
A Solution Manual and Notes for the Text:

The Elements of Statistical Learning

by Jerome Friedman, Trevor Hastie,

and Robert Tibshirani

John L. Weatherwax∗

December 15, 2009

∗
wax@alum.mit.edu

1

Chapter 2 (Overview of Supervised Learning)

Notes on the Text

Statistical Decision Theory

Our expected predicted error (EPE) under the squared error loss and assuming a linear
model for y i.e. y = f(x) ≈ xT β is given by

EPE(β) =

∫

(y − xT β)2Pr(dx, dy) . (1)

Considering this a function of the components of β i.e. βi to minimize this expression with
respect to βi we take the βi derivative, set the resulting expression equal to zero and solve
for βi. Taking the vector derivative with respect to the vector β we obtain

∂EPE

∂β
=

∫

2 (y − xT β) (−1)x Pr(dx, dy) = −2

∫

(y − xT β)xPr(dx, dy) . (2)

Now this expression will contain two parts. The first will have the integrand yx and the
second will have the integrand xT βx. This latter expression in terms of its components is
given by

xT βx = (x0β0 + x1β1 + x2β2 + · · · + xpβp)

x0

x1

x2
...

xp

=

x0x0β0 + x0x1β1 + x0x2β2 + . . . + x0xpβp

x1x0β0 + x1x1β1 + x1x2β2 + . . . + x1xpβp

...
xpx0β0 + xpx1β1 + xpx2β2 + . . . + xpxpβp

= xxT β .

So with this recognition, that we can write xT βx as xxT β, we see that the expression ∂EPE
∂β

= 0
gives

E[yx] − E[xxT β] = 0 . (3)

Since β is a constant, it can be taken out of the expectation to give

β = E[xxT]−1E[yx] , (4)

which gives a very simple derivation of equation 2.16 in the book. Note since y ∈ R and
x ∈ R

p we see that x and y commute i.e. xy = yx.

Exercise Solutions

Ex. 2.1 (target coding)

If each of our samples from K classes is coded as a target vector tk which has a one in the kth
spot. Then one way of developing a classifier is by regressing the independent variables onto
the target vectors tk. Then our classification procedure would then become the following.
Given the measurement vector X, predict a target vector ŷ via linear regression and to
select the class k corresponding to the component of ŷ which has the largest value. That
is k = argmaxi(ŷi). Now consider the expression argmink||ŷ − tk||, which finds the index
of the target vector that is closest to the produced regression output ŷ. By expanding the
quadratic we find that

argmink||ŷ − tk|| = argmink||ŷ − tk||2

= argmink

K
∑

i=1

(ŷi − (tk)i)
2

= argmink

K
∑

i=1

(

(ŷi)
2 − 2ŷi(tk)i + (tk)i

2)

= argmink

K
∑

i=1

(

−2ŷi(tk)i + (tk)i
2)

,

since the sum
∑K

i=1 ŷ2
i is the same for all classes k and we have denoted (tk)i to be the ith

component of the kth target vector. Continuing with this calculation we have that

argmink||ŷ − tk|| = argmink

(

−2
K
∑

i=1

ŷi(tk)i +
K
∑

i=1

(tk)i
2

)

= argmink

(

−2
K
∑

i=1

ŷi(tk)i + 1

)

= argmink

(

−2

K
∑

i=1

ŷi(tk)i

)

,

since the sum
∑K

k=1 (tk)i
2 = 1, for every class k. Thus we see that

argmink||ŷ − tk|| = argmaxk

(

K
∑

i=1

ŷi(tk)i

)

.

As the target vector tk has elements consisting of only ones and zeros such that

(tk)i = δki =

{

1 k = i

0 k 6= i
,

we see that the above becomes

argmaxk

(

K
∑

k=1

ŷi(tk)i

)

= argmaxk

(

K
∑

i=1

ŷiδik

)

= argmaxk(ŷk) ,

showing that the above formulation is equivalent to selecting the class k corresponding to
component of ŷ with the largest value.

Note: In this derivation, I don’t see the need to have the elements of ŷ sum to one.

Ex. 2.2 (the oracle reveled)

Note: I don’t see anything incorrect with what I have done here but the answer derived
thus far will not reproduce the decision boundary given in the text. In fact it result in a
linear decision boundary. If anyone sees anything incorrect with this below please let me
know.

From the book we are told how the class conditional densities are generated and using
this information we can derive the Bayes’ decision boundary for this problem as follows.
Recognizing that if we are given the values of the 10, class dependent randomly drawn
“centering” points m the observed data points for the class ωc are generated according to
the following mixture density

p(x|m, ωc) =
10
∑

i=1

1

10
N(x; mi,

1

5
I) for c ∈ {GREEN, RED} .

Here we have denoted the values of the 10 centering points as the vector m when we want
to consider them together or as mi for i = 1, 2, · · · , 10 when we want to consider them
individually. Since these mi are actually unknown, to evaluate the full conditional density
p(x|ωc) without knowing the values of the mi we will marginalize them out. That is we
compute

p(x|ωc) =

∫

p(x|m, ωc)p(m|ωc)dm

=

∫

(

10
∑

i=1

1

10
N(x; mi,

1

5
I)

)

p(m|ωc)dm

=
10
∑

i=1

1

10

∫

N(x; mi,
1

5
I)N(mi; lc, I)dmi .

Where lc is the mean of the normal distribution from which we draw our random sampling
point for class c. That is

lGREEN =

(

1
0

)

and lRED =

(

0
1

)

.

Thus to evaluate p(x|ωc) we now need to evaluate the product integrals

∫

N(x; mi,
1

5
I)N(mi; lc, I)dmi .

To do this we will use a convolution like identity which holds for Gaussian density functions.
This identity is given by

∫

y

N(y − ai; 0, Σ1)N(y − aj ; 0, Σ2)dy = N(ai − aj ; 0, Σ1 + Σ2) . (5)

Using this expression we find that the integrals above evaluate as

∫

N(x; mi,
1

5
I)N(mi; lc, I)dmi =

∫

N(x − mi; 0,
1

5
I)N(mi − lc; 0, I)dmi

= N(x − lc; 0,
1

5
I + I) = N(x − lc; 0,

6

5
I) .

Thus with this result we find our conditional densities given by

p(x|ωGREEN) =
1

10

10
∑

i=1

N(x − (1, 0)T ; 0,
6

5
I) = N(x − (1, 0)T ; 0,

6

5
I) (6)

p(x|ωRED) =
1

10

10
∑

i=1

N(x − (0, 1)T ; 0,
6

5
I) = N(x − (0, 1)T ; 0,

6

5
I) . (7)

The Bayes’ decision boundary when both classes are equally probable is given by the values
of x that satisfy

p(x|ωGREEN) = p(x|ωRED) .

To plot this decision boundary we sample Equations 6 and 7, select the larger of the two
and classify that point as either GREEN or RED depending.

Note: As stated above, this cannot be correct since each classes conditional density is now
a Gaussian with equal covariance matrices and the optimal decision boundary is therefore a
line. If someone sees what I have done incorrectly please email me.

Ex. 2.6 (forms for linear regression and k-nearest neighbor regression)

Part (a): Linear regression computes its estimate at x0 by

f̂(x0) = xT
0 β

= xT
0

(

(XT X)−1XT y
)

=
(

xT
0 (XT X)−1XT

)

y .

This will be a function linear in the components of yi if we can express the vector xT
0 (XT X)−1XT

in terms of the components of X. Now let xij be the jth component variable 1 ≤ j ≤ p of
the ith observed instance of the variable X. Then XT X has an (i, j) element given by

(XT X)ij =
N
∑

k=1

(XT)ikXkj =
N
∑

k=1

XkiXkj =
N
∑

k=1

xkixkj ,

so the element of (XT X)−1 are given by the cofactor expansion coefficient (i.e. Crammer’s
rule). That is, since we know the elements of the matrix XT X in terms of the component
points then (XT X)−1 has an ijth element given by see [3],

(A−1)ij =
Cji

det(A)
,

Where Cij is the ijth element of the cofactor matrix

Cij = (−1)i+jdet(Mij) ,

with Mij the ijth “minor” of the matrix A, that is the matrix from A obtained by deleting
the i row and the jth column from the A matrix.

f̂(x0) =

N
∑

i=1

li(x0;X)yi .

From the given expression since xT
0 (XT X)−1XT is a 1 × N vector we see that in terms of

the ith component of this vector is (xT
0 (XT X)−1XT)i then

f̂(x0) =
N
∑

i=1

(xT
0 (XT X)−1XT)iyi ,

thus for linear regression we have

li(x0;X) = (xT
0 (XT X)−1XT)i .

Note that this might be able to be simplified directly into the components of the data matrix
X using the cofactor expansion of the inverse (XT X)−1.

Chapter 3 (Linear Methods for Regression)

Notes on the Text

Linear Regression Models and Least Squares

With a data set arranged in the variables X and y, our estimate of the linear coefficients β

for the model y ≈ f(x) = xT β is given by equation 3.6 given by

β̂ = (XT X)−1XT y . (8)

Then taking the expectation with respect to Y and using the fact that E[y] = µy, we obtain

E[β̂] = (XT X)−1XTµy . (9)

The covariance of this estimate β̂ can be computed as

Cov[β̂] = E[(β̂ − E[β̂])(β̂ − E[β̂])T] = E[β̂β̂T] − E[β̂]E[β̂]T

= E[(XT X)−1XT yyTX(XT X)−1] − (XT X)−1XTµyµ
T
y X(XT X)−1

= (XT X)−1XT E[yyT − µyµ
T
y]X(XT X)−1

= (XT X)−1XT
(

E[yyT] − E[y]E[y]T
)

X(XTX)−1

= (XT X)−1XT Cov[y]X(XTX)−1 .

If we assume that the elements of y are uncorrelated then Cov[y] = σ2I and the above
becomes

Cov[β̂] = σ2(XTX)−1XTX(XT X)−1 = (XT X)−1σ2 , (10)

which is the equation. 3.8 in the book.

Multiple Regression from Simple Univariate Regression

As stated in the text we begin with a univariate regression model with no intercept i.e. no
β0 term as

Y = Xβ + ǫ .

The ordinary least square estimate of β are given by the normal equations or

β̂ = (XTX)−1XT Y .

Now since we are regressing a model with no intercept the matrix X is only a column matrix
and the products XT X and XT Y are scalars

(XTX)−1 = (
N
∑

i=1

x2
i)

−1 and XT Y =
N
∑

i=1

xiyi ,

so the least squares estimate of β is therefore given by

β̂ =

∑N

i=1 xiyi
∑N

i=1 x2
i

=
xT y

xT x
. (11)

Which is equation 3.24 in the book. The residuals ri of any model are defined in the standard
way and for this model become ri = yi − xiβ̂.

When we attempt to take this example from p = 1 to higher dimensions, lets assume that
the columns of our data matrix X are orthogonal that is we assume that 〈xT

j xk〉 = xT
j xk = 0,

for all j 6= k then the outer product in the normal equations becomes quite simple

XT X =

xT
1

xT
2
...

xT
p

[

x1 x2 · · · xp

]

=

xT
1 x1 xT

1 x2 · · · xT
1 xp

xT
2 x1 xT

2 x2 · · · xT
2 xp

...
... · · · ...

xT
p x1 xT

p x2 · · · xT
p xp

=

xT
1 x1 0 · · · 0
0 xT

2 x2 · · · 0
...

... · · · ...
0 0 · · · xT

p xp

= D .

So using this, the estimate for β becomes

β̂ = D−1(XT Y) = D−1

xT
1 y

xT
2 y
...

xT
p y

=

xT
1

y

xT
1

x1

xT
2

y

xT
2

x2

...
xT

p y

xT
p xp

.

And each beta is obtained as in the univariate case (see Equation 11). Thus when the feature
vectors are orthogonal they have no effect on each other.

Because orthogonal inputs xj have a variety of nice properties it will be advantageous to study
how to obtain them. A method that indicates how they can be obtained can be demonstrated
by considering regression onto a single intercept β0 and a single “slope” coefficient β1 that
is our model is of the given form

Y = β0 + β1X + ǫ .

When we compute the least squares solution for β0 and β1 we find (with some simple ma-
nipulations)

β̂1 =
n
∑

xtyt − (
∑

xt)(
∑

yt)

n
∑

x2
t − (

∑

xt)2
=

∑

xtyt − x̄(
∑

yt)
∑

x2
t − 1

n
(
∑

xt)2

=
〈x − x̄1,y〉

∑

x2
t − 1

n
(
∑

xt)2
.

See [1] and the accompanying notes for this text where the above expression is explicitly
derived from first principles. Alternatively one can follow the steps above. We can write the

denominator of the above expression for β1 as 〈x− x̄1,x− x̄1〉. That this is true can be seen
by expanding this expression

〈x − x̄1,x − x̄1〉 = xT x − x̄(xT1) − x̄(1Tx) + x̄2n

= xT x − nx̄2 − nx̄2 + nx̄2

= xT x − 1

n
(
∑

xt)
2 .

Which in matrix notation is given by

β̂1 =
〈x − x̄1,y〉

〈x − x̄1,x − x̄1〉 , (12)

or equation 3.26 in the book. Thus we see that obtaining an estimate of the second coefficient
β1 is really two one-dimensional regressions followed in succession. We first regress x onto
1 and obtain the residual z = x − x̄1. We next regress y onto this residual z. The direct
extension of these ideas results in Algorithm 3.1: Regression by Successive Orthogonalization
or Gram-Schmidt for multiple regression.

Another was to view Algorithm 3.1 is to take our design matrix X, form an orthogonal
basis by performing the Gram-Schmidt orthogonilization procedure (learned in introductory
linear algebra classes) on its column vectors, and ending with an orthogonal basis {zi}p

i=1.
Then using this basis linear regression can be done simply as in the univariate case by by
computing the inner products of y with zp as

β̂p =
〈zp, y〉
〈zp, zp〉

, (13)

which is the books equation 3.27. Then with these coefficients we can compute predictions
at a given value of x by first computing the coefficient of x in terms of the basis {zi}p

i=1 (as
zT

p x) and then evaluating

f̂(x) =

p
∑

i=0

β̂i(z
T
i x) .

Exercise Solutions

Ex. 3.5 (an equivalent problem to ridge regression)

Consider that the ridge expression given can be written as (inserting a zero as x̄j − x̄j

N
∑

i=1

(yi − β0 −
p
∑

j=1

x̄jβj −
p
∑

j=1

(xij − x̄j)βj)
2 + λ

p
∑

j=1

β2
j (14)

We see that by defining

βc
0 = β0 +

p
∑

j=1

x̄jβj (15)

βc
j = βi i = 1, 2, . . . , p (16)

The above can be recast as

N
∑

i=1

(yi − βc
0 −

p
∑

j=1

(xij − x̄j)β
c
j)

2 + λ

p
∑

j=1

βc
j
2 (17)

The equivalence of the minimization results from the fact that if βi minimize its respective
functional the βc

i ’s will do the same.

A heuristic understanding of this procedure can be obtained by recognizing that by shifting
the xi’s to have zero mean we have translated all points to the origin. As such only the
“intercept” of the data or β0 is modified the “slope’s” or βc

j for i = 1, 2, . . . , p are not
modified.

Ex. 3.6 (the ridge regression estimate)

Note: I used the notion in original problem in [2] that has τ 2 rather than τ as the variance
of the prior. Now from Bayes’ rule we have

p(β|D) ∝ p(D|β)p(β) (18)

= N (y − Xβ, σ2I)N (0, τ 2I) (19)

Now from this expression we calculate

log(p(β|D)) = log(p(D|β)) + log(p(β)) (20)

= C − 1

2

(y − Xβ)T (y − Xβ)

σ2
− 1

2

βTβ

τ 2
(21)

here the constant C is independent of β. The mode and the mean of this distribution (with
respect to β) is the argument that maximizes this expression and is given by

β̂ = ArgMin(−2σ2 log(p(β|D)) = ArgMin((y − Xβ)T (y − Xβ) +
σ2

τ 2
βTβ) (22)

Since this is the equivalent to Equation 3.43 page 60 in [2] with the substitution λ = σ2

τ2 we
have the requested equivalence.

Ex. 3.10 (ordinary least squares to implement ridge regression)

Consider the input centered data matrix X (of size pxp) and the output data vector Y both
appended (to produce the new variables X̂ and Ŷ) as follows

X̂ =

[

X√
λIpxp

]

(23)

and

Ŷ =

[

Y

Opx1

]

(24)

with Ipxp and Opxp the pxp identity and px1 zero column respectively. The the classic least
squares solution to this new problem is given by

β̂LS = (X̂T X̂)−1X̂T Ŷ (25)

Performing the block matrix multiplications required by this expression we see that

X̂T X̂ =
[

XT
√

λIpxp

]

[

X√
λIpxp

]

= XT X + λIpxp (26)

and

X̂T Ŷ =
[

XT
√

λ
]

[

Y

Opx1

]

= XT Y (27)

Thus equation 25 becomes
β̂LS = (XT X + λIpxp)

−1XT Y (28)

This expression we recognize as the solution to the regularized least squares proving the
equivalence.

Chapter 4 (Linear Methods for Classification)

Notes on the Text

Logistic Regression

From the given specification of logistic regression we have

log

(

Pr(G = 1|X = x)

Pr(G = K|X = x)

)

= β10 + βT
1 x

log

(

Pr(G = 2|X = x)

Pr(G = K|X = x)

)

= β20 + βT
2 x

... (29)

log

(

Pr(G = K − 1|X = x)

Pr(G = K|X = x)

)

= β(K−1)0 + βT
K−1x .

The reason for starting with expressions of this form will become more clear when we look at
the log-likelihood that results when we use the multinomial distribution for the distribution
satisfied over the class of each sample once the probabilities Pr(G = k|X = x) are specified.
Before we discuss that, however, lets manipulate the Equations 29 above by taking the the
exponential of both sides and multiplying everything by Pr(G = K|X = x). When we do
this we find that these equations transform into

Pr(G = 1|X = x) = Pr(G = K|X = x) exp(β10 + βT
1 x)

Pr(G = 2|X = x) = Pr(G = K|X = x) exp(β20 + βT
2 x)

... (30)

Pr(G = K − 1|X = x) = Pr(G = K|X = x) exp(β(K−1)0 + βT
(K−1)x) .

Adding the value of Pr(G = K|X = x) to both sides of the sum of all of the above equations
and enforcing the constraint that

∑

l Pr(G = l|X = x) = 1, we find

Pr(G = K|X = x)

(

1 +

K−1
∑

l=1

exp(βl0 + βT
l x)

)

= 1 .

On solving for Pr(G = K|X = x) we find

Pr(G = K|X = x) =
1

1 +
∑K−1

l=1 exp(βl0 + βT
l x)

. (31)

When we put this expression in the proceeding K − 1 in Equations 30 we find

Pr(G = k|X = x) =
exp(βk0 + βT

k x)

1 +
∑K−1

l=1 exp(βl0 + βT
l x)

, (32)

which are equations 4.18 in the book.

WWX: Note below this point these notes have not been proofed

Fitting Logistic Regression

In the case where we have only two classes, for the ith sample given the feature vector
X = xi the probability of that this sample comes from either of the two classes is given
by the two values of the posteriori probabilities. That is given xi the probability we are
looking at a sample from the first class is Pr(G = 1|X = x), and from the second class is
Pr(G = 2|X = x) = 1 − Pr(G = 1|X = x). If for each sample xi for i = 1, 2, · · · , N in
our training set we include with the measurment vector xi a “coding” variable denoted yi,
that takes the value 1 if the ith item comes from the first class and is zero otherwise we
can sussinctly represent the probability that xi is a member of its class with the following
notation

pgi
(xi) = Pr(G = 1|X = xi)

yiPr(G = 2|X = x)1−yi . (33)

Since only one of the values yi or 1− yi will infact be non-zero. Using this notation given an
entire data set of measurments and thier class encoding {xi, yi} the total likelihood of this
data set is given by

L =
N
∏

i=1

pgi
(xi) ,

the log-liklihood for this set of data is then given by taking the logarithm of this expression
as

l =
N
∑

i=1

log(pgi
(xi)) .

When we put in the expression for pgi
(xi) defined in Equation 33 we obtain

l =
N
∑

i=1

yi log(pgi
(xi)) + (1 − yi) log(1 − pgi

(xi))

=

N
∑

i=1

y log(
pgi

(xi)

1 − pgi
(xi)

) + log(1 − pgi
(xi))

If we now use Equations 29 to express the log-posteriori odds in terms of the parameters we
desire to estimate β we see that

log(
pgi

(xi)

1 − pgi
(xi)

) = β10 + βT
1 = βTx ,

and

log(1 − pgi
(xi)) =

1

1 + eβT x
.

Here we have extended the definition of the vector x to include a constant value of one to deal
naturally with the constant value term β0. Thus in terms of β the log-likelihood becomes

l(β) =

N
∑

i=1

(

yiβ
T xi − log(1 + eβT xi)

)

.

Now to maximize the log-likelihood over our parameters β we need to take the derivative of
l with respect to β. We find

∂l(β)

∂β
=

N
∑

i=1

(

yixi −
eβT xi

1 + eβT xi
xi

)

.

Since p(xi) = eβT xi

1+eβT xi
the score (or derivative of l with respect to β becomes

∂l(β)

∂β
=

N
∑

i=1

xi(yi − p(xi)) .

The remaining derivations presented in the book appear reasonable.

Exercise Solutions

Ex. 4.1 (a constraned maximization problem)

This problem is not finished!

To solve constainted maximization or minimization problems we want to use the idea of
Legrangian multipliers. Define the lagragian L as

L(a; λ) = aT Ba + λ(aT Wa − 1) .

Here λ is the lagrange multipler. Taking the a derivative of this expression and setting it
equal to zeros gives

∂L(a; λ)

∂a
= 2Ba + λ(2Wa) = 0 .

This last equation is equivalent to

Ba + λWa = 0 ,

or multiplying by W−1 on both sides and moving the expression with B to the left hand side
gives the

W−1Ba = λa ,

Notice this is a standard eigenvalue problem, in that the solution vectors a must be an
eigenvector of the matrix W−1B and λ is its corresponding eigenvalue.

WWX: Note above this point these notes have not been proofed

Ex. 4.4 (mulidimensional logistic regression)

In the case of K > 2 classes, in the same way as discussed in the section on fitting a logistic
regresion model, for each sample point with a given measurement vector x (here we are

implicitly considering one of the samples from our training set) we will associate a position
coded responce vector variable y of size K − 1 where the l-th component of y are equal to
one if this sample is drawn from the l-th class and zero otherwise. That is

yl =

{

1 x is from class l

0 otherwise

With this notation the likelihood that this particular measured vector x is from its known
class can be written as

py(x) = Pr(G = 1|X = x)y1Pr(G = 2|X = x)y2 · · ·Pr(G = K − 1|X = x)yK−1

× (1 − Pr(G = 1|X = x) − Pr(G = 2|X = x) − · · · − Pr(G = K − 1|X = x))1−
PK−1

l=1
yl .

Since this expression is for one data point the log-likelihood for an entire data set will be
given by

l =

N
∑

i=1

log(py(xi))

Using the Equation 34 in the above expression we find log(py(x)) is given by

log(gy(x)) = y1 log(Pr(G = 1|X = x)) + y2 log(Pr(G = 2|X = x)) + · · ·+ yK−1 log(Pr(G = K − 1|X = x

+ (1 − y1 − y2 − · · · − yK−1) log(Pr(G = K|X = x))

= log(Pr(G = K|X = x)) + y1 log(
Pr(G = 1|X = x)

Pr(G = K|X = x)
) + y2 log(

Pr(G = 2|X = x)

Pr(G = K|X = x)
) + · · ·

+ yK−1 log(
Pr(G = K − 1|X = x)

Pr(G = K|X = x)
)

= log(Pr(G = K|X = x)) + y1(β01 + βT
1 x) + y2(β02 + βT

2 x) + · · ·
+ yK−1(β(K−1)0 + βT

K−1x) .

Chapter 10 (Boosting and Additive Trees)

Ex. 10.1 (deriving the β update equation)

From the book we have that for a fixed β the solution Gm(x) is given by

Gm = ArgMinG

N
∑

i=1

w
(m)
i I(yi 6= G(xi)) ,

which states that we should select our classifier Gm such that Gm(xi) = yi for the largest

weights w
(m)
i values, effectively “nulling” these values out. Now in AdaBoost this is done

by selecting the training samples according to a discrete distribution w
(m)
i specified on the

training data. Since Gm(x) is then specifically trained using these samples we expect that
it will correctly classify many of these points. Thus lets select the Gm(x) that appropriately
minimizes the above expression. Once this Gm(x) has been selected we now seek to minimize
our exponential error with respect to the β parameter.

Then by considering Eq. 10.11 (rather than the recommended expression) with the derived
Gm we have

(eβ − e−β)
N
∑

i=1

w
(m)
i I(yi 6= Gm(xi)) + e−β

N
∑

i=1

w
(m)
i

Then to minimize this expression with respect to β, we will take the derivative with respect
to β, set the resulting expression equal to zero and solve for β. The derivative (and setting
our expression equal to zero) we find that

(eβ + e−β)
N
∑

i=1

w
(m)
i I(yi 6= Gm(xi)) − e−β

N
∑

i=1

w
(m)
i = 0 .

To facilitate solving for β we will multiply the expression above by eβ to give

(e2β + 1)
N
∑

i=1

w
(m)
i I(yi 6= Gm(xi)) −

N
∑

i=1

w
(m)
i = 0 .

so that e2β is given by

e2β =

∑N

i=1 w
(m)
i −∑N

i=1 w
(m)
i I(yi 6= Gm(xi))

∑N

i=1 w
(m)
i I(yi 6= Gm(xi))

.

Following the text we can define the error at the m-th stage (errm) as

errm =

∑N

i=1 w
(m)
i I(yi 6= Gm(xi))
∑N

i=1 w
(m)
i

,

so that in terms of this expression e2β becomes

e2β =
1

errm

− 1 =
1 − errm

errm

.

0 50 100 150 200 250 300 350 400
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

training err
testing err

Figure 1: A duplication of the Figure 10.2 from the book.

Finally we have that β is given by

β =
1

2
log(

1 − errm

errm

) ,

which is the expression Eq. 10.12 as desired.

Ex. 10.4 (Implementing AdaBoost with trees)

Part (a): Please see the web site for a suite of codes that implement AdaBoost with trees.
These codes were written by Kelly Wallenstein under my guidance.

Part (b): Please see the Figure 1 for a plot of the training and test error using the provide
AdaBoost Matlab code and the suggested data set. We see that the resulting plot looks very
much like the on presented in Figure 10.2 of the book helping to verify that the algorithm
is implemented correctly.

Part (c): I found that the algorithm proceeded to run for as long as I was able to wait.
For example, Figure 1 has 800 boosting iterations which took about an hour train and test
with the Matlab code. As the number of boosting iterations increased I did not notice any
significant rise in the test error. This was one of the proported advantages of the AdaBoost
algorithm.

References

[1] B. Abraham and J. Ledolter. Statistical Methods for Forecasting. Wiley, Toronto, 1983.

[2] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
New York, 2001.

[3] G. Strang. Linear Algebra and Its Applications. Brooks/Cole, 3 edition, 1988.

