
 elif index.column() == DESCRIPTION:
 editor.setHtml(text)
 else:
 QItemDelegate.setEditorData(self, editor, index)

Once the editor has been created and given to the view, the view calls setEditorData
(). This gives the delegate the opportunity to populate the editor with the current data,
ready for the user to edit. In the case of TEUs we are showing them as text, possibly
containing spaces, commas, or periods. So for these we strip out the unwanted characters,
convert the value to an integer and set the spinbox's value accordingly. An alternative
approach would have been to have separate Qt.DisplayRole and Qt.EditRole values
for this column.

If the editor is a combobox, we set its current index to be the item that matches the data
value. If there isn't a match we just make the first item the current one. For the line edit
used for ships' names we use setText(), and for the rich text line edit we use setHtml
() (inherited from QTextEdit). As usual, we pass on unhandled cases to the base class,
although here it is a formality since we handle all the columns ourselves.

def setModelData(self, editor, model, index):
 if index.column() == TEU:
 model.setData(index, QVariant(editor.value()))
 elif index.column() in (OWNER, COUNTRY):
 model.setData(index, QVariant(editor.currentText()))
 elif index.column() == NAME:
 model.setData(index, QVariant(editor.text()))
 elif index.column() == DESCRIPTION:
 model.setData(index, QVariant(editor.toSimpleHtml()))
 else:
 QItemDelegate.setModelData(self, editor, model, index)

If the user confirms their edit the editor's data must be written back to the model. The
model will then notify the views that the item has changed, and those views that are
showing the item will request fresh data to display.

In each case we simply retrieve the value from the appropriate editor, and call setData
(), passing the values as QVariants.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 445 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We have now completed the delegate. Two delegates are used in the next chapter, both of
which provide editors for certain fields, and both of which only implement createEditor
(), setEditorData(), and setModelData(). In this chapter and the next, the custom
delegates are for specific models. But in Chapter 16 we have a section devoted to "generic
delegates", which can be used to create delegates for any model without having to have
model-specific custom delegates—this can reduce code duplication and make maintenance
easier.

Summary
PyQt's convenience item view widgets, such as QListWidget, QTableWidget, and
QTreeWidget, are very useful for viewing and editing small and ad-hoc datasets. They
can be used in conjunction with external datasets as we did in the first section, or they can
be used as data containers in their own right. Adding, editing, and removing items is
straightforward, but if we use more than one view to show one dataset, then we must accept
the responsibility for keeping the views and dataset in sync. This problem goes away if we
use the model/view approach with a custom model.

The convenience views do not provide any control over the editing of the items they handle.
This deficiency is easy to rectify, both for convenience views and for pure views, by setting
our own custom item delegate.

The pure views provide similar functionality to the convenience views, but do not provide
sorting or direct control over the appearance of data items. These views must be used in
conjunction with a model, whether a predefined one provided with PyQt, or more
commonly, our own custom model.

To implement a custom table model we must reimplement rowCount(), column-Count
(), and data() for both read-only and editable models; it is also usual to reimplement
headerData(). In addition we must implement flags() and set-Data() to make
items editable, and insertRows() and removeRows() to allow users to insert or remove
rows of data. If we want the user to be able to sort the data we can add additional sort
methods, although in the case of database tables we can simply add ORDER BY clauses.
Using databases with the model/view architecture is covered in the next chapter.

Creating custom delegates allows us to exercise complete control over the appearance and
editing of data items. It is possible to share the responsibility for data appearance between
the model and the delegate, or to give the whole responsibility to either of them. But only
a custom delegate can be used to provide control over editing. For read-only delegates,
and for delegates where we are only concerned with the appearance of data, we normally
only need to reimplement the paint() method, although in some cases we must also
reimplement sizeHint() (or handle the Qt.SizeHintRole in the model's data()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 446 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

reimplementation). For most delegates, we don't need to reimplement paint() or
sizeHint() at all, and only reimplement createEditor(), setEditorData(), and
setModelData().

In the next chapter we will see further examples of the model/view architecture, with pure
views, custom delegates, and built-in SQL database models.

Exercise
Add a new method to the ShipTableModel, sortByTEU(). Use any sorting technique
you like; we have used DSU. Then make use of this method in Main-Form.sortTable
(). In total this should just take half a dozen lines.

Extend the ShipTableModel.data() method to provide tooltips. The tip should simply
be the text of the data item, except for TEUs where the text should be the (localized) number
followed by "twenty foot equivalents". Notice that HTML is correctly formatted in the
tooltip. This is easy and only takes a dozen lines.

Modify ShipTableDelegate.setModelData() so that it will only change the name,
owner, or country, if the new text is at least three characters long. Extend the tooltips for
these columns with the text "(minimum of 3 characters)". This can be done in about half
a dozen lines.

Add an Export.. button that when pressed prompts the user for a filename with
suffix .txt, and saves the data using the UTF-8 encoding, one ship per line, in the form:

name|owner|country|teu|description

with bar "|" (pipe) as separator. The data should be accessed through the model's data
() method and output in country/owner order, with no HTML tags in the description and
with TEUs output with digits only (no commas, periods, or spaces). Pop up a message box
at the end, either to report an error or to report success. Use Python or PyQt for writing
the file; we have used PyQt. If you write using a version of PyQt prior to 4.1 you will need
to convert the TEU to a QString before writing it to the text stream. The export()
method can be written in less than 50 lines.

A solution is provided in chap14/ships_ans.py and chap14/ships-delegate-
_ans.py.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 447 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

15. Databases
• Connecting to the Database
• Executing SQL Queries
• Using Database Form Views
• Using Database Table Views

PyQt provides a consistent cross-platform API for database access using the QtSql module
and PyQt's model/view architecture.[*] Python also has its own completely different
database API, called DB-API, but it isn't needed with PyQt and is not covered here. The
commercial edition of Qt comes with many database drivers, while the GPL edition has
fewer due to licensing restrictions. The drivers that are available include ones for IBM's
DB2, Borland's Interbase, MySQL, Oracle, ODBC (for Microsoft SQL Server), PostgreSQL,
SQLite, and Sybase. However, like any aspect of PyQt, it is possible to create additional
database drivers if one we need is not available.

[*] This chapter assumes a knowledge of PyQt's model/view architecture, covered in the previous chapter, and also a basic knowledge of SQL.

When Qt is built from source we can configure it to include SQLite, a public domain in-
process database. For binary Qt packages, such as the GPL packages for Windows and Mac
OS X, SQLite is built-in. The examples in this chapter use SQLite, but apart from the initial
connection to the database, and a couple of aspects of raw SQL syntax that we will mention,
they should work with any SQL database.

PyQt provides access to databases at two levels. The high-level involves using
QSqlTableModel or QSqlRelationalTableModel. These models provide
abstractions for handling database tables with the same API as the other
QAbstractItemModel subclasses, as well as providing some database-specific
extensions. The SQL models can be used with views such as QTableView, as we will see
in this chapter's last section, or with a QDataWidgetMapper for form views, the topic of
this chapter's second section.

The low-level approach, also the most versatile, is based on using QSqlQuery. This class
can accept any DDL (data definition language) or DML (data manipulation language) SQL
statements and execute them on the database. For example, we can use QSqlQuery to
create tables, and to insert, update, and delete records in tables. We will see QSqlQuery
in action in this chapter's first section.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 448 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Connecting to the Database
But before we can do any work with a database, we must establish a connection to it. In
many database applications this is done after the creation of the QApplication object,
but before the main form is created or shown. Other applications establish their
connections later on, for example, only when they are needed.

To make use of PyQt's SQL classes we must import the QtSql module:

from PyQt4.QtSql import *

A database connection is established by calling the static QSqlDatabase.addDatabase
() method, with the name of the driver we want to use. Then we must set various attributes,
for example, the database's name, the user name, and the password. And finally, we must
call open() to make the connection.

db = QSqlDatabase.addDatabase("QSQLITE")
db.setDatabaseName(filename)
if not db.open():
 QMessageBox.warning(None, "Phone Log",
 QString("Database Error: %1").arg(db.lastError().text()))
 sys.exit(1)

For SQLite we only need to specify the name of the database. This is normally a filename,
but can be the special name ":memory:" for an in-memory database. When we call
QSqlDatabase.open() using the SQLite driver, if the file does not exist it will be created,
in which case it will have no tables or records.

Notice that we have passed None as the message box's parent: This is because we have
tried to establish the connection before creating the main window, so there is no possible
parent. Since this application depends on the database, if no connection can be made it
simply tells the user the error message that was received and terminates the application.

If the database connection was successfully opened, from now on all database methods
will apply to this connection. If we need two or more separate connections, whether to the
same database or to different databases, then we must pass a second argument to
addDatabase(), giving the connection a name that we can then use to distinguish
between our different connections.

Executing SQL Queries
Now that we have a connection, we can execute some SQL statements.

query = QSqlQuery()
query.exec_("""CREATE TABLE outcomes (
 id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 449 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 name VARCHAR(40) NOT NULL)""")
query.exec_("""CREATE TABLE calls (
 id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,
 caller VARCHAR(40) NOT NULL,
 starttime DATETIME NOT NULL,
 endtime DATETIME NOT NULL,
 topic VARCHAR(80) NOT NULL,
 outcomeid INTEGER NOT NULL,
 FOREIGN KEY (outcomeid) REFERENCES outcomes)""")

We have not specified a particular database connection to use, so PyQt will use the default
(unnamed) connection that we established earlier.

The AUTOINCREMENT syntax tells SQLite to populate the id field automatically with each
ID being one more than the previous one, with the first being 1. Similarly, the FOREIGN
KEY syntax tells SQLite about a foreign key relationship. SQLite 3 does not enforce foreign
key relationships, merely allowing us to express them as a documentation aid. The syntax
for achieving automatic IDs and for foreign keys may be different in other databases.

Figure 15.1. The Phone Log Database Design

Many databases have their own set of data types. For example, SQLite 3 has what it calls
"storage classes", including, INTEGER, REAL, and TEXT. PyQt supports the standard SQL
datatypes, including VARCHAR, NUMBER, DATE, and DATETIME, transparently converting
to and from the database's native data types behind-the-scenes. For text PyQt uses
Unicode, except with databases that don't support Unicode, in which case PyQt converts
to and from the database's native encoding.

Now that we have created the tables, we can populate them with data.

for name in ("Resolved", "Unresolved", "Calling back", "Escalate",
 "Wrong number"):
 query.exec_("INSERT INTO outcomes (name) VALUES ('%s')" % name)

We did not need to provide IDs since we have asked the database to generate them for us.
Unfortunately, the code above is not robust: For example, it will fail if one of the names

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 450 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

contains a single quote. One way of dealing with this is to ensure that we either remove or
escape unacceptable characters, but PyQt provides a better alternative: Prepared queries.

There are two widely used syntaxes for prepared queries, one based on the ODBC place
holder approach, and the other based on the Oracle named variable approach. PyQt
supports both syntaxes, converting from one to the other behind-the-scenes if necessary,
so that both work no matter what the underlying database is.

query.prepare("INSERT INTO calls (caller, starttime, endtime, "
 "topic, outcomeid) VALUES (?, ?, ?, ?, ?)")
for name, start, end, topic, outcomeid in data:
 query.addBindValue(QVariant(QString(name)))
 query.addBindValue(QVariant(start)) # QDateTime
 query.addBindValue(QVariant(end)) # QDateTime
 query.addBindValue(QVariant(QString(topic)))
 query.addBindValue(QVariant(outcomeid)) # int
 query.exec_()

This example uses the ODBC syntax. One benefit of using place holders is that PyQt takes
care of the quoting issues, so we don't have to worry about what our data contains, so long
as the types we pass are appropriate for the fields they will populate.

query.prepare("INSERT INTO calls (caller, starttime, endtime, "
 "topic, outcomeid) VALUES (:caller, :starttime, "
 ":endtime, :topic, :outcomeid)")
for name, start, end, topic, outcomeid in data:
 query.bindValue(":caller", QVariant(QString(name)))
 query.bindValue(":starttime", QVariant(start))
 query.bindValue(":endtime", QVariant(end))
 query.bindValue(":topic", QVariant(QString(topic)))
 query.bindValue(":outcomeid", QVariant(outcomeid))
 query.exec_()

This second example performs the same work as the first, but uses Oracle-style named
variables. PyQt also supports a couple of other variations of prepared query syntax, but
they don't add anything to what we can do with the two syntaxes shown above. Prepared
queries can improve performance on databases that support them, and make no difference
on those that don't.

Prepared queries can also be used to call stored procedures, but we will not cover them
because support for them is neither universal nor uniform. For example, not all databases
support stored procedures, and the syntax for calling them and for retrieving OUT values
is different from database to database. Also, stored procedures that return values are not
fully supported.

We can use QSqlQuery to execute any arbitrary SQL statement, for example:

query.exec_("DELETE FROM calls WHERE id = 12")

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 451 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

After a query has executed we can check for errors by calling QSqlQuery.isActive();
if this returns False an error occurred and the error message is available as a QString
by calling QSqlQuery.lastError().text().

If we perform a query that may affect a number of rows, for example a DELETE or
UPDATE whose WHERE clause might select more than one record, we can call
QSqlQuery.numRowsAffected(); it returns -1 on error.

We can find out if the underlying database supports various features such as transactions
and BLOBs (Binary Large OBjects) by accessing the driver and calling hasFeature().
For example:

driver = QSqlDatabase.database().driver()
if driver.hasFeature(QSqlDriver.Transactions):
 print "Can commit and rollback"

When we use QSqlQuery we can initiate a transaction by calling
QSqlDatabase.database().transaction(), and then either
QSqlDatabase.database().commit() or QSqlDatabase.database
().rollback().

We will conclude our coverage of QSqlQuery by looking at how to use it to execute
SELECT statements, and how to iterate over the resultant records.

DATETIME_FORMAT = "yyyy-MM-dd hh:mm"
ID, CALLER, STARTTIME, ENDTIME, TOPIC, OUTCOMEID = range(6)

query.exec_("SELECT id, caller, starttime, endtime, topic, "
 "outcomeid FROM calls ORDER by starttime")
while query.next():
 id = query.value(ID).toInt()[0]
 caller = unicode(query.value(CALLER).toString())
 starttime = unicode(query.value(STARTTIME).toDateTime() \
 .toString(DATETIME_FORMAT))
 endtime = unicode(query.value(ENDTIME).toDateTime() \
 .toString(DATETIME_FORMAT))
 topic = unicode(query.value(TOPIC).toString())
 outcomeid = query.value(OUTCOMEID).toInt()[0]
 subquery = QSqlQuery("SELECT name FROM outcomes "
 "WHERE id = %d" % outcomeid)
 outcome = "invalid foreign key"
 if subquery.next():
 outcome = unicode(subquery.value(0).toString())
 print "%02d: %s %s - %s %s [%s]" % (id, caller, starttime,
 endtime, topic, outcome)

When we execute a SELECT statement, we can iterate over the result set using methods
such as QSqlQuery.next(), QSqlQuery.previous(), and QSqlQuery.seek().
Immediately after a successful SELECT, isActive() will return True but the internal

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 452 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

record pointer will not be referring to a valid record. Each of the navigation methods
returns True if the query's internal record pointer was successfully moved onto a valid
record; this is why we call QSqlQuery.next() before accessing the first record. They
return False if an error occurred or if they pass the last (or first) record.

Table 15.1. Selected QSqlQuery Methods

Syntax Description

q.addBindValue(v) Adds QVariant v as the next variable when using positional value binding in QSqlQuery q

q.bindValue(p, v) Sets QVariant v as the value for the string p placeholder when using placeholder value
binding in QSqlQuery q

q.boundValue(p) Returns the QVariant value for the string p placeholder in QSqlQuery q

q.driver() Returns the QSqlDriver associated with QSqlQuery q. The QSqlDriver class provides
hasFeature() to report which features the underlying database supports

q.exec_(s) Executes the SQL query in string s on QSqlQuery q

q.first() Navigates to the first record in QSqlQuery q's result set after a SELECT query has been
executed

q.isActive() Returns True if the query is "active", for example, after executing a SELECT query

q.isValid() Returns True if the query is positioned on a valid record; after a SELECT query this will only
be True if isActive() is True and a record has been navigated to

q.last() Navigates to the last record in QSqlQuery q's result set after a SELECT query has been
executed

q.lastError() Returns a QSqlError object; this provides an error-String() method

q.next() Navigates to the next record in QSqlQuery q's result set after a SELECT query has been
executed. This is the only method needed to iterate forward over a result set

q.numRowsAffected() Returns the number of rows affected by the SQL query just executed, providing it was not a
SELECT, and providing the underlying database supports this feature

q.prepare(s) Prepares the query in string s ready for q to execute it

q.previous() Navigates to the previous record in QSqlQuery q's result set after a SELECT query has been
executed

q.record() Returns a QSqlRecord object containing QSqlQuery q's current record if any; using
QSqlQuery.value() with a field index argument is usually more convenient

q.size() Returns the number of rows in the SELECT result set, or -1 if a SELECT was not executed or if
the underlying database does not support this feature

q.value(i) Returns the QVariant value for field index int i in the current record if there is one

When navigating large result sets, providing we only use next(), or only seek() forward,
we can call QSqlQuery.setForwardOnly(True). This can significantly improve
performance or reduce memory overhead, or both, with some databases.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 453 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The QSqlQuery.value() method takes an index position argument, based on the order
of the field names gives in the SELECT statement. For this reason using SELECT * is not
recommended because in that case we don't know what the order of the fields is. Each field
is returned as a QVariant and must therefore be converted to the proper type. In the case
of the date/times, we first convert them from QVariant to QDateTime, then to
QString, and finally to unicode ready to be printed on the console.

We used an additional query to look up the name of the outcome from its ID, giving an
error text if the database does not have relational integrity. For a large dataset it would
have been more efficient to use a prepared query for the sub-query.

We can use QSqlQuery to do all the database work we want, but using PyQt's SQL models
is much easier for GUI programming, and does not prevent us from using QSqlQuery
when the need arises.

Using Database Form Views
One of the easiest user interfaces we can provide for database data is a form that displays
the fields from a single record at a time. In this section we will develop an application that
uses such a form, initially a simplified version of the phone log database introduced in the
previous section, and then the full version which includes the foreign key field.

The examples presented in this section depend on the QDataWidgetMapper class
introduced with Qt 4.2. The next section's example uses SQL table models and
QTableView, and can be used with Qt 4.1 or later.

Figure 15.2. The Simplified Phone Log Application

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 454 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The application's source code is in chap15/phonelog.pyw, with the full version in
chap15/phonelog-fk.pyw. When these applications are run for the very first time they
create a database of fake records which they then use on subsequent runs. Generating these
records using Qt's built-in SQLite is fast on Linux but very slow on some Windows
machines. (A splash screen is used to disguise the slowness.)

The simplified application has a single table, calls, and no foreign key field. The form is
represented by the PhoneLogDlg class. The initializer is quite long, so we will look at it
in parts, skipping the layout since our focus in this chapter is on database programming.

class PhoneLogDlg(QDialog):

 FIRST, PREV, NEXT, LAST = range(4)

 def __init__(self, parent=None):
 super(PhoneLogDlg, self).__init__(parent)

 callerLabel = QLabel("&Caller:")
 self.callerEdit = QLineEdit()
 callerLabel.setBuddy(self.callerEdit)
 today = QDate.currentDate()
 startLabel = QLabel("&Start:")
 self.startDateTime = QDateTimeEdit()
 startLabel.setBuddy(self.startDateTime)
 self.startDateTime.setDateRange(today, today)
 self.startDateTime.setDisplayFormat(DATETIME_FORMAT)
 endLabel = QLabel("&End:")
 self.endDateTime = QDateTimeEdit()
 endLabel.setBuddy(self.endDateTime)
 self.endDateTime.setDateRange(today, today)
 self.endDateTime.setDisplayFormat(DATETIME_FORMAT)
 topicLabel = QLabel("&Topic:")
 topicEdit = QLineEdit()
 topicLabel.setBuddy(topicEdit)
 firstButton = QPushButton()
 firstButton.setIcon(QIcon(":/first.png"))

We create a label and a suitable editing widget for each field. We also create all the form's
buttons, although we only show the creation of the first one. We pass a string to the Add,
Delete, and Quit buttons' constructors to give them their captions, in addition to giving
them icons.

self.model = QSqlTableModel(self)
self.model.setTable("calls")
self.model.setSort(STARTTIME, Qt.AscendingOrder)
self.model.select()

With the widgets in place, we create a QSqlTableModel. Since we did not specify a
particular database connection it uses the default one. We tell the model which table it is
to work on and call select() to make it populate itself with data. We also chose to apply
a sort order to the table.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 455 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Now that we have suitable widgets and a model, we must somehow link them together.
This is achieved by using a QDataWidgetMapper.

self.mapper = QDataWidgetMapper(self)
self.mapper.setSubmitPolicy(QDataWidgetMapper.ManualSubmit)
self.mapper.setModel(self.model)
self.mapper.addMapping(self.callerEdit, CALLER)
self.mapper.addMapping(self.startDateTime, STARTTIME)
self.mapper.addMapping(self.endDateTime, ENDTIME)
self.mapper.addMapping(topicEdit, TOPIC)
self.mapper.toFirst()

To make a data widget mapper work, we must give it a model and a set of mappings between
the widgets in the form and the corresponding columns in the model. (The variables, ID,
CALLER, STARTTIME, and so on, are set to 0, 1, 2, etc., at the start of the file.) The mapper
can be set to submit changes automatically, or only when told. We prefer the latter
approach because it gives us finer control and means that when the user navigates to a
different record we can make sure that any unsaved changes are saved. Once we have set
up the mapping we need to make the mapper populate the widgets with a record; we have
done this by calling toFirst() which means that at startup the first record is shown.

self.connect(firstButton, SIGNAL("clicked()"),
 lambda: self.saveRecord(PhoneLogDlg.FIRST))
self.connect(prevButton, SIGNAL("clicked()"),
 lambda: self.saveRecord(PhoneLogDlg.PREV))
self.connect(nextButton, SIGNAL("clicked()"),
 lambda: self.saveRecord(PhoneLogDlg.NEXT))
self.connect(lastButton, SIGNAL("clicked()"),
 lambda: self.saveRecord(PhoneLogDlg.LAST))
self.connect(addButton, SIGNAL("clicked()"), self.addRecord)
self.connect(deleteButton, SIGNAL("clicked()"),
 self.deleteRecord)
self.connect(quitButton, SIGNAL("clicked()"), self.accept)

self.setWindowTitle("Phone Log")

Lambda callbacks 132

The first four connections provide navigation. In each case we call saveRecord() which
saves any unsaved changes, and then navigates in accordance with the argument that has
been wrapped in the lambda statement. This means that we only need a single method,
saveRecord(), instead of one for each navigation button. However, the connections will
only work with PyQt 4.1.1 or later. For earlier versions we must keep an instance variable
(for example a list) that contains references to the lambda functions to prevent them from
being garbage collected.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 456 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def accept(self):
 self.mapper.submit()
 QDialog.accept(self)

If the user clicks Quit we call QDataWidgetMapper.submit() which writes back the
current record to the underlying model, and then we close the window.

def saveRecord(self, where):
 row = self.mapper.currentIndex()
 self.mapper.submit()
 if where == PhoneLogDlg.FIRST:
 row = 0
 elif where == PhoneLogDlg.PREV:
 row = 0 if row <= 1 else row - 1
 elif where == PhoneLogDlg.NEXT:
 row += 1
 if row >= self.model.rowCount():
 row = self.model.rowCount() - 1
 elif where == PhoneLogDlg.LAST:
 row = self.model.rowCount() - 1
 self.mapper.setCurrentIndex(row)

If the user navigates, we must remember the current row, since it is forgotten after calling
submit(). Then, after saving the current record, we set the row to be the one appropriate
for the navigation the user requested (but kept within bounds), and then use
setCurrentIndex() to move to the appropriate record.

def addRecord(self):
 row = self.model.rowCount()
 self.mapper.submit()
 self.model.insertRow(row)
 self.mapper.setCurrentIndex(row)
 now = QDateTime.currentDateTime()
 self.startDateTime.setDateTime(now)
 self.endDateTime.setDateTime(now)
 self.callerEdit.setFocus()

We have chosen to always add new records at the end. To do this we find the row after the
last one, save the current record, then insert a new record at the last row in the model.
Then we set the mapper's current index to the new row, initialize a couple of fields, and
give the caller field the focus ready for the user to start typing.

def deleteRecord(self):
 caller = self.callerEdit.text()
 starttime = self.startDateTime.dateTime().toString(
 DATETIME_FORMAT)
 if QMessageBox.question(self,
 QString("Delete"),

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 457 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 QString("Delete call made by
%1 on %2?") \
 .arg(caller).arg(starttime),
 QMessageBox.Yes|QMessageBox.No) == QMessageBox.No:
 return
 row = self.mapper.currentIndex()
 self.model.removeRow(row)
 self.model.submitAll()
 if row + 1 >= self.model.rowCount():
 row = self.model.rowCount() - 1
 self.mapper.setCurrentIndex(row)

If the user clicks Delete we pick out some information from the current record and use it
when we ask the user to confirm the deletion. If they confirm, we retrieve the current row,
remove the row from the model, and call submitAll() to force the model to write back
the change to the underlying data source (in this case the database). Then we finish up by
navigating to the next record.

The reason that we have used submitAll() is because we have performed the deletion
on the model, not the mapper, and for databases we must confirm changes to the model
by calling this method unless the view (or data widget mapper) has been set to
automatically submit. The data widget mapper's API does not allow us to add or delete
records, only edit existing ones, and for this reason we must add or delete records using
the underlying model.

The techniques we have used so far can be applied to any database table or editable
database view to provide users with a means of navigating, adding, updating, and deleting
records. However, in most cases there are foreign keys to consider, an issue we will now
address.

Figure 15.3. The Phone Log Application

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 458 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The calls table (shown on page 443), has a foreign key outcomeid field. We want this
field to appear as a combobox in the form, showing the outcomes table's name field for
each corresponding ID. To do this we create a combobox in the usual way, but we do not
populate it.

Since we are now using a table that has a foreign key we must use a
QSqlRelationalTableModel rather than a QSqlTableModel.

self.model = QSqlRelationalTableModel(self)
self.model.setTable("calls")
self.model.setRelation(OUTCOMEID,
 QSqlRelation("outcomes", "id", "name"))
self.model.setSort(STARTTIME, Qt.AscendingOrder)
self.model.select()

The QSqlRelationalTableModel is very similar to a QSqlTableModel, except that
it provides a few extra methods for handling relations. The setRelation() method takes
a field index in the model, and a QSqlRelation object. The relation object is created with
the name of the foreign key's table, the field to actually store, and the field to display.

The data widget mapper code must also be changed. In particular, we must use a
QSqlRelationalDelegate rather than the standard built-in delegate, and we must also
set up the combobox that is used for the foreign key.

self.mapper = QDataWidgetMapper(self)
self.mapper.setSubmitPolicy(QDataWidgetMapper.ManualSubmit)
self.mapper.setModel(self.model)
self.mapper.setItemDelegate(QSqlRelationalDelegate(self))
self.mapper.addMapping(self.callerEdit, CALLER)
self.mapper.addMapping(self.startDateTime, STARTTIME)
self.mapper.addMapping(self.endDateTime, ENDTIME)
self.mapper.addMapping(topicEdit, TOPIC)
relationModel = self.model.relationModel(OUTCOMEID)
self.outcomeComboBox.setModel(relationModel)
self.outcomeComboBox.setModelColumn(
 relationModel.fieldIndex("name"))
self.mapper.addMapping(self.outcomeComboBox, OUTCOMEID)
self.mapper.toFirst()

The code is similar to what we had before. Setting the relational delegate is easy, but setting
up the combobox is slightly subtle. First we must retrieve the relation model (outcomes
table) used by the model (calls table) to handle the foreign key. A QComboBox is actually
a convenience view widget with a built-in model, just like a QListWidget; but it is possible
to substitute our own model, and that's what we have done here. However, a combobox
shows a single column, and our relation model has two columns (id, name), so we must
specify which one to display. We cannot be certain about the column indexes used by the
relation model (since it was created for us, not by us), so we use the fieldIndex()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 459 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

method with a field name to specify the correct column index. Once the combobox is set
up we can add it to the mapper like any other widget.

That completes the changes for handling foreign keys. In addition, we have taken the
opportunity to do a couple of other small changes to the application.

In the simplified version we connected the Quit button to a custom accept() method,
and also, rather unintuitively, called accept() from the reject() method. This was to
ensure that the application always saved the current record's changes before terminating.
In the foreign key version we have taken a different approach, and connected the Quit
button to the done() method.

def done(self, result=None):
 self.mapper.submit()
 QDialog.done(self, True)

This method is called as a result of the Quit button connection, or if the user closes the
window by clicking the close button or presses Esc. We save the current record and call
the base class's done() method. The second argument is mandatory, but it doesn't matter
what value it holds in this case: A True value signifies accept() and a False value
signifies reject(), but either way, the window will close.

We have made one other tiny change, adding two lines to the addRecord() method:

self.outcomeComboBox.setCurrentIndex(
 self.outcomeComboBox.findText("Unresolved"))

This ensures that when the user clicks Add to add a new record, the outcome combobox
will have a sensible default, in addition to the date/time defaults we already set.

Forms are very useful for tables with lots of fields, especially if a lot of validation needs to
be done on the basis of inter-field dependencies. But for tables with fewer fields, or where
users want to see multiple records, we need to use tabular views. These are the subject of
the next section.

Using Database Table Views
Probably the most natural and convenient way of presenting database data is to show
database tables and views in GUI tables. This allows users to see many records at once,
and is particularly convenient for showing master—detail relationships.

In this section we will examine the Asset Manager application. The code is in chap15/
assetmanager.pyw. This application has four tables, created by the following SQL
statements:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 460 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

query = QSqlQuery()
query.exec_("""CREATE TABLE actions (
 id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,
 name VARCHAR(20) NOT NULL,
 description VARCHAR(40) NOT NULL)""")
query.exec_("""CREATE TABLE categories (
 id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,
 name VARCHAR(20) NOT NULL,
 description VARCHAR(40) NOT NULL)""")
query.exec_("""CREATE TABLE assets (
 id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,
 name VARCHAR(40) NOT NULL,
 categoryid INTEGER NOT NULL,
 room VARCHAR(4) NOT NULL,
 FOREIGN KEY (categoryid) REFERENCES categories)""")
query.exec_("""CREATE TABLE logs (
 id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,
 assetid INTEGER NOT NULL,
 date DATE NOT NULL,
 actionid INTEGER NOT NULL,
 FOREIGN KEY (assetid) REFERENCES assets,
 FOREIGN KEY (actionid) REFERENCES actions)""")

The actions and categories tables are typical reference data tables, with an ID, a short
description (name), and a long description (description). The main table is assets;
this holds the name, category, and location of each asset in a building. The logs table is
used to keep track of what happens to an asset over its lifetime. Figure 15.4 shows the tables
schematically.

Figure 15.4. The Asset Manager Database Design

The Asset Manager application has a dialog style main window with two QTableViews in
a master—detail relationship. The top table shows the assets table and the bottom one
shows the records from the logs table that correspond to the current asset record. The
user can add and delete assets and log records, and edit both tables in-place. They can also
add, delete, and edit the categories and actions reference tables by popping up a
suitable dialog. This dialog also uses a QTableView, although it could easily have used a
QDataWidgetMapper instead.

We will begin by looking at the creation and connection to the database, then the main
form, and then we will look at the dialog that is used with the reference data. Just as with
the Phone Log application, the Asset Manager generates a set of fake records the first time

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 461 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

it is run. As noted in the previous section, this is fast with SQLite on Linux and very slow
on some Windows machines.

Figure 15.5. The Asset Manager Application

app = QApplication(sys.argv)
db = QSqlDatabase.addDatabase("QSQLITE")
db.setDatabaseName(filename)
if not db.open():
 QMessageBox.warning(None, "Asset Manager",
 QString("Database Error: %1").arg(db.lastError().text()))
 sys.exit(1)
form = MainForm()
form.show()
app.exec_()

We begin as usual by creating a QApplication object. Next we create the connection; if
the database file doesn't exist, SQLite will create an empty one. Then we create the main
form, call show() on it to schedule a paint event, and start off the event loop.

What we haven't shown is the code that we have used to generate the fake data the first
time the application is run, and to pop up the splash screen. This code is of course in the
source file, chap15/assetmanager.pyw.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 462 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

As we did in the previous section, we will skip the form's layout, and concentrate instead
on the creation of the widgets and the models. We will also skip the code for creating the
buttons, although we will show the first couple of the signal—slot connections.

class MainForm(QDialog):

 def __init__(self):
 super(MainForm, self).__init__()

 self.assetModel = QSqlRelationalTableModel(self)
 self.assetModel.setTable("assets")
 self.assetModel.setRelation(CATEGORYID,
 QSqlRelation("categories", "id", "name"))
 self.assetModel.setSort(ROOM, Qt.AscendingOrder)
 self.assetModel.setHeaderData(ID, Qt.Horizontal,
 QVariant("ID"))
 self.assetModel.setHeaderData(NAME, Qt.Horizontal,
 QVariant("Name"))
 self.assetModel.setHeaderData(CATEGORYID, Qt.Horizontal,
 QVariant("Category"))
 self.assetModel.setHeaderData(ROOM, Qt.Horizontal,
 QVariant("Room"))
 self.assetModel.select()

The model is created in much the same way as we saw in the previous section. The ID,
NAME, and others are integer column indexes set up earlier in the assetmanager.pyw
file. What's different from using a QDataWidgetMapper is that we have set the header
data to give the columns titles; if we don't do this the QTableView that presents the model
will use the database field names for the column titles. Since the categoryid field is a
foreign key, we have used a QSqlRelationalTableModel and called setRelation
() appropriately.

self.assetView = QTableView()
self.assetView.setModel(self.assetModel)
self.assetView.setItemDelegate(AssetDelegate(self))
self.assetView.setSelectionMode(QTableView.SingleSelection)
self.assetView.setSelectionBehavior(QTableView.SelectRows)
self.assetView.setColumnHidden(ID, True)
self.assetView.resizeColumnsToContents()

The view is a standard QTableView, but instead of setting a
QSqlRelationalDelegate, we have set a custom delegate. We will detour to look at
this in a moment. The selection mode is set so that users can navigate to individual fields;
the selection behavior is that the row which has the focus is highlighted. We don't want to
show the ID field since it isn't meaningful to the user, so we hide it.

The reason that we have not used a standard QSqlRelationalDelegate is that we want
to take control of the editing of the room numbers, because they are not straightforward
to validate. We will now take a brief detour to look at the AssetDelegate class.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 463 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

class AssetDelegate(QSqlRelationalDelegate):

 def __init__(self, parent=None):
 super(AssetDelegate, self).__init__(parent)

The initializer is typical of most delegate subclasses, simply calling the base class.

def paint(self, painter, option, index):
 myoption = QStyleOptionViewItem(option)
 if index.column() == ROOM:
 myoption.displayAlignment |= Qt.AlignRight|Qt.AlignVCenter
 QSqlRelationalDelegate.paint(self, painter, myoption, index)

The only reason we have reimplemented the paint() method is to right-align the room
numbers. We do this by changing the QStyleOptionViewItem, and leave the painting
itself to be done by the base class.

def createEditor(self, parent, option, index):
 if index.column() == ROOM:
 editor = QLineEdit(parent)
 regex = QRegExp(r"(?:0[1-9]|1[0124-9]|2[0-7])"
 r"(?:0[1-9]|[1-5][0-9]|6[012])")
 validator = QRegExpValidator(regex, parent)
 editor.setValidator(validator)
 editor.setInputMask("9999")
 editor.setAlignment(Qt.AlignRight|Qt.AlignVCenter)
 return editor
 else:
 return QSqlRelationalDelegate.createEditor(self, parent,
 option, index)

The heart of the createEditor() method is the code that sets up the QLineEdit for
entering room numbers. Room numbers are four digits long, made up of a floor number,
in the range 01–27 (but excluding 13), and a room number on the floor in the range 01–
62. For example 0231 is floor 2, room 31, but 0364 is invalid. The regular expression is
sufficient for specifying valid room numbers, but cannot set a minimum number of digits,
since 1, 2, or 3 digits may be a valid prefix for a valid 4 digit room number. We have solved
this by using an input mask that requires exactly four digits to be entered. For the other
fields, we pass the work on to the base class.

def setEditorData(self, editor, index):
 if index.column() == ROOM:
 text = index.model().data(index, Qt.DisplayRole).toString()
 editor.setText(text)
 else:
 QSqlRelationalDelegate.setEditorData(self, editor, index)

Once the editor has been created, the view will call setEditorData() so that it can be
populated with the current value. In this case, we only care about the room column, passing
on the work for the other fields to the base class.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 464 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def setModelData(self, editor, model, index):
 if index.column() == ROOM:
 model.setData(index, QVariant(editor.text()))
 else:
 QSqlRelationalDelegate.setModelData(self, editor, model,
 index)

We have taken a similar approach to the previous method, handling the room field and
leaving the others to be handled by the base class. As a matter of fact we could have omitted
reimplementing this method, and PyQt would have been smart enough to retrieve the value
from our QLineEdit. However, it is better practice to take full responsibility for our own
customizations.

We have now finished the detour and can return to the MainForm.__init__() method,
beginning with the bottom table that shows the log records that are applicable to the
current asset.

self.logModel = QSqlRelationalTableModel(self)
self.logModel.setTable("logs")
self.logModel.setRelation(ACTIONID,
 QSqlRelation("actions", "id", "name"))
self.logModel.setSort(DATE, Qt.AscendingOrder)
self.logModel.setHeaderData(DATE, Qt.Horizontal,
 QVariant("Date"))
self.logModel.setHeaderData(ACTIONID, Qt.Horizontal,
 QVariant("Action"))
self.logModel.select()

The code for creating the log model is almost the same as the code we used for the asset
model. We use a QSqlRelationalTableModel because we have a foreign key field, and
we provide our own column titles.

self.logView = QTableView()
self.logView.setModel(self.logModel)
self.logView.setItemDelegate(LogDelegate(self))
self.logView.setSelectionMode(QTableView.SingleSelection)
self.logView.setSelectionBehavior(QTableView.SelectRows)
self.logView.setColumnHidden(ID, True)
self.logView.setColumnHidden(ASSETID, True)
self.logView.resizeColumnsToContents()
self.logView.horizontalHeader().setStretchLastSection(True)

This code is also similar to what we did for the assets table, but with three differences. Here
we have used a custom LogDelegate class—we won't review it because it is structurally
very similar to the AssetDelegate. It provides custom editing of the date field. We also
hide both the log record's ID field, and the assetid foreign key—there's no need to show
which asset the log records are for because we are using master–detail, so the only log
records that are visible are those that apply to the current asset. (We will see how the
master–detail relationship is coded shortly.) The last difference is that we have set the last

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 465 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

column to stretch to fill all the available space. The QTableView.horizontalHeader
() method returns a QHeaderView, and this is what controls some aspects of the table
view's columns, including their widths.

self.connect(self.assetView.selectionModel(),
 SIGNAL("currentRowChanged(QModelIndex,QModelIndex)"),
 self.assetChanged)
self.connect(addAssetButton, SIGNAL("clicked()"),
 self.addAsset)

If the user navigates to a different row we must update the log view to show the log records
for the right asset. This is achieved by the first connection in conjunction with the
assetChanged() method that we will review in a moment.

Every view has at least one selection model that is used to keep track of which items in the
view's model (if any) are selected. We connect the view's selection model's
currentRowChanged() signal so that we can update the log view depending on the
current asset.

All the other connections are button clicked connections like the second one shown here.
We will cover all the methods the buttons connect to as we progress through this section.

self.assetChanged(self.assetView.currentIndex())
self.setMinimumWidth(650)
self.setWindowTitle("Asset Manager")

The initializer ends by calling the assetChanged() method with the asset view's current
model index—this will result in the log view showing the relevant asset's records.

def assetChanged(self, index):
 if index.isValid():
 record = self.assetModel.record(index.row())
 id = record.value("id").toInt()[0]
 self.logModel.setFilter(QString("assetid = %1").arg(id))
 else:
 self.logModel.setFilter("assetid = -1")
 self.logModel.select()
 self.logView.horizontalHeader().setVisible(
 self.logModel.rowCount() > 0)

This method is called once by the form's initializer and then whenever the user navigates
to a different asset, i.e., to a different row in the assets table view.

If the model index of the new position in the view is valid, we retrieve the row's entire
record from the model and set a filter on the log model that selects only those log records
which have an assetid corresponding to the asset ID of the current row. (This is the
equivalent of doing SELECT * FROM logs WHERE assetid = id.) Then we call

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 466 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

select() to refresh the log view with the selected log records. If the model index is
invalid, we set the ID to be one that we know does not exist, thereby guaranteeing that no
rows will be retrieved and the log view will be empty. Finally, we hide the log view's column
titles if there are no log records to display.

The record() method is one of the extensions that the QSqlTableModel and
QSqlRelationalTableModel classes provide beyond the methods from their
QAbstractItemModel base class, to make them easier to use with databases. Other
extensions include setQuery() which allows us to write our own SELECT statement
using SQL syntax, and insertRecord() for adding records.

The connection to the assetChanged() method, and the implementation of the method,
are all we have to do to establish a master–detail relationship between two models (and
therefore between their views).

def done(self, result=1):
 query = QSqlQuery()
 query.exec_("DELETE FROM logs WHERE logs.assetid NOT IN"
 "(SELECT id FROM assets)")
 QDialog.done(self, 1)

When the application terminates we execute one final query to delete any log records that
are present for non-existent, i.e., deleted, assets. In theory, this should never be needed,
and therefore should do nothing. This is because, for databases that support transactions,
we use transactions to ensure that if an asset is deleted, then so are its log records.

def addAction(self):
 index = self.assetView.currentIndex()
 if not index.isValid():
 return
 QSqlDatabase.database().transaction()
 record = self.assetModel.record(index.row())
 assetid = record.value(ID).toInt()[0]

 row = self.logModel.rowCount()
 self.logModel.insertRow(row)
 self.logModel.setData(self.logModel.index(row, ASSETID),
 QVariant(assetid))
 self.logModel.setData(self.logModel.index(row, DATE),
 QVariant(QDate.currentDate()))
 QSqlDatabase.database().commit()
 index = self.logModel.index(row, ACTIONID)
 self.logView.setCurrentIndex(index)
 self.logView.edit(index)

If the user asks to add an action (a new log record), this method is called. We retrieve the
assetid for the current asset, the insert a new log record as the last record in the log table.
We then set the record's assetid foreign key to the one we have retrieved and provide

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 467 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

an initial default date. Finally, we retrieve a model index to the new log record's action
combobox, and initiate editing ready for the user to choose a suitable action.

Before we retrieve the assetid we begin a transaction. This is to prevent the theoretical
possibility that having got the assetid, the asset is deleted just before the new log record
is created. If this occurred, the log record would refer to a non-existent asset, something
that might cause crashes or more subtle problems later on. Once we call commit() we
know that the asset and the new log record both exist. If someone now tries to delete the
asset, they can do so—but the asset's log records, including this one, will correctly be
deleted along with it.

For a really defensive approach we might structure our transaction code like this:

class DatabaseError(Exception): pass

rollback = False
try:
 if not QSqlDatabase.database().transaction():
 raise DatabaseError
 rollback = True
 # execute commands that affect the database
 if not QSqlDatabase.database().commit()
 raise DatabaseError
 rollback = False
finally:
 if rollback:
 if not QSqlDatabase.database().rollback():
 raise DatabaseError

This tries to ensure that if some problem occurs that prevents the commit from being
reached, or from being able to execute successfully if it is called, that we rollback to the
previous position and therefore preserve the database's relational integrity. All bets are off
if the rollback fails though. The error text can be retrieved from
QSqlDatabase.database().lastError().text() which returns a QString.

The scope of a transaction goes from when transaction() is called until the transaction
is either committed or rolled back. It does not matter whether the database has been
accessed through QSqlDatabase or through a model, the context of the transaction
applies to all SQL statements, including those executed by independent queries and those
executed by different models, so long as they apply to the same database within the same
transaction's context.

If we are using Python 2.6, or use from __future__ import with_statement in
Python 2.5, we could simplify the code shown above by creating and using a context
manager.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 468 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Context Manager sidebar 545

The transaction-oriented approach tries to arrange things so that problems cannot occur.
An alternative approach is to assume that everything will work, and rely on the database
to preserve foreign key relationships and other aspects of data integrity. This won't work
with SQLite 3 since it does not enforce relational integrity, but it does work with some
other databases. With this approach, we can often code without using transactions. Most
of the time things will work fine, and for those few occasions when a problem occurs, we
rely on the database to refuse to do any action that would break its rules, and to provide
us with an error message that we can report to the user.

Note that transactions are set on the database, accessed through the static
QSqlDatabase.database() method. The database can also be accessed by calling the
database() method on a model. Each database connection can handle one transaction
at a time, so if we want more than one transaction at the same time, we must establish an
extra connection for each extra transaction that we want to use.

def deleteAction(self):
 index = self.logView.currentIndex()
 if not index.isValid():
 return
 record = self.logModel.record(index.row())
 action = record.value(ACTIONID).toString()
 if action == "Acquired":
 QMessageBox.information(self, "Delete Log",
 "The 'Acquired' log record cannot be deleted.
"
 "You could delete the entire asset instead.")
 return
 when = unicode(record.value(DATE).toString())
 if QMessageBox.question(self, "Delete Log",
 "Delete log
%s %s?" % (when, action),
 QMessageBox.Yes|QMessageBox.No) == QMessageBox.No:
 return
 self.logModel.removeRow(index.row())
 self.logModel.submitAll()

For deleting actions, the logic that we have implemented is that users cannot delete the
"Acquired" log record, i.e., the first log record. (But they can delete an asset, and with that
all its log records, as we will see shortly.) If the log record is one that the user is allowed to
delete and they confirm the deletion we simply call removeRow() on the log model, and
then submitAll() to update the underlying database.

def editActions(self):
 form = ReferenceDataDlg("actions", "Action", self)
 form.exec_()

def editCategories(self):

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 469 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 form = ReferenceDataDlg("categories", "Category", self)
 form.exec_()

Since both the actions and the categories reference tables have identical structures,
we can use the same smart dialog for when we want to drill-down to add, edit, and delete
their records. We give the dialog the name of the table in the database, and the name of
the reference data to be shown in the user interface (in the dialog's title bar for example).

We won't review the code for the ReferenceDataDlg shown in Figure 15.6, because it
does not have anything new to teach us. It uses a QTableView with a
QSqlTableModel set to the table that is passed in to its constructor. Editing is in-place
and handled automatically by the table view and table model. Adding a record is simply a
matter of inserting a new row into the model and setting the view to it.

Figure 15.6. The Asset Manager Reference Data Form

For reference data deletions, we execute a query to see if the particular reference data
record is being used by one of the other tables, i.e., if an action is used by any records in
the log table, or if a category is used by any records in the assets table. If the record is in
use we pop up an informative error message and do not permit the deletion to take place.
Otherwise we call removeRow() on the model for the relevant row and then submitAll
() to commit the change to the database, just as we did when deleting an action.

Unlike reference data, adding and deleting assets is handled by the main form's methods.

def addAsset(self):
 row = self.assetView.currentIndex().row() \
 if self.assetView.currentIndex().isValid() else 0

 QSqlDatabase.database().transaction()
 self.assetModel.insertRow(row)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 470 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 index = self.assetModel.index(row, NAME)
 self.assetView.setCurrentIndex(index)

 assetid = 1
 query = QSqlQuery()
 query.exec_("SELECT MAX(id) FROM assets")
 if query.next():
 assetid = query.value(0).toInt()[0]
 query.prepare("INSERT INTO logs (assetid, date, actionid) "
 "VALUES (:assetid, :date, :actionid)")
 query.bindValue(":assetid", QVariant(assetid + 1))
 query.bindValue(":date", QVariant(QDate.currentDate()))
 query.bindValue(":actionid", QVariant(ACQUIRED))
 query.exec_()
 QSqlDatabase.database().commit()
 self.assetView.edit(index)

When the user adds a new asset we want to create a new log record for the asset with its
action set to "Acquired". Naturally we either want both these records created, or, if
something goes wrong, neither, and to do this we must use a transaction.

We begin by initiating a transaction. Then we insert a new row and make it the current
one in the asset view. If this is the very first asset its ID will be 1, but if there are other
assets, its ID will be one more than the highest asset ID. We execute a query to find the
current highest asset ID and then we use a prepared query (so that we don't have to worry
about quoting), to insert a new record into the log table. Once the new record has gone
into the log table, we commit the transaction. Now we will have one log record for the new
asset with an action of "Acquired", and a new blank asset record. Finally, we initiate editing
on the new asset's name field.

We will finish reviewing the main form by looking at the deleteAsset() method. The
method is slightly involved so we will look at it in three parts.

def deleteAsset(self):
 index = self.assetView.currentIndex()
 if not index.isValid():
 return
 QSqlDatabase.database().transaction()
 record = self.assetModel.record(index.row())
 assetid = record.value(ID).toInt()[0]
 logrecords = 1
 query = QSqlQuery(QString("SELECT COUNT(*) FROM logs "
 "WHERE assetid = %1").arg(assetid))
 if query.next():
 logrecords = query.value(0).toInt()[0]

We begin by starting a transaction. This is because, if an asset is to be deleted, all its log
records must also be deleted, and either both these things must happen or neither, to
maintain the database's relational integrity.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 471 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We know that there must be at least one log record, the "Acquired" record, but we perform
a query to see what the total number of log records is.

msg = QString("Delete
%1"
 "
from room %2") \
 .arg(record.value(NAME).toString()) \
 .arg(record.value(ROOM).toString())
if logrecords > 1:
 msg += QString(", along with %1 log records") \
 .arg(logrecords)
msg += "?"
if QMessageBox.question(self, "Delete Asset", msg,
 QMessageBox.Yes|QMessageBox.No) == QMessageBox.No:
 QSqlDatabase.database().rollback()
 return

Here we give the user the opportunity to confirm their deletion or to cancel it. If they cancel,
we rollback the transaction and return.

query.exec_(QString("DELETE FROM logs WHERE assetid = %1") \
 .arg(assetid))
self.assetModel.removeRow(index.row())
self.assetModel.submitAll()
QSqlDatabase.database().commit()
self.assetChanged(self.assetView.currentIndex())

We have deleted the log records using a SQL query, and the asset record using the model
API. After the deletion we commit the transaction and call assetChanged() to make
sure that the master—detail view is showing the correct log records.

We could have used the model API for both deletions, for example:

self.logModel.setFilter(QString("assetid = %1").arg(assetid))
self.logModel.select()
if self.logModel.rowCount() > 0:
 self.logModel.removeRows(0, self.logModel.rowCount())
 self.logModel.submitAll()

This completes our review of the Asset Manager application. Creating master–detail
relationships between tables is quite straightforward, and the same thing can be done
between tables and forms using a data widget mapper. The SQL table models are very easy
to use and "just work" with QTableViews. Also, we can create custom delegates to exercise
complete control over the appearance and editing of fields, and where necessary we can
use delegates to provide record level validation.

One issue that we have not had to concern ourselves with is that of creating unique keys
for new records. We have solved the problem by using auto-incrementing ID fields in our
tables. But sometimes auto-incrementing is not appropriate, for example when a key is
more complicated than a simple integer. We can handle such cases by connecting to the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 472 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

QSqlTableModel.beforeInsert() signal. This signal gives the method it is
connected to a reference to the record that is about to be inserted (after the user has
finished editing it), so we can populate or change any fields we like just before the data
actually gets inserted into the database.

There are also some additional SQL-specific signals that we can connect to, for example,
beforeDelete() and beforeUpdate(); these might be useful if we wanted to record
deletions or changes in a separate table. Finally, there is the primeInsert() signal—this
is emitted when a new record is created, but before the user has had the chance to edit it.
This is where we might populate the record with helpful default values. However, in all the
examples in this chapter, we have put in default values when the user clicked an Add
button. Also note that since QSqlRelationalTableModel is a subclass of
QSqlTableModel, it too has these signals.

Summary
PyQt provides strong support for SQL databases with a consistent API provided by the
QtSql module. Database drivers are provided for all the most widely used databases,
although some are only available with commercial editions of Qt due to licensing
restrictions.

If we make a single database connection, all subsequent database accesses will use that
connection by default. But if we need multiple connections we can simply give each one a
name, and access them by name afterwards to specify which one we want to use for which
particular action.

We can access the database's driver, and through that discover whether the database
supports certain features such as BLOBs and transactions. And no matter what the
underlying database is, PyQt allows us to use prepared queries with both ODBC and Oracle
syntax, automatically handling any conversions and quoting that are necessary. PyQt
supports all the standard SQL datatypes, and performs any necessary conversions if the
database itself does not.

The QSqlQuery class allows us to execute arbitrary SQL statements using its exec_()
method. This means, for example, that we can use it to create and drop tables, and to insert,
update, and delete records. The QSqlQuery objects provide methods for navigating the
result set produced when a SELECT statement is executed, and can also provide
information on the number of rows affected by a query, for example, how many were
deleted or updated.

Creating GUI forms for displaying database tables (or editable views) is straightforward
using a QDataWidgetMapper. We normally use a QComboBox for each foreign key field,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 473 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

giving it the appropriate relation model as its internal model. Although it is possible to set
a QDataWidgetMapper to submit changes automatically, this can lead to data loss when
the user navigates, so if we provide means of navigation it is best to submit all the changes
ourselves.

Displaying database tables and views is very easy using QTableView in conjunction with
a QSqlTableModel or a QSqlRelationalTableModel. These classes combine to offer
in-place editing of field data. Adding and deleting records can easily be achieved by
inserting or deleting rows from the model, and when we need atomic actions we can use
transactions.

All the functionality of PyQt's model/view architecture is available to database
programmers. In addition, the SQL table models' APIs have been extended to make
database programming easier. And when we need to execute raw SQL, we can easily do so
using the QSqlQuery class.

We have now reached the point where you should be able to create any kind of GUI
application you like, limited only by your imagination and the time available to you. In
Part IV we will look at some additional topics that can be tricky to deal with, starting with
more advanced material on model/view programming, then internationalization, then
networking, and finishing up with multithreading.

Exercise
Create a dialog style application for adding, editing, and deleting records in a reference
table. The application should create the reference.db database the first time it is run,
with a single, empty table:

CREATE TABLE reference (
 id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,
 category VARCHAR(30) NOT NULL,
 shortdesc VARCHAR(20) NOT NULL,
 longdesc VARCHAR(80))

In addition to offering add and delete buttons, provide a sort button that has a pop up
menu with three sort order options: By ID, by category, and by short description. All three
could be connected to a single method using lambda or functools.partial. To make
any new sort (or filter) take effect, you must call select() on the model. Use a
QDialogButtonBox for all the buttons.

If the user clicks Delete, pop up a yes/no message box, and only delete if they say yes. The
application is similar to the ReferenceDataDlg from the Asset Manager application,
and can be written in about 130 lines.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 474 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 15.7. The Reference Data Dialog

A solution is provided in chap15/referencedata.pyw.

Part IV: Advanced GUI Programming

16. Advanced Model/View Programming
• Custom Views
• Generic Delegates
• Representing Tabular Data in Trees

In the two previous chapters we explored the basics of PyQt model/view programming.[*]

We saw how to create custom models, and how to use the predefined SQL table models.
We also saw how to create custom delegates to control the appearance and editing of data
items. In this chapter we will deepen our knowledge of PyQt model/view programming.

[*] This chapter assumes a knowledge of PyQt's model/view architecture, covered in Chapter 14.

All of the topics covered in this chapter, and the ones that follow, are more advanced than
the ones we have seen before, at least conceptually. However, in most cases the code is no
more difficult than what we have already seen.

In the first section we will look at how to implement a custom view, so that we can see how
to visualize our data in any way we want. This section is useful for understanding more

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 475 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

about how views work, and to see one straightforward approach to implementing a custom
view.

The second section revisits the subject of custom delegates, showing how to minimize code
duplication and how to easily create arbitrary delegates for views. This section should
prove especially useful to those who need to create many delegates, especially for datasets
such as SQL tables where each column is of a particular type.

In the final section we will see how to reflect tabular data into a tree view. One use of this
is where we represent tables as trees when the first few columns often contain the same
values—this has the effect of reducing the number of rows that the user must navigate to
find the item they want. Another use is to let users pick particular values that form a "path".
For example, rather than providing two, three, or more comboboxes, each of whose values
depend on what the current values of its predecessors are, we just provide a single tree for
the user to navigate and choose from.

Custom Views
PyQt provides several view classes that work well out of the box, including QListView,
QTableView, and QTreeView. One thing that all these views have in common is that they
are usually used to present data items textually—although all of them can also show icons
and checkboxes if desired. An alternative to textual representations of data are visual
representations, and for these we can use the graphics view classes covered in Chapter
12. Sometimes, though, we want to present data in a way that doesn't really match any of
the classes that are available. In such cases we can create our own view subclass and use
it to visualize our models.

Figure 16.1 shows the same dataset presented by two different views. The left-hand view
is a standard QTableView, and the right-hand view is a custom WaterQualityView.
Both show the timestamps of water quality readings textually, but the
WaterQualityView shows colored circles for three key indicators, and uses Unicode
arrow symbols to signify special flow situations. Obviously, the table view presents the
facts in a clear and accurate way, but the water quality view makes it easier to see what the
situation is at any particular time, and also makes it easier to get an impression of any
important trends, just by looking at the colors.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 476 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16.1. Two Views of Water Quality Data

The water quality dataset covers a six month period at one small water treatment works—
but with readings taken every 15 minutes, this adds up to just over 17 500 readings. What
this implies is that our view is going to need a vertical scrollbar. PyQt offers three ways of
getting scrollbars. One way is to create a widget that inherits QAbstractScrollArea;
this approach is used by the QGraphicsView and QTextEdit widgets. Another way is
to create a composite widget that includes a couple of QScrollBars. But PyQt's
documentation recommends the third way—using the much simpler QScrollArea
instead. The one disadvantage of using QScrollArea is that it is one of the few PyQt
classes not designed to be subclassed. Instead we must create an instance and add the
widget we want scrollbars for to it. To put this in perspective, here is the Water Quality
Data application's initializer:

class MainForm(QDialog):

 def __init__(self, parent=None):
 super(MainForm, self).__init__(parent)

 self.model = WaterQualityModel(os.path.join(
 os.path.dirname(__file__), "waterdata.csv.gz"))
 self.tableView = QTableView()
 self.tableView.setAlternatingRowColors(True)
 self.tableView.setModel(self.model)
 self.waterView = WaterQualityView()
 self.waterView.setModel(self.model)
 scrollArea = QScrollArea()
 scrollArea.setBackgroundRole(QPalette.Light)
 scrollArea.setWidget(self.waterView)
 self.waterView.scrollarea = scrollArea

 splitter = QSplitter(Qt.Horizontal)
 splitter.addWidget(self.tableView)
 splitter.addWidget(scrollArea)
 splitter.setSizes([600, 250])
 layout = QHBoxLayout()
 layout.addWidget(splitter)
 self.setLayout(layout)

 self.setWindowTitle("Water Quality Data")
 QTimer.singleShot(0, self.initialLoad)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 477 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The code above is the whole thing. The WaterQualityModel is a QAbstractTable-
Model subclass that provides read-only access to a water quality data file. The
WaterQualityView is the class we will develop in this section. One special thing that we
have done here is to create a QScrollArea widget and add the water quality view to it—
this basically means that the water quality view can be as wide and as tall as we like and
the scroll area will take care of scrolling issues.

We will see shortly that keyboard users can navigate in the water quality view using the up
and down arrow keys, and to ensure that the selected row is always visible we must pass
the scroll area to the water quality view so that our key press handler can interact with it.
Another thing that is special is that we have given initial sizes to the two parts of the
horizontal splitter so that at start up, they are roughly in the right proportions for the
widgets they are holding.

We will now review the WaterQualityView, beginning with some static data and the
initializer.

class WaterQualityView(QWidget):

 FLOWCHARS = (unichr(0x21DC), unichr(0x21DD), unichr(0x21C9))
 def __init__(self, parent=None):
 super(WaterQualityView, self).__init__(parent)
 self.scrollarea = None
 self.model = None
 self.setFocusPolicy(Qt.StrongFocus)
 self.selectedRow = -1
 self.flowfont = self.font()
 size = self.font().pointSize()
 if platform.system() == "Windows":
 fontDb = QFontDatabase()
 for face in [face.toLower() for face in fontDb.families()]:
 if face.contains("unicode"):
 self.flowfont = QFont(face, size)
 break
 else:
 self.flowfont = QFont("symbol", size)
 WaterQualityView.FLOWCHARS = (
 chr(0xAC), chr(0xAE), chr(0xDE))

Setting the focus policy to anything (except Qt.NoFocus) means that the widget can
accept keyboard focus. We will discuss why we have done this, and the selectedRow
instance variable at the end of this section.

When water flow is going the wrong way, or too slowly, or too quickly, we want to indicate

the situation with a suitable character, for example, , , and . These characters
are available in Unicode, but most of the default fonts supplied with Windows don't appear

to include the whole Unicode character set, so the arrows are all shown as characters.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 478 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

(On Linux, if a Unicode character is not available in the current font, PyQt can usually find
the character in another font in which case it uses the found font just for that character.)

To solve this problem on Windows we iterate over the list of available fonts until we find
one with "Unicode" in its name. (For example, "Lucida Sans Unicode".) If we find such a
font, we store it as the flow characters' font; otherwise we fall back to the standard (but
non-Unicode) Symbol font and use the nearest equivalent characters in that font.

def setModel(self, model):
 self.model = model
 self.connect(self.model,
 SIGNAL("dataChanged(QModelIndex,QModelIndex)"),
 self.setNewSize)
 self.connect(self.model, SIGNAL("modelReset()"),
 self.setNewSize)
 self.setNewSize()

Once a model is set on the view we connect to its data changed and reset signals so that
the view can be resized to match the available data.

def setNewSize(self):
 self.resize(self.sizeHint())
 self.update()
 self.updateGeometry()

This method resizes the view to its preferred size, calls update() to schedule a repaint,
and updateGeometry() to tell any layout manager that is responsible for the view that
its size has changed. Because we put the view in a QScrollArea, the scroll area will
respond to changes in size by adjusting the scrollbars it provides.

def minimumSizeHint(self):
 size = self.sizeHint()
 fm = QFontMetrics(self.font())
 size.setHeight(fm.height() * 3)
 return size

We calculate the view's minimum size to be its preferred size's width and three characters
in height. In a layout this makes sense, but since a QScrollArea is used the minimum
size will in practice be whatever the scroll area decides.

def sizeHint(self):
 fm = QFontMetrics(self.font())
 size = fm.height()
 return QSize(fm.width("9999-99-99 99:99 ") + (size * 4),
 (size / 4) + (size * self.model.rowCount()))

We use the height of one character (including its inter-line spacing) as our unit of size for
both vertical and horizontal measurements. The view's preferred size is wide enough to

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 479 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

show a timestamp plus four units of size to allow for the colored circles and the flow
character, and tall enough for all the rows in the model plus a quarter of the unit of size to
allow a tiny bit of margin.

The paint event isn't too difficult, but we will look at it in three parts, and only show the
code for one colored circle, since the code for all three is almost identical.

def paintEvent(self, event):
 if self.model is None:
 return
 fm = QFontMetrics(self.font())
 timestampWidth = fm.width("9999-99-99 99:99 ")
 size = fm.height()
 indicatorSize = int(size * 0.8)
 offset = int(1.5 * (size - indicatorSize))
 minY = event.rect().y()
 maxY = minY + event.rect().height() + size
 minY -= size
 painter = QPainter(self)
 painter.setRenderHint(QPainter.Antialiasing)
 painter.setRenderHint(QPainter.TextAntialiasing)

If there is no model we do nothing and return. Otherwise we need to calculate some sizes.
Just like the sizeHint() we use the height of one character as our unit of size, setting
the indicatorSize (the diameter of the colored circles) to 80% of this amount. The
offset is a tiny amount of vertical spacing designed to make the circles align vertically
with the timestamp texts.

Given the large size of the datasets that the view might be asked to show it seems sensible
to only paint those items that are wholly or partially visible to the user. For this reason we
set the minimum y coordinate to the paint event rectangle's y coordinate (but minus one
size unit), and the maximum y coordinate to be the minimum plus the paint event's height
and plus one size unit. This means that we will paint from the item above the top-most
item that is wholly in the view (i.e., the one with the lowest y coordinate in range, since
point (0, 0) is the top-left corner), down to the item below the bottom-most item that is
wholly in the view, (i.e., the one with the highest y coordinate in range).

A paint event's event parameter contains the size of the region that needs repainting. Very
often we can disregard this information and simply paint the entire widget, but sometimes,
as here, we make use of the information to make our painting more efficient.

y = 0
for row in range(self.model.rowCount()):
 x = 0
 if minY <= y <= maxY:
 painter.save()
 painter.setPen(self.palette().color(QPalette.Text))
 if row == self.selectedRow:
 painter.fillRect(x, y + (offset * 0.8),
 self.width(), size,

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 480 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 self.palette().highlight())
 painter.setPen(self.palette().color(
 QPalette.HighlightedText))
 timestamp = self.model.data(
 self.model.index(row, TIMESTAMP)).toDateTime()
 painter.drawText(x, y + size,
 timestamp.toString(TIMESTAMPFORMAT))
 x += timestampWidth
 temperature = self.model.data(
 self.model.index(row, TEMPERATURE))
 temperature = temperature.toDouble()[0]
 if temperature < 20:
 color = QColor(0, 0,
 int(255 * (20 - temperature) / 20))
 elif temperature > 25:
 color = QColor(int(255 * temperature / 100), 0, 0)
 else:
 color = QColor(0, int(255 * temperature / 100), 0)
 painter.setPen(Qt.NoPen)
 painter.setBrush(color)
 painter.drawEllipse(x, y + offset, indicatorSize,
 indicatorSize)
 x += size

We iterate over every row in the model, but only paint those with a y coordinate that is in
range. Once we have a row to paint, we set the pen (used for drawing text) to the palette's
text color. If the row is selected (something we will explain after covering the paint event),
we paint the background in the palette's highlight color, and set the pen to the palette's
highlighted text color.

Having set up the text color, and possibly painted the background, we then retrieve and
draw the row's timestamp. For each row we keep an x coordinate that tells us how far across
we are, and that we increment by the font metrics timestamp width we calculated earlier.

The first colored circle is used to indicate the water's temperature in °C. If the water is too
cool we use a color with a blue tint; if it is too warm we use a color with a red tint; otherwise
we use a green tint. Then we switch off the pen and set the brush to the color we have set
up and paint an ellipse to the right of the timestamp. The drawEllipse() method will
draw a circle in this case because the width and height of the rectangle in which the ellipse
is drawn are the same.

We then increment the x coordinate. Now we repeat the process for the other two colored
circle indicators, using the same tinting approach as we did for temperature. We have
omitted the code for these since it is structurally identical to the code used for the
temperature circle.

 flow = self.model.data(
 self.model.index(row, INLETFLOW))
 flow = flow.toDouble()[0]
 char = None
 if flow <= 0:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 481 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 char = WaterQualityView.FLOWCHARS[0]
 elif flow < 3:
 char = WaterQualityView.FLOWCHARS[1]
 elif flow > 5.5:
 char = WaterQualityView.FLOWCHARS[2]
 if char is not None:
 painter.setFont(self.flowfont)
 painter.drawText(x, y + size, char)
 painter.restore()
y += size
if y > maxY:
 break

If the water flow is in the wrong direction, or is too slow or too fast, we draw a suitable
character, using the font and characters that were set in the initializer.

At the end we increment the y coordinate ready for the next row of data, but if we have
gone past the last row that is in view, we stop.

The code we have written so far is sufficient to provide a read-only view of the dataset. But
users often want to highlight an item. The easiest way to do this is to add a mouse press
event handler.

def mousePressEvent(self, event):
 fm = QFontMetrics(self.font())
 self.selectedRow = event.y() // fm.height()
 self.update()
 self.emit(SIGNAL("clicked(QModelIndex)"),
 self.model.index(self.selectedRow, 0))

The unit of size used for all our calculations is the height of a character. We divide the
mouse position's y coordinate (which is relative to the top-left corner of the widget) by the
unit of size, to find which row the user clicked. We use integer division because row
numbers are whole numbers. Then we call update() to schedule a paint event. In the
paintEvent() we saw that the selected row is drawn using highlighted text and
background colors. We also emit a clicked() signal, with the model index of the first
column of the row that was clicked. The signal is not used by this application, but providing
it is good practice when implementing custom views.

Keyboard users are catered for already by the scroll area: They can scroll using the Page
Up and Page Down keys. But we ought to provide a means for keyboard users to select an
item. To do this we must make sure that the widget has a suitable focus policy—we did this
in the initializer—and we must also provide a key press event handler.

def keyPressEvent(self, event):
 if self.model is None:
 return
 row = -1
 if event.key() == Qt.Key_Up:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 482 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 row = max(0, self.selectedRow - 1)
 elif event.key() == Qt.Key_Down:
 row = min(self.selectedRow + 1, self.model.rowCount() - 1)
 if row != -1 and row != self.selectedRow:
 self.selectedRow = row
 if self.scrollarea is not None:
 fm = QFontMetrics(self.font())
 y = fm.height() * self.selectedRow
 self.scrollarea.ensureVisible(0, y)
 self.update()
 self.emit(SIGNAL("clicked(QModelIndex)"),
 self.model.index(self.selectedRow, 0))
 else:
 QWidget.keyPressEvent(self, event)

We have chosen to support just two key presses: Up Arrow and Down Arrow. If the user
presses either of these we increment or decrement the selected row, make sure that the
selected row is in range, and then schedule a paint event. If the user navigates to the row
above the top-most visible row or below the bottom-most visible row, we tell the scroll area
to make sure that the row that has been scrolled to is visible—if necessary, the scroll area
will scroll to achieve this. We also emit a clicked() signal with the newly selected row's
model index. It is quite conventional to use a clicked() signal in this circumstance, since
in effect the user is "clicking" using the keyboard—after all, the signals and slots mechanism
is concerned with what the user wants rather than how they asked for it, and here they just
want to select a row.

If we do not handle the key press ourselves, i.e., for all other key presses, we pass the event
on to the base class.

The water quality view widget is visually very different from the table view shown beside
it, yet it did not require that much code to implement and was not too difficult to program.
We made the widget fairly efficient by reducing the amount of unnecessary painting. We
also made the painting code as simple as possible by ensuring that the widget was always
exactly the size necessary to display the entire dataset. The disadvantage of this approach
is that it pushes responsibility on to the programmer using our widget to use a
QScrollArea, although this saves us from having to implement scrolling ourselves.

The water quality view visualizes the data in one-to-one correspondence with the data in
the model, but we are not constrained to do this. It is also possible to create custom views
that show aggregated data. In this case for example, we could have shown one entry per
day, or per hour, perhaps by averaging each day or hour's readings.

Generic Delegates
As we have seen in earlier chapters, custom delegates allow us to exercise complete control
over the appearance and behavior of the data items that appear in views. While it is obvious

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 483 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

that if we have many models we are likely to want a custom delegate for most if not all of
them, what is not so obvious, is that the custom delegates will very likely have a lot of
duplicate code.[*]

[*] This section is partly based on ideas from the author's whitepaper, "Qt 4's Model/View Delegates", available from http://www.ics.com/developers/papers/.

Imagine that we have just four models, each of which has an integer ID column, some
string columns holding plain text, a description column holding HTML text, and for some
of the models, one or two floating-point columns. All the models have the ID as their first
column, but the other columns don't match up, so each one requires its own custom
delegate. Providing the custom delegates is not a big undertaking, but the code dealing
with the integer IDs might be the same in all of them, similarly for the strings, HTML
strings, and floating-point numbers.

Now imagine that we have to write custom delegates for another half dozen new models:
Much of the code will again be duplicated—and this will probably make maintenance more
difficult.

What would be better, particularly for models that have one data type per column like
database tables, is if instead of creating a custom delegate for each model, we could
compose a delegate from a set of generic components. This would mean that the
maintenance would be confined to the generic components, and a bug fix in one would
automatically benefit any view that made use of it.

In code, the effect we are after is something like this:

self.table1 = QTableView()
self.table1.setModel(self.model1)
delegate1 = GenericDelegate(self)
delegate1.insertColumnDelegate(1, PlainTextColumnDelegate())
delegate1.insertColumnDelegate(2, PlainTextColumnDelegate())
delegate1.insertColumnDelegate(3, RichTextColumnDelegate())
delegate1.insertColumnDelegate(4, IntegerColumnDelegate())
self.table1.setItemDelegate(delegate1)

self.table2 = QTableView()
self.table2.setModel(self.model2)
delegate2 = GenericDelegate(self)
delegate2.insertColumnDelegate(1, PlainTextColumnDelegate())
delegate2.insertColumnDelegate(2, IntegerColumnDelegate())
delegate2.insertColumnDelegate(3, FloatColumnDelegate())
delegate2.insertColumnDelegate(4, FloatColumnDelegate())
delegate2.insertColumnDelegate(5, RichTextColumnDelegate())
self.table2.setItemDelegate(delegate2)

Here we have two separate models, but both use generic delegates that are composed of
predefined column delegates that are data type specific.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 484 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.ics.com/developers/papers/

With this approach we only ever have to create a single plain text column delegate, a single
rich text column delegate, and so on, for each data type we want to handle, such as integers,
floating-point numbers, dates, times, and date/times. In addition we might create some
project-specific column delegates to handle custom types, but for any given data type there
would only be one column delegate, drastically cutting down on code duplication, and
ensuring that any model can have a "custom" delegate simply by using a generic delegate
with suitable column delegates added.

In this section we will see how to create a GenericDelegate class and a couple of example
column delegates. Then we will see how they are used in the context of the application
shown in Figure 16.2.

Figure 16.2. A Table View Using Generic Delegates

The GenericDelegate class is simple, because it passes on almost all the work to other
classes.

class GenericDelegate(QItemDelegate):

 def __init__(self, parent=None):
 super(GenericDelegate, self).__init__(parent)
 self.delegates = {}

The initializer calls super() as usual, and also creates an empty dictionary. The keys will
be column indexes and the values will be instances of QItemDelegate subclasses.

def insertColumnDelegate(self, column, delegate):
 delegate.setParent(self)
 self.delegates[column] = delegate

When a new column delegate is inserted into the generic delegate, the generic delegate
takes ownership of it, and inserts it into the dictionary.

def removeColumnDelegate(self, column):
 if column in self.delegates:
 del self.delegates[column]

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 485 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This method is included for completeness, but is not likely to be used. If a column delegate
is removed the generic delegate will simply use the QItemDelegate base class for that
column.

def paint(self, painter, option, index):
 delegate = self.delegates.get(index.column())
 if delegate is not None:
 delegate.paint(painter, option, index)
 else:
 QItemDelegate.paint(self, painter, option, index)

The structure of this method is the key to how the GenericDelegate class works. We
begin by getting the column delegate for the given column. If we get a delegate we pass on
the work to it; otherwise we pass on the work to the base class.

def createEditor(self, parent, option, index):
 delegate = self.delegates.get(index.column())
 if delegate is not None:
 return delegate.createEditor(parent, option, index)
 else:
 return QItemDelegate.createEditor(self, parent, option,
 index)

This method follows the same pattern as the paint() method, except that it returns a
value (the editor that was created for it).

def setEditorData(self, editor, index):
 delegate = self.delegates.get(index.column())
 if delegate is not None:
 delegate.setEditorData(editor, index)
 else:
 QItemDelegate.setEditorData(self, editor, index)

def setModelData(self, editor, model, index):
 delegate = self.delegates.get(index.column())
 if delegate is not None:
 delegate.setModelData(editor, model, index)
 else:
 QItemDelegate.setModelData(self, editor, model, index)

These last two GenericDelegate methods follow the same pattern as the paint() and
createEditor() methods, using the column delegate if one has been set for the given
column, and using the QItemDelegate base class otherwise.

Now that we have seen the GenericDelegate's implementation, we can turn our
attention to the column delegates that can be inserted into it. In chap16/
genericdelegates.py we provide the IntegerColumnDelegate,
DateColumnDelegate, PlainTextColumnDelegate, and

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 486 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

RichTextColumnDelegate classes. All of them have a similar structure, so we will only
look at the code for two of them, DateColumnDelegate, and
RichTextColumnDelegate. Once the implementation of these is understood (and it is
easy, at least for the date column delegate), creating additional column delegates, for
example one for floating-point numbers, will be straightforward.

class DateColumnDelegate(QItemDelegate):

 def __init__(self, minimum=QDate(), maximum=QDate.currentDate(),
 format="yyyy-MM-dd", parent=None):
 super(DateColumnDelegate, self).__init__(parent)
 self.minimum = minimum
 self.maximum = maximum
 self.format = QString(format)

For dates we want to provide minimum and maximum values, and also a display format.

def createEditor(self, parent, option, index):
 dateedit = QDateEdit(parent)
 dateedit.setDateRange(self.minimum, self.maximum)
 dateedit.setAlignment(Qt.AlignRight|Qt.AlignVCenter)
 dateedit.setDisplayFormat(self.format)
 dateedit.setCalendarPopup(True)
 return dateedit

The code for creating the editor follows the general pattern we saw back in Chapter 14: We
create the editor with the given parent, set it up, and then return it. Here we have used the
minimum, maximum, and format values that were passed to the initializer.

def setEditorData(self, editor, index):
 value = index.model().data(index, Qt.DisplayRole).toDate()
 editor.setDate(value)

We set the editor's value to be the value of the data item at the given model index. We do
not need to check the column since this column delegate will only be called by the
GenericDelegate for the column that the user has specified.

def setModelData(self, editor, model, index):
 model.setData(index, QVariant(editor.date()))

When writing the editor's data back to the model, again we don't have to check the column
because that's taken care of by the GenericDelegate.

This is the complete DateColumnDelegate. We did not need to reimplement the paint
() method because the QItemDelegate base class can draw the data perfectly well. The
IntegerColumnDelegate and PlainTextColumnDelegate are both very similar to

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 487 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the DateColumnDelegate. The RichTextColumnDelegate is also similar, but it also
reimplements the paint() and sizeHint() methods.

class RichTextColumnDelegate(QItemDelegate):

 def __init__(self, parent=None):
 super(RichTextColumnDelegate, self).__init__(parent)

The constructor is even simpler than the one used for the other column delegates. We could
even omit it, but we prefer to be explicit.

def createEditor(self, parent, option, index):
 lineedit = richtextlineedit.RichTextLineEdit(parent)
 return lineedit

We use the RichTextLineEdit that we created in Chapter 13. Structurally this method
is the same as for the other column delegates, except that here we don't need to set up the
editor in any particular way.

def setEditorData(self, editor, index):
 value = index.model().data(index, Qt.DisplayRole).toString()
 editor.setHtml(value)

The RichTextLineEdit accepts HTML text if we use its setHtml() method. (It also
has a setPlainText() method.)

def setModelData(self, editor, model, index):
 model.setData(index, QVariant(editor.toSimpleHtml()))

The RichTextLineEdit has a toHtml() method, but we use the toSimpleHtml()
method that we developed in Chapter 13. This ensures that we store the shortest possible
HTML that validly represents the text. This is important because in the paint() method,
for highlighted (i.e., selected) items, we will set the text color of the text by wrapping it in
a tag—this will work for text that uses the simple HTML format since it is just an
HTML fragment, but not for the normal HTML format which is a complete HTML
document.

def paint(self, painter, option, index):
 text = index.model().data(index, Qt.DisplayRole).toString()
 palette = QApplication.palette()
 document = QTextDocument()
 document.setDefaultFont(option.font)
 if option.state & QStyle.State_Selected:
 document.setHtml(QString("%2") \
 .arg(palette.highlightedText().color().name()) \
 .arg(text))
 else:
 document.setHtml(text)
 painter.save()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 488 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 color = palette.highlight().color() \
 if option.state & QStyle.State_Selected \
 else QColor(index.model().data(index,
 Qt.BackgroundColorRole))
 painter.fillRect(option.rect, color)
 painter.translate(option.rect.x(), option.rect.y())
 document.drawContents(painter)
 painter.restore()

The paint() method is almost the same as the one used with the ShipDelegate
described in Chapter 14. The only difference is that we don't have to check for a particular
column since we know that the column delegate is only ever called for the column the user
has specified.

Painting Rich Text in a Delegate 434

One limitation of this approach is that the highlighting only works with HTML fragments.
If we want the code to work with both fragments and with complete HTML documents we
could use code like this:

if option.state & QStyle.State_Selected:
 if text.startsWith("<html>"):
 text = QString(text).replace("<body ",
 QString("<body bgcolor=%1 ")
 .arg(palette.highlightedText().color().name())
 else:
 text = QString("%2")\
 .arg(palette.highlightedText().color().name())\
 .arg(text))
document.setHtml(text)

Another approach would be to extract the text document's style sheet, update the
background color, and set the updated style sheet back on the document.

def sizeHint(self, option, index):
 text = index.model().data(index).toString()
 document = QTextDocument()
 document.setDefaultFont(option.font)
 document.setHtml(text)
 return QSize(document.idealWidth() + 5,
 option.fontMetrics.height())

We must calculate the size hint for a rich text column ourselves because the default
calculation based on the widget's font size and the number of characters will usually give
widths that are much too wide. This is because HTML text usually contains far more
characters (such as tags and entities) than the number of characters that are actually

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 489 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

displayed. This is easy to solve by using a QTextDocument. The code is almost the same
as that used for the ShipDelegate's size hint method.

Size Hints for Rich Text in a Delegate 435

We can easily create other column delegates, and could make any column delegate offer
more functionality than the examples shown here provide. For example, for the
IntegerColumnDelegate we have minimum and maximum values, but it would be
simple to provide additional options, such as prefix and suffix texts.

Now that we have seen how the GenericDelegate works and how to create column
delegates, we can see how they are used in practice. Figure 16.2 (on page 481), shows a
table view that uses a generic delegate with several column delegates to provide control
over the editing and appearance of its columns. The form is in chap16/
carhirelog.pyw; here is the beginning of its initializer:

class MainForm(QMainWindow):

 def __init__(self, parent=None):
 super(MainForm, self).__init__(parent)

 model = CarHireModel(self)

 self.view = QTableView()
 self.view.setModel(model)
 self.view.resizeColumnsToContents()

 delegate = genericdelegates.GenericDelegate(self)
 delegate.insertColumnDelegate(CUSTOMER,
 genericdelegates.PlainTextColumnDelegate())
 earliest = QDate.currentDate().addYears(-3)
 delegate.insertColumnDelegate(HIRED,
 HireDateColumnDelegate(earliest))
 delegate.insertColumnDelegate(MILEAGEOUT,
 MileageOutColumnDelegate(0, 1000000))
 delegate.insertColumnDelegate(RETURNED,
 ReturnDateColumnDelegate(earliest))
 delegate.insertColumnDelegate(MILEAGEBACK,
 MileageBackColumnDelegate(0, 1000000))
 delegate.insertColumnDelegate(NOTES,
 genericdelegates.RichTextColumnDelegate())

 self.view.setItemDelegate(delegate)
 self.setCentralWidget(self.view)

The model is a custom model similar to ones we created in Chapter 14. The view is a
standard QTableView.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 490 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The model has nine columns: A plain text read-only license number, a plain text customer
name, a hired date (a QDate), an integer starting mileage (mileage out), a returned date
(a QDate), an integer returned mileage (mileage back), and a rich text notes column. It
also has two columns that are generated rather than stored—a mileage column (the
difference between the back and out mileages), and a days column (the difference between
the returned and hired dates).

The model and the underlying data structure take care of the read-only license column and
the generated columns (as we will discuss shortly), so we only need to provide column
delegates for the editable columns. For the customer name we use a
PlainTextColumnDelegate, and for the notes we use a RichTextLineEdit.

But for the mileages and dates we have used custom column delegates that are subclasses
of the IntegerColumnDelegate and of the DateColumnDelegate. The reason we
need these subclasses is to provide cross-column validation. For example, we cannot accept
a returned date that is earlier than the hired date, or a mileage back that is less than the
starting mileage.

class HireDateColumnDelegate(genericdelegates.DateColumnDelegate):

 def createEditor(self, parent, option, index):
 i = index.sibling(index.row(), RETURNED)
 self.maximum = i.model().data(i, Qt.DisplayRole) \
 .toDate().addDays(-1)
 return genericdelegates.DateColumnDelegate.createEditor(
 self, parent, option, index)

This is the complete HireDateColumnDelegate subclass. We only need to reimplement
createEditor(). We retrieve the returned date, and set the maximum hired date to be
the day before the car was returned, since we have a minimum of one day's car hire. We
actually leave the creation of the editor to the base class. The reason that we cannot set a
meaningful maximum date when the column delegate is created is that the user could edit
the returned date at any time, so we must calculate the maximum hired date when the user
starts to edit it.

Using the sibling() method provides us with a more convenient alternative to calling
index.model().index(index.row(), RETURNED).

The ReturnDateColumnDelegate is almost identical, except that we retrieve the hired
date and set the minimum returned date to the day after the car was hired. The
MileageOutColumnDelegate and MileageBackColumnDelegates are similar; they
both only reimplement the createEditor() method, and both set the maximum (or
minimum) depending on the other mileage's value.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 491 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The model's setData() method does not allow editing of the license number, nor of the
generated columns. It does this by simply returning False for those columns, which
indicates that they were not updated. For the other columns the value passed in to the
setData() method is set in the underlying data structure.

The model's data() method faithfully returns the value of the column it is asked for, as
provided by the underlying data structure. The data structure returns stored values for
most of the columns, but for the MILEAGE and DAYS columns it returns values calculated
from the relevant values.

Creating general data type-specific column delegates is quite easy, and subclassing them
when validation must take into account the whole row (record) is not difficult either. But
since it isn't hard to create a custom delegate for each model, why use the generic delegate
approach at all? There are two main contexts where generic delegates don't make sense.
Simple applications where only a few delegates are needed, and models that have columns
which contain heterogeneous data types. But for applications that need many delegates
and where columns have homogeneous data types such as those used in databases, generic
delegates offer three key benefits:

• It is easy to change the delegate used for a particular column, or to add additional
column delegates if the model is changed to have more columns.

• Using column delegates means that we avoid the code duplication that is inevitable if
we create many model-specific custom delegates—for example, we only need to write
one rich text line editing delegate, one date/time editing delegate, and so on.

• Once a data type-specific column delegate is created, it can be reused for every column
that uses that data type, in any number of generic delegates used with any number of
models. This means that bug fixes and enhancements only need to be applied to one
column delegate for each data type.

Representing Tabular Data in Trees
Suppose we want the user to pick out a data item, but that the item they pick depends on
some previous item they picked, which in turn depends on some previous item again. In
concrete terms, imagine that we want the user to choose a particular airport—first they
must choose the country, then the city, and then the airport. This could be done by
providing three comboboxes, populating the first with country names, and populating the
second with the cities in the current country, and the third with the airports in the current
city. This is not difficult to program, but the user must use three separate widgets to specify
their choice, and can't easily see what range of choices are available to them.

One solution to choosing dependent data items, is to use a tree view. To continue the
example, the roots of the tree would be the countries, and each country would have city

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 492 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

branches, and each city branch would have airport leaves. This makes it much easier for
the user to follow a path (and they can only follow valid paths), and easier for us to retrieve
their complete country/city/airport choice.

Another benefit of using a tree view, compared, for example with using a table view, is that
it is more compact and easier to navigate. For example, if we had 100 countries, with an
average of 4 cities each, and an average of 2 airports per city, a table would require 100 x
4 x 2 = 800 rows—but a tree would only need 100 rows (one per country), with each row
capable of being expanded to show its cities and airports.

In this section we will show how to represent a table of data in a tree, and how to extract
the complete "path" that the user has chosen. The example application we will use is called
Server Info. It reads a dataset that has six columns: country, state (only meaningful in the
US), city, provider, server, and IP address, and allows users to specify one particular 6-
tuple. The sample dataset has 163 rows, but only refers to 33 unique countries, so the user
need only navigate 33 top-level items rather than scrolling though almost five times that
number of rows.

The heart of the application is provided by the TreeOfTableModel class, a
QAbstractItemModel subclass that can represent arbitrary tabular data in a tree. We
use a custom subclass of this model, along with a QTreeView subclass to present the data.
The application itself can create the tree using different levels of nesting by running it from
the console with a command line argument of 1, 2, 3, or 4. Figure 16.3 shows the tree using
the default nesting level of 3. (The nesting level does not include the leaf at the end of a
series of branches.)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 493 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16.3. Tabular Data Rendered as a Tree

We will begin by reviewing the main form since it is very short. Then we will look at the
table view subclass, and the TreeOfTableModel subclass. Then we will review the
treeoftable module, including the BranchNode and LeafNode classes, and finally,
the TreeOfTableModel class itself.

class MainForm(QMainWindow):

 def __init__(self, filename, nesting, separator, parent=None):
 super(MainForm, self).__init__(parent)
 headers = ["Country/State (US)/City/Provider", "Server", "IP"]
 self.treeWidget = TreeOfTableWidget(filename, nesting,
 separator)
 self.treeWidget.model().headers = headers
 self.setCentralWidget(self.treeWidget)
 self.connect(self.treeWidget, SIGNAL("activated"),
 self.activated)

 self.setWindowTitle("Server Info")

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 494 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The TreeOfTableWidget is similar to a convenience view, since it incorporates a model
inside it. The model is a ServerModel, a small TreeOfTableModel subclass that adds
the ability to show flag icons.

The filename is the name of a file that has data suitable for a TreeOfTableModel. In
particular it must have one record per line, and have each column (field) separated by the
specified separator.

The nesting value is the maximum number of branches that can spur off from a root, and
does not count the leaves at the end. In this case the nesting value passed in through the
nesting parameter is 3 (unless changed on the command line), which means that we will
have 3 levels of branches (country, state, city), and 1 level of leaves (provider). Since we
have 6 fields, this means that the first 4 fields will be shown in the tree part of the tree
widget, with the remaining 2 fields shown as separate columns in the rows that have leaves.
The resultant tree view will have 3 columns, one containing the tree, and 2 more showing
the extra fields. We set the model's headers by directly accessing the model inside the
custom TreeOfTableWidget.

The activated() method is called when the user double-clicks or presses Enter on a row
in the tree widget.

def activated(self, fields):
 self.statusBar().showMessage("*".join(fields), 60000)

The "path", i.e., the (country, city, state, provider, server, IP address) 6-tuple that the user
has chosen, is shown "*"-separated in the status bar for a minute (60 000 milliseconds),
whenever a suitable row is activated. In this context a suitable row is one containing a leaf
since these are the only ones that have all six fields.

The TreeOfTableWidget is a QTreeView subclass that contains the model it displays.
It also provides a few simple convenience methods and creates some useful signal–slot
connections.

class TreeOfTableWidget(QTreeView):

 def __init__(self, filename, nesting, separator, parent=None):
 super(TreeOfTableWidget, self).__init__(parent)
 self.setSelectionBehavior(QTreeView.SelectItems)
 self.setUniformRowHeights(True)
 model = ServerModel(self)
 self.setModel(model)
 try:
 model.load(filename, nesting, separator)
 except IOError, e:
 QMessageBox.warning(self, "Server Info - Error",
 unicode(e))
 self.connect(self, SIGNAL("activated(QModelIndex)"),
 self.activated)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 495 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 self.connect(self, SIGNAL("expanded(QModelIndex)"),
 self.expanded)
 self.expanded()

The ServerModel is a TreeOfTableModel subclass. Its only purpose is to override the
data() method so that it can provide suitable icons (country and state flags); we will
review it shortly. After loading the model's data from the file and making the signal–slot
connections, we call the expanded() method to give the columns suitable widths.

def expanded(self):
 for column in range(self.model().columnCount(QModelIndex())):
 self.resizeColumnToContents(column)

Whenever the user expands a branch, for example by clicking one of the tree's symbols,
or by navigating with the arrow keys and pressing Right Arrow, this method is called. It
ensures that the columns showing the expanded item's texts are wide enough for the texts
to be readable. In tree models, every item is either the child of another item (and therefore
has a parent), or is a top-level (root) item in which case it has no parent, which is signified
by an invalid model index. Therefore, when we call columnCount() with a QModelIndex
() (i.e., with an invalid model index) we get the column count of top-level items.

def activated(self, index):
 self.emit(SIGNAL("activated"), self.model().asRecord(index))

If the user activates an item by double-clicking it or by pressing Enter on it, this method
is called, and in turn emits its own activated() signal. Its parameter is the full path
(record), as a list of field values, for the current model index.

def currentFields(self):
 return self.model().asRecord(self.currentIndex())

This method provides the same information as the activated() signal, but can be called
at any time to get the current record; again, as a list of field values.

The ServerModel is a TreeOfTableModel subclass that reimplements one method,
data(). It does so to show flags next to the names of countries and US States.

class ServerModel(treeoftable.TreeOfTableModel):

 def __init__(self, parent=None):
 super(ServerModel, self).__init__(parent)

 def data(self, index, role):
 if role == Qt.DecorationRole:
 node = self.nodeFromIndex(index)
 if node is None:
 return QVariant()
 if isinstance(node, treeoftable.BranchNode):

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 496 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 if index.column() != 0:
 return QVariant()
 filename = node.toString().replace(" ", "_")
 parent = node.parent.toString()
 if parent and parent != "USA":
 return QVariant()
 if parent == "USA":
 filename = "USA_" + filename
 filename = os.path.join(os.path.dirname(__file__),
 "flags", filename + ".png")
 pixmap = QPixmap(filename)
 if pixmap.isNull():
 return QVariant()
 return QVariant(pixmap)
 return treeoftable.TreeOfTableModel.data(self, index, role)

This data() reimplementation only handles data() requests where the role is
Qt.DecorationRole, passing on any other request to the TreeOfTableModel base
class. In list, table, and tree views, the decoration role is used to set or retrieve icons for
data items.

Tree models work in terms of parents and children. In the TreeOfTableModel base class
we have provided a method, nodeFromIndex(), that returns the node (item)
corresponding to a particular model index. We have two kinds of nodes, branch nodes and
leaf nodes. Each node can have any number of columns, although in this case the branch
nodes only have one column, and leaf nodes have at least one column. We only provide
icons for the first (and only) column of branch nodes, and then only for the branches for
countries and US States.

The flag icons are all stored in the flags subdirectory, with country flag names having
underscores instead of spaces, and US State names all beginning "USA_". All the flag icons
are .png images. Instead of using a .qrc resource file we retrieve the images directly from
the file system. The os.path.dirname() function returns the path part of a full
filename, and the os.path.join() function joins two or more strings to form a single
path string with the appropriate path separators. If the required image does not exist or
is unreadable then QPixmap.isNull() will return True; in this case we return an invalid
QVariant to signify that no icon is available. Otherwise we return the pixmap wrapped
in a QVariant.

The classes we have seen so far have been quite straightforward. This is because the real
work of providing the tree model is done by the TreeOfTableModel. This model reads
in a tabular dataset and converts the row/column data into a tree. The tree has a single
branch node as its root, then any number of branch nodes hanging off the root, with each
branch able to have its own branches. At the end of each branch are one or more leaf nodes.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 497 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The nodes hanging off a branch, are the branch's children. The children can be branches
or leaves, and are held in a list. Each child's position in its parent node's list of children is
its row number. Column numbers refer to the items (fields) within a child (branch or leaf).
A complete record (or "path") is the concatenation of all the fields in the root branch, all
the intermediate branches, and the leaf at the end.

Figure 16.4. Schematic of a Tree Model's Branches and Leaves

In the tree of table model we have chosen to keep each branch's children in alphabetical
order. To make this as fast and easy as possible, each branch's children list is actually a list
of two-item lists, with the first item being the order key and the second item being the child
node. We access the items in these two-item lists using the constants KEY and NODE rather
than the literals 0 and 1.

We will now look at the branch node and leaf node implementations, and then at the tree
of table model itself.

The branch and leaf nodes have many methods in common because in some contexts they
can be used interchangeably (thanks to duck typing).

class BranchNode(object):

 def __init__(self, name, parent=None):
 super(BranchNode, self).__init__(parent)
 self.name = name
 self.parent = parent
 self.children = []

A branch node's name is the text shown in its first (and only) column. In the Server Info
example, this would be the name of a country, state, or city, depending on where the branch
is in the tree's hierarchy.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 498 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def orderKey(self):
 return self.name.lower()

def toString(self):
 return self.name

def __len__(self):
 return len(self.children)

The order key is a string that is used by the node's parent to position this branch correctly
in the node's parent's list of children. The toString() method returns the branch's one
field as a string. These methods are provided for compatibility with leaf nodes to make it
easier to use either kind of node based on duck typing. The __len__() method returns
how many children the branch has.

def childAtRow(self, row):
 assert 0 <= row < len(self.children)
 return self.children[row][NODE]

This method returns the node for the given row. We have used an assert statement here,
and in many other places in the tree of table model's code. The code can be tricky to get
right, but by using assertions we can at least be clear about what we expect to be true at
particular points in the code.

def rowOfChild(self, child):
 for i, item in enumerate(self.children):
 if item[NODE] == child:
 return i
 return -1

assert statement 67

Here we return the row index of a particular child node, or -1 if the child is not one of this
node's children.

def childWithKey(self, key):
 if not self.children:
 return None
 i = bisect.bisect_left(self.children, (key, None))
 if i < 0 or i >= len(self.children):
 return None
 if self.children[i][KEY] == key:
 return self.children[i][NODE]
 return None

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 499 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We sometimes want to find the first child that has a given order key. One approach would
be to do what we did in the rowOfChild() method, iterating through the list of children
to find the right one. Here we have taken a more efficient approach. We find the position
that a node with the given key ought to occupy, and if this is in range and also has the right
key, we return the child.

def insertChild(self, child):
 child.parent = self
 bisect.insort(self.children, (child.orderKey(), child))

This method inserts a new child node into a branch's list of children, and makes this branch
the child's parent. By using bisect.insort() in conjunction with the child's order key,
we ensure that the child is put in the correct position as quickly and efficiently as possible.
The insort() function is identical to insort_right().

def hasLeaves(self):
 if not self.children:
 return False
 return isinstance(self.children[0], LeafNode)

In the tree of table model, a branch that has children either has branches or leaves, but not
a mixture of both. For this reason, if a branch has no children at all then clearly it has no
leaves; and similarly, if it does have children and the first one is a leaf, then all of them are
leaves.

We have now seen the entire branch node class. Next, we will look at the much shorter leaf
node class

class LeafNode(object):

 def __init__(self, fields, parent=None):
 super(LeafNode, self).__init__(parent)
 self.parent = parent
 self.fields = fields

The fields in a leaf node are the node's columns.

def orderKey(self):
 return u"\t".join(self.fields).lower()

def toString(self, separator="\t"):
 return separator.join(self.fields)

def __len__(self):
 return len(self.fields)

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 500 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A leaf node's order key is the tab-separated concatenation of its fields. Similarly its
toString() method returns a concatenation of its fields. The __len__() method
returns the number of fields; for branches it returns the number of children.

def field(self, column):
 assert 0 <= column <= len(self.fields)
 return self.fields[column]

This method makes it easy to extract a single field's value while having the assertion that
the field's column is within range.

def asRecord(self):
 record = []
 branch = self.parent
 while branch is not None:
 record.insert(0, branch.toString())
 branch = branch.parent
 assert record and not record[0]
 record = record[1:]
 return record + self.fields

The notion of a record used by the tree of table model is the concatenation of all the
branches from the root to the leaf's parent, plus the leaf itself, in other words the user's
complete choice "path". In terms of the Server Info application, this is the country, state,
city, provider, server, and IP address, where the country, state, and city, are branches, and
each leaf contains three fields, provider, server, and IP address.

To construct a record (a list of fields), we begin with the leaf node's parent branch, and
walk up the tree of branches. Each branch's string is prepended to the record list. The root
branch has no string, so we remove that item from the list. The list that is returned is the
concatenation of all the branch strings plus the leaf's strings.

We have now completed reviewing the nodes. The tree of table model is a
QAbstractItemModel subclass and reimplements many of the methods we would
expect, such as data(), headerData(), rowCount(), and columnCount(). In
addition it provides the index(), parent() and nodeFromIndex() methods which are
usually reimplemented for tree models. It also has some extra methods, namely, load
() and addRecord(); these are used to load in tabular data and convert it into a tree of
branches and leaves. We will begin by looking at the initializer, then the methods for
loading the data, and then the standard model/view methods.

class TreeOfTableModel(QAbstractItemModel):

 def __init__(self, parent=None):
 super(TreeOfTableModel, self).__init__(parent)
 self.columns = 0
 self.root = BranchNode("")
 self.headers = []

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 501 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The number of columns depends on the number of columns in the data that is loaded and
on the level of nesting requested. There is always one root branch node that contains no
text that is used purely as the parent of all the other branches. The headers are the texts
used as column headers.

def load(self, filename, nesting, separator):
 assert nesting > 0
 self.nesting = nesting
 self.root = BranchNode("")
 exception = None
 fh = None
 try:
 for line in codecs.open(unicode(filename), "rU", "utf8"):
 if not line:
 continue
 self.addRecord(line.split(separator), False)
 except IOError, e:
 exception = e
 finally:
 if fh is not None:
 fh.close()
 self.reset()
 for i in range(self.columns):
 self.headers.append("Column #%d" % i)
 if exception is not None:
 raise exception

The file to be loaded must be a text file with one record per line, with each field separated
by the specified separator. The file must be encoded as UTF-8 Unicode (or ASCII since
that is a subset of UTF-8). Blank lines are ignored; any other line is treated as a record and
is added to the tree.

Once loading has finished (successfully or not), we call reset() to notify any views that
the model has dramatically changed, and create some initial column headers. If the load
failed, we then re-raise the exception for the caller to handle. The columns variable is set
to 0 in the initializer, and to a meaningful value in addRecord().

def addRecord(self, fields, callReset=True):
 assert len(fields) > self.nesting
 root = self.root
 branch = None
 for i in range(self.nesting):
 key = fields[i].lower()
 branch = root.childWithKey(key)
 if branch is not None:
 root = branch
 else:
 branch = BranchNode(fields[i])
 root.insertChild(branch)
 root = branch
 assert branch is not None
 items = fields[self.nesting:]
 self.columns = max(self.columns, len(items))

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 502 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 branch.insertChild(LeafNode(items, branch))
 if callReset:
 self.reset()

To add a record there must be more fields than the level of nesting. The logic we use is
similar to what we saw in Chapter 14 when we populated a QTreeWidget's internal model.
For each field that is to be a branch we look for an existing branch with the same key. If
we find one, we make it the current root branch; otherwise we create a new branch, insert
it as a child of the current root branch, and make the new branch the current root branch.
As the loop progresses we gradually walk down the tree, creating any branches that are
needed, until we reach the lowest branch.

Once the loop has gone over all the branches that are necessary, creating any that did not
previously exist, we can create a list of the non-nesting fields and add them as a child leaf
node of the current (lowest-level) branch.

To put things in concrete terms, using the Server Info application as an example, what
happens is this. When the first record is read we have a new country, new state, new city,
new provider, and so on, so no suitable branches will exist. First a country branch will be
created, then a state branch, and then a city branch, and finally a leaf containing the
remaining provider, server, and IP address fields. If the next record read is for the same
country, but for a new state, it will find the existing country node and use it as the parent
node for the new state. Similarly, if a record has a country and state for which branches
have already been created, these will be used. But whenever a new branch is needed the
code in the loop's body will create it.

When new records are added on an ad-hoc basis, we call reset() to notify any views that
a significant change has taken place; but when loading from file we pass False and call
reset() in the calling code once all the records have been read.

def asRecord(self, index):
 leaf = self.nodeFromIndex(index)
 if leaf is not None and isinstance(leaf, LeafNode):
 return leaf.asRecord()
 return []

This method provides a list of the user's chosen "path". It only makes sense for leaf nodes,
since only a leaf node can represent a complete path. Returning None for non-leaf nodes
would have been an equally good design choice. Notice that we use the nodeFromIndex
() method to retrieve the node for a given model index: We will discuss how this works
shortly.

def rowCount(self, parent):
 node = self.nodeFromIndex(parent)
 if node is None or isinstance(node, LeafNode):

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 503 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 return 0
 return len(node)

For tree models the row count is the number of children that a particular node has. Our
implementation only allows branch nodes to have children, so when called on leaf nodes
we always return 0. The len() function calls BranchNode.__len__() which returns
the count of the branch's children.

def columnCount(self, parent):
 return self.columns

The number of columns is the maximum number of non-nested fields. This may appear
to be one too few but is correct because the first non-nested field is shown in the first (tree)
column.

def data(self, index, role):
 if role == Qt.TextAlignmentRole:
 return QVariant(int(Qt.AlignTop|Qt.AlignLeft))
 if role != Qt.DisplayRole:
 return QVariant()
 node = self.nodeFromIndex(index)
 assert node is not None
 if isinstance(node, BranchNode):
 return QVariant(node.toString()) \
 if index.column() == 0 else QVariant(QString(""))
 return QVariant(node.field(index.column()))

If the display data is requested for a branch node we return the node's text for column 0
and an empty string for the other columns. For a leaf node we return the field that
corresponds to the requested column. Prior to Qt 4.2 the default text alignment worked
fine and did not need to be specified, but from Qt 4.2 we must explicitly return a sensible
text alignment ourselves.

def headerData(self, section, orientation, role):
 if orientation == Qt.Horizontal and \
 role == Qt.DisplayRole:
 assert 0 <= section <= len(self.headers)
 return QVariant(self.headers[section])
 return QVariant()

Tree views only have horizontal (column) headers. They don't have row headers (e.g., row
numbers), because these don't really make sense since each branch has its own 0-based
list of children (rows).

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 504 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def index(self, row, column, parent):
 assert self.root
 branch = self.nodeFromIndex(parent)
 assert branch is not None
 return self.createIndex(row, column,
 branch.childAtRow(row))

The index() method must return the model index for the data item with the given row
and column and that is a child of the given parent. In a branches and leaves tree model,
this means that we must return the model index of the parent item's row-th child.

We begin by finding the branch node of the given parent model index, and return a model
index with the given row and column, and with a parent that is the (branch) node's row-
th child node.

def parent(self, child):
 node = self.nodeFromIndex(child)
 if node is None:
 return QModelIndex()
 parent = node.parent
 if parent is None:
 return QModelIndex()
 grandparent = parent.parent
 if grandparent is None:
 return QModelIndex()
 row = grandparent.rowOfChild(parent)
 assert row != -1
 return self.createIndex(row, 0, parent)

The parent() method must return the model index of the given child's parent. In a
branches and leaves tree model, this is the child's grandparent's row-th child.

We start by finding the child node's parent node's parent, i.e., the child's grandparent.
Then we return a model index which has the row the parent node occupies in the
grandparent's list of children, column 0 (since all parents are branches and branches only
have a zero-th column), and a parent that is the child's parent.

The reimplementations of the index() and parent() methods shown here are rather
subtle. However, they are standard for tree models that take a branch and leaf approach,
so their code can simply be copied "as is" in most cases.

def nodeFromIndex(self, index):
 return index.internalPointer() \
 if index.isValid() else self.root

When we call QAbstractItemModel.createIndex(), the third argument is a
reference to a node. This reference is available from a model index and is returned by the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 505 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

internalPointer() method. For any given model index we return a branch or leaf
node, or the branch root node.

Understanding tree models is more challenging than understanding table models (or list
models which are just tables with a single column). However, in many cases the difficulties
can be reduced by building upon or adapting the code presented in this section.

Summary
PyQt's built-in view widgets, and the graphics view widgets, between them provide
considerable scope for visualizing datasets. But when our requirements don't really match
what these classes provide, we can always create our own custom views and present our
data exactly how we like.

Since a custom view could potentially be showing a portion of a very large dataset, it is
usually best to optimize the paint event handler to only retrieve and display those data
items that are actually visible. If scrollbars are going to be required, then we could require
that users of our view class use a QScrollArea, or create a composite widget with a couple
of QScrollBars, or create a widget that inherits QAbstractScrollArea. The first of
these approaches only adds a few lines to the user's code, and makes implementing the
view much easier.

Using generic delegates with data type-specific column delegates makes it easy to create
ad-hoc "custom" delegates for views. Column delegates are easy to create and can cut down
on code duplication since we only need one column delegate for each data type we want
to work with. The generic delegate approach is ideal for datasets where each column's data
holds values of a single data type, such as database tables.

Creating tree models can be difficult because we have to think in terms of parents and
children, where the children may also be parents, and so on recursively to an arbitrary
level of depth. This just isn't as easy as the thinking in terms of rows and columns necessary
for tree and column models. While the tree of table model presented in this chapter is a
specific example, some of the methods that provide its tree functionality, such as index
(), parent(), and node-FromIndex(), should be able to be used "as is" or with little
adaptation, and other methods, such as addRecord() should also prove to be adaptable.

Exercise
This exercise draws together many of the model/view features that have been covered in
this and in earlier chapters.

Create an application that shows two widgets, a QListView, and a custom
BarGraphView. The data should be held in a custom BarGraphModel. The user should

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 506 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

be able to edit the data through the QListView, using a custom BarGraphDelegate to
control both the presentation and the editing of data items in the list view.

The model should be a QAbstractListModel subclass, and should hold a list of data
values (integers), and a dictionary of colors (keyed by "row", e.g., the color with key 6
corresponds to the 7th data value and so on). The model should reimplement rowCount
(), insertRows()—including calls to beginInsertRows() and endInsertRows()
where appropriate, flags() to make the model editable, setData() to allow the value
(Qt.DisplayRole) and a value's color (Qt.UserRole) to be set—and which should emit
signals to indicate that data has changed, and data() which should return the value, color,
and for the Qt.DecorationRole, a 20 x 20 pixmap filled with the color. If no color has
been set for a particular row, use a default of red.

The delegate is quite simple, and very similar to the IntegerColumnDelegate
mentioned earlier in this chapter. The key difference is that the paint() method must be
reimplemented, but only to set the alignment to Qt.AlignRight; the painting can still
be done perfectly well by the base class.

Figure 16.5. The Bar Grapher Application's Widgets

The custom view will need to reimplement setModel() in which connections should be
made to the base class's update() method so that repainting occurs when the model's
data is changed, minimumSizeHint(), sizeHint()—which can simply call
minimumSizeHint(), and paintEvent(). The paint event can be done in just over a

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 507 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

dozen lines—make sure that you use QPainter.setWindow() so that the graph always
fills the available space. All the methods should work correctly even if no model has been
set, for example, with no model the paint event should paint nothing.

Here is the code for the MainForm, to give a feel for how the classes are used:

class MainForm(QDialog):

 def __init__(self, parent=None):
 super(MainForm, self).__init__(parent)

 self.model = BarGraphModel()
 self.barGraphView = BarGraphView()
 self.barGraphView.setModel(self.model)
 self.listView = QListView()
 self.listView.setModel(self.model)
 self.listView.setItemDelegate(BarGraphDelegate(0, 1000, self))
 self.listView.setMaximumWidth(100)
 self.listView.setEditTriggers(QListView.DoubleClicked|
 QListView.EditKeyPressed)
 layout = QHBoxLayout()
 layout.addWidget(self.listView)
 layout.addWidget(self.barGraphView, 1)
 self.setLayout(layout)

 self.setWindowTitle("Bar Grapher")

In the model solution we added some extra code to create twenty random items to create
an initial bar graph. The whole thing can be done in under 200 lines.

A solution is provided in chap16/bargrapher.pyw.

17. Online Help and Internationalization
• Online Help
• Internationalization

Users may be able to use a very simple application just by reading its menu options and
button texts. Other applications may require a little more information, and in these cases
tooltips and status tips are an easy-to-program solution. But some applications are so
complex or sophisticated that users may need more extensive help to understand what
facilities are available to them, and how to use the application.

Tooltips and Status tips 169

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 508 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

One solution to giving adequate information is to supply a printed manual, another is to
provide a help system. There are several possible approaches that can be used to create a
suitable online help system; we will mention them all, and show one of them. We will return
to the Image Changer application introduced in Chapter 6, and in this chapter's first section
we will show the implementation of the application's MainWindow.helpHelp()
method, and how to provide an online help system.

Throughout the book, the applications shown have provided menu texts, button texts,
labels, tips, and so on, in English. This is fine for the minority of the world's people who
can read English, but not much use to those who speak the world's most widely spoken
language, Mandarin Chinese, or to those who speak other major languages such as Spanish,
Arabic, Hindi, Portuguese, Bengali, Russian, or Japanese.

To make an application as widely useable as possible it must be accessible to non-English
speakers. PyQt provides a toolchain for identifying user-visible strings and for making
these strings available in the easy-to-use Qt Linguist GUI application that human
translators can use to provide suitable translations. In this chapter's second section we will
discuss the translation tools and show how to use them. We will also present a new
translation-aware version of the Image Changer application suitable for use with the
translation tools.

Online Help
There are three common ways of providing an online help system. One approach is to
provide the help in the form of HTML files, and to launch a web browser set to the relevant
page. Another is to use the Qt Assistant application provided with Qt. And another to
provide a help form, again using HTML, but with the images and HTML files as resources.

The first approach can be achieved by launching a web browser as a separate process, either
using Python's subprocess module, or using PyQt's QProcess class. Qt 4.2 introduced
a new class, QDesktopServices, that makes it really easy to launch a browser in a
platform independent way with its openUrl() static convenience method.

The second approach is trickier since it requires us to create an XML file in a special format
and to distribute Qt Assistant with our application. The advantage of using Qt Assistant
is that it provides automatic indexing.

The third approach, using a custom help form and with HTML files and images as
resources, is the one that we will use. We saw back in Chapter 6 when we looked at resource
files, that we could include arbitrary files, including HTML files, and we incorporated some
demo help files in our resources.qrc file. Here is the code for the Image Changer's
MainWindow.helpHelp() method:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 509 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def helpHelp(self):
 form = helpform.HelpForm("index.html", self)
 form.show()

Resource files 170

Using our help form is easy: We just give it one of the HTML files, and self (over which
the form will center itself). Notice that we use show() rather than exec_(); this almost
always means that the form shown will have the delete on close attribute set.

The screenshot in Figure 17.1 may give the misleading impression that keyboard users are
not catered for, but in fact the class used to show the HTML files, QTextBrowser, provides
good keyboard support. For example, users can press Tab to move the focus from hyperlink
to hyperlink, and Enter to follow a hyperlink. They can go back by pressing Alt+Left
Arrow, and they can go to the first page by pressing Home. And because the form is a
QDialog subclass, they can close the window by pressing Esc.

Figure 17.1. The Image Changer Help form

By now we are very familiar with creating PyQt dialogs, so we will confine ourselves to just
showing those extracts that are relevant to creating the online help system—specifically, a

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 510 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

couple of extracts from the HelpForm's initializer, and one of its methods. (The code is in
chap17/helpform.py.)

class HelpForm(QDialog):

 def __init__(self, page, parent=None):
 super(HelpForm, self).__init__(parent)
 self.setAttribute(Qt.WA_DeleteOnClose)
 self.setAttribute(Qt.WA_GroupLeader)

The Qt.WA_GroupLeader attribute ensures that if the help form is invoked from a modal
dialog, the user will be able to interact both with the modal dialog and with the help form,
something that would not be possible otherwise. If the help form is invoked from a
modeless dialog or main window, the attribute has no effect, and the user can interact with
both as usual.

self.textBrowser.setSearchPaths([":/"])
self.textBrowser.setSource(QUrl(page))

The QTextBrowser class is a subclass of QTextEdit that can be used to display a large
subset of HTML tags, including images, lists, and tables. We have set its search path to the
resource file's root directory, and set its initial page to be the page that was passed in.
Because we have set a search path we are able to pass a page without a path, e.g., simply
index.html or filemenu.html. The QTextBrowser understands resource paths, and
is therefore able to find image resources in tags such as <img src=":/
filenew.png">.

self.connect(backAction, SIGNAL("triggered()"),
 self.textBrowser, SLOT("backward()"))
self.connect(homeAction, SIGNAL("triggered()"),
 self.textBrowser, SLOT("home()"))
self.connect(self.textBrowser, SIGNAL("sourceChanged(QUrl)"),
 self.updatePageTitle)

Navigating from page to page is handled automatically by the QTextBrowser.
Nonetheless, we have provided two toolbar buttons, Back and Home, and connected them
to the appropriate QTextBrowser slots to get the behavior we want. If the HTML
document is changed, for example, due to the user clicking a hyperlink, we call a custom
updatePageTitle() slot.

def updatePageTitle(self):
 self.pageLabel.setText(self.textBrowser.documentTitle())

This slot simply puts the HTML page's <title> text in a QLabel that is in the toolbar,
to the right of the toolbar buttons.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 511 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Once we have a HelpForm class, we can implement our online help system entirely in
HTML, either including the files as resources, or alternatively, installing them in the file
system and finding them using code like this:

helppath = os.path.join(os.path.dirname(__file__), "help")

This assumes that the help files are in a help directory which resides in the directory where
the application's .pyw file is located.

Writing the code to provide an online help system is straightforward; but designing a
system that is easy to navigate, and that is understandable, can be quite a challenge.

Internationalization
There are several issues to consider when making applications suitable for users who speak
a different language than the one used originally. The largest and most obvious issue is
that all user-visible strings must be translated into the target language—this not only
includes the strings used for menu options and dialog buttons, but also tooltips, status
tips, and any other online help. In addition we must perform other localizations, such as
making sure that numbers use the appropriate decimal marker and thousands symbol,
that time and date formats are correct, and that paper sizes and systems of measurement
are right. For example, English is spoken by most American and British people, but the
two cultures have different date format conventions, different currencies, different
standard paper sizes, and different systems of measurement.

Thanks to the use of Unicode, any character used by just about any human language can
be displayed. We saw near the beginning of the book that any unicode character can be
included in unicode or QString strings using the unicode escape character and the target
character's hexadecimal code point, or using the unichr() function. As for reading and
writing text files containing Unicode we can use Python's codecs.open() function, or
PyQt's QTextStream as we saw in an earlier chapter.

Unicode Strings 20

Text Files 247

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 512 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When it comes to some aspects of localization we can use QString, QDate and
QDateTime. For example, assuming n is a number, QString("%L1").arg(n) will
produce a QString with thousands and decimal separators suitable to the current locale.
Both QDate and QDateTime have toString() methods that can accept either a custom
format, or a predefined format such as Qt.SystemLocaleDate (Qt.LocalDate in
older code), or Qt.ISODate which is "universal". In addition, the QLocale class provides
many methods for returning localized QStrings, and a few methods for extracting
numbers from localized QStrings. It also has methods that return locale-specific
characters such as the character to use as a negative sign, a percentage symbol, and so on.

QString.arg() 398

Most of the work involved with internationalizing an application is concerned with
translation, so it is this topic that we will focus on for the rest of the section.

To help translate applications, PyQt provides a toolchain of three tools: pylupdate4,
lrelease, and Qt Linguist. For these tools to be useful, every user-visible string must be
specially marked. This is easily achieved by using the QObject.tr() method, which is
inherited by all QWidget subclasses, including all dialogs and main windows. For example,
instead of writing QString("&Save"), we write self.tr("&Save") instead. The text
passed to tr() should be ASCII; if characters outside the ASCII range are required, use
trUtf8() instead.

For each string marked for translation, the translation tools are provided with a pair of
strings: A "context" string (the class name), and the marked string itself. The purpose of
the context is to help human translators identify which window the string to translate is
shown in, since different translations might be needed in different windows in some
languages.

For strings that need translating which are not inside classes, we must use the
QApplication.translate() method, and supply the context string ourselves. For
example, in a main() function we might translate the application's name like this:
QApplication.translate("main", "Gradgrind"). Here, the context is "main",
and the string to translate is "Gradgrind".

Unfortunately, the context used by self.tr() can be different from that used by C++/
Qt's tr() method, because PyQt determines the context dynamically, whereas C++ does
so at compile time.[*] This may matter if translation files are being shared between C++/
Qt and PyQt applications. It can also be an issue if forms are subclassed. If this is ever a

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 513 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

problem, the solution is simply to replace each single argument self.tr() call with a
two argument QApplication.translate() call, explicitly giving the correct context
as the first argument, and the string to be translated as the second argument.

[*] See the PyQt pyqt4ref.html documentation, under "Differences Between PyQt and Qt".

Once all of an application's user-visible strings are suitably marked we must slightly change
the way the application starts up so that it reads in the translated strings for the locale in
which it is run.

Here is how an internationalized application is created:

1. Create the application using QObject.tr() or QApplication.translate()
for all user-visible strings.

2. Modify the application to read in the locale-specific .qm (Qt message) files at start
up if they are available.

3. Create a .pro file that lists the application's .ui (Qt Designer) files, its .py
and .pyw source files, and the .ts (translation source) file that it will use.

4. Run pylupdate4 to create the .ts file.

5. Ask the translator to translate the .ts file's strings using Qt Linguist.

6. Run lrelease to convert the updated .ts file (that contains the translations) to
a .qm file.

And here is how such an application is maintained:

1. Update the application making sure that all user-visible strings use QObject.tr
() or QApplication.translate().

2. Update the .pro file if necessary, for example, adding any new .ui or .py files that
have been added to the application.

3. Run pylupdate4 to update the .ts file with any new strings.

4. Ask the translator to translate any new strings in the .ts file.

5. Run lrelease to convert the .ts file to a .qm file.

We will cover all the steps listed above, starting with the use of QObject.tr(), using
extracts from the translation-aware version of the Image Changer application in the
chap17 directory.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 514 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

fileNewAction = self.createAction(self.tr("&New..."),
 self.fileNew, QKeySequence.New, "filenew",
 self.tr("Create an image file"))

The first string marked for translation is the menu option string, New..., and the second
is the string used for tooltips and status tips. (The "filenew" string is the name of the
icon file without its .png suffix.)

self.fileMenu = self.menuBar().addMenu(self.tr("&File"))

Menu strings as well as action strings must be translated.

self.statusBar().showMessage(self.tr("Ready"), 5000)

Here we have an initial status message for the user, and again we must use tr().

One situation where it is not usually appropriate to translate, are the strings used as
QSettings keys, especially since these strings are not normally visible to the user.

reply = QMessageBox.question(self,
 self.tr("Image Changer - Unsaved Changes"),
 self.tr("Save unsaved changes?"),
 QMessageBox.Yes|QMessageBox.No|
 QMessageBox.Cancel)

For this message box we have marked both the window title and the message text for
translation. We don't have to worry about translating the buttons in this case because we
are using standard buttons and Qt has translations for these.[*] If we had used our own texts
we would have had to use tr() on them, like any other user-visible string.

[*] Trolltech provides translations for some languages, such as French and German, and some unsupported translations to various other languages. These translations
are in Qt's (not PyQt's) translations directory; search your file system for qt_fr.qm for example, to find the French translation.

self.tr("Saved %1 in file %2").arg(self.dataname).arg(self.filename)

One way of providing the string shown above would be to write:

self.tr("Saved %s in file %s" % (self.dataname, self.filename)) # BAD

This is not recommended. Always use QStrings, and always use QString.arg(); this
makes it easier for translators. (The tr() method returns a QString, so we can call any
QString method, such as arg(), on its return value.) For example, in some languages
the translation would be phrased "Saved in file %2 the data %1". This is no problem using
a QString with arg()s since the translator can change the order of the %n's in the string
and the arg() methods will respect this. But swapping one Python string's %s for another
will not change anything.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 515 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We must use tr() for every user-visible string in hand-coded .pyw and .py files. But
for .py files generated from .ui files by pyuic4 we don't need to do anything, since
pyuic4 automatically uses QApplication.translate() on all strings anyway. This
works even for untranslated applications because if there is no suitable translation the
original language, for example English, is used instead.

A PyQt application usually uses PyQt built-in dialogs, for example, the "file open" dialog,
or the "file print" dialog. These must also be translated, although for several languages
translations are already available in the .qm files provided by Trolltech.

Having used tr() throughout, and located an appropriate Qt translation, we are ready to
modify the application's start up code to load in suitable translation files if they exist.

app = QApplication(sys.argv)
locale = QLocale.system().name()
qtTranslator = QTranslator()
if qtTranslator.load("qt_" + locale, ":/"):
 app.installTranslator(qtTranslator)
appTranslator = QTranslator()
if appTranslator.load("imagechanger_" + locale, ":/"):
 app.installTranslator(appTranslator)

app.setOrganizationName("Qtrac Ltd.")
app.setOrganizationDomain("qtrac.eu")
app.setApplicationName(app.translate("main", "Image Changer"))
app.setWindowIcon(QIcon(":/icon.png"))
form = MainWindow()
form.show()
app.exec_()

The QLocale.system().name() call will return a string such as "en_US" (English, US),
or "fr_CA" (French, Canada), and so on. The QTranslator.load() method takes a file
stem and a path. In this case we have given the path of :/ which is the application's resource
file. If the locale were "fr_CA", the file stems would be qt_fr_CA and
imagechanger_fr_CA. Given these, PyQt will look for qt_fr_CA.qm, and failing that,
for qt_fr.qm, and similarly for imagechanger_fr_CA.qm and failing that for
imagechanger_fr.qm. If the locale was "en_US", no .qm files would be found, and
therefore none installed—and this is fine since the application would then fall back to use
the original strings which are in English anyway.

Notice that we had to use QApplication.translate() (written as app.translate
()), since this code is not inside a QObject subclass's method. With no class name, we
chose to use the text "main" for the context; some programmers might prefer to use
"global"—we are free to use any name we like—the purpose of contexts is purely to help
human translators.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 516 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We can only load a single translation into a single QTranslator object, but we can add
as many translators as we like to the QApplication object. If there are conflicts, i.e., the
same string has different translations, the most recently installed translator wins.

Although we have chosen to include our translations in the resource file, there is no
obligation to do so; we could just as easily have accessed them from the file system.

Here is an extract from the resource.qrc file that we have used:

<qresource>
<file>qt_fr.qm</file>
<file>imagechanger_fr.qm</file>
</qresource>
<qresource>
<file alias="editmenu.html">help/editmenu.html</file>
<file alias="filemenu.html">help/filemenu.html</file>
<file alias="index.html">help/index.html</file>
</qresource>
<qresource lang="fr">
<file alias="editmenu.html">help/editmenu_fr.html</file>
<file alias="filemenu.html">help/filemenu_fr.html</file>
<file alias="index.html">help/index_fr.html</file>
</qresource>

A resource file can have any number of <qresource> tags, although up until now we have
only ever used one. If the current locale is "en_US", then the main help file will be :/
index.html; but if the locale is "fr_CA" or "fr" or any other "fr_*", when we seek to access
file :/index.html in code, the file we will actually get is :/index_fr.html.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 517 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 17.2. Qt Linguist

The tool that is used to create and update a .ts (translation source) file is pylupdate4.
This program is run from the command line with the name of a .pro file as parameter.
Here is the complete imagechanger.pro file:

FORMS += newimagedlg.ui
SOURCES += helpform.py
SOURCES += imagechanger.pyw
SOURCES += newimagedlg.py
SOURCES += resizedlg.py
TRANSLATIONS += imagechanger_fr.ts

The .pro file format is used primarily by C++/Qt programmers, but it makes using
pylupdate4 and lrelease easier if we use it for PyQt projects. There are only three
kinds of entry we care about, FORMS for .ui files, SOURCES for .py and .pyw files, and
TRANSLATIONs for .ts files. Notice that we do not list .qm files (such as qt_fr.qm); this
is because we do not generate the qt_fr.qm file, but simply copy it from the
translations directory.

We don't have to use one line per file; instead we can group files, for example:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 518 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

FORMS = newimagedlg.ui
SOURCES = helpform.py imagechanger.pyw newimagedlg.py resizedlg.py
TRANSLATIONS = imagechanger_fr.ts

Once we have used tr() and translate() in our source code, and created the .pro file,
we can run pylupdate4:

C:\>cd c:\pyqt\chap17
C:\pyqt\chap17>pylupdate4 -verbose imagechanger.pro
Updating 'imagechanger_fr.ts'...
 Found 96 source texts (96 new and 0 already existing)

Using the -verbose option is of course optional. The pylupdate4 program creates
the .ts file listed in the .pro file if it doesn't exist, and puts into it all the contexts and
strings for the strings marked using tr() and translate(), that appear in the files listed
in the FORMS and SOURCES .pro file entries. If the .ts file already exists,
pylupdate4 adds any new contexts and strings that are necessary, leaving any
translations that have been added in the meantime intact. Because pylupdate4 is smart,
we can run it as often as we like, even if a translator has updated the .ts file by adding or
changing translations, without losing any data.

When we are ready to release (or to simply test) the translated application we can generate
a .qm file for the .ts file by running lrelease:

C:\pyqt\chap17>lrelease -verbose imagechanger.pro
Updating 'C:/pyqt/chap17/imagechanger_fr.qm'...
 Generated 85 translations (81 finished and 4 unfinished)
 Ignored 11 untranslated source texts

Just like pylupdate4, we can run lrelease as often as we like. We don't need to generate
the qt_fr.qm file, because we copied it.

It is possible to avoid using a .pro file entirely, and simply rely on the mkpyqt.py or
Make PyQt build tools. To do this, we must run pylupdate4 once on the command line,
for example:

C:\>cd c:\pyqt\chap17
C:\pyqt\chap17>pylupdate4 *.py *.pyw -ts imagechanger_fr.ts

From now on we can simply run mkpyqt.py with the -t (translate) option, or run Make
PyQt and check the Translate checkbox. With translation switched on, both tools run
pylupdate4 followed by lrelease.

The main piece of work left to do is the translation itself. For this we can give the translator
the Qt Linguist application—it is written in C++/Qt and runs on Windows, Mac OS X, and

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 519 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Linux—along with the .ts file, and ask them to enter translations for the strings. The Qt
Linguist application is quite easy to use and can help minimize duplication by suggesting
similar previously translated phrases. It groups translation strings by contexts (which are
normally window class names). This is useful when a string might need to be translated in
different ways depending on which form it appears in.

To get started with Qt Linguist, run it, click File Open, and open a .ts file. Now click

one of the symbols in the Context dock window on the left to show the strings in a
context, then click one of the strings. The string will appear in the top-right panel under
the "Source text" heading. Click under the "Translation" heading and type in a translation.
To confirm that the translation of the string is finished, click the question mark icon in the
Context dock window beside the relevant string: Clicking the icon makes it toggle between
being a question mark or a tick. Translations that are ticked are "done" and will be put into
the .qm file by lrelease.

Summary
Creating an HTML-based online help system using QTextBrowser or
QDesktopServices.openUrl() is straightforward, while creating a system that uses
Qt Assistant is trickier to set up. But no matter which approach we take to providing access
to online help, the real challenge is the design and content of the online help documentation
itself.

Setting up an application for translation is quite straightforward. A .pro file is normally
used to list the .ts file and the .ui, .py and .pyw files that have user-visible strings in
them, and we must use pylupdate4 and lrelease to keep the .ts file up-to-date and
to produce the .qm file. We can avoid using a .pro file by generating the initial .ts file
and then using either mkpyqt.py or Make PyQt.

In terms of coding we must make sure that every user-visible string uses QObject.tr
() or QApplication.translate(). Strings that have replaceable arguments should
always use QString.arg() with its numbered %n arguments rather than the Python %
operator.

For numbers we may need to use %Ln to get the correct thousands and decimal separators.
One trick we can use for currency symbols is to do something like this:

currency = QApplication.translate("Currency", "$")

and translate "$" as "€", "£", "¥", or whatever else is appropriate. For dates we can use
QDate.toString(Qt.SystemLocaleDate) or QDate.toString(Qt.ISODate).
For units of measurement it is probably best either to provide a sensible default that the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 520 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

user can change through a configuration dialog, or have a "first run" dialog that asks the
user to choose their units, default paper size, and so on.

Exercise
If you are multilingual, pick one of the examples or exercises, or one of your own PyQt
applications, and translate it to your second language.

If you are monolingual, pick one of the examples or exercises, or one of your own PyQt
applications, and add online help to it, including tooltips and status tips, and also HTML
help files.

No solutions are provided.

18. Networking
• Creating a TCP Client
• Creating a TCP Server

The Python standard library has many modules that provide networking facilities. We saw
one example of a standard library networking function way back in Chapter 4 when we
used urllib2.urlopen() to provide a "file handle" to a file on the Internet that we then
read line by line using the for line in fh: idiom. It is also possible to just "grab" an
entire file from the Internet:

source = "http://cheeseshop.python.org/packages/source/P/" + \
 "PyPI-Browser/PyPI-Browser-1.5.zip"
target = source[source.rfind("/") + 1:]
name, message = urllib.urlretrieve(source, target)

Currency Converter 119

The name holds the name that the source was saved under; it will be the same as
target in this case, but if no target is specified will be a generated name, e.g., /tmp/
tmpX-R8z3.zip. For an HTTP download, the message is a httplib.HTTPMessage
instance that contains the relevant HTTP headers.

Python's urllib and urllib2 standard library modules are very versatile. They can use
the FTP and HTTP protocols, in the latter case using GET or POST, and also able to use

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 521 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

an HTTP proxy. The urllib2 module supports basic authentication and can be used to
set HTTP headers. And if Python has been installed with SSL support, the urllib2
module can use the HTTPS protocol. The standard library also includes support for many
other network protocols, including IMAP4, POP3, and SMTP, for email, NNTP for network
news, as well as libraries for handling cookies, XML-RPC, and CGI, and for creating
servers. Most of Python's networking support is based on the socket module which can
be used directly for low-level network programming.

In addition to Python's standard library, PyQt4 provides its own set of networking classes,
including QFtp for client-side FTP support, and QHttp for HTTP support. Low-level
networking can be done using QAbstractSocket subclasses, including QTcpSocket,
QTcpServer, and QUdpSocket, and from Qt 4.3, QSslSocket.

Networking support for Python can also be found in other third party libraries, the most
well known being the Twisted networking framework; see http://twistedmatrix.com for
further details.

In this chapter we will only concern ourselves with creating a simple client/server
application, and will create both the client and the server using just two of PyQt's
networking classes, QTcpSocket, and QTcpServer. In the next chapter, we will look at
a multithreaded version of the server that is capable of handling multiple simultaneous
requests without having to block.

Client/server applications are normally implemented as two separate programs: A server
that waits for and responds to requests, and one or more clients that send requests to the
server and read back the server's response. For this to work, the clients must know where
to connect to the server, i.e., the server's IP address and port number. Also, both clients
and server must send and receive data using an agreed socket protocol, and using data
formats that they both understand.

PyQt provides two different kinds of socket. The UDP (User Datagram Protocol) is
supported by the QUdpSocket class. UDP is lightweight, but is unreliable—there are no
guarantees that data will be received. UDP is connectionless, so data is just sent or received
as discrete items. The TCP (Transmission Control Protocol) is supported by the
QTcpSocket class. TCP is a reliable, connection- and stream-oriented protocol; any
amount of data can be sent and received—the socket is responsible for breaking the data
into chunks small enough to send, and for reconstructing the data at the other end.

UDP is often used to monitor instruments that give continuous readings, and where the
odd missed reading is not significant. Client/server applications normally use TCP because
they need reliability; this is the protocol we will use in this chapter.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 522 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://twistedmatrix.com

Another decision that must be made is whether to send and receive data as lines of text,
or as blocks of binary data. PyQt's TCP sockets can use either approach, but we have opted
to work with binary data since this is the most versatile and is also the easiest to handle.

The example we will use is the Building Services application. The server holds details of
the rooms in a building and the dates they have been booked. The client is used to book
and unbook particular rooms for particular dates. Any number of clients can be used, but
if two clients make a request that arrives at exactly the same time, one will be blocked until
the other's request has been handled. This problem can be mitigated by using a threaded
server as we will see in the next chapter.

For the sake of the example we will run the server and clients on the same machine; this
means that we can use "localhost" as the IP address. We have also chosen a port number
of 9 407—this is just an arbitrary number. The port number should be greater than 1 023
and is normally between 5 001 and 32 767, although port numbers up to 65 535 are valid.
The server can accept two kinds of request, "BOOK" and "UNBOOK", and can make three
kinds of response, "BOOK", "UNBOOK", and "ERROR". All the requests and responses
are sent and received as binary data; we will look at their formats in the sections that follow.

Figure 18.1. A Server with Two Clients

In addition to the port number which is held in the PORT variable, we also create the
SIZEOF_UINT16 variable and set it to 2 (meaning two bytes). In addition to the normal
imports we must also import the QtNetwork module:

from PyQt4.QtNetwork import *

The same PORT and SIZEOF_UINT16 variables, and the same QtNetwork import, are
used in both the client and the server applications. In the following section we will look at
the implementation of the client, and in the second section we will review the server.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 523 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Creating a TCP Client
The Building Services client is in chap18/buildingservicesclient.pyw. It allows
the user to enter a room number (with only valid room numbers being accepted), and a
date, and to request that the room is booked (or unbooked) for that date. The server
responds to the request and the client displays the response for the user to read in the
response label.

We will begin by looking at the initializer, but omitting the creation of the widgets and
layouts. We will look at it in three parts, and then go on to look at the client's methods.

class BuildingServicesClient(QWidget):

 def __init__(self, parent=None):
 super(BuildingServicesClient, self).__init__(parent)

 self.socket = QTcpSocket()
 self.nextBlockSize = 0
 self.request = None

We have subclassed QWidget rather than QDialog or QMainWindow. The only noticeable
difference is that had we subclassed QDialog, pressing Esc would have terminated the
application.

We have three objects to store. The first is the socket that the client will use to communicate
with the server. The second is the "next block size"; this is a variable that we use to
determine if we have received sufficient response data to be able to process the response.
The third is a request object; this is a QByteArray containing the request data, or None
if we have no data to send.

We will skip the creation, set up, and laying out of the widgets since it should all be familiar
by now, although we will look at the widget connections, after we have looked at the socket
connections.

self.connect(self.socket, SIGNAL("connected()"),
 self.sendRequest)
self.connect(self.socket, SIGNAL("readyRead()"),
 self.readResponse)
self.connect(self.socket, SIGNAL("disconnected()"),
 self.serverHasStopped)
self.connect(self.socket,
 SIGNAL("error(QAbstractSocket::SocketError)"),
 self.serverHasError)

The first four signals are concerned with the socket. We need to know when the connection
is established, since at that point we can send our request data. We also need to know if
the socket has data to read, since when it does, it will have the server's response which we

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 524 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

want to read. If the connection is terminated, for example, because the server has been
shut down or if an error has occurred, we want to know so that we can inform the user.

self.connect(self.roomEdit, SIGNAL("textEdited(QString)"),
 self.updateUi)
self.connect(self.dateEdit, SIGNAL("dateChanged(QDate)"),
 self.updateUi)
self.connect(self.bookButton, SIGNAL("clicked()"),
 self.book)
self.connect(self.unBookButton, SIGNAL("clicked()"),
 self.unBook)
self.connect(quitButton, SIGNAL("clicked()"), self.close)

The other connections are concerned with the user interface. As usual, we have an
updateUi() method for doing validation and for enabling/disabling the buttons as
appropriate. We also have connections to book and unbook rooms and to terminate the
application.

def updateUi(self):
 enabled = False
 if not self.roomEdit.text().isEmpty() and \
 self.dateEdit.date() > QDate.currentDate():
 enabled = True
 if self.request is not None:
 enabled = False
 self.bookButton.setEnabled(enabled)
 self.unBookButton.setEnabled(enabled)

We enable the book and unbook buttons if the room edit has a room number and if the
date edit has a date later than today—but we disable them if there is a pending request
(i.e., if self.request is not None).

def closeEvent(self, event):
 self.socket.close()
 event.accept()

If the application is terminated we make sure that we close the socket and we accept the
close event. We don't really have to do these things, but by doing them we show that we
have considered what should be done on termination.

def book(self):
 self.issueRequest(QString("BOOK"), self.roomEdit.text(),
 self.dateEdit.date())

def unBook(self):
 self.issueRequest(QString("UNBOOK"), self.roomEdit.text(),
 self.dateEdit.date())

If the user clicks Book, the book() method is called. The method simply calls
issueRequest() with the request action "BOOK", and the room number (as a

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 525 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

QString), and the date. The unBook() method is almost identical, except that its request
action is "UNBOOK".

def issueRequest(self, action, room, date):
 self.request = QByteArray()
 stream = QDataStream(self.request, QIODevice.WriteOnly)
 stream.setVersion(QDataStream.Qt_4_2)
 stream.writeUInt16(0)
 stream << action << room << date
 stream.device().seek(0)
 stream.writeUInt16(self.request.size() - SIZEOF_UINT16)
 self.updateUi()
 if self.socket.isOpen():
 self.socket.close()
 self.responseLabel.setText("Connecting to server...")
 self.socket.connectToHost("localhost", PORT)

This method is used to prepare the request QByteArray and to initiate the process
whereby the request is sent to the server.

Figure 18.2 shows the data that is written to the request QByteArray. A QByteArray
can be read from and written to just like any other QIODevice. The first two bytes contain
an unsigned integer, initially with the value 0. This integer is used to store the number of
bytes occupied by the request (excluding the size of the integer itself), i.e., the number of
bytes that follow it. We must start by making it 0 because we do not know how many bytes
will be used yet.

Figure 18.2. The Request Format

After the size integer, we write the data. The action string is the request action ("BOOK"
or "UNBOOK"), the room string holds a room number (e.g., "213"), and the date holds a
QDate. Once the data has been written to the byte array, we use seek() to move the
writing position to the beginning, so that what we write next will overwrite the start of the
QByteArray. (We actually perform the seek on the QDataStream's underlying
QIODevice, which is retrieved by the QDataStream.device() call.) We write an
unsigned 16-bit integer whose value is the length of the QByteArray minus the size of the
initial integer. The request byte array is now ready to be sent.

We update the user interface—this will disable the Book and Unbook buttons since the
request object is not None; this is to prevent the user from making additional requests
before a response has been received. We then make sure that the socket is closed, since it
may have been opened to handle a previous request, and set the response label to inform
the user that we are attempting to establish a connection.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 526 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Finally, we call connectToHost(). The IP address can be given as a dotted string, e.g.,
"82.94.237.218", or as a host name, e.g., "www.python.org", or as a QHostAd-dress
object. Thanks to the signal–slot connections that we made in the initializer, we know that
once the connection is established our sendRequest() method will be called, unless the
connection fails, in which case either the serverHas-Stopped() or the
serverHasError() method will be called instead.

def sendRequest(self):
 self.responseLabel.setText("Sending request...")
 self.nextBlockSize = 0
 self.socket.write(self.request)
 self.request = None

Once the connection has been established this method is called. It updates the response
label to tell the user that the request it being sent, and sets the next block size to be 0; this
is concerned with the response we hope to get back; we will see it in use in the
readResponse() method. It then writes the request byte array to the socket. Once the
data is written, the request is set to None ready for a new request to be made.

If no error occurs, and providing the server has not been terminated, the server will
respond, and at that point the readResponse() method will be called. (Otherwise either
the serverHasStopped() or the serverHasError() method will be called.)

The server has two different response formats, as shown in Figure 18.3. When the response
is received we must begin by reading its size from the unsigned integer. Then, once we
know that at least as many bytes as the size are available to read, we read the first
QString. If this contains the text "ERROR", we know that we have an error response, and
can simply read the second string that contains the error message; otherwise the text will
be "BOOK" or "UNBOOK", i.e., the request action, with the request's details, the room in
the second QString and the date as a QDate, to confirm that the request's action has
succeeded.

Figure 18.3. The Response Formats

def readResponse(self):
 stream = QDataStream(self.socket)
 stream.setVersion(QDataStream.Qt_4_2)

 while True:
 if self.nextBlockSize == 0:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 527 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.python.org

 if self.socket.bytesAvailable() < SIZEOF_UINT16:
 break
 self.nextBlockSize = stream.readUInt16()
 if self.socket.bytesAvailable() < self.nextBlockSize:
 break
 action = QString()
 room = QString()
 date = QDate()
 stream >> action >> room
 if action != "ERROR":
 stream >> date
 if action == "ERROR":
 msg = QString("Error: %1").arg(room)
 elif action == "BOOK":
 msg = QString("Booked room %1 for %2").arg(room) \
 .arg(date.toString(Qt.ISODate))
 elif action == "UNBOOK":
 msg = QString("Unbooked room %1 for %2").arg(room) \
 .arg(date.toString(Qt.ISODate))
 self.responseLabel.setText(msg)
 self.updateUi()
 self.nextBlockSize = 0

It is possible that the server's response will be returned in fragments. For this reason we
use an infinite loop, firstly to retrieve the byte count, and then to ensure that there are at
least that number of bytes available to read. This leaves the responsibility for buffering
with the server, and means that when we read we know that we can read a complete
response in one go.

If there are at least two bytes available, we read them as an unsigned 16-bit integer: This
gives us the number of bytes that are to follow. Then we test to see if there are enough bytes
to read: If there aren't, we exit the loop and wait for another readyRead() signal to result
in the readResponse() method being called. If there are enough bytes, we read the
action, and the string that follows—this is either the room number or an error message. If
the action is not "ERROR", we also read the date. Then, depending on which action we
received, we prepare a message string and display it in the response label.

Having read an entire response we reset the next block size since we have read that many
bytes. Now when we loop, either there is another response waiting, in which case
QTcpSocket.bytesAvailable() will return a value greater than zero, and we repeat
the process of reading and displaying; or there is no other response and we simply break
out of the loop and finish.

def serverHasStopped(self):
 self.responseLabel.setText(
 "Error: Connection closed by server")
 self.socket.close()

def serverHasError(self, error):
 self.responseLabel.setText(QString("Error: %1") \

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 528 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 .arg(self.socket.errorString()))
 self.socket.close()

If the server is terminated or if the server responds with a networking error (rather than
with our own "ERROR" response), the relevant serverHas*() method is called. In both
cases, we display the error message to the user in the response label and close the socket.

The BuildingServicesClient class is now complete. The user can enter their booking
and unbooking requests and send them to the server by clicking the Book and Unbook
buttons, and can see the results of their requests displayed in the response label. Requests
are sent by writing a QByteArray to a suitably set up socket. Responses are read back
from the socket through a QDataStream; this enables us to directly read QStrings,
QDates, and any other data stream supported types, into local variables.

Now that we have seen how the client is created, we can turn our attention to the server.

Creating a TCP Server
The Building Services TCP server is in chap18/buildingservicesserver.pyw. It has
three components: A GUI that holds a TCP server instance and that provides an easy means
by which the user can terminate the server, a QTcpServer subclass that is instantiated to
provide the server instance, and a QTcpSocket subclass that is used to handle incoming
connections. We will begin by looking at the first two, since they are both short, and then
focus on the QTcpSocket subclass where most of the work is done.

class BuildingServicesDlg(QPushButton):

 def __init__(self, parent=None):
 super(BuildingServicesDlg, self).__init__(
 "&Close Server", parent)
 self.setWindowFlags(Qt.WindowStaysOnTopHint)

 self.loadBookings()
 self.tcpServer = TcpServer(self)
 if not self.tcpServer.listen(QHostAddress("0.0.0.0"), PORT):
 QMessageBox.critical(self, "Building Services Server",
 QString("Failed to start server: %1") \
 .arg(self.tcpServer.errorString()))
 self.close()
 return

 self.connect(self, SIGNAL("clicked()"), self.close)

Just for a change, and to remind us that any PyQt widget can be a top-level window, we
have made the dialog a QPushButton subclass. We have also set the
Qt.WindowStaysOnTopHint; most windowing systems will respect the hint and keep
the widget on top of all other windows.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 529 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We won't cover the loadBookings() method; it is used to populate the in-memory data
structure, the Bookings default dictionary, that holds the bookings data. The dictionary's
keys are dates stored as datetime.date objects, and the values are ordered lists of room
numbers stored as unicode strings. Default dictionaries were introduced with Python
2.5. They are like normal dictionaries, except that when we use a key that isn't in the
dictionary, the key is inserted with a default value. What default value is used depends on
how we create the dictionary. In the Building Services server we have created the dictionary
like this:

Bookings = collections.defaultdict(list)

Here we have said that the default value for any new key is to be an empty list; in other
cases we might have chosen an empty set. We can always replace a default dictionary with
a normal dictionary, e.g., if using a Python older than 2.5, by using the dict.setdefault
() method when accessing possibly non-existent keys, as we will show later on.

We will review the TcpServer class shortly. Once we have created a server, we tell it to
listen for incoming connections on the given IP address and port number. The IP address
is specified as a QHostAddress, with the special address "0.0.0.0", meaning "all network
interfaces"; the port number is the same arbitrary 9407 that we used for the client.

The connection ensures that if the user clicks the button, the window will close. We don't
do any special cleanup for the TCP server; when it is destroyed any connected clients will
be notified and their sockets' disconnected() signals will be emitted.

There is no more to the dialog, so we can now look at the tiny TcpServer class that inherits
QTcpServer.

class TcpServer(QTcpServer):

 def __init__(self, parent=None):
 super(TcpServer, self).__init__(parent)

 def incomingConnection(self, socketId):
 socket = Socket(self)
 socket.setSocketDescriptor(socketId)

This is the complete code for the TCP server. Whenever an incoming connection request
occurs the incomingConnection() method is called with a socket descriptor in
socketId. We simply create a new Socket (a QTcpSocket subclass that we will review
next), and set it to use the socket descriptor that the server has provided.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 530 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This TCP server depends on the PyQt event loop. If we wanted to create a QTcpServer-
based server that did not have a GUI, there are two different approaches we could take.
One approach would be to use a QEventLoop, to provide an event loop without needing
a GUI, and write the code in the same way as we have done here. The other approach is to
not have an event loop, but in this case we would have to do things slightly differently. In
particular we would have to use the blocking QTcpServer.waitForNewConnection
() method instead of reimplementing incomingConnection(). Of course, if the server
does not have a GUI, it could be written purely using Python's standard libraries without
needing the QtNetwork module at all. Alternatively, the server could be written using
Twisted.

Once a connection is established all the work is passed on to the Socket class, a
QTcpSocket subclass that we will now review.

class Socket(QTcpSocket):

 def __init__(self, parent=None):
 super(Socket, self).__init__(parent)
 self.connect(self, SIGNAL("readyRead()"), self.readRequest)
 self.connect(self, SIGNAL("disconnected()"), self.deleteLater)
 self.nextBlockSize = 0

The socket connects its readyRead() signal to our custom readRequest() method,
and its disconnected() signal to its deleteLater() slot—this ensures that the socket
is cleanly deleted when the connection is terminated. The next block size variable is used
for the same purpose and in the same way as in the client, to ensure that we only read a
request when there are at least as many bytes available to read as are in the request.

Once the socket has been created and the connections set up, it simply waits until its
readRequest() method is called. This method is a bit long so we will review it in two
parts.

def readRequest(self):
 stream = QDataStream(self)
 stream.setVersion(QDataStream.Qt_4_2)

 if self.nextBlockSize == 0:
 if self.bytesAvailable() < SIZEOF_UINT16:
 return
 self.nextBlockSize = stream.readUInt16()
 if self.bytesAvailable() < self.nextBlockSize:
 return

 action = QString()
 room = QString()
 date = QDate()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 531 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We begin by seeing if there are at least two bytes to read: If there are we read in the size of
the next block. If there are not two bytes to read, or if there were but are not enough bytes
available to read the entire request, we return and wait for the readRequest() to be
called again when more bytes have arrived.

Once there are enough bytes we create empty action and room strings, and a null QDate,
ready to populate them from the incoming request data.

stream >> action
if action in ("BOOK", "UNBOOK"):
 stream >> room >> date
 bookings = Bookings.get(date.toPyDate())
 uroom = unicode(room)
if action == "BOOK":
 if bookings is None:
 bookings = Bookings[date.toPyDate()]
 if len(bookings) < MAX_BOOKINGS_PER_DAY:
 if uroom in bookings:
 self.sendError("Cannot accept duplicate booking")
 else:
 bisect.insort(bookings, uroom)
 self.sendReply(action, room, date)
 else:
 self.sendError(QString("%1 is fully booked") \
 .arg(date.toString(Qt.ISODate)))
elif action == "UNBOOK":
 if bookings is None or uroom not in bookings:
 self.sendError("Cannot unbook non-existent booking")
 else:
 bookings.remove(uroom)
 self.sendReply(action, room, date)
else:
 self.sendError("Unrecognized request")

The server only recognizes two request actions, "BOOK", and "UNBOOK"; if it gets one of
these it reads in the room and date, and retrieves the (possibly empty) list of bookings for
the given date. It also stores a unicode copy of the room number QString since the
Bookings dictionary the server uses holds all its data using Python types rather than using
PyQt types.

Next, the server attempts to book or unbook the given room for the given date. When
booking, if there are no bookings for the given date, an empty list of bookings is created
for that date. This works because we are using a default dictionary, so when we access it
with a key it does not have, it automatically inserts a new item with the given key and with
a default value; in this case an empty list. The code is a little bit subtle because we begin
by calling get(). We do this to avoid creating an empty list for the given date if the action
is to unbook. Only when we know that the action is to book do we want to ensure that there
is a list for the given date.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 532 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If we were using a normal dictionary, we would have to use dict.setdefault() to
retrieve the list for the given date, creating a new item with the given date as key and an
empty list as value, if the key is not already present. For example:

bookings = Bookings.setdefault(date.toPyDate(), [])

The QDate.toPyDate() method was introduced in PyQt 4.1; for earlier versions we
would have to perform the conversion ourselves by writing date-time.date
(date.year(), date.month(), date.day()).

Once we have our (possibly empty) bookings list, and providing that there are fewer than
the maximum number of bookings allowed (MAX_BOOKINGS_PER_DAY which has a value
of 5), the room number string is inserted into the list in order, and a reply is sent to the
client which simply echoes the request data. If the room is already booked for the given
date, or if the date has the maximum number of bookings already, and error reply is sent
to the client instead.

If the action is unbook, the room is removed from the bookings for the given date and the
action echoed back to the client; or an error reply is given if the booking did not exist in
the first place. Although the rooms are stored in order we have simply used not in and
list.remove() which both do a linear search; for longer lists we would use
bisect.bisect_left() to find the room using a binary chop, but that seems like
overkill in this example.

If the request action is unrecognized, we simply reply with an error message.

def sendReply(self, action, room, date):
 reply = QByteArray()
 stream = QDataStream(reply, QIODevice.WriteOnly)
 stream.setVersion(QDataStream.Qt_4_2)
 stream.writeUInt16(0)
 stream << action << room << date
 stream.device().seek(0)
 stream.writeUInt16(reply.size() - SIZEOF_UINT16)
 self.write(reply)

The reply sent to the client is created in the same way as the client's requests are created.
We write to a QByteArray using a QDataStream, beginning by writing an unsigned 16-
bit integer, and ending by overwriting the integer with the size of the reply, and then writing
the reply to the socket.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 533 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def sendError(self, msg):
 reply = QByteArray()
 stream = QDataStream(reply, QIODevice.WriteOnly)
 stream.setVersion(QDataStream.Qt_4_2)
 stream.writeUInt16(0)
 stream << QString("ERROR") << QString(msg)
 stream.device().seek(0)
 stream.writeUInt16(reply.size() - SIZEOF_UINT16)
 self.write(reply)

The code for sending an error reply is almost the same as for sending a success reply, and
arguably we could have used one method for both.

The server could easily be extended to handle more request types simply by adding more
if statements to readRequest(). For example, the client might want to know which
rooms are booked on a particular day, or which days a particular room is booked on.

Although we have used a dictionary to hold the server's data, there is no reason why the
server could not hold its data in-process in a SQLite database or in an out-of-process
database, or in files. Nor does the server need to have a GUI; it could have no QWidgets,
and simply be run in the background as a Linux dæmon or Windows service.

Summary
The Python standard library, the Twisted networking engine, and the PyQt QtNetwork
module, all provide considerable support for networking, from low-level sockets, to various
high level protocols, including FTP and HTTP.

To write client/server applications we must ensure that the client and the server programs
can communicate. This means that the server must run at a known IP address and listen
at a specific port address. Both client and server must communicate using an agreed
protocol such as UDP, or more commonly, TCP. They must also agree on how the data is
to be transmitted, whether as lines of text, or as blocks of binary data—and in both cases,
they must know what format each request and response must take.

The scenario shown in this chapter is a very common one: The server sits waiting for
requests, and clients send requests and then read back the server's responses. Before a
client can communicate at all it must establish a connection, and then, once the connection
has been established, it can send its data. The server may respond with data, or some
problem may have occurred. If data is received, we must make sure that we never attempt
to read more bytes (or lines) than are available.

PyQt's QTcpServer and QTcpSocket classes make it very easy to implement servers.
And although it is possible to read and write lines of textual data, using binary data is much

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 534 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

more versatile, allowing us to send and receive any type of data and with no need to write
a parser.

One theoretical problem with the TCP server we have implemented is that it is single
threaded. This means that it may have to block to handle one request at a time if multiple
requests arrive at the same moment. This can be solved by using a threaded server, as we
will see in the next chapter.

Exercise
Modify the Building Services server so that it accepts a new request action,
BOOKINGSONDATE. When such a request is received it should ignore the room, and instead
retrieve the bookings for the given date. If there are no bookings the server should send
an error reply. Otherwise, it should send a reply where instead of a single room string, a
string containing comma-space separated room numbers is returned instead, as shown in
Figure 18.4.

Figure 18.4. Building Services—Bookings on Date

Modify the Building Services client so that it has a Bookings on Date? button, connected
to a method that issues a suitable request. The client's read-Response() method will
need to be modified slightly, so that it can read the server's response to the new request.

The modifications necessary to provide "bookings on date" are quite straightforward. For
a bit more challenge, modify the Building Services server to accept another new request
action, BOOKINGSFORROOM. When one of these requests is received it should ignore the
date, and instead iterate over all the bookings, accumulating a list of the dates for which
the given room is booked. If there are no bookings it should return an error reply.
Otherwise, instead of using the sendReply() method, it should send its own byte array
with its length, the action, the room string, and then a 32-bit integer containing the number
of dates in the list, followed by each of the dates. Since the dates are stored as
datetime.date objects, they must be converted to QDates to stream them into the
QByteArray.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 535 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The Building Services client must be modified to provide a Bookings for Room? button,
connected to a method that issues a suitable request. The client's readResponse()
method will need to be modified so that if a BOOKINGSFORROOM response is received, it
reads in the dates and creates a suitable string for display in the client user interface, as
shown in Figure 18.5.

Figure 18.5. Building Services—Bookings for Room

The modifications to the server can be done by adding about 30 lines, and to the client by
adding about 40 lines. However, the BOOKINGSFORROOM request/response does require
some care.

Solutions are provided in chap18/buildingservicesserver_ans.pyw and
chap18/buildingservicesclient_ans.pyw.

19. Multithreading
• Creating a Threaded Server
• Creating and Managing Secondary Threads
• Implementing a Secondary Thread

Traditionally, applications have a single thread of execution and perform one operation at
a time. For GUI programs this can sometimes be a problem, for example, if the user invokes
a long-running operation, the user interface might freeze up while the operation is taking
place. There are a few solutions that can be tried to eliminate this problem.

One simple solution, particularly useful in long-running loops, is to call
QApplication.processEvents(). This method gives the event loop the opportunity
to handle any unprocessed events, such as paint events, and mouse and key press events.
Another solution is to use zero-timeout timers. We have combined both these approaches
in several examples, usually when loading lots of files, for example, in Chapter 9's Text
Editor's MainWindow.loadFiles() method.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 536 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A third solution is to farm the work out to another program entirely. This can be done using
the Python standard library's subprocess module, or using PyQt's QProcess class. The
makepyqt.pyw application supplied with the examples uses QProcess to execute PyQt's
command line tools such as pyuic4 and pyrcc4.

In some cases what we really need is a separate thread of execution within the application
itself. Applications that have more than one thread of execution are said to be
multithreaded.[*] For example, we might want to create a server that can service as many
simultaneous connections as the hardware can cope with, something relatively easily done
if we devote a new thread to each connection. And in some cases we might have a GUI
application where we want the user to be able to start off a long-running process, and then
continue interacting with the application; in such cases it may be best to pass on the
processing to a separate secondary thread and leave the primary (GUI) thread free to
respond to the user.

[*] This chapter assumes a knowledge of the fundamentals of threading. For a thorough, but not light, introduction, see Foundations of Multithreaded, Parallel, and
Distributed Programming.

This chapter shows some common techniques used in multithreaded programming. These
are enough to get started, but the coverage is not comprehensive, since that would take us
beyond the scope of the book, and would require a book in itself.

Because several threads may access the same data concurrently, multithreaded
applications are usually more difficult to write, maintain, and debug, than single threaded
applications. On single-processor machines, multithreaded applications can sometimes
run slower than single-threaded applications (due to the processing overhead of having
the additional threads), but they are usually perceived to run faster by users because they
don't freeze the user interface, and because they make it much easier for progress to be
reported back to the user incrementally.

Using the right number of threads can significantly affect performance. For example, in
the Page Indexer example covered later in the chapter, we have a primary (GUI) thread
and a secondary thread. The exercise involves changing this example to use multiple
secondary threads. If too many are used the application runs slower than the version with
one secondary thread, but with the right number, we can start up the one secondary thread
version, and then start up the multiple secondary thread version, and see the multiple
secondary thread version catch up, overtake, and finish, before the one secondary thread
version has finished. How many secondary threads should we use? The answer depends
on what processing must be done and on the particular machine and operating system that
the application is run on. We could experiment with realistic datasets to fix a number, or
we could make our code use more or fewer secondary threads depending on circumstances.

Python's standard library provides the low-level thread module, and the higher-level
threading module, but for PyQt programming we recommend using the PyQt threading

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 537 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

classes. PyQt's threading classes offer a high-level API, but under the hood some of their
basic operations are implemented in assembly language to make them as fast and fine-
grained as possible, something not done in Python's threading modules.

PyQt applications always have at least one thread of execution, the primary (initial) thread.
In addition, they may create as many secondary threads as they need. However, if the
application has a GUI, the GUI operations, such as executing the event loop, may only take
place in the primary thread. New threads are created by instantiating QThread subclasses
that reimplement the QThread.run() method.

It is possible to create PyQt applications that do not have a GUI, using
QCoreApplication instead of QApplication. Just like GUI PyQt applications, they
have one primary thread and may have any number of secondary threads.

Communication between secondary threads and the primary thread is often desirable, for
example, to keep the user informed of progress, to allow the user to intervene during
processing, and to let the primary thread know when processing is complete. Traditionally
such communication has taken place by using shared variables in conjunction with a
resource protection mechanism.

PyQt has classes to support this approach, including, QMutex, QReadWriteLock, and
QSemaphore. In addition, PyQt applications can use the signal–slot mechanism to
communicate between threads; this is very convenient and useful.

In this chapter's first section we will look at a threaded TCP server; it does the same job as
the server described in the previous chapter's last section, but it can serve several clients
simultaneously because it is threaded. In the second and third sections we will look at a
GUI application that has some potentially very time consuming processing to do, and that
passes on the processing to a secondary thread. This application uses signals and slots to
keep the user interface up-to-date regarding progress, and to provide the user with some
control over the secondary thread. This example also uses some of the resource protection
classes so that the user interface can access work in progress.

Creating a Threaded Server
Unlike some other GUI libraries, PyQt's network socket classes are integrated with the
event loop. This means that the user interface remains responsive during network
processing, even in single-threaded PyQt applications. But if we want to be able to handle
multiple simultaneous incoming connections, we might prefer to use a multithreaded
server.

Making a multithreaded server is no more complicated than making a single threaded
server—the difference between the two being that instead of creating a separate socket to

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 538 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

handle incoming connections, a multithreaded server creates a new thread for each new
connection, and creates a new socket inside each new thread. For example, here is a
complete threaded server:

class TcpServer(QTcpServer):

 def __init__(self, parent=None):
 super(TcpServer, self).__init__(parent)

 def incomingConnection(self, socketId):
 thread = Thread(socketId, self)
 self.connect(thread, SIGNAL("finished()"),
 thread, SLOT("deleteLater()"))
 thread.start()

The incomingConnection() method is reimplemented from the QTcpServer base
class. It is called whenever a new network connection is made to the server.

The signal–slot connection is necessary to ensure that the thread is deleted when it is no
longer needed, thereby keeping the server's memory footprint as small as possible.
Although we must reimplement QThread.run() in a QThread subclass, the thread is
always started by calling QThread.start() (and never by calling run() directly).

The Thread subclass has one static variable, and four methods. The sendReply() and
sendError() methods are identical to those shown in the previous chapter, so we will
omit them.

class Thread(QThread):

 lock = QReadWriteLock()

 def __init__(self, socketId, parent):
 super(Thread, self).__init__(parent)
 self.socketId = socketId

The Thread.lock variable is static, so all the Thread instances share it. The initializer
simply takes note of the socket descriptor ready for when the thread is started. The run
() method is quite long, so we will review it in parts.

def run(self):
 socket = QTcpSocket()
 if not socket.setSocketDescriptor(self.socketId):
 self.emit(SIGNAL("error(int)"), socket.error())
 return
 while socket.state() == QAbstractSocket.ConnectedState:
 nextBlockSize = 0
 stream = QDataStream(socket)
 stream.setVersion(QDataStream.Qt_4_2)
 while True:
 socket.waitForReadyRead(-1)
 if socket.bytesAvailable() >= SIZEOF_UINT16:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 539 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 nextBlockSize = stream.readUInt16()
 break
 if socket.bytesAvailable() < nextBlockSize:
 while True:
 socket.waitForReadyRead(-1)
 if socket.bytesAvailable() >= nextBlockSize:
 break

We begin by creating a new socket and setting its socket descriptor to the one we were
given. We take a slightly more robust approach than before, checking the return value of
the QTcpSocket.setSocketDescriptor() call, and giving an error message on
failure. Once the run() method finishes, the finished() signal is emitted and, thanks
to our earlier signal—slot connection, the thread will be deleted.

So long as the socket is connected, we can use it to receive requests and send responses.
Unlike the TCP server we created in the previous chapter, rather than running
asynchronously and waiting for things to happen, such as data being available, through
signal—slot connections, here we block using waitReadyRead() until there is data. (The
-1 argument means "wait forever".) It does not matter that we block because we are in a
separate thread of execution, so the rest of the application, its primary thread and any
other connection-handling secondary threads, can continue unhindered.

Once there are two bytes available we read the unsigned 16-bit byte count, and once at
least that number of bytes is available to read, we can continue.

action = QString()
room = QString()
date = QDate()
stream >> action
if action in ("BOOK", "UNBOOK"):
 stream >> room >> date
 try:
 Thread.lock.lockForRead()
 bookings = Bookings.get(date.toPyDate())
 finally:
 Thread.lock.unlock()
 uroom = unicode(room)

We read in the request action which should be "BOOK" or "UNBOOK", and if it is one of
these, we then read in the room number string and the date. The Bookings default
dictionary holds all the bookings data, and any number of threads could be accessing it
simultaneously. For this reason we must protect each access. Here, we only want to read,
so we call lockForRead(), extract the data we want, and then unlock the lock. We use a
try ... finally block to guarantee that the lock will be unlocked when we have finished
accessing the shared data.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 540 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Default dictionaries 525

Python 2.6 (and 2.5 with a suitable from __future__ statement), offers a nicer and
more compact syntax that can replace the try ... finally, as the "Using a Context
Manager for Unlocking" sidebar on page 545 shows.

One well-known locking mechanism is a mutex (also called a binary semaphore), provided
by PyQt's QMutex class. A mutex only allows the thread that locks it to have access to the
protected resource. PyQt also offers a more fine-grained mechanism, the read/write lock,
provided by the QReadWriteLock class that we have used here. Whenever a lock is in
force in one thread, other threads may be blocked waiting for access. We can minimize this
problem in two ways. Firstly we can use read locks whenever possible—if the only locks in
force are read locks, none of the threads are blocked since it is safe for all threads to read
if no thread is writing. And secondly, we can minimize the amount of processing we do
when a lock is in force. We have used both these techniques in the run()
reimplementation; the downside is that the code is much longer than might be expected.

The reason that QMutex, QReadWriteLock, and the other protection mechanisms work
is that they are all "thread-safe". Any number of threads can simultaneously call the
methods of a thread-safe object, and can rely on the underlying system, i.e., PyQt, to
automatically serialize any accesses to shared data that might occur. This means, for
example, that if two or more threads attempt to lock a QReadWriteLock for writing, only
one will succeed, and the others will all be blocked. This allows the thread which gained
the lock to perform its updates on the shared data, and when it releases the lock one of the
other threads that wants to write will be given access, and so on until no more threads
require write access.

The PyQt documentation indicates which classes, or which methods within classes, are
thread-safe. It also indicates which methods are reentrant. Reentrant methods are more
constrained than thread-safe methods. This is because it is only safe to call reentrant
methods simultaneously from multiple threads if each invocation only results in unique
data being accessed, such as local variables. A reentrant method can be made thread-safe
by using locks for all accesses to instance variables, and to any variables that refer to shared
data.

if action == "BOOK":
 newlist = False
 try:
 Thread.lock.lockForRead()
 if bookings is None:
 newlist = True
 finally:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 541 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 Thread.lock.unlock()
 if newlist:
 try:
 Thread.lock.lockForWrite()
 bookings = Bookings[date.toPyDate()]
 finally:
 Thread.lock.unlock()

If the request is to book a room we begin by examining the bookings variable. This is
either None or a reference to a list held by the shared Bookings default dictionary, so we
must use a read lock when accessing it. If bookings is None, we insert a new empty list
into the dictionary with the given date as its key; this time we must use a write lock.

error = None
insert = False
try:
 Thread.lock.lockForRead()
 if len(bookings) < MAX_BOOKINGS_PER_DAY:
 if uroom in bookings:
 error = "Cannot accept duplicate booking"
 else:
 insert = True
 else:
 error = QString("%1 is fully booked").arg(
 date.toString(Qt.ISODate))
finally:
 Thread.lock.unlock()
if insert:
 try:
 Thread.lock.lockForWrite()
 bisect.insort(bookings, uroom)
 finally:
 Thread.lock.unlock()
 self.sendReply(socket, action, room, date)
else:
 self.sendError(socket, error)

If the room is already booked for the given date, we do not duplicate the booking, but
instead send an error response to the client. In the non-threaded server we simply called
sendError() in this case, but here we just assign an error text. We do this to keep the
processing that is done within the context of the lock to a minimum.

If the booking can be made, we take a write lock, insert the room into the bookings list,
and send a response indicating success. Otherwise we send an error response. Neither
response is sent within the context of a lock, again to minimize the time that locks are in
force.

elif action == "UNBOOK":
 error = None
 remove = False
 try:
 Thread.lock.lockForRead()
 if bookings is None or uroom not in bookings:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 542 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 error = "Cannot unbook non-existent booking"
 else:
 remove = True
 finally:
 Thread.lock.unlock()
 if remove:
 try:
 Thread.lock.lockForWrite()
 bookings.remove(uroom)
 finally:
 Thread.lock.unlock()
 self.sendReply(socket, action, room, date)
 else:
 self.sendError(socket, error)

The unbooking if branch follows the same pattern as the booking branch. We begin by
checking if the booking can be made, using a read lock, and if necessary, storing an error
message rather than doing a time-consuming send while the lock is in force. Then we either
unbook the room by removing it from the Bookings dictionary's list for the given date,
and send a success response, or we send an error response. Again, the responses are sent
when no lock is in force.

else:
 self.sendError(socket, "Unrecognized request")
socket.waitForDisconnected()

If the server received a request that it does not recognize, it simply sends an error response.
At the end we call QTcpSocket.waitForDisconnected(); this blocks until the
connection is closed, i.e., until after the response has been sent. We don't need or want to
keep the connection open since our client/server application operates in terms of pairs of
independent request–response transactions. Once the connection has been closed, the
run() method finishes and thanks to the deleteLater() signal–slot connection, the
thread will be deleted.

Creating and Managing Secondary Threads
One common use case for threads in GUI applications is to pass processing on to a
secondary thread so that the user interface can remain responsive, and can show the
secondary thread's progress. In this section we will look at the Page Indexer application
which indexes HTML files in a specified directory and all its subdirectories. The indexing
work is passed off to a secondary thread that communicates with the primary thread to
notify it of the progress that has been made and also when the indexing is complete.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 543 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 19.1. The Page Indexer Application

The algorithm we will use for indexing is this: For each HTML file that is encountered, its
text is read, entities are converted to the equivalent Unicode character, and the HTML tags
are stripped out. Then the text is split into words and each word of 3–25 characters length
inclusive that isn't in the set of common words, is added to the filenamesForWords
default dictionary. Each of the dictionary's keys is a unique word, and each associated value
is a set of the filenames where the word occurs. If any word occurs in more than 250 files,
it is deleted from the dictionary and added to the set of common words. This ensures that
the dictionary is kept to a reasonable size and means that searches for words like "and"
and "the" won't work—which is a good thing since such words are likely to match in
thousands of files, far too many to be useful.

Default dictionaries 525

We will begin by looking at two extracts from the application's main form which is in file
chap19/pageindexer.pyw.

class Form(QDialog):

 def __init__(self, parent=None):
 super(Form, self).__init__(parent)

 self.fileCount = 0
 self.filenamesForWords = collections.defaultdict(set)
 self.commonWords = set()
 self.lock = QReadWriteLock()
 self.path = QDir.homePath()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 544 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The fileCount variable is used to keep track of how many files have been indexed so far.
The filenamesForWords default dictionary's keys are words and its values are sets of
filenames. The commonWords set holds words that have occurred in at least 250 files. The
read/write lock is used to ensure that access to the filenamesForWords dictionary and
to the commonWords set are protected since they will be read in the primary thread and
read and written in the secondary thread. The QDir.homePath() method returns the
user's home directory; we use it to set an initial search path.

self.walker = walker.Walker(self.lock, self)
self.connect(self.walker, SIGNAL("indexed(QString)"),
 self.indexed)
self.connect(self.walker, SIGNAL("finished(bool)"),
 self.finished)
self.connect(self.pathButton, SIGNAL("clicked()"),
 self.setPath)
self.connect(self.findEdit, SIGNAL("returnPressed()"),
 self.find)

The secondary thread is in the walker module (so named because it walks the filesystem),
and the QThread subclass is called Walker. Whenever the thread indexes a new file it
emits a signal with the filename. It also emits a finished() signal when it has indexed
all the files in the path it was given when it was started.

Signals emitted in one thread that are intended for another work asynchronously, i.e., they
don't block. But they only work if there is an event loop at the receiving end. This means
that secondary threads can pass information to the primary thread using signals, but not
the other way around—unless we run a separate event loop in a secondary thread (which
is possible). Behind the scenes, when cross-thread signals are emitted, instead of calling
the relevant method directly as is done for signals emitted and received in the same thread,
PyQt puts an event onto the receiving thread's event queue with any data that was passed.
When the receiver's event loop gets round to reading the event, it responds to it by calling
the relevant method with any data that was passed.

As Figure 19.2 shows, the primary thread normally passes information to secondary
threads using method calls, while secondary threads pass information to the primary
thread using signals. Another communication mechanism, used by both primary and
secondary threads, is to use shared data. Such data must have accesses protected, for
example by mutexes or read/write locks.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 545 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 19.2. A Schematic of Typical PyQt Inter-Thread Communication

If the user clicks the Set Path button, the setPath() method is called, and if the user
presses Enter in the find line edit the find() method is called.

The Form class in a QDialog, but we have designed it so that if the user presses Esc while
the indexing is ongoing, the indexing will stop, and if the user presses Esc when the
indexing has finished (or been stopped), the application will terminate. We will see how
this is done when we look at the accept() and reject() reimplementations.

def setPath(self):
 self.pathButton.setEnabled(False)
 if self.walker.isRunning():
 self.walker.stop()
 self.walker.wait()
 path = QFileDialog.getExistingDirectory(self,
 "Choose a Path to Index", self.path)
 if path.isEmpty():
 self.statusLabel.setText("Click the 'Set Path' "
 "button to start indexing")
 self.pathButton.setEnabled(True)
 return
 self.path = QDir.toNativeSeparators(path)
 self.findEdit.setFocus()
 self.pathLabel.setText(self.path)
 self.statusLabel.clear()
 self.filesListWidget.clear()
 self.fileCount = 0
 self.filenamesForWords = collections.defaultdict(set)
 self.commonWords = set()
 self.walker.initialize(unicode(self.path),
 self.filenamesForWords, self.commonWords)
 self.walker.start()

When the user clicks Set Path, we begin by disabling the button and then stopping the
thread if it is running. The stop() method is a custom one of our own. The wait()
method is one inherited from QThread; it blocks until the thread has finished running,
i.e., until the run() method returns. In the stop() method we indirectly ensure that the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 546 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

run() method finishes as soon as possible after stop() has been called, as we will see in
the next section.

Next we get the path the user chose (or return if they canceled). We have used
QDir.toNativeSeparators() since internally PyQt always uses "/" to separate paths,
but on Windows we want to show "\"s instead. The toNativeSeparators() method
was introduced with Qt 4.2; for earlier versions use QDir.convertSeparators()
instead. By default getExistingDirectory() only shows directories because there is
an optional fourth argument with a default value of QFileDialog.ShowDirsOnly; if
we want filenames to be visible we can clear this flag by passing QFileDialog.Options
().

The user interface is set up by moving the keyboard focus to the find line edit, setting the
path label to the chosen path, and clearing the status label that is used to keep the user
informed about progress. The files list widget lists those files that contain the word in the
find line edit. We don't need to protect access to the filenamesForWords default
dictionary or to the commonWords set since the only thread running at this point is the
primary thread.

We finish off by initializing the walker thread with the path and references to the data
structures we want it to populate, and then we call start() to start it executing.

def indexed(self, fname):
 self.statusLabel.setText(fname)
 self.fileCount += 1
 if self.fileCount % 25 == 0:
 self.filesIndexedLCD.display(self.fileCount)
 try:
 self.lock.lockForRead()
 indexedWordCount = len(self.filenamesForWords)
 commonWordCount = len(self.commonWords)
 finally:
 self.lock.unlock()
 self.wordsIndexedLCD.display(indexedWordCount)
 self.commonWordsLCD.display(commonWordCount)
 elif self.fileCount % 101 == 0:
 self.commonWordsListWidget.clear()
 try:
 self.lock.lockForRead()
 words = self.commonWords.copy()
 finally:
 self.lock.unlock()
 self.commonWordsListWidget.addItems(sorted(words))

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 547 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Whenever the walker thread finishes indexing a file, it emits an indexed() signal with
the filename; this signal is connected to the Form.indexed() method shown above. We
update the status label to show the name of the file that has just been indexed, and every
25 files we also update the file count, words indexed, and common words LCD widgets.
We use a read lock to ensure that the shared data structures are safe to read from, and we
do the minimum amount of work inside the context of the lock, only updating the LCD
widgets after the lock has been released.

Every 101st file processed we update the common words list widget. Again we use a read
lock, and we use set.copy() to ensure that we do not refer to the shared data once the
lock has been released.

def finished(self, completed):
 self.statusLabel.setText("Indexing complete" \
 if completed else "Stopped")
 self.finishedIndexing()

When the thread has been stopped, or has finished, it emits a finished() signal,
connected to this method, and passing a Boolean to indicate whether or not it completed.
We update the status label and call our finishedIndexing() method to update the user
interface.

def finishedIndexing(self):
 self.walker.wait()
 self.filesIndexedLCD.display(self.fileCount)
 self.wordsIndexedLCD.display(len(self.filenamesForWords))
 self.commonWordsLCD.display(len(self.commonWords))
 self.pathButton.setEnabled(True)

When the indexing has finished we call QThread.wait() to make sure that the thread's
run() method has finished. Then we update the user interface based on the current values
of the shared data structures. We don't need to protect access to the dictionary or the set
because the walker thread is not running.

At any time during the indexing the user can interact with the user interface with no
freezing or performance degradation. In particular they can enter text in the find line edit
and press Enter to populate the files list widget with those files that contain the word they
typed. If they press Enter more than once with a bit of time between presses, the list of
files may change, because in the interval more files may have been indexed. The find()
method is slightly long, so we will review it in two parts.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 548 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Using a Context Manager for Unlocking

In this chapter, we use try ... finally blocks to ensure that locks are unlocked
after use. Python 2.6 offers an alternative approach using the new with
keyword, in conjunction with a context manager. Context managers are
explained in http://www.python.org/dev/peps/pep-0343; suffice to say that we
can create a context manager by creating a class that provides two special
methods: __enter__() and __exit__(). Then, instead of writing code like
this:

try:
 self.lock.lockForRead()
 found = word in self.commonWords
finally:
 self.lock.unlock()

we can write something much simpler and shorter instead:

with ReadLocker(self.lock):
 found = word in self.commonWords

This works because the semantics of the object given to the with statement (at
its simplest) are:

ContextManager.__enter__()
try:
 # statements, e.g., found = word in self.commonWords
finally:
 ContextManager.__exit__()

The ReadLocker context manager class itself is also easy to implement,
assuming it is passed a QReadWriteLock object:

class ReadLocker:
 def __init__(self, lock):
 self.lock = lock
 def __enter__(self):
 self.lock.lockForRead()
 def __exit__(self, type, value, tb):
 self.lock.unlock()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 549 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.python.org/dev/peps/pep-0343

If fact, since PyQt 4.1, QReadLocker and QWriteLocker can be used as
context managers, so with Python 2.6 (or Python 2.5 with a from __future__
import with_statement) we don't need to use try ... finally to guarantee
unlocking, and can instead write code like this:

with QReadLocker(self.lock):
 found = word in self.commonWords

The files, pageindexer_26.pyw and walker_26.py in chap19, use this
approach.

def find(self):
 word = unicode(self.findEdit.text())
 if not word:
 self.statusLabel.setText("Enter a word to find in files")
 return
 self.statusLabel.clear()
 self.filesListWidget.clear()
 word = word.lower()
 if " " in word:
 word = word.split()[0]
 try:
 self.lock.lockForRead()
 found = word in self.commonWords
 finally:
 self.lock.unlock()
 if found:
 self.statusLabel.setText(
 "Common words like '%s' are not indexed" % word)
 return

If the user enters a word to find we clear the status label and the file list widget and look
for the word in the set of common words. If the word was found, then it is too common to
be indexed, so we just give an informative message and return.

try:
 self.lock.lockForRead()
 files = self.filenamesForWords.get(word, set()).copy()
finally:
 self.lock.unlock()
if not files:
 self.statusLabel.setText(

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 550 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 "No indexed file contains the word '%s'" % word)
 return
files = [QDir.toNativeSeparators(name) for name in \
 sorted(files, key=unicode.lower)]
self.filesListWidget.addItems(files)
self.statusLabel.setText(
 "%d indexed files contain the word '%s'" % (
 len(files), word))

If the user's word is not in the set of common words, then it might be in the index. We
access the filenamesForWords default dictionary using a read lock, and copy the set of
files that match the word. The set will be empty if no files have the word, but in either case,
the set we have is a copy so there is no risk of accessing shared data outside the context of
a lock. If there are matching files we add them to the files list widget, sorted, and using
platform-native path separators.

The sorted() function returns its first argument, e.g., a list or set, in sorted order. It can
be given a comparison function as second argument, but here we have specified a "key".
This has the effect of doing a DSU (decorate, sort, undecorate) sort that is the equivalent
of:

templist = [(fname.lower(), fname) for fname in files]
templist.sort()
files = [fname for key, fname in templist]

This is more efficient than using a comparison function because each item is lowercased
just once rather than every time it is used in a comparison.

def reject(self):
 if self.walker.isRunning():
 self.walker.stop()
 self.finishedIndexing()
 else:
 self.accept()

If the user presses Esc the reject() method is called. If indexing is in progress, we call
stop() on the thread and then call finishedIndexing(); the finishedIndexing
() method calls wait(). Otherwise indexing has either been stopped by a previous Esc
key press or has finished; either way we call accept() to terminate the application.

def closeEvent(self, event=None):
 self.walker.stop()
 self.walker.wait()

When the application is terminated, either by the accept() call that occurs in the reject
() method, or by other means, such as the user clicking the close X button, the close event

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 551 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

is called. Here we make sure that indexing has been stopped and that the thread has
finished, so that a clean termination takes place.

All the indexing work has been done by the walker secondary thread. This thread has been
controlled by the primary thread calling its methods, e.g., start() and stop(), and has
notified the primary thread of its status (file indexed, indexing finished) through PyQt's
signals and slots mechanism. The the shared data has been accessed, e.g., when the user
has asked which files contain a particular word, or when the data has been updated by the
walker thread, using the protection of a read/write lock. In the following section we will
see how the Walker thread is implemented, how it emits its signals, and how it populates
the data structures it is given.

Implementing a Secondary Thread
The Page Indexer's secondary thread is implemented in the Walker class in file chap19/
walker.py. The class is a QThread subclass that uses a QMutex to protect accesses that
it makes to its own private data, and that uses the QReadWriteLock passed to it to protect
accesses to data it shares with the primary thread.

class Walker(QThread):

 COMMON_WORDS_THRESHOLD = 250
 MIN_WORD_LEN = 3
 MAX_WORD_LEN = 25
 INVALID_FIRST_OR_LAST = frozenset("0123456789_")
 STRIPHTML_RE = re.compile(r"<[^>]*?>", re.IGNORECASE|re.MULTILINE)
 ENTITY_RE = re.compile(r"&(\w+?);|&#(\d+?);")
 SPLIT_RE = re.compile(r"\W+", re.IGNORECASE|re.MULTILINE)

The class begins with some static variables that govern how many files a word can occur
in before it is considered to be a common word, what the minimum and maximum length
of a word is, and what characters a word may not begin or end with. The "strip HTML"
regular expression is used to strip out HTML tags, the entity regular expression is used to
pick out entities to be converted to Unicode characters, and the split regular expression is
used to split a file's text into its constituent words. A more realistic application might use
an HTML parser rather than regular expressions.

def __init__(self, lock, parent=None):
 super(Walker, self).__init__(parent)
 self.lock = lock
 self.stopped = False
 self.mutex = QMutex()
 self.path = None
 self.completed = False

The application creates one walker thread object but does not start it off straight away.
The lock is the same QReadWriteLock used by the primary thread—the walker thread

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 552 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

uses it to protect all accesses to the shared file-namesForWords default dictionary and
to the commonWords set. The stopped variable is used inside the class to determine
whether or not the thread has been asked to stop (by a call to the stop() method). The
mutex is used to protect access to the stopped variable by the walker thread itself. This
is necessary because while the run() method is executing it is possible that another of the
thread's methods, for example, stop(), is called. The completed variable is used to
indicate whether or not the indexing was completed when the thread stopped.

def initialize(self, path, filenamesForWords, commonWords):
 self.stopped = False
 self.path = path
 self.filenamesForWords = filenamesForWords
 self.commonWords = commonWords
 self.completed = False

This method is designed to be called just before QThread.start() is called, to set up
the thread for doing the indexing. It should not be called while the thread is running. (If
we were paranoid we could put an if not self.isStopped(): return at the
beginning.)

Although it would be harmless to use the mutex and the lock, neither is necessary. When
this method is called the walker thread is not running, so assigning to stopped is no
problem, and in the case of the dictionary and set passed in, we are just taking references
to them, not altering them in any way.

def run(self):
 self.processFiles(self.path)
 self.stop()
 self.emit(SIGNAL("finished(bool)"), self.completed)

When the caller calls start(), the thread in turn calls the run() method—something we
must never do ourselves. The method only has three statements, but processFiles()
can take a long time to execute since it involves recursively reading and indexing all the
HTML files in the path. This isn't a problem though, because the processing is taking place
in the walker thread's own thread of execution, so the user interface remains responsive,
and the primary thread can call the walker thread's methods, and respond to the walker
thread's signals, as we saw in the previous section. At the end, the run() method emits a
finished() signal, with a Boolean flag that indicates whether the indexing was finished;
if it wasn't the user must have stopped it through the user interface.

def stop(self):
 try:
 self.mutex.lock()
 self.stopped = True
 finally:
 self.mutex.unlock()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 553 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This blocks until the lock is obtained, and thanks to the try ... finally block, guarantees
that the mutex is unlocked at the end.

Context Manager sidebar 545

If we were using Python 2.6, or Python 2.5 with a suitable from __future__ statement,
we could rewrite this method as:

def stop(self):
 with QMutexLocker(self.mutex):
 self.stopped = True

Since PyQt 4.1, the QMutexLocker class can be used as a context manager. It locks the
QMutex it is given as argument (blocking until it can obtain the lock), and unlocks the
mutex when the flow of control leaves the with scope (even if the scope is exited as the
result of an exception).

def isStopped(self):
 try:
 self.mutex.lock()
 return self.stopped
 finally:
 self.mutex.unlock()

Notice that the return statement is inside the try ... finally block. When the
return is reached the method will attempt to return the value, but will be forced to enter
the finally block, after which the method will return with the return statement's value.

If we were using Python 2.6 (or 2.5 with a suitable from __future__ statement), we
might omit this method entirely and in some of the other methods, instead of writing:

if self.isStopped():
 return

we might write this instead:

with QMutexLocker(self.mutex):
 if self.stopped:
 return

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 554 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

There should not be any significant difference in the overhead of any of these approaches,
although using with with a QMutexLocker seems to be the cleanest and clearest
approach.

The processFiles() method is rather long, so we will review it in three parts.

def processFiles(self, path):
 def unichrFromEntity(match):
 text = match.group(match.lastindex)
 if text.isdigit():
 return unichr(int(text))
 u = htmlentitydefs.name2codepoint.get(text)
 return unichr(u) if u is not None else ""

We begin with a nested function definition. It is used in conjunction with the entity regular
expression (shown on page 548). This expression has two match groups, only one of which
can match at any one time. Given a match object matched by the regular expression, the
function takes the last, i.e., the only, match group, and if it is all digits, returns the Unicode
character for the corresponding code point. Otherwise the function returns the Unicode
character matching the entity name, or an empty string if the name is not in the
htmlentitydefs.name2codepoint dictionary.

for root, dirs, files in os.walk(path):
 if self.isStopped():
 return
 for name in [name for name in files \
 if name.endswith((".htm", ".html"))]:
 fname = os.path.join(root, name)
 if self.isStopped():
 return
 words = set()
 fh = None
 try:
 fh = codecs.open(fname, "r", "UTF8", "ignore")
 text = fh.read()
 except (IOError, OSError), e:
 sys.stderr.write("Error: %s\n" % e)
 continue
 finally:
 if fh is not None:
 fh.close()
 if self.isStopped():
 return
 text = self.STRIPHTML_RE.sub("", text)
 text = self.ENTITY_RE.sub(unichrFromEntity, text)
 text = text.lower()

The os.walk() method recursively walks a directory tree starting from the given path.
For each directory it finds, it returns a 3-tuple of the root path, a list of subdirectories, and
a list of files in the directory.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 555 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We iterate over each of the directory's files that has a .htm or .html suffix. The
unicode.endswith() and str.endswith() methods accept either a single string or
a tuple of strings to match against. For each matching file we create a filename with the
full path and create a local empty set that will contain the unique words found in the file.

We should really check the encoding used by the HTML files, but instead we have just
assumed that they are either UTF-8 Unicode, or ASCII (which is a strict subset of UTF-8).
We have also passed an additional parameter to indicate how decoding errors should be
dealt with, i.e., they should be ignored.

Once we have the file's text, read in as a single large string, we strip out its HTML tags,
convert any entities to their Unicode equivalents, and lowercase the text that remains. The
re.sub() ("substitute") method takes the text to work on as its second argument; its first
argument is either a literal string to replace each match, or a function to call. In the case
of a function, for each match a match object is passed to the function, and the function's
return value (which should be a string) is used as the replacement string.

At several points we check to see if the stopped variable is True, which will be the case
if the stop() method has been called. If this has occurred, we do no further indexing, and
simply return. If we have too few checks the user may experience a delay between
requesting that the indexing stop and the thread actually stopping. But on the other hand,
the more checks we put in, the slower the thread will run. So how often we check, and
where we place the checks may require a bit of trial and error before we get it right.

 for word in self.SPLIT_RE.split(text):
 if self.MIN_WORD_LEN <= len(word) <= \
 self.MAX_WORD_LEN and \
 word[0] not in self.INVALID_FIRST_OR_LAST and \
 word[-1] not in self.INVALID_FIRST_OR_LAST:
 try:
 self.lock.lockForRead()
 new = word not in self.commonWords
 finally:
 self.lock.unlock()
 if new:
 words.add(word)
 if self.isStopped():
 return
 for word in words:
 try:
 self.lock.lockForWrite()
 files = self.filenamesForWords[word]
 if len(files) > self.COMMON_WORDS_THRESHOLD:
 del self.filenamesForWords[word]
 self.commonWords.add(word)
 else:

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 556 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 files.add(unicode(fname))
 finally:
 self.lock.unlock()
 self.emit(SIGNAL("indexed(QString)"), fname)
self.completed = True

For each word in the file's text that is not too long or too short and which does not start
with an unacceptable character, we first look to see if it is in the set of common words, and
if it is not, we add it to the local set of words.

Once we have gathered all the file's uncommon words in the words set, we iterate over
this set. New words are added to the filenamesForWords default dictionary. If the
dictionary's set of filenames for the word is too large, we delete the dictionary entry and
add the word to the set of common words; otherwise we add the filename to the dictionary's
set for the current word. We must of course use a write lock to ensure that no other thread
(for example, the primary thread) can access the dictionary or the common words set while
they are being updated.

After the file has been indexed, the indexed() signal is emitted with the file's name as
parameter. The primary thread has a connection to this signal and shows the filename in
a label so that the user can see which file has just been indexed.

Once the os.walk() loop finishes, the completed variable is set to True, the method
ends, and control returns to the caller, run(). It is possible that the last statement is never
executed, because if the user stops the indexing (by pressing Esc which causes stop() to
be called which sets stopped to True and means that isStopped() will return True),
one of the if isStopped(): statements will cause the processFiles() method to
return immediately. In this case the completed variable will (correctly) be False.

This completes our review of the walker thread. Using with statements and context
managers instead of try ... finally blocks can make the code much shorter and easier
to understand, as can be seen by comparing pageindexer.pyw with
pageindexer_26.pyw, and walker.py with walker_26.py. Having a stop()
method and a stopped variable is quite common for secondary threads that serve a
primary thread, so the Walker class, though specific in its processing, is quite general in
its structure.

Summary
Writing threaded servers using PyQt's threading and networking classes is relatively
straightforward. For non-GUI servers, it is possible to use QCore-Application rather
than QApplication, or to avoid using PyQt classes at all, relying instead on the Python
standard library threading and networking classes, or using Twisted.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 557 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Farming out processing to secondary threads is not difficult in theory, but in practice we
must be very careful to ensure that any data that is accessible by more than one thread
uses a protection mechanism such as QMutex, QReadWrite-Lock, or QSemaphore.
Inside the context of a protection mechanism we must make sure that we do the least
amount of work possible to minimize the time that other threads might be blocked. And
in the case of reading data, especially if the data is not too large, it is often best to copy it
to avoid the risk of accessing it outside the scope of the protection.

It is quite common for the primary thread to communicate with secondary threads by
calling the secondary threads' methods, for example, start() to start them, and stop
() to stop them. Secondary threads can communicate with the primary thread by emitting
signals that the primary thread connects to. Both primary and secondary threads can also
use shared data structures protected by QMutexes, QReadWriteLocks, or
QSemaphores—with one common scenario being that the primary reads and the
secondary threads read and write shared data. Threads may need to protect accesses to
their own data, for example to a secondary thread's stopped variable, since more than
one of their methods may be active at the same time, e.g., both run() and stop() in a
secondary thread.

Multithreaded programs are more difficult to write and maintain than single threaded
programs, so it is often worthwhile to see if simpler alternatives, such as calling
QApplication.processEvents(), or calling external processes using QProcess, can
be used instead.

Exercise
Modify the Page Indexer application so that it uses multiple secondary threads instead of
just one. By getting the number of secondary threads right, the application could be made
to run faster than the single secondary thread version. Although this exercise only involves
writing or modifying about 100 lines of code, it is quite subtle and challenging.

The approach taken in the solution is to move os.walk() to the primary thread, and
create a list of filenames. Whenever the list has 1 000 files, a secondary thread is created
to process those files. At the end, another secondary thread is created to process whatever
files remain. The Walker.initialize() method is not required since we can pass all
the parameters to the constructor. And changes to Walker.run() and
Walker.processFiles() are quite small. Most of the changes must be made in the
pageindexer.pyw file.

The setPath() method is where the filenames can be gathered and secondary threads
created to process them. In the solution we used a separate method to create the secondary
threads. Since there could be many secondary threads we also added a stopWalkers()

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 558 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

method, and modified the finished(), accept(), reject(), and
finishedIndexing() methods. Since some of the widgets in the user interface could
potentially be accessed in response to signals from more than one thread, we protect
accesses to them with a mutex.

Make sure that the threads are deleted when they are no longer needed to avoid creating
more and more threads each time setPath() is called.

The new version of the walker module should be a bit shorter than the original, but the
new page indexer will be about 90 lines longer than the original. A solution is provided in
chap19/pageindexer_ans.pyw and chap19/walker_ans.py.

This Is Not Quite The End
We have reached the end of the book, but by no means have we reached the end of what
Python or PyQt have to offer. Python's standard library is very large and because of our
focus on PyQt we have hardly used a fraction of what is available in it. There are also many
other libraries available as add-ons for Python and for PyQt, so in many cases we can
program by composing existing components rather than having to build everything
ourselves from scratch. A good place to begin looking for add-ons is the Python Package
Index (also known as the "Cheese Shop") at http://www.python.org/pypi. And a good
place to look for tricks, tips, and ideas, is the Python Cookbook at http://aspn.active-
state.com/ASPN/Python/Cookbook.

Our coverage of PyQt has been extensive, and all the major features have been shown and
described. But PyQt has hundreds of classes, so we have not been able to cover, or even
mention, all of them. For example, PyQt includes more widgets than we have used,
including QCalendarWidget, QGroupBox, QProgressBar, and QToolBox. There are
also lots of useful non-widget classes, such as QCompleter (text completion),
QFileSystemWatcher (to observe changes to files or directories in the filesystem), and
QSystemTrayIcon (to put an icon with a popup menu in the system tray). It also has
support for accessibility and has an undo/redo framework. In addition, PyQt has some
platform-specific features, including ActiveX support on Windows, session management
on the X Window System, and sheets and drawers on Mac OS X. All of these are described
in the extensive online documentation. PyQt is also provided with its own set of examples
—those that cover similar areas to the ones you are interested in will be well worth looking
at.

This book has laid a solid foundation in GUI programming with Python and PyQt. The
principles and practices it shows should make it straightforward to learn new PyQt classes
from the documentation and examples supplied with PyQt, and to be able to successfully
create your own classes. Programming with PyQt is both productive and enjoyable, and

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 559 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.python.org/pypi
http://aspn.active-state.com/ASPN/Python/Cookbook
http://aspn.active-state.com/ASPN/Python/Cookbook

leaves us free to ignore irrelevant details. This means that we can concentrate on building
great applications that look good and that work well.

Appendix A. Installing

• Installing on Windows
• Installing on Mac OS X
• Installing on Linux and Unix

All the tools described in this book are freely available for downloading online. Note
however, that some of the packages are quite large, (~50MB for Qt, ~12MB for Python,
~6MB for PyQt, and ~0.5MB for SIP[*]), so they are only really suitable for downloading
with broadband connections. In this appendix we cover both downloading and installing,
on Windows, Mac OS X, and most X11-based Unices and Unix clones, including Linux and
BSD.

[*] SIP is a tool used to create "bindings" that allow C++ classes to be accessible from Python.

All of the packages come with their own installation instructions, which will probably be
more up-to-date and comprehensive than those given here, so ideally they are the
instructions that you should follow. However, in many cases this Appendix contains
sufficient information to get the tools installed and working. One approach would be to
use this Appendix to identify the packages that need to be obtained (and the order they
should be downloaded, which matters for Windows users), and the order they should be
installed in (which matters for all platforms). Then, once the tools are downloaded, use
the official instructions to install each one, but skimming this Appendix's instructions to
help clarify what needs to be done, and also for a couple of tips, one for Windows users
and one for Mac OS X users, that may prove helpful.

Installing on Windows
For Windows, there are four tools to install: A C++ compiler, the Qt C++ application
development framework, the Python interpreter and its accompanying libraries, and
PyQt4 (which includes SIP in the Windows binary package). We assume that the GPL
editions are being used, in which case the only C++ compiler that will work with Qt is
MinGW. (Visual C++ can only be used with the commercial editions of Qt and PyQt and
the instructions for installing them are provided when you buy them.)

At the time of writing an all-in-one package was under development. This package is an
executable setup file that is expected to contain all the PyQt modules (except the
QtDesigner module), QScintilla, the translation and Qt Designer support tools, the
documentation and examples, the SQLite database, and support for .png, .svg, .gif,
and .jpeg image formats. This package is complete and self-contained and requires no

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 560 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

other software to be installed apart from Python itself. However, the package is not
extensible. If you are learning or evaluating PyQt for the first time, using this package is
probably the easiest way to begin. You can always uninstall it and install the precise set of
components you need later on when you have gained experience. When the package is
available it will be on the website http://riverbankcomputing.com. After intalling Python,
simply download and execute the all-in-one package to install everything else.

In the instructions that follow, we have used Windows XP Home edition, and install each
component separately. There may be differences for other Windows versions, but they
should not be so different that they can't be worked out from what's written here.

The files required for installation are MinGW-3.4.2.exe, qt-win-
opensource-4.2.3-mingw.exe, python-2.5.1.msi, and, PyQt-gpl-4.2-
Py2.5-Qt4.2.3.exe. The book's examples are in the file pyqtbook.zip.

The first item to get is PyQt itself. This is because the versions of Python and Qt you will
need, depend on the version of PyQt you get. Go to http://
www.riverbankcomputing.co.uk/pyqt/download.php and download the binary package
PyQt-gpl-4.2-Py2.5-Qt4.2.3.exe. The filename has version numbers embedded
in it and these may differ from the ones shown here: The first number is the PyQt version
which must be at least 4.2 to get the most out of this book; the second number is the Python
version that you must get; and the third number is the Qt version—you must download
this precise version.

Now get Qt. Go to http://www.trolltech.com/developer/downloads/qt/index and click the
"Qt/Windows Open Source Edition" link, and at the bottom of the page, download qt-
win-opensource-4.2.3-mingw.exe. The version number should exactly match the
one in the PyQt package name, so if for example, you downloaded PyQt-gpl-4.3-
Py2.5-Qt4.3.1.exe, you will need to get qt-win-opensource-4.3.1-
mingw.exe.

The MinGW C++ compiler is also available from Trolltech's website, but from a completely
different URL. Go to ftp://ftp.trolltech.com/misc/ and download
MingGW-3.4.2.exe. (You can skip this step and let the Qt installer download the
compiler for you, but by downloading it yourself you have the package in hand, which is
more convenient for installing on other machines, or for restoring if your Windows
installation goes bad.)

Now it is time to get Python. Go to http://www.python.org/download and download one
of the Windows installers. (The ones at the top of the page do not include the source code;
this is fine, you only need the source if you want to modify Python itself.) There may be
more than one Windows installer; click a hardware-specific one such as the AMD64 or

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 561 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://riverbankcomputing.com
http://www.riverbankcomputing.co.uk/pyqt/download.php
http://www.riverbankcomputing.co.uk/pyqt/download.php
http://www.trolltech.com/developer/downloads/qt/index
http://www.python.org/download

Itanium one if that matches your machine's processor; otherwise click the first one, e.g.,
"Python 2.5.1 Windows installer". Save the installer to disk; this will give you a Microsoft
Installer file, for example, python-2.5.1.msi. Note that the first two parts of the version
number must match the equivalent part of the PyQt version number; so for PyQt-
gpl-4.2-Py2.5-Qt4.2.3.exe, any Python 2.5 version is acceptable, such as Python
2.5, or Python 2.5.1, for example.

If you want to run the examples that are shown in the book or to see the model answers to
the exercises, you can unzip the pyqtbook.zip file available from http://www.qtrac.eu/
pyqtbook.html.

Now that all the pieces are at hand, you can perform the installation. The order of
installation is important, and is different from the downloading order. (You needed to
download PyQt first, to make sure you got the right versions of Python and Qt; but for
installing you must start with the C++ compiler, and finish by installing PyQt.) We will
assume that the versions are those mentioned above, but obviously use whichever versions
you downloaded and adjust accordingly.

Figure A.1. The MinGW and Qt Installers on Windows

If you did not download the MinGW installer, either because you have the compiler already
installed, or because you want the Qt installer to fetch and install it for you, skip to the next
paragraph. Otherwise, start up the MinGW installer, i.e., double-click
MinGW-3.4.2.exe, and follow the installer's instructions. The only decision that you
must make is where to install MinGW. We have assumed that you accepted the default of
C:\MinGW; but you can put it anywhere. If you do not use the standard location though,
make a note of its path since you will need it when you install Qt.

To install Qt, start up its installer by double-clicking qt-win-opensource-4.2.3-
mingw.exe (or whichever version you downloaded). The instructions are easy to follow,
and again, we have assumed that you have accepted the default directory, e.g., C:\Qt
\4.2.3. When you get to the "MinGW Installation" screen, if you put MinGW in the

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 562 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.qtrac.eu/pyqtbook.html
http://www.qtrac.eu/pyqtbook.html

standard location, the "Previously installed MinGW" path should be correct. If it is not, or
if you installed MinGW in a non-standard location, you must type in its path, or use
the ... browse button to locate it—or if you did not install MinGW, check the "Download
and install minimal MinGW" check box so that the Qt installer can fetch and install it for
you.

Unfortunately, the GPL Qt installer does not add Qt to the path; this means that
applications that depend on the Qt DLLs, such as QtCore4.dll, QtGui4.dll,
QtXml4.dll and so on, or that depend on the MinGW DLL, mingwm10.dll, will not
find them. Since PyQt applications depend on these libraries, you must manually add the
path to them so that double-clicking a PyQt .pyw application will work. Without this path,
any PyQt program you attempt to run will not work, and instead an error message box will
pop up, for example, "pythonw.exe - Unable To Locate Component", that says it can't find
mingwm10.dll.

Click Start Control Panel, then click System, to pop up the "System Properties" dialog.
Click the Advanced tab, then the Environment Variables button (near the bottom of the
dialog). Click the "Path" variable in the "System variables" section (in the bottom half of
the dialog), then click Edit.

The "Edit System Variable" dialog, as shown in Figure A.2, has the Windows path. Be very
careful not to delete the existing path! If you delete it by mistake, click Cancel, and then
try editing the path again. Press End to deselect the path and to put the text cursor at the
far right of the line edit, then add the text, ";C:\Qt\4.2.3\bin". The leading semi-colon is
essential; obviously use the version number of the Qt you actually installed, if different
from the one shown here. This path works for all the Qt DLLs and also for the MinGW DLL
(since the Qt installer copies it into the Qt bin directory).

Figure A.2. Setting the Windows Path

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 563 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

You are now ready to install Python. Start up the Python installer, i.e., double-click
python-2.5.1.msi or whichever other .msi file you downloaded. The installer is
straightforward to use; the only information you need to type in is Python's path if you
don't want to use the default of C:\Python25. If you use a non-standard path, keep a note
of it since you will have to type it into the PyQt installer. If you are desperate for disk space
you don't have to install the test suite or the utility scripts, but we assume that you keep
all the other components complete, including Tcl/Tk. Once Python has been installed, the
installer may ask you to reboot—you should do so before going on to install PyQt.

Figure A.3. The Python and PyQt Installers on Windows

Now you can install PyQt4 itself. Start up the PyQt installer by double-clicking PyQt-
gpl-4.2-Py2.5-Qt4.2.3.exe, or whichever version of PyQt you downloaded. If you
installed Python in a non-standard location you must enter the correct location in the
"Choose Install Location" screen—PyQt is installed as a Python extension, so its libraries
are placed inside the Python directories. (For this reason, if you ever want to uninstall
Python, you should uninstall PyQt first, then Python.)

PyQt is the last tool that must be installed to have everything set up and working. To test
things, click Start All Programs PyQt GPL v4.2 Examples and Demos. This
launches a PyQt version of the standard Qt demo application. From inside this application
you can run many of the demo application's that are supplied with PyQt. The source code
to the demos, and to many other PyQt examples, are normally installed in C:\Program
Files\PyQt4\examples.

If you downloaded the book's examples, you might like to unzip pyqtbook.zip in C: to
get a C:\pyqt directory with all the book's examples, and model answers to the exercises,
categorized by chapter. In the C:\pyqt directory itself you will find mkpyqt.py and
makepyqt.pyw; these utilities are explained on page 205. If you are want to try out any
of the examples before reading the book, make sure that you run makepyqt.pyw first.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 564 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

(When you run makepyqt.pyw, set its path to C:\pyqt, check its Recurse checkbox, and
then click the Build button. Now all the examples will be ready to run.)

That completes the installation for Windows, and is sufficient for PyQt GUI programming.
But if you also want to write some console applications, or to sometimes run PyQt
applications in a console (which can be useful for debugging), then a few more steps will
make this much more convenient.

Click Start All Programs Accessories Windows Explorer. Once Windows
Explorer is running, navigate to My Computer\Local Disk (C:)\Documents and
Settings, and then to the directory that has your username, and inside that, navigate to
Start Menu\Programs\Accessories. Copy and paste the Console (or MS-DOS
Prompt) shortcut, and rename the copy "Console (PyQt)". Right-click the new Console
(PyQt) shortcut to edit its properties. On the "General" page, change the "Target" to
cmd.exe /k C:\pyqt\pyqt.bat. Now when you want a PyQt-friendly console you can
click Start All Programs Accessories Console (PyQt) and the console that appears
will automatically run C:\pyqt\pyqt.bat. This batch file only contains two lines:

set QMAKESPEC=win32-g++
path=C:\pyqt;C:\MinGW\bin;c:\Python25;c:\Python25\lib\idlelib;%path%

You might like to edit this file (using a plain text editor) to add a third line containing a
cd command, for example, cd C:\pyqt so that the console starts up in a convenient
directory. If you installed MinGW or Python in non-standard locations you will need to
edit this file anyway, to put in their correct paths.

You are now ready to write and run PyQt applications on your Windows machine—and
they will run unchanged on Mac OS X and Linux too!

Installing on Mac OS X
To install PyQt on Mac OS X, you must already have the Xcode tools installed. This is
because a compiler and build tool are required to install PyQt. Xcode is a very large
package, normally supplied on a separate developer's CD provided with the machine; it is
also available online from http://developer.apple.com/tools/xcode. The following
instructions assume that Xcode is already installed.

Although Macs are normally supplied with a version of Python pre-installed, it may be an
old version, in which case we recommend installing an up-to-date version for PyQt
development. To check the Python version, start up a Terminal, and type in python -V;
if this prints "Python 2.5", or a higher version number, there is no need to install a new
version of Python.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 565 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://developer.apple.com/tools/xcode

The files required for installing PyQt are qt-mac-opensource-4.2.3.dmg,
python-2.5.1-macosx.dmg (unless you already have Python 2.5 or later installed),
sip-4.6.tar.gz, and, PyQt-mac-gpl-4.2.tar.gz. The book's examples are in the
file pyqtbook.tar.gz.

Start by getting Qt. Go to http://www.trolltech.com/developer/downloads/qt/index and
click the "Qt/Mac Open Source Edition" link, and near the bottom of the page, download
qt-mac-opensource-4.2.3.dmg. A later version number, say, 4.3.1, should also be
fine.

If you need to install an up-to-date version of Python, go to http://www.python.org/
download and download the "Python 2.5.1 for Macintosh OS X" version, for example,
python-2.5.1-macosx.dmg. A later 2.x series version, such as 2.5.2, or 2.6.0, should
also be okay, providing they are production releases (not alphas, betas, or release
candidates).

The last two tools that must be obtained are SIP and PyQt. Go to http://
www.riverbankcomputing.co.uk/sip/download.php and download the source package
sip-4.6.tar.gz, then go to, http://www.riverbankcomputing.co.uk/pyqt/
download.php and download the source package PyQt-mac-gpl-4.2.tar.gz. Again,
the version numbers may be higher, for example, 4.3, for PyQt.

If you want to run the examples that are shown in the book or to see the model answers to
the exercises, you can unpack the pyqtbook.tar.gz file available from http://
www.qtrac.eu/pyqtbook.html.

Now that all the pieces are at hand, and assuming that Xcode is already installed, you can
perform the PyQt installation. Both Qt and Python must be installed first, then SIP, and
finally PyQt itself. We will assume that the versions are those mentioned above, but
obviously use whichever versions you downloaded and adjust accordingly. We assume that
the downloaded files are all on the Desktop, and that you know the administration
password (which is normally your own password).

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 566 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.trolltech.com/developer/downloads/qt/index
http://www.python.org/download
http://www.python.org/download
http://www.riverbankcomputing.co.uk/sip/download.php
http://www.riverbankcomputing.co.uk/sip/download.php
http://www.riverbankcomputing.co.uk/pyqt/download.php
http://www.riverbankcomputing.co.uk/pyqt/download.php
http://www.qtrac.eu/pyqtbook.html
http://www.qtrac.eu/pyqtbook.html

Figure A.4. Installing Qt on Mac OS X

First set up Qt by double-clicking qt-mac-opensource-4.2.3.dmg, or whichever Qt
package you downloaded, and following the instructions. We assume that you accept all
the defaults and install in the standard locations. Older Qt versions have an unoptimized
build tool, and this means that the set up can take a surprisingly long time. More up-to-
date versions have an optimized build tool which works much faster.

Once Qt is installed, it is time to install Python, if you need to. Double-click
python-2.5.1-macosx.dmg or the package you downloaded. This may pop up a new
window with a MacPython.mpkg file—just double-click this to start up the installer, and
follow the instructions. Just as for Qt, we assume that you accept the defaults and install
in the standard locations. If you already have one or more older Python versions you will
find that these remain intact, with two new Python executables added to /usr/local/
bin with their names including the version numbers, for example, python2.5 and
pythonw2.5. The first executable is used in Terminal windows, and the second is used
for running GUI applications and avoids a Terminal from being needlessly popped up in
the background.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 567 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure A.5. Installing Python on Mac OS X

The installation should make the Python version just installed the default version. To
check, close any existing Terminal windows, and then start up a fresh Terminal window,
and type python -V. If the version is not the one installed, then the settings will need to
be changed manually. Close the Terminal, and then in Finder, go to Applications
MacPython 2.5, and start up the Python Launcher. Open the Preferences dialog, and for
each item in the Settings for file type combobox, i.e., for Python Scripts, Python GUI
Scripts, and Python Bytecode Documents, change the version of Python. For the Python
Scripts and Python Bytecode Documents entries, change to /usr/local/bin/
python2.5, and for the Python GUI Scripts entry, change to /usr/local/bin/
pythonw2.5 (note the "w" in the executable's name). These values may not be available
in the drop-down lists, in which case they must be typed in manually. For each entry also
be sure to uncheck the Run in a Terminal window checkbox.

Both SIP and PyQt must be built in a Terminal. Close all open Terminals, and then start a
fresh one. Type python -V to make sure that the correct Python is being used. If it is not,
then see the previous paragraph; or alternatively, enter the full name of the version of
Python you want to use, for example, python2.5 configure.py.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 568 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SIP must be built first, by typing the following into the Terminal:

cd $HOME/Desktop
tar xvfz sip-4.6.tar.gz
cd sip-4.6
python configure.py
make
sudo make install

Figure A.6. Setting the Python to Use on Mac OS X

You will be asked for the administration password (normally your own password) when
you execute the sudo command at the end. Now, PyQt can be installed.

cd $HOME/Desktop
tar xvfz PyQt-mac-gpl-4.2.tar.gz
cd PyQt-mac-gpl-4.2
python configure.py
make
sudo make install

Again, you will be prompted for a password when you execute the sudo command.
Building PyQt can take quite a long time, so you will need to be patient.

The Qt documentation is available through Qt Assistant, which can be run from Finder.
PyQt's documentation is supplied in HTML format in the $HOME/Desktop/PyQt-mac-
gpl-4.2/doc directory. It is worthwhile moving this somewhere permanent and adding

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 569 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

a suitable bookmark to your browser. It also comes with numerous examples; at the very
least it is worth looking at the PyQt examples and running the demo. (For example, change
directory to $HOME/Desktop/PyQt-mac-gpl-4.2/examples/tools/qtdemo and
run ./qtdemo.py.)

If you downloaded the book's examples, you might like to unpack pyqtbook.tar.gz in
$HOME to get a $HOME/pyqt directory with all the book's examples, and model answers
to the exercises, categorized by chapter. In the $HOME/pyqt directory itself you will find
mkpyqt.py and makepyqt.pyw; you might like to move (or soft link) these to a directory
on your $PATH, for example, $HOME/bin to make them more convenient to use. Some of
the examples depend on Qt Designer .ui files or on .qrc resource files. How to turn these
into Python modules is covered on page 205, but for now it might be convenient to simply
perform the conversions:

cd $HOME/pyqt
./mkpyqt.py -r

This will convert any .ui and .qrc files that are found in the pyqt directory and in its
subdirectories.[*] If you prefer to use the GUI makepyqt.pyw tool, you may have to click
its More Tool paths option and set the path to pyuic4. It may also be necessary to set
the paths to the other tools too.

[*] If mkpyqt.py does not work, you will have to edit the mkpyqt.py file and at least hard-code the path to pyuic4.

This completes the installation for Mac OS X. If you unpacked the examples, you could go
to the Desktop and click the pyqt directory, then the chap12 directory, and then click
multipedes.pyw to see a graphics application. If an unwanted Terminal window pops
up, right-click multipedes.pyw, and click the Info dialog; change the Open with setting
to the Python Launcher for the correct version of Python, and apply the change to all files
with the .pyw suffix.

You are now ready to write and run PyQt applications on your Mac OS X machine—and
they will run unchanged on Windows and Linux too!

Installing on Linux and Unix
If you are running Kubuntu (7.04 Fiesty Fawn and later), you already have PyQt4 installed!
So you only need to install the book's examples (see page 569), and the documentation
packages, python-doc, and python-qt4-doc.

For Linux and most other Unices that don't have PyQt4 preinstalled, there are four tools
to install: The Qt C++ application development framework, the Python interpreter and its
accompanying libraries, the SIP bindings tool, and PyQt4 itself. The most convenient way

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 570 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

to get everything up and running is to install the tools using standard packages for the
Linux or Unix distribution being used.

For ArchLinux, Debian, Fedora, Gentoo, Kubuntu, Pardus, Ubuntu, and many others, the
necessary components are available as packages. These can be installed using Adept, Pirut,
apt-get, yum, or whatever other package manager the system uses. For PyQt4, the
package is usually called pyqt4 or PyQt4 or pyqt4-dev-tools. PyQt4's documentation
package is usually called pyqt4-doc or python-qt4-doc or PyQt4-examples.
Python's documentation is usually in a package called python-doc or python-docs.
IDLE is often available separately in a package called idle or python-tools. If you want
a more powerful IDE, Eric4, itself written in PyQt, is available in a package for many
popular distributions. The package manager should be able to figure out the dependencies,
but if it cannot, you may have to also request that it install Python itself, and maybe even
Qt and the g++ compiler. The Qt Designer visual design tool and the translation support
tools are often packaged separately, for example in packages called qt4-designer and
qt4-dev-tools.

If you are fortunate enough to be able to install using standard packages, once you have
done so, you are all set for writing PyQt programs, and can skip to installing the book's
examples, described on page 569.

For users of older distributions, for those who don't have suitable packages available or
who only have some of the components available in packages, and for those who want to
build manually to get the most up-to-date versions, building and installing by hand is quite
straightforward. However, we make two assumptions if you are building from source.
Firstly, that a C++ compiler and tool chain, for example make, are already installed and
operational, and secondly that you install as root (using su or sudo), or know how to use
configure's --prefix option to install locally.

The files required for installation are qt-x11-opensource-src-4.2.3.tar.gz,
Python-2.5.1.tgz, sip-4.6.tar.gz, and, PyQt-x11-gpl-4.2.tar.gz. The
book's examples are in the file pyqtbook.tar.gz.

Start by getting Qt. Go to http://www.trolltech.com/developer/downloads/qt/index and
click the "Qt/X11 Open Source Edition" link, and near the bottom of the page, download
qt-x11-opensource-src-4.2.3.tar.gz. A later version number, say, 4.3.1, should
also be fine.

Now it is time to get Python. Go to http://www.python.org/download and then click the
"current production version" link, and download one of the "Other platforms" source
versions, for example, Python-2.5.1.tgz or Python-2.5.1.tar.bz2. We will

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 571 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.trolltech.com/developer/downloads/qt/index
http://www.python.org/download

assume you got the .tgz version—later 2.x series versions such as 2.5.2, or 2.6.0, should
be okay, providing they are production releases (not alphas, betas, or release candidates).

The last two tools that must be obtained are SIP and PyQt. Go to http://
www.riverbankcomputing.co.uk/sip/download.php and download the source package
sip-4.6.tar.gz, then go to, http://www.riverbankcomputing.co.uk/pyqt/
download.php and download the source package PyQt-x11-gpl-4.2.tar.gz. Again,
the version numbers may be higher, for example, 4.3, for PyQt.

If you want to run the examples that are shown in the book or to see the model answers to
the exercises, you can unpack the pyqtbook.tar.gz file available from http://
www.qtrac.eu/pyqtbook.html.

Now that all the pieces are at hand, you can perform the installation. Both Qt and Python
must be installed first, then SIP, and finally PyQt itself. We will assume that the versions
are those mentioned above, but obviously use whichever versions you downloaded and
adjust accordingly. We assume that the downloaded tarballs are in the $HOME/
packages directory, and that either you do everything as superuser having done su, or
that you do every make install as superuser using sudo.

First build Qt. The last line should be sudo make install if you are using sudo.

cd $HOME/packages
tar xvfz qt-x11-opensource-src-4.2.3.tar.gz
cd qt-x11-opensource-src-4.2.3
./configure -fast -qt-sql-sqlite -no-qt3support
make
make install

The -qt-sql-sqlite option will build the SQLite in-process database; this is used in
Chapter 15 but can be omitted if desired. The -fast and -no-qt3support options
should reduce the build time slightly, but both can be safely omitted. If you want to see
what other options are available, including the database drivers that can be installed,
run ./configure -help. Building Qt can take quite a while (from half an hour to over
three hours depending on the processor), since it is well over 600 000 lines of C++ code.

Python and SIP don't take anywhere near as long. You should build Python next, again
using sudo make install if you are using sudo (We'll take this for granted from now
on.).

cd $HOME/packages
tar xvfz Python-2.5.1.tgz
cd Python-2.5.1
./configure
make
make install

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 572 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.riverbankcomputing.co.uk/sip/download.php
http://www.riverbankcomputing.co.uk/sip/download.php
http://www.riverbankcomputing.co.uk/pyqt/download.php
http://www.riverbankcomputing.co.uk/pyqt/download.php
http://www.qtrac.eu/pyqtbook.html
http://www.qtrac.eu/pyqtbook.html

This should be a lot faster than the Qt build. Once it is complete, you can do the last two
phases, building SIP and then PyQt, doing so in a slightly different way than you built Qt
and Python.

cd $HOME/packages
tar xvfz sip-4.6.tar.gz
cd sip-4.6
python configure.py
make
make install

This assumes that (the correct version of) Python is in your $PATH. If that is not the case
(i.e., because you have two or more versions of Python installed), then give the full path to
the appropriate Python executable, for example $HOME/opt/python25/bin/python
configure.py. Once SIP is installed, you can install PyQt.

cd $HOME/packages
tar xvfz PyQt-x11-gpl-4.2.tar.gz
cd PyQt-x11-gpl-4.2
python configure.py
make
make install

Just like the SIP installation, this assumes that the correct version of Python is in your
$PATH. Again, if this is not the case, then give the full path to the appropriate Python
executable when running configure.py. The make phase can take a long time (but not
as long as building Qt).

Qt, Python, and PyQt, are all supplied with documentation in HTML format. It is
worthwhile moving this somewhere permanent and adding suitable bookmarks to your
browser. All three also come with numerous examples; at the very least it is worth looking
at the PyQt examples and running the demo. (For example, change directory to $HOME/
PyQt-x11-gpl-4.2/examples/tools/qtdemo and run ./qtdemo.py.)

If you downloaded the book's examples, you might like to unpack pyqtbook.tar.gz in
$HOME to get a $HOME/pyqt directory with all the book's examples, and model answers
to the exercises, categorized by chapter. In the $HOME/pyqt directory itself you will find
mkpyqt.py and makepyqt.pyw; you might like to move (or soft link) these to a directory
on your $PATH, for example, $HOME/bin to make them more convenient to use. Some of
the examples depend on Qt Designer .ui files or on .qrc resource files. How to turn these
into Python modules is covered on page 205, but for now it might be convenient to simply
perform the conversions:[*]

[*] If mkpyqt.py does not work, you will have to edit the mkpyqt.py file and at least hard-code the path to pyuic4.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 573 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

cd $HOME/pyqt
./mkpyqt.py -r

This completes the installation for X11-based Unices and Unix clones, including Linux and
BSD. You are now ready to write and run PyQt applications on your Unix or Unix-like
platform—and they will run unchanged on Mac OS X and Windows too!

Appendix B. Selected PyQt Widgets

The screenshots shown here were all taken on Linux using KDE to provide an eye-pleasing
consistency. In the body of the book, screenshots are shown for Windows, Linux, and Mac
OS X, generally varying from chapter to chapter.

QCalendarWidget This widget can be used as a display
widget, although it was designed
primarily as an input widget through
which the user can choose a particular
date. The widget's display is highly
configurable, e.g., week numbers can be
displayed or not, day names can be
represented by a single letter, or in short
or full forms, the colors and fonts used can
be set, and so can which day is treated as
the first day of the week. Minimum and
maximum allowable dates can also be set.
Calling setCalendarPopup(True) on
a QDateEdit or a QDateTimeEdit, will
cause their spin buttons to be replaced by
an arrow button. If the user clicks the
arrow button, a QCalendarWidget will
pop up.

QCheckBox A checkbox can be used to present users
with a simple yes/no choice. If
QCheckBox.setTristate(True) is
called, the checkbox will have three
states: The user checked it, the user
unchecked it, or the user did not change
it from whatever it was before. The tri-
state approach may be useful for
representing Boolean database fields
where IS NULL is allowed.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 574 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

QComboBox The screenshot shows a QComboBox with
its list popped down. A combobox is used
to present the user with a list of items
where too little vertical space is available
for a QListView to be used. Calling
QComboBox.setEditable(True)
allows the user to either choose one of the
items in the list, or to type in their own
text instead. Each combobox item has a
text, an optional icon, and optional data.
We can populate a combobox using
QComboBox.addItem() or
QComboBox.addItems(), or we can
use a custom or built-in
QAbstractItemModel subclass with
QComboBox.setModel().

QDateEdit, QDateTimeEdit, and QTimeEdit The QDateEdit is used for displaying
and entering dates, the
QDateTimeEdit is used for date/times,
and the QTimeEdit for times. By default
the widgets use localespecific date and
time formats—they are shown here using
a US locale. The formats can be changed,
and minimum and maximum allowable
dates and times can be set.

QDialogButtonBox This widget can be used to create a row or
column of buttons. The buttons can be
standard buttons with pre-defined roles
and texts, or can be added with the roles
and texts of our choice. This widget
automatically arranges the buttons
according to their roles and the
underlying windowing system's user
interface guidelines.

QFontComboBox PyQt provides a pop-up font dialog, using
the native font dialog where available. If
we want to provide font choices ourselves,
for example in a toolbar, we can use the
QFontComboBox, shown here popped
down. For Qt 4.0 and Qt 4.1 the nearest
equivalent (but without font previewing)
is to use an ordinary QComboBox,
populating it with the list returned by
QFontDatabase.families().

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 575 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

QGroupBox and QRadioButton A group box can be used purely as a visual
grouping device, or it can be made
checkable, as shown here. If checkable,
the widgets contained in the group box
can only be interacted with when the
group box is checked. If a frame is
required without a title, a QFrame can be
used instead. When QRadioButtons are
put in a group box they automatically
behave correctly, i.e., the user can only
choose one of them. QComboBoxes and
QListViews are often more convenient
than QRadioButtons.

QGraphicsView This widget is used to view the
QGraphicsItems in a
QGraphicsScene. Any number of
QGraphicsViews can view the same
scene, each with its own transformations,
e.g., scaling and rotation, in effect. The
scrollbars appear automatically if they are
needed. Each QGraphicsView can
provide its own background and
foreground, overriding those provided by
the scene.

QLabel The QLabel widget is a display widget
that can be used to show an image, a plain
text string, a QTextDocument, or HTML.
A label with an accelerator (a single
underlined character), can be associated
with a "buddy" widget, passing the
keyboard focus to the buddy when the
accelerator is pressed.

QLCDNumber This is a display widget for showing
numbers in the style of a seven-segment
LCD.

QLineEdit This widget can accept one line of text
from the user. The text can be constrained
by using a validator, e.g., a
QIntValidator or a
QRegExpValidator, or by setting an
input mask, or both. The echo mode can
be set to show "*"s (or nothing) instead of
the text entered.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 576 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

QListView and QListWidget Through these widgets users can choose
an item, or with a suitable selection mode,
multiple items. The widgets can be in list
mode (as shown), or icon mode, where the
icons appear larger and the texts are
displayed under the icons. A
QListView must be used in conjunction
with a custom or built-in
QAbstractItemModel subclass using
QListView.setModel(). A
QListWidget has a built-in model, so
items can be added to it directly using
QListWidget.addItem() and
QListWidget.addItems(). Where
vertical space is at a premium, a
QComboBox can be used instead.

QProgressBar This widget can be used to show users the
progress of long running operations. It is
often put in a QMainWindow's status bar
using QStatusBar.addWidget() or
addPermanentWidget(). An
alternative is to pop up a
QProgressDialog.

QPushButton Buttons are used to invoke actions. If a
button click will lead to a dialog being
popped up we normally add an ellipsis
(...) to the end of the button's text. Buttons
can also be set to have pop-up menus (in
which case PyQt will add a little triangle
indicator), or they can be set as toggle
buttons, staying down when clicked an
odd number of times, and coming back up
when clicked an even number of times.
Since Qt 4.2, most applications use
QDialogButtonBoxes rather than
individual QPush-Buttons.

QSlider A slider is often used to show
proportionality, and is commonly used in
conjunction with a QLabel or
QLCDNumber that shows an actual
amount. Sliders can be aligned vertically
or horizontally. A QScrollBar could be
used for a similar purpose.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 577 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

QDoubleSpinBox and QSpinBox These widgets are used to accept and
display numbers. The number can be
shown with a prefix or suffix and with a
particular alignment. (The
QDoubleSpinBox shown here has a "$"
prefix.) They can have minimum and
maximum values set, and for the
QDoubleSpinBox, the number of digits
shown after the decimal point can be set.
An alternative is to use a QLineEdit in
conjunction with a QIntValidator or a
QDoubleValidator.

QTableView and QTableWidget These widgets are used to present data in
tabular form. A QTableView must be
used in conjunction with a custom or
built-in QAbstractItemModel
subclass, such as QSqlTableModel,
using QTableView.setModel(). A
QTableWidget has a built-in model, so
items can be added to it directly, e.g.,
using QTableWidget.setItem().
Both widgets can show icons as well as
text in every cell, including in the header
cells.

QTabWidget This widget is used when space is at a
premium, or simply as a means of
logically grouping widgets. The tabs have
two shape settings, and can appear at the
top, left, right, or bottom, with the text
rotated when shown left or right.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 578 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

QTextEdit and QTextBrowser These widgets can display HTML,
including lists, tables, and images. The
QTextEdit can also be used as an editing
widget, either for plain text, or for PyQt
"rich text" (essentially HTML, although a
custom subclass would be needed to
provide table and image editing). The
QTextBrowser supports clickable links,
so can be used as a simple web browser.
Both widgets have support for CSS
(Cascading Style Sheets).

QTreeView and QTreeWidget These widgets are used to present
hierarchical data. A QTreeView must be
used with a custom or built-in
QAbstractItemModel subclass using
QTreeView.set-Model(). Like all
widgets that use a model, only the data
that is visible to the user is retrieved, so
even large datasets are very fast. A
QTreeWidget has a builtin model, so
items can be added to it directly using
QTreeWidget.insertTopLevelItem
() and insertTopLevelItems(), or
by creating QTreeWidgetItems as
children of other items.

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 579 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix C. Selected PyQt Class Hierarchies

Figure C.1. Selected Base Classes

Figure C.2. Selected Classes from the QFrame Hierarchy

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 580 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure C.3. Selected Classes from the QWidget Hierarchy

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 581 Return to Table of
Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure C.4. Selected Classes from the QAbstractItemModel Hierarchy

Figure C.5. Selected Classes from the QDialog Hierarchy

Figure C.6. Selected Classes from the QIODevice Hierarchy

Figure C.7. Selected Classes from the QPaintDevice Hierarchy

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 582 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure C.8. Selected Classes from the QEvent Hierarchy

Figure C.9. Selected Classes from the QGraphicsItem Hierarchy

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 583 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure C.10. Selected Classes from the QLayoutItem Hierarchy

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming Page 584 Return to Table
of Contents

Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
By Mark Summerfield ISBN: 9780132354189 Publisher: Prentice Hall

Prepared for Paul Waddell, Safari ID: pwaddell@u.washington.edu

Print Publication Date: 2007/10/19 User number: 905221 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Copyright
	About the Author
	Production
	Introduction
	The Structure of the Book
	Acknowledgements

	Python Programming
	Data Types and Data Structures
	Executing Python Code
	Variables and Objects
	Numbers and Strings
	Collections
	Built-in Functions
	Summary
	Exercises

	Control Structures
	Conditional Branching
	Looping
	Functions
	Exception Handling
	Summary
	Exercises

	Classes and Modules
	Creating Instances
	Methods and Special Methods
	Inheritance and Polymorphism
	Modules and Multi-File Applications
	Summary
	Exercises

	Basic GUI Programming
	Introduction to GUI Programming
	A Pop-up Alert in 25 Lines
	An Expression Evaluator in 30 Lines
	A Currency Converter in 70 Lines
	Signals and Slots
	Summary
	Exercise

	Dialogs
	Dumb Dialogs
	Standard Dialogs
	Smart Dialogs
	Summary
	Exercise

	Main Windows
	Creating a Main Window
	Handling User Actions
	Summary
	Exercise

	Using Qt Designer
	Designing User Interfaces
	Implementing Dialogs
	Testing Dialogs
	Summary
	Exercise

	Data Handling and Custom File Formats
	Main Window Responsibilities
	Data Container Responsibilities
	Saving and Loading Binary Files
	Saving and Loading Text Files
	Saving and Loading XML Files
	Summary
	Exercise

	Intermediate GUI Programming
	Layouts and Multiple Documents
	Layout Policies
	Tab Widgets and Stacked Widgets
	Splitters
	Single Document Interface (SDI)
	Multiple Document Interface (MDI)
	Summary
	Exercise

	Events, the Clipboard, and Drag & Drop
	The Event Handling Mechanism
	Reimplementing Event Handlers
	Using the Clipboard
	Drag and Drop
	Summary
	Exercise

	Custom Widgets
	Using Widget Style Sheets
	Creating Composite Widgets
	Subclassing Built-in Widgets
	Subclassing QWidget
	Summary
	Exercise

	Item-Based Graphics
	Custom and Interactive Graphics Items
	Animation and Complex Shapes
	Summary
	Exercise

	Rich Text and Printing
	Rich Text Editing
	Printing Documents
	Summary
	Exercise

	Model/View Programming
	Using the Convenience Item Widgets
	Creating Custom Models
	Creating Custom Delegates
	Summary
	Exercise

	Databases
	Connecting to the Database
	Executing SQL Queries
	Using Database Form Views
	Using Database Table Views
	Summary
	Exercise

	Advanced GUI Programming
	Advanced Model/View Programming
	Custom Views
	Generic Delegates
	Representing Tabular Data in Trees
	Summary
	Exercise

	Online Help and Internationalization
	Online Help
	Internationalization
	Summary
	Exercise

	Networking
	Creating a TCP Client
	Creating a TCP Server
	Summary
	Exercise

	Multithreading
	Creating a Threaded Server
	Creating and Managing Secondary Threads
	Implementing a Secondary Thread
	Summary
	Exercise
	This Is Not Quite The End

	Installing
	Installing on Windows
	Installing on Mac OS X
	Installing on Linux and Unix

	Selected PyQt Widgets
	Selected PyQt Class Hierarchies

