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Preface

The past decades have witnessed various applications of systems engineering
methodologies to urban planning, economic models, power systems, industrial pro-
cesses, transportation networks, and others. Due to economic factors and socio-
political constraints, a fundamental constituent of these applications is frequently
described by the following attributes: multidimensional, highly interacting, and
complex models. Several approaches have been developed [2—4, 6, 11, 14] to deal
with these models with the intention of reducing some measure of complexity in
the course of analysis and design. Concepts and key ideas from economics, man-
agement science, and operation research have been exploited successfully and gen-
eralized in a dynamic framework. These continuous efforts systematically establish
a body of theories pertaining to interconnected systems (ICS). The voluminous lit-
erature on theories and applications of large-scale systems (LSS), interconnected
systems (ICS) or complex dynamical systems (CDS) includes survey articles and
textbooks and monographs [1, 3, 5] and [7-13].

Throughout this book and in view of our technical experience, we will adopt
decentralized systems (DS) as the most convenient designation for LSS, ICS or CDS
since the common denominator in these systems is to deploy decentralization in the
analysis, control, filtering and processing tasks. Equivalently stated, the effort of any
task is essentially distributed among various units who are cooperating to achieve
the desired objective.

It is often true that a book is developed through a long tour that consists of many
tiny steps and interactions with many people. While the major idea of writing a
book on decentralized systems has been in the back of my mind for quite long time,
the thrust behind this volume started in July 2009 when I met with Oliver Jackson
during the Systems and Control Conference in Saint Petersburg, Russia. It has been
a good opportunity to start a fruitful communication channel that ended with writing
the present book.

Over the past decades it was highly interesting and extensive activity to watch and
interact with the global scientific/engineering development of decentralized systems
leading to thousands of papers published and/or talks presented in journals and con-
ferences about various related aspects. This book is basically an outgrowth of my
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academic research work and postgraduate teaching activities. It provides an in-depth
treatment to problems of interconnected systems which some requirements are im-
posed in the course of analysis and/or design.

In engineering and economic organizations, one can easily recognize the pres-
ence of several decision makers (DMs) that

1. generate decisions and control variables by acting on the same system,
2. have access to different information coming from the controlled system and
3. pursue different goals.

Such organizations are addressed in the wide research area called “game theory.”

For the purpose of uniformity, we will adopt the following definition of an in-
terconnected system throughout this book: a dynamical system which contains a
number of interdependent constituents which serve particular functions, share re-
sources, and are governed by a set of interrelated goals and constraints.

It is manifested that “complexity” is an essential and dominating problem in
systems theory and practice. It leads to severe difficulties that are encountered in
the tasks of analyzing, designing, and implementing appropriate control strategies
and algorithms. With focus on the control design goal, these difficulties arise mainly
from the underlying multi-modes of operation and gain perturbations, which from
now onwards we term them as design constraints. Given the advanced development
in robust control and time-delay theories, we treat uncertain time-delay systems as
basic module in our subsequent analysis.

From this perspective, the notion of DS introduced in the context of control engi-
neering problems arose when it became clear that there are real world control prob-
lems that cannot be solved by using conventional approaches. Such typical problems
arise in the control of interconnected power systems with strong interactions, water
systems which are widely distributed in space, traffic systems with many external
signal, or large-space flexible structures. These problems recall for new ideas for
dividing the analysis and synthesis of the overall system into independent or almost
independent subproblems, for dealing with the incomplete information about the
system, for coping with the uncertainties and for dealing with time-delays.

This book is written about recent advances in decentralized systems theories
and methods with design constraints. It aims at providing a rigorous framework
for studying analysis, stability and control problems of DS while addressing the
dominating sources of design constraints. The primary objective is to focus on ro-
bust decentralized methods based on linear matrix inequalities framework while
tacking into consideration possible design considerations and/or constraints. Such
constraints include the presence of quantizers, nonlinear/overflow elements, en-
coder/decoder and networks.

The main features of the book are:

(D It provides key concepts of decentralized systems with their proofs followed
by efficient computational method;
(II) It establishes decentralized control techniques under design constraints; and
(II) It gives some representative applications.
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Abbreviations!

Notation and Symbols

It the set of positive integers

N the set of real numbers

Ny the set of non-negative real numbers

N the set of all n-dimensional real vectors
Rrexm the set of n x m-dimensional real matrices
Cc~ the open right-half complex plane

ct the closed right-half complex plane

€ belong to or element of

C subset of

U union

N intersection

> much greater than

< much less than

1 an identity matrix of arbitrary order

I the identity matrix of dimension s x s

e; the jth column of matrix /

x"or A? the transpose of vector x or matrix A

A(A) an eigenvalue of matrix A

o(A) the spectral radius of matrix A

Aj(A) the jth eigenvalue of matrix A

Am(A) the minimum eigenvalue of matrix A where A(A) are real
Am(A) the maximum eigenvalue of matrix A where AL(A) are real
Al the inverse of matrix A

Af the Moore-Penrose-inverse of matrix A

I'Throughout this book, the following terminologies, conventions and notations have been adopted.
All of them are quite standard in the scientific media and only vary in form or character. Matrices,
if their dimensions are not explicitly stated, are assumed to be compatible for algebraic operations.
In symmetric block matrices or complex matrix expressions, we use the symbol e to represent a
term that is induced by symmetry.
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P>0
P>0

P <0

P <0

A(, J), Aij
det(A)
trace(A)
rank(A)
Lr(—00, 00)
L]0, o0)
Lr(—00,0]
Lo(jN)

Ho
Loo(jN)
Hoo

[a, b]

iff

®

0@)
diag(...)A
spec(A)

min-poly(A)(s)

Acronyms
ARE
DC

Abbreviations

matrix P is real symmetric and positive-definite
matrix P is real symmetric and positive semi-definite
matrix P is real symmetric and negative-definite
matrix P is real symmetric and negative semi-definite
the ij-th element of matrix A

the determinant of matrix A

the trace of matrix A

the rank of matrix A

space of time domain square integrable functions
subspace of L, (—00, co) with functions zero for t <0
subspace of £, (—00, co) with functions zero for t > 0
square integrable functions on Cy including at co
subspace of £, (jN) with functions analytic in Re(s) > 0
subspace of functions bounded on Re(s) = 0 including at co
the set of Lo (jN) functions analytic in Re(s) > 0

the absolute value of scalar a

the Euclidean norm of vector x

the induced Euclidean norm of matrix A

the £, norm of vector x

the induced £, norm of matrix A

the image of operator/matrix A

the kernel of operator/matrix A

the maximum element of set D

the minimum element of set D

the smallest number that is larger than or equal to each element
of set D

the largest number that is smaller than or equal to each element
of set D

the index of maximum element of ordered set S

the index of minimum element of ordered set S

the ball centered at the origin with radius r

the sphere centered at the origin with radius r

the fixed index set {1,2, ..., N}

the real number set {r e R :a <t < b}

the real number set {r e N :a <t < b}

the set of modes {1, 2, ..., s}

if and only if

the Kronecker product

order of (.)

diagonal matrix with given diagonal elements

the set of eigenvalues of matrix A (spectrum)

the minimal polynomial of matrix A

algebraic Riccati equation
decentralized control
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HC
LMI
SISO
MIMO
BIBS
iISS
UGAS
OLD
OLC
TDS
TDUS
LKF
DFC
DHC
SVD
DNS
LBD
DTS
LQC
LMCR
DSMP
DIP
CIP
SMC

hierarchical control

linear matrix inequality
single-input single-output
multi-input multi-output
bounded-input bounded-state
integral-input-to-state stable
uniformly globally asymptotically stable
overlapping decomposition
overlapping control

time-delay system

time-delay uncertain system
Lyapunov-Krasovskii functional
decentralized feedback control
decentralized Ho control

singular value decomposition
decentralized nonlinear systems
Lyapunov-based design
discrete-time systems

linear quadratic control
liquid-metal cooled reactor
decentralized servomechanism problem
distributed information processing
centralized information processing
sliding mode control
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Chapter 1
Introduction

The book covers some of the past and present results pertaining to the area of large-
scale, interconnected or complex systems. An emphasis is laid on decentralization,
decomposition, and robustness. These methodologies serve as effective tools to
overcome specific difficulties arising in large-scale complex systems such as high
dimensionality, information structure constraints, uncertainty, and delays. Several
prospective topics for future research are introduced in this contents. The subse-
quent chapters are focused on recent decomposition approaches in interconnected
dynamic systems due to their potential in providing the extension of decentralized
control into networked control systems.

1.1 Introduction

The past several decades have witnessed an increasing amount of attention paid to
the general subject area of large-scale systems. This comes quite naturally from
the relatively rapid growth of our societal needs which often result in multidimen-
sional, highly interacting, complex systems which are frequently stochastic in na-
ture. Though the existence of large-scale systems as objects for understanding and
management is repeatedly affirmed, there has yet been proposed no precise defini-
tion for largeness nor generally acceptable quantitative measures of scale. From the
viewpoint of developing analytical models, a system is large when its input-output
behavior cannot be understood without curtailing it, partitioning it into modules,
and/or aggregating its modularized subsystems. On the other hand, from a systems
viewpoint, a system is large if it exceeds the capacity of a single control struc-
ture. Thus one can enumerate several viewpoints regarding scale. The definition of
a large-scale system we will adopt here is a system which contains a number of in-
terdependent constituents which serve particular functions, share resources, and are
governed by a set of interrelated goals and constraints [9].

Motivated by the prominent structural aspects of an organization and some facets
from the area of automation and control of complex industrial systems and general
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man made communication problems, theoretical investigations were conducted at
the Systems Research Center of Case Western Reserve University starting about
1961. The overall goal was to develop a conceptual framework to the mathemati-
cal theory of complex multi goal decision making systems. Basically, the main idea
behind this approach is the recognition of the hierarchical order in living systems
as well as many existing physical systems. In fact, this approach takes the position
that for a mathematical theory to claim to be dealing with large-scale complex sys-
tems, the complexity of the real systems must be reflected in the structure of the
model [7].

Although there is no universal definition of a large-scale system, it is commonly
accepted that such systems possess the following characteristics [5]:

1. Large-scale systems are often controlled by more than one controller or decision
maker involving “decentralized” computations,

2. The controllers have different but correlated “information” available to them,
possibly at different times,

3. Large-scale systems can also be controlled by local controllers at one level whose
control actions are being coordinated at another level in a “hierarchical” (multi-
level) structure,

4. Large-scale systems are usually represented by imprecise “aggregate” models,

5. Controllers may operate in a group as a “team” or in a “conflicting” manner with
single- or multiple-objective or even conflicting-objective functions, and

6. Large-scale systems may be satisfactorily optimized by means of suboptimal or
near-optimum controls, sometimes termed a “satisfying” strategy.

1.2 Feedback Control

At first sight, feedback control of large-scale systems poses the ‘classical’ control
problem: for a given process with control input #(#) and observed output y(¢) find
a controller that ensures closed-loop stability and asymptotic regulation and assigns
the loop a suitable input-output (//O) behavior. This problem is usually solved in
two steps [6]:

1. The design phase: for a given model of the plant and expected classes of distur-
bances d(¢) and command signals v(#) a control law

uc(t) = K(y@) —v())

is chosen which satisfies the specifications given for the closed-loop system.

2. The execution phase: a controller with the control law u(¢) is applied to the pro-
cess, that is at every instant of time ¢ the observed signal y(¢) and the command
v(t) are combined according to the control law in order to determine the control
input u.(¢).

This well-known control problem has been treated by classical and modern con-
trol theory under the crucial assumptions that there is a unique plant with a unique
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controller and that all computations are based on the whole information about the
plant. This means that the design problem is solved for a model that describes the
process as a whole. In this case, the controller receives all sensor data available and
determines all input signals of the plant. In other words, there is unit thought of as
a centralized decision maker in charge of all information available for a single unit
that designs and applies the controller to the plant. Hence, multivariable control the-
ory deals with the centralized design of centralized controllers. Obviously, such an
assumption can hardly be satisfied if modern technological or societal systems have
to be controlled.

Practical control technologies rely on the cooperation of many different opera-
tional units or transportation systems and all their parts are linked by common re-
sources, by material flows or through information networks. Consequently, neither
a complete model (a priori information) nor a complete set of measurement data
(a posteriori information) can be made available for a centralized decision maker.

For reliability considerations, the overall design problem has to be broken down
into different, albeit coupled, subproblems. As a result, the overall plant is no longer
controlled by a single controller but by several independent controllers, which are
called control stations and which all together represent a decentralized controller.
These control stations are no longer designed simultaneously on the basis of a com-
plete knowledge of the plant, but in different design steps by means of models that
describe only the relevant parts of the plant.

This fundamental difference between feedback control of ‘small’ and ‘large’
systems is usually described by the idea of information structure. The information
structure describes the way in which a priori and a posteriori information is trans-
ferred among decision-making units.

1.2.1 Information Structure

One of the major issues that manifests large-scale systems is the role governed by
the idea of information structure. Initially, in case of centralized systems, refer to
Fig. 1.2, the basic feedback problem is to find control input vector u(-) on the ba-
sis of the a priori knowledge of the plant S described by its design model in the
presence of a class of disturbances v(-) and the control goal given in the form of
the design requirements {C} and the a posteriori information about the outputs y(-)
and the command signals r(-). Classical information structure corresponds to cen-
tralized control as illustrated by Fig. 1.1. It is important to note that the controller
receives all sensor data available and determines all input signals of the plant. In
other words, all information is assumed to be available for a single unit that designs
and applies the controller to the plant. In present-day technologies where several
different units are coexist side by side, neither a complete model (a priori informa-
tion) nor a complete set of measurement data (a posteriori information) can be made
available for a centralized decision maker. Instead, the overall design problem has to
be broken down into different, albeit coupled, subproblems. As a result, the overall
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Fig. 1.2 Information structure: decentralized control

plant is no longer controlled by a single controller but by several independent con-
trollers constituting a decentralized controller structure. Moreover, these controllers
are no longer designed simultaneously on the basis of a complete knowledge of the
plant, but in different design steps by means of models that describe only the rel-
evant parts of the plant. This amounts to non-classical information structure which
arises in decentralized design schemes as shown in Fig. 1.2.

1.2.2 System Representation

There are available two main structures of the models of large-scale systems dis-
tinguished by the degree to which they reflect the internal structure of the overall
dynamic system. These structures are called multi-channel systems entailing the
presence of multi-controllers and interconnected systems incorporating coordinated
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Fig. 1.3 Multi-controller
structure m > Large >
s Scale
> System >
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Fig. 1.4 Coordinated control Supervisor
structure

==

controllers as illustrated in Figs. 1.3 and 1.4. In multi-channel systems, the associ-
ated input and output vectors are decomposed into subvectors constituting n; chan-
nels, while the system is considered as one whole. More on this type of systems will
be mentioned in later chapters.

1.2.3 Team Problems

In engineering and economic organizations, there may be several decision makers
(DMs) that

(A) generate decisions and control variables by acting on the same system;
(B) have access to different information coming from the controlled system; and
(C) pursue different goals.

Such organizations are addressed in the wide research area called “game theory”.

As to point (C), if all the decision makers cooperate on the accomplishment of a
common goal, the organization becomes a team and the related optimization prob-
lems are named team optimal control problems [4].
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1.2.4 General Methodologies

Interconnected systems operate with interactions among subsystems. They are rep-
resented by signals through which subsystems interact among themselves. These
signal are internal signals of the overall system.

To cope with the aforementioned appearance of the complexity issues, several
general methodologies have been and are being elaborated. Most of them belong to
one of the following three groups [8]:

1. Model simplification,
2. Decomposition,
3. Decentralization

The idea of model simplification is to come up with a reasonable model that pre-
serves or inherits most of the main trends (features or dominant modes) of the orig-
inal large-scale/complex system, see [1-3, 5, 8] for further elaboration. The decom-
position (tearing) process amounts to generating a group of subsystems (smaller
in size) from the original large-scale/complex system. This could be achieved for
numerical purposes or along the boundaries of coupled units. In turns out that de-
composition is only a part of two-step procedure, the second of which is coordi-
nation (recomposing) which amounts to synthesizing the overall solution from the
generated solutions of the subsystems (subsolutions). There are two aspects of de-
centralization: the first issue is concerned with the information structure inherent in
the solution of the given control problem and refers to the subdivision of the pro-
cess in terms of the model and the design goals. The other issue is associated with
on-line information about the state and the command to generate the decentralized
control law. The net result is that a completely independent implementation of the
controllers is made viable. There is a variety of different motivating reasons for the
decentralization of the design process such as weak coupling of subsystems, sub-
systems have contradictory goals, subsystems are assigned to different authorities,
or the high dimensionality of the overall system. Following [6], the principal ways
of decentralizing the design tasks belong to two groups: decentralized design for
strongly coupled subsystems and decentralized design for weakly coupled subsys-
tems.

The decentralized design for strongly coupled subsystems means that at least an
approximate model of all other subsystems must be considered for the design of any
subsystem under the current design, while the coupling can be neglected during the
design of individual control stations when considering the decentralized design for
weakly coupled subsystems.

1.2.5 Hierarchical Systems

One of the fundamental approaches in dealing with large-scale static systems was
the idea of decomposition treated theoretically in mathematical programming by
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treating large linear programming problems possessing special structures. The ob-
jective was to gain computational efficiency and design simplification. There are
two basic approaches for dealing with such problems:

1. The coupled approach where the problem’s structure kept intact while taking
advantage of the structure to perform efficient computations [4], and

2. The decoupled approach which divides the original system into a number of
subsystems involving certain values of parameters. Each subsystem is solved
independently for a fixed value of the so-called “decoupling” parameter, whose
value is subsequently adjusted by a coordinator in an appropriate fashion so that
the subsystems resolve their problems and the solution to the original system is
obtained.

1.3 Outline of the Book

During the past several decades, there have been real world system applications for
which the associated control design problems cannot be solved by using one-shot
approaches. Typical applications arise in the areas of interconnected power sys-
tems with strong coupling ties among network elements, water systems which are
widely distributed in space, traffic systems with many external signal, or large-space
flexible structures with interacting modes. Models of such systems are frequently
complex in nature, multidimensional and/or composed of highly interacting subsys-
tems. Several approaches to deal with these systems have been developed based on
key ideas from economics, management sciences and operations research. Over the
years, such approaches have been dynamically evolved into a body of “large-scale
systems (LSS) theories”.

This book is written about large-scale systems theories. It aims at providing a
rigorous framework for studying analysis, stability and control problems of LSS
while addressing the dominating sources of difficulties due to: dimensionality; infor-
mation structure constraints; parametric uncertainty and time-delays. The primary
objective is three-fold: to review past methods and results from a contemporary
perspective, to examine presents trends and approaches and to provide future pos-
sibilities, focusing on robust, reliable and/or resilient decentralized design methods
based on linear matrix inequalities framework.

The main features of the book are:

1. It provide an overall assessment of the large-scale systems theories over the past
several decades,

2. It addresses several issues like model-order reduction, parametric uncertainties,
time-delays, control/estimator gain perturbations,

3. It presents key concepts with their proofs followed by efficient computational
method,

4. It establishes decentralized control techniques for time-delay and delay-free sys-
tems, and

5. Tt gives some representative applications.
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1.3.1 Methodology

Throughout the book, our methodology in each chapter/section is composed of five-
steps:

e Mathematical Modeling in which we discuss the main ingredients of the state-
space model under consideration.

o Definitions and/or Assumptions—here we state the definitions and/or constraints
on the model variables to pave the way for subsequent analysis.

e Analysis and Examples—this signifies the core of the respective sections and sub-
sections which contains some solved examples for illustration.

e Results which are provided most of the time in the form of theorems, lemmas and
corollaries.

e Remarks which are given to shed some light of the relevance of the developed
results vis-a-vis published work.

In the sequel, theorems (lemmas, corollaries) are keyed to chapters and stated in
italic font with bold titles, for example, Theorem 3.4 means Theorem 4 in Chap. 3
and so on. For convenience, we have provided an appropriate list of references cited
at the end of each chapter. Relevant notes and research issues are offered at the end
of each chapter for the purpose of stimulating the reader.

We hope that this way of articulating the information will attract the attention of
a wide-spectrum of readership.

1.3.2 Book Organization

The book is primarily intended for researchers and engineers in the system and con-
trol community. It can also serve as complementary reading for large-scale system
theory at the post-graduate level. The book is divided into nine chapters.

Chapter 1 provides an overview of the concepts and techniques of large-scale
dynamic systems and introduces the system description and motivation of the study.
Then it sets forth formal definitions pertaining to the scope and objectives of the
book.

Chapter 2 treats the first part of decentralized control methods for some classes
of nonlinear interconnected dynamical systems.

Chapter 3 deals with the second part of decentralized control methods for some
classes of nonlinear interconnected dynamical systems.

Chapter 4 examines stabilization and feedback control of decentralized systems
using multi-controller structures.

Chapter 5 focuses on decentralized control in the presence of quantizers within
continuous-time and discrete-time systems switched. Once again, the analytical de-
velopment starts with time-delay systems then generates the ordinary systems as
important special cases.
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Chapter 6 examines large-scale traffic systems and identifies their features. Ap-
propriate models are derived using continuous and discrete formalisms. Flexible
routing policies are derived under different operating conditions.

Chapter 7 considers large-scale systems with Markovian jumping parameters.
The analytical development deals with ordinary systems as well as time-delay sys-
tems.

Chapter 8 deals with decentralized adaptive control strategies of interconnected
systems.

Chapter 9 contains some relevant mathematical lemmas, basic algebraic inequal-
ities and standard stability theorems.

Throughout the book and seeking computational convenience, all the developed
results are cast in the format of family of LMIs. In writing up the different top-
ics, emphasis is primarily placed on major developments attained thus far and then
reference is made to other related work.

In summary, this book covers decentralized control for interconnected systems
under alternative design considerations which is supplemented with rigorous proofs
of closed-loop stability properties and simulation studies. The material contained
in this book not only organized to focus on the new developments in the analysis
and control methods for LSS, but it also integrates the impact of the design con-
straints like delay-factor, information structures, interaction pattern, quantization
and overflow, switching among multi-controllers. After an introductory chapter, it
is intended to divide the book into self-contained chapters with each chapter being
equipped with illustrative examples, problems and questions. Each chapter of the
book will be supplemented by an extended bibliography, appropriate appendices
and indexes. It is planned while organizing the material that this book would be ap-
propriate for use either as graduate-level textbook in applied mathematics as well as
different engineering disciplines (electrical, mechanical, civil, chemical, systems),
a good volume for independent study or a suitable reference for graduate-students,
practicing engineers, interested readers and researchers from wide-spectrum of en-
gineering disciplines, science and mathematics.
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Chapter 2
Decentralized Control of Nonlinear Systems I

In this chapter, we examine decentralized control techniques for classes of nonlinear
interconnected systems. We identify classes for the system structure along with the
underlying assumptions and emphasize the information and design constraints. The
subsequent sections focus on a class of large-scale interconnected minimum-phase
nonlinear systems with parameter uncertainty and nonlinear interconnections. The
uncertain parameters are allowed to be time-varying and enter the systems nonlin-
early. The interconnections are bounded by nonlinear functions of states. The prob-
lem we address is to design a decentralized robust controller such that the closed-
loop large-scale interconnected nonlinear system is globally asymptotically stable
for all admissible uncertain parameters and interconnections. It is shown that de-
centralized global robust stabilization of the system can be achieved using a control
law obtained by a recursive design method together with an appropriate Lyapunov
function.

The problem of decentralized output-feedback tracking with disturbance atten-
uation is addressed for a new class of large-scale and minimum-phase nonlin-
ear systems. Common assumptions like matching and growth conditions are not
required for the underlying decentralized system with a diagonal structure. An
observer-based decentralized controller design is presented. The proposed decen-
tralized output-feedback laws achieve asymptotic tracking and internal Lagrange
stability when the disturbance inputs disappear, and, guarantee external stability in
the presence of disturbance inputs. These external stability properties include Son-
tag’s ISS and iISS conditions and standard £,-gain property.

2.1 Classes of Nonlinear Interconnected Systems

In what follows, we summarize the classes of nonlinear interconnected systems
(NIS) that will be treated in the subsequent sections. We focus on the features of
each class before addressing the topics of stability analysis and decentralized output-
feedback control design.
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2.1.1 Class 1

In recent years, modern control methods have found their way into decentralized
design of interconnected systems leading to a wide variety of new concepts and re-
sults. This includes, but not limited to, the framework of H,/H, design and linear
matrix inequalities (LMIs) [1] which has been shown [6, 44] to be very attractive
particularly when coping with high dimensional systems. Applications having so-
phisticated theoretical generalizations of the underlying concepts have been in con-
trol of multi-agent systems, such as platoons of vehicles on highways and in the air,
interconnected spatially-invariant systems, and large-scale power systems [5-7]. It
turns out that, the decentralized control designs imply, either explicitly or implicitly,
that the system, with local feedback loops closed around the subsystems, remains
stable despite changes in its interconnection topology [4, 60, 66, 67].

2.1.1.1 System Description

According to this class, a nonlinear interconnected system S is considered to be
composed of a finite number N of subsystems represented by

Si: Xj=Aix;+Bju;+h;(t,x)

J J i*i Juj J\ A,
(2.1

yj=Cjxj,

where x; € W, u; € W™ and y; € NP/ are the subsystem state, input and output
vectors, respectively, x = [xi, R xf\,]’ is the global state vector with ZlNzl nj=n
and i (t, x): M+ M are piecewise continuous vector functions in both argu-
ments, satisfying in their domains of continuity the following quadratic inequalities

Rt x)h(t, x) gaﬁxt HiHjx., (2.2)
where &; > 0 are bounding parameters and H j are constant o; X n matrices, j =
I,...,N.

The interconnected system can be represented as

S: x=Ax+ Bu+h(t, x),
(2.3)
y=Cx,

where

w=[uf . ul y=D LT

h(t,x) =[h1(t, %), ..., hn(t, x)'T

are the global input, output and interconnection vectors, respectively, with
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N
domj=m. Y pj=p
[ i=1
A=diag[A,,...,Ay],  B=diag[Bi, ..., By],  C=diag[C,...,Cx]

and h(z, x) is the global interconnection function. Proceeding further, define H' =

[H!: ... HL), where Hj, j=1,..., N, are defined in (2.2), and
F=diag[pilar, ... PnIan], 75 =77, lyj € R
then, it is always possible to find matrices H, I" such that
h(t,x)'h(t,x) <x'H'T 'H, <x'H'I' 'Hx, (2.4)
where

H =diag[H1, N HN], Hj € EH“J‘X”/, r =diag[y11a1,..., VNIaN]’
j=1,...,N.

It is not difficult to show that matrices H and I satisfy
hp(H'H)min p; < max y; min Amin(H; H})
1 1 ]

represent a possible choice; different structures can be chosen in accordance with
the problem under consideration, see [55, 58] for further elaboration.

Remark 2.1 The main feature of this class is its suitability to develop an LMI-based
method for designing dynamic output feedback for robust decentralized stabiliza-
tion of interconnected systems. This scheme is selected as a methodological basis
for several reasons [55]. First, the method applies to systems composed of linear
subsystems coupled by nonlinear interconnections. This type of model is attractive
since, in most practical situations, local subsystem models are known with suffi-
cient precision to make the linearization successful, while the interconnections are
largely unknown: only their bounds are available for control design. Second, the
scheme allows for maximization of interconnection bounds, and third, the result-
ing closed-loop system is connectively stable. Elaborations of the basic scheme in
[55] presented in the literature have been related either to the state feedback [55], or
to output feedback schemes containing an observer of Luenberger type [9, 46-54,
56-65, 67-89].

As will be shown later on that by assuming decentralized dynamic linear out-
put feedback with a general structure, we apply the classical methodology of Ho
controller design [6, 11, 24] to the basic scheme from [55]. As a result, a new two-
step LMI-based design procedure is obtained, providing at the first step the block-
diagonal Lyapunov matrix, together with the robustness degree vector, and at the
second step the decentralized controller parameters.
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2.1.2 Class I

Large-scale systems, frequently consisting of a set of small-interconnected subsys-
tems, can be found in many applications such as electric power systems, indus-
trial manipulators, computer networks, to name a few. On one hand, the central-
ized control of these systems is usually infeasible mainly due to the requirement
of a formidable amount of information exchange. In this regard, decentralized con-
trol is often preferable [60] whereby a control law based only on local informa-
tion is designed and implemented. In view of the interconnections among subsys-
tems, the design of a decentralized control is in general more difficult than that
of a centralized control. On the other hand, due to their complexity, exact model-
ing of large-scale systems is usually impossible. Therefore, it is of practical sig-
nificance that decentralized control must reflect such design constraints by taking
into account possible modeling uncertainties. Usually, the uncertainties for inter-
connected systems appear not only in local subsystems but also in interconnec-
tions.

From the literature, decentralized robust control for interconnected linear sys-
tems with uncertainties satisfying the so-called strict matching conditions was in-
vestigated in [3, 17, 56] and references cited therein. The interconnections among
subsystems treated in these works are mostly bounded by first-order polynomials.
It was pointed out in [13, 18, 38, 56] that interconnected systems with a decentral-
ized control based on the first-order bounded interconnections may become unsta-
ble when the interconnections are of higher order. Decentralized robust stabiliza-
tion was considered in [20] for systems with interconnections bounded by some
nonlinear functions and uncertainties satisfying the so-called matching conditions.
Decentralized adaptive control for a class of interconnected nonlinear systems was
proposed in [22, 25] based on exact linearization by following the development of
centralized control of nonlinear systems [23, 32, 39] and where the strict matching
condition was relaxed and higher-order interconnections among subsystems were
introduced.

2.1.2.1 System Description

The second class of systems considered in this chapter looks at a large-scale non-
linear system as comprised of N interconnected subsystems with time-varying un-
known parameters and/or disturbances entering nonlinearly into the state equation.
The jth subsystem is given as
zj = fio(zj, xj1) + gjo(zj, Xj0. Zj, Y5 0)x 1,
Xj1 =xj2+gj1(zj,Xj1,Zj,Y};0),

Xjp=x;3+gj2(zj,Xj2,Zj,Y;;0),

(2.5)
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Xjri—1=Xjr; +@jri—1(j, Xjri—1,2j,Y;;0),
.X'fj’rj = Uj +¢j,r1(zjvij,rjvzj7 Y/ve)s
Yj =Xjt,

where x; x = [xj1xj2 ... xjk]’ with X0 = x1, x; =)Ejr_,, (zj,xj) is the state vector
of the jth subsystem with

;g €NV Zp=l2h 2y o 2 2y 2]
t
Yi=I[yty2 ... yj=1 Yj+1 .. YN

and v; € R is the control input, y; € N is the output, 6 is a vector of unknown,
time-varying piecewise continuous parameters and/or disturbances which belong to
a known compact set £2, the vector fields fjo and ¢ j are smooth with f0(0,0) =0
and g;1(0,0,0,0;0)=0,V0 € 2,1 < j<N,0<j<r;. Observe that the vector
(gjk), k=0,1,2,...,r;, represents the interconnections of the ith subsystem with
the other subsystems.

Remark 2.2 In what follows, we consider the decentralized robust control prob-
lem for a wider class of interconnected systems with partially feedback linearizable
subsystems and nonlinear parameterization of time-varying parametric uncertainty.
Observe from (2.5) that the interconnections involve the zero-dynamics and out-
puts of other subsystems. This is in contrast to [25] where an adaptive stabilization
was considered for a class of interconnected nonlinear systems whose subsystems
are exactly feedback linearizable and with linear parameterization of parameter un-
certainty. Geometrical conditions on the isolated subsystems and interconnections
such that the interconnected nonlinear systems are transformable into the so-called
decentralized strict feedback form has been characterized in [25].

Remark 2.3 Similar to the centralized case discussed in [35, 40], the zero dynamics
of each subsystem in (2.5) are independent of the uncertain parameter vector 6.

In the sequel, we assume that n; =n,r; =r,1 < j < N. Then, by considering
yj =Xj1, system (2.5) becomes

zj = fjo(zj, xj1) + gjo(zj, Xio, Zj, X j1; 0)xj1,
xj1=xp+gh1z,xj1,2Zj,X;1;0),
Xj2 =xj3+8j2(zj, X2, Zj, Xj150),
(2.6)
Xjr—1=Xjr+8jr—1Zj,Xj,—1,2j,Xj1;6),
Xjr=vj+8jr(zjXjr.Zj, Xj1;0),

where X1 =Y =[x11 x21 ... Xj—1,1 Xjg1,1 --- xyi1lt
The following assumptions are made for system (2.6).
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Assumption 2.1 There exist some smooth real-valued functions

VJO(Z])5 j:1’29"'9N7
which are positive definite and proper (radially unbounded), such that

Vo 2 .
?fjo(zj,O)S—VjHZjH , I<j=N, 2.7
j

for some positive real numbers v; > 0.

Assumption 2.2 The nonlinear interconnections g jx in (2.6) satisfy

lgjk(zj, Xjk, Zj, X j150) — djr(zj, Xjk, 0,0,0)]

N
<Y ke O e Uz DNzl + &y (e, xen) e 1]
=1
N
< Zn,/ke(Zj,ijk)(jkz(ll(u,xu)ll), (2.8)
(=1

for any 6 € £2, njke(-), ;?kz(.) and g}u(.), ¢=1,2,....,.N,0<k<r,1<j<N
are nonnegative smooth functions with g“/(.)k ()= ;J.lkj ()=0.

Remark 2.4 By the well-known converse Lyapunov theorem [29, 31], the zero
dynamics of each subsystem are globally asymptotically stable if and only if
there exists a positive definite and proper Lyapunov function Vjo such that
(@Vjo/9z;) fio(z;,0) <0, Vz; # 0. Indeed, the requirement (2.7) is more restric-
tive than this. However, a globally exponentially minimum-phase nonlinear system
(that is, the zero-dynamics of the system are globally exponentially stable) always
satisfies condition (2.7).

Remark 2.5 The interconnections in Assumption 2.2 are very general, including
many types of interconnections considered in existing literature as special cases,
for example, interconnections bounded by linear (first-order) polynomials [3], and
higher-order polynomials [56]. By contrast to the work in [3, 20, 27, 56], no match-
ing conditions are imposed for system (2.6).

Later on, we will deal with the decentralized global robust stabilization prob-
lem for system (2.6) satisfying Assumptions 2.1 and 2.2. More precisely, we are
concerned with the design of decentralized robust control laws v; = v;(z;, x;),
j=1,..., N, such that the overall closed-loop interconnected system (2.6) with
the control laws is globally asymptotically stable for all admissible uncertainties
and interconnections.
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2.1.3 Class II1

Recent years have seen steady progress in the field of decentralized control of both
linear and nonlinear systems. Decentralized control issues naturally arise from con-
trolling large complex systems found in the power industry, aerospace and chemi-
cal engineering applications, and telecommunication networks, to name only a few.
Among the main characteristics of decentralized control are the dramatic reduc-
tion of computational complexity and the enhancement of robustness and reliability
against interacting operation failures. Many researchers have made significant con-
tributions to the development of decentralized control theory for large-scale, or in-
terconnected, dynamic systems ([60] and a rather complete list of earlier references
cited therein).

In Class III of this chapter, we study a broad class of large-scale nonlinear sys-
tems with output measurements. This problem, usually referred to as decentralized
output-feedback control, is technically challenging because of the lack of a general
theory for nonlinear observer design and the nonlinear version of the well-known
“Separation Principle”.

2.1.3.1 System Description

According to this Class III, a large-scale nonlinear system is viewed as comprised
of N interconnected subsystems with time-varying unknown parameters and/or dis-
turbances entering nonlinearly into the state equation. The jth subsystem is given
as

xj=Fj(x;))+Gj(xpuj+ iy, ..., yn)x; + (v, ..., yvwj,  (2.9)
yj =hjx;j), (2.10)

where 1 < j < N, x; e W, u; € ) and y; € N represent the state, the single
control input and the single output of the local jth subsystem, respectively, and
wj € R is the disturbance input. Also, Fj,Gj,hj, Aji and I1j; are sufficiently
smooth functions. In the absence of the interacting terms I1;; and I1;5, the sys-
tem (2.9)—(2.10) collapses to an isolated single-input single-output SISO system
and has been extensively studied in the recent literature. Various constructive con-
trol algorithms have been developed for large classes of centralized nonlinear sys-
tems in special normal forms. Similar questions in the decentralized context should
be addressed, that is, in the presence of strong interactions among local systems
of the form (2.9)—(2.10). In the sequel, attention is focused on large-scale dynamic
systems of type (2.9)—(2.10) transformable to

2j=0;izj+ fioO1 ... yN) + Pjo(V1s - yNIW;,
xjpp=x2+ 1O, ..., yn) g1, .., yn)z + i, - YN W),

@2.11)
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Xjn; =uj+ fin; 1o s YN+ 8jn; V15 -, YN)Zj + Pjn; V1, -, YN W5,
yj =Xj1,

where foreach1 < j<N,z; € R and Xj=(Xi1,..., x,-nj) e N are the states of
the ith transformed subsystem. For every j, Q; is a constant matrix with appropriate
dimension, fjk, g;jx and p;; are known and smooth functions.

In the sequel, the following minimum-phase condition is assumed.

Condition A Forevery 1 < j < N, Q; is a Hurwitz matrix.

The structure involved in (2.11) is commonly utilized in the past literature in both
centralized and decentralized control, the reader is referred to [20, 23, 26, 32, 40,
48, 56, 80]. In view of the existing results on geometric nonlinear control [23, 29,
32, 40], necessary and sufficient geometric conditions can be easily derived under
which a nonlinear system (2.9), (2.10) is transformed into (2.11), yielding the so-
called “disturbed decentralized output-feedback form”.

Remark 2.6 1t is worth noting that the nonlinearities in (2.9) depend only on the out-
put y = (y1, ..., yn) and that the unmeasured states X ;[z;, xj2, ..., xj,,].] in (2.11)
appear linearly. This feature is found appealing in recent studies in global output-
feedback control for both centralized and decentralized nonlinear systems, in the
framework of robust and/or adaptive control. As a matter of fact, simple counterex-
amples found in [43] reveal the fundamental limitation of global output-feedback
control for systems with strong nonlinearities due to unmeasured states. For ex-
ample, it has been shown in [43] that there is no continuous (static or dynamic)
output-feedback control law that can globally asymptotically stabilize a nonlinear
system x| = x2, X = xj + u with output y = x; whenever n > 3.

2.2 Dynamic Output Feedback: Class I

The objective of this section is to propose an approach to robust stabilization of sys-
tems which are composed of linear subsystems coupled by nonlinear time-varying
interconnections satisfying quadratic constraints. The proposed algorithms, which
are formulated within the convex optimization framework, employ linear dynamic
feedback structure involving local Luenberger-type observers. It is also shown how
the new methodology can produce improved results if interconnections have linear
parts that are known a priori. Examples of output stabilization of inverted pendu-
lums and decentralized control of a platoon of vehicles are used to illustrate the
applicability of the design method.

With the emergence of the powerful convex optimization toolboxes involving
linear matrix inequalities (LMIs), solving problems of controller design within the
convex optimization framework became very attractive, see [1, 6, 10, 11, 14, 21,
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24, 61]. Of wide-spread interest have been the control problems of formulating suf-
ficient conditions for computing output feedback control laws using convex opti-
mization methods due to the fact that the necessary and sufficient conditions are
known to be non convex, in general. These problems become increasingly more dif-
ficult to solve when decentralized information structure constraints are imposed in
the control design [2, 15, 16, 49, 59, 83, 85]. These information structures can be
found in important applications, such as power systems [86], control of formations
of unmanned vehicles [65] and control of large structures [34], to name few.

2.2.1 Observer-Based Control Design

In what follows, we propose novel sufficient conditions for the design of decentral-
ized dynamic output controllers in the convex optimization context for stabilization
of interconnected systems with linear subsystems and nonlinear time-varying in-
terconnections. Controllers are designed to guarantee robust stability of the overall
system and, in addition, maximize the bounds of unknown interconnection terms,
starting from the methodology proposed in [55]. In what follows, we adopt here
the controller structure containing local observers of Luenberger type. Several al-
gorithms are proposed in the general case of full order observers, differing by com-
plexity and the degree of interdependence between the observer and the feedback
gains, where no additional constraints on the parameters of the system model are
imposed [46, 58]. It is also shown how the proposed scheme can be used to build
reduced-order observers. Particular attention is paid to the case when linear parts
of interconnections are known a priori, and an algorithm is proposed which takes
advantage of this knowledge to come up with improved results. To illustrate the ap-
plication of the proposed schemes we include two examples, the first dealing with
interconnected pendulums, and the second with the problem of platoons of vehicles
in the case when the velocity and acceleration of the neighboring vehicles are not
accessible.

Reference is made to model of Class I as described by (2.1)—(2.4). To proceed
further, we consider that

1. The dynamic controller F for S is linear,

2. It obeys the decentralized information structure constraint requiring that each
subsystem is controlled using its own local output and

3. It is composed of an observer of Luenberger-type and a static observer state
feedback.

This motivates us to express controller F into the
F: w=Aw+ Bu+ L(y — Cw), u=Kuw, (2.12)
where w € R" is the observer state, with w = [w], ..., w}]', w; € K"/ and

K =diag{Ky,..., Ky}, L =diag{Ly,..., Ly}
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represent the global controller parameter matrices while pairs (K, L) determine
the local dynamic controllers.
The resulting closed-loop system S, = (S, F) can be expressed as
SC: Z’=AcZ+hC(t, Z), yZCCZ, (213)

where z is the state vector. Defining

z=[z1. 251" zi=w, o=w—x

we obtain
A+ Bk —LC :
Acz[ ; A_LC}, c.=[ci-c]
. ) (2.14)
he(t,2)=[0:—h(z1 —22)']'.
In view of (2.4), we have now
he(t,2)'he(t,2) <z'H'T'"'H,z, (2.15)

where H, = [H - H].

We now address the key feature of dynamic controller F, that is, it must ro-
bustly stabilizes S. According to the results of [55, 58], it is shown that § is ro-
bustly stabilized with vector degree a = [ay, ..., ay]’ if the equilibrium z = 0 of
the closed-loop system S, = (S, F) is globally asymptotically stable for all A.(t, z)
satisfying (2.15) for some H, and I".

It turns out that the controller stabilizes the linear part of S and, at the same time,
maximizes its tolerance to uncertain nonlinear interconnections and perturbations.
This is nicely expressed by the following LMI-based formulation:

System S; = (S, F) is robustly stable with vector degree « if the following prob-
lem is feasible:

min Tr ™

XA+ ALX, X. H!
subjectto X, >0, ° —1 0 < 0.
° o —I

(2.16)

It must be observed that, by and large, observer-based feedback design cannot be
completed directly using (2.16). The main reason for this is that the second matrix
inequality is not an LMI in both X, and the feedback parameter matrix.

Remark 2.7 At this stage we should recall some basic results from [1, 16]. In the
case of state-feedback the problem can be readily transformed into an LMI problem
by a simple change of variables (convexification procedure). However, in the case
of dynamic output feedback the problem becomes far more complex. A decoupled
quadratic Lyapunov function with block-diagonal weighting matrix has been used in
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[58] to determine the dynamic controller parameters. However, the proposed design
procedure imposes additional constraints on the system model characteristics.

In what follows we will provide some modifications of problem (2.16) obtained
by convexifying the constraints. Solutions to these problems will provide guaranteed
feasible solutions to (2.16) and the upper bound of the objective function Tr I".

2.2.1.1 Full Order Observer

Introducing the following matrices

Q =diag{Q1,.... On}, Qj e WV,
P =diag{Pi,..., Pn}, Pj e,
W =diag{Wi,..., Wy}, W; eR"/>",
V =diag{Vy,..., Vy}, V; eR"*Pi,

For the purpose of simplifying the subsequent analysis, we define the matrix func-
tion

S L M
S, LM, I"=|e —I 0 , 2.17)
° ° -I

for some S, L, M, I' matrices with appropriate dimensions.

Problem 2.1

min TrI”
subjectto Q@ >0, P >0, (2.18)
v (S,I,QH!, ") <0, W¥(S,P,—H' I <0,

where S =AQ + QA" + BW + W/'B" and S, = PA+ A'P - VC — C'V!,
We have the following result:

Theorem 2.1 System S is robustly stabilized by the controller F if Problem 2.1 is
feasible. The controller parameters are given by

K=wQ™!, L=Plv. (2.19)

Proof In what follows it will be shown that there exists a real number A > 0 such
that the matrix X, = diag{A~'Q !, P} satisfies LMIs (2.16) for some I" > 0, where
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P and Q are solutions of Problem 2.1. Substituting (2.14) and X, into (2.16), we
obtain

AST —LC 1 0 AQH!'
° S 0 P —H'
° ° -1 0 0 < 0. (2.20)
° ° o ] 0
° ° ° ° —I

By Schur complements, we obtain the following conditions equivalent to (2.20):

0 0

. [-1 P _ o -Lc e[S om] @2
E=lp s %0 —w| B3®=|po x|

_ _ e I 0
E1 <0, Aag(l})—az.:llaé—l—[ i|<0,

ro=x"'r, X e ",

Now let I = diag{ylolll, ey yj(\),I[N} is the optimal I" obtained by solving Prob-
lem 2.1 and define

v=2min(E87 D), a=Aum(E2E)),  w=im(E3(I)).

It is easy to see that &1 and Z3([p) represent principal minors of the matrices
W (S, 1, QH", Iy) <0and ¥(S,, P, —H', Iy) < 0 and hence both eigenvalues p
and v are negative.

Selecting I = A*Ip, A* > 16|/|],6 = —1 4+ av and assuming that 0 < A < A%,
it follows that

A{E3(1)} = Am{E3 (/M) T} < Am{E3(TD)} = p
bearing in mind that A*/A > 1. For this selection of I" and A, (2.21) is implied by
uA —6 <0, (2.22)

which holds true for |6|/|] < A < A*. Therefore, the desired A exists and the proof
is completed. g

Remark 2.8 The local robustness degrees defined by

aj=1/Jyd6l/lul. j=1.....N

guaranteed from Theorem 2.1 are generally conservative. More realistic values can
be obtained by plugging the controller parameters obtained by (2.19) into (2.16) and
by solving the corresponding minimization problem with variables X, and I". This
will be demonstrated in the numerical examples presented later on.
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Remark 2.9 1t is interesting to note that Problem 2.1 implements the separation
principle. The constituent problems

0>0, w(S1,I,0H', I'" <0, P >0, W(Sy, P,—H',T'?) <0

can be readily solved independently, the first providing K as in the state feedback
design and the second L, robustly stabilizing the observer, so that

I = diag{max(yll, ylz)lgl, ces max(yjl,, )/]%/)IZN}.
Remark 2.10 An alternative procedure to simplify LMIs in (2.18) is as follows:

Problem 2.2

min TrI”

) (2.23)
subjectto Q>0, P>0, &E3(I)<0, E;1<0

while the controller parameters are obtained by using (2.19).

Generally speaking, the achievable robustness degree is lower than the one
obtained by solving Problem 2.1. Specifically, it is possible to show using the
methodology of Theorem 2.1 that if Q¢, Wy and I are obtained by solving Prob-
lem 2.2, then there exist p > 0 and 8 > 1 such that ¥ (p(AQg + QpA’ + BWy +
W{B"), 1,pQoH", BID) <O0.

By taking into consideration the interdependence between K and L in the LMIs
(2.16), we will attempt to exploit the structure of (2.20) to construct improved algo-
rithms with higher robustness degree.

Problem 2.3
min TrI”
. (2.24)
subjectto P >0, W¥(S;,P,—H',I')<0.
1. Use the solutions P, S, I', L = P~V
2.
min Tr A
subjectto  Q > 0,
Sy I —LC 0 QH
e -1 0 0 0 (2.25)
. S, P —H'|<o,
° -1 0
° ° —I'A

where A =diag{11},,...,0n511y},8; >0,V].

The following result stands-out:
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Theorem 2.2 System S is robustly stabilized by the controller F if Problem 2.3 is
feasible. Controller parameters are given by (2.19). The robustness degree bounds

are given by aj =1/,/y;d;.

Proof 1t is readily seen that the second inequality in (2.25) is identical to inequal-
ity (2.16) for X. = diag{Q~!, P}, with I" replaced by I" A and hence the desired
result. O

Remark 2.11 Tt should be noted that Steps 1 and 2 have to be performed consecu-
tively and not simultaneously, like in Problems 2.1 and 2.2. Alternative algorithms
could be derived if one takes, for example,

z=1[z1,4), z1=x, 2=x—w,

A+BK —-BK :
AC=|: 0 A_LC], C.=[C:0],

he(t,2) = [h'(z) T h' (@) ]

and arrives at a problem similar to Problem 2.3, in which K is determined in the
first step, and L in the second step.

2.2.1.2 Reduced Order Observer

The results of the foregoing section can be directly extended to the design of con-
trollers with decentralized reduced order observers. For this purpose, we assume
that Cj = [O(nj_pj)an Ipi], pj=<n;j ifx]- is divided into

L avt c\tqt a - gpnj—pj C - WPj

Xj —[(xj) ,(xj) 1, x5 ) X5 e NP
then y; = x; and the output w; € R"/ 7P/ of the local reduced order observer is an
estimate of x¢. Similar to [33], we assume that the local dynamic controllers F;

have the form:

li}j = A;le +A;2yj + le-uj +Lj[5’j —A?le —A?zyj — sz»uj], (2.26)

ALl pl2 B!
Aj= él éz ’ Bj= ]2 )
Aj Aj Bj

g =[wh, ¥ 1 =, 5T

where
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Note that differentiation of y; in (2.26) can be avoided by standard transformation
of variables. Defining

nj=w;—x§,  E=[&,....&],  n=[l... 0\

we take z = [£7, n’]’ as a new state vector for S, = (S, F), and obtain

. [A+BK LA™
Sp: 2= 0 All _ 1421

] 24 he(t 2), (2.28)

where

Al =diag(All, ..., ALY, A2 =diag{Al®, ..., A}}),
A% = diag(A?!, ..., A3}, K =diag{Ky, ..., Ky},
L =diag{L1,..., Ly}, L =diag{Ly,..., Ly},
Ly=[-L'~In],
he(t,2) = [[0h,_p, T ASO) ] [0y S hSG @], =R =G ()]

where the decomposition % (x) = (h’; x)!, hj (x)H! is induced by the decomposi-
tion of x; into x;.‘ and xjc.. This leads to

he(t,2) he(t,2) <o’z HL Hez, (2.29)

where H. = [H : —H), H' =[H!: ... : H}], while H; isan[; x (n; — p;) matrix
containing the first n; — p; columns of H;, having in mind that H;x = H;§ — I-_Ijn.
The structure of the closed-loop model (2.28) shows that controller design can

be entirely based on the methodology developed earlier. Hence, Problem 2.1 and
Theorem 2.1 yield

Corollary 2.1 System S in which

C= diag{[o("l*l’l)xpl Ip ]’ R [O(HN*PN)XPN Ipy ]}v
pjszl,...,N
is robustly stabilized by the dynamic controller F defined by (2.26), (2.27) if the
following problem is feasible:
min Tr I
subjectto  Q > 0, P >0,
w(S1,1,QH", I') <0,
(S, P,—H',I') <0,

(2.30)
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where

§2= PA” +(A1])tﬁ_ VAZI _(Azl)t‘_/t emn_/—p/xn_i—p/’

P =diag{P), ..., Py} € RN PixPj V =diag{Vi, ..., Vy}.

The controller parameters are obtained by using (2.19).

2.2.1.3 Important Special Case

We now look at the special case where the interconnections between the subsys-
tems S; in S is known, linear and can be represented by a full matrix A, € R**"
containing off diagonal interconnection blocks, so that A + Ay becomes the new
state matrix in the linear part of S in (2.2). The function A (z, x) still represents the
unknown part of interconnections.

The foregoing design methodology can be extended to this case while aiming to
exploit the additional a priori information constraint. A point of caution must be
entertained here. By replacing A by A 4 A; in the observer equation for F in (2.12)
one violates the adopted information structure constraint, i.e. the dynamic controller
ceases to be decentralized. Inserting A + A only in the state model (2.3), we obtain

A, = A+ BK : —LC

—As 1 A+A—LC

This fact indicates that the design scheme could now be based on modifying the
problems described in Sects. 2.2.1.1 and 2.2.1.2 by inserting the new information
in the form of A; at the corresponding places in the related LMIs. Robust stabi-
lization is achievable however, when the interconnections are sufficiently weak. For
example, Problem 2.1 turns to be:

Problem 2.4
min TrI” (2.31)
subjectto P >0, QO >0, (2.32)
v (S, 1,QH', I") <0, (2.33)
(S, P,—H',T) <0, (2.34)

where Sy, = P(A+ Ay) + (A+ A,)'P —VC — C'V'.

Theorem 2.3 The system S with known linear interconnections (modeled by adding
As to A in (2.3)) is robustly stabilized by the decentralized dynamic controller F in
(2.12) if Problem 2.4 is feasible and

2

< ——m—, (2.35)
80svsApAo
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where 8§ = Ay (AL Ag), kp = Ay (P?), Ao = Ap(Q2), vs = A (E3"), matrix Eyy is
obtained from E1 in (2.21) by replacing S with Sys, and 6, = —1 + 2avs.

Proof The proof is based on a line of thought similar to that applied in Theorem 2.1.
Inserting

X, =diaga"'0" 1, P}, A= [A+BK —LC }

—A;, A+A,—LC

into (2.16) we obtain

AST —Ls I 0 AQH!
° Sas 0 P —H'
° ° -7 0 0 <0, (2.36)
° ° o 0
° ° . . -r

where Ly = LC + AQ AL P. The last inequality is equivalent to Z; < 0 and

_ . I . I 0
AE3(T) — (&2 +)»d2s)dwl(d2 +AE2s) + |:0 0] <0, (2.37)

where

&3]

o —oaAlP
=10 0 :

By similarity to Theorem 2.1, we let P = A*I for some A* > 0, where Iy is
the optimal value obtained by solving Problem 2.4. Assume that 0 < A < A*. Then,
(2.37) is implied by

—28vAproA’ 4 ur — 605 <0, (2.38)

bearing in mind that Ay {E3(1))}An{Z3(10)} = n. Observe that vy < O by as-
sumption, as a consequence of the feasibility of Problem 2.4. The existence of
A > 0 satisfying (2.38) is guaranteed if (2.35) holds, since then we have D =
u2 —8865v5ApLg > 0. Consequently, we choose

—u—~/D - D
MifZA1<A*§A2:L\/—,
—48vsdpig —48vdpig

where 0 < A1 < X, since u < 0 and ~/D < |u]|, so that A can take any value in
the interval [A1, A*]. The local guaranteed robustness degree bounds are now o ; =

1/ )/JQM, j=1,..., N, which concludes the proof. O
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2.2.2 Simulation Example 2.1

Consider the motion of two inverted pendulums connected by a spring which can
slide up and down the rods of the pendulums in jumps of unpredictable size and di-
rection between the support and the height equal to 1 [55]. An appropriate linearized
and normalized model is given by

01 0 O 0 0
1 0 0 O 1 0
S: x= 00 0 1 X+ 0 0 I/l+h(t,x),
|00 1 0 0 1
[1 0 0 O
Y=o o 1 o]x’ 239
0O 0 0 O
-1 0 1 O
h(t,x) =e(t,x)Gx, G= 0o 0 0 ol
1 0 -1 0

where e(z, x) : % — [0, 1] represents a normalized interconnection parameter.

It is required to compute a decentralized control law which would connectively
stabilize the system for all values of e(t, x) € [0, 1].

A decentralized state-feedback is designed to provide o = 4.4950 with the local
controller gain matrix K = [—725.9085 —40.4346] and the corresponding closed-
loop poles {—20 £ j17.8093}.

Computer simulation shows that the system is not stabilizable by static output
feedback, since two coefficients of the characteristic equation remain fixed to zero
irrespective of the controller parameters.

Turning to dynamic output feedback obtained by the proposed algorithms, Ta-
ble 2.1 provides results on robustness degree «. In this table, Case A corresponds
to the situation in which H = G in the three algorithms from Sect. 2.2.1.1. Case B
refers to H = G with

0o o0 0 O
05 0 05 O
As = o o0 0 O

05 0 =05 0

when the algorithms derived from Problems 2.1-2.3 in accordance with the method-
ology of Problem 2.4 and Theorem 2.3. Case C represents the situation with no a

Table 2.1 Robustness degree

a for different algorithms Problem 2.1 Problem 2.2 Problem 2.3
Case A 5.6450 0.3813 21.7304
Case B 4.3840 0.5787 15.2214

Case C 0.6564 0.3191 0.7003
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priori knowledge, when H = I and A; = 0, and the algorithms from Sect. 2.2.1.1
are applied.

The ensuing results lead to the conclusion that the best results are obtained
by solving Problem 2.3; the worst case corresponds to Problem 2.2. This is quite
expected. In view of the results of [55], we note that in Case C none of the
algorithms ensures connective stability. For Problem 2.2, connective stability is
achieved only in Case B, when the information about the interconnections is in-
cluded. This corresponds in Case B to have, in fact, e(t, x) = 0.5 + ¢“(¢, x), where
e“(t,x) € [—0.5,0.5], so that any value of o > 0.5 is sufficient for connective sta-
bility. All values of K and L and the corresponding modes are not presented be-
cause of the lack of space. For example, for Problem 2.1 and Case A we have
K; =[-79.1666 — 11.2883], L’j = [27.7711 15.7991], with local closed-loop
poles {—27.2275, —0.5435, —0.5441 £ j6.8052}.

2.2.3 Simulation Example 2.2

This example is concerned with the decentralized control of a platoon of vehicles.
A feedback-linearized state space model of a platoon of N automotive vehicles is
based, according to [65], on the following feedback linearized individual vehicle
model:

T — s N — ) -1
di=vj_1—vj, vj=aj, aj=-1; a]+rj uj, (2.40)

where d;j = x;_1 — x; is the distance between two consecutive vehicles, x; 1 and
x; being their positions, v; and a; are the velocity and acceleration of ith vehicle,
respectively, u; the input signal chosen to make the closed-loop system satisfy cer-
tain performance criteria, and 7; the time constant of the engine. After obtaining the
overall platoon state space model with the state

t
X=(i—d,vi—v,a1—a,...,dy —dr, vy —vr,ay —ay)
and input

u=(ui,uz,...,uy),

where d,, v,, a, are the reference values for inter-vehicle distance, velocity and ac-
celeration, respectively, and applying the state and input expansion by using conve-
nient full-rank linear transformations, the following model in the expanded space is
obtained [65]:

S: £=A&+ B¢, (2.41)
where
E=[&..... 601 ¢=0g..... 05T,
A =diag{A;,..., Ay}, B=diag{B,..., By}
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with vectors &; and ¢; and matrices A; and B; are defined within the formally
defined subsystem models connected to each vehicle:

Sj: & =Aj& + B
AL 0 BL 0
— J . J .

with §; = [vj_1 —v,,ai—1 —a,,dj —dr,vj —vr,a; —a,]" being the state vector of
Jth subsystem, £; = (u;—1,u j)’ represents its control vector, while

0 1 - 1 00 0
¢ _ ro_ [
i=lo o] w=fo oo E=[]

T J
0 1 0
A'=10 O 1 , BY=| O
! 0 0 —t! ! 7!
j j

This model is treated in [65] where it is shown that a decentralized dynamic
control law can be designed for the expanded system using the methodology from
Sect. 2.2.1.2, supposing that only the subsystem states d; — d,, v; — v, and a; — a,
are exactly known in jth vehicle (subsystem), that is, v j—1 and a1 are not acces-
sible in ith vehicle. Applying the results of Sect. 2.2.1.2, the reduced-order Luen-
berger observer for S} =Wj_1—vr,aj_1— ay)" is given by

wj = Abwj + Bhuiy + LjIE7 — Aqw; — AYE7], (2.43)
where “3,2 =(dj —dr,vj—v,a; — a;)". The local control law has the following
specific structure:

wji1=Giw;,  uj=Giw;+ J7E;, (2.44)

having in mind that (j — 1)th vehicle does not have any information about ith vehi-

cle. Matrices
Gj 0 .
Kj= G2- ]2 s Lj, ]=l,...,N
J J

can now be obtained by using the algorithm from Corollary 2.1, exploiting the spe-
cific lower-block-triangular structure of K ;.
For 7; = 7 = 0.1, one obtains:

G; =G =[-38.6940 —2.1224], G} =G'=[-38.6940 —2.1224],
G = G*=[0.0095 0.0005],
sz = J? =1[351.4028 —319.3970 —13.2356],

0.0001 0 O

T 104
Li=L=10 [3.2068 00

}, @j=a=1/4.080
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generating the closed loop poles

31

10%{—1.1480, —0.0116, —0.1561 + j0.1197, —0.2640, —320.68, —0.00004}.

Obviously, it is also possible to apply the alternative design schemes from
Sect. 2.2.1.1. By using the expansion/contraction matrices as in [60] and [65], the
obtained controller has to be finally contracted to the original space for implemen-

tation.

2.2.4 Simulation Example 2.3

The third example considered here is a linearized two-tank system modeled in the
form (2.1) with data

Aj

Cy

A

Cy =

h(t, x)

[ 0.703
—0.052
0
0

[0.423
0

[ 0.695
—0.193
0
0

[0.462
0

f, x)Mx, M= |:

(=R ]

I
SO OO oo oo

0 0.395
0 0
0 0
1.028 1.752
0 0
0.137 0.576
0.013 0.315
0 0
0 0
0.879 0.978
0 0
0.098 0.685
M,
M3
0 07
-1 0
0o 0}’
10
-1 0]
0 O
0o 0}’
1 0]

—0.320
—0.137
0.619
0

0.317
0.340 |’

—-0.414
0.258
—0.834
0.015

0.351
0.742 |’

M,
My |’

)

)

SO OO oo OoO0o

—0.402
0
Bi=1_¢263
0
0375
0
Ba=1"_249
0
0 0]
10
R
1 0]
0 0]
10
10
0 0]

0.978
0
0.159 |”
0

0.888

0.147 |
0

and f(t,x) : W* — [0, 1] represents a normalized coupling parameter. Exploring
decentralized control design, we get state-feedback results with local gains as
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—1.893 —-8.148 —13.479 —-8.542

Ky — —13.028 34.718 52.797 33.092
27| —5766 12.867 18.465 11.302 |’

K [—6.222 18.345  28.367 17.793:|
1= )

which do not stabilize the two-tank system. On the other hand, the output feedback
gains are given by

© _[—36:856 10.094 o, _ [ 12188 16.158
'= | 15441 9313 | 27| 35738 2568 |°

which stabilize the system with robustness degree o = 3.8436.

2.2.5 Dynamic Control Design

Extending on the foregoing section, we now consider a general linear time-invariant
dynamic controller F for S which obeys the decentralized information structure con-
straint. This entails that each subsystem is controlled using only its own local output.
Therefore,

F: w=Fw+ L.y, u=K.w+G.y, (2.45)

where w € Y is the global observer state, and
N
w= [wl wN]t, wj eRY, 5= Zsj,
j=1
F. =diag{F.1,..., Fen} L. =diag{Lc1, ..., Len},
K. =diag{K.1,..., Kcn}, G, =diag{G.1,...,Gcn}-
For simplicity in exposition, we denote

Ji= Fej  Lej c RSiTmiXsjtp;
Kej Gej

the local controller parameter matrices, and by J = diag{Jy, ..., Jy} the global
controller parameter matrix.

By standard algebraic manipulations, the resulting closed-loop system S, =
(S, F) can be represented by

Se: z=Acz+h(t,2), y=Ccz, (2.46)
where
z:[xi wi...xly wﬁv]l, A. =diag{Ac1, ..., Acn ),

Ce=diag{Ce1,...,Cen)y  he(t,2)' = [ (t.2) ... h. (1. 2)]',
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Aj+B;jG;C; BjK; :
ACJ:[ J ijc,-] J %,-]] Cj=[C;:0],

hej = [ 15, x) 107"

In view of the structural constraint (2.4), we have

he, (1, Dhe;(t,2) < HIT ' Hez < ' H'T ™' He, (2.47)

where

_ _ _

ar=[al" Al

J

T3 _ | gl g2 TN

Hj_[Hj.O. 250 A 0]
in which v; x n; matrices H ]t (j=1,...,N) follow from the decomposition H =
[A]:...:H] while H =diag{H, ..., Hy} with H; = [H; ’ 0].

Our immediate objective is to design the dynamic controller F which robustly
stabilizes S. Following the results of [9, 4654, 56-58], it follows that
System S is robustly stabilized with vector degree

a=[a...an] =[1/V7r ... VN ]

if the equilibrium x = 0 of the closed-loop system Sy = (S, F) is globally asymp-
totically stable for all i(z, z) satisfying (2.4) for some given H and «, according to
the first inequalities in (2.4) and (2.47).

It turns out that maximizing «, the controller stabilizes the linear part of S and, at
the same time, maximizes its tolerance to uncertain nonlinear interconnections and
perturbations. In this regard, the nonlinear interconnections bound is represented by
a full matrix H. Bearing in mind that the system model sparsity implied by (2.1)
and (2.3) and the developed controller structure in (2.45) designates the perfectly
decentralized control [52, 53], the corresponding controller subspace is not quadrat-
ically invariant. This entails that the related optimization problem is not convex.

In order to convexify the problem under consideration, we invoke further decom-
positions by applying the second (right hand side) inequalities in (2.4) and (2.47),
and formulate the following modified robust stabilization problem:

System Sy = (S, F) is robustly stable with vector degree a = (aty, ..., ay) =
(/1. -, 1/ JYN)" if the following problem is feasible:
N

Minimize Z Vj

i=1

] FOYRYYS S (248)
subjectto X > 0, X —1I 0 <0,
H 0 -rI

where X is the global Lyapunov matrix.
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It must be noted that the matrix H is block-diagonal in accordance with the as-
sumed system sparsity, that is, with the subsystem dimensions. The second matrix
inequality in (2.48) however is still not an LMI in both X and the controller param-
eter matrix.

In the next section, we show that the above general robust stabilization problem
can also be formulated as an LMI problem.

2.2.6 Robust Decentralized Design

Having in mind the availability of the system structure, together with the a priori
knowledge about the interconnection bounds, it is quite natural to consider global
Lyapunov matrices X structurally adapted to S and F:

Assumption 2.3 Matrix X in (2.48) possesses the block-diagonal structure, that
is, X = diag{X1,..., Hy} where X; € RWUTSi>n+5i j =1,..., N are the local
Lyapunov matrices.

It must be emphasized that this choice does not represent a significant restriction,
giving the fact that the original problem has been already decomposed in (2.48) into
N independent robust dynamic output feedback design problems.

Proceeding further, we let

A =diag{Aq, ..., Ay}, B =diag{By, ..., By}, C =diag{C, ..., Cy},

T A; 0 5o 0 Bj ~ 0o I

SRl B VA R P

and then write A = A + BJC, where J is the global controller parameter matrix.

Consequently, the second inequality in (2.48) can be written as
R+BJC+C'J'B <0, (2.49)

where R = diag{R,, ..., Ry}, B =diag{B,, ..., By}, C = diag{C, ..., Cn}

~ ijij-f-zi;f('j Xj [:I]t R XJ'BJ' - C;
Rj= . -1 0 |, Bi=| 0 |, Ci=10
[ ] —]/jI 0 0

It is interesting to note that the problem (2.49) resembles a compact formulation of
a set of N local classical H, problems for virtual subsystems defined as

Xj=Ajxj+Bjuj+w;,  z;=Hjxj,

where the immediate objective is to compute local controllers that render the Hoo-
norms of the transfer functions between w; and z; are less than y;.
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An important observation arises here. The block matrix (2.48) contains the en-
tire Lyapunov matrix X , and not of X col[1, ., 0] as it should be in the case of the
classical Ho, problems [6, 10, 11].

The following lemma provides a pertinent result:

Lemma 2.1 Let Assumption 2.3 hold and let X > 0. Then, (2.49) holds if and only
if

BLTBY <o, C'*RC™ <0,
T = diag{ﬁ, ..., TN},

v—1 At ALyl . v—1 gt
- Xj Aj-i—A.,Xj I; Xj Hj (2.50)
T; = ° —1; 0 s
° ° —vil;

Bt =diag{B{ . ..., By},
where E; = [B; 00].!

Proof The structure of X and J implies that (2.49) decouples into N independent
inequalities
R;j+B;J;C;+C"J'B, <0

with general (s +m ) x (s; + p;) matrices J;. According to the elimination lemma
[1], the necessary and sufficient conditions for these inequalities are

By R;jBj' <0, C{'R;Ci*' <0, j=1,....N. 2.51)

Note that §j‘1§, §JJ" < 0 holds if and only if EJJ-TJ EJJ" <0.
Since B, = S,;[B' 001, S; = diag{X,, I, I}, we have B} = B} 57", taking into
consideration that S;l R | S;l = Tj and X > 0. This concludes the proof. O

Proceeding further, we follow the approach of [6] and introduce the decomposi-

tions:
- X Xy - - Y, Yo
X = Xf/ XJ , YJ-=X]._1= ij Y’ , (2.52)
2j 3j 2 3j
where 0 < X; =X.and 0 < Y; =le. are nj x n; real matrices for j =1,..., N.

The following result is established:

'AL denotes a matrix with the properties N'(A+) = R(A) and ALA+ > 0, where N(.), R(.)
denote the null space and the range space of an indicated matrix.
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Lemma 2.2 Let Assumption 2.3 hold, let X > 0,and let X;,Y; and X»; be given
by (2.52), j =1, ..., N. Then inequalities (2.50) hold if and only if

EVE <0, E’WE <0, (2.53)

where

V =diag{Vy,..., Vn}, W =diag{Wy, ..., Wy},
E€ =diag(ES, ..., ES), Eb =diag{E?, ..., E}),

rtL L
|G 0 , b= |8 0
L0 1 J 0 I
_XjAJ'+Athj X; Xoj Hjt
° -1 0 0
Vj= ° ° -1 0 ’
L ° ° ° =yl
[Y;AL+ Ay, 1 YH]
W; = ° —1 0
L ° o —y;l

Proof By definition, we have

XA +A;Xj A;ij X; Xy Hjt

~ ° 0 Xt2j X3 0

Rj= ° ° —-1; 0 0
. ° ° —I; 0
. ° ° ° —vil;

On the other hand, taking into consideration the structure of C j and C j» we have

C,L_C}LOO
Lo 0 1]

As the second block-column in C%* contains only zero matrices, the second inequal-
ity in (2.50) gives the first inequality in (2.53).

Turning to the second inequality in (2.53), it is not difficult to show that it can be
obtained analogously. From

Aij—I-YjAtj AiYoj 1 0 YjHjt»

y ° 0 0 I; thjH;

T, = ° . -I; 0 0
° ° ° —1; 0
° °

° ° —]/j]j
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and deleting the unnecessary block-rows and block-columns, we arrive at the desired
result. =

It is readily seen that the matrices X;,Y; and X5; are constrained by (2.53).
This is in contrast to the standard Ho, design [6, 10, 24]) where only the first di-
agonal blocks of the global Lyapunov matrix and its inverse are constrained by the
corresponding LMIs.

Once X, Y and X»; are determined, the next problem is to find X ; > 0 satisfy-
ing (2.52), j=1,...,N.

Lemma 2.3 Assume that:
(1) sj=ny,
(2) X»; in (2.52) is nonsingular, and

3 0j=[" y’/_] > 0. Then,

x3j=xgj(x,-—yl—1)—1xzj = X;>0, j=1,...,N. (2.54)

Proof From (2.52), we obtain Y2Z = X 2—}_1 (I — X ;Y;), yielding directly (2.54). Obvi-
ously, X; > 0, since X; > 0and X; — X2; X, (X; =¥, (X))~ X, =¥ >0,
which completes the proof. O

By combining the foregoing results, we have the following theorem:

Theorem 2.4 Under Assumption 2.3, system S in (2.3) is robustly stabilized by the
dynamic controller F in (2.45) with s; = n if the following problem is feasible:

N
minimize Zyj
= 2.55)
subjectto X >0, Y>0, 0>0 Z>0, E°VE® <0,

E°WE" <0,

where X = diag{X, ..., Xy}, ¥ =diag{Yy,..., Yy}, O =diag{Qy,..., On}, Z =
diag{Zy, ..., Zy}, V =diag{Vy,..., Vy},

) XjAj+Athj+Zj X H]t-
V= ° =1 0
[ ] ° —)/j Ij
while matrix E€ is a matrix having the same structure as E€ in (2.53), but with

- n
the elements E; obtained from E; = [Cé ?] in such a way that the dimension of

the identity matrix ensures compatibility of the product with Vj (instead of V;),
j=1,...,N.
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Proof Notice that the inequality EV E€! < 0 from the problem (2.55) follows im-
mediately from the first inequality in (2.53) in Lemma 2.2 after applying the Schur’s
complement formula and replacing X»; X} ; by Z; in view of the expression for \7]-.
Condition Z > 0 results from the requirement that the matrices X5 ; are nonsingular,
j=1,...,N. The inequality E°’W E?" < 0 is identical to the second inequality in
(2.55). This completes the proof. d

Remark 2.12 Solving (2.55), one gets X > 0, Y > 0 and Z > 0. Nonsingular matri-
ces X5 can always be constructed from any given Z; > 0; one gets X3; from (2.54),
and, consequently, X j > 0from (2.52), j =1,..., N. Then, we come back to the
original inequality (2.49), which represents then a system of N independent LMIs
with unconstrained matrix variables Jj, j =1,..., N. Any solution to these LMIs
gives the required block-diagonal parameter matrix J = diag{Jy, ..., Jy}, thatis, a
robustly stabilizing decentralized dynamic controller F for S.

The underlying assumptions in Lemma 2.3 are important for the formulation of
Theorem 2.1 in terms of LMIs. In general, in the case of reduced order observers
(when s; < nj), one is faced with the problem of the existence of solutions for
Y2;,Y3; and X3; satisfying (2.52); notice that in the case of H, design we have
the rank condition in addition to the condition of the type Q; > 0 [6]. The obtained
estimates of the robustness degree o may appear to be too conservative. A better
insight into the real robustness can be obtained by calculating A/ with the obtained
parameter matrix J, replacing it in (2.48), and solving (2.48) for X and I". An even
more realistic and less conservative estimate can be obtained by using (2.48) with H
being replaced by H and I" by I", and by solving the corresponding LMI problem
for X and I". By limiting the norm of the gain matrices J; via the procedure of [55,
58] some benefits are anticipated.

Remark 2.13 In the case that the interconnection function in S is in the form
ht,x)=hp(t,x)+hpn(t,x), where hy(t,x) = A" x is a known linear part in which
A" is a constant N x N block-matrix with blocks A?k, jok=1,...,N,and hy(¢, x)

is an unknown nonlinear part satisfying inequality (2.4). Taking A* = A + A" as a
new state matrix in (2.3), instead of (2.49) we have

R*+ AR+ B*JC'+C'J'B" <0, (2.56)

where AR is an N x N block-matrix with blocks

X;AL+AMX; 000
AR = 0 0 0],
0 00
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and R* is obtained from R in (2.49) by replacing Ajby A%, =A; + Af.’l-. Bear-
ing in mind that R* + AR is not block-diagonal, Theorem 2.1 cannot be directly
applied to (2.56). However, (2.56) can have a solution satisfying Assumption 2.3;
it is reasonable to expect that the resulting controller provides better performance
than the one obtained in the absence of the assumed a priori knowledge about linear
interconnections.

2.2.7 Simulation Example 2.4

This examples uses the model of two inverted pendulums connected by a spring
treated in the simulation Example 2.1.

From [55], the decentralized robust linear static state feedback provides o* =
a1 = ap = 4.4950, with the local gain matrix K = [—-725.909 —40.435] and the
local closed-loop poles {—20 £ j17.8093}. It easy to see that the system is not
stabilizable by any linear static output feedback.

The local dynamic output feedback controller parameters obtained on the basis
of Theorem 2.1, with H; = I are

4| —0.4670 —1.4182 4| —3.3926
Fj=10 [—1.0131 —3.1931] » Bi=10 [ 1.5118 ] :

K;=[243.5166767.0817], G;=-333.7029, ,j=1,2
with the local closed-loop poles
{—3.6543 x 10%, —0.0390 x 10%, —0.7455 + j0.5605},
with a* = 0.5670 < 1—that is, the desired property is not achieved.

Assuming now that e(t, x) = 0.5 + ¢(¢, x), where é(¢, x) € [—0.5,0.5] one ob-
tains the structure with known linear interconnections with

0O 0 0 0 0 0 0 0
h | =05 0 05 0 - |-t 0 1 0
A= 0o 0o 0o o =0 0 0 o0

05 0 —05 0 1 0 -1 0

In this case the LMI (2.56) is feasible and one gets a decentralized stabilizing con-

troller with o™ = 1.3526, ensuring stability for all spring positions. The local con-
troller parameter matrices are in this case

—1.4090 —1.5774 —5.0635

. —10° 106

Fy=10 [—1.0938 —1.2571} o Li=10 [ 53116 } ’

K; =10°[0.57530.6573],  G; = 10° x —1.69250,
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and the local closed loop poles
{—2.6487 x 10°, —1.7217 x 10*, —84.866, —1.8834}.

A direct comparison with the results presented in relation with the same example
in [67] shows that a better performance is obtained by using an observer of Luen-
berger type, incorporating the state matrix of the system model and leaving a smaller
number of free parameters in the controller design procedure.

2.3 Robust Control Design: Class 11

In this section, we investigate the problem of robust decentralized control for a
wider class of large-scale nonlinear systems with parametric uncertainty and non-
linear interconnections. This class of systems was labeled in Sect. 2.1.2 as Class II.
In this class, each subsystem of the interconnected system is assumed to be par-
tially feedback linearizable and minimum phase. The uncertain parameters and/or
disturbances are allowed to be time-varying and enter the system nonlinearly. The
nonlinear interconnections are bounded by general nonlinear functions of the zero-
dynamics and outputs of other subsystems. Inspired by the centralized nonlinear
control results [9, 23, 35, 39, 51], we show in the sequel that decentralized global
robust stabilization can be achieved for the uncertain interconnected systems by em-
ploying a Lyapunov-based recursive controller design method. Our result relies on
a proper construction of Lyapunov function for the interconnected systems.

2.3.1 Construction Procedure

In what follows, we first present the following lemma which provides the first step
of the induction in the construction of robust decentralized state feedback control
laws of system (2.6).

Lemma 2.4 Consider the first two state equations of system (2.6):
zj = fjo(zj, xj1) + @jolzj. xj1. Zj, Xj1: 0)xj1,
xj=xp+01zj,xj1,Z;,X1,0), (2.57)
Yi=Xj1
satisfying Assumptions 2.1 and 2.2. Then, there exists a smooth function x%,(z;, X j1)

with xj.‘z(O, 0) = 0 such that system (2.12) with the control x j; = x;’-‘2 (zj,xj1) inthe
coordinates '

zj =2j, Xj1=xj1
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satisfies
dW;(Vjo) 9Vjo
j1 = T]O] 8;] thO_bj(ijle)xll
|
—r% + iz 1P+ 5 D su G x, (2.58)
J 2
=1
where

Vi1 =W;(Vjo) + =%? (2.59)

with Vjo given in Assumption 2.1, W;(-) and b;(-,-) are, respectively, a smooth
Koo-function and a smooth function to be chosen; and

fijoo(zj) = fjo(z;,0), (2.60)
Siull Gz, xi) ) = /3.,7()11(§j01(||(21, X))+ ﬂﬁll(éju(ll(Zz, x1) )2, (2.61)

with Bjo; and Bj1; being positive scaling constants.

Proof First, since fjo(z;, x;1) of (2.12) is a smooth vector with f;(0, 0) = 0, there
exists a smooth vector f;1(z;, x;1) such that
fio(zj, xj1) = fijoo(z;) + fi1(zj, xj1)xj1,

where fjo0(z;) is as in (2.60). By virtue of Assumption 2.2 and along the state
trajectory of system (2.57), we have

_ dWw; 3V]0
= dVJO 0z

———(fjo+®joxj0) +xjilxj2 + @1z, xj1. Zj, Xj156)]

de 3V]0
dV 0z

(f,oo+f,1x,1)+x,1x,z+x,1Zwﬂ(z,)m(z,,x,l 0.0:6)
j=0

1
+xj1 > Wh @i X1, Zi X j1:0) — 612, x1.0,0,0)),  (2.62)
j=0

where

dW; 3V
dVjo 0z’
Since ¢;0(0,0,0,0;0) = ¢;1(0,0,0,0;6) = 0,V0, there exists some function
oj1(zj, xj1) such that

1;Zf?](Zj)z w}l(Zj)Zl.

1

Xj1 Y Wi @iz, x1,0,0:0)| < xjileji i x0)lzj I+ lxjil).  (2.63)
=0
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In view of Assumption 2.2, it follows from (2.62) with some algebraic manipula-
tions that

. dW; oV
Vit = ]O
dVijo
BVJ()
pLlrrow | P ZTIJOK(Z],x]1)§10€(||(zl,xel)||)

N
H1xal Y njie(zjs x0 el xe)l)
(=1

+lxjrloji(zi, x 0 Uzi =+ Nxjl)

dw; av,o
de ———(fjoo + fijrxj) +xj1(xj2 + xj10j1(25, 1))
jo 9%
1 dW/ Vo 2 5
+ 7 . 2 X
2.X dVJO 8Z] Z;:BJOZT’]O((ZJ x]l)

1 N
+5 2 BioeCjoe (e, xenh)®

=1

N N
1 1 _
+5x,~21§ ﬂmn%u<z,-,xn>+§§ Bl Cirell(ze, xe)1))?
=1 =1

1
+ e @) + iz

dw; av,o
= dV ]I(Z],le))
1
+llzj 1+ Ezam(n(a,xmnx (2.64)

=1

where §1¢ is given in (2.61) and

dW; aVjo 1

dW,
vy bz, TR

dV]()

Vo 2

Mji(zj,xj1) = 9z,
g

27/

XZﬂ;ow,og(Z,,xll)+ Zﬁ,lmﬂg(z,,x,l)

=1

1
+leotj1(Zj,Xj1)+ijlol?l(zj‘,qu). (2.65)
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Now, select
XJ2=x72=—Mj1—bj(Zj,le))le—rle, (2.66)

where b (-, -) is a smooth function to counteract the effect of the interconnections
and is to be determined. Then, (2.58) is obtained and the proof of Lemma 2.4 is now
completed. O

Remark 2.14 For the case when r = 1, that is, x ;2 = v; in (2.57) is the actual con-
trol input, it can be shown, refer to the proof of Theorem 2.5, that the design func-
tions b;(-,-) and W;(-), j =1,2,..., N can be chosen such that the decentralized
state feedback control v; = x;‘z(z j»Xj1) solves the robust decentralized stabilization
problem.

2.3.2 Recursive Design

Next, we proceed toward the systematic recursive design methodology for construct-
ing robust decentralized control laws for the system (2.6) when r > 2. A preliminary
result is provided.

Lemma 2.5 Consider the first p + 1 state equations of system (2.6):
2j = fio(zj, xj1) + ¢jo(z), xj1, Zj, Xj1; 0)x1,
Xj1=xpp+¢1zj,xj1,Zj, Xj1;6),
Xjp=xj3+¢j2(zj, %2, Zj, Xj1;0),
(2.67)
Xjp—1=Xjp+Pjo-1Zj,Xjp-1,Zj, Xj1;0),
Xjp =Xjp+1+8jp(zj Xjp, Zj> Xj1;0),

satisfying Assumptions 2.1 and 2.2. Suppose that for any given index p =m (1 <
m <r — 1), there exist smooth functions

Xin(zj,xjn), x5z X0), ey XF g (20 X jm);

x;fk(0,0):O, 2<k<m+1

such that system (2.67) with the control x j jy+1 = x;m_’_l (zj,Xjm) in the new coor-
dinates

j=2j, Xjl1=Xjl1,

Xjp=xj2 = X752 Xj1)s ooy Xjm = Xjm — X7 (2, Xjm—1),
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satisfies
dW; aVjo m
Vim < — fioo = bj(zj. xj)x = (r—m+ 1) Y Fy +mlizj))?
dV 0z P
1 N
+5 2 0m an(lze xen)), (2.68)

=1
where

Vim = W](VJO) + = ijka
k 1

with Vo as given in Assumption 2.1 and

8i0e(l(ze, xe)I) =0

Sjke(l(ze, xe)I) = 8 k—1,e(l(ze, xe1) D
(2.69)

k
+ 3 Bt CuelGe.xe) D2 1<k <r.

=0

Then for system (2.67) with p = m + 1, there exists a smooth decentralized state
feedback control law

Xjm42 =X 2@ Xjme1)s X} 120,00 =0 (2.70)
such that system (2.67) with (2.70) in the new coordinates

zj=2j, Xjk, 1=<k=<m,

- . -
Xjma1 = Xjmt1 =X 4 1(Zj5 Xjm),s

satisfies
1
dW; Vo 5 " L,
Vims1 < = v oz ijO_bj(Zj’le)xﬂ_(r_m)];xjk
1 N
+0n+ Dzl + 5 ;(SLmH,e(II(ZL x|, (2.71)
where

V/‘,m+l ij + = 2 j m+1-
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Proof Initially, the derivative of X; 1 =Xjmy1 — x;."m 41 1s given by
Xjm+1 = Xjm+2 +ajm+1(Zj, Xjm+1)
m—+1
+ Z Vims1 @ Xjm)Bju (2. Xjus Zj, X j130),
=0
where
* m *
_ _ GRS OX7 g1
Ajm1(Zj, Xjmt1) = _Tfj()(zj,le) - Z ———Xj.+1>
Zj 8Xj,t
=1
ox*
0 = J.m+1
Vim1 @)y Xjm) = ————Xj1,
0z
ox*
- Jjsm+1
Vim1 (@) Xjm) = — , 1<ui<m,
’ 8)6]',[
+1 -
Y1 (@ Xjm) = 1.
The time derivative of V; ;11 is given by
Vim+1 = Vim +Xjm+1| Xjm+2 + ajm+1
m+1
=0
m—+1
=Vim +Xjm+1Xjm+2 + @jm+1) + Xj w1 Z Vi m1Pic(2), Xi, 0,0; 0)
=0
m+1
+ X mt1 Z Vi m11950(20 Xjus Zj, X j15.0)
1=0
Define
Gju(zj,Xji;0) = (z5,%,,0,0;0)
=¢;(zj, % +%7,0,0;0), 2<t<m+1 (2.73)
where sz = ()Ejl,...,fj[) and )E;‘fl = (x;‘fl,x;‘z,...,x;ft) with )hctj() = fjl and
=k %
X 0= X il

j
Now since ¢,(0,0,0,0;60) =0,V0 € £2,0 < <m + 1, it is easy to verify that
qBA/t(O, 0;60) =0, V6 € £2. Thus, there exist smooth bounding functions «j,(z;, X ,),
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t=0,1,...,m+ 1 such that

lgjo(zj,xj1,0,0;0)| =1djoz), ¥j1:0) <ajolz, %)z | + IF11),

4
16)e(z), %), 0,0;0)| = |</3u<z,-,x,-t;e>sa,-1<z,-,i,-,e)[||z,-|| +Z|i,-k|}, (2.74)
k=1
1<l<m+1.

Hence, the second last term of (2.72) satisfies

m+1 )
~ L -
a1 D Wi 197025. %j0.0,0:0)
£=0
m+1
<%, m+1|{w, ozl + 15510 + D e, (nz, I+ Z |x/k|>:|
=1 k=1
m 14
~ 0 ~ ? ~
= |x,-,m+1|{|w,,m+1|a,-o<||z,»|| +IEID+ ) |x/f,-,m+1|au<||zj|| +) |x,-k|)}
=1 k=1
m
~ = =2
+ 15 mert | (nz,-u +> |x,-k|> 155
k=1

m
< xfj,mH Z(wf’mﬂ)za?t(m + D+ 1)

2
1 2
+ Zom +1)[<||z,||+|x,1|> +Z(Z+l)(nz/n+2|x,k|> }

k=1

2
1 ~2
+= (m+1)xjm+lot/m+l+m ||zj||+Z|x,k| + om0
k=1

X7 Z(w,m+1)2a (m+1><E+1>+—||z]|| + 5 Z|x,k|

k 1

1 -
+ 5 <m+1>x,m+1a,m+1+ Iz +Z|xjk| 1

[Z(w, ) G m + D+ 1) + 5 <m + et +aj, mH}xme
=0

m
2 -2
+ llzjkll +§ 1%kl

k=1

m
) z 2 -2
<F 1 B @ X)) + 117+ ) 1l (2.75)
k=1
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Invoking Assumption 2.2 and (2.75), it follows that (2.72) can be written as

Vim+1 < Vim +Xjm+1(Xjm+2 + @jm+1)

m+1
+ 1% mt] D 1 me(zj,X/L)C/u(ll(ze,m)||)
=0 (=1

m
-2 2 -
+ X7 1 Ejomr + Nz 17 + E | jk|
k=1

; ~ =2
< ij + Xjm+1 (xj,m+2 + aj,m+1) + xj’m_HEj,erl

m
P+ Y 1E

k=1
1 m+1 N
55wt 2 D W) Oz ) B
(=0 ¢=1
1 m+1 N
+5 2. 2 @l xe) DB,
=0 ¢=1
d oV
d f]()o b; (Z],le)le (r—m+1)ijk

k=1

1 -~
+mliz; I + 5 ;ajme(n(u, XD + X jmEjm+1

+ Ejn1 jmra + Mjmrn) + 1217 + Zx,k

k=1
lm+1 N
251
5 2 2 el xe) D) By (2.76)
=0 ¢=1
where
M m+1(z;, x:j,m+l) =ajmt1 +Xjm+1Ej my1
1 m+1 N
+ 5% jm NS W) i@ F ) B 277)
1=0 (=1
Select
Xjm2 = X7 0@y Xj1s ooy Xjm1) = =Mj it = X jm — (r =m)X j 1. (2.78)

This makes (2.71) in Lemma 2.5 is valid, which completes the proof. O
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By combining Lemmas 2.4 and 2.5 the construction of robust decentralized con-
trol law stabilizing the uncertain interconnected nonlinear systems (2.6) can be com-
pleted. This is demonstrated below.

Theorem 2.5 Consider the uncertain interconnected system (2.6) satisfying As-
sumptions 2.1 and 2.2. Then there exists a decentralized control law, v; =
vj(zj,xj), j=1,2,..., N, such that the overall system with the decentralized con-
troller is globally asymptotically stable for all admissible uncertainties and inter-
connections. Indeed; a suitable decentralized controller is given by

vj =, (@ X)) = =My = Xj o1 — X, (2.79)
where M, is given in (2.35) withm + 1=r.

Proof By Lemma 2.4, it is not difficult to show that the induction hypotheses of
Lemma 2.5 is satisfied. This motivates us to build a Lyapunov-based recursive de-
centralized control law by applying Lemma 2.5 repeatedly until the rth step. There-

forej, we can constructx;’.‘z(zj,le),...,x;."rH(zj,)Ejr) such that under the new co-
ordinates

~ ~ * ~ * =
Zj,  Xji=Xj1, X=X —X5(25x1), oo, Xjr=Xjr— X525, %,-1)

system (2.2) with control law (2.79) satisfies

dw; aVJO 2 ~ 2
IS v e, b,~(z,~,x,,1>xj1—k_le,-ﬁrnz,,u
1 N
+§;6,-rz(||(zz,xu>||>, (2.80)

where Vj, = W;(Vjo) + 3 >j_; %7, and
Sjre(ll(ze, xeD D) = r,Bj_()lg(CjOZ(”(ZK’x€1)||))2

+ Y =i+ DB Gl e xe)I)? (281

=1

By Assumption 2.2, we have

8jre(llze, xe) ) = rB0p (& foe (ze D lzell + & joe zes xen) bxer )

+ ) =L+ DB @hplzelDlizell + ¢ o zer xen) xen )
=1

< 2rB00 (o (ze D) l1zell” + (& joe (zes xer)*x7)
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+2) =L+ DB,
=1
< (€D lze D) Nzell® + (& fop e, xe)*x,)
<24je(lzelDzell* +2Djeze, xe)x7,. (2.82)
where
Ajelllzel) = B @ e Ulze N + Y 0 — e+ DB D (lzelD)?,  (2.83)

=1

je(e xe1) =By (¢ Jop (2o, xe)) 4 Y _(r — 14 DB (¢ (20, x01))*. (2.84)
=1

Define

Observing the interconnection structural constraint

N N
ZZ [4elzeDzell® + Dje(ze, xe)x7;]
j=1¢=1

N N
Z D LAz DI I + Dej(zj, x)x ]
j=1¢=1

and Assumption 2.1 and by noting that W; (Vo) is a K function of Vo, we have

N r
dW; aV;g -
Vir<y —— fio0 = bj . xj)xt = Y _En 4zl
. dViy dz;

o k=1
N
+Z[Aej(||Zj||)||Zj||2+Dej(Zj»xj)sz'l]}
=1
N N
Z{ Vi wllzlll +|:r+;Az,(IIZJII):|IIZ/||2

=1

_ijk |:b (vaxﬂ)x]z ZDZ/(Z;,x/z)i| } (2.85)
k=1
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Since Vjo(z;) in Assumption 2.1 is radially unbounded and positive definite, there
exists a Koo function «¢; such that

Agi(llz;j 1) < Agi (0) + ke (Vo). (2.86)
Now select
N
bj(Zj,xj‘l):ZDzj(Zj,le) (2.87)
(=1
and
dW/' 1 N
o=kt —lr+ Y (A kg (Vio) | Wi@)=0,  (2.88)
Vio V; P

where k; > 0 is a constant. It is obvious that W;(-) is a smooth Coo-function. Then
it follows that

N r
= Z: (_kjvj llzj 1% - ijzk) } (2.89)
j=1 k=1

Therefore, due to the onto-relation between (zj,x;) and (z;,X;), where X; =
(%1, ..., Xir), the closed-loop interconnected system of (2.2) with the decentral-
ized controller (2.79) is globally asymptotically stable for all admissible uncertain-
ties and interconnections. g

Remark 2.15 Observe from Theorem 2.5 that the functions b (z;, x;1) and W;(Vjo),
i=1,2,..., N, can be chosen before we start the recursive design of the robust
decentralized stabilization controller.

Remark 2.16 Theorem 2.5 presents a decentralized global stabilization result for
uncertain interconnected minimum-phase nonlinear systems with parametric uncer-
tainty and interconnections bounded by general nonlinear functions. This result ex-
tends centralized results in [35, 39] to decentralized control of large-scale intercon-
nected systems.

2.3.3 Simulation Example 2.5

Consider the following large-scale system which is composed of two subsystems:
Subsystem 1: 71 = —2z1 + z1x11,
X11 = X12 + x1121 Sin6, +X%IZQCOS912, (2.90)

X12 = uy +x,(x1121 +23) sin 6 + x2122 cos(9121);
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Subsystem 2:  Zp = —z0 + x%l,
F21 = x00 4 (33,21 + x3,22) sin(2265), (2.91)
X0 =uy+ xzz(xuz] + x21z2) sin6, + x2222 cos(@2 Zz)

where 61,6, € [—2, 2].

It is easy to verify that the interconnections in the above interconnected system
satisfy Assumption 2.2. Choose Bjxm =1, j, k,m =1, 2. It follows from (2.83) and
(2.84) that

A=A =241=42,,=0
D1 =0, Dy = 2X%IZ% + Z%, Dy = ZX%IZ% + Z?, Dz =0.

1. Let Vo= %z% and Voo = %z% Then,

oV A%
Jflo(ll,o) —272; ﬂfzo(zz,m—zz

Obviously, Assumption 2.1 is satisfied with v| =2 and v, = 1.
It also follows from (2.86) that

k11(Vi0) = k21(Vi0) = k12(V20) = k22(V20) =
By choosing k1 = kp = 3, according to (2.87) and (2.88), we have
dw, 4 dW, _

’

dVio - dVy
and
by = D11 + Dy, by = D12 + Doo.

It follows from (2.18) and (2.20) that

a11=x121+0:25, (lezx%l
and

dw

M = —121 +0.5x11 +x110011 + 0. 250[11,
dVio

dw,
My = dTZZ_le +0.5x21 + x210001 + 0-250‘%1'

Hence, we can compute the virtual control

*
X{p = —Mi1 — bix11 — 2x11,

xé‘z = —M>1 — baxy1 — 2x21.
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2. Letting Xj2 = xj2 — x5, 1 = 1,2, we have

* *
Y, = _8x12x” Yy = _8x22x2]
12 971 ’ 2 022 ’
* *
Wl = 9x, 1 _ 9%y Y2 =yl =1
12 ar; 2 PP 21 »n=1"L
ox’ ox’
12 12
ap =— (—2z1 +x1121) — X12,
971 axi1
oxX ox’
2 2 2
axp = — (=22 +x5;) — X22.
922 0x721

According to (2.74), we can choose
a1 = x4 (z3 +0.25), @ =x3,25.
Hence, it follows from (2.77) that
My = aiy + F12(4(¥ ) a) + afy +a12) +0.5812((¥ ) + (W),
My = axn + En(4(¥p) a3, + a3y + @) +0.580((¥)* + (¥5)x3).
The control law can be obtained from (2.78) as follows:
up = —x11 — M2 — X1, (2.92)
Uy = —x31 — Mo — X22. (2.93)

Systems (2.90)—(2.91) were simulated with the controller (2.92) and (2.93) to
demonstrate the effectiveness of the decentralized robust control design procedure.
The initial conditions are set to be

71 =1.0, x11 =—1.0, x12=1.5,

72 = 1.0, x21 = —1.0, xp =15

and the uncertainties 01 and 6, are given by 8] = 2sint and 6, = 2cos 2. Obviously,
the uncertainties are time-varying ones and belong to the set [—2, 2]. The closed-
loop responses for the two subsystems are plotted in Figs. 2.1 and 2.2 from which
the stability is clearly seen.

2.4 Decentralized Tracking: Class I1I

In this section, we attend to the problem of class III that was presented in Sect. 2.1.3.
In the problem description there, attention was given to a class of large-scale nonlin-
ear systems which is comprised of N interconnected subsystems with time-varying



2.4 Decentralized Tracking: Class III 53

Fig. 2.1 Closed-loop 3
responses of subsystem 1
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Fig. 2.2 Closed-loop 12
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unknown parameters and/or disturbances entering nonlinearly into the state equation
as modeled by (2.9) and (2.10).

In what follows, we focus on studying the problem of decentralized output-
feedback tracking with disturbance attenuation. Thus, with reference to the model
(2.9) and (2.10), for every 1 < j < N and a given time-varying signal y;, () whose
derivatives up to order n; are bounded over [0, 00), our objective hereafter is to
design a smooth, decentralized, dynamic, output-feedback controller of the form

Xj=vi(xj, 0, uj=ui(xj, 1), x;€R (2.94)

such that the following properties hold for the resulting closed-loop large-scale non-
linear system (2.11), (2.94):
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1. When the signal wj =0 for all 1 < j < N, the tracking error signal y; — yi,
goes to zero asymptotically and all other closed-loop signals remain bounded
over [0, 00).

2. When wj #0 for all 1 < j < N, the closed-loop system is bounded-input
bounded-state BIBS stable and, in appropriate coordinates, is integral-input-
to-state stable iISS with respect to the disturbance input w [63]. In particular,
there exists a class-IC function y, (that is, v, is continuous, strictly increasing
and vanishes at the origin) such that, for any p > 0, the controller (2.94) can be
tuned to satisfy the inequality

t t
/ ly(x) =y (1) *d7 < p/O Ya(lw(T)dt + 10(z(0), x(0), x(0))
0]
Vvt >0, (2.95)
where 1 is a nonnegative €Y function, and

2(0) = [2}(0), ..., Zy (O],  x(0) =[x](0), ..., xy O],
x(0) = [x1(0), ..., x\ (0)]".

Remark 2.17 Property (1) above means that decentralized asymptotic tracking is
achieved for each local jth subsystem (2.11) in the absence of disturbance in-
puts. Property (2) with (2.95) in implies that, in the presence of disturbances,
the decentralized output-feedback controller (2.94) has the ability to attenu-
ate the effect of the disturbances on the tracking error arbitrarily for a fixed
class-K gain-function yz. As we shall see later, y;(s) = s + s* + s% in our
case.

In the sequel, sufficient conditions are provided to yield the standard L;-
gain disturbance rejection property—that is, y;(s) = s> in (2.95). It is inter-
esting to note that a similar problem has been studied in [41] in the frame-
work of centralized output-feedback tracking with almost disturbance decou-
pling.

The control problem formulated above will be solved in two steps demonstrated
in the following sections. We first introduce a (partially) decentralized observer in
order to obtain an augmented decentralized system with partial-state information.
Then, we base the decentralized controller design on this enlarged dynamic sys-
tem.

2.4.1 Partially Decentralized Observer

Owing to the structure in every local system of (2.11), for each 1 < j < N, we
introduce the following state estimator for the (z;, x;)-subsystem:
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2j=0;z; + fioOtrs .-, YNr),
)éjl =Xp+Lii(yj—xj0)+ fi1r - yNr)
+8i1ir, - YNSZ)

(2.96)
)e-/"j =Uuj +Lj”j(yj _)ejl) + f./nj 1rs---> YNF)
+gjnj(y1r7--~vYNr)2j7
—Lj
—Ljpp  In;—
Aj= . 2.97)
—Ljnj 0...0

Notice that the eigenvalues of A ; can be assigned to any desired location in the open

left-half plane via the choice of appropriate constants {L jm};';”: |» provided complex

conjugate eigenvalues appear in pair. In (2.97), I,;—1 is the unit matrix of order
n j— 1.
Introducing the new variables

A

Zj:Zj_Zjv )Ejk:xj‘k—)?jk, 1§k§n.j7 l<j=<N. (2.98)
Then from (2.11) and (2.96), it follows that:

2= 04F + fioOn o yN) = Fi0(r - e
+pjo(y1, ..., yNWj, (2.99)
Xj=AjEi 4 [0 N = [iOtrs oo YN
+8iO0 YN — & Drs oo YNPIZ
+pi, . yNw;, (2.100)
where
Xj=Fj1en X)) fi= e fin)s
g =81, gjnj)s Pi=Pjts-spjny)

Since every fjy is a smooth function and every y;, is a bounded signal, there exist
a finite number of nonnegative smooth functions {¢ jOk}ljcV:p {o ]-k},[g’:1 such that

N

[fio1s - yN) = fjoOnrs - Y| < Z [Xktlejor (Xk1),  (2.101)
k=1

N

i yN) = fiQ1rs -0 ynr)| < Z X1l i (Xk1). (2.102)
k=1
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In a similar way, we can obtain a functional bound for g;(yi,...,yn)z; —
gi(Vir, .-, YNr)Zj. Indeed, we have

gj(yla’yN)Zj _g]()’lr,»)’Nr)fj
=gV YN (g1 s YN) — &1y s YNF))Zj (2.103)

Using the Mean-Value Theorem [29], there exist nonnegative smooth functions ¢;x
(1 <k < N) such that

18 (V1s s yN)Zj — & Vrs -5 YNFZ]

N
<1gi s YOIE T+ Y 1R ik (R 1251 (2.104)
k=1

It must be noted that, by means of these inequalities (2.101)—(2.104), it is easy to
show that, in the absence of disturbance inputs, the solutions (Z;(¢), X (t)) of the
cascade system (2.99)—(2.100) go to zero, if y;(t) — y;r(t) - Oforall 1 < j < N.
The latter property will be guaranteed with the help of the decentralized controller
to be designed next.

Remark 2.18 Tt should be mentioned that the observer (2.96) is not asymptotic and
is totally decentralized only if the reference signals y;, =0 forall 1 < j < N. Pro-
ceeding further, we select a partially decentralized observer so that; in appropriate
coordinates; the system (2.105) has an equilibrium point and therefore there is a
solution to decentralized asymptotic tracking. In general, when y;,(f) are general
time-varying signals, the system augmented with a totally decentralized observer
does not have a fixed equilibrium. Thus, only practical tracking can be achieved by
means of high-gain feedback [60].

2.4.2 Design Procedure

From the forgoing development of partially decentralized observers, we derive the
following controller-observer combined system for the purpose of feedback design:
2= 0%+ fio01. . yN) = fioirs 2 INr)
+pjois .-, yn)wy,
Xj=AjEj+ [0 ) = fiGns o e
+8i0t s YNZ =& V1rs s INFIZ
+ri. - ynwj,

yi=Xp+ X+ fiin, ., yn) + &1, -, YNz
(2.105)
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+pit(y1, .. yNW;,
Xjp=Xj3+ Lia(yj — %) + fi2O1rs -+, YNF)
+82(V1rs - INPZ,

)éinj =uj+Ljn;(yj = %)+ fin;O1rs - YNF)
+gjnj(y1r,--',)’Nr)2j‘

Notice that the state variables (y;, %1, Xj2,...,%jn ;) and then Xj1, are available
for feedback design. Also note that the states (Z;, x;) are unmeasured and that the
outputs y;, with j # i, of other subsystems are unavailable for the design of the
regional input ;.

We now direct attention to the jth local system (2.105) with u; as the control
input. For the sake of clarity, the arguments of a function are often omitted in case
no possible confusion arises. For notational simplicity, denote

Fi0=FioO1s s yN) = FioOrs - YNr),s (2.106)
Fi= i N) = Fi Gt oo YNP)s (2.107)

A step-by-step constructive controller design procedure is now developed, leading to
an improved solution to the decentralized problem under consideration with desired
tracking controllers.

Step J.1: Starting with the first (Z;, X;, y;)-subsystem of (2.105). Introduce the new
variable £;1 = y; — v, (=X;1) and consider the Lyapunov function
- 5 N 5 N N 1
Vit =AnZi Pz 4 A jp@Ei Pz j)® + X5 Pk + 5";’2" (2.109)
where A1, A j» > 0 are design parameters, Pj; = Pjt.1 >(0and P = Pl.'2 > 0 satisfy

Pi1Qj+ Q;Pil = —21nz_,., (2.110)
PiZAj+At]‘Pi2:_21nj- (2.111)

This guarantees that V;; > 0. Then by evaluating the time derivative of V;; along
the solutions of (2.105), we obtain

le =(Aj1 +2)»j22;Pj12j)(—2|Zj|2 +2Z;Pj1(fjo + pjow;))
=205 * + 28 Ppa(fi + & + pjw)) + Ej1(Rja + X2
+ i1 yN) T 8510 - YNDZ
+ Pty YNIW) = Vir). (2.112)
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We first examine the term 22’]. le(fjo + piow;). Using (2.106) and (2.101), with
the help of Young’s inequality (see Chap. 9) and some algebraic manipulations, it
follows that:

2(hj1 + 2?»,'22;1’]12,-)23- Pj1(fjo+ pjow;)

N
- 3hi . -
<MIE P+ =G PuE ) + Y &R i )
Amax(Pil) k=1

+cjalw)* +ejzlwsl* + w;®, (2.113)

where cj1, ¢j2, ¢j3 > 0 and ¥ ;1 is a nonnegative smooth function.
In a similar way, there exist positive constants 1, ¢ j4 and a nonnegative smooth
function > such that

255 Pia(fi+ &)+ pjw))
N
<IFP + o 2P + 121+ D gLV @) + cjalw; ? + [wil*, (2.114)
k=1

where we have used the fact that Z j is bounded.
By substituting (2.113) and (2.114) into (2.112), we readily obtain

N
Vit < =1+ 402 PRZNIZ 1P — 1517 4 D& Wi + Vi)
k=1

o112+ 121+ g2+ )i+ e+ Dlwj [

+lw; B+ &1 G+ T2+ f11(1, -0 W)

+ 8115+ YNIZj + Pj1i(V1s -y YNWj — V). (2.115)
It is significant to note that «;; does not depend on A1 and A ;> while cjx’s may

depend on A and A 3.
Proceeding further, using (2.102) and (2.104), we have

EnEin+ fil+&n+pjiw))

N
L ~
< SR+ Y8V + 11+ lwj P, (2.116)
k=1

where 3 is a nonnegative smooth function.
Taking into consideration the decomposition in (2.107) and (2.108) and letting
Ykt = Vjk1 + ¥jx2 + Vi3, the following holds true:
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Vit < =i+ 4joZ5 Ppzj — ki — 1= 1Z19)1E P

1.
— E|xj|2 + (cj2+cja+ Dw;j > + (cj3+ Diw;|*

+ 1w B+ E1 G2+ Fi1 O -5 YN

N
+ 81Ot INDE = i)+ D Tk 2.117)
k=1

This motivates us to choose a control function 5;1 and a new variable & ;> in the form

£ = —kj&j1 —EnK;GE) = frirs - )
—8i1rs s YNDZj + Vjrs (2.118)
Ejp =X —EN s Virs ooy YN Djrs 25)s (2.119)

where k1 > 0 is a design parameter and K ; is a nonnegative, smooth function such
that

N
Kjl(fjl)zzlﬁkjl(gjl)- (2.120)

k=1
This leads us to

Vit < =i +hjpZ PjnZ; —kji —1— 171912512
[ 2 2
—§|xj-| + (cja+cja+ Dw;]
+ (e + Dlwj|* + [wj|* — k&) — €7, K (&)
N
+ D 8k E) + Ejrin (2.121)

k=1

Step J.k (2 <k < ny): Consider the (Z;, X}, y;, %2, ..., X jx)-subsystem of (2.105)
with X; jx41 as the virtual control. For notational simplicity, we define X; n, 41 :=
Ug.
Rolling over from Step J.1 to Step J.k — 1, we assume that we have designed
intermediate control functions {5;5}12;11, and that we have introduced new variables
Ej o1 =X o1 — &5V Xj2s ooy Xjes Yors -+ YNrs Viirs 002
’ Jr P p jr p

Vi<t<k—1 (2.122)

and a positive-definite and proper function

o o k=1 )
Vik—1@j, X, &jes . Ej k1) = Vo2, X, Eje + Z E‘Sﬂ' (2.123)
=2
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It is further assumed that the time derivative of V; ;| along the solutions of (2.105)
satisfies

Vik—1 < =01 + 2 PjZj — ki —k+1— 17191z,
1 ~ 2 2
~ Tl + (k= 1+ cro+ ca)wj|

k—1
+ e+ Dlwjl* + i F =D kjet7, — £5,K (o)
=1

N
+ Zéilll}jm(k—n(éml) +&jk—16k (2.124)

m=1

with kj, (1 < £ <k — 1) positive design parameters and 1/A/jm(k_1) a nonnegative
smooth function being independent of K ;.

The objective is to prove that a similar property to the above also holds for the
subsystem

(Zj X, yjsXj2s-oas Xjk)

of (2.105) when £ 41 is considered as the (virtual) input.
Toward this end, consider the positive-definite and proper function

. 1
Vik = Vi1 G Fj &1y s Ejk—1) + ngk' (2.125)

Evaluating the time-derivative of V;; along the solutions of (2.105) yields

Vik = Vir—1&jk |:£j,k+1 + Lj(y; —Xj1)

+ fikO1rs oo INP) + 8k D1rs - - YNPZ

k—1 *
85j,k—l

ijm

Ejme1 +Lim(y; —Xj1)
m=2

+ fjm(ylh <o s YNF) +gjm(ylrv ceey er)zj)

Noogr, = AT

J . J (m+1)
Ymr = Z 0 Yir
3ymr m=1 ay;’:l )

m=1

35;,1(—1
a 0z,

08711

- éy. (J?iz—i-ikz-l-fkl+gk1z,-+pk1wj)]- (2.126)
j

(Q;Zj + fro1rs -5 YNF))
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Adopting similar arguments to Step J.1, after algebraic routine manipulations, it
follows the existence of nonnegative smooth functions {1/fjmk},1,\,’:1 and «j such
that:

é-*
_SJk (x12+f]1+g]1+17]1wj)
J
| N
< 7% ARk D & Vi En) + 15+ wj P (2127)
m=1
Observe that « j is a function of
i, % % 5 0 2y
] j2""’ ]k5y1r5"'5er5y]r7"'7yjr7Z]

and that every ¥ ;,x does not depend on K ;.
This motivates us to select the following control function:

£ = —kjk&jk — Ejk—1 — &k ik — Ljk(yj — £j1)
— fikOrs oo yNP) — &ikO1rs - - YNPZ

0E* _1
+ E;;) (£j2+fj1(y1r,~~',YNr)+gj1(y1r,...,yN,.)fj)
J
k—1 *k .
+Z j (xjm+l+ij(YJ x]l)
m=2 Jm
+ LimOirs oo yNe) + 8jmYrs - YNPZ))
N 1
8?’: k—1 . iz a%_ k—1 1
+> a] Smr 4 Y Loyt
m=1 mr m=1 a jr
agjk 1
+ a (Q]Z] +f]0(y1rs~"syN}’))s (2128)

where & j; > 0 is a design parameter.
Denoting & 41 =Xjk+1 — éfk and combining (2.124) with (2.126)—(2.128), we
obtain

Vik < —(j1 +)»j22'ij1Zj —ij1—j— I IE?
LR S , 2 4 Dl
J |x,/| +(J +C./2+C./4)|w1| +(C,/3+ )|w,/|

J
+lw)® = kuEy — €1 K )

=1

N
+ Z E2 1 (W jmu—1)Em1) + WjmkEm)) + Ejxjpsr. (2,129

m=1
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That is, property (2.124) holds for the (Z;, X;, yj, Xj2, ..., X jx)-subsystem with

Wimk = Yik(j—1) + Vikj-
By induction, at Step 7, setting the control law

N N . (nj) ~
uj :é‘_;nj(yj,ij---»xjnj»)’lr»---»er»yiry s Y2 (2.130)

leads us to
y ~t ~ ~ 12N~ 12
Vin; < —(ji + a2 Pjizj —kji —nj — 12191z

L. 2
_Wlle + (nj +ci2 +cig)|wj|

nj
+ (cja+ Dlwjl* + lwj|* = > kjet7, — &/, Kj ()
(=1

N
+ > & Vjmn, Em), (2.131)

m=1

where by construction, v jmn; 1s independent of the design function K;.
Consider now the positive-definite and proper Lyapunov function for the entire
closed-loop interconnected system

N
V(Zsf,f)=Zan,-(Zj,fj,$jls---,éjn,-), (2.132)
j=1
where
F=GL .3, F=@L ), E=EL L E)

Notice that the positive definiteness and properness of V in (2.132) follows from
the foregoing recursive construction.

To eliminate the positive sum of the last term of (2.131), which also appears in
the time derivative of V, we pick a set of appropriate smooth functions {K j}ﬁ.\;l to
check on the inequalities (1 < j < N)

N
KiE) =Y Yminaéjr- (2.133)
m=1

Obviously, such a design function K ; always exists.

2.4.3 Design Results

When applying the above-described control design to the uncertain large-scale sys-
tem (2.11), we establish the following result.
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Theorem 2.6 The problem of decentralized output-feedback tracking with distur-
bance attenuation is solvable for the minimum-phase large-scale system (2.11) sub-
Ject to Condition A.

Proof By differentiating V defined by (2.132), along the solutions of the closed-
loop system (2.11) and (2.130), it yields

N
V<= 01422 Pz —kji—nj — 12 P)IE P
j=1
N/ nj
~ 2 2
DIETTES TN
j=1 =1
N
+ ) [y +cja+eilwi® + (cjz+ Diwsl* + [w; Pl (2.134)
j=1
By selecting sufficiently large design parameters A1 and A; such that
(Aj1 +)»j223~Pj12j —Kkj1—nj— |Zj|2)|2j|2

Ajl . A2 -
> %ZijIZj‘F%(Zij]ZjP (2.135)

it follows from (2.134) and (2.132) that

N
V<AV + Z[(nj +cj2 +Cj4)|wj|2
=1

+ (cj3 + Dlwj|* + w;®], (2.136)

where
1 0 .
A =min > 1/2% Amax(Pj2), kje |1 < j <N, 1 <€=<nj;.

The BIBS and iISS property (2) follows readily for the (transformed) closed-loop
system (2.11), (2.130) by either applying the technique in [64] or the Gronwall-
Bellman lemma [32] to (2.136). When w; =0 for all 1 < j < N, the null solution
is uniformly globally asymptotically stable (UGAS), leading to the asymptotic con-
vergence of the tracking error y — y, because £ =y — y,.

Now from (2.134), for any pair of instants 0 < fy < ¢, we obtain

t t
/ &1 (7)PdT < V(z(1), x(10), £(10)) + p / (lw(v)]?
to fo

+ w@* + lw@)¥dT (2.137)
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where p > 0 is defined by

)

p—ma max{n;+cj> +cj3|1 < j <N}
minfk;i|1 < j <N}

max{c;3+1[1 < j < N} 1
min{k;i|1 <i <N} “min{k;|1<j<N}|

It must be noted that p can be made as small as possible by selecting sufficiently
large values of the constants k. In the present case, (2.95) is met with y;(s) =
52 + 5%+ s8. The proof of Theorem 2.6 is now completed. U

Remark 2.19 1t is of interest to observe that, in the absence of disturbance inputs
w, (2.136) yields that V converges to zero at an exponential rate and; therefore; the
tracking error y(t) — y,(¢) goes to zero exponentially.

Remark 2.20 By similarity to the centralized output-feedback tracking with al-
most disturbance decoupling [41], Condition A can be weakened and the z j-system
in (2.11) can be broadened as follows:

=T, - yn)zj + fioyt, oo, yn) + pio(yr, ..., yvwj. (2.138)

Assume that, for each 1 < j < N, there are a pair of constant matrices (0 < P; =
P]t'» 0<M;= M;.) such that

i, NP+ Pili(y1, ..., yn) < —M;. (2.139)

Under this hypothesis, the Z ;-system in the decentralized observer (2.96) is replaced
by

=T s INDE) + 700 - YNP)- (2.140)

Using the same techniques as in Sect. 2.4.2, Theorem 2.6 can be extended to this
situation.

To proceed further, we examine the situation when the developed controller de-
sign procedure yields a decentralized output-feedback law guaranteeing the standard
L,-gain disturbance attenuation property (2.95) holds with y,(s) = s%. The follow-
ing additional sufficient condition is recalled.

Condition B For all 1 < j < N and 1 < k < n, the function pj; is bounded by a
constant. Furthermore, pjo =0foreach1 < j < N.

The following lemma provides the desired result:
Lemma 2.6 Under Condition A and Condition B, the problem of decentralized

output-feedback tracking with L,-gain disturbance attenuation is solvable for the
class of minimum-phase large-scale systems (2.11).
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Proof We initially note that the only place where |w; |* and |w j 18 occur is Step J.1
during the controller development in Sect. 2.4.2. More precisely, they are brought up
in the inequalities (2.113) and (2.114). Under Condition B, the function V; satisfies
the following inequality, instead of (2.121):

Vit < —(ji -I-MzZ?leij —kj1 — 1 —1Z;1P)1z;1?

I
= 1% P + (2 +cja+ Dlwj® = kj)ER

N
—EAKED A D Em Vjmi Em) + )12 (2.141)

m=1

The above Lyapunov function V satisfies
N
V<=AV+ Y [+ cip+cia)lw . (2.142)
j=I

From (2.142), the standard £;-gain property from w to §; = y — y, follows readily.
The proof of Lemma 2.6 is thus completed. d

Remark 2.21 As an immediate corollary of Theorem 2.6, the standard £,-gain prop-
erty from w to & =y — y, can also be established when all functions fjx, gjx in
the decentralized system (2.11) are bounded by linear functions and the functions
pjk (1 < j <N,0 <k <ny) are bounded by some constants (in this case, p ;o # 0).
The derived decentralized output-feedback controllers are linear.

Remark 2.22 The main features are four-fold:

(1) identifying a wide class of large-scale nonlinear systems in disturbed decen-
tralized output-feedback form;

(i1) proposing an effective systematic output-feedback controller design procedure
for decentralized systems in the presence of strong nonlinearities appearing in
the subsystems and interactions and

(iii) guaranteeing decentralized asymptotic tracking when the disturbance inputs
disappear and achieving desirable external stability properties when the distur-
bance inputs are present;

(iv) extending further the earlier results of [23, 29, 32, 40] to uncertain large com-
plex systems.

2.5 Decentralized Guaranteed Cost Control

In recent years, the problem of the decentralized robust control of large-scale sys-
tems with parameter uncertainties has been widely studied. Although there have
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been numerous studies on the decentralized robust control of large-scale uncertain
systems, much effort has been made toward finding a controller that guarantees ro-
bust stability. However, when controlling such systems, it is also desirable to design
control systems that guarantee not only robust stability but also an adequate level of
performance. One approach to this problem is the so-called guaranteed cost control
approach [47]. This approach has the advantage of providing an upper bound on a
given performance index.

Recent advances in the LMI theory have allowed a revisiting of the guaran-
teed cost control approach [82]. In [82], the guaranteed cost control technique
for interconnected systems by means of the LMI approach has been discussed.
In the literature, the guaranteed cost control for nonlinear uncertain large-scale
systems under gain perturbations has been considered. However, the time de-
lays have not been considered in those reports. If the system does not have de-
lays, the theoretical behavior would usually be more tractable. However, if de-
lays are present, they may result in instability or serious deterioration in the per-
formance of the resulting control systems. Therefore, the study of the control,
considering these time delays on the guaranteed cost stability, is very impor-
tant.

In what follows, the guaranteed cost control problem of the decentralized robust
control for uncertain nonlinear large-scale systems that have delay in both state and
control input is considered. It should be noted that although the robust control de-
sign method for parameter uncertain ordinary dynamic systems that have delay in
both state and control input has been considered, the guaranteed cost control for
nonlinear uncertain large-scale systems that have delay in both state and control
input has never been discussed. A sufficient condition for the existence of the de-
centralized robust feedback controllers is derived in terms of the LMI. The main
result shows that the guaranteed cost controllers can be constructed by solving the
LMI. The crucial difference between the existing results [82] and that of the present
study is that the controller that guarantees the stability and the adequate level of
performance of the large-scale delay systems is given. Thus, the applicability of the
resulting controllers can be extended to more practical large-scale systems. More-
over, since the construction of the guaranteed cost controller consists of an LMI-
based control design, the proposed method is computationally attractive and use-
ful.

2.5.1 Analysis of Robust Performance

To demonstrate ideas, we consider in the sequel a class of continuous-time au-
tonomous uncertain nonlinear large-scale interconnected delay systems, which con-
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sist of N subsystems of the form:

1 (1) =[Aj + AA;(O1xj (@) + [AY + AAYDIxi(t — 7))
+H + AHS 0)1x;(t — )
N
+ Y [Gij+ AGyi ()] (x), xk), (2.143)
j=lj#k
xj(t) =¢;), te[-d;,0],

: (2.144)
dj =max{t;, h;}, j=1,...,N,

where x;(¢) € "/ are the states. 7; > 0 and /; > O are the delay constants, and
¢ (t) are the given continuous vector valued initial functions. A, A‘jl., and H;’ are

the constant matrices of appropriate dimensions. G;; € "/ *j are the interconnec-

tion matrices between the ith subsystems and other subsystems. gg; (x;, xx) € R

are unknown nonlinear vector functions that represent nonlinearity. The parameter
uncertainties considered here are assumed to be of the following form:

[AA;()AAYD AHY ()] = D Fj(0OIEJEJ ES), (2.145)

AGji(t) = Djp Fix ) E jx, (2.146)

where D, E ]1., Ejl.d, E;lh , D;j, and E;; are known constant real matrices of appropri-

ate dimensions. F;(¢t) € %Pi*4j and F;;(¢t) € 0%k are unknown matrix functions
with Lebesgue measurable elements and satisfy

FIOF 0 <. FLOF;0) <. (2.147)

We make the following assumptions concerning the unknown nonlinear vector
functions.
(A1) There exist known constant matrices V; and Wy such that for all j, k,t >
0,x; € R and x; € R

lgjxCxjs Xl < NIVjix;ll + 1Wgx;ll.

(A2) Forall j, k

N
Uj=2 Y (ViVi+ W, W) >0.
J=1j#k

The cost function of the associated system (2.143) is given as

J

N o0
2;/0 X Qjx;(tydt, 0< Q=0 (2.148)
j=
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The following definition of the cost matrix for the uncertain large-scale intercon-
nected delay systems is given in [47]:

Definition 2.1 The set of matrices 0 < P; = P/’. is said to be the quadratic cost
matrix for the uncertain nonlinear large-scale interconnected delay systems (2.143)
if the following inequality holds

N d i
2(5’65(1‘)%%0)+x§-(t)Q,-x,-(t)> <0, (2.149)

for all nonzero x; € 3"/ and all uncertainties (2.145).

Theorem 2.7 Under assumptions (A1) and (A2), suppose there exist matrices 0 <
Pj= sz_ eRIM 0< S = S; eERNM, 0<Tj = T; e WX such that for all
admissible uncertainties satisfying (2.145) the following matrix inequality holds:

- =~ ~ 4 ~ -
o PjAj PjHj PiGji ... PiGjn
=S 0 0 0
° =T, 0 0
A= . . -, 0 <0, (2.150)
L e ) . . =1y |

where

N
RN N=3n+ Yl
m=1,j#m

ji=AP + PA+ U+ Qi+ Sj+Tj, Aj:=Aj+4AA;®),

>
m

&

0
<A

. Ad d 7d . pgd d
L=Adtande),  AY=HI+AH0),

ij =Gjr+ AG (D).

Then the free uncertain nonlinear large-scale interconnected systems (2.143) are
quadratically stable, and the corresponding value of the cost function (2.148) satis-
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fies the following inequality:

N 0
J < Z[¢}(0)Pj¢j(0)+ ¢§-(S)Sj¢j(S)dS
i=1

0
+/ ¢’,~(s)Tj¢j(s)ds]. 2.151)
—hj -

Proof Based on the definitions A s A~;l, ﬁf and G jk» we can change the form
(2.143) to

xXj(t) = ijj'(f) + A(]J-xj'([ - 7))+ ﬁ;lxj'(t —hj)
N
+ Y Giugir(xj. xp). (2.152)
k=1, j5k
There exist matrices 0 < P; = P]’. €N 0< S = S;. e RN, 0<Tj = T; IS
NEXi L j=1,..., N such that the matrix inequality (2.150) holds for all admis-

sible uncertainties (2.145). To prove the asymptotic stability of the interconnected
delay systems (2.152), we introduce the following Lyapunov function candidate

N

!
V(x(t)): E |:x§(t)ijj(t)+/ x;(s)ijj(s)ds
I—t;

i=1
t

+/ x;(s)zjj(s)ds:|, (2.153)
l—hj

where x (1) = [x](z) ... x},(1)]". Note by default that V (x(r)) > 0 whenever x () #
0. The time derivative of V (x(¢)) along any trajectory of the interconnected delay
systems (2.152) is given by

d
V) = Zz () A;z(t) - Zx (1)Qjx;(t)

= i=1
N N
Z Z (ZX}V;VJ-xj—i—Zx}W;ijka —g;kgjk),
i=1k=1,j#k
where
= [xXf(0) X5 — 7)) Xt —hj) g5y - gy e RV

and E; and A; are given in (2.151).
Under assumption (A1), it is easy to verify that the following inequality holds

265 ViVixj +2x Wi Wikxj > g%.8 k- (2.154)
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With inequalities (2.150) and (2.154) hold, it immediately follows that

d N _
V@) <—le;(t)ijj(t) <0, (2.155)
j:

which assures that V (x(¢)) is a Lyapunov function for the interconnected delay
system (2.152). Therefore, system (2.152) is asymptotically stable. Furthermore, by
integrating both sides of the inequality (2.155) from O to 7 and using the initial
conditions, we obtain

N t _
V(x(T) = V(x(0) <—) /0 (0 Qx; (). (2.156)
j=1

Since system (2.152) is asymptotically stable, that is, x(7) — 0 when T — oo, we
obtain V (x(T)) — 0. Thus we obtain

N t
I1=3 f X (D Qjxj(D)dt <V (x(0))
j=1""

N 0 0
= Z[¢;(O)Pj¢,-<0> + [ 0L)Si;(5)ds + / ) ¢;<s)T,-¢>,-<s>ds].
j=1 -7 —hj

This completes the proof of Theorem 2.7. g

2.5.2 Including Input Delays

In what follows, we consider the problem of decentralized guaranteed cost control
via the state feedback to the class of nonlinear uncertain interconnected systems
with input delays. The class of system under consideration is described by

55(0) = [A] + AA; (O, (6) + (B} + AB; (0] (1)
+[Agj + AA4; (O)]xj(t —T;) +[Baj + ABgj(O)]uj(t — hj)

N
+ > G+ AG ilg ik (xj, xp), (2.157)
k=1, j#k

xj(t)=¢;t), tel—d;,0l, dj=max{t;,h;}, j=1,...,N, (2.158)

where u;(t) € "/ are the control inputs of the jth subsystems. The parameter
uncertainties satisfy

[AA;(t) ABj(t) AAgj(t) ABqj(t)]=D;F;(t)[E1j E2j E1aj E2aj].  (2.159)
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Aj,Bj,Ej, Ezj, Eq1j, Eg2; are constant matrices of appropriate dimensions. The
remaining constant real matrices and parameter uncertainties are the same as those
in system (2.143). Moreover, it is assumed that Assumptions (A1) and (A2) hold for
the unknown nonlinear vector functions gk (x;, xx) € R

Associated with system (2.157) is the cost function

N o0
JZZ/O [X;(I)ij]‘(t)+u’j(t)Rjuj(t)]dt,
j=1

0<Qj= ;, 0<Rj=R;. (2.160)
In view of the results of [47], the definition of the guaranteed cost control for the
class of uncertain interconnected systems (2.157) is now provided:

Definition 2.2 A decentralized control law u () = K jx;(t) is said to be a quadratic
guaranteed cost control related to the set of matrices 0 < P; = P! for the uncertain
interconnected system (2.157) and cost function (2.160) if the closed-loop system is
quadratically stable and the closed-loop value of the cost function (2.160) satisfies
the bound J < J* for all admissible uncertainties, that is,

N
Z(ix; (O Pjxj (1) +x5(D[Q; + KR K], (t)) <0, (2.161)

o dt

for all nonzero x; € N/,
The objective now is to design a decentralized guaranteed cost controller

uj®)=K;xjt), j=1,...,N,

for the uncertain large-scale interconnected delay system (2.157).

2.5.3 Decentralized Design Results

We now present the LMI design approach to the construction of a guaranteed cost
controller.

Theorem 2.8 Under assumptions (Al) and (A2), suppose there exist scalar pa-
rameters pj > 0,e; > 0 and matrices 0 < X; = X; e, 0< §; = S;» €
N0 < Xj = X’/. € WXNi | Y; =€ W™iXMi | such that forall j =1, ..., N the
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following LMI
_@j Adj_gj BajY; (Ele_j—i-Eijj)t
° =S 0 S/t'Eidj
° ° —Z; YjEZdj
e e —Hjlgj
° ° °
° ° ° °
° ° ° .
° ° ° .
° ° ° °
° ° ° °
° ° ° °
| o ° ° .
Gin 0 X Y]t.
0 0 0 0
Y;thz’j 0 —Z; Y;Eédj
0 0 0 0
0 0 0 0
0 0 0 0
—Ipy E;’N 0 0
EjN _8‘/’1st 0 0
° ) —Q;] 0
° ° ° _Ri_l
° ° ° .
° ° ° °

has a feasible solution, where

@;:=A;X;+BjY;+(A;jX;+ B;Y)' +Zj+pn;D;D} + Hj,

N
Hj:= Y DjyD}.
J=1j#k

Moreover, the decentralized linear state feedback control laws

uj(t):Kjx](t):Yijlx](t), j=1,...

,N

<0,

2 Decentralized Control of Nonlinear Systems I

(2.162)

(2.163)
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are the guaranteed cost controllers and

N 0
J < Z[qs;(O)Xj—lqu(O) +f_r_¢;(s)5j—1(s)ds

i=1

0
+/ ¢;(s)x;lzjx;1¢j(s)ds} (2.164)
is the associated guaranteed cost.

Proof Introducing the matrices X; := Pj_l, Yj:= Kij_l, S’j = Sj_l and Z; :=
P'T; P! Pre-and post-multiplying both sides of the inequality (2.162) by

blockdiag[Pj Sj Pj Iqj I Ly ... I[N Iin Inj Imj Inj Inj]

yields
(¥ PjAqj PiByK; Ei  PiGpn 0 PGy 0 Ly Ko by Iy
. =S 0 E’ld,- 0 0 0 0 0 0 0 0
. . —~T; K; Eédj 0 0 0 0 0 0 0 0
. . . —jlyi 0 0 0 0 0 0 0 0
. . . . —1Iy, Etj] 0 0 0 0 0 0
. . . . . —ejly, 0 0 0 0 0 0
° . . . . —1Igy E;‘N 0 0 0 0
. . . . . Ejn —¢&jls;y 0 0 0 0
. . o o o 0 0 —Q;' 0 0 0
° . . . . 0 0 0 —R7! 0 0
. . . . . 0 0 0 o -si' o
| o ) ) . . . 0 0 0 0 0 7U/-7l ]
<0, (2.165)
where

Wj:=A"P;+ PjAj+T;+u;P;D;DP;+ P;H, P},
Aj = Aj +BjKj,Ej = Ej1 ~|—E2jKj.

Using Schur complement, the matrix inequality (2.165) holds if and only if, the
following inequality holds:

r; PjAdj+/L;IE_';E1dj PdejKj—FM;lE;EZdej PiGj1 ... PiGjy
o u'ElyEw—S; wi'El EMK; 0o ... 0
Fool . wi KLEY EagiKj—T; 0o ... 0
J = ° ° 0 (@i 0
. . 0 0 Oy

< 0, (2.166)
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where

[j:=A%P;+ PjAj+Uj+R;+S;+Tj+u;P;D;D}Pj + PiH; P,

+M;IE;Ej,

Rj = Qj—i-K;RjKj, O; I:S;IE;kEjk—I@j.

Using a standard matrix inequality [30] for all admissible uncertainties (2.145)
and (2.159), the following matrix inequality holds:

0>Fj
_A_EPj+PjAj+Uj+Rj+Sj+Tj PjAdj PdejKj PjGj] PjGjN_
° =S 0 0 0
° . —T; 0 0
= ° . . —1Iy, 0
L ° ) . . v =gy |
(P;D; ] TOE T EY ] "p;D; ]’
: Sl ek 8
2d 2d
+1 o |[Fol 7o+ oY [ Fof| o
L 0] Lo 1 L oo L 0]
0 0 0 P;Dji ... PiDiy][0 0 0 0 07
0 0 O 0 0 0O 0 0 O 0
0 0 0 0 0 00 0 O 0
+looo 0 ... o0 00 0 Fj 0
000 0 0o Jlo oo o Fiy |
[0 0 0 O 0 ]
00 0 O 0
00 0 O 0
10 0 0 Ej 0
000 o0 Ejn |
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000 0 ... 077000 0o .. o
000 0 0 000 O 0
000 0 0 000 O 0

+10 0 0 Ej 0 0 0 0 Fj 0
(000 O Ein] |0 00 0 Fin |
[0 0 0 PiDj PiDjyT'
000 0 0
000 0 0

X0 0 0 0 0 =L;. (2.167)
000 0 0 |

Taking into consideration

Agj = Agj + D;jFj(t)Erq;, Gk =Gk + DjxFjr(t)E j,
Aj=Aj+D;Fi(OHE;=A; + AA; (1),
ByjK;=Hg,  AByj()Kj=AHg(t),
Qj+KiRiKj=R;=0;

we readily obtain L; = A;. Hence, the individual closed-loop systems are asymp-
totically stable under Theorem 2.8. The results of the cost bound (2.164) can be
proved by using similar arguments for the proof of Theorem 2.7. O

Remark 2.23 Since LMI (2.162) consists of a solution set of (u;,£; X, Y}, S‘j, Z;),
various efficient convex optimization algorithms can be applied. Moreover, its solu-
tions represent the set of guaranteed cost controllers. This parameterized represen-
tation can be exploited to design the guaranteed cost controllers, which minimizes
the value of the guaranteed cost for the closed-loop uncertain interconnected delay
systems.

Consequently, to determine the optimal cost bound we solve the following opti-
mization problem:

) i (2.168)
Jj=a; + TeMj + NN 2 Te Z;.

Xje(ujejX;, Y, 8, Zj,aj, Mj),
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such that (2.162) is satisfied and

o OV

[ @ $;O1 (2.169)
° —Xj_
—M: M’ 7

[ J J | <o, (2.170)
—
—CjIn.4 I, T

[ )< 2.171)

where c; > 0 are prescribed constants and
0 0
MjM; = qu(s)q&;-(s)ds, NjN} :=/h ¢j(s)¢;(s)ds.
=T —h;j

The main design result is summarized by the following theorem:

Theorem 2.9 If the foregoing optimization problem has the solution
1 €j Xj.Yj.Sj. Zj. e Mj

then the control laws of the form (2.163) are the decentralized linear state feedback
control laws, which ensure the minimization of the guaranteed cost (2.164) for the
uncertain interconnected delay systems.

Proof By Theorem 2.8, the control laws (2.163) constructed from the feasible solu-
tions

//vj’gj,Xj,Yj,gj,zjyaj,Mj

are the guaranteed cost controllers of the uncertain interconnected delay systems
(2.157). Applying the Schur complement to the LMI (2.169) and using the following
inequality [12]:

TrXY < ||X||,TrY, Y=Y'>0, X=X,

we have the following
1.

¢10)X;'9;(0) <aj,

0 0
¢5()S; ' pj(s)ds = / el (5)S] ()]s

-7 J

=Tr[M;§j?1Mj] < Tr[M;],
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0
/_h,- ¢;(s)Xj—IZ,-Xj—1¢,-(s)ds

0
:/ Trlg) ()X ;' Z; X' ¢(s)lds

_h./
:Tr[N;XJ._IZij_le] < ||NjN§||2||X/._1||%Tij
<GINjN 2 Tr Z;.
It follows that

N 0
J < Z[¢;(0>X,-‘¢>j(0> +/_r. ¢S] b (s)ds

j=1

0
+f ¢;(s)lezjxj‘¢j(s)ds]
7]1]

N
<> (@ +Te[M;]+ AIN;N 2 - TH{ Z;])

i=1

N
fn}l(inz Jj=J% (2.172)
Jo;
j=l1

Thus, the minimization of ZlNzl J ; implies the minimum value J* of the guaranteed
cost for the interconnected uncertain delay systems (2.157). The optimality of the
solution of the optimization problem follows from the convexity of the objective
function under the LMI constraints. This is the required result. U

Remark 2.24 It must be noted that the original optimization problem for the guar-
anteed cost (2.168) can be appropriately decomposed into the following reduced
optimization problems (2.173) since each optimization problem (2.173) is indepen-
dent of each other. Hence, we only have to solve the optimization problems (2.173)
for each independent subsystem:

N N
min ZJ_j=ZminJ_j,
Xi T — Xi
j= j=
_ _ (2.173)
XjG(,uj,é‘ij,Yj,Sj,Zj,Otj,Mj), Djl H)l(in.]j, j=1,...,N,
j
Jj =+ TiM;1+¢; NNl - Tr[Z;].

Remark 2.25 The constant parameter ¢, which is included in the inequality (2.171),
needs to be optimized as the LMI constraints. In this case, it is hard to obtain the
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optimum guaranteed cost, because the resulting problem is nonconvex optimization
problem. As an alternative, the above suboptimal guaranteed cost control is solved
instead of solving the non convex optimization problem. Consequently, the decen-
tralized robust suboptimal guaranteed cost controller, which minimizes the value of
the guaranteed cost for the closed-loop uncertain delay systems, can be easily solved
by using the LMI. The selected constant parameter ¢; needs to be as small as since
the matrix X ; is constrained by the inequality (2.169).

2.6 Global Robust Stabilization

2.6.1 Introduction

The decentralized control schemes, different from the classical centralized infor-
mation structures, have been considered with significant interests for the control of
interconnected systems in recent years. The main objectives of decentralized con-
trol are to find some feedback laws for adapting the interactions from the other
subsystems where no state information is transferred. The advantage of decentral-
ized control design is to reduce complexity and this therefore allows the control
implementation to be more feasible.

Unlike centralized control design, decentralized control cannot have access to
the entire state information. Therefore, interconnections between subsystems need
to be analyzed, so that their influence on the system performance can be properly
addressed by the control. As far as asymptotic stability of interconnected systems is
concerned, there are two main approaches for the treatment of the interconnections
in the literature. The first is to assume that the interconnections satisfy the matching
conditions bounded by first-order polynomials of states [3] or higher-order polyno-
mials [38, 56]. The second is to require that the interconnections meet a triangular
structure bounded by first-order polynomials of states [79] or higher-order polyno-
mials [25]. The matching condition guarantees that Lyapunov redesign is applicable,
which begins with Lyapunov functions for nominal subsystems and then attempts
to use these Lyapunov functions to design decentralized feedback laws. Most of
the work in the literature falls into this category. On the other hand, the triangular
structure makes it possible to apply backstepping technique to design the decentral-
ized controllers. The backstepping design idea, which was initially introduced in
[28] for nonlinear adaptive control and in [8] for nonlinear robust control, was ap-
plied to construct decentralized robust controllers in [79] and used in decentralized
adaptive control by [25]. In the latter, we note that decentralized adaptive control
design is addressed for a class of large-scale interconnected nonlinear systems with
decentralized strict feedback form and single input subsystems. In the literature,
the interconnections are assumed to be bounded by higher order polynomials of the
states in the first integrator of every subsystem, whose coefficients admit a lower
triangular structure.
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One of the important problems in decentralized control is to relax restrictions
on the interconnections and uncertainties. There exist two kinds of restrictions,
such as matching conditions and strict feedback conditions in the literature. Many
physical systems, such as power systems in [62], do not satisfy these conditions,
so the study of relaxing these restrictions is of theoretical and practical impor-
tance.

Hereafter, the main objective is to investigate the problem of decentralized robust
stabilization for a class of large-scale nonlinear systems with parameter uncertain-
ties and nonlinear interconnections. Each system of the interconnected system is as-
sumed to be controlled by multiple inputs and to be in a nested structure, which was
first introduced by [37]. The uncertain parameters and/or disturbances are allowed
to be time-varying and enter the system nonlinearly. The nonlinear interconnections
are bounded by higher-order polynomials in the decentralized strict feedback form.
Inspired by the recent work of centralized nonlinear control [36], it is proved that
the global decentralized robust asymptotic stabilization problem can be solved for
the uncertain interconnected nonlinear systems by applying a recursive design pro-
cedure.

2.6.2 Problem Formulation and Assumptions

Consider a large-scale nonlinear system composed of N interconnected subsystems
with m inputs. The ith subsystem is given as

m
=g+ Y enGNEY.EN 0l

gh=g+wl GV ENEN 0

Z o N EY.EYN0E,

n=j+1

l_ i i N (2.174)
j,rj—l == jrj +lpj’rj71( él 9 e .. éj 19)7
N
+ Z d)ln 1 ,'S;:l 5 .. fn 79){-:"19
n=j+1
[ [ i =N N N
;r.j:bt‘l]-—’—lp]l-rj(x ,%1,...,‘5-,9)

m
in (=N N EN i
+ ) e GVEN Y08,

n=j+1
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where
e, ZV =[N, B =g g
é]N=[(§}rj)/v--'v(§erj)t]t’ i=1,...,N, ]:]""’m’d:]""’rj'

The vector 6 € 0 is a time-varying uncertain parameters. All functions are smooth
and vanishing at the origin for any 6.

Remark 2.26 Every subsystem in (2.174) possesses a nested structure, that is, the
(x/, & ljrl S g/ ) blocks are nested in the &7/ +Lr; —block through feedback con-

nections between these blocks. Moreover, each block has a strict feedback structure
with unmatched interconnections. Such a structure can be easily seen from (5).

Our objective is to design decentralized robust controllers
J - J J(vi EJ J ;
u]:u](-xjvélrl)» R um:Mm(x],glrls---s%_mrm)s J=1aaN

such that the origin of the corresponding closed-loop system is globally asymptoti-
cally stable for any 8. The recursive design technique, that is, back stepping with the
aid of augmentation, developed in [36], will be applied to construct decentralized
robust controllers for the system (2.174).

To this end, we impose the following assumptions:

Assumption 2.4 There exist positive definite and proper smooth functions
Vi), j=1,...,N, pl'>0
such that
iaﬂf,-(x, 0) < —iip’*nxfnz’- (2.175)
Pl e |

Assumption 2.5 There exist a series of non-negative smooth functions

ikt (j ] £ ltt Jj £/
iao(x’s &y s 5; Lrj_ &) Yiasx 51” : 5] Lrj_ i)
it (. j J zJ i i E. £J
lIjjdjs(x slrl jfl,rj,l’é:jd)’ lI/jdll(x 7Slrl : 'S;:] Lr;_ %_]d)
such that
N
II‘I/ 51,...75-,9)”
N =l nrn p
lkt k ltt Jt
Yol I+ wiislEll
k=1 =1 s=2t=1
0 N

d Jj P
ZZ VIS ELT + YD D s (2.176)

t=1 k=11=1 t=1

forj=1,...,N,k=1,...,mandd =1, ...,7;.
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Assumption 2.6 There exist a series of non-negative smooth functions

inkt  j £J £J init (. j £J £J
¢jd0 (x ’Slrl""’ n—l,rn,l)’ d)jdls(x ’Elrl""’ n—l,rn,l)’
lnkt J )
Pjan (x 51” )
such that

@GN EY, . EY 0l

11‘1

N p
Z DIk k|t +ZZZ¢;’Z;A|§A

k=1 r=1 =1 s=2 t=1
+ZZZ g (2.177)

forj=1,....,N,k=1,....m,n=j+1,....mandd =0,...,r;

Remark 2.27 It must be noted that Assumptions 2.5 and 2.6 imply that the intercon-
nections are bounded by polynomial-type nonlinearities with the decentralized strict
feedback form. In particular, the interconnections in the ith subsystem are bounded
by polynomial-type nonlinearities which are composed of two parts: higher-order
polynomials of its own states, i.e. the second and the third terms on the right-hand
side of (2.176) and the second terms on the right-hand side of (2.177); higher-order
polynomials of the states from other subsystems, that is. the first terms on the right-
hand side of (2.176) and (2.177) which are comprised of all the zero-dynamic con-
sidered in [25], the last terms in (2.176) and (2.177) which are comprised of the first
states of each subsystem.

Remark 2.28 Note also that the restrictions on the interconnections imposed in As-
sumptions 2.5 and 2.6 are very general which include many types of interconnec-
tions considered in the existing literature as special cases, for example, the intercon-
nections bounded by first-order polynomials [3], higher-order polynomials [25, 38].
Compared with the work in [3, 56], no matching conditions are imposed in Assump-
tions 2.5 and 2.6. Furthermore, the kth subsystem’s state variables x* are allowed to
appear in the higher-order polynomials in Assumptions 2.5 and 2.6.

Remark 2.29 In the literature, the decentralized robust stabilization problem has
been addressed for a class of large-scale nonlinear systems of the form (2.178). In
what follows, we consider the same problem for a wider class of large-scale systems
with more than one input and less restrictions on interconnections.
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2.6.3 Robust Control Design

We now look for designing decentralized robust controllers for the large-scale sys-
tem (2.174). The design will be carried out step by step.

1. Consider system (2.174) with m = 1, that is
i = Il g+ eV EY o)

& =&+, GV EY0),

(2.178)
/ ' ' -N EN
gljsrlfl :éjljrl + lIjlj,rlfl()C 61 ,0),
Eljr'l = u{ + wljrl ()ENv é]lva 9)7
where Qﬁig) and 11/1];1 satisfy the following conditions:
N p ‘
1@ EN. o) < S @il el gl
k=1 t=1
N p ‘
+Y Y il EDIE I (2.179)
k=1 t=1
. N p _
I, GV EN o) < D03 wikio B 1
k=1 t=1
+ 2 D Wi E g
s=2 t=1
N p .
+ Zzwllsal(x'/véljdﬂélkﬂt, (2.180)
k=1 t=1

which follows from Assumptions 2.5 and 2.6. It is readily seen that system (2.178) is
quite general. Furthermore, conditions (2.179) _and (2.180) are less restrictive due to
the presence of the higher polynomial terms |& 1} ;| in (2.180) and the interconnection

terms ||x%||” in (2.179) and (2.180). With Assumption 2.4, (2.179) and (2.180), an
appropriate design procedure can be applied to system (2.178), the result can be
summarized by the following lemma:

Lemma 2.7 Consider system (2.178) with Assumption 2.4 and (2.179) and (2.180).
There exist a change of coordinates z{d = Eljd — ot{’d_l(xf, éf’d_l) with ot{o =0
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and decentralized feedback laws u{ = u{ (x1,E lj rl) such that the Lyapunov function

ZV/+ZZ L2 (2.181)

lldl

satisfies

N p ]
=Y > i - ZZZcm(z{d>2’

=1 t=1 i=1d=11t=1

plit >0, c’i’ﬂ >0 (2.182)

along the solutions to system (2.178) with u{ = u{(x-/, éljrl)'

Remark 2.30 Note that Lemma 2.7 is an extension of the results given in the liter-
ature. The proof presented there can be modified to verify Lemma 2.7. However, a

major modification should be made, that is, the terms hke |§ | should be expressed

in terms of x/ and zl gford=1,...,s. Observe that ol | s_ can be put into the form
) ) s—1
J ) JVyd =J i g J
of = oD Y] 6 E s,
d=1

due to the smoothness of “{,5—1 and “{,s—l (0) = 0. It follows from

Jo_ J J g J
§ =2ty (&L )
that
J J =J i\ J = Y J
&y =215 +0‘1,s—1,0(x’/)x1 + Zal,s—l,d(xl’ Eps - E1a)zyy
d=1

which implies, according to Lemma 2.8 in Sect. 2.6.5, that

&1 < G+ DT ]+ ]y oD 1]
s—1

+ s+ DT a6 Bl el

d=1
Step T': Consider system (2.174) withm =T, T > 2, that is,

t
i = Il )+ iGN EN. L EN 0.

n=1

S =g+l GV EN. BN )
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t
+ Y oM EY. Y. 0],

n=j+1

(2.183)

J _ & J N
j’rj_l _Sjrj +l1/j,rj—l(x %—1 9 e éj 19)

t
2 : i =N g£N
+ ¢;‘flrj_1(-x ’El 9. én 99)5,117
n=j+1

g}{rj:u§+lI/].Jrj()E ENLLEN )

Y
t
i =N N
+ > e GNEY BN 05
n=j+1

where u] = u] (xf,éljrl), up = ué(X],Ezjrz),

£J
- UL . ”T 1—“T l(XT 287 1,y y)
are determined in the first 7 — 1 steps with

T=16) G
XV =1x),....x"H7,
= [(foj +¢{05{1)/15{2+W1j1’---vgi/rl
+l1f1,l U (Xf)+t1/1r,],
O =[(P) . @{1..... ®1% . o1 T,
D A (6 SN N AP TOVRN PN
XY, =1X7_0) . (XY _)T,
Fi o =IF{ 3+ 156 5 ) & o+ ¥,
5%72 rra T q’%fz Tr_a—17 ué"fl (X§72) + qj7/"72,r7,2]/’
op =@y ey et

i,T—1 i,T—1 i,T—1 /
¢T—l,l’ teo ¢T—2,r7_2—1’ CDT—2,r7_2] :

Such a system can be alternatively put into the following form:
Xj_y=F{_ (X)_,0)+ & (XY_ &Y. 08,

57{1:&7{24—&0 T I’ST’Q)
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(2.184)
5%2 = 5%3 + ‘I"le(}_(y—lv g;v 0),
N
sTrT _”T + TrT(XT l’éT ,0),

where

J _ J ) Jj ’
X =G 8B, T
Xy, = [(X‘T,])C L (XY,
Fl  =UF_,+®5 el | &l ,+ ¥
T—1= -2 T-2 ST-1,1) 8712 T—1,1>""»
J J J J J
sT—1,rT_. TV U (X)) + wT—l,rT_l]/’
U (CIA I

iT
el

iT iT /
(pT—l,rT_|—1 ’ (DT—l,rT_l] *

Accordingto Step T — 1, F%._l satisfies the following inequality:

N p N
<= P

T-17; p
i=1t=1 i=1 j=I

Yo @) (2185)
d=11t=

1

It follows from Assumptions 2.5 and 2.6 that <D§T_1 and '1/; 4 satisfy the following
inequalities:

T—171j
12" (XYL &Y o) < 10l + > @i
j=1d=1
N p
<Y D BTH (X E I

N
+>.) ZZ%”E WX eI

Mb
S

Th (X ELDIERT, (2.186)
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N »p
1w (XYL EN o < 30wk (xg_ E I

k=1 t=1

T—1 n

+ZZZ ”zlls T 1s‘§Td)|§1Y|l

=1 s=2t=1

+ Zzwﬁln (XT 1 Er)lEr

s=2t=1
N T—-1 p

+SS S vk xd LB DIERT. (2187

k=1 1=1 t=1

With (2_. 1 85)—(2. 1 87)7 it follows from Lemma 2.7 _that there exits a change of coordi-
nates zj,; = S%d O‘l,d—l (X7, é;’d_l) with a7, = 0 and decentralized feedback

laws u]T = uk (XT I STrT) so that the Lyapunov function

N rr
1 .
Wr=Wri+3 ) g™ (2.188)

i=1d=1
satisfies
N p N t Tj p )
=2 PII=00 0 ) @t (2189)
i=1t=1 i=1 j=1d=11t=1
along the solution of (2.183) with
W =u{( &) wi=uwb(X]E ). ... up=u(XS_ B ).
From the foregoing analysis, we have the following result for system (2.174):

Theorem 2.10 Suppose that Assumptions 2.4-2.6 are satisfied. Then, system
(2. 174) can be globally asympto[lcally stabilized by decentralized robust control

laws Ml =uy(x/ Slrl u{n = um(x 51,1 ‘i:mrm)

2.6.4 Simulation Example 2.7

To illustrate the theoretical developments, we consider the large-scale nonlinear sys-
tem

i = —xt = N + &, ()0 sint

1
+ S ENED + &),
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£l =&l + & (E]) 0 cost,
1 1
S12 =up,

1 )
g =&+ Z[xl sint + (£3,)%0 cost],

1 1 (2.190)
522 = Uy,
$121 = 5122 +§221§111%_1219C0St,
2 2
%_12 =uy,
1 .
£ =&n+ Z[xl sint 4 (£),)%0 cost],
2 2
& =uj,
where A=1+ (x1H)2 + Ziz:l Z?:l(g{j)z + 21_2:1 Z?:l(SZJj)Z and |0] < 1.
For this purpose we choose V = 3p(x')2, p > 0. Then, a simple calculation
shows that
oV
—[—)Cl _ (xl)?)] < _p(xl)Z _ E(}Cl)4
8)61 2

which implies that Assumption 2.4 is satisfied. In addition, it is not difficult to prove
that Assumptions 2.5 and 2.6 are satisfied as well. Therefore, the design procedure
developed in Sect. 2.6.3 is applicable. Note that the approach in [81] cannot be used
to solve the problem for (2.190) because there exist interconnected terms, that is, the
last terms in the first equation, the second equation, the fourth equation, the sixth
equation, and the eighth equation of system (2.190).

First, consider the following system:

= —xt = (h? +£),(xH?0sing,

£l =&,

El = uj, (2.191)
5121 :‘5122’

5122 =“%-

It follows from Step 1 in Sect. 2.6.3 that the following controllers can be con-
structed:
9o
up=—ciyz — & = 5l + (D]

1 80‘111 1 g a0‘111 1 1
- = -— +— + o),
2112< axl 211 Bzh (212 i)

2
o
2 212 2 11,2 2
Uy = —C11212 — 2] +—8 @ o)),

211
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so that the Lyapunov function

2 2
== V + Z Z(Z{d)z

i=1d=1
satisfies

. 2(P 1Y 14

Wi<—px)|lz—z)&x) _C]11(Z11)

2 2
Cm(Zn) 0111(111) 0121(212) C121(212)v
where z!, =&l 22 =&2, 21 =&l —al | 22, =€2 —a?, o), = —cll gl —
1112 1> <11 = 11’ 12 12 131’ 12 2 11> % 111511

prn(x) anda”_ 0111511 6111(511)

Second, consider (2.190) and carry out Step 2 in Sect. 2.6.3. We obtain the fol-
lowing controllers:

__ 1 1.1
="Zix»n Z21 %2 822227,

__2 2 .2
=—Zin— Z21 - I//22 — 8325,

1 _ &1 2 __ &2 1 1 _ 1
where Z21 = 521, 121 = “;:217 122 = %-22 0121; Z22 522 0521, and

aal \2 1 dal \?
1 1 1,3 1 1 11 1 1 11
oy = =223 — (231) —121|:<Px 21251 axl ) + 5(111 _112ﬁ> :|

2 2 23 2|2 80‘121 g 202, 1 20
(le = —2Z2] —2(Z2]) _Z2] E Z]] - ? (Z]]) + E(Zz]) )
11

Ja 1
Wzlz = 21 [x + (X ) ]1- 21 (le +0511)
Bz”

1
doryy ao‘21

— @ul Py 1 (222 +0[21)
1 2 1 2 2 1\2
slo— l(aamzl > n <a°‘2121 ) n 1<30‘2121 > n <3°‘21>
22 2\ gx! 11 9xl 21 9 }1 21 82%1 ’
2 %1 ) o
1”22— oz 2 (112+ - 922 Uy — oz 2 (22"‘0‘21)
211 2 21

2 2 2\2
2 -1 803) 5 1 (daiy day,
2= ~5 221201 + + = -
2\ 0z, 8521 92
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The derived controllers stabilize the system (2.190) because they render the Lya-
punov function

2 2
Wo=Wi+ Y Y (h)?

i=1d=1

satisfy
Wzi—(P—Z)(X1)2—<§ >( = (efly = D@ip? — ety @1)?

(0111 2)(1%1) 5121(212) Clzl(le) ZZCZJZ(ZZJ

i=1 j=1

For the purpose of demonstration, simulation is carried out for the initial conditions

x! _09511_ 09511_05512_05 512_ -0.7, 521_07521_085212=

—0.8, 522_09 and the parameters p = 3, cHl =2, 0111 =1, c%%l =2, c121 =1,

c%%l =1, c2 2= =1 for i, j = 1,2. The responses for the closed-loop system are

plotted in Fig. 2.3.

10 1

20 1 ot
o-k Lz -1f e 1

20 Ll

0 05 1 1.5 2 25 3 0 05 1 1.5 2 25 3

Fig. 2.3 Trajectories of the closed-loop system
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2.6.5 Proof of Lemma 2.8

Lemma 2.8

@+ +a) <n''(ail' + -+ lan|).
Proof 1t is obvious that
(a1 +---+an) < (ar|+-- + lan))’.

Set a = (la1| + -+ + |au|)/n and f(x) = x! for t > 1 and x > 0. Because f(x)
is ¢® function, by Taylor expansion, there exists a real value & between x and a,
satisfying

fO=f@+f@x—-a+ %f‘(&)(x —a)’
which implies that
f@) = f@+ f@x —a
because f(£)(x —a)? > 0. Therefore

flanl) = f@ + f@ (a1 — a),

flanl) = (@ + f(@(lan| — ).
Adding all these equations together gives

(ail + -+ lan])’

lar|" + -+ +lan|" = nf (@ =n(@' = pra

which implies that

(@ +--+a)" < (arl +---+lan))’
<n" 7 Na| 4+ + lanl"). O

2.7 Notes and References

This chapter provided a critical overview of decentralized control techniques for
classes of nonlinear interconnected continuous-time systems. The area of nonlinear
control is so wide to accommodate new and research directions along the productive
ideas [9, 19, 22, 23, 29, 40, 42, 43, 45, 46]. In particular, the topic of nonlinear
interconnected discrete-time systems has not been fully investigated in the literature.
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Chapter 3
Decentralized Control of Nonlinear Systems I1

In this chapter, we start our examination of the development of decentralized control
techniques for interconnected systems where we focus on the classes of nonlinear
continuous-time systems. We focus on interconnected minimum-phase nonlinear
systems with parameter uncertainty and bounded and/or strong nonlinear intercon-
nections. The objective is to design a robust decentralized controller such that the
closed-loop large-scale interconnected nonlinear system is globally asymptotically
stable for all admissible uncertain parameters and interconnections. The design is
recursive in nature. By employing Hso performance, the solution of the decentral-
ized control problem is attained via the Hamilton-Jacobi-Isaacs (HJI) inequalities.
Finally, a decentralized output-feedback tracking problem with disturbance atten-
uation is addressed for a new class of large-scale and minimum-phase nonlinear
systems. Application of decentralized stabilization and excitation controls of multi-
machine power systems are demonstrated.

3.1 Introduction

Large-scale systems consisting of a set of small-interconnected subsystems can be
found in many applications such as electric power systems, industrial manipulators,
computer networks, etc. The centralized control of large-scale systems is usually
infeasible due to the requirement of a formidable amount of information exchange.
Hence, decentralized control, a control law based only on local information, is often
preferable [46]. Certainly, because of the interconnections among subsystems the
design of a decentralized control is in general, more difficult than that of a central-
ized control.

On the other hand, exact modeling is usually impossible for physical systems,
not to mention large-scale systems due to their complexity. Therefore, a decentral-
ized control design which takes into account possible modeling uncertainties is of
practical significance. Usually, the uncertainties for large-scale interconnected sys-
tems appear not only in local subsystems but also in interconnections. Decentral-
ized robust control for interconnected linear systems with uncertainties satisfying
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the so-called strict matching conditions has been investigated in [6, 11, 12, 44,
45] and references cited therein. The interconnections among subsystems treated
in these papers are mostly bounded by first-order polynomials. It was pointed out
in [44, 45] that interconnected systems with a decentralized control based on the
first-order bounded interconnections may become unstable when the interconnec-
tions are of higher order. In [15], decentralized robust stabilization was considered
for large-scale systems with interconnections bounded by some nonlinear functions
and uncertainties satisfying the so-called matching conditions. Very recently, fol-
lowing the development of centralized control of nonlinear systems [17, 27, 32],
a decentralized adaptive control for a class of large-scale interconnected nonlinear
systems was proposed in [21] where the strict matching condition was relaxed and
higher-order interconnections among subsystems were introduced. Notice that the
system under consideration in [21] is assumed to be exactly linearizable and have a
linear parameterization of uncertain parameters and/or disturbances.

In this section, we investigate the problem of decentralized robust control for a
wider class of large-scale nonlinear systems with parametric uncertainty and non-
linear interconnections. Each subsystem of the interconnected system is assumed
to be partially feedback linearizable and minimum phase. The uncertain parameters
and/or disturbances are allowed to be time-varying and enter the system nonlinearly.
The nonlinear interconnections are bounded by general nonlinear functions of the
zero-dynamics and outputs of other subsystems. Inspired by the recent work of cen-
tralized nonlinear control [7, 17, 29, 32, 42], we show that decentralized global
robust stabilization can be achieved for the uncertain interconnected large-scale
systems by employing a recursive controller design method. Our result relies on
a proper construction of Lyapunov function for the interconnected systems. A nu-
merical example is presented to demonstrate the effectiveness of the proposed robust
decentralized control technique.

3.1.1 System Description

Consider a large-scale nonlinear system comprised of N interconnected subsystems
with time-varying unknown parameters and/or disturbances entering nonlinearly
into the state equation. The ith subsystem is given as

zj = fjo(zj, xj1) +@jo(zj, Xjo. Zj, Yj; 0)xj1,
Xj1=xj2+¢1zj,Xj1,Z;,Y};0),
Xjp=xj3+¢j2(zj,%Xj2,Z;,Y;;0),
(3.1)
Xjri—1=Xjr; +@jri—12j,Xjri-1,2j,Y;;0),
Xjr; =i+, Xjrs Zj, Y3 0),

Yj=Xjl1,
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where
=[x .o xpl's Xjo=xj1. xj =X,
(zj,xj) is the state vector of the jth subsystem with

ni—rj ot ot t t tqt
G eNVT, Zi=[z12 - 2 Zjqq --- 2]

Yi=[yiy2 .. Yj=1 Yj+1 --- Y1,

and v; € R is the control input, y; € N is the output, 6 is a vector of unknown,
time-varying piecewise continuous parameters and/or disturbances which belong to
aknown compact set £2. The vector fields f;o and ¢ jx are smooth with f0(0,0) =0
and ¢j(0,0,0,0;0) =0,V0 € 2,1 < j <N, 0 <k <r;. Observe that the vector
(@), k=0,1,2,...,r;, represents the interconnections of the jth subsystem with
the other subsystems.

In what follows, we consider the decentralized robust control problem for a
wider class of interconnected systems with partially feedback linearizable subsys-
tems and nonlinear parameterization of time-varying parametric uncertainty. Ob-
serve from (3.1) that the interconnections involve the zero-dynamics and outputs of
other subsystems.

Remark 3.1 Similar to the centralized case discussed in [29, 34], the zero dynamics
of each subsystem in (3.1) are independent of the uncertain parameter vector 6. For
notional simplicity, in the sequel, we assume thatn; =n,r; =r,1 < j < N. Then,
by considering y; = x 1, system (3.1) becomes
zj = fjo(zj, xj1) + ¢jo(z;, Xio, Zj, X j1; 0)xj1,
Xj1=x2+¢1zj, X1, Zj, X1;0),

Xjpp=xj3+¢2(zj, %2, Z;, Xj1;6),

(3.2)
Xjr—1=Xjr+®jr-102j, Xjr1,Zj, Xj1;0),
Xjr=vj+ (2, Xjr Zj, Xj1:0),
where X1 =Y; =[x11 x21 ... Xj—1,1 Xj+1,1 ... xn1]".
We make the following assumptions for system (3.2).
Assumption 3.1 There exist some smooth real-valued functions
Vio(z;), j=12,....,N
which are positive definite and proper (radially unbounded), such that
Vo 2 .
?j.fjo(Zj,O)S—ijZjll , I1<j=<N (3.3)

for some positive real numbers v; > 0.
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Assumption 3.2 The nonlinear interconnections ¢ j in (3.2) satisfy

bk (zj, Xjk> Zj, Xj1;0) — @k (2, Xjk, 0,0,0)]
N
<> ke %I S Uze Dzl + € fre Ren xe0) |xen 1]
(=1
N
<> ke %08 jke (| zes xe) D). (34)
=1

for any 0 € 2, njke(-), ¢, () and £jy (), €=1,2,...,N,0<k<r,1<j<N
are nonnegative smooth functions with {j(.)k ()= ;}M() =0.

Remark 3.2 Note that by the well-known converse Lyapunov theorem, the zero dy-
namics of each subsystem are globally asymptotically stable if and only if there
exists a positive definite and proper Lyapunov function Vo such that

(0Vjo/9z;) fjo(zj,0) <0, Vz;#0.

Indeed, the requirement (3.3) is more restrictive than this. However, a globally expo-
nentially minimum-phase nonlinear system (that is, the zero-dynamics of the system
are globally exponentially stable) always satisfies condition (3.3).

Remark 3.3 The interconnections in Assumption 3.2 are very general, including
many types of interconnections considered in existing literature as special cases, for
example, interconnections bounded by linear (first-order) polynomials [6, 11] and
higher-order polynomials [45]. Furthermore, unlike the work in [6, 11, 15, 45], no
matching conditions are imposed for system (3.2).

In the sequel, we deal with the decentralized global robust stabilization prob-
lem for system (3.2) satisfying Assumptions 3.1 and 3.2. More precisely, we are
concerned with the design of decentralized robust control laws v; = v;(z;, x;),
j=1,..., N, such that the overall closed-loop interconnected system (3.2) with
the control laws is globally asymptotically stable for all admissible uncertainties
and interconnections.

3.1.2 Robust Control Design

In this section, we shall show that the interconnected system of (3.2) is globally
asymptotically stabilizable by decentralized state feedback controllers. It is demon-
strated that the decentralized robust controllers can be constructed effectively by
employing a Lyapunov-based recursive design procedure.

To establish the main result, we shall first present the following lemma which
provides the first step of the induction in the construction of robust decentralized
state feedback control laws of system (3.2).
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Lemma 3.1 Consider the first two state equations of system (3.2):
zj = fijo(zj, xj1) +@jolzj, xj1, Zj, Xj15 0)xj1,
Xjt=xjp+¢1(zj,xj1,Z;,X;1,0), 3.5)
Yji=%j1
satisfying Assumptions 3.1 and 3.2. Then, there exists a smooth function x;fz (zj,xj1)

with x;’fz (0, 0) = 0 such that system (3.5) with the control xj, = x;fz (zj,xj1) in the
coordinates

Zj=2j  Xjp=xj
having
1
Vit =W;(Vjo) + 55, (3.6)
. dW;(Vip) Vg -
v j\Vjo) dVvjo bizixixs —ri2 + lz:112
jr= dV]O 8Z] f]OO (2 x]l)le rx; Izl
1 N
+5 28l xenlh 3.7)
=1

with Vjo being given in Assumption 3.1 and W;(-) and b;(.,.) are, respectively,
a smooth Koo-function and a smooth function to be chosen. Moreover,

fijoo(zj) = fjo(z;,0), (3.8)
8100l Ge, xen) D) = Brop Cjoe (e, xe)IN? + B GjneCllze, xen) D) (3.9)

with Bjo¢ and Bj1¢ being positive scaling constants.

Proof Since fjo(zj,xj1) of (3.5) is a smooth vector with f;0(0, 0) = 0, there exists
a smooth vector f;1(z;,x;1) such that

fio(zj, xj1) = fjoo(zj) + fi1(zj, xj1)xj1,

where fj00(z;) is given by (3.8). In view of Assumption 3.2 and along the state
trajectory of system (3.5), we have
dW; aVjo
Vi = ioYj
deo 8Z'

(fio+djox;1) +xjilxjp+dj1(zj,xj1, Zj, Xj1;0)]

dW] BV]()
dV 0z

(f,oo+f,1x,1)+x,1x,z+x,12w,1(z,)¢,z(z,, xj1.0,0;6)
j=0

1
+xj1 ) Wh @)@z xj1. Zj. Xin: 0) — ¢ji(2j.x1.0,0,0)),  (3.10)
j=0



100 3 Decentralized Control of Nonlinear Systems II

where

dW; 3Vjo
lﬁjl(zj)—dvjo 52, UHEHESE
Since ¢;0(0,0,0,0;0) = ¢;1(0,0,0,0;6) = 0, VO, there exists some function
oj1(zj, xj1) such that

1
Xj1 Zlﬁf](zj)fﬁje(zj,le,(), 0;0)

=0

< Ixjtlaji(zy, xj0) lzjll + llxjlD. - (3.11)

Recalling Assumption 3.2, it follows from (2.17) that

. dW; 0Vjo
Vi1 < dva?j(ijO‘i‘fjlle)+xj1xj2

N

aw;
—— anOZ(stle);jOZ(”(ZZ»xil)”)
=1

dVijo

Vo

+ Ixj1l B2
j

N
+ il Y mjezyxi0giel e, xen )
=1

+ |xjtlei(zy, x ) Uzl + llxjil)
dW; Vg
dVio 0z

A

(fjoo + fj1xj1) +xj1(xj2 +xj1051(25, xj1))

2 N

2
Zﬁjﬂéﬂjog(zjale)
=1

dw; |*

dVijo

1,

Vo
+ Ele —

07

1 N
5 2 Bjor@joel e xenl)’

=1
. e
350 DB G0 + 5 2 B Gl G xen D)
(=1 =1

1

+Zx]21a12'](zj’le)+||Zj||2
dW; dVijo

[ +x. X +M T
dVjo 9z fioo+xj1(xjo+ Mji(zj. xj1))

N
1
+l1zI1” + 3 Y 810l e xen) D) (3.12)
=1
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where §1¢ is given in (3.9) and

dW; aVjo 1 |dW; |2|aVio |> &
Mizixiy = WioVjo, 1 1dW, J R
]1( j jl) deO aZj f]l 3 Jjl deO azj ;,3]0877]0@( Jj jl)
| N
+EZﬁjleﬂ?w(Zj,le)+Xj10!j1(Zj,Xj1)
=1
1 2
+ij105j1(zj‘,xj'1). (3.13)
Choosing
x]‘2=x;<2=—Mj1 —bj(zj, xj1)xj1 —rxji, (3.14)

where b;(.,.) is a smooth function to counteract the effect of the interconnections
and yet to be determined. Then, (3.7) is obtained and the proof of Lemma 3.1 is
completed. g

Remark 3.4 Considering the case when r = 1, that is, x;2 = v; in (3.5) is the ac-
tual control input. Then it can be easily shown that the design functions b;(.,.)
and W;(-), j=1,2,..., N can be chosen such that the decentralized state feedback
control v; = x;fz (zj,xj1) solves the robust decentralized stabilization problem.

3.1.3 Recursive Method

Next, we proceed to establish the systematic recursive design methodology for con-
structing robust decentralized control laws for the system (3.2) when r > 2. We need
this technical result.

Lemma 3.2 Consider the first p + 1 state equations of system (3.2):
zj = fjo(zj, xj1) + djo(zj, xj1, Zj, Xj15 0)xi1,
Xj1=xj0+¢j1(zj, xi1, Zj, Xj1; 0),
Xj2 = xj3+¢jo(zj, Xi2, Zj, X 13 0),
J J j2\Zj, Xi2s £js A (3.15)
Xjp1=Xjp+®jp-12j, Xip-1,2Zj, Xj1;0),
Xjp=Xjpr1+®jp(2 Xip, Zj, X150),

satisfying Assumptions 3.1 and 3.2. Suppose that for any given index p =m (1 <
m <r — 1), there exist smooth functions
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Xia(zjo xj1)s X5z, %2)s oo X1 (@) Xim),

50,00=0, 2<k<=m+]1

such that system (3.15) with the control Xj y41 = X7
dinates

Tt (zj,Xj,m) in the new coor-
j=2zj, Xj1=Xj1,

- N . . _
Xj2=Xj2 =X, X0, ooy Xjm = Xjm = X, (25, Xjm—1),

Vim =W;(Vjo) + = X}w

= (3.16)

fioo = bj(zj. xj1)x7, o—m+nikw+mmn
k=1

dW; Vi
jm =
dVjo 9z;

with Vo as given in Assumption 3.1 and

8j0¢(ll (ze, xe) ) =0,
Sike(ll(zes xe) ) = 8,k—1,e(ll (Ze, xe) ) (3.17)

k
+ 3 B Cine Ul e xe) D), 1<k <r.

k=0

Then for system (3.15) with p = m + 1, there exists a smooth decentralized state
feedback control law

X2 = X2 @ Kjma )i Xy 2(0,0) =0 (3.18)
such that system (3.15) with (3.18) in the new coordinates

zj=2zj, Xjk, 1=<k=m,

- % _
Xjm+1 = Xjm4+1 = X 4] (Zjv xj,m)

satisfies
dW IV 0 m+1 )
VJmH_dV / bj(Zj,le)sz-l—(r—m)Zx?k
k=1
| N
+(m+ Dz 1>+ 3 25,/,m+1,z(ll(u, xe)D, (3.19)

=1
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where

1.,
Vim+1=Vim + 3Gt

Proof By evaluating the derivative of X; ;41 =X m41 — we obtain

*
xj,m—H ?

Xjm+l =Xjme2 +ajm1(Zj, Xj 1)
m+1
L = = .
+ Vim41@j Xjm)@je(zj. Xje. Zj, X j1:0),
£=0
where

m *

ox’*
Jj.m+1
fiolzj, xj1) — Z g S

xi, L
=1 J

*
8xj,erl

ajm+1(Zj, Xjm+1) = — 22,

0 -
V5 ma1 (@ Xjm) = —

E -
l//j,erl(ZjJCj,m) = —

+1 .
w;’?er](Zjvxj,m) =1

Then, the time derivative of V; 1 is given by

Vimer = Vim +Xjmet| Xjme2 + ajms1

m—+1
' _ - .
+ Z Vim1(@s Xjm)Pje(zj, Xje, Zj, X j1:0)
=0
= Vim + Xjm+1(Xjms2 + @jmt1)

m+1

+Xjmt1 Z Wf’m_,_lcbjz(zj‘,ijg, 0,0;0)
£=0

m—+1
+Xjmt1 Z ¢f,m+1[¢je(21,iﬂ, Zi, Xj1;0) —¢je(zj,xje,0,0;0)].
=0
(3.20)

Define
$in(2j, X j030) = (2, %6, 0,0;0)
=¢je(zj, Xje+57,0,00), 2<e=<m+1, (321)
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where
ij@z(x‘“j],...,ij[), ijez(x;fl,sz,...,sz), i]():i]], )Ej():xl*l.
Since ¢¢(0,0,0,0;0) =0, V6 € 2, 0 < £ <m + 1, it is easy to verify that
¢~>jg(0, 0;0) =0, V0 € 2. Thus, there exist smooth bounding functions o;,(z;, X j ¢),
£=0,1,...,m+ 1 such that

pio(zj, xj1,0,0;0) = |$jo(zj, ¥j150) < ajolzj, K0 lzj | + %11,

L
ez, %0, 0,0;0) = |dje(zj, X je; 0) < an(ZjJ?j,e)[llzjll + Z |ijk|j|, (3.22)
k=1

1<l<m+1.

In view of this, the second last term of (3.20) satisfies

m+1
Xjm+1 Z Vi m1®i(2j. Xj¢, 0,0;0)
=0
m+1 L
< %1l [w,@,mﬂ lejolllzsll + 157D + D 1 |a,~e(||z,-|| +> muﬂ
=1 k=1
= |i,~,m+1|[|w§-’,m+1|a,~o(||z,-|| +1511)
m L
+Z|w;,m+1|an(||z,-||+Z|ijk|>}
=1 k=1
m
+ 1m0 g (nz,-n +) |f,-k|> + 15
k=1
m
SE e W) g m+ D+ )
=0
1 "o d ?
~ 2 ~
+ | Uzl + X1 D"+ Zjll + Xjk
4(m+1)|:(” i+ 151D ;W])(n il lg j |) }

2
1 3 1 2L N
+50m+ D10 i1 + 2m+ 1) (”Zi I+ |xﬂ<|> + @15
k=1

m m
- 1 1 -
<5t 2 W) e O+ DD + Sz 1P+ 5 D 1Tl
£=0 k=1
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1 ~%
+om+ D7 195 1 + Iz 1> + Z 1Tkl ) + 0155 st

m
1 -
= [Z(I/ff,m+1)2“/2'f(m +DE+ D+ S0+ D, + a,-,mﬂ}ximﬂ
£=0

m
2 ~ 2
+llzjl® + D 1%l

k=1

m
<E it Eim1 @ R ) + 12517 + )18l (3.23)
k=1

In view of Assumption 3.2 and (3.23), it follows that (3.20) can be written as

Vj,m+1 = ij +ij m+1(xj m+2 +aj m+1)

m—+1
1wl D10l Znm(z],x,z)@,mu(zs,xsl)n)
=0 s=1

m
-2 2 - 2
+ X5 1 Ejoms1 + Izl +§ % jk |
k=1

. - =2
= ij + Xj m+1 (xj,m+2 + aj,m—H) + xj’m_HEj,m—H

m
+ 1z I+ ) 1%l
k=1
1 m+1 N
S5t D 2 Wy ) e (2, 5j0) B
£=0 s=1
m+1 N

1
3 20 2@l xe) D) B

£=0 s=1

+

- dw; ano
~dVjp 9z

— fjoo = bj(zj. xj1)x7, — (r—m—l—l)ijk
k=1

N
1 .
+mlizjlI* + 3 ;ajmmuzz,xu)n) + X jmZ jmt

m
+ X1 (w2 + Mjms) + 1217 + ijzk
k=1
m+1 N
+ = Z Y Ces Uz )N Bk (3.24)

EOsl
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where

M m1(2j, X jm+1) = Qjm+1 + Xjm+1 Ejm+1

m+1 N
STt 0 D W i G G50 B (329)
£=0 s=1
Choosing
Xjma2 =X 002 Xj1s s Xjmt1) = —Mjmir — Xjm — (1 —m)Xjmi1 (3.26)
assures that (3.19) in Lemma 3.2 holds and hence the proof is completed. d

By applying Lemmas 3.1 and 3.2, the construction of robust decentralized control
law which stabilizes the uncertain interconnected nonlinear systems (3.2) can be
readily completed. This is seen by the following theorem:

Theorem 3.1 Consider the uncertain interconnected system (3.2) satisfying As-
sumptions 3.1 and 3.2. There exists a decentralized control law, v; =v;(z;,X}),
j=1,2,..., N, such that the overall system under the decentralized controller is
globally asymptotically stable for all admissible uncertainties and interconnections.
A suitable decentralized controller is given by

vj :x;-(’r_i_l(Zj,)_Cj,r):_Mjr _)ch,r—l _)zjra (327)
where M j, is given in (3.25) withm + 1 =r.

Proof Based on Lemma 3.1, it follows that Lemma 3.2 is satisfied. Extending on
this and applying Lemma 3.2 repeatedly until the rth step, we readily obtain a
Lyapunov-based recursive decentralized control law. Therefore, we can construct
x;‘z(zj, Xj1), ..., x}‘.‘,rﬂ (zj, Xjr) such that under the new coordinates

~ ~ * ~ * =
Zj,  Xji=Xj1, X=X —X5(2x1), oo, Xjr=Xjr— X5 (25, %,,-1),

system (3.2) with control law (3.27) and

Vir=W;j(Vjo) + = Zx]k (3.28)
satisfies
dWw; 3V]0 ) r . )
"= Vi —bj(zj.xj)xi; —I;xjﬁrllz;ll
1 N
5 2 8irel e xen). (3.29)

=1
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where

8jre(ll e, xen) ) = rB0p (¢ joe (e, xen) 1))

+ 0 =5+ DB @jsal G xs) D).

s=1

By virtue of Assumption 3.2, we get

8jre(ll(zes xe)l)

= rBioy &S UlzeD1zell + ¢ Jop e xen) xer )

+ D (= s+ DB @ e UlzeDllzell + ¢ o oo xen) lxer )

s=1

Szrﬁjog((é“jog(llzzll)) lzel® +(§]oe(sz£1)) x2)

107

(3.30)

+ 2Z<r — s+ DBy (e Ulze D) zell* + (¢ er xe1))x7)

s=1

<2A0(lzelDlzell* + 2D (ze, xe1)x 7,

where

Aji(lizel) = rBiop € oe UlzelD) + Y 0 — s + DB (lze D),

s=1

Dje(ze. xe1) = o (¢ hop e xe))? + > =5 + DL @ xen).

s=1

Proceeding further, we define

N
V=2 Vi
j=1
and invoking the structural identity

N N
ZZ [4ilzelDlizell® + Dji(ze, xe)x ]
j=1¢=1

N N
Z > 1A Iz D212 + Dejzjoxxd ]
j=1¢=1

(3.31)

(3.32)

(3.33)
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in view of Assumption 3.1 and by noting that W; (Vo) is a K function of Vo, we
arrive at

N r
. dW; aV;g -
v,-rsz{ L2 fioo — bj(zj, xj)x5 — > % +rllzj 17

= dVijo 0z k=1

N
+Z[Aej(”Zj”)”Zj”z+Dlj(zj’x/)x121]}

(=1
N N

dw;
<D il 30 Az (il 12

= dVijo =1

r N
- ijzk — |:bj(zj,Xj1)xj2-1 — ZD(j(Zj,le):|x]2-1 ] (3.34)
k=1

=1

According to Assumption 3.1 Vjy(z;) is radially unbounded and positive definite
and therefore there exists a Koo function x¢; such that

Agi(llz;1) < Agj (0) + k¢ (Vo). (3.35)
On selecting
N
bj(zj,xj1) = ZDZj(Zj,le), (3.36)
=1
dw; 1 al
L kb — |+ YAy O) F ke (Vi) | Wi0) =0, (3.37)
dVijo vj =

where k; > 0 is a constant, it is readily evident that W;(-) is a smooth K -function.
Then it follows that

N r
V< Z: (—k./v‘/ lzj 1% — fok) } (3.38)
j=1 k=1

Due to the onto-relation between (z;, x;) and (z;, X;), where X; = (Xj1,...,Xj),
the closed-loop interconnected system of (3.2) under the decentralized controller
(3.27) is globally asymptotically stable for all admissible uncertainties and inter-
connections. O

Remark 3.5 It is interesting to observe from Theorem 3.1 that the functions

bj(zj,xj1), W;jVjo), j=12,....,N
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can be selected a priori before the recursive design of the robust decentralized sta-
bilization controller. Moreover, Theorem 3.1 provides a decentralized global stabi-
lization result for uncertain interconnected minimum-phase nonlinear systems with
parametric uncertainty and interconnections bounded by general nonlinear func-
tions. This result essentially extends existing centralized results in [29, 32] to de-
centralized control of interconnected systems.

3.1.4 Simulation Example 3.1

Consider an interconnected system composed of two subsystems:

e subsystem 1:

21 = —2z1 + z1x11,
%11 = x12 + X1121 8in 0 + x3,22 cos 67,

%12 = uy + x5 (x1121 +23) sinéy + x2122 cos(@121),
e subsystem 2:
. 2
722 = —22 + X3,
. 2 2 .
X21 = x22 + (x7;21 + x5,22) sin(2262),
%20 = s + x3,(x112] + x2123) sin 6 + x3,23 cos (63 23),
where 6,6, € [—2, 2].

It is easy to verify that the interconnections in the system under consideration
satisfy Assumption 3.2. Initially, set Bxn =1, j, k, m =1, 2. It follows from (3.32)
and (3.33) that

A =Ap =24 =A42»=0,
D=0, Dip=2x373+25, Dy =2x{1z{+z]. Dn=0.
Letti _ 1.2 _ 1.2
etting V1o = 5z7 and Vo = 575. Then,

aVio V2o
—— fi0(z1,0) = =223, —— fa(22,0) = 23.
321 822

It is readily evident that Assumption 3.1 is satisfied with vi =2 and v, = 1.
From (3.35), it follows that

k11 (Vi) = k21 (V1) = k12(V20) = k22(V20) = 0.
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By selecting k| = k> = 3, then we have from (3.36) and (3.37):
aw aw.
Ly 2 _s

dVio o d Vo -
by = D11 + Day, by = D12+ D).

3

It follows from (3.11) and (3.13) that
(V381 =x121 +0.25, 2] ZX%I
and

dw
My = —lz% +0.5x11 +xnan +0.25a%1,
dVio

dw
My = —222)621 +0.5x21 + x2101 + 0.250[%1.
dVxo

Using (3.10), the virtual control is now computed as

X[, = =M1 — bixiy — 2x11,

x%‘z = —M>; — baxy1 — 2x21.

Next, letting Xjo = xj2 — x;?z, j =1,2, we obtain

ox’ ox:
0 12 0 22
Yp=— X115 Yo =— x21,
12 0z 2 922
E %
Wl = axp, | 0xy Y2 =yl =1
12 axi 22 P 21 =1
* *
12
ap = — (—2z1 +xn1z1) — X12,
071 d
ox2 ox2
2 2 2
ayp = — (=22 +x3;) — X22.
8Z2 3)62
According to (3.22), we can select
2.2 2 2
a1y = xi5(z7 +0.25), Q) = X55725.

It then follows from (3.25) that
My = an + F2(4(h) ) + afy + o) +0.55((W ) + h)?),
M = an + in(@(¥y) 03 + ady +a2) +0.552((¥3)” + (¥3)x3)).
The decentralized control law can be obtained from (3.26) as follows:
up = —x11 — M2 — X12,

Uy = —x21 — My — x2.
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The interconnected system under consideration was simulated with the developed
decentralized controller in order to demonstrate the effectiveness of the decentral-
ized robust control design procedure. The initial conditions were set to be

71 = 1.0, x11 =—1.0, x12 =15,

7> = 1.0, x21 = —1.0, xpn =15

and the uncertainties 61 and 6, are given by 61 = 2sint and 6, = 2cos 12 Tt is quite
evident that the uncertainties are time-varying ones and belong to the set [—2, 2].
The closed-loop responses for the two subsystems are plotted in Figs. 3.1 and 3.2
from which the stability is clearly assured.

Fig. 3.1 Closed-loop 3
responses of subsystem 1

1 x12

z1

-05¢ x11

0 0.5 1 1.5 2 25 3 35 4
Time (sec)

Fig. 3.2 Closed-loop 12
responses of subsystem 2

x22

z2

x21

0 05 1 15 2 25 3 35 4
Time (sec)
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3.2 Global Almost Disturbance Decoupling

We have learned before that the decentralized stabilization problem for intercon-
nected linear systems with uncertainties satisfying the so-called strict matching con-
ditions has been investigated in [6, 11, 45, 46], and references therein. It has been
customary to treat the interconnections among subsystems to be bounded by first-
order polynomials of state. In [15], decentralized robust stabilization was considered
for interconnected systems bounded by some nonlinear functions with matching un-
certainties.

3.2.1 Introduction

The decentralized H, control problem for linear systems has been considered in
[37] where it was shown that the design of each local H, control law depends on
the solution of a higher-order algebraic Riccati equation associated with the overall
interconnected system. In [55] a design approach was provided for composite lin-
ear systems. In spite of significant advance in centralized H, control for nonlinear
systems [2, 19, 52] and references therein—few results on decentralized H, con-
trol of interconnected nonlinear systems are available in the literature. Note that all
these results on Ho control of nonlinear systems require solution of the Hamilton-
Jacobi-Isaacs (HII) partial differential equations, which imposes an intricate dif-
ficulty and especially in practical applications. On the other hand, the problems
of global disturbance attenuation and almost disturbance decoupling for a class of
nonlinear systems with lower triangular structure [19, 33]. An interesting feature of
these results is that a solution of the HJI equations or inequalities is not required.
However, their basic limitation is that there was no penalty on control efforts which
in turn represents a serious drawback as it would result in a poor dynamic perfor-
mance and large control effort. This issue has been addressed in [20], where a global
L>-gain design methodology was developed for minimum-phase nonlinear systems
in the lower triangular form. In the light of the results in [30, 52], the relationship
between an £;-gain of a nonlinear system and that of its linearized system has be-
come quite transparent. Accordingly, if the Ho, control problem for the linearized
system is solvable, one can find a local solution to the H, control problem of the
original nonlinear system. The pioneering results of [20] suggest that for lineariz-
able systems or minimum-phase nonlinear systems with triangular structure, the
solution to the problem of disturbance attenuation for the linearized system suffices
to determine a feedback law that solves the global disturbance attenuation problem
with internal stability for the corresponding nonlinear system. Note that in [20],
a weighting function is fixed a posteriori and only the problem of inverse global
L>-gain analysis is addressed, that is, determine a weighting function r(x) and a
globally stabilizing feedback law «/(x) (constructed by starting from the solution of
a strict Riccati inequality) that solve the problem of global H, disturbance attenu-
ation.
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In what follows, a global decentralized H, control problem via state feedback
control for a class of interconnected nonlinear systems is investigated. First, we con-
sider a rather general interconnected nonlinear system with strong nonlinear inter-
connections. The global decentralized H, control problem of the system is shown
to be converted into the centralized H, control problems for a set of auxiliary non-
linear systems without interconnections. It is well known that solutions to the latter
problems are related to the HJI equations. This result extends the decentralized H oo
control problem for linear interconnected systems to the nonlinear case.

Bearing in mind the difficulty of solving HJI equations globally, a global decen-
tralized almost disturbance decoupling problem (DADDP) is considered for a class
of interconnected systems which are transformable to interconnected systems with
lower triangular structure. It is then shown that a solution to the DADDP can be
obtained via recursive design technique. We focus next on the Hs, control prob-
lem. Specifically, a set of decentralized state feedback control laws as well as state-
dependent weights of the control inputs are sought such that the associated global
‘H~ control problem is solvable.

3.3 Decentralized H,, Control

Consider a large-scale nonlinear system composed of N interconnected subsystems
of the form

Xj=Aj(xj))+Bj(xjuj+pjxjw;+hjlx;),

vj =Cj(xj), (3.39)
1

Zj = (y;-yj +u’jRj(xj)uj)7,j= 1,2,..., N,

where x; € %" is the state of jth subsystem, j =1,2,...,N, x =[x] ... x} ]
is the state of the overall interconnected system, u; € "/, w; € N/ and z; € N
are the control input, the disturbance input and the penalty output, respectively. The
functions

Aj(xj), Bjxj), Cjxj), pjxj), R;xj)
are smooth with appropriate dimensions and satisfy
A;(0) =0, C;(0)=0, h;(0)=0, Nj(xj)=0, Vx;eR".
Assumption 3.3 The nonlinear interconnections
hj(x) =[hj1(x) hja(x) ... hjn; ()]
are bounded by

N
k()] < k() Y Ejre(xe), (3.40)
=1
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where 7k (x;), Cjre(xe), 1 <k <nj, 1 < j,£ <N, are nonnegative continuous
functions with ¢ ¢ (0) = 0.

Remark 3.6 Itis interesting to note that the interconnections 4 (x;), j =1,2,..., N
in Assumption 3.3 are quite general and include, as special cases the interconnec-
tions bounded by linear first-order polynomials [6, 11, 15] and higher-order poly-
nomials [15]. In addition, no matching conditions are imposed.

We direct attention to the global decentralized H, control problem for the
system (3.39) satisfying Assumption 3.3. Formally, given scalars y; > 0, j =

1,2,..., N, we are interested in the design of local decentralized control laws,
uj=uj(x;), j=1,2,..., N, at the subsystem level such that the overall closed-
loop interconnected system (3.39) is globally asymptotically stable and the £-gain
from the disturbance w = [0} ... w/,]" to the controlled output z = [z} ... z}I" is
less than ¥ = [y ... yn]’ in the following sense

N o0 N o

Z/O Zizjdt <Zyj2/0 whw;dt + 8(xo) (3.41)

Jj=1 j=1

forall w; € £;[0, 00), where 8(xp) is a real-valued function of the initial state xo =
[x](0) ... x§, (0)]" satisfying 5(0) = 0.

Remark 3.7 In stating the foregoing problem, y;, j =1,2,..., N, can be regarded
as the prespecified level of Hodisturbance attenuation for each sub-system. When
¥j =0, Vj, (3.41) becomes

IzI13 < y¢ loll3 + 8(x0) (3.42)
forall w; € £5[0, 00), where z =[z] 22 ... zy]" and w = [@] ... &} ]".

In this case, a standard decentralized H, control problem is recovered.

To pave the way toward a result on decentralized nonlinear H, control, it is cru-
cial to recall the definition of global disturbance attenuation for nonlinear systems.
For this purpose, consider a nonlinear system of the form

&= AR) + B+ po,
y=C(x), (3.43)
2= Oy +u' R@u)?,

where w € N9, u € R and z € N are the disturbance input, the control input and the
penalty output, respectively, with A(0) =0, C(0) =0 and R(x) > 0 for all x € R”
and pose the following
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Definition 3.1 Given a real number y > 0, system (3.43) is said to have global
Heo disturbance attenuation y if there exists a feedback control laws u = «(x) with
a(0) = 0 such that, for some proper function V (x) > 0, the HJI matrix inequality

TOA® +B@a) + 72 (2 p@)? €' @' (0RE)
° —1 0 <0

° ° —R(x)
(3.44)

is satisfied for all nonzero x.

Remark 3.8 It is well known that if (3.44) holds, then the feedback law u = a(x)
globally asymptotically stabilizes the equilibrium x = 0 of the system (3.43) when
o =0, and render the £>-gain from w to z less than or equal to y [52].

Associated with the interconnected system (3.39), we introduce the following
auxiliary systems:

. 1 -
ij=Aj(xp) + Bj(xjuj+ [pjx)) B2ym;(x))]é;,
5 ;) (3.45)
= 1 e )
S VAR CHED)E:
- o~ 1 .
Zj=(y;yj+uthj(Xj)Mj)2, j=12,...,N,
where x; is the state, @; is the disturbance input, u; is the control input, Z; is
the penalty output, A;(x;), Bj(x;), Cj(x;), pj(x;) and R;(x;) are the same as in

the system (3.39), 8, j = 1,2, ..., N, are some positive scalars and 8 = ZIN:I Br.
Moreover,

nj(x;) = diag{ni1(x;), ..., Min,; (xj)},

N
G (x) = [Gn (). Gng GDY, dixp) =Y gl

=1

The following theorem establishes that to solve the global decentralized H, control
problem for the system (3.39), it suffices to solve the H, control problem for the
auxiliary system (3.45).

Theorem 3.2 Consider the interconnected system (3.39) satisfying Assumption 3.3.
Given y; >0, j =1,2,..., N, suppose that there exist state feedback control laws
uj =o(x;) with aj(0) =0 such that the system (3.45) has global Ho disturbance
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attenuation y; from the disturbance @; to the penalty output Z ;. Then the decentral-
ized control laws u j = o j(x j) render the system (3.39) globally asymptotically sta-
ble with the Ly-gain from the disturbance o = o] ... o' to the controlled output
z=[z} ... 2y lessthany =[y1 ... yn] forall wj € £5[0,00), j=1,2,...,N

Proof Suppose that system (3.45) has global H, disturbance attenuation y;. By
Definition 3.1, there exist feedback control laws u; =« (x;) with a;(0) = 0 such
that, for some proper function V;(x;) > 0, the HJI inequalities

Vi) (4 + B (e ) + — (av(xf) ( ))2
2%, Xj)+ Xj)o(x; +4y2 Tp] X

;)
0x

—ﬁ

aVi(x;) d
; )

Uj(xj)ﬁ,(xj)< 9x
j
+C;(Xj)Cj(Xj)+/3j_1dj(xj')+a§(xj)Rj(xj)(xj(xj) <0,

j=12,....N (3.46)
are satisfied Vx; # 0.

By defining V = Z —; V; and evaluating the derivative along the state trajectory
of the interconnected system (3.39), we obtain

al aV(x,)
=y [A;(x;)+ Bj(xj)uj+ pj(xj)w; +hj(x)]

= 0

Al (x ) IV;(x))
:Z P [Aj(xj) + Bj(xj)uj + pj(xj)w; ]+ZZ L kf B j(x)

Jj=1 j=1k=1 J

N
av;
<> (x’)[A /(X)) + Bj(xjuj + pj(xj)w;]
Xj

av; (x,)

njk(x;) ZC,ke(w)

N
aV;
<> ;x’)[A () + Bj(xj)uj + pj(xj)oj]

N nj N 1 av] (x]) N nj N
ZZZZ ( ”/k(x/)) ZZZ Y¢jre(xe))?
: k=1 ¢=1 = k=1 ¢=1
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aVi(
—Z IV 1) + By ey + py (o]

- aVj(x;) Vj(x;)
+;Z’3‘ ax‘j ﬂf(xj)nﬂx])( ! ) Zﬂ 'a;(xp. (347

In view of (3.46), and letting u; = «(x;) in (3.47) while invoking Schur comple-
ments, we have

N
H:= Z(Vj — yfa)?-uﬁ +Z;Z.j)
=1

N

IV (x;
Z{ ) )+ By e )
i=1 xj

IA

1 (3Vi(x)) ? ' !
+4—j/2< p.,'(xj)) Cj(xj)Cj(xj-)+aj(xj)Rj(xj)ozj(xj)
J

3)(]'
1 8Vi(x;) (x;) o
+ 8 (,;xj’ ,(,)n,(,)( ij’ ,-(x,->) +ﬂ,.1d,»<x,->}
<0 (3.48)

for all nonzero x = [x] ... x} 1"

On setting @ = 0, it follows from (3.48) that the overall closed-loop intercon-
nected system is globally asymptotically stable. Alternatively by integrating (3.48)
over [0, c0), we have

o
Zf Z;Zjdl<zy]-2/ w;wjt+8(x0),
j=1"° j=1 70
where §(xg) = Z;V:l V;(x;(0)). This completes the proof. O

It must be noted that Theorem 3.2 established that the decentralized H, con-
trol problem for interconnected nonlinear systems can be cast into the associated
centralized H, control problems whose solutions are related to the HJI equations.
This result naturally extends the decentralized H, control of interconnected linear
systems [55] to the nonlinear case.

3.3.1 The Local Disturbance Problem

Next we will look at the local disturbance problem. In particular, we examine the
possibility that the local solution of the decentralized H, control problem of the
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system (3.39) can be obtained by solving the H, control problem for the linearized
system of (3.39).
Toward our goal, consider the linear interconnected system given by
N
Xj=Ajxj+ Pjwj+Bju;+ 1T Z Cjexe,
=1
yj = Cjxj, (349

1
zj = (yjyj +ulRju)?,

where x; € 0"/ and u; € R are the state and the control input, respectively,
w; € N9/ is the disturbance input, z; is the controlled output, with R; > 0 and
the matrices

Aj, Bj, Cj;, Pj, TIj, e

are constants with appropriate dimensions.

Following the earlier development, we associate with the system (3.49) an auxil-
iary linear systems of the form:

. 1 ~
Xj=Ajxj+[Pjp2 yjljlo;+ Bjuj,

yi= I 3.50
= _1 1 , .
Vi :3]' z(djl')ixj ( )

~ ~f ~ 1
2= (55 +uiRju;)?,

where 8; >0, =30, B and df =y, &4i%e)-
The following theorem provides a solution to the decentralized H, control prob-
lem of the linear interconnected system (3.49).

Theorem 3.3 Given some real numbers y; > 0 and matrices R; > 0,1 = 1,2,
..., N, consider the interconnected linear system (3.49). Suppose that, for each i,
there exist some constants g, £ =1,2,..., N, and a feedback control law u; =
Kjx; with K; € 0WPi*"i, such that the resulting closed-loop system of (3.50) is
asymptotically stable and the L>-gain from @; to Zj is less than y ;. Then, the decen-
tralized control laws u; = Kjx;, 1 < j < N, asymptotically stabilize the intercon-
nected linear system (3.49) and render its L;-gain from the disturbance input @ =
(@] ... w1 10 the controlled output z =[z; ... zy]" less than y =[y1 ... yn]'
in the sense that
o0
0

N o N
Z/O Z;Zjdl < Z)/f/ w;wjdt+6(xo)
j=I j=I

forall w; € £5]0, 00), where 8(xo) is a function of the initial state
x0=[x}(0) ... x{, (O]
satisfying §(0) = 0.
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Proof In light of the assumption of the theorem, there exist matrices 0 < Y; =Y J’ €
IM>MJ such that

Yi(Aj + BjKj)

t . P. Al Ip.
A+ Bk Y +gtar G ViR PYIE KGR

° -1 0 0 0

0. (3.51
. 0 o =063
° ° —BI 0
° ° ° —R;

J

Let Vi =x"Y;x;and V = Z;V:] V; and following the same line of reasoning as in
the proof of Theorem 3.2, we reach the desired result. 0

Remark 3.9 It is a simple task to prove, based on the first assumptions of Theo-
rem 3.3, that the solution to the decentralized H, control problem of the linear
interconnected system (3.49), namely V; = xt.ij jand u; = K;x;, actually satis-
fies the HJI inequality (3.46) for all x in a neighborhood of x = 0, see [30, 52]. In
turn, the solution of the H, control problem for the linearized system of (3.39)
also yields a local solution of the H, control problem for the non-linear sys-
tem (3.39).

3.3.2 Results for Non-minimum Phase Systems

Consider a class of interconnected nonlinear systems which are transformable to
interconnected nonlinear systems extended form [21]:

Xxj = fio(x. &) + Pjo(xj, &EjDwj +djo(x;, Ej1s Xj1),
En=&p+pii(x;,§Dwj +éj1(x;. 815 Xj1),
Ein=E&p+pip(xj,Ewj +dj2(xj, &2 Xj1),

: (3.52)
Ejmjm1=Ejr; + D1 Ejr,— D) + D1 (X Ejry—1: X 1),
§joy=uj+pjo(Xj:&j1))0j + &)z, (Xjs Ejris Xji)s
i =Cj(x,§j1),
where
Xj ENYTH, Ep=[E1&n .. Epl’s i=1,2,...,N, j=1,2,...,1j,
Xji=In &1 ... §j—11&411 .. En1l',

uj € N is the local control input, pio(xj. &1 ---. Pjz; (Xj- &jz;)»

djo(xj &1, Xj1), ..., ¢jr_,~(Xj,§j,r_,,Xj1)
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and C;(x;,&;1) are smooth with
$jx(0;00=0, C;©0,00=0, k=0,...,75, j=1,...,N.
The following assumptions about (3.52) are made [18, 49]:

Assumption 3.4 The x;-subsystem of the ith subsystem in (3.52) can be decom-
posed into two cascade-subsystems as follows:

Xi1 = fiot(xj, &i) + pjot(xj, i@ +@jo1(xj, Ej1; Xj1), (3.5
X2 = fioo(xj2, &j1)s

where x; = [le X}z]t with x;1 € W, xjp e W2 andnji +njr=n; —1;.

Assumption 3.5 There exists a smooth real-valued positive definite and proper
function V;o1(x;1) such that

Vo1 1 .
3)(j'1 {fj01(xj> €50 +@jor1 (X, §j150) + [pjor1 (X §j1) B2yjnjoln; 1)}
J
< —ajorllxjtll® + y3lai 1% +kj1 (2. &1) (3.54)

for some definite function k;1(x;2,&;1), some positive real numbers o o1, 8 and
vjo and @; € £»[0, 00), where I, ;1 1s the identity matrix of dimensions n;; X nj,
j=12,...,N.

Assumption 3.6 There exist a smooth real-valued function vjp2(x;2) with
v;02(0) =0, and a smooth real-valued proper function v;p2(x2) > 0, such that
Vv 02
dxj2

Fio2(xj2s vioa(xj2)) < —ajoa(xj2),

, (3.55)
ajozllxj2ll” < Vioa(xj2)

for some real numbers o jo > 0 and « jo3 > 0.

Assumption 3.7 The control output y; of the system (3.52) can be expressed in the
form

v =Cjo(xj2, 1), (3.56)
where Cjo(x2,§;1) is a smooth real function with C(0, 0) = 0.

Assumption 3.8 The nonlinear interconnections in (3.52) are bounded by strong
nonlinearities in X

N

pjo1 (xj» &k xj1) — djo1 (xj» Eji; O < Z Injo(xj» &g orEen)l,  (3.57)

C=1,b#]
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N
16k OG- Ejt X501 — kG & Ol < Y Ik £l Ejke Gl (3.58)

0=10%]

where 7k (x,&jx) and ¢jxe(Ee1), 0 <k <7j, 1 < j, £ < N, are smooth functions
with Cike 0)=0.

Remark 3.10 Tt is noted that Assumption 3.5 amounts to the input-state stability
with respect to the disturbance input w; and bounded-input bounded-state stability
with respect to ;2 and &;1, whereas Assumption 3.6 implies that the subsystem y ;>
is asymptotically stabilized by the feedback &1 = v;02(x1). Interestingly enough,
these assumptions are similar to those in centralized H, control [18].

In what follows, we proceed to deal with the global DADDP for the intercon-
nected nonlinear system (3.52) phrased as follows:

Given any real numbers y; >0, j =1,2, ..., N,itis desired to find decentralized
feedback laws u; = o (x;), «;(0) = 0, such that the overall closed-loop system
is internally asymptotically stable with the £;-gain between the disturbance input
w=[w] o) ... ®\]" and the output y = [y; y2 ... yn]" lessthan y =[y; ... yn]'
in the following sense

o0 2 o0
Z/ Yiyjdt < Zyj / wjwjdt +8(xo)
: 0 ’ 4_ 0

for all w; € £5[0, oo) and all admissible nonlinear interconnections, where 8(xo) is
a function of the initial state xq satisfying §(0) = 0.

Taking into account Assumption 3.8 and noting that ¢jre(§¢1), j =1,2,..., N,
k=0,1,2,...,7;,£=1,2,..., N, are smooth with ;¢ (0) = 0, there exist smooth
functions E jke(§¢1) such that

CikeEn) = Cike(Ee)éer -

Now, turning to Theorem 3.2 and introducing an auxiliary systems associated
with (3.52) satisfying Assumptions 3.4-3.8 of the form:

&= fi(c) + Bjuj +[Pi(xj) B2 yin; ()i,

(3.59)
~ Cjo(xj2.§1)
Yi=| .~%,5 1 .
B; ~(d;(Ej1))2&)
where x; = [x;. Ej1 ... gj,j]’, j=1,2,...,N, is the state, @; is the disturbance

input, u; is the control input, and 8;, j =1,2,..., N are some positive scalars,
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N
B=2¢—1Beand

[ fio1(xj. &) +djo1(xj,€1:0) ]
fio2(xj2:€j1)
Ep+¢j1(xj.€1:0)
fixj) = Ei3+dj2(xj,§j2:0) ; Bj= ,

S o oo

S -ee

Ejt_/ + ¢j,‘[_,'—]()£j7 éj,t_/—l; 0)
¢j,fj(Xj’$j,tj;0) a 1
pjo1(X;j,§j1)
0
rj1(x;.§j1)
pj(xj) = pj2(xj-§52)

Pij—1(Xj> &jr—1)
Pjti(Xjs§jx;)

77](35]) = diag{njO(Xj,Sjl)]njl,Onjzxnjza 77/1()(],511), B} nj‘[_/'(XjaéjTj)}a

[(Cj0i&er Ciu(Eer) CjneEer) - Ejr,-e(éel)]t if £ j,

G =N100.. o] ite=j.

N N
diE) =Y IE0LGED =Y THEDLE).
=1

=1.t4£]

In view of Theorem 3.2, the following theorem is easily established:

Theorem 3.4 Consider the interconnected system (3.52) satisfying Assump-
tions 3.4-3.8. Givenany y; >0, j =1,2,..., N, suppose that, for some Bj >0, the
control law u; = uj(x;) with uj(0) = 0 solves the almost disturbance decoupling
problem for the system (3.59), that is, u;j globally asymptotically stabilizes the sys-
tem (3.59) and render the Lj-gain from the disturbance @; to the penalty output y ;
less than y; in the sense that

o0 o
/ i;&j dt < yj’/ a);-a)jdt + 8(xi0)
0 0

orallw; € £5[0,00), j =1,2,..., N,where §(x;0) is a function of the initial state
j J j

xjo satisfying 6(0) = 0. Then given y = [y1...yn] with y; > 0, the same control

lawsuj = uj(x;) will solve the global DADDP for the interconnected system (3.52).

Remark 3.11 Tt is quite evident from Theorem 3.4 that the global decentralized
almost disturbance decoupling for interconnected non-minimum phase nonlinear
system (3.52) is converted into the global almost disturbance decoupling problem
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for the system (3.59) without interconnections. The latter problem can be solved
by a recursive Lyapunov-based design approach [18, 49], which does not involve
solving HJI equations (inequalities). In this way, the developed design procedure is
systematic and applicable to wide class of interconnected systems.

3.4 Global Inverse Control of Nonlinear Systems

In Sect. 3.3, it has been shown in principle that a global solution to the problem
of decentralized Ho, nonlinear control can be obtained from the global solutions
of the HJI inequalities (3.46). The HIJI inequalities are generally difficult to solve
and for technical reasons it is usually impossible to solve the HJI inequality of the
form (3.46) globally.

An alternative way is to study the problem of global inverse H, control rather
than the regular global Hs control problem. In this way, the aim is to seek not
only a set of decentralized feedback control laws but also weighting functions for
control inputs such that the associated H, problem is solvable globally for a class
of interconnected nonlinear systems.

To put the main issues in proper perspectives, we consider a class of intercon-
nected non-linear systems which are transformable to interconnected nonlinear sys-
tems of the form:

xj1=xp+pjilxjnDe;+oj1(x; X)),

Xjpp=xj3+pip(Xjp)w;+¢2(x2; X 1),

(3.60)
Xjnj—1 =Xjn; + Pjnj—1Xjn;—)0j +@jn;—1(Xjn;-15 Xj1),
Xjnyg = uj+ Pjn;jin)0j + Gjn; (Xjon: Xj1),
Yji =Xjl1,
where u; € N is the local control input,
Xjk=[xj1xj2 ... Xjk]t, j=12,....,N, j=1,2,...,nj,
Xji=[xi1x21 oo Xjo10 Xjr1,1 - xn1l’,

P,-l(xi]),...,P,-nj()E,-nj) and ¢;1(xj1; le),...,d)jnj()fj,nl;xj]) are smooth with
¢ik(0;0)=0,j=1,...,N, k=1,...,nj.

For simplicity in exposition, we consider n; =n, 1 < j < N, and express the
system in the following form:

xj=Ajx;+ fi(xj))+pjxj)wj+ Bjuj+h;(x;; Xj1), 3.60)
yj=Cjxj,
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wheresz[le Xj2 ... x]'n]tzjfjn and
010 0 0
0 0 1 0 0

Aj: : e?}{”lXﬂ; Bj: E?R”,
00 0 ... 1
000 ... 0 1
C;=[10...0]en"™",
[ ¢j1(xj1;0) pj1(xj1)
®j2(xj2;0) Pj2(xj2)
fikxj) = : e, pj(xj)= ) R,
_(bjn()zjn;o) pjn()zjn)
[ pj1(xj1; Xj1) — ¢j1(xj150)
dj2(xj2; Xj1) — Pja(xjo; 0)
i Xy = | e R

_¢jn()zjn;le)_¢jn(3zjn§0)

The following assumption is made:

Assumption 3.9 The nonlinear interconnections h;(x;; X;1), j = 1,2,..., N,

in (3.61) are bounded by nonlinearities in X ;:

N
[k (Xjrs Xj1) — @ (Xjx; 0] < Z 7k (N jke (xen), (3.62)
0=1;0i

where 0 (xji) and jke(xe1), 1 <k <n, 1< j, £ <N, are smooth functions with
¢ike(0) =0.

It must be emphasized that Assumption 3.9 represents a fairly general form of
interconnections which includes those in [6, 11, 45, 46] as special cases.

In the sequel, we shall focus on the global decentralized inverse control problem
of nonlinear systems, phrased as follows:

Given some real numbers y; >0, j =1,2,..., N, it is desired to find decen-
tralized feedback laws u; = a;(x;),;(0) = 0, and some continuous functions
0 < rj(x;) such that the overall closed-loop system is internally asymptotically

stable with the £;-gain between the disturbance input w = [0] @) ... @] and
the controlled output z = [z1 z2 ... zn ], where Zj = (ylz. + rj(xj)u%)%, less than
y =[y1 ... yn]' in the following sense

0
0

N oo N
Z/O Z;Zjdt < ny/ w;wjdt+8(xo)
j=1 j=1
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Vw; € L]0, 00) and all admissible nonlinear interconnections, where 8(xo) is a
function of the initial state xq satisfying 6(0) = 0.

In view of Assumption 3.9 and observing that

Cjke(xer), j=1,2,...,N, k=1,2,...,n, £=1,2,..., N, {1e(0) =0,
are smooth, there exist smooth functions Ejkg(xgl) such that jre(xe1) =
ke (xer)xen.

Extending on Theorem 3.2, we introduce the following auxiliary systems associ-
ated with (3.61) satisfying Assumption 3.9:

ij= A0+ fi) + Bjuj + [Pixy) B2y (apld;.

s Cjxj (3.63)
Yi=| =35 1 .
B; “(dj(xi1))2Cjx;
where xj, j =1,2,..., N, is the state @; is the disturbance input, u; is the control

input, A;(x;), Bj(x;), Cj(x;), fj(x;) and p;(x;) are the same as in system (3.61)
and0<ﬂj,j=1,2,...,N,aresomescalars,ﬂzzyzlﬁg,j:1,2,...,Nand

n; = diag{n;i1(x;1), nj2(x;2), ..., njn(Xjn)},

[Cj1eCxj0) Cje(xer) - Cine(xen)] if € j,

Cji(xer) =
bt {[00...0]’ if0=j,

N N
dj(xj1) = Z E[tj(le)gij(le) = Zé:éj(xﬂ)é:zj(x]'l).
(=1,04] =1

Let P; denote the value of p;(x; =0). Since f;(x;), f;(0) =0 is smooth, it can be
rewritten as

[ fi1(xj1)
fi2(xj2)
fitxj) = :
_fjn()zjn)
[ pj11(xj1) 0 0 X1
_ $j21(Xj2)  Pjn(xi2) ... 0 Xi2
_¢jnl(ijn) ¢jn2(fin) ¢jrm(3zjn) Xin

=®jr(xj)x;,
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where all the involved functions are smooth. It is readily seen that

af;

Fi=®,;7(0)=
Jj lf() axj

xj=0

and is a lower triangular matrix. The linearized system of (3.63) at x; = 0 is

. e l b
Xj=Aj(xj)+ Bjuj+[P; B2y;Tjldj,

5 ij]' (3-64)
Yi=| ,-% 1 ,
B; “(djo)2Cjx;

where A; = A; + F;, I'; =n;(0) and djo = d;(0).
A solution to the global decentralized inverse control problem for the intercon-
nected nonlinear system (3.61) is summarized in the following theorem:

Theorem 3.5 Consider the interconnected system (3.61) satisfying Assumption 3.9
and given r; >0, j =1,2,..., N be constant weighting factors. Suppose that,
for each j, there exists a linear feedback law uj; = Kx; for (3.64) which in-
ternally stabilizes the system and render its Lo-gain, between the disturbance in-
put @; and the penalty output Z; = ()7;&]- + fjui)%, less than a prescribed num-
ber yj > 0. There exist weighting factors r;(x;), continuously depending on x;
and satisfying rj(0) =7; and 0 <rj(x;) <7;, and smooth decentralized feed-
back control laws aj(x;), i =1,2,..., N, for (3.61) which globally stabilize the
interconnected system (3.61) and render its L;-gain, between the disturbance in-

put o = [0} @b ... &\ and the penalty output z = [z1 z2 ... zn]', where

Zj= (yjz + rj(xj)ui)%, less than y = [y ... yn]' for all w;j € L2]0, 00) and all
admissible non-linear interconnections.

Proof Using Theorem 3.2 and extending the result of [20, 60] backward and for-
ward to system (3.64) and (3.63) with lower triangular structures, Theorem 3.5 can
be readily established. Details are given in [20]. d

Remark 3.12 Theorem 3.5 presents a constructive solution to the global decentral-
ized inverse control problem based on an explicit use of the weighting factors, the
proper, positive definite Lyapunov functions and the decentralized control laws sat-
isfying the HJI inequalities (3.46). The key point lies in overcoming the strong non-
linear interconnections by casting the decentralized H, control problem into an
associated centralized Ho control. The latter is then solved by extending the result
in [20].

Remark 3.13 1t is significant to assure that at the equilibrium point x; =0, j =
1,2,..., N, the constructed Lyapunov functions, the decentralized nonlinear con-
trol laws and the control weighting factors reduce to those associated with the de-
centralized Hoo control of the linearized interconnected system. Looked at in this
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light, Theorem 3.5 provides an important link between the linear (local) decentral-
ized Ho control of linearized interconnected system (the interconnected nonlinear
system) and the global H, control of the interconnected nonlinear system.

3.4.1 Disturbance Attenuating Trackers

In what follows, we continue our study to interconnected nonlinear systems with
output measurements. This problem, usually referred to as decentralized output-
feedback control, is technically challenging because of the lack of a general theory
for nonlinear observer design and the nonlinear version of the well-known Separa-
tion Principle. The central focus is three-fold:

(1) identifying a wide class of large-scale nonlinear systems in disturbed decen-
tralized output-feedback form;

(i1) proposing an improved systematic output-feedback controller design proce-
dure for decentralized systems in the presence of strong nonlinearities appear-
ing in the subsystems and interactions;

(iii) guaranteeing decentralized asymptotic tracking when the disturbance inputs
disappear and achieving desirable external stability properties when the distur-
bance inputs are present.

In this regard, we record that constructive control design methods for classes of
highly nonlinear systems were developed in [17, 24, 27, 34]). In a related work on
decentralized adaptive control, the work of [23] presents a systematic method for
a class of interconnected systems under matching conditions and weakly nonlinear
disturbances. The results of [23] have been generalized in various ways in [11, 15,
45, 59]). In most of the available results, the trend has been to restrict the location
of uncertainties [11, 15, 45] and impose growth conditions on the subsystem and
interacting nonlinearities [11, 13, 22, 43, 45, 59].

In this section, we proceed to extend recent developments in nonlinear £-gain
feedback control [17, 23, 33, 35, 51] to the important problem of asymptotic track-
ing with disturbance attenuation property within the context of interconnected non-
linear systems with output measurements. In the sequel, we assume that the unmea-
sured states appear linearly. To reconstruct the unmeasured states, an effective full-
order decentralized observer is introduced. On the basis of an enlarged decentral-
ized system comprising the observer, an output-feedback decentralized controller is
designed via the recursive backstepping technique. In order to achieve the desired
control objective of asymptotic tracking with disturbance attenuation for the decen-
tralized system in question, a non quadratic Lyapunov function is used and turns out
to be necessary.
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3.4.2 System Description

Consider a large-scale nonlinear system comprised of N interconnected subsystems
with time-varying unknown parameters and/or disturbances entering nonlinearly
into the state equation. The ith subsystem is given as

Xi=Fi(X)+G;(Xpuj+Aj1(y1, .., yn)Xj+ Ajp(y1, ... yn)wj,  (3.65)
yj =hj(X;), (3.66)

where 1 <j <N, X; € RN, u j €N and y; € N represent the state, the control in-
put and the output of the local ith subsystem, respectively, and w; € N7 is the dis-
turbance input. The functions F;, G, hj, Aj1, Aj; are sufficiently smooth. In the
absence of the interacting terms A ;; and A;2, the system (3.65)—(3.66) reduces to
an isolated SISO system. From the literature, we found various constructive control
algorithms developed for wide classes of centralized nonlinear systems in special
normal forms. It is quite naturally to seek similar results in the decentralized con-
text, that is, in the presence of strong interactions among local systems of the form
(3.65)—(3.66). For the simplicity in exposition, we will examine the following class
of interconnected dynamic systems of the type (3.65)—(3.66) which is transformable
to

2j=0jizj+ fio, .., yn) F PjoOis -, ynwW;,
xji=xp+ 101 yv) 8101 - yNZ + i1, - YN WY,

(3.67)
Xjn; =uj+ fin; (Vs s YN) + 8in; V1, -, YN)Zj + Pjn; U1, - YN W),
yj=Xj1,

where foreach 1 < j <N, z; € R4 and xj=(xj1,.. .,xjnj) € N are the states
of the jth transformed subsystem. For every j, Q; is a constant matrix with appro-
priate dimension, f, gk and pjx are known and smooth functions. The following
minimum-phase condition is recalled.

Assumption 3.10 Forevery 1 < j <N, Q; is a Hurwitz matrix.

Remark 3.14 We assert that the structure of (3.67) is commonly seen in the literature
in both centralized and decentralized control [11, 15, 17,22, 27, 34, 40, 45, 59]. Em-
ploying elements of geometric nonlinear control [17, 24, 27, 34], necessary and suf-
ficient conditions were derived under which the nonlinear system (3.65)—(3.66) can
be transformed into (3.67), the so-called “disturbed decentralized output-feedback
form”. The nonlinearities in (3.65) depend only on the output y = (y1, ..., yy) and
that the unmeasured states X ; or (zj,x;2,...,X jnj) in (3.67) appear linearly. This
feature is quite standard in recent studies on global output-feedback control for both
centralized and decentralized nonlinear systems. Simple counterexamples in [36]
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revealed the fundamental limitation of global output-feedback control for systems
with strong nonlinearities due to unmeasured states.

We now address the following control problem:

Forevery 1 < j < N and a given time-varying signal y j,(t) whose derivatives up to
order nj are bounded over [0, 00), it is desired to design a smooth, decentralized,
dynamic, output-feedback controller of the form

Xj=vi(xj, v, 0, uj=pi(xj, 5,0, xjeR (3.68)

such that the following properties hold for the closed-loop large-scale nonlinear
system (3.67)—(3.68):

1. When wj =0 forall 1 < j < N, the tracking error y; — y;, goes to zero asymp-
totically and all other closed-loop signals remain bounded over [0, 00).

2. When wj # 0 for all 1 < j < N, the closed-loop system is bounded-input
bounded-state (BIBS) stable and, in appropriate coordinates, is integral-input-
to-state stable (iISS) with respect to the disturbance input w [47]. In particular,
there exists a class-IC function y, (that is, v, is continuous, strictly increasing
and vanishes at the origin) such that, for any p > 0, the controller (3.68) can be
tuned to satisfy the inequality

t t
/Iy(r)—yr(t)lzafrix)/0 va(lw(T)]) dt + 10(z(0), x(0), x(0)) Vi =0,
0]

(3.69)
where 1 is a nonnegative co function, and z(0) = (zt1 0, .. .,zﬁ\,(O))’,x(O) =
(x1(0), ..., x5 (0)" and x(0) = (x{(0), ..., x},(0)".

Property 1 means that decentralized asymptotic tracking is achieved for each
local jth subsystem (3.67) in the absence of disturbance inputs. Note in Property 2
that (3.69) implies, in the presence of disturbances, that the decentralized output-
feedback controller (3.68) has the ability to attenuate the effect of the disturbances
on the tracking error arbitrarily for a fixed class-/C gain-function y,, later on we
have y,(s) = s2 45t + 58,

3.4.3 Output Feedback Tracking

The control problem addressed before will be solved in the sequel in two steps.
We first introduce a “partially” decentralized observer to produce an augmented
decentralized system with partial-state information. Then, we base the decentralized
controller design on this enlarged dynamic system.
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3.4.4 Partially Decentralized Observer

Owing to the structure in every local system of (3.67), for each 1 < j < N, we
introduce the following state estimator for the (z, x;)-subsystem:

2j=0;zj + fioO1rs ... YNF),

)éjl =Xp+Lii(yi—x;j0+ 1Ot  ynr) 811Dty - YNFZ 370)

Xjn; =uj+Ljn;v; —Xj0) + fin; O1r oo NP + &jn; O1rs -5 YNPZ s

_le
—Ljp I

A= . . (3.71)
~Ljs, 0...0

Notice that the eigenvalues of A ; can be assigned to any desired location in the open

left-half plane via the choice of appropriate constants {L jk}zi 1» provided complex
conjugate eigenvalues appear in pair. In (3.71), I,;-1 is the unit matrix of order
nj— 1.

Introducing the new variables

Zj=zj—%j, Xjk=xjx—%j, 1<k=<nj, 1<i<N. (3.72)
From (3.67) and (3.70), it follows that:
i = Q5%+ fioOn o 3N = F10O1r oo YN + PjoO. - yw), (3T3)
Xj= AR+ [0 ) = [ Ot )
+8i0 s YNZ =& O1rs s INDZ PO yN)W), (3.74)
where
Xj=GEjtoen X)) = fin)h
8 =(gjt.--&in))'s Pj=Pits-ePjn)).

Since every fjy is a smooth function and every y;, is a bounded signal, there exist
a finite number of nonnegative smooth functions {¢ o} ,iV:l, {e jk},iV:l such that

N

[fio1s - yN) = fjoOnrs - YN < Z [Xk1 19 ok (Xk1), (3.75)
k=1
N

£ 00 9N = i Gt N0l € D Rlen ). (3.76)

k=1
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In a similar way, we can obtain a functional bound for

it s YNZ = & (Vrs s INFIZ)-

Indeed, we have

8, s YN — & Vrs s YNPZ)
=g, YN+ (&1, IN) — & Otrs - N2y (BT

By the Mean Value Theorem, there exist nonnegative smooth functions ¢ (1 <
k < N) such that

181 s yN)Z — & Vrs s YNPZ)

N
<18t YOIE T+ D 1R r (Rrn) 2. (3.78)
k=1

Combining these inequalities (3.75), (3.76) and (3.78), it is easy to show, in the
absence of disturbance inputs, that the solutions (z;(¢), X;(¢)) of the cascade sys-
tem (3.73)-(3.74) go to zero, if y;(t) — y;jr(t) — 0 for all 1 < j < N. The latter
property will be shown to be guaranteed with the help of the decentralized con-
troller to be designed shortly.

Remark 3.15 It must be emphasized that the observer (3.70) is not asymptotic and is
totally decentralized only if the reference signals y;, =0 forall 1 < j < N. There-
fore, we select a partially decentralized observer so that; in appropriate coordinates;
system (3.79) has an equilibrium point and consequently, there is a solution to de-
centralized asymptotic tracking. When y;, (¢) are general time-varying signals, the
augmented system with a totally decentralized observer does not have a fixed equi-
librium. In effect, only practical tracking can be achieved by means of high-gain
feedback [46].

3.4.5 Controller Design Procedure

From the development of partially decentralized observers, we derive the following
controller-observer combined system for feedback design:

2= Qi+ fio001 - YN = [0Or - NS+ PjoOVL L YW,
Rj=AEj+ i1 IN) = Fi Ot YN

+8i s YNZj =8 Vrs - INFZj P (V1 YN W),
Vi=Xp+Xjp+ i1 y8) + gy, - YNIZ)

+pi1(1, ..., yN)W;, (3.79)
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Xjp=X3+Ljp(yj —Xj0)+ fi2Otrs oo os YN +8j201rs -0 YNPZs

fjnj =Uuj +Ljn_,'(yj _)2]'1)+fjnj(ylr,~~~7er)+gjn_,'(y1ra~--aer)2j~

Notice that the state variables (y;, X;1, Xj2,..., % jn;)» and then X1, are available for
feedback design. The states (Z;, X;) are unmeasured and the outputs y;, with k # j,
of other subsystems are unavailable for the design of the regional input u ;.

We now direct attention to the jth local system (3.79) with u; being the control
input. For the simplicity in exposition, denote

fio=fiot s yN) — fioO1rs -5 YNr)s (3.80)
Fi=F00 . yn) = it YN, (3.81)
8 =8, s YNZj — & Vrs s INF)Zj- (3.82)

In the sequel, we develop a step-by-step constructive controller design procedure,
leading to an effective solution to the desired decentralized problem and tracking
controllers.

Step j.1. Start with the first (Z;, X;, y;)-subsystem of (3.79). Introduce the new
variable £j; = y; — yj (=X;1) and consider the proper function

PR PR o o]
Vit =125 PjiZj + 1 jp s Pjiz ) + X Pk + 55}1 >0, (3.83)

where A1, Aj2 > 0 are design parameters and Pj = PJ’.1 >0and Pj = Pjt.2 >0
satisfy the local Lyapunov equations

Pj1Qj+ Q;le = —21nzj, (3.84)
PipAj+ A" Pjp = =21y, (3.85)
Evaluating the time derivative of V;; along the solutions of (3.79) it yields
Vit = (1 + 2022 Pz (=212,17 + 225 P (Fjo + pjow;))
=205 * + 2% Pia(fi + & + pjw)) + E)1Rj2 + Xj2)
+ i1t yN) +H 81O - YN)Z
+ i1tV YNIWj = Ve (3.86)

Focusing on the term 223. P (fjo + pjow;) and using (3.80) and (3.75), with the
help of Young’s inequality (see Chap. 10) and after some tedious calculations, it
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follows that:
2(hj1 + 2422 P ZpE P (fjo + pjow;)

- 3hjp -
<xilzlP+ m(ZGR/IZJ)Z
max (L)

N
+ Y & ) + cpalw, + cpplwit + wilf, (3.87)
k=1

where ¢, ¢j2, ¢j3 > 0 and ¥ jx; is a nonnegative smooth function.
In a similar way, there exist positive constants «;1, ¢j4 and a smooth function
0 < ¥ jk2 such that

N

2 P (fj+ 8+ pjw)) <151+ k12 P+ 151+ D EL Y k)
k=1

+ cjalw;l” + lw; |, (3.88)

where we have used the fact that Z; is bounded because of Assumption 3.10.
By substituting (3.87) and (3.88) into (3.86), we obtain

N
Vit < =i + 2025 PREpIZiP — 1512 + D84 Wik + Yjk2)
k=1

+ij11Z P 121+ (cja + e lw; 1 + (cj3 + Diw;|*
+lwi B+ E1Gja+Ep+ f11O1, -, YN

+ 81V YNIZj + Pj1 (V1 -y YNWj — Vijr)- (3.89)

It must be noted that «;; does not depend on A1 and A j> while cj;’s may depend
on A1 and A j2. Proceeding further, using (3.76) and (3.78), we have

EnEin+ fi1+&n+pjw))

N
1 . ~
< SIE P+ Y8 via @) + 127 + w1, (3.90)
k=1

where ;3 < 0 is a smooth function.
Keeping in mind the decomposition in (3.81) and (3.82) and letting

1/A’jk1 =Y +Vik2 + Vi3

it follows that
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Vit <— (1 + 2 PjiZj —kji — 1 — HiRIH1k

1.
—-5|ij-+(cj24—c,44—1)hujﬁ-+(cj34—1)hujﬁ

+ 1w B+ Ej1Gja + Fi1Ors -5 YN
N

+ i1 irs - INDE = 9i) + D EL k. (3.91)
k=1

This motivates choosing a control function S}kl and a new variable & as

E5 = —kp&j1 —EnKiEiD) — s - N, = 81y -0 INT)Z
+ Vjrs (3.92)
éiz=-xAi2_si*](yj3y1rs'--7er15]ir’2j)v (393)

where k1 > 0 is a design parameter and K; < 0 is a smooth function such that

N
KjGj) =Y ). (3.94)
k=1
Consequently, we get
Vit <—(j1 +>»;22§~Pj12j —kj1—1—1Z;191%1?

oo 2
= 51+ et ejat Diwjl

+ (cj3 + DIw; [+ lw;|* — k€7 — &7 K (1)

N
+ ) &V Ea) + - (3.95)

k=1

Step j.k (2 <k <nj). Considerthe (Z;,X;,y;,Xi2,...,Xk)-subsystem of (3.79)
with X; x41 as the virtual control. For notational simplicity, we define X , =g

Assume that, from Step j.1 to Step j.(k — 1), we have designed intermediate

control functions {S;‘l}lg;]l, and that we have introduced new variables

A A A . 1) A
é],€+1 =x],€+l _S;'kl(yj’szvﬂ-vxijla Yirs--+5 YNr, )’jr, -"7yl'(r)7zj)
Vi<t<k—1 (3.96)

and a proper function

k—1

. R 1
Vikrt G %o 1o i) = Vi@ 5 £ + D567 = 0. (397)

=2
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It is further assumed that the time derivative of V; x| along the solutions of (3.79)
satisfies

Vike1 < =i+ A2 Pz —kj—k+1— HiRI9lE

[
- le”z—i_(k_ 1 ‘|‘Cj2‘f‘cj4)|wj|2

k—1
+ (e + Dlwjl* + [wj [ =D kjetd, — &1 K (Ej)
=1
N
+ ) e Vime—1yGm1) +Ej 1€k (3.98)

m=1

with kj¢ (1 <€ <k — 1) being positive design parameters and v jm(k—1) @ nonneg-
ative smooth function being independent of K ;.

To proceed further, it is desired to establish that a similar property also holds for
the

(Zj.%j,yj, Xi2, ..., Xij)-subsystem
of (3.79) when x j,k+1 is considered as the (virtual) input. For this purpose, consider
the proper function
R 1
Vik=Vjr-1@, Xj, 81, ..., §je—1) + 55]21( > 0. (3.99)

Differentiating Vi along the solutions of (3.79) gives

Vik = Vik—1&jk |:32j,k+1 + Ljk(yj —Xj1) + fikO1rs s YNF)

k—1 *
. k=1, A .
+8ikWiry o YNT)Zj — E a;. Xjmy1 +Ljim(Qyj —%xj1)
m=2 Jm

+ fjm(ylr: <oy YNr) +gjm(ylrv ceey er)zj)

N * k—1
aEj,k—l

*
. Z O8] k—1 (m+1)
ymr ay(_m+l)yjr

Jr

0
m=1 Ymr m=1

B 08 11
82]'

8$;k71
ay;

(Q;zj+ fioOtrs - yNr))

()?j2+)?j2+fj1+gj1Zj+pj1wj)]. (3.100)

With the help of similar arguments as in Step j.1, after lengthy but routine manipu-
lation, it follows the existence of nonnegative smooth functions {1« }Zzl and i
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such that:
%-*
_%-]k (x]2+f11+811+17]1wj)
< 2—Jx, +E7 kxjk+lem]w,mk(sml>+|z,| +lw;>. 3101
m
It must be noted that « j; is a function of (y;, X2, ..., Xjks Yirs--os YNrs Yjrs -

y]r ,2;) and that every ¥« does not depend on K ;.
We are now motivated to choose the following control function:
& = —kjkEjk — &jk—1 — Ejrrcjk — Ljx(yj — Xj1)
— fikOrs oo yNP) — &ikO1rs - - YNPZ

ag}k 1

+
By/

G2+ Fi1O00, ) +81Ors oo, YNPZS)

]k 1
+Z x]m (x/m+l+L/m(Y/ le)

+ fjm(ylra ce s YNF) +gjm(y1r» ---»YNr)zj)

N BES — T (m+1)
Jok—1 . Jk— m
+Z Ymr ymr+z 3 (m) Yjr
m=1 m=1 jr
agjk 1
+ a (Q]Z] +f]0(y1rs H'syN}’))s (3102)

where kj; > 0 is a design parameter.
In terms of the deviation vector & x41 = X k41 — g;‘k and combining (3.98),
(3.100), (3.101) and (3.102) together, we obtain

iji—(/\j1+kj22;Pj12j—Kj1—j—IZjIZ)IZjlz
Lo, 2 4
—Elle +( ezt cidlw;l” +(cjz + Dlw

k
+lwil® =Y kjeEf, — 51K 60

=1

N
+ Y e Wim—n En) + Vjmk En)) + ExEjapr. (3.103)

m=1

This implies that inequality (3.98) holds for the (Z;, %}, ¥, %2, ..., X jx)-subsystem
with ¥k = Y jm@—1) + ¥jimk-



3.4 Global Inverse Control of Nonlinear Systems 137

Now by induction, at Step ; and setting the control law

)

uj Zs;kn](y],)eﬂ, ~~',-£jnj, ylr’ ~~-’er’ yjra ""yjr ’ ])' (3104)
It turn, it leads to

. st p = S 2312
Ving <= j1+ 22 Pjzj —kji —nj — 219121

Iy e+ el P
2}1
nj
+(cjz+ Dlwj|* 4w * = kjesf, — 61K (&)
=1
N
+ > En Ujmn; Em), (3.105)
m=1

where we recall by construction that Vi jmn; is independent of the design function
K;.

By considering the overall proper Lyapunov function for the entire closed-loop
interconnected system

VEEE) =Y Vin,Gj. %61, &jn;) >0, (3.106)
j=1
where
=@z, F=G, .5, =gl gl

and the positive definiteness and properness of V in (3.106) follows from the fore-
going recursive construction.

Finally, to eliminate the last positive term of (3.105), which also appears in the
time derivative of V, we select an appropriate set of smooth functions {K j}j.V: 1
satisfying the inequalities (1 < j < N)

N
K;j¢j) = Zlﬁmjnm(éjl)- (3.107)

m=1

It is evident that such a design function K ; always exists.

3.4.6 Control Design Results

By applying the foregoing design procedure to the uncertain interconnected sys-
tem (3.67), we establish the following result.
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Theorem 3.6 The problem of decentralized output-feedback tracking with distur-
bance attenuation is solvable for the minimum-phase interconnected system (3.67)
subject to Assumption 3.10.

Proof By differentiating V of (3.106) along the solutions of the closed-loop sys-
tem (3.67) with (3.104), it yields

N
VS—Z(/\11+A./25;PJ‘12/—K/'1—nj—IZjIZ)IZjlz
j=I
N [ nj
~ 12 2
DNE TS N
j=1 =1
N
+ Y [y +cja+ei)lwi® + (cjz+ Diwsl* + [w; [Pl (3.108)

Jj=1

Selecting sufficiently large design parameters A| and A, such that

()le+)\j225~lezj—Kjl_nj_|zj|2)|2j|2
Ail . - Aia . -
> %z, Pz + %(Z,,lez‘;)z. (3.109)
It follows from (3.106) and (3.108) that
N
V<AV 4+ [ +cjp+cip)lwi? + (cjz+ Dlw;[* + 1w, *], (3.110)
j=1
where
1 AmPj> . . .
ha=5. he=—gp=, A=minfhe dekjt), 1=j<N, l<t=<n;.

Applying the Gronwall Lemma [27] to (3.110), the BIBS condition and iISS
property 2 follow immediately for the transformed closed-loop system (3.67) with
(3.104). Moreover, when w; =0, Y1 < j < N, the null solution is uniformly glob-
ally asymptotically stable, leading to the asymptotic convergence of the tracking
error y — y, because £&; = y — y,. It must be emphasized that same result could have
been attained by following parallel procedure to [48].

Finally from (3.108), for any pair of instants 0 < fy < ¢, we obtain

t t
/ |sl(r>|2drsV(z<ro),x<to),s(to)>+p/ (Jw(0)]?
to fo

+w@* + w@)®) dr, (3.111)
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where p > 0 defined by

p=ma max{n; +cj2+c¢;3/11 <j<N} max{cj3+1|]1<j=<N}
min{k;;|1 < j < N} © minfk;i[1 < j < N}

1
minfk ;|1 SJSN}}

and observe that p can be made as small as possible by selecting sufficiently large
values of the constants kj;. In the present case, (3.69) is met with y,(s) = s2+
s* + 53 which completes the proof of Theorem 3.6. U

The following remarks stand out:

Remark 3.16 1t is of interest to note that, in the absence of disturbance inputs w,
(3.110) eventually yields that V converges to zero at an exponential rate and; there-
fore; the tracking error y(¢) — y,(¢) goes to zero exponentially.

Remark 3.17 In centralized output-feedback tracking with almost disturbance de-
coupling [35], Assumption 3.10 can be weakened and the z-system in (3.67) can
be broadened as follows:

2i =T, ..., yn)z5 + fioOts -, yn) + o, - -, YN wj. (3.112)
Considering that, for each 1 < j < N, there are a pair of constant, matrices (0 <

P]’. =P, 0< M;. = M) such that

Liy1s s YN P+ PiLi(y1, .. yn) < —M;. (3.113)
Under this condition, the Z j-system in the decentralized observer (3.70) is replaced
by

2 =01 e INDZ] + [0, oo YN (3.114)

By using the same techniques as in Sect. 3.4.5, Theorem 3.6 can be extended to this
situation.

3.4.7 L,-Gain Disturbance Attenuation

In what follows, we examine whether the controller design procedure yields a de-
centralized output-feedback law guaranteeing the standard £5-gain disturbance at-
tenuation property, that is, (3.69) holds with y,(s) = s2. In this case, the following
additional sufficient condition is needed.

Assumption 3.11 Forall 1 < j < N and 1 <k <nj, the function p i is bounded
by a constant. Furthermore, pjo =0 foreach 1 < j < N.
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Proposition 3.1 Under Assumptions 3.10 and 3.11, the problem of decentralized
output-feedback tracking with standard L;-gain disturbance attenuation is solvable
for the class of minimum-phase interconnected systems (3.67).
Proof It suffices to note that the only place where |w ; |4 and |w; |8 occur are Step j.1
during the controller development in Sect. 3.4.5. These terms are entered into the
inequalities (3.87) and (3.88). Under Assumption 3.11, the function V; satisfies the
following inequality, in replace of (3.95):

Vit < =i + A2 Pz — ki1 —1— 12191z, 1%

L
= 5I% 12+ (cpp + cja+ DiwjI* —kju&fy

N
—ENKED + Y Em Vjm1 Em) +Ej1E )2 (3.115)

m=1

Consequently, in replace of (3.110), this Lyapunov function V satisfies
N
V<=AV+ Y [ +cip+cia)lw . (3.116)
j=l1

Finally, from (3.116), the standard £;-gain property from w to &, =y — y, follows
readily. This concludes the proof of Proposition 3.1. g

Remark 3.18 As a corollary of Theorem 3.6, the standard £,-gain property from w
to &1 =y — y, can similarly be proven when all functions fjx, g;jx in decentral-
ized system (3.67) are bounded by linear functions and the functions pj; (1 < j <
N, 0<k <nj, pio#0) are bounded by some constants. The resulting decentral-
ized output-feedback controllers would be linear.

3.5 Application to Power Systems

Power systems are increasingly called upon to operate transmission lines at high
transmission level due to economic considerations. In a lot of cases, transient stabil-
ity transfer limits are more constraining than steady-state limits under contingency.
On the other hand, operating conditions of modern large scale power systems are
always varying to satisfy different load demands. The control systems are therefore
required to have the ability to damp the system oscillations that might threaten the
system stability as load demands increase or after a major fault occurs, and maintain
the system stability under a diversity of operating conditions and different system
configurations.

In the design of conventional control systems, approximately linearized power
system models are employed. Normally, the system is simplified as single-machine
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to infinite bus model and approximately linearized at one operating point. Then con-
ventional controllers are designed based on the simplified linear model. It is obvious
that when a major fault occurs, the behavior of the power system may change signif-
icantly. Conventional linear controllers do not guarantee the system stability under
such circumstances.

In recent years, a great deal of attention has been given to the control of power
systems using the recent developed nonlinear control theory, particularly to improve
system transient stability [1, 40, 47, 48]. Rather than using an approximately lin-
earized model as in the design of the usual power system stabilizer, nonlinear models
are used and nonlinear feedback linearization techniques are employed to linearize
the power system models, thereby alleviating the operating point dependent nature
of the linear designs. Using nonlinear controllers, power system transient stability
can be improved significantly. However, nonlinear controllers are of more com-
plicated structure and harder to be implemented in practice compared with linear
controllers. In addition, feedback linearization schemes need exact plant parame-
ters to cancel the inherent system nonlinearities and make the stability analysis a
formidable task. The design of decentralized linear controllers to enhance the sta-
bility of interconnected nonlinear power systems within the whole operating region
is still a challenging task [41].

In this section, we will consider the linear controller design problem of an
N-machine nonlinear power system. Unlike the approximately linearized model
normally used, a nonlinear fourth order classical model, including the gover-
nor/turbine dynamics of multi-machine power systems, will be considered. Robust
control technique [53, 55, 56, 62, 63], will be employed to develop a linear control
scheme for power system transient stability enhancement. Nonlinear interconnec-
tions are treated similar to parametric uncertainties [57] and the control of each
generator is derived separately by solving an algebraic Riccati equation. Although
the proposed scheme is a decentralized linear controller, it can guarantee the stabil-
ity of the nonlinear power system model in the whole operating region. The design
of the controller only requires local measurements and can be easily implemented.

3.5.1 Power System Model

An N-machine power system with steam valve control can be described by the
interconnection of N subsystems as follows [3, 28]:

N
i) =Ajx;) +Bjuj+ Y pijGijgij(x). x)), (3.117)
j=1j#1

where i # N; we define the Nth machine as the slack machine,
X1 = [48;(1) w; (1) APy, (1) AXp, ()],
Adj(1) =38(1) —8io,  APwm;(t) = Py;(t) — Puj,
AXE_,‘ ()= XE_,' ) — XEjO
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0 1 0 0

0 _2_p;j zw—ffj(l — Fip) %Fle
A= 1 Mj )

0 0 1

Te; Rjwo T,

Y 0

0 _ @0EqgiEq;Bij
Bi=| o |5 Gij= e

1

_TE/- 0

gij(xj,x;) =sin(w; — w;) — sin(w;o — wjo),

where

constant of either 1 or 0 (p;; = 0 means that jth machine has no connection
with ith machine);

H; inertia constant for jth machine, in seconds;

D;  damping coefficient for jth machine, in p.u.;

Fyp; fraction of the turbine power generated by the intermediate pressure (IP) sec-
tion;

Ty; time constant of jth machine’s turbine with typical numerical valve of 0.2 to
2.0s;

K M; gain of jth machine’s turbine;

Tg; time constant of jth machine’s speed governor, typically around 0.2 s;

Kg; gainof jth machine’s speed governor; Ky, Kg; = 1;

R;  regulation constant of jth machine in p.u., typically 0.05;

Bj; ithrow and jth column element of nodal susceptance matrix at the internal
nodes after eliminated all physical buses, in p.u.;

Py i mechanical power for jth machine, in p.u.;

XE; steam valve opening for jth machine, in p.u.;

Pc; power control input of jth machine;

uj  Pc; — Pujys

w; relative speed for jth machine, in radian/s;

wp  the synchronous machine speed; wg = 211 fp;

3j rotor angle for jth machine, in radian;

E,; internal transient voltage for ith machine, in p.u., which is assumed to be
constant;

E,; internal transient voltage for jth machine, in p.u., which is assumed to be
constant

and 8o, Py, and X ;o are the initial values of §;(7), Py, (¢) and X, (¢), respec-

tively.

From the model shown in (3.117), we can see that system parameters

Dj, Hj, Tm;» Kumy Te;, Ko Rj
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may be unknown and when a major fault occurs at the transmission line between i th
generator and jth generator, the parameter b;; will change. Thus, the model contains
parameter uncertainties. Also the power system model contains nonlinearities and
interconnections g;;(x;, x ;). The problem addressed hereafter is phrased as follows:

Design decentralized linear time-invariant feedback control laws
Pe,(t)=—K;x;@®), j=12,....N—1,

for multimachine power system (3.117) such that the resulting closed-loop system is
transiently stable when a major fault occurs in the system.

3.5.2 Robust Stabilization

Consider the parameter uncertainties in multimachine power systems, the plant
model (3.117) can be generalized as follows:

%) =[Aj + AAj()]xj(t) + [Bj + AB;(1)]u (1)

N
+ Y (PimlGim + AG jm®)gjm(xj, xp}, j=1,2,...,N—1,
m=1,m=#1
(3.118)

where for the jth subsystem we have that: x; € W"/ is the state, u; € "™/ is the
input, the matrices A, B and G j;,, are known real constant matrices of appropriate
dimensions that describe the nominal model, AA;(-), AB;(-), and AG j;, (-) are real
time varying parameter uncertainties, and g, (x;, x;) € 9% is unknown nonlinear
vector functions that represent nonlinearities in the ith subsystem and the interac-
tions with other subsystems.

The uncertain matrices AA;(t), AB;(t), and AG j,,(t) are assumed to be of the
following structure:

[AA;(DABj(1)] = LjFj()[Ey;. Ea;l, (3.119)
AGjm(t) :ijij(t)Ejm (3.120)

with F;(t) € PRm XM and Fin(t) € MIGi*mGj (for all j, m) being unknown matrix
functions with Lebesgue measurable elements and satisfying

FIOF 0 <Iii  Fjm0F, 0 < Lin, (3.121)

where L;, E 1 E> i L jp,and E j,, are known real constant matrices with appropri-
ate dimensions.
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Remark 3.19 The parameter uncertainty structure in (3.119) has been widely used
in the problem of robust stabilization of uncertain systems [25], and can represent
parameter uncertainties in many physical systems. The decomposition of parameter
uncertainties in the case of a three machine power system will be discussed later on.

The following assumptions concerning the unknown nonlinear vector functions
and the matrix E» ; are made:

Assumption 3.12 There exist known constant matrices W j and Wy, such that for
all x; € R and x; € R

18 m Cxjis XD Il < ITW 2 ()| 4+ 1W jn X (1)

for all j, m and for all ¢ > 0.

Remark 3.20 If the nonlinear functions g, (x;,x;) satisfy Assumption 3.12,
they are Lipschitz bounded nonlinearities. In the power system model (3.117),
gjm(xj, xp) satisfly Assumption 3.12. A three machine example system will be pre-
sented in Sect. 3.5.3 and the detailed analysis will be given.

Assumption 3.13 Forall j=1,2,...,N —1
Rj=Ej Ep; >0.

Remark 3.21 Assumption 3.13 is made only for simplification of presentation. If
Assumption 3.13 does not hold, the results of this section can be easily generalized
using the technique similar to that in [25].

The robust stabilization problem for interconnected system (3.118) is now stated
as follows:

Robust Stabilization Problem: Design decentralized linear time-invariant feedback
control laws u;(t) = —K;x;(t), j=1,2,..., N — 1, for system (2.2) with uncer-
tainties (3.119)—(3.121) such that the resulting closed-loop system is globally uni-
formly asymptotically stable about the origin for all admissible uncertainties. In
this case, the system (3.118) is said to be robustly stabilizable via the decentralized
controllers K ; and the closed-loop system is said to be robustly stable.

A solution to the robust decentralized stabilization of interconnected system (2.2)
depends on the following algebraic Riccati equations

7! -2 -1 2
AP;+ PjAj+ P;B;B;P; —v; Bp R 'Bp, +ViE| Ey,
N
L . .
+ Z PimW Wy + Wi Win)+ 0 =0, (3.122)
m=1,m#1
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- _ptp. 2t
where j =1,2,...,N — l,Bp_,. _BjP] +vjE2jE1j,
2R 27 7t
BJBj =V; L]Lj

N
+ > pimlGim (I = A3 Bl ) Gy 4 A2 L LY, ] (3.123)
j=1j#1

andv; >0,A;, >0, j=1,2,...,N—landm=1,2,..., N, are scaling param-
eters to be chosen, wit}~1 Ajm satisfying A%mE;.mEjm <I,Vj=1,2,...,N—1and
m=1,2,...,N — 1. Q; are positive definite matrices.

A main result on the problem of decentralized robust stabilization is stated as
follows:

Theorem 3.7 Consider the multimachine power system (3.117) satisfying Assump-
tions 3.12 and 3.13. Then, this system is robustly stabilizable via decentralized
linear feedback control if there exist positive scaling parameters v; and Ay,
Vj,me{l,2,..., N} suchthat forany j =1,2,...,N — 1:

1. A% E' Ejm<I1,Yme{l,2,...,N};and

Jm-—jm

2. there exist positive definite solutions P; to (3.122).

Moreover, a suitable decentralized feedback linear controller is given as follows:
uj(t)=—K;X;(), (3.124)
—2p—1 2
where Kj =V, "R; (B;Pj + vjEéjElj).

Proof Combining (3.124) with (3.118) gives a closed-loop system of the form

N
)'Cj=(Zj+LijFj)x]‘+ Z Pim(Gij +LimFimEjm)gjm(xj, Xj)
j=1j#1
N
=A;Xj+ Y Gimgim(xj. xm). (3.125)
m=1,m#1

Wherer =Aj — BjKj,Ej = Elj — EzjKj,
Aj ZZJ'—I-LJ'FJ'EJ', éjmzpjm[Gjm""ijijEjm]-
From (3.122) and the bounding inequality A from Sect. 9.3.1, it follows that
— — = =t
Aij +PiA; + PijBij
N

+ > pimWy W+ W W) +vIESE; <0, (3.126)
m=1,m#1
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where Ej is as defined in (3.123) and P; is the positive definite solution
to (3.122).
In view of (3.123), we obtain that

— -,
AP+ PjA; +v;"P;L;L.P;

N
+Pj[ Z pjm[Gjm(I—A?mEj.mEjm)—lG;m,\jnijmL’J.m]}Pj
m=1,m#1

N
P i
+ > pimW, W+ Wi, Wip) +ViEEj <.
m=1,m#1

Applying the bounding inequality B from Sect. 9.3.2 to the above inequality gives
that

N
—t — _ —t = — —
APj+ PjAj+ v P PiLiLiPi+ViEEj+ Y pim(W, W+ Wi, W)
m=1,m#1

N
+Pj( > G,-mejm>P,- <0
m=1,m#1
and it follows that, by applying the bounding inequality A from Sect. 9.3.1
— - —
A;Pj+ PiAj + E;Fi(1)L',P; + P;L;F;()E;
N N
— — I
+ Y pii (W, W+ Wi, W) + P,»( > Gij;m> P; <0.
m=1,m#1 m=1,m#1

Then, we have

N
3 3 L
APi+PiAj+ Y pim(W, W+ WL W)

m=1,m#1
N
+ Pj( > Gij’jm>Pj <0.
m=1,m#1
It follows immediately that there exist positive definite matrices Q,' such that
N
~ ~ —t —
AP+ PiAj+ ) pim Wy W+ Wi, W)
m=1,m#1
N
+P./< > Gij;m>P,-+Q,-=0. (3.127)
m=1,m=#1
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Now, in order to prove the asymptotic stability of the closed loop system (3.125),
let the Lyapunov function candidate

N-1

Vix)= Z x;- Pjxj,

j=1

where x = [x],x},...,x},_,]". Note that V(x) > 0 whenever x # 0. Then, by us-
ing (3.125), we have

N-1 N !
d - - ~
TV = > <x;(A;P,- + PjAj)x; + [ > Gjmg,-m(x,-,xm)} Pjx;
j=1 m=1,m#1
N
+x§~Pj|: Z Gjmgjm(xjsxm):|)-
m=1,m#1
Since
N-1 N
i
Yo piml W Wi+ W Winx; = 85,8 m]
j=1 m=1,m#1
N-1 N
P
=2 D il WW g X W Wi — g1,8jm)
j=1 m=1,m#1
it follows that
d N—1 N 4
EV(X) = Z ()C;(A;Pj +PjAj)x; + [ Z Gjmgjm(xj’xj)j| Pjx;
m=1 m=1,m#1
N
+x§-Pj|: Z Gjmgjm(xjsxj):|>
m=1,m#1
N-1 N
e
+ D piml W W x4 x W Winxj — gjmgjm]
m=1 j=1,j#1
N-1 N
i
- > pimlXWW x4 X W Wi — g gjml.
j=1 m=1,m#1
Introducing X ; = [x;.gjl .. gjn—11", we have
N-1
TV = > AR
j=1
N-1
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where
~Sj PjGjl PjGjN_l
t
i Gjlpj —1I 0
j= . s
Gy Pp 0 .. ~1I

n
- - ——
SJ':R,'A/'-FAZ]-R/‘F E pjm(WjoJf_th'ijm)'
m=1,m#1

Next, taking into account (3.127), the Schur inequality and the fact that

N—-1 N

L
Do D Pl WW ik Wi Wi = g8 jm] =0
j=1 m=1,m#1

it follows that

dV() 0
—_— X)) <
dt

whenever x # 0. Hence, V (x) is a Lyapunov function for system (3.125) and thus,
this system is globally uniformly asymptotically stable for all admissible uncertain-
ties. Therefore, the multimachine power system (3.117) is robustly stabilizable via
the decentralized controller (3.124) which concludes the desired result. Il

Remark 3.22 The result shown above can be easily extended to the case where
dynamic output feedback controls are used [58]. From the result obtained, it is
clear that the linear feedback controller (3.124) can ensure the stability of the mul-
timachine power system. The design procedure for the decentralized linear con-
troller (3.124) can be summarized as follows.

1. Formulate the system model (3.117) or (3.118). Find the respective matrices A,
AA]', Bj, AB]', Gj, and AGj.

2. Find the structure of the parametric uncertainties defined in (3.119)—(3.121).

3. Construct algebraic Riccati equations as given in (3.122) for all j.

4. Select the scaling parameters v; > 0 and A; > 0 and find positive definite solu-
tion P; to (3.122). If there exist such kind of P;, we declare that the algorithm
“succeeds” and a robust decentralized controller is found as given in (3.124).

5. If no positive definite solution P; to (3.122) is found, go back to Step 2 and
reformulate the structure of the parametric uncertainties. Repeat Steps 3 and 4. If
no “success” is declared after several trials, we declare that the algorithm “fails”
and abandon the method.

Remark 3.23 The decentralized controller (3.124) is a linear controller. Compared
with nonlinear controllers, linear controllers are of simpler structure and easier to
be implemented.
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Fig. 3.3 Three-machine
example system

3.5.3 Simulation Results

To demonstrate the effectiveness of the developed decentralized control method, a
three-machine example system (3.3) is chosen. The system parameters used in the
simulation are as follows:

xq1 =1.863, x;;=0257, x7;=0.129,
Tiy=69s, Hy=4s, D=5 kuy=1,
xa2 =2.36, x5, =0319, xp2=0.11,
Fip = Fip, =03, Ty, =796s,
Hy=51s, D=3, ko=1;
Tm1=0.35s, Tg1=0.1s, Tyy=0.35s,
Tgp=0.1s, R;=Ry;=0.05,
Ky1=Kg1 =10, Kpyp=Kgy=1.0rad/s,
x12=0.55, x13=0.53, x23=0.6,
wo =314.159, xaq1 = xaq2 = 1.712.
Since generator #3 is an infinite bus, we have E 5;3 =1/0°.
To simplify the analysis, we only consider the parametric perturbations in G j,
and in Ty;. The matrices G;; represent the interconnections and nonlinearities be-
tween generators i and j, and uncertainties in parameters T, are used to emulate

the time constant uncertainties in the high-pressure (HP) and ldw-pressure (LP) sec-
tions. The power system model (3.117) can be rewritten as

X1(t) = (A1 + AADx () + Biui (1)
+[G12 + AG12(1)1g12(x1, x2) + [G13 + AG13(1)]1g13(x1, x3),
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X2(t) = (Ax+ AAY)xa(t) + Boun(t)
+[G21 + AG21(t)]1g21 (x2, x1) + [G23 + AG23(1)]1g23(x2, X3),

where 812(t) = §1() — 62(), 821(t) = 82(¢) — 81(t), A1, Az, By, and By are as
in (3.117), and for convenience, we define that fori =1,2,and j =1,2,3, j # 1

0 0 0 0
0 0 0 0
AA; = ;
! 0 0 —p() wj)
0 0 0 0
1 1
i) = — -

Tvmy  Tm; — ATw, ’
Gij(l‘) = [0 o j 0 O]t ,
8ij(xj,x;) =sin[§;(t) — 8;(t)] —sin(8;0 — 6;0),

AG;j(t) = [0 Aa;; 00]".
It follows that

Gi)=[0ap0 O]t ,
Gi3()=[0a300],
g12(x1, x2) = sin[81(r) — 82(1)] — sin(810 — &20),
g13(x1, x3) =sin[§; (z) — 83(1)] — sin(S10 — 830),
Ga(t)=[0a2 00],
Ga(t)=[0ax00],
g21(x2, x1) = sin[d2(¢) — &1 (1)] — sin(S20 — S10),
823(x2, x3) = sin[82(r) — 83(1)] — sin(20 — 830),
AG12(1) =[0 Aar 007,

t

AG13(1) = [0 Aa13 00

’

t

AG3(t) =0 Aa300

’

]
AG(t) = [0 Aazy 007,
[ ]

where aj,; can be defined as the midpoints of E; (1) E;; (1) Bijwo/2Hj, and Aw
by variations in E; (OE ; j (t)Bjmwo/2H; from their midpoints. In order to estimate

the bounds of the parameters, «12, @13, @21, and a3 and their perturbations, Awqz,
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Aay3, Aany, Az, we use the following equation on the electric power

3
AP, (1) = Z E},E} Bsin[8;(1) — §;(1)]
j=Lj#1

3
— Z E;iE,;jBij sin(8;0 — d0)-
Jj=1j#1

Since there are bounds on the electric power for each generator and on the electric
power flow through each transmission line, we have

E}E; Bij < |APoi(1)Imax-

In this example, |A P,1(f)|max = 1.4 and | A Py (t) |max = 1.5. It follows that

0.5 | A Pe1(£)|max@o _

— a3 = 0.5 20 DImax®0 57 49,
@12 =013 2H,
| A Pe (1) | max@o
= =-05———F—=-23.10,
oz = a3 A
| Ac;| <05|APei(t)|mawa
wi=" 2H; )

For j =1,2 and m = 1,2,3, m # j, we have |Aajz| < 27.49, |Aay3| <27.49,
|Aczp| <23.10, and |Awasz| < 23.10.
The structure of parametric uncertainties can be expressed as follows.

e For generator #1:

Ly =[001.41/]121(t)lmax 0]',
—0.707|p1 (1) 0~707|/L1(t)|]
w1Olmax w1 lmax 1
En=diag{1111},  Exn=[1100]
L1z =0 [Aa12(?)|max 00,
Aaja(t)
| Act12() Imax
L13 =0 [Aa13(7)|max 001",
Aay3(t)
| Act13 (1) lmax

Wi=W;,=[1000], Wiz =[0000].

Fi(t) = |:OO

Fip(t) = Epn=1,

Fi3(t) = Eiz=1,

e For generator #2, the decomposition is similar. It is clear that robust decentralized
controllers for generators #1 and #2 considering the prescribed uncertainties can
be found by using the design procedure described in Remark 3.20.
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In this example, the Riccati equation (3.122) then becomes

— ,
AP+ PjAj+ PB;B;P; —v;’P;B;B}P;
N
—t — " ~
+ > pim(WW, + W, Win) + 0 =0, (3.128)
m=1
where j =1, 2,
N
— ) )
BB =) pimlGim (I =23, Efy Eju) ™ Gl 250 L jm Ly .
j=1

For generator #1 in the example system, we have

01 0 0 0
|0 —0es 2748 msi| |0
"~lo 0 —2.857 2.857 |’ =1lo |

0 —0637 0 10 10

[0 0 0 0

0 0 0 0

A4=110 0 _0.635r11) 0.635r(t)

0 0 0 0

where |ri(t)] < 1. Let vy = 0.02, A;p = A3 = 0.71, Ql = diag{0.001, 0.001,
0.01, 0.01}. Solving the Riccati equation (3.128) gives

K1 = [ks, kay kpy kx, ] =[191.86 15.16 15.30 6.50].

Similarly, for generator #2, we have

0 1 0 0 0
Ao — |0 —0392 20560 9.240 | B_| 0
2= 1o 0 —2.857 2.857 |’ =1lo |’
|0 —0.637 0 ~10 10
[0 0 0 0
0 0 0 0
Adr=14 —0.635r2(t) 0.635r2(t) |’
0 0 0 0

where |r2(r)] < 1. Let vy = 0.02, k21 = A2z = 0.71, Q2 = diag{0.001,0.001,
0.01, 0.01}. Solving the Riccati equation (3.128) gives

Ko = [ ks, ke kp, kx, | =[262.8621.43 17.33 7.43].



3.5 Application to Power Systems 153
The control laws are as follows:

up = —ks [61(t) — 810l — ko w1 (1)
—kp [Pm1(t) — Pmiol — kx, [XE1(t) — XE10]
= —191.86[61(¢) — 810] — 15.16w1 (¢)
— 15.30[Pp1(#) — Pmiol — 6.50[Xg1(r) — XE10]

and

up = —ks,y [82(2) — 8201 — ke w2(1)
—kpy [ P2 (t) — Puool — kx, [ XE2(t) — XE20]
— —262.86[82(t) — 820] — 21.43w2 (1)
— 17.33[Py2(t) — Ppool — 7.43[X Eg2(t) — X E20].

The fault we consider in the simulation is a symmetrical three-phase short circuit
fault which occurs on one of the transmission lines between generator #1 and gen-
erator #2 with A being the fraction of the transmission line to the left of the fault.
If & =0, the fault is on the bus bar of generator #1, A = 0.5 puts the fault in the
center point of the transmission line between generator #1 and generator #2, and so
on. The fault sequence is as follows.

. The system is in pre-fault steady-state.

. A fault occurs att =0.1 s.

. The fault is removed by opening the breakers of the faulted line at t = 0.25 s.
. The transmission lines are restored with the fault cleared at t = 1.0 s.

. The system is in post fault-state.

DN A W =

Three different cases are considered in the simulation. In the first two cases, the fault
location is A = 0.05.

e Case 1. The operating points are

810 = 67.6°, Pnio=1.2, Vii=1.0,
820 = 67.7°, Puo=1.1, Vip =1.0.

The power angles, the real power, and the terminal voltages of the generators #1
and #2 are shown in Figs. 3.4, 3.5 and 3.6, respectively.
e Case 2. The operating points are

810 = 24.6°, P10 =0.3, Vi1 =0.95,
820 = 48.6°, P20 =0.9, Vi =0.95.

The power angles of the generators #1 and #2 are shown in Fig. 3.7.
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Fig. 3.4 Power angle
responses (A = 0.05)

Fig. 3.5 Electrical power
responses (A = 0.05)

Fig. 3.6 Terminal voltage
responses (A = 0.05)
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Fig. 3.7 Power angle
responses

Fig. 3.8 Power angle
responses for generator #1
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e Case 3. We will consider different fault locations. The operating points are

810 = 67.6°,
820 =67.7°,

Puio=1.2,

Puop=1.1,

Vll = 10,
Vl2 = 10

The power angles of the generators #1 and #2 are shown in Figs. 3.8 and 3.9,

respectively (A =0.01, 0.5,0.99).

From the simulation results shown above, it can be seen that despite the inter-
connections between different generators, nonlinearities in the system, different op-
erating points and different fault locations, under all situations the proposed robust
decentralized controller can rapidly damp the oscillation of the system and greatly
enhance transient stability of the multimachine power system.
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Fig. 3.9 Power angle 3 in degree, #2
responses for generator #2 100
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3.6 Decentralized Control with Guaranteed Performance

In what follows, the decentralized excitation control of multimachine power sys-
tems is considered. The power system can be modeled as a interconnected system
with parameter uncertainty and nonlinear interconnections. The main focus is on
the design of a robust decentralized state feedback controller that not only stabilizes
the power system but also achieves suboptimal guaranteed cost performance for all
admissible variations of generator parameters. Following the results of [38, 39] and
references therein, a robust performance analysis result is developed for intercon-
nected systems in terms of a set of linear matrix inequalities (LMIs). The decentral-
ized guaranteed cost control has been solved using an LMI approach. The results
shown in this section are given in terms of LMIs which can be solved efficiently
using the available LMI tool [9]. Furthermore, a procedure is given to minimize an
upper bound of the cost.

3.6.1 Introduction

Power systems are modeled as large-scale nonlinear systems composed of a set of
small interconnected subsystems. It is generally impossible to incorporate many
feedback loops into the controller design for large-scale interconnected systems and
is also too costly even if they can be implemented. These difficulties motivate the
development of decentralized control theory where each subsystem is controlled
independently on its locally available information.

On the other hand, the operating conditions of power systems are always varying
to satisfy different load demands. Control systems are therefore required to have the
ability to suppress potential instability and damp the system oscillations that might
threaten the system stability as the load demand increases. However, as power sys-
tems are large-scale nonlinear systems in nature, the applications of conventional
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linear control approaches are limited because they can only deal with small dis-
turbances about an operating point and cannot guarantee the system stability when
faults or significant changes of operating conditions occur. Since the introduction
of differential geometric tools to nonlinear control system design, various nonlin-
ear feedback controllers have been designed to enhance power system stability, see
e.g. [5, 57]. Naturally, the robustness issue arises in order to deal with uncertainties
which mainly come from the varying transmission line parameters and/or faults.
There are some results on decentralized robust control of multimachine power sys-
tems, e.g. [5-8, 10-24, 2640, 42-52, 54]. In particular, in [5-8, 10-24, 2640,

42-52, 54], the multimachine power system is first compensated via a decentral-
ized nonlinear direct feedback linearization, then a robust decentralized control is
applied which guarantees the overall stability of the multimachine power system is
the whole working region. Note that the design approach in [54, 57] involves solv-
ing a set of parameterized Riccati equations, which is in general a difficult task.
Furthermore, only a stabilization problem is addressed in [54, 57].

In any control design, a controller is sought not only to stabilize the system hut
also to ensure satisfactory performance of the system. When a quadratic cost is
considered for hear systems, the traditional linear quadratic (LQ) design offers an
optimal solution. Very recently, [25, 38-57, 59-61], was applied this performance
measure in for systems with parameter uncertainty and addressed the problem of
guaranteed cost control. The guaranteed cost control is concerned with the design
of a state feedback controller so that, for all admissible uncertainties, the closed-
loop system is asymptotically stable and an upper bound of the quadratic cost is
minimized. The result of the guaranteed cost control is given in terms of a parame-
terized game-type algebraic Riccati equation which may be difficult to solve in [16,
60] the LQ design has been extended to the decentralized control of large-scale sys-
tems without uncertainties. On the other hand, where the subsystems arc treated as if
they were decoupled, and, under certain conditions placed on the interconnections,
the locally optimal LQ control is obtained and is suboptimal for the overall system.
Note that, when uncertainties arise in both the subsystems and interconnections,
this passive analysis may have difficulty in guaranteeing the closed-loop stability
and may be overly conservative.

3.6.2 Dynamical Model of Multimachine Power System

In the sequel, we refer to the following model parameters:

d;j =  power angle of the jth generator, inrad §;; =§; —§;;
wj = relative speed of the jth generator, in rad/s;

P,,i0o = mechanical input power, in p.u., which is a constant;
P.; = electrical power, in p.u.;

wo = synchronous machine speed, in rad/s;

D; = per unit damping constant;

H; = inertia constant, in seconds;
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transient EMF in the quadrature axis of the ith generator, in p.u.;

EMF in the quadrature axis, in p.u.;

equivalent EMF in the excitation coil, in p.u.;

direct axis transient short circuit time constant, in seconds;

direct axis reactance of the ith generator, in p.u.;

direct axis transient reactance of the ith generator, in p.u.;

ith row and jth column element of nodal susceptance matrix at the internal
nodes after eliminating all physical buses; in p.u.;

reactive power, in p.u.;

excitation current, in p.u.;

direct axis current, in p.u.;

quadrature axis current, in p.u.;

gain of the excitation amplifier, in p.u.;

input of” the SCR amplifier of the ith generator, in p.u.;

mutual reactance between the excitation coil and the stator coil of the ith
generator, in p.u.;

transformer reactance, in p.u.;

transmission line reactance between the ith generator and the jth generator,
in p.u.;

terminal voltage of the ith generator, in p.u.

A power system consisting of N synchronous generators interconnected through
a transmission network can be described by a classical dynamic model (see [3] and
[28]). The dynamic model of the ith generator with excitation control is given by
the following sets of equations.

e Mechanical equations:

5 = wj, (3.129)

. D; n wQ
w; = — wi + ——
' 2H;, ' 2H;

(Pmio — Pei); (3.130)

o Generator electrical dynamics:

. 1
Egi = 2—(Egi = Eqi); (3.131)
doi
e FElectrical equations:
E i = E;l. — (xai — x) Lai, (3.132)
Egi =keiugi, (3.133)

N
P, = Z Eé]iEc/]j B;j sin(éi‘/), (3.134)
j=1
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Qi = —ZE/ E,; Bij cos(8i)),

j=1
N
Iy = Z Bl] COS((S”)
N
Iy = Z Bi;j sin(§;;),
Eq4i = xadilfi~
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(3.135)

(3.136)

(3.137)

(3.138)

By using direct feedback linearization (DFL) compensation (3.129)—(3.131), and
considering the parametric uncertainties in T, as AT, the following can be ob-

(3.139)

tained:
N
Xi = (Ai + AADxi + (Bi + ABi)vyi + Zplij(Glij + AG1ij)gij(xi, xj)
j=1
N
+ Z D2ij(G2ij + AG2ij) g2ij (xi, xj),
j=1

where

Vi = Igikeiu £i(xai — X)) i lai — Pmio — Tyo; Qei i,

0 1 0 0
D;
Ai=|0 —3x 2?3,— , B; = (1)
0 0 _Td/Oi Tr}Ot
0
Gi1ij=G2j=|0], g1ij = sin(d; —§;), 82ij = wj,
0
[0 0 O 0
Ad;i=|0 0 o, aB=| 0 |,
100 i —Mi
[ 0 0
AGrj=| 0 |, AGyij=| 0 |,
| 71ij ij
1 1 P
Wi = — T rij =Eg E,;Bij,

Tioi  Taoi +ATq;
rjj = E(/I,'quBij cos(d;;),

(3.140)
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and the parameters py;;, and po;;, are constants of either 1 or O (if they are 0, this
means that the jth subsystem has no connection with the ith subsystem).

Remark 3.24 In (3.139), the parametric uncertainties were considered in generator

parameters 7). i =1,2,..., N, because they vary with load change and changing
network topology.
Remark 3.25 Note that E ! q it d;j and B;;, will change when the network param-

eters and load are changed For example, B;; will vary when a major fault occurs at
the transmission line between the ith and jth generators. Hence, nonlinear uncer-
tain interconnections exist in multimachine power systems. To estimate the bounds
of the uncertainties in the interconnections, note that the electrical power P,; of each
generator and the electrical power flow through each transmission line are bounded,
and the excitation voltage E y; may raise by up to 5 times of the E,; when there is
no load in the system. Thus, by considering (3.134) and (3.131), the following may
be obtained:

|qusE ij|§|Pei|max,

|E(/U|§ [Efl_qu]

dOl

= 4|qu|mdx
max | d()l|m1n

It also follows that

rij = | Pei |max r2ij§|Pei|max-
| d0,|min

It is obvious that the bounds of r1;; and rp;; only depend on generator parameters
|Ta/}(),' Imin and | Pe; |max-

In this section, the authors are concerned with the design of a decentralized non-
linear feedback controller that will not only enhance the transient stability but also
ensure a certain level of performance of the power system in the presence of operat-
ing point variations, faults in different locations and changing network parameters.
Specifically, the authors will design a robust decentralized controller for the sys-
tem (3.139) so that, for all admissible uncertainties, the closed-loop interconnected
system is asymptotically stable and an upper bound of a specified quadratic cost is
minimized. This problem is referred to as a decentralized guaranteed cost control.

Remark 3.26 In [54, 77], a robust stabilization controller has been proposed for the
multimachine power system (3.129)—(3.138) and the result involves solving a set
of parameterized game-type Riccati equations, which imposes a major difficulty.
Furthermore, no performance has been taken into consideration for the controller
design.
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3.6.3 Guaranteed Cost Controller Design

In this section, the authors present an LMI approach to solve the decentralized guar-
anteed cost control problem for a class of interconnected nonlinear systems. Be-
fore proceeding to address the decentralized controller design, a robust performance
analysis, is first presented.

3.6.4 Robust Performance Analysis

Consider the following interconnected large-scale system which consists of N sub-
systems:

N
% = (A + AADxi + Y piij(Guij + AG1ij)giij (xi, x))
j=l1
N
+ZP2ij(G2ij + AG2ij)g2ij(xi, xj), (3.141)
j=1

where x; € %" is the state of the ith subsystem, A;, G1;;, and G2;; are real constant
matrices of appropriate dimensions, AA;, AG1;; and AG;;, are uncertain matrices,
81ij(xi, xj) € W4 and go;;(x;, x;) € N’ are unknown nonlinear vector functions
representing the interconnection between the ith subsystem and the jth subsystem,
and the parameters py;; and p»;; are constants of either 1 or O (if they are 0, it means
that the jth subsystem has no connection with the ith subsystem).

In this section, the authors consider the following cost performance for the sys-
tem (3.141):

N 00
J=Z/0 x!Qxdt, (3.142)

i=1
where Q; = Ql’. >0,i=1,2,..., N, are the given weighting matrices of the state.
The authors will make the following assumptions on parameter uncertainties and
interconnections:
Assumption 3.14
AA; = H\ FEy;,

where F; € M%7 %€/ is an unknown matrix function satisfying

t
FijSIeA

J

and Hy; and Ey; are known real constant matrices that structure the uncertainty.
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Assumption 3.15
1. Let
AGyij = Liij Frij Niij, AGaij = L3ij F2ij Naij,
where Fy;; € R *Piij and Fy; ;€ NS *Paij are unknown matrix functions sat-
isfying
t t
FiijFuij < Ipy; FyFuij < Ipy;
and Ly;j, La;j, N1;j and Np;; are known real constant matrices with appropriate
dimensions.

2. There exist known real constant matrices Wy;, Wy;;, Wo;, and Wo;;, such that,
forall x; e ", x; e NY,i, j=1,2,...,N:

lgrijCxi, x DI < IWrixi |l + | Whijxjll,
llg2ij (xi, x I < IWaixi |l + 1| Waijx;ll.
j j X

Introduce the following definition.

Definition 3.1 A set of positive definite real matrices P;,i =1,2,..., N, is said to
be a quadratic cost matrix set for the system (3.141) and the cost function (3.142),
if

N

D XA + AAD Py + Pi(Ai + AAD]x;

i=1

N
+ Z2XfPiP1ij(G1ij + AG1ij)guij(xi, xj)

j=1
N

+ Z2foiP2ij(Gzij + AG2ij)g2ij (xi, Xj) +x,~tQixi} <0  (3.143)
j=1

for any nonzero (x1, x3, ..., xy) and all admissible uncertainties.

The following result shows that the notion of quadratic cost matrix set defines an
upper bound on the cost function (see (3.142)).

Theorem 3.8 Consider the system (3.141) and the cost function (3.142). Suppose
that P; > 0,i=1,2,..., N, is a quadratic cost matrix set for the system. Then, the
uncertain system is quadratically stable and the cost function satisfies the bound

N
J <) x[(0)Pixi(0) (3.144)
i=1

for all admissible uncertainties, where x;(0) is the initial state of the ith subsystem,
i=1,2,...,N.
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Proof Define V = Z,NZI V= Z,NZI xlf P; x;. Then by taking into account (2.22), we
have that along the state trajectory of (3.141),

N
V= 1xl[(Ai + AA) P + Pi(A; + AAD]x;
i=1

N
+ szitpiplij(Glz’j + AG1i;) g1 (xi, X )
j=1
N
+ sz;PiPZij(GZij + AG2ij)g2ij (xi, xj) + x! Qix;
j=1

N
<= xlQix; (3.145)
i=1
for all nonzero x = [xi e xﬁ\,]’ and all admissible uncertainties. Hence, the sys-

tem (3.141) is quadratically stable.
By integrating the inequality (3.145) over [0,00) and considering that
V(x(00)) =0,

N o N
J= Z/ x! Qixidt <V (x(0)) = Zx;(O)Pix,» (0). (3.146)

i=170 i=1
This completes the proof of the theorem. g

Note that the bound obtained in Theorem 3.8 depends on the initial condition
x; (0). To remove this dependence on the initial condition, there are two approaches,
one is the deterministic method [39] and the other is the stochastic approach [38]. In
this section, we will adopt the deterministic approach. Suppose that the initial state
of the system (3.141) is arbitrary but belongs to the set S; < {x;(0) € X" : x;(0) =
II;pv;, vl? v; < 1}. Then, it follows from (3.146) that

N
T <Y Amax (I} PiITi0), (3.147)

i=1

where Amax (-) denotes the maximum eigenvalue. Hence, in this section, the measure
of robust performance considered is as follows:

N
J* <inf {kaax(ﬂfoﬂ-ﬂio): P; > 0 is a quadratic
i=1

cost matrix for (2.20) and (2.21) ;. (3.148)
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Before proceeding to obtain the main results, the following key lemma will be
introduced.

Lemma 3.3 Given real matrices Y, H and E of appropriate dimensions with Y
symmetrical. Then

Y+ HFE+E'F'H <0
forall F =diag{Fy, F>, ..., Fy} with Fj € R xB; satisfying F'F < I, if there exist

some positive scalars yj, j =1,2, ..., k, such that

Y+ HILH + E’Fﬂ_lE <0,

where I'y = diag{y1 1o, V2 luy, Vilo, ) and I'g = diag{y11g,, v21p,, ..., vilg,}-
Proof Note that HFE = H Fal 2F I’ﬁ_l/ 2E. The desired result then follows by ob-
serving that F'F < I and

(FFﬁ_l/gE _ F‘J/th)t(FFﬁ—l/ZE . Fafl/ZHz)t > 0.

The following result provides two sufficient conditions for the existence of quadratic
cost matrices satisfying the inequality (3.143). O

Theorem 3.9 Consider the system (3.141) and the cost function (3.142). Suppose
that there exist a set of matrices P; >0,i =1,2,..., N, such that

P;i(A; + AA)) + (Ai + AA)'P;
N
+ ZPU;P:‘ (Giij + AG1ij)(Giij + AGyij)' P;
=1

N
+ ZPZijPi (Gaij + AG2ij)(Gaij + AG2ij)' Pi
Jj=1

4

+ Plij(Wf,--l-Wli-l-ijinji)

J

I
—-

M=

+ Y paij (W3, Wo + Wztji Wa;i) + Qi <0 (3.149)

~.
I

for all admissible uncertainties AA;, AGy;j and AGo;;.

Then the set of matrices P; is a quadratic cost matrix set for the system (3.141)
and the cost function (3.142).

Furthermore, (3.149) holds if there exist some scalars €;, y1;j and yaij, i, j =
1,2,..., N, such that
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AL+ PiA;i+ Qi +&EE);

Gtzipi

PGy
0
0
—I+ N{,I'gi Ny
0
0

where

PH,; PiLy;
—8,'1 0
0 —Igi
0 0
0 0
0 0
PiLy; PiGo;
0 0
8 8 <0,
—1yi 0
0 -1+ Néil*zﬁ,-Nz,»

N
0; = Z[puj(Wfi Wi + iji Wiji)
=1

+ paij (Wi, Wai + WﬁﬂWzﬁ)] + Qi

G =[p1u1Guir ..
Goi = [p2i1Gair ..
Ly =I[piuiLii ---
Ly = [p211Gair -
Nii = [p1iNut ...
Noi = [p2itNait -

TN = diag{y1ilyy; -

Flﬁi = diag{ylillﬂ” ..
Iy = diag{yriily,, ...
i = diag{yiilpy; .-

P1inGiinl,
P2iNGaind,
pLiNL1iN],
p2inLain],
P1inN1iN],
P2inN2iN],
Y1iN Loy }s
viinIgn )
V2iN Layiy )

VZiNIﬁziN}-

Proof In the light of Assumption 3.15, if (3.149) holds,

N
D 1 HI(Ai + AA) Py + Pi(Ai + AA)D;
i=1
N
+ Z 2x!Pip1ij(Giij + AG1ij)g1ij (xi, X )
=1

165

(3.150)

(3.151)

(3.152)

(3.153)

(3.154)

(3.155)

(3.156)
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N
+ Z 2x! P p2ij(Gaij + AG2ij) g2ij (xi, xj) + x! Qix;
j=1

N
<> [(Ai + AAD P+ Pi(Ai + AA)
i=1

N

+Zpiplij(G1ij + AG1;;)(Giij + AG1;;)" P;
j=1
N

+ Z P; p2ij(Gaij + AG2ij)(Gaij + AG2;j)' P;
j=1

N
+ Z p1ij (Wi Wy + iji Wii)
=1

N
+ D p2ij (Wh Wai + W35, Waji) + Qi]xi <0
J=1

for all nonzero x = [x{ xf\,]’ and all admissible uncertainties. Hence, P; > 0,
i=1,2,..., N, is a set of quadratic cost matrices for the system (3.141) and the
cost function (3.142).

Using the Schur complements, (3.149) holds if, and only if,

(Ai + AA) P + Pi(A; + AA) + Qi Pi(Gri + AGy;)  Pi(Ga + AGap)

(G1; + AG ) P; -1 0
(Gai + AG2)' P; 0 -1
<0, (3.157)
where
AGy; = [p1114AGiit ... pinAGiN],
AGyi =[p2i1AG21 ... p2inAGaoiN].
That is,

G, P; -1 0

A'P;+ PiA;+ Q; PGy PiGzij|
Gh P; 0 -1

P;Hy; P;Ly PiLy F;
+ 0 0 0

0
0 0 0 0
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1 t

E;: 0 O07TF o 0 PiHy; PiLy; PiLy

+|1 0 N O 0 Fia O 0 0 0
0 0 Ny 0 0 Fiq 0 0 0
<0, (3.158)

where Fi;jq = diag{Fi;1,..., F1in}, Faq = diag{Fz;1, ..., Foiy}. Using Lem-
ma 3.3, (3.158) holds if there exist some &; > 0, y1;; > 0 and y»;; > 0 such that

M, PGy PGy
thiPi —I+N{i1“1,3,~Nu 0 <0, (3.159)
G5 P 0 —1I + Nj; i Noj

where
M; = ALP; + P;Aj + Q; + ;' PiHy Hi; P;

+ PiLyi Iy LY Pi+ PiLyi I, L5, Pi + & E{, Ey
and Flaj, Flﬁj, Fgo,j and Fzﬁj are given by (2.37) and (3.156).

By applying the Schur complements again, (3.159) holds if, and only if, (3.150)
holds. O

Remark 3.27 Theorem 3.9 provides a sufficient condition for the existence of a set
of guaranteed quadratic cost matrices. It gives a suboptimal method for computing
the robust performance measure defined in (3.148). In fact, it follows from Theo-
rem 3.9 that

N
Jy =inf) > Amax(ITfo PiTTi0) | Pi > 0, € > 0,
i=1

v1ij > 0 and y2;; > 0 satisfy (2.29) ¢.
Obviously, J < J* < J,. Hence, J, provides a suboptimal upper bound for the sys-
tem (2.20) and the cost function (2.21). Note that (2.29) is linear in ¢;, y1;; and

v2ij>1,j =1,2,..., N, and hence the problem of computing J is a standard LMI
problem [4].

3.6.5 Guaranteed Cost Controller Design

An LMI approach is presented here to solve the decentralized quadratic guaranteed
cost control problem for a class of interconnected nonlinear systems. Consider the
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following interconnected large-scale system which consists of N subsystems:

N
Xi = (A; + AA))(Bi + ABi)u; Zplij(G]ij + AG1ij)g1ij (xi, X;j)
j=1
N
+ZP2ij(G2ij+AGZij)g2ij(xi,xj), (3.160)

J=1

where x; € " is the state of the ith subsystem, u; € i is the control of the ith
subsystem, A;, B;, G1;; and Gy;; are real constant matrices with appropriate di-
mensions, AA;, AB;, AGy;; and AG;; are uncertain matrices, g1;;(x;, x;) € R"
and g2;;(x;, xj) € N are unknown nonlinear vector functions representing the in-
terconnection between the ith subsystem and the jth subsystem, and the parameters
piij and po;; are constants of either 1 or O (if they are 0, it means that the jth
subsystem has no connection with the ith subsystem). AG1;;, AG2ij, g1ij (xi, x;)
and g2;;(x;, x;) satisfy Assumption 3.15 and AA; and AB;, satisfy the following
assumption.

Assumption 3.16
[AA; AB;]= Hy; Fj[E1;i Exl,

where F; € M/ *¢j is an unknown matrix function satisfying
t .
FiFj < e,
and Hj;, E1; and E»; are known real constant matrices with appropriate dimensions.

Remark 3.28 Obviously, the parameter uncertainties and interconnections in the
power system (3.139) satisfy Assumptions 3.15 and 3.16.

In what follows, the following cost performance is defined:

N o0
J=Z/ (x4 Qjxj +u';Rjuj)dt, (3.161)
—Jo
j=1
where Q; = Q’/. >0and R; = R; >0, j=1,2,...,N, are given real constant

matrices.
Similar to Definition 3.1, we give the following definition of decentralized state
feedback guaranteed cost control.

Definition 3.2 A decentralized controller u; = K;x; is said to be a decentral-
ized state feedback quadratic guaranteed cost controller with a set of cost matrices



3.6 Decentralized Control with Guaranteed Performance 169

P; > 0 for the system (3.160) and (3.161), if

N
Y xi{[Ai + AA; + (Bi + AB)K ' P,
i=1
+ Pi[A; + AA; + (B + ABj)K; 1}x;
N N
+ Z ZZXi’Pi[Plij(Glij + AG1ij)g1ij (xi, X )
i=1 j=1
+ p2ij(Gaij + AG2ij) gaij (xi, X )]
N
+ ) x(Qi + K/ RiKi)x; <0 (3.162)

i=1

for all admissible uncertainties.
The following theorem provides the main result of this section.

Theorem 3.10 Consider the system (3.160) satisfying Assumptions 3.15 and 3.16.
Suppose that there exist some real positive scalars €;, yij, v2ij and some real con-
stant matrices X; = X; >0andV;,i,j=1,2,..., N, such that the following set of
linear matrix inequalities (LMIs) holds:

— ~1/2 -

Q?,- X; Q; Yl-t X,-Eil. Gy 0 Gy 0
02 X; —1I 0 0 0 0 0 0
Yi 0o —-RrR' 0 0 0 0 0
Ei X + EyY; 0 0 —eil 0 0 0 0
thi 0 0 0 -1 N{i 0 0
0 0 0 0 Ny —Tg; 0 0
Gt2i 0 0 0 0 0 -1 Nl.[
B 0 0 0 0 0 0 Noi =T |
<0, (3.163)

where
;i = AiX; + X; Aj + BiY; + Y/ B} +&i Hii H{; + L1i Nai LY; + Lo Do LY,

and Q,-, Niis Noi, Nais Togis Tipi and Dhg; are as in (3.151) and (3.154)—(3.156),
respectively. If the above condition is met, there exists a decentralized guaranteed
cost controller given by u; = K;x; with K; = Y,-Xl._l, i=1,2,..., N, that asymp-
totically stabilizes the overall closed-loop system and render the performance cost
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J satisfying

N
7<) X 0)X; " x(0),
i=1

where x;(0),i = 1,2, ..., N is the initial state of the ith subsystem.

Proof The closed-loop system of (3.160) with u; = K;x; is

N
Xi =[(Ai + BiK;) + (AA; + AB; K;)x; + Zplij(Glij + AG1;)g1ij(xi, xj)
=1

N
+ZP1ij(G2ij+AG2ij)g2ij(xi7xj) (3.164)
j=1

and the corresponding closed-loop cost function is
N (@]
J:Z/ x{(Qi + K| RiKi)xidt. (3.165)
—'Jo
i=1

On the other hand, premultiply and postmultiply (3.163) by diag{X ;" VI...,1},and

let P; = Xl._1 >0,and K; =Y; Xl._]. Then using the Schur complements, (3.163)
holds if, and only if,

¥, P Hy;  PiLy; P;Gy; P; Ly; PGy
H, P, —&'1 0 0 0 0
LP 0 Tt 0 0 0
~1
thiP,‘ 0 0 —I+NfiF15iN1i 0 1 0
Ly 0 0 0 -, o
| GLP 0 0 0 0 —I+N}Ty Ny |
<0, (3.166)
where

W; = P;(Ai + BiK;) + (A; + BiK;)' P,
+ Qi + KIRiK; + &7 "(Evi + E2i Ki)' (E1i + Eni K;)
and Q; is as in (3.151).

By applying Theorem 3.9 to the closed-loop system (3.164) and the correspond-
ing cost function (3.165), the theorem is established. O

Remark 3.29 Note that (3.163) is linearin X;, ¥;, &;, y1;; and y»;;, and can be solved
efficiently using the LMI tool [12]. Also, it follows from Theorem 3.10 that, if
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the LMI (3.163) holds, then the corresponding cost function (3.161) is bounded
by Z,N=1 AM(HI?OXi_lﬂ,-o). For some given constant A; > 0, AM(Hi’OXi_IHio) <A
if, and only if]

M — X Mg > 0
which is equivalent to

—nI
[Hi _h]<u (3.167)

Therefore, the problem of minimizing the bound Z,N: LA M(Hl.’OX i 1171-0) becomes

the minimization of Z,N=1 A; under the LMI constraints of (3.163) and (3.167). This
is a parametric LMI problem and can be solved effectively by employing the LMI
tool [9].

Remark 3.30 From Theorem 3.10 and the feedback linearized system (3.139), the
excitation control input u y; of the power system (3.129)—(3.131) can be obtained
by an inverse transform of (3.140):

1
=y i + Puio — (xai — xy) 1gilai + Tjo; Qciwi}, (3.168)

cilqi
where vy; = K;x; with K; =Y; Xf]. Note that /,;; = 0 is not in the normal work-
ing region for a generator, so u y; is well defined. On the other hand, in power sys-
tems, P,;, Q.; and I 7; are readily measurable variables, thus it follows from (3.132),
(3.136) and (3.137) that I; and I ; can be calculated by using these available vari-
ables. As §; and w;, i = 1,2,..., N, are also measurable variables, the excitation
control (3.168) is practically realizable by only using the local measurements.

3.6.6 Simulation Results

The decentralized guaranteed cost control design proposed in the preceding section
is now applied to a three-machine power system as shown in Fig. 3.10. Generator 3
is an infinite bus bar used as the reference (E ;3 = constant = 1£0°). The system

parameters used in the simulation are given in Table 3.1.

For the purpose of illustration, the authors consider the parametric perturbation
as AT, =0.1T)., i = 1,2, and choose | Pe1|y = 1.4 and | Po2|p = 1.5. Thus, the
DFL compensated power system model (2.18) can be rewritten as follows:

X1 = (A1 +AADx1 + (Br + ABy)vyy

+ AG1128in(8) — 82) + AGanjw1 + AGpwy, (3.169)
X2 = (A2 + AA2)x2 + (B2 + ABy)vyo

+ AG1215in(82 — 61) + AGpi1w1 + AGanpws, (3.170)
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Fig. 3.10 Three-machine
power system

generator 3

Table 3.1 System

parameters Generator 1 Generator 2
Xd, p-u. 1.863 2.36
Xd, p-u. 0.257 0.319
X, p-u. 0.129 0.11 x12, p-u. 0.55
Xad P-U. 1.712 1.712 x13, p-u. 0.53
T}y, p-u. 6.9 7.96 x23, p-u. 0.6
H,s 4 5.1
D, p.u. 5 3
ke 1 1
where
0 1 0 0
Ai=10 -0.625 -39.27 |, B = 0 ,
_0 0 —0.1449 0.1449
[0 1 0 0
Ary=10 -0.2941 —-30.8 s By = 0 s
| 0 0 —0.1256 0.1256

1] <0.0132, | T)oslmin =7.164 s,

lri2l <0.7817,  |rann| <14, |l <14,
2] <0.0111, | T)olmin =621 s,

Iri2i] <0.9662,  [ro1| < 1.5, [raaf < 1.5.

In the performance index (3.161), the authors set Q1 = Q> = 0.057, Ry = 0.002
and R, = 0.001. In the light of Remark 3.29, by solving the corresponding LMIs
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(see (3.163)), the decentralized guaranteed cost controller is obtained as

vr1 = 46.6023(81 — 810) + 48.7572w) — 245.4968(Py1 — Pio), (3.171)
Vs = 59.6959(8) — 820) + 65.0159w) — 244.7198(Pyy — Pao)  (3.172)

and the minimal upper bound of the cost is 1.7676. Thus, the original excitation
control laws for the three-machine power system are as follows:

1

up = I_I{Vfl + Pmio — (xa1 — Xy g1 1a1 + Tjoy Qero1}, (3.173)
q
1 !/ !/

Ujpy = I_Z{Vf2 + Puo — (ka2 — x0) 1o dan + Ty Qerwn}.  (3.174)
q

In the simulation, saturation of synchronous machines is also considered, and so
(3.131) becomes

1

by = Efi = Eqi = (1 = k) Ey), (3.175)
do1
where
bj (nj—1
kpi=1+ a—j(Eqi) J
with
a; =095, b;=0.051, n;=38.727, (3.176)
ar» =0.935, by, =0.064, np=10.878. (3.177)

The excitation control input limitations are
—6§Ef,'=kciuf,‘§6, i=1,2.

This example shows the effectiveness of the proposed decentralized control un-
der different operating points, fault locations and transmission-line parameters. The
fault under consideration is a symmetrical three-phase short-circuit fault that occurs
on one of the transmission lines between generators 1 and 2. The fault location is
indexed by a constant A, which is the fraction of the line to the left of the fault.
For example, A = 0 means that the fault is on the bus bar of generator 1, whereas
A = 0.5 indicates that the fault happens midway between generators 1 and 2. The
fault sequence under consideration is as follows:

1. The system is in pre-fault steady state;

2. A fault occurs at ty = 0.1s;

3. The fault is removed by opening the circuit breakers of the faulted line at t| =
0.25 s;
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Fig. 3.11 Power angle

response of power system:

Case 1

Fig. 3.12 Relative speed

response of power system:

Case 1

power angle, deg
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4. The transmission line is restored with the fault clear at t, = 1.0 s;

5. The system is in post fault state.

The system dynamic responses can be tested under the following cases of different
operating points, fault locations and network parameters.

1. The operating points are

810 = 60.78°,
820 = 60.64°,

Puio=11pu., V;=10p.u, (3.178)
Py =10p.u., Vip=1.0pu (3.179)

The fault location is A = 0.07. The corresponding closed loop system responses
of power angles, relative speeds, real powers and excitation control signals of
generators 1 and 2 are shown in Figs. 3.11-3.14.

In particular, the responses of power angles are given in Figs. 3.15 and 3.16
for comparison: in Fig. 3.15, where the fault location is A = 0.07, the open-
loop system without controller is unstable; in Fig. 3.16, where the fault location



3.6 Decentralized Control with Guaranteed Performance 175

Fig. 3.13 P, response of
power system: Case 1

Fig. 3.14 E response of
power system: Case 1

Fig. 3.15 Responses of
power angles, controller
against no controller:

A =0.07
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Fig. 3.17 Responses of power system: Case 2

is A = 0.09. The open-loop system without controller is stable, but it exhibits
significant oscillations. From Figs. 3.15 and 3.16, it is obvious that the proposed
controller can enhance the system transient stability and damp out the power
angle oscillations.

2. The operating points are

810 =18.51°, Pu1o=03pu, V;;=0.95p.u. (3.180)

820 =23.68°, Pu2o=04pu, Vip=0.95p.u. (3.181)

The fault locations is A = 0.1. The corresponding closed loop system responses
of power angles and relative speeds of generators 1 and 2 are shown in Fig. 3.17.

3. The operating points are the same as in Case 1. The corresponding closed-loop
system responses of power angles are compared with different fault locations

(A =0.07,0.5,0.95) in Fig. 3.18.
4. The transmission-line parameters are defined by the following:

x12=X13=X23=0.7. (3.182)
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Fig. 3.18 Responses of power angles of the generators 1 and 2: Case 3. (i) A = 0.07; (ii)) A = 0.5;

(iii) » = 0.95
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Fig. 3.19 Responses of power system: Case 4. (i) Power angle response; (ii) P, response

The operating points are as follows:

810 = 64.08°,
820 = 65.33°,

Ppio=095pu., V;=10pu., (3.183)

Pu20=095pu., Vip=10p.u. (3.184)

The fault location is A = 0.1. The corresponding closed loop system responses
of power angles and real powers of the generators 1 and 2 are shown in Fig. 3.19.

The simulation results shown here clearly indicate that the proposed controller

can enhance the system transient stability and damp out the power angle oscillations
in the face of different conditions of operating points, fault locations and transmis-

sion parameters.
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3.7 Notes and References

In this chapter, a new robust decentralized controller has been proposed to enhance
multimachine power system transient stability. The proposed controller is a linear
controller that can guarantee system stability over the whole operating region. The
controller design procedure is derived. In the design of the controller, the fault loca-
tion and exact network parameters do not need to be available. The proposed con-
troller uses local measurements through a simple implementation. A three-machine
power system is considered as an application example of the theory developed in
this chapter. Simulation results show that despite the nonlinear interconnections be-
tween generators and significant operating condition variations following the faults,
the proposed controller can rapidly damp the system oscillation and greatly enhance
the power system transient stability.

Moreover, an LMI-based robust decentralized guaranteed cost control approach
has been proposed for multimachine power systems. Our results are given in terms
of a set of LMIs which can be solved efficiently by using the available LMI tool.
A procedure has been given for the optimization of an upper bound of the per-
formance index. The proposed robust control scheme is demonstrated on a three-
machine example power system. Simulation results have shown that the transient
stability is greatly enhanced regardless of different operating points, faults in vari-
ous locations and changing network parameters.

There are several directions of extending the results reported in this chapter. Chief
among these is the class of interconnected discrete-time systems, for which there is
virtually no results available.
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Chapter 4
Decentralized Systems with Multi-controllers

This chapter looks at particular classes of decentralized systems that incorporate
multiple controllers in their basic operation. Three distinct types of these systems
are identified: multi-channel time-delay systems, interconnected networked systems
and discrete-systems with saturating controllers. In the first two types, the mathe-
matical analysis treats initially with interconnected time-delay systems to develop
general delay-dependent stability and stabilization results. Then, several interest-
ing cases are derived. The subsystems are subjected to convex-bounded parametric
uncertainties and/or additive feedback gain perturbations. The third type is con-
cerned with stabilization decentralized linear saturating plants. The basic tool is the
construction use of appropriate Lyapunov-Krasovskii functionals. We characterize
decentralized linear matrix inequalities (LMlIs)-based conditions. Resilient decen-
tralized dynamic output-feedback stabilization schemes are designed such that the
family of closed-loop feedback subsystems enjoys the delay-dependent asymptotic
stability with a prescribed y-level £, gain for each subsystem.

4.1 Introduction

There are many real world systems consisting of coupled units or subsystems which
directly interact with each other in a simple and predictable fashion to serve a com-
mon pool of objectives. When viewed as a whole, the resulting overall system often
displays rich and complex behavior. Typical examples are found in electric power
systems with strong interactions, water networks which are widely distributed in
space, traffic systems with many external signal or large-space flexible structures,
to name a few, which are often termed large-scale or interconnected systems. It be-
comes increasingly evidently that the underlying notions of interconnected systems
manifest the complexity as an essential and dominating problem in systems theory
and practice and that several associated problems cannot be tackled using one-shot
approaches. Recent research investigations have revealed [3, 22] that the crucial
need for improved methodologies relies on:
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(1) dividing the analysis and synthesis of the overall system into independent or
almost independent subproblems,

(2) searching for new ideas of coping with the incomplete information about the
system, and

(3) seeking appropriate methods of handling the uncertainties and for dealing with
delays.

System complexity frequently leads to severe difficulties that are encountered in
the tasks of analyzing, designing, and implementing appropriate control methods.
These difficulties arise mainly from the following well-known reasons: dimension-
ality; information structure constraints; uncertainty; delays. Pertinent results can
be found in [2, 25, 26, 41, 43, 49-51, 72].

4.2 Decentralized Stabilization of Multi-channel Systems

In this section, we direct attention to a type of decentralized systems described by a
class of linear multi-channel time-delay systems with norm-bounded uncertainties
and time-varying delays is examined. The objective is to design a class of decentral-
ized dynamic output-feedback controllers to render the closed-loop multi-channel
system delay-dependent asymptotically stable with a prescribed disturbance attenu-
ation level.

4.2.1 Introduction

The basic concepts of large scale or interconnected systems have been introduced
to deal with the real control problems that cannot be solved using one-shot (cen-
tralized) approaches [43, 56-61, 72]. Typical problems arise in the control of water
systems which are widely distributed in space, interconnected power systems with
strong interactions, traffic systems with different external signals, or large-scale flex-
ible structures. The structures of such systems have led to the development of new
ideas for dividing the analysis and synthesis of the overall system into indepen-
dent (or almost independent) subproblems and for dealing with limited information,
uncertainties and time-delays. Therefore in the past few decades, the analysis and
design problems of decentralized control for large scale or interconnected systems
have been intensively studied [27, 79]. In particular, the linear matrix inequalities
(LMlIs) framework [8] has appeared to be very attractive to tackle the control and
filtering problems of handling interconnected systems [3].

This section develops new results for the problems of decentralized analysis and
control synthesis for a class of linear interconnected multi-channel systems. This
class includes linear time-delay systems subject to input disturbance and several
control agents where the system matrices are allowed to undergo bounded para-
metric uncertainties. The design objective is to construct robust dynamic output-
feedback controllers and derive easily-computable formula for determining the
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gains. Previous related results are reported in [10, 15, 80] where the main focus
has been on delay-free systems using state-feedback. It turns out that the results of
[10, 15, 80] are essentially a special case of the approach developed hereafter. We
employ a Lyapunov-Krasovskii functional (LKF) approach to developed the closed-
loop stabilization conditions and with the aid of a convex optimization framework,
LMI-based conditions are obtained.

4.2.2 Problem Statement

We consider a class of linear uncertain systems X' with N channels and represented
by the state-space model:

N

£(1) = [A+ AAL () +[Ag + AAGx(t — 7)) + Y Bjuj(t) + T'w(r), (4.1)
j=1

2(t) = Gx(t) + Gax(t — t(t)) + Pw(?), 4.2)

yj(t) =[C; + ACjIx;(t), je{l,...,N}, 4.3)

where x (1) € N" is the state vector, w(f) € N” is the disturbance input which belongs
to £5[0, 00), z(¢) € R’ is the controlled output, u;(t) € ™/ and y;(¢) € R/ are
the control input and the measurement output of channel j € {1,..., N} and 7 is an
unknown time-delay factor satisfying

O<t(=o T()=p, 4.4)

where the bounds g, i are known constants in order to guarantee smooth growth of
the state trajectories. The matrices A € R"*", B; e R, G e RP*", G4 € RP*",
Ag eV, @ e RN, e W, C; € R4 are real and constants.

Without loss of generality, the following assumptions are made:

Assumption 4.1 There is no unstable fixed modes with respect the triplet A,
B;, C;.

Assumption 4.2 For every j € {1,..., N}, the matrices B, C; have full column
rank and full row rank, respectively.

The uncertain matrices AA, AAy, AC; are represented by

AC H
AC)y H;
[AA AA ] = EA[M N], ) =| . |AF, 4.5)

ACy Hy
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where E, F, M, N, Hy, ..., Hy are known constant matrices with appropriate di-
mensions and A is an unknown matrix satisfying A’ A < I. The class of systems
described by (4.1)—(4.3) subject to delay-pattern (4.4) is frequently encountered
in modeling several physical systems and engineering applications including large
space structures, multi-machine power systems, cold mills, transportation systems,
water pollution management, to name a few [48, 72].

In what follows, we consider the feasible set C as the set of all linear time-
invariant controllers with state-space realization of the form:

)AC./'(I) = AA./')ej(l) + Ejyj(t),

o 5 , (4.6)
uj(t) =Cjxj(t)+ Djy;(t), j=12,...,N

where X (¢) € %%/ is the state of the local controller with the order s; < n and the
matrices Aj € NSJi*Sj, I§j € N5i*4j, C‘j € RMixsj, ﬁj € RN™i*4J and are the design
parameters. Connecting the controller (4.6) to the system (4.1)—(4.3), we obtain the
closed-loop system

N
i) = [A +AA+Y B;DIC; + ACj]:|x(t) +[Ag + AAglx(t — T(t))

j=1
N A
+Y B;Cizj(t)+ T'w(), 4.7)
=1
2j(t) = Bj[Cj + AC;Ix(t) + A;%;(1), je(l,...,N}, (4.8)
7)) =Gx(t) + Gax(t — (1)) + Pw(t). (4.9)

For simplicity in exposition, we introduce the following notations

(@) =col[£1(t) £2(t) ... v (D) ], w(t) = col [wi (1) wa(r) ... wy(®) ],
A=diag[A; Ay... Ay]. B =diag[B) B, ... By ], (4.10)
C=diag[C C,...Cx],  D=diag[D; D, ... Dy]

along with the matrices
B=[Bi1B,...By], C=dag[C|C}...C,],
H=diag[H Hy...Hy],  AC=diag[AC| AC;... ACy]. @D

This paves the way to express the closed-loop system (4.7)—(4.9) into the form
X(@) = [A + AA+ BD[C + AC]]x(t) +[Ag + AA ]x(t — T (1))
+ BCxj(1) + Tw(r), (4.12)
£(t) = B[C + ACIx(t) + AX (1), (4.13)
2() =Gx(t) + Gax(t — (1)) + Pw(z). (4.14)
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By grouping the unknown controller matrices into one block matrix

/C:[/f ’?} (4.15)
¢ b

and introducing the block matrices

~, .r_[A+44 0O =~ [r ~ [0 B
Feak=[*24 00 =[5 B[] 5]
Eyac=| 0 I G=[G0] o=[o'0] (4.16)
“lc+rac o) - ’ - ’ '
~ [4s © ~ [a4a; 0 ~ [0 o0
A= o] AAd_[ 0 0]’ AC‘[AC 0]

We finally write the closed-loop system in the compact-form

E(r) = AE(t) + Agé(t — t(1)) + Tw(t),

~ ~ . 4.17)
z(t) = G5(@) + G4§(t — (1)) + Pw(r),
where
ol e[ o]
A N . (4.18)
M =[M O], N =[N O], F=[FO0]
and
A=A+ EAM+ BK[C + HAF],  Ay=Ay+ EAN,
~ (4.19)
Gd=[Gd0].

It must be observed in (4.17) that all the matrices are known except the controller
coefficient matrix /C.

The problem of interest in this section is to design the decentralized dynamic
output-feedback controller (4.6) such that the closed-loop system (4.17) is internally
asymptotically stable with w(#) = 0 and under zero initial condition, the following
condition is satisfied

lzOl2 = yllw®l2,  Yw(r) € L2[0, 00). (4.20)
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4.2.3 Decentralized Stabilization

We adopt a Lyapunov-based approach to design the decentralized controller (4.6).
For this purpose, we introduce the Lyapunov-Krasovskii functional (LKF):

t t
V(1) =& (1)P&(1) +/ £'(s)SE(s) ds +/ E'(s)WE(s)ds
t—o t—1(t)

0 t
‘o f £ (@)RE (o) da ds, 421)
—o Jit+s

where 0 < P, 0 <W, 0 <R, 0 < S are matrices of appropriate dimensions. The
main decentralized stabilization result is established by the following theorem:

Theorem 4.1 The uncertain nonlinear system (4.17) is robust asymptotically stable
and satisfy (4.20), if there exist positive definite matrices S, R, W, real matrices X,
Y, and real constants €1 > 0, g > 0, such that the following LMI holds.

211 2::12 213 214 [A~X+Y]t XG! E ]
e X»n O 0 0 0 0
e o ¥y 0 XA XG, o0
° ° ° ZA‘44 I d! 0 <0, (4.22)
° . ° . —2X+R 0 E
° ° ° . ° —1I 0
° . ° ° ° ° —e1l

S =AX+Y+[AX+YI+8+W+R+eM'M++&F'F, Zi,=R,
Su=TI, Zn=—R-S, Zp3=—1—-wW+eN'N, (4.23)
Su=—y1, Ai=Aq Zi=A;X+eMN.

Proof A straightforward computation along the solutions of (4.17) with the help of
Lemma 9.9 yields:

T=V@e)+' O)z0) — y*wnw(t)
t
=26"Pé +0%6'RE—o | E'(s)RE(s)ds
t—o

+EDOIS+WIE®D) — &' (t — 0)SE(t — 0) — (1 — WE (1 — T(1))WE( — (1))
+[GE®) + Gat(t — (1)) + Pw ) [GE®) + Gat(t — (1)) + Pw (1))
—yrw(Ow(t)

< 26'PLAE(t) + Agé(t — T(0)) + Tw(1)]
+ 0%*'RéE — [£(1) — £(t — 0)]'RIE(t) — £(1 — 0)]
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+EDIS+WIE®) — E'(t — 0)SE(t — 0) — (1 — WE (1 — T(1))WE(t — (1))
FIGEW) + Gat(t — T(1) + Pw)'[GE(W) + Gab(t — T(1)) + Pw(1)]
—y2w@®w@). (4.24)

Manipulating (4.24), it yields
J<n'(OZn@), (4.25)

where 7(t) = col{§(1)&(t — 0)&(t — T(¢))w(¢)}, if the matrix inequality

Zn X 2 Xu AT A

_ ° 2 0 0 0 0
et IS S I I o B

° ° ° 244 r r

where
Si=PA+AP+S+W-R+G'G, Zin=R, Zi3=PAs+GGy,
=Pl +G'®, Zp=—R-S, Zp=—(1-wWW+G'Gs, (427
Su=—y1+3'0,

is feasible. Applying Lemma 9.10, X' can be changed to X'y as follows:

X X X3 X AR

° Xy 0 0 0

X = ° . 233 0 A4R | <0, (4.28)
° ° ° Y44 'R
° ° ° ° —R

where
S =PA+AP+S+W—-R+G'G, Tp=R, Xi3=PA;+G'Gy.
Tu=Pr+G'®, Zp=—R-S, Zp=—1-wW+G'Gs, (429
= —)/21 +d'd.
On pre-multiplying and post-multiplying X'; by the diagonal matrix
diag{p~', P!, P71 I, R7Y}
and letting
p'=Xx, XSX=P;,, XWX=0Q, XRX=R, R '=XR'X
it follows from the algebraic inequality

XR'X-2X+R=(X-RR'X-R) >0,
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that
—2X+R>-XR'X,
then, the inequality Y| is equivalent to X, as follows:
1 X T X XA
»n 0 0 0
° 233 0 XAZ < 0,

° ° X4 rt
° ° ° —2X+ R

o=

|
e o o o

where
Zi=AX+ XA +5+W+R+XG'GX, Zn=R,
Zi3=AdX +XG'GyX, Zu=T+XG'®,
Yp=-R-§, Zp=—(1-wW+ XéfjédX,
Syu=—y1+0'0.

Applying Lemma 9.10 again, X can be changed to X3 as follows:

b 2 33 S XA XG!

° Yy 0 0 0 0
5= ° ° X33 AO X;Ald X~Gfl, <0,
° ° ° 244 Il P!
° ° ° . —2X+R 0
. . . ° ° —1

where

211=AX+XAI+§+W+R, Su:é, ZA‘I’J':AdX’

Su=I, Zn=—R-5 Zu3=—(1-wW,
244:—)/21.

(4.30)

4.31)

(4.32)

(4.33)

Proceeding further, using the bounding inequality A from Sect. 9.3.1 and consider-

ing (4.32), X3 can be manipulated into the form

_511 i 213 214 XA XG! E ]
e Xp 0 O 0 0 0
° . 233 0 X.%Idt XG; 0
3= ° ° ° ZA'44 r d! 0
° . . ° —2X+R 0 E
° ° ° ° ° -1 0
° ° ° ° ° ° —e1l

<0,
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where

Su=AX+ XA +S+W+R+eM'M++erF'F, Z12=R,
Su=I, Znp=-R-S, Zpn=—-1-wW+eN'N, (4.34)
Su=-y*l, A=A+BKC, A;=A;, Zi3=A;X+eMN.

Finally, we denote AX = AX + BKCX = AX + 7Y, thus K = B-lyx-!'C-!. So

we can get X3 can be changed to formula (4.22) as desired. Il

We now demonstrate the results by numerical simulation.

4.2.4 Simulation Example 4.1

Consider a two-channel linear uncertain systems X'

10 -11 -21 —-10 19 2.1 03 —2.17
20 —49 -1.1 0 1.2 1.1 02 -0.6
19 -11 -31 -10 19 2.1 0.1 =20
A 68 -89 —-69 —-10 6.9 7.1 03 =59
21 =39 -1.1 0 0.3 1.1 0.3 0.2
-20 6.8 3.1 02 —-69 -21 -08 1.1
2.5 47 -0.1 -1.0 -39 21 =29 =20
| —1.10 5.9 2.1 03 =59 —-01 -1.1 0.1 |
[ 01 —-0.1 -03 0 04 0.1 0 —0.1]
0.1 =05 -0.1 0 -0.2 0.1 02 —-0.2
01 -01 -0.1 -10 -05 0.1 0.1 —0.1
Ay = 02 -07 09 -10 -03 0.1 03 -04
01 -08 0.1 0 0.3 0.1 0.3 0.1
-0.1 038 0.1 02 -09 -0.1 -0.8 0.
02 07 01 -10 -09 01 -09 -10
 -0.r 06 -01 03 -08 -01 -1.1 0.1 |

B{=[-10-1100-10],
B;=[0019010910],

0

(=N el

0.9
0.8
0.9

28 0
—-40 0 O
31 1.1 0
=30 0 19
-39 0 O
1.0 1.1 -1
29 0 O
0 21 0

0
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-2 0 0 0 1 0 0 0

G_|-1 1 00 -10 1 o0
0 -2 -1 1 1 1 0 —1[
-1 0 2 0 0 0 -1 0

Ci=[-2130-10-14],
C,=[10-10110-1],
® =diag[0.10.30.10.4],  F=0.6,

0 0.1 0 02 O 0 0 0
—-0.1 0.1 0 0 -02 0 03 0

Ga=|_04 0 —01 02 03 04 0 —01]
—-01 0 1 0 0 0 —-05 0
E=[050-030200004],

[
[003-0.100.20004],
[020-0.10.1002003],
[030.4-0.10.100.200.1],
[

0.

0.50-0.30.20.300.1 -0.2],
8, o0=23.

In implementation, we take the dimensions of the local controllers as s1 = 3, sp = 2.
Taking the advantage of the Matlab LMI Control Toolbox to solve the LMIs (4.22),
we obtain a feasible solution as follows:

y =228,

- [-1621 —1945 —6.11 ~ [-023

Ai=| =377 —1513 878 |,  Bi=| 012 |,
| 086 —093  0.59 ~0.09

C1=[411789-139],  D; =047,

;o [221 365 - L12

2=\ 607 —5.79]’ BZ_[—O.B]’

=[6.948.77],  Dy=0.56.

4.3 Resilient Stabilization of Interconnected Networked Systems

Networked control systems (NCS) are feedback control systems with network chan-
nels in the feedback loop. Two main changes in the control system research direc-
tions are the explicit considerations of the interconnections and a renewed emphasis
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on distributed control systems being closely related to decentralized control of com-
plex large scale systems. Though a variety of structures and models in this frame-
work have been analyzed, a gap remains between decentralized control and control
over networks. Decentralized NCS (DNCS) are the control systems with multiple
control stations while transmitting control signals through a network, i.e. date sig-
nals are transmitted to multiple controllers in the feedback loop. DNCS combine
the advantages of the centralized NCS and the decentralized control systems. Such
a combination enables to cut unnecessary wiring, reduces the complexity and the
overall system cost when designing and implementing control systems. Symmet-
ric composite systems arises in very different real world systems such as industrial
manipulators, parallel processes, flexible structure, electric power systems, homo-
geneous interconnected systems such as seismic cables or in the design of reliable
control systems. In practice, controllers are implemented imprecisely because of
various reasons determined by digital controller properties or the need for addi-
tional tuning of parameters. The need to have a certain degree of freedom in the
choice of the controller parameters, i.e. the robustness of stability against perturba-
tions in controller parameters, leads to the requirement to include also uncertainties
of the controllers in the control design.

4.3.1 Introduction

Recently, the results dealing with the DNCS design methods are rare. Relevant prob-
lems are introduced in [4, 6, 7, 9, 36]. Decentralized stabilization of NCS using pe-
riodically time varying local controller is presented in [63], while the reference [73]
deals with the synchronization within the DNCS design. Stability of the DNCS is
analyzed in [35].

It has been customary to confront with several important issues when dealing
with the control of interconnected systems. The first issue is concerned with the
practical limitations in the number and the structure of the feedback loops, which
motivates decentralized control schemes [72]. The second issue regards the presence
of uncertainties both in the subsystems and in the interconnections. The third issue
is the impact of time-delays among the subsystems and across the coupling links.
The fourth issue has to do with the reliability of the control systems against com-
ponent failures and/or perturbations in the feedback gain matrices. In this section,
we study the robust stability and feedback stabilization problems of a class of linear
interconnected continuous time-delay systems, which are frequently encountered to
describe propagation, transport phenomena and population dynamics in various en-
gineering and physical applications. Large-scale interconnected system appear in a
variety of engineering applications including power systems, large structures and
manufacturing systems and for those applications, decentralized control schemes
present a practical and effective means for designing control algorithms based on
the individual subsystems [72]. Relevant research results on decentralized control
of relevance to the present work can be found in [37, 63, 73].
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It appears from the existing results that general results pertaining to intercon-
nected time-delay systems are few and restricted, see [36, 46—48, 62] where most
of the efforts were centered on matching conditions and were virtually delay-
independent. A recent effort was reported recently in [20] where a class of uncertain
systems with interconnected and feedback delays has been considered. However,
the internal time-delay within the subsystems have not been considered and several
bounding inequalities have been included.

It has been recently reported in [3] that the theory of large-scale (interconnected)
systems is devoted to the problems due to dimensionality, information structure con-
straints, uncertainty and delays. Resilient (non-fragile) control methods [28] and
[52-55] have added new tools to the task of designing appropriate control algo-
rithms to cope with gain parameter perturbations and controller implementations
issues and it is interesting to view these tools as robust re-design algorithms [53].
It is crucial to realize that when dealing with several practical problems arising in
power systems, manufacturing systems and irrigation systems, the changes in con-
troller structure and settings might degrade the overall system performance. Thus
the important role of resilient (non-fragile) controllers with information structure
constraints is underlined when considering large-scale systems [3].

This section develops a resilient decentralized H, observer-based setting using
the reduced-order control design when considering the delay-dependent approach
within the framework of the LMIs. An a technical outcome, we develop robust
decentralized delay-dependent stability and resilient feedback stabilization meth-
ods for a class of linear interconnected continuous-time systems. The subsystems
are subjected to convex-bounded parametric uncertainties while time-varying de-
lays occur within the local subsystems and across the interconnections and additive
feedback gain perturbations are allowed. In this way, our control design offers de-
centralized structure and possesses robustness with respect to both parametric un-
certainties and gain perturbations. For related results on resilient control, the reader
is referred to [53, 54] where it is shown to provide a framework of extended robust-
ness properties.

4.3.2 Problem Formulation

We consider a class of linear systems with unknown nonlinearities S of the form:
x(t) = Aax() + Bou(t) + Caw(t) + c(t, x)
=[A, + AAlx (@) + Bou(@®) + [T + AT lw(t) +c(t, x (1)), (4.35)
2(t) =[Go + AGIx(t) + [Py + APTw(2)
=Gax(t) +Paw(t), (4.36)
y(t) = Cox (1),

where x (1) € N" is the state vector, u(t) € W" is the control input, y(r) € NP is
the measured output, w(t) € N9 is the disturbance input which belongs to £;[0, co)
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and z(r) € N9 is the performance output. The unknown nonlinearities c(¢, x(¢)) are
piecewise continuous functions to be specified at the subsystem level. In what fol-
lows, we view S as structurally composed of n; coupled subsystems S ; and modeled
by:

ng
Xj(®)=Ajax;(t) + Bjou;(t) + Fjaw; () + ZijAxk(t) +cj(t,x), (4.37)
k=1
2j@®) =Gjax;(t) + Pjaw;(1),
yj(t)zcjox]-(t), j=1,..., ng,
s ng s g (4.38)
n:an, m:Zm‘/, pZij, q:an,
j=1 j=1 j=1 j=1

where the unknown nonlinearities c; (¢, x(t)) are piecewise continuous functions
satisfying the global Lipschitz conditions for all ¢; (0, x(0)) as follows

llej(z, x1(@)) —cjt, x2(O) | < [ Ej(x1(t) —x2())ll, V=0,  (4.39)

where E; is a prescribed constant. We further suppose that the structure of the non-
linearities c; (¢, x(t)) is in the form

cj(t,x(t))=e(t,x;)Ex;(t), et xj) ) AL [—1,1].

The link between the overall system S and the collection of subsystems $; is pro-
vided by

[ A1, Fizo ... Fino
Ay = : : : o B, =diag[ Bio B2 ... Buyo |,
| Fusto Fug2o -+ Ango
[ AA|  AF; ... AFy,
AA = : : : : , C, =diag[C1o C2o ... Cpyo |,
| AFy1 AF, ... AA,,
@, =diag[P1o Pro ... Ppyo |,  To=diag[Iio o ... 0],
AD =diag[ AD| AD, ... AD, |, ATl =diag[ Al ALy ... AL, ],

G, =diag[G1o G2 ... Gno].  AG =diag[ AG| AG: ... AG,,].
(4.40)

At the subsystem level, the associated matrices contain parametric uncertainties of
the form

Aja Tja | _| Ajo Lo Hijo | 4 .
[Gm %J‘[Gd,- o, + H, Ajo()[Eja Ejc].  (441)

Fixa=Fjko+ HjcAju()Ejs, (4.42)
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where the unknown nonlinearities are bounded in the form
c; (H)cj(t) < ajx;(t)E;ijj ®, j=1,...,ng, (4.43)

where «; are adjustable parameters and the matrices F; € 0"/ >/ are real and
constant. For j =1,...,ng, Hyj,..., Esj are known real constant matrices and
Ajy, Aj, are unknown time-varying real matrices of appropriate dimensions with
Lebesgue measurable elements satisfying A;OA jo <1, A’J.aA ja<l.

The matrices A, € R/ *", Bj, e R *"i, @, € RII*9i, I, e R"I*97,Cjy €
RPN, G jo € RU>M, Figo € WY are real and constants. The initial condition
x;(0) = ¢j, € 132[—1;‘,0], J €{1,...,ns}. The constant matrices Ajo, ..., Fjro
define the nominal state-space model

Rg
j(1) = Ajoxj(t) + Bjouj(t) + Tjow; (1) + Y Fikoxu(t) + ¢, (4.44)
k=1

z2j(t) = Gjox;(t) + Pjow;(r),

. (4.45)
yj(t)ZCJOXJ(t)ﬂ J=17"'7n35

where in uncertain system (4.37)—(4.38) and nominal system (4.44)—(4.45), x; (t) €
9" is the state vector, u j(t) € R/ is the control input, y;(¢) € NP/ is the measured
output, w; (¢) € N4/ is the disturbance input which belongs to £[0, o) and z;(¢) €
94/ is the performance output.

The class of systems described by (4.45) is frequently encountered in modeling
several physical systems and engineering applications including large space struc-
tures, multi-machine power systems, cold mills, transportation systems, water pol-
lution management, to name a few [48, 72].

4.3.3 Resilient Observer-Based Control

In most of the cases, not all subsystem states are available for measurements, we
seek a decentralized dynamic output-feedback control using subsystem observers
within the network feedback. Consider that one controller-actuator node with a
buffer storing the latest sensor signal at the subsystem level. It is customary that new
sensor data are compared with the latest data. If a new signal reaches the controller-
actuator node, then it is used to compute the control signal, else it is discarded. This
yields in a networked resilient observer controller in the form

)éj (1) =AjoXj(t) + Bjouj(t)+ Lja(y;j(tx) — Cjoxj(tx)),
wj(t)=Kiakj(t), teltitin), k=1,2,..., (4.46)
Lia=Ljo+ALj, Kja=Kjo+AKj,
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where x j(t) € N is the observer state of subsystem and the matrices L j,, K j, are
the nominal observer gain and the controller feedback gain matrices, respectively. In
addition AL;, AK; are additive observer and controller gain matrix uncertainties
given by

AL;j =N, Aij(®)M o, AK;j=NjcA;j(OMje, 4.47)

where for j =1,...,ny, Nj,, ..., Mj. are known real constant matrices and
A;j, Azj are unknown time-varying real matrices of appropriate dimensions with
Lebesgue measurable elements satisfying AijA,j <I, A;jAZj <I.

We note in (4.46) that fy = kA, k > 0 denotes a sampling instant, A is the sam-
pling period and £ is an integer. The sampler is equipped with a standard zero order
hold in the feedback. The sampled value y;(#) of the output y;(¢) is transmitted
through a network channel and the successfully transmitted value is registered in a
buffer with y;(#;) being the output from the buffer and simultaneously represents
the input to the observer. Also, X (#) is the observer state copying the whole set
of dropped packets appearing in the transmission of y; (). Note that ;1 > 1 + 1,
k=1,2,... which corresponds to data packet dropout registered by a buffer and
vi(te) =yj(tx — A — 1) where 1 A indicates the data packet dropout and 7.
is the network-induced delay. This motivates defining the new time-varying delay
0@) =t —1tr — txA — 1. where 1 <1 < (fx—1 — 7¢j)/A. In the sequel, we consider
the number of data packet dropouts to be bounded so that, including the network-
induced delays for each subsystem, it satisfies the constraint

On < 0(1) <Oum, (4.48)

where 6, > 0, 6y > 0 are given constants. Therefore, controller (4.46) can be
rewritten as

2j(1) = AjoRj () + Bjou (1) + Lia(yj(t —0(1)) — Cjokj(t — 0(1))).
uj(t) = Kjax;(), (4.49)
xj(t)=0, te[-0y,0],
while the overall decentralized observer-based controller can be expressed as
X(1) = Ak (t) + Bou(t) + (Lo + ALo) (y(t — 0(1)) — Cok (t — 0(1))),
u(t) = (Ko + AKX (1), (4.50)
X()=0, te[-0u,0]
with
K, =diag[Kio K2 ... Knyo |, Lo,=diag[Lio L2y ... Lo ],
AK, =diag[ AK1y AKy, ... AKyo ], (4.51)
AL, =diag[ ALy ALy, ... ALy, |.
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Remark 4.1 From the published results on networked-control systems, we note that
a single packet transmission is supposed in the feedback loop. It means that in each
transmission every control station receives only one packet through the network.
It can be understood as multiple data packets simultaneous transmission through
parallel network channels, where each channel generally corresponds with a local
feedback loop in the DNCS with individual time-varying delays. The availability
of Acknowledgement (ACK) about data losses to the sender as well as the commu-
nication logics considering dropouts in all local channels if the dropout appears in
any local channel. Then, only a single identical time-varying delay can be applied
for any channel. It can be considered as a single communication channel with data
packet dropouts and communication delays connected within a block diagonal struc-
ture of the gain matrix, that is, the sensor-actuator pair structure in the NCS. Such a
network feedback architecture enables essential simplification of the DNCS design
for the considered class of composite systems. The information structure constraints
on only sensor-actuator pairs in the gain matrices is sufficiently justified for sym-
metric composite systems. Much higher reliability of subsystems than that of the
interconnections, an essential simplification of the DNCS design using LMIs, and
the design requirement to keep the symmetry in the closed-loop system lead to the
preference of decentralized control.

4.3.4 Augmented Closed-Loop System

Define the subsystem error vector ¢ (¢) = x; (1) — X j(t) and the corresponding aug-
mented vector &; (1) = [x;(t) e’/. (*)]'. Using (4.37) and (4.46) with some manipula-
tions, we obtain the augmented model as

Ej (1) =Ajakj(t) +Djaki(t —0(0) + Tjaw; (1) + Z Fikabe(®) +Cj,  (4.52)

k=1
7j(t) = Gjaj () + @jawj(1), 4.53)
v (@) = Coé; (1), '
Aia=Aj,+ AA;, Dja=Dj,+ AD;, Pia=Dj, + AP, 4.54)
Tja=T;+ AL, Gja=Gjo +AG/, Fjka =Fjko + AFji, .
where
A =_Aj0+Bj0Kj0 —BjoKjo D. — 0 0
o= 0 A, |7 P70 —LjCio |
r=[ 7]
:A]/: Bi,AK Bi,AK H (4:33)
AAj:_ 1 AAJJ»O J f% J:|=|:H§D]Ajo(t)[EjaO]
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BioNi. A A A A
+|: ]UO ]L]Azj(l)[Mjc 0]:HjoAjo(t)Eja+Nchzj(t)Mst

r; H; o
]] = |:H].O:|Ajo(t)EjL':HjoAjo(t)ch, Cjo=[Cjo0].
jo

Gjo=[Gjo0]., AG;=[AG;0]=[Hja0]Ajo(VEja=HjaAjo(t)Eja,

0 0 ¢ 9
4Pj = [0 —ALjCjo:| N [_Njo] Ay 10 MjoCo | = Njo by M.
[
(4.56)

Firo 0O ¢
Firo 0]’ J ¢ |’

AFji = [Zﬂ Aja()[Ejs 0] = Hjx Aja(t)E ji.

Our objective in this section is to study two main problems: the first problem is the
decentralized delay-dependent asymptotic stability by deriving a feasibility testing
at the subsystem level so as to guarantee the overall system asymptotic stability. The
second problem deals with the resilient decentralized stabilization by developing
state-feedback controllers that takes into consideration additive gain perturbations
while ensuring that the overall closed-loop system is delay-dependent asymptoti-

cally stable.

4.3.5 Delay-Dependent Subsystem Stability

In what follows, we develop new criteria for LMI-based characterization of delay-
dependent asymptotic stability and £, gain analysis which requires only subsystem
information thereby assuring decentralization. The criteria includes some parameter
matrices aims at expanding the range of applicability of the developed conditions.
We consider the Lyapunov-Krasovskii functional (LKF):

ng

V=YV,

j=1

0 0
Vi) =§;(I)7’j§j(l)+/9 Sﬁ(a)Wj%”j(Ol)dOl+/9§;(05)3j§j(01)d05 (4.57)
0 t . .
+0M/ E;(S)Rjéj(s)dsda,
—Op Jt+o

WhereO<Pj=79;,0<Wj=W5.,0<8j =S§-,0<Rj :R;, jell, ..., ng}
are weighting matrices of appropriate dimensions. Introducing the matrices and vec-
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tor quantities

[(Pj+O)Hjy (Pj+O)Njc OjNjyb 0 0 0 ¢ 0]
TiHj, TiNj¢ YiNj, 0 0 0 0 O
0 0 0 0O 0 0 0 O
0= 0 0 0 0 0 0 0 O
! 0 0 0 0 0 0 0 o0
0 0 0 H 0 0 0 O
0 0 0 0O H 0 0 O
L 0 0 0 0 0 H O 0]
where H = ZZS:I’k#j I:ij, p=MP;+0;+ Tj)['}jo,
_01E;0 alM;.C 0 03[7?,’(] 03EA,’(J. G3E11<j 0 05E§.a_
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
fj _ 0 0 azM;o 0 0 0 0 0 ,
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
L O 0 0 0 0 0 0 0
Aj=col[(P;+©;+1)I7}, 0,0, 0,0, 0, 0, 0],
G’ =[Gjo. 0. 0, 0, 0, 0, 0, 0".
for some scalars o1 > 0,...,06 > 0 and free-weighting matrices ®;, 7}, j =
1,...,ns. The following theorems establishes the main design result for subsys-

tem S;.

Theorem 4.2 Given the bounds 6,, > 0, 0y > 0, the family of subsystems de-
scribed by (4.52)—(4.56) is robustly delay-dependent asymptotically stable with L,-
performance bound y; if there exist positive-definite matrices P;, W;, S, R, free-
weighting matrices ©, T; and scalars o1 > 0, ..., o¢ > 0 satisfying the following
LMIs for j,k=1,...,n;

Yo Aj G, 0Q; T
o —y}; @, 0 0
= | e . —1; 0 0 <0, (4.58)
° ° ° =X 0
. ° ° ° X
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where
"I/aju lIllju 0 l1’2]’0 l1’3j lIlsjo
° —W, 0 Wyjo Wsj 0
o ° W e 0 0
Yjo = ° ° ° -, 0 0 ’ (4.59)
° ° ° ° —1I; 0
° ° ° ° ° —¥7;
Yyjo =(Pj +O)Aj, +Atjo('Pj +OH+W;+S; —R;
+ms—DP;+0;+7)),
Wijo=—0;+A,,T;, Ws;i=T;, Y2,=0,;Dj,+Rj,
U =P;+0;, Wj=—04R;+T1;+7 (4.60)

v =diag[P o 1]
Yyjo = T;jDjo, lIij:Rj—}-W', 176J'Z'RJ', Wn./ZZRj-}-S',

ng ng s
l’psjo:|: Z F;cjo Z F;cjo Z F;cj0:|~

k=1,k#j k=1,k#]j k=1,k#j

Proof A straightforward computation gives the time-derivative of V;(¢) along the
solutions of (4.53) with w(¢) =0 as:

Vi) = 285(0PjE; (1) + 03, (OR (1)
t
— Oy / ) ENSIR &) (s)ds + ELOOW) + SPE; (1)
t—0p
— &N — OMWE(t — On) — E5(1 — 0)S;E;(t —0).  (4.61)

Initially, we use the identity

t—0

0
o [ EORE s = 6w [ E6RE s
—O0y 1—bm

)
t . .
—Ou / *;‘j’. (R ;&j(s)ds. (4.62)
-0
Then apply Jensen’s inequality

t : ;
/ ELSIREj(s)ds = f §'(5)dsR; f £ (s)ds, (4.63)
t—0 =0 t—0

=0 =0 =0
/ ELIR, % (s)ds 2/ g;(s)dst/ £;(s)ds. (4.64)
t t—0y

—Ou t—0p
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By the structural identity

D Y EHOFpagt= Y D ENFijai() (4.65)

k=1ksj j=1 k=1k#j j=I

while invoking the algebraic inequality X'Z + Z'X < X'YX + Z'Y~'Z, Y > 0,
such that

2611P; Y Fiakr(d)

k=1,ksj
< (ns — DEHOP;Ej (1) + Z ELOF 4 PFjka(t)
k=1k#j
< (ns — DEHOP;E; (1)
< > ékmF"kAP) ( P> F,Mékm), (4.66)
k=1,ksj k=1,ksj

it follows finally that

V() < Z [25§(t>79,~([A,-0 + AAjIEj(t) + [Dj, + AD;IE;(t — 0) +C;)
j=1

+ O ENORE (1) — (€ (1) — & (1 —0))' R (€ (1) — &(1 — 6))
—Ejt—0) =& —0m)Rj(Ej(t —0) —&j(t — Oum))
FEOW; +8)Ej (1) — Ej(t —Oy)W;x;j(t — Ou)

— &t =0)Sjxj(t —0) + (ng — DE;()P;&; (1)

( ) sk(oF’kAP,) (P, Z F,Msm)ﬂ (4.67)

k=1,k#]j k=1,k#j

Now by adding the zero-value expression

0=2[£!(NO; +£! (t)T][ —£;(1) +[Ajo + AAJIE (1) + [Djo + AD;IE; (1 — 6)

+ D Fikak(n) +C]} (4.68)

k=1

to the right-hand side of (4.67) and setting
£ (1) = col{&; (1), (1), & (t — O). &(1 — 0),Cj)
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while invoking

2610 Y Firak(n)

k=1,ksj
<y — DEXDOE O+ Y EOF Y AO)F jkaki(n)
k=1,ksj
< (ny — DEND)OjE(1)

+< Z g,ﬁ(;)F’jkA@j>(~)j—1<@j Z ijASk(t)>, (4.69)

k=1,k#j k=1,k#j

26105 Y Firad(n)

k=1,k#j

<y — DEXOTE O+ Y EOF A TiFjkadi()
k=1,k=j
< (ny — DEHDT 5, (0)

+< Z g,g(t)F’jkAT,->Tj—1<T,- Z ijAEk(t)) (4.70)

k=1k#] k=1 k]

it follows finally that

V() <3 OWag0 <0 “.71)

j=1

if the matrix ¥; is feasible, where ¥4 = ¥j, + AY¥; with ¥}, is the nominal part
of ¥;A by setting A,; =0, A;; =0, A;; =0 and A;; =0 as given by (4.59) and
AY; is given by

AV, AY; 0 AYy; 0 AYy;
° 0 0 Ay 0 0
. ° 0 0 0 0
AV = ° ° ° 0 0 0 ’ 4.72)
. . ° ° 0 0
° ° ° ° ° 0
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AW, = (Pj+O)(HjoAjo(E jo+ Njc Ay ()M
+ (£, AL (OB, + ML ALONL) (P +6)),
AWy = EL AL (OH! Y+ MY AL (N,
AWy = O Njo Arj ()Mo,
AWy = er;OA;j "M, 4.73)
ng ng
A = [ S B AL 0, S B a0
k=1k#j k=1,ksj
ng
Z Ej; A, (OH; |.
k=1k#j

Robust asymptotic stability requirement Vj (t)](4.52) < 0 implies that ¥; 4 < 0 forall
admissible uncertainties satisfying (4.40) and (4.47). Next, considering the L£»-gain
performance measure J = Z;’; 1 Jj forany w;(#) € £3(0, 00) # 0 with zero initial
condition x;(0) = 0 hence V(0) =0, we have

J =/(; (z’j(s)zj(s) — yjzw;(s)wj(s))ds
< /(; (Z;(S)Zj(s) - yjzw;(s)wj(s) + Vj(s)|(452))d5~ 4.74)

Using (4.52) and (4.53), we obtain:
25(9)zj(s) — y;wi(Hw;(s) + Vi($)lus)
< [Z5(s) wh ()15 al¢ () wh()T'

z[fj(s)]t ‘I’jA-Fé’jAéjA é§A®jA+(Pj+@j+Tj)ﬁjA |:§j(S)]
w;(s) . Y+ P, Pja w;(s) ]
(4.75)

That J; < O for arbitrary s € [¢, oo) implies for any w;(#) € £2(0, 00) # 0 that
2(9)zj(8) = yiw(Hw;(s) + V()| sz <O0.

This leads to [|z; ()2 < Z;f;l vjllw(t)ll2, which assures the desired perfor-

mance. In terms of (4.58) and considering lIA/j A while invoking bounding inequal-
ity A from Sect. 9.3.1 with some algebraic manipulations and Schur complements,
we obtain LMI (4.58) for some scalars o1 > 0, ..., 0¢ > 0 and hence the proof is
completed. 0

Theorem 4.3 Given the bounds 6,, > 0, 6y > 0, the family of subsystems described
by (4.52)—(4.53) is delay-dependent asymptotically stabilizable by decentralized
output-feedback controller with Ly-performance bound yj, j =1,..., ng, if there
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exist positive-definite matrices Y, Myj, Mj, Ms;, any matrices G, and scalars
01>0, ..., 06 >0, Ao, Ay satisfying the following LMIs for j =1, ..., ng

Pio Aj G, 0Q; T,
)//1 o3 0 O

~ jo
IT; = ° ° —1I; 0> 0 <0, (4.76)
° ° ° =2 0
° ° ° ° =2

where
Aj=[(1+1re +rr)[},0,0,0,0,01', G, =[¥;G,.0.0,0,0,0],
0,=Y,0;. Tj=YT;

Moreover, the gain matrices are given by K j = g]y ! ,Li=V; y CT

Proof Considering LMI (4.58), Letting ®; = ApPj, Tj = ArPj (Ao, Ar are any
scalars), and applying the congruent transformatlon

T=diagly;, V;, Vi, Vi, V. 1, 1;, 1;, 1, I;], YV;=
we obtain that

i, VidA; VG, Y0, ViT;
o« v @, 0 01

IT; = ° ° =1 0> 0 <0, 4.77)
° ° ° - 0
° ° ° . =X
where
lj/ajo ~1~j0 0 A@Djoyj +Mrj (1 +)L(~))yj 'f/sjo
° —¥,; Q ArDjoY; rArYj 0
~ ° ° —Wj M, 0 0
Vjo = s .
° ° ° Wy 0 0
° ° ° . —1; 0
° ° ° . ° —li/7j

Bajo = (14 20)Aj0Yj + (1 +20) VAL, + My + My — M,
+@ms— D +2e +Mﬂ)y,',
Wjo = —reY; + KTJ’,‘A;O, Gj = =05 M, +ArY; +ard,
Unj = ./\/le + M., lffnj =2M,; +M§‘j, Wy =diag [ Ve 2g' Vi A7 Vi |

s]o—|: Z kuk]o Z kuij Z kuij]

k=1k#j k=1k#] k=1k#j
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My =IW;Y;, Msj=4&;8;X;, M,j=YV;R;Vj, 4.79)
(Pj+®))Hj, (P;j+0®;)Njc OjNj, 0 0 0 ¢ O
TiHj, TiNje TiNjy 0 0 0 0 0
0 0 0 0 0 0 0 0
0= 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 00
0 0 0 H 0 0 0 0
0 0 0 0 H 0 0 0
i 0 0 0 0 0 H 0 0]
WithH=ZZ;l’k#ijj,¢=(Pj+@j+Tj)Hj0,
—U]E;o (71]\;15-6 0 G3E]t<j UgEA‘]t{j 0'31%;{]- 0 U5E;~a_
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
f=| O 0 oM, 0 0 o 0 o |
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
L 0 0 0 0 0 o 0 o0 |

01=10.0,0,0. 0.0, 04}, 05E}.]. 02=10.0,0,0,0, 0,0, Hjal.
Aj=col[(P;+ 6,4+ 1))}, 0,0, 0, 0, 0, 0, 0],
th() = [Gj()v O, O, 07 O’ 07 O’ O]t’

Y =diaglo1lj, 011}, o2lj, 031}, 031}, 031}, o4l;j, osl;].

Next, let V; = [l yolj], Gi=K;)1;,V;=L;CjyD1, we can get LMI (4.76)
with (4.79) and therefore the proof is completed. g

4.3.6 Simulation Example 4.2

To illustrate the design procedures developed in Theorem 4.3, we consider a rep-
resentative water pollution model of two consecutive reaches of the River Nile.
This linearized model forms an interconnected system of the type (4.37)-(4.38) for
ng = 2 and the following information.

Nominal subsystem matrices

1.05 —0.42 1 -05 0 1
Al":[l.l 0 } A20=[1.1 0.3]’ Bl”:[l] 320:[0]’

Cio=[-11], C=[071], Gio=[-11], Gi=[108].



4.3 Resilient Stabilization of Interconnected Networked Systems

Delay and disturbance parameters

0.2 0.5
Flo=|:1:|s F20:|:0.8

j| , D1,=0.02, &y,=0.03,

M, =02, M,=03, Ni;,=02, Ny,=04,
Mi.=0.5, Mp.=0.1, Ni=0.03, N.=0.01,

0.03 0.02
Hl(): [0'03}5 H](): [0.02}7 H1a=017 H2a=0-2,
H>1 =03, Hip=04,

0.1 0.1
El“_[o.l]’ Eza—|:0'11|, E{.=0.01, E.=0.01,
Ei,=02, E»,=02, E;;=0.1, E; =0.1.

Coupling matrices

1 0
Flzoz[—l —0.5}

Ar =0.02,

By selecting

Lo =0.01,

o1=13, op=14, o3

—06 0
’ le02[0.2 1}
=09, o4=15, o5=1.1,

207

while using the foregoing nominal data and invoking the MATLAB software, we

obtain

0.0313  0.0135
yl:[o.oms 0.0868] V2

0.0001 0.0002

Mot = [0.0002 0.0013

0.0001 0.0002

Ms1 = [0.0002 0.0013

0.1210 0.0509

M= [0.0509 0.3198

Gi =[0.0298 —0.0978],

], ./\/lw2=103x|:
:|, MS2=10_3X|:

}, Mr2=10_3>(|:

G =

_10.0266 0.0150
~10.0150 0.1150 |’

0.0911
0.0312

0.0312
0.6276

0.0991
0.0548

0.0548
0.4285

[-0.0233 —0.0297],

0.0913 0.0312
0.0312 0.6294

I
I

|

as feasible solution of the matrix inequalities. These give the following gain matri-

Ces:

Ky =[1.5403 —1.3657],

K> =[—0.7909 —0.1549],

L= [—194.0815i| L= |:174.8047i|

181.7862

248.3807
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along with the £, gain y = 0.7 and the maximum of the network-induced delays
is 0.1.

4.4 Control of Discrete-Time Systems with Input Saturation

We study decentralized stabilization of discrete time linear time invariant (LTT)
systems subject to actuator saturation, using LTI controllers. The requirement of
stabilization under both saturation constraints and decentralization impose obvious
necessary conditions on the open-loop plant, namely that its eigenvalues are in the
closed unit disk and further that the eigenvalues on the unit circle are not decen-
tralized fixed modes. The key contribution of this work is to provide a broad suf-
ficient condition for decentralized stabilization under saturation. Specifically, we
show through an iterative argument that stabilization is possible whenever: (1) the
open loop eigenvalues are in the closed unit disk, (2) the eigenvalues on the unit
circle are not decentralized fixed modes, and (3) these eigenvalues on the unit circle
have algebraic multiplicity 1.

4.4.1 Introduction

The result presented here contributes to our ongoing study of the stabilization of de-
centralized systems subject to actuator saturation. The eventual goal of this study is
the design of controllers for saturating decentralized systems that achieve not only
stabilization but also high performance. As a first step toward this design goal, we
are currently looking for tight conditions on a decentralized plant with input satura-
tion, for the existence of stabilizing controllers. Even this check for the existence of
stabilizing controllers turns out to be extremely intricate: we have yet to obtain nec-
essary and sufficient conditions for stabilization, but have obtained a broad sufficient
condition, see the results in [29-34, 38-40, 64—77]. This section further contributes
to the study of the existence of stabilizing controllers, by describing a analogous
sufficient condition for discrete-time decentralized plants.

To motivate and introduce the main result in the section, let us briefly review
foundational studies on both decentralized control and saturating control systems.
We recall that a necessary and sufficient condition for stabilization of a decen-
tralized system using LTI state-space controllers is given in Wang and Davison’s
classical work [78]. They obtain that stabilization is possible if and only if all de-
centralized fixed modes of a plant are in the open left half plane, and give spec-
ifications of and methods for finding these decentralized fixed modes. Numerous
further characterizations of decentralized stabilization (and fixed modes) have been
given, see for instance the work of Corfmat and Morse [12]. In complement, for
centralized control systems subject to actuator saturation, not only conditions for
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stabilization but also practical designs have been obtained, using the low gain and
low-high-gain methodology. For a background on the results for centralized sys-
tems subject to input saturation we refer to two special issues [5, 69]. Of impor-
tance here, we recall that a necessary and sufficient condition for semi global sta-
bilization of LTI plants with actuator saturation is that their open-loop poles are in
the closed left half plane. Combining this observation with Wang and Davison’s
result, one might postulate that stabilization of a saturating linear decentralized
control system is possible if and only of (1) the open-loop plant poles are in the
closed left half plane (respectively, closed unit disk, for discrete-time systems),
and (2) the poles on the imaginary axis (respectively, unit circle) are not decen-
tralized fixed modes. The necessity of the two requirements is immediate, but we
have not yet been able to determine whether the requirements are also sufficient. As
a first step for continuous-time plants, we showed in [75] that decentralized stabi-
lization under saturation is possible when (1) the plant’s open-loop poles are in the
CLHP with imaginary axis poles non-repeated, and (2) the imaginary axis poles are
not decentralized fixed modes. Here, we develop an analogous result for discrete-
time plants, in particular showing that decentralized stabilization under saturation
is possible if (1) the plant’s open-loop poles are in the closed unit disk with unit-
circle poles non-repeated, and (2) the unit circle poles are not decentralized fixed
modes.

4.4.2 Problem Formulation

Consider the LTI discrete-time systems subject to actuator saturation,

x(k+1)=Axk) + le)':l Bjsat(uj (k)), 4.80)
yitk)y=Cjx(k), j=1,...,v,
where x € 0" is state, u; € W™/, j =1,...,v are control inputs, y; € NP/, j =
1,..., v are measured outputs, and ‘sat’ denotes the standard saturation element.
Here we are looking for v controllers of the form,
zjtk+1)=Kjzi(k) + Ljyi(k), z; €N, @.81)
ujtk+1)=M;jzjk)+Njy;k). '

Let the system (4.80) be given. The semi-global stabilization problem via decen-
tralized control is said to be solvable if for all compact sets W and Sy, ..., S, there
exists v controllers of the form (4.81) such that the closed loop system is asymptot-
ically stable with the set

WxS8 x---x8,

contained in the domain of attraction.
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The main objective is to develop necessary and sufficient conditions such that the
semi-global stabilization problem via decentralized control is solvable. This objec-
tive has not yet been achieved. However, we obtain necessary conditions as well as
sufficient conditions which are quite close.

4.4.3 Review Results

Before we tackle the problem introduced in Sect. 4.4.2, let us first review the nec-
essary and sufficient conditions for the decentralized stabilization of the linearized
model of the given system X,

1%
5. x(k+1)=Ax(k) +.Zj:1 Biu;(k), 4.82)
yitky=Cjxk), j=1,...,v.

The decentralized stabilization problem for X is to find LTI dynamic controllers
X, j=1,...,v, of the form (4.81) such that the poles of the closed loop system
are in the desired locations in the open unit disc.

Given system X and controllers X;, defined by (4.82) and (4.81) respectively, let
us first define the following matrices in order to provide an easier bookkeeping:

B=[B; ... B)], c=I[C] ... CT,
K =diag[Ky, ..., K], L =diag[Ly,..., L],
M = diag[M;, ..., M,], N =diag[Ny, ..., N,].

Definition 4.1 Consider system ¥, » € C is called a decentralized fixed mode if
for all block diagonal matrices H we have

det(A] — A — BHC) =0.

We look at eigenvalues that can be moved by static decentralized controllers. How-
ever, it is known that if we cannot move an eigenvalue by static decentralized con-
trollers then we cannot move the eigenvalue by dynamic decentralized controllers
either.

Lemma 4.1 Necessary and sufficient condition for the existence of a decentralized
feedback control law for the system X such that the closed loop system is asymptot-
ically stable is that all the fixed modes of the system be asymptotically stable (in the
unit disc).

Proof We first establish necessity.

Assume local controllers ¥; together stabilize X then for any |A| > 1 there exists
a é such that (A +6)I — K is invertible and the closed loop system replacing K with
K — 81 is still asymptotically stable. This choice is possible because if Al — K
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is invertible obviously we can choose § = 0. If A/ — K is not invertible, by small
enough choice of § we can make sure that (A + §)I — K is invertible and the closed
loop system replacing K with K — 817 is still asymptotically stable. But the closed
loop system when K — §1 is in the loop is asymptotically stable. In particular, it can
not have a pole in 1. So

det(\] — A — BIM(\I — (K —81))"'L + N]C) #0.
Hence the block diagonal matrix
S=MOI—(K—-81)"'L+N

has the property that
det(Al —A—BSC)#0

thus A is not a fixed mode. Since this argument is true for any A on or outside the unit
disc, this implies that all the fixed modes must be inside the unit disc. This proves
the necessity of the Lemma 4.1.

Next, we establish sufficiency. The papers [12, 78] showed that if the decentral-
ized fixed modes of a strongly connected system are stable, we can find a stabiliz-
ing controller for the system. However, these papers are based on continuous-time
results. For completeness we present the proof for discrete time which is a straight-
forward modification of [78]. We first claim that decentralized fixed modes are in-
variant under preliminary output injection. But this is obvious from our necessity
proof since a trivial modification shows that no dynamic controller can move a fixed
mode. To prove that we can actually stabilize the system, we use a recursive argu-
ment. Assume the system has an unstable eigenvalue in . Since w is not a fixed
mode there exists /V; such that

%
A+ BjN;C;
j=1

no longer has an eigenvalue in u. Let k be the smallest integer such that an unstable
eigenvalue of A is no longer an eigenvalue of

k

A+ BjN,C;
j=1

while N; can be chosen small enough not to introduce additional unstable eigenval-
ues. Then for the system

k—1
(A +Y BjN;Cj. B, ck>

j=1

an unstable eigenvalue is both observable and controllable. But this implies that
there exists a dynamic controller which moves this eigenvalue in the open unit
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disc without introducing new unstable eigenvalues. Through a recursion, we can
move all eigenvalues one-by-one in the open unit disc and in this way find a de-

centralized controller which stabilizes the system. This proves the sufficiency of the
Lemma 4.1. g

4.4.4 Main Results

Here, we present the main results of Sect. 4.4.

Theorem 4.4 Consider the system X. There exists nonnegative integers s, ..., Sy
such that for any given collection of compact sets W C R and S; C N%,i =
1,...,v, there exists v controllers of the form (4.81) such that the origin of the

resulting closed loop system is asymptotically stable and the domain of attraction
includes W x S1 x --- x S, only if

o All fixed modes are in the open unit disc.
o All eigenvalues of A are in the closed unit disc.

Proof There exists an open neighborhood containing the origin for the closed loop
system of X with the controllers X is identical to the closed loop system of I’
with the controllers X;. Hence asymptotic stability of one closed loop system is
equivalent to asymptotic stability of the other closed loop system. But then it is
obvious from Lemma 4.1 that the first item of Theorem 4.4 is necessary for the
existence of controllers of the form (4.81) for X such that the origin of the resulting
closed loop system is asymptotically stable.

To prove the necessity of the second item of Theorem 4.4, assume that A is an
eigenvalue of A outside the unit disc with associated left eigenvector p. We obtain:

px(k+ 1) = Apx(k) + v(k),

where

v
v(k) := Z pBisat(u(k)).
j=1
Because of the saturation elements, there exists an M > 0 such that lvk)| < M for
all £ > 0. But then we have

k—1
pr(k) =1 px(0) + A u () = 4 (px (0) + Sp), (4.83)
j=0

where Sy = le;g) v(j) j\’,(ﬁ . We find that
k L Y

1 ~ mk M
Sel<mMy — M
ISkl = Zx =1 =1
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and then from (4.83) we find

M
|px (k)| > |A|"<|px(0)| T 1) Vk > 1.

Hence | px (k)| does not converge to zero independent of our choice for a controller
if we choose the initial condition x (0) such that | px(0)| > IAIL—I because of the fact
that |A| > 1. However, the system was semi-globally stabilizable and hence there
exists a controller which contains this initial condition in its domain of attraction
and hence |px (k)| — O which yields a contradiction. This proves the second item
of Theorem 4.4.

We now proceed to the next theorem which gives a sufficient condition for semi-
global stabilizability of (4.80) when the set of controllers given by (4.81) are uti-

lized. O

Theorem 4.5 Consider the system X. There exists nonnegative integers s, ..., S,
such that for any given collection of compact sets W C W and S; C W/, j =
1,...,v, there exists v controllers of the form (4.81) such that the origin of the
resulting closed loop system is asymptotically stable and the domain of attraction
includes W x 81 x --- x S, if

o All fixed modes are in the open unit disc.
o All eigenvalues of A are in the closed unit disc with those eigenvalues on the unit
circle having algebraic multiplicity equal to one.

To prove this theorem we will exploit the following lemma which follows directly
from classical results of eigenvalues and eigenvectors and the results of perturba-
tions of the matrix on those eigenvalues and eigenvectors.

Lemma 4.2 Let As € W' be a sequence of matrices parametrized by § and a
matrix A € W such that As — A as § — 0. Let A be a matrix with all eigenvalues
in the closed unit disc and with p eigenvalues on the unit disc with all of them having
multiplicity 1. Also assume that As has all its eigenvalues in the closed unit disc. Let
matrix P > 0 be such that A’PA — P <0 is satisfied. Then for small § > 0 there
exists a family of matrices Ps > 0 such that

AgP(sAg — Ps <0
and Ps — P as § — 0.

Proof We first observe that there exists a matrix S such that

_ A 0
sus-( 1)

where all eigenvalues of A are on the unit circle while the eigenvalues of Ay, are
in the open unit disc. Since A; — A and the eigenvalues of A1 and A are distinct,
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there exists a parametrized matrix Ss such that for sufficiently small §

—1 Ars 0
Ss A855=( 0 Azzs)’

where Ss — S, A11,s > A1 and Ay s — A asd — 0.
Given a matrix P > 0 such that A’PA — P <0. Let us define

D I_)]l PIZ
P=SPS=| - _2)
(P{z Pzz)

with this definition we have

A’ 0 - (A 0 ~
11 _
( 0 A/zz) P ( 0 Azz) P=0. (4.84)

Next given an eigenvector x1 of Ay, i.e. Ajjx; = Ax] with [A] =1, we have

IR IR (R

Using (4.84), the above implies that

A/” 0 = Au 0 = X1
P - P =0.
[( 0 A, 0 Ax 0
Since all the eigenvalues on the unit disc of Aj; € NP *P are distinct we find that the
eigenvectors of Ay span R and hence

A’ 0 - (A 0 — 1
11 _ _
()2 (e 0)-#|(0)-
This results in
A’ 0 - (A1 O - /70 O
11 _
() )26 0)=

This implies that A}, PjA2 — Pj» = 0 and since eigenvalues of Aj; are on the unit
disc and eigenvalues of A, are inside the unit disc, we find that P> = 0 because

A} PoAxn = Py = (A/n)kplelég = Py,

where k is an arbitrary positive integer. Note that (A’”)k remains bounded while
A§2 — 0 as k — co. This means that for k — oo, P — 0 and because Pj; is
independent of k, we find that Py = 0. Next, since Ay, has all its eigenvalues in the
open unit disc, there exists a parametrized matrix Ps 2 such that for § small enough

/
A5 Ps22As520 — Ps2o=V <0
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while Ps 20 — Py as§ — 0.

Let Ajj = WAAW~! with A4 a diagonal matrix. Because the eigenvectors of
Aqj are distinct and Ajy 5 — Ajq, the eigenvectors of A1 s depend continuously
on § for § small enough and hence there exists a parametrized matrix W such that
Ws — W while A5 = W5 A, ng_l with A4, diagonal. The matrix Py satisfies

Al Pi1A — P =0.
This implies that Ap = W* Py W satisfies
A3 ApAs— Ap=0.

The above equation then shows that A p is a diagonal matrix. We know that

*
A5 Aa.

We know that A 4, is a diagonal matrix the diagonal elements of which have mag-
nitude less or equal to one while A p is a positive definite diagonal matrix.
Using this, it can be verified that we have

AZSAPAAS — Ap <0.

We choose I_’n,g as
Piis=WH ™ ApWy) .

We can see that this choice of P 1,s satisfies
Al sPi1sA1s — Pris <O.

It is easy to see that Py s — Pyj as 8§ — 0. Then

_ P 0 _
Pa=(551)/< 101’8 13225)551

satisfies the condition of the lemma. This completes the proof of Lemma 4.2. [

We now show a recursive algorithm that at each step moves at least one eigen-
value on the unit circle in a decentralized fashion while preserving the stability of
other modes in the open unit disc in a way that the magnitude of each decentralized
feedback control is assured never to exceed 1/n. The algorithm will consist of at
most n steps, and therefore the overall decentralized inputs will not saturate for an
appropriate choice of the initial state.

Algorithm

o Step 0: We initialize algorithm at this step. Let Ag := A, By;j := Bj, Co,i :=
Cj,njo:=0, N;),B :=0,j=1,...,v and x¢ := x. Also let us define Pg =¢P,
where P > ( and satisfies A’/PA — P <0.
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e Step m: For the system X', we want to design v parametrized decentralized feed-
back control laws,

me, | PO+ D =K PO+ Ly,
T k) = Mep () + NTy (k) + 07 (),

where p7t € W and if nj, = 0:

Z‘}"’S: uj(k) = Ni"pyjk) + o7 (k).

The closed loop system consisting of the decentralized controller and the system
X can be written as

Xm (k + 1) = Af 2 (k) + 3/ By i (k),
yj(k):Cm,jxm(k)v J=1...,v,

m,e,
cl

where x,, € W' with n,, =n+ Y 1_, nj n is given by

X
m

141

Xm =

m

Dy
we can rewrite u; as
m m
U = Fi’sxm + v

for some appropriate matrix F?",.
Our objective here is to design the decentralized stabilizers in such a way that
they satisfy the following properties:

1. Matrix A}, has all its eigenvalues in the closed unit disc, and eigenvalues on
unit circle are distinct.

2. Aj, has less eigenvalues on the unit circle than A7 .

3. There exists a family of matrices P;, such that P, — 0 as ¢ — 0 and

(AZ) PP AL — PE <.

Furthermore, there exists an &* such that for ¢ € (0, ¢*] and v* = 0 we have
llui (k)| <2 for all states with x},, (k) P X, (k) <n—m+1.

e Terminal Step: There exists a value for m, say [ < n, such that A{, has all its
eigenvalues in the open unit disc, and also property 3 above is satisfied, which
means that for & small enough, [lu;|| <1 for all states with x; P/ x; < 1. The de-
centralized control laws X I,’E, i =1,...,1 together construct our decentralized
feedback law for system X
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Finally, we show that for an appropriate choice of ¢, this recursive algorithm
provides a set of decentralized feedbacks which satisfy the requirements of Theo-
rem 4.5. We will first prove properties 1, 2 and 3 listed above by induction. It is easy
to see that the initialization step satisfies these properties. We assume that the design
in the step m can be done, and then we must show that the design in the step m + 1
can be done.

Now assume that we are in step m + 1. The closed loop system Z’C"f ** has prop-
erties (4.80), (4.81) and (4.82). Let A be an eigenvalue on the unit disc of A?,. We
know that A is not a fixed mode of the closed loop system. Thus there exist K; such
that

v
Afn + Z Bm,iki Cm,i
i=1
has no eigenvalue at A. Therefore the determinant of the matrix Al — A} —
) Zi”:l B iKiCy i, seen as a polynomial in §, is non-zero for § = 1, which im-
plies that it is non-zero for almost all § > 0. This means that for almost all § > 0

Vv
AL 48 BuiKiCpi
i=1

has no eigenvalue at 1. Let j be the largest integer such that

J
AL = A5 4+8) BuiKiCpi

i=1

has X as an eigenvalue and the same number of eigenvalues on the unit disc as A%,

for small enough §. This implies that A,i;s still has all its eigenvalues in the closed
unit disc. ~
Using Lemma 4.2, we know that there exists a P,f,"s such that

5V 5ES a8 _ pes
(A5°) PrP ALY — P <0
while P5® — P as § — 0. Hence for small enough §
1
x;n(k)P,fl"sxm(k) <n—-m-+ 3 = x, (k)Poxmk)<n—m+1

and also for small enough § we have

1

_ 1
I18K;ixm| < ™ Vx,, such that x/, P£%x,, <n —m + 3

We choose § = §, small enough such that the above two properties hold. Define
Kf =8.K;, P, = PE% and

J
A= A5+ B iKfCoi.

i=1
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By the definition of j, we know that

j+1
Af+ ) BuiKECoi

i=1

either does not have A as an eigenvalue or has less eigenvalues on the unit circle.
This means that

(Afnﬂ Bm,j+1 s Cm,j—i—l)

has a stabilizable and detectable eigenvalue on the unit circle. Let V be such that
VV' =1 and kerV =ker(Cp j+1]A).

Since we might not be able to find a stable observer for the state x,, we actually
construct an observer for the observable part of the state V x,,. Because our triplet
has a stabilizable and detectable eigenvalue on the unit disc, the observable part of
the state Vx,, must contain at least one eigenvalue on the unit circle that can be
stabilized. This motivates the following decentralized feedback law:

VI (k) = K xp (k) + v’f“(k), i=1,...,],
plk+1) = A{p(k) + V By, j1v] (k) + K(Cp, j+1V'pk) — yj1(k)),

v () = Fpp() + v (),

) =), =2,

Here p € ®* and A? is such that A’V = V A?, and K is chosen such that A% +
KCp,j+1V' has all its eigenvalues in the open unit disc and does not have any
eigenvalues in common with Aj. Furthermore F), is chosen in a way that Aj;, +
By, j+1F,V has at least one less eigenvalue on the unit disc than A, and still all of
its eigenvalues are in the closed unit disc and also F,, — 0 as p — 0. Defining

R
m+1 =— p_me )

we have

_ A% + By j+1F,V By, j+1F, _
Xm+1 k+1)= ( m rr(z),/—i—l p Af +n;<’@_’:l jilv/> xm+l(k)
s ..

v
+ ) By (K, (4.85)
i=1

Vitk) = Copg1,iXm1(k), i=1,...,v,
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where
_ B -
Byy1,i = (_V’gn i) s Cm+1,i =(C,i 0)

fori # j+ 1 and

_ B - Cumjs1 O
Bm+1,j+1=( mbj+1>, Cm+1,j+1=< m",]H I)'

It is easy to check that the above feedback laws satisfy the properties 1 and 2. What
remains is to show that they satisfy property 3. Also we need to show that the control
laws can be written in the form mentioned in step m for step m + 1.

For any ¢ there exists a )t?, > 0 with

(A; + KCp,j11 V’)’ﬂifn(Ai +KCip,jy V) — N, <0
such that i — 0 as ¢ — 0. Because F, — 0 as p — 0, for each ¢, for small
enough p we have

1 1
| Fpell < o Ve such that ¢’ e <n —m + 3

Note that A%, + B, j+1F,V has at least one less eigenvalue on the unit disc than A?,
and has all its eigenvalues in the close unit disc. Applying Lemma (4.2), for small p
we have

(Ab 4 B j11FpV) PS(AS + By j41F,V) — P <0
with P£ — Pf as p — 0.
Now note that A5, and A§ + K C,,, j+1V' have disjoint eigenvalues we find that

for small p, the matrices A; + By, j11F,V and A% + KCp, 11 V' have disjoint
eigenvalues since F,, — 0 as p — 0. But then there exists a W, , such that

Bm,j+1Fp + (Afn + Bm,j+1FpV)Ws,p - We,p(Ai + Kcm,jJrl V/) =0

while W, — 0 as p — 0. Now if we define P, to be
per _ 1/ 0\(P: O I =Wep\
mir=\—w, 1)\ o wme)\o i

60— ((Ant Bujs1FoV B, j+1F,
m+1 0 A5+ KCpj1V' )"

We define

We will have the following properties

TEL N/ DEL TEP 5.0
(A4 ) P A — Py =0
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and
llmPriﬁl:(;)"i f)
Now consider x,,4+1 such that
m+1P ]xm_H <n-—m.

Then with small enough choice of p we can have

=/ pé&
Xy PpXm <n—m+ 3 and

1
(p—Vxu)Ro,(p—Vxm)<n—m+ 5

Next for each ¢ we choose p = p, such that the above holds and we have

1 1
1F,Vxul < — Vg suchthatx P ' Xm <n—m—+ —.
2n 2
Next we must check the bounds on the inputs in step m + 1. For i =1, ..., j, we
have
1 m+1
||ui||=I|Fi”'sxm+K8meI<—+—_ .
' n  2n n

Fori = j 4+ 1, we have:

luill = | F"oxm + Fpepll
= ”Fir,ngxm + Fpevxm + Fps(p — Vxu)l
- m 1 _m+ 1
2n  on

Finally, fori = j +2, ..., v, we have:

m+1

i | = I x| < -

=<

|3

Now fori # j+ 1 we setn; y+1 =n;,, and fori = j + 1 we set n; 41 =nim +5.
If ni m > 0 we choose
pm-H (ptm>
J p

and if n;, =0 we choose p;."H = p. Now we are able to the system in terms
of x,,41. We introduce a basis transformation 7}, such that xX,,,+1 = T4 1Xm+1-
Next, we define

& —
Pmy1= Tm+1 Pm+1 Tm'H .
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Now fori =1, ..., v depending on the value of n; ,,+1 we can rewrite the control
laws in the desired form and subsequently the properties 1-3 are obtained.
‘We know that there exists a value of m, say [ < n, such that Af has all its eigenval-

ues in the open unit disc. We set vﬁ. =0forj=1,2,3,...,1. Then the decentralized

control laws 21.’8, i=1,2,3,...,1 together represent a decentralized semi global
feedback law for the system X'. In other words, we claim that for any given compact
sets W Cc R and S; C Rl for j=1,2,3,...,1, there exists an &*. such that the
origin of the closed loop system is exponentially stable for any 0 < & < &*. and the
compact set W x §1 x --- x S, is within the domain of attraction. Furthermore for
all initial conditions within W x §1 x --- x S, the closed loop system behaves like
a linear system, that is the saturation is not activated.
We know that for & small enough, the set

Q7 :={x e W |xPfx; <1}

is inside the domain of attraction of the equilibrium point of the closed loop
system comprising the given system X and the decentralized control laws ke,
i =1,2,3,...,] because for all initial conditions within Qf, it is obvious that
luill <1,i=1,2,3,...,] which means that the closed loop system behaves like
a linear system, that is the saturation is not activated. Furthermore since all of
the eigenvalues of A7 are in the open unit disc, this linear system is asymptoti-
cally stable. In addition because of the fact that P — 0 as ¢ — 0, we find that
W x 81 x --- x S, is inside .Qf for ¢ sufficiently small. This concludes that the
decentralized control laws X'€ i,i=1,2,3,...,1 are semi-globally stabilizing.

4.5 Notes and References

This chapter has investigated classes of decentralized systems that deploy incorpo-
rate multiple controllers in their basic operation. The systems include multi-channel
time-delay systems, interconnected networked systems and discrete-systems with
saturating controllers. In the first two-types, decentralized delay-dependent stabil-
ity and stabilization methods were developed for a class of linear interconnection
of time-delay plants subjected to convex-bounded parametric uncertainties and cou-
pled with time-delay interconnections. The developed results provide initial step
toward further developments around the deployment of multi-controller structures
for resolving several issues for decentralized systems. Applications of the foregoing
concepts to practical systems can be pursued further following the ideas in [21, 23,
24, 42, 44, 45]. Extensions to time-delay systems offer possibilities along the ideas
of [11-19].
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Chapter 5
Decentralized Quantized Control

In this chapter, we address the problem of designing decentralized Ho, feedback
control for a class of linear interconnected systems with quantized signals in the
subsystem control channels. Both continuous- and discrete-time systems are teated.
The systems have unknown-but-bounded couplings and interval delays. A decentral-
ized static output-feedback controller is designed at the subsystem level to render the
closed-loop system delay-dependent asymptotically stable with guaranteed y -level.
When the local output measurements are quantized, a local output-dependent proce-
dure is developed for updating the quantizer parameters to attain similar asymptotic
stability and guaranteed performance of the closed-loop quantized system.

Then, the interesting problem of decentralized feedback control design for a class
of linear interconnected discrete-time systems subject to overflow nonlinearities
and unknown-but-bounded couplings is subsequently addressed. A decentralized
state feedback quantized controller is designed at the subsystem level to render the
closed-loop system asymptotically stable. When the local output measurements are
available, a decentralized output-feedback quantized controller is developed attain
similar asymptotic stability and guaranteed performance of the closed-loop quan-
tized system.

Several special cases of interest are derived and simulation results are provided.

5.1 Decentralized Quantized Control I: Continuous Systems

In conventional feedback control theory, most of data and/or signals are directly
processed. In emerging control systems including networks, all signals are trans-
ferred through network which eventually gives rise to packet dropouts or data trans-
fer rate limitations [17]. Alternatively, signal processing and signal quantization al-
ways exist in computer-based control systems [22], in nanoscale servo control [16]
and therefore recent research studies have been reported on the analysis and de-
sign problems for control systems involving various quantization methods [5, 8,
19, 29]. In [5], a quantizer taking value in a finite set is defined and then quantized
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feedback stabilization for linear systems is considered. The problem of stabilizing
an unstable linear system by means of quantized state feedback, where the quan-
tizer takes value in a countable set, is addressed in [8]. It should be noted that the
approach in [5] relies on the possibility of making discrete online adjustments of
quantizer parameters which was extended in [21] for more general nonlinear sys-
tems with general types of quantizers involving the states of the system, the mea-
sured outputs, and the control inputs. Based on [21], stabilization of discrete-time
LTT systems with quantized measurement outputs is reported in [29]. Further related
results are reported in [33, 34]. In terms of control design, it turns out that the use of
output-feedback schemes [7] provides great flexibility in accommodating systems
uncertainties. A decentralized Ho, feedback control systems with two quantizers
was considered in [6].

On another research front, decentralized stability and feedback stabilization of
interconnected systems have been the topic of recurring interests and recent rel-
evant results have been reported in [2, 24-28, 31]. In this chapter, we study the
problem of decentralized H o, feedback control for a class of linear interconnected
continuous-time systems with quantized signals in the subsystem control channel.
The system has unknown-but-bounded couplings and interval time-delays. A de-
centralized static output-feedback controller is designed at the subsystem level us-
ing only local variables to render the overall closed-loop system is delay-dependent
asymptotically stable with guaranteed y -level. When the local output measurements
are quantized before passing to the controller, we consider the local channel quan-
tizer in a generalized form with a zoom parameter that can be adjusted on-line. We
develop a local output-dependent procedure for updating the quantizer parameters
to retain the delay-dependent asymptotic stability and guaranteed performance of
the closed-loop quantized system.

5.1.1 Problem Statement

We consider a class of linear systems S structurally composed of n coupled sub-
systems S; and the model of the jth subsystem is described by the state-space rep-
resentation:

St xj®)=Ajxj(t)+ Agjx;j(t — ;@) + Bju;t)+ Ijw;t)

+ Y Fpm®+ Y Epxi(t—np®), (5.1

k=1,k#j k=1,kj
i) =Gx;j() +Gyjxj(t —7;(@)) + Pjw;(1), (5.2)
yi@)=Cjixjt)+ Cyjxj(t —1;(t)) + Ajw; (1), (5.3)
where for j € {1,...,n4}, x;(t) € R is the state vector, u;(t) € W™/ is the con-

trol input, y;(¢) € %P/ is the measured output, w;(¢) € NY/ is the disturbance in-
put which belongs to £>[0, 00), z;(¢) € )9/ is the performance output. The matri-
ces Aj € R *N) Bj e RTjxmj Ayj € R xNj P; e N9 *4; I e Rx4j Cje
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RPj*1j Cdj € MPixn;j, Gj € R9i*Xnj, Gdj € Meixnj, Aj € RPixdj, ij € RPix4j
and Ej; € %Pi*9 are real and constants. The initial condition «; € L2[—g;, 0],
Jj €{l,...,ns}. The factors 7, njk, j, k € {1,...,ns} are unknown time-varying
delay factors satisfying

0<rtj(t)<oj, Tt;(t)<puj,

. 5.4)
0<nju@® <ojr, nj) < pjk,

where the bounds ¢, 0 jk, i j, i jx are known constants in order to guarantee smooth
growth of the state trajectories. Note in (5.3) that the delay within each subsystem
(local delay) and among the subsystems (coupling delay), respectively, are empha-
sized. The class of systems described by (5.1)—(5.3) subject to delay-pattern (5.4) is
frequently encountered in modeling several physical systems and engineering appli-
cations including large space structures, multi-machine power systems, cold mills,
transportation systems, water pollution management, to name a few [25, 30]. In
what follows, we study the problem of decentralized Ho, feedback control for a
class of linear interconnected continuous-time systems with quantized signals in the
subsystem control channel.

5.1.2 Local Quantizer Description

A block-diagram representation of the subsystem model (5.3) under consideration
is depicted in Fig. 5.1. In the sequel, we adopt the definition of a local (subsystem)
quantizer with general form as introduced in [21]. Let f; e %, j =1,...,n, be
the variable being quantized. A local quantizer is defined as a piecewise constant
function Q; : 0W* — D;, where D; is a finite subset of 91*. This leads to a partition
of M into a finite number of quantization regions of the form {f; € R : O(f;) =
dj,d;j € D;}. These quantization regions are not assumed to have any particular
shape. We assume that there exist positive real numbers M; and A; such that the
following conditions hold:

Fig. 5.1 Subsystem model Interaction
with quantizer ¢

Disturbance

W Performance
1 Subsystem zj
5
Output
Input uyP "
Yj L Delay J Quantizer 1
T Q;
Controller

Koj
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L IFIfj| <M;  then |Q;(f) — fil < A;. (5.5)
2. If|fjl>M; then|Q;(f))|>M;—A;. (5.6)

We note that condition (5.5) provides a bound on the quantization error when the
quantizer does not saturate. Condition (5.6) gives a way to detect the possibility of
saturation. In the sequel, M; and A; will be referred to as the range of Q; and
the quantization error, respectively. Henceforth, we assume that Q(x) = 0 for x
in some neighborhood of the origin. The foregoing requirements are met by the
quantizer with rectangular quantization regions [5, 19].

In the control strategy to be developed below, we will use local quantized mea-
surements of the form

Quj(fj)ZM,/Qj(£>, (5.7
Hj

where p; > 0 is the subsystem parameter. Observe, at the subsystem level, the ex-
treme case 1 = 0 is regarded as setting the output of the local quantizer as zero.
This local quantizer has the range M;u; and the quantization error A;u ;. We can
view p; as a local zoom variable: increasing . ; corresponds to zooming out and es-
sentially generating a new local quantizer with larger range and larger quantization
error, whilst decreasing p ; implies zooming in and obtaining a local quantizer with
smaller range and smaller quantization error. We will update 1 ; later on depending
on the subsystem state (or the subsystem output). In some sense, it can regarded as
additional state of the resultant closed-loop subsystem.

5.1.3 Static Output-Feedback Design

In this section, we develop new criteria for LMI-based characterization of decen-
tralized stabilization by local static output-feedback. Initially without quantization
(meaning that the switch in Fig. 5.1 is closed), we let the local decentralized static
output-feedback has the form

wi(t)=Kojyj(t), j=1,...,n;, (5.8)

where the gain matrices K,;, j =1,..., N have been selected to guarantee the
closed-loop system, composed of (5.1), (5.3) and (5.8), given by

Xj(1) =Ajxjt) + Agjx;(t — 7)) + 2;w;(t)

ng ng
+ ) Fpxa®+ Y Ejx(t—np@), (5.9)
k=L k#j k=1k#j
7j@®) =Gjxj(t) + Ggjxj(t —Tj (1) + Pjw; (1),
Aj=A;+ BjK,;C;j, Agj =Agj + BjK,;Cyj, (5.10)

.Qj:Fj—i—BjKojAj
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is asymptotically stable with disturbance attenuation level y; to facilitate further de-
velopment, we consider the case where the set of output matrices C;, j =1, ..., ny
are assumed to be of full row rank and CJT. represents the right-inverse. We consider
the Lyapunov-Krasovskii functional (LKF):

Vi)=Y Vo,
Jj=1
0
Vi(t) = x; ()Pjxj(t) +/ x;- ()Wjxj()de
o

0
+/ x(@)Sjxj(@)da (5.11)

-1

0 t
+Qj/ / X?(S)ijj(s)dsde
—oj Jt+6

ng ¢
+ Z / x,t((s)ijxk(s) ds
k=1k#j t—nk(t)
where 0 < P; 73 0<W; W 0<S; _S 0<R; R O<ij_Z/k,
Joke{l, ..., ng} are welghtlng matrlces of approprlate dlmensmns

The f0110w1ng theorems establishes the main design result for subsystem S ;.

Theorem 5.1 Given the bounds ¢j > 0, uj >0, ¢jx > 0, wjx > 0, tuning param-
eters Bj, oj, j,k=1,...,ns and let the gain matrices K,;j be specified, then the
family of subsystems described by (5.9)—(5.10) is delay-dependent asymptotically
stable with L-performance bound y; if there exist positive-definite matrices P;,
W;,S;, Rj, Zji and free-weighting matrices @}, Y, satisfying the following LMIs
forj,k=1,...,n

Iy Iy Iy

Mj=| e —yiI; @) |<0, (5.12)
° ° =1
where
H,; Ihy; 0 II; I3
. I, 0 I Ils;
I = ° o Il [Ilg; 0o 1, (5.13)
° ° o Iy 0
° ° ° ° Iy

S:n

1

+

Q

3
S

T
=

§1
~——

k=1 k)
ng t
+ (Aj-i- Z ij) (I+0)P;
k=1,k#j

ns
+ Wi+ —Rj+ s —DPi+ Y. Zi,
k=1,k#j
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ng 4
Hljz—Uij+Tj<Aj+ Z ij>,

k=1k#j
Ihj=1+0))PjAsj +Rj,
ng
Mj=0;P; Y Ey. Ij=0iR;—2B;P), (5.14)
k=1k#j

ng
My =B;PjAdj. 1Tsj=B;P; Y Eg
k=1,k#]
ej=—-R;=Wj, Ilsj=Rj,
mj = —ZR/‘ — (1= /’Lj)S'»

11,
ns
My =—1 — ) Zij — Z Ey;PcEy;,
k=1k+]

m,;=[2P;0000]", m,;=[G;00G;0].

Proof A straightforward computation gives the time-derivative of V() along the
solutions of (5.10) with w(¢) =0 as:

VJ (1) _2x (t)P/xj (1) +Q]x ((OR;x;(t)
t
—Qj/ fC}(S)ijCj(S)dS‘FX;-(Z‘)(Wj+8j))€j(t)
tfgj

— 2 (0 = 0 ()Wyxj (1 — (1))
— (1= ) — T (0)Sxj (1t = (1))

+ Z [xi (D Zjixic(t) — (1= (0)x (8 — 0k () Zjexic(t — njx(0)].
(=R (5.15)

Using the identity

0
—ij ).Cj-(S)Rj)'Cj(S)dS
—0j
t—1;(1) t
= —Qj/ )'c;-(s)Rj)'cj(s)ds —Qj/ X;(S)Rj)'cj(s)ds (5.16)
1—0; 1—1; (1)
then applying Jensen’s inequality

t

t t
/ )'cj-(s)Rj)'cj(s)ds Z/ )'c;-(s)dst )'c;(s))'cj(s)ds, (5.17)
t Tj(t) t—‘L’j(t)

t— Tj(t)

t—7; (1) 1—1;(t) 1=T;(1)
f X;(S)ijj(s)dsz/ Xj L(s)dsR / x-(s))éj(s)ds (5.18)
t

—0j 1—oj



5.1 Decentralized Quantized Control I: Continuous Systems 233

and making use of the following structural identity

ng ng ns g
DY x0Zux = D Y xh0)Zkx; o), (5.19)
k=1,kj j=1 k=1,k#j j=1

while invoking the algebraic inequality X'Z + Z'X < X'YX + Z'Y~™'Z, Y > 0,
such that

2x;-(t) Z Ejpxp(t —njk())

k=1k#j
< (ng — DX Pjx;(1) + Z X (t =) Ej P E jrxic(t — 1w (1)
k=1,k#j
(5.20)

it follows that

ng ng

V) < Z |:2xj~(l‘)7)j (.ijj'(t) + Adj)Cj(t - 'Cj(t)) + Z F]q)(j(l))
j=1 k=1,k#j
+ 0715 (R k(1)

— (xj (1) —xj(t =T () Rj(xj(1) —x(t — T;(1)))
—(xj(t = Tj(0) = x;(t =0 () R (xj(t — 7)) — x;(t — 0 (1))
+ x5OV +S))xj () — x5t —0)Wixj(t — 0))
— (1= pp)xj(t = 7;(0)S)x;(t = T;(1))
+x;(r)( > sz-)x‘,(t)
k=1.k+]

+ (ns — DXL ()P (1)

Ny

+ D X — () EfPrErjxj(t — nij (1))
k=1,ksj
— (1= )’ (t = mij (1) Zajxj (1 = g, (z))]. (5.21)

Adding the zero-value expression with 8; and o; are tunning parameters

0= 2[0‘,x; (OP; + ﬁ,x; (1)Pj] [—x, @)+ Ajx;()+ Agjxj(t — ;1))

ng ns
+ Y Fam+ Y Ejkxk<t—n,~k<z>>} (5.22)
k=1,k+j k=1,k#j

to the right-hand side of (5.21) and setting
gj(1) =col{x;(r), X (1), xj(t —@j), xj(t — (1)), xj(t —nx; (1))}
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it follows that
ng
V() <) i) <0 (5.23)
j=1

if the matrix [1; given by (5.13) is feasible. Internal asymptotic stability requirement
Vj (t)|5.9) < 0 implies that IT; < 0. Next, considering the £;-gain performance
measure J = Z;’; 1 Jj for any w;(t) € £2(0,00) # 0 with zero initial condition
x;(0) =0 hence V(0) =0, we have

J= /0 ()2 (5) — y 2w’ () (s))ds
< /0 (25()zj () — y 7w (9w () + Vj()ls59)ds. (5.24)

Using (5.10), we obtain:

2($)zj () = ywh (Hw;j () + Vi()ls.9) < [£5(s) wh ) [g(s) wh ()], (5.25)
where [T j is given by (5.26). It is readily seen that
(@(9)2j(s) — yjwi()w;(s) + V(9)lis9) <0

for arbitrary s € [¢, 00), which implies for any w;(f) € £2(0,00) # 0 that J; <0
leading to ||z (1) ||l2 < Z?"zl yjllw(?)ll2, which assures the desired performance. [J]

Theorem 5.2 Given the bounds o; > 0, uj >0, gjx > 0, wjx > 0 and tuning
parameters B, o, j,k =1,...,ng. The family of subsystems described by (5.9)-
(5.10) is delay-dependent asymptotically stabilizable by decentralized static output-
feedback controller uj(t) = K,;y;(t), j =1,...,ng with Ly-performance bound
Vi, J =1,...,ns if there exist positive-definite matrices Y;, G;, ¥1;, ¥, ¥3;,
Wy i, Yikj, Woxj satisfying the following LMlIs for j =1, ..., ng

R E; By B
Ei=| o —y].21j ®i | <0, (5.26)
° ° —1I;

where
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Eej Eyj 0 Eyj  Esj
° Hqj 0 Hyj  Esj
Hj = ° ° Eej  Eej 0 s
° o &y O
° ° ° Eyj

Q|

Q
|

=(1 +C7j)|:<Aj + Y ij>yj + B,-g,-]

k=1,k+]
ng !
:(1+O'j)|:yj<Aj+ Z ij> +Q;B;:|
k=1,k+j
ng
+¥;+¥ -3+ (s — DY+ Z Yikj,
k=1,k+]
ng !
- t pt
Eij =0, +ﬁj[(Aj + > ij> Y +Q,-B,}, (5.27)
k=1,k+]
Erj=40j)AqjY;+ V3,
s
Eyj=0; Y EyYi. Eaj=07%3—28;);,
k=1,k+]
ns
Eyj = BjAujYj, Esj=p;j Z EijY;,
k=1,k+
Eej=—W; -, Eej =3,

Emj=—293; — (1 = puj)¥j,

ng
Epj == — pij)Wikj — Z Yokj s
k=1,ks#j

=[If+w;;0000]", &5,;=[GY;00G,;Y;0]".

Moreover, the local gain matrix is given by K; = G; y;‘ C;.

Proof Applying the congruent transformation

T=diagly;, ¥j, ¥, ¥, Vi 1j, 11, Vi =P;!
to LMI (5.12) with (5.13)—(5.14) and using the linearizations
Gj=KojCjYj, =YWV, W¥aj=4X;S;&j,
V3 =ViR;Yj, Yy =Vj2kYj, Waj=BjKojAj,
Yoij = ijlijWkEkjyj
we readily obtain LMI (5.26) with (5.27) and therefore the proof is completed. [
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Remark 5.1 We note that the case of decentralized state feedback control u () =
Kjxj(t), j =1,...,ns can be readily from Theorem 5.1 by setting C; = I},
Cyj=0, Egj =0, A; =0 so that the resulting closed-loop system is asymptoti-
cally stable with guaranteed H, performance.

5.1.4 Quantized Output-Feedback Design

Focusing on the availability of quantized local output information (meaning that the
switch in Fig. 5.1 is open), we modify the static output feedback (5.8) using the
quantized information of y; as

uj(t)zquonj(yZL(f)>, j=1.....n,. (5.28)

J

For any fixed scalar u; > 0, the closed-loop system, composed of (5.1), (5.3) and
(5.28) is given by

xj(t) = .ijj'(t) + Adjxj'(t —T1;@®)+c;@®)+2;w;(t)+Hj(uj,y;),
@) =Gjxj(t) +Ggjxjt — ;1)) + Pjw;(1),

AjZAj+BjK0jCj, Adj:Adj-l-BjKOdej, (5.29)
Rj=T;+ BjK,;¥;,

yi@® y;(t))

Hj Hj
Next, we move to examine the stability and desired disturbance attenuation level of
the closed-loop system (5.29) in the presence of the quantization error. We employ
the LKF (5.11) and consider that the gains K,; are obtained from application of
Theorem 5.1. The following theorem establishes the main design result for subsys-
tem S;.

Hj(Mj,yj)=MijKoj<Qj

Theorem 5.3 Given the bounds ¢j > 0, uj >0, 0jx > 0, wjr > 0 and tuning pa-

rameters Bj,o0j, j, k=1, ..., ng. If the local quantizer M; is selected large enough
with respect to A while adjusting the local scalar o so as to satisfy the inequality
IP;Bj Kol
M;>4A; ————||Ci +«;Cy4ill. (5.30)
J J Som (A7) J jtdj

Then, the family of subsystems {S;} where {S} is described by (5.1)~(5.3) is delay-
dependent asymptotically stabilizable with L;-performance bound y; by decentral-
ized quantized output-feedback controller (5.28).

Proof Since
y;j(t) _ Cixj(t)+ Cgjxj(t — (1))
K Hj
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is quantized before being passed to the feedback, we obtain by using the properties
of local quantizer (5.5) and (5.6) that whenever |y;(¢)| <M;u ;, the inequality

yi@® Qli()’j(l‘))' <4, (5.31)
M Hj

holds true. Extending on Theorem 5.1, it follows that

Jj 5/(; ([C;(S) w;(S)]ﬁj[Cjt-(s) w;(s)]t
+2x5PiHj (), yj) — x5 Ajx;j)ds, (5.32)

where IT j corresponds to Iy j except that I1,; — I1,; + A; with A; > 0 being an
arbitrary matrix. Proceeding as before, we focus on the integrand in (5.32) while
letting [|x;(t — ;)| < ojllxj(®)|l, ; > 0 and manipulating to get

[£4(s) wh I IEE(s) wh ()] + 20" Py Hy(j. yj) — 3% Ajx;

~ 1 PiBiK,j
<[} () wiUT;[Ej(s) ()] — zxm(A,-)(|xj| - 44% ,-)
m J
< [gh(s) wh()ITE)(s) wh(s)]'
L4y H_an PiBi Kol e )
z*m("’)||c,-+ajcd,-||('”' My Gt esCal )
(5.33)

It follows from (5.30), we can always find a scalar 8; € (0, 1) such that

P;B;Koj 1
M,->4Ajw||cj+ajcdj|| . (5.39)
A (Aj) 1—B;
This is equivalent to
1 IP;BjKojll
4A; — —|ICi +a;iCgilli <Miu;. (5.35)
1—B; J hom(A]) J JEdjlii JHj
Therefore, for any u ; # 0, we can find a scalar u; > 0 such that
1 P B;Kojll
44 ICj +a;jCajllnj <1yl =Mju;. (5.36)
1—B; J hn(A}) JTjbdjlil J M

At the extreme case |y;| = 0, we set u; = 0 so that the output of the local quantizer
is considered zero and therefore (5.36) holds true. This, in turn, implies that we can
always select (; so that (5.36) is satisfied, (5.33) holds and hence

x|

N 1
Jj < x5, ) xj(t,8) = 5 Bjrm(Aj) re————|yjl
J J JAT 2 Jm J ||C]+Ol,Cd/|| J

(5.37)

where IT j 1s given by (5.26) for some vector x(, s). The rest of the proof follows
from Theorem 5.1. Il
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Remark 5.2 For the case of decentralized state feedback control u; (t) = K ;x;(t),
Jj=1,...,ns, then Theorem 5.3 specializes to the following corollary.

Corollary 5.1 Given the bounds o; > 0, u; > 0. If the local quantizer M; is se-
lected large enough with respect to A while adjusting the local scalar o so as to
satisfy the inequality
PiBiK,j
M; >4AJ-M (5.38)
Am(Aj)

Then, the family of subsystems {S;} where S; is described by (5.1)~(5.3) is delay-
dependent asymptotically stabilizable with L;-performance bound y; by decentral-
ized quantized state-feedback controller

u,-(r)zu,,'Kij("L(_’)), =Ly,

J

Remark 5.3 By the mean-value theorem and following [14], it can be shown that
hm (PlxjI? < Vi < 91k |1* where

9 =[Am(P)) +0jlrm(Z)) + AV + 3Q§[AM(AIJ'A/) + ()»M(Afngdj)]].

Based on the results of [21], we define the local ellipsoids

B()](Mj) = {x] ‘x;,PJxJ = }Lm(,P]M%M%}’
By (i) = {x; :x}ijj < kM(PjD§A§(1 + Uj)zﬂﬁ}»

IP;Bj Kol

Dj =2
Am(Aj)

IC; +a;Cy;ll.

In the “zooming-in” stage, it can be inferred that By; (i ;) C B,j(;) are invariant
regions for system (5.29) given o; > 0. Moreover, all solutions of (5.29) that start
in By (1) enter Bg; (i ;) in finite time.

Remark 5.4 The introduction of the local scalar o ; stems from stability considera-
tion of system (5.29) in the light of Razumikhin theory [26]. It is crucial to recognize
that it plays a basic role in steering the trajectories of (5.29) towards the final ellip-
soid By (). This is a distinct feature of quantized time-delay systems.

Remark 5.5 We note in Theorem 5.3 and Corollary 5.1 there are several degrees of
freedom to achieve the desired stability with guaranteed performance, particularly
since both the off-line gain computation and the on-line quantized feedback are
decentralized. This is a salient feature of the developed results of this chapter, which
is not shared by several published results [2, 28, 30, 31].
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5.1.5 Simulation Example 5.1

To illustrate the theoretical developments, we consider a plant comprised of three
chemical reactors. By linearization and time scaling the model matrices in the form
of (5.1)—(5.3) have the values:

—a;; —101 0 0 0.5

A_| 32 —ay 128 0 ro_ |03

I=1 64 0347 —a3; —1.04 | I=los |
| 0 0833 110 —ay 0.5

_blj 0 0 0
| 0 by O 0 o
Agj = 0 0 by 0 | ®; =0.1,

[0 0 0 by

G;j=10.1020403], G4 =[00100010], A;=0.1,
1.0 0 o}

01 0 0]

C;=[10000], C4=[1000],

t_
B; =

where the values of the parameters are given in Table 5.1. The coupling matrices
Fj, E ji are generated randomly. The feasible solution of Theorem 5.3 is found to
be
pn1=2, 01=0.775 y1=0.561, 012=0.819, 013=0.831,
pi2=1311, p;3=1176, K. = [7.535 —3.962],
u2=2, 02=0.775 y»=0477, 021 =0.921, 0233=0.976,
o1 =1.421, pux3=1324, K!,= [1.741 —10.124],
uz=2, 03=0.775, y3=0.601, 031 =0.819, 03,=0.831,
w3 =1311, puxp=1.176, K= [3.966 —4.524].

Typical simulation results are plotted in Figs. 5.2, 5.3 and 5.4.

Table 5.1 Model parameters

Parameter S1 S> S3

aij 4.931 4.886 4.902
azj 5.301 5.174 5.464
asj 32.511 30.645 31.773
a4; 3.961 3.878 3.932
byj 1.921 1.915 1.908
byj 1.921 1.914 1.907
b3 1.878 1.866 1.869

by 0.724 0.715 0.706
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Fig. 5.2 Closed-loop
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5.1.6 Polytopic Systems

‘When the local subsystems undergo polytopic uncertainties, the model matrices will
belong to a real convex bounded polytope of the type
Aj Agj Bj T
Gj Gaj Aj @,
Cj Caj Eji Fik
ell), := Gin Gajr Ajn Pja
Cin Cajr Ejrrn Fi
Js AdjS Bj? F/v

A
=Y A | Gjs Gajs Djs ®js [As€Ap, (539
C

js Cdjs Ejks ijs
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Fig. 5.4 Closed-loop 150
state-trajectories: subsystem 3

100 4o » x
50

where A is the unit simplex

ns
A=, d) Y Aj=1,0;>0¢. (5.40)
j=1

Theorem 5.4 Given the bounds oj > 0, uj >0, gjx > 0, pujx > 0 and tun-
ing parameters Bj,o0;, j,k =1,...,n5. The family of subsystems described by
(5.9)—(5.10) with polytopic representation (5.39)—(5.40) is delay-dependent asymp-
totically stabilizable by decentralized static output-feedback controller u () =
Kojyi®), j =1,...,ng with Lr-performance bound yj, j =1, ..., ny if there ex-
ist positive-definite matrices Y;, G, W1;, ¥2;, ¥3j, Yaj, Yikj, Yok satisfying the
following LMls for s, j =1, ..., ng

Esj Evsj Ewsj
= 2 t
asj: ° —]/j Ij ¢sj <O, (541)
° ° =1
where
Ees] E]Sj 0 EZsj E3sj
1 Easj 0 E4sj ESsj
Eyj = ° . Eej  Hesj 0 ,
° ° ° Ensj 0
° ° ) ) Ensj

Eesj =(1 +Uj)|:<Asj + Z ijs))}j + stgj:|

k=1k#j

ng !
:(1+a.,~)[y.,~<As,-+ > ijs) +Q}B§j}

k=1.k#j
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ng
+ Vs + Wos; —Wagj + (s — DY + Z Viksj»

k=1k#j
ng t
Elgj=~0;; +ﬁ,~{<As,- + ) ij5> Vi +g;-B;S]
k=1kj
(5.42)
Eoj =1 +0j)AusjYj + Wi,
ng
H3sj =0j Z ErjYi, Easj =Q?‘1’3sj —2B;Yj,
k=1,kj

ng
Easj = BjAusjYj, Essj =P Z EjsYj,
k=1,k#j
Ecs‘:_ j — j s Es': S
J Y1 — ¥s; 6sj = Y3sj

=293 — (1 — )Wy,

ng
Ensj = — (1 — pgj)Wikj — Z Woksjs

k=1k#j
Bugj=[ I, +¥4,;0000]",
Eusj =[GV 000G V0]

Moreover, the local gain matrix is given by K; = G; yj—l C;.

5.1.7 Delay-Free Systems
In case of delay-free decentralized systems

Pj)'Cj(l‘)Zij]‘(t)—i- Z ijxk(t)—i—Bjuj(t)—i—Fjwj(t), (5.43)

k=1,k%]
2j®)=Gjx;j@) +Pjw;(1), (5.44)
yj(t)ijxj(t)+Ajwj(t) (5.45)

the following result holds:

Theorem 5.5 Given tuning parameters Bj,oj, j,k =1,...,n5. The family of
subsystems described by (5.43)—(5.45) is asymptotically stabilizable by decentral-
ized static output-feedback controller u;j(t) = Kyjyij(t), j =1,...,n5 with L;-
performance bound y;, j =1, ..., ny if there exist positive-definite matrices

Vi, G, Wi, ¥, W3y, Wiy, Y, Y
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satisfying the following LMIs for j =1, ..., ng

Ei=| e —yi; o |, (5.46)
[ ]

where

Eej=(1+ C’j)|:<Aj + 2k 1kt ij)yj + B,»Q]}

t
=1+ O'j)|:yj (Aj + ZZLl,k;ﬁj ij) + Q;B§:|
5.47)
+ (s — DY, + ZZS:l,k;éj Yikj

Q)

1
1j==0;Yj+Bj [(Aj + il 1kt ij) Y+ 9535}

1

W =—2B;Yj, Buj=[G}Y;0000]",

[

(1)

w=[T1+%;0000].

The local gain matrix is given by K; =G; :)/j_le.. Moreover, if the local quantizer
M; is selected large enough with respect to A; so as to satisfy the inequality

17 B Ko

M; > 44, oy IC;ll. (5.48)

Then, the family of subsystems {P;} described by (5.43)—(5.45) is asymptotically
stabilizable with Lo-performance bound y; by decentralized quantized output-
feedback controller (5.28).

Remark 5.6 1t is significant to note that Theorem 5.5 provides an improved nominal
result over [6] and gives an explicit expression for the quantized output feedback
gain. In addition, the result is valid for arbitrary number of subsystems and not
restricted to ny, = 2 as in [6].

5.2 Decentralized Quantized Control II: Continuous Systems

Quantization in control systems has been an active research topic in recent years,
see [11, 13]. Control problems under different types of quantizations in both, linear
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and nonlinear cases have been examined. The need for quantization arises when dig-
ital networks are part of the feedback loop and this eventually gives rise to packet
dropouts or data transfer rate limitations [17]. On the other hand, signal process-
ing and signal quantization always exist in computer-based control systems [22]
and therefore recent research studies have been reported on the analysis and design
problems for control systems involving various quantization methods, see [5, 8, 19,
21, 33, 34] and the references cited therein.

In [5], a quantizer taking value in a finite set is defined and then quantized feed-
back stabilization for linear systems is considered. In [8], the problem of stabilizing
an unstable linear system by means of quantized state feedback, where the quan-
tizer takes value in a countable set is addressed. It should be noted that the approach
in [5] relies on the possibility of making discrete on line adjustments of quantizer
parameters which was extended in [21] for more general nonlinear systems with
general types of quantizers involving the states of the system, the measured out-
puts, and the control inputs. Recently in [11], a study of quantized and delayed
state-feedback control systems under constant bounds on the quantization error
and the time-varying delay was reported. Based on [21], stabilization of discrete-
time LTI systems with quantized measurement outputs is reported in [29]. Further
related results are reported in [33, 34]. On another research front, decentralized
stability and feedback stabilization of interconnected systems have been the topic
of recurring interests and recent relevant results have been reported in [2, 24-28,
311

In this section, we develop an approach to the problem of quantized feedback
stabilization from a generalized setting by designing a decentralized H, feedback
control for a class of linear interconnected continuous-time systems with unknown-
but-bounded couplings and interval delays and where the quantizer has arbitrary
form that satisfies a quadratic inequality constraint. An LMI-based method using
a decentralized quantized output-feedback controller is designed at the subsystem
level to render the closed-loop system delay-dependent asymptotically stable with
guaranteed y-level. It is established that this setting encompasses several special
cases of interest including interconnected delay-free systems, single time-delay sys-
tems and single systems.

5.2.1 Problem Statement

We consider a class of linear systems S structurally composed of n; coupled sub-
systems S; and the model of the jth subsystem is described by the state-space rep-
resentation:

Sji ij(l‘):Aij(l‘)-FAdej(l‘—Tj(l))+Bjuj(t)+Cj(l)+Fjwj'(t), (5.49)

i) =Gjxjt) + Gyjxj(t —1;(t)) + Pjw;(1),

(5.50)
yi)=Cjixj(t)+Cgjx;j(t — ;@) +¥;jw; (@),
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where for j € {1,...,n}, x;(t) € N is the state vector, u;(t) € RN/ is the con-
trol input, y;(¢) € NP/ is the measured output, w;(¢) € NY/ is the disturbance in-
put which belongs to £>[0, 00), z;(t) € N9/ is the performance output. The ma-
trices A; € WYX, B; € WM, Agj € WX, & e MUX47, I e R4,
C; e RPiXM, Cqj € RPIXM, G; e RPN, Gg; € RIP>M, Wi e RPI*4) are real
and constants. The initial condition x; € £5[—0;,0], j € {1, ..., ny}. In the sequel,
we treat the interaction term c; () as a piecewise-continuous vector function in its
arguments and satisfies the quadratic inequality

cs.(t)cj(t) < ¢)]‘X;(f)E§-Ej.Xj(t) + I/Ij.x}(l — rj(t))E;jEdjxj(t —7j(1), (5.51)

where ¢; > 0, ; > 0 are adjustable bounding parameters. The factors 7, j, k €
{1, ..., ng} are unknown time-delay factors satisfying

0<gj<t;(t)<e0;,  tj{)<n,, (5.52)

where the bounds rj_, ‘L']-"_, n; are known constants in order to guarantee smooth
growth of the state trajectories. Note in (5.50) and (5.51) that the delay within each
subsystem (local delay) and among the subsystems (coupling delay), respectively,
are emphasized. A block-diagram representation of the subsystem model (5.50) is
depicted in Fig. 5.2.

The class of systems described by (5.49)—(5.50) subject to delay-pattern (5.52) is
frequently encountered in modeling several physical systems and engineering appli-
cations including large space structures, multi-machine power systems, cold mills,
transportation systems, water pollution management, to name a few [25]. In the
course of feedback control design, it is often considered that the process output
is passed directly to the controller. A control input signal is generated and in turn
passes it directly back to the process. In many applications, it turns out that the in-
terface between the controller and the process features some additional information-
processing devices. Of interest in this chapter is the issue of signal quantization.

Our objective in this section is to address a generalized approach to examine
the problem of quantized feedback stabilization for a class of linear interconnected
continuous-time systems. In this approach, we think of a quantizer as a device that
converts a real-valued signal into a piecewise constant one taking on a finite set of
values and wherein it is possible to vary some parameters of the quantizer in real
time, on the basis of collected data. We seek to design a decentralized H, feedback
control for a class of linear interconnected continuous-time systems with unknown-
but-bounded couplings and interval delays

Remark 5.7 In general, the vector c(t) = Z;’Y ¢;j(t) represents the interaction pat-
tern among the subsystems wherein the component vector c¢;(¢) depends on the
current and delayed states of the form c;(t) = Z;zl;s, Ajoxe(t) + Agjexe(t — Te(1)).
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Under the interconnected structural identity

ng ng ns Ny
DO Ajexe() + Agjexe(t —Te() =Y > Agixj(t) + Aqjxj(t — Tj (1))
Jt#E] JoJ#t

it has been a common practice [24] to rearrange the terms in a convenient way
so as to reflect within the jth-subsystem the appropriate components leading to
the bounding inequality (5.51) with adjustable bounding parameters ¢;, ;. Note
in (5.49) and (5.51) that the subsystem delay with local and coupling patterns are
emphasized and in numerical simulations, all the subsystems have to be treated si-
multaneously. An overall feasible solution of system S is only guaranteed if the
feasible solutions of subsystems S; are attained. Thus the rationale behind inequal-
ity (5.51) is to help in inducing decentralized computations.

The quantizer can be thought of as a coder that generates an encoded signal
taking values in a given finite set. By changing the size and relative position of
the quantization regions, that is, by modifying the coding mechanism we can learn
more about the behavior of the system, without violating the restriction on the type
of information that can be communicated to the controller.

5.2.2 A Class of Local Quantizers

In the sequel, we treat a quantizer as a device in the control loop that converts
a real-valued signal into a piecewise constant one. We adopt the definition of a
local (subsystem) quantizer with general form as introduced in [21]. Let f; € ¥,
j =1,...,ns be the variable being quantized. A local quantizer is defined as a
piecewise constant function Q; : W — D;, where D; is a finite subset of R*. This
leads to a partition of N* into a finite number of quantization regions of the form
{fj e % :Q(fj) =dj, dj € D;}. These quantization regions are not assumed to
have any particular shape.

In the quantized control strategy to be developed below, we will use the local
quantization error A;(y) = Q;(y;) — y; (see Fig. 5.5) based on output measure-
ments such that the following quadratic bounding relation is satisfied:

A;()A]() < Oljx;-(l‘)F}Fij(l‘) +/3jx;-(t — fj(t))Fédejxj(t — ‘L'j(t)), (5.53)

where a; > 0, B; > 0 are adjustable subsystem parameters and the matrices E;, F;
are arbitrary but constants.

Remark 5.8 It is crucial to recognize that the quadratic bounding relation (5.53) is
independent of the structure of the quantizer employed. In fact, it is satisfied by wide
class of practically-used quantizers. For example, in case of uniform quantizer [5,
21] for delay-free systems 7; = 0, we assume that given positive integer M; (satu-
ration value) and nonnegative real number X'; (sensitivity), the quantizer Q(f;) is
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Fig. 5.5 Time-delayed cj(.)¢
subsystem model with
quantizer Input u;() Output jj(.)
A Sub-system >
J

y Quantizer

-

Delay
Ky |l y
Controller
defined by:
M; if f;>M; + )X,
o(fi))=1 M, if fj < —(Mj +3) ),

fi 1 : 1 1
[ +3]M; if—(Mj+ 55 < fi =M +3)Z).

Typical simulation would certainly shows that the uniform quantizer satisfies the
quadratic bounding relation (5.53) with f;(#) = C;x;(t). Alternatively, in the case
of static logarithmic quantizer [13] for delay-free systems, we assume that given
real numbers €, ¢ € (0, 1), the quantizer Q(¢;) is defined by:

dino  if 5efuo <& < thpolmo, k=022,
0 =10 ife; =0,
—Q(gj) ifej <0,

where o; represents the quantization density at subsystem j and 6; = (1 — ¢;)/
(I + ;). Observe that a small ¢; corresponds to large §; and this implies coarse
quantization. Alternatively, a large ¢; means small §; which leads to coarse quanti-
zation. From consideration of the behavior of the static logarithmic quantizer, we
reach the conclusion that it satisfies a quadratic bounding relation with &;(¢) =
Cjx;(t). Since extension to time-delay systems is quite straightforward hence, we
will employ the bounding inequality (5.53) in the subsequent analysis.

5.2.3 Quantized Output-Feedback Design

We develop in this section new criteria for LMI-based characterization of decentral-
ized stabilization by local quantized feedback of the form

ujt)=K,;0;(j), Jj=1,...,ns, (5.54)
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where the gain matrices K,j, j = 1,..., N will be selected to guarantee that the
closed-loop system, composed of (5.49)—(5.50), (5.53) and (5.54), given by
M) =Ajxj(t) + Agjx;j(t — ;@) +c;() + BjKoj Aj(y;) + 2w (1),
2j(®) =G xj(t) + Ggjxjt — ;@) + Pjw;(1),
Aj=A;+BjK,;C;, Agj=Aq+ BjK,;Cyj,
Q;=1I;+BjK,;¥;

(5.55)

is asymptotically stable with disturbance attenuation level y;. To facilitate fur-
ther development, we consider the case where the set of output matrices Cj,

j=1,...,ns are assumed to be of full row rank and C; represents the right-inverse.
Introduce the local Lyapunov-Krasovskii functional (LKF):

Vi) =Vjo(t) + Vja(t) + Vjc(t) + Vje(t) + Vjm (1) + Vjn (1),

t
Vi) = X OPx(1),  Vjalt) = / X ($) Q5 (5) ds,
l—(pj
0 t
ij(l)=<ﬂj/ / )%;-(a)Wjicj(a)dads,
—@j Jt+s
o (5.56)
an(t) = (Qj _(pj)/ / )'C;-(Ol)Sij(a)d(X ds,
—0j t+s

t
Vie(®) =/ x;(s)ijj(s) ds,
t

—7;(t)

t
Vie(t) = / x;(s)ijj (s)ds,
t—o;
whereO<Pj=73;,O<Wj=W;,O< szQ’j,0<Rj=R;,O<Sj:S;,
0 < Zj = Z' are weighting matrices of appropriate dimensions. The main design
result is established by the following theorem.

Theorem 5.6 Given the bounds ¢; >0, 0; > 0 and n; > 0. System (5.49)—(5.50) is
delay-dependent asymptotically stable with L,-performance bound vy if there exist
weighting matrices 0 < X, Y;,0 < Apj;m=1,...,7, and scalars wj > 0, u; >
0,0;>0,v; >0, y; > 0 satisfying the following LMI

~ Iyj IIj 1y
Hj = ] H3j 0 < 0, (557)
| e o Is;
[, O Hj, Ay I; Agj
° —Ij.  Ajzj 0 0 0
° ° —I1 Az 0 0
J— Jm J
Mmj= ° ° . —1I, 0 o |’
° ° ° . =1 0
| . ° . . ° —1I;
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_wjnjs (Qj_@j)njs A7j
0 0

0
ey (j—epj XiGy®;
Mmj=1", 0 0 :
0 0 0
0 0 0
(-, 0 0
H3j= ° —ij 0 s
i o  —yj+ 00,

Myj =[M4j Myj M35 ],

_[Ejx;, 0 o0 0 0 0]
HMai=1"0" E4x; 0 0 0 0]’
_[Fx 0 00 0 0]
Hei=1"%" Fsx, 0 0 0 o}’
[Gjx, o 00 0 0]
Msi=170" Ggux; 0 0 0 0}’

Msj = diag[7;1; il o vil; 1 1],

Hj(]:Aij-l-Xj.A? + Ayj+ Agj + Asj — Agj,

Hj. = Ay + Az, HjsszA§~ +y;-B;-,
i, =AgjX;, Hj=Ayj + Azj + Asj,

Mjm =1 —wj)Agj +2435,  Ijy, =2X; — Azj,

M, =2X; — Ay}, T,j=Trj+XjA2j.

Moreover, the local gain matrix is given by K,j = Y; X/_IC;.
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(5.58)

Proof A straightforward computation gives the time-derivative of V; along the so-

lutions of (5.49) with w; () =0 as:
Vi) =2x5 ()P (1) + x5(D[Q; + Rj + Z;1x (1)
—xj(t —9))Qjx;(t — ;)

— (1 =t)x'(t =10 Zx(t —1(1)) = x"(t — O)Rx(t — 0)

+iOI0IW) + () — 9))781%; (1)

1
_ /;(p.)%}(a)ijCj(oz)da

)

l*(ﬂj
— / X (a)Sx (a)da

t—o
<205 (OPx (1) + x5 (D[Q) + Rj + Zjlx; (1)

—x'(t—9)Qjx(t — @)
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- (1 - ,uj)xt(t - 'Cj)Zj)Cj(t — '[j) —xj-(t —Qj)ijJ'(t — Qj)
+5C§~(t)[<ﬂjo +(0j —9;)S;1x; (1)

t
- (pj/ )'c;(a)Wj)'cj(a)da
t—0;

t—gaj
—(0j —<Pj)/ H(@)S)ij (@)da. (5.59)
1-ej

Applying the Jenkins’s inequality (see Chap. 9), we get

t
—@; / x; (@W;xj(a)da
1—g;

)

xj (1) t[—Wj WJH x (1) }

Similarly,

1=9;
—(j—¢)) & (@)Sjkj(@)de

1—0j

t—¢
=—(0j — qo,/)[/ (o) Sx(a)da +/
t

-7 1—oj

=71

x; (@)Sjx; (a)daj|

t—(pj
<—(zj —goj)l:/ )'c;(oc)Sj)%j(a)dai|
t

-

I—t;
—(0j — Tj)|:/ J-C;((X)Sj)&j (Ol)dot:|
t

-0

t—(pj t—gaj
< —(/ )&}(d)du)é}([ )'cj(a)doz)
t—fj t—‘L’j
tfrj t—1;
_ (/,_Qj )'c;(a)da>8j</t_gj )'cj(a)dot>

=—[x(t — @) —x@ — )V S;[x(t — @) —x(t — ;)]
—[x(t — 1)) —x(t — )V Sj[x(t — 7)) — x(t — 0))]. (5.61)

From (5.56)—(5.61) with Schur complements and incorporating (5.51) and (5.53)
via the S-procedure, we have

Vi) <ENDEE @),

g =[&;0&,0],
E1j(0) =[50 XLt — ) X =TT
(1) =[xt —)) () AT

(5.62)



5.2 Decentralized Quantized Control II: Continuous Systems 251

where Z; corresponds to H in (5.57) with G; =0, G4; =0, @; =0 and Schur
complement operations. If 17 <0 sois & <0, leading to V (t) < —wj ||§j||
This establishes the internal asymptotic stability.

Next, we consider the performance measure

Jj =f0 (2(9)25(9) = yjw()w;(5))ds

For any w;(t) € £2(0, 00) # 0 and zero initial condition x(0) =0 (hence V;(0) =
0), we have

Jj S/(; (2()zj () — y7wli($)w; () + V;(x)|s5.49))ds

where Vj (x)|(s.49) 1s the Lyapunov derivative along the state trajectories of system
(5.49). Proceeding, we get

2(9)zj () = y7w' ()wj(s) + Vi()ls.00) = 1) & (),
n;(s) = [E) w')]', (5.63)

where & j corresponds to i j given by (5.57) by Schur complements. If i j <0,it
is readily seen from (5.63) by Schur complements that

25()zj () — yjwi()w;j () + V;(s)ls.49) < O

for arbitrary s € [¢, 0o), which implies for any w;(t) € £2(0, 00) # 0 that J; <0 or
equlvalently J = Z 1 Jj <0. This in turn leads to ||z ()2 < y;llw;j(®) |2 for all
j=1,

To compute that the feedback gains, we apply Schur complements and rewrite =
as

[, Oy I
I; = ° —TI; 0 <0, (5.64)
B ° —1ITy;
(B, 0 PjAgy W, P PjBjK,
. —&¢j S; 0 0 0
= ) S; 0 0
.= ° ° mj )
o ° ° ° —&yj 0 0 ’
° ° ° ° —1; 0
| e ° ° ° ° —1I;
_QDjAg (Qj—(pj)Aé G;¢j+73j9j
0 0 0
i, = 9jAy, (0j—9)Ay, Gy ®
0 0 0 ’
0 0 0
L O 0 0
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w0 0
Oy=| o =5 0 : (5.65)
e o I Hjl+ PP,
ﬁvj=[17v1j My My3j],
n. _[Ei 0 00 0 07
"WElo E g 0 0 0 0f°
[F;, 0 0 0 0 07
M2i=0 F; 0 0 0 0]’
m.._[Gi 0 00 o0 07
BiT10 Gg 0 0 0 0]

Bos =P;A; +.Atj77j +O;+R;+Z; - W,
éjm =1-up)Zz; +28j.
Then we define X; = 77]-_1, Tj= qu_l, nj= l/fj_l, oj= Olj_l, Vi = ,3]-_1 and apply
the congruent transformation
T; :diag[Xj XX X111 1 Ij]
along with the linearizations
A1j=X;Q;X),  Agj=XW;X),  Asj = XS],
Aaj=RXjZ;X),  Asj=AXR;Xj,  Aej=BjKoj,
A7j=Xlej@j+Fj+BjK0j, erZXJt-Cfinf)jB;-.

Using the algebraic matrix inequalities —)/Vj_1 < =2X; + Agj, —Sj_1 < =2&; +
A3zj in addition to the matrix definitions (5.58), we obtain LMI (5.57) by Schur
complements. This concludes the proof. O

5.2.4 Special Cases

In the sequel, some special cases are derived to emphasize the generality of our
approach. These include nominal delay-free systems, single time-delay systems and
single dynamical systems.

5.2.4.1 Delay-Free Systems

First, we consider the class of nominally-linear systems S structurally composed of
ns coupled subsystems S; and the model of the jth subsystem is described by the
state-space representation:
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S;: )'Cj(t) =Ajxj®)+ Bjuj(t)+c;@)+ Tjw;{), (5.66)
Zj(t)szxj(t)~|—<Djwj(t), (5.67)
yi)=Cjx;@) +¥jw; (@),

where for j € {1,...,ny}, the coupling vector c; (k) is a piecewise-continuous vec-
tor function in its arguments and satisfies the quadratic inequality

ek, )ik, ..) < ¢jxt () ESEjx; (k). (5.68)

where ¢; > 0 are adjustable bounding parameters and M; € RW"/*"/ are constant
matrices. We will use local quantized output measurements such that the following
quadratic bounding relation is satisfied:

A’j(.)Aj(.) Sajx;(k)Fj’-ijj(k), (5.69)
where «; > 0 are adjustable subsystem parameters. The following corollary stands

out:

Corollary 5.2 System (5.66)—(5.67) is asymptotically stable with L,-performance
bound y if there exist weighting matrices 0 < X, V;, Apj; m = 1,2, and scalars
wj>0,0;>0,y; >0 satisfying the following LMI

7. _ [T I

;= . ﬁ}.j <0, (5.70)
_ﬁjo I; Ay Azj

_ ° —1I; 0 0

Hlj = ° ° _[j Xjthjdﬁj ’
| o ° ° —)/]-2[]' —I—(P;-@j

I = [y My Mj ], (5.71)
M, =[E;jX;000]", In;=[FjXx;000],

My =[G;X;000], TIs;=diag[n;l; o;1; 1],
Hj,=AjX;+ X, Aj.

Moreover, the local gain matrix is given by Koj = Y; X]._IC;.

5.2.4.2 Single Time-Delay Systems

In what follows, we consider the single linear time-delay system

() = Ax(t) + Agx(t — t()) + Bu(t) + T'w(t), (5.72)
i) =Gx() + Ggx(t — (1)) + Pw(?),

(5.73)
yi()=Cx(@) + Cyx; —t(t)) + Pw(t),
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where 0 < ¢ < t(t) <, 7(t) <. Like before, we will use quantized output mea-
surements such that the following quadratic bounding relation is satisfied:

A" ()AQ) <ax' () F'Fx(t) + Bx"(k — t(t))FjFax(k — (),  (5.74)

where o > 0, 8 > 0 are adjustable parameters. The following corollary establishes
the corresponding design result:

Corollary 5.3 Given the bounds the bounds ¢ > 0, 0 > 0 and n > 0 then system
(5.72)—(5.73) is delay-dependent asymptotically stabilizable by quantized feedback
controller u(t) = K,y(t) with Lo-performance bound y if there exist weighting
matrices 0 < X, Y, Op;m=1,...,7,and a scalar y > 0 satisfying the following
LMmI

T T T
TY=|e 75 0 |<o0, (5.75)
e o Tj;
1, 0 Y. 6 6
o —JI. ©3 0 0
Ti=| e . —Ym O3 0 ,
° . . -7, O
| . ° . —1
elly; (0—9)Ys O
Ty = 0 0 0
oY, (e—9)Y; XGho |’
0 0 0
[ -1, 0 0
3= —I1, 0
i o Y+

Ty = [T41 T42]

v _[FX 0 0 0
=10 Fx 00
r,_[GX 0 0 07
2710 Gux 000

T5=diag[01v111],

Yo=AX + X A"+ O1 + O4 + Os — O,
1. =014+03, T,=XA"+YV'B'
Yo=AsX, 1, =0,+03+0s,
Y=(1-w0Os+205, Ti=XAL+7,,
Y, =2X—0,, T, =2X-—06;.

Moreover, the local gain matrix is given by K, = YX~1CT.

(5.76)
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5.2.4.3 Single Systems

Finally, we consider the single linear system
X(@)=Ax()+ Bu(t) + I'w(z), (5.77)
Zj(®) =Gx(@) + Pw(),
yj(0) = Cx(@) + ¥Yw(r)

for which we will use quantized output measurements such that the following
quadratic bounding relation is satisfied:

AT ()AQ) <ax' (1) F'Fx(t), (5.79)

(5.78)

where o > 0 is an adjustable parameter. The following corollary establishes the
corresponding design result:

Corollary 5.4 System (5.77)—(5.78) is asymptotically stabilizable by quantized
feedback controller u(t) = K,y(t) with Ly-performance bound vy if there exist
weighting matrices 0 < X, Y, On; m = 1,2, and scalar o > 0, y > 0 satisfying
the following LMI

~_ Ql 92
2= [ . 93} <0, (5.80)
‘QO @1 @2
le ° _I 0 ,
[ ] Y _y21+(pl¢
=Yy Y2], $23=diag[ol 1], (5.81)

21 =[Fx00]", 2n=[Gxo0],
2, =AX + X A'.

Moreover, the local gain matrix is given by K, = YX~1CT.

5.2.5 Simulation Example 5.2

For the purpose of illustration, we consider an interconnected system composed of
two subsystems having uniform quantizers with the following data:

[—2.0000 0 192 1.0
A= o —32.5] Aﬂ“—[ 0 2.87}’

B = (l):|, G1=[0.70.4], Gd]Z[O.l 0.1],

g _[-201 Lo g [—002 001
T 1347 —ro40 U7 -0.01 —0.02]




256 5 Decentralized Quantized Control

(1 0 1 0 0.1
F = 0 1] Fd1=[0 1}, F1=|:02]

Ci=[101], Cq=[101]
[—43 0 20 0
2= 0 —4.0}’ Adz:[ 0 1.5]’
B = (1)i|, G2=[0.50.6], Gd2=[0.20.2],

: —0.01 —0.02
B=1lo0s o } E‘”_[—o.oz —0.01}’

(0.8 —1.8 08 0 0.2
=1 11.0] F‘”:[o 0.9] Fz:[o.l]

C2=[052], Cp2=[0803].
It is found that the feasible solution of LMI (5.57) is attained at

01=03, 01=3.89, ¢,=04, 0,=3.77,

K1 =-0.6729, Kp,=-2.8345, n;=1.56, ny=1.47.
Typical simulation results are shown in Figs. 5.6 and 5.7 for the open-loop response
and closed-loop response of both subsystems. Next, by considering the class of in-

terconnected linear systems S given by (5.66)—(5.67) and implementing the LMI
(5.75), the feasible solution is found to yield the gains

Subsystem1 Open Loop

30 T T T T T
X
201 E
® X X2
Q
§ 10 \/// -
(%]
0 L.
X
_10 1 1 1 1 1
0 0.5 1 15 2 25 3
Time
Subsystem, Open Loop
10 T T T T T
X
” ot . X X2 a
% 2 I
? 10 %XX 1
_20 1 1 1 1 1
0 0.5 1 1.5 2 25 3

Time

Fig. 5.6 Open-loop response of subsystems 1 and 2
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Subsystem ’ Closed Loop
10 T

States
o

X
—-5F

_10 i i i
0 0.5 1 1.5 2 2.5 3

Time
Subsystem2 Closed Loop

20

10 X

States
o

0.5 1 1.5 2 25 3
Time

Fig. 5.7 Closed-loop response of subsystems 1 and 2

Fig. 5.8 Closed-loop Subsystem, Closed Loop
response of decoupled : : :
subsystem 1 — Xy
x - Xof]
[}
(0]
5|
n
4
-6k
-8}
1% 05 1 15 2 25 3

K1 =-0.7832, Kp,=-5.9173.

The simulation of the closed-loop response of both subsystems are depicted in
Figs. 5.8 and 5.9. On implementing the LMI (5.80) for the decoupled subsystem 1,
the feasible solution is given by

0=05 0=235 n=12, K =-0.7832.
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Fig. 5.9 Closed-loop Subsystem , Closed Loop
response of decoupled 15 ; :
subsystem 2 X4
XX
10 2
5 |
1]
Q
g Of
(-D X
Y 4
_1();XX ]
-15 .
0 0.5 1 15 2 25 3
Time
Fig. 5.10 Closed-loop Subsystem, Closed Loop
response of single system 10 ‘ ‘ ‘ ‘
X
1
8 8
X X2
6 ]
41 i
2+ ]
(2]
O
g Or
(D X
_2 It ]
4k i
6| ]
_8l ]
1 i
00 0.5 1 1.5 2 25 3
Time

The ensuing closed-loop response is plotted in Fig. 5.10. From the ensuing results,
it is quite evident that the quantized feedback control system is asymptotically sta-
ble for the class of quantizers satisfying the quadratic inequality. This holds true for
interconnected time-delay and delay-free systems, single time-delay systems and
single systems. The crucial point to record is that the type of quantizer is irrelevant
so long as its structure complies with a quadratic inequality. We have observed that
the presence of bounding inequalities (5.51) and (5.53) helps in curbing the magni-
tude of the feedback gains.
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5.3 Decentralized Quantized Control I: Discrete Systems

In what follows, we build upon [5, 21] and extend them further to the class of lin-
ear interconnected discrete-time systems with unknown-but-bounded couplings and
interval time-delays. Specifically, we study the problem of decentralized H, feed-
back control for this class of systems where quantized signals exist in the subsystem
control channel.

5.3.1 Introduction

It is well known that most of data and/or signals in conventional feedback con-
trol theory are processed in a direct manner. In emerging control systems including
networks, all signals are transferred through network and this eventually gives rise
to packet dropouts or data transfer rate limitations [17]. On the other hand, sig-
nal processing and signal quantization always exist in computer-based control sys-
tems [22] and therefore recent research studies have been reported on the analysis
and design problems for control systems involving various quantization methods
[5, 8, 11, 21, 29]. In [5], a quantizer taking value in a finite set is defined and then
quantized feedback stabilization for linear systems is considered. The problem of
stabilizing an unstable linear system by means of quantized state feedback, where
the quantizer takes value in a countable set, is addressed in [8]. It should be noted
that the approach in [5] relies on the possibility of making discrete on line adjust-
ments of quantizer parameters which was extended in [21] for more general nonlin-
ear systems with general types of quantizers involving the states of the system, the
measured outputs, and the control inputs. In [11], study of quantized and delayed
state-feedback control systems under constant bounds on the quantization error and
the time-varying delay was reported. Based on [20], stabilization of discrete-time
LTT systems with quantized measurement outputs is reported in [29]. Further re-
lated results are reported in [33, 34].

On another research front, decentralized stability and feedback stabilization of
interconnected systems have been the topic of recurring interests and recent relevant
results have been reported in [2, 24-28, 31].

A block-diagram representation of the subsystem model is depicted in Fig. 5.11.

In this regard, an LMI-based decentralized static output-feedback controller
(when the switch in Fig. 5.1 is closed) is designed at the subsystem level using
only local variables to render the overall closed-loop system is delay-dependent
asymptotically stable with guaranteed y-level and this results provides an important
contribution for interconnected discrete systems [2]. When the local output mea-
surements are quantized before passing to the controller (corresponding to open-
ing the switch in Fig. 5.1), we consider the local channel quantizer in a gener-
alized form with a zoom parameter that can be adjusted on-line. We develop a
local output-dependent procedure for updating the quantizer parameters to retain
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Fig. 5.11 A subsystem Input u(t) Output y(t)
quantized model with System
quantizer *L
Quantizer
[ev]
Delay

Controller

the delay-dependent asymptotic stability and guaranteed performance of the closed-
loop quantized system. Several special cases of interest are derived and are shown
to provide improved results over the existing literature.

5.3.2 Problem Description

We consider a class of linear systems S structurally composed of ng coupled sub-
systems S; and the model of the jth subsystem is described by the state-space rep-
resentation:

xjt(k+ 1) =Ajxj(k)+Djxj(k—djk))+ Bjujk)+cjlk)+ I'jw;k), (5.82)
zjk) =Gjxjk)+ Ljxj(k—djk))+Pjw;k),
vj(k)=Cjxjk)+ Ejxjk —dj(k)) +¥;w;k),
where for j € {1,...,n}, x; (k) € R" is the state vector, u j (k) € "/ is the control
input, y; (k) € 0P/ is the control output, w; (k) € R/ is the disturbance input which
belongs to £5[0, 00), z; (k) € )9/ is the performance output and c; (k) € i/ is the
coupling vector. The matrices A; € W' >*", B; € W>X™i, D; e RIX", @ e
ML>X4i, @y e WPiXdi, Ty e W, L e R, G e RIXM, Cje WPIXM,
E; € ®Pi*"i are real and constants. The initial condition «; € £L2[—g;,0], j €
{1,...,ns}. In the sequel, we treat ¢ (k) as a piecewise-continuous vector function
in its arguments and satisfies the quadratic inequality

ik, . ek, )
< ¢>jx;(k)M;-ijj (k) + ¢jx;- (k - dj (k))N;Nij (k - dj (k)), (5.84)

(5.83)

where ¢; > 0, ¥; > 0 are adjustable bounding parameters and M; € W"/>"/, N; €
N> are constant matrices. The factors d;(k), j € {1, ..., n} are unknown time-
delay factors satisfying

0<d; <djk) < dj, (5.85)
where the bounds d , d; are known constants in order to guarantee smooth growth

of the state trajectories. Note in (5.82) and (5.84) that the delay within each subsys-
tem (local delay) and among the subsystems (coupling delay) are emphasized.
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Assumption 5.1 For all 8 € [—df, 0], there exists a scalar «; > 0 such that

llxj(k —dj (k)N < ejllxj K. (5.86)

It should be emphasized [23] that (5.86) is not restrictive since we treat «; as an
adjustable parameter at the disposal of the designer who will have the freedom to
change it to produce satisfactory system performance.

The class of systems described by (5.82)—(5.83) subject to delay-pattern (5.85) is
frequently encountered in modeling several physical systems and engineering appli-
cations including large space structures, multi-machine power systems, cold mills,
transportation systems, water pollution management, to name a few [25, 27, 28, 30].

5.3.3 Local Quantizers

In the sequel, we adopt the definition of a local (subsystem) quantizer with general
form as introduced in [21]. Let f; e R, j =1,..., ny be the variable being quan-
tized. A local quantizer is defined as a piecewise constant function Q; : R* — Dj,
where D is a finite subset of )i*. This leads to a partition of Ji* into a finite number
of quantization regions of the form {f; € %* : Q(f;) =d;, d; € D;}. These quan-
tization regions are not assumed to have any particular shape. We assume that there
exist positive real numbers M; and A; such that the following conditions hold:

1. If|fj|§|\/|j thelej(fj)—fj|§Aj. (5.87)
2. If|fj|>M; then|Q;(f)|>M;—A;. (5.88)

We note that condition (5.87) provides a bound on the quantization error when the
quantizer does not saturate. Condition (5.88) gives a way to detect the possibility
of saturation. In the sequel, M; and A; will be referred to as the range of Q; and
the quantization error, respectively. Henceforth, we assume that Q(x) = 0 for x
in some neighborhood of the origin. The foregoing requirements are met by the
quantizer with rectangular quantization regions [5, 19].

In the control strategy to be developed below, we will use local quantized mea-
surements of the form

Ou,; (fj)=1j Q1<£> (5.89)
M

where (1 ; > 0 is an adjustable subsystem parameter.

Remark 5.9 Observe that, at the subsystem level, the extreme case p; = 0 is re-
garded as setting the output of the local quantizer as zero. This local quantizer has
the range M; 1 ; and the quantization error A ;. Thus, we can view w; as a local
zoom variable: increasing p ; corresponds to zooming out and essentially generating
a new local quantizer with larger range and larger quantization error, whilst decreas-
ing 1 ; implies zooming in and obtaining a local quantizer with smaller range and
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smaller quantization error. We will update w; later on depending on the subsystem
state (or the subsystem output). In some sense, it can regarded as additional state of
the resultant closed-loop subsystem.

Next, we examine the output-feedback control design.

5.3.4 Static Output-Feedback Design

In this section, we develop new criteria for LMI-based characterization of decen-
tralized stabilization by local static output-feedback. Initially, without quantization,
we let the local decentralized static output-feedback has the form

wjk)=Kojyjk), j=1,....n, (5.90)

where the gain matrices K,;, j = 1,..., N have been selected to guarantee the
closed-loop system, composed of (5.82)—(5.84) and (5.90), given by

xjlk+ 1) =A;x;jk) +Djxjk —d;k)) +cjk) + 2;w; k), 5.91)
zj(k) =Gjxj(k) + Ljxj(k —d;j(k)) + ®jw;(k),
yik)=Cjxjk)+ Ejxjk —d;jk)) +¥;jw;k),

A;j=A;+BjK,iC;, Dj=D;+ B;K,Ej,
2; =TI+ B;K,;¥;

is asymptotically stable with disturbance attenuation level y;. To facilitate fur-
ther development, we consider the case where the set of output matrices C;, j =

(5.92)

(5.93)

1,...,n, are assumed to be of full row rank and ct represents the right-inverse.
Introduce the local Lyapunov-Krasovskii functional (LKF):
k—1
Vi) =xi(0Pix;) + Y xhm)Qjxj(m)
m=k—d; (k)
I=dj k-
+ > > xmQ;xjim), (5.94)

s=2—d;f m=k+s—1

where 0 < P;,0 < Q; are weighting matrices of appropriate dimensions.
The following theorem establishes the main design result, without quantization,
for subsystem S ;.

Theorem 5.7 Given the bounds dj_ >0, df >0, j=1,...,ng, then the family of
subsystems {S j} where S; is described by (5.82)—~(5.83) is delay-dependent asymp-
totically stabilizable by decentralized static output-feedback controller u(t) =
K,jyj(t) with La-performance bound y; if there exist matrices

.)C'j >0, gj, ch7 HSjv ij
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and scalars nj > 0, uj > 0, y; > 0 satisfying the following LMIs for j =1, ..., ny

_[m; My
m=\", [hj](<07 (5.95)
[, 0 0 0
o Il 0 0
Hlj - ° ° —Ij 0 ’
| e ° ° —yjzll
[XjGj Mg XM 0 ]
oo | AL Ty 0 XN!
A I R R 0|
| ®; M, 0 0 (5.96)
(-1, 0 0 0
B -X; 0 0
H3J - ° —njlj 0 ’
L i . —mjlj

H(,j:—Xj—Fd;(HC‘, HajZXjAlj-i—ngj,
Moy = X;D} + 1B}, My =X;Ij +11,; B,

Moreover, the local gain matrix is given by K,; = G; X/_IC;.

Proof Let d;.k = df - d; + 1. A straightforward computation gives the first-
difference of AV (k) = V;(k + 1) — V; (k) along the solutions of (5.82) as:

AVj(k) = [.ijj'(k) + Djx.,'(k — dj(k)) + Cj(k) + .ij‘/(k)]l
X Pj[ijj'(k) +Djx]'(k —dj(k)) “er(k) +.ijj(k)]

—xj-(k)ijj(k) —I—x;-(k)ijj(k) —xg(k —dj(k)Qjx;k —d;jk))

k-1 k—1
Y Hmoum = Y X mQxim)
m=k+1-d;k+1) m=k+1—d; (k)

k—d?
+(d;r_dj_)x;'(k)gjxj(k)— Z x5 (m)Qjxj(m). (5.97)
m=k+1-d

In order to cast AV (k) into a quadratic form, we recall
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k—1
> X m)Qjxj(m)

m=k+1—d; (k+1)

k—1 k=d;
= Z x;(m)ijj(m)—l— Z x;'(m)ijj(m)
m=k+1*dj7 m:k—i—l—dj (k+l)
k—1 k=d;
< Y xAmQxm+ Y xmQx;m).  (5.98)
m=k+1—d,; (k) m=k+1-df

Then using (5.98) into (5.97) and manipulating, we reach
AVj(k) <[Ajxjk)+Djxjk —djk)) +cjk) + 2jw; k)]
x PilAjxjk) + Djxjlk —d;(k)) +c;jk) + 2;w; (k)]
+ x; (k)[d;’f Q; —Pjlxjk) — x; (k—dj(k)Qjx;(k —djk)). (5.99)
In terms of the vectors
& (k) =[x (k) x' (k — d; () (k) w' (O

we combine (5.97)—(5.99) with algebraic manipulations using inequalities (5.84)
and Schur complements [4] to arrive at:

AV =3 €058 k),

j=1

Eyj 0 0 O A;PJ'

° —I1;j 0 0 D’/,”Pj
Ej=| e e I, 0 P |, (5.100)

° . ° 0 .Qt-'Pj

J

° . ° o P

Bqj=—Pj+d;jQ; +¢;M;M;,

Eej = Qj — W/N;NJ
It is known that the sufficient condition of subsystem internal stability is AV (k) <0
when w; (k) = 0 which corresponds to deleting the fourth column and row in &;.
This implies that Z; < 0 under same requirements.
Next, consider the local performance measure
o0
Ji =Y (202 (k) — y2o, ()w; (k).
k=0
For any w; (k) € £2(0, 00) # 0 and zero initial condition x j, = 0, (hence V;(0) = 0),
we have

Ji <Y [0z (k) — y?o (o) + AVi()|son],  (5.101)
k=0
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where AV (k)|5.91) defines the Lyapunov difference along the solutions of system
(5.91). On considering (5.93), (5.100) and (5.101), it can easily shown by algebraic
manipulations that
(k)25 (k) — Y20, (Kwj (k) + AV;B)]ss) = X1 Ej (0, (5.102)
Eaj 0 0 0 G; A’]-P,'

° —&¢j 0 0 H; D;Pj
= ° ° =1 0 0 'Pj
;= 5.103
J . ° . —yjzlj D; .Q;-Pj ( )
° ° ° ° —1; 0
° ° ° ° ° —73]-

for some vector y (k). Itis readily seen that

k)2 (k) — y? o (k)w;(k) + AV (0)|i582) < 0

for arbitrary j € [0, o), which implies for any w; (k) € £2(0, 00) # 0 that J; < 0.
Applying the congruent transformation

. -1
T:dlag[Xj,Xj,Ij,Ij,Ij,Xj], Xj:'Pj
to (5.103) with Schur complements and using the change of variables
Gj=KojC;Yj, Mej=XjQ;Xj, Iy; =X E;K,,
My =X WKy nj=d;' puj=y;
we readily obtain LMI (5.95) with (5.96) and hence the proof is completed. Il
Remark 5.10 It should be emphasized that the LMI variables I1.;, I1y;, IT,; are

independent since the matrices E;, ¥; might be singular and thus a unique value
of K,; will be produced.

Remark 5.11 We note that the case of decentralized state feedback control u;(¢) =
Kjxj(t), j =1,...,ng can be readily obtained from Theorem 5.7 by setting
Cj=1;, E; =0, ¥; =0 so that the resulting closed-loop system is asymptotically
stable with guaranteed H, performance.

5.3.5 Quantized Output-Feedback Design

Focusing on the availability of quantized local output information, we modify the
static output feedback (5.90) using the quantized information of y; as

(k
uj(k)ZM,K,,.,QjCL(')), i=1,....n,. (5.104)
J

For any fixed scalar u ; > 0, the closed-loop system, composed of (5.82), (5.84) and
(5.104) is given by
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xj(k+ 1)=ijj(k)+Djxj(k—dj(k))+cj(k)

+2w;k) + Hj(uj, y)), (5.105)
2j(k) =G xj(k) + Ljx;(k —d;k)) + ®jw;(k), (5.106)
(k (k
Hj(upyj):uijKuj(ij’( ) _ y’—”) (5.107)
I I

where A;, D;, £2; are given by (5.93). Next, we move to examine the stability
and desired disturbance attenuation level of the closed-loop system (5.105) in the
presence of the quantization error. We employ the LKF (5.94) and consider that the
gains K,; are obtained from application of Theorem 5.7. The following theorem
establishes the main design result for subsystem S;.

Theorem 5.8 Given the bounds d; >0, d;-“ >0, j=1,...,ns. If the local quan-
tizer M; is selected large enough with respect to A j while adjusting the local scalar
aj so as to satisfy the inequality

I(Pj+1;)B;Kojll
M > A, jT4j .J 0j
Am(Aj)
Then, the family of subsystems {S;} where S; is described by (5.105)—(5.107) is

delay-dependent asymptotically stabilizable with L>-performance bound y; by de-
centralized quantized output-feedback controller (5.104).

IC; +a,Ejl. (5.108)

Proof Since
yj k) _ Cixjk) + Ejxj(k —djk))
Hj Hj
is quantized before being passed to the feedback channel, we obtain by using the
properties of local quantizer (5.87) and (5.88) that whenever |y; (k)| < M;u;, the

inequality
(k (k
y’”-Q,(”“)‘gA, (5.109)
Hj Hj

holds true. Extending on Theorem 5.7, it follows by considering (5.105) and (5.106)
that

Jj < Z{X;(k)é‘,-x,-(k) —xj(k)Ajx (k)
k=0

+2H](uj, yp[(PjA; + G xjk) + Pjcjk)
+(PDj + Lj)xjk —d;j(k) + (Pj$2; + @ pw; (k)]
o+ H Gy, 3) P+ 1) Hj )

<D X0 Ejxj k) — xi (k) Ajxj (k) + (k) Ejmj ()}, (5.110)
k=0
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where
Pi+1; PiAj+G; P,D;+L; P; PR+
° 0 0 0 0
Ei=| o 0 0 0 0 :
° 0 0 0 0 (5.111)
. 0 0 0 0

) _ tot ot N At
nj(k)—[H-,xj,xj(k dj)acj’wj] ,
where & j corresponds to z j except that &,; — Z,; + A; with A; > 0 being an

arbitrary matrix. In view of (5.111), we can express (5.110) for some 8; > 1 in the
form

X,(k)u/X,(k) X (k) Ajx; (k)

Jﬁg

ﬂ Hi(uj, y)(Pj+ 1) Hj(uj, yj)}
52:mwbmﬂm x50 Ajx j (k)

=0

+ B7u; ATIK L BY (P + 1)) B, Kojll}

0j=J

ad ~ I (A
siﬂﬁwamw— ;”%m
k=0

K'.B'.(P; +1))B; Koj |\’
(ﬂ/ \/” oj ]( J(A-J)) J ]”) :H (5.112)
Am (A

Since the output measurements information are used, we invoke Assumption 5.1 to
write

[yil=ICjx;jk) + Ejxjk —djk)|| < ICj + o Ejll|x;]
and used this inequality into (5.112) to arrive at

o
~ A (A7)
< "OVE iy (k) — — M 12
_24@()mﬂ) MQ+%%W@M

IK2, B (P + 1)B Ko\’
— | BiAjuilCj + o Ej . (5.113)

Am(Aj)

By virtue of (5.113), we can always find a scalar ¢; € (0, 1) such that

IK5; B (Pj+1))BjKojll 1

)‘m(AJ) w/l—&‘j'

Mj > B;A;IC; +ajEj||\/ (5.114)

This is equivalent to
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1K BS(Pj + 1j)Bj Kol

1
—,B~A~||C‘+a~E~||\/
\/1——81' J= J J=] )Lm(Aj)

Therefore, for any nonzero |y;|, we can find a scalar u; > 0 such that

i <M. (5.115)

IK:; BY(Pj + 1;) B Kol

1
—ﬂ~A‘|IC‘+a-E-|I\/ = Iyl <M.
\/1_7% J=T J J=] )Lm(Aj) J J J]
(5.116)
At the extreme case |y;| = 0, we set u; = 0 so that the output of the local quantizer

is considered zero and therefore (5.116) holds true. This, in turn, implies that we
can always select 1 so that (5.116) is satisfied, (5.113) holds and hence

ad 2
= 1 il
5= W E () — e (A-)—}. 5.117)
J g{ ] JAT 2 Jm J ”Cj +(¥]Cdj||2
The rest of the proof follows from Theorem 5.7. g

Remark 5.12 For the case of decentralized state feedback control u () = K jx (1),
j=1,...,ng, then Theorem 5.8 specializes to the following corollary:

Corollary 5.5 Given the bounds dj_ >0, d;' >0, j=1,...,n. If the local quan-

tizer M is selected large enough with respect to Aj while adjusting the local

scalar aj so as to satisfy the inequality

M, > A, I1(P; +Ij)BjKoj||.
‘ ' Am(Aj)

Then, the family of subsystems {S j} where S is described by (5.82)—(5.84) is delay-

dependent asymptotically stabilizable with L;-performance bound y; by decentral-
ized quantized state-feedback controller

(5.118)

10
u,-(t):quij<x:L(_)>, j=1,...n,.

J

Remark 5.13 By the mean-value theorem and following [15], it can be shown that
AP lixjlI* < Vi <9k 1%, where
0= [)»M('Pj) +dl7r)»M(Qj)].

Based on the results of [21], we define the local ellipsoids

Boj (1) = {xj : X Pjxj < dn (PiMG 13,

Byj(uj) = {xj : xiPix; < Am(P; D3 AT (1 +0)) 15},
_IPj+1j)B; Kl

Am (AJ)

In the “zooming-in” stage, it can be inferred that By;(11;) C B,j(t;) are invariant
regions for system (5.107) given o; > 0. Moreover, all solutions of (5.107) that start
in By (1) enter Bg; (it ;) in finite time.

D;: ICj + o Ejl.
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Remark 5.14 1t is crucial to recognize that the local scalar «; plays a basic role in
steering the trajectories of (5.107) toward the final ellipsoid By (4 ;). This is a dis-
tinct feature of quantized time-delay systems. It should be noted that the parameters
Bj, j =1,...,ng are introduced in (5.112) to reach the desired estimates and to
handle the interdependence between H; and (x;,x;(k — d;), cj, w;). In addition,
the parameters B;, j =1, ..., ny can be adjusted to help satisfying (5.108).

Remark 5.15 We note in Theorem 5.8 and Corollary 5.5 there are several degrees of
freedom to achieve the desired stability with guaranteed performance, particularly
since both the off-line gain computation and the on-line quantized feedback are
decentralized. This is a salient feature of the developed results of this chapter, which
is not shared by several published results [2, 28, 30, 31].

5.3.6 Special Cases

In the sequel, some special cases are derived to emphasize the generality of our
approach. First, we consider the single nominally-linear time-delay system

x(k+ 1) = Ax(k) + Dx(k — d(k)) + Bu(k) + T'w(k), (5.119)
2(k) = Gxj(k) + Lx(k — d(k)) + dw(k),

(5.120)
y(k) = Cxj(k) + Ex(k — d(k)) + Pw(k).

The factor d(k) is an unknown time-delay satisfying 0 < d~ < d(k) < d* where
the bounds d~, d* are known constants in order to guarantee smooth growth of the
state trajectories. It will be assumed that for all & € [—d™, 0], there exists a scalar
o > 0 such that ||x(k — d(k))|| < «|lx(k)||. The following corollary establishes the
corresponding design result:

Corollary 5.6 Given the bounds d~ > 0, d+ > 0. Suppose that there exist matrices
X >0,G, I, I, ITy, and scalar y; > 0 satisfying the following LMI

y| % Ez}<o, (5.121)
o I3
[XG XA'+GB!
XL XD'+ ;B -1 o0
2= X ’ 23—[. —X}’
& m,
- (5.122)
—X+d*l, 0 0 0
° I, 0 0
2= ° ° —1 0
L ° ° —)/21
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with the gain matrix K, = GX~'CT. Moreover, if the quantizer M is selected large
enough with respect to A so as to satisfy the inequality
I(X "+ DBK,||

M> A IC+aE|
Am (A)

then system (5.119)—(5.120) is delay-dependent asymptotically stabilizable by quan-
tized output-feedback controller

k
u(k) =MK0Q(L)>
"

with Lo-performance bound ;.

Next, we consider a class of nominally-linear systems S structurally composed
of ng coupled subsystems S; and the model of the jth subsystem is described by
the state-space representation:

xjtk+1)=Ajxjk)+ Bju;k) +c;jk) + I'jw;k), (5.123)
2j(k)=Gjxjk) + Pjw;(k), (5.124)
vjk)=Cjxjk) +¥jw;k).

Similarly, we treat c¢; (k) as a piecewise-continuous vector function in its arguments
and satisfies the quadratic inequality

ek, )ejk, ) < ¢ixt (MM x; (k). (5.125)

where ¢; > 0 are adjustable bounding parameters and M; € )"/ *"/ are constant
matrices. The factors d;(k), j € {1, ..., ns} are unknown time-delay factors satisfy-
ing (5.85). The following corollary stands out:

Corollary 5.7 Given the bounds d; >0, d;.r >0, j=1,...,ns. If there exist ma-
trices X; > 0, G, I, Ij, ij,'ij and scalars n; > 0, y; > 0 satisfying the
following LMlIs for j =1,...,ng

5 [ I
1, _[ . 173,} <0, (5.126)
[1,, 0 0 0
= . —1I1; 0 0
= ° ° —1I; 0 ’
° ° ° —ijIj
XiG; My XM,
o~ . . Rt
iy =| ki Ty 0 (5.127)
0 X; 0
| @, M 0
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—1; 0 0
I3 = o A 0 ,
° ) —n;l;j

Moy ==X +diMl. [j=X;A" +G;B)

with the local gain matrix K,j = gj Xj_lCJT.. Moreover, if the quantizer M; is se-
lected large enough with respect to A so as to satisfy the inequality
X"+ DB Kol
m{Lj
then the family of subsystems {S;} where S; is described by (5.123)—(5.124)

is asymptotically stabilizable by decentralized static output-feedback controller
u;j(t) = Kojyj(t) with L-performance bound y;.

ICl

Finally, we consider the single nominally-linear system
x(k+1) = Ax(k) + Bu(k) + I'w(k), (5.128)
z(k) = Gx (k) + dw(k),
(5.129)
y(k) = Cx(k) + Y w(k).
The following corollary establishes the corresponding design result:

Corollary 5.8 Suppose that there exist matrices X >0, G, I, I, IT,, and scalar
y > 0 satisfying the following LMI

5_ [21 %} -0 (5.130)
o 33
[XG XA'+GB!
s_10 I, B’ = _[—1 0 }
271 o X BT e —a|
K ,
- (5.131)
—X+d*l. 0 0 0
= ° —I. 0 0
2= ° ° -1 0
° ° ° —)/2]

with the gain matrix K, = GX~'CT. Moreover, if the quantizer M is selected large
enough with respect to A while adjusting the scalar o so as to satisfy the inequality
(X' + )BK,|

M> A ICl
Am(A)

then system (5.128)—(5.129) is asymptotically stabilizable by quantized output-
feedback controller
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k
u(k) =MK0Q(M>
nw

with Lo-performance bound ;.

Remark 5.16 1t is significant to note that the results of Corollaries 5.6 through 5.8
establish new designs for quantized output-feedback control. It provides efficient
LMI-based results in comparison with [5, 11, 21, 29].

5.3.7 Simulation Example 5.3

For the purpose of illustration, we consider an interconnected system composed of
two subsystems having uniform quantizers with the following data:

08 0 0.1 0
A41=10.05 0.9] Dl_[—o.z —0.1]’
T 1 ,_Jo1
Bi= _0.5]’ Gl_[o.s]’ Ll_[o.z]’

E 0.1 0.01:| R = |:—0.02 —0.01]’

| -0.1 0.02 —-0.01 —-0.02
1 0 1 0
Ml=_0 1i|, N1=|:0 1],
09 0.1 0 1
Ay=| 0 05 —01]|, G,=]02],
_01 0 0.4 0.7
0.5 —-0.2 0.04 02
B,=|15|, Dy=|-04 -0.15 0 |,
_04 0.1 0 0.3
_—002 0.01 0 1 0 O
E2= 0.1 0 , N2= 0 1 0 B
0 2 0 0.05 0 0 1

S
|
oo~

0)
0
1
0
L, = :|

It is found that the fea51ble solution of LMI (5.95) is attained at
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-15 ‘ ‘ ‘ ‘ ‘ -15 ‘ ‘ ‘ ‘ ‘
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Fig. 5.12 Closed-loop response: subsystem 1 (left), subsystem 2 (right)

Subsystem Closed loop Subsystem, Closed Loop
10 1

o

— X1
—X2
——X3

o N MO ©

States
States

51 J )

—10} — -6
-8

50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time

Fig. 5.13 Closed-loop response of decoupled subsystem 1 (left), decoupled subsystem 2 (right)

di =10, df =30, dy =10, d; =30,
K =—0.4023, K>=—0.0916.

Typical simulation results are shown in Fig. 5.12 for the closed-loop response of
both subsystems. Next, by dropping the time-delay factors and considering LMI
(5.126) the feasible solution is found to yield the gains

K1 =-0.6653, K;=-1.0915.

The simulation of the closed-loop response of both subsystems are depicted in

Fig. 5.13.
On implementing the LMI (5.121) for subsystem 2, the feasible solution is given

by
d- =20, df =60, K,=-1.3391.

Finally, the feasible solution of LMI (5.130) for subsystem 1 without delay terms is
K1 = —0.3039 and the corresponding closed-loop response is plotted in Fig. 5.14.

From the ensuing results, it is quite evident that the quantized feedback control

system is asymptotically stable for the class of quantizers satisfying the quadratic
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Subsystemy Closed loop Subsystem, Closed Loop

— X4
—xo|]
—X3}4

States
States

A
/ J\L\ M .
ks S —

50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time

Fig. 5.14 Closed-loop response of single system: time-delay (left), delay-free (right)

inequality. This is equally true for interconnected time-delay and delay-free systems,
single time-delay systems and single systems. The crucial point to record is that the
type of quantizer so long as it is satisfies its structure complies with a quadratic
inequality. We have observed that the presence of bounding inequalities (5.84) and
(5.89) helps in curbing the magnitude of the feedback gains.

5.3.8 Simulation Example 5.4

For the purpose of illustration, we consider an interconnected system composed of
two subsystems having uniform quantizers with the following data:

[0.75 —0.20 0.21 0.14
A= 01 0.67] Dl_[o.z 0.13}’

_[oz2 ,_[04 . _[o1
Bl__0.4]’ Gl_[l.o}’ Ll_[o.z]

[ 0.3 0 0.1 Fi— 02 -0.02 -0.1
| -0.1 =02 0.02])° = 1o1 0 02|’

10 1o
M=o 1] Nl:[o 1]

(083 0 022 ~1
Ay=|-01 056 —0.12|, G,=]|0.15],
| 023 —020 0.4 0.57
1 032 0.14 -0.1
By=|-05|, Dy=| 056 —02 03 |,

0.4 0.1 —-04 024
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x 109 Subsystem; Open Loop x 109 Subsystem, Open Loop

15 4
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0.5 "
8 g 1
T 0 ol
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_2 ; ; ; -5 ; ; :
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Time Time

Fig. 5.15 Open-loop response: subsystem 1 (left), subsystem 2 (right)

[[—0.42 0.1 1 00
E, = 0 01|, N=]|0 1 0],
_—0.2 0.5 0 0 1
1 0 0 0.43 0.02
M,=10 1 0|, F=]| 01 0.0 |,
_0 0 1 —0.1 0.01
0.1
L,=1(02].
| 0.1

As shown in Fig. 5.15, both subsystems are unstable. It is found that the feasible
solution of LMI (5.95) is attained at

dy =20, dif =30, dy =50, di =60,
Ki=-1.6627, K,=0.3214.

The closed-loop response is depicted in Fig. 5.16.

5.4 Decentralized Quantized Control II: Discrete Systems

In conventional feedback control theory, most of data and/or signals are processed in
a direct manner. With the emerging control systems including networks, all signals
are transferred through network and this eventually gives rise to packet dropouts or
data transfer rate limitations [17]. On the other hand, signal processing and signal
quantization always exist in computer-based control systems [22] and therefore re-
cent research studies have been reported on the analysis and design problems for
control systems involving various quantization methods, see [5, 8, 11, 21, 29] and
the references cited therein. In [5], a quantizer taking value in a finite set is defined
and then quantized feedback stabilization for linear systems is considered. In [8],
the problem of stabilizing an unstable linear system by means of quantized state
feedback, where the quantizer takes value in a countable set is addressed. It should
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Subsystem; Closed Loop Subsystem, Closed Loop
15
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Fig. 5.16 Closed-loop response of decoupled subsystem 1 (left), decoupled subsystem 2 (right)

be noted that the approach in [5] relies on the possibility of making discrete on
line adjustments of quantizer parameters which was extended in [21] for more gen-
eral nonlinear systems with general types of quantizers involving the states of the
system, the measured outputs, and the control inputs. Recently in [11], a study of
quantized and delayed state-feedback control systems under constant bounds on the
quantization error and the time-varying delay was reported. Based on [21], stabiliza-
tion of discrete-time LTI systems with quantized measurement outputs is reported
in [29]. Further related results are reported in [33, 34]. On another research front,
decentralized stability and feedback stabilization of interconnected systems have
been the topic of recurring interests and recent relevant results have been reported
in [2, 24-28, 31].

5.4.1 Introduction

In this section, we investigate a generalized approach to quantized feedback con-
trol in linear discrete-time system. We cast the problem under consideration as the
problem of designing a decentralized H, feedback control for a class of linear
interconnected discrete-time systems with quantized signals in the subsystem con-
trol channel. The system has unknown-but-bounded couplings and interval time-
delays. Within our formulation, we take the quantizer of arbitrary form that satisfies
a quadratic inequality constraint in the state and the delayed state. We illustrated
the generality of this quantizer structure. Based on quantized output measurements,
a decentralized quantized output-feedback controller is designed at the subsystem
level to render the overall closed-loop system delay-dependent asymptotically sta-
ble with guaranteed y-level. To further illustrate the generality of the developed
approach, it is established that several classes of quantized feedback control sys-
tems of interest are readily derived as special cases. These include the classes of
interconnected time-delay and delay-free systems, single time-delay systems and
single systems.
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5.4.2 Problem Statement

We consider a class of nominally-linear time-delay systems S structurally composed
of ng coupled subsystems $; and the model of the jth subsystem is described by
the state-space representation:

xjtk+1)=Ajxj(k)+Djxjlk —djk)) + Bjujk)+cjk)+ I'jwjk), (5.132)
2j(k) =Gjxjk) + Ljxj(k —djk)) +Pjw;k),
yjk)=Cjx;jk)+ Hjxj(k —d;k)),
where for j € {1,...,ns}, x;(k) € "/ is the state vector, u j (k) € "/ is the control
input, y; (k) € NP is the control output, w; (k) € N%/ is the disturbance input which
belongs to £;[0, 00), zj(k) € )%/ is the performance output and c;(k) € R/ is
the coupling vector. The matrices A; € R/ "/, B; e Wi>™i, D; e R, @ e
N9>9, Ty e W40, Ly e R, Gy e R Cy e RPIXN D Ej € RPN are
real and constants. The initial condition «; € £5[—0;,0], j € {1, ..., ns}. In the se-

quel, we treat ¢ (k) as a piecewise-continuous vector function in its arguments and
satisfies the quadratic inequality

¢k, )ejlk, )
< @ix (MM jxj (k) + ' (k — dj (k) NN jx; (k — dj(k)),  (5.134)

(5.133)

where ¢; > 0, ¥; > 0 are adjustable bounding parameters and M; € RW"/>"/, N; €
N> are constant matrices. The factors d (k), j € {1, ..., n,} are unknown time-
delay factors satisfying

0<d; <d;j(k) <d, (5.135)

where the bounds dj_, d are known constants in order to guarantee smooth growth
of the state trajectories. Note in (5.132) and (5.134) that the subsystem delay with
local and coupling patterns are emphasized. The class of systems described by
(5.132)—(5.133) subject to delay-pattern (5.135) is frequently encountered in mod-
eling several physical systems and engineering applications including large space
structures, multi-machine power systems, cold mills, transportation systems, water
pollution management, to name a few [25, 30].

5.4.3 A Class of Local Quantizers

In the sequel, we treat a quantizer as a device in the control loop that converts
a real-valued signal into a piecewise constant one. We adopt the definition of a
local (subsystem) quantizer with general form as introduced in [21]. Let f; € %,
j=1,...,ng be the variable being quantized. A local quantizer is defined as a
piecewise constant function Q; : W — D;, where D; is a finite subset of R, This
leads to a partition of N* into a finite number of quantization regions of the form
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Fig. 5.17 A description of ci(.) *
quantized subsystem model Input uj(.) Output y;(.)
fy Sub-system >
J
y Quantizer
L]
Delay
Controller

{fj €W :0(fj) =d;, dj € D;j}. These quantization regions are not assumed to
have any particular shape.

In the quantized control strategy to be developed below, we will use the local
quantization error A;(y) = Q;(y;) — y; (see Fig. 5.17) based on output measure-
ments such that the following quadratic bounding relation is satisfied:

Atj (A;() = Oljx;- (k)E; Ejx;(k)
+ﬂjx5.(k—dj(k))F/l.ijj(k—dj(k)), (5.136)
where «; > 0, 8; > 0 are adjustable subsystem parameters and the matrices E, F;
are arbitrary but constants.

It is crucial to recognize that the quadratic bounding relation (5.136) is indepen-
dent of the structure of the quantizer employed. In fact, it is satisfied by wide class
of practically-used quantizers, see Remark 5.8 for further details.

In what follows we seek to design quantized feedback controllers which guaran-

tee the asymptotic stability of the family of subsystems S; subject to the structural
constraints (5.134)—(5.136).

5.4.4 Quantized Feedback Design

In this section, we develop new criteria for LMI-based characterization of decen-
tralized stabilization by local quantized feedback of the form

ui(k)=KoiQi(yj), Jj=1,...,n, (5.137)
where the gain matrices K,j, j = 1,..., N will be selected to guarantee that the
closed-loop system, composed of (5.132)—(5.134), (5.136) and (5.137), given by

xjk+1)=Ajxjk) +Djx;jk —djk)) +cjk) + BjKoj Aj(yj) + Fjw;(k),
Aj=A;+B;K,;C;, Dj=D;+ B;K,jHj, (5.138)
2j(k)=Gjxjk)+ Ljxjk —dj(k)) + @;w;k) (5.139)

is asymptotically stable with disturbance attenuation level y;. To facilitate fur-
ther development, we consider the case where the set of output matrices C;, j =
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1, ..., ny are assumed to be of full row rank and C; represents the right-inverse. Let
d}’.‘ = d;.’ - dj_ + 1. Introduce the local Lyapunov-Krasovskii functional (LKF):

k—1
Vi) =x (Pixjk) + Y xhm)Rjxj(m)
m=k—d; (k)
I=d; g
+ Y ) xR xm), (5.140)

s=2—d m=k+s—1

where 0 < P;, 0 < Q; are weighting matrices of appropriate dimensions.
The following theorem establishes the main design result for subsystem S ;.

Theorem 5.9 Given the bounds dj_ > 0, dj'.|r >0, j=1,...,ng, then the family
of subsystems {S;} where S; is described by (5.132)—(5.133) is delay-dependent
asymptotically stabilizable by decentralized quantized feedback controller u j(k) =
K,; O (y;) with Lo-performance bound y; if there exist positive-definite matrices
Xj, Gj, Il.j, Il and scalars n; >0, uj >0, o; >0, v; >0, y; > 0 satisfying
the following LMlIs for j =1, ..., ng

_[m;
I; = . H3j] <0, (5.141)
_Hoj 0 0 0 0
o Il 0 0 0
I = ° ° —1; 0 0 ,
° ° ° —1I; 0
| e ° ° ° —)/jzlj
_X]G; I,; XjM’ 0 X]Ej. 0
X]Ls. I,; 0 XjN;- 0 XjF;
I = 0 X 0 0 0 0 )
0 I, 0 0 0 0
L (b; 0 0 0 0 0 (5.142)
_—Ij IT,; 0 0 0 0
. —X; 0 0 0 0
L L] o ndj 0 0 0
M = ° ° ° —pjl; 0 0 ’
° ° ° ° —ojl; 0
| e ° ° ° ° —v;l;

My = —Xj +djIej, oy =X;A;+G;B;, [ =G;Bj,
Hejz.XjD;--l—HsjB;-, ij:XjF;'

Moreover, the local gain matrix is given by K,; =G X;lC;.
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Proof Recall that d}* = d;' - dj_ + 1. A straightforward computation gives the
first-difference of AV;(k) = V;(k + 1) — V; (k) along the solutions of (5.138) with
wj(k)=0as:
AVj(k) =[Ajxj(k) + Djxjk —d;(k) +cjk) + BjKoj Aj(y)]I'P;
X [ijj'(k) +Djxjk—djk))+cjk)+ BjKyjAj(y;)]
— x; (k)Pij (k) + x; (k)Rj)Cj (k) - x; (k - dj (k))'ijj' (k - dj (k))

k-1 k-1
+ > X mRijxjm)— Y xhm)R;x;(m)
m=k+1—d; (k+1) m=k+1—d; (k)
k—d
+(df —dDAORxK) — Y X mRxjm)  (5.143)
m=k+1-d

since

k—1
Z x; (m)Rjxj(m)

m=k+1—d; (k+1)

-1 k—d;
= Z x;- (m)Rjx;(m)+ Z x;- (m)Rjx;(m)
m=k+1—d; m=k+1—d; (k+1)

k=1 k—d;
< > XmRixim+ Y xmRjxjm).  (5.144)
m=k+1—d; (k) m=k+1-d}

Then using (5.144) into (5.143) and manipulating, we reach

AVj(k) < [.ij]'(k) +Djx]‘(k — dj(k)) + Cj(k) + BjKojAj(yj)]t’Pj
x [Ajxj(k) +Djxjk —djk)) +cjk) + BjKyjAj(yj)]
+ XS OIR ) — Pyl (k) — x'(k — d; ()R jxj (k — dj (k). (5.145)
In terms of the vectors
§j(k) =[X;~(k), x;(k_dj(k))» C;(k), A[j()’j)]t

we combine (5.143)—(5.145) with algebraic manipulations using inequalities (5.134)
and (5.136) along with Schur complements [4] to arrive at:
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AVj(k) = £;(k) & ;& (k),

Eyj 0 0 0 A;’Pj

° —1I1;j 0 0 'D;'Pj
Ej = ° ° —1; 0 'Pj s 5 146
° ° ° —1; KéjB;Pj G. )

° ° ° ° —P;

o

=-P; +d;ij +(]54/M;-Mj +Ol.,'E;-E.j,
o =Rj—V;NiN;j—B;FiFj.

@

It is known that the sufficient condition of subsystem internal stability is AV (k) <
0, hence AV (k) = Z'“ AV;(k) < 0 guaranteeing the internal stability of Sys-
tem S.
Next, consider the local performance measure
o
T =" (25 k)zj (k) — v, (K)w; (K)).

k=0
For any w; (k) € £2(0, 00) # 0 and zero initial condition x j, = 0 (hence V;(0) = 0),
we have

Jj= Z (Z (k)z; (k) — ;'(k)a)j (k) + AV (k)| 5.138) — Z AV;(k)|(5.138
k=0 k=0
Z (Z (k)z (k) — Vzw;- (K)w; k) + AVj(k)|5.138)) (5.147)
k=0

where AV (k)|(s.138) defines the Lyapunov difference along the solutions of system
(5.138). On considering (5.139), (5.146) and (5.147), it can easily shown by alge-
braic manipulations that

25 (k)zj (k) — J/za); () (k) + AV;(k)|5.138) = X} K)Ejx; k), (5.148)
Eaj 0 0 0 0 GZ- Alj'Pj
e -, 0 0 0 L' D;P;
. ° —1; 0 0 0 P
Ei=| e ° ° —1I; 0 0 K(t)jB;'Pj (5.149)
° ° ° —)/jzlj @;- F;Pj
° ° ° ° —1I; 0
| o ° ° ° ° —P;j

for some vector y (k). It is readily seen that
(k)2 (k) — y* o (k)wj (k) + AV (k) |s.13) < 0

for arbitrary j € [0, c0), which implies for any w; (k) € £2(0, 00) # 0 that J; <0
leading J = Z'l“: 1 Jj < 0 for the overall system S. On applying the congruent trans-
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formation
T =diag[ X, Xj, Xj, Xj, 1), 1, X1, X =P
to (5.149) with Schur complements and using the change of variables
Gj=KojXj, Iej=2x;Q;&j,
nj = ;1, Wj =1ﬁfl, oj =04f1, vj =ﬁ;]

we readily obtain LMI (5.141) with (5.142) and hence the proof is completed. [

5.4.5 Special Cases

In the sequel, some special cases are derived to emphasize the generality of our
approach. First, we consider the single nominally-linear time-delay system
x(k+1)=Ax(k) + Dx(k — d(k)) + Bu(k) + 'w(k), (5.150)
z(k) = Gxj(k) + Lx(k — d(k)) + dw(k),
y(k) = Cxj(k) + Ex(k — d(k)),
where 0 <d™ <d(k) <d'.Letd* =d* —d~ + 1. We will use local quantized

output measurements such that the following quadratic bounding relation is satis-
fied:

(5.151)

A'()AQ) <ax(k)E'Ex(k) + Bx'(k —d(k))F' Fx(k — d(k)),  (5.152)

where « > 0, 8 > 0 are adjustable subsystem parameters. The following corollary
establishes the corresponding design result:

Corollary 5.9 Given the bounds d= > 0, d* > 0, then system (5.150)—(5.151)
is delay-dependent asymptotically stabilizable by quantized feedback controller
u(t) = K,y(t) with Lo-performance bound y if there exist positive-definite matrices
X, G, T, Ty and scalars o > 0, v > 0, y > 0 satisfying the following LMI

[n 7
r=|, n] <0, (5.153)
T, 0 0 0
| e =Y. O 0
= ° ° —1 0 ’
| o ) o —yI
T XG* XA’+Q§-B} XE! 0
v | XL XD 4TIBT 0 XF
2=l o G'B! 0 0 | (5.154)
| @' 0 0 0
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—1 Xrt 0 0

° -X 0 0
3= ° ° —ol 0 ’

° ° ° —vl

Y,=—-X+d*7,.
Moreover, the local gain matrix is given by K, = GX~1CT.
Next, we consider a class of nominally-linear systems S structurally composed

of ny coupled subsystems S; and the model of the jth subsystem is described by
the state-space representation:

xjtk+1)=Ajxjk)+ Bju;k) +c;jk) + I'jw;k), (5.155)
zj(k) =G jx;(k) + @jw;(k),
J J*J JWj (5.156)
yj(k) =Cjxjk),
where for j € {1,..., ny}, the coupling vector c¢; (k) is a piecewise-continuous vec-
tor function in its arguments and satisfies the quadratic inequality
c;- k,.,)cjlk,.,) =< ¢jx;- (k)M;-ijj(k) (5.157)

where ¢; > 0 are adjustable bounding parameters and M; € R"/*"/ are constant
matrices. We will use local quantized output measurements such that the following
quadratic bounding relation is satisfied:

ALO)AF(Q) < ajxt (K ELEjx; (k). (5.158)

where «; > 0 are adjustable subsystem parameters. The following corollary stands
out:

Corollary 5.10 The family of subsystems {S;} where S; is described by (5.155)—
(5.156) is asymptotically stabilizable by decentralized quantized feedback controller
ujk) = Koj Qj(y;) with Lo-performance bound y; if there exist positive-definite
matrices X;, G; and scalars nj >0, o; > 0, y; > 0 satisfying the following LMIs
forj=1,...,ng
9. —[©1i ©2
O = . @3ji| <0, (5.159)
-X; 0 0 0

° —1; 0 0

O1 = ° ° =1 0 ’
| e ° ° —yjzlj
_Xlej XjAtj—i-g;B;- XjM;. XjE;.
0 X 0
O = ¢ bt , (5.160)
0 ngj 0 0

dﬁ; 0 0 0
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—1; le“j’ 0 0
—X; 0 0
@i — j
3 ° —njl; 0
° ° ° —ojl;

Moreover, the local gain matrix is given by K,j =G Xj_l C]I

Finally, we consider the single nominally-linear system

x(k + 1) = Ax(k) + Bu(k) + T'w(k), (5.161)
k) = Gx (k) + Pw(k),
z(k) x(k) + Pdw(k) (5.162)
y(k) = Cx (k).

We will use local quantized output measurements such that the following quadratic
bounding relation is satisfied:

A'()A() <ax!(k)E'Ex(k), (5.163)

where @ > 0, 8 > 0 are adjustable subsystem parameters. The following corollary
establishes the corresponding design result:

Corollary 5.11 System (5.161)—(5.162) is asymptotically stabilizable by decentral-
ized quantized feedback controller u(k) = K, Q(y) with L;-performance bound y;
if there exist positive-definite matrices X, G and scalars n > 0, o > 0, y > 0 satis-
fying the following LMI

[z =
Y= R 23:| <0, (5.164)
—X 0 0
El = [ ] —I 0 s
| e ° —)/jzlj
[ XG' XA'4+G'B' XE!
X = 0 G'B' 0 s (5.165)
B P! 0 0
[—1 xrt o
X3=1| e -X 0
| o ) —nl

Moreover, the local gain matrix is given by K, = GX~1CT.

5.4.6 Simulation Example 5.5

For the purpose of illustration, we consider an interconnected system composed of
two subsystems having uniform quantizers with the following data:
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(08 0 —0.1 0
41=10.0s 0.9}’ Dl_[—o.z —0.1]’

I . 1 . _Tou
b= _0.5]’ G = [0.5]’ L= [0.2]’
" 01 001 ~0.02 001
Er=|_o1 0.02] Fl:[—o.m —0.02]’

1 0 1 0
Mi=1, 1] Nl:[o 1]’

0.9 0.1 0 1
A= 0 05 -0.1]{, Glz = 0 2 ,

0.1 0 0.4

0.5 —-0.2 0.04
B,=|(15]|, Dy=| —-04 —0 15

| 0.4 0.1 0 3

[ —0.02 0.01 0 1 0 0
E, = 0 0.1 0 , Np=10 1 0],

-0.02 0 0.05 0 0 1

_1 0 0.03 0. 02
My=10 0|, k= 0.1

_O 1 —0.01 0. 01

(0]
0
1
0
L, = :|
It is found that the feasible solution of LMI (5.141) is attained at

dy =10, d;f =30, dy =10, dF =30,

K1 =-0.4023, K;=-0.0916.
Typical simulation results are shown in Figs. 5.18, 5.19, 5.20 and 5.21 for the open-
loop response and closed-loop response of both subsystems. Next, by dropping the

time-delay factors (within the subsystems and across the couplings) and considering
LMI (5.141) the feasible solution is found to yield the gains

K| =-0.6653, K,=-—1.0915.

The simulation of the closed-loop response of both subsystems are depicted in
Figs. 5.22 and 5.23. On implementing the LMI (5.153) for subsystem 2, the feasible
solution is given by

d~ =20, df =60, K,=-1.3391.

The ensuing closed-loop response is plotted in Fig. 5.24. Finally, the feasible solu-
tion of LMI (5.153) for subsystem 1 without delay terms is K1 = —0.3039 and the
corresponding closed-loop response is plotted in Fig. 5.25. From the ensuing re-
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Fig. 5.18 Open-loop
response of subsystem 1
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Fig. 5.19 Open-loop 40
response of subsystem 2
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sults, it is quite evident that the quantized feedback control system is asymptotically
stable for the class of quantizers satisfying the quadratic inequality. This is equally
true for interconnected time-delay and delay-free systems, single time-delay sys-
tems and single systems. The crucial point to record is that the type of quantizer
so long as it is satisfies its structure complies with a quadratic inequality. We have
observed that the presence of bounding inequalities (5.134) and (5.136) helps in
curbing the magnitude of the feedback gains.
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Fig. 5.20 Closed-loop 10
response of subsystem 1
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Fig. 5.21 Closed-loop 10
response of subsystem 2
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5.5 Interconnected Discrete Systems with Overflow
Nonlinearities

In this section, we build upon [3, 10, 18] and extend them further to the class of

linear interconnected discrete-time systems with unknown-but-bounded couplings
and overflow nonlinearities.

5.5.1 Introduction

In the implementation of discrete-time systems using computer or special-purpose
hardware with fixed-point arithmetic, one frequently encounters several kinds of
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Fig. 5.22 Closed-loop Subsystem, Closed loop
response of decoupled 10 ,
subsystem 1
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overflow nonlinearities [1, 3]. On the other hand, quantization effects are present in
most control systems, as they heavily rely on digital components, and research on
quantized feedback control where a quantizer is regarded as an information coder.
The fundamental question of interest is how much information needs to be commu-
nicated by the quantizer in order to achieve a certain control objective [5, 8, 9, 11,
12, 32].

When a digital network is present in a feedback system, quantization levels deter-
mine the data rate for the transmission of control-related signals and hence the cost
for communication [18, 21]. In effect, such overflow nonlinearities and/or quanti-
zation may lead to instability in the realized system. An important objective in the
design of a discrete-time system is, therefore, to find the values of the system param-
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Fig. 5.24 Closed-loop Subsystem,, Closed Loop