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Exercise 2.6 Consider a regression problem with inputs x; and outputs y;,
and a parameterized model fp(z) to be fit by least squares. Show that if
there are observations with tied or identical values of x, then the fit can be
obtained from a reduced weighted least squares problem.

Proof For known heteroskedasticity (e.g., grouped data with known group
sizes), use weighted least squares (WLS) to obtain efficient unbiased esti-
mates. Fig.1 explains “Observations with tied or identical values of x”. In
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Figure 1: Observations with tied

the textbook, section 2.7.1 also explain this problem.



If there are multiple observation pairs x;, y;;,l = 1,2..., N; at each value
of x;, the risk is limited as follows:
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which is a weighted least squares problem.

Exercise 3.19 Show that ||37%99¢|| increases as its tuning parameter A — 0.
Does the same property hold for the lasso and partial least squares esti-
mates? For the latter, consider the “tuning parameter” to be the successive
steps in the algorithm.

Proof Let Ay < A1 and (31, B2 be the optimal solution. We denote the loss
function as follows
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Then we have
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So ||31198¢|| increases as its tuning parameter A — 0.

Similarly, in lasso case, ||3||; increase as A — 0. But this can’t guarantee
the lo-norm increase. Fig.2 is a direct view of this property.

In partial least square case, it can be shown that the PLS algorithm
is equivalent to the conjugate gradient method. This is a procedure that
iteratively computes approximate solutions of |3A = b| by minimizing the
quadratic function
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along directions that are |A|-orthogonal (Ex.3.18). The approximate solu-
tion obtained after m steps is equal to the PLS estimator obtained after p
iterations. The canonical algorithm can be written as follows:
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Figure 2: Lasso

1. Initialization ,@0 = 07 do =Ty = b-— A/Bo =b

dflri
2. a; = d-HAdi

3. /Bi—l—l = B; + a;d;
4. riy1 =b— ABip1(=1r; — a;Ad;)

5. by = —

6. dit1 = 7ip1+ bid;
The squared norm of 341 can be written as
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We need only shown that ajdf B; > 0.
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Now we need to show that dfdi > 0,7 # j. By Step 6, we have d; =
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So in PLS case, the ||3]|3 increase with m.

Exercise 4.1 Show how to solve the generalized eigenvalue problem maxa' Ba
subject to a' Wa = 1 by transforming to a standard eigenvalue problem.

Proof Hence W is the the common covariance matrix, we have W' is semi-
positive definite. WLOG W is positive definite, we have

W = P? (11)
Let b = Pa, then the problem is
a'Ba=b"P'BP 'b=0b"B" (12)

subject to a' Wa = 1 = b"B*b = 1. Now the problem transform to a
standard eigenvalue problem.

Exercise 4.2 Suppose we have features x € RP, a two-class response, with
class sizes N1, Na, and the target coded as —N/Ny, N/Ns.

(d) Show that this result holds for any (distinct) coding of the two classes.
W.L.O.G any distinct coding Yy, yh. Let B = (B,80)". Compute the
partial deviation of the RSS(/3) we have
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It yields that
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Than we get
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Hence the proof in (c) still holds.

Exercise 4.3 Suppose we transform the original predictors X to Y via
linear regression. In detail, let Y = X(X"X)7'XTY = XB, where Y is
the indicator response matrix. Similarly for any input x € RP, we get a

transformed vector § = Bz € RX. Show that LDA using Y is identical to
LDA in the original space.

Proof Prof.Zhang had given the solution about this problem, but only tow
student notice this problem is tricky. Here I give the main part of the
solution.

e First y1,...,yx must independent, then we have r(3,) = K.

e Assume that By.x,r(B) = K < p,r(2,) = p. Note that
r(B(B'S,B)'BT) < r(B) < r(%,)
. Since B(BT2,B)'BT # %1 when dim(Y) < dim(X).

e This problem are equal to prove that B(ETEmB)_lﬁ’T(pﬁ —uf) =
Yo (pE — pf). Let P=%,B(B'S,B) BT, we have

Pi=p (21)

Hence P is projection matrix. Note that Y = {y1,y2...,yx} is indi-



cator response matrix, we have
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Note that
P(Npf, Nopi .., Ngpe) = PXTY (22)

So we need only to shown that PXTY = XTY.
PX'Y =%,B(B'Y,B)B'X'Y
By the definition of B, we have
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Let Q=Y TX(XTX)"'XTY we have

B'X'Yy = @ (23)
B o= i KXTY(I -Q) (24)
(B'2:B)7" = (N-K)(QU-Q)™" (25)

Hence Q(I — @) is invertible matrix, we have

K=r(QQ-1)<r@Q)=rQ) =K (26)
So @ is invertible matrix, then it yields

(B'%:B)7" = (N-K)(I-Q) Q™" (27)



Combine with (16),(17),(20), we have

PXTY = o XTY(I - QN - K)(I-Q)7'Q7'Q (29

= XY (29)

Since we have B(BTX,B) 1B (uf — u¥) = XM (puf — ud).



