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2 Solutions to Exercises

Problem Set 1.1, page 8

1 The combinations give (a) aline R®* (b) aplaneirR® (c) all of R3.

2 v+ w = (2,3)andv —w = (6, —1) will be the diagonals of the parallelogram with
andw as two sides going out frord, 0).

3 This problem gives the diagonals+ w andv — w of the parallelogram and asks for
the sides: The opposite of Problem 2. In this exampte (3, 3) andw = (2, —-2).

4 3v+w=(7,5andcv +dw = 2c +d,c + 2d).

5u+v=(-2,31andu+v+w = (0,0,0) and2u+2v+w = (add first answeps=
(—=2,3,1). The vectorsu, v, w are in the same plane because a combination gives
(0,0,0). Stated another wayt = —v — w is in the plane ob andw.

6 The components of everyw + dw add to zeroc = 3 andd = 9 give (3,3, —6).

7 The nine combinations(2, 1) + d(0, 1) with¢ = 0, 1,2 andd = (0, 1, 2) will lie on
a lattice. If we took all whole numbersandd, the lattice would lie over the whole
plane.
8 The other diagonal is — w (or elsew — v). Adding diagonals give3v (or 2w).
9 The fourth corner can b@, 4) or (4,0) or (-2, 2). Three possible parallelograms!
10 i —j = (1,1,0) isin the basex-y plane).i +j +k = (1,1, 1) is the opposite corner
from (0, 0, 0). Points in the cube have< x < 1,0 <y <1,0<z < 1.
11 Four more cornersl, 1,0), (1,0, 1),(0,1,1),(1,1,1). The center point ig3, 1, 1).
Centers of faces arg, 3.0). (3, 3. 1) and(0, 3. 1), (1,4. Hyand(3.0. 1), (3. 1. J).
12 A four-dimensional cube ha®' = 16 corners an@ - 4 = 8 three-dimensional faces
and24 two-dimensional faces ari® edges in Worked Examplz4 A.
13 Sum= zero vector. Sum= —2:00 vector= 8:00 vector. 2:00 is 30° from horizontal
= (cosZ,sinZ) = (+/3/2,1/2).
14 Moving the origin t06:00 addsj = (0, 1) to every vector. So the sum of twelve vectors
changes frondto 12 = (0, 12).

.3 I .
15 The pomtzv + it is three-fourths of the way to starting fromw. The vector

1 1 . 1 1 .
—v + —w is halfway tou = v + T The vectonw + w is 2u (the far corner of the
parallelogram).

16 All combinations withc + d = 1 are on the line that passes throughand w.
The pointV = —v + 2w is on that line but it is beyond.

17 All vectorscv + cw are on the line passing through, 0) andu = %v +
line continues out beyond + w and back beyond, 0). With ¢ > 0, half o
is removed, leaving ey that starts a0, 0).

18 The combinationsv + dw with0 < ¢ < 1 and0 < d < 1 fill the parallelogramwith
sidesv andw. For example, iv = (1,0) andw = (0, 1) thencv + dw fills the unit
square.

19 With ¢ > 0 andd > 0 we get the infinite “cone” or “wedge” betweanandw. For
example, ifv = (1,0) andw = (0, 1), then the cone is the whole quadrant= 0,
y > 0. Question What if w = —v? The cone opens to a half-space.

w. That
this line
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(@) fu + 2v + Lw is the center of the triangle betweenv andw; u + Jw lies

between: andw (b) Tofillthe triangle keep >0,d >0,e>0,andc+d +e¢ = 1.
The sumigv —u) + (w—v) + (u — w) = zero vector. Those three sides of a triangle
are in the same plane!

The vector} (u + v + w) is outsidethe pyramid because+d +e = 1 + 1+ 1> 1.

All vectors are combinations of v, w as drawn (not in the same plane). Start by seeing
thatcu + dv fills a plane, then addingw fills all of R3.

The combinations of andv fill one plane. The combinations efandw fill another
plane. Those planes meet itige: only the vectorgv are in both planes.

(a) Foraline, choose = v = w = any nonzero vector (b) For a plane, choose
u andv in different directions. A combination like = u + v is in the same plane.

Two equations come from the two componentst 3d = 14 and2c¢ +d = 8. The
solutionisc = 2 andd = 4. Then2(1,2) + 4(3,1) = (14, 8).

The combinations of = (1,0,0) andi + j = (1, 1,0) fill the xy plane inxyz space.

There ares unknown numbersy, v,, v3, wy, wo, w3. The six equations come from the
components ob + w = (4,5,6) andv — w = (2,5, 8). Add to find2v = (6, 10, 14)
sov = (3,5,7) andw = (1,0, —1).

Two combinations out of infinitely many that produse= (0, 1) are —2u + v and
%w — %v. No, three vectors:, v, w in the x-y plane could fail to producé if all
three lie on a line that does not contdin Yes if one combination produces then
two (and infinitely many) combinations will produde This is true even iz = 0; the
combinations can have differeni.

The combinations of andw fill the planeunlessy and w lie on the same line through
(0,0). Four vectors whose combinations fildimensional space: one example is the
“standard basis{1, 0, 0,0), (0, 1,0, 0), (0,0, 1,0), and(0, 0,0, 1).

The equationsu + dv + ew = b are
2¢ —d =1 Sod = 2e c =3/4
—c4+2d —e=0 thenc = 3e d=2/4
—d +2¢ =0 thende = 1 e =1/4

Problem Set 1.2, page 19

1
2

3

4

u-v=—184+32=14u-w=-48+48=0,v-w=24+24=48=w-v.
|u|| = 1and|v|| = 5and|w| = 10. Thenl.4 < (1)(5) and48 < (5)(10), confirming
the Schwarz inequality.

Unit vectorsv/|lv| = (2. 2) = (.6..8) andw/|w|| = (%.2) = (.8,.6). The cosine

of 0 is ﬁ . ”“’—” = 22. The vectoraw, u, —w make0°, 90°, 180° angles withw.

@ v-(—v) = -1 bG)y@w+w -w—w)=v-v+w-v—v-wWw—wW-Ww
1+( )=( )—1=0s06 = 90° (noticev-w = w-v) ©) (v—2w)-(v+2w)
vev—4w-w=1—-4=-3
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Solutions to Exercises

up = v/|v]| = 3, 1)/V10andu; = w/|jw| = (2,1,2)/3. Uy = (1,-3)/V/10s
perpendicular tar; (and so is(—1,3)/+/10). U, could be(1, —2,0)/+/5: There is a
whole plane of vectors perpendiculari#g, and a whole circle of unit vectors in that
plane.

All vectorsw = (c, 2¢) are perpendicular te. All vectors(x, y,z)withx+y+z =0
lie on aplane All vectors perpendicular tol, 1, 1) and(1, 2, 3) lie on aline.

(@) cod =v-w/|v|||lw|| = 1/(2)(1) sof = 60° or /3 radians (b) co8 = 0
sof = 90° or n/2 radians (c) co8 = 2/(2)(2) = 1/2s06 = 60° or n/3
(d) cosd = —1/+/2 5060 = 135° or 37 /4.

(a) Falsew andw are any vectors in the plane perpendiculag to (b) True:u - (v +
2w) =u-v+2u-w =0 (c) True,|lu—v|?> = (u—v)-(u—v) splits into
u-u+v-v=2whenu-v=v-u=0.

If vowy/viw; = —1thenv,w, = —vywp Orvywy+vwy = v-w = 0: perpendicular!
Slope2 /1 and—1/2 multiply to give—1: thenv-w = 0 and the vectors (the directions)
are perpendicular.

v - w < 0 means angle- 90°; thesew’s fill half of 3-dimensional space.

(1, 1) perpendicular tq1,5) —c(1,1)if 6 —2c = 00rc = 3;v-(w—cv) =0 if
¢ =v-w/v-v. Subtractingv is the key to perpendicular vectors.

The plane perpendicular 1@, 0, 1) contains all vectorgc, d, —c). In that planep =
(1,0,—1) andw = (0, 1, 0) are perpendicular.

One possibility among manyt = (1,—1,0,0),v = (0,0,1,—1),w = (1,1,—1,—1)
and(1, 1, 1, 1) are perpendicular to each other. “We can rotate thosew in their 3D
hyperplane.”

1(x+y) =(2+8)/2=5;cosf =216/+/10/10 = 8/10.
[v]?=1+14---+1=9s0|v| =32 =v/3=(5....,3) isaunitvector iroD;
w = (1,—1,0,...,0)/+/2is a unit vector in th&D hyperplane perpendicular io
cosa = 1/+/2, cosp = 0, cosy = —1/+/2. For any vectow, co$ « +cos +cos y
= (f + v +v])/lv)? =1

[v]|?> = 4% + 22 = 20 and||w||?> = (—1)? + 22 = 5. Pythagoras i§(3,4)||*> = 25 =
20 + 5.

Start from the rulesgl), (2), (3) for v-w = w-v andu-(v+w) and(cv)-w. Use rule(2)
for(v+w)-(v+w) = (v+w)-v+(v+w)-w. Byrule(1) thisisv-(v+w)+w-(v+w).
Rule(2) againgivey v+ v-w+w-v+w-w=v-v+2v-w+ w-w. Notice
v-w = w - v! The main point is to be free to open up parentheses.

We know thatlv — w) - (v —w) = v-v—2v-w + w - w. The Law of Cosines writes
[|lv]|||lw] cose for v-w. Whenf < 90° thisv - w is positive, so in this case-v + w - w
is larger thar|v — w||2.

2v-w < 2||v|/||w| leadsto|v+w|* = v-v+2v-w+w-w < ||[v|>+2|v|||w]+|w]|>.
This is(||v]| + ||w])?. Taking square roots giveld + w|| < ||v| + ||w].

v2w? + v wivaws + V3w < v2w? 4+ viw? +v3w? + viw? is true (cancel terms)
because the differenceigw3 + viw? — 2v;wiv,w, Which is(viws — vawy)? > 0.



Solutions to Exercises 5

23

24

25

26

27

28

29

30

31

32

cosp = wy/||w| and sin8 = w,/||w|. Then co$p —a) = cosp cosa +singS sina =
viwy/|[v|[|lw] + vawa/||v|||w] = v - w/||v||w]|. Thisis co® because — o = 6.
Example 6 givesu, ||U;| < $(u? + U?) and|u,||Uz| < 1 (w3 + UZ). The whole line
becomes96 < (.6)(.8) + (.8)(.6) < 2(.6% + .8%) + 1(.8%2 +.6%) = 1. True:.96 < 1.

The cosine o is x//x2 + y2, near side over hypotenuse. THewosf|? is not greater
than 1:x2/(x2 + y?) < 1.

The vectorsw = (x, y) with (1,2) - w = x 4+ 2y = 5 lie on a line in thexy plane.
The shortestv on that line is(1, 2). (The Schwarz inequalityw|| > v - w/||v| = V/5

is an equality when cas = 0 andw = (1,2) and||w| = +/5.)

The length||v — w|| is betweer2 and8 (triangle inequality whetfjv| = 5 and||w| =
3). The dot product - w is between-15 and15 by the Schwarz inequality.

Three vectors in the plane could make angles greater 9hamnvith each other: for
example(1,0), (—1,4), (—1,—4). Four vectors coulahot do this 360° total angle).
How many can do this ifR3 or R*? Ben Harris and Greg Marks showed me that the
answer isn + 1. The vectors from the center of a regular simplexRhto itsn + 1
vertices all have negative dot productsz {2 vectors inR” had negative dot products,
project them onto the plane orthogonal to the last one. Nawhaven + 1 vectors in
R"~! with negative dot products. Keep going to 4 vectorRft no way!

For a specific example, pick = (1,2, —3) and therw = (=3, 1, 2). In this example
cosd = v-w/|v||w]| = —7/v/144/14 = —1/2 and® = 120° . This always
happens wher + y + z = 0:

1 1
v.w=xz+xy+yz=§(x+y+z)2_§(x2+y2+zz)
This is the same as- w =0 — 3 lvlllw]. Then cod = 5

Wikipedia gives this proof of geometric mean = 3j/xyz < arithmetic mean
A = (x + y + z)/3. First there is equality in case = y = z. OtherwiseA is

somewhere between the three positive numbers, say for égampA4 < y.

Use the known inequality < a for thetwo positive numbers andy + z — A. Their

meana = %(x +y+z—A)is %(3A — A) = same aM! Soa > g says that
A > g@?2A=x(y+z-ADA. But(y +z—A)A = (y —A(A—z) + yz > yz.

Substitute to findd® > xyz = G as we wanted to prove. Not easy!

There are many proofs @ = (x;x,---x,)/" < A = (x; + X2 + -+ 4+ x,)/n. In
calculus you are maximizing on the planec; + x5 + -+ + x, = n. The maximum
occurs when alk’s are equal.

The columns of the 4 by 4 “Hadamard matrix” (timés are perpendicular unit
vectors:

1 1 1 1
1 1 1 —1 1 —1
SH=S11 1 21 -

1 —1 -1 1

The command$ = randn (3,30); D = sqrt (diag (V' * V)); U = V\D; will give
30 random unit vectors in the columns@f Thenu’ x U is a row matrix of 30 dot
products whose average absolute value may be cldséto
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Problem Set 1.3, page 29

1 2sq1 + 3s, + 453 = (2,5,9). The same vectds comes fromS timesx = (2, 3, 4):

1 0 072 (rowl)-x 2
|:1 1 0} [3}:[(row2)-xi|:[5].
1 1 1]L4 (row2)-x 9

2 The solutionsarg; = 1, y, = 0, y3 = 0 (right side= columnl) andy; = 1, y, = 3,
y3 = 5. That second example illustrates that the firstdd numbers add te?.

1 = B; yn = b 1 0 071[B;
3 yi+»2 = B, gives Yy, = —B) +B; =|—-1 1 0]|]| B,
yi+y2+ys = Bs 3 = —B, +B3 0 —1 1]|B;

1 00 1 00
The inverse off = [1 1 O} isA= [—1 1 O}: independent columns id andS'!
I 11 0-1 1

4 The combinatiordw; + Ow, + Ows; always gives the zero vector, but this problem
looks for otherzerocombinations (then the vectors atependentthey lie in a plane):
w, = (w; + w3)/2 SO one combination that gives zerc%iwl —wy + %w3.

5 The rows of the3 by 3 matrix in Problem 4 must also likependentr, = %(rl +r3).
The column and row combinations that prod@care the same: this is unusual.

13 57
6c=3 1 2 4] hascolumm = 2 (columnl) + column2

3
1
0 | has columr8 = — columnl + column2
1
0
5

has columrd = 3 (column1) — column2

7 All three rows are perpendicular to the solutierfthe three equations; - x = 0 and
ro-x = 0andrsz-x = Otell us this). Then the whole plane of the rows is perpendicul
to x (the plane is also perpendicular to all multiptes).

xl—O = b] X1 = bl 1 0 0 O bl

8 Xo — X1 = bz Xy = b1+b2 _ 1 1 0 0 b2 _A_lb
X3— Xy = b3 x3 = by +by+ b3 — {1 1 1 0 by | —
X4 — X3 = by X4 = by + Dby + b3+ by 1 1 1 1 ba

9 The cyclic difference matriC has a line of solutions (id dimensions) taCx = 0:

—1 X1
-1 (0) X2 = any constant vector.
X3
1

0
0
1
—1 X4

0
0

=10 whenx =
0

(SIS N o T o

0

1

—1

0 o0
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Zp —Z1 = b] zZ1 = —bl—bz—b3 -1 -1 -1 bl
10 Z3 —Zp = bz Zy) = —b2 —b3 = |: 0 —1 —1i| |:b2i| = A_lb
0—23 = b3 z3 = —b3 0 0 —1 b3

11 The forward differences of the squares @re- 1) — 12 = t2 + 2t + 1 —12 =2t + 1.
Differences of theith power arg(t + 1)" — " = t" —t" + nt""! 4+ ..., The leading
term is the derivativea¢"~!. The binomial theorem gives all the terms(of+ 1)".

12 Centered difference matrices@fensize seem to be invertible. Look at eqhsand4:

0 1 0 0 X1 by First X1 —by — by
—1 0 1 0 X2 | by solve X2 - by

0 -1 0 1 X3 B b3 Xp = bl X3 - —b4

0 0 -1 0 X4 b4 —X3 = b4 X4 b] + b3

13 Odd size The five centered difference equations leadite- b3 + bs = 0.

X2 =b1
X3 — X1 =b2
X4—X2=b3
X5—X3=b4

—X4:b5

14 An example ida,b) = (3,6) and(c,d) = (1,2). The ratiosu/c andb/d are equal.
Thenad = bc. Then (when you divide byd) the ratiosz /b andc/d are equal!

Add equationd, 3,5

The left side of the sum is zero

The right side i$; + b3 + bs

There cannot be a solution unlégs+ b3 + b5 = 0.

Problem Set 2.1, page 40

1 The columns aré = (1,0,0) andj = (0,1,0) andk = (0,0, 1) andb = (2,3,4) =
2i +3j + 4k.

2 The planes are the sanmizx = 4isx = 2,3y = 9isy = 3,anddz = 16isz = 4. The
solution is the same poilX = x. The columns are changed; but same combination.

3 The solution is not changed! The second plane and row 2 of #iexyand all columns
of the matrix (vectors in the column picture) are changed.

4 If z =2thenx + y = 0andx — y = z give the point(1,—1,2). If z = 0 then
x +y = 6andx — y = 4 produce(5, 1, 0). Halfway between those (8,0, 1).

5 If x, y,z satisfy the first two equations they also satisfy the thirdagipn. The line
L of solutions containg = (1,1,0) andw = (3,1, 1) andu = v + Lw and all
combinationgv + dw withc +d = 1.

6 Equationl + equatiorn2 — equation3 is now0 = —4. Line misses planeio solution

7 Column3 = Column 1 makes the matrix singular. Solutidnsy,z) = (1,1,0) or
(0,1,1) and you can add any multiple ¢1,0,1); b = (4,6,c) needsc = 10 for
solvability (thena lies in the plane of the columns).

8 Four planes in 4-dimensional space normally meetpoiat The solution toAx =
(3,3,3,2) isx = (0,0,1,2) if A has columng(1,0,0,0),(1,1,0,0),(1,1,1,0),
(I,1,1,1). Theequationsare+y +z+t =3, y+z+t =3,z+t =3,t =2.

9 (@) Ax = (18,5,0)and (b) Ax = (3,4,5.5).
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Multiplying as linear combinations of the columns gives faeneAx. By rows or by
columns:9 separate multiplications fdr by 3.

Ax equals(14,22) and(0,0) and 0, 7).

Ax equals(z, y, x) and(0, 0,0) and G, 3, 6).

(a) x hasn components andx hasm components (b) Planes from each equation
in Ax = b are inn-dimensional space, but the columns are:hdlimensional space.

2x + 3y +z+ 5t = 8is Ax = b withthel by 4 matrix4 = [2 3 | 5]. The
solutionsx fill a 3D “plane” in 4 dimensions. It could be callechgperplane

@i=[3 1] o[t ]

90° rotation fromR = [ 0 1

-1 0}, 180° rotation fromR? = [_1 O] =—1I.

0 -1

0 1 0 0 0 1

P=[0 0 1|producegy,z,x)andQ =|1 0 0 |recoverdx,y,z). Qisthe
(1 0 0 010

inverse ofP.

- 1 00
E = _} (1)} andE = [—1 1 O} subtract the first component from the second.
0 0 1

1 0 0 1 0 0
E=|0 1 OlandE™' =] 0 1 0], Ev = (3,4,8) and E"' Ev recovers

1 0 1 1 0 1
(3,4,5)
1 0 . . 0 0 . .
Pr =1, (| Projects onto thec-axis andP, = 0 1 | Projects onto they-axis.
5 5 0
v = [7] hasPiv = [0} and P, Pyv = [0]

[V —v2

— rotates all vectors by 45 The columns ofR are the results from
2[V2 V2 } Y
rotating(1, 0) and(0, 1)!

R =

X
The dot productdx = [1 4 5] [yi| = (1 by 3(3 by 1) is zero for pointqx, y, z)

Z
on a plane in three dimensions. The columnglafre one-dimensional vectors.
A=[1 2 ; 3 4]andx =[5 —2]"andb =[1 7]".r = b— Axx prints as zero.
Axv=1[3 4 5]"andv’ x v = 50. Butv % A gives an error message from 3 by 1
times 3 by 3.
ones(4,4) xones(4,1) =[4 4 4 4] Bxw =[10 10 10 10]’.
The row picture has two lines meeting at the soluti¢y2§. The column picture will
have4(1, 1) 4+ 2(—2, 1) = 4(column 1)+ 2(column 2)= right side(0, 6).

The row picture show® planesin 3-dimensional space The column picture is in
2-dimensional spaceThe solutions normally lie on lane.
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28 The row picture shows foulinesin the 2D plane. The column picture is four-
dimensional space. No solution unless the right side is éawattion ofthe two columns

29 u, = 7 anduz = 65 . The components add to 1. They are always positive.

3 andus = [ 52

u;,v7, w7 are all close tq.6, .4). Their components still add to 1.

30 [g ﬂ [2} = [2] = steady state. No change when multiplied bE/i i]

8 3 4 54u 5—u+4+v 5-—v
3 M=|1 5 9|=|5—u—v 5 S54+u+v|; M3(1,1,1) = (15,15, 15);

6 7 2 54v 54u—v 5—u
My(1,1,1,1) = (34,34,34,34) becausd 4+ 2 4 --- + 16 = 136 which is4(34).

32 A is singular when its third columw is a combinatiortu + dv of the first columns.
A typical column picture has outside the plane af, v, w. A typical row picture has
the intersection line of two planes parallel to the thirdygal’hen no solution

33 w = (5,7)is5u + 7v. ThenAw equalsS timesAu plus7 timesAv.

2 -1 0 07[x 1 X 4
-1 2 -1 Oof|x|_|2 x| |7
34| o 1 2 _1||xs|= |3 |hasthesolution " = |¢
0 0 -1 2 X4 4 X4 6

35 x =(1,...,1)givesSx = sum of each row= 1+---+9 = 45 for Sudoku matrices.

6 row orders(1, 2, 3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2, 1) are in Section 2.7.
The same permutations oblocksof rows produce Sudoku matrices, §b = 1296
orders of the rows all stay Sudoku. (And alsi296 permutations of thé columns.)

Problem Set 2.2, page 51

1 Multiply by £, = % = 5 and subtract to findx + 3y = 14 and—6y = 6. The pivots
to circle are 2 and-6.

2 —6y = 6 givesy = —1. Then2x + 3y = 1 givesx = 2. Multiplying the right side
(1, 11) by 4 will multiply the solution by 4 to give the new solutign, y) = (8, —4).

3 Subtract—% (or add%) times equation 1. The new second equatioByis= 3. Then

y=1andx =5. If the right side changes sign, so does the solutigny) = (-5, —1).
4 Subtract! = £ times equation 1. The new second pivot multiplying d — (cb/a)
or (ad — bc)/a. Theny = (ag —cf)/(ad — bc).
5 6x + 4y is 2 times3x + 2y. There is no solution unless the right sideis10 = 20.

Then all the points on the lirex 42y = 10 are solutions, including), 5) and(4, —1).
(The two lines in the row picture are the same line, contg@ithsolutions).

6 Singular system ib = 4, becausdx + 8y is 2 times2x + 4y. Theng = 32 makes
the lines become theame infinitely many solutions likg8, 0) and(0, 4).

7 If a = 2 elimination must fail (two parallel lines in the row pictyreThe equations
have no solution. Witk = 0, elimination will stop for a row exchange. Thén = —3
givesy = —1 and4x + 6y = 6 givesx = 3.
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If & = 3 elimination must fail: no solution. Ik = —3, elimination gives) = 0 in
equation 2: infinitely many solutions. &f = 0 a row exchange is needed: one solution.
On the left sidepx — 4y is 2 times(3x — 2y). Therefore we neetl, = 2h; on the
right side. Then there will be infinitely many solutions (twarallel lines become one
single line).
The equatiory = 1 comes from elimination (subtragt+ y = 5 fromx + 2y = 6).
Thenx = 4and5x —4y = ¢ = 16.
(&) Another solution i%(x +X,y+Y,z+Z). (b) If 25 planes meet at two points,
they meet along the whole line through those two points.
Elimination leads to an upper triangular system; then comask substitution.

2x +3y+ z=38 x =2

y+3z=4 gives y =1 |Ifazerois atthe start of row 2 or 3,

8z =38 z =1 thatavoids a row operation.
2x — 3y =3 2x —3y =3 2x —3y =3 x=3
4x -5y + z=7 gives y+ z=1 and y+ z=1 and y=1
2x — y—3z=5 2y +3z=2 —5z=0 z=0

Subtract 2x row 1 from row 2, subtract ¥ row 1 from row 3, subtract X row 2 from
row 3

Subtrac® times row 1 from row 2 to reacts/ —10) y—z = 2. Equation (3) isy—z = 3.
If d = 10 exchange rows 2 and 3. df = 11 the system becomes singular.

The second pivot position will contair2 — b. If b = —2 we exchange with row 3. If
b = —1 (singular case) the second equatioris— z = 0. A solution is(1, 1, —1).
Example of Ox +0y +2z=4 Exchange Ox + 3y +4z=4
() 2 exchanges xX+2y+2z=5 (b) but then xX+2y+2z=5
Ox +3y+4z=6 break down Ox + 3y +4z=6
(exchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

If row 1 =row 2, then row 2 is zero after the first step; exchange therpsvavith row
3 and there is nthird pivot. If column2 = column 1, then colum@ has no pivot.

Examplex + 2y + 3z = 0,4x 4+ 8y + 12z = 0, 5x 4+ 10y + 15z = 0 has 9 different
coefficients but rows 2 and 3 becoithe= 0: infinitely many solutions.

Row 2 become8y — 4z = 5, then row 3 becomeg; + 4)z =t — 5. If ¢ = —4 the
system is singular—no third pivot. Therrit= 5 the third equation i® = 0. Choosing
z = 1the equatiol3y — 4z = 5 givesy = 3 and equation 1 gives = —9.

Singular if row 3 is a combination of rows 1 and 2. From the eiesvwthe three planes
form a triangle. This happens if rowis+2 =row 3 on the left side but not the right
side:x+y+z=0,x—2y—z=1,2x—y=4. No parallel planes but still no solution.

(a) Pivots2, % %, % in the equationgx + y = 0, %y +z =0, %z 4+t =0, %t =5
after elimination. Back substitution gives= 4,z = -3,y = 2,x = —1. (b) If
the off-diagonal entries change frol to —1, the pivots are the same. The solution is
(1,2,3,4) instead of(—1,2, -3, 4).

The fifth pivot isg for both matrices (1's or1's off the diagonal). The:th pivot is

n+1
-
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If ordinary elimination leads ta + y = 1 and2y = 3, the original second equation
could be2y + £(x + y) = 3 + £ for any£. Then{ will be the multiplier to reach
2y =3.

Elimination fails on[;Z i] ifa=2o0ora=0.

a = 2 (equal columns)y = 4 (equal rows)a = 0 (zero column).

Solvable fors = 10 (add the two pairs of equations to get b +c¢ +d on the left sides,
12 and2 + s on the right sides). The four equations tar, ¢, d aresingular! Two
1 100 I 1 0 0
. 1 3 0 4 1 010 0 -1 1 0
solutions art{l 7} and[2 6}’ A= 00 1 1 andU = 0 0 1 1
01 0 1 0 0 00
Elimination leaves the diagonal matrix di&g2,1) in 3x = 3,2y = 2,z = 4. Then

x=1y=1z=4.
A2,:) = A(2,:) — 3 % A(1,:) subtracts} times row1 from row 2.

The average pivots for rand(®jthoutrow exchanges wer};, 5, 10in one experiment—
but pivots 2 and 3 can be arbitrarily large. Their averagesaatually infinite ! With
row exchangesn MATLAB’s lu code, the averages/5 and.50 and.365 are much
more stable (and should be predictable, also for randn vathal instead of uniform
probability distribution).

If A(5,5)is7 notl1, then the last pivot will bé not4.

Row j of U is a combination of rows, ..., j of A. If Ax = 0thenUx = 0 (not true
if b replaced®). U is the diagonal o when A is lower triangular.

The question deals with 100 equatiofis = 0 when A is singular.

(&) Some linear combination of the 100 rowshie row of 100 zeros
(b) Some linear combination of the 1@6lumnsis the column of zeros
(c) A very singular matrix has all oness = eyg100). A better example has 99

random rows (or the numbeits, . .., 100’ in those rows). The 100th row could
be the sum of the first 99 rows (or any other combination ofeéhosvs with no
zeros).

(d) The row picture has 100 planegeting along a common line through0. The
column picture has 100 vectors all in the same 99-dimenkhyeerplane.

Problem Set 2.3, page 63

1

2

3

100 100 10077010 010
Ey=|-510|,Emx=|010|,P=|001]||100]|=|00T1]
00 1 071 010]loo1 100

E3yExb = (1,-5,-35) but E51 Ezxb = (1,-5,0). When E3, comes first, row 3
feels no effect from row 1.

1 0071 0071 0 0 1 0 0
—4 1 0[,]0 1 0|.|0 1 0| M=EpEyEy =|-4 1 0.
00 1] 120 1] [0 -2 1 10 -2 1
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1 1 1 1
E E E
Elimination on column 456 = | 0 ST I B L VI Bt ol ' The
0 0 2 10

original Ax = b has becomé&/x = ¢ = (1,—4,10). Then back substitution gives
z=-5y= %,x = %.This solvesdx = (1,0,0).

Changingas; from 7 to 11 will change the third pivot from 5 to 9. Changiags from
7 to 2 will change the pivot from 5 tno pivot

2 3 7 1 4
Example: |2 3 7 3| = |4/|. Ifall columns are multiples of colum,
2 3 7|]-1 4

there is no second pivot.
To reverseEs;, add 7 times row1 to row 3. The inverse of the elimination matrix

1 0 0 1 0 0
E=| 01 0|iseE-'=]0 1 0
7 0 1 70 1
M= 2 andM*:[ ¢ b ] detM* = a(d — €b) — b(c — La)
c—4ta d—1tb

reduces tatd — bc!

1 00
M = [ 00 l}. After the exchange, we neédts; (not E,;) to act on the new row 3.

110
1 0 1 1 0 1 2 0 1

E;= [0 1 0} ; [0 1 0} E31Ez3= [0 1 0} . Test on the identity matrix!
0 0 1 1 0 1 1 0 1

1 2 2

An example with two negative pivots i = [1 1 2}. The diagonal entries can
1 2 1

change sign during elimination.

9 8 77 rowsand 1 2 3
The first productig 6 5 4 | also columns The second productis0 1 -2 |.
3 2 1] reversed. 0 2 -3
(a) E times the third column o is the third column ofEB. A column that starts

at zero will stay at zero. (b)E could add row2 to row 3 to change a zero row to a
nonzero row.

E>i has—{yy =3, E3; has—{3; =3, E43 has—{43 = 3. Otherwise thet’s match/.

—1 —4 -7 —1 -4 -7
aj; =2i —3j1 A= [ 1 -2 —5} — [ 0 -6 —12]. The zero became12,
3 0 -3 0 —12 -24

1 00
an example ofill-in. To remove that-12, chooseFE;, = [O 1 O}.
0 -2 1
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(@) The ages o andY arex andy: x —2y = 0andx + y = 33; x = 22 and
y =11 (b) Theliney = mx + ¢ containsx = 2, y = 5andx = 3, y = 7 when
2m + ¢ = 5and3m + ¢ = 7. Thenm = 2 is the slope.

a+ b+ ¢ 4
The parabola = a+bx+cx? goes through tha given points whena+ 2b+ 4c¢ 8.

a+ 3b+ 9c = 14
Thena = 2, b = 1, andc = 1. This matrix with columng1, 1, 1), (1,2, 3), (1,4,9)
is a “WVandermonde matrix.”

1 0 0 1 0 0 1 0 0 1 0
EF:|:a 1 Oi|,FE:|: a 1 Oi|,E2:|:2a 1 Oi|,F3:|:O 1
b ¢ 1 b+ac ¢ 1 2b 0 1 0 3c

01 0 0 0 1
PQ = [O 0 1}. In the opposite order, two row exchanges give = |:1 0 O],
1 0 0 01 0

If M exchanges rowaand3 thenM? = [ (also(—M)? = I). There are many square

roots of /: Any matrix M = [ﬁ _ﬂ hasM? = [ if a*> + bc = 1.

—_ o O

(2) Each column of£B is E times a column ofB (b) [i (1)} [i g ﬂ =

1 2 4 .
[2 4 8]AIIrowsofEBaremultlplesof[l 2 4]

1 0 I 1] . I 1 2 1
No.Ez[1 1}andF:[O l]glveEFz[1 2} butFE:[1 1]
@) > asjx; (D) az1 —an  (C) az1 —2an (d) (EAx); = (Ax); = Y ay;x;.

E(EA) subtracts4 times row1 from row 2 (EEA does the row operation twice).
AE subtract2 times columr2 of 4 from columnl1 (multiplication by E on the right
side acts omrolumnsinstead of rows).

[2 3 1 2 3 1 . L 2X1 + 3x2
[4 b]= 1 1 171710 _5 1g| Thetriangular systemis 5%,

Back substitution gives; = 5 andx, = —3.

The last equation becom@s= 3. If the original 6 is 3, then row % row 2 = row 3.

@) Addtwocolumnsbandb*[l 41 0}_{1 4 1 0:|—>x=|:_7i|

2.7 0 1 0 -1 =2 1 2
andx*:[_?].

(a) No solution ifd =0 andc #0 (b) Many solutions it/ =0=c. No effect froma, b.
A=Al = A(BC) = (AB)C = IC = C. That middle equation is crucial.
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1 0 O
1 1 0
0 -1 1
0 0 -1
still has multipliers=
1 0

1

-2

29 E=|

0 1 00O

0 1 00

0 subtracts each row from the nextrow. The resylt 11 0
1 0 1 2 1
1 in a3 by 3 Pascal matrix. The produdt of all elimination

0 0
matrices is _i (1) 8 . This “alternating sign Pascal matrix” is on page 88.
-1 3 =3 1

30 Given positive integers withd — bc = 1. Certainlyc < a andb < d would be
impossible. Alsac > a andb > d would be impossible with integers. This leaves

row 1 <row?2 OR row2 < row 1. An example isM = B ﬂ Multiply by

(1) _” to get[; ;’] then multiply twice by[_i (1)} to get|:(l) i] This shows

e R

1 1 1
1/2 1 0 1 0 1
31 Ear = 0 0 1 cEn=1 2/3 1 cEa=1g 00 ’
0 0 0 0 0 1 0 0 3/4 1
12 1
E43 E3p Bz = |: 1§3 231 :|
1/4 2/4 3/4

Problem Set 2.4, page 75

1 If all entries of4, B, C, D arel, thenBA = 3 ones5) is5by5; AB = 50neg3)is3
by3; ABD = 150neg3,1)is3 by 1. DBA andA(B + C) are not defined.

2 (a) A (column 3 ofB) (b) (Row 1 ofA) B (c) (Row 3 ofA4)(column 4 ofBB)
(d) (Row 1 ofC)D(column 1 ofE).

3 AB + AC isthe same ad(B + C) = [3 8] (Distributive law).

4 A(BC) = (AB)C by theassociative law In this example both answers a{rg 8]

from columnl of AB and row2 of C (multiply columns times rows).
, _[1 2b [t nb , _[4 4 o 2m
5(a)A_[O 1 andA”_0 It (b)A_OOandA”_ o ol

6 (A4+B)* = [12 2] = A%+ AB + BA+ B?. ButA? + 2AB + B? = [12 ﬂ

7 (@) True (b) False (c) True (d) False: usudlyB)? # A?B2.
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The rows ofDA are3 (row 1 of A) and5 (row 2 of A). Both rows ofE A are row2 of A.
The columns ofd D are3 (column1 of A) and5 (column2 of A). The first column of
AE is zero, the second is colunirof A 4+ column2 of A.

a a-+b
AF = L d } and E(AF) equals(EA)F because matrix multiplication is
c C
associative
FA ate brd d thenE(FA ate bd E(FA)i t
= and the = . is no
c d (FA) a+2c b+2d (F4)

the same ag'(E A) because multiplication is not commutative.

0 0 1
(@ B=41 (b)) B=0 (c) B= [O 1 O} (d) Every row ofB is 1,0, 0.
1 00

a 0 a b ) )
AB = = BA = givesb = ¢ = 0. ThenAC = CA gives
c 0 0 0
a = d. The only matrices that commute with andC (and all other matrices) are
multiples of/: A = al.
(A—B)?2 = (B—A)> = A(A— B)— B(A— B) = A2 — AB — BA + B2. In atypical
case (WheM B # BA) the matrix4? — 24B + B? is different from(4 — B)?.
(@) True (@2 is only defined whent is square) (b) False (il ism byn andB isn
by m, thenAB ism by m and BA is n by n). (c) True (d) False (tak8 = 0).
(@) mn (use every entry oft) (b) mnp = pxpart (a) (c)n> (n? dot products).
(&) Useonly column2oB (b) Use onlyrow 2 ofd (c)—(d) Use row 2 of first.
1 1 1 1 -1 1

A=| 1 2 2 |has; =min(i,j).A=| -1 1 -1 |hasy; = (-1)*/ =
1 2 3 I -1 1
/1 1/2 1/3
“alternating sign matrix’A = | 2/1 2/2 2/3 | hasa;; = i/j (this will be an
3/1 3/2 3/3

example of aank one matrix
Diagonal matrix, lower triangular, symmetric, all rows atjuizero matrix fits all four.

(@) an (b) £31 = azi/an (c) as — (%)(112 (d) az, — (%)(112-

0040 0008
0004 0000 ) . .
A? = , A3 = ., A* = zero matrix forstrictly triangular A.
0000 0000
0000 0000
by 2y 4z 8t
2z 4t 0
Thendv = A Y2 L A%y = L A3y = L A% =0
z 2t 0

~
)
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5 5 5 -5 ,
21 A=A’=A3=... = butAB = and(AB)? = zero matrix!
S5 05 5 5
[o1 s oo 1 =171 17 _[o o].
SO I T R

0 1 0 1 -1 0 .
DE = [1 O] [_1 O} = [ 0 1] = —ED. You can find more examples.

0 1
23 A = |: 0 } hasA? = 0. Note: Any matrixA = column times row= uv" will

0 10 0 0 1
haved? = uv uv” = 0if v'u=0. A= 0 0 I |hasd2=| 0 0 0
0 0 O 0 0 0
but 43 = 0; strictly triangular as in Problem 20.
2n on 11 a® a*7 b
24 (Al)n:|:o 1 :|a (Az)nzzn 1|:1 1:|a (A3)n:|:0 0 ]
a b c[1 0 0] [a][t 0 0] [d][o 1 0] [¢][o 0 1]
25 |d e f|lO0 1 0|=|d +| e +| f
g h i 0 0 1 g h i
1 0 330 0 0 O
Columns of 4
26 21[3 3 O]+[4|[1 2 1]=|6 6 0|+|4 8 4|=
times rows of B [2} [J 6 6 0 121

3 30

|:1O 14 4i| = AB.
7 8 1

27 (a) (row 3 ofA)-(column 1 ofB) and (row 3 of4) - (column 2 of B) are both zero.

X 0 x x X 0 0 x
(b) [x}[o X x]=|:0 x x} and[x}[o 0 x]=|:0 0 x}:bothupper.
0

0 0 O 0 0 x

o g2 o[} (=D [ 10111 =]

1 0 1 0
29 Er = |:1 1 0:| andE31 = |: 0 1

} produce zeros in th, 1 and3, 1 entries.
4 0

0 0 1

1 0 0 2 1 0
Multiply E'sto getE = E31E» = [ 1 1 O]. ThenEA = [O 1 1] is the
—4 0 1 01 3
result of bothE’s since(E31 Ex1)A = E31(Ex A).

30 In29 ¢ = [_é] D= [(5) ;} D—ch/a = [} ;} in the lower corner o A.

real part Complex matrix times complex vector

31 A —-B||x|_ | Ax—By
B A||ly| | Bx + Ay |imaginary part. needs real times real multiplications.
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32 AtimesX =[x; x, x3]willbetheidentity matrix/ =[Ax; Ax, Ax;3].

3 3 1 0 0
33 b = [5} givesx = 3x; + 5x, + 8x3 = [ 8}; A= [—1 1 O} will have

8 16 0 -1 1
thosex; = (1,1,1),x, = (0,1,1),x3 = (0,0, 1) as columns of its “inverseA~!.

_|la+b a+b . _|la+c b+b| whenb=c

34 Ax ones= [c+d c_i_d}agreeswnh)nes*A_ [a—i—c b+d} anda = d

a b
ThenAd = [b a].

0 1 0 1 2 0 2 0 aba, ada cba,cda These show

35 A= 10 1.0 o 0202 bab, bcb dab, dcb 16 2-step

—10 1 0 1} ~ 12 0 2 0| abc,adc cbc,cdc pathsin
1 01 0 0 2 0 2 bad, bcd dad, dcd the graph

36 Multiplying AB =(m by n)(n by p) needsnnp multiplications. ThenAB)C needs
mpq more. Multiply BC = (n by p)(p by ¢q) needs:pg and thend(BC) needsnngq.

@) Ifm,n, p,q are2,4,7,10 we compareg?2)(4)(7) + (2)(7)(10) = 196 with the
larger numbex2)(4)(10) + (4)(7)(10) = 360. So AB first is better, so that we
multiply that7 by 10 matrix by as few rows as possible.

(b) If u,v,wareN by 1, then(u"v)w' need2N multiplications but«" (vwT) needs
N2 to findvw" and N2 more to multiply by the row vectar™. Apologies to use
the transpose symbol so early.

(c) We are comparinginp + mpq with mnq + npq. Divide all terms bymnpq:
Now we are comparing™! +n~1 with p~!+m~1. This yields a simple important
rule. If matricesd and B are multiplyingv for A Bv, don’t multiply the matrices
first.

37 The proof of(AB)c = A(Bc) used the column rule for matrix multiplication—this
rule is clearly linear, column by column.

Even for nonlinear transformationd( B(c)) would be theé'composition” of A with B
(applying B then A). This compositio o B is justA B for matrices.

One of many uses for the associative law: The left-invé#se right-inverseC from
B = B(AC) = (BA)C =C.

Problem Set 2.5, page 89

0 1 19 7 —4
-1 _ -1 _ -1 _
14 _[% S]andB _[_% ]andC _[_5 3]

1
2
0 0 1
2 Asimple row exchange haR? = 1 soP~! = P.HereP~ ! =|1 0 0. Always
0O 1 0

P~ =*transpose” ofP, coming in Sectior.7.
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x| [ 5 t] _[-2 1[5 =2 . .
[y] = [_.2] and[z] = [ .1} SOA™" = o [_2 1]. This question solved

AA~! = I column by column, the main idea of Gauss-Jordan elimination

The equations are+ 2y = 1 and3x + 6y = 0. No solution becausgtimes equation
1 gives3x + 6y = 3.

1 a
0 —1
(@) Multiply AB = AC by A~! to find B = C (sinceA is invertible) (b) As long
asB — C hasthe forn{_i _i] we havedB = AC for A = [1 1}.

An upper triangulat/ with U? = [ isU = [ ] for anya. And also—U.

1 1
(@) In Ax = (1,0,0), equation 1+ equation 2— equation 3 i) = 1 (b) Right

sides must satisfly; +b, = b3 (c) Row 3 becomes arow of zeros—no third pivot.

(@) The vectoxx = (1,1,—1) solvesdx = 0 (b) After elimination, columns 1
and 2 end in zeros. Then so does coluna columnl + 2: no third pivot.

If you exchange rows and?2 of A to reachB, you exchangeolumns1 and2 of A~!
to reachB~!. In matrix notationB = PAhasB™! = A='P~1 = A~1 P for this P.

o 0 0 1/5 32 0 0
0 0 1/4 0 L=+ 3 0 o
0 1/3 0 o |@ABT =14 o5 § _5
12 0 0 0 0 0 -7 6
block of B).

A7l = (invert each

(a) If B = —Athen certainlyd + B = zero matrix is notinvertible. (b4 = [(1) 8]

0 0
0 1
Multiply C = AB on the left byA~! and on the right by’ ~!. ThenA~! = BC 1.

M~! = C7'B~14~! so multiply on the left byC and the right byd : B~! =
CM~'A.

andB = [ ] are both singular but + B = I is invertible.

-1
B!l =471 [i (1)} =A"! [_i (1)] subtract column 2 oft! from column 1.

If A has a column of zeros, so doBd. ThenBA = I is impossible. There isnd™!.

a b d —b| _|ad—bc 0 The inverse of each matrix is
¢c d||-c al| 0 ad —bc |* the other divided byid — bc

1 1 1 1
ExyE31Ey = [ 1 M 1 i||:—l 1 } — [—1 1 } - E.
-1 1|1 1 1 0 —1 1

1
Reverse the order and changeto +1 to getinverse€; ' E5' E3) = [1 1 } =
1 1

L = E~'. Notice thel’s unchanged by multiplying in this order.
A%B = I can also be written ag(AB) = I. Therefored™! is AB.
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19 The (1, 1) entry requiresta — 3b = 1; the (1,2) entry requireb —a = 0. Then

b = %anda = % For the5 by 5 case5a — 4b = 1 and2b = a giveb = é and

2
a = 6"
20 A xones(4, 1) is the zero vector sd cannot be invertible.

21 Six of the sixteer®) — 1 matrices are invertible, including all four with three 1's.

131 0] [t 3 1 0] [t 0 7 -3]_r, a1
22[270 1}_’[0 12 1]_’[0 12 1}—[1A J
I
0

14 107 [t 4 1 0] [t 0 -3 473
[3 9 1}_’[0 -3 -3 1]_’[0 1 1-1?3} [ 47

21 0|1 0 0 2 1 0 1 00
23 (4 1]:[1 2 1|0 1 o}ﬁ[o 3/2 1] -1/2 1 o}—>
01 2|0 01 0 1 2 0 0 1
2 1 0 1 0 0 2 1 0 1 0 0
0 3/2 1| —1/2 1 o}ﬁ[o 3/2  0|-3/4 3/2 —3/4}—>
0 0 4/3| 1/3 —=2/3 1 0 0 4/3| 1/3 —2/3 1
20 0] 3/2 -1 1/2 1 0 0] 3/4 —1/2 1/4
0 3/2 0|-3/4 3/2 —3/4} — [0 1 0]-1/2 1 —1/2} =
[0 0 4/3| 1/3 -2/3 1 0 0 1| 1/4 —1/2 3/4
A7
'l a b 1 0 O 1 a 01 0 —b 1 0 01 —a ac—b»
2410 1 ¢ 0 1 o}ﬁ[o 1 0 0 1 —c}ﬁ[o 1 00 1 —ci|.
(001 0 0 1 00100 1 001 0 0 1
2 1 177} (T3 -1 -1 2 -1 —17T1 0
251 2 1} :—{—1 3 —1};[—1 2 4}[1}:[0} so B~! does
11 2 4l-1 -1 3] -1 -1 2]l1 0
not exist.

% Ead=| ) Y]

Multiply by D = |:

oJ=o 3} ema=ls ][5 A]a= o 2]

1/2 to reaChDE12E21A = I. Then4™! = DE,Ey =
1
2 —2 1
1 0 O 2 -1 0
27 A7'=|-2 1 =3 | (notice the pattern)t~! = [-1 2 —1|.
0o 0 1 0 -1 1

g |02 10 2 2 0 1 2.0 —1 1 1 0 —1/2 1/2
220 1|7]o210[7]0o2 10| |01 12 o/
Thisis[I A~']: row exchanges are certainly allowed in Gauss-Jordan.

29 (a) True (If A has a row of zeros, then evedyB has too, andd B = [ is impossible)
(b) False (the matrix of all ones is singular even with dieajdrs: ones(3) has 3 equal
rows) (c) True (the inverse of ! is 4 and the inverse afi? is (471)?).
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This A is not invertible forc = 7 (equal columns)¢ = 2 (equal rows)c = 0 (zero
column).

o . 1 a 0-b
Elimination produces the pivotsanda—b anda—b. A~ ' = —— | —a a 0.
a(@=b)| 0-q a
1 1 0 0
A7l = 8 (1) i (1) . When the triangulad alternates 1 ané-1 on its diagonal,
0 0 0 1

A~ is bidiagonalwith 1’'s on the diagonal and first superdiagonal.
x=(1,1,...,1) hasPx = Qx so(P — Q)x = 0.

I 0 and A1 0 and_D 1
—-C I -D~'ca™! D! I 0

A can be invertible with diagonal zeroB. s singular because each row adds to zero.
The equation. DL D = I says that. D = pascal (4, 1) is its own inverse.

hilb(6) is not the exact Hilbert matrix because fractions areded off. Sanv(hilb(6))
is not the exact either.

The three Pascal matrices hake= LU = LL" and therinv(P) = inv(LT)inv(L).

Ax = b has many solutions whe# = ones (4,4) = singular matrix and = ones
(4,1). A\b in MATLAB will pick the shortest solutiorx = (1,1, 1,1)/4. This is the
only solution that is combination of the rows of (later it comes from the
“pseudoinverse’”A™ = pinv(4) which replacesA—! when 4 is singular). Any vec-
tor that solvesAx = 0 could be added to this particular solution

1 —a 0 0 1 a ab abc
. /o 1 - O|.. .4 |0 1 b bc .
Theinverse ofd = | o o | _. |is4" = |, o ; . |- (This
0 0 o0 1 0 0 O 1
would be a good example for the cofactor formdia! = C T/ det4 in Section 5.3)
1 1 1 1
a 1 0 1 1 a 1
The productl o 4 0 d 1 1 =|b d 1
c 0 0 1 0 e 0 1 f o1 c e f 1

that in this order the multipliers shows b, ¢, d, e, f are unchanged in the product
(important for A = LU in Section 2.6.

MM~ = (1,-UV) (I, +U(I,,—VU)™'V) (thisis testing formula)
=1,-UV+UI,—VU)"'W-UVU,—VU)"'V (keep simplifying
=1,-UV+UIn—VU)1,—VU) 'V =1, (formulasl, 2, 4 are similay

4 by 4 still with 7y, = 1 has pivotsl, 1, 1, 1; reversing tol * = UL makesT}, = 1.

Add the equation€’x = b to find0 = by + b, + b3 + by. Same forFx = b.

The block pivots aredA and S = D — CA™'B (and d —ch/a is the correct
second pivot of an ordinary 2 by 2 matrix). The example pnobldas

R IHEEHINEEE]
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46 Inverting the identityd(I + BA) = (I + AB)A gives(I + BA)'4™! = A~1(I +
AB)™'. Sol +BA andl +AB are both invertible or both singular wheinis invertible.
(This remains true also whedis singular: Problem 6.6.19 will show thdtB and BA
have the same nonzero eigenvalues, and we are looking here atl.)

Problem Set 2.6, page 102

1 {57 = 1 multiplied row 1; L = o times ! (1) [x] = [5] =cisAx = b:

ARG |

2 Lc=bis [1 0 cl] = [5} solved bye = as elimination goes forward.

5
1 1{|e 7 2

1 1 x 5 3. _
Ux =cis [0 1} [y] = [2] solved byx = [2} in back substitution.

3 {31 = 1 and{;3, = 2 (and{;33 = 1): reverse steps to getu = b from Ux = c:
1times(x+y+z = 5)+2times(y+2z = 2)+1times(z = 2) givesx+3y+6z = 11.

ool JE L L R

2 1 0 2 1 0
}[o 4 2}:[0 4 2]=U.WithE—1asL,A=LU=

1
5EA=|:0
-3 6 3 5 0 0 5

1
|:01 :|U.
301

1 1 1 1 1 1 0 O
6 |:0 1 :||:—2 1 :|A = |:O 2 3:| = U. Then4d = |:2 1 Oi| Uis
0-2 1 0 0 1 0 0-6 0 2 1

the same a&5,' E5,'U = LU. The muItipIiers€21,€32 = 2 fall into place inL.

1 1
7 E32E31E21 A = 1 1 2 2 2 This is
-2 1 -3 1 3 4 5

1 0 1 1
0 2 0| =U.Putthosemultipliers, 3,2 into L. ThenA4 2 1 0 = LU.
0 0 2 3 21

1 1
8 E = E32E31E21 = |: 1 :| |: 1 :| |:—a 1 :|=|: —a 1 :|
—c 1]L-b 1 1 ac—b —c 1

The multipliers are just, b, ¢ and the upper trianguldf is 7. In this cased = L and
its inverse is that matri = L1,

110 1 de g7 d=1,e=1,thenl =1
9 2by2:d =0nota||owed[l 1 2}:[1 1 }[ f h] f = 0is not allowed
121 mn 1 i | no pivotinrow 2

1
0
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Solutions to Exercises

2 leads to zero in the second pivot position: exchange rowsnatdingular.

c =
¢ = 1 leads to zero in the third pivot position. In this case therixds singular.

2 4 8 2
A= [0 3 9} hasL = I (A is already upper triangular) and = [ 3 } ;
0 0 7 7

1 2 4
A= LU hasU = A; A= LDU hasU = D74 = [O 1 3} with 1's on the

0 0 1

diagonal.

T2 47 1 o]f2 47 _[1 ol[2 o[t 27_ R
A—[4 11]—[2 1][0 3]—[2 1][0 3} [0 1}—LDU’U'SL

M1 1 4 07 1 1 1 4 0

4 1 }[0 —4 4 ={4 1 ][ —4 }[0 1 —1:|:LDLT.
10 —1 1 0 0 4] 0 —1 1 41L0 0 1

[a a a a 1 AT a a a a a # 0 All of the
abbb| |11 b—a b—a b-— Needb;ﬁamultipliers
abcc | 111 c—b c—-b c#barel; =1
labcd 1111} d—c d # cforthis A
fa r r 1 1 a r r r a#0
a b s s| |11 b—r s—r s—r b#r

a b c t| |1 1 c—s t—s 'Needcaés
la b ¢ d 1 1 d—t d#t
[1 0 21 . -5

4 1]c:[ ]gwes [ } hen[ :|x= [3} glvesz[ 3].

) 2 4 2

Ax =b is LUx_[ 17 } [ ] Forwardto[0 1i|x=|:3i|=c'

1 00 11 4 3
|:l 1 O}c = [ i|g|V€SC = |: i| Then|: 1 l}x = |:1i| givesx = [O}
1 11 0 0 1 1 1

Those are the forward elimination and back substitution psstefor

1 1 1 1 4
Ax=[11 M 1 1}6:H.
I 1 1 1 6

(@)L goestol (b) I goestol ™! (c) LU goestoU. Elimination multiply byZ=!!

(@) Multiply LDU = L;D,U; by inverses to geL7!LD = DU;U~!. The left
side is lower triangular, the right side is upper triangutaiboth sides are diagonal.
(b) L,U, Ly,U; have diagonal’s soD = D;. ThenL!L andU,; U~ are both/.

1 1 1 0 a a 0 a
[1 1 }[ 1 1} = LIU;[a a+b b } =(sameL)[ b }
0 1 1 1 0 b b+c c
(sameU). A tridiagonal matrix4 hasbidiagonal factors L andU .

A tridiagonal T has 2 nonzeros in the pivot row and only one nonzero belowittoe p
(one operation to find and then one for the new pivot!)T" = bidiagonal L times
bidiagonalU .
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21 For the first matrix4, L keeps the 3 lower zeros at the start of rows. Bumay not
have the upper zero whers, = 0. For the second matri®, L keeps the bottom left
zero at the start of row 4U keeps the upper right zero at the start of column 4. One
zero inA4 and two zeros irB are filled in.

5 3 1 4 2 0 2 00

22 Eliminatingupwards |3 3 1| —> |2 2 0| —> |2 2 0| = L. Wereach
1 1 1 1 1 1 1 1 1

alower triangularZ, and the multipliers are in amppertriangularlU. A = UL with

1 1 1
U= |:0 1 1:|.
0 0 1
23 The 2 by 2 upper submatrit, has the first two pivots, 9. Reason: Elimination od
starts in the upper left corner with elimination da.
24 The upper left blocks all factor at the same timedasdy, is L Uy.
25 Thei, j entryof L='is j/ifori > j. And L;;—; is (1 —i)/i below the diagonal
26 (K™Y = j(n—i+1)/(n+1)fori > j (and symmetric)(n + 1)K ~! looks good.

Problem Set 2.7, page 115

1o S I T T S T | e [ . o |
1A—[9 3}“""5/‘ —[0 3]/1 —[—3 1/3]’(A ) =) —[0 1/3]’
_|1 ¢ T_ a0 o)y
A_[c O}hasA = AandA _c—z[c _1]_(A ).
2 (AB)"isnotAT BT except whemt B = BA. Transpose thatto find3TA™ = ATBT.
3@ (AB)™HT = B1A™HT = A HT(B~HT. This is also(AT)"1(BT)~L.
(b) If U is upper triangular, so i§ ~!: then(U~1)T is lower triangular.

4 A= [8 (1)} hasA4? = 0. The diagonal 04" 4 has dot products of columns dfwith

themselves. IfAT A = 0, zero dot productss zero columns= A = zero matrix.

0
5 (@) xTAy=|0 1][411 g 2} [(1)}:5 () xTA=[4 5 6] (c) Ay:|:§:|.

T AT CT T T T T
6 M' = BT DT yM" = M needsd' = AandB' = C andD' = D.

7 (a) Falseﬂ(é)1 ‘(ﬂ is symmetric only ifA = AT. (b) False: The transpose dfB
0 transposes t 0 AT
A0 P AT 0|
So(AB)" = AB needsBA = AB. (c) True: Invertible symmetric matrices have

symmetric in verses! Easiest proof is to transpdse! = 7. (d) True:(ABC)Tis
CT"BTAT(= CBA for symmetric matricest, B, andC).

8 Thel inrow 1 hasn choices; then thé in row 2 hasn — 1 choices .. .! overall).

is BTAT = BA when A and B are symmetri
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0 1 0711 0 O 0 0 1 01 0
9 PyP, = |0 0O 1|0 0 1| = |0 1 Of butP,,P; = |1 0 0.
1 0 0JLO 1 O 1 00 0 0 1

If Pz and P4 exchangalifferentpairs of rows,P; P, = P4 P; does both exchanges.

10 (3,1,2,4) and(2, 3, 1,4) keep4 in place;6 more evenP’s keep 1 or 2 or 3 in place;
(2,1,4,3) and(3,4, 1,2) exchange 2 pairg.1,2,3,4), (4,3,2, 1) makel2 evenP’s.

0 1 0710 0 6 1 2 3
11 PA=|0 0 1||1 2 3| =10 4 5| isuppertriangular. Multiplyingn
1 0 0JLO 4 5 0 0 6

the rightby a permutation matri®, exchanges theolumns To make this4 lower tri-

1
angular, we also need; to exchange rows 2 and 3P;AP, = [ 1}
1

1 6 0 0
A|: 1 :|=|:5 4 0:|.
1 3 2 1

12 (Px)"(Py)=x"P"Py=xTysincePTP=1.IngeneralPx-y=x-PTy # x-Py:

0 1 0 1 1 1 01 0 1
Non-equality where? # PT: [O 0 1} |:2i| . |:1i| # [2} . [O 0 1} |:1i|
1 0 04L3 2 3 1 0 04[2

0O 1 0

13 AcyclicP = [0 0 1 |oritstranspose willhav®3 =1 :(1,2,3) - (2,3.1) —
1 0 0

1 0

(3.1,2) > (1,2,3). P = [0 P

} for the sameP hasP* = P # 1.

14 The “reverse identity’P takes(1,...,n)into (n,...,1). When rows and also columns
are reversed,PAP);; iS (A)n—it+1,n—j+1. In particular(PAP )y is Ayy.

15 (a) If P sends rowl to row4, thenP T sends rom torow1 (b) P = [g g] =

PT with E = [(1) (1)] moves all rows:1 and2 are exchanged, and4 are exchanged.

16 A% — B? (butnot(4 + B)(A — B), this is different) and alsd BA are symmetric if4
and B are symmetric.
1 1

m@A=|, [|= AT is not invertible (b)A = [(1) %] needs row exchange

(c)Azﬁ é}hasD:[(l) _Ol]

18 (@) 5+4+3+2+1 = 15independent entriesif = AT (b) L has 10 and has 5;
total 15inLDLT (c) Zero diagonal ifAT = —A, leaving4 +3 42+ 1 = 10 choices.

19 (a) The transpose ®RTARiSRTATRTT = RTAR = n by n whenA" = A (anym
byn matrix R) (b) (RTR),; = (columnj of R)- (column; of R) = (length squared
of column;) > 0.
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20

21

22

23

24

25

26

27

28

I 3| (1L Oof|1 of|1 3. 1 b| |1 0Off1l 0 1 b
3 273 L[||0 =7[|0 1} b c| |b 1||0 c—=b2]|0 1
1 2 _1
2 -1 0 h 3 I -5 0 ;
-1 2 —1|=]|—3 1 > 1 _% =LDL".
0 -1 2 _2 4
0 -3 1 3 1
Elimination on a symmetric 3 by 3 matrix leaves a symmetriedoright 2 by 2 matrix.
248 A 5 7 d—b e—be
Theexampleg4 3 9|and| b d e Ieadto[_7 _32] and[ b 2].
8 90 ce f e—bc f-c
1 1 I 0 1 1 1 1 2 0
[1 }A:{o | M ! 1H 1}4:[1 | M a 1}
1 2 3 1 —1 1 2 0 1 1
0 0 0 1
{1 0 0 0] _ o This cyclic P exchanges rows-2 then
A= 01 00 =PandL=U=1. rows2-3 then rows3-4.
0 010

17710 1 2 1 2 1 1
PA=LU is[ 1 } [O 3 8} = [O 1 } [ 3 8}. If we wait
1 2 1 1 0 1/3 1 -2/3

1 1 2 1 1
to exchange and, is the pivot,A = L, P,U; = |:3 1 } [ 1} [O 1 2]
1 1 0O 0 2

Thesplu code will not end wheabs(A(k, k)) < tol line 4 of theslu code on page 100.
Insteadsplu looks for a nonzero entry below the diagonal in the currehiroo k, and
executes a row exchange. The 4 lines to exchangecraiith row r are at the end of
Section 2.7 (page 113). Tiond that nonzero entr(r, k), follow abs(A(k, k)) < tol
by locating the first nonzero (or the largeftr, k) out ofr = k + 1,...,n).

One way to decide even vs. odd is to count all pairs thags in the wrong order. Then
P is even or odd when that count is even or odd. Hard step: Shatathexchange
always switches that count! Then 3 or 5 exchanges will lehsedount odd.

1 1 0 0
(@) Es1 = [—3 1 }putso inthe2, 1 entry of E51 A. ThenEy AE], = [0 2 4}
1 0 4 9

1
is still symmetric, with zero alsoinits 1, 2 entry.  (b) NoweuSs, = |: 1 i|
—4 1
to make the 3, 2 entry zero arth, E>1 AE], E1, = D also has zero in its 2, 3 entry.
Key point: Elimination from both sides gives the symmettiD LT directly.

01 2 3

A= ; g (3) (1) = A" has0, 1,2, 3 in every row. (I don’t know any rules for a
301 2

symmetric construction like this)
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Reordering the rows and/or the columng[@f? | will move the entrya. So the result
cannot be the transpose (which doesn’t maje

1 0 17 Tyec YBC + VBS
(a) Total currents ared'y = |—-1 1  0||ycs | = |—-yBc+ycs |.
0 -1 —14Lyss —Ycs — YBS

(b) Either way(Ax)"y = x"(A"y) = xpypc + XBYBS — XCYBC + XCYCS —
Xsycs — XSYBS-

[410 1(5)80} [xl} s ATy — [1 40 2 } [ 720} - [ 6820 } I truck
2 50 X2 50 1000 50 3000 188000 | 1 plane
Ax - y is thecostof inputs whilex - ATy is thevalueof outputs.

P3 = I so three rotations fa360°; P rotates aroundl, 1, 1) by 120°.

1 2 I o1 2 N . :
[4 9] = [2 1] [2 5] = EH = (elementory matrix) times (Symmetric matrix).

L(UT)~1 is lower triangular times lower triangular, so lower triatay. The transpose
of UTDU isUTDTUTT = UTDU again, soU DU is symmetric. The factorization
multiplies lower triangular by symmetric to g&tDU which is A4.

These are groups: Lower triangular with diagotia) diagonal invertibleD, permuta-
tions P, orthogonal matrices witiD T = Q1.

Certainly BT is northwest. B2 is a full matrix! B~" is southeast[1 1]~ = [9_1].
The rows of B are in reverse order from a lower triangulay so B = PL. Then
B~! = L=1P~1 has thecolumnsin reverse order froni.~!. SoB~! is southeast
NorthwestB = PL times southeasP U is (PLP)U = upper triangular.

There aren! permutation matrices of order. Eventuallytwo powers ofP must be
the samelf P" = PSthenP” ~—5 = [. Certainlyr —s < n!

P 01 01 0
p=|"72 is 5 by 5 with P, = andP;=|0 0 1|andPS=1.
Ps o 1 0 0

To split A into (symmetricB) + (anti-symmetricC), the only choice i = %(A-l—AT)
andC = (4 — A").

q; 10
StartfromQTQ = I, as in[ i}[ql 0] = [0 1]
92

(@) The diagonal entries givglg, = 1 andglg, = 1: unit vectors
(b) The off-diagonal entry igy{¢, = 0 (and in genera§/q; = 0)

cosh — sine}

(c) The leading example fap is the rotation matrl{ sinf  cosh
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Problem Set 3.1, page 127

lx+y#y+xandx + (y +z2)# (x +y)+zand(c; + c2)x # c1x + cax.

2 Whenc(xy, x2) = (cx1,0), the only broken rule is 1 times equalsx. Rules (1)-(4)
for additionx + y still hold since addition is not changed.

3 (a) ¢x may not be in our set: not closed under multiplication. Als®rand no—x
(b) c(x + y)isthe usualxy)c, whilecx + cy is the usualx€)(y¢). Those are equal.
Withe¢ = 3, x =2,y = 1thisis3(2+ 1) = 8. The zero vector is the number 1.

. . o o], [1 -1 [-2 2
4 The zero vector in matrix spadé is 0 ()]EA =1 _1 and—A4 = 5 2]
The smallest subspace i containing the matrixd consists of all matricesA.

5 (a) One possibility: The matricesd form a subspace not containiiy (b) Yes: the
subspace must contaih— B = I (c) Matrices whose main diagonal is all zero.

6 When f(x) = x? andg(x) = 5x, the combinatior8 f — 4g in function space is
h(x) =3f(x) —4g(x) = 3x% —20x.

7 Rule 8 is broken: Ifc f(x) is defined to be the usudgf (cx) then(c; + ) f =
f ((c1 + c2)x) is not generally the same asf + co f = f(c1x) + f(c2x).

8 If (f + g)(x)istheusualf (g(x))then(g + f)xis g(f (x)) which is different. In
Rule 2 both sides arg (g (h(x))). Rule 4 is broken there might be no inverse function
£~ Y(x) such thatf (f ~!(x)) = x. If the inverse function exists it will be the vector

9 (a) The vectors with integer components allow addition,rfmitmultiplication by%
(b) Remove ther axis from thexy plane (but leave the origin). Multiplication by any
¢ is allowed but not all vector additions.

10 The only subspaces are (a) the plane with= b, (d) the linear combinations af
andw (e) the plane witth; + b, + b3 = 0.
a

g g} (b) AIImatrices[0 g] (c) Alldiagonal matrices.

12 Forthe planer + y —2z = 4, the sum of4, 0, 0) and(0, 4, 0) is not on the plane. (The
key is that this plane does not go througho, 0).)

13 The parallel plané, has the equatiom + y — 2z = 0. Pick two points, for example
(2,0, 1) and(0, 2, 1), and their sum2,2,2) is in Py.

14 (a) The subspaces Bf areR? itself, lines througl{0, 0), and(0, 0) by itself (b) The
subspaces dR* are R* itself, three-dimensional planes- v = 0, two-dimensional
subspacegn; - v = 0 andn, - v = 0), one-dimensional lines throudh, 0, 0, 0), and
(0,0,0,0) by itself.

15 (a) Two planes througlto, 0, 0) probably intersect in a line throudh, 0, 0)

(b) The plane and line probably intersect in the pginoy, 0)
(c) If x andy arein bothS andT, x + y andcx are in both subspaces.

16 The smallest subspace containing a plBrad a linel is either P (when the lind_ is
in the planeP) or R3 (whenL is notinP).

17 (a) The invertible matrices do not include the zero matrixitey are not a subspace

(b) The sum of singular matric{% 8] + [8 (1)] is not singular: not a subspace.

11 (a) All matrices[
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18 (a) True The symmetric matrices do form a subspace Tb)e The matrices with
A" = —A do form a subspace (dFalse The sum of two unsymmetric matrices
could be symmetric.

19 The column space ofl is the x-axis = all vectors(x,0,0). The column space aB
is thexy plane= all vectors(x, y,0). The column space df is the line of vectors
(x,2x,0).

20 (a) Elimination leads td = b, — 2b; and0 = b; + b3 in equations 2 and 3:
Solution only ifb, = 2by andbz = —b, (b) Elimination leads t® = by + 2b5
in equation 3: Solution only ib; = —b;.

21 A combination of the columns af is also a combination of the columns 4f Then

1 3 1 2
C=26andA=24

different column space.
22 (a) Solution for everyy (b) Solvable only ifb; = 0 (c) Solvable only ifb; = b,.

23 The extra columib enlarges the column space unléds already inthe column space.
(4 b] = 1 0 1] (largercolumnspace) [1 0 1| (bisincolumnspace)
~ 10 0 1| (nosolutiontodx =b) |0 1 1| (Ax = b has a solution)

24 The column space aofl B is contained in(possibly equal to) the column space 4f
The exampleB = 0 andA # 0 is a case wher B = 0 has a smaller column space
thanA.

25 The solutiontodz = b + b isz=x + y. If bandb™ are inC (A4) soisb + b*.

26 The column space of any invertible 5 by 5 matrixR8. The equatiordx = b is
always solvable (by = A~'b) so everyb is in the column space of that invertible
matrix.

27 (a) False \Vectors that arenot in a column space don't form a subspace.
(b) True Only the zero matrix ha€ (4) = {0}. (c) True C(A4A) = C(24).

(d) False C(A—1) # C(A)whend = I or A = [1 0

have the same column spacB. = é 2 has a

0 0] (or other examples).
1 1 0 1 1 2 1 2 0
286A=|1 0 Ojandf1 O 1|donothavgl,1,1)inC(4). A=|2 4 0
01 0 01 1 3 6 0
hasC (A4) = line.
29 WhenAx = b is solvable for allb, everyb is in the column space of. So that space
isR?.
30 (a) If u andv are bothinS + T, thenu = s; +¢t; andv = s, +t,. Sou +v =
(s1+52)+ (t; +1ty)isalsoinS + T. Andsoiscu = c¢s; + ctq: a subspace
(b) If S andT are different lines, the§ U T is just the two linesr{ot a subspagebut
S + T is the whole plane that they span.
31 If § =C(A)andT = C(B)thenS + T isthe columnspacedif =[A4 B].

32 The columns of4 B are combinations of the columns #f So all columnsof A AB|]

are already irC (4). But4 = 8 (1)

For square matrices, the column spacR’isvhenA isinvertible

has a larger column space thdh = [8 8}
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Problem Set 3.2, page 140

12246 Free variables,, x4, x 2 42 Freex
1@U=|0 0 1 2 3| ! 27405 () U:{o 4 4} $oex3
[0 00 0 0} Pivot variablesy;, x3 00 0 Pivotxy, x»

2 (a) Freevariables,, x4, x5 and solutiong—2, 1,0, 0, 0), (0,0,—2,1,0), (0,0,—-3,0, 1)

(b) Free variablers: solution(1, —1, 1). Special solution for each free variable.

3 The complete solution telx = 0is (—2x3, X2, —2x4 — 3x5, X4, X5) With x5, x4, x5

free. The complete solution tBx = 0is (2x3, —x3, x3). The nullspace contains only
x = Owhen there are no free variables.

00 0 0O 0 0

0
Ao [-13 s _J1roy[-135]. ,_[-135]_Jto
= |26 10 T |2 1| 000" T |26 77|21

o0 5w

1 2 0 0 O 1 0 —1
R:[O 01 2 3},R:[O 1 1},RhasthesamenuIIspacelaisandA.

0 0 =3

6 (a) Special solution63, 1,0) and(5,0,1) (b) (3,1,0). Total of pivot and free i.

10

11

12

13

14
15

(&) The nullspace aoft in Problem 5 is the planex + 3y + 5z = 0; it contains all the
vectors(3y + 5z,y,z) = y(3,1,0) + z(5,0,1) = combination of special solutions.
(b) Thelinethrough(3, 1,0) has equationsx +3y+5z = 0and—2x+6y+7z = 0.
The special solution for the free variablgis (3, 1, 0).

1 -3 =5 . o, |1 =3 o0f .., |1 O
R:[O 0 O:|WIthI=[l],R—|:O 0 l]WIthI—[O 1]

(a) False Any singular square matrix would have free variables Tb)e An in-
vertible square matrix has free variables. (c)True(only n columns to hold pivots)
(d) True(only m rows to hold pivots)

() Impossiblerow 1 (b)4 = invertible (c) A =allones (d)A=2I,R=1.

ro 1. 1 1 1 1 1 1 1 1 1 1 1 1 0O 0 01 1 1 1

0O 0 o0 1 1 1 1 O 0 1 1 1 1 1 0O 0 0 0 0 1 1

0O 0 0 0 1 1 1 0O 0 0 0 0 1 1 0O 0 0 0 0 0 O
L1000 00O 0 O 0O 0 0 0 0 0 1 0O 0 0 0 0 0 O

1 1 01 1 1 O O 01 1 0 0 1 1 1

0O 01 1 1 1 0 O 0O 0 01 0 1 1 1 . . .
000000 10lloooo 111 1!l Notice the identity
0O 0 0 0 0 0 0 1 O 0 0 0 0 0 o0 o0

matrix in the pivot columns of theseducedrow echelon forms.

If column 4 of a 3 by 5 matrix is all zero thexy, is afreevariable. Its special solution
isx = (0,0,0,1,0), because 1 will multiply that zero column to giviex = 0.

If column 1= column 5 then;s is a free variable. Its special solution(is1, 0,0, 0, 1).

If a matrix has: columns and pivots, there ar@a — r special solutions. The nullspace
contains onlyx = 0 whenr = n. The column space is all & whenr = m. All
important!
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The nullspace contains only = 0 when A has 5 pivots. Also the column spaceRs,
because we can solvex = b and eveny is in the column space.

A=[1 —3 —1]givesthe planee — 3y — z = 0; y andz are free variables. The
special solutions aré3, 1,0) and(1,0, 1).

X
Fill in 12 then4 thenl to get the complete solution to— 3y — z = 12: [yi| =

V4
12 4 1
[ 8 } + [(1)} +z [(1)} = Xparticular™ *nullspace

If LUx = 0, multiply by L=! to find Ux = 0. ThenU and LU have the same
nullspace.

Column 5 is sure to have no pivot since it is a combination olfieracolumns. With
4 pivots in the other columns, the special solutios is (1,0, 1,0, 1). The nullspace
contains all multiples of this vectar(a line inR>).

For special solutiong2,2,1,0) and (3,1,0, 1) with free variablesxs,x;: R =

[(1) (1) :g :?] andA can be any invertible 2 by 2 matrix times  this
1 0 0 —4

The nullspace off = [0 1 0 —3} is the line through4, 3,2, 1).
0 0 1 -2

1 0 —1/2

A= |:1 3 —2i| has(1,1,5) and(0, 3, 1) in C(4) and(1, 1,2) in N(A). Which
51 -3

other A’s?

This construction is impossible: 2 pivot columns and 2 fragables, only 3 columns.

1 -1 0 0
A= [1 0 -1 Oi| has(1,1,1) in C(A) and only the lindc, ¢, c,c) in N(A).
1 0 0 -1

00 00

If nullspace= column space (withr pivots) therw —r = r. If n = 3 then3 = 2r is

impossible.

If Atimesevery column oB is zero, the column space #fis contained in thaullspace

i i andB = [_} _” HereC (B) equalsN (A).

(For B = 0,C(B) is smaller.)

For A = random 3 by 3 matrixR is almost sure to bé. For 4 by 3,R is most likely

to be with fourth row of zeros. What about a random 3 by 4 matrix?

If N(A) = line throughx = (2,1,0, 1), A hasthree pivotg4 columns and 1 special
1 0 0 =2

solution). Its reduced echelon form canRe= [O 1 0 —1} (add any zero rows).
0 01 O

A= [0 1 } hasN (4) = C (4) and also (a)(b)(c) are all false. Notigef(AT) = [ 1 o]

of A. An example isd =
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01 0

33 (a) [(1) (1)][(1) 8] [(1) (1)} [8 (1)} [8 8] (b) All 8 matrices areR’s!

34 One reason thak is the same fod and—A: They have the same nullspace. They also
have the same column space, but that is not required for tviaegto share the same
R. (R tells us the nullspace and row space.)

32 Any zero rows come after these ron®:=[1 —2 —-3], R = [1 0 0], R=1.

35 The nullspace oB = [A A] contains all vectors = [_i] for y in R*.
36 If Cx =0thenAx = 0andBx = 0. SoN(C) = N(A) N N(B) = intersection

37 Currents yy —y3+ys = —y1+y2++ys = —y2+ya+ys = —ya—ys—ye = 0.
These equations add o= 0. Free variabless, ys, y¢: watch for flows around loops.

Problem Set 3.3, page 151

1 (a) and (c) are correct; (b) is completely false; (d) is fdlseausekR might havel'’s
in nonpivot columns.

T4 4 4 4T T 11 1 17
2 A= 4 4 4 4| hasR = 0 0 0 0|. Therankis = 1;
| 4 4 4 4] L 0 0 o0 0]
1 2 3 47 o1 0 —1 =27
A= 2 3 4 5| hasR = 0 1 2 3 (. Therankis = 2;
| 3 4 5 6] L 0 0 0 0
M —1 1 -1 17 1 -1 1 —17
A=1|-1 1 -1 1| hasRk = 0 O O Of. Therankisr =1
-1 1 =1 1] L 0 0 0 0]
1 2 0
_ . R4 O Zero rows go
3 RA_[g 8 (1)} Rp =[Ra Ra] RC_’[ 0 RA}_> to the bottom
. . [0 1 . I
4 |If all pivot variables come last theR = 0 0 . The nullspace matrix i/ = ol
5 Ithink Ry = Ay, R, = A, istrue. ButR; — R, may have-1’s in some pivots.
6 A andAT have the same rank= number of pivots. Bupivcol (the column number)
0 1 0
is 2 for this matrix4 and 1 forA™: A =0 0 O}.
(0 0 0
7 Special solutionsitV =[-2 —4 1 0; -3 =5 0 1] and[1 O 0;0 —2 1].
1 2 4 2 6 -3
8 The new entries keep rank 14 = [2 4 8}, B = [1 3 —3/2]
4 8 16 2 6 -3

b
M = |:LcZ bc/a]'
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If A hasrank 1, the column space ibree in R™. The nullspace is planein R” (given
by one equation). The nullspace matixis n by n — 1 (with n — 1 special solutions
in its columns). The column space 4f is alinein R".

36 61 [3][1 2 2]

12 2]=|1 and[_% . _‘2‘]=[_ﬂ[1 13 2]
48 8| |4

A rank one matrix has one pivot. (That pivot is in row 1 aftesgible row exchange; it
could come in any column.) The second rowbfs zero.

0 1

Invertibler by r submatrices g — 1 3
Use pivot rows and columns™ — |1 4

}andS =[1l]andS = [1 O]

P has rank (the same ad) because elimination produces the same pivot columns.

The rank ofRT is alsor. The example matrixd has rank with invertible S:

1 3
B 1 2 2 T _[1 2 |13
R I S I P I

The product of rank one matrices has rank one or zero. TheSeysar matrices have
rank(AB) = 1;rankAM) = 1 exceptAM =0if ¢ = —1/2.

(wv")(wz") = u(v"w)z" has rank one unless the inner produatis = 0.

(a) By matrix multiplication, each column of B is A times the corresponding column
of B. Soif column; of B is a combination of earlier columns, then coluiof AB

is the same combination of earlier columns4AB. Then rank(AB) < rank(B). No
new pivot columns! (b) The rank a® is r = 1. Multiplying by 4 cannot increase
this rank. The rank oft B stays the same fot; = / andB = [1 }]. It drops to zero

ford, = [_}_1].
If we know that rankBT AT) < rank(A"), then since rank stays the same for transposes,
(apologies that this fact is not yet proved), we have (aik) < rank(A).

We are giverd B = [ which has rank. Then rank4 B) < rank(A) forces rank4) =
n. This means thad is invertible. The right-inverse is also a left-inverseBA = I
andB = A1

Certainly A and B have at most rank. Then their producd B has at most rank
SinceBA is 3 by 3, it cannot bel evenifAB = 1.

(a) A and B will both have the same nullspace and row space a&ttiey share.
(b) A equals annvertiblematrix timesB, when they share the sanke A key fact!

1 0 1 1 0 1 1 0
A = (pivot columng(nonzerorows o) = | 1 4 =1 1 0|+
1 8 0 01 1 1 0

882 B_2210_co|umns_20+02
008' 12 3|0 1| timesrows ~ |2 0 0 3
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I 1 2 2 1 0 2 2
23lfc=1,R=10 0 0 0] hasxy,x3,x4free. Ifc #1,R =0 1 0 0
0 0 0 O 00 0 O
-1 -2 =2
hasxs, x4 free. Special solutions iV = (1) (1) 8 (forc = 1)andN =
0 0 1
—2 -2
0 0 0 1 . I -2
1 0 (forc # 1). Ifc:l,R:[O O]andxlfree;lfczz,R:[O 0}
0 1

andx, free; R = [ if ¢ # 1,2. Special solutions inlN = [(ﬂ (c=1)o0orN =

%] (c =2)or N =2 by 0 empty matrix.

24 A=[I I]hasN:[_I};B:[l I]hasthesame/;cz[l I I]has

1 0 0
-1 -1
N=|: 1 Oi|.
0 I

1 1 2 4 1 1 10 2 3
25 A=|1 2 2 5|=|1 2 [0 10 1] = (pivot columns) timegR.
1 3 2 6 1 3

26 Them by n matrix Z hasr ones to start its main diagonal. Otherwigas all zeros.
|1 F|_ rbyr rbyn—r|, n_ |1 0f. Ty
27 R_[O O]_[m_r byr m—r byn_r},rref(R )= 00 ; rref (R R) =sameR

28 Therow-column reduced echelon forimalways[(l) 8] lisrbyr.

Problem Set 3.4, page 163

2 4 6 4 b 2 4 6 4 b 2 4 6 4 b
1|:2 5 7 6 b2i|—>|:0 1 1 2 bz—b1i|—>|:0 1 1 2 bz—bl i|
2 3 5 2 b; 0—1—-1-2 bs—Db; 0 0 0 0 bz+hby—2b
Ax = b has a solution whebs; + b, —2b; = 0; the column space contains all combi-
nations of(2, 2, 2) and(4, 5, 3). This is the planebs + b, —2b; = 0 (!). The nullspace
contains all combinations af = (—1,—1,1,0) ands, = (2,-2,0, 1); Xcompletre =
Xp + Cc1851 + C282;

1 0 1 =2 4
[R d]= [O 11 2 —1} gives the particular solution, = (4,—1,0,0).
0 0 O 0 0
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2 1 3 by 2 1 3 by 1 1/2 3/2 5
2|:6 39 bz]—>|:0 0 0 b2—3b1i| Then[ R d]:[o 0 0 Oi|
4 2 6 bs 0 0 0 bs3—2b 00 o0 O
Ax = b has a solution wheh, — 3b; = 0 andbs — 2b; = 0; C(A) = line through
(2,6,4) which is the intersection of the planés — 3b; = 0 andbsz — 2b; = 0;
the nullspace contains all combinationssef= (—1/2,1,0) ands, = (—3/2,0, 1);
particular solutiont , = d = (5,0,0) and complete solutiomn, + c1s1 + ¢252.

2 -3
3 O} + xz|: 1}. The matrix is singular but the equations are

X =
complete |: 1 0
still solvable;b is in the column space. Our particular solution has freeatdeiy = 0.

4 =xp+ x5 = (3.0, 2.0) + x2(=3.1,0,0) + x4(0,0, 2. 1).

x
complete

1 2 =2 b 1 2 =2 b
5 |:2 5 —4 b2:| — |:0 1 0 b2 —2b1 :| solvable |fb3 — 2b1 — bz = 0.
4 9 -8 b3 0 0 0 b3—2by—by
Back-substitution gives the particular solution4A@ = b and the special solution to
5by —2b, 2
Ax =0 x = |:b2—2b1 i| + x3 |:Oi|
0 1

6 (a) Solvable ifb, = 2b; and3b; — 3bs + by = 0. Thenx = [Sbl - 2b3] —x,

by —2b;

5by —2b3 —1
(b) Solvable ifb, = 2b; and3b; —3b3 + by = 0. x = [ bz —2by } + x3 [—1}.
0 1

1 3 1 b 1 3 1 by One more step givg®d 0 0 0] =
7 |:3 8 2 bz}—>|:0 -1 -1 b2—3b1} row 3 — 2 (row 2) + 4(row 1)
2 4 0 b; 0 —2 -2 b3—2b; | provided b3—2b,+4b1=0.

8 (a) Everyb isin C(A): independent rowsnly the zero combination givés
(b) We needv; = 2b,, becausgrow3) — 2(row2) = 0.

1 0 0771 2 3 5 b 1 2 3 5 b
9 L[U c]:|:2 1 0i||:0 0 2 2 by—2b; }:[2 4 8 12 b2i|
3 =1 1/L0 0 0 0 b3+by—5b; 3 6 7 13 b

= [A b]; particularx , = (=9,0,3,0) means-9(1,2,3) 4+ 3(3,8,7) = (0,6, —6).
ThisisAx , = b.

10 [(1) | j]x - [i] hasx, = (2,4,0) andxpy) = (¢, ¢, ¢).

11 A1 by 3 system has at leasto free variables. Buk | in Problem 10 only hasne.
12 (a) x; —x, andOsolvedx =0 (b) A2x; —2x,) =0,4A2x1 —x3)=0b
13 (a) The particular solutiom, is always multiplied by 1 (b) Any solution can bg

(c) [g g] [ﬂ = [g} Then[” is shorter (length/2) than[g] (length 2)

(d) The only “homogeneous” solution in the nullspace js= 0 whenA is invertible.
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14 If column 5 has no pivotys is afreevariable. The zero vectas notthe only solution
to Ax = 0. If this systemAx = b has a solution, it hamfinitely manysolutions.

15 If row 3 of U has no pivot, that is @aero row Ux = ¢ is only solvable provided
c3 = 0. Ax = b might not be solvablédecausd/ may have other zero rows needing
morec; = 0.

16 The largest rank is 3. Then there is a pivot in evieny. The solutionalways exists
The column space B>. An exampleisd = [I F | for any3 by 2 matrix F.

17 The largest rank of a 6 by 4 matrix is 4. Then there is a pivotvergcolumn The

solution isunique The nullspace contains only the zerector. An example isd =
R =[1 F]forany 4 by 2 matrixF.

18 Rank= 2; rank= 3 unlesg; = 2 (then rank= 2). Transpose has the same rank!
19 Both matricesd have rank 2. Alwayst” 4 andA A" havethe same rankasA.

1 0 0711 O 1 0
0a=10=[1 O[3 43 g};hw[z | OMO > 3}.
0 3 1 0 0 11 =5

X 4 —1 —1 X 4 —1
21 (a) [y} = [O}er[ 1}+z[ 0} (b) [y} = |:0:|+Z|: O].Thesecond
z 0 0 1 z 0 1
equation in part (b) removed one special solution.

22 If Ax, = b and alsoAx, = b then we can ada; — x, to any solution ofAx = B:
the solutionx is not unique. But there will bao solutionto Ax = B if B is notin
the column space.

23 ForA,q = 3 givesrank 1, every othergives rank 2. FoB, g = 6 givesrank 1, every
otherg gives rank 2. These matrices cannot have rank 3.

24 (a) 1 [x] = [Z;] has 0 or 1 solutions, depending #n (b) [ 1] [2} =
[b] has infinitely many solutions for evety (c) There are 0 oso solutions whem

has rankr < m andr < n: the simplest example is a zero matrix.  @esolution
for all » whenA is square and invertible (likd = 7).

25 (@) r <m,awaysr <n (b)) r=m,r<nC)r<m,r=n()r=m=n.
2 4 4 1 0 -2 2 4 4

26 |:0 3 6:|—>R=|:0 1 2:|and|:0 3 6:|—>R=I.
0O 0 O 0 0 0 0 0 5

27 If U hasn pivots, thenR hasn pivotsequal to 1 Zeros above and below those pivots
makeR = I.

281230' 120 0] _‘%_1235 120 -1
0040|0010 *™= 0’0048_’0012'
Freex, = 0 givesx , = (—1,0, 2) because the pivot columns contdin

1 0 0 O 0 1 0 0 -1
29[Rd] = |0 0 1 Of leads tox, = |[1|; [Rd] = |0 0 1 2|
L0 0O 0O 0 000 5

no solution because of the 3rd equation
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1023 2 102 32 1020 —4 _‘3‘
30 (1320 5/5]030-33[-5]0100 3[;| o|ixy=xs
2049 10 000 36 0001 2 5

1 1 1
31 ForA =0 2}, the only solution todx = [2 isx = . B cannot exist since
0 3 3

2
0
1
0

2 equations in 3 unknowns cannot have a unique solutlon

1 31
-1 2
0 0 and the rank

1
32 A = factors intoLU = ; ;
1 2

Lo OO

1
0 1 0 0
isr The speC|aI solution telx = OandUx = Oiss = (—7,2,1). Since
b = (1 3,6,5) is also the last column ofl, a particular solutlon tdx = b is
(0,0,1) and the complete solutionis= (0,0, 1) + c¢s. (Or use the particular solution
xp, = (7,-2,0) with free variablexs = 0.)

Forb = (1,0,0,0) elimination leads td/x = (1,—1,0, 1) and the fourth equa-
tion isO = 1. No solution for thish.

. 1. 1 0 1 0
33 If the complete solution telx = [3] isx = [O] + [C} thend = [3 0]

I 3 1
1 23
2 4 6
I 1 5
= 2.

34 (a) If s = (2,3,1,0) is the only special solution tdx = 0, the complete solution is
x = ¢s (line of solution!). The rank od mustbe4 — 1 = 3.

1 0 =2 0
(b) The fourth variabler, is not freein s, and R must be[o 1 -3 O}.
0 0 01

(c) Ax = b can be solve for alb, becaused and R havefull row rankr = 3.

35 For the—1,2,—1 matrix K(9 by 9) and constant right side = (10,---, 10), the
solutionx = K~'b = (45,80,105, 120, 125,120, 105, 80, 45) rises and falls along
the parabola; = 50i — 5i2. (A formula for K ! is later in the text.)

36 If Ax = b andCx = b have the same solutiond,andC have the same shape and
the same nullspace (tale = 0). If b = columnl of 4, x = (1,0,...,0) solves
Ax =b soitsolvex =b. Thend andC share column. Other columns toad =C'!

Problem Set 3.5, page 178

1 1 1 c1
1 [O 1 1] |:czi| = 0 givescs = ¢, = ¢; = 0. So those 3 column vectors are

0 0 1]|es
1 11 2 0

independent. Bu{o 11 3} [c] = [0} is solved byc = (1,1,—4,1). Then
0O 0 1 4 0

v; + v, —4v3 + v4 = 0 (dependent).

2 vy, vy, v3 are independent (thel’s are in different positions). All six vectors are on
the plang(1, 1,1, 1) - v = 0 so no four of these six vectors can be independent.
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3 If a = 0then columnl = 0; if d = 0 thenb(columnl) —a(column2) = 0;if f =0
then all columns end in zero (they are all in the plane, they must be dependent).

a b ¢ X 0
4 Ux = [O d e } [yi| = [O} givesz = 0theny = 0thenx = 0. A square
0 0 f]llz 0
triangular matrix has independent columns (invertiblerirptvhen its diagonal has no
zeros

1 2 3 1 2 3 1 2 3
5@ |3 1 2} — [O -5 —7} — [O =5 —7}: invertible = independent
12 3 1 0 -1 =5 0 0 -18/5
columns.

M1 2 =3 1 2 =3 1 2 =3 1 0
SR 2}[ ; _7}[0 : _7}A[1}=[o}commns
2 =3 1 =7 7 0 0 O 1 0

add to0.

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 andsthet not 1, 2, 3).
Same column numbers (not same columns!)4or

)

7 The sumw; — v, + v3 = 0 becauséw, — w3) — (w; —w3) + (w; —wy) = 0. So the

0 1 -1
difference arelependenand the difference matrix is singulat: = [1 0 -1 }
I -1 0

8 If cy(wy +w3)+ca(wy +w3)+c3(wy +wsz) = 0then(ca +c3)wy + (1 +c3)ws +
(c1 + c2)w3 = 0. Since thew’s are independenty, +¢c3 =c¢; +c¢3 =c¢1 + ¢ = 0.
The only solution ig; = ¢, = ¢3 = 0. Only this combination o, v,, v3 givesO.

9 (a) The four vectors ifR? are the columns of a 3 by 4 matrix. There is a nonzero
solution toAx = 0 because there is at least one free variable (b) Two vecters ar
dependentifv; v, ] hasrank 0 or 1. (OK to say “they are on the same line” or “one is
a multiple of the other” bubot*“ v, is a multiple ofv,” —sincev; might be0.) (c) A
nontrivial combination ob; and0 gives0: Ov; + 3(0,0,0) = 0.

10 The plane is the nullspace of = [1 2—3—1]. Three free variables give three
solutions(x, y,z,t) = (2,—1 —0—0) and(3,0, 1,0) and(1,0,0, 1). Combinations
of those special solutions give more solutions (all sohgjo

11 (a) Line inR? (b) PlaneinR®>  (c) Allof R*  (d) Allof R>.

12 b is in the column space wheAx = b has a solutiong is in the row space when
ATy = ¢ has a solutionFalse The zero vector is always in the row space.

13 The column space and row spacedofindU all have the same dimensior2=The row
spaces of4 and U are the samgbecause the rows @f are combinations of the rows
of A (and vice versal).

14 v=3(+w) + 3(v —w)andw = 3(v + w) — 5(v — w). The two pairspanthe
same space. They are a basis whemdw areindependent

15 Thern independent vectors span a space of dimensidrhey are dasisfor that space.
If they are the columns ofl thenm is not lessthann (m > n).
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16 These bases are not unique! @) 1,1,1) for the space of all constant vectors
(c,c,c,c) (b) (1,-1,0,0),(1,0,—1,0), (1,0,0,—1) for the space of vectors with
sum of components & (c) (1,—1,-1,0),(1,—1,0,—1) for the space perpendic-

ularto(1,1,0,0) and(1,0, 1, 1) (d) The columns of are a basis for its column
space, the empty set is a basis (by convention)Mér ) = {zero vector}.
1 01 0 1

17 The column space df = is R? so take any bases f&?; (row 1

01 0 1 0
and row2) or (row 1 and rowl + row 2) and (rowl and— row 2) are bases for the row
spaces ol/.

18 (a) The 6 vectorsnight notspanR* (b) The 6 vectorsire notindependent
(c) Any four might bea basis.

19 n-independent columnsy> rankn. Columns spaiR™ = rankm. Columns are basis
for R = rank = m = n. The rank counts the numberiofdependentolumns.

20 One basis i92,1,0), (—3,0,1). A basis for the intersection with they plane is
(2,1,0). The normal vecto(l, —2, 3) is a basis for the line perpendicular to the plane.

21 (a) The only solution tadx = 0is x = 0 becausdahe columns are independent
(b) Ax = b is solvable becausthe columns spaiR®. Key point: A basis gives
exactly one solution for every.

22 (a) True (b) False because the basis vectorRfomight not be inS.

23 Columnsl and2 are bases for thel{fferent) column spaces ofi andU; rows 1 and
2 are bases for the@ual) row spaces off andU;; (1,—1, 1) is a basis for thegqual)
nullspaces.

24 (a) FalseA = [1 1] has dependent columns, independentrow  RKalsecolumn
0 1
0 0
vertible, dimensions= 0 if A = 0, otherwise dimensions 1 (d) False columns
may be dependent, in that case not a basi€fod).

spaces# row space ford = (c) True Both dimensions= 2 if A is in-

25 AhasrankR if c = 0andd =2; B = [Z, i{} has rank2 except wherr = d or

c=—d.

1 0 07 [0 0 07 [0
26 (a)[o 0 0},[0 1 0][0
00 0] Lo o o] [o
01 07 [0 0 1

(b)Add[l 0 0][0 0 0][
00 0] [1 0o

010 0 0 170 0 0

(c)|:—1 0 o},[o 0 0][0 0 1}.
00 0] [-100] [0 —-10

These are simple bases (among many others) for (a) diagatates (b) symmetric
matrices (c) skew-symmetric matrices. The dimension$ &6€3.

oo oo Oo
—_ o O
| I
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1 00 1 00 I 10 1 0 1 1 00
271,/]0 1 0,0 2 O[,{0 1 O],{0 1 Of,[0 1 1 |[;echelonmatri-
0 0 2 0 0 1 0 0 1 0 0 1 0 0 1

ces donot form a subspace; thegpan the upper triangular matrices (not evdryis
echelon).

28 1 00 0 1 0 o o 1| [ 1 -1 0 and 1 0 -1
-1 0 o0 -1 OO0 O —1f|-1 1 O -1 0 1
29 (a) The invertible matrices span the space of3dtly 3 matrices (b) The rank one

matrices also span the space ofaally 3 matrices (c)/ by itself spans the space of
all multiplesc!.

30—120—102 0 0 O 0 0 O
0O o0 o'y 00 Of-1 2 01"|—-1 0 2|
31 (a) y(x) = constaniC (b) y(x) = 3x this is one basis for th2 by 3 matrices with
(2,1, 1) in their nullspace4-dim subspace). (cy(x) =3x + C = y, + y, solves
dy/dx = 3.
32 y(0) = 0requiresd + B + C = 0. One basis is cas — cos2x and cosc — c0oS3x.

33 (a) y(x) = e>* is a basis for, all solutions to’ = 2y (b) y = x is a basis for all
solutions tody /dx = y/x (First-order linear equatios> 1 basis function in solution
space).

34 yi(x), y2(x), y3(x) can bex, 2x, 3x (dim1) or x, 2x, x2 (dim2) or x, x2, x3 (dim3).

35 Basisl, x, x2, x3, for cubic polynomials; basis — 1, x> — 1, x> — 1 for the subspace
with p(1) = 0.

36 Basisfors: (1,0,-1,0),(0,1,0,0),(1,0,0,—1); basisforT: (1,—1,0,0) and(0, 0,2, 1);
SNT = multiples of(3, 3,2, 1) = nullspace foB equation inR* has dimension 1.

37 The subspace of matrices that hat/8 = SA has dimensiotthree

38 (a) No,2 vectors don’'t spaiR>® (b) No, 4 vectors inR? are dependent (c) Yes, a
basis (d) No, these three vectors are dependent

39 If the 5 by 5 matrix[ A b] is invertible,b is not a combination of the columns df
If [A b]is singular, and thé columns ofA4 are independeng is a combination of
those columns. In this caser = b has a solution.

40 (@) The functionyy = sinx, y = cosx, y = e*, y = ¢~ * are a basis for solutions
tod*y/dx* = y(x).

(b) A particular solution taZ4y /dx* = y(x) + 1is y(x) = —1. The complete
solutionisy(x) = —1 + ¢, Sinx + ¢, COSx 4 c3e™ + c4e™* (Or use another basis
for the nullspace of théth derivative).

1 1 1 1 1 i
The sixP’s
41 I = |:1 1i| - |:1 1i| + |:1 1 i|+|: | 1i| —|:1 | i| are dependent

Those five are independent: Thih hasP;; = 1 and cannot be a combination of the
others. Then th@nd cannot be (fromPs, = 1) and alsadsth (P3, = 1). Continuing,

a nonzero combination of all five could not be zero. Furthealehge: How many
independend by 4 permutation matrices?
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42 The dimension ofS spanned by all rearrangementsxois (a) zero wherx = 0
(b) onewherx = (1,1,1,1) (c) three whenx = (1,1,—1,—1) because all rear-
rangements of this are perpendiculartol, 1,1, 1) (d) four when thex’s are not
equal and don't add to zer®No x givesdim S = 2. | owe this nice problem to Mike
Artin—the answers are the same in higher dimensions;n — 1, n.

43 The problem is to show that thes, v's, w’s together are independent. We know the
u’s andv’s together are a basis féf, and theu’s andw’s together are a basis fav'.
Suppose a combination afs, v's, w’s gives0. To be proved All coefficients= zero.

Key idea In that combination giving, the partx from theu’s andv’sisin V. So the
part from thew’s is —x. This partis now it and also inW. Butif —x isinV N W it
is a combination oft’s only. Now the combination uses ondys andv’s (independent
in V1) so all coefficients ofe’s andv’s must be zero. Them = 0 and the coefficients
of thew’s are also zero.

44 The inputs to am: by n matrix fill R”. The outputs (column space!) have dimension
r. The nullspace has — r special solutions. The formula becomes (n — r) = n.

45 |If the left side of dinfV) + dim(W) = dim(V N W) + dim(V + W) is greater tham,
then dim(V N W) must be greater than zero. 8001 W contains nonzero vectors.
46 If A% = zero matrix, this says that each columnfs in the nullspace ofd. If the

column space has dimensionthe nullspace has dimensiof — r, and we must have
r <10—randr <5.

Problem Set 3.6, page 190

1 (a) Row and column space dimensioas5, nullspace dimensios: 4, dim(N (A47))
=2 sum=16=m+n (b) Column space iR3; left nullspace contains onf.

2 A: Row space basis- row 1 = (1,2, 4); nullspace(—2, 1,0) and(—4,0, 1); column
space basis= columnl = (1,2); left nullspace(—2,1). B: Row space basis=
both rows= (1, 2, 4) and(2, 5, 8); column space basis two columns= (1,2) and
(2,5); nullspace(—4, 0, 1); left nullspace basis is empty because the space contains
onlyy =0.

3 Row space basis rows ofU = (0, 1, 2, 3,4) and(0, 0, 0, 1, 2); column space basis
pivot columns (of4A notU) = (1,1,0) and (3,4, 1); nullspace basigl1,0,0,0,0),
0,2,-1,0,0), (0,2,0, -2, 1); left nullspace(1, —1, 1) = last row of E~1!

1

(e) ImpossibleRow space=column space requires = n. Thenm —r = n —r;
nullspaces have the same dimension. Section 4.1 will p@\el) and N(AT)
orthogonal to the row and column spaces respectively—hesetare the same space.

1 0
4 (a) |:1 Oi| (b) Impossibler+(n—r)mustbe3  (c)[1 1] (d) [—g —3]
0 1

54 = [; 1 (1)] has those rows spanning its row spate= [I —2 1] has the

same rows spanning its nullspace @’ = 0.

6 A: dim 2,2,2,1: Rows (0,3,3,3) and (0,1,0,1); columns(3,0,1) and (3,0, 0);
nullspace(1,0,0,0) and (0, —1,0,1); N(A") (0,1,0). B: dim 1,1,0,2 Row space
(1), column spacél, 4, 5), nullspace: empty basi®y (A7) (—4,1,0) and(—5,0, 1).
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7 Invertible3 by 3 matrix A: row space basis: column space basis (1,0, 0), (0, 1,0),
(0,0, 1); nullspace basis and left nullspace basiseampty Matrix B = [A A]: row
space basig1,0,0,1,0,0), (0,1,0,0,1,0) and (0,0,1,0,0, 1); column space basis
(1,0,0), (0,1,0), (0,0, 1); nullspace basis-1,0,0,1,0,0) and(0,—1,0,0,1,0) and
(0,0,—1,0,0, 1); left nullspace basis is empty.

8 [/ O]and[/ I: 0 0]and[0]= 3by2 haverow space dimensions 3,3,0 =
column space dimensionslispace dimensioris 3, 2; left nullspace dimensiors 2, 3.

9 (a) Same row space and nullspace. So rank (dimension of raee¥ps the same
(b) Same column space and left nullspace. Same rank (dioreagcolumn space).

10 Forrand (3), almost surely rank 3, nullspace and left nullspace contain ofly0, 0).
Forrand (3, 5) the rank is almost surelyy and the dimension of the nullspaceis

11 (a) No solution means that < m. Alwaysr < n. Can’t comparen andn here.
(b) Sincem —r > 0, the left nullspace must contain a nonzero vector.

1 1 1 0 1 2 2 1
12 A neat choiceig 0 2 =12 4 0|, r+(mn—r)=n = 3does
1 0 20 1 0 1
not match2 4+ 2 = 4. Only v = 0 is in both N (4) andC (A7).

13 (a) False Usually row space4 column space (same dimension!) (bjue 4 and—A
have the same four subspaces Fg)se(choosed and B same size and invertible: then
they have the same four subspaces)

14 Row space basis can be the nonzero rowé#/of(1,2, 3,4), (0,1,2,3), (0,0,1,2);
nullspace basig0, 1,—2, 1) as forU; column space basid, 0, 0), (0, 1,0), (0,0, 1)
(happen to hav€(4) = C(U) = R?); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the;%ani, 3, 4) is in the
new left nullspace after the row exchange.

16 If Av = O0andv is arow ofA4 thenv -v = 0.

17 Row space= yz plane; column space xy plane; nullspace= x axis; left nullspace
= z axis. Forl + A: Row space= column space= R3, both nullspaces contain only
the zero vector.

18 Row3—2row 2+ row 1 = zero row so the vectotq1, —2, 1) are in the left nullspace.
The same vectors happen to be in the nullspace (an accidehtdonatrix).

19 (a) Elimination onAx = 0leads to0 = b3 — b, — by so(—1,—1,1) is in the left
nullspace. (b)4 by 3: Elimination leads td; — 2b; = 0 andby + by — 4b; = 0, SO
(—2,0,1,0) and(—4, 1,0, 1) are in the left nullspacaVhy? Those vectors multiply the
matrix to givezero rows Section 4.1 will show another approacii = b is solvable
(b isin C (A)) whenb is orthogonal to the left nullspace.

20 (a) Special solutions—1,2,0,0) and (—i,o, —3,1) are perpendicular to the rows of

R (and thenER). (b) ATy = 0 has1 independent solutios last row of E~1.
(E~'A = R has a zero row, which is just the transposeldy = 0).

21 (a) u andw (b) v andz (c) rank< 2 if w andw are dependent or if andz
are dependent  (d) Therankmb™ + wz' is 2.

1 2 1 0 3 27 has column space spanned
2 A=[u w][v" zT]= [2 2} [ ] = [4 2} by u andw, row space

4 1 b 5 1/ spanned by and:z.
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23

24

25

26

27

28

29
30

31

32

Solutions to Exercises

As in Problem 22: Row space basi3, 0, 3), (1, 1,2); column space basid, 4, 2),
(2,5,7); the rank of (3 by 2) times (2 by 3) cannot be larger than thé& @&reither
factor, so rank< 2 and the 3 by 3 product is not invertible.

ATy = d putsd in therow spaceof 4; unique solution if théeft nullspacgnullspace
of AT) contains onlyy = 0.

(@) True(4 andA™ have the same rank) (Walsed = [1 0] andA' have very
different left nullspaces (cJalse (A can be invertible and unsymmetric even if
C(A) =C(A") (d) True(The subspaces fot and—A are always the same. If
AT = A or AT = —A they are also the same fdr)

The rows ofC = AB are combinations of the rows @&. So rankC < rankB. Also
rankC < rank4, because the columns 6f are combinations of the columns af

Choosed = bc/a to make[ 2 8] a rank-1 matrix. Then the row space has bésis)
and the nullspace has basish, a). Those two vectors are perpendicular !

B andC (checkers and chess) both have rank2 # 0. Row 1 and 2 are a basis for the
row space ofC, BTy = 0 has 6 special solutions withl and 1 separated by a zero;
N(CT) has(-1,0,0,0,0,0,0, 1) and(0,—1,0,0,0,0, 1,0) and columns3, 4,5, 6 of

I; N(C) is a challenge.

apgr = l,a12 =0,a13 = 1,a20 = 0,a3, = 1,a31 = 0,a23 = 1,a33 = 0,a21 = 1.
The subspaces fad = uv' are pairs of orthogonal linew (and v+, u and u™t).
If B has those same four subspaces tBes ¢ A with ¢ # 0.

(@ AX = 0 if each column ofX is a multiple of (1,1, 1); dim(nullspacg¢ =
(b) If AX = B then all columns ofB add to zero; dimension of th8’s =
(€) 3+ 6 = dim(M>*3) = 9 entries in & by 3 matrix.

The key is equal row spaces. First row 4f= combination of the rows oB: only
possible combination (notick) is 1 (row 1 of B). Same for each row s6 = G.

3.
6.

Problem Set 4.1, page 202

1

Both nullspace vectors are orthogonal to the row space vgcR?®. The column space
is perpendicular to the nullspace #f (two lines inR? because rank= 1).

The nullspace of a 3 by 2 matrix with rank 24s(only zero vector) sa, = 0, and
row space= R?. Column space= plane perpendicular to left nullspaeeline in R3.

1 2 -3 2 1 1 1
(a)|: 2 -3 1} (b) Impossible,|:—3} not orthogonal tc{l] () [1} and[O} in
-3 5 =2 5 1 1 0

C (4) andN (A7) isimpossible: not perpendicular (d) Negd = 0; takeA = [ _1]

(e) (1,1, 1) in the nullspace (columns add @ and also row space; no such matrix.
If AB = 0, the columns ofB are in thenullspaceof 4. The rows of4 are in theleft
nullspaceof B. If rank = 2, those four subspaces would have dimen&avhich is
impossible for3 by 3.

(@) If Ax = b has a solution andl"y = 0, theny is perpendicular td. o'y =
(Ax)Ty =xT(4Ty) = 0. (b) If ATy = (1,1,1) has a solution(1, 1, 1) is in the
row spaceand is orthogonal to every in the nullspace.
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15
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19

20

21

22

23

Multiply the equations by, y», y3 = 1, 1, —1. Equations add t0 = 1 so no solution:
y = (1,1, =1) is in the left nullspacedx = b would need = (yTA)x = y'bh = 1.
Multiply the 3 equations by = (1,1, —1). Thenx; —x; = 1 plusx,; —x3 = 1 minus
x1 —x3 = 1is0 = 1. Key point: Thisy in N(AT) is not orthogonal td = (1,1, 1)
sob is not in the column space antk = b hasno solution

x = x, + x,, wherex, is in the row space and, is in the nullspace. Thedx,, =0
andAx = Ax, + Ax, = Ax,. All Ax areinC(A).

Ax is always in thecolumn spacef A. If ATAx = 0thenAx is also in the nullspace
of AT. SoAx is perpendicular to itself. Conclusiodx = 0if ATAx = 0.

(@) WithA™ = A, the column and row spaces are the same x(§ in the nullspace
andz is in the column space = row space: so these “eigenvectovg’ e = 0.

For A: The nullspace is spanned l6y2, 1), the row space is spanned by, 2). The
column space is the line througdh, 3) and N (AT) is the perpendicular line through
(3,—1). For B: The nullspace oB is spanned byo0, 1), the row space is spanned by
(1,0). The column space and left nullspace are the same a%. for

x splits intox, +x, = (1,—1) + (1,1) = (2,0). Notice N(A") is a plang(1,0) =
(LD)/2+1,-D)/2=x, + x,.

VTW = zero makes each basis vector #6rorthogonal to each basis vector .
Then every in V is orthogonal to everw in W (combinations of the basis vectors).

Ax = Bx means thafA B] _; = 0. Three homogeneous equations in four

unknowns always have a nonzero solution. Here= (3,1) andx = (1,0) and
Ax = BX = (5, 6,5) is in both column spaces. Two planesRA must share a line.

A p-dimensional and a-dimensional subspace Bf* share atleastalineg + ¢ > n.
(The p + ¢ basis vectors oF andW cannot be independent.)

ATy =0leadsto(Ax)"y =xTATy = 0. Theny L Ax andN (A") L C(A).

If S is the subspace d®3 containing only the zero vector, the§t is R3. If S is
spanned byl, 1, 1), thenS* is the plane spanned t§y, —1,0) and(1,0, —1). If S is
spanned by2, 0,0) and(0, 0, 3), thenS* is the line spanned b, 1,0).

I 5 1

1 —
S~ is the nullspace oft = [2 5 o

] ThereforeS* is asubspaceven if S is not.

L+ is the2-dimensional subspada plang in R? perpendicular td.. Then(L+)+ is
a 1-dimensional subspade line) perpendicular td*. In fact(L*)1 is L.

If V is the whole spac®&*, thenV~ contains only theero vector Then(V 1)+ =
R*=V.

':Orexamlole(—i071’1)<’de(0,1,—1,0)SpanSL=nuIIspaceot4=[1 2 2 3]

1 3 3 2

(1,1,1,1) is abasis forP*. 4 =[1 1 1 1]hasP asits nullspace an#* as
row space.

x in V= is perpendicular to any vector ii. SinceV contains all the vectors if§,
x is also perpendicular to any vector$h So everyx in V1 is also inS .
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24 AA™' = I: Columnl of A~! is orthogonal to the space spanned by the 2nd,.3rd,
nth rows ofA.

25 If the columns of A are unit vectors, all mutually perpendécuthenA™4 = 1.

2 2 —17 This example shows a matrix with perpendicular columns.
26 A= [—1 2 2i|, ATA =9I isdiagonat (AT A4);; = (columni of A) - (column; of A).
2 —1 2] When the columns anenit vectorsthenA™ 4 = 1.
27 The lines3x + y = by and6x + 2y = b, areparallel. They are the same line if
b, = 2b;. Inthat casdbq, b,) is perpendicular t¢—2, 1). The nullspace of the 2 by 2
matrix is the line3x + y = 0. One particular vector in the nullspacg(isl, 3).

28 (a) (1,—1,0) is in both planes. Normal vectors are perpendicular, butgdastill in-
tersect! (b) Needhreeorthogonal vectors to span the whole orthogonal complement
(c) Lines can meet at the zero vector without being orthoona

[1 2 3} [1 1 —1} A hasv = (1,2, 3) in row space and column space
A == N B =

29 2 1 0 2 —1 0]; Bhasvinits column space and nullspace.

301 3 0 —1] wvcannotbeinthe nullspace and row space, orin
the left nullspace and column space. These spaces are ontandy 'v # 0.

30 WhenAB = 0, the column space aB is contained in the nullspace df. Therefore
the dimension o (B) < dimension ofV (4). This means ranl$) < 4 — rank(A).

31 null(N’) produces a basis for thew spaceof 4 (perpendicular tiN(A)).
32 We needr'n = 0 ande™¢ = 0. All possible examples have the fowar ™ with a # 0.

33 Bothr’s orthogonal to both’s, bothe’s orthogonal to boti’s, each pair independent.
All A’s with these subspaces have the fdeme, M [r r,]" for a2 by 2 invertible M .

Problem Set 4.2, page 214

1@ a'b/a"a=5/3; p=>5a/3;e=(-2,1,1)/3(b) a'b/a'a=—1; p=a;e=0.

2 (a) The projection ofb = (cosh,sinf) ontoa = (1,0) is p = (cosh,0)
(b) The projection ob = (1, 1) ontoa = (1,—1) is p = (0,0) sincea’d = 0.

1 1 1 1 1 5 1 1 3 1 1
3 Pp==-|11 1 andP1b=— 5(.Ppb=—13 9 3 andP2b= 3.
3 3 11
1 1 1 5 1 3 1 1

4 P — 1 0 P, — 11 1 —1]| P, projects ontdl,0), P, projects ontq1, —1)
=10 0""27 2 |=1 1| PP, #0andP; + P, is not a projection matrix.

-2 4 4 2 =2 1
matrices onto the lines through = (—1,2,2) anda, = (2,2,—1) P{ P, = zero
matrix because; L a,.

XXX Above solution does not fit in 3 lines.

6 Plz(%’_%’_%) andp, = %’ %’—%) andp; = (%,—%’ %)- Sop;+p,+p3=0b.

1 1 -2 =2 4 4 =2
5 P = 5 -2 4 4|, P, = 5 4 4 =2|. Py and P, are the projection
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24

1{1 -2 —2} 1[4 4 —2} 1[4—2 4}
Pil+P+P3=-|-2 4 4|l+-| 4 4 2|+-|—2 1 =2|=1.
912 4 4 2 -2 1 4 -2 4
We canadd projections ontorthogonal vectorsThis is important.

The projections of1, 1) onto (1,0) and(1,2) arep; = (1,0) and p, = (0.6, 1.2).
Thenp, + p, # b.
SinceA is invertible,P = A(ATA)"!AT=AA"1(AT)"1AT = I: project on all ofR2.

102 04 102 |1 0 _10.2| Thisisnota; = (1,0)
P2_|:0.4 0.8]’1)2“1—[0.4}’1)1—[0 0]’P1P2“1—[ 0 } No, P, P, # (P P2)>.

(@ p=A(ATA)1ATh=(2,3,0),e=(0,0,4), ATe =0 (b) p=(4,4.6),e=0.

0 0 0

p [0'5 0.5 O}_ Projection matrix onto the second column space.
2 — -_—

1 00
P = [0 1 0} = projection matrix onto the column space #f(the xy plane)

05 05 0 -
0 o 1 Certainly(P,)? = P.

1 00 1 0 0O 1 1
0 1 0 . 01 00 2 2
A= 0 0 1 , P = square matrix= 001 0 ,p=P 31 =13
0 0 0 0 00O 4 0
The projection of thi$ onto the column space of is b itself whenb is in that space.
5 8 —4 0
1
But P is not necessarily. P = — [ 8 17 2} andb = Pb=p = [2}
214 2 20 4

24 has the same column spaceAsk for 24 is half of x for A.

1(1,2,—-1) + 2(1,0,1) = (2, 1,1). Sob is in the plane. Projection showb = b.

If P2= Pthend —P)2=(I—-P)I—-P)=1—-PI—IP+P?>=1-P.When
P projects onto the column spade;- P projects onto théeft nullspace

(&) I — P isthe projection matrix ont6l, —1) in the perpendicular direction {d, 1)
(b) I — P projects onto the plane + y + z = 0 perpendicular t@l, 1, 1).

say(1,1,0) and(2,0, 1), the matrixP is i;g _?ég _%;

1 . 1/6 —1/6 —1/3 5/6 1/6 1/3
e = [—1i|, 0= % = [—1/6 1/6 1/3], I -0 = |:1/6 5/6 —1/3].
—-1/3 1/3 2/3 /3 —-1/3 1/3
(A(ATA)—IAT)2 = A(ATA) Y (ATA)(ATA)T1TAT = A(ATA)"'AT. SoP?2 = P.
Pb is in the column space (whet projects). Then its projectioR(Pb) is Pb.
PT=(AATATTANY T =A((ATA)™H)TAT=A(ATA)"1AT=P. (AT A is symmetric!)
If Aisinvertible then its column space is all@f. SoP = I ande = 0.

The nullspace ofiT is orthogonalto the column spac€ (4). Soif ATh = 0, the pro-
jection ofb ontoC (A4) should bep = 0. CheckPb = A(ATA)"1ATh = A(ATA)~10.

For any basis vectors in the plane- y — 2z =0, [5/6 1/6 1/3}
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25 The column space ofP will be S. Thenr = dimension ofS = n.
26 A~! exists since the rank is= m. Multiply 4> = Aby A 'togetd = I.

27 If ATAx = OthenAx is in the nullspace ofi”. But Ax is always in the column space
of A. To be in both of those perpendicular spacés, must be zero. Sal and A4
have thesame nullspace

28 P2 =P = PTgive PTP = P. Then the(2,2) entry of P equals thg2, 2) entry of
PT P which is the length squared of column 2.

29 A = BT has independent columns, 46 A (which is BBT) must be invertible.
. . 3 aa’ 1T9 12
30 (a) The column space is the line through= [4] SO Pc = TTa = 25 [12 25}.
(b) The row space is the line through= (1,2,2) and P = vv'/v'v. Always
Pc A = A (columns of4 project to themselves) atlPg = A. ThenPc APr = A

31 The errore = b — p must be perpendicular to all ths.

32 Since P1b is in C(A), P,(P1b) equalsP;b. So P,P; = P, = aa'/a"a where
a=(1,2,0).

33 If P{P, = P, P; thenS is contained ifl" or T is contained inS.

34 BBT isinvertible as in Probler®9. Then(ATA)(BBT) = product ofr by r invertible
matrices, so rank. AB can't have rank r, sinceA” andB T cannot increase the rank.
Conclusion A (m by r of rankr) times B (r by n of rankr) producesd B of rankr.

Problem Set 4.3, page 226

1 0 07
1A= } ;’ andb = 2 giveATA = [g 286 andA™ps = [13162].
1 4 20 | -
; 17] —1
ATAX = ATh givesx = [1 andp = Ax = > ande = b — p = 3
4 13 P=|-5
} 17| E=|e|>=44 | 3
1 0 0 1
5| 11 C| _ | 8| Thisdx =bisunsolvablg 5| . |1 tlv sol
1 3||D|=| 8| Changehtop=Pb= |13 | * = |4 |CEXactly solves
1 4 20 17
Ax = p.

3 InProblem2,p = A(ATA)"'ATh = (1,5,13,17) ande = b — p = (—1,3,-5,3).
e is perpendicular to both columns df This shortest distandg || is v/44.

4 E = (C+0D)?+(C+1D —8)? +(C +3D —8)%2 + (C +4D —20)2. Then
0E/dC =2C +2(C + D —8) +2(C +3D —8)+2(C +4D —20) = 0 and
0E/0D =1-2(C+ D —8)+3-2(C +3D —8)+4-2(C +4D —20) =0. These

. .4 8| C 36
normal equations are agaiy ¢ || 5 | = | 172 |-
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5 E=(C—0)24+(C—8)2+(C—8)2+(C—-202.AT=[1 1 1 1]andATA = [4].
A™h = [36]and(ATA)"'ATh = 9 = best heighC. Errorse = (-9, —1,—1,11).

6 a=(1,1,1,1) andb = (0,8,8,20) giveX = a'b/a’'a = 9 and the projection is
Xa = p =(9999). Thene'a = (—9,—1,—1,11)7(1,1,1,1) = 0 and|le|| =
V204,

7 A=[0 13 4]", ATA=1[26]andA™s = [112]. BestD = 112/26 = 56/13.

8 Xx=56/13, p=1(56/13)(0,1,3,4). (C, D)=(9,56/13) don't match(C, D) = (1, 4).
Columns of4 were not perpendicular so we can't project separately todirmhd D.

Parabola [ 1 V] c o 4 8 267[C 36
9 Projecth || 5 [Di|: g .ATAfz[ 8 26 92} [Di|:[112}
4D to 3D 1 4 16 E 20 26 92 338 E 400
1 0 0 O07[C 0 C 07 Exact cubicsgp = b,e = 0.
ol 1 1Dy |8 L D _ 1| 47| This Vandermonde matrix
1 3 9 27(|E || 8} E —28 |’ gives exact interpolation
1 4 16 64 || F 20 F 5| byacubican,1,3,4

11 (a) The best liner = 1 + 47 gives the center poirdt = 9 when? = 2.
(b) The firstequatio€m + D> t; = . b; divided bym givesC + Dt = b.

12 @a=(1,..., 1)hasa'a = m,a'b = by + --- + b,,. Thereforex = a'b/m is the
meanoftheb’s (b) e =b—%a b= (1,2,b) |le||*> = >/, (b; —X)* = variance

111
p=(.3,3) T, _ _ 1
(©) e=(—2,—l,3)pe_0'P_ }ii .

13 (ATA)"'AT(b — Ax) = ¥ — x. Whene = b — Ax averages t@, so doest — x.

14 The matrix(x — x)(x —x)Tis (ATA)"'AT(h — Ax)(b — Ax)TA(ATA)~'. When the
average ofb — Ax)(b — Ax)" is 021, the average ofx — x)(x — x)" will be the
output covariance matrix4"A) "' ATo2 A(AT A)~! which simplifies too?(ATA)~1.

15 When 4 has 1 column of ones, Probleid gives the expected errdit — x)? as
02(ATA)"! = o%/m. By takingm measurements, the variance drops fromto

o?/m.
16 lb + 9 5o = 1(b + -+ + b19). KnowingX, avoids adding alb’s
T 1OX9 = 10" 10)- gx9 g .

1 -1 7
C PN 9 3 2||C 35
17 [i ﬂ [D} = Ld The solutionx = [4} comes from[2 6] [D] = [42]

18 p = Ax = (5,13,17) gives the heights of the closest line. The errobis p =
(2,—6.4). This errore hasPe = Pb— Pp=p—p =0.

19 If b = errore thenb is perpendicular to the column spaceAfProjectionp = 0.

20 If b = Ax = (5,13,17) thenx = (9,4) ande = 0 sinceb is in the column space
of A.

21 eisinN(A"); pisinC(A4); xisinC(AT); N(A) = {0} = zero vector only.
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C
D

Line I —¢. Symmetrie’s = diagonald™ 4

23 e is orthogonal top; then|le||> = e¢"(b—p) =e"™b =b"b — b p.

24 The derivatives oflAx —b||> = xTATAx — 2b" Ax + b"b (this term is constant) are
zerowher2ATAx =2A47h,orx = (ATA)"1ATh.

25 3 points on alineEqual slopesb,—b1)/(t2—t1) = (b3—by)/(t3—t,). Linear algebra:
Orthogonal td1, 1, 1) and(t1, 12, t3) iSy = (t,—t3,13—11, 11 —1) in the left nullspace.
b is in the column space. Then'd = 0 is the same equal slopes condition written as
(b —=b1)(t3 — 12) = (b3 — b2) (12 — 11).

1 1 0 0

Lo 1re X 400 87 1C
26 |, | ollol= hasA™4 = |0 2 0|,4Th = | —2|,|D|=
L o 1 |LE 00 2 3] LE

B 2
—1 1. At x,y = 0,0 the best plang@ — x — %y has heightC = 2 = average of
| —3/2
0,1,3,4.
27 The shortest link connecting two lines in spacpéspendicular to those lines
28 Only 1 plane contain®, a;, a, unlessa, a, aredependentSame test foa, . . ., a,.

29 There is exactly one hyperplane containingahgoints0, a4, ... ,a,—; When the: — 1
vectorsay,...,a,— are linearly independen{Forn = 3, the vectorst; anda, must
be independent. Then the three poilita,, a, determine a plane.) The equation of the
plane inR™ will be a]x = 0. Herea, is any nonzero vector on the line (it is only a
line!) perpendicular ta,....,a,—1.

22 The least squares equation[i% 18} [ ] = [_1(5)]. Solution:C =1, D = —1.

B~ W

Problem Set 4.4, page 239

1 (a) Independentb) Independenandorthogonal(c) Independenand orthonormal
For orthonormal vectors, (a) becom@so0), (0, 1) and (b) is(.6, .8), (.8, —.6).
1 0 5/9 2/9 —4/9
22y 070 = [0 l]bthQT:[ 2/9 8/9 2/9},
33) —4/9 2/9  5/9

3 (a) AT A will be 167 (b) AT A will be diagonal with entries 1, 4, 9.

Divide by length 3 to get
q, = (% %_%) q, = (_%

1 0 1 0 0
4 (@) Q0 = |:O 1i|, 00" = |:O 1 Oi| # 1. Any Q withn < m hasQQ" #
0 0 0 0 0
1. (b) (1,0) and(0,0) areorthogonal notindependentNonzero orthogonal vec-
tors are independent. (c) Starting fromp, = (1,1,1)/+/3 my favorite isq, =
(1,—1,0)/+/2 andg, = (1,1,-2)//b.
5 Orthogonal vectors are(1,—1,0) and (1,1,—1). Orthonormal are (%,—%,O),

(=1 = — %)
IVERIV RV T
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6
7

10

11

12

13

14

15

16

17

18

19

20
21

22

010, is orthogonal becaus@ 02)" 0102 = 0;0{0102, = 0702 = 1.

When Gram-Schmidt give® with orthonormal columnsQTQx = Q'h becomes
x=0Th.

If ¢, andg, areorthonormalvectors inR> then(g1b)q, + (g3b)q, is closest tch.

8 —.6 1 0 0
(a)Q=[.6 .8} hasP=QQT=[0 I 0] (b) (00T(QQT) =
0 0 0 0 O

0(0T0)0T = 00"

(@) Ifg,,q,,q5areorthonormalhen the dot product af, withc;q, +c2g,+c3q5 =
0 givesc; = 0. Similarly c; = ¢3 = 0. Independeny’s (b) Ox =0 =
QT0x =0=x =0.

(a) Twoorthonormalvectors are, = 15(1.3.4,5,7) andg, = 15(-7.3.4,-5,1)
(b) Closest in the plangarojectQ 07(1,0,0,0,0) = (0.5,—0.18,—0.24,0.4,0).
(&) Orthonormak’s: aIb = aI(xlal + Xpap + x3a3) = xl(aIal) = X1

(b) Orthogonak’s: alb = a](x1a; + x2a> + x3a3) = x1(aja;). Thereforex; =
ajb/ala;

(c) xi isthe first component o ~! timesa.

The multiple to subtract i%%. ThenB = b — 404 — 4,00—=2-(1,1) = (2,-2).

a’a
1/V2 1/N2][V2 22

L4y lal q1b | _ _
[1 0] =l "2][ o BT [1/v2 —ivall o ava] T ek
of AT containsg, () x =(ATA)147(1,2,7) = (1,2).
The projectionp = (a'b/a"a)a = 14a/49 = 2a/7 is closest th; ¢, = a/||a| =
a/7is (4,5,2,2)/7. B =b—p = (—1,4,—4,—4)/7 has|B| = 1 soq, = B.
p = (@'b/a'a)a = (3,3,3) ande = (-2,0,2). q, = (1,1,1)//3 andg, =
(—1,0,1)/72.
A=a=(1,-1,0,0;B=b—p = (%, %,—l,O);C =c—py4—Pp= (%,l L—n.

3’3
Notice the pattern in those orthogon#l B, C. In R>, D would be(1, 1 1 1 _p)

If A= QRthenA™4 = RTQOTOR = R"R = lowertriangular timesippertriangular
(this Cholesky factorization o™ 4 uses the samg as Gram-Schmidt!). The example

-1 1 —1 2 3 3
has4A = [ 2 1} = %[ 2 —1} [O 3] = QR and the samek appears in
2 4 2 2

9 9 3 013 3
T4 — _ —_ pT
AA—[9 18:|_[3 3“0 3]—RR'

(@) True (b) True Ox = x1q; + x24,. || Qx|* = x? + x3 becausg, -¢, = 0.

The orthonormal vectors agg, = (1,1,1,1)/2 andg, = (—=5,—1,1,5)/+/52. Then
b = (—4,-3,3,0) projectstop = (-7,—3,—1,3)/2. Andb—p = (—1,-3,7,-3)/2
is orthogonal to botly, andg,.

A=(,1,2), B=(1,—-1,0), C = (—1,—1,1). These are not yet unit vectors.

>l
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1 0 0 1 0 0 1 2 4

23 Youcanseewhy, =|0|,g,=[0],g35=|1].A4=|0 0 1|]|0 3 6]|=

0 1 0 0 1 0fJLO O 5
OR.

24 (a) One basis for the subspaSeof solutions tox; + x; + x3 — x4 = 0isv; =
(1,-1,0,0),v, = (1,0,—1,0),v3 = (1,0,0, 1) (b) SinceS contains solutions to
(1,1,1,—1)Tx = 0, a basis foS +is (1,1,1,—1) (c) Split(1,1,1,1) = by + b,
by projection onS+ andS: b, = (3,1, 1, —1yands, = (.1.1.3).

25 This question showg by 2 formulas for QR; breakdownR,, = 0 when 4 is sin-
ar 12 M2 L2 =1 L5 3] sinauiarl ! ]2 LT !
guar 1| T A 2 slo 1 MY ] T A )
RER:

V210 0

:
26 (q3C*)q, = %B becausg, = ﬁ and the extrg, in C* is orthogonal tag,.

]. The Gram-Schmidt process breaks down whén- bc = 0.

27 Whena andb are not orthogonal, the projections onto these la@aot addo the pro-
jection onto the plane af andb. We must use the orthogonaland B (or orthonormal
¢, andg,) to be allowed to addD projections.

28 There arenn multiplicationsin (11) anc%mzn multiplications in each part of (12).

29 ¢, = 3(2.2,-1),q, = 1(2.-1,2), ¢35 = 1(1,-2,-2).

30 The columns of the wavelet matri¥’ are orthonormal ThenW~! = WT. See
Section 7.2 for more about wavelets : a useful orthonormsishaith many zeros.

31 (@) ¢ = % normalizes all the orthogonal columns to have unit length ) The pro-
jection (a"b/a"a)a of b = (1,1,1,1) onto the first column i, = 1(-1,1,1,1).
(Checke = 0.) To project onto the plane, agd, = %(1,—1, 1,1) to get(0,0,1,1).

1 0 0
32 0= [(1) _(1)} reflects across axis, 0, = [O 0 —1} across plang +z = 0.
0 -1 0

33 Orthogonal and lower triangulas +1 on the main diagonal and zeros elsewhere.

34 (@) Qu = (I —2uu")u = u — 2uu'u. This is —u, provided thatu"u equalsl
(b) Qv =( —2uu")v = u —2uu"v = u, provided that:"v = 0.

35 Starting fromA = (1,—1,0,0), the orthogonal (not orthonormal) vectoBs =
(1,1,-2,0)andC =(1,1,1,-3)andD =(1, 1, 1, 1) are in the directions af ,, ¢ 5, q 4-
The4 by 4 and5 by 5 matrices withinteger orthogonal column@ot orthogonal rows,

1 1 1 1

—1 1 1
0 -2
0 0

since not orthonormap!) are | A B C D | = and

1
1 1
-3 1

SO O ==

SO — =
|

O W = =

N e

— e
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36

37

[OQ, R] = ¢qr(A) produces fromd (m byn of rankn) a “full-siz€’ squareQ =[ Q1 Q>]
and g . The columns ofQ; are the orthonormal basis from Gram-Schmidt of the
column spacef A. Them — n columns ofQ, are an orthonormal basis for theft
nullspaceof A. Together the columns a@ = [Q; Q»] are an orthonormal basis
for R™,

This question describes the next, ; in Gram-Schmidt using the matri@ with the
columnsg, ... ,q? (instead of using thosg¢'s separately). Start from, subtract its
projectionp = Q'a onto the earlieg’s, divide by the lengtlof e = a — QTa to get
dny1 =€/|ell-

Problem Set 5.1, page 251

det24) = 8; det(—A4) = (—1)*detd = 1; det(4?) = §; de(A™!) =2 = det(4")" .

det(;4) = (3)°detd = —% and det—4) = (—1)3detd = 1; det(4?) = I;
det(4™1) = —1.
(a) False det(/ + I)isnotl +1 (b) True The product rule extends 0B C (use

it twice)  (c) False det(44) is 4" detd (d) False A = [8 (1)] B = [(1) (1)]

0 -1
1 0

Exchange rows 1 and 3 to shqus| = —1. Exchange rows 1 and 4, then 2 and 3 to
show|J4| = 1.

|Js|=1, |Je|=—1, |J;|=—1. Determinantd, 1, —1, —1 repeat sdJ;01| =1.

To prove Rule 6, multiply the zero row by= 2. The determinant is multiplied by
(Rule 3) but the matrix is the same. 3det(4) = det(4) and detA) = 0.

AB — BA = [ ] is invertible.

7 det(Q) = 1 for rotation and detQ) = —1 for reflection(1—2sin? § —2cog § = —1).
8 0TQ0 =1=|0>=1= |Q| = £1; Q" stays orthogonal so det can’t blow up.

10

11

12

13
14
15

det4 = 1 from two row exchanges. d&t = 2 (subtract rows 1 and 2 from row 3, then
columns 1 and 2 from column 3). dét= 0 (equal rows) even thoughi = A + B!

If the entries in every row add to zero, théh 1,...,1) is in the nullspace: singular
A has det= 0. (The columns add to the zero column so they are linearly rigr.)
If every row adds to one, then rows df— I add to zero (not necessarily det= 1).

CD =—-DC = detCD = (—1)"detDC andnot—detDC. If n is even we can have
an invertibleCD.
det(4~1) divides twice byad — bc (once for each row). This give% =
1
ad—bc"’
Pivotsl1, 1, 1 give determinant 1; pivots1, —2, —3/2 give determinant 3.
det(A) = 36 and thed by 4 second difference matrix has det5.

The first determinant i8, the second i$ — 2¢2 + t* = (1 — t?)2.
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16

17

18

19

20

21
22

23

24

25
26
27
28

29

30

31

Solutions to Exercises

A singular rank one matrix has determinan0. The skew-symmetri& also detk =
0 (see #7).

Any 3 by 3 skew-symmetri& has detK') = det(—K) = (—1)3det(K). This is
—det(K). But always detk") = det(K). So we must have dgk') = 0 for 3 by 3.

1 a a? 1 a a? boa b —a?
1 b b2 | =0 b—a b>—a®| = e—a P—a? (to reach2 by 2,
1 ¢ ¢c? 0 c—a c*>—a?
eliminatea anda? in row 1 by column operations). Factor obit— ¢ andc — a from
the2 by 2: (b —a)(c —a) 1 ?_—::Z = (b —a)(c—a)(c—Db).

For triangular matrices, just multiply the diagonal ergridetU) = 6,det(U ') = %,
and detU?) = 36. 2 by 2 matrix: detU) = ad,de(U?) = a*d?. If ad # 0 then
detU~!) = 1/ad.

det[i B iﬁ; Z__IZZ] reduces tdad —bc)(1— LL). The determinant changes if you

do two row operations at once.

Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5, they alsdRuyle 2.)

det(4) = 3,de(A™") = §.defAd — AI) = A> — 41 + 3. The numbers. = 1 and

A = 3 give detd — A1) = 0. Note to instructor If you discuss this exercise, you can

explain that this is the reason determinants come befoenedues. IdentiffA = 1
and)A = 3 as the eigenvalues of.

18 7 _ 3 -1
det(4) = 10, A2 = [14 11], de(4?) =100, 47! = L [_2 4} has det.

det(A — AI) = A2 — 71 + 10 = 0 when)A = 2 or A = 5; those are eigenvalues.

HereA = LU with det(L) = 1 and detU ) = —6 product of pivots, so also det) =

—6.de(U'L7!) = -1 = 1/det(4) and detU ' L~' 4) is det/ = 1.

When thei, j entryisij, row2 = 2 times row 1 so detf = 0.

When theij entryisi 4+ j, row3 —row?2 = row2 — row 1 soA is singular: ded = 0.

detA = abc, detB = —abced, detC = a(b — a)(c — b) by doing elimination.

(a) True det(AB) = det(4)det(B) = 0 (b) False A row exchange gives det=

product of pivots. (c)False A = 27 andB = I haved — B = [ but the determi-

nants have” —1 # 1 (d) True det(AB) = det(A) det(B) = det(BA).

A is rectangular so det™ A) # (detAT)(detA): these determinants are not defined.
—b

Derivatives of f = In(ad — bc): [af/aa Bf/ac} = ad_—cbc ad ;bc —

af/ob df/od
ad —bc ad — bc
1 d —b|_
ad—bc |:—c a]_A '

The Hilbert determinants ale 8x1072,4.6x107%, 1.6x1077,3.7x10712,5.4x 1078,
4.8 x1072°,2.7 x 10733, 9.7 x 10743, 2.2 x 10723, Pivots are ratios of determi-
nants so the Oth pivot is nearl0~!°. The Hilbert matrix is numerically difficulti-
conditioneq.
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32 Typical determinants afand(n) are 106, 102>, 107°, 1028 for n = 50, 100, 200, 400.
randn(n) with normal distribution gived03!, 1078, 10'8¢, Inf which means> 21024,
MATLAB allows 1.999999999999999 x 21923 ~ 1.8 x 103°% but one more 9 gives Inf!

33 | now know that maximizing the determinant for—1 matrices isHadamard’s prob-
lem (1893): see Brenner in American Math. Monthly volume 79 @)9526-630. Neil
Sloane’s wonderful On-Line Encyclopedia of Integer Segesrtesearch.att.comis
njas) includes the solution for small (and more references) when the problem is
changed td®, 1 matrices. That sequence A003432 starts from O with 1, 1, 1, 2, 3,
5,9. Then thel, —1 maximum for sizer is 2"~! times thed, 1 maximum for sizer — 1
(s0(32)(5) = 160 for n = 6 in sequenc&003433.

To reduce thd, —1 problem fromé6 by 6 to the0, 1 problem for5 by 5, multiply the
six rows by#+1 to put+1 in columnl. Then subtract row from rows2 to 6 to get a5

by 5 submatrixS of —2, 0 and divideS by —2.

Here is an advanced MATLAB code andla—1 matrix with largest dett = 48 for

n=>5:

n=>5;,p=(n-—1)"2; A0 =ones(n); maxdet= 0;

fork=0:2"p—1

Asub = rem(floor(k. * 2.MN—p +1:0)),2); A = A0; A2 :n,2:n) =1—2x%

reshape(Asub, n — 1,n — 1);

if abs(det(4)) > maxdet, maxdet = abs(det(A4)); maxA = A4;

end
end
Output:maxA =1 1 1 1
1 1 1 -1
1 1 -1 1
1 -1 1 1
1 -1 -1 -1

34 ReduceB by row operations tgrow 3;
mutation).

Problem Set 5.2, page 263

1
—1
—1
—1

1

maxdet = 48.

row 2; row 1]. Then detB = —6 (odd per-

1 detd = 14+184+12—9—4—6 = 12, rows are independent; dBt= 0, row 1 +row 2 =
row 3; detC = —1, independent rows (dét has one term, odd permutation)

2 detd = —2, independent; d&® = 0, dependent; d&f = —1, independent.
3 All cofactors of rowl are zero.A has rank< 2. Each of the 6 terms in déett is zero.

Column 2 has no pivot.

4 a11a23032044 gives—l, becaus@ <« 3, 14023032041 gives—H, detA=1-1=0;
detB=2-4.4.2—1-4.4.1=64—16= 48,

5 Four zeros in the same row guarantee €e0. A = [ hasl2 zeros (maximum with

det 0).

6 (a) Ifa;y = azy = asz = 0then 4 terms are sure zeros

(b) 15 terms must be zero.
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Solutions to Exercises

5!/2 = 60 permutation matrices have det +1. Move row5 of / to the top; starting
from (5, 1, 2, 3, 4) elimination will do four row exchanges.

Some termu o asp - - - ane in the big formula is not zero! Move rows 2, . . ., n into
rowsa, B, . . .,0. Then these nonzerds will be on the main diagonal.
To get+1 for the even permutations, the matrix needea@nnumber of—1's. To get

+1 for the oddP’s, the matrix needs anddnumber of—1’s. So all six terms= +1 in
the big formula and det 6 are impossible: maxlet) = 4.

The 4!/2 = 12 even permutations ard, 2,3,4),(2,1,4,3),(3,1,4,2),(4,3,2,1),
and8 P’s with one number in place and even permutation of the dtiree humbers.
det(/ + Peven = 16 or4 or 0 (16 comes frond + I).

co[d 5] 5[0 3 70 dets =100) +2(42) + 3(-35) = 21,
I A R ¢ _3| Puzzle: deD = 441 = (—21)2. Why?

3 2 1 4 0 O

C=|2 4 2|andACT=|0 4 0|.ThereforeA™! =1CT = CT/detA.
1 2 3 0O 0 4

@ C; =0, C=—-1,C3=0, Cy =1 (b) C, = —C,—5 by cofactors of row

1 then cofactors of column 1. Therefatgy = —Cs = C¢ = —C4 = C; = —1.

We must choose 1's from column 2 then column 1, column 4 th&amwoo 3,and so on.

Thereforen must be even to have dé}, # 0. The number of row exchangesig2 so

C, = (_l)n/2_

The 1, 1 cofactor of then by n matrix is E,—;. The 1,2 cofactor has a single 1 in its

first column, with cofactof,_,: sign gives—E,_». SOE, = E,—1— E,—>. ThenE;

to E¢is1,0,—1,—1,0, 1 and this cycle of six will repeatt;gp = E4 = —1.

The 1, 1 cofactor of then by n matrix is F,—;. The 1,2 cofactor has a 1 in column

1, with cofactorF,_,. Multiply by (—1)'*2 and also(—1) from the1, 2 entry to find

F, = F,—1 + F,—; (so these determinants are Fibonacci numbers).

1 -1 1 -1 1 1
|By| = 2det| =1 2 —1|+4det| -1 2 = 2|B;| — det =
-1 2 -1 -1 -2

2|B3| — | B2|. | B3| and—| B, | are cofactors of rowt of By.

Rule 3 (linearity in row 1) give$B,, | = |Ay| — |[An—1l =+ 1) —n = 1.

Sincex, x2, x3 are all in the same row, they are never multiplied inldetThe deter-
minant is zero ak = a or b or ¢, so detV’ has factorgx —a)(x — b)(x —c). Multiply
by the cofactoi;. The Vandermonde matrik; = (x;)/~! is for fitting a polynomial
p(x) = b at the pointsy;. It has det’ = product of allx; — x,, for k > m.

Gy, = —1,G3 = 2,G4 = —3,andG,, = (-1)""!(n — 1) = (product of thel’s ).

S1 = 3,8, = 8,53 = 21. The rule looks like every second number in Fibonacci’s
sequence..3,5,8,13,21,34,55,... so the guess i, = 55. Following the solution
to Problem 30 with 3's instead of 2’s confirr§$ = 814+1—9—9-9 = 55. Problem 33
directly provesS, = Fz,+2.

Changing 3 to 2 in the corner reduces the determifapt, by 1 times the cofactor
of that corner entry. This cofactor is the determinanfgf, (one size smaller) which
is F»,. Therefore changing 3 to 2 changes the determinafbjq, — F», which is
Font1.
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33
34

35

(a) If we choose an entry from® we must choose an entry from the zero block; re-
sult zero. This leaves entries fromtimes entries fromD leading to(detA)(detD)

(b) and () Take4=[(l) 8},3:[? 8],C:[8 H,D:[g ?]Seeﬁs.

(8) All L's have det=1; detUy =detd; =2,6, —6fork=1,2,3 (b) Pivots2, 3, 5.
. 1 0 A B . —
Problem 23 gives d{t_CA_l [] = land de\{c D} = |A|times|D—CA™! B|

whichis|AD — ACA™!'B|. If AC = CAthisis|AD —CAA™'B| = det(AD — CB).
If Ais arow andB is a column then de¥ = detAB = dot product of4 and B. If
A is a column andB is a row thend B has rank 1 and déf = detAB = 0 (unless
m = n = 1). This block matrix is invertible wher B is invertible which certainly
requiresn < n.

(@) detd = ay1Cyq + -+ + a1, C1,,. Derivative with respect ta;; = cofactorCy;.
Row1 — 2 row2 + row 3 = 0 so this matrix is singular.

There are five nonzero products, all 1's with a plus or minga.sHere are the (row,
column) numbers and the signs:(1, 1)(2,2)(3,3)(4,4) + (1,2)(2,1)(3,4)(4,3) —
(1,2)(2,1)(3.3)(4,4) — (1, 1)(2,2)(3,4)(4,3) — (1,1)(2,3)(3.2)(4,4). Total—1.

The 5 products in solution 29 changelt®+ 1 — 4 — 4 — 4 sinceA has 2’s and -1’s:

2)@2)2) + (=D(=D(EDED = (=D(=D2)(2) = ))(=D(=D)—
@D (ED).

detP = —1 because the cofactor @f4 = 1 in row one has sigii—1)!*4. The big
formula for detP has only one termil-1-1-1) with minus sign because three exchanges

take4,1,2,3into 1,2,3, 4; det( P?) = (detP)(detP) = +1 so det[(; (I)} =
0 1]. .
det[1 0} is not right
The problem is to show thdt,, 1+, = 3F,, — F»,—». Keep using Fibonacci’s rule:
Fonyo=Fons1 4 Fon=Fon~+ Fon14 Fon =282+ (Fon — Fon—2) =3F2, — Fays.

The difference fron20 to 19 multiplies its3 by 3 cofactor= 1: then det drops by.

() The last three rows must be dependent (b) In each of théet2®: Choices
from the last 3 rows must use 3 columns; at least one of thaseehwill be zero.

Subtracting 1 from the, n entry subtracts its cofactdr,,, from the determinant. That
cofactor isC,,, = 1 (smaller Pascal matrix). Subtracting 1 from 1 leaves O.

Problem Set 5.3, page 279

1

5 15 2
(a)‘ 4 [T3 12 4|76 ]

3/3 =1 (b) |A] = 4,|B1| = 3,|B2] = 2,|B3] = 1. Thereforex; = 3/4 and
Xy = —1/2andx3 = 1/4.

% =3s0x; = —6/3 = -2 andx, =

N —
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2@ y= (gg‘/(gg —c/(ad —be)  (b) y = detB,/detd = (fg —id)/D.

3 (a) x; = 3/0andx, = —2/0: no solution (b) x; = x» = 0/0: undetermined

4 (@) x; = det{[b a> a3])/detd, if detd # 0 (b) The determinant is linear in
its first column soxy |y a; as|+x3|as ar az|+x3las az as|. The last two determinants
are zero because of repeated columns, leavihg, a, as| which isx; detA.

5 If the first column inA4 is also the right sidé then detd = detB,. Both B, andB; are
singular since a column is repeated. Therefore= |B1|/|A] = 1 andx, = x3 = 0.

b= o 22 5 aninvertio tric matri
1 1 n invertible symmetric matrix
6@ |0 35 0 (b) 2 42 has a symmetric inverse.
0 -1 1 1 2

7 If all cofactors= 0 then4~! would be the zero matrix if it existed; cannot exist. (And
1

the cofactor formula gives ddt=0.) A = [1

” has no zero cofactors but it is not
invertible.
6 -3 0 3 0 07 Thisis(detd)l and ded = 3.
8 C = [ 301 —1} andACT = [0 3 0}. Thel, 3 cofactor ofA4 is 0.
-6 2 1 0 0 3 Multiplying by 4 or 100: no change.

9 If we know the cofactors and ddt = 1, thenCT = A~! and also ded™! = 1.
Now 4 is the inverse o7, so A can be found from the cofactor matrix f6r.

10 Take the determinantofCT = (detA)/. The left side gives detCT = (detA)(detC)
while the right side givegdetA4)”. Divide by det4 to reach de€ = (det4)"!.

11 The cofactors off are integers. Division by det = +1 gives integer entries id~!.

12 Bothdet4 and det4~! are integers since the matrices contain only integers. @&utd' =
1/ detA so det4 must be 1 or1.

01 3 -1 2 1 1
13 A=|1 0 1| hascofactor matri = 3 -6 2 land4A~! = =CT.
210 1 3 -1 S
14 (a) Lower triangularl. has cofactors,; = C3; = C3; = 0 (b) C12 = Cyy,
C31 = C13,C3 = Cp3 makeS~! symmetric. (c) Orthogona) has cofactor

matrix C = (detQ)(Q~!)T = £ also orthogonal Note detQ = 1 or —1.

15 Forn = 5, C contains25 cofactors and each 4 by 4 cofactor I2a&terms. Each term
needs3 multiplications: totall 800 multiplications vsl25 for Gauss-Jordan.

16 (a) Area|? 2| =10 (b) and (c) Areal0/2 = 5, these triangles are half of the
parallelogram in (a).

17 Volume= |3 31l=20 Area of faces= k| 20 —-2j +8k
—|113[ 7 lengthof cross product™ |3 1 1|7 length=6+2
18 (a) Areas 5ii| =5 (b) 5 + new triangle areg 581l=5+7=12.
21051 131

19 |2 3| =4 = |2 %| because the transpose has the same determinant2See #
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20 The edges of the hypercube have length +1+ 1+ 1 = 2. The volume det/
is 2% = 16. (H/2 has orthonormal columns. Then ¢&t/2) = 1 leads again to
detH = 16.)

21 The maximum volume.; L, L3 L, is reached when the edges are orthogondin
With entriesl and—1 all lengths are/4 = 2. The maximum determinant & = 16,
achieved in Problem 20. For3aby 3 matrix, detd = (+/3)? can’t be achieved by-1.

22 This question is still waiting for a solution! Ai8.06 student showed me how to trans-
form the parallelogram for to the parallelogram for T, without changing its area.
(Edges slide along themselves, so no change in baselené#ight or area.)

a’ ala 0 0 T )
23 ATA= |8 |[abc]=| 0 85 o |nasgeid = YElENED
e’ 0 0 c'c
1 0 0
24 The box has height 4 and volumedet|:0 1 O} =4.ixj=kand(k- -w)=4.
2 3 4

25 Then-dimensional cube h@¥ cornersp2”~! edges andn (n—1)-dimensional faces.
Coefficients from(2 + x)" in Worked Example.4A. Cube from2/ has volume”.

26 The pyramid has volumg. The 4-dimensional pyramid has volurge (and-}; in R™)

27 x =rcosf,y = rsinf giveJ = r. The columns are orthogonal and their lengths are
1 andr.
sing cos pcospsing —psing sind
singsind pcospsingd  psing cosH
CoSyp —pSsing 0
for triple integrals inside spheres.

ar/dx dr/dy
d00/dx d0/dy

28 J = = p? sing. This Jacobian is needed

cosf sing

_ | x/roy/r| _
“ | (=sinf)/r (cosH)/r

29 Fromx, ytor,6: = ‘_y/rz x/r?
1 1

~ r  Jacobian ir27’

30 The triangle with cornerf, 0), (6, 0), (1, 4) has are24. Rotated by = 60° the area

cosf)  —siné

sinf cosf

is unchanged The determinant of the rotation matrix Js =

1/2 —/3/2
V3/2 1/2

31 Base area 10, height 2, volume 20.

-

2 4 0
32 The volume of the box is d{t—l 3 O} = 20.
1 2 2

Uiy Uz Uz
Up Uz U3
w; W2 W3

34 (wxu)-v=(vxw)-u=(uxv) w:Even permutationf («, v, w) keeps the same
determinant. Odd permutations reverse the sign.

Uy U3
Wz W3

vVr U2

U1 Us . Thisisu- (v x w).
w1 2

33 =u
1 2w, ws

Us
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36

37

38
39

40

41
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S =(2,1,-1), area||PQ x PS| = ||(-2,-2,—1)|| = 3. The other four corners
can beg(0,0,0), (0,0,2), (1,2,2), (1,1,0). The volume of the tilted box isdet| = 1.

xXyz
If (1,1,0), (1,2,1), (x, y, z) are in a plane the volumeisdetl 1 0 | =x—y+z=0.
The “box” with those edges is flattened to zero height. 121

X y z

det[z 3 1] = 7x —5y +z will be zerowhen(x, y, z) is a combination of2, 3, 1)
1 2 3

and(1, 2, 3). The plane containing those two vectors has equatior 5y + z = 0.

Doubling each row multiplies the volume B§. Then2 detA=det24) onlyifn=1.

ACT = (detd)I gives(detd)(detC) = (detd)". Then detd = (detC)!/? with
n = 4. With detA~! = 1/ detA, construct4~! using the cofactordnvert to find 4.

The cofactor formula addsby 1 determinants (which are just entrigspestheir co-
factors of sizex — 1. Jacobi discovered that this formula can be generalized: Fo 5,
Jacobi multiplied each by 2 determinant from rows-2 (with columnsa < b) times
a3 by 3 determinant from row8-5 (using the remaining columns< d < e).

The key question ist+ or — sign (as for cofactors). The product is giventa
sign whera, b, ¢, d, e is an even permutation df, 2, 3, 4, 5. This gives the correct
determinant+1 for that permutation matrix. More than that, all othiethat permute,

b and separately, d, e will come out with the correct sign when tBdoy 2 determinant
for columns a, b multiplies the3 by 3 determinant for columns, d, e.

The Cauchy-Binet formula gives the determinant of a squagixn4B (andAAT in
particular) when the factord, B are rectangular. Fo2(by 3) times @ by 2) there are
3 products of2 by 2 determinants frond and B (printed in boldface):

AR A [ R

11
b23 14 30

et Az[l 4 7} B=[§ ﬂ AB=[30 66}

Cauchy-Binet (4—2)(4—2)+ (7—3)(7—3)+ (14— 12)(14—12) = 24
(14)(66) — (30)(30) = 24

S

Problem Set 6.1, page 293

1

2

3

The eigenvalues areand0.5 for 4, 1 and0.25 for 42, 1 and0 for A%°. Exchanging
the rows of4 changes the eigenvalues tcand —0.5 (the trace is now).2 + 0.3).
Singular matrices stay singular during eliminationAse: 0 does not change.

A hasA; = —1 and\, = 5 with eigenvectorsc; = (—=2,1) andx, = (1,1). The
matrix A + I has the same eigenvectors, with eigenvalues increasédd and6.
That zero eigenvalue correctly indicates tHat [ is singular.

A hasA; = 2 andi, = —1 (check trace and determinant) with = (1,1) and
x, = (2,—1). A~! has the same eigenvectors, with eigenvalygds= % and—1.
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4

A hasA; = —3 andA, = 2 (check trace= —1 and determinant —6) with x; =
(3,—2) andx, = (1,1). A% has thesame eigenvectoss 4, with eigenvalued.? =
andi? = 4.

A and B have eigenvaluesand3. A + B hasA; = 3, A, = 5. Eigenvalues o + B
are not equato eigenvalues ofl plus eigenvalues aB.

AandB haved; = 1 andA, = 1. AB andBA havel = 2 + /3. Eigenvalues ofi B
are not equato eigenvalues ofl times eigenvalues aB. Eigenvalues oA B and BA
are equal (this is proved in section 6.6, Problems 18-19).

The eigenvalues df/ (on its diagonal) are thpivotsof A. The eigenvalues of (on
its diagonal) are all’'s. The eigenvalues of are notthe same as the pivots.

(a) Multiply Ax to seedx which reveals\ (b) Solve(A —Al)x = 0tofindx.

9 (a) Multiply byA A(Ax) = A(Ax) = AAx glvesAzx = A%x (b) Multiply by

10

11

12

13

14

15
16

17

18

19

20

A7l x = A7 '4Ax = A7 "Ax = 247 'x givesA7lx = %x (c) Add Ix = x:

(A+ Dx = (A + Dx.

Ahasi; = 1 andA, = 4withx; = (1,2) andx, = (1,—1). A*° hasA; = 1 and
A, = 0 (same eigenvectorsy'% hasi; = 1 andA, = (.4)'°° which is near zero.
S0A41% js very neard®: same eigenvectors and close eigenvalues.

Columns ofd— A4 I are in the nullspace of —A, 1 becausé! = (A—Ar1)(A—A 1)
= zero matrix[this is theCayley-Hamilton Theorerm Problem 6.2.3R Notice that
M haszero eigenvaluegl; — A,)(A; — A1) = 0and(A, — A3)(A, — A1) = 0.

The projection matrix’ hasA = 1,0, 1 with eigenvectors¢l, 2,0), (2,—1,0), (0,0, 1).
Add the first and last vectorsi, 2, 1) also has\ = 1. Note P2 = P leads toA2 — A
soA =0orl.

(@ Pu= (uu"u = u(u'u) = usol =1 (b) Pv = (uu")v = u(u"v) =0
©) x; = (=1,1,0,0), x5 = (=3,0,1,0), x3 = (—5,0,0, 1) all havePx = 0x = 0.

Two eigenvectors of this rotation matrix axg = (1,i) andx, = (1,—i) (more
generallycx 1, andd x, with cd # 0).

The other two eigenvalues ake= %(—1 + i +/3); the three eigenvalues arel, —1.
SetA =0indetfd —AI) = (A1 —A)...(A, —A) tofind detd = (A1)(A2) --- (Ay).
A = %(a +d + +/(a—d)? +4bc) andr, = %(a +d— v ) add toa + d.
If Ahasd; =3 andA, = 4thendetd — A1) = (A —3)(A —4) = A2 — 71 + 12.

. 4 o 3 2 2 2
These3 matrices have. = 4 and5, trace9, det20: [0 5],[_1 6]’[—3 7].

() rank=2 (b) de(B"B) =0 (d) eigenvalues ofB? + I)~! arel, 2, <

A= [ 0 } has tracd 1 and determinarit8, soA = 4 and7. Moving to a3 by 3

-28 11
0 1 0
companion matrixC = [O 0 1} hasdetC — A1) = —A3 +6A%2 — 111+ 6 =
6 —11 o6

(I-21)(2—21)(3—A). Notice the tracé = 1 + 2 + 3, determinan® = (1)(2)(3), and
alsoll = (1)(2) + (1)(3) + (2)(3).
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(A — AI) has the same determinant@s—A/)" [1 0 and 1 1| havedifferent
because every square matrix has Met= detM . | 1 0 0 0 | eigenvectors

A = 1 (for Markov), 0 (for singular)—1 (so sum of eigenvalues trace= 1).

0 0 0 1 —1 1] AlwaysA? is the zero matrix ift. = 0 ando,
I o0 Of [-1 1 by the Cayley-Hamilton Theorem in Problem 6.2.32.

A =0,0,6 (notice rankl and trace6) with x; = (0,—2,1), x, = (1,-2,0), x3 =
(1,2, 1).

With the same: A's andx’s, Ax = ciA1x1 + -+ + cpAyx, equalsBx = ciA1xq +
-+ cpAnx, forall vectorsx. SoA4d = B.

The block matrix hag = 1, 2 from B and5, 7 from D. All entries ofC are multiplied
by zeros in dgt4d — A1), soC has no effect on the eigenvalues.

A has rank 1 with eigenvalués0, 0, 4 (the 4 comes from the trace df). C has rank
2 (ensuring two zero eigenvalues) afid1, 1, 1) is an eigenvector with = 2. With
trace 4, the other eigenvalue is alse= 2, and its eigenvector id, —1, 1, —1).

B hasA = -1, -1, —1,3andC hasA = 1,1, 1, —3. Both have det= —3.

Triangular matrix:A(4) = 1,4,6; A(B) = 2, v/3, —/3; Rank-1 matrix: A(C) =
0,0,6.

[‘CZ Z} [” = [?IZ] = (a+b) [” A2 = d — b to produce the correct trace

@+by+(d—b)=a+d.

Eigenvector(1, 3, 4) for A with A = 11 and eigenvecto3, 1,4) for PAPT. Eigenvec-
tors withA # 0 must be in the column space sinde is always in the column space,
andx = Ax/A.

(a) u is a basis for the nullspace,andw give a basis for the column space
(b) x = (0, 1. 1) is a particular solution. Add anyu from the nullspace
(c) If Ax = u had a solutiong would be in the column space: wrong dimension 3.

If vTu = 0thenA? = u(v'u)v' is the zero matrix and? = 0,0 andA = 0,0
and trace(4) = 0. This zero trace also comes from adding the diagonal entfies

A=uv":

Ui UV ULV .
= v v = _ _
A [m}[ 1 2] |:M2U1 M202:| has traceu vy +usv, = v u =0

det(P — AI) = 0 gives the equatiod* = 1. This reflects the fact thaP* = 1.
The solutions ofl* = 1 areA = 1,i,—1,—i. The real eigenvectat; = (1,1,1,1)
is not changed by the permutatidh Three more eigenvectors afgi?,i3,i*) and
(1,—=1,1,=1) and(—i, (=i)?, (=i)3, (=i)*).

3 by 3 permutation matrices: Sin& P = I gives(detP)? = 1, the determinantis 1
or —1. The pivots are always 1 (but there may be row exchanges)iraibe of P can
be 3 (forP = I) or 1 (for row exchange) or O (for double exchange). The (bssi
eigenvalues are 1 andl ande27i/3 ande=271/3,
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36 Ay = e2™/3 andA, = e 273 give detl;1, = 1 and traced; + A, = —1.

_|cosp —sino| .. , 27 , |
A= [sine cos@] with 6 = 3 has this trace and det. So does evéfy' AM!

37 (a) Since the columns of add to 1, one eigenvalue is= 1 and the other i — .6
(to give the correct trace + .4).

(b) If ¢ = 1.6 then both eigenvalues are 1, and all solutiong4o- /) x = 0 are
multiples ofx = (1,—1).

(c) If ¢ = .8, the eigenvectors fat = 1 are multiples of (1, 3). Since all powers’
11 1
4 [3 3
eigenvalueg, 0 and correct eigenvectorél, 3) and(1, —1).

also have column sums 1, A" will approach = rank-1 matrix A*° with

Problem Set 6.2, page 307

1 I 2 |1 1 I Ooff1 =1} (1L 1 _| 1 1[0 O
0 3( 10 1{[0 30O 1|3 3| |[-1 3]|0 4 '
Put the eigenvectors ifi 4= SAS-1 — I 12 of|1 —=1] |2 3
and eigenvalues in. - —10 1[]0 5|0 1]~ |0 5|

3 If A = SAS~!then the eigenvalue matrix fot + 27 is A + 21 and the eigenvector
matrix is still S. A +21 = S(A +21)S™ ! = SAS™' + SQI)S™ ! = A+ 21.

4 (a) False: don'tknow's (b) True (c) True (d) False: need eigenvectors of

5 WithS = 1,4 = SAS™! = A is a diagonal matrix. IS is triangular, ther§ ! is
triangular, saSA S~ is also triangular.

6 The columns of are nonzero multiples @2,1) and(0,1): either order. Same fot~!.
_ -1 _ 1 1 Al 1 1 _ A+ AL — Ay _
7 A= S8AS - |:1 —1:||: Ao 1 -1 /2_ A=Ay A1+ Ay /2_

a b
[b a]foranyaandb.

ENTEWN[N
A= =

N

_ —1 __ 1 1 _ 1 A.] Az A.] O 1 _A,z k -1 _
8 A=SAS _|:1 O]_T—lz 1 1 0 A, ||=1 M.SAS =
1 Ao A |[AR 0 1 —A,][17] _ [2nd componens Fy
M=o 1 T Lo A|[-1 A0 [ =25/ —22) ]|

9 (a) A= [f Slhasiy =1, Ay = —Lwithx; = (1.1), x5 = (1,-2)

-2
n 2 1
o=t [ (_?5),,“; _;]_Moo:[ }

10 TheruleFy 4, = Fix4+1 + Fy produces the pattern: even, odd, odd, even, odd,.odd,

11 (a) True(no zero eigenvalues) (bralse(repeatedt = 2 may have only one line of
eigenvectors) (c)ralse(repeated may have a full set of eigenvectors)

WIN WIN
W= W=



62

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Solutions to Exercises

(a) False: don’t know (b) True: an eigenvector is missing (c) True.

| 8 3 1 9 4 |10 5. onlyeigenvectors
A= [—3 2] (or other), 4 = [—4 1} A= [—5 0} arex = (c,—c).

The rank ofA — 37 is r = 1. Changing any entry except;; = 1 makesA
diagonalizable 4 will have two different eigenvalues)

Ak = SAkS—1 approaches zeiiband only if every |A| < 1; A¥ — A, Ak — 0.

A= [(1) (2)] and$ = [i _i] Ak - [(1) 8] andSAkS—! — [% ﬂ steady
state 2 2
a=l0 3s=3 ) aei]=er[f] ]3] -5

AL0 [8] = (.9)1° [?] + (.3)10 [_?] because{g} is the sum oiﬁ] + [_?]
2 —1 171 =171 o 11 171 =171 o
[—1 2] = 5[1 1“0 3] [—1 1] and 4 = 5[1 1“0 3’<]

11 : . 1143k 13K
1 1]. Multiply those last three matrices to gét = 123 143k

ge_[1 1[5 0] [1 1]_[s5 sk—4
=lo —1]|o 4| o —1|T|o 4 |

detA = (detS)(detA)(detS™!) = detA = A;---A,. This proof works whem is
diagonalizable

traceST = (aq + bs) + (cr + dt) is equal to(ga + rc) + (sb + td) = traceT'S.
Diagonalizable case: the trace A S~! = trace of(AS~!)S = A: sum of thel’s.

AB—BA = I isimpossible since tracéB — traceBA = zero #tracel. AB—BA =

C is possible when tracg”) = 0, andE = [% (1)} hastEET — ETE = [—(1) (1)}

Cer a1 a4 o7 _[s ol[A o][s™t o
If A =SAS thenB_[O 2A}_[O sllo 2A 0 S_I.SoBhas

the additional eigenvalues. , ..., 24,.

The A’s form a subspace sineed andA; + A, all have the samé&. WhenS = [
the A’s with those eigenvectors give the subspace of diagonaiceat Dimension 4.

If A hascolumns,...,x, then column by columm? = A means everylx; = x;.

All vectors in the column space (combinations of those colsiwy) are eigenvectors
with A = 1. Always the nullspace has = 0 (4 might have dependent columns, so
there could be less thaneigenvectors witlh = 1). Dimensions of those spaces add
to n by the Fundamental Theorem, dds diagonalizabl€r independent eigenvectors
altogether).

Two problems: The nullspace and column space can overlap,ld be in both.
There may not be independent eigenvectors in the column space.
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27

28

29

30

31

32

33

R=SJAS 1= [% ;} hasR2 = A. /B needs\ = /9 and+/—1, trace is not real.

Note that[_1 O} can havey/—1 = i and—i, trace0, real square rooE_O 1].

0 -1 1 0

AT = A givesx"ABx = (Ax)"(Bx) < ||Ax|||Bx| by the Schwarz inequality.
BT = —B gives—x"BAx = (Bx)"(Ax) < ||Ax|/||Bx||. Add to get Heisenberg’s
Uncertainty Principle whed B — BA = I. Position-momentum, also time-energy.
The factorizations of4 and B into SAS™! are the same. Sd = B. (This is
the same as Problem 6.1.25, expressed in matrix form.)
A = SA;S7'andB = SA,S~!. Diagonal matrices always give;A> = A,A;.
ThenAB = BA from SA1S7!SA>S™! = SA{A2S™! = SA3A1S™! = SA,S!
SA1S™! = BA.
a b

@A=1y 4

e cernesrtint I

- [0 o]- (b) 4= [1 (1)] hasA? = [1 1] and4?—A—1 = 0is true, match-

ing A2 — A — 1 = 0 as the Cayley-Hamilton Theorem predicts.

When4 = SAS~! is diagonalizable, the matrig— A ;1 = S(A—A;1)S~" will have
Ointhej, j diagonalentry o —A; I. Inthe producip(A4) = (A—A11)--- (A—An1),
eachinsides~! cancelsS. This leavesS times product of diagonal matrices — A ; 1)
timesS~!. That product is the zero matrix because the factors prodwuego in each
diagonal position. Thep(A) = zero matrix, which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence obdalizable matrices
approaching.)

Comment | have also seen this reasoning but | am not convinced:

Apply the formuladC™ = (detA)/ from Section 5.3 tod — A/ with variablel. Its
cofactor matrixC will be a polynomial inA, since cofactors are determinants:

(A—AI)cof (A—AI)T = det(A — A1) = p(A)I.

“For fixed 4, this is an identity between two matrix polynomials.” Set A to find
the zero matrix on the left, sp(4) = zero matrix on the right—which is the Cayley-
Hamilton Theorem.

| am not certain about the key step of substituting a matrixifo If other matrices
B are substituted, does the identity remain true?AB # BA, even the order of
multiplication seems unclear.

A =2,—1,0areinA and the eigenvectors are sh(below). A* = SA¥S—1is

2 1 0 2 1 1 k4 2 2 k1 =1 -1
[1 —1 1}1&"1[2 -2 —2}:2_[2 1 1}+Q[—1 1 1}

1 -1 -1 6o 3 —3 612 1 1 3121 11
Checkk = 4. The(2,2) entry of A% is24/6 4 (—1)*/3 = 18/6 = 3. The4-step paths

that begin and end at no@eare 2to 1to1to1t02,2to1to2to1lto2,and2to 1 to
3 to 1to 2. Much harder to find the elevésstep paths that start and end at node 1.
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34 If AB = BA, thenB has the same eigenvectdis 0) and(0, 1) asA. So B is also
diagonalb = ¢ = 0. The nullspace for the following equation is 2-dimensional

1 O0|la b a b 1 0 0 —-b 0 0
an—sa = (g 3][¢ a)-[2 a][s 2] = [0 o) = [0 o e
coefficient matrix has rank — 2 = 2.

35 B has) =i and—i, soB* hasA* = 1 and 1 andB* = I. C hasA = (1 + +/3i)/2.
This is exfg£ri/3) soA®> = —1 and—1. ThenC? = —I andC!°?* = —C.

cosf —sinf
sind cost

det= 1). Their eigenvectors ard, —i) and(1,):

_ 1 1] [en? i -1 .
n:SAnSIZ[—i l:||: e—in6]|:i 1]/2’

_ [ (e"? 4 e~in0) /2 } _ |:COSn9 —sinn@}

36 The eigenvalues ofl = ared = e'? ande~? (trace2cosh and

(ein? — e=inty ;i sinnd  cosnf

Geometricallyyn rotations by give one rotation by 6.
37 Columns ofS times rows ofA S ~! will give r rank-1 matrices(r = rank of 4).
38 Note thatones(n) * ones(n) = n * ones(n). This leads taC = 1/(n + 1).

AA™! = (eye(n) + ones(n)) * (eye(n) + C * ones(n))
=eye(n) + (1 + C + Cn) xones(n) = eye(n).

Problem Set 6.3, page 325

1u =e" |:(1)}, u, = e' |:_i] If u(0) = (5,—2), thenu(t) = 3e* |:(1):| + 2e! |:_i]

2 z(t) = 2¢'; thendy/dt = 4y — 6e' with y(0) = 5 givesy(t) = 3e* + 2¢' as in
Problem 1.

3 (a) If every column of4 adds to zero, this means that the rows add to the zero row. So
the rows are dependent, adds singular, and. = 0 is an eigenvalue.

-2 3
2 —3]

Ao = —5 (to give trace= —5) with x, = (1, —1). Then the usual 3 steps:

1. Writeu(0) = [‘1‘] as[;} + [_ﬂ =x1+x,

2. Follow those eigenvectors by’ x; ande™>"x,
3. The solutionu(t) = x| + e >'x, has steady state; = (3,2).

(b) The eigenvalues of = areA; = 0 with eigenvector; = (3,2) and

4 dv+w)/dt = (w—v)+(v—w) = 0, so the totab + w is constant4 = -1 1]

1 -1
A= . |1 [ 1] v@)=20+10e72  w(oo) =20
has 3 — 0, withx; = [1}"2 = [—1]’ w(l) =20 — 10e™2  w(o0) = 20
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dt | w —1

d -
5 —[v] =[ ! 1] hasA = 0 and+2: v(t) = 20 + 10e?’ — oo ast — oo.

A= [a H has real eigenvalues+ 1 anda — 1. These are both negativedf< —1,
—1
1 b

b + i andb —i. These have negative real part$ ik 0, and all solutions of’ = Bv
approach zero.

and the solutions aof’ = Au approach zeroB = has complex eigenvalues

A projection matrix has eigenvaluégs= 1 andA = 0. EigenvectorsPx = x fill
the subspace that projects onto: hera& = (1,1). EigenvectorsPx = O fill the
perpendicular subspace: here= (1, —1). For the solution ta’ = — Pu,

u(0) = ﬁ] = B] + [_}] u(t) =e! B} + % [_1] approaches{_}].

[g _ﬂ hasi, =5, x; = [%] Ay =2, x5 = [;] rabbitsr (1) = 20e" + 10e?,

w(t) = 10e3" 4+-20e2'. The ratio of rabbits to wolves approach€g10; e dominates.

@i 2] 1] e[ ] (5]

dly_[»]_[0 t][» _[o 1 _ 2 _
n [y/] = [y//] = [4 5] [y, A=, 5 hasdetd—AI) = A*—51—4 = 0.
Directly substitutingy = ¢! into y” = 5y’ + 4y also givesi? = 51 + 4 and the same

two values ofA. Those values aré(s + +/41) by the quadratic formula.

oAl — ] +t[8 (1)} + zeros = [(1) i} Then [yy/((t[))} - [(l) i}[yy’((%))}

[y(O)ler((%’(O)f}_ Thisy(t) = y(0) + y'(0)¢ solves the equation.

A= [ 0 1] has trace 6, det 9, = 3 and 3 withoneindependent eigenvector, 3).

-9 6
(@) y(r) = cos3t and simt solvey” = —9y. It is 3cos3¢ that starts withy (0) = 3
andy'(0)=0. (b)) A=|_g o |hasdet=9:1 = 3i and-3i with x = (1.31)
. T 3 3t 17 _ [ 3cos3t]
and(l, =3i). Thenu(r) = e |:3i] + 57 |:—3i:| = [—9sin3t .
When4 is skew-symmetric]u(t)| = |eAu(0)]| is |u(0)|. Soe“! is orthogonal

4 1 [0 4
u,=4andu(t) =ce' +4; u,= |:2:| andu(t) = cyé! |:t] + cpe’ 1] + |:2]
Substitutingu = e“’v givesce®v = Ae’v —e’b or (A —cl)v = borv =
(A —cI)~'b = particular solution. It is an eigenvalue thed — ¢ is not invertible.
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17 (a) [(1) _(1)] (b) [(1) (1)] () [_i ” These show the unstable cases

(@ Ay <0andi, >0 (b) A; >0andAi, >0 (¢c) A =atibwitha >0
18 d/di(eA) = A+ A% + 332 + ¢ A% oo = AU+ At + 34202 + £ A3 +--0),
This is exactlyde?, the derivative we expect.

19 eB" = I + Bt (short series wittB? = 0) = [cl) _4t1]. Derivative= [8 _g] = B.
20 The solution at time + 7 is alsoe4“* 7 u(0). Thuse4 timese4” equalse4¢+1),

s [0 0 2 S A L -2 )

t t_
22 A% = Agivese = I+ At + A2+ AP+ =1+ (! —1)A = [eo ¢ ) 1]

0 0
eAeB £ BoA £ gA+E _ [8 O:|.

23 e4 = [e 4(61_ 1)} from21ande? = [1 _ﬂ from 19. By direct multiplication

1

ol o1 oot -4 4 [et L —eh
oa=[ 3]=[0 38 S][0 H] men e =[5 U]
13

0 0

2
25 The matrix has4? = [(1) (3)} = [

] = A. Then allA” = A. Soe4! =

et

1+(r+z2/2!+---)A=1+(ef—1)A=[0

t_

3(e 0 1)} as in Problem 22.

26 (a) The inverse 0é4! is e=4 (b) If Ax = Ax thene4’x = ¢*x ande* # 0.
To seeedlx, write (1 + At + 3422 + - )x = (1 + At + 2222 + .- )x = M.

27 (x,y) = (e*,e~*") is a growing solution. The correct matrix for the exchangesg

(y,x)is [_i _g] It doeshave the same eigenvalues as the original matrix.

28 Centering produce¥ ;11 = [_IA[ 1_?202] U, AtAr =1, [_1 (1)] hasA =

¢'™/3 ande~'"/3. Both eigenvalues have® = 1s04% = I. ThereforelUg = AU,
comes exactly back tt/ .

First A hasA = +i andA* = 1. —2n —2n

1
n _ (_1\n
29 Second4 hasA = —1,—1 and A= (=D [ 2n 2n + 1

} Linear growth.

14+a2| —2a 1—a
That matrix has orthonormal columes orthogonal matrix= | U 41| = | U ||

31 (a) (cosd)x = (cosA)x (b) A(4) = 27 and0 socost = 1,1 and cosA = [
(c) u(r) = 3(cos2mt)(1,1)+1(cos0z)(1,—1) [u’ = Au hasexp, u”’ = Au hascos]

) . 1 1—a%? 2a
30 Witha = At/2the trapezoidal step B,,+; = 5> | Up.
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Problem Set 6.4, page 337

Note A way to complete the proof at the end of paat, (perturbing the matrix to pro-
duce distinct eigenvalues) is now on the course websRmdfs of the Spectral Theorém
math.mit.edu/linearalgebra.

1 3 6 0 -1 -2 1 ™1 T
— LA+ AT +1Ua-4
14=[3 3 3|[+|1 0 =3 2(A+ _)+2( ) |
6 3 5 2 3 | = symmetric+ skew-symmetric
2 (ATCA)T = ATCT(AT)T = ATCA. WhenA4 is 6 by 3, C will be 6 by 6 and the triple

productATCA is 3 by 3.
3 A =0,4,—2; unitvectors+(0, 1, —1)/+/2 and+(2, 1,1)/+/6 and+(1, —1, —1)/~/3.

0 =5 2

, 111 2
vectors inQ = % [2 _1].

4 A =10and-5inA = [10 O}, x = [1} and[_ﬂ have to be normalized to unit

50— 1 % _; _% The columns ofQ are unit eigenvectors o
Q= 311 5 o Each unit eigenvector could be multiplied byt
6 A = [lg %z] hasA = 0 and25 so the columns oD are the two eigenvectors:
8 . .
0=|_ 6 g |Orwecan exchange columns or reverse the signs of any column.

7 (a) D %] haslh = —1and3 (b) The pivots have the same signs astlse (c) trace

= A1 + A, = 2, S04 can’t have two negative eigenvalues.

0 1
0 0

A3 = QA3QT = 0requiresA = 0. The only symmetrict is Q 0 QT = zero matrix.
9 If A is complex thert is also an eigenvalued¥ = Ax). AlwaysA + A is real. The
trace is real so the third eigenvalue df ay 3 real matrix must be real.
10 If x isnotreal therk = xTAx/x"x isnotalways real. Can’t assume real eigenvectors!

1 1
3017 -1 1o 2] [ 64 —a8 36 48
1 [1 3]—2[_ %}“4[ %][12 16}_0[—.48 .36]+25[.48 .64]

.
X
12 [x; x,]isan orthogonal matrix s, + P> = x1x] +x2x) =[x x2] [ i} =1
X3
P1P, = x1(x]x2)x] = 0. Second proofP; P, = P;(I — P;) = Py — P; = 0 since
P2 =P

8 If A3 =0thenallA3 =0soalll =0asind = [ . If A is symmetrichen

NI= D=
NI= =

0 b . . - [4 0 0 4
13A:[_b 0 hasA = ib and—ib. The block matrice 0 A and[A 0] are

also skew-symmetric with = i b (twice) andA = —ib (twice).
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M is skew-symmetric and orthogonals must bei, i, —i, —i to have trace zero.

1

good property for complex matrices is not = A (symmetric) butl' = A4 (Hermitian
with real eigenvalues and orthogonal eigenvectors: se@léin20 and Sectiori0.2).

(@) If Az=2Ay andA"y = AzthenB|y; —z]=[-Az; ATy]=-Aly; —z]. So
—)is also an eigenvalue &f. (b) A"Az = AT(Ay) = A%z. () A = —1,—-1,1, I;
x1=(1,0,—1,0), x2 = (0,1,0,—1), x3 = (1,0,1,0), x4 = (0,1,0,1).

A= [i _}] hasA = 0,0 and only one independent eigenvectoe= (i, 1). The

0 0 1 1
The eigenvalues a8 = [0 0 1} are0, /2, —+/2 by Probleml 6 with x| = [—1],
1 1 0 0
1 1
Xy = 1 , X3 = 1
NG 3

1. y isin the nullspace off andx is in the column space- row space becaus¢ =
AT. Those spaces are perpendiculaysa = 0.

2. If Ax = Ax andAy = By thenshiftbys: (A—pI)x = (A—B)x and(A—pBI)y =
Oand agairx Ly.

1 1 0 1 0 1 Perpendicular fod
AhasS:[l -1 0};Bhass=[0 1 0}, Not perpendicular foB

0 0 1 0 0 2d sinceBT # B

A= [3 _1 A 3 _’i 4’] is aHermitian matrix(ZT = A). Its eigenvalues and—4 are

real. Adjust equationgl)—(2) in the text to prove that is always real whed = A:

Ax = Ax leads toA¥ = A¥. Transpose t&' A = ¥'A using4d' = A.
Thenx'Ax = x'Ax and alsar" Ax = X' Ax. SoA = A is real

~[1 2] (b) TruefromA™ = QAQT |
(a) Falsed = [0 1] (©) True fromA—! = QA—1QT (d) False!
A and AT have the samg’s but theorder of the x’s can changeA = _(1) (1) has

A1 =i andA, = —i with x; = (1,i) firstfor A butx; = (1, —i) first for AT.

A is invertible, orthogonal, permutation, diagonalizatdfgrkov; B is projection, di-
agonalizable, Markov4 allows QR, SAS™', QAQT; B allowsSAS~! andQAQ".

Symmetry giveDQAQT if b = 1; repeated. and noS if b = —1; singular if> = 0.
Orthogonal and symmetric requirgd = 1 andA real, soA = +1. ThenAd = £+ or
A= OANOT = cost —sind |1 O cosf sin@ | | cos26 sin26

= QA0 = sinf  cosf# ||0 —1]||—sinf cosd |~ | sin20 —cos20 |

Eigenvectorg1, 0) and(1, 1) give a45° angle even wittd" very close tod.
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27 Theroots ofA2 +bA +¢ =0 are%(—b + /b2 —4dac). Thend; — A, is Vb2 — 4c.
For det4 + tB — A1) we haveh = —3 — 8t andc = 2 + 167 — t2. The minimum of
b?> —4cisl1/17att =2/17. Thend, — Ay = 1/4/17.

4 2+

2—1 0
det = —5. The solution ta20 proves thatl is real whend' = A is Hermitian; | did
not intend to repeat this part.

29 (@) A = QAQ "timesAT = QATQ T equalsA T times A becauseAAT = ATA
(diagonal!) (b) ste: Thel, 1 entries of T T T andTT T are|a|? and|a|? + |b|?.
This makes = 0 andT = A.

. — — T

30 ayy lIs [QII e QIn] [AIC]]I oo Arlan] = Amax(|‘]ll|2 +ee |(Z1n|2) = Amax-

31 (@) x"(Ax) = (Ax)"Tx = xTATx = —xTAx. (b) z' Az is pure imaginary, its real
partisx"Ax + yTAy =0+0 (c) detd =A,...1, > 0:pairsofd’s =ib,—ib.

32 SinceA is diagonalizable with eigenvalue mateix= 27, the matrix4 itself has to be
SAS™! = §21)S~! = 21. (The unsymmetric matrif2 1 ; 0 2] also hast = 2,2.)

28 A = [ ] — 4" has real eigenvalugs = 5 and—1 with trace= 4 and

Problem Set 6.5, page 350

1 Suppose:r > 0 andac > b? so that alsa > h?/a > 0. (i) The eigenvalues have
thesame sigrbecausé.; 1, = det=ac — b% > 0. (ii) That sign ispositivebecause
A1+ A2 > 0 (it equals the trace + ¢ > 0).

2 Only A4 = [ 1(1) 1(1)(1) has two positive eigenvalues’ A;x = 5x% + 12x1x, + 7x3

O -

SN

determinant confirms.
b 1 _[1 o]t o 1 6] .
9—b2] = [b 1] [o 9—b2] [0 1] = LDL
Positive definite [l O] [
5 x2 + 4xy + 3y?2 = (x + 2y)? — y? = difference of squareis negative akx = 2,
A=1% lprod — 0
6 A= o | Producesf(x.y) = [x y] "

is negative for example wheny = 4 andx, = —3: A, is not positive definite as its
Positive definite 1 0
for-3<b<3 b 1
4 7 1 o]f2 o 1 2] T
forc > 8 2 1 c—8:|_|:2 1“0 c—8:||:0 1]—LDL'
4 f(x,y)=x2+4xy +9y2 = (x +2y)%> + 5y%; x2 + 6xy + 992 = (x + 3y)2.
y = —1, where the first square is zero.
0 1 X
1 olly = 2xy. AhasA =1 and
—1. ThenA is anindefinite matrixand f'(x, y) = 2xy has asaddle point

12 6 5 233
7 R'R = andR™R = are positive definiteRTR = |3 5 4 |is
2 13 56 345
singular (and positive semidefinite). The first k& have independent columns. The
2 by 3 R cannot have full column rank with only 2 rows.

8 A= 3 6| |1 0|3 0|1 2| Pivots3,4 outside squareg;; inside.
16 167 (2 1[]0 4[]0 1| xTAx =3(x +2y)% +4y?2
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[_4 —4 8i| has only one pivot 4, rankA4 = 1,

4 4 -8 o
g _3 16| eigenvaluesarg4,0,0,detd = 0.

2 =107 has pivots 2 -1 =17 ! 0
A=|-1 2 -1 ;34 B=|-1 2 -1 issingular;B| 1| =]0].
0 -1 2 1273 -1 -1 2 1 0

Corner determinanist,| = 2, |4,| = 6, |43] = 30. The pivots ar&/1,6/2,30/6.

A is positive definite fore > 1; determinants:, ¢? — 1, and(c — 1)%(c + 2) > 0.
B is neverpositive definite (determinants— 4 and—4d + 12 are never both positive).

A= [é 1(5)] is an example witlx 4+ ¢ > 2b butac < b?, so not positive definite.

The eigenvalues ofi —! are positive because they argi(A4). And the entries off !
pass the determinant tests. AniA='x = (A~'x)TA(A7'x) > O for all x # 0.

Sincex"Ax > 0 andx"Bx > 0 we havex"(4 + B)x = x'"Ax + x"Bx > 0 for
all x # 0. ThenA + B is a positive definite matrix. The second proof uses the test
A = RTR (independent columns iR): If A = RTRandB = S'S pass this test, then

A+ B = [R S]T [g} also passes, and must be positive definite.

xTAx is zero when(x;, x», x3) = (0, 1, 0) because of the zero on the diagonal. Actu-
ally xT Ax goesnegativefor x = (1, —10, 0) because the second pivotrisgative

If a;; were smaller than all’s, A — a;;/ would have all eigenvalues 0 (positive
definite). Butd —a;; I has azeroin the(j, j) position; impossible by Problem 16.

If Ax = Ax thenxTAx = Ax"x. If Ais positive definite thisleadsfo= x"Ax/x"x >
0 (ratio of positive numbers). So positive energypositive eigenvalues.

All cross terms arer[ x ; = 0 because symmetric matrices have orthogonal eigenvec-
tors. So positive eigenvalues positive energy.

(&) The determinant is positive; all > 0 (b) All projection matrices except
are singular  (c) The diagonal entries Bfare its eigenvalues (di = —I has
det= +1 whenn is even.

A is positive definite whem > 8; B is positive definite when > 5 by determinants.

RJi;Hﬁ ﬁH}ﬁ}Lﬁ ;}R:Q[g g}QT:ﬁ ;]

x2/a® + y2/b? is xTAx when A = diag(1/a?,1/b?). Thend; = 1/a? andL, =
1/b? soa = 1/4/A; andb = 1//A,. The ellipsedx? + 16y? = 1 has axes with
half-lengths: = £ andb = . The points(3, 0) and(0, 1) are at the ends of the axes.

The ellipsex? + xy + y2 = 1 has axes with half-lengthis' v/A = +/2 and/2/3.

e i 2]-[2 26 2 Jome [ 4
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: 300 111
26 The Cholesky factor§ = (L\/5) =|0 1 2fandC =|0 1 1 |have
00 2 00 5

square rootof the pivots fromD. Note againC'C = LDL™ = A.

27 Writing outxTAx = xTLDLTx givesax? +2bxy +cy? = a(x + 2y)? + ‘”a;bzyz.
So theLDLT from elimination is exactly the same asmpleting the squareThe
example2x? + 8xy + 10y? = 2(x + 2y)? + 2y? with pivots2, 2 outside the squares
and multiplier2 inside.

28 detd = (1)(10)(1) = 10; A = 2 and5; x; = (cosh, sinh), x, = (—sinb, cosh); the
A’s are positive. Sl is positive definite.

2
29 H, = |:62); 22xi| is semidefinite;f; = (%x2 + y)? = 0onthe curve%xz +y=0;
6x 1 0o 1. . - . L
H, = 1 ol=1|1 ol's indefinite at(0, 1) wherelst derivatives= 0. This is a

saddle point of the functiot (x, y).

30 ax? + 2bxy + cy? has a saddle pointifc < b%. The matrix isindefinite(A < 0 and
A > 0) because the determinant — b? is negative

31 If ¢ > 9the graph ot is a bowl, if¢ < 9 the graph has a saddle point. Wheg= 9
the graph ot = (2x + 3y)? is a “trough” staying at zero along the lide + 3y = 0.
32 Orthogonal matrices, exponentiaié’, matrices with det= 1 are groups. Examples

of subgroups are orthogonal matrices with @etl, exponentialg4” for integern.
Another subgroup: lower triangular elimination matrigesvith diagonall’s.

33 A productA B of symmetric positive definite matrices comes into many igpgibns.
The “generalized eigenvalue problenKx = AM x hasAB = M ' K. (often we use
eig(K, M) without actually invertingV/.) All eigenvalues\ are positive:

ABx = Ax gives(Bx)"ABx = (Bx)"Ax. ThenA = x"BTABx/x"Bx > 0.

34 The five eigenvalues of are2 —2 cosfZ =2 —/3,2-1,2,2+ 1,2+ +/3. The
product of those eigenvaluesfs= detk.

35 Put parentheses in" ATCAx = (Ax)"C(Ax). SinceC is assumed positive definite,
this energy can drop to zero only whdw = 0. SineA is assumed to have independent
columns,Ax = 0 only happens whes = 0. ThusA"CA has positive energy and is
positive definite.

My textbooksComputational Science and Engineeriagd Introduction to Ap-
plied Mathematicstart with many examples of'CA4 in a wide range of applications.
| believe this is a unifying concept from linear algebra.

Problem Set 6.6, page 360

1 B=GCG '=GF 'AFG 'soM =FG™!. C similarto4 andB = A similartoB.

{1 oof.. . . 13 0 ., . {0 1
2A_[O 3:|ISSImI|artOB—|:O 1]_M AMWIthM—|:1 O}'
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- - - -—1r - -

1o 0 1 OT[1 01 oy cns.
B=1o ofl=]1 1| |1 of|1 1|=M AM;
s [ L -1]_[t o] [t 1][1 o]
-1 1T o -1 1 1)lo —1|
s_[43]1_Jo0 17771 270 17

=12 1|71 o] [3 4||1 of

A has no repeateti so it can be diagonalized: "' AS = A makesA similar toA.

1 170 o] 1 0

0 _ .
o ol'lt 111 ollo 1]2® similar (they all have eigenvaluésand0).

[(1) (1)] is by itself and alsc{(l) (1)] is by itself with eigenvalues and—1.

Eight familiesof similar matrices: six matrices have = 0, 1 (one family); three
matrices have. = 1, 1 and three haveé = 0, 0 (two families each!); one has =

1, —1; one hast = 2, 0; two matrices havé = %(1 + +/5) (they are in one family).

@ (M '"AM)Y(M~'x) = M ' (Ax) = M~'0=0  (b) The nullspaces of and
of M~! AM have the samdimension Different vectors and different bases.

SameA ButA — 0 1 andB — 0 2| have the same line of eigenvectors
SameS 10 0 ~ |0 0| andthe same eigenvalugs= 0, 0.

A _[0 1},A _[0 1]everyA _[0 1 LAY = 0 1 andA4A~' = o 1l

2 k k—1 -1 _ -2
2= % |andsk = |€ kck ;J0=TandJ ' =€ <l
C C

0 0 0 c
51 _ [ v du X 1 dv
u(0) = [2] = [w(O)]' The equatlonﬁ = [O L hasz = Av + w and
d
d_lf = Aw. Thenw(r) = 2¢* andv(r) must include2ze* (this comes from the
repeated.). To matchv(0) = 5, the solution isv(z) = 2te* + 5¢*!.
M1 May Mp3 Moy 0 mpz myz O
0 0 0 0 0 0
If M~1JM =K thenJ M= = MK=| [ "2 T2
M4l Mgy M43 Mag 0 m3 m33 O
0 0 0 0 0 Mgy Ng3 0

That mean®i,; = may = ma3z = mas = 0. M is not invertible,J not similar toK.
The five4 by 4 Jordan forms witlh = 0,0, 0,0 areJ; = zero matrix and

01 0 07 0 1 0 07
000 0 00 1 0
22=10 00 0| *=]0 0 0 0
(000 0 0 00 0 0
001 0 07 01 0 07
000 0 00 1 0
Ja=10 0 0 1| 55=|0o 0 0 1
00 0 0] 00 0 0]
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Problem12 showed that/; and J, arenot similar, even with the same rank. Every
matrix with all A = 0 is “nilpotent (its nth power isA” = zero matrix). You see
J* = 0 for these matrices. How many possible Jordan formsfer 5 and allA = 0?

(1) ChooseM; = reverse diagonal matrix to ge&t;"'J;M; = M in each block
(2) M, has those diagonal blocRg; togetM; 1My =JT. (3) AT=M"HTJ™MT
equals(M )T My IMMT = (MMM )" ' A(MMoMT), andAT is similar to A.
detM 1AM — M) = de(M 1AM — M~'XIM). This is detM ' (4 — AI)M).
By the product rule, the determinants Mf and M ~! cancel to leave dét — A7).

a b is similar to d c|.|b a is similar to| € d So two pairs of similar
c d b al|l|ld c a b P

matricesbu{(l) (1) is notsimilarto[(l) é}:diﬁerenteigenvalues!

(a) False Diagonalize a nonsymmetrit = SAS~!. ThenA is symmetric and similar
(b) True Asingularmatrixhad = 0. (c) False [_(1) (1) and (1) _(1)] are similar

(they havel = £1) (d) True Adding ! increases all eigenvalues by 1

AB = B~ (BA)B soAB is similar toBA. If ABx = Ax thenBA(Bx) = A(Bx).
Diagonal blocks 6 by 6, 4 by 44 B has the same eigenvaluesis plus6 — 4 zeros.
@ A= M"'BM = A> = (M 'BM)(M~'BM) = M~'B?>M. SoA? is similar
to B2. (b) A? equals(—A)? but A may not be similar taB = —A (it could be!).

(c) [(3) }‘] is diagonalizablet{g 2} because; # 1,, sothesematrices are similar.

(d) [(3) ;}has only one eigenvector, sonot diagonalizable Re)P Tis similar toA.

J? has thred’s down thesecondsuperdiagonal, anivo independent eigenvectors for

J 01 0 0 1
A = 0. Its5 by 5 Jordan formig 3 withJ; =0 0 1 |and/, = .
5{ JJ [o 0 o} [0 0}
Note to professors An interesting questioniVhich matricesd have (complex) square
roots R? = A? If A is invertible, no problem. But any Jordan blocks foe= 0 must
have sizesi; > n, > ... > np > nix4; = 0 that come in pairs like 3 and 2 in this
examplen, = (np orn,+1) andns; = (n4 Ornga+1) and so on.

a 0 O a 1 07
A list of all 3 by 3 and 4 by 4 Jordan forms could b¢ 0 » 0|, |0 a O |,
0 0 ¢ 0 0 b
e 1 0 a 1 7]
0 a 1 (for any numbersa, b, ¢) a
0 0 with 3,2,1 eigenvectors; diag,b,c,d) and b '
L ¢
fa 1 a 1 a 1
a 1 a 1 . .
b1l u , a1 with 4, 3,2, 1 eigenvectors.

b b a
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If all roots areA = 0, this means that det4 — A7) must be justA”. The Cayley-
Hamilton Theorem in Problem 6.2.32 immediately says #at= zero matrix. The
key example is a single by n Jordan block (withh — 1 ones above the diagonal):
Check directly that/* = zero matrix.

Certainly Q1 R, is similar toR; 01 = Q7' (Q1R1) Q1. Thend; = Q Ry —cs?1 is
similarto4, = R0 — c¢s?1.

A could have eigenvalugs= 2 andA = % (A could be diagonal). TheA™! has the
same two eigenvalues (and is similar4h

Problem Set 6.7, page 371

1 3][v50 o1 2
T 13 4 0 0fl2 -1
A:UEVT:|:u1 u2:| |:01 0:||:111 vz:| =
V10 V5
ThisA = ;’ g is a2 by 2 matrix of rankl. Its row space has basis, its nullspace

has basi®,, its column space has bags, its left nullspace has basis:

% D] Nullspace % [_%]

1 1 1 3
Column space —— L, N(AT —[ ]
Pace o [3} %) V10 L1

If A has rankl then so doest’™ 4. The only nonzero eigenvalue df' 4 is its trace,
which is the sum of al?;. (Each diagonal entry ofi" 4 is the sum ofz?; down one
column, so the trace is the sum down all columns.) Tdegr= square root of this sum,
ando} = this sum of alla?,.

Row space

2 17 e cicerval , 3++v5 , 3-45 Butdis
1 | has eigenvalues; = 103 =~ 7 ' indefinite

ATA = AAT = 1
2

o1 =1+ +5)/2=211(A), 0 = (v5—1)/2 = —A2(A); u; = vy but u, = —v,.

A proof thateigshow finds the SVD. WherV; = (1,0), V, = (0, 1) the demo finds
AV 1 andAV, at some anglé. A 90° turn by the mouse t& ,, —V; finds AV, and
—AV atthe angler — 8. Somewhere between, the constantly orthogepandwv,
must producedv; andAv, at anglerr/2. Those orthogonal directions giwg andu,.
AAT = [% ;} haSO'12 =3 withu; = [1;@] and022 = 1 withu, = [_:;g}

110 1/4/6 1/3/2
ATA=|:1 2 1:|ha5012=3withv1= 2/4/6 |, 02 = lwithv, = 0 :
0 11 1//6 ~1//2

1/V/3
andvs; = [—1/J§:|.Then[(l) 1 (1)] = [u, uz][\é§ (1) 8][:)1 vy v3]T.
1//3
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The matrixA in Problem6 hado; = +/3 ando, = 1 in . The smallest change to
rank1 isto make o, = 0. In the factorization

A=UxV = ulolv-lr + uzazv;

this changer, — 0 will leave the closest rank-matrix asu0; vI. See Probleni4
for the general case of this problem.

The numbebma( A~ 1) omax(A) is the same asmax(A4)/omin(A). This is certainly> 1.
It equalsl if all o’s are equal, andl = UX VT is a multiple of an orthogonal matrix.
The ratioomax/omin IS the importantondition number of A studied in Section.2.

A=UVTsinceallo; = 1, which means thaE = 1.

A rank—1 matrix with Av = 12z would havex in its column space, sd = uw’
for some vectow. | intended (but didn't say) thab is a multiple of the unit vector
v = 1(1,1,1,1) in the problem. Them = 12uv" to getAv = 12u whenv™v = 1.

If A has orthogonal columns;, ..., w, of lengthsoy,...,0,, thenAT A will be di-
agonal with entries?, ..., 0. So thes’s are definitely the singular values df (as

expected). The eigenvalues of that diagonal ma#lx4 are the columns of, so
V = I inthe SVD. Then the:; are Av; /o; which is the unit vectow; /o;.

The SVD of this4 with orthogonal columnsigd = UZVT = (AX~1)(2)(1).

SinceA"™ = A we haves? = A? ando? = A3. But 1, is negative, sor; = 3 and
0, = 2. The unit eigenvectors of are the sama; = v, as for4"4 = AA" and
u, = —v, (notice the sign change because= —A\,, as in Problend).

Suppose the SVD oR is R = UXVT. Then multiply byQ to get4 = QR. So the
SVD of this4 is (QU)X V. (OrthogonalQ times orthogonal/ = orthogonalQ U .)

The smallest change it is to set its smallest singular valag to zero. See #.

The singular values o + [ are noto; + 1. They come from eigenvalues of
(A+DTA+1I).

This simulates the random walk used ®gogleon billions of sites to solvelp = p.

It is like the power method of Sectich3 except that it follows the links in one “walk”
where the vectop, = A p, averages over all walks.

A = UXVT = [cosines including,] diag(sqrt(2 — +/2,2,2 + +/2)) [sine matri}'.
AV = U X says that differences of sineslihare cosines i/ timeso’s.

The SVD of thederivativeon [0, 7] with f(0) = 0 hasu = sinnx,o = n,v = cosnx!

Problem Set 7.1, page 380

1

2

3

With w = Olinearity givesT (v + 0) = T'(v) + T(0). ThusT'(0) = 0. With¢ = —1
linearity givesT (—0) = —T7'(0). This is a second proof th&i(0) = 0.

CombiningT' (cv) = ¢T(v) andT (dw) = d T (w) with addition givesT'(cv + dw) =
¢T(v) + dT(w). Then one more addition gived'(v) + dT(w) + eT (u).

(d) is not linear.
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4 (@) S(Tw)=v (b) S(T(1)+T(w2) = S(T(v1) + S(T(v2)).

5 Choosev = (1, 1) andw = (—1,0). ThenT(v) + T(w) = (v + w) butT (v + w) =
(0,0).

6 (a) T(v) = v/|v|| does not satisfyf' (v + w) = T(v) + T(w) or T(cv) = cT(v)
(b) and (c) are linear (d) satisfi@gcv) = c¢T(v).

7@T(Tw)=v (b) T(T(v)=v+(2.2) (c) T(T(w)=-v (d) T(T(v))=T(v).

8 (a) The range of (vy,v2) = (v1 — v3,0) is the line of vectorgc, 0). The nullspace
is the line of vectorgc, ¢). (b) T(vi,v2,v3) = (v1,v,) has RangdR?, kernel
{(0,0,v3)} (c) T(v) = 0has Rangg0}, kernelR? (d) T(vi,v2) = (v1,v1)
has Range = multiples @i, 1), kernel = multiples of 1, —1).

9 If T(vy,v2,v3) = (va2,v3,v1) thenT(T(v)) = (v3,v1,v2); T3(v) = v; T'%%0) =
T (v).
10 (a) T(1,0)=0 (b) (0,0, 1) is notinthe range (c)r(o,1)=0.

11 For multiplicationT (v) = Av: V = R", W = R™; the outputs fill the column space;
v is in the kernel ifAv = 0.

12 T(v) = (4,4):(2,2);(2,2);if v = (a,b) = b(l, 1)+%(2,0) thenT (v) = b(2,2)+
(0,0).

13 Thedistributive law(page 69) givest (M, + M,) = AM, + AM,. Thedistributive
law overc’s givesA(cM) = c(AM).

14 This A is invertible. Multiply AM = 0 andAM = B by A~! to getM = 0 and
M = A~'B. The kernel contains only the zero matfik = 0.

15 This A is notinvertible. AM = I is impossible.4 _% _% = 8 8] The range
contains only matriced M whose columns are multiples ©f, 3).

; ; 0 0 0 1
16 No matrix A gives A 1L ol=10 o

matrix space come froh by 4 matrices. Those in Problems 13-15 were special.
17 ForT(M) = MT (a) T? = I is True (b) True (c) True (d) False.

18 T(I) =0butM = 8 g = T(M); theseM s fill the range. EveryM = ? 2

is in the kernel. Notice that dim (range)dim (kernel)= 3 + 1 = dim (input space of
2by2 M’s).

19 T(T~Y(M)) = M soT~' (M) = A~'MB~".

20 (a) Horizontal lines stay horizontal, vertical lines staytical (b) House squashes
onto aline (c) Vertical lines stay vertical becadsd, 0) = (a1, 0).

. To professors: Linear transformations on

0 1
A% = A from trace= 1 andA = 0,1). The projection is onto the column space of

A = line through(.7,.3). U = (1) i

at(x, y) moves over tqx + y, y).

21 D = [2 O} doubles the width of the housd. = [; ;] projectsthe house (since

} will shearthe house horizontally: The point



Solutions to Exercises 77

22

23

24
25

26

27
28
29

30

31

(@ A= [g 2] withd > 0leaves the housé H sitting straight up (b)A =31

cosf —sind

expands the house By  (c) 4 = [sin@ cosé

] rotates the house.

T (v) = —v rotates the house BB0° around the origin. Then the affine transformation
T'(v) = —v + (1, 0) shifts the rotated house one unit to the right.
A code to add a chimney will be gratefully received!

This code needs a correction: add spaces betwaéri0 —10 10

0} compresses vertical distancesloyto 1. [‘5

0 1 5 g] projects onto thd5° line.

[_‘g g} rotates by45° clockwise and contracts by a factor ¢ (the columns have

length1/+/2). [i (1)} has determinant1 so the house is “flipped and sheared.” One

way to see this is to factor the matrix ADLT:

[} H:[} ?Hl _IHé ”: (shear) (flip left-right) (shear)

Also 30 emphasizes that circles are transformed to ellipses (sefig Section 6.7).
A code that adds two eyes and a smile will be included here puitilic credit given!

@) ad —bc =0 (b) ad —bc >0 (€) lad — bc| = 1. If vectors to two
corners transform to themselves then by linedfity= 7. (Fails if one corner ig0, 0).)

The circl transforms to the ellipse by rotatid§° and stretching the first

axis by?2.

Linear transformations keep straight lines straight! Awd parallel edges of a square
(edges differing by a fixed) go to two parallel edges (edges differing Byv)). So the
output is a parallelogram.

Problem Set 7.2, page 395

1

2

3

ForSv = d?v/dx? 8 8 3 2
V1, V2, 3, 04 = 1, x, x2, X3 The matrix forS is B = 00 0 0
Sv1 = Sv2 = 0, Sp3 = 291, Sva = 6p2; 00 0 0
Sv = d?v/dx* = 0 for linear functionsv(x) = a + bx. All (a,b,0,0) are in the

nullspace of the second derivative matfix
(Matrix 4)> = B when (transformatioff’)? = S and output basis = input basis.
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The third derivative matrix hagin the (1, 4) position; since the third derivative af
is 6. This matrix also comes from B. The fourth derivative of a cubic is zero, aBd
is the zero matrix.

T(vy + vy + v3) = 2w + wy + 2ws; A times(1, 1, 1) gives(2, 1,2).

6 v = c(vy—v3) givesT (v) = 0; nullspace i40, ¢, —c); solutions(1, 0,0) + (0, ¢, —c).

10

11

12
13

14

15

16

17

18

(1,0,0) is not in the column space of the matrik andw; is not in the range of
the linear transformatiori’. Key point: Column spacef matrix matchegange of
transformation.

We don't knowT (w) unless thew’s are the same as thes. In that case the matrix is
A2,

Rank of A = 2 = dimension of theangeof T. The outputsdv (column space) match
the outputsT'(v) (the range of"). The “output spaceW is like R™: it contains all
outputs but may not be filled up.

1 0 0 1 1
The matrix forT is A = |:1 | O] For the outpu[o} choose inpuv = [—1] =
I 1 1 0 0

1
A1 [0} This means: For the output; choose the input; — v.
0

0 -1 1
The columns of4~! describel’~! from W back toV. The only solution td’(v) = 0
isv =0.

1 0 0
A7l = |:—l 1 Oi| SOT_I(‘wl) = V1 — Vs, T_l(U)2) = Vy — V3, T_I(IU3) = V3.

() T™Y(T(w,)) = w; is wrong because, is not generally in the input space.
(@) T(vy) = vy,T(vy) = vy isits own inverse (b)I'(vy) = vy, T(v2) = 0 has
T? =T (c) If T?> = I for part (@) andl'? = T for part (b), therl” must be/ .

@[5 3] @[5 ] -mesea@  @affmsea]]

ros 1 0 r S “ -
(@ M = [[ u] transforms[o} and[l] to [t} and[u], this is the “easy” direc-
tion. (b) N = Ccl Z transforms in the inverse direction, back to the standard

basis vectors. (cdd = bc will make the forward matrix singular and the inverse
impossible.

-1
1 02 1 3 -1

MW = [1 2] [5 3} = [—7 3]'

Recording basis vectors is done biermutation matrixChanging lengths is done by

apositive diagonal matrix
(a,b) = (cosh, —sinh). Minus sign fromQ~! = Q7.
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|1 1) ja| _| 5| _«& 1 : 1
19 M = [4 5}, [b} = [_4] = first column of M =" = coordinates o{

! |

20 wo(x) =1—x% wi(x) = 1(x2 —x); y = 4w + 5wy + 6ws.

] in basis

0 1 0 1 1 17
21 w's to v’s:|:.5 0 —.5} . v's to w’s: inverse matrix= [1 0 0]. The key
S5 -1 5 1 -1 1

idea The matrix multiplies the coordinates in théasis to give the coordinates in the
w basis.

1 a d? A
22 The3 equations to match, 5,6 atx = a,b,care| 1 b b? B | =
1 ¢ 2 C
Vandermonde determinant equéls— a)(c — a)(c — b). Soa, b, c must be distinct to
have det# 0 and one solutiod, B, C.
23 The matrixM with these nine entries must be invertible.

24 StartfromA = QR. Column2isa, = r12q, + r22q,. This givesa, as a combination
of theg’s. So the change of basis matrixRs

25 StartfromA = LU. Row 2 of A is £, (row 1 of U) + €5, (row 2 of U). The change
of basis matrix is alwaymvertible, because basis goes to basis.

26 The matrix forT'(v;) = A;v; is A = diag(A1, A2, A3).
27 If T isnotinvertible,T'(vy),..., T(v,) is nota basis. We couldn’t choogg = T'(v;).

. This

(o) N

28 (a) [8 (3)] givesT(vy) = 0andT (v,) = 3v;. (b) [(1) 8] givesT(vy) = vy and
T(vy 4+ v2) = v; (which combine intd’(v,) = 0 by linearity).

29 T(x,y) = (x,—y) is reflection across the-axis. Then reflect across theaxis to get
S(x,—y) = (—x,—y). ThusST = —1I.

30 S takes(x, y)to (—x,y). S(T(v))=(-1,2). S(v)=(-2,1) andT(S(v)) = (1, —2).

cos2(0 —a) —sin2(0 —a)

sin2(f —a)  cos2(6 — @)

by2(6 — ). In words: (1, 0) is reflected to have anglker, and that is reflected again to

angle26 — 2a.

32 False: We will not knowr" (v) for energyv unless the: v's are linearly independent.

31 Multiply the two reflections to ge which is rotation

1 1 1 1

2 2 2 2

1 1 1 _1

33 Tofind coordinatesin the wavelet basis, multiplyy ' = | + ¢ * ¢
2 2 00

1 1

0 0 3 —3

Thene = fw; + Jw, + Jws andv = w3 + w4. Notice againW tells us how the
bases changelV ~! tells us how the coordinates change

34 The last step writes, 6, 2, 2 as the overall averagt 4, 4, 4 plus the differencg, 2,
—2,—2. Thereforec; = 4 andc, = 2 andesz = 1 andey = 1.
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35 The waveletbasisid, 1,1, 1,1, 1, 1, 1) and the long wavelet and two medium wavelets
(1,1,-1,-1,0,0,0,0), (0,0,0,0,1,1,—1,—1) and 4 wavelets with a single pdir—1.
36 If Vb = Wecthenb = V~!'We. The change of basis matrix 5~ W.

37 Multiplying by [CCZ Z] givesT (v;) = A [1 0] = [a O} = av;+cvsz. Similarly

0 0 c O
T(vy) = avy + cvqg andT (v3) = bvy + dvs andT (v4) = bvy + dvy. The matrix
a 0 b O
. . . .10 a 0 b
for T in this basis i c 0 d 0
0 ¢c 0 d

0 0 O
38 The matrix for7 in this basis is4 = [O 1 0 Oi|.
0

Problem Set 7.3, page 406

10 20 1 |1 1 2
Tyg4 — — - - . —

1 A4 = [20 40} hasA = 50 and0, v; = 7 [2] vy = 7 [_1}, o1 = +/50.

2 Orthonormal basesy; for row spacep, for nullspaceu; for column spaceg, for
N(AT). All matrices with those four subspaces are multipids since the subspaces
are just lines. Normally many more matrices share the sesnbspaces. (For example,
all n by n invertible matrices shar@”.)

1 — 1 . S L
3A=Q0H=— [7 1] — [10 20]. H is semidefinite becauséis singular.

11 7] 7= 20 40
ool 0], a1 3] e, [2 4] e _[1 3
4A_V[o 0|V =52 6 A= ]4 3 A =13 of

+, 10 8 B _ 1 1 _ 1 1 .
5AA_|:8 10]hask_18and2,v1—ﬁ 1 ,02—75 1 ,Ul—‘/l—8
ando, = V2.

6 AAT = [12 g] hasu; = [(1)]’”2 = [(1)] The same/18 and+/2 go into =.

v .
7 [olul ozuz] |:v{| = (Ilule + ozuzv;. In general this Iﬁlule 4+ orurv;r.
2

- ]
8 4= USVT splitsinto QK (polar): 0 = UVT = — [1 1} andk = VEVT =

N R
< 1)

9 AT is A~! becauset is invertible. Pseudoinverse equals inverse wHeh exists!

9 12 0 6 8 0
10 ATA = [12 16 0} hasA = 25,0,0 andv; = |:8i| v, = |:—.6}, vy = [0}
0 0 0 0 0 1

Hered = [3 4 0] has rankl andAA™ = [25] ando; = 5 is the only singular value
Nz =[500].
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2 12 36 48 0
11 A=[1][5 0 0]VTandAt=V | 0 |=]|.16 |; ATA=| 48 .64 0 |;44%=[1]
0 0 0 0 0

12 The zero matrix has no pivots or singular values. Thes same2 by 3 zero matrix
and the pseudoinverse is thdy 2 zero matrix.

13 If det4 = 0 thenrankA) < n; thus rankA™*) < n and detd™ = 0.

14 A must besymmetric and positive definjié ¥ = A andU = V' = eigenvector matrix
Q is orthogonal.

15 (a) AT Aissingular (b) Thisc™ inthe row space does give' Ax+ = ATh  (c) If
(1,—1) in the nullspace ofl is added toc *, we get another solution td" Ax = ATh.
But thisx is longer thany ™ because the added part is orthogonaktoin the row
space.

16 x7 in the row space ofd is perpendicular to&c — x* in the nullspace of4" A
nullspace ofd. The right triangle has? = a? + b2.

17 AATp=p, AATe =0, AT Ax, =x,, ATAx, =0.

18A+::V2+UTS§L63]:[42.m]mMA+A:41]mMAA+=[48 64
projection.

19 L is determined by,;. Each eigenvector i is determined by one number. The
countsard +3for LU, 1 +2+ 1for LDU, 1 +3for QR, 1 +2+1forUZVT,
2+2+0for SAS™L.

20 LDLT andQAQT are determined by + 2 + 0 numbers becaus¢ is symmetric

21 Column times row multiplication gived = USVT = Y o;u;v] and alsoAt =
VETUT = Y o7 'v;u]. Multiplying A* 4 and using orthogonality of eaah to all
otheru; leaves the projection matrix™4: AT A = Y lv;v]. Similarly 441 =
> luju! fromVyT = 1.

22 Keep only ther by r cornerZ, of X (the rest is all zero). Thed = UXVT has the
required formd = UM; =, MTVT with an invertibleM = M; X, M, in the middle.

23 0 A||lu| _| Av | _ |u| Thesingularvalues of are
AT ol|v| T AT | T % 0| eigenvaluesf this block matrix.

.36 .48}

Problem Set 8.1, page 418

[c1 + ¢ —Cp 0
1 DetAjCoAo=| —c2 c2+c3 —c3 |isbydirectcalculation. Set, = 0to
L O —C3 c3+ ¢4

find detAIClAl = C1C2C3.

10 07 ¢! 1 1 1
2 (ATC;Ap~t=|1 1 0 ;! 01 1|=
—1
c3

111 0 0 1
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The rows of the free-free matrix in equation (9) add@ 0 0] so the right side needs
fl +f2+f3 =0. f = (—1,0, 1) giVESC2M1 —couy = —1,c3ur—c3uz = —1,0 =0.

/ d du du!
(c(x)—) dx=— |:c(x)—i| =0 (bdry cond) so we need f(x) dx =0.
dx dx

- i

X 1
—d—y = f(x) givesy(x) = C —/ f(t)dt. Theny(l) = 0 givesC = / f@)dt
dx ) 0 0
andy(x) = / f(@)dt. Iftheloadisf(x) = 1 then the displacementigx) = 1 —x.

Multiply A]C;A; as columns ofd] timesc’s times rows ofAd;. The first3 by 3
“element matrikc; E; =[1 0 0]'¢;[1 0 0] hasc; in the top left corner.

For 5 springs andd masses, thé by 4 A has two nonzero diagonals: afl; = 1

anda;4+1,; = —1. With C = diag(cy., ¢z, c3, ca, c5) We getK = ATCA, symmetric
tridiagonal with diagonal entriek;; = ¢; + ¢;+; and off-diagonal; +;; = —c;+1.

With C = [ thisK isthe—1,2,—1 matrixandK (2, 3,3,2) = (1,1,1, 1) solvesKu =

ones(4, 1). (K~! will solve Ku = ones(4).)

The solution to—u” =1 with u(0) =u(1) =0 is u(x) = 3 (x — x?). Atx =
this givesu =2, 3, 3, 2 (discrete solution in Problem 7) timéa x)? =1/25.

—u’" = mg has complete solution(x) = 4 + Bx — Imgx?. Fromu(0) = 0 we

getd = 0. Fromu’(l) = 0 we getB = mg. Thenu(x) = img(2x — x?) at
x = 1.3, 3 equalsng/6,4mg/9,mg/2. Thisu(x) is not proportional to the discrete

u = (3mg,5mg,6mg) at the meshpoints. This imperfection is because the descret
problem uses a-sided difference, less accurate at the free end. Perfecracy is
recovered by a centered difference (discussed on pagémy CSE textbook).

23
5°5°

I

1
50

(added in later printing, changirig-11 below into11-12). The solution in this fixed-
fixed case ig2.25,2.50, 1.75) so the second mass moves furthest.

The two graphs ofl 00 points are “discrete parabolas” starting(t0): symmetric
arounds0 in the fixed-fixed case, ending with slope zero in the fixe@-frase.

Forward/backward/centered fdr /d x has a big effect because that term has the large
coefficient. MATLAB: E = diag(ones(6,1),1); K = 64 x 2* eye(7) — E — E’);

D = 80 x (E— eye(7)); (K + D)\ones(7,1); % forward; (K — D’)\ones(7, 1);

% backward;(K + D/2 — D’/2)\ones(7, 1); % centered is usually the best: more
accurate

Problem Set 8.2, page 428

1

2

—1 1 0 c 1
A= [—1 0 1}; nullspace containEc]; [0} is not orthogonal to that nullspace.
0 —1 1 c 0

ATy =0for y = (1,—1,1); current along edge 1, edge 3, back on edge 2 (full loop).
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10

11

12

—_

—1 1 0 b
Elimination on bi[4A b] = |:—1 0 1 b2i| leads to [U ¢] =
0 —1 1 b3

—1 1 0 b

[ 0 -1 1 by—»0 } The nonzero rows ot/ come from edges 1 and 3
0 0 0 bz—by+b

in a tree. The zero row comes from the loop (all 3 edges).

For the matrix in Problem 34x = b is solvable forb = (1, 1,0) and not solvable
for b = (1,0,0). For solvableb (in the column space)y must be orthogonal to
y = (1,—1, 1); that combination of rows is the zero row, abhd— b, + b3 = 0 is the
third equation after elimination.

Kirchhoff’'s Current LawATy = f is solvable forf = (1,—1,0) and not solvable
for f = (1,0,0); f mustbe orthogonalt@, 1, 1) inthe nullspacef; + f>+ f5 = 0.

2 —1 -1 3 1 ¢
ATAx = [—1 2 —1i|x = [—3} = f producest = [—1i| + |:ci|; potentials
-1 -1 2 0 0 c

x = 1,—1,0and currents-Ax = 2, 1, —1; f sends 3 units from node 2 into node 1.

1 3 -1 -2 1 r5/47 ¢
AT 2 A=|-1 3 =2|; f=| O|yieldsx =| 1 |+ any|c |;
2 2 -2 4 -1 1 7/8] ¢
potentialsx = 2.1,  and currents-CAx = 3. 3. %
—1 1 0 0 1 —17] 0
—1 0 1 0 1 1 0
A= 0 -1 1 0| leadstox = 1 andy = | —1 | and| 1 | solving
0 -1 0 1 1 0 —1
0 0 -1 1 o] |1
ATy =0.

Elimination onAx = b always leads toy"™» = 0 in the zero rows ofU and R:
—by 4+ by — b3 = 0 andb; — by + b5 = 0 (thosey’s are from Problem 8 in the left
nullspace). This is Kirchhoff's/oltageLaw around the twdoops

- 00 The nonzero rows df/ keep

0-1 10 .
. _ B edges 1, 2, 4. Other spanning trees
The echelonformoflisU = 8 8 (1) (1) from edges, 1, 2, 5; 1, 3, 4: 1, 3, 5:
0 0 0 0 1,4,5;2,3,4,2,3,5;2,4,5.

2 —1 —1 07 diagonal entry= number of edges into the node
-1 3 —1 —1| thetrace i timesthe number of nodes
-1 -1 3 —1| off-diagonal entry= —1 if nodes are connected
0 —1 —1 2| ATAisthegraph Laplacian, ATCA is weightedby C

ATA =

(@) The nullspace and rank af’ 4 and 4 are always the same (074 is always
positive semidefinite becausd ATAx = ||Ax|> > 0. Not positive definite because
rank is only3 and(1, 1,1, 1) isin the nullspace (c) Real eigenvalues=all because
positive semidefinite.
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; _é _g (3) (1) gives four potentials = (3. ;. £.0)
13 ATCAx = :2 -3 _8 :3 x=| | !groundedy, = 0 and solved for
0 -3 -3 6 —1 | currentsy = —CAx = (%, %,0’ % %)

14 ATCAx =0forx =¢(1,1,1,1) = (c,c,c,c). If ATCAx = f is solvable, therf in
the column space= row space by symmetry) must be orthogonat tim the nullspace:
Nttt s+ fa=0.

15 The number of loops in this connected graptmis-m + 1 = 7—-7+ 1 = 1.
What answer if the graph has two separate components (ne bdgeeen)?

16 Start from (4 nodes} (6 edgesH (3 loops)= 1. If a new node connects tbold
node,5 — 7 + 3 = 1. If the new node connects ®old nodes, a new loop is formed:
5-8+4=1.

17 (a) 8 independent columns (b must be orthogonal to the nullspace g& add
tozero (c) Each edge goes into 2 nodes, 12 edges make diagdriak sum to 24.

18 A complete grapthas5 + 4 + 3 + 2 + 1 = 15 edges. Withw nodes that count is
l4+---4+(n—-1)=n({m—1)/2. Tree has edges.

Problem Set 8.3, page 437

1 Eigenvaluest = 1 and .75; @ — I')x = 0 gives the steady state = (.6, .4) with
Ax = x.

6 —111 1 1. |6 =1]|1 0 1 1| _[.6.6

2 4= [.4 1“ .75] [—.4 .6:|’AOO = [.4 —1] [o 0] [—.4 .6:|_[.4 .4]'

3A=1ands8, x =(1.0);land—8, x = (3.5); 1.3, and}, x = (3.3. %)

4 AT always has the eigenvecttr, 1,...,1) for A = 1, because each row of" adds
to 1. (Note again that many authors use row vectors multighiMarkov matrices.
So they transpose our form df)

5 The steady state eigenvector foe= 1 is (0,0, 1) = everyone is dead.

6 Add the components ofx = Ax to find sums = As. If A # 1 the sum mustbe = 0.

6+ .4a .6— .6a . a<l1
4— 4a .4+.6a}WIth 4+ .6a=0

8 If P = cyclic permutationandy = (1,0,0,0) thenu; = (0,0,1,0); u, = (0,1,0,0);
us; = (1,0,0,0); uy = uy. The eigenvalues, i, —1, —i are allon the unit circle This
Markov matrix contains zeros;@ositivematrix hasonelargest eigenvalug = 1.

7 (5% — 0 givesA* — A®; anyA = [

9 M?Zisstillnonnegative1 --- 1]M =[1 --- 1]so multiply on the right by to
find[1 --- 1]M?>=[1 --- 1]= columns ofM? add to 1.
10 A = 1 anda + d — 1 from the trace; steady state is a multiplexaf= (b, 1 — a).
11 Lastrow.2,.3,.5makesd = AT;rowsalsoaddto1sd,..., 1) is also an eigenvector
of A.

12 B hasA = 0and—.5withx; = (.3, .2) andx, = (—1,1); AhasA = 1s04 — I has
A = 0. e—>" approaches zero and the solution approache¥x; = c;x;.

13 x = (1,1, 1) is an eigenvector when the row sums are egdal;= (.9, .9, .9)
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14 (I-A)I+A+A%+-.) = (I +A+ A%+ )—(A+A2+A3+...) = I. Thissaysthat

I+A+ A4 is(T—A) . Whend = |V 2| a2 = 11,43 = 1A, 4% = 11

r, ... 1,1,
and the series adds fo ? + 2t 4 * =2 M (I — A1,
T+2 4+ T+3+-- 2 2

1
2

15 The firsttwoA’s haveAnax < 1; p = [2] and[lgg]; I — [g (1)} has no inverse.

16 A = 1 (Markov), 0 (singular),.2 (from trace). Steady state3, .3, .4) and(30, 30, 40).
17 No, 4 has an eigenvaluke = 1 and(/ — A)~! does not exist.

Fi—A F, F;
18 The Leslie matrix on page 435 has@dét-A7) = det[ Py ) } =134+
0 P, —X
F1A? + F, P\ + F3P,P,. This is negative for largé.. It is positive atA = 1
provided thatF; + F, P1 + F3 Py P, > 1. Under this key condition, dett — A7) must
be zero at som between 1 ando. That eigenvalue means that the population grows
(under this condition connecting’s and P’s reproduction and survival rates).

19 A timesS~'AS has the same diagonal 85! AS timesA because\ is diagonal.
20 If B>A>0andAx = Amax(A)x >0thenBx > Anax(A)x andAmax(B) > Amax(A4).

Problem Set 8.4, page 446

Feasible set line segmen(6, 0) to (0, 3); minimum cost at6, 0), maximum at0, 3).
Feasible set has corndik 0), (6, 0), (2,2), (0, 6). Minimum cost2x — y at (6, 0).
Only two cornerg4,0,0) and(0, 2, 0); letx; - —o0, xo = 0, andxz = x; — 4.

From(0, 0,2) move tox = (0, 1, 1.5) with the constraink; + x, +2x3 = 4. The new
costis3(1) + 8(1.5) = $15 sor = —1 is the reduced cost. The simplex method also
checksy = (1,0, 1.5) with cost5(1) + 8(1.5) = $17; r = 1 means more expensive.

5 Cost= 20 at start(4, 0, 0); keepingx; +x,+2x3 = 4 moveto(3, 1, 0) with cost 18 and
r = —2; or move to(2, 0, 1) with cost 17 and- = —3. Choosexs as entering variable
and move td0, 0, 2) with cost 14. Another step will read, 4, 0) with minimum cost
12.

6 If we reduce the Ph.D. cost to $1 or $2 (below the student cb$8) the job will
go to the Ph.D. with cost vecter= (2, 3, 8) the Ph.D. takes 4 hou(s; + x, +2x3 =
4) and charges $8.

The teacher in the dual problem now has< 2,y < 3,2y < 8 as constraints
ATy < ¢ on the charge of per problem. So the dual has maximumyat 2. The
dual cost is also $8 for 4 problems and maximgnminimum.

7 x = (2,2,0) is a corner of the feasible set with + x, + 2x3 = 4 and the new
constrain®x; + x, + x3 = 6. The cost of this cornerisc’x = (5,3,8)-(2,2,0) =
16. Is this the minimum cost?

Compute the reduced cosif x3 = 1 enters(x; was previously zero). The two
constraint equations now requitg = 3 andx, = —1. Withx = (3,—1, 1) the new

A W N R
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costis3.5 — 1.3 4+ 1.8 = 20. This is higher than 16, so the original= (2, 2, 0) was
optimal.

Note thatx; = 1 led tox, = —1 and a negative, is not allowed. Ifx3 reduced
the cost (it didn’'t) we would not have used as muchas= 1.

8 y'bh < yTAx = (ATy)"x < ¢'"x. The firstinequality needeg > 0 andAx — b > 0.

Problem Set 8.5, page 451

Jj+k

. . 2
1 27 cos(j +k)x) dx = [M]O” = 0 and similarly [ cos((j —k)x) dx = 0

Notice j — k # 0 in the denominator. If =k thenfoz” cog jxdx = .

Three integral tests show thatx, x2 — % are orthogonal on the interval-1, 1]:
L) dx = 0.2 - Y dx = 0, (x)(x*> = 1) dx = 0. Then
2x% =2(x? — §) + 0(x) + %(1). Those coefficient3, 0, 2 can come from integrating
f(x) = 2x? times the 3 basis functions and dividing by their lengthsassgd—in other

words usingz'b/a"a for functions (wheré is f(x) anda is 1 orx or x? — %) exactly
as for vectors.

One example orthogonal to= (1, % .)isw = (2,—1,0,0,...) with |w|| = /5.

JL)(3 —ex)dx = 0and /!, (x2 — 1)(x* — cx) dx = 0 for all ¢ (odd functions).
Chooser so that/”, x(x* — cx)dx = [1x5 — €x3]L, = 2 —¢2 = 0. Thenc = .
The integrals lead to the Fourier coefficienis= 0, by = 4/, by = 0.

6 From eqgn. 3y, = 0 andb; = 4/rmk (odd k). The square wave hdsf ||> = 2x.

10

11

Theneqn. (6) i®7 =7 (16/7%)(;5 + 35 + 35 +---). Thatinfinite series equate®/8.

The —1, 1 odd square wave ig(x) = x/|x| for 0 < |x| < m. Its Fourier series in
equation (8) igt/x times[sinx + (sin3x)/3 4+ (sin5x/5) +---]. The sum of the firsiV
terms has an interesting shape, close to the square wavgt exoere the wave jumps
between—1 and1. At those jumps, the Fourier sum spikes the wrong way-1009
(the Gibbs phenomendibefore it takes the jump with the trug(x).

This happens for the Fourier sums of all functions with jumfismakes shock
waves hard to compute. You can see it clearly in a graph ofuthrecd 10 terms.
lv)? = 1+%+i+§+“' =2s0|v]| = v2; |[v]|?> = 1+a?+a*+--- = 1/(1—-d?)
so|jv|| = 1/~1 —a?; foz”(l + 2sinx + sinf x) dx = 27 + 0 + 7 so|| f|| = /3.

(@) f(x) = (1 + squarewavg'2 so thea’s are%, 0, 0,... and theb’s are2/x, 0,

-2/37,0,2/57, ... (b) ap = f02”xdx/2n = n, allotheray = 0,b, = —2/k.

The integral from—n to = or from 0 to2x (or from anya to a + 2x) is over one
complete period of the function. If(x) is periodic this change;foz” f(x)dx to

Jo f(x) dx+ffn f(x)dx.If f(x)isodd, those integrals cancel to giyg (x) dx = 0

over one period.

— 1 1 . Ty — T i inm 1 Ve
cos x = 5 + 5 €0S2x; cogx + %) = cosx cos% —sinxsinZ =  cosx — % sinx.
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1 0 00 0 O0 O 1
J CcoSsx —sinx 0 0-1 0 O co This sh h
. . is shows the
12 == sinx |= CO,SX =01 000 sinx " differentiation matrix.
COS2x —25sin2x 0 0 0 0 —2]|| cos2x
sin2x 2Cc0S2x 0 0 0 2 O0]Lsin2x

13 The square pulse with'(x) = 1/h for —x < h/2 < x is an even function, so all sine
coefficientsh are zero. The averagg and the cosine coefficienig are

h/2 1
= 1/h)ydx = —
ao ' —h/2(/ )dx Dy
1 [h2 2 _kh .1 . (kh
ay = _/ (1/h)coskxdx = —— (sm—) which |s—smc(—)
T —h/2 nkh 2 T 2

(introducing the sinc functiotsinx)/x). As h approaches zero, the numbet= ki /2
approaches zero, ardinx)/x approaches 1. So all thoag approachl /.

The limiting “delta function” contains an equal amount df@sines: a very ir-
regular function.

Problem Set 8.6, page 458

1
1 The diagonal matrixC = WTW is 27! = [ 1 } with no covariances (inde-
1/2

pendent trials). Then solvé"CAx = ATCb for this weighted least squares problem
(noticeCt + D instead ofC + Dt):

_ 0C+D=1 0 1Mre 1
Ax=b is 1IC+D =2 or |1 1 [D]: 2.
2C+ D =4 2 1

T |3 2 T 6] ~_[C|_|10/7
ACA_[2 25 ACh=|s| x=|p|= 6/7 |-
2 If the measuremert; is totally unreliable andr? = oo, thenthe best line will not

usebs. In this example, the systedx = b becomes square (first two equations from
Problem1):

[(1) 1] [g} = D} gives [g] = [%].The lineb =t + 1 fits exactly

3 If 03 = 0 the third equation is exact. Then the best line as+ D = b3 which is
2C + D = 4. The errorsCt + D — b in the measurements at= 0 and1 areD — 1
andC + D — 2. SinceD = 4 — 2C from the exacths = 4, those two errors are
D—1=3-2CandC + D —2 =2-C. The sum of squarg8 —2C)?> + (2—C)?
is @ minimum at8 = 5C (calculus or linear algebra ihD). ThenC = 8/5 and
D =4-2C =4/5.
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0.1,2 have probabilitieg, . 7 ande? = (0— 1)25 + (1 - )23 + 2 - 1)?] = 3.
Mean(}, 3). Independent flips lead tB = diag(}. ;). Trace= 02, = 3.

Meanm = po and variance? = (1 — po)*po + (0 — po)*(1 — po) = po(1 — po).
Minimize P = a?0} +(1—a)?03 at P’ = 2ao{ —2(1—a)o? = 0;a = 0} /(0 +03)
recovers equation (2) for the statistically correct cheit minimum variance.
Multiply LELT = (ATE 1A IATE 1221 4ATE T A) 1 =P = (AT 14)" L.
The new grade matrid has row3 = — row 1 and row4 = — row 2, so the rank i§.
The nullspace o now includeq1,—1,—1, 1) as well ag1, 1, 1, 1). Compare to the
grade matrix in Example 6 (not Example 5). The other two dawgeectorsv; andv,
for Example 6 are still correct for this ne(Aw, is still orthogonal todv,):

~N o o A

©

3 -1 1 -37 1 -1 8§ —4

103 =3 11 - 8 4

Al200 o2]=| 3 ] ] 3 1 1= |8 4
1 =3 3 —1||=1 -1 g 4

Those last orthogonal columns are multiples of the ortho@br, andu,. This matrix
A haso; = 8 ando, = 4 (only two singular values since the rank2k If you
computeAT A to find those singular vectors andv, from scratch, notice that its trace
iso? + 02 =64+ 16 = 80:

20 —12 =20 12
—12 20 12 =20
-20 12 20 —12

12 =20 —-12 20

ATA =

Problem Set 8.7, page 463

1 (x,y,z) has homogeneous coordinates, cy,cz,c) forc = 1 and allec # 0.

2 For an affine transformation we also neEdorigin), becausd™(0) need not b for
affine T'. Including this translation by'(0), (x, y, z, 1) is transformed tox7 (i) +
vT'(j)+zT (k) + T(0).

1 1 1

1 1 B 1
1 1 - 1
1 4 3 1 0 2 5 1 1 6 8 1
4 § =diag(c,c,c,1);row 4 of ST andTS is1,4,3,1 andc, 4c, 3¢, 1; usevTS!

1/8.5
5S:[ 1/11
1

1 2 2
1 2 2
6 [xyzl] 1 5 =[xyzl] 5
-1 -1 -2 1 1 -2 =2 —4 1
The first matrix translates by-1, —1, —2). The second matrix rescales by 2.

3TT,= is translation alongl, 6, 8).

} for a 1 by 1 square, starting from &r6 by 11 page.
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7 The three parts of) in equation (1) ar¢cost)/ and(1 — cosf)aa’ and—sinf(ax).
ThenQa = a becausea'a = a(unit vector) andix a = 0.

8 If a"h = 0 and those three parts ¢f (Problem 7) multiplyb, the results inQb are
(cosf)b andaa'h = 0 and(—sinf)ax b. The component alonbyis (cost)b.

5 -4 2
2 21 1 .
9n:(— —)hasP:I—nnT:§[—4 5 —2i|.Not|ce||n||:1.
8

333 P
5 -4 -2 0
. =4 5 2 0
10 We can choos€, 0, 3) on the plane and multipl§y_ PT = 5 2 2 8 0
6 6 3 9
11 (3.3.3) projects to}(—1,—1,4) and(3, 3,3, 1) projects to(3. 1. 3. 1). Row vectors!

12 The projection of a square onto a plane is a parallelograna (ove segment). The
sides of the square are perpendicular, but their projestioay not beX"y = 0 but
(Px)"(Py)=x"P"Py = x" Py may be nonzero).

13 That projection of a cube onto a plane produces a hexagon.
1 -8 —4
111 11 11 1
14 (3,3,3)(1—2nnT)=(—,—,—) [—8 1 —4}:(——,——,——).
3'3'3)|_4 _a 7 37 373
15 (3.3.3.1) > (3.3.0.1) > (-3.-3.-%.1) > (-3.-%.3.1).

1
3’
16 Just subtracting vectors would give= (x, y, z,0) ending in0 (not 1). In homoge-
neous coordinates, addractor to a point.

17 Space is rescaled ly'c becausé€x, y, z, c¢) is the same point as:/c, y/c,z/c. 1).

Problem Set 9.1, page 472

1 Without exchange, pivot$01 and 1000; with exchange, 1 ard. When the pivot is

1 1 1
larger than the entries below it, &l;;| = |entry/pivot < 1. 4 = [ 0 1 —1}.
-1 1 1
9 -36 30
2 The exactinverse dfib(3)is4A~! = [-36 192 —180 |.
30 —180 180

1 11/6 1.833 0 1.80
3 A4 [1} = [ 13/12i| = [1.083i| compares withd [ 6 } = [1.10i|.||Ab|| < .04 but
1 47/60 0.783 -3.6 0.78 ] |Ax| > 6.
The differencg1, 1, 1) — (0, 6, —3.6) is in a directionAx that has4d Ax near zero.
4 Thelargestix|| = [|[A7'b|is||A7"|| = 1/AminSinceA” = A; largest errod 0~16 /X in.

5 Each row ofU has at mostv entries. Thernw multiplications to substitute components
of x (already known from below) and divide by the pivot. Total forows < wn.

6 The triangular. ™!, U~!, R™! needin? multiplications. O needs:? to multiply the
right side byQ~! = QT. SOoQRx = b takes 1.5 times longer thanl/x = b.
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7 UU~! = I: Back substitution need§j2 multiplications on columry, using the;j
by j upper left block. Therd (12 4 22 + --- + n?) ~ 1(3n%) = total to findU .

1 0 2 2 2 2 . 0 1 1 0],
8[2 2]—>[1 O:|_>[O _1:|:UW|thP:[1 O]andL:[.5 1:|,

2 20 2 20 2 20 2 20
A—- |1 0 1| -0 -1 1] >0 2 O0f— 1|0 2 0| = U with
0 2 0 0 2 0 0 -1 1 0 0 1

0 1 0 1 0 0
P=|0 0 1:|andL=|:0 1 0:|.
1 0 0 5 —5 1
1 1 0 O
1 1 1 0
9 A= 01 1 1 has COfaCtOfflg, =C31 =Cy =Cyqp =1 andC14 =Cy =
0 0 1 1

—1. A~V is a full matrix!

10 With 16-digit floating point arithmetic the errofi — x computed for e = 1073, 1076,
1072, 107!2, 10715 are of order 0~'¢, 10711, 1077, 1074, 1073,

B . _ o [ 3 - [0 14
11 (a) co® = 1/4/10, S|n9_—3/m,R_m[_3 1}[3 5]_m[0 8]

(b) A has eigenvaluesand2. Put one of the unit eigenvectors in rdvof Q: either
|1 -1 1|2 -4 1 |1 =3 1
Q‘ﬁ[l 1]andQAQ _[O 4] orQ_ﬁ[3 1}andQAQ =

i

12 When 4 is multiplied by a plane rotatio®;;, this changes then (notn2) entries in
rowsi andj. Then multiplying on the right byQ;;)~! = (Q;;)" changes thén
entries in columns and; .

13 Q;; A usestn multiplications (2 for each entry in rowsand; ). By factoring out co#,
the entries 1 and: tand need only2rn multiplications, which leads t§n3 for QOR.

14 The (2,1) entry of 0514 is %(— sinf + 2cosf). This is zero if sih = 2cosH or
tand = 2. Then the2, 1, /5 right triangle has sifl = 2/+/5 and co® = 1/+/5.
Every3 by 3 rotation with detD = +1 is the product o8 plane rotations.

15 This problem shows how elimination is more expensive (thezeoo multipliers are
counted bynnz(L) andnnz(L L)) when we spoil the tridiagonat by a random per-
mutation.

If on the other hand we start with a poorly ordered makfixan improved ordering
is found by the codsymamddiscussed in this section.

16 The “red-black ordering” puts rows and columin® 10 in the odd-even ordd, 3, 5, 7,
9,2,4,6,8,10. WhenK is the—1, 2, —1 tridiagonal matrix, odd points are connected



Solutions to Exercises 91

17

only to even points (an@ stays on the diagonal, connecting every point to itself):

2 -1
k=71 2 _1. ) andPKPT:[lZ)IT zlﬂwith
~-1 2
M1 1to2
-1 -1 3t02.4
D=| 0 -1 -1 5t04.6
-1 -1 71068
i -1 —1] 9t08,10

Jeff Stuart’'sShake a Stickactivity has long sticks representing the graphs of twadine
equations in the-y plane. The matrix is nearly singular and Sectiohshows how to
compute its condition number= || A||| A7 || = omax/Tmin ~ 80, 000:

—1 1.0001] A7 ~ 20000

I -1 ¢ ~ 40000.

1 1.0001
|1 1.0000

} JA ~2 A7l = 10000[

Problem Set 9.2, page 478

1

3

1Al =2, A7 =2,c =4 [|A] =3, [A7 | =1,c=3; 4] =2+ V2=
Amax for positive definited, A= = 1/Amin, ¢ = 2+ V/2)/(2 — /2) = 5.83.

|Al =2, ¢ = 1;||A|| = /2, ¢ = infinite (singular matrix);AT4 = 21, ||A] = V2,
c=1.

For the first inequality replace by Bx in ||Ax| < ||A]|||x]|; the second inequality is
just|Bx|| < [ Bl x]. Then|[AB| = max(||ABx|//[x|) < [ Al B]-

4 1=|I| =447 < [ANA] = c(A).
5 1f Amax = Amin = 1thenallA; = 1 and4 = SIS~! = I. The only matrices with

| 4| = ||[A~|| = 1 areorthogonal matrices

All orthogonal matrices have norrh, so ||A| < ||Q|lIIR|l = |IR]|| and in reverse
IR < O]l = [|A]l, then[[A|l = [|R]. Inequality is usual if|A| < [[L[|U]
whenA'4 # AA'. Usenorm on a random.

The triangle inequality givepAx + Bx| < ||Ax|| + || Bx|. Divide by || x| and take
the maximum over all nonzero vectors to find + B|| < || A|| + || B].

If Ax = Ax then|Ax||/| x| = |A| for that particular vectox. When we maximize
the ratio over all vectors we gét|| > |A|.

01 00 01
A+ B = [0 0]-1—[1 0} = [1 0] hasp(A4) = 0 andp(B) = 0 butp(A + B) = 1.

1 0
0 0

p(AB) = 1;thusp(A4) = max|A(A)| = spectral radius is not a norm.

The triangle inequality A + B|| < || A| + || B|| fails for p(4). AB = [ ] also has
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10 (a) The condition number ofi~!is [|A7L||[|(A™1) 7| which is [[A7L]||| 4] = c(A).
(b) SinceA™4 andA4AT have the same nonzero eigenvaluésnd A’ have the same
norm.

11 Use the quadratic formula fofayx/Amin, Which iS¢ = omax/omin Since thisd = AT is
positive definite:

c(A) = (1.00005 + /(1.00005)2 — .0001) / (1.00005 — ) ~ 40,000.

12 det(2A) is not2 det4; det(4 + B) is not always less than ddt+ detB; taking| detA|
does not help. The only reasonable property is4gt= (detA)(detB). The condition
number should not change whdris multiplied by 10.

13 The residuab — Ay = (10~7,0) is much smaller thah — 4z = (.0013,.0016). But
z is much closer to the solution than

659 —563

— —6 -1 _ 3
14 detA =107°so4™" =10 [_913 730

]: IA|l > 1, A1) > 106, thenc > 10°.

15 x = (1,1,1,1,1) has|x|| = 5. ||x]li = 5. [x]eo = 1. x = (.1,.7,.3,.4,.5) has
lxll =1, lxll1 =2 (sum)|lx [l = .7 (largest).

16 x?+---+x2 is not smaller than max?) and not larger thaf{x; [+- - -+|x,[)? = ||x[|3.
x? 4+ 4+ x2 <nmaxx?) so|x| < /n|x|c. Choosey; = signx; = +1 to get
lxli=x-y <lxllyll = Valx].x=1,....1) has|lx [ = Vn [x].

17 For thef* norm, the largest component ofplus the largest component gfis not
less thar|x + y |« = largest component of + y.

For thet! norm, each component has + y;| < |x;| + |y:|. Sumon = 1ton:
x +yle =< llxll+llyll.

18 |x1| + 2|x2| is a norm but mix;|, |x2|) is not a norm. || x|| + ||x|e iS @ norm;
|lAx] is a norm provided is invertible (otherwise a nonzero vector has norm zero;
for rectangulard we require independent columns to avfidlx | = 0).

19 xTy = x1y1 + x2y2 + -+ < (Max|y; N(1xa] + [xal + ) =[x 1 [y loo-

20 With A; = 2—2coqjn/n+1), the largest eigenvalueis, ~ 2+2 = 4. The smallest
iSA; =2—2coqn/n+1) ~ (n”?)2 using2 cosf ~ 2— 2. So the condition number
iS¢ = Amax/Amin & (4/7?) n?, growing withn.

— 1 1 n __ 1 q H _ n—1 _

21 A = [0 1‘1} has A" = [0 (1.1),,} withg = 1+ 1.1 +--- 4+ (1.1) =

(1.1" = 1)/(1.1 = 1) ~ 1.1"/.1. So the growing part ofA” is 1.1" [8 110] with

[|A"]| ~ +/101 times1.1" for larger n.

Problem Set 9.3, page 489

1 Theiterationc;, = (I — A)xx +bhasS = andT =1 —AandS~!T = [ — A.
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2 If Ax = Axthen(/I—A)x = (1—1)x. Real eigenvaluesd? = I —A have|l-1| < 1
providedA is between 0 and 2.

—1 1
1 -1

4 Always |AB|| < ||A|||B|. Choose4 = B to find | B?|| < || B||*>. Then choosel =
B? to find || B3|| < ||B?||||B|| < ||B||?. Continue (or use induction) to finpB*| <
| B||¥. Since|| B|| > max|A(B)| itis no surprise that B| < 1 gives convergence.

5 Ax = 0gives(S — T)x = 0. ThenSx = Tx andS~!Tx = x. ThenA = 1 means

that the errors do not approach zero. We can't expect coasesggwherd is singular
andAx = b is unsolvable!

6 Jacobihass—!7T = % [O I

3 This matrix4 hasl — A = [ } which has|A| = 2. The iteration diverges.

1 0] With |A|max = % Small problem, fast convergence.

O W=

0
7 Gauss-Seidel ha$™'T = [0 } With |Amax = § Which is (|A|max for Jacobif.

-1
8 Jacobihas~!T = [a d} [_8 _[())] = [_6/3 —b/ﬂ with [A| = [bc/ad |2

-1
e 1 _[a 0 0 —b] [0  —b/a]. . _
Gauss-Seidelhas™' T = [c d] [0 0} = [0 —be/ad with |A| = |bc/ad .

So Gauss-Seidel is twice as fast to convdi@eo explode iflbc| > |ad]).
9 Setthe trace@ —2w + 12 equal to(w — 1) + (w — 1) to find wept = 4(2—+/3) & 1.07.
The eigenvalues — 1 are about .07, a big improvement.

10 Gauss-Seidel will converge for thel, 2, —1 matrix. |A|max = c0S (7r/n + 1) is given
on page 485, with the improvement from successive over atilax

11 If the iteration gives allx[*" = x?'d then the quantity in parentheses is zero, which
meansdx = b. For Jacobi change™" on the right side ta:°'“.

12 A lot of energy went into SOR in the 1950’s! Now incompldié/ is simpler and
preferred.

13 u /AR = crx1 4 cax2(Aa /A1) 4+ cnxn(hn/A1)F — crxy ifallratios|A; /A, <

1. The largest ratio controls the rate of convergence (Whénlarge). A = [(1) (1)}

has|A,| = |A1] and no convergence.

14 The eigenvectors of and alsad~! arex; = (.75, .25) andx, = (1,—1). The inverse
power method converges to a multiplexsf, since|l/A,| > |1/A4].

15 In the jth component ofdxy. Aysin:Z5 = 2sin-L% — sint=D% — gin UADT

1 n+1 n+1
The last two terms combine inte2 sin% cos-%-. ThenA; =2 —2cos-Z

n+1" n+1-

2 -1 1 2 5 14 .
16 A = [_1 2] producesiy = [0}’”1 = [_1],142 = [_4],143 = [_13]. This

with largest eigenvalug = 3. Divide

is converging to the eigenvector directi%rl%

ui by [lug].
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17

18

19

20

21

22

23

24

25

26

27

28

Solutions to Exercises

= 2 Y gvess = 1127 0 Z L[57 = L[4 — |12
1 cosfsiné cosA(1 + sir? 6) —sin’ g
— T4 — = =
R=0T4A= [0 it ]andAl —RQ—[ —sin® o —cosf st 6 |’

If Ais orthogonalthel = A andR = I. Therefored; = RQ = A again, and the
“QR method” doesn’t move froml. But shift A slightly and the method goes quickly
to A.

If A—cl = QRthend; = RQ +cl = Q"Y' (QR+cI)Q = Q7 '40. No change
in eigenvalues becausy is similar to A.

Multiply Aq; = b;j—1q;_+a;q;+b;q;,; byq;tofindg;Aq; = a; (because the
q’s are orthonormal). The matrix form (multiplying by colus)isAQ = QT where

T istridiagonal The entries down the diagonalsBfare theu’s andb’s.

Theoretically theg's are orthonormal. In reality this important algorithm istvery
stable. We must stop every few steps to reorthogonalize-rdrahother more stable
way to orthogonalizg, Aq, A%q, ...

If A is symmetric thend; = Q7140 = QTAQ is also symmetric.A; = RQ =
R(OR)R™! = RAR™! hasR and R~! upper triangular, sel; cannot have nonzeros
on a lower diagonal thad. If A is tridiagonal and symmetric then (by using symmetry
for the upper part oft ;) the matrix4; = RAR™! is also tridiagonal.

The proofofiA| < 1 when every absolute row sumluses ) a;;jx;| <Y |a;j||xi| <
|x;|. (Herex; is the largest component.) The application to the Gershgurtle theo-
rem (very useful) is printed after its statement in this peah

For A and K, the maximum row sums give dlh| < 1 and all|A| < 4. The circles
A —.5| <.5and|A — .4] < .6 around diagonal entries of give tighter bounds. The
circle |A — 2| < 2 for K contains the circléd — 2| < 1 and all three eigenvalues

2 4+ 4/2,2,and2 — /2.

With diagonal dominance;; > r;, the circles|A — a;;| < r; don’t includeA = 0
(so Ais invertibl®). Notice that the-1,2, —1 matrix is also invertible even though its
diagonals are only weakly dominant. Thegualthe off-diagonal row sums, = 2
except in the first and last rows, and more care is needed te pmeertibility.

From the last line of codey, is in the direction ofv = Aq, — h119; = Aq, —
(91 Aq,)q,. The dot product withy, is zero. This is Gram-Schmidt withg, as the
second input vector.

Note The five lines in Solutions to Selected Exercises prove twokeperties of
conjugate gradients—the residuajs= b — Ax; are orthogonal and the search direc-
tions are4-orthogonal p] Ap; = 0). Then each new guess; is theclosest vector

to x among all combinations df, Ab, AXb. Ordinary iterationSx;,, = Tx; + b
does not find this best possible combinatign, ;.

The solution to Problem 28 in this Fourth Edition is strafghwvard and important.
SinceH = Q7'AQ = QTAQ is symmetric ifA = AT, and sinceH has only one
lower diagonal by construction, theii has only one upper diagonal is tridiagonal
and all the recursions in Arnoldi's method have only 3 terP®blem 29).
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29 H = Q'AQ is similar to 4, so H has the same eigenvalues 4gat the end of
Arnoldi). When Arnoldi stops sooner because the matrix siarge, the eigenvalues
of H; (calledRitz value} are close to eigenvalues df This is an important way to
compute approximations tofor large matrices.

30 In principle the conjugate gradient method converges in(®@®9) steps to the exact
solutionx. But it is slower than elimination and its all-important pesty is to give
good approximations t@ much sooner. (Stopping elimination part way leaves you
nothing.) The problem asks how clasgy andx,q are tox 199, Wwhich equals except
for roundoff errors.

Problem Set 10.1, page 498

(a)(b)(c) have sumé, —2 + 2i, 2 cosf and products, —2i, 1. Note(e'?)(e~1?) = 1.
N
, and100. The angles aré, 26, —6 and—26.

1

2 In polar form these are/5¢'?, 5¢27,

3

4 lzxw|=6, |z+w| <5 |z/w|= %, |z —w| <5.
5

6

S

The absolute values are= 10, 100, i

o|"

a+ib=YL 4L Ly B Ly B2

1/z has absolute valuk/r and angle-6; (1/r)e~"? timesre'? equalsl.
K —b || c||ac—bd | realpart 1 -3 1| |10 is the matrix
b a||d||bc+ad| imaginary part |3 1||=3]" [0
form of (1 4+ 3i)(1 —3i) = 10.

8 [Al _Az} xl} = [bj gives complex matrix= vector multiplication(4; +

A2 Al X2 b
iA2)(x1 +ix2) =by +ib>.
9 2+i; @Q+D)(14i)=143i; ™2 = —i; 7™ = —1; 175 =—i; (=)' =.
10 z + zisreal;z — z is pure imaginaryzz is positive;z/z has absolute value 1.
11 [_Z 2 includesal (which just adds: to the eigenvalues and _(1) (1)] So the

eigenvectors are; = (1,i) andx, = (1,—i). The eigenvalues ave, = a + bi and
Ay = a—bi. Wese&x; = x, andi; = A, as expected for real matrices with complex
eigenvalues.

12 (@) Whena = b = d = 1 the square root becomegdc; A is complex ifc < 0
(b) A =0andA = a + d whenad = bc (c) theA’s can be real and different.

13 Complexi’s when(a+d)? < 4(ad —bc); write (a+d)?>—4(ad —bc) as(a—d)?+4bc
which is positive wherbc > 0.

14 def(P —AI) = A* —1 = 0 hasA = 1, —1, i, —i with eigenvectorg1,1,1,1) and
(1,-1,1,—-1)and(1,i,—1,—i) and(1, —i, —1, i) = columns of Fourier matrix.

15 The6 by 6 cyclic shift P has detPs — AI) = A® —1 = 0. ThenA = 1, w, w?, w?,
w*, w® with w = e27/¢, These are the six solutionst8 = 1 as in Figure 10.3 (The
sixth roots ofl).
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The symmetric block matrix has real eigenvalues;s@ real andl is pure imaginary.
(a) 2€i”/3,462i”/3 (b) 62i6,64i6 (C) 763”i/2,49e3”i (: _49) (d) @e—ni/4,
50e7i/2,

r = 1, angleZ — ¢; multiply by ¢’? to gete’™/2 = .

% + ﬁ The rootw = w™! = ™27 /8is1//2—i//2.

1, e27i/3 ¢47i/3 gre cube roots of. The cube roots of-1 are —1, e™i/3, ¢=7i/3,
Altogether six roots of® = 1.

cos30 =Re(cosH+i sinf)3] =cos’ H—3 cosh sir? §; sin36 =3 cos 6 sinf—sin® 4.

If the conjugate& = 1/z then|z|?> = 1 andz is any pointe!? on the unit circle.

a+ib=1,i,—-1,—i, £

e’ is atangled = 1 on the unit circle}i¢| = 1¢; Infinitely manyi¢ = ¢/ (#/2+27me,
(a) Unitcircle (b) Spiralint@=2* (c) Circle continuing around to angfe=272.

Problem Set 10.2, page 506

1

lu| = 9 =3, ||v]| = V3, u"v = 3i + 2, vHu = —3i + 2 (this is the conjugate of
uMv).

2 0 1+ 31

AfA = 0 2 1+i|andA44" = [1 3} are Hermitian matrices. They
1—7 1—1i 2

share the eigenvaludsand?.

z = multiple of (144, 14i,—2); Az = 0givesz" A" = 0" soz (notz!) is orthogonal

to all columns of4" (using complex inner produet’ times columns of4™).

4 The four fundamental subspaces are @), N(A4), C(4™), N(4H). AH andnot AT,

10

(@ (AHAH = AHAM = A"A4 again  (b) IfAH Az = Othen(z"A4™)(4z) = 0.
This is||Az||?> = 0 s0oAz = 0. The nullspaces ofl and A" 4 are always theame.

(@) False , . [ 0 1 Lo : H
(c) False A=U = 1 0 (b) True:—i isnotan eigenvalue whefi= A".
cA is still Hermitianfor real ¢; (i4)" = —iA" = —i A is skew-Hermitian.

0 0 -1 —i
This P is invertible and unitaryP? = [—1 0 O}, P3 = [ —i } =
0 -1 0 —i
—il. ThenP1%0 = (—j)33 P = —iP. The eigenvalues oP are the roots of* = —i,
which arei andie?7/3 andie*™i/3,

One unit eigenvector is certainky, = (1,1, 1) with A; = i. The other eigenvectors
arex, = (1, w,w?) andxz = (1, w?, w*) with w = ¢2*/3, The eigenvector matrix
is the Fourier matrixFs. The eigenvectors of any unitary matrix lik are orthogonal

(using the correct complex form™ y of the inner product).

(1,1,1), (1,e271/3 ¢47i/3) (1 ¢47i/3 ¢27i/3) gre orthogonal (complex inner product!)
becauseP is an orthogonal matrix—and therefore its eigenvector m&runitary.
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11

11

12
13

14

15

16

17V =

18

19

20
21
22

23

24

25

26

27

28

29

254 A=2+5+4=11,
Notincluded indtN editionC = | 4 2 5 | =24+5P +4P2 has 2 + 5¢2%/3 + 4¢47i/3,
542 2 4 543 4 4873,
If UNU = I thenU~Y(UM)™! = U1/ (U HH = ] soU~! is also unitary. Also
UWMHWUV)=VHURUV = VRV = I soUV is unitary.
Determinant= product of the eigenvalugall real). And A = A" gives detd = detA.

(2" A7) (Az) = || Az]|]? is positive unlessiz = 0. WhenA4 has independent columns
this meang = 0; so A" 4 is positive definite.

LR L )

T 1 1 —1—il[2i o] 1 1 1+
(i AT — — ;
K =(@{A" in Problem 14)= A [1 _; 1 } [ 0 —i} 7 [_ . }

A’s are imaginary.

1 1 —i][cosf +isind 0 I [1 i
Qzﬁ[—i 1][ T) cos@—isin@]ﬁ[i 1] has|A| = 1.
11 3 —14i][1 o]1]1 3 1—1i .
Z[ Jlr{z 1 +J«F/§] [0 —1} Z[ —Jq:fl 1 +«/§}W'thL2 = 64273,
Unitary meangA| = 1. V = VM gives reall. Then trace zero gives = 1 and—1.
The v’s are columns of a unitary matri&, soU" is U~!. Thenz = UU"z =
(multiply by columns)= vy (v4'z) + -+ + v, (v!!z): a typical orthonormal expansion.
Don’'t multiply (e =) (e'*). Conjugate the first, theﬁf” e?* dx = [e?'* /2i]3™ = 0.
z = (1,1, —2) completes an orthogonal basis t. So does any'’z.
R+iS=(R+iS)" = R"—iST; Rissymmetric bufS is skew-symmetric.
C" has dimensiom; the columns of any unitary matrix are a basis. For exampde us
the columns ofI: (i,0,...,0),...,(0,...,0,i)

; ig= H 2 2 __

- anyies [ 4, PR [ U] ey e
The eigenvalues of" arecomplex conjugatesf the eigenvalues of: det{A—A7) = 0
gives detA™ — A1) = 0.
(I —2uu™H = 1 —2uut and alsa/ — 2uu")? = I — 4uut + 4u(wu)u" = 1. The
rank-1 matrix uu" projects onto the line through
UnitaryURU = I meangAT™—iBT)(A+iB) = (ATA+B"B)+i(ATB—BTA) = 1.
ATA+ B"B =1 andA" B — BT A = 0 which makes the block matrix orthogonal.
We are gived + iB = (A +iB)" = AT —iBT. Thend = A" andB = —B". So

A —-B|. .
that[B A ] is symmetric.

AA™Y = I gives(A~HH A" = I. Therefore(4=H)" is (4H)~! = A=l andA~!is
Hermitian.

=i 1—=i 1 o1 [242i =27 1 _
A_[—l 5 }[O 4]8[1+i 2}_SAS . Note reald = 1 and4.
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If U has (complex) orthonormal columns, thehU = I andU is unitary. If those

columns are eigenvectors df thend = UAU ! = UAU" isnormal The direct test
for a normal matrix (which istA" = A" 4 because diagonals could be real!) and

surely commute:

AAR=(UAUNYUAUHY=0AANHUT =UAP AU = UARUNYUAUT) =44
An easy way to construct a normal matrixlist- i times a symmetric matrix. Or take

A = S + iT where the real symmetri§ and7 commute (Them" = § —iT and
AAY = AH Q).

Problem Set 10.3, page 514

1

10

11

Equation (3) (the FFT) is correct using = —1 in the last two rows and three columns.
1 1 1 1 1

1 L1 i2 1 1 1 1
-1 _ - - _ _rH
= 1 2 1 1|21 —1 o 4F '
1 1 i? —i i
1 1 1 1 1
P2
F = 1 ! b 11 1 ! 1 ! permutation last.
i 1 i? —i i
1 1 1 1
D= e27i/6 (note6 not3) andFs | 1 e7i/3  47i/3
4711'/6 1 e47ti/3 elﬂi/3
= v andF~'v = w/4. Delta vector~ all-ones vector.
4 0 0 0
(Fy)? = 8 8 2 g and(F4;)* = 161. Four transforms recover the signal!
0 4 00
1 1 2 2 0 0 0 2
0 1 0 0 1 0 0 0
1 O ol 2 =Fc. AlsoC= ol=l11=l2 1] 22 =FC.
0 0 1 1 0 0

Addingc + C gives(l, 1,1, 1) to (4,0,0,0) = 4 (delta vector).

¢ — (1,1,1,1,0,0,0,0) — (4,0,0,0,0,0,0,0) — (4,0,0,0,4,0,0,0) = Fgc.

Cc - (0,0,0,0,1,1,1,1) — (0,0,0,0,4,0,0,0) — (4,0,0,0,—4,0,0,0) = FsC

If w = 1thenw? is a 32nd root of 1 ang/w is a 128th root of 1: Key to FFT.

For every integen, thenth roots of 1 add to zero. For evanthey cancel in pairs. For
anyn, use the geometric series formula- w +--- + w" ! = (w" —1)/(w—1) = 0.

In particular forn = 3,14 (=1 +i+/3)/2 + (=1 —i+/3)/2 = 0.

The eigenvalues of arel,i,i?> = —1, andi® = —i. Problem 11 displays the eigen-
vectors. And also deP — A1) = A% — 1.
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01 0
12 A =diag1,7,i2,i3®); P =0 0 1 |andPTleadtor®—1=0.
I 0 0
13 ey = co+c1 +cr+czandey = co + c1i + c2i? + c3i3; E contains the four
eigenvalues o€ = FEF~! becausé" contains the eigenvectors.
14 Eigenvalueg; =2—1—-1=0, e, =2—i —i3> =2, e3=2—(=1)—(=1) = 4,
eqs =2 —i3—i% = 2. Just transform colum@ of C. Check trac® +2 + 4 +2 = 8.
15 DiagonalE needs: multiplications, Fourier matri¥® and F~! need%n log, n multi-
plications each by thEFT. The total is much less than the ordinar/for C timesx.

16 Therowl, w*, w?,...inF is the same as the roww” % w¥ =2k .. in F because
wh—k = o@ni/N)IN—kK) jg o2mi ,—(27i/N)k — | timesw*. SoF andF have thesame
rows in reversed order (except for row0 which is all ones).



