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Exercise 2.6 Consider a regression problem with inputs xi and outputs yi,
and a parameterized model fθ(x) to be fit by least squares. Show that if
there are observations with tied or identical values of x, then the fit can be
obtained from a reduced weighted least squares problem.

Proof For known heteroskedasticity (e.g., grouped data with known group
sizes), use weighted least squares (WLS) to obtain efficient unbiased esti-
mates. Fig.1 explains “Observations with tied or identical values of x”. In

•

•

•

•

•

•

•

•

•

•

•

•

10 15 20 25

2

3

4

5

6

7

x

y

WLS.01

Figure 1: Observations with tied

the textbook, section 2.7.1 also explain this problem.
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If there are multiple observation pairs xi, yil, l = 1, 2 . . . , Ni at each value
of xi, the risk is limited as follows:

argmin
θ

∑
i

Ni∑
l=1

(fθ(xi)− yil)
2 = argmin

θ

∑
i

(Nifθ(xi)
2 − 2

Ni∑
l

fθ(xi)yil

+

Ni∑
l

y2il)

= argmin
θ

∑
i

Ni{(fθ(xi)− yi)
2 +Constant}

= argmin
θ

∑
i

Ni{(fθ(xi)− yi)
2} (1)

which is a weighted least squares problem.

Exercise 3.19 Show that ||β̂ridge|| increases as its tuning parameter λ → 0.
Does the same property hold for the lasso and partial least squares esti-
mates? For the latter, consider the “tuning parameter” to be the successive
steps in the algorithm.

Proof Let λ2 < λ1 and β1, β2 be the optimal solution. We denote the loss
function as follows

fλ(β) = ||Y −Xβ||+ λ||β||22

Then we have

fλ1(β2) + fλ2(β1) ≥ fλ2(β2) + fλ1(β1)

λ1||β2||22 + λ2||β1||22 ≥ λ2||β2||22 + λ1||β1||2

(λ1 − λ2)||β2||22 ≥ (λ1 − λ2)||β1||22
||β2||22 ≥ ||β1||22

So ||β̂ridge|| increases as its tuning parameter λ → 0.
Similarly, in lasso case, ||β̂||1 increase as λ → 0. But this can’t guarantee

the l2-norm increase. Fig.2 is a direct view of this property.
In partial least square case, it can be shown that the PLS algorithm

is equivalent to the conjugate gradient method. This is a procedure that
iteratively computes approximate solutions of |βA = b| by minimizing the
quadratic function

1

2
β⊤Aβ − b⊤β

along directions that are |A|-orthogonal (Ex.3.18). The approximate solu-
tion obtained after m steps is equal to the PLS estimator obtained after p
iterations. The canonical algorithm can be written as follows:
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Figure 2: Lasso

1. Initialization β0 = 0,d0 = r0 = b−Aβ0 = b

2. ai =
dH
i ri

dH
i Adi

3. βi+1 = βi + aidi

4. ri+1 = b−Aβi+1(= ri − aiAdi)

5. bi = −rH
i+1Adi

dH
i Adi

6. di+1 = ri+1 + bidi

The squared norm of βj+1 can be written as

||βj+1||2 = ||xj ||2 + 2a2j ||dj ||2 + ajd
H
j βj (2)

We need only shown that ajd
H
j βj > 0.

∵ rHj+1dj+1 = rHj+1rj+1 + bjr
H
j+1dj and ⟨rj+1,dj⟩ = 0 (3)

∴ aj =
dH
j rj

dH
j Adj

=
||rj ||2

||dj ||2A
> 0(A is positive definite.) (4)

∵ βj =

j∑
i=0

aidi (5)

∴ dH
j βj =

j∑
i=0

aid
H
j di (6)
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Now we need to show that dH
j di > 0, i ̸= j. By Step 6, we have dj =

rj +
∑j−1

i=0 (
∏j−1

k=i bk)ri.

∵ ⟨ri, rj⟩ = 0, i ̸= j (7)

∴ bk > 0 → dH
j di > 0 (8)

∵ Adi = a−1
i (ri − ri+1) (9)

∴ bj = −
rHj+1(rj − rj+1)

aj ||dj ||2A
=

||rj+1||2

aj ||dj ||2A
> 0 (10)

So in PLS case, the ||β||22 increase with m.

Exercise 4.1 Show how to solve the generalized eigenvalue problem max a⊤Ba
subject to a⊤W a = 1 by transforming to a standard eigenvalue problem.

Proof Hence W is the the common covariance matrix, we have W is semi-
positive definite. WLOG W is positive definite, we have

W = P 2 (11)

Let b = P a, then the problem is

a⊤Ba = b⊤P−1BP−1b = b⊤B∗b (12)

subject to a⊤W a = 1 = b⊤B∗b = 1. Now the problem transform to a
standard eigenvalue problem.

Exercise 4.2 Suppose we have features x ∈ Rp, a two-class response, with
class sizes N1, N2, and the target coded as −N/N1, N/N2.

(d) Show that this result holds for any (distinct) coding of the two classes.
W.L.O.G any distinct coding y′1, y

′
2. Let β̂ = (β, β0)

⊤. Compute the
partial deviation of the RSS(β̂) we have

∂RSS(β̂)

∂β
= −2

N∑
i=1

(yi − β0 − β⊤xi)x
⊤
i = 0 (13)

∂RSS(β̂)

∂β0
= −2

N∑
i=1

(yi − β0 − β⊤xi) = 0 (14)

It yields that

β⊤
∑
i

(xi − x̄i)x
⊤
i =

∑
i

yixi (15)

β0 =
1

N

∑
i

(yi − β⊤xi) (16)
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Than we get

β⊤
∑
i

(xi − x̄i)x
⊤
i =

∑
i

(yi −
1

N

∑
i

yi)x
⊤
i (17)

= N1y
′
1µ̂1 +N2y

′
2µ̂2 −

N1y
′
1 +N2y

′
2

N1 +N2
(N1µ̂1 +N2µ̂2)(18)

=
1

N
(N1N2y

′
2(µ̂2 − µ̂1)−N1N2y

′
1(µ̂2 − µ̂1)) (19)

=
N1N2

N
(y′2 − y′1)(µ̂2 − µ̂1) (20)

Hence the proof in (c) still holds.

Exercise 4.3 Suppose we transform the original predictors X to Ŷ via
linear regression. In detail, let Ŷ = X(X⊤X)−1X⊤Y = XB̂, where Y is
the indicator response matrix. Similarly for any input x ∈ Rp, we get a
transformed vector ŷ = B̂⊤x ∈ RK . Show that LDA using Ŷ is identical to
LDA in the original space.

Proof Prof.Zhang had given the solution about this problem, but only tow
student notice this problem is tricky. Here I give the main part of the
solution.

• First y1, . . . , yK must independent, then we have r(Σy) = K.

• Assume that B̂p∗K , r(B̂) = K < p, r(Σx) = p. Note that

r(B̂(B̂⊤ΣxB̂)−1B̂⊤) < r(B̂) < r(Σx)

. Since B̂(B̂⊤ΣxB̂)−1B̂⊤ ̸= Σ−1
x when dim(Y ) < dim(X).

• This problem are equal to prove that B̂(B̂⊤ΣxB̂)−1B̂⊤(µx
k − µx

l ) =

Σ−1
x (µx

k − µx
l ). Let P = ΣxB̂(B̂⊤ΣxB̂)−1B̂⊤, we have

P 2 = P (21)

Hence P is projection matrix. Note that Y = {y1, y2 . . . , yK} is indi-
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cator response matrix, we have

µx
k =

1

Nk
X⊤yk

Σx =
K∑
k=1

∑
gi=k

(xi − µk
i )(xi − µk

i )
⊤/(N −K)

=
1

N −K
(

K∑
k=1

∑
gi=k

xix
⊤
i −

K∑
k=1

Nkµ
x
k(µ

x
k)

⊤)

=
1

N −K
(X⊤X −

K∑
k=1

X⊤yky
⊤
k )

=
1

N −K
(X⊤X −X⊤Y Y ⊤X)

Note that

P (N1µ
x
1 , N2µ

x
2 . . . , NKµx

K) = PX⊤Y (22)

So we need only to shown that PX⊤Y = X⊤Y .

PX⊤Y = ΣxB(B⊤ΣxB)B⊤X⊤Y

By the definition of B, we have

B⊤X⊤Y = Y ⊤X(X⊤X)−1X⊤Y

ΣxB =
1

N −K
((X⊤X)(X⊤X)−1X⊤Y −X⊤Y Y ⊤X(X⊤X)−1X⊤Y )

=
1

N −K
X⊤Y (I − Y ⊤X(X⊤X)−1X⊤Y )

(B⊤ΣxB)−1 = (N −K)(Y ⊤X(X⊤X)−1(X⊤X −X⊤Y Y ⊤X)(X⊤X)−1X⊤Y )−1

= (N −K)(Y ⊤X(X⊤X)−1X⊤Y [I − Y ⊤X(X⊤X)−1X⊤Y ])−1

Let Q = Y ⊤X(X⊤X)−1X⊤Y we have

B⊤X⊤Y = Q (23)

ΣxB =
1

N −K
X⊤Y (I −Q) (24)

(B⊤ΣxB)−1 = (N −K)(Q(I −Q))−1 (25)

Hence Q(I −Q) is invertible matrix, we have

K = r(Q(Q− I)) ≤ r(Q) ⇒ r(Q) = K (26)

So Q is invertible matrix, then it yields

(B⊤ΣxB)−1 = (N −K)(I −Q)−1Q−1 (27)
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Combine with (16),(17),(20), we have

PX⊤Y =
1

N −K
X⊤Y (I −Q)(N −K)(I −Q)−1Q−1Q (28)

= X⊤Y (29)

Since we have B̂(B̂⊤ΣxB̂)−1B̂⊤(µx
k − µx

l ) = Σ−1
x (µx

k − µx
l ).
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