


ANSWER BOOK
FOR

CALCULUS

Third Edition

Michael Spivak

Publish or Perish, Inc.
HOUSTON, TEXAS



ANSWER BOOK FOR CALCULUS
Third Edition

Copyright © 1984, 1994 by Michael Spivak
All rights reserved

Manufactured in the United States of America
ISBN 0-914098-90-X



CHAPTER 1

1. (ii)
(x - y)(x + y) = [x+ (-y)](x+ y) = x(x + y) + (-y)(x + y)

=x(x+y)-[y(x+y)]=x2+xy- [yx+y2
=x2+xy-y =x2-y2.

(iv)
(x--y)(x +xy+y )=x(x +xy+y )-[y(x + y+y B

=x3+x2y+xy -[yx +xy2+y3]=x3-y3.

(v)
(x - y)(xn-1 4 n-2, 4 . . . 4 yn-2 4 n-1

= x(xn-1 4 n-2 n--2 n-1

- [y(xn-1 n-2
...

n-2 n-ip

= xn y ¿n-1 2 n-2 n-1

- [xn-1 n-2 2 # •· · X n-1 n

= xn _ yn

Using the notation of Chapter 2, this proof can be written as follows:
n-1 n-1 n-1

(x - y) - xiyn-1-j j n-1-j
__ jyn-1-j

j=0 j=0 j=0
n-2 n-1

= xn j+1yn--i-j _ jyn-j n

j=0 j=1
n-2 n-2

= xn 4 j+1yn-1-j __ k+1pn-(k+1) n
k=0

(lettingk = j - 1)
= xn _ yn

A formal proof requires such a scheme, in which the expression (x"¯I + xn-2, y
n-1

-· - + xyn-2 4 yn-1) is replaced by the inductively defined symbol 2 xiy"¯I¯J.
j=0

Along the way we have used several other manipulations which can, if necessary,
be justifiedby inductive arguments.

3. (iv) (a/b)(c/d) = (ab--1)(cd¯I) = (ac)(b-Id¯') = (ac)(bd)-1(by(iii)) =

(ac)/(bd).

1



2 Chapter 1

(vi) If ab¯I = cd¯', then (ab¯I)bd = (cd I)bd, or ad = bc. Conversely, if
ad = bc, then (ad)d¯Ib¯ = (bc)d¯Ib¯',

or ab¯! = cd 1. If ab I = ba¯',
then a2 = b2, so by Problem 1(iii), a = b or a =

-b.

Conversely, if a = b, then
a/b = b/a = 1 and if a =

-b,

then a/b = b/a =
-1.

4. (ii) All x.

(iv) x > 3 or x < 1.

(vi) x > [--1+ Á 2 or x < [-1- Ã ] 2.

(viii)All x, since x2 + x + 1 = [x+ (1/2)]2+ 3/4.

(x) x > Ä or x < Ã.
(xii)x < 1.

(xiv)x > 1 or x <
-1.

5. (ii)b - a is in P, so
-a

- (-b) is in P.

(iv) b - a is in P and c is in P, so c(b - a) = bc - ac is in P.

(vi) If a > 1, then a > 0, so a2 > a - 1, by part (iv).
(viii) If a = 0 or c = 0, then ac = 0, but bd > 0, so ac < bd. Otherwise we have
ac < bc < bd by applying part (iv)twice.

(x) If a < b were false, then either a = b or a > b. But if a = b, then a2 = b2,
and if a > b >_ 0, then a2 > b2, by part (ix).

6. (a) From 0 5 x < y and Problem 5(viii) we havex2 < y2 [asin Problem 5(ix)].
Then from 0 5 x < y and x2 < y2 we have x3 < y3. We can continue in this way
to prove that x" < yn for n = 2, 3, . . . (arigorous proof uses induction, covered in
the next chapter).

(b) If 0 5 x < y, then x" < y" by part (a). If x < y 5 0, then 0 5
-y

<
-x,

so
(-y)n _ n by part (a);this means that

-y"

<
-xn

(sincen is odd) and hence
x" < yn. Finally, if x < 0 5 y, then xn < 0 _< yn (sincen is odd). Thus, in all
cases, if x < y, then xn « yn

(c) This follows immediately from part (b),since x < y would imply that xn , yn,
while y < x would imply that y" < x".

(d) Similarly, if n is even, then using part (a)instead of part (b)we see that if
x, y >_ 0 and xn _ yn, then x = y. Moreover, if x, y 5 0 and x" - yn, then
-x, -y >_ 0 and (-x)" = (-y)", so again x = y. The only other possibility is
that one of x and y is positive, the other negative. In this case x and -y

are both
positive or both negative. Moreover xn _ y n, since n is even, so it follows from
the previous cases that x =

-y.



Chapter 1 3

7. If a < b, then
a+a a+b b+b

a=<<=b.
2 2 2

If 0 < a < b, then a2 < ab by Problem 5(iv), so a < Ñ by Problem 5(x).
Moreover, (a - b)2 > 0, so

a + b2 > 2ab,
a2 + 2ab + b2 > 4ab,

(a + b)2 > 4ab,

so a + b > 2Ñ. Moreover, for all a, b we have (a - b)2 à 0, and thus (a+ b)2 >

4ab, which implies that a + b > 2Ñ for a, b à 0.

8. Two applications of P'12 show that if a < b and c < d, then a+c < b+c < b+d,
so a + c < b + d by P'11. In particular, if 0 < b and 0 < d, then 0 < b + d, which
proves Pl l. It follows, in addition, that if a < 0, then -a

> 0; for if -a

< 0
were true, then 0 = a + (-a) < 0, contradicting P'10. Consequently, any number

a satisfies precisely one of the conditions a = 0, a > 0, a < 0, the last being
equivalent to

-a

> 0. This proves P10. Finally, P'13 shows that if 0 < a and
0 < c, then 0 < ac, which proves P12.

9. (ii) la|+ |b| - |a + bl.

(iv) x2 - 2xy + y2.

10. (li)
x-1 ifx>1;
1-x if05xd1;
1+x if-15x50;

-1

- x if x á
-1.

(iv)
aifa>0;

3a if a 5 0.

11. (ii)
-5

< x < 11.

(iv) x < 1 or x > 2 (thedistance from x to 1 plus the distance from x to 2 equals
1 precisely when 1 5 x 2).

(vi) No x.

(vili)If x > 1 or x <
-2,

then the condition becomes (x - 1)(x + 2) = 3, or
x2 + x - 5 = 0, for which the solutions are (-1+ B)|2 and (-1- )|2.
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Since the first is > 1 and the second is <
-2,

both are solutions to the equation
|x - 1| · |x+ 2| = 3. For

-2

< x < 1 the condition becomes (1 - x)(x + 2) = 3
or x2 + x + 1 = 0, which has no solutions.

12. (ii) [1/x\ - \xl = \(1/x) - x\ (by(i))= |1]= 1, so ll/x| = 1|lxl.

(iv) |x - y = |x+(-y)| 5 |x|+ |-y|= |x|+ |y|.
(vi) Interchanging x and y in part (v)gives |y| - |x 5 |x - y|. Combining this
with part (v)yields |(|x| - |yl)| 5 lx - y|.

13.Ifxsy,then|y-x|=y-x,sox+y+|y-x|=x+y+y-x=2y,
which is 2 max(x, y). Interchanging x and y proves the formula when x à y, and
the same type of argument works for min(x, y). Also

max(x, y, z) = max(x, max(y, z))
y+z+|y-z| y+z+|y-z|

x+ + -x

2 2
2

|y-zl+y+z+2x+|y+z+|y--z|-2x|
=

4

14. (a) If a 2 0, then lal = a =
-(-a)

= ]-a|, since -a

5 0. The equality is
proved for a 5 0 by replacing a by -a.

(b) If |a i b, then clearly b à 0. Now |a| 5 b means that a 5 b if a 2 0, and
surely a 5 b if a 5 0. Similarly, |a| 5 b means

-a 5 b, and hence
-b

5 a, if
a 5 0, and surely

-b

5 a if a >_ 0. So
-b

5 a 5 b.
Conversely, if

-b

5 a 5 b, then |a| = a b if a 2 0, while |a] =
-a

5 b if
a 5 0.

(c) From
-|a|

5 a 5 |a| and
-|b|

5 b 5 |b| it follows that
-(|a

+ [bj)5 a+b 5 |a + |b|,
so |a + b| 5 ja|+ |b|.

15. If x ¢ y, then
3 3x

-y

x +xy+y = .

x
-y

Problem 6(b) shows that the quotient on the right is always positive (sincex3 - y3 >

0 if x - y > 0 and x3 - y3 < 0 if x - y < 0). Moreover, if x = y ¢ 0, then
X2 # Xy # y2 = 3x2 > 0. The other inequality is proved similarly, using the
factorizationfor x' - y'.
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16. (a) If
X2 2 = (X i y) =

X2 + 2xy + y2,

then xy = 0, so x = 0 or y = 0. If
x3+yS=(x+y)3=X3+3x2y+3xy2+y3,

then3xy(x+y)=0,sox=0ory=0orx=-y.

(b) The first equation implies that
4x2 + 8xy + 4y2 >_ 0.

Suppose that we also had
4x2+6xy+4y2 _<0.

Subtracting the second from the first would give 2xy > 0. If neither x nor y is 0,
this means that we must have 2xy > 0; but this implies that 4x2 + 6xy + y2 > 0, a
contradiction.

Moreover, it is clear that if one of x and y is 0, but not the other, then we also
have 4x2 + 6xy + 4y2 > 0.

(c) If
X4 4

= (X # y)4 =
X4 + 4x3y + 6x2y2+ 4xy3 + y',

then
0=4x3y+6x2y*+4xy* =xy(4x +6xy+4y ),

so x = 0 or y = 0, or 4x2 + 6xy + 4y2 = 0. But by part (b),the last equation
implies that x and y are both 0. Thus we must always have x = 0 or y = 0.

(d) If
x' + y' = (x+ y)' = x' + 5x4y + 10x3y2 + 10x2 3 + 5xy' + y',

then

0 = 5x4y + 10x2y + 10x y* + 5xy4
= 5xy(x3 + 2x2y + 2 y2 + y*¾

soxy
=0or

x'+2x2y+2xy +y*=0.

Subtracting this equation from

(x+y)'=x3+3x2y+3xy2+y'
we obtain

(x+y)'=x2y+xy2=xy(x+y).
So either x+ y = 0 or (x+ y)2 = xy; the latter condition implies that x2+xy+ y2 -·

0, so x = 0 or y = 0 by Problem 15. Thus x = 0 or y = 0 or x =
-y.
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17. (a) Since

( 3 2 92x2-3x+4=2 x-- +4--
4 8

( 3 23=2
x-- +-,4 8

the smallest possible value is 23/8, when (x - 3/4)2 = 0, or x = 3/4.

(b) We have

x2-3x+2y +4y+2= x- +2(y+1)2- ,

so the smallest possible value is
-9/4,

when x = 3/2 and y =
-1.

(c) For each y we have

x2+4xy+5y2-4x-6y+7=x2+4(y-1)x+Sy2-6y+7
= [x+ 2(y - 1)]2+ Sy2 - 6y + 7 - 4(y - 1)
= [x+ 2(y - 1)]2+ (y+ 1)2+ 2,

so the smallest possible value is 2, when y =
-1

and x =
-2(y

--· 1) = 4.

18. (a) is a straightforward check.

(b) We have

( b * b2 b2X2+bx+c= x+- + c--- Ec-----,2 4 4

butc-b2/4>0,sox2+bx+c>0forallx.

(c) Apply part (b)with y for b and y2 for c: we have b2 - 4C = y2 - 4y2 < 0 for
y ¢ 0, so x2 + xy + y2 > 0 for all x, if y ¢ 0 (andsurely x2 + xy + y2 > 0 for all
x ¢ 0 if y = 0).

(d) a must satisfy (ay)2- 4y2 < 0, or a2 < 4, or |œ\< 2.

(e) Since

( b 2 b2 b2x2+bc+c= x+- + c-- >c--,
2 4 4

and since x2 + bx + c has the value c - b2/4 when x =
-b|2,

the minimum value
is c - b2/4. Since

ax2+bx+c=a x2+b

a a
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the minimum value is

(c
b2 b2

a ----- =c--.

a 4a2 4a

19. (a) The proofs when xi = lyi and x2 = Ay2, or yi = y2 = 0, are straightfor-
ward. If there is no such A, then the equation

À2 2 2
_ A(X1Ïl#X2Ï2) # (X12 4 y

2) = 0

has no solution A, so by Problem 18(a) we must have

2(xi yi + x2y2) 2 4(xi2 + yi2)
-- < 0

(712+ 72 ) (yi2 + y22)

which yields the Schwarz inequality.

(b) We have 2xy 5 x2 + y2, since 0 5 (x - y)2 = x2 - 2xy + y*. Thus

2xi yi xi' yi'
(1) < +

xi + X22 712+ 722 (X12 # X22) (Ï12Ÿ Ï22) '

2x171 X22 Ï22
(2) < +

xi2 + x22 yi2 + y22
¯ (XI2 + x22) (712 722) '

addition yields
2(xiyi + x2y2)

x:2 + x22 Ï12 Ÿ Ï22

(c) The equality is a straightforward computation. Since (xiy2 -- x2yi)2 à 0, the
Schwarz inequality follows immediately.

(d) The proof in part (a)already yields the desired result.
In part (b),equality holds only if it holds in (1)and (2). Since 2xy = x2 2

only when 0 = (x - y)2, i.e., x = y, this means that
x¿ y¿ for x = 1, 2,

xi2 + x22 y 2 + y22

so we can choose A = x12 + X22 2 2

In part (c),equality holds only when xi y2 - x2yi = 0. One possibility is yi =

y2 = 0. If yi ¢ 0, then xi = (xi/yi)yi and also xi = (xi/ys)y2;similarly, if
y2 = 0, then A = x2|y2·

20, 21, 22. See Chapter 5.

23. According to Problem 21, we have |x/y -- xo/yo| < e if

( €
x -- xo| < min , 1

2(1||yo| + 1)
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and
1 1 s
y yo 2(|xoj + 1)

'

and the latter is true, according to Problem 22, if

(lyol
slyol2

|y-yo|<min --,
.

2 4(|xo| + 1)

24. (a) For k = 1 the equation reads ai + a2 = ai + a2. If the equation holds for
k, then

(a1+ - - - + ak+1) # ak+2 = [(a¡ # ·•• ‡ ak) k+1 k+2
= (ai+ - - - + ak) k+1 k+2) by P1
= ai ‡ · - · + ak + (ak+1+ ak+2)

since the equation holds for k
=ai+---+ak+2

by the definition of ai + - - - + ak+2-

(b) For k = 1 the equation reduces to the definition of ai + - - · + ak. If the equation
is true for some k < n, then

(al + - - · + ak+1) + (ak+2‡ - · · ‡ an)
= ([ai+·••#ak]+ak+1) k+2 $·

·Ÿ Un)

by part (a)
= (at + -

..+ ak) (Uk+1 k+2 #
···#

an)

by P1
= (ai + -·- +ak) + (ak+1+ +an)

by the definition of a i + · · · + an
= ai + - . . + an by assumption.

(c) The proof is by "complete induction" on k (seeChapter 2). The assertion is
clear for k = 1. Assume that it is true for all l < k. Then

s(ai,...,ag) = s (ai,...,ag)+s"(agei,...,ag)
= (al + - · - + ai) + (ai i + - · · + ak) by assumption
= ai + - · · + at by part (b).

25. P2, P3, P4, P6, P7, PS are obvious from a glance at the tables. There are eight
cases for Pl, and even this number can be reduced: because P2 is true, it is clear
that a + (b+ c) = (a + b) + c if a, b, or c is 0, so only the case a = b = c = 1
must be checked. Similarly for P5. Finally, P9 is true for a = 0, since 0 - b = 0 for
all b, and for a = 1, since 1 · b = b for all b.



CHAPTER 2

1. (11)Since 13 = 12, the formula is true for n = 1. Suppose that the formula is
true for k. Then

(1+-.-+k+[k+1])
=(1+--·+k)2+2(1+---+k)(k+1)+(k+1)

k(k + 1)=13+-··+k3+2 (k+1)+(k+1)2
2

=13+··-+k3+(k'+2k2+k)+(k2+2k+1)

=13+---+k3+(k+1)',

so the formula is true for k + 1.

2. (ii)

(2i - 1) = 12+ 32 + - . - + (2n - 1)2
i=1

= [12+ 22 + - - - + (2n)2]- [2 + 42 + 62+ - . . + (2n)2
= [12+ 22 + - · · + (2n)2]- 4[12 + 22+ 32 + · - - + (n)2]

2n (2n+ 1)(4n+ 1) 4n (n+ 1)(2n+ 1)
6 6

2n (2n+ 1)[4n + 1 - 2(n + 1)]
6

n (2n+ 1)(2n - 1)
=

3

3. (a)

( n n! n!

k-1 (k-1)!(n-k+1)! k!(n-k)!

kn! (n+1-k)n!
= +k!(n+1-k)! k!(n+1-k)!

(n+1)n! +1
k!(n+1-k)!¯ k

(b) Clearly (g)is a natural number. Suppose that (n)is a natural number for all
p 5 n. Since

+ 1 n n
= + for p 5 n,

p p - 1 p

it follows that (n+1)is a natural number for all p 5 n, while (n ) is also a natural

number. So ("**)is a natural number for all p 5 n + 1.
P

9
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(c) There are n(n - 1) · · - (n - k + 1) k-tuples of distinct integers each chosen
from 1, . . . , n, since the first can be picked in n ways, the next in n - 1 ways,
etc. Now each set of exactly k integers can be arranged in kl k-tuples, so there are
n(n - 1) - - - (n - k + 1)/k! = () such sets.

(d) The binomial theorem is clear for n = 1. Suppose that

(a+b)"= n an-jbi.
j=o A

Then

(a + b)"** = (a + b) (a + b)n = (a + b) n a"¯ Ābi
j=0

n+1-jbi + an-jbi**
j=0 j=0

= an+1-jbA +
j 1

an+1-jbi

j=0 j=1

(wehave replaced j by j - 1 in the second sum)

= " n + 1 an+1- jbl by part (a),
j=0

so the binomial theorem is true for n + 1.

(e) (i)
2" = (1+ 1)n n

j=0

(ii)
0 = (1+

-1)"

= (-1) n

i=0 I

(iii) Subtracting(ii)from (i)we obtain

2 = 2".
I odd /

(iv) Add (i)and (ii).

4. (a) Since
(1+x)n(1+x)m = (1+ x)n+m

we have
Xk

X

=n
n#m

k=0 J=0 l=0
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But the coefficient of x' on the left is clearly

l

-mk

'

one term of the sum occurring for each pair k, j = l - k.

(b) Let m, l = n in part (a)[notethat ( = (,ik
6. (ii) From

(k+ 1)* - k' = 5k4 + 10k3+ 10k2+ 5k + 1 k = 1, . . . , n

we obtain

(n+1)'-1=5 k4 +10 k +10 k +5 k +n,
k-1 k 1 k-1 k=1

SO

n (n+ 1)* - 1 -- 10N+ + - 10n(n+i n+2)
- Sn(n+1)- n

k'
5k=1

n5 n4 n3 n=-+-+----.

52330

(iv)From
1 1 2k + 1

-- - = k= 1,...,n
k2 (k+ 1)2 k2(k + 1)2

we obtain
1 n 2k + 1

1 - =

(n+ 1)2 k2(k + 1)2
°

7. The proof is by complete induction on p. The statement is true for p = 1, since
n n(n + 1) n2

k =

2
¯

2
+n.

k=1

Suppose that the statement is true for all natural numbers 5 p. The binomial theorem
yields the equations

(k+ 1)?** - k I = (p + 1)k? + terms involving lower powers of k.

Adding for k = 1, ..., n, we obtain

(n+ 1)1
= kP + terms involving kr for r < p.

k=1 k=1
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n
By assumption, we can write each E kr as an expression involving powers n' with

k=1
s 5 p. It follows that

n (n+ 1)p+1
kP = + terms involving powers of n less thatn p + 1.

k=I

10. Suppose A contains 1, and that A contains n + 1 if it contains n. If A does not
contain all natural numbers, then the set B of natural numbers not in A is not 0.
So B has a smallest member no. Now no ¢ 1, since A contains 1, so we can write
no = (no- 1) + 1, where no - 1 is a natural number. Now no - 1 is not in B, so
no - 1 is in A. By hypothesis, no must be in A, so no is not in B, a contradiction.
(By the way, the assertion that a natural number n ¢ 1 can be written n = m + 1
for some other natural number m, can itself be proved by induction.)

11. Clearly 1 is in B. If k is in B, then 1, . . . , k are all in A, so k + 1 is in A, so
1, . . . , k + 1 are in A, so k + 1 is in B. By (ordinary)induction, B = N, so also
A = N.

14. (a) If Ã + Ä were rational, then (n + Ã)2 would certainly be rational.

So 8 + 2nž = 8+ 4Ã would be rational, so á would be rational, which is false.

(b) Similarly,if Á+ Á were rational, then its square 5+ 2Á would be rational,
so Ã would be rational, which is false.

15. (a) The assertion is true for m = 1. If it is true for m, then

(p+ )m+1=(p+ )(a+b )=(ap+bq)+(a+pb) ,

and ap + bq and a + bp are rational.

(b) The assertion is true for m = 1. If it is true for m, then

(p- )m+1=(p-g)(a-bg)=(ap+bq)-(a+pb) ,

whereas (p + )m+1= (ap + bq) + (a + pb)g by part (a).

16. (a) The inequality (m+ 2n)2|(m + n)2 > 2 is equivalent to
m2 + 4mn + 4n2 > 2m2 + 4mn + 2n2,

or simply 2n2 > m2.
The second inequality is equivalent to

n2[(m + 2n) - 2(m + n)2] < (2n2- m2Xm+ 42,

or
n2(2n2 - m2 2

_ 2 2 + [2mn+ m2¾
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or
0 < (2n2- m2)(2mn + m2).

(b) Reverse all inequality signs in the solution for part (a).
(c) Let mi = m + 2n and ni = m + n, and then choose

m' = mi + 2ni = 3m + 4n,
n' = mi + ni = 2m + 3n.

17. (a) Suppose that every number < n can be written as a product of primes. If
n > 1 is not a prime, then n = ab for a, b < n. By assumption, a and b are each
products of primes, so n = ab is also.

(b) If = a/b, then nb2 - a2, so tlie factorization into primes of nb2 and of
a2 must be the same. Now every prime appears an even number of times in the
factorization of a2, and of b2, so the same must be true of the factorization of n.
This implies that n is a square.

(c) Repeat the same argument, using the fact that every prime occurs a multiple of
k times in ak and bk

(d) If pi, - - . , Pn were the only primes, then (p, · p2 - · · p.) + 1 could not be a
prime, since it is larger than all of them (andis not 1), so it must be divisible by
a prime. But pi, ..., pn clearly do not divide it, a contradiction. (Although this
is a proof by contradiction, it can be used to obtain some positive information: If
pi, -· -, Pn are the first n primes, then the (n+ 1)"*prime is 5 (pt · P2 Pn) + 1.
It is not necessarily true, however, that the number (pi · P2 · Pn) + 1 is a prime;
for example, (2 · 3 · 5 - 7 · 11 - 13) + 1 = 30,031 = 59 - 509.)

18. (a) Suppose x = p/q where p and q are natural numbers with no common
factor. Then

pn yn-1
-+a,_;

_, +---+ao=0,
q q

SO

(*) pn + an-1Pn-lq + - - - + acq" = 0.

Now if q ¢ ±1, thenq has some prime number as a factor. This prime factor divides
every term of (*)other than pn, so it must divide pn also. Therefore it divides p, a
contradiction. So q = ±1, which means that x is an integer.

(b) If
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then

x2 = 6 + (n+ñ)* - 2Ã(n+ñ)
= 11+2Ã[1- (n+ d) ,

SO

(X2 2 2

= 24[1+ (n+ Á)*
-2(n+

Ã)
=24[6+2(E-Ä-Ã)
+ 24[6 + 2x].

It follows from part (a)that either x is irrational or else x is an integer. But it is
easy to check that

0<ñ+Ã-W<1
(theinequalities Ã < Á + Á and Ã + Á < 1 + Ä are easily checked by
squaring them), so x is not an integer.

(c) Writing the various powers of x = 22/6+23/6 in termsof the powers of r¡ = 21/6
we obtain the following table for the coefficients.

0 1 2 3 94 5

x0 1
xi 1 1
X2 g i 2
x3 2662
x4 2 8 12 8
x5 40 40 20 4 2 10
x6 12 24 60 80 60 24

We can then find numbers ao, ..., as such that
X6 5X5 # G4X4 # G3X # G2X2 Ÿ Ulx + ao = 0

by solving the equations ao + 2a2 + 2as + 40as + 12 = 0, etc. It turns out that
x6 - 6x4 - 4x3 + 12x2 - 24x - 4 = 0.

Part (a) implies that either x is irrational or else x is an integer, and it is easy to
see that x is not an integer, because 1.4 < Á < 1.5 and 1.2 < W < 1.3, so
2.6 < Á+ 6 < 2.8.

This is one of those problems where a little learning, though perhaps a dangerous
thing, could save a lot of work: The proper equation for x can also be found by
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noting that Ã + 6 clearly satisfies the equation

[(x-Ä)'-2]·[(x+Á)'-2]=0;
when the left side is multiplied out we obtain

(x-2)3+4-2-[(x-Ä)3#(X

= (x - 2)' + 4 - 2 - [2x3+ 12x] (theodd powers of x cancel out)
= x6 - 6x4 - 4x" + 12x - 24x - 4.

Of course, this method depends on the observation that the equation for x = Ä +
should also have -Ä + as a root (ahint as to why this should be true will

be found in Problem 25-8).

20. Since

(l+Ã
1 1-Ä 1

2 2 g=-=I

(1+Ê1-Ä
2 2 g=--=1

the assertion is true for n = 1 and n = 2. Now suppose that the assertion is true for
all k < n, where n > 3. Then it is true, in particular, for n - 1 and n - 2, so

an = an-i + an_2

)(
n-2 n-2 n-1 n-1

1+Ê 1-Ä 1+ Á 1-d

2 2 2 2

1+ - 1+
2 2 2 n

(1+B "¯'(1+B *

(1-4 "¯'{1-4 2

2 2 2 ( 2

(1+Ê" 1-Ä
2

¯

2



16 Chapter 2

21. (a) As before, the proof is trivial if all y¿ = 0 or if there is some number I with
x¿ = ly¿ for all i. Otherwise,

O < (ly¿ - x¿)
i=1

= A y¿2 - 21 x¿y¿ + x¿2,
i=1 i=1 i=1

so Problem 1-18 again gives the result.

(b) Using 2xy < x2 + y2 witli

x¿ y¿
x =

, y =

n n
X¿2 2

i=1 i=1

we obtain

2x¿y¿ x¿2 2

(1) < + .

x¿2 2 X¿
i=1 i=1i=1 i=1

Adding we obtain

i2x¿y¿ E x¿2 i yg2
i=l i=1 i=1

< +
=2.

. i=1 i=li=1 :=1

Again, equality holds only if it holds in (1)for all i, which means that
x¿ y¿
n n

E x¿2 i y¿2
i=1 i=l

for all i. If all y¿ are not 0, this means that x¿ = ly¿ for

n

i=1

i=1
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(c) This is the most interesting proof---it depends on the equality

n n n 2

i=1 i=1 i=1 i<j

To check this equality, note that

x¿2 · x2 = x¿2x2 ‡
X¿2n2

i=1 i=1 i=1 i¢j

(n
2 n

E x: y¿ = f (x¿y¿)2+ x¿y¿xjyj.
i=1 i=1 i¢j

The difference is

(x¿2yj2- x¿y¿xjyj) = 2 (x¿ yj2 + xj2x2 - x¿y¿xjyj)
i¢j i<j

= 2 (x;yj - xjy¿)2
i<j

If equality holds in the Schwarz inequality,then all xi yj = xj y¿. If some y¿ ¢ 0,
xi

say yi ¢ 0, then x¿ = - y¿ for all i, so we can let 1 = xi/yi.
yi

22. (a) We have to prove that

An(ai + a2 - An) > aid2

or

0 >_ A,2 - (al + a2)A, + ala2
= (An - ai)(An - a2),

which is indeed true, since ai < A, < a2. If fact, we actually have är ä2 > aia2.
This shows that G, 5 Õn,the geometric mean of äi, ã2, ... , än, while the

arithmetic mean Änis the same as A,. So it suffices to prove that Ön5 Ãn= A,.
In other words, we can assume that one of the numbers (namelyãi) actually equals
the arithmetic mean. But now we can repeat this process and see that it suffices to
prove the inequality when two of the numbers equal the arithmetic mean. Continuing
enough times, it suffices to prove the inequality when all numbers are equal, in which
case it is clearly true, and in fact, is an equality. This is clearly the only case where
we have equality, since at the very first stage we get Ön< Gn if some a¿ ¢ An.



18 Chapter 2

(b) We know that Gn 5 A, when n = 21. Suppose that G 5 As for n = 2k and
let m = 2*** = 2n. Then

Gm = gai - - - am = gai - · - an gan+i- - - am

gai - - - an + gan+1- - - am
5 using G2 5 A2

2
ai+---+an an i+·--+am

5 n
2

n by assumption

ai+---+am
2n

= Am.

(c) Applying (b)to these 2m numbers yields, for k = 2m - n

[ai+-··+a, +kA,
(al - - - an)(An)k

gm
2mnAn + kAn 2m(A.) ,

2m
SO

ai - - - an 5 (An)'
¯*

= (A.)n

23. Since an+1 = a" · a
- a" · al, the first equation is true for m = 1. Suppose that

an+m - an - am. Then

an+(m+1) - a(n+m)+i - an+m - a by definition
=(an-am)-a

= an . (am- a)
= a" - am+1 by definition,

so the first equation is true for m + 1.
Since (a")* = an - a" I, the second equation is true for m = 1. Suppose that

(a")m_ anm. Then

(angm+i_
nym . an by definition

= anm - an
= anm+n by (i)

- an(m+1)
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24. Since

1 - (b+ c) = b + c by definition
= 1 · b + 1 - c by definition,

the first result is true for a = 1. Suppose that a - (b+ c) = a - b + a - c for all b
and c. Then

(a + 1) · (b+ c) = a - (b+ c) + (b+ c) by definition
= (a - b + a · c) + (b+ c)
=(a-b+b)+(a-ckc) byPlandP4
= (a + 1) - b + (a + 1) - c by definition.

The equation a - 1 = a is true for a = 1 by definition. Suppose that a - 1 = a.
Then

(a+ 1) · 1 = a · 1 + 1 - 1 by definition
=a+1.

For b = 1, the equation a - b = b - a follows from a - 1 = a, which has just been
proved, and 1 - a = a, which is true by definition. Suppose that a - b = b · a. Then

a.(b+1)=a·b+a-1
=a·b+a

= b·a+a
= (b+ 1) · a by definition.

25. (a) (i) is clear.

(ii) This is clear, because 1 is positive, and if k is positive, then k + 1 is positive.

(iii)Clearly 1 is in this set. If condition (2)failed for this set, then there would be
some k in the set with k + 1 = 1/2. But his is false, since k =

--1/2

is not positive.

(iv) This set contains 4 but not 4 + 1.

(v) Since 1 is in A and B, also 1 is in C. If k is in C, then k is in both A and B,
so k + 1 is in A and B, so k + 1 is in C.

(b) (i) 1 is a natural number because 1 is in every inductive set, by definition of
inductive sets.

(ii) If k is a natural number, then k is in every inductive set. So k + 1 is in every
inductive set. So k + 1 is a natural number.
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26. If there is only n = 1 ring, it can clearly be moved onto spindle 3 in 1 = 21 - 1
moves. Assume the result for k rings. Then given k + 1 rings,

(a)move the top k rings onto spindle 2 in 2k - Î mOVOS,

(b)move the bottom ring onto spindle 3,

(c)move the top k rings back onto spindle 3 in 2k - I mOVCS.

This takes 2(2k - 1) + 1 = 2k+1 - 1 moves. If 2k - 1 moves is the minimum
possible for k rings, then 2k+1 - 1 is the minimum for k + 1 rings, since the bottom
ring can't be moved at all until the top k rings are moved somewhere, taking at least
2k - 1 moves, the bottom ring has to be moved to spindle 3, taking at least 1 move,
and then the other rings have to be placed on top of it, taking at least another 2* - 1
moves.

27. Everyone resigned on the seventeenth luncheon meeting.
The reasoning is as follows (forthe sake of sanity, "heor she" shall be rendered as

"he" throughout). First supposethere were only 2 professors, Prof. A and Prof. B,
each knowing of the error in the other's work, but unaware of any error in his own.
Then neither is surprised by Prof. X's statement, but each expects the other to be
surprised, and to resign at the first luncheon meeting next year. When this doesn't
happen, each (beinga mathematics professor capable of logicaldeduction)realizes
that this can only be because he has also made an error. So at the next meeting, both
resign.

Next consider the case of 3 professors, Profs. A, B and C. Prof. C knows that
Prof. A is aware of an error in Prof. B's work (eitherbecause Prof. A found the error
and informed him, or becausehe found theerror and informed Prof. A). Similarly, he
knows that Prof. B knows that there is an error in Prof. A's work. But Prof. C thinks
he has made no errors, so as far as he is concerned, the situation vis-a-vis Profs. A
and B is precisely that analyzed in the previous paragraph (Prof. C is assuming, of
course, that no one believes an error to exist when one doesn't). So Prof. C expects
both Prof. A and Prof. B to resign at the second meeting. Of course, Profs. A and B
similarly expect the other two to resign at the second meeting. When no one resigns,
everyone realizes that he has made an error, so all resign at the third meeting.

Now you can turn this into a proof by induction (can'tyou?).

28. Again it is a good idea to start with the case when the department consists only of
Profs. A and B. Now, of course, both professors know that some one has published
an incorrect result, but Prof. A thinks that Prof. B doesn't know, and vice-versa.
Once Prof. X makes his announcement, Prof. A knows that Prof. B knows. And
that's why he expects Prof. B to resign at the next meeting.

In the case of threeprofessors, the situationis more complicated. Each knows that
some one has made an error, and moreover each knows that the others know-for
example, Prof. C knows that Prof. A knows, since he and Prof. A have discussed
the error in Prof. B's work, and he knows similarly that Prof. B knows. But Prof. C
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doesn't think that Prof. A knows that Prof. B knows. So Prof. X's announcement
changes things: now Prof. C knows that Prof. A knows that Prof. B knows.

Well, you can see what happens in general. This seems to prove that statements
like "A knew that B knew that C knew that . . . " actually make sense.



CHAPTER 3

1. (ii) x/(x + 1) (forx ¢ 0,
-1).

(iv) 1/(1 + x + y) (forx + y ¢
-1).

(vi) For all c, since f (c - 0) = f (0).

2. (ii) Rational y between
-1

and I, and all y with |y| > 1.

(iv) All w with 0 5 tv 5 1.

3. (ii) {x:-15x51}.
(iv){-1, 1}.

4. (li) sin* y.

(iv)sin t .

5. (ii) so P.

(iv) So s.

(vi) so(P+PoS).

(viii) PoSos+soS+Poso(S+s).

6. (a) Let

(x - xj)
j=1

j=1
j¢i

(b) Let

f (x) = at f¿(x)
i 1

i=1 j=1 i
j¢i

7. (a) If the degree of f is 1, then f is of the form

f (x) = cx + d = c(x -- a) + (d+ ac)

22
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so we can let g(x) = c and b = d+ac. Suppose that the result is true for polynomials
of degree 5 k. If f has degree k + 1, then f has the form

f (x) = ak+1X k+1 + · · · # a1X # a0 -

Now the polynomial function h(x) = f(x) - at i(x - a) has degree 5 k, so we
can write

f (x) - ak+1(x - 1) = (x - a)g(x) + b,

or
f (x) = (x - a) [g(x)+ ak+1] + b,

which is the required form.

(b) By part (a),we can write f (x) = (x - a)g (x)+ b. Then

0= f(a)=(a-a)g(a)+b=b,
so f(x) = (x

-a)g(x).

(c) Suppose f has n roots ai,...,an. Then by part (b)we can write f(x) =

(x - a)gi(x) where the degree of gi(x) is n - 1. Now

0 = f (a2)= (a2- ai)gi(a2),

so gi(a2) = 0, since a2 ¢ ai. Thus we can write

f(x) = (x - ag)(x - a2)g2(x),

where the degree of g2 is n - 2. Continuing in this way, we find that

f (x) = (x - ai )(x - a2) - - - (x - as)c

for some number c ¢ 0. It is clear that f (a) ¢ 0 if a ¢ ai, . . . , an. So f can have
at most n roots.

(d) If f(x) = (x - 1)(x - 2) - - - (x - n), then f has n roots. If n is even, then
f (x) = xn+ 1has no roots. If n is odd, then f (x) = x" has only one root, namely 0.

8. If

(ax+ b
a + b

cx +d
x = f (f(x)) =

ax + b
c + d

cx + d
for all x, then

(ac+ cd)x2 + (d2- a )x - ab - bd = 0 for all x,

so

ac + cd = 0,
ab + bd = 0,

d - a2 = 0.
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It follows that a = d or a =
-d.

One possibility is a = d = 0, in which case
f(x) = b|(cx), which satisfies f(f(x)) = x for all x ¢ 0. If a = d ¢ 0, then
b = c = 0, so f(x) = x. The third possibility is a + d = 0, so that f(x) =

(ax + b)/(cx - a), which satisfies f(f(x)) = x for all x ¢ a/c (strictlyspeaking
we should add the proviso that f (x)¢ a/c for x ¢ a/c, which means that

ax + b a
cx - a c

or a2 + bc ¢ 0).

9. (a)
CAnn = CA - Cs,
Ca_a=1-CA,

Caug = CA+ Ca - CA - Ca.

(b) Let A = {x: f (x) = 1}.

(c) f = f2 if and only if f(x) = 0 or 1 for all x; so part (b)may be applied.

10. (a) Those functions f satisfying f(x) > 0 for all x.

(b) Those functions f with f (x) ¢ 0 for all x.

(c) Those functions b and c satisfying (b(t))2- 4c(t) :>0 for all t.

(d) b(t) must = 0 whenever a(t) = 0. If a(t) ¢ 0 for all t, then there is a unique
such function, namely x(t) = a(t)/b(t). If a(t) = 0 for some t, then x(t) can be
chosen arbitrarily, so there are infinitelymany such x.

11. (d) Let H(1), H(2), H(13), H(36), H(x/3) and H(47) have the values already
prescribed, and let H(x) = 0 for x ¢ 1, 2, 13, 36, x/3, 47. Since, in particular,
H(0) = 0, the equation H(H(x)) = H(x) holds for all x.

(e) Let H(1) = 7, H(7) = 7, H(17) = 18, H(18) = 18, and H(x) = 0 for
x ¢ 1, 7, 17, 18.

13. (a) Let

f (x)+ f (---x) f (x) -- f (x)E(x) = , O(x) = .

2 2

(b) If f = E + O, where E is even and O is odd, then

f(x) = E(x) + O(x),

f (--x) = E(x) - O(x).

Solving, we obtain the above expressions for E(x) and O(x).
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14. max( f, g) = (f + g + |f - g |)/2; min( f, g) = (f + g - |f - g |)|2. (See
Problem 1-13.)

15. (a) f = max( f, 0) + min( f, 0) because

f (x) = max( f (x),0) + min( f (x),0) for all x,

the equation a = max(a, 0) + min(a, 0) holdingfor all numbers a.

(b) For each x, choose numbers g(x), h(x) ;> 0 with f(x) = g(x) - h(x). Since
we can choose each pair g(x) and h(x) in infinitely many ways, there are infinitely
many such functions g and h.

16. (a) The result is true for n = 1. If f (xi+ - · · + xn) = f (XI) + + f (In) for
all xi, ..., xn, then

f(xi+-··+xx i)= f([xi+-··+xn]+xnwi)
= f(xi +

-··+x,)

+ f(x, i)

= f(xi)+-··+ f(xn)+ f(xn+1).

(b) Let c = f (1). Now for any natural number n,

f (n) = f ( = f (1)+ - - - + f (1) = cn.
n times n times

Since
f (x)+ f (0) = f (x+ 0) = f (x),

it followsthat f (0)= 0. Then since

f (x)+ f (--x) = f (x+ (-x)) = f (0) = 0,

it follows that f (--x) = f (x). In particular, for any natural number n,

f (-n) = - f (n) =
-cn

= c(-n).

Moreover,

f +---+ f = f = f(1)=c,

n dm n dmes

so

(1 1
f - =c·-,

n n
and consequently

(1 1 1 1 1
f -- = f --

=-f
- =-c--=c ---

.

-n

n n n
-n
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Finally, any rational number can be written m/n for m a natural number, and n an
integer; and

f = f = f +---+ f
m times m times

1 m=mc--=c--.

n n

17. (a) Since f (a) = f (a - 1) = f (a) - f (1) and f (a) ¢ 0 for some a,we have
f (1) = 1.

(b) According to Problem 16, f(x) = f(1)x = x for all rational x.

(c) If c > 0, then c = d2 for some d, so f (c) = f (d2)= (f (d))2> 0. Moreover,
we cannot have f (c) = 0, since this would imply that

( a af (x) = f c - - = f (c) - f - = 0 for all a.
c c

(d) If x > y, then x - y > 0, so f (x) - f (y) > 0, by part (c).
(e) Suppose that f (x) > x for some x. Choose a rational number r with x < r <

f (x). Then, by parts (b)and (d),
f(x) < f(r) = r < f(x),

a contradiction. Similarly, it is impossible that f(x) < x. (There is a minor detail
here which requires justification.See Problem 8-5.)

18. If either f = 0 or g = 0 holds, and also either h = 0 or k = 0, then the
equation certainly holds. If not, then there is some x with f (x) ¢ 0, and some y
with g(y) ¢ 0. Then 0 ¢ f(x)g(y) = h(x)k(y), so we also have h(x) ¢ 0 and
k(y) ¢ 0. Lettinga = h(x)/f(x), we have g(y') = ak(y') for all y'. Moreover a =

g(y)/k(y), so we also have h(x') = af(x') for all y'. Moreover a = g(y)/k(y),
so we also have h(x') = af(x') for all x'. Thus we have g = ak and h = af for
some number a ¢ 0.

19. (a) (i) If f(x) + g(y) = xy for all x and y, then, in particular,

f(x) + g(0) = 0 for all x.

So f (x) =
-g(0)

for all x, and
-g(0)

+ g(y) = xy for all y;
setting x = 0 we obtain g(y) = g(0). So we must have

0 =
-g(0)

+ g(0) = xy for all x and y,
which is absurd.
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(ii) Setting y = 0, we obtain f(x) = x|g(0). Similarly,setting x = 0, we obtain
g(y) = y/f (0). So

x y
= x + y for all x and y.

g (0) f (0)
Choosing y = 0 we obtain x = 0 for all x, which is absurd.

(b) Let f and g be the same constant function. (Arguments similar to those used
in part (a) show that these are the only possible choices.)

20. (a) Let f(x) = x.

(b) For every natural number n we have

f(y)- f(x)|= f x+ [y--x] - f
x+k-1

5 f x+ [y-X]
-f x+k-1

k=1

n
Therefore f (y) = f (x) for all x and y.

22. (a) If f (x) = f (y),then g(x) = h( f (x)) = h( f (y)) = g(y).

(b) If z = f(x), define h(z) = g(x). This definition makes sense, because if

z = f (x'), then g(x) = g(x') by part (a). For z not of the form f (x), define h
any old way (orleave it undefined). Then for all x in the domain of f we have
g(x) = h( f (x)).

23. (a) Suppose x ¢ y. Then g(x) = g(y) would imply that x = f (g(x)) =

f(g(y)) = y, a contradiction.

(b) b = f (g(b)),so let a = g(b).

24. (a) The hypothesiscan be stated as follows: If x = y, then g(x) = g(y). The
conclusion now follows from Problem 22(b), applied to g and I.

(b) For each x, choose some number a such that x = f (a). Call this number g(x).
Then f (g(x))= x = I(x) for all x.

25. It suffices to find a function f such that f (x) ¢ f (y) if x ¢ y, but such that
not every number is of the form f (x), because by Problem 24(a) there will be a
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function g with gof = I, and by Problem 23(b) there will not be a function g with
fog = I. One such function is

(x, x50
f (x) =

x+1, x>0;

no number between 0 and 1 is of the form f (x).

26. ho fog = ho(fog) = hoI =h,andalsoho fog = (hof)og = Iog = g.

27. (a) The condition fog = gof means that g(x) + 1 = g(x + 1) for all x.
There are many such g. In fact, g can be definedarbitrarily for 0 5 x < 1, and its
values for other x determined from this equation.

(b) If f (x) = c for all x, then fog = gof if and only if c = f (g(x)) =

g( f (x))= g(x), i.e., c = g(c).

(c) If fog = gof for all g, then in particular this is true for all constant functions
g (x) = c. It followsfrom part (b)that f (c)= c for all c.

28. (a) is a straightforward check.

(b) Let f be a function with f (x) = 0 for some x, but not all x. Then f ¢ 0, but
there is clearly no function g with f (x) - g(x) = 1 for all x.

(c) Let f and g be the two functions which are 0 except at xo and xi, with f (xo)=
1, f (xi)= 0 and g(xo) = 0, g(xi) = 1. Neither is 0, so f or - f would have to be
in P, and likewise g or

-g. But (±f)(±g) = 0, which contradictsP12.

(d) P'11, P'12 and P'13 are true. P'10 is false; although at most one of the condi-
tionsholds, it is not necessarily true that at least one holds. For example, if f (x) > 0
for some x and < 0 for other x, then neither f = 0, f < 0, nor 0 < f is true.

(e) The first inequality is not necessarily true. In fact, if h(x) =
--x, then f < g

actually implies that hof > h og. The second inequality is true, since f(h(x)) <

g(h(x)) for all x.
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1. (i) (2,4)

II(Il
O I 2 3 4

(ii) [2,4]

Ilois
O I 234

(iii) (a - s, a + E)

( I )
a-« a a+e

(iv) (- ,
- )u ( , ).

(1 ) I ( I)
-V572

-1

-li7E o Vi72 i /372

(V) (-2, 2).

I I I )
-2

-I O I 2

(vi) Øif a 5 0;
Risa>1;

(-oo,
-|(1/a)

- 1] U (1/a) - 1, oo) if 0 < a < 1.

1 I (

(vii) (-oo, 1] U [1,oo).

-I O I

(viii) (-1, 1) U (2,oo).

-I O I 2
29
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2. (a) Since 0 x 5 b, we have 0 5 x/b 5 1, and x = (x|b) b; so choose
t = x|b. Clearly t represents the ratio in which x divides the interval [0,b]. The
midpoint of [0,b] is b|2.

(b) If x is in [a,b], so that
a5x5b,

then
05x-asb-a,

so that x - a is in [0,b - a]. It follows from part (a)that for some t with 0 5 t 5 1
we have

x-a=t(b-a)

or
x=a+t(b-a)=(1-t)a+tb.

The midpoint of [a,b] is
b-a a+b

a+ = .

2 2
The point 1/3 of the way from a to b is

b-a 2 1
a + =

-a +
-b.

3 3 3

(c) and (d) are clear.

3. (i) (11)
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(iii) (iv)

(v) (vi)

y-x y = I

I x+y

(vn) (vili)

I/2 I

-1 -l/2



32 Chapter 4

(ix) (x)

2

4. (i) (ii)

- I

1-

-I I

-I

(iii),(Iv) (v)

y
=2-x
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(vi) (vii)x2 - 2x + y2 = (x - 1)2 + y2 - 1

I
I

(viii)

5. (i) (ii)
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(iii) (iv)

8. (a) The angle POQ is a right angle if and only if (PQ)* = (PO)2 + (O 2.

P (I,m)

1

0

O (1,n)

This means that
(m - n)2 = m2 + 1 + n2 + 1,

which is equivalent to
-2mn

= 2, or mn =
-1.

This proves the result when
b = c = 0. The general case follows from this special case, since perpendicularity
depends only on the slope.

(b) If B ¢ 0 and B' ¢ 0, these straight lines are the graphs of

f (x) = (-A/B)x - C/A,
g(x) = (-A'/B')x - C/A;

so, by part (a),the lines are perpendicular if and only if

( A A'
-- · --

=-1,

B B'
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which is equivalent to AA' + BB' = 0. If B = 0 (andconsequently A ¢ 0), then
the first line is vertical, so the second is perpendicular to it if and only if A' = 0,
which happens precisely when AA' + BB' = 0. Similarly if B' = 0.

9. (a) This inequality is equivalent to the squared inequality,

(xi+ yi)' + (x2+ 72) 5 (xi + x2 ) + (712+ 722) + 2 xi2 + x2 yi2 722

which is easily seen to be equivalent to the Schwarz inequality.

(b) In part (a),replace
xi by x2 - xi,

x2 by y2 - yi,

11 by xa - x2,
y2 by ya - y2

Geometrically, this inequality says that the length of one side of a triangle is less
than the sum of the lengths of the other two. (Notice that the additional information
about the Schwarz inequality which was presented in Problem 1-19(d) shows that
5 can be replaced by < in the triangle inequality except when (xi,71), (x2,y2) and
(x3,ys) lie on a straight line.)

(xy,y,)

(xa,y2
(x2°¾I)2 (V2¯Yl)2

(x¡,y,)

10. (The following figures do not indicate any particular points, since they were
drawn using the method of Chapter 11, rather than by plotting points.)
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(i)This function is odd. (ii)This function is odd.

(iii)This function is even. (iv)This function is even.

11. (i) The graph of f is symmetric with respect to the vertical axis.
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(ü) The graph of f is symmetric with respect to the origin. Equivalently, the part
of the graph to the left of the vertical axis is obtained by reflecting first through the
vertical axis, and then through the horizontal axis.

(iii) The graph of f lies above or on the horizontal axis.

(iv) The graph of f repeats the part between0 and a over and over.

I I I \ \
0
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12. When n is odd, the domain of f is R, but when n is even, the domain of f is
[0,oo).

f(x)='S
f(x)= 24

13. The graphs of f(x) = |x|and f(x) = |sinx|contain"corners".
(a)

f(x)= lxi fí×1

(b)

f(x)=isinx| f(x)=sin2x
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14. (i) The graph of g is the graph of f moved up c units.

(ii) The graph of g is the graph of f moved over c units to the left (if c > 0).

f ,

(iii) The height of the graph of f is multiplied by a factor of c everywhere. If

c = 0, this means that g = 0; if c > 0, distances from the horizontal are increased
in the same direction; if c < 0, distances are increased, but directions are changed.

g = 2f

g=
-2f
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(iv) The graph of f is compressed by a factor of c if c > 0; if c < 0, the com-
pression is combined with reflection through the vertical axis. If c = 0, then g is a
constant function, g(x) = f (0).

g (x)=f (2x)

/ g(x) = f (-2x)

(v) "Everything that happens far out happens near 0, and vice versa", amply illus-
trated by the graph of g(x) = sin(1/x).

(vi)The graph of g consists of the part of the graph to the right of the vertical axis,
together with its reflection through the vertical axis.

(vii) The graph of g is obtained by flippingup any parts of the graph of f which
lie below the horizontal axis.

f
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(viii)The graph of g is obtained by "cuttingoff" the part of the graph of f which
lies below the horizontal axis.

I

(fx)The graph of g is obtained by "cuttingoff" the part of the graph of f which
lies above the horizontal axis.

f

(x) The graph of g is obtained by "cuttingoff" the part of the graph of f which
lies below the horizontal line at height 1.

15. Since

( b cf(x)=ax2+bx+c=a x +-x+-

=a x+ + -

,a



42 Chapter 4

the graph looks like the figure below.

c b2

I
-b

16. Suppose C = 0, so that we have the equation
Ax2+Bx+Dy+E=0.

If D ¢ 0, this is equivalent to
A2 B E

y=--x x---,D D D

so the set of all (x,y) satisfying this equation is the same as the graph of f (x) =

(-A/D)x2 - (B/D)x - (E/D), which is a parabola, by Problem 15. [If D = 0, we
have the equation Ax2 + Bx + E = 0, (A ¢ 0), which may have zero, one or two
solutions for x; in this case the set of all (x,y) satisfying the equation is either 0,
one straight line, or two parallel straight lines.] Similarly, if A = 0, then we again
have a parabola [compareProblem 5(i)]. When A, C ¢ 0 we can write the equation

as

( B D
A x+- +C y+- =F

2A 2C
for some F.

When A = C > 0 we have a circle [comparepage 65 of the text], unless F = 0,
in which case we have a point (a "circleof radius 0"), or F < 0, in which case
we have 0. In general, when A, C > 0 we have an ellipse not necessarily centered
at the origin (or a point, or Ø). There is no need to consider separately the case
A, C < 0, since we have the same situation, replacing F by -F.
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When A and C have different signs we have a hyperbola for F ¢ 0 (whichway
it points depends on the signs of A, C and F). For F = 0 we have the equation

B -C D
x+-=± - y+-2A A 2C

which gives two intersecting lines (a"degeneratehyperbola").

17. (i)
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(iii)

(iv)
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(v)

i I

(vi) Notice that the domainof f is {x:
-1

5 x 5 1 and x ¢ 0).

*O
40
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18. See pages 500 and 502 of the text.

19. (i) Notice that different scales have been used on the two axes.

•illi

11 I I I \•
I

(ii) The graph of f is similar to the graph in part (i),except that there are ten sets
of ten steps between n and n + 1.

(iii) The graph of f contains points in every interval of each of the horizontal lines
at distance 0, 1, 2, . . . , above the horizontal axis.

(iv) The graph of f contains points in every interval of the horizontal axis and of
the horizontal line at distance 1 above the horizontal axis.
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(v) The figure below shows a (rough)picture of the part of the graph of f which
lies over [6/10, 1].

I
i

I
i

i

I
I

I
I

I
I

I

I I

I
i

i
I

I
I

i I I I \
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(vi)The figurebelow shows a (rough)picture of the graph of f. Notice that different
scales have been used on the two axes.

3 - - -------- - --------

I i i
.I

.2 .3

20. See page 97 of the text.

22. (a) The first part is a straightforward computation. By Problem 1-18, the min-
imum of these numbers is

a 2 (-2md - 2c)2 4m2d2 + 4d2 + 4m2c2 + 4c2 - (4m2d2+ 8mcd + 4c2)
d + c -

4(m2 + 1) 4(m2 + 1)
d2 4 m2c2 - 2mcd (cm- d)2

¯

m2 + 1
¯

m2 + 1

(b) The distance from (c,d) to the graph of f is the same as the distance from
(c,d - b) to the graph of g(x) = mx. By part (a),this is

|cm
-d

+bl
m2+ 1

23. (a)
x' = distance from (x,y) to the graph of f (x) =

-x if (x,y) lies
above this grpah (i.e.,if x + y > 0), and the negative of this
distance if x + y < 0.

y' = distance from (x,y) to the graph of f (x) = x if (x,y) lies above
this grpah (i.e.,if x - y < 0), and the negative of this when
x-y>0.
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By Problem 22, these distances are given by

|-x-y| x y

|x-y x y

from which the desired formulas follow.

(b) Since
x' x y--=-+-

W 2 2'

y' x y--=--+

g 2 2'

we have (x'/n)2 - (y'/h)2 = 1 if and only if

(x y2 x y2
1=

-+-

-

--+-

2 2 2 2
x2 y2 xy x y2 xy=-+-+--

--+---

4 4 2 4 4 2
=xy.
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1. (a) The first formula is basicallyjust the definition of sin 6 and cos 9. For the
second formula, note that Ro(0, 1) makes an angle of 0 +90° with the first axis, so

Re(0, 1) = Re go(1, 0) = (cos(9+ 90°), sin(Ð+ 90°))
= (- sin 8, cos 0).

(b) Let the rotation Ro be applied to Figure 3 on page 76. Then v moves to Re(v),
and w moves to Re(w).Moreover, the (dashed)lines parallel to o and w become
lines parallel to Re(v) and Re (w),respectively. This means that the intersection of
those two lines, i.e., v + w, must move to the intersection of the two lines parallel
to Re(v) and Re (w),i.e., Re (v)+ Re (w).This shows that

R0(v+w) = Re(v) + Rr(w).

To prove the second equation, simply note that since a - w lies along the line through
the origin and w, it follows that Re (a - w) must lie along the line through the origin
and Re (w). Moreover, since the length of a - w is a times the length of w, the length
of Re (a - w) must also be a times the length of Re (w).
(c) We have

Re(x, y) = Re(x · (1,0) + y - (0,1))
= Re (x - (1,0)) + Re (y - (0, 1))
= x - Re(1,0) + y · Re(0,1)
= x (cos0, sin 0) + y · (- sin 0, cos 0)
= (xcos 0, x sin Ð) + (- y sin 0, y cos 9)
= (xcos 6 - y sin 8, x sin 6 + y cos 0).

(d) For 9 =
-45°

we have

(x', y') = Re(x, y) = (xcos(-45°) - y sin(-45°), x sin(-45°) + y(- cos 45°)).

Substituting
1 1

sin(-45°) = - - cos(-45°) = -

we get

(11 11(x',y')=
-x+-y, --x+-y

,

and thus the desired formulas for x' and y'.

2. (a) If w satisfies this equation, then so do all multiples a - w. To solve

vimi + v2w2 = 0,

50
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where vi and v2 are fixed, we can assign wi arbitrarily, and then obtain

viwi
w2 = - --.

v2
Multiplying wi by a factor simply multiplies w2 by the same factor, so the solutions
are precisely the multiples of the one we obtain for any particular wi.

This works provided v2 ¢ 0. If v2 = 0, so that v is a multiple of (1,0), then it is
easy to see that the possible w's consist of all multiples of (0,1), and vice-versa.

(b) These are all straightforward computations from the definition.

(c) Since v - v = vi2 + v22, this is obvious. The norm

||v||=dv•v= vi2+022

is just the distance from o to the origin.

(d) This is simply Problem 4-9: The squared inequality is equivalent to the Schwarz
inequality (Problem 1-19); equality holds in this squared inequality only when v = 0
or w = 0 or w = a - v for some a. For the original inequality it is then easy to see
that equality holds only when a > 0.

(e) We have

||v+w[2=(v+tv)•(v+w)=v•v+2v.w+w·w
||v-w||2=(v-w)•(v-w)=v•v-2v·w+w·w.

Subtracting the second from the first we get

liv+w||2- ||v-w||2 =4(v.w).

3. (a) We have

Re (v) . Re(w) = (vicos 0 -- v2sin Ð, vi sin Ð+ v2cos 0) -

(wicos 9 -

w2 sin 0, wi sin 6 + w2 cos 0)
= viwi cos2Ð+ vitvi sin Ð+ v2w2sin20 + v2w2cos29

+ sin0 cosÐ[-viw2 ¯ UlU2 1 2 Ÿ UlU2]

= viwi + v2E2 = U• ·

(b) The formula for e - w is a straightforward calculation. For the vectors v = a e
and u = b · w we then have, using Problem 2(b),

v.u=(a-e)·u=a-(e·u)
=a-(e·(b-w))=a-(b-(e-w))

=ab-(e-w),

which gives the formula

v.w = ||v||· ||w||
-cos0
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when v a multiple of (1,0).
For the general case, choose ¢ to be the angle from the first axis to v, so that

v = R¢(v') for some v' pointing along the first axis, and let w = R4(w'). Since
rotation doesn't change lengths, we have

lloll= Ilv'll, llwll= Ilw'll;
moreover, the angle 0' between v' and w' is the same as the angle 8 between v
and w. Then by part (a)we have

v ·w = R4(v')• R4(w')
= v' • w'
= ||v'|| - ||w'|[- cos 0'
= livil- liwil. cose.

4. Using the "point-slope"form (Problem 4-6) the line L is the graph of
w2f (x) =

-(x

- vi) + v2-
wi

Solving f (x) = 0, we find the desired first coordinate of B, and thus the formula
for the area of the parallelogram, which has that base and height w2.

5. (a) For v2 = 0 the formula for det reduces to viw2, and vi (> 0) is the base of
the parallelogram; the height is w2 (andhence the area is vi w2 = det) for w2 > 0,
while the height is -w2 (andhence the area is -vi

w2 = - det) for w2 < 0.

(b)
det(Ro v, Row) = det((vi cos 9 -- v2sin 9, vi sin 9 + v2 COS Û),

(wlcos Ð - w2 sin 0, wi sin 9 + w2 cos 0))
= [vicos 0 - v2sin 0] [wisin 0 + w2 cos Ð)

- [visin0 + v2cos0]· [wicos0 - w2sinÐ]
= viw2 - v2wi = det(v, w).

For any v and w, we can write v = Re (v') for some v' that points along the positive
horizontal axis; then w = Re (w') for some w', and w lies above the horizontal
axis when the rotation from v to w is counterclockwise, and below the axis when
the rotation is clockwise. The area of the parallelogram spanned by v and w is the
same as that spanned by v' = Re (v)and w' = Re (w),which by part (a)is therefore
± det(v', w'), depending on whether the rotation is clockwise or counterclockwise.
But we have just seen that this is ±det(v, w).

6. These are all straightforward computations from the definition.
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7. As in Problem 3, we first check the formula when v is a multiple of (0, 1).
Then choose ¢ so that v = R4(v') for some v' pointing along the first axis, and let
w = R¢(w'); we again have

livll= Ilv'II, llwll= IIw'II;
moreover, the angle 0' between v' and w' is the same as the angle 0 between v
and w. Then by the formula in Problem 5(b) we have

det(v, w) = det(R4(v'), R4(w'))
= det(v', w')
= |v'|| - [|w'||- sin 0'
= ||v|| · ||w|| - sin Ð.
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1. The point (x, y, z) is in the cylinder if and only if
x2 2-C2

Choosing coordinates in the plane P as on page 81, we see that the points in the
intersection of P and the cylinder are those satisfying

(«x+ ß) + y2 = C2.

The possibilities are 0, a straight line, two parallel straight lines, or an ellipse (or
circle).

2. (a) Consider the plane containing the line L1 from z to Fi and the line L: it
intersects the sphere Si in a circle C. Since Si is tangent to the plane P at Fi it
follows that Li is tangent to C at Fi, and L is also tangent to C. The desired result
now follows from the fact that the two line segments tangent to a circle from an
outside point have the same length.

(b) Similarly, the length of the line from z to F2 is the length of the vertical line L'
from z to C2. But L and L' together form a vertical straight line from the plane of
Ci to the plane of C2. Hence the distance from z to Fi plus the distance from z to
F2 is always exactly the distance between these two planes.

3. The proof is similar, except that now the sum will always be the length of a
straight line generator of the cone between the planes of the two circles.

54
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1. The points with polar coordinates (ri, Gi) and (r2,Ð2)are

(ri cos Oi, r1 sin Ð1) and (r2COS Û2,72 Sin Û2)

and the distance d between them is given by

d2 = (r2cos Ð1- ri cos 01)2 _ Ti Sin Û112
= r22(cos 02+ sin 02) + r12(COS2 Û1# SÎn2

- 2rir2[cos 01cos 02+ sin Ði sin Ð2]
= r12 + r22 · $7172COS(Û1- Û2)•

This is just the "lawof cosines".

r2 d

0,-01

r 1

2. (i) For each point (x,y) on the graph of f, with

x= f(Ð)cos0, y= f(0)sin9

we also have the point (x',y') with

x'= f(-Ð)cos(-0)= f(0)cos0=x,
y'= f(-0)sin(-0)=-f(0)sinÐ=-y.

The point (x',y') = (x,
-y)

is the reflection of (x,y) through the horizontal axis,

55
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so the graph of f in polar coordinates is symmetric with respect to this axis.

r
0

- 0
r

(ii) Similarly, if f is odd, then
x'= f(-0)cos(-0)=

-f(0)cos0=-x,

y' = f (-Ð)sin(-8) = - f (0)(- sin0) = y.

The point (x',y') = (-x, y) is the reflection of (x,y) throughthe vertical axis, so
the graph of f in polar coordinates is symmetric with respect to the vertical axis.

(-rcos(-0), -r sin (-0)) (I cos 0, r sin 0)

= (-rcos 0, r sin 8)
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(iii) The graph of f in polar coordinates is symmetric with respect to the origin.

r
0 + 180

0

r

3. (i) r = a sin 0 implies r2 = ar sin 0, so if (x,y) = (rcos0, r sin 0), then x2 +
y2=ay,or

so (x,y) lies on the circle of radius a/2 with center (0,a/2). [Conversely, if (x,y)
satisfies x2 + y2 = ay and (r,0) are polar coordinates for (x, y), so that x = r cos 0
and y = r sin Ð, then r2 = ar sin 0. This implies that r = a sin 0, except when
r = 0. In this case we have the point (x,y) = (0,0), which also lies on the graph
of r = a sin 0, since it has polar coordinates r = 0 = 0.]

(ii) If a = 0, we have the equation r = 0, which is the single point (0,0). Suppose
a ¢ 0. Now r = a sec Ð = a/ cos 8 implies that

r cos 9 = a,

so if (x,y) = (r cos 0, r sin 6), then

x = a,

and (x,y) lies on the vertical line through (a,0). Notice that we must exclude
points with cos0 = 0, but they can't be on this vertical line anyway, since a ¢ 0.
[Conversely, if (r,Ð) are polar coordinates for a point (x,y) on this line, then

a=rcosÐ, y=rsin0,

and in particular r = a/ cos 6 (cos6 ¢ 0, since a ¢ 0).]

(iii) Figure (a)shows the part of the graph from 0 = 0 to 0 = 90°. Figure (b)shows
the part from Ð =

--90°

to 6 = 90°. It is symmetric with respect to the horizontal
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axis, since cos is even. Finally, Figure (c)shows the whole graph, a four-leaf clover.
The graph appears to be symmetric under a rotation by 90°, and hence, in particular,
symmetric with respect to the vertical axis also. In fact, when the point with polar
coordinate (cos28, Ð) is rotated by 90° we get the point with polar coordinates

(cos20, O+ 90°).

This is the same as the point with polar coordinates

(- cos 20, 9 + 90° + 180°)

and this point is also on the graph, since

cos(2(9 + 90° + 180°)) = cos(2Ð+ 180°)
= - cos 2Ð.

0 = 0
0 =

-90°

0 = 90° 0 =
-90°

0 = 270°

(a) 0 = 90'

(b)

0 = 180• Ð = 0

0 = 90°

(c)
Although Figure (c)shows 0 going from

-90°

to 270°, it could just as well show
0 going from 0° to 360°. Note that if we do not allow negative values for r, the
graph will contain only the left and right leaves.

(iv) Figure (a)shows the part of the graph from 0 = 0° to 0 = 60°. Figure (b)shows
the part from 0 =

-60°

to 0 = 60°. It is symmetric with respect to the horizontal
axis, as before. Finally, Figure (c) shows the whole graph. It is symmetric under

a rotation by 120°, for if the point with polar coordinates (cos30, 0) is rotated by
120° we get the point with polar coordinates

(cos3Ð,6 + 120°)
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and this is on the graph, since

cos 30 = cos(3(0 + 120°)).

60•

/ 3,0• a, 0 =
-60'

¿0=60° s'0=60° 's

(a) (b) (c)

Notice that in this case we will get the whole graph even if we allow only r > 0:

90•5 0
-í

150°

8 = 120° s

/ -30°

E 0 5 30°s

8 = 240°

210° i 0 1 270°

The proof of symmetry with respect to rotation through 120° didn't involve replacing
0 by 0 + 180°, as in the previous example.

(v) The graph is the same as in (iii). (However, now we obtain 4 leaves no matter
what conventions we adopt about the sign of r, since r ;> 0 in any case.)
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(vi)The graph has 6 leaves(eachleaf in (iv)arises from an intervalon which r
_<

0
as well as from one on which r > 0).

4. (i)and (ii)have already been given.

(iii)
r3 = r2 cos 20 = r2 cos2 Ð - r2 SS Û =

X2 2

so
(x + y2) = x2 - y2.

5. As before, the distance r from (x,y) to O is given by

(1) r = x + y2,

while the distance s to f is given by
s2 = (x+ 2ea)2 + y2.

Now writing the condition
r-s=2a

as
r-2a=s

and squaring, we get the same equation as before,

(2) 4a2 - 4ar + r2 = x + 4eax + 4s2a2 + y2

so subtracting (1)from (2)again gives

a-r=ex+e a,

and thus

(3) r = A - ex, for A = (1 - e2)a,
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and once again

A
(4) r =

1+ecosÐ
It remains to consider the points satisfying

s-r=2a,

or
r+2a=s

Squaring we now obtain

(2') r2+4ar+4a2=x +4Eax+4s2a2+y2.

Subtracting (1)from (2')gives

a + r = ex + e2a,

or

r = (s2 - 1)a + ex
= -(A-ex),

which is simply the negative of the r found previously; thus, the other branch of the
hyperbola is obtained by choosing -A for A.

6. The distance from the line to (x,y) is just
a-x=a-rcos0;

thus our condition is
r=a-rcos0,

or equivalently

a = r(1+ cosÐ).

7. Squaring (3)and substituting x2 + y2 for r2, we get
x2 + y2 = A2 - 2EAX # E X2

which gives the desired equation,

(1 - e2)x2 + y2 = A2 - 2Asx.

Problem 4-16 shows that this is a circle or ellipse when 1 - e2 > 0 is positive, i.e.,
when e < 1 (rememberthat we have already specified e > 0), a hyperbola when
1 - s2 < 0, i.e., when e > 1, and a parabola when 1 - e2 = 0, i.e., when e = 1.
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8. (a) The graph is the heart-shaped curve shown below. (Hence the name
"cardioid"= heart-shaped).

(b) The point with polar coordinates (r,0) is also the point with polar coordinates

(-r, Ð + 180°). So the graph of r = 1 - sin = 0 is also the graph of
-r

= 1 - sin(9 + 180°) = 1 + sin 0.

(c) Since r = 1 - sin 0 we have
r2=r-rsin8

or
x2+y2= X2 2_y

(Notice that if we start with r =
-1

- sin 0, then we obtain the same result since

now r < 0, so r = - x2 + y2 .)

The squared equation

(x2+ y2 + y)2 = x2 2

might seem to have the extraneous solutions

x2+y2-- x2+y2-y

but for x
=/= 0 this has no solutions, for we have

-y<_ly|<

x2+y2,

and hence
-y- x2+y2<0.
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9. (i) The graph is shown below (thedashed line is the cardioid r = 1 - sin 0).

(ii) The graph is shown below, together with the cardioid (dashedline).

Û = arcsin ½
I i

\ 0 = 90° I

(iii) This graph has the same shape as (i):Since

cos Ð = - sin(0 - 90°)

we can write

r = 2 - sin(0 - 90°)
= 2(1 - ( sin(0 - 90°)),
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which shows that the graph is twice as large as the curve in (i) and rotated 90°
counter-clockwise.

10. (a)

(-e,0) (a,0) ((2a, 0)

(b) Since
r4 _ 2r2cos20 = 2a r2(cos20 -sin

we obtain

(x + y2 2 __
2(X2

_ 2L

(c) If P = (x,y), then

(did2)2=[(x
-a)2+y2]·

[(x+a)2+y*]
= [(x - a)(x + a)]2 + y2[(x +a)2 + (x - a)2] + y4

= (x2_
2 2 2Bx2+ 2a2] + y4

= x4 - 2a2x2 4 X2 2 2 2 4

= (x2+ y2)2 - 2a (x2_
2 4

so did2 = a2 if and only if

(x2 2 2 = 2a2(X2
_

2
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(d) For b < a we obtain two curves, inside the two portions of the lemniscate, as
in the figure below.

For b < a we obtain a single curve surrounding the lemniscate. It happens to be
indented for b < an.

b > a VT

b<avT
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1. (i)
X2 - 1 0

lim = - = 0.
x->i x + 1 2

(iii)
x3-8 27-8

lim = = 19.
x->3 x - 2 3 - 2

(v)
x" - y" yn

_,n

lim = lim = nxn-1, by (iv).y->x x - y y->x y - x

2. (i)
. i-a (1-a)(1+a)hm = lim

x->1 1-x x->l (1-x)(1+ )
1--x

= lim
x->1 (1- x) (1+ )

1 1
= lim = -

x->1 1+ g 2

(11)
1- 1-x2 Î- Î-X2XI+ 1-22)

lim = lim
x-+o x x 0 x(1+ 1+x2)

.
1-(1-x2)

. x
= hm = hm = 0.

x-vox(1+ 1+x2) 2¯>©l+ 1-x2

(lii)
. 1- 1-x2 . 1 1

hm = hm = -.

x->o x2 x-vo 1+ 1+ x2 2

3. (iv) Let 8 = s, since |x|(1 + sin2x) 5 |xl.
(vi) If e > 1, let 8 = 1. Then |x - 1| < 8 implies that 0 < x < 2, so O < < 2,
so | - 1| < 1. If e < 1, then (1 - e)2 < x < (1+ e)2 implies that | - 1] < e,
so it suffices to choose 8 so that (1 - s)2 5 1 - 8 and 1 + 8 5 (1+ e)2. TÍlUS We

can choose 8 = 28 - 82

4. (i) (ii) (iii) All numbers a which are not integers.

(iv) All a.

66
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(v)All a with a ¢ 0 and a ¢ 1/n for any integer n.

(vi) All a with la| < 1 and a ¢ 1/n for any integer n.

5. (a) (i) All a not of the form n + k/10 for integers n and k.

(ii) All a not of the form n + k/100 for integers n and k.

(iii),(iv)No a.

(v) All numbers a whose decimal expansion does not end 7999 . . . .

(b) The answers are the same as in part (a)(althoughthe descriptionof the numbers

in termsof their new "decimalexpansions" may be different).

6. (ii)We need

( 8 E
|f (x) - 2| < min 1, and |g(x) - 4| < ,

2(14| + 1) 2(|2|) + 1

so we need

( ([min(1,
s/10)]2

0 < |x -- 2 < min sin + min(1, s/10), [min(1,s/6)]2
9

= 8.

(iv) We need

1 1 e s
- - < and |f (x) - 2| < min 1, ,

g(x) 4 2(|2| + 1) 2((1/4| + 1)

so we need

0<|x-2|

( ( 8e 2
. [min(1,2E/5)]2

< min min 2, , sin2 + min(1, 2e/5)
2(\2|) + 1) 9

= 8.

7. Let f (x) = 5 with a = 0 and I = 0. Then for e < 1 we have x| - 0 < E

when 0 < |x - 0| < e2; but if 0 < (x - 0| < e2/2, it does not follow that
- 0 < e/2 (insteadwe must let 0 < |x - 0| < (s|2)2).

8. (a) Yes. For example, if g = 1 - f, then lim [f (x) + g(x)] exists even if
lim f (x)[andconsequently lim g(x)] does not exist; and if g = 1/f where f (x)¢

x-a x-+a
0 for all x ¢ a, then lim f(x)g(x) does exist even if lim f(x) and lim g(x) do

xsa xsa xsa
not exist [forexample, if f(x) = 1/(x - a) for x ¢ 0, and g(x) = x - a].

(b) Yes, since g = (f + g) - f.
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(c) No. (This:is just another way of stating part (b).)

(d) No. The argument analogous to part (b),that g = (f · g)/ f, will not work if
lim f (x) = 0, and this is precisely the case in which one can find a counterexample.

For example, let f (x) = x-a, and let g (x)= 0 for x rational and 1 for x irrational.
Then lim g(x) does not exist, but lim f (x)g(x)= 0, since jf (x)g(x)-0| 5 |f (x)|.

xsa x-a

11. Intuitively, this is true because we only have to consider x's satisfying 0 <

|x - al < 8', where we can pick 8' < 8. In fact, if lim f(x) = l, and e > 0, there
x *a

is a 8' such that if 0 < |x - a| < 8', then f (x) - li < e. Now there is also a
8' < 8 with this property (namely,min(8, 8')). Since f (x) = g(x) for all x with
0 < |x - a| < 8, we also have f(x) = g(x) for all x with 0 < |x - a| < 8', so the
conclusion |f(x) - l| < s can just as well be written |g(x) - l| < e. This shows
that lim g(x) = l.

x-+a

12. (a) Intuitively, f(x) cannot be made close to a number > lim g(x) because

f (x) 5 g(x) and g(x) is close to lim g(x). A rigorous proof is by contradiction.
x-a

Suppose that l = lim f (x) > lim g(x) = m. Let 8 = l - m > 0. Then there is a
x-a xsa

8 > 0 such that if 0 < |x - a| < 8, then |l - f(x) < s/2 and |m - g(x)| < e/2.

( I i )( I i
m g(x) f (x) A

Thus for 0 < |x - a| < 8 we have
B 8

g(x)<m+-=l--< f(x),2 2
contradicting the hypothesis.

(b) It suffices to assume that f (x) 5 g(x) for all x satisfying 0 < |x - a < 8, for
some 8 > 0.

(c) No. For example, let f(x) = 0 and let g(x) = |x| for x ¢ 0, and g(0) = 1.
Then lim f(x) = 0 = lim g(x).

x-+0 xo0
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13. Intuitively, g is squeezed between f and h, which approach the same number:

Let l = lim f (x).Givene > 0, there is a 8 > 0 such that if 0 < |x - a) < 8, then
x-a

|h(x) - l| < s and |f(x) - l| < e. Thus, if 0 < lx - al < 8, then
l-e< f(x) š g(x) sh(x)<l+e,

so |g(x) - l | < e.

14. (a) We ought to have
. f (bx) bf (bx) . f (bx) f (y)hm = lim = b hm = b lim --- = bl.

x-vo x x->o bx x-o bx y->o y
The next to last equality can be justifiedas follows. If e > 0 there is a 8 > 0
such that if 0 < |y| < 8, then |f(y)/yl < s. Then if 0 < x| < s||b|, we have
0 < |bx| < e, so |f (bx)/bx!< s.

(b) In this case, lim f(bx)/x = lim f(0)/x does not exist, unless f(0) = 0.
x-+0 x->0

(c) Part (a)shows that lim (sin2x)/x = 2 lim (sinx)/x. We can also use the fol-
x->0 xw0

lowing computation:

sin 2x . 2(sin x)(cos x) sin x sin xlim = hm = 2 lim cos x lim = 2 lim .

x->o x x-vo x x->o x->o x x->o x
(Of course this method won't work in general for lim (sinbx)/x.)

x->O

15. (i)
sin 2x sin xlim = 2 lim -- = 2a, by Problem 14.

x->0 X x->0 X

(ii)
. sinax . sinax xhm = hm - lim

x-o sinbx x-vo x x-vo sinbx
1 a=aa--=-.

ba b
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(iii) sin2 2x sin 2x
lim = lim sin 2x - lim = 0 - 2œ = 0.
x->0 X x->0 x->0 X

(iv) sin2 2x sin 2x
lim = lim = 4a2.
x->0 X2 xw0 X

(v)
. 1 - cos x (1 - cos x)(1 + cos x) sinix

hm = lim = lim
xw0 X2 x->0 X2(Î# COSX) x->0 X2(Î# COSX)

Œ2

2

(vi)
sin2 x

tan2x + 2x x cos2 x
+ 2

lim = lim
x-vo x +x2 x->o 1+x

. sin x sin x
= hm - + 2 1

xso x cos2x
=a-0+2=2.

(vil)
x sin x x sin x(1 + cos x) . x sin x (1+ cos x)

lim = lim = hm
x-o 1 -- cos x x-o (1 - cos x) (1+ cos x) x-vo sin2 x

2

(viii)
. sin(x + h) - sin x sin x cos h + cos x sin h - sin xhm = lim

h-wo h h->o h
. . (cosh - 1) sin h

= hm sm x + cos x
h->o h h

cos
-1

= a cos x [wehave lim = 0 by (v)].hoo h

(ix)
.

sin(x2 - 1) . (x+ 1) sin(x2 - 1) . (x+ 1) sin(x2 -

hm = hm = lim
x->1 x - 1 xel (x+ 1)(x - 1) x-1 x2 - 1

sin(x2 - 1)
= 2 lim

x->1 x2 - 1
sinh

= 2 lim ---- [samereasoning as in Problem 14(a)]
hoo h

= 2a.



Chapter 5 71

(x)
.

x2(3 + sin x) . 3 + sin x 3
hm = hm = .

x-o (x+ sin x)2 x-o sin x
2 (1+ a)2

1 +
x

(xi)

lim(x2 - 1)3SÏH
3

= 0 [since| sin 1/(x - 1)'| 5 1 for all x ¢ 0].
xsi x

-1

16. (a) Intuitively, if f (x) is close to l, then jf (x)| is close to |ll. In fact, given
e < 0 there is a ô > 0 such that if 0 < |x - a l < ô, then [f (x) - li < e. But
|f (x) - jl| 5 jf (x) - l| < s (byProblem 1-12(vi)).

(b) This follows from (a)and Theorem 2, since

f+g+If
--gl

max( f, g) =
,

2
f+g-|f--g|min( f, g) =

.

2

18. Pictorially, this means that f is bounded in any interval around a.

M

i
a-8 a a+8

Choose 8 > 0 so that |f(x)
-l|

< 1 for 0 < |x
-a|

< 8 (weare picking 8 = Î).
Then l - 1 < f (x) < l + 1, so we can let M = max(|l + 1], il - 1|).

19. For any ô > 0 we have f (x) = 0 for some x satisfying 0 < |x - a| < 8
(namely,irrational x with 0 < (x- a l < 8) and also f (x) = 1 for some x satisfying
0 < |x - a l < 8 (namely,rational x with 0 < |x - a l < 8). This means that we
cannot have If (x) - l| < 1/2 for all x no matter what I is. (There is a slight bit of
cheating here; see Problem 8-5.)
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20. Consider, for simplicity, the case a > 0. The basic idea is that since f (x) is
close to a for all rational x close to a, and close to

-a for all irrational x close to a,
we cannot have f (x) close to any fixed number. To make this idea work, we note
that for any & > 0 there are x with 0 < lx - a] < 8 and f(x) > a/2 as well as x
with 0 < lx

-a|

< 8 and f(x) <
-a/2.

Since the distance between a/2 and
-a/2

is a, this means that we cannot have |f (x) - l| < a for all such x, no matter what i
is.

a/2. --

0

-o/2

21. (a) Follows from (b),since | sin 1/x! 5 1 for all x (¢ 0).

(b) If 8 > 0 is such that |g(x)| < e/M for all x with 0 < |x| < 8, then |g(x)h(x)|<

s for all such x.

22. If lim f(x) does exist, then it is clear that lim[f(x) + g(x)] does not exist
x->0 - xw0

whenever lim g (x) does not exist [thiswas Problem 8(b) and (c)]. On the other
Jo0

hand, if lim f (x)does not exist, choose g = - f; then lim g(x) does not exist, but
X->0 x->0

lim [f (x)+ g(x)] does exist.
x->0

23. (a) If lim f(x)g(x) existed, then lim g(x) = lini f(x)g(x)/f(x) would also

exist.

(b) Clearly, if lim f(x)g(x) exists, then lim g(x) = 0.
x->0 x-+0

(c) In case (1)of the hint, we clearly cannot have lim f (x) = 0, so by assumption

the limit does not exist at all. Let g = 1/f. Since it is not true that lim |f(x)| =

xw0
oo, it follows that if lim g(x) exists, then lim g(x) ¢ 0. But this would imply

x->0 x->0
that lim f(x) exists, so lim g(x) does not exist. On the other hand, lim f(x)g(x)xw0 x-+0 x-+0
clearly exists. In case (2),choose xn as in the hint. Define g(x) = 0 for x ¢ x.,
and g(x) = 1 for x = xx. Then lim g(x) does not exist, but lim f(x)g(x)= 0.

x-+0 x->0
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24. Given e > 0, pick n with 1/n < s and let 8 be the minimum distance from
a to all points in A1, · . . , An (excepta itself if a is one of these points). Then
0 < lx - a| < 8 implies that x is not in Ai, ..., Aa, so f(x) = 0 or 1/m for
m > n, so |f (x)| < e.

26. (a) Although lim 1/x = 1 is true, it is not true that for all 8 > 0 there is anx-+1
e > 0 with |1|x - 1| < e for 0 < |x - 1| < 8. In fact, if 8 = 1, there is no such e,
since 1/x can be arbitrarily large for 0 < [x- 11< 1.

Moreover, any bounded function f automatically satisfies the condition, whether
lim f (x)= l is true or not.
x->a

(b) If f is a constant function, f (x) = c, this condition does not hold, since If (x)-
c| < 1 certainly does not imply that 0 < |x - a| < 8 for any 8.

Moreover, the function f (x) = x, for example, satisfies this condition no matter
what a and I are.

27. (i),(ii),(iii),(iv) Both one-sided limits exist for all a.

(v) Both one-sided limits exist for a ¢ 0 and neither exits for a = 0.

(vi)Both one-sided limits exist for all a with |a| < 1; moreover, lim f (x) and
x-+1-

lim f (x)exist.
x->i+

28. (a) (i),(ii) Both one-sided limits exist for all a.

(iii),(iv) Neither one-sided limit exists for any a.

(v) Both one-sided limits exists for all a.

(vi) Both one-sided limits exist for all a whose decimal expansion contains at least
one 1; in addition, the right-hand limit exists for all a whose decimal expansion
contains no l's, but which end in 0999 ... .

(b) The answers are the same as in part (a).

31.
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Let l = lim f (x) and m = lim f (x). Since m - l > 0, there is a ô > 0 so that
xsa- xsa+

m-l
|f(x)-l|< when a-8<x<a,

2
m-l

|f(y)-m|< when a<y<a+ô.
2

This implies that

m--I m-l
f(x) < l + = m - < f(y).2 2

The converse is false, as shown by f (t) = t and any a. It is only possible to
conclude that lim f (x) < lim f (x).

x->a- x-a+

32. Naturally we are assuming a, ¢ 0 and bm ¢ 0. If x ¢ 0, then

an - I ao
anx" + · - + ao an + + + -

ý(x)
bmxm+ - - - + bo

¯

bm bo
¯

Q°+---+-
xn-m gn

If m < n, then lim f (x) = an but lim g(x) = 0. This implies that lim f (x)/g(x)X->OG X-+00 X->OO

does not existatherwise we would have

lim f(x) = [ lim f(x)/g(x)] · [ lim g(x)] = 0.
x-+oo zooo x->oo

If m ;> n, we write

an ao
anx" + - - - + ao m-n y f (x)
bmxm+ - - - + bo

¯

bo
¯

g(x)bm + + xm

Then lim f (x) = 0 if m > n, and an if m = n, while lim g(x) = bm. So
x-oo x->oo

lim f (x)/g(x) = 0 if m > n, and an/bm if m = n.
x-oo

33. (i)
sin3X

. x + sin" x
1 +

hm = lim
x->oo 5x + 6 x-voo 6

5 + -

x
1

5
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(ii)
x sin x 1

lim = lim · sin x
xsoo x2 + 5 x->oo 5

x + -

x
= 0, since | sin x| 1.

(iii)

( x2+x
-x)(

x2+x+x)
lim x2 + x - x = lim

x
= lim

x-voo 2

= lim
1

xsoo 1
1+-+1

x
1
2

(iv) The limit
. X2(Î# SÎD2 Î Sk2 X

lim = lim
x-voo (x+ sin x)2 I¯ Sin X

2

1 + --

x

)(
2sin xdoes not exist, since 1 + 4 1 but 1+ sin2 x does not approach a limit as

x
xe oo.

35. (i)
lim

sin x
= 0,

x4oo X

since | sin x| 5 1 for all x.
(ii)

. 1
sm --

1 sin xlim x sin - = lim = lim by Problem 34
x-oo x x-oo 1 x_,o+ x

x

36. lim f (x) = l means that for all s > 0 there is some N such that |f (x)-l| < s
x->-oo

for some x < N.

(a) The answer is the same as when x 4 oo (Problem 32).
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(b) If I = lim f (x),then for every e > 0 there is some N such that |f (x)
-l|

< s
x-oo

for x > N. Now if x < -N, then -x

> N, so jf(-x)-l| < s. So lim f(-x) =

x--oo
l.

(c) If l = lim f (x),then for every e > 0 there is some N such that |f (x)-lj < e
xe-oo

for x < N, and we can assume that N < 0. Now is 1/N < x < 0, then 1/x < N,
so |f(1|x)

-l|

<e.

37.

I
I

I
I
I

O

(a) Given N > 0, let 8 = 1|Ñ. Then 0 < lx-3| < 8 implies that (x-3)2 < 1/N,
so 1|(x - 3)2 > N.

(b) Given N > 0, so that 1/N > 0, choose 8 > 0 such that |g(x)| < e/N for
0 < |x - a| < 8. Then 0 < |x - a| < 8 implies that |f(x)/g(x)| > s - (N/s) = N.

38. (a) lim f (x) = oo means that for all N there is a 8 > 0 such that, for all x,
x-a+

if a < x < a + 8, then f (x) > N.
lim f (x) = oo means that for all N there is a 8 > 0 such that, for all x, if

a-ô<x<a,then f(x)>N.
lim f (x) = oo means that for all N there is some M such that, for all x, if x > M,

xwoo
then f (x) > N.
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It is also possible to define

lim f (x)= oo,
X-¥ -OO

lim f (x) =
-oo,

X->d

lim f (x) =
-oo,

lim f (x) =
-oo,

X->d"

lim f (x) =
-oo,

X
->

OO

lim f (x)=
-oo.

x->-oo

(b) Given N > 0, choose 8 = 1/N. If 0 < x < 8, then 1/x > N.

(c) If lim f (1/x) = oo, then for all N there is some M such that f (1/x) < N
x-voo

for x > M. Choose M > 0. If 0 < x < 1/M, then x > M, so f (x) > N. Thus
lim f (x) = oo. The reverse direction is similar.

x->o+

39. (i)
4 7

a x+---
. x + 4x - 7 x2hm = lim = oo.x->oo 7x2 - x + 1 x->oo 1 1

7--+-
X X2

(ii) lim x(1+ sin2x) = oo, since 1 5 1+ sin2X fOf 8ÎÎ X.
x-oo

(iii) lim x sin2 x does not exist, since sin2 x oscillates between 0 and 1.
x-oo

(iv)
1 1

lim x2 sin - = lim x · x sin - = oo,x-voo x x-voo x
since lim x sin 1|x = œ, by Problem 35(ii).

X->OO

(v)

( x2+2x-x)( x2+2x+x)
lim x2 + 2x - x = lim

x-oo x oo 2 + 2x + x
2x

= lim
x-voo 2 + 2x + x

2
= lim = 1.

x-voo 2
1+-+1

x
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(vi)
x(Jx+2- )(Jx+2+ )lim x ( x + 2 - ) = lim

2x
= lim

x-+œQx+2+
= lim

2
x-o 1 2 1-+-+

-

x x x

(vii)
lim = hm - = lim - = 0.

x->œ x x-+o x x->o g

40. (a) The figure below shows one side of the n-gon, subtending an angle of 2x/n.
Angle BOC is thus x|n, so BC = rsin(x|n), and AC = 2rsin(x/n). So the
whole perimeter is 2rn sin(x|n).

A

r
B

C
O

(b) As n becomes very large this approaches

(x x xlim 2rx sin - = lim x2r - sin -

xsoo x x-voo y x
= 2xra,

where a = lim (sinx)/x, by Problem 35(ii). [Since you know that the perimeter
x-÷oo

should approach the circumference of the circle, which is 2xr, you can guess that
lim (sinx)/x = 1, when x is in radians.]
x-¥O

41. How do we know that a2 - s and a2 + e exist!? In Chapter 7 we prove
(Theorem 8) that every positive number has a square root, but the proof of this
theorem uses the fact that f (x) = x2 is continuous, which is essentially what we
are trying to prove. In fact, the existence of square roots is essentially equivalent to
the continuity of fmompare Problem 8-8.
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1. (ii) No F, since lim [x||x does not exist.
x->0

(iv) No F, since F(a) would have to be 0 for irrational a, and then F is not con-
tinuousat a is a is rational.

2. Problem 4-17:

(i),(ii),(iii) All points except integers.

(iv) All points.

(v) All points except 0 and 1/n for integers n.

(vi) All points in (-1, 1) except 0 (whereit is not defined) and 1/n for integers n.
Problem 4-19:

(f)All points not of the form n + k/10 for integers k and n.

(ii) All points not of the form n + k/100 for integers k and n.

(iii),(iv) No points.

(v) All points whose decimal expansion does not end 7999 ... .

(vi) All points whose decimal expansion contains at least one 1.

3. (a) Clearly lim f(h) = 0, since lh| < 8 implies that |f (h) - f (0)| = |f (h)| <
ha0

(b) Let f (x) = 0 for x irrational, and f (x) = x for x rational.

(c) Notice that |f (0)|
_<

|g(0)| = 0, so f (0) = 0. Since g is continuous at 0, for
every e > 0 there is a 8 > 0 such that |g(h)--g(0)| = |g(h)| < e for |h| < 8. Thus,
if |h| < 8, then |f (h) - f (0)| = |f (h)|

_<

jg(h)| < e. So in f (h) = 0 = f (0).

4. Let f (x) = 1 for x rational, and f (x) =
-1

for x irrational.

5. Let f (x) = a for x irrational, and f (x) = x for x rational.
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6. (a) Define f as follows (seethe solution to Problem 4-17(vi)):
0, x 5 0

1

f(x)= 1
, 0<x s1

x
2, x > 1.

(b) Let
-1,

x 5 0
1

f(x)= 1
, 0<xál

2, x > 1.

7. Note that f (x+ 0) = f (x)+ f (0),so f (0) = 0. Now

lim f (a + h) - f (a) = lim f (a) + f (h) - f (a)h-+0 h->0
= lim f (h)hs0
= lim f (h) - f (0) = 0,

h->0

since f is continuous at 0.

8. Since (f + a)(a) =f 0, Theorem 3 implies that f + a is non-zero in some open
interval containing a.

9. (a) This is just a restatement of the definition: If the condition did not hold, then
for every e > 0 we would have |f (x) - f (a)| 5 e < 2e for all x sufficiently close
to a, i.e., for all x satisfying |x --- a| < 8 for some 8 > 0. If this were true for all e,
then f would be continuous at a.

f (o) - •

0
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(b) If neither of theseconditions held, then for everye > 0 there would be 81, ô2 > 0
such that f(x) > f(a)-e for x-a| < Bi and f(x) 5 f(a)+s for |x

--al

< 82. If
[x-a| < 8 = min(ôi,82), then f(a)-e < f(x) 5 f(a)+s, so f(x)- f(a)

_<

e.
Since this would be true for all E > 0, it would follow that f is continuous at a.

10. (a)
lim |f|(x) = lim f (x) by Problem 5-16
x->a x->a

= |f(a)|= |f[(a).

(b) The formulas for E and O in the solution to Problem 3-13 show that E and O
are continuous if f is.

(c) This follows from part (a),since

f+g+|f-g|max( f, g) =
,

2
f+g-|f--glmin( f, g) =

.

2

(d) Let g = max( f, 0) and h = - min( f, 0).

11. 1|g = fog and f is continuous at g(a) if g(a) ¢ 0. So by Theorem 2, 1/g
is continuous at a if g(a) ¢ 0.

11 (a) Clearly G is continuous at a, since G(a) = l = lim g(x) = lim G(x). So
x->a xsa

foG is continuous at a by Theorem 2. Thus

f(l) = f(G(a)) = (fo G)(a) = lim( fo G)(x) = lim f (g(x)).
x->a x-vo

(b) Let g(x) = l + x --- a and

10,x ¢ l
f (x) =

1, x = l.

Then lim g(x) = l so f lim g(x)Ì= f(l) = 1; but g(x) ¢ l for x ¢ a, so
x-+a \xsa /

lim f (g(x))= lim 0 = 0.
x-va x-wa

13. (a) Since f is continuous on [a,b] the limits lim f (t) and lim f (t) exist.
t->a+ t->b-

Let
lim f (t), x 5 a

t->a+

g(x) = f(x), a < x < b
lim f (t), b 5 x.

t->b-
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(b) Let f (x) = 1/(x - a).

14. (a) The limit lim f(a + t) exists, and equals f(a) = g(a) = h(a), since
t->0

lim f(a+t)= lim g(a+t) = g(a),
two+ t-+o+

lim f(a+t)= lim h(a+t)=h(a).

(b) f is continuous at c by (a), and at any x ¢ c in [a, b], since f agrees with
either g or h in some interval around x.

15. If f is continuous on [a,b] and f (a) > 0, then there is some 8 > 0 such that
for all x, if a 5 x < x + 8, then |f (x) - f (a)| < f (a). This last inequality implies
that f (x) > 0. The proof for f (b) > 0 is similar.

16. (a) No in the first case; yes in the second.

(b) We have

lim g(x) = lim f(x) since g(x) = f(x) for x ¢ a.
xsa x->a

= g(a) by definition of g(a).

(c) g(x) = 0 for all x.

(d) Since g(a) = lim f(y), by definition,it follows that for any e > 0 there is a
y->a

8 > 0 such that |f(y) - g(a)| < e for |y - a| < ô. This means that

g(a)-s < f(y)<g(a)+e
for |y - a| < 8. So if |x - a l < ô, we have

g(a) - e 5 lim f (y) 5 g(a) + s,
y->x

which shows that |g(x) - g(a)\ 5 e for all x satisfying |x - a| < 8. Thus g is
continuous at a.
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1. (ii) Bonded above and below; no maximum or minimum value.

(iv) Bounded below but not above; minimum value 0.

(v)Bounded above and below. It is understood that a >
-1

(sothat
-a-1

< a+1).
If

-1

< a 5 1/2, then a <
-a

- 1, so f (x) = a + 2 for all x in (-a - 1, a + 1),
so a + 2 is the maximum and minimum value. If

-1/2

< a 5 0, then f has
the minimum value a2, and if a > 0, then f has the minimum value 0. Since
a + 2 > (a+ 1)2 only for [-1- Á 2 < a < (1+Å 2, when a >_

-1/2

this
function f has a maximum value only for a 5 [1+ Á 2 (themaximum value
being a + 2).

(vi) Bounded above and below. As in part (v), it is assumed that a >
-1.

If
a 5

-1/2

then f has the minimum and maximumvalue 3/2. If a > 0, then f has
the minimum value 0, and the maximum value max(a2, a + 2). If

-1/2

< a < 0,
then f has the maximum value 3/2 and no minimum value.

(viii)Bounded above and below; maximum value 1; no minimum value.

(x) Bounded above and below; maximum value 0; the maximum value is a if a is
rational, and there is no maximum value if a is irrational.

(xii)Bounded above and below; minimum value 0; maximum value [a].

2. (ii) n =
-5,

since f (-5) = 2(-5) + 1 < 0 < f (-4).
(iv) n = 0 since both roots of f (x) = 0 lie in [0, 1].

3. (ii) If f (x) = sin x - x + 1, then f (0) > 0 and f (2)= (sin2) - 1 < 0.

4. (a) Let l = (n - k)/2 and let

f (x) = (x + 1)(x - 1)(x - 2) - · - (x - k).

(b) If f has roots al, . .. , ar with multiplicities mi, .. . , mr, so that k = mi + - -

-+

mr, then
f (x) = (x - al )ml- - - (x - ar)"'g(x)

where g is a polynomial function of degree n - (mi+ - - - + mr) = n - k with no
roots. It followsfrom Theorem 9 that n - k is even.

6. If not, then f takes on both positive and negative values, so f would have the
value 0 somewhere in (-1, 1), which is impossible, since 1 - x2 f Û fOr X În
(-1, 1).
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8. If not, then f (x) = g(x) for some x and f (y) =
-g(y)

for some y. But f is
either always positive or always negative, since f(x) ¢ 0 for all x. So g(x) and g(y)
have different signs. This implies that g(z) = 0 for some z, which is impossible,
since 0 ¢ f (z) = ±g(z).

9. (a) f (x) > 0 for all x ¢ a. For if xo > a is the point with f (xo)> 0, and if
f (x) < 0 for some x > a, then f (z) = 0 for some z in the intervalbetween xo and
x; since z ¢ a, this contradicts the hypothesis. The proof for x < a is similar.

(b) f (x) > 0 for all x > a, and f (x) < 0 for all x < a [theproof is essentially the
same as for part (a)].

(c) For y ¢ 0, let f(x) = x3 + x2/ #Xy2 3 (tobe very explicit we could write

fy instead of f). Since

f(x) =

4
_'4

ÎOT X y
x - y

f (y) = 4y' ¢ 0

we have f(x) = 0 only when x =
-y.

Say that y > 0. Then f(y) = 4y3 > 0, while f(--2y) = -Sy3 < 0. It follows
from part (b) that f(x) > 0 for x >

-y and f(x) < 0 for x <
-y. Similarly, if

y < 0, so that y < 0 <
-2y,

then f(y) < 0 while f(-2y) > 0, so again f(x) > 0
for x > -y and f(x) < 0 for x <

-y. In short, x3 + x2 #Xy2 3 > 0 for
x+y>0and<0forx+y<0.

12. (a) Use the proof in the solution to Problem 11, but applied to f and -I.

(b) Apply the same proof to f and g.

13. (a) No, f is not continuous on [--1,1]. If a < b are two points in [-1, 1]
with a, b > 0 or a, b < 0, then f takes every value between f (a) and f (b)on the
interval [a, b] since f is continuous on [a,b]. On the other hand, if a < 0 < b, then
f takes on all values between

-1

and 1 on [a,b], so f certainly takes on all values

between f (a) and f (b). The same argument works for a = 0 or b = 0 (because
f (0)was defined to be in [-1, 1]).

(b) If f were not continuous at a, then (byProblem 6-9(b)) for some e > 0 there
would be x arbitrarily close to a with f (x) > f (a) + e or f (x) < f (a) - e,
say the first. We can even assume that there are such x's arbitrarily close to a and
> a, or else arbitrarily close to a and < a, say the first. Pick some x > a with
f (x) > f (a)+ e. By the Intermediate Value Theorem, there is x' between a and x
with f (x') < f (a)+ e. But there is also y between a and x' with f (y) > f (a)+ e.
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By the Intermediate Value Theorem, f takes on the value f (a) + s between x and
x' and also between x' and y, contradicting the hypothesis.

f(a)-- .

I I i i
a y xi x

(c) As in (b),choose xi > a with f (xi) > f (a)+s. Then choose x' between a and
xi with f(x') < f(a)+s. Then choose x2 between a and x' with f (x2)> f(a)+s
and x' between a and x2 with f (x') < f (a) + s. Etc. Then f takes on the value

f (a)+ s on each interval [x', xn], contradicting the hypothesis.

14. (a) This is obvious since |cf|(x) = |c[ - |f(x)| for all x in [0,1].

(b) We have

|f+g|(x)= |f(x)+g(x)| 5 |f(x)|+\g(x)| 5 |f|(x)+ |g|(x).
If |f + g| has its maximum value at xo, then

llí + gil = If + gl(xo) 5 Ifl(xo)+ Igl(xo)5 lif lI+ llgll.

If f and g are the two functions shown below,then

llfil = \\gli= Ilf +gil = 1,

so ||f+g|| ¢ ||f||+||g||. (Notice that this happens even though we have |f+g|(x) =

|f|(x) + |g|(x) for all x.)
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f /g

(c) Apply part (b) with f replaced by h - g and g replaced by g - f.

15. (a) Choose b > 0 so that |¢(b)/b2| < 1/2. Then

( ¢(b) b"b"+¢(b)=b" 1+ >->0.
b" 2

Similarly, if a < 0 and |¢(a)/a2| < 1/2, then a" + ¢(a) < a"|2 < 0. So
xn + ¢(x) = 0 for some x in [a,b].

(b) Choose a > 0 such that a" > 2¢(0) and such that |¢(x)/xn|< 1/2 for |x| > a.
Then for |x| > a we have

( ¢(x) x" an
xn n 1+ >->->¢(0),

xn 2 2

so the minimum of xn + ¢(x) for x in [-a, a] is the minimum for all x.

16. If

f (x) = x" + an-1xn-1 + · - - + ao,

let
M = max(1, 2n|an-1|, . . . , 2n|ao|).

Then for all x with |x| > M we have
1 an-1 ao-<1+-+---+-,

2¯ x x"
so

|f (x)| = x" (1+ an-1 4 . . . n |2.I \ X Xn | |
If b > M satisfies lb"| > 2f (0),then |f (x)| > |f (0)[for |x| > b. So the minimum
value of |f (x)| on [-b, b] is the minimum value on R. (Naturally this problem can
be generalized exactly as in Problem 15: If ¢ is continuous and lim ¢(x)/xn

x-+oo
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0 = lim ¢(x)/xn, then there is some number y such that |y"+¢(y)| 5 |xngx->-oo
for all x.)

17. Pick b > 0 so that f(x) < f(0) for x| > b. Then the maximum of f on
[-b, b] is also the maximum on R.

I i
-b

b

18. (a) Apply Theorem 3 to the (continuous)function

d(z) = Q(f (z))2# (2 - X )2
which gives the distance from (x,0) to (z, f (z)),for z in [a, b].

(b) If f (x) = x on (a,b), then no point of the graph is nearest to the point (a, a).

(c) Clearly the function d of part (a)satisfies lim d(z) = oo = lim d(z), since
z->oo z->-oo

d(z) > jz - x|. Choose c > 0 so that d(z) > d(0) for |z| > c. Then the minimum
of d on [-c, c) will be the minimum of d on R.

(d) By definition, g(x) = f(f(z))2+ (z - x)2 for some z in [a,b]. Now

(f (z))2+ (z - y)2 2 i (Z - X)2 # Z - y fOT RÏÎZ.

So g (y),the minimum of all (f (z))2+ z - B2, iS Ï©SS than or equal to |z - yj +
the minimum of all (f (z))2+ (z - x)2, which is g(x) + |y - x|. Since |g(y) -

g(x)| 5 |y - x| it follows that g is continuous (givene > 0, let 8 = e).

(e) Apply Theorem 3 to the continuous function g on [a, b].

19. (a) If the continuous function g satisfied g(x) ¢ 0 for all x, then either g(x) >

0 for all x or g(x) < 0 for all x, i.e., either f(x) > f (x+1/n) or f (x) < f (x+1/n)
for all x. In the first case, for example, we would have

f(0) > f(1/n)> f(2/n) >·--> f(n/n)= f(l),
contradicting the hypothesis that f (0) = f (1).
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(b) The picture below illustrates such a function f when 1/4 < a < 1/3.

I
I
I
I
I
I
I

I-3a I-2a 1- Í

a 2a 3a i

In general, if 1/(n + 1) < a < 1/n, define f arbitrarily on [0,a], subject only

to the condition that f (0) = 0, f (a) > 0, and f (1 - na) =
-nf

(a). Since
1/(n+1) < a < 1/n, the numbers 0, 1-na, and a are all distinct, so this is possible.
Then define f on [ka,(k+ 1)a] by f (ka+ x) = f (x)+ ka. In particular, we have
f (1) = f (na+ (1 - na)) = na+ f (1 - na) = 0, but f (x+a) - f (a) = f (a) > 0
for all x.

20. (a) If f (a) = f (b)for a < b, then we cannot have f (xi)> f (a) and f (x2)<

f(a) for some xi,x2 in [a, b], since this would imply that f(x) = f(a) for some
x between xi and x2, so that f would take on the value f(a) three times. So either
f(x) > f(a) for all x in (a,b), or else f(x) < f(a) for all x in (a,b), say the first.
Pick any xo in (a, b).

I i i I
a xo b x
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The Intermediate Value Theorem implies that f takes on all values between f (a)
and f (xo)in the interval [a,xo] and also in the interval [xo,b]. So we cannot have
f (x) > f (a) for x < a or x > b, since this would imply that f takes on these
values yet a third time (on[x,a] or [b,x]). So f is actually bounded above on R
(sinceit is bounded on [a,b]), which means that f does not take on every value.

(b) Moreover, even if we allowed the situation where f did not take on all values,
it would still be true that f actually has a maximum value M on R (themaximum
on [a,b] will be the maximum on R). Now f must take on this maximum value
twice, say at xo and xi. Pick œ < xo < ß < yo < y.

I I I i i
a xO Ñ Ni Y

If m is the maximum of f(a), f(ß), f(y), then f takes on all values between m
and M on each interval [a, xo], [xo,ß], [ß, xi] and [xi, y], which is impossible.

(c) The following picture, for n = 5, will indicate the general case.

(d) Pick zi < < In with f (xi) = - - - = f (xn)= a. In each interval (x¿,xi+1),
either f > a or f < a. Since n is even, there are an odd number, n - 1, of such
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intervals, so either f > a in more than half of them, or f < a in more than half
of them. Thus f > a in at least n/2 of them, or f < a in at least n/2 of them,
say the first. Then f takes on all values slightly larger than a at least twice in at
least n/2 intervals. This shows that f cannot take on these values any where else,
so f is bounded above. (Moreover, the same sort of argument as in part (c)shows
that f would have to take on values slightly less that the maximum value at least 2n
times.)
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1. (ii) 1 is the greatest element and
-1

is the least element.

(iv) 0 is the least element, and the least upper bound is n, which is not in the set.

(vi) Since {x : x2 + x + 1 < 0} = ([-1- Ã 2, [-1+ Á 2), the greatest
lower bound is [-1- Á] 2 and the least upper bound is [-1+ E 2; neither
belongs to the set.

(viii) 1 - 1/2 is the greatest element, and the greatest lower bound is
-1,

which is
not in the set.

2. (b) Since A is boundedbelow,B ¢ 0. Since A ¢ 0, there is some x in A. Then
any y > x is not an upper bound for A, so no such y is in B, so B is bounded above.
Let a = sup B. Then a is automatically >_ any lower bound for A, so it suffices to
prove that a is a lower bound for A. Now if a were not a lower bound for A, then
there would be some x in A with x < a. Since a is the least upper bound of B,
this would mean that there is some y in B with x < y < a. But this is impossible,
since x < y means that y is not a lower bound for A, so y would not be in B.

3. (a) No. For example, the functions f shown below have no second smallest x
with f (x) = 0.

a a

b b

Since b -- a + x varies between b and a as x varies between a and b, the function
g(x) = f(b - a + x) satisfies g(a) = f(b) > 0 and g(b) = f(a) < 0. So there is
a smallest y with g (y) = 0. Then x = b - a + y is the largest x with f (x) = 0.

(b) Clearly B ¢ 0, since a is in B; in fact, there is some ô > 0 such that B contains
all points x satisfying a 5 x < a + 8, by Problem 6-15, since f is continuous on
[a,b] and f (x) < 0. Similarly, b is an upper bound for B, and, in fact, there is a
& > 0 such that all points x satisfying b - 8 < x 5 b are upper bounds for A; this
also follows from Problem 6-15, since f is continuous on [a,b] and f (b)> 0.

Let a = sup A. Then a < œ < b. Suppose f (a) < 0. By Theorem 6-3, there is
a 8 > 0 such that f (x) < 0 for œ - 8 < x < œ + 8. This would mean that œ + 8/2
is in A, a contradiction. Similarly, suppose f (a) > 0. Then there is a 8 > 0 such
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that f(x) > 0 for « - 8 < x < a + ô. But then a - 8/2 would also be an upper
bound for B, contradicting the fact that œ is the least upper bound. So f (a) = 0.

This œ is the greatest x in [a, b] with f (x) = 0. The sets A and B are different
for the function shown below.

8 B
i I
a A b

4. (a) Let c be the largest x in [a, xo] with f (x) = 0 and d the smallest x in [xo,b]
with f (x) = 0.

a d xo c b

(b) Let c be the largest x in [a,b] with f (x) = f (a), and let d be the smallest x
in [c,b] with f (x) = f (b).

6. (a) By definition of continuity, we have f (a) = lim f (x) for all a, so it suffices
X-+G

to prove that lim f (x) = 0 (knowingthat the limit l exists). Now given 8 > 0,
x-+a

there is a 8 > 0 such that |f(x)
-ll

< e for all x satisfying 0 < |x
-a|

< 8. Since
A is dense, there is a number x in A satisfying O < |x - a| < 8; so |0 - l| < e.
Since this is true for all e > 0, it follows that l = 0.
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(b) Apply part (a)to f - g.

(c) As in part (b),it obviously suffices to show that if f is continuous and f (x)> 0
for all numbers x in A, then f (x) > 0 for all x. Now there is a 8 > 0 such that, for
all x, if 0 < |x - a| < 8, then If (x) - l| < |l||2. This implies that f (x) < l + ll||2;
if I < 0, it would follow that f (x) < 0, which would be false for those x in A
which satisfy 0 < (x - a| < 8.

It is not possible to replace > by > throughout. For example, if f(x) = |x|, then
f (x) > 0 for all x in the dense set {x: x ¢ 0}, but it is not true that f (x) > 0 for
all x.

7. According to Problem 3-16, we have f (x) = cx for all rational x (whemc =

f (1)).Since f is continuous, it follows from Problem 6 that f (x) = cx for all x
(applyProblem 6 to f and g(x) = cx).

8. (a) The set {f (x) : x < a} is bounded above (byf (a)); let « = sup{ f (x) :

x < a}. Then lim f(x) = a. Given any e > 0, there is some f(x) for x < a
with f(x) > a - e, since a is the least upper bound of {f(x) : x < a}. Let
8 = a - x. If a - 8 < y < a, then x < y < a, so f(x) 5 f(y). This means that
œ> f(y) >a-e,sosurely f(y)-œ[ <s.

The proof that lim = inf{f(x) : x > a} is similar.
x-÷a+

(b) It is clear from part (a)that
lim f (x) 5 f (a) 5 lim f (x).

x-a- x-÷a+

If lim f (x) exists, it follows that
x-+a

lim f (x) = lim f (x) 5 f (a) 5 lim f (x) = lim f (x),
x-a x-÷a- x-a+ x-÷a

so lim f (x) = f(a). Thus f is continuous at a, so f cannot have a removable
x-a

discontinuity at a.

(c) If f is not continuous at some point a, then

sup{f(x) : x < a} = lim f(x) < lim f(x) = inf{f(x) : x > a}.
x-a- x-a+

It follows that f (x) cannot have any value between lim f (x) and lim f (x),
xsa- x-a+

except f (a), so f cannot satisfy the Intermediate Value Theorem.

9. (a) is obvious for |[\ |||,since |cf1(x)= |ci - |f(x)| for all x in [0,1].

(b) We have |f + g|(x) 5 |f|(x) + |g (x) for all x in [0,1]. Since \[|f + g|\l is
sup{| f + g|(x) : x in [0,1]}, there is some xo in [0,1] with

|f+g|||-|f+g|(xo)<e,
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which implies that

Illí+ glll - [ifI(zo)+ Igl(zo)]< e.
Since |f ((xo)5 |||f||| and ig|(xo)5 |||g|||,it follows that

Illí+ glll - [Illílll+ lllgIll]< e-

Since this is true for every e > 0, it follows that |||f + g||| 5 |||f||| + |||g|||.
(c) follows from (b),just as in Problem 7-14.

11. (a) We have an+1 5 ai/2n < ai/n. Choose n so that 1/n < e/ai. Then
an+1 < 8.

(b) Let R¿ be the area of region number i in the following figure.

3
2

We must show that
R2 < ((Ri + R2),

or
R2 < R1-

This is clear, since R2 < R2 + Rs = RI-

(c) Apply part (a)with an = area of the circle minus the area of an inscribed regular
polygon with 2n+i sides; part (b)says that a,4: 5 as|2.

(d) Let ri and r2 be the radii of the two circles Ci and C2, and let A¿ be the area
of the region bounded by C¿. We know that there are numbers Bi, 82 > 0 such that

IAi Bi
A2 B2

for any numbers B1, B2 with |A¿ - B¿| < ô¿. By part (c)there are numbers n¿ such
that the area of a regular polygon, with n¿ sides, inscribed in C¿ differs from A¿ by
less than 8¿. Let P¿ be the area of a regular polygon inscribed in C¿ with max(ni, n2)
sides. Then

IA i P1
A2 P2
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so
A1 ri2

Since this is true for each e > 0, it follows that A1/A2 = ri2|r22.

14. (a) For each n and m we have an 5 bm, because an 5 an+m 5 bn+m 5 bm-
It follows from Problem 12 that sup{a, : n in N} 5 inf{ba : n in N}. Let x be any
number between these two numbers. Then an 5 x 5 bn for all n, so x is in every In-

(b) Let In = (0,1/n).

I/3

0 I/4 1/2 |

15. Let c be in each I,. If f (c) < 0, then there is some ô > 0 such that f (x) < 0
for all x in [a, b] with |x - c| < 8. Choose n with 1/2" < 8. Since c is in In, which
has total length 1/2n, it follows that all points x of In satisfy |x - c| < 8. This
contradicts the fact that f changes sign on I.. Similarly, we cannot have f (c) > 0.
So f (c)= 0.

16. Let c be in each In. Since f is continuous at c, there is a 8 > 0 such that f
is boundedon the set of all points in [0,1] satisfying |x -- c| < 8. Choose n with
1/2" < 8. Since c is in I., all points x of In satisfy |x - ci < 8. This contradicts
the fact that f is not bounded on In -

17. (a) (i) If x is in A then x < a. So y < x < a, so y < œ, so y is in A.

(ii) œ - l is in A.

(lii) œ + 1 is not in A.

(iv) If x is in A, then x < a. Let x' = (x+ «)/2. Then x < x' < a, so x' is in A.

(b) According to (iii)there is some y with y not in A. If y < x, then x cannot be
in A, because (i) would imply that y is in A. Thus y is an upper bound for A, and
A ¢ Øby (ii),so sup A exists. Given x in A, choose x' in A with x < x', by (iv).
Then x < x' s sup A, so x < sup A. Conversely, if x < sup A, then there is some
y in A with x < y. Hence x is in A, by (i).
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18. (a)
Almost upper bounds Almost lower bounds

(i) All a > 0. All œ 5 0.

(ii) All a > 0. All a < 0.

(iii) All a > 0. All œ $ 0.

(iv) All a > n. All œ 5 0.

(v) None. None.

(vi) All a > [-1+ Ä 2. All a 5 [-1+ Ä 2.

(vii) All a > 0. All a <
-1

+ Á 2.

(viii) All a > 1. All œ $
-1.

(b) Every upper bound for A is surely an almost upper bound, so B ¢ Ø. No lower
bound for A can possibly be an almost lower bound (sinceA is infinite), so B is
bounded below by any lower bound for A.

c. (i),(ii),(iii) 0.

(iv) Ã.
(v) Does not exist.

(vi) [-1+ß]/2.
(vii)0.

(viii) 1.

(d) lim A = sup C, where C is the set of all almost lower bounds.

(i),(ii),(iii)(iv) 0.

(v) Does not exist.

(vi) [-i + ß]/2.
(vii) [-1+ ß ]|2.
(viii)

-1.

19. (a) If x is an almost lower bound of A, and y is an almost upper bound, then
there are only finitely many numbers in A which are < x or > y. Since A is infinite,
it follows that we must have x 5 y. Thus (Problem 12) lim A 5 ÏB A.

(b) This is clear, since ÏimA 5 a for any almost upper bound a, and a = sup A is
an almost upper bound.

(c) If ÏÃ A < sup A, there is some almost upper bound x of A with x < sup A.
So there are only finitely many numbers of A which are greater than x (andthere
is at least one, since x < sup A). The largest of these finitely many elements is the
largest element of A.
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(d) Reverse the inequalities in the arguments for parts (b)and (c).

20. (a) Notice that we must have f(x) 5 f(supA), because f is continuous at
sup A and there are points y arbitrarily close to sup A with f (x) 5 f (y). (A
simple e-8 argument is being suppressed.) Now suppose that sup A < b. Then
f (b)< f (x). Moreover, sup A is a shadow point, so there is some z > sup A with
f (z) > f (supA) > f (x). We cannot have z 5 b, for this would mean that z is
in A. So z > b and f (b) < f (x) 5 f (z),contradicting the fact that b is not a
shadow point.

(b) Since f is continuous at a, and f (x) 5 f (b)for all x in (a,b), it follows that
f (x) 5 f (b)(eitherby a simple e-8 argument, or using Problem 6, if you prefer).

(c) If f (a) < f (b),then a would be a shadow point, so f (a) = f (b).
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1. (a) For y > x we have, by the Mean Value Theorem,

So for a > 1 we have
y" - x" > axa-1

Since x"¯I is unbounded on [0,oo), we cannot make y"-x" < s simply by making
y - x less than any fixed 8. So f is not uniformly continuous on [0,oo) for œ > 1.

For 0 < a < 1 we have to be a little more careful. We have
ya _ a 5 ayŒ-1 - X)

s a(y
-x)

for y > 1.
which at least shows that f is uniformly continuous on [1,oo). Since it is also
uniformly continuous on [0,1] by the Theorem, it follows that it is uniformly con-
tinuous on [0,oo). (The argument for this is a simple corollary of the Lemma [with
c = oo].)

(b) f(x) = sin(1/x)

(c) Just let f have portions with larger and larger slopes:

2. (a) Given e > 0, choose 8 > 0 such that, for all x and y in A,

if |x - y | < 8, then |f (x) - f (y)|, |g(x) - g(y) | < e/2.

Then also
(f + g)(x) - (f + g)(y) | < e.

(b) Choose M > 0 so that |f (x)|, [g(x)|5 M for all x in A. Given e > 0, choose
8 > 0 such that, for all x and y in A,

eif |x - y | < 8, then |f (x) - f (y)|, |g(x) - g(y) | < ----.

2M
Then also

If(x)&(x)- f(y)&(7)\= If (x)[g(x)- g(y)] +g(7)[f(x) - f (y)]I
e s<M---+M---=s.¯

2M 2M

98
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(c) Let f(x) = x and g(x) = sinx, both uniformly continuous on [0,oo). The
product is not uniformly continuous on [0,oo), since there will be places where the
graph is growing arbitrarily fast.

(d) Given e > 0, choose s' > 0 such that, for all œ and ß in B,

if |œ- ß| < s', then |g(œ)- g(ß) | < s.

Then choose 8 > 0 such that, for all x and y in A,

if |x - y | < 8, then |f (x) --- f (y)| < s'.

It followsthat

if |x - y | < 8, then |g(f (x)) - g( f (y))| < e.

3. Given e > 0, suppose f is not e-good on [a,b]. Then, by the Lemma, either
f is not s-good on [a, (a + b)/2] or f is not e-good on [(a+ b)/2, b]. Let Il be
one of the halves on which f is not e-good. Now bisect Ii, and let 12be a half on
which f is not e-good. Etc. Let xo be a point in all Is. Choose 8 > 0 such that,
if jx - xo| < 8, then if (x) - f (xo)|< s/2. It follows that if |x - xo| < 8 and
|y - xo| < 8, then |f(x) - f(y)| < e, i.e., f is e-good on (xo- e, xo + e). But
some In is contained in this interval, a contradiction.

4. Choose 8 > 0 such that, if x and y are in [a,b] and \y - x |
_<

8, then |f (y) -

f (x)| < e. Let K = [(b - a)/8] + 1. Then for any point x in [a,b], there is a
sequence

a=ao,ai,a2,...,ak=1

with k
_<

K and |a¿÷i- a¿ < 8. It followsthat

|f(ai) - f(a)| < s
|f (a2)- f (ai)| < e

|f (x) - f (ak-1) < E
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which implies that
f(x) - f(a)| < Ks

and hence
|f(x)[ 5 f(a)+ Ke

for all x in [a,b].
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1. (b) The following figure illustrates the tangent lines to the graph of f (x) = 1/x.

f (x)= I/x

2. (b) The following figure illustrates the tangent lines to the graph of f (x) = 1/x2.

/ f(xl= I/x2

101
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6. (a) The picture below indicates the relation between f' and (f + c)

(b) The figure below indicates the relation between f' and (cf)'.

2f

f
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8. (a) The figure belowindicates the relation betweenf' and g' if g(x) = f (x+c).

x x+ c

12. (a) a'(t) = L (a(t)) (thevelocity at time t should be the velocity allowed at the
point a(t), where the car is located).

(b) The hypothesis means that b(t) = a(t - 1). Thus

b'(t) = a'(t - 1) = L(a(t - 1)) = L(b(t)).

(c) Suppose b(t) = a (t)- c. Then b'(t) = a'(t) = L(a(t)),whereas b'(t) shouldbe
L(b(t)) = L(a(t) - c). So B travels at the speed limit if the function L is periodic,
with period c.

13. The limit
. h(a+t)-h(a)

hm
t->o t

exists, because
. h(a + t) - h(a) . g(a + t) - g(a)

hm =hm

two+ t t->o+ t
= right-hand derivative of g,

. h(a + t) - h(a) f (a + t) - f (a)hm = lim
t->o- t t-vo- t

= right-hand derivative of f,
and these two limits are equal.

14.
. f (x) - f (0) f (h)f'(0) = hm = lim .

h->o h h->o h
Now

0, h irrational
f (h) 2

h = h, h rational,
h
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so lim f (h)|h = 0.
h->0

15. (a) Notice that f(0) = 0. Since |f(h)/h| 5 h2/ h| 5 |hl, it follows that
lim f (h)/h = 0, i.e., f'(0) = 0.
h-+0

(b) If g(0) = 0 and g'(0) = 0, then f'(0) = 0: For, |f (h)/h| 5 |g(h)/h| =

[g(h)-g(0)]/h|, which can be made as small as desired, by choosing h sufficiently
small, since g'(0) = 0.

16. Since |f (0)| 5 |0|", we have f (0) = 0. Now |f (h)/hl 5 h|œ-1, and
lim lh «-1

= 0, since a > 1, so lim f(h)/h = 0. Thus f'(0) = 0.
h-+O h->0

17. |f(h)/h| >_ lh[p-1;since ß - 1 < 0, the number lh|p-1becomes large as h
approaches 0, so lim f(h)/h does not exist.

h-+0

18. Since f is not continuous at a if a is rational, f is also not differentiable
at rational a. If a = m.aia2as... is irrational and h is rational, then a + h is
irrational, so f (a + h) - f (a) = 0. But if h =

-0.00

. . . Oa.wiass2 . . . , tlien
a + h = m.aia2...anOOO..., so f(a + h) > 10-n, while h| < 10¯", so we
have [f(a + h) - f(a)]|h > 1. Thus [f(a + h) - f(a)]/h is 0 for arbitrarily
small h and also has absolute value :> 1 for arbitrarily small h. It follows that
lim [f (a + h) - f (a)]/h cannot exist.
h->0

19. (a) For t > 0 we have

f(a+t)- f(a) g(a+t)--g(a) h(a+t)-h(a)
t

¯

t
¯

t
'

since f(a) = g(a) = h(a). The left and right sides approach f'(a) = h'(a) as
t

-> 0*, so the middle term must also approach this limit. For t < 0 we have the
inequalities reversed, which shows that as t

-+ 0¯ the middle term again approaches
f'(a) = h'(a).

(b) A counterexample without the condition f(a) = g(a) = h(a) is shown below.

f
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20. (a)
d = f (x) - f (a)(x - a) - f (a)

= x4 - 4a3(x - a) - a4

= x4 - 4a3x + 3a'
= (x - a)(x3 + ax2 2X

- 3a')
= (x - a)(x - a)(x2 + 2ax + 3a2).

(b) f (x) - f (a) clearly has a as a root, so f (x) - f (a) is divisible by x - a by
Problem 3-7. This means that [f (x) - f (a)]|(x - a) is a polynomial function, so
d(x)/(x - a) is the polynomial function

h(x) = f (x) - f (a) ,(a).

x - a
Then lim h(x) = 0 by the definition of f'(a). This implies that h(a) = 0, since
the (polynomial)function h is continuous. So d(x)/(x - a) has a as a root, so
d(x)/(x - a) is divisible by (x - a), i.e., d(x) is divisible by (x - a)2.

22. (a)
. f (x+ h) - f (x) . f (x - h) - f (x) f (x) - f (x - h)

f'(x) = hm = hm = lim .

hoo h hoo
-h

h--+0 X

So

f(x+h)- f(x-h) 1 . f(x+h)- f(x) f(x)- f(x-h)lim = -- hm + lim
hoo 2h 2 h-+o h hoo h

= f'(x).

(b)
f(x+h)- f(x-k) h f(x+h)- f(x) k f(x)- f(x-k)

h+k h+k h h+k k
Since [f(x + h) - f(x)]/h and [f(x) - f(x - k)]/k are close to f'(x) when h
and k are sufficiently small, this would seem to imply that

f(x+h)- f(x-k) . h k
is close to + f'(x) = f'(x).h+k h+k h+k

However, some care is required to carry this argument out, for the following reason.
If h/(h + k) were very large, then

h f (x+ h) - f (x)
h + k h

could differ from hf'(x)/(h + k) by a large amount, even if [f (x+ h) - f (x)]/h
differed from f'(x) by only a small amount. It will be essential to use the fact that
both h and k are positive; otherwise h/(h+k) could be made very large by choosing
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k close to
-h.

In fact the result is false if h and k are allowed to have different signs,
even when h + k = 0 is not allowed. The proper argument is as follows. If e > 0
there is a 8 > 0 such that for 0 < h < 8 and 0 < k < 8 we have

f (x+ h) - f (x)-s

< - f'(x) < s,h
f(x)- f(x-k)-e

< - f'(x) < E.
k

Since h, k > 0, we can multiply these inequalities by h/(h + k) and by k/(h + k),
respectively. Upon adding we obtain

( h k f(x+h)- f(x-k) h k
- e + < - + f'(x)h+k h+k h+k h+k h+k

( h k
<s

h+k h+k
'

or
f(x+h)- f(x-k)-e

< - f'(x) < e.h + k

This proves the required limit.

23. If g(x) = f(-x) then g'(x) = - f'(-x), by Problem 8(b). But also g(x) =

f (x),so g'(x) = f'(x), so f'(x) = - f'(-x).
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24. If g(x) = f (-x), then g'(x) = - f'(-x). But also g(x) = - f (x),so g'(x) =

- f'(x), so f'(x) = f'(-x).

25. f (k) is even if k is even and f is even, or if k is odd and f is odd; f (k) is odd
in the other two cases.

26. (ii) f"(x) = 20x3.

(iv) f"(x) = 20(x - 3)3.

27. Proof by induction on k. The result is true for k = 0. If

S (x) =
n! n-k

(n -- k) !

then
(k+1) _

n!(n - k) n-k-1

(n-k)!
n! n-(k+1)

[n - (k+ 1)]!

28. (a) Since
x3 x>0

f (x) =
'

-x3,

x < 0,

we have

13x2x > 0 6x, x > 0
f'(x) =

' f"(x) =
-3x2,

x < 0
-6x,

x < 0.

Moreover, f'(0) = f"(0) = 0. But f'"(0) does not exist.
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(b) The same sort of reasoning shows that

4x3, x > 0 12x2, x > 0f'(x) = f"(x) =
-4x3,

x < 0
-12x2,

x < 0
24x, x > 0

f"'(x) =
-24x,

x < 0

and that f'(0) = f"(0) = f'"(0) = 0, but that ff')(0) does not exist.

29. Clearly f (k)(x) = n!/(n - k)!xn-k for 0 5 k 5 n
-- 1 and x > 0, while

f (k)(x) = 0 for all k if x < 0. From these formulas it is easy to see that f (*)(0)= 0
for 0 5 k 5 n - 1. In particular, f("¯')(x) = n!x for x ;> 0, and f("¯I)(x) = 0 for
x 5 0. So f(")(0)does not exist, since lim n!h/h = n!, while lim 0/h = 0.

h->0+ h->0-

30. (ii) means that f'(a) =

-l/a2

if f(x) = 1/x.

(iv) means that g'(a) = cf'(a) if g(x) = cf(x).

(vi) means that f'(a2) = 3a4 if f(X) = X3

(viii)means that g'(b) = cf'(cb) if g(x) = f(cx).
(x) means that f(k)(a) = k!Q)an-kif f(x) = X".
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2. (ii) cos x + 2x cos x 2.

(iv) cos(sin x) - cos x.

(vi)
x cos(cos x)(- sin x) - sin(cos x)

x2

(viii)cos(cos(sin x)) - (- sin(sin x)) - cos x.

2. (II) 3 sin2(X2 # SiBX) · COS(x2 + sin x)x) - (2x+ cos x).

(iv)

(
x3 (cosx3)3x2+x3 SiHX3 - 3x2

COS
COS X 3 COS2 X 3

(vi)312(cosx)s12-1 . _ sin x).

(viii)3 sin2(sin2(sin x)) - cos(sin2(sin x)) - 2 sin(sin x) - cos(sin x) - cos x.

(x)
cos(sin(sin(sin(sin x)))) - cos(sin(sin(sin x))) - cos(sin(sin x)) - cos(sin x) - cos x.

(xii)
5(((x2 + x)" + x)4 # X)4

- [1+ 4((x2 + x)" + x)3{1+ 3(x2 + x) [1+ 2x]}].

(xiv)
cos(6 cos(6 sin(6 cos 6x))) - 6(- sin(6 sin(6 cos 6x)) - 6 cos(6 cos 6x) - 6(- sin 6x) - 6

(xvi) -2(1

+ cosx)¯
- 1 -

(x+ sin x)2
2

x -

x + sin x

(xviii)

xCOS X

x - sin .

X - Sln X

, x x x - sin x - x[1 - cos x]¯
X - SIR - X Î - COS

x - sin x x - sin x (x - sin x)2
X

·

.

( )
2

. x
x - sin .

x - sin x

109
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3. See page 307 of the text.

4. (ii) cos(sin x).

(iv) 0.

5. (ii) (2x)2.
(iv) 17 - 17.

6. (fi) f'(x) = g'(x - g(a)) - g(a).

(iv) f'(x) = g'(x)(x - a) + g(x).

(vi) f'(x) = g'((x - 3)2) - 2(x - 3).

8. If the two circles have radii ri(t) < r2(t) at time t, with corresponding areas
A¿(t) = gr¿ (t)2,then

xr2(t)2 - xri (t)2= 9x,
A'2(t) = 10x.

Consequently,
10x - 2xri (t)r'(t) = 0.

Now the smaller circle has area 16x when ri(t) = 4, so at this time r'(t) = 5/4.
The circumference C(t) = 2xr1(t) thus satisfies C'(t) = 2xr'(t) = 5x/2 at this
time.

9. Let (a(t),0) be the position of A at time t. Then at the time in question we have

a(t) = 5, a'(t) = 3.

If (b(t),
-d

b(t)) is the position of B at time t, then its distance from the origin
is

b(t)2 + 3b(t)2 =
-2b(t)

and its speed is
-2b'(t).

At the time in question we have

b(t) =
-3/2, b'(t) =

-2.

The distance d(t) between A and B satisfies

d(t)2 _ _
2 + 3b(t) ,

so at the time in question

d(t) = (5+ () + 3(()' = 7.

Moreover,

2d(t)d'(t) = 2[a(t) - b(t)] - [a'(t) - b'(t)] + 6b'(t)b'(t).
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Substituting the values found for a(t), b(t), a'(t), b'(t) and d(t) at the time in
question, we obtain d'(t) = Q.
10. (ii) (ko f)'(0) = k'( f (0)) - f'(0) = 0.

11. By definition

. f(x)-0f'(0) = hm
x-+o x

. g(x) sin 1/x
= hm .

x
-> 0 X

Now
. g(x) . g(x) - g(0)

hm = hm
x-o x x->o x

= g'(0) = 0.

Since | sin 1/x| <: 1, it follows that f'(0) = 0 (asin Problem 5-21).

13. (a) The Chain Rule and Problem 9-3 imply that

1
f'(x) = -

-2x

2 1-x2
x

1-x2

(b) The tangent line through (a, 1 - a2 ) is the graph of

g(x)=- a (x-a)+ 1-a2.
1-a2

So if f(x) = g(x), then
-a

1-x2= (x-a)+ 1-a2.
1-a2

Squaringyields

a2(x - a)2
1-x2=

-2a(x-a)+1-a2

1 - a
Multiplying through by 1 - a2, and multiplying out, everything reduces to

-x2

-- a2 =
-2ax,

i.e., (x - a)2 = 0, so x = a. Notice that the same argument shows that g does not
intersect the graph of f(x) = -Vl - x2, which is the bottom half of the unit circle.
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14. The graph of the function

f(x)=b 1-

is the top half of the ellipse with consists of all points (x,y) satisfying
2 2

x y-+-=1.

a2 b2
Now

-bx

f'(x) = .

a 1 -

If the tangent line through (c,b)1 - c2/a2) intersects the graph of f at x, then

x2
-bc c2

b a--= (x-c)+b 1---.
a c2 aa2 1-- G2

The easiest way to solve this equation is to use the following trick. If we let x' = x|a
and c' = c/a, then the equation becomes

-b(c'a)

(1) b 1 - (x')2= (x' - c') - a + b 1 - (c')2,a2/1 - (c')2
or simply

1 - (x')2=

-c'

,
- c') + 1 - (c')2.

1 - (c')2
The solution to Problem 13 shows that x' = c', so x = c.

For the hyperbola, we consider

X2

f(x)=b
--1.

a
Then

bx
f'(x) =

,

x2
a2 --1

a2

so if the tangent line through (c,bjc2/a2 - 1) intersects the graph at x, then

x2 bc c2
(2) b -- - 1 = (x - c) + b - - 1.

a c2 a
a2 --Ia2

Squaring equations (1)and (2)produces the same result, so the solutions of (2)are
also x = c.
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15. No. For example, g might be - f. If f (a) ¢ 0 and f -g and f are differentiable
at a, then g is differentiable at a.

16. (a) Since f is differentiable at a, it is continuous at a. Since f (a) ¢ 0, it
follows that f (x) ¢ 0 for all x in an interval around a. So f = |fl or f =

-[

fj
in this interval, so If ('(a) = f'(a) or |f '(a)

= - f'(a). It is also possible to use
the Chain Rule, and Problem 9-3: |fl =

, so
1

|f j'(x) = · 2f (x)f'(x)
2 f(x)2

f(x)= f'(x) -
.

f(x)|

(b) Let f(x) = x - a.

(c) This follows from part (a),since max( f, g) = [f + g+ jf - g 2 and min( f, g)
= [I+g- If

-gl]/2.

(d) Use the same example as in part (b),choosing g = 0.

17. (a) We have

(fo g)'(x) = f'(g(x)) g'(x)

(fo g)"(x) = f"(g(x)) · g'(x)2 + f'(g(x)) · g"(x)

(fo g)'"(x) = [f'"(g(x)) - g'(x)" + 2f"(g(x)) - g'(x)g"(x)]

+ [f"(g(x)) - g'(x)g"(x) + f'(g(x)) - g'"(x)]
= f"'(g(x)) - g'(x)3 + 3f"(g(x)) - g'(x)g"(x) + f'(g(x))g'"(x).

So

(fog)"' 3 (fog)"9( fo g) = -- --

(f og)' 2 (f og)'

(f"' o g)g/2 3(f" o g)g" g'" 3 (f" o g) - g' g" 2
= + +---- +-

f'og flog g' 2 flog g'
(f"'og)g/2 g(ýnog)g" g"' 3 ((f"og)·Z

ftog f'og g' 2\ f'o8
(f" o g)g" 3 g"-3

-- --

flog 2 g'

f'" 3 f" og ,2 g'" 3 g" 2
=

---og-- -g +----- -

f' 2 f' og g' 2 g'
= [Bfo g] - g'2 + Sg.
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(b) We have
a(cx + d) - c(ax + b) ad - bc

f'(x) =

(cx+ d)2 (cx+ d)2
2c(ad - bc)f"(x) = -

(cx+ d)3
6c2(ad - bc)f'"(x) = .

(cx+ d)4
So

f"'(x) 3 f'"(x) 2 6c2 3
-2c 2

f'(x) 2 f'(x)
~

(cx+ d)2 2 cx + d
= 0.

18. The proof is by induction on n. For n = 1, Leibnitz's formula is Theorem 4.
Suppose that for a certain n, Leibnitz's formula is true for all numbers a such that
f(")(a)and gf">(a) exist. Suppose that f(n+1)(a)and gf"**)(a) exist. Then ff">(x)
and g(n) (x) must exist for all x in some interval around a. So Leibnitz's formula
holds for all these x, that is,

(f.g)(">(x)= n (k)(X)·g(n-k)(X)

k=0

for all x in some interval around a. Differentiating, and using Theorem 4, we find
that

(f - g)(n+1) n (k) (n-k) r

k=0

=
n (k+1) (n-k) (k) (n+l-k)

k=o k

=

k I
(k)(a)g(n+1-k)

k=1

+ n (k) (n+1-k)(a)
k-o k

=

n n + 1 (k) (n+1-k) (a) by Problem 2-3(a).
k=0

19. The formulas

(fo g)'(x) = J'(g(x)) - g'(x)

(fo g)"(x) = f"(g(x)) · g'(x)2 + f'(gx) g"(x)

(fo g)"'(x) = f'"(g(x)) · g'(x)3 + 3f"(g(x))· g'(x)g"(x) + f'(g(x))g'"(x)



Chapter 10 115

lead to the following conjecture: If f")(g(a)) and gf")(a) exist, then also
(fo g)(">(a) exists and is a sum of terms of the form

c· [g'(a)]mi.. (n) m. (k)

for some number c, nonnegative integers mi, ..., m., and a natural number k 5 n.
To prove this assertion by induction, note that it is true for n = 1 (witha = mi =

k = 1). Now suppose that for a certain n, this assertion is true for all numbers a
such that f (")(g(a)) and g(") (a) exist. Suppose that f ("*I) (g(a)) and g("*I) @
exist. Then g(k)(x) must exist for all k 5 n and all x in some interval around a,
and f(k)(y)must exist for all k 5 n and all y in some interval around g(a). Since
g is continuous at a, this implies that f(k)(g(X)) CXists for all x in some interval
around a. So the assertion is true for all these x, that is, (fo g)("> is a sum of terms
of the form

c - [g'(x)]ma (n) m. .
(k)(Ñ(U)), E1,·-·, En > 0, 1 5 k 5 n.

Consequently, (fo g) (n+i) (a) is a sum of terms of the form

c - ma[g'(a)]m, ... (a) pm.-1 ... (n) m. . (k)(g(a)) m, > 0

or of the form
c - [g'(a)]mi+1 (n) m. (k+1)(g(a)).

20. (a) We can choose
anxn+1 an-ixn a1x2

g(x)= + +- + +aox+cn+1 n 2
for any number c.

(b) Let
b2x-1 bax-2 bmx-m+1

g(x)= + +---+ .
-1 -2

-m + 1

(c) No, the derivative of f is

f'(x)=nanxn-i+--.+a - - -·-·-

nbm

21. (a) Let g be a polynomial function of degree n - I with precisely n - 1 roots
(asin Problem 3-7(d)); then g = f' for some polynomial function f of degree n
(Problem 20).

(b) Proceed as in part (a), starting with a polynomial function g of degree n - 1
with no roots (noticethat n -- 1 is even).

(c) We can proceed as in part (a),or simply note that f (x) = x" has the desired
property.
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(d) Proceed as in part (a),starting with a polynomial function g of degree n - 1
with k roots (thisexists by Problem 7-4).

22. (a) If a is a double root of f, so that f (x) = (x - a)2g(x), then f'(x) =

(x - a)2g'(x) + 2(x - a)g(a), so f'(a) = 0. Conversely,if f (a) = 0 and f'(a) =

0, then f (x) = (x - a)g(x) for some g and f'(x) = (x - a)g'(x) + g(x), so
O = f'(a) = g(a); thus g(x) = (x - a)h(x), so f (x) = (x - a)2h(x).

(b) The only root of 0 = f'(x) = 2ax + b is x =
-b|2a,

so f has a double root
if and only if

( b b2 -b

0=f---=a-+b--+c
2a 4a2 2a

=--+c,

4a

or b2 - 4ac = 0. Geometrically, this is precisely the condition that the graph of f
touches the horizontal axis at the single point

--b|2a

(comparewith Figure 22 in
Problem 9-20).

23. Since d'(x) = f'(x) - f'(a), we have d'(a) = 0. So a is a double root of d.

24. (a) Clearly f will have to be of the form

f (x) = (x - xj)2(ax + b)
j=1
J¢i

(becauseeach xj, j ¢ i is a double root, by Problem 22). It therefore suffices to
show that a and b can be picked so that f (x¿)= a¿ and f'(x¿) = b¿. If we write f
in the form f(x) = g(x)(ax + b), then we must solve

[g(x¿)x¿].a + g(x¿) · b = a¿
[g'(x¿)x¿+ g(x¿)] - a + g'(xi ) - b = b¿.

These equations can always be solved because

[g(x¿)x:] - g'(x¿) - [g'(x¿)x¿+g(x¿)]g(x¿) = [g(x¿)]2¢ 0.

(b) Let f¿be the function constructed in part (a),and let f = fi + · · · + fx.

25. (a) If g(a) and g(b) had different signs, then g(x) would be 0 for some x
in (a,b), which implies that f (x) = 0, contradicting the fact that a and b are
consecutive roots.

(b) We have

f'(x) = (x - b)g(x) + (x - a)g(x) + (x - a)(x - b)g'(x),
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SO

f'(a) = (a - b)g(a),

f'(b) = (b - a)g(b).

Since g(a) and g(b) have the same sign, f'(a) and f'(b) have different signs. So
f'(x) = 0 for some x in (a,b), since f' is a continuous function.

a x b

(c) Since

f'(x) = m(x - a)m-1(x - b)"g(x) + (x - a)mn(x - b)"~1g(x)

+ (x - a)m(x - b)"g'(x),

we have

h(a) = m(a - b)g(a),
h(b) = n(a - b)g(b),

so h(a) and h(b) have different signs, so h(x) = 0 for some x in (a, b), which
implies that f'(x) = 0.

26.

f (h) - f (0)f'(0) = lim
h-o h

= lim
hg (h) - 0

h-+o h
= lim g(h) = g(0), since g is continuous at 0.

ha0

27. Let
f(x)

, x·¢0
g(x) = x

f'(0), x = 0.
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Then f (x) = xg(x) for all x, and

f (x) - f (0)g(0) = f'(0) = lim = lim g(x),
x->0 X x-+0

so g is continuousat 0.

28. The proof is by induction on k. For k = 1 we have

f'(x) =

-nx-n-1

(n+1--1)!
= (-1)' x-n-1 for x ¢ 0.

(n - 1)!

Suppose that

(n+k-1)!f(k)(X)
= (-Î)k X-n-k

(n - 1)!

(n+k-1= (-1)kk! x-n-k for I ¢ Û.
n - 1

Then

f (***)(x) = (-1)k (-n - k)(n + k - 1)! -n-k-1

(n - 1)!

= (-1)k+1(n+ k) ! -n-(k+1)

for x ¢ 0.
(n - 1)!

29. If x = f(x)g(x), then 1 = f'(x)g(x) + f(x)g'(x). In particular, 1 =

f'(0)g(0)+ f(0)g'(0)= 0, a contradiction.

30. (a) Using Problem 28 and the Chain Rule, we obtain

(n+k-1)!f (*)(x) = (-1)k (x - a)¯n-k f0r Xf a.
(k - 1)!

(b) Since
1 1 1 1

f(x)¯ y2-1¯2 x-1 x+1
'

we obtain, using part (a),
(-1)k(n + k - 1)ff(k)(X - [(X - 1)-n-k - (x‡ 1)-n-kL

2(k - 1)!
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31, 32. The formulas

1
f(x) = x"sin -,

1 1
f'(x) = mxm-1 sin - - xm-2

x x
1 1 1

f"(x) = m(m - 1)xm-2 sin - - mxm-3 cos - - (m -
2)Xm-3 COS -

x x x
1m-4 ·

- x sm -,

x
1 1 1

= m(m - 1)xm-2 sin - + (2 - 2m)xm-3 cos -
-Xm-4 SÎH -,

x x x
1 1

f"'(x) = m(m - 1)(m - 2)xm-9 sin - - m(m - 1)xm-4
x x

1 1
+ (m - 3)(2 -

2m)Xm-4
cos - + (2 - 2m)xm-s sin -

x x
1 1

- (m - 4)xm-5 sin - + xm-6 cos --,

x x

suggest the following conjecture: If f (x) = xm sin 1/x, for x ¢ 0, then

1
f (k)(X) =

GXm-k Sin -

x
1

2k-1
Xm-2k sin -, k even

aixm-i sin + bixm-i cos ±
'

l=k+1 Xm-2k
cos -, k odd

x

for certain numbers a, ai, bi. Once this conjecture is made, it is easy to check it by
induction. In fact, differentiating the first term yields

m-(k+1) , Î m-(k+2) I
a(m - k)x sm - - ax cos -,

x x

2k+l
and the second half of this expression can be incorporated in the sum i appearing

l=k+2
in the desired expression for f (k+1)(x). Similarly, differentiating the last term yields

1 1
±(m - 2k)xm-(2k+1)Sin - T

Xm-2(k+1)
cos -, k even (k+ 1 odd)

x x

±(m -- 2k)xm--(2k+1)COS ± xm-2(k+1) sin , k odd (k + 1 even)
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2k+1
and the first half of each expression can be incorporated in the sum E . Finally,

l=k+2
2k-1

each term appearing in the sum 2 yield upon differentiation two terms that can
l=k+l
2k+1

be incorporatedin the new sum i .

l=k+2
It follows, in particular, that if m = 2n, then f(k)(x)always has a factor of at

least x2 for k < n (whilethe remaining factor is bounded in an interval around 0).
So if we define f (0)= 0, then

. f (h) - f (0)f'(0) = hm
hoo h

f (h)
= lim -- = 0, since f (h)has a factor of at least h2;

h->o h
consequently, if 2 5 n, then

. f'(h) - f'(0)f"(0) = hm
hoo h

f'(h)
= lim = 0, since f'(h) has a factor of at least h2;

h-+o h
consequently, if 3 5 n, then f"'(0) = 0, etc. This argument (whichis really
another inductive argument) shows that f'(0) = --· = f(">(0)= 0. On the other
hand, f f">(x) is a sum of terms which do have a factor of at least x2, together with
±sin 1/x or cos 1/x, so f(n)is not continuous at 0.

If m = 2n + 1, then f (k) always has a factor of at least x2 for k < n, so
f'(0) = - - - = f (") = 0, but f (")(x) is a sum of terms which do have a factor of at
least x2, together with ±x cos 1/x or ±x sin 1/x. It follows that f(n)is continuous,
but not differentiable, at 0.

33. (ii)
dz dz dy

- - - - - - (cosy) - (- sin x) = cos(cos x) - (- sin x).
dx dy dx

(iv)
dz dz du du
dx du du dx

= (cosv)(- sin u)(cos x) = cos(cos(sin x)) - (- sin(sin x)) - cos x.
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1. (ii) f'(x) = 5x' + 1 = 0 for no x;
f (-1) =

-1,

f (1) = 3;
maximum = 3, minimum =

-1.

(5x4
(iv) f'(x) = - = 0 for no x;(xs+ x + 1)2

f (-1/2) = 32/15, f (1) = 1/3;
maximum = 32|15, minimum = 1/3.

(Notice that g(x) = x6 + x + 1 is increasing, since g'(x) = 5x*+ 1 > 0 for all x;
since g(-1|2) = 15/32 > 0, this shows that g(x) ¢ 0 for all x in [-1/2, 1], so f
is differentiable on [--1/2,1].)

(vi) f is not bounded above or below on [0,5].

2. (i)
-4/3

is a local maximum point, and 2 is a local minimum point.

- · 203/27

-4/3

2

121
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(ii) No local maximum or minimum points.

I

(iii) 0 is a local minimum point, and there are no local maximum points.

1
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(iv)No local maximum or minimum points. In the figure below,a is the unique
root of x6 + x + 1 = 0.

I
I
I
I . i
I

i IO
I

I
I

(v)
-1

+ Ä is a local maximum point, and
-1

- Ã is a local minimum point.

I +

2

2

(vi) No local maximum or minimum points, since

(1+ x2)
f'(x) = -

2 _ g 2
< 0 for x

=/= ±1.
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I
I I

I

II
I
i l

3. (i) f is odd;
1 x2-1

f'(x)=1--= 2 '

X X

J'(x) = 0 for x ¢ ±1, j'(x) > ofor |x| > 1;
f (1) = 2, f (-1) =

-2.
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6 x3 - 6
(ii) f '(x) = 1 - - = ;

x x
f'(x) = 0 for x = 6, f'(x) > 0 for x > and x < 0;
f(x)=0forx=-5.

(iii) f is even;
2x(x2 - 1) - 2xx2 -2x

f'(x) -

(x2- 1)2 (x2- 1 2'

f'(x) = 0 for x = 0, f'(x) < 0 for x > 0, f'(x) > 0 otherwise;
f (0) = 0.

I i
i I
i i
I i
! I
I I
I i
I i
i I
i I
i i

I i
i l i
I i
I i
I i

i I
i I
i I

-1 I l
I i
I i
i I



126 Chapter 11

(iv)f is even, f (x)> 0 for all x;
-2x

(1+ x2)2
f'(x) = 0 for x = 0, f'(x) > 0 for x < 0, f'(x) < 0 otherwise;

f (0) = 1.

4. (b) Suppose x and y are points in [aj-1,aj] and [aj,agi], respectively, with

[x
-aj]

= [y
-aj|.

x y
I i i I I

G j-¡ 0; O gi

Then

ly-a¿|= |x-a¿|+|y-x| fori < j-1,
|y-a¿|=|x-a¿|-|y-x| fori>j+1.

So

f(y)= f(x)+|y-x|-{(j-1)-(n-j)}
= f(x)+|y-x|·{2j-n-l}.

This shows that f decreasesuntil it reaches the "middlemosta¿" and then increases.
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The minimum occurs at a(n-1y2 if n is odd and on the whole interval [a,72,a,72,i]
if n is even.

II I IIII

(c) We have
1 1

+ , x<0
1-x 1+a-x

1 1
f(x)= + , 0<x<a

1+x 1+a-x
1 1

1+x 1+x-a, a<x,

so
1 1

+ x<0
(1 - x)2 (Î # G - X)2 '

-1

1
f'(x)= + , 0<x<a

(1+ x)2 (Î # G - X)2
-1

1
-

, a < x.(1+ x)2 (1+ x - a)2
Thus f is increasing on (-oo, 0] and decreasing on [a,oo), so the maximum of f
on [0,a] is the maximum on R. If f'(x) = 0 for x in (0,a), then

(1+ x)2 - (1+ a - x)2 = 0,

whose only solution is x = a/2. Since

(a 4 2 + af - = < = f(0) = f(a),2 2+a 1+a
the maximum value is (2+ a)/(1 + a).

5. (ii) All irrational x are local minimum points, and all rational x are local maxi-
mum points.

(iv) All 1/n for n in N are local maximum points, and all other x are local minimum
points.
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6. (a) The distance d(x) from (xo,yo) to (x,f (x)) satisfies

D(x) = [d(x)]2= (x - xo)2 + (mx+ b - yo)2,

so the minimum occurs when

0 = D'(ž) = 2(i - xo) + 2m(mž + b - yo)

or xo+m(yo-b)
x =

1+ m2

(b) The slope (mi + b -- yo)/(ž - xo) of the line from (xo,yo) to (ž, mž + b) must
satisfy

mž+b-yo
- m=

-1

x - xo
which yields the same result.

(c) For b = 0 we have
xo + myo

x =

1+m2 '

hence
m(yo - mxo)

x-xo= 1+m2
'

mxo - yo
mx - yo =

1 + m2

So the distance d from (xo,yo) to (ž,mž) is
1 |mxo- yo|

(yo- mxo)2(1 + m2) = .

1+m 1+m2
The general case can now be solved as in Problem 4-22, to give

|mxo- yo + b |
1 + m2

(d) For B :¢ 0, this line is the graph of f(x) = (-A/B)x - C/B, so the distance
is

( A C
--- xo-yo---B B IAo+Byo+c1

A2 2 £2
1+- B2

For B = 0 we have the line parallel to the y-axis through -C/A. The distance to
(xo,yo) is

(-C |Axo+C|
xo - - =

,

A lA|
which is the same result for B = 0.



Chapter 11 129

7. If g(x) = f (x)2,then
g'(x)=2f(x)f'(x),

so the critical points of g are those of f, together with the zeros of f (noticethat g
may be differentiable at points where f (x)= 0 even when f isn't, e.g., f (x) = fxj).

11. Let x be the height of the cone. The volume V(x) is given by

So the volume is greatest when

0 = V'(x) = i[a2 - 3x2L
3

or x = a/Ë. For this x we have

(
3 3x a aV(x) = - - --

3 Ä 3Ã
2na3

27

12. In the Figure below we have

b y }y

so the length of the dashed line is

b2+x2+ a2+ = Åb2+x2+$x2+b2- X2+b2

x x x
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The maximum length of a ladder which can be carried horizontally around the corner
is the minimum length of this dashed line. This occurs when

a a x0=-- x2+b2+ 1+-x2 x 2+b2

= Ë--a (x2 b2)+x+al ·

,

L X2 -1

x2 + b2

or
ax2+ab2=X3#dX

,

x = all'b2/3

and the length is

(
a2/3 a2/3b4/3 + b2

1 + a2/3b4/3 + b2 --- (b2/3+ a 73)
b2/3 b4/3

= (b2/3+ a2/3) .

13. If R(8) is the appropriate value of R for given 0, we have

Ð--R(0)2=A.
2

The perimeter for this Ð will have value

P(Ð)=0R(0)+2R(0)

= N(9 + 2) - Ð-1/2

So the minimum occurs when

0 = P'(Ð)= &
¯

1 0 + 2

Ð - 2

or 9 = 2 radians, and R = O.

14. If
1

f(x)=x+- (x>0)
x

then
1

f'(x)=1-- ,

x
which has the minimum value for x = 1, with f (x)= 2.
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15. If x is the height of the trapezoid,then the area is

aX

A(x) = (a+ a2 - X2 X

a

so the maximum occurs when
2

0=A'(x)=a+ a2-x2-
a2 - x2

a a2-x2+a2-2x2

or
a2 2

-
X2) = (2x2_

2 2 = 4x4 - 4x2a2 4

so
4x4 = 3x2a2,

da
x =

2
The area is

( 3a2 Sa a ßa 3ña2
a+ 2-- -- a+- --

.

4 2 2 2 4

16. The vertex of the right angle will obviously be to the left of the center of the
circle. If x is the distance from the center to the vertex, then the length L of A + B
is

L(x)=a+x+ a2-x2

so the maximum occurs when

x0 = L'(x) = 1 -

,

Or

a2-x2=x2,

x = a/h.
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The length is

a+-+ a2- =(1+Ã)a.g Y 2

17. (i) Obviously walking all the way around will be the longest path.

(li) Let Ð be the angle from the center to the point where he lands after rowing.

B

A C

Then
BC = 0, ÃË = 42 + 2 cos Ð (bythe law of cosines).

The total time required is

42+2cos0 0
T(9) = + -.

2 4
Now

- sin 0 1
0 = T'(0) = + --

2J2+2cos8 4
when

4 sin 6 = 242 + 2 cos 9
-> 16sin2Û = 8 # 8 COS Û,

thus
2(1 - cosi Ð) = 1 + cos Ð w 2 cos O+ cos 0 - 1 = 0,

hence
cosÐ=jor-1.

Here cos 0 =
-1

for 9 = x, one of the endpoints of the interval [0,x] that we must
consider for 6, while cos Ð = {for Ð = (. We have

T(0) = 1 hour, to row across
T(g) = + hours
T(x) = g hours, to walk around.
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Since

walking around is fastest.

18.Ifx=BCandy=AB

// A

y ,r i

x / yE / E'

X \ / X

D C B

then we have

ED = x2 - (a - x)2 = 2ax
-«2

from AEDC
œ2+ (y -Ëñ)2 = y2 from AEE'A,

so

a + (y- V2œx
-«2)

= y2
-yd2ax

- a2 + œx = 0
y2(2œx -

œ2) - œ x

2
Œ2X2 ŒX2

2œx
-«2

2x - a¯
The square of the length of the crease is

ŒX2 2X3
x2 + y2 = x2 + =

,2x - œ 2x - a

so the length is smallest when

0 = 6x2(2x - œ) - 4x3 = 8x3 - 6x a = x2(8x - 6«),
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or x = 3a/4. For this x the length is

(3a
3

2 --

4 3dœ
3a 4

20.

n even n odd

21. (a) 1 is a local minimum point, and 2 is a local maximum point. The nature of
the critical points

-1

and 3 can be determined by the behavior of f (x)for large 1xI:

I li i I I I I

n even n odd

(b) No, for if 2 were the largest critical point, then f would have to be decreasing
on (3,oo), since 2 is a local maximum point.
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22. Let f (x)= r (x)/s(x)for polynomial functions r and s. It is possible that r and
s have a common root a, but in this case r (x) = (x

-a)ri

(x)and s(x) = (x
-a)si

(x)
for certain polynomial functions ri and si (Problem 3-7). This means that f (a) is
undefined but that f(x) = r1(x)/si(x) for x ¢ a (ands1(x) ¢ 0). After factoring
out all common linearfactors of r and s, we find that the graph of f consists, except
for a finite number of points, of the graph of

anxnkan-1Xn-i ...4

g(x) -

¯

bmxm+bm-11m-i + - -
-+ bo q(x)'

where p and q have no common roots. The function g is defined at all points a
except those with q (a) = 0 (ofwhich there are at most m). Near such a point a
the graph of g looks like (a), (b),(c),or (d),depending on the sign of p(a) and
whether a is a local maximum or minimum point for q or whether q is increasing
or decreasing in an interval around a.

I t
I I

I I
I I

a la
I
I
I

(a ) (b)
I
I
I
I
I
Q

a
I

(c) (d)
Since

q(x)p'(x) - p(x)q'(x)
g'(x) =

[q(x)]2
and qp' - pq' is a polynomial function of degree at most m + n, there are at most
m + n local maximum and minimum points. On the intervals between these points
and the points of discontinuity, g is either increasing or decreasing. The behavior of
g(x) for large x or large negative x has been discussed in Problems 5-32 and 5-36.
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23. (a) This follows from Problem 3-7 and the fact that the difference of the two
polynomial functions has degree at most max(m, n).

(b) If m > n, let fi be a polynomial function which has m roots, and let f (x) =

fi (x)+ x" and g(x) = xn

24. (a) The polynomial function f', of degree n - 1, has k roots, and no multiple
roots, since f"(x) =ý= 0 when f'(x) = 0. It follows from Problem 7-4 that n - 1

-k

is even.

(b) Since n - 1 - k is even, there is a polynomial function g of degree n - 1
with exactly k roots. Let f be a polynomial function of degree n with f' = g
(Problem 10-20).

(c) Let i = ki + k2 and let ai < ai_i < - -· < as be all the local maximum and
minimum points. On the intervals between these points f is either decreasingor
increasing. Since lim f (x) = oo, the function f must be increasing on (ai, 00).

x-oo
Thus ai must be a local minimum point. Consequently, f must be decreasing on
(a2,ai), which shows that a2 must be a local maximum point. Continuing in this
way we see that ak is a local minimum point if k is odd and a local maximumpoint
if k is even.

I I 1
a3 a2 ai

Now if n is even, then at must be a local minimum point, since lim f (x) = oo.
x--oo

Thus i must be odd, so ai, as, . . . , ai are the local minimum points, and a2, .. . , ai_ i

are the local maximum points. Consequently k2 = ki + 1. If n is odd, then a must
be a local maximum point, since lim f (x) =

-oo. The same sort of reasoning
xa-oo

then shows that ki = k2.

(d) The hypotheses imply that n-1-(ki+k2) is even. Let l = [n-1-(ki+k2)]/2,
and choose a polynomial function f of degree n with f' as in the hint. Since
(1+ x2)I > 0 for all x, it follows that f'(x) > 0 for X > aki+k2 and that the sign of
f' changes as we go from (a¿_i,a¿) to (a¿_2,a¿-i). Thus aki+k2, ki+k2-2, · - · E

local minimum points and akg+k2-1,Uki+k2-3, ... are local maximum points.
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26. Note that f is increasing. If f()1/2) > 0, then f(3/4) > M/4, so certainly

f > M/4 on the interval [3/4,1]. On the other hand, if f (1/2)5 0, then f (1/4)5
-M/4, so f 5 --M/4 on the interval [0,1/4].

27. (a) Apply the Mean Value Theorem to f - g: If x > a, then

f(x) - g(x) f(x) - g(x) - [f(a) - g(a)]
x-a x-a

= f'(y) - g'(y) for some y in (a,x)
> 0.

Since x - a > 0, it follows that f (x) - g(x) > 0. Similarly, if x - a < 0, then
f (x) < g(x).

(b) An example is shown below.

O

f

30. (a) The position at time t is

((vcos œ)t,
-16t2

+ (vsin a)t).

If cos a = 0, so that the cannon ball is shot straight up, then these points all lie on
a straight line. If cos a yl=0, then the set of all such points is equal to the set of all
points

(t,-

16t2
+ (tana)t ,

v cos a
so the path of the cannon ball lies on the graph of

f (x)=

-16x 2

+ (tana)x,
v cos œ

which is the graph of a parabola.

(b) The cannon ball hits the ground at time t > 0 when

0 =

-16t2

+ (vsin œ)t,
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or t = (vsin «)/16 (ofcourse we consider only a > 0). It has then traveled a
horizontal distance of

v sinœ
d(a) = (vcosa) ·

16
v2 SÏnŒ COS Œ

16
Now d(œ) is a maximum at that œ for which

0 = d'(a) = [cos2a - sin2 œL16
so tana = ±1. Since only positive a are considered, a is a 45° angle.

31. (a) Such a function f is pictured below. As an explicit example we can take
f (x)+ (sinx2)/x. Then lim f (x) = 0, but

xwoo

2x2 Sin X2
__ SÎÐX2

f'(x) =

x
2

2 _

SÏRX
= 2 sin x ,

x
so lim f'(x) does not exist.

XMOO

(b) Let l = lim f'(x). If l < 0, then there would be some N such that |f'(x)-l| <

|l||2 for x > N. This would imply that f'(x) > |l||2. But that would imply, by
the Mean Value Theoæm, that

(x - N)Il|f(x) > f(N)+ for x > N,
2

which would mean that lim f (x) does not exist. Similarly, lim f'(x) cannot be
x-+oo xwoo

< 0.

(c) Let l = lim f"(x). If I > 0, then, as in part (a), we have lim f'(x) =

x->oo x-oo
oo. Another application of the Mean Value Theorem shows that lim f(x) = oo,x-oo
contradicting the hypothesis. Similarly, lim f"(x) cannot be < 0.

X-¥OO
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32. If g(x) ¢ 0 for all x in (a,b), then the function h(x) = f(x)/g(x) is differen-
tiable on (a,b), and by hypothesis

g(x) f'(x) - f(x)g'(x)h'(x) 0.
[g(x)]2

This means that f/g is constant on (a,b), so f = c - g on (a, b) for some c ¢-
0. Since f and g are continuous it follows that f(a) = c - g(a), so g(a) = 0,
contradicting the hypothesis.

33. We have
f (y) - f (x)f'(x) = lim .

Now
f (y) - f (x)

_
n-i

y - x
and lim |x - y|"¯! = 0, since n - 1 > 0. Consequently f'(x) = 0 for all x, so f

yax
is constant.

34. (a) Since |f (x) - f (x+ h)| 5 Clh|", it follows that lim f (x+ h) = f (x).h->0

(b) Given e > 0, choose ô = eija/C. Then for all x and y in the interval with
|x-y|<8wehave

C(Ega «

[f(x)- f(y)|SClx-y|"< =e.

C

(c) If f is differentiable at x, then
. f(y) - f(x)hm = f'(x),

y->x y - x

so for all y in some interval around x we have

If (y) - f (x)
- f'(x) < 1,

y - x
hence

If(y) - f(x) < 1+ |f'(x) |,
y

-x

|f(y)- f(x)| 5 (1+ |f'(x)|)|y-x|,
so we can choose C = 1 + f'(x)|. (Actually, we can choose C = e + |f'(x)| for
any e > 0.) The converse is not true, e.g., f (x) = |x|.
(d) No, because the derivativef', and hence the required C, may not be bounded
on [a, b]. For example, f (x) = x2 Sin 1/x2 on [0, 1].

(e) Same proof as Problem 33.
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35. Let
aix2 anxn+1

f(x)=aox+ +---+ .

2 n+1
Then f (0) = 0 and f (1) = 0 by hypothesis. Rolle's Theorem implies that for some
x in (0,1) we have

O = f'(x) = ao + aix + + anx".

36. If fm(Ko) = fm(xi)= 0 for xo < xi in [0,1], then f,'(x) = 0 for some x
which is in (xo,xi), and hence satisfies O < x < 1. But

frn'(x)= 312 - 3 = 3(x - 1),

so fm'(x)= 0 only for x = ±1.

f2 Î

37. Problem 7-11 shows that there is at least one x. Suppose there were two, xo <

xi. The Mean Value Theorem, applied to [xo,xi], would imply that

f (xi) - f (xo) xi - xof'(x) - - - 1
xi - xo xi - xo

for some x in [xo,xi], contradicting the hypothesis.

38. (a) Clearly f has at least two zeros, in fact at least two zeros in [-1, 1], since
f (0)< 0 while f (±1) > 0. If f had more than two zeros, then f' would have at
least two zeros. But

f'(x) = 2x + sinx

and this is an increasing function, since

f"(x) = 2 + cos x > 1 for all x.
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(b) We have f(0) < 0, while f(x) will be > 0 for large enough jx|, since |x sinx|
is small compared to 2x2 and Icos2x| 5 1. In fact, writing

f(x) = x(2x - sinx) - cos2x,

and noting that 2x - sin x > 1 for x > 1, we see that f (x) > 0 for x > 1, and also
for x <

-1,

since f is even. So f has at least two zeros in [--1, 1], and no zeros
outside of [-1, 1]. If f had more than two zeros, then f' would have two zeros in
[-1, 1]. But

f'(x) = 4x - sin x - x cos x + 2 cos x sin x
= 4x - sin x - x cosx + sin 2x

and this is increasing on [-1, 1], since

f"(x) = 4 - 2 cos x + x sin x + 2 cos 2x

which is > 1 on [-1, 1], since x sin x > 0 on [--1, 1], while |cos x|, | cos 2x j 5 1.

39. (a) Suppose that f"(x) < 4 for all x in [0,1/2]. Then, by the Mean Value
Theorem, for all x in [0, 1/2] we have

f'(x) - f'(0)
= f"(x') for some x' in [0,x]

x - 0
< 4,

so f'(x) < 4x. Applying the Mean Value Theorem again, we have

f (x)- f (0) = f'(x') for some x' in (0,x)
x - 0

< 4x' < 4x,

so f(x) <4x2. Consequently f(1/2) < 1/2.
The same sort of analysis can be applied to f on [1/2, 1] if f"(x) <

-4

for
all x in [0,1/2]. It is a little more convenient to introduce the function g(x) =

1 - f (1 - x), which satisfies g(0) = 0 and g"(x) = - f"(1 - x) < 4 for x in
[0,1/2]. As we have just shown,

1/2 > g(1/2) = 1 - f (1/2),
so f(1/2) > 1/2, contradicting the result found before.

(b) Note first that we cannot have f"(x) = 4 for 0 < x < 1/2 and also f"(x) =
-4

for 1/2 < x 5 1, since this would imply that f'(x) = 4x for 0 5 x 5 1/2 and

f"(x) =
-4x

for 1/2 5 x 5 1, in which case f"(1/2) would not exist. On the
other hand, if we have f"(x) 5 4 for all x in (0, 1/2) but f"(x) < 4 for at least
one x, then we have f'(x) < 4x for at least one x, and consequently for all larger x
in (0,1/2), and therefore f (x) < 4x2 for these x, so that f (1/2) < 1/2; if we also
had f"(x) >

-4

for all x in (1/2, 1), then f(1/2) > 1/2, a contradiction.
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40. If g(x) = f(xy), then

g'(x) = y - f'(xy)
1 1

=y--=-= f'(x).
xy x

So there is a number c such that g(x) = f (x)+ c for all x > 0. Now

f (y) = g(1) = f (1)+ c = c,

so g(x) = f(x) + f(y).

41. Suppose f(a) = f(b) = 0. If x is a local maximum point of f on [a,b], then
f'(x) = 0 and f"(x) 5 0; from the equation

f"(x)+ f'(x)g(x) - f(x)=0
we can conclude that f (x) < 0. Similarly, f cannot have a negative local minimum
on (a,b).

42. If f (x¿)= 0 for xi < x2 < · - - < x,41, then f'(x) = 0 for some x in each of
the n intervals (x¿,x¿÷i). Consequently f"(x) = 0 for n - 1 numbers x, etc. (In
other words, we are all set up for a proof by induction.)

43. If x is one of the x¿, then f(x) - P(x) = 0 = Q(x),so we can choose any c.
Otherwise, let

F(t) = Q(x)[f (t) - P(t)] -- Q(t)[f (x) - P(x)].

Then for i = 1, ..., n + 1 we have

F(x¿) = 0, since f(x¿) - P¿ = 0 and Q(x¿)= 0

and also
F(x) = 0.

By Problem 42, we have F(n+1)(c) = 0 for some c in (a,b). That is,

O= Fí"**)(c) = Q(x)[f(n+1)(c)-0]

- (n+1)![ f(x) -- P(x)].

45. This is a trivial consequence of the Mean Value Theorem because if we define

lim f (y), x = ayea+

g(x)= f(x), a<x<b
lim f (y), x = b,

yeb¯
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then g is continuous on [a,b] and differentiableon (a,b) and g'(x) = f'(x) for x
in (a,b), so there is some x in (a,b) with

g(b) - g(a)
f'(x) = g'(x) = .

b - a

46. We have
[f(b)- f(a)]g'(x)= f'(x)[g(b)-g(a)].

If g'(x) = 0, then f'(x)[g(b)- g(a)] = 0. But this contradicts the assumption that
g(b) ¢ g(a), and the fact that f'(x) ¢ 0 (sinceg'(x) = 0).

47. Let
h(x)= f(x)g(b)+g(x)f(a)- f(x)g(x).

Then
h(a) = h(b) = f (a)g(b),

so by Rolle's Theorem there is some x in (a,b) with

0 = h'(x) = f'(x)g(b)+ g'(x) f (a) - f'(x)g(x) - f (x)g'(x),
or

f'(x)[g(b) - g(x)] = g'(x)[ f (x) - f(a)].
Since g'(x) ¢ 0 for all x in (a,b), we also have g(b) ¢ g(x) for x in (a,b)
(otherwiseRolle's Theorem, applied to the interval [x,b], would imply that g'(x) =

0 for some x' in (x,b).)

50. Since g(0) = 0, and g is continuous at 0, we have lim g(x) = 0. Therefore, by
l'Hôpital's Rule

f'(0) = hm = hm -

x->0 X x->0 X

. g'(x) g(x) - g'(0) 1 17
= hm = lim =

-g"(0)

= -.

x-vo 2x x-o 2x 2 2
(The limit lim g'(x)/2x could also be found by l'Hôpital's Rule.)

x->0

51. (a) Use exactly the same proof as for l'Hôpital's Rule, but consider only x in
(a,a + 8) or in (a - 8, a), respectively.

(b) Again the proof of l'Hôpital's Rule will work, almost verbatim. (It is tempt-
ing to apply l'Hôpital's Rule to g/ f: Since lim g'(x)|f'(x) = 0, it follows that

x->0
lim g(x)/f(x) = 0. Unfortunately, this implies only that lim |f(x)/g(x)| = oo.)
x->a x->a
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(c) Since lim f(1/x) = lim f(x) = Oand lim g(1|x) = lim g(x) = 0,
x 04 X->DO X->0+ X->DO

part (a)implies that

f (x) . f (1/x)
-(1/x2)

f'(1/x)lim = hm ) = lim
x-moo g(x) x4o+ g(1/x x-o+

-(1/x2

g'(1/x)
f'(x)

= lim = l.
x-voo g/(x)

(d) Similar to part (c),using the case x
-> a* of part (b)instead of part (a).

52. (a) For any e > 0 there is some a such that

f'(x) -l

<e forx:>a.
g'(x)

This means, in particular, that g'(x) ¢ 0 for x > a; it follows that g(x) - g(a) ¢ 0
for x > a (byRolle's Theorem). Therefore the Cauchy Mean Value Theorem can
be written in the form

f (x) - f (a) f'(x')
= for some x' in (a,x).

g(x) - g(a) g'(x')

Since x' > a, the desired inequality follows.

(b) We have

f (x) f (x) - f (a) f (x) g(x) - g(a)

g (x)
¯

g(x) - g (a) f (x) - f (a) g (x)
'

where f (x)- f (a) ¢ 0, g(x) ¢ 0 for large enough x, since lim f (x) = lim g(x)
xsoo x-oo

= oo. These limits also imply that

f(x) g(x)-g(a)
lim = lim = 1.

x4oo f (x) - f (a) x oo g (x)
It follows that f (x)/g(x)can be made as close to [f (x) - f (a)]|[g(x) - g (a)] as
desired by choosing x large enough. Together with part (a),this shows that

If (x)- - l < 2e for sufficiently large x.g(x)

53. One other form of l'Hôpital's Rule will be used in later problems: If lim f (x)
xwoo

= lim g(x) = oo and lim f'(x)/g'(x) = oo, then lim f (x)/g(x) = oo.
x-+oo x-voo x-+oo

To prove this, apply Problem 52 to g/ f: Since lim g'(x)|f'(x) = 0, we have
x-oo

lim g(x)/f(x) = 0. This implies (aswe remarked in the solution to Problem 51)
x-+oo
that lim |f (x)/g(x)\ = oo. Since lim f (x) = lim g(x) = oo, we can conclude

x-voo x-÷oo x->oo
that lim f(x)/g(x) = oo.X->OO



Chapter 11 145

54. (a) Since a is a minimum point for f on [a,b], for all sufficiently small h > 0
we have

f (a+ h) - f (a) > 0;
h

¯

this implies that f'(a) > 0. The proof that f'(b)
_< 0 is similar.

(b) Part (a)shows that we cannot have the minimum of f at a or at b, since we are
assuming that f'(x) < 0 and f'(b) > 0. So the minimum occurs at some point x
in (a,b). Then f'(x) = 0.

(c) Let g(x) = f (x)- cx. Then g'(a) = f'(a) - c < 0 and g'(b) = f'(b) - c > 0.
So by part (b),O = g'(x) = f'(x) - c for some x in (a,b).

55. (a) A simple modification of the proof of Theorem 7 shows that if lim f'(x)x-va+

exists, then
f(a+h)- f(a)lim f'(x) = lim = f'(a).

x-a+ hoo+ h
Similarly, if lim f'(x) exists, then lim f'(x) = f'(a). So if both one-sided

X-+0¯ I-ka¯

limits existed, f' would be continuousat a.

(b) Suppose,for example, that lim f'(x) = oo. This means that f'(x) > f'(a)+1x-÷a+
for all x > a sufficiently close to a. But by Darboux's Theorem, if xo is such an
x, then f' takes on all values between f'(a) and f'(xo)on the interval (a,xo), a
contradiction.

56. If f(a) ¢ 0, then continuity of f implies that f = |f| or f = - f| in some
interval around a, so f is differentiableat a. If f (a) = 0, then a is a minimum
point for |f|, so |f|'(a) = 0. This means that

|f(a+h)| - If(a)|0 = lim
h-+o h

|f(a+h)|= lim .

hoo h
This equation also says that f'(a) = 0.

57. (a) Let f (x) = x" + yn _ n. If f (xo)= 0 for some xo ¢ 0, then Rolle's
Theorem would imply that

0 = f'(x) = nxn-1 - n(x + y)"¯I for some x in (0,xo) or (xo,0).

But this means that xn-i n-1 for y ¢ 0, which is impossible, since
g(x) = x"-I is increasing (n - 1 is odd).

(b) Now we have f(0) = f(-y) = 0. If f were zero at three points a < b < c,
then Rolle's Theorem could be applied to [a,b] and [b,c] to prove that there are
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two numbers x with

0 = f'(x) = nxn-1 - n(x + y)"¯I·

but this equation holds only for x =
-(x

+ y) (Problem 1-6).

58. The tangent line through (a,a") is the graph of

g(x) = nan-1(x - a) + an

= nan-1x + (1 - n)an

If g(xo) = f(xo) for some xo ¢ a, then Rolle's Theorem may be applied to g - f
on the interval [a,xo], or [xo,a]:

0 = g'(x) - f'(x) = nan-i - nxn-1 for some x in (a,xo) or (xo,a).

This is impossible,since x ¢ a and n - 1 is odd, so an-1 g yn-i

59. The tangent line through (a, f (a))is the graph of

g(x) = f'(a)(x - a) + f (a)
= f'(x)x + f (a) - af'(a).

If g(xo) = f (xo)for some xo ¢ a, then

0 = g'(x) - f'(x) = f'(a) - f'(x) for some x in (a,xo) or (xo,a).

This is impossible, since f' is increasing.

60. Since
xf'(x) - f (x)

it suffices to show that
xf'(x) - f (x) > 0,

or
f (x)f'(x) > - for x > 0.

x
Now the Mean Value Theorem, applied to f on [0,x], shows that

f (x) f (x) - f (0)
-

- - f'(x') for some x' in [0,x].
x x - 0

< f'(x), since f' is increasing.

61. Let g(x) = (1+ x)" - (1+ nx). Then g(0) = 0, but

g'(x) = n(1 + x)n-1
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Since n - 1 > 0 this means that
g'(x) < 0 for

-1

< x < 0,
> 0 for x > 0.

Thusg(x)>0for-1<x<0and0<x.

62. (a) 0 is actually a minimum on all of R, since f (0) = 0 and f (x) > 0 for
all x.

(b)
h4 SIH2(1/h)

f'(0) = lim = 0,
hoo h

and
f'(h) = 4h3 sin2(1/h) = 2h'sin(1/h) cos(1/h) for h

·¢

0.

So
. 4h3 sin2(1/h) - 2h2 sin(1/h) cos(1/h)

f'(0) = hm
hoo h

= 0.

63. (a) Since f' is continuous, f'(x) > 0 for all x in some interval around a, so f
is increasing in this interval.

(b) We have
1 1g'(x) = 2x sin - - cos -.

x x
So g'(x) = 1 when cos I/x = 1 (andconsequently sin 1/x = 0), and g'(x) =

-1

when cos 1/x =
-1.

(c) We have f'(x) = a + g'(x), so f'(x) > 0 when g'(x) = 1, and f'(x) < 0
when g'(x) =

-1.

64. (a) We have

g(y) =
2 sin y

- cos y,
y

SO
2y cos y - 2 sin yg'(y) =

2 # SÎH f.
y

So if g'(y) = 0, then

0 = 2y cos y - 2 sin y + y2 sin y,

or
2 sin y - y2 sin y 2 - y2

(1) cos y (siny) .

2y 2y
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Hence
2 sin y 2 - y2

(2) g (y) = - (siny)
y 2y

(22 - y2
= (siny) - -

y 2y
. 2 + y2

= (smy) .

2y

(b) Moreover, from (1)we have

1 - sin y = cos y
- à2 B ,

so
1 4y2sin2y -

,

(2-y2
2¯4+y4

1+
2y

so, by (2),
2 + y2

|g(y)| = | sin y| -

2y

|2y| 2+ y2 2+ y2

4 + y4 |2y| 4 + y4

(c) We have
f'(x) = 1 + g(1/x).

Now we clearly have g(y) < 0 for arbitrarily large y (sinceg(y) is practically
- cos y for large y), so for arbitrarily large y we have

2 + y2
g(y) < - <

-1

4 + y*

by part (b). Thus f'(x) < 0 for arbitrarily small x, while we also have f'(x) > 0
for arbitrarily small x.

(d) We have
f'(x) = œ + g(1/x).

For sufficiently large y we have g(y) >
-a. So for sufficiently small x we have

f'(x) > 0.

65. (a) If the minimum of f on [b, 1] occurred at some c with b < c 5 1, then
f would clearly not be increasing at c, since we would have f (x) ;> f (c) for all
x < c sufficiently close to c. Now if 0 < a < b < 1, then the minimum of f on
[a, 1] is a, so f (a) 5 f (b).To obtain the strict inequality f (a) < f (b),pick some
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a' with a < a' < b such that f (a') > f (a) (thisis possible since f is increasing
at a); then f (a) < f (a') 5 f (b).

(b) Let a = sup Sb. If b 5 y < a, then there is some x in Sb with y < x. Therefore

f (y)> f (b).Moreover, since f is increasing at œ, we have f (a) > f (x)for x < œ

sufficiently close to a, so f(a) > f(b). This shows that œ is actually in supSb.
Now if a < 1 there would be a 8 > 0 such that f (x) > f (a) for a < x < a + 8.
This shows that all such x are in Sb, contradicting the fact that a = sup Sb. So
œ = sup Sb = 1. So f (y)2 f (b)for all y à b.

(c) For sufficiently small h we have

f (a + h) > f (a) if h > 0,

f(a+h)< f(a) if h<0.

This implies that
f(a+h)- f(a)

> 0,
h

which implies that
f (a + h) - f (a)f'(a) = lim > 0.

hoo h

(d) Since f'(a) > 0, for sufficiently small h we have

f (a k h) - f (a) > 0.
h

This implies that f (a + h) > f (a) for h > 0 and f (a+ h) < f (a) for h < 0.

(e) Part (d)implies that f is increasing at a for all a in [0,1], so part (a)implies
that f is increasing on [0,1].

(f) If e > 0, then g'(a) = f'(a) + e = e > 0 for all a in [0,1], so g is increasing
on [0, 1] by part (e),so f (1)+ e > f (0),or f (1) - f (0) >

-e. Similarly, h is
increasing on [0,1], so e - f (1) > - f (0),or f (1) - f (0) < e. Thus |f (1) -

f (0)| < E. Since this is true for all s > 0, it follows that f (1) = f (0). (Of course,
the same argument, applied to [a,b], for 0 5 a < b $ 1, shows that f (a) = f (b).)

66. (a) Suppose f is not constant,so that f (a')¢ f (b')for somea' < b' in [a,b].
To be specific, say f (a') < f (b'). By Problem 8-4(b), there are a' $ c < d 5 b'
with f (c) = f (a') < f (b') = f (d) and f (c) < f (x) < f (d) for all x in (c,d).
But then a' is not a local riaximum for f.
(b) We can assume f (ao)< f (x) < f (bo)by Problem 8-4(b) [renamingc to be ao
and d to be bo]. By Theorem 1 of the Appendix to Chapter 8 there is some k > 2
such that

f (bo)- f (ao) bo - ao
|f (x) -- f (y)| < for |x - y | 5 & = .

2 k
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Let c¿ = ao + iô. Since

f (bo)- f (ao)f (ci) - f (ao)<
2

f (bo)- f (ao)f (bo)- f (ck-1) 2
we must have

f(be) - f(ag) •

f(ci) < f(ca_i).
I I 1 I

ao c1 ck-1 be

Consequently there is some i with 1 5 i < k - 1 such that f (c¿)< f (ci+1).Let
c¿ = ai and ci+1 = bl. Then ao < ai < bi < be and f (ai) < f (bi). Moreover,
we can assume that f(ai) < f (x) < f(bi) for all ai < x < bi [useProblem 8-4(b)
again].

Continuing in this way, we find intervals [as,b,] with a, < an+1 < b,4i <

b,, and f (as) < x < f (ba)for a, < x < bn; moreover, we can assume that
bn - an < 1/n. Now let x be in all [an,bn]. Then every interval around x contains
some [ax,bk],with f(xk) < f(x) < f(bk);hence x is not a local maximum or
minimum.

67. (a) The local strict maximum points are the rational numbers.

(b) Let x be a point in all intervals 1, = [an,bn]. Since the points x, are chosen
to be distinct, x = xn for at most one n. Since x is a local strict maximum point,
there is a 8 > 0 such that x is a strict maximum point for f on (x - 8, x + 8). But
In is contained in (-x - 8, x + 8) for all sufficiently large n; choose such an n for
which x ¢ xn. Then f (x) > f (xn),since In is contained in (x - 8, x + 8), while

f(xn) > f(x), since x is in In-
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1. (i) f"(x) = 6x - 2 > 0 for x > 1/3.

f convex
f concave

-4/3

I/3 2

inf lectiot
point

(ii) f"(x) = 20x3 + 1 > 0 for x > -1|S.

f convex

inflection
point

f concave

151
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(iii) f"(x) = 36x2 - 48x + 12 = 12(3x2 - 4x + 1) = 12(3x - 1)(x - 1) > 0 for
x<1/3orx>1.

f convex

f convex f concove
inf lection points

I/3 I

(iv) We have
-(x"

+ x + 2)220x + (5x' + 1)2(x5 + x + 1)(5x + 1)
f"(x) =

(x5 + x + 1)4
2(x5 + x + 1)[(5x4 2 - ÎÛX3(X5 #X # Î)

(x5+ x + 1)4
2

= [15x"- 10x3 + 1].
(xs+x+1)3

To determine the sign of f"(x) it suffices to determinethe sign of

g(x) = 15x" - 10x" + 1.

Now
g'(x) = 120x' - 30x2 = 30x2(4x" - 1¾

So g'(x) = 0 for x = 0 or x = . We have g(0) = 1 and

g( )=( )' 15-
-10

+1

<0,

since > 4/25. So g attains it (negative)minimum value at . Moreover,
since h (x) = 4x" - 1 is increasing, g'(x) > 0 for x > and g'(x) < 0 for
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x < . So g is decreasingon (-oo, and increasingon [ , oo).

5

I I
I

Consequently, g has two zeros, both in [0,1], since g(1) > 0. It follows that if
a is the unique root of x5 + x + 1 = 0, then f"(x) < 0 for x < a, but f"(x) > 0
for all x > a except thosex in a certain interval contained in (0,1). Thus the graph
of f is convex on (a, oo), except for a bump lying over some interval contained in
(0,1).

I
f convex

I
I f concave

| inflection f convex
a points

f

(v) We have

(x2+ 1)2(-2 - 2x) - (1 - 2x - x2)2(x2 + 1)2x
f"(x) =

(x2+ 1)4
2 2

= [x2+ 3x2 - 3x - 1] = (x - 1)(x2 + 4x + 1)
(x2+ 1)3 (x2+ 1)3

=

(x2 1)3(x - 1)(x- [-2+ Ã ])(x- [-2- Ã ]),
so f"(x) > 0 for

-2

- Á < x <
--2

+ Á and x > 1.



154 Chapter 11, Appendix

i+Œ f concove

inflection point

f conven
inflection

-2- -I-Ñ _

point

fc

nflection
point f convex

(vi)
(x2- 1)2(-2x) + (1+ x2)2(x2 - 1)2x

f"(x) =

(x2- 1)4
2x

= [x2+ 3],
(x2_ 1)3

so f"(x) > 0 for x > 1 and
-1

< x < 0.

I

f convex f convex

inflection point
I

I I
I \
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2. If f (0)= 0, the graph looks like the following.

f convex

f convex

f convex

3. Two such functions are shown below.

f I

I I i I I
I I I I I
I I I I I

4. According to Problem 4-2, the points in (x,y) are precisely those of the form
tx + (1 - t)y for 0 < t < 1. Definition 2 thus shows that f is convex if and only if

f (tx + (1 - t)y) - f (x) f (y) - f (x)
tx+(1-t)y-x y-x
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which is equivalent to

f (tx + (1 - t)y) < tf(x) + (1 - t) f(y).

5. (a) We have

g(tx + (1 - t)y) < tg(x) + (1 - t)g(y) since g is convex,

so

f(g(tx + (1 - t)y) < f(tg(x)+ (1 - t)g(y)) since f is increasing
< tf(g(x)) + (1 - t) f(g(y)) sicne f is convex.

Thus, fog is convex.

(b) Let f (x) = 1 + x2, x > 0 and g(x) = 1/x, x < 0.

(c) We have

(f og)'= (f'og)g'
(f og)"= (f"og)g'2+(f'og)g".

Since f", g", g'2 > 0 it followsthat (fo g)" > 0 if f' > 0.

6. (a) Since f is convex, f' is increasing. If f' isn't either always negative or
always positive, let c = sup{x : f'(x) < 0}. Then f' < 0 to the left of c and

f' > 0 to the right of c. [Actually, f' will be continuous, see Problem 10; so c can
be described more simply as the zero of f'.]
(b) For x < y consider

(fo g)'(x) = f'(g(x)) - g'(x),

(fo g)'(y) = f'(g(y)) g'(y).

Suppose first that g is increasing. Then

0 5 g'(x) < g'(y) since g is increasing and convex.
Moreover, g(x) < g(y) implies that

0 5 f'(g(x)) < f'(g(y)) since f is increasing and convex.

It follows that
f'(g(x)) - g'(x) < f'(g(y)) - g'(y).

Next suppose that g is decreasing. Then
g'(x) < g'(y) 5 0,

and g(x) > g(y) implies that

f'(g(x)) > f'(g(y)) >_ 0.

It again follows that f'(g(x)) · g'(x) < f'(g(y)) · g'(y).
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Finally, suppose that g is decreasingto the left of c and increasing to the right
of c. If x < y 5 c or c 5 x < y, then we have already shown that f'(g(x))-g'(x)<

f'(g(y)) - g'(y). If x < c < y, then

f'(g(x)) - g'(x) < f'(g(c)) - g'(c) < f'(g(y)) - g'(y),

so we still have f'(g(x)) · g'(x) < f'(g(y)) - g'(y). Thus, (fo g)' is increasing.

(c) Lemma. Suppose f is convex on an interval and a < b are points in this interval.
If f (a) < f (b),then f is increasing to the right of b; and if f (a) > f (b),then f
is decreasing to the left of b.
Proof Consider the case f (a) < f (b)(theproof in the other case is similar or one
can apply this first case to g(x) = f(-x)).

If b < d, then the definition of convexity shows immediately that we cannot have
f (d)5 f (b).Moreover, if b < di < d2, then the same argument shows (sincewe
now know that f (b)< f (di))that f (di) < f (d2).Thus f is increasing on [b,oo).

With the aid of this lemma we can now prove the theorem. Since f is not constant,
there is some a < b with f (a) ¢ f (b).We consider only the case f (a) < f (b).
We already know from the lemma that f is increasing to the right of b. Suppose now
that the minimum of f on [a,b] occurs at some c in (a,b). Then f is decreasing
to the left of a by the lemma. Moreover, if a' is any number with a < a' < c,
then we must have f (a') > f (c) (ifwe had f (a') = f (c),then f (x) < f (c) for
x in (a', c), contradicting the fact that c is the minimum point). So the lemma also
implies that f is decreasingto the left of a' for all such a'. This shows that f is
decreasing to the left of c. Similarly, f is increasing to the right of c.

On the other hand, suppose that the minimum of f on [a,b] occurs at a. The
same sort of reasoning as before shows that f is increasing to the right of a. There
are then two possibilities:

It may happen that f(d) > f(a) for some d < a. In this case, the minimum of
f on [d,a] occurs at some c with d < c 5 a. The same reasoning as before shows
that f is decreasing to the left of c and increasing to the right of c.

It may also happen that f (d) < f (a) for all d < a. Then we may apply the
results already proved (fora < b) to d < a: If the minimum of f ever occurs at
a point c in (d,a), then f is decreasing to the left of c and increasing to the right
of c, but if the minimum is always at d, then f is increasing to the right of d for all
d, so f is increasing.

7. Choose x > 0 so that f (x) < f (0).The Mean Value Theorem implies that there
is some xo in (0,x) with f'(xo) < 0. If we had f'(y) 5 f'(xo)for all y >_ xo, then
for all x > xo we would have

f (x) - f (xo)5 f'(xo)(x - xo),

which would imply that f (x)is eventually negative (sincef'(xo) < 0). Therefore
f'(xi) > f'(xo)for some xi > xo. This implies that the minimum of f' on [0,xi]
occurs at some x in (0,xi). Then f"(x) = 0.
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f

I I I I
XO I NO AI

f'

8. (a) This follows from Problem 4 with t = 1/2.

(b) The assertion is true for n = 1, i.e., k = 1/2. Suppose that for some n it is
true for all x and y. If k = m/2n+1 is in lowest terms, then k is odd. Consequently
ki = (m - 1)/2"** and k2 = (m+ 1)/2n+i can be expressed in the form a/2n,
so the assertion is true for ki and k2. Notice also that k = (ki+ k2)/2. From the
result for ki and k2, and the assertion for n = 1 applied to x' = kix + (1

-kg)y

and
y' = k2x + (1

-k2)y

we obtain

(x'+ y+ f (x') f (y')f (kx+ (1 - k)y) = f < +
2 2 2

ki f(x)+ (1 - ki) f(y) k2f(y) + (1 - k2)f(y)< +
2 2

= kf (x)+ (1 - k)f (y).

(c) Let 0 < t < 1. For any e > 0 there is a number k of the form m/2" which is
so close to t that

|f(kx+(1-k)y)- f(tx+(1-t)y) <s,

[kf(x)+(1-k)f(y)]-[tf(x)+(1-t)f(y))] <s.

Then

f (tx+ (1 - t)y) < f (kx+ (1 - k)y) + e
<kf(x)+(1-k)f(y)+s

< tf (x)+ (1 - t( f (y)+ 2s.
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Thus f(tx + (1 - t)y) 5 tf(x) + (1 - t) f(y). The following diagram shows that
if strict inequality holds for even one t, then it holds for all t (byapplying the weak
inequality to x and tx + (1 - t)y or to tx + (1 -- t)y and y). But we have strict
inequality for t of the form m/2n, so we must have strict inequality for all t.

/ the graph of f cannot
/ lie above this line

tx+(I-t)y
I I I
x y

9. (a) Let xa and xp be the smallest and largest of the x¿. Then

xa = Pixa 5 Pixi 5 Pixp = Ip-

i=1 i=1 i=1

n
(b) Part (a),applied to p1/t, . -· , Pn-i/t, shows that (1/t)E p¿x¿ lies between the

i=1
smallest and largest of xi, ..., xn-1, so it certainly lies between the smallest and
largest of xi, ..., xn-

(c) Jensen's inequality is true for n = 1. Suppose it is true for n - 1. Then by
Problem 4 we have, since Pn = 1 - 1,

f p¿x¿ = f t - (1/t) p¿x¿ + (1 - t)xn
i=1 i=1

s tf (p¿|t)x¿ + (1 - t) f(xn)
i 1

5 t f (xi)+ Paf (In)

i=1

= p¿ f (xg).
i=l

(The same sort of proof shows that strict inequality holds for n > 1 (beginby
checking that strict inequality holds for n = 2).)
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10. (a) As the proof of Theorem 1 shows, [f (a + h) - f (a)]|h is decreasing as
h -> 0*, so

f (a + h) - f (a) . f (a + h) - f (a)f;(a) = lim = mf : h > 0 .

hoo+ h h

This inf exists because each quotient [f (a+ h) - f (a)]/h for h > 0 is greater than
any one such quotient for h < 0. Similarly,

(f(a+h)- f(a)fí(a) = sup : h < 0 .

h

The relation fi(a) 5 f‡(a) is obvious from the previous considerations. The
functions f‡ and fi are increasing, because if a < b, then (as in the proof of
Theorem 1; see Figure 6 of the text) we have

f (a + (b - a)) - f (a) f (b+ (a - b)) - f (b)fí(a) 5 f‡(a) <
b-a a-b

(b) If b < a, then as in part (a)(witha and b interchanged) we have

f‡(b) < fí(a) 5 f‡(a).
If f‡ is continuous at a, then lim f‡(b) = f‡(a), so we musthave fí(a) = f‡(a).

boa
To prove the converse, we first show that f‡ will always be continuous on the

right, i.e.,
lim f (b)= f‡(a).

boa+

In fact for any e > 0 we can choose c > a so that

f (c) - f (a) < f‡(a) + s.
c - a

' I I I
a b c

Since f‡(a) exists, f satisfies lim f(b) = f(a) (asa matter of fact, f is con-baa+
tinuous at a even if f‡(a) does not exist; see Problem 11). So we can choose b > a
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close to a with f(b) as close to f(a) as desired. Thus we can choose b > a so that

f (c)- f (b) f (c)- f (a)< + e.c-b c-a
Therefore

f (c) - f (b)f‡(a) < f (b) <
c - b

f (c) - f (a)
c - a

< f((a) + 2e.

This shows that f‡ is continuous on the right.
It remains to show that if f‡(a) = f_'(a), then f‡ is continuous on the left at a.

Given e > 0, choose c < a so that

f (a) - f (c)f‡(a)-e= J'(a)-e< .

c-a

i I I
c b a

Then if c < b < a, the secant line through (b,f(b)) and (a, f(a)) lies between the
tangent line at a and the secant line through (c,f (c))and (a, f (a)),i.e.,

f (a) - f (c) f (a) - f (b)f‡(a) - e < < < f‡(b) < f‡(a).
c-a a-b

This shows that lim f‡(b) = f‡(a).
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11. (a) Let a be a point of the interval. Let s > 0. Pick some xo > a. Notice
that no matter what value f (xo)may have, the line segment between (a,f (a))and

(xo,f (xo))eventually lies below the horizontal line at height f (a) + e. Since the
graph of f must lie below this line on (a,xo), this shows that f (x) < f (a)+ s for
all x > a sufficiently close to a. A similar argument works for all x < a sufficiently
close to a.

f(a)+« ----------- -------

f(a)--

I I
Q Xg

It remains to show that f(x) > f(a) - e for all x sufficiently close to a. If
f (x) >_ f (a) for all x there is nothing to prove, so suppose that f (xo)< f (a) for
some xo with xo > a, say. Then we must have f (y) > f (a)for all y < a, because
of convexity, so all y < a certainly satisfy f (y) > f (a) - e. Moreover, if we pick
some yo < a, then the line segment between (yo,f (yo))and (a, f (a)) lies above
the horizontal line at height f (a) - e in some interval to the right of a. Since the
graph of f must lie above this line to the right of a, it follows that f (x) > f (a)- e
for all x > a sufficiently close to a.

f (a)--

f(a)-« ---------------- --

yo a
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(b) The following Figure shows the possible kinds of discontinuities on a closed
interval.

e

i l

12. (a) Clearly f is weakly convex on an interval if and only if for all a and b in the
interval,the line segment joining(a,f (a))and (b,f (b))lies above or on the graph
of f. If f is actually convex, then it clearly contains no straight line segments.
Conversely, suppose that f is weakly convex and its graph contains no straight
line segments. To prove f convex we have to show that the line segment joining
(a, f (a)) and (b,f (b))cannot contain even one point (x,f (x)) for a < x < b.

f(b)- - ,•

f(a)- - «'

I I I I

a x x' b

Suppose it did. Since the graph of f does not contain the entire line segment from
(x,f (x))to (b,f (b)),theremust be some x' in (x,b) such that the point (x', f (x'))
lies below this line segment. But then we easily see that (x,f (x)) lies above the
line segment from (a, f (a)) to (x',f (x')),contradicting the fact that f is weakly

convex.

(b) Theorem l'. If f is weakly convex and differentiable at a, then the graph of f
lies above or on the tangent line through (a,f (a))at all points. If a < b and f is
differentiable at a and b, then f'(a) 5 f'(b). Lemma. Suppose f is differentiable
and f' is nondecreasing. If a < b and f (a) = f (b), then f (x) 5 f (a) = f (b)
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for a < x < b. Theorem 2'. If f is differentiable and f' is nondecreasing, then f
is weakly convex. Theorem 3'. If f is differentiable and the graph of f lies above
or on each tangent line at every point, then f is weakly convex. Theorem 4'. If f
is differentiable on an interval and intersects each of its tangent lines in an interval,
then f is either weakly convex or weakly concave on that interval.

13. Suppose first that Ay is convex. Then for xi < x2, the points (xi, f (xi)) and
(x2,f (x2))are in Ay, so all points of the line segment between them are in Aÿ. But
this just means that all of these points lie above or on the graph of f, so f is weakly
convex.

Conversely, suppose that f is weakly convex, and let (xi, yi) and (x2,y2) be two
points of Ay, so that we have f (x¿)5 y¿.

(x , y1

y2) f

I I
X1 X2

Modifying Problem 4 in the obvious way, we have

f(txi + (1-t)x2) 5 f(xi)+ (1- t) f(x2)(*) for 0 5 ts 1.
5 tyi + (1 - t)y2

But every point of the line segment between (xi,71) and (x2,y2) is of tlie forrn

(txt+ (1 - t)x2, tyi + (1 - t)y2),

and (*)shows that these points are in Aÿ.
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1. (ii) f¯I(x) = x'l3 + 1. (If y = f-1(x), then x = f(y) = (y - 1)3, so
y = 1+ xl/33

(iv)

f(-x)'l2 x 5 0f¯'(x) =
'

(1 - x)I/3,
x > 1.

(If y = f¯¯'(x),then

f
-y2,

y > 0
x = f (y) =

1 - y3, y < 0.

Since
-y2

5 0 if y >_ 0 and 1 - y3 > 1 if y < 0, we have y = (-x)'l2 for x 5 0
and y = (1 - x)1/3 for x > 1.)

f
f *

f

(vi) f-1(x) = x - [x/2] for [x]even. (If y = f-1(x), then

x= f(y)=y+[y]
=y+n fornsy<n+1.

Thus
2n sx < 2n + 1,

and

y = x - n = x - [x/2].)

165
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I I

(Viii)
--1

+ 1 + 4x2
f-14 ) = 2x

, x ¢ 0

0, x = 0.

(If y = f-1(x), then x = f(y) = y/(1 -- y2). So xy2+ y - x = 0. If x = 0, then
y = 0. If x ¢ 0, then

-1+

1+4x2 1+4x2
y= or y=-1- .

2x 2x
The first possibility is the correct one, since x and y must have the same sign.)

I
f

.-- I

I I
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2. (i) f-1 is increasing and f¯ (x) is not defined for x 5 0.

f

(li) f-1 is increasing and f-1(x) is not defined for x > 0.

I

(iii)f¯' is decreasing and f¯ (x)is not defined for x 5 0.
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(iv) f-I is decreasingand f¯I(x) is not defined for x > 0.

I
f I

I
I

f

5. (b) If h(x) = 1+x, then g = hof, so g¯' = f¯1oh¯I,
so

g¯I(x) = f¯I(x-1).

It is also possible to find g¯I directly: if y = g-1(x), then x = g(y) = 1+ f(y),
so y = f¯!(x - 1).)

7. (ii) Any interval [a,b], since f is increasing.

(iv) Those intervals [a,b] which are contained in the interval (-oo,
-1- Ã ]or in

-1

+ E, oo) or in [-1+ n, oo), since these are the intervals on which f is
increasing or decreasing.

8. We have
1g'(x) = (f-1)r

f'( f-I (x))
= {1+ [f¯!(x)]3}'12

3 [f-1(x)]2(f¯!)'(x)g"(x) = -

2 {1+ [f-1(x)]3}i/2
3

= - [f¯I(x)]2

2
3

= - g(x)2.
2

9. Apply Theorern 5 to f¯*.
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10. (a) For f (y) to exist f'(y), f"(y), and f"'(y) must exist, with f'(y) ¢ 0.
Then

1
(f

-ipr

f'( f-I (x))
-1 Í"(Î-1

-ipr

(f )"(x)
[f'( f¯ (x))]2

- f"( f
-1

[f'(f-1 3

+ f"( f¯I (x)) - 3[f'( f (x))2
-1

/(X)

-[f'(f '(x))]3f"'(f¯I(x))+3f"(f-1
-i

2

[f'(f-I(x))]T

all exist (compareProblem 21), with (f-1)'(x) ¢ 0.

(b) Since we know that ©f¯I (x)exists, we can use Problem 10-17(a) to write

1 = Ð(f o
f¯I)(x)

= [Ðf(f-1
-1);

2
-1

f(f¯!(x)) _,

= + Ðf (x),[f'(f-1(x)) 2

or

Bf (x)=l -

.

[f'( f-1 x))]2

11. (a) Let f = g¯¯I, where g(x) =
-x"

- x. Notice that g is one-one, since
g'(x) =

-5x4

- 1 < 0, and that g takes on all values. So f is defined on R, and
for all x we have

x=g(f(x))=-[f(x)]*- f(x).
Moreover, f is differentiable, since g'(x) ¢ 0 for all x.

(b)
1

f'(x) = (g¯')'(x)= by Theorem 5
g'(g- (x))

1 1
g'( f (x))

-5[

f (x)]4_ g
°

(c) Differentiating both sides of
[f(x)]S+ f(x)+x =0

yields
5[f(x)]4.J/(x), r(x)+1-- 0
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so -1

f'(x) = .

1 + 5[f (x)]*

12. (a) f(x) = 1 - x2 and f (x) = - 1 - x2.

(b) There are no functions with this property.

(c) Let
gi (x) x <

-1

g2(x) = g(x) for - 1 < x < 1
gs(x) x > 1.

Then each gi is one-one. If f¿ = g|1, then each f¿satisfies [f¿(x)]3- 3f¿(x)= x.
The domain of

ft (-oo, 2)

f2 - is (-2, 2)

f3 )·
(To find y = f¿(x)= g,¯'(x) explicitly we would have to solve the equation x =

g(y) = y3 - 3y. This can be done, but only with great difficulty; see Chapter 25.)
It is not hard to see that any continuous function f satisfying [f (x)]3-3f (x) = x,

and defined on an interval, must be (partof) some f¿.For such a function f satisfies
g(f(x)) = x; this equation implies that f is one-one (Problem 3-23) and that f¯I

coincides with g on the domain of f-1. But the domain of f¯I is an interval, and
the only intervals on which g is one-one are contained in (-oo,

-1)

or (-1, 1), or
(1,oo).

13. (a) Differentiating both sides of [f (x)]2+ x2 = 1 yields

2f(x)J'(x)+2x=0,
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or X
f'(x) = - -.

f(x)

(b) This equation is true for
-x -x

f (x) = 1 - x2, in which case f'(x) ,

1-x2 Í(x)
and

x
-x

f(x) = - 1 - x2, in which case f'(x) - - .

1-x2 Í(X)

(c) We have
3[f (x)]2f'(x) - 3f'(x) = 1,

so 1f'(x) = .

3([f (x)]2_ g)

14. (a) Differentiating both sides of x3 + [f(x)]3 = 7 yields

3x2 + 3[f(x)]2f'(x) = 0,

6x +6 f (x)[f'(x)]2+ 3[f (x)]2 U(X) = Û,

or
2--x

f'(x) =

[f(x)]2'
- 2 - 2-x

-2x-2f(x)

f"(x) =
-

2

[f(x)]2
-2x[

f (x)]4- X4 f(X)

[f (x)]6

(b) For this f we have
1f'(-1) = - -

4
2·24-2-2

f"(-1) =

26
7
16

15. Differentiating both sides of 3x3 + 4x2f (x) - x[ f (x)]2+ 2[f (x)]3= 4 yields

9x2+8xf(x)+4x2f'(x)-[f(x)]2-2xf(x)f'(x)+6[f(x)]2 /(x)=0.
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At the point (-1, 1) we have

9-8+4f'(-1)-1+2f'(-1)+6f'(-1)=0

or
f'(-1) = 0.

So the equation of the tangent line is y = 1.

16. Consider a differentiable function f which satisfies

[f (x)]4 3 # Xf(X) = Î;

then

4[ f(x)]S f'(x)+3[f(x)]2f'(x)+ f(x)+xf'(x) = 0,
- f (x)f'(x) = .

4[f(x)]3+3[f(x)]2+x

19. (ii) ß¯l(3) =
-1,

since ß(-1) = h(0) = 3. So
1 1(ß¯*)'(3) ß'(ß¯I (3)) ß'(-1)

1
h'(0)

1
sin2(sin 1)

(The answer is not surprising, since the equation ß(x) = h(x + 1) implies that
ß-I = h

-1

- 1.)

21. As in Problems 10-19 and 10-31, the main difficulty is in formulating a reason-
able conjecture for the form of (f¯I)(k)(x). It is not hard to prove the following
assertion by induction on k: If f(k)

-l(x))

exists, and f'(f-1(x)) is non-zero,
then

(f¯')(k)(X) =

[f'( f
-1

m

for some integer m, where A(x) is a sum of terms of the form

[f'(f¯!(x))]m,... (i)
-1

m:

22. (a) Suppose f is increasing and g is decreasing, and f (a) = g(a). If a < b,
then

g(b) < g(a) = f(a) < f(b),
and similarly if b < a.
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(b) Appropriate functions f and g are shown below (tobe explicit we can take
g(x) = x and f(x) = [x]+ fx - [x](Problem 4-17)).

(c) Appropriate functions f and g are shown below. (Using the exponential function
from Chapter 18, we can define f(x) = e2 and g(x) =

-e2,

but at the moment
explicit definitions would be awkward.)

23. (a) The geometric idea behind the proof is indicated below: If f (a) > a, then
f (f (a)) = a < f (a). Since f (a) > a, and f (b) < b for some b (namely,f (a)),
it follows that f(x) = x for some x in [a,b].

(f(a),a)
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(b) Let f be any decreasing function on (---oo,a] which takes on all values à a,
and define

f (x), x 5 ag(x) =
f¯I (x), x à a.

(c) If f (x) < x, then x = f -I (f (x)) < f ¯I (x) = f (x),a contradiction. Simi-
larly, we cannot have f (x) > x.

24. The functions with this property are precisely the one-one functions, because
reflecting through the antidiagonal is the same as reflecting through the vertical axis,
then reflecting through the diagonal, and finally reflecting through the vertical axis
again.

If a more analytic proof is desired, notice that the reflection of (a,b) through
the antidiagonal is (-b,

-a).

Thus if (a, f (a)) and (b,f (b)) are two points on
the graph of f, we require that (- f(a),

-a)

and (- f(b),
-b)

should not have the
same first coordinate if a / b. In other words f (a) and f (b)must be different. So
f must be one-one.

25. (a) Since f is not increasing, there is some x < y with f (y) 5 f (x). Since
fisnondecreasing,ifx 5 z 5 y,then f(x) 5 f(z) 5 f(y) 5 f(x). So
f (x) = f (z)= f (y).
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(b) f (x+ h) > f (x) for h > 0 and f (x+ h) 5 f (x) for h < 0, so

f(x+h) - f(x) > 0
h

¯

for all h =/ 0, so f'(x) > 0.

(c) If y > x, then
f(y) - f(x) = f'(z) for some z in (x,y),

y - x
>_ 0

so f (y) > f (x). Similarly, if y < x, then f (y) 5 f (x).

26. (a) The idea behind the proof is indicated in the figure below. On the interval
[n,n+1], let g be the linearfunctionwith g(n) = f (n+ 1) and g(n+ 1) = f(n+2).

f

f

n n+1 n+2

(b) On the interval [n,n+1] let g be the linearfunction with g(n) = f (n+1)/(n+1)
and g(n + 2) = f(n + 2)/(n + 2).
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1. (a) Set s = x - a, so that x = a + s.

(b) The tangent line according to our new definition consists of all points

c(a) + s - c'(a) = (a,f (a)) + s - (1,f'(a))
= (a,f(a))+(s,sf'(a))= (a+s,f(a)+sf'(a)),

the sarne set of points obtained in part (a).

2. We have

f(t2 t2) t > 0
c(t) = (f (t),t2) -

'

(-t2, t2) t <; 0

and these points are all on the graph of h (x) = (xj, since
-t2

= t2. On the other
hand, if S(t) = t2, then our straightforward definition of c' gives

c'(0) = (f'(0), S'(0)) = (0,0),

since we have f'(0) = S'(0) = 0.

3. (a) Since u' ¢ 0 on the interval, u is one-one on the interval, so u¯I exists, and
each point

(u(t),v(t)) = (u(t),v(g-I (g(g))))
-1

is on the graph of vo
u¯I.

(b) We have

f' = (vo u¯I)' = (v' o
u¯I)

-
¯I)'

v' o u¯I

ul ou-l'

SO
v'(t)

f'(x) = f'(u(t)) = .

u'(t)

(c) Then

,, (u' o u¯I)(v' o u¯I)' - (v' o u¯I)(u' o u¯1),
f =

(u' o u-1)2

(u' o u-1)(,« , g-1) (pro g-1)(un o ,-1)

(u' o u-1) (u' o u¯l)

(no u-1)2

(u' o
u-I)(v"

o
u¯I) - (v' o u¯I)(u" o u¯I)

(u' o u-1)3

176
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so u'(t)v"(t) - v'(t)u"(t)
f"(x) = .

(u'(t))3

4. (i) Differentiating the equation x2/3 + f (x)2/3= 1 yields

2 2f'(x)+ = 03x1/3 3f (x)!!3
'

f (x)1/3
f'(x) = -

.

(ii) Problem 3(b) gives

3 sin2t cos t sin tf'(x) - - --

3cos2t(-Sint) COSt

for x = cos3t. Substituting this value of x into the equation x2/3 + y2/3 = 1 gives

cos t + f (x)2/3- L
f(x)'IS

= Ål-- cos2 t = sin t,

SO

f (x)'l3f'(x) = ¯

1/3
·

5. The square of the distance from P to (u(t),v(t)) is

(xo- u(t))2 + (yo- v(t))2,

which has it minimumat Ï when

(*) 0 = 2[xo - u(Ï)]- [--u'(i)]+ 2[yo - v(i)] - [-v'(i)].
If u'(i) ¢ 0, this can be written as

v'(i) yo - v(i)
- =

-1;

u'(i) xo - u(Ï)
thus the tangent line, with slope v'(Ï)/u'(Ï),is perpendicular to the line from P to
Q,with slope [yo- v(Ï)]/[xo- u(Ï)].

If u'(Ï)= 0, so that the tangent line is parallel to the first axis, then [sincewe
assumed that u'(Ï)and v'(i) are not both 0], (*) implies that yo - v(i) = 0, i.e.,
that the line from P to Q is parallel to the second axis, and thus perpendicular to
the tangent line.

6. (a) Letting u(Ð)= f(0)cos0, v(Ð)= f(0)sin0, the slope of the point with
polar coordinates (f (0),0) is

v'(0) f(0)cos0+ f'(8)sin0
u'(0) - f (0)sin0 + f'(0) cos 6
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(b) When f (0) = 0, this formula shows that the slope of the tangent line through
the point with polar coordinates (0,0) [i.e., the origin] is tan0, which is just the
slope of the line making an angle of Ð with the positive horizontal axis.

For the Archimedian spiral r = f (0) = Ð we have f (0) = 0 so the tangent line
through the origin is the horizontalaxis.

For the graph of r = cos 2Ð (Problem 3(iii) of that Appendix) we have

cos 2Ð = 0 for 6 = 45°, 135°, . . .

so the lines through the origin making angles with the horizontal axis of 45° and
-45°

are tangent lines.
For r = | cos 20| (Problem 3(v)) we clearly have the same tangent lines through

the origin.
Similarly, for the graph of r = cos 39 (Problem 3(iv)) the lines through the origin

making angles of 30°, 60°,
-30°

and
-60°

are tangent lines, and the same is tme
for r = | cos 30| (Problem 3(vi)).

For the graph of the lemniscate r2 = 2a cos 20 (Problem 10 of that Appendix)
we again have r = 0 for cos 20 = 0, so the lines through the origin making angles
of 45° and

-45°

are tangent lines.

(c) We must have f'(0) = 0, since f (0)is the distance from the origin to the point
with polar coordinates (f(Ð),9). According to part (a),the slope of the tangentline
is then - cot 8 =

-1/

tan 8. Since tan &is the slope of the line from the origin to
the point with polar coordinates (f (0), 0), this shows, in agreement with Problem 5,
that this line is perpendicular to the tangent line.

(d) By part (a)we have

f (9)cos Ð + f'(Ð)sin Ð
tan « =

- f(0) sin9 + f'(0) cos9

so

tan œ - tan 0
tan(a - 8) =

1 + tana tan0

f(Ð)cos0 + f'(0) sin0 sinÐ
- f(9) sinÐ + f'(0) cos0

f(0)cos0+ f'(0)sin0 sinÐ
1 +

- f (8)sin G + f'(0) cos Ð cos 0

f (0)cos2 9 + f'(0) sin 0 cos 8 + f (8)siB2 g _ r(Û)SiH ÛCOS Û
-f(0)sin0cos0+

f'(0)cos20 + f(0)cos0sinO+ f'(0)sin 0

f(Ð)
f'(Ð)
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7. (a) (i) If

(x2+f(x)2+ f(x))'=x2+ f(x)2,
then

(x2-i-

f (x)2+ f (x))[2x+ 2f (x)f'(x) + f'(x)] = x + f (x)f'(x),
SO

f'(x){[1+ 2f (x)](x2+ f (x)2+ f (x))- f (x)}= x [1- 2(x2 + f (x)2+ f (x))
so

x[1 - 2(x2 2 # f(X)n

f'(x) =

[1+2f(x)](x2+f(x)2+ f(x)) - f(x)
x[1-2/x2+ f(x)2

[1+2f(x)]x2+ f(x)2- f(x)

(ii) At the point with polar coordinates (x,0) = (1 - sin0, 0) the slope of the
tangent line is

(1 - sin Ð)cos 0 - cos 0 sin 0 cos Ð(1 - 2 sin 0)

(-1 + sinÐ)sin 0 - cos 0 cos 0 sin2 0 - cos2 0 - sin 0

cos 0(1 - 2sin Ð)
1 - 2 cos2Ð - sin 9

'

(b) We have r = 0 for 9 = 90°, so the line through the origin making an angle of
90° with the horizontal axis is a tangent line. [More precisely, there is no tangent
line at this point, but there are appropriate left- and right-hand derivatives of oo
and

-oo.]

8. (a) From the Figure, the distance from P to the radius passing through Q is
a sin t. Since the distancefrom O to Q is at, the first coordinate of P is the differ-
ence, at - a sin t.

Similarly, the second coordinate of P is a minus the distance from P to the center
of the circle, and thus a - a cos t.

(b) We have
u'(t) = a(1 - cos t) >_ 0,

since cos t 5 1; in fact, n'(t) > 0 except at isolated points. So u is increasing.

(c) We have

v(t) = a - a cos t
a - v(t)

cos t =
,

a
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and thus

t = ±arccos a - v(t)

a
with the + sign for t > 0, and the - sign for t < 0, since arccos is always positive.
Moreover,

sin t = ± 1 - cos2 t

a - v(t)
a

1
= ± - )[2a- v(t)]v(t) ,

a
with the sign being the same as that of sin t Hence

u(t) = at - a sint

a - v(t)
= ±a arccos ±|[2a - v(t)]v(t) ,

a
where the first ± is the same as the sign of t and the second is the opposite of the
sign of sin t.

(d) For the first half of the first arch of the cycloid we have t > 0 and sin t > 0, so

u(t) = a arccos
a - v(t)

- [2a - v(t)]v(t) .

a
This means that this curve consists of points

( a - v(t)
(u(t), v(t)) = a arccos - |[2a- v(t)]v(t), v(t) , 0 sts 1

a
or of points

a arccos
a y -|[2a

- y]y , y 0 5 y 5 2a,

which is indeed the graph of g¯'.

9. By the Cauchy Mean Value Theorem (Theorem 11-8), there is a number x in
(a,b) with

(*) [u(b)- u(a)]v'(x) = [v(b)- v(a)]u'(x).

If we write this as
v'(x) v(b) - v(a)
u'(x)

¯

u(b) - u(a)

then the right-hand side is just the slope of the line from P to Q,while Problem 3
shows that the left-hand side is the slope of the tangent line of the curve (since
u'(x) =f 0, u is one-one in an interval containing x, so part of the curve is the graph
of a function f = vo u-1)
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Of course, this assumes that the denominators are not 0, so we really have to
exercise more care. To begin with, note that either u(b) ¢ u(a) or v(b) ¢ v(a),
since otherwise P = Q and there is nothing to prove. We might as well assume
u(b) ¢ u(a), since the whole argument can be made with u and v interchanged.
Then the only problem is that we might have u'(x) = 0 in (*). Since u(b) ¢ u(a),
this means that we must also have v'(x) = 0. This possibility can actually arise, as
mentioned in Problem 2, and really should be eliminated by hypothesis.

10. (a) Obviously

|u(t)-li | 5 |u(t)-lil2+ IU(t)-l2|2= ||c(t)
-ll|,

and similarly for |v(t)
-12[.

Now suppose that lim c(t) = l by the above definition. Given e > 0, let 8 > 0
be the one given by the definition.Then for 0 < |t - a| < 8 we have

|u(t) - li | 5 ||c(t) - l || < e.

Thus lim u(t) = li. Similarly for v.

(b) Conversely, suppose that lim c(t) = l according to the definition in terms of
t-+a

component functions, so that lim u(t) = li and lim v(t) = 12. Suppose we are
given e > 0. Choose Bi, 82 > 0 so that

8
if 0 < \t - a| < 81, then |u(t) - li| < --

if 0 < |t - a| < ô2, then |v(t)- 12| < --,

and let 8 = min(81, 82): Then if 0 < It - a| < 8 we have

|u(t) - li |2<
2
28

|v(t)-l22
2

and thus

|c(t)-l||2= |u(t)-Lil'+ MO
-12|'<

+ =8
,

2 2
so that

||c(t) - l || < e.
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3. (a) Problem 2-7 shows that

kP

k=1 1 A B
= +-+--+-..,np+1 p + 1 n n2

which can clearly be made as close to 1/(p + 1) as desired by choosing n large
enough.

(b) We have
bP** "¯I

L(f, Pn) = kP
,

k=0

bp+1 n
U(f, Pn) = kP

.

k=1

Part (a) shows that L(f,Pn) and U(f,Pn) can be made as close to the number
bp+1/(p + 1) as desired by choosing n sufficiently large. As in Problem 1, this

lbimplies that xP dx = b?** + &
O

4. (a) We have
b tn in in-1 II

n-=-=

-
.---=r

,

a to ta i t._2 to

so r = (b/a)'l" = cil". Similarly,

- = r ,

a
sot¿=ari=a-cijn

(b) We have

U (f, P) = [a ·
Ci/n p · [G •

Ci/n
- a -

C(i--1)/n

i=1

= ap+1(1 -
C-1|n (p+1)/n i

i=1

P+1 _

-1|n

(p+1)/n (p+1)/n i

i=0

1 - cP*I
= a p+1(1 - c¯'7") (p+1)/n by Problem 2-5

1 - c(p+1)/n

182
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1
-1/n

= ap+1(1 - cp+1 c(p+1)/n
- c

1 - c(P+1)/*

= (a?*' - b?**)c(p+i)/n
- c

Î - C(p+1)/n

c1/n - 1
= (ap+i -

b2+')cP/"

Î - C(p+1)/n°

Problem 2-5 also gives

1 - c(p+i)/n
1 + c'7" + · - - + cp/n

1 - cil"

So
U( f, P) = (b2**- a***ypin .

1
1+c1/n+---+cp/n

Similarly,

L( f, P) = c¯P/"U( f, P) = (b?**- a?**) .

I
1+ cil" +··- + cpin

(c) By making n large enough, we can make ct/n as close as we like to 1 (see
Problem 22-10 for a rigorous proof). The same holds, of course, for each of the
p numbers cil", ... ,

cP/". So U( f, P) and L(f, P) can both be made as close as
desired to bP*' - a?** b2+1 - ap+1

1+1+---+1 p+1
p times

5. (i) The integral is 0, since the part from
-1

to 0 is the negative of the part from
Oto l.

(ii) By the same reasoning the integral is
13

1-x2dx=3 ,

since f(x) = 3 1 - x2 is a semi-circle of radius on [-1, 1].

6. Since sin t > 0 on [0,x/2] (usingradians) we clearly have

Ï
x sin t dt>0 for0<x

_<x/2.

o t+ 1

Moreover, the integral f,"ygsin t dt is exactly the negative of fe"I' sin t dt, while
1|(t + 1) is smaller on [x|2, x] than on [0,x/2], so the entire integral

Ï" sin t dt
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is smaller in absolute value that the same integral on [0,x/2]. The same is certainly
true of

Ï
x sin t

- dt

for all x/2 5 x 5 x. This shows that
x sin t dt > 0 also for x/2 5 x 5 x.

t + 1

Etc.

7. (ii) ) f = 0.

(iv) f is not integrable.

(vi) f is integrable; a rigorous proof can be given in several ways, using various
problems in this chapter, for example Problem 20. (Presumably, the integral of f is

1111 111
2223 334

At the moment we do not even know what an infinite sum means, let alone how to
work with them, but the followinglikely lookingmanipulations are actually valid:

1 1 1 1 1 1 1-+-

--- +- --- +-··
2223 334

(111 1 1 1
=

--+--+--+···

+22 32 42 2 2-3 3-4

(111 1 1 1
= 1+-+-+-+--.

22 32 42 2 2-3 3-4

(111 1 1 1
= 1+-+-+--+--- -

---+--+--+--·

.

22 32 42 1-2 2-3 3-4

From the fact that
1 1 n-+--·+

=

1-2 n(n+1) n+1'

derived in Problem 2-6, we might guess that

1 1 1-+ -+-+---=

1.
1-2 2-3 3-4

The other infinite sum happens to equal x2/6 (butwe will not get to a proof of this
fact anywhere in the text), so the integral of f is x2/6 - 1.)
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8. (i)

2
+ 2 -- x2dx =

-2

2

(ii)
x2 - (-x2) dx = .

- I I
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(iii)
4/2 2EÏ (1 - x2)

-x2dx

= .

-d/2 3

I I
- E /ž

2 T

(iv)

Ï
-d/2

d/2 Ä
2 - x2 dx + 2 - (1 - x2) dx + 2 - x2 EX = 2 .

-d

Á|2 2

i i i I

i i I i

2
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(v)

/2(x2- 2x + 4) - x dx = 4.
o

I
2

(vi) The area should be

4Ã2n - x dx = .

3

10. The first inequality is a special case of Problem 8-13, and the second inequality
follows from the fact that {f(xi) + g(x2) . t¿_i 5 xi, x2 5 ti} contains all numbers
in {f(x) + g(x) : t¿_i 5 x 5 t¿},and possibly some smaller ones.

11. (a) If L( f, P) = U( f, P) for even one partition P, then each m¡ = M¿, so f is
constant on each [t¿_i,t¿]. Since these closed intervals overlap, f must be constant
on all of [a,b].

(b) If L(f, Pi) = U (f, P2) and P contains both Pi and P2, then L(f, Pi) 5
L(f, P) 5 U(f, P) 5 U(f, P2) = L( f, Pi), so L( f, P) = U(f, P). It follows
from part (a)that f is constant on [a,b].
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(c) Only constant functions. For suppose f is not constant on [a,b], and let m be
the minimum value of f on [a,b]. Since f (x) > m for some x, and since f is
continuous, we can choose a partition P = (to,..., tn} of [a, b] so that f > m on
some interval [t¿_i,t¿]. Then m¿ > m, so L(f, P) > m(b

-a).

On the other hand,
if Q is the partition Q = {a,b}, then L(f, Q)= m(b

-a).

(d) If f is integrable on [a,b] and all lower sums are equal, then f takeson the value
m = inf{f(x) : a

_<

x < b} at a dense set of points in [a,b]. In fact, Problem 30
shows that f is continuous at a dense set of points. Now if f is continuous at x
and f(x) > m, then, as in part (c),there is a partition P with L( f, P) > m(b - a),
while L( f, Q) = m(b

-a)

if Q = (a,b), contradicting the hypothesis. Conversely,
it is easy to see that if f takes on its minimum value m on a dense set of points in
[a,b], then L(f, P) = m(b

-a),

since each m¿ = m. (The condition that f be
integrable is essential in this problem. For example, if f(x) = 1/q for x = p/q in
lowest terms, and f(x) = 1 for x irrational, then L(f, P) = 0 for all P, but f does
not take on the value 0 = inf( f (x) : a 5 x 5 b} anywhere.)

12. Theorem 4, applied to a < b < d, implies that f is integrable on [b,d]. Then
Theorem 4, applied to b < c < d, implies that f is integrable on [b,c].

14. Let P = {to,. . . , tn}be a partition of [a,b]. If g (x) = f (x - c), then

m¿=inf{f(x):t¿_i Exst¿}=inf{g(x):t¿_i+c5x
_<t;+c}

and similarly for M¿, so L(f, P) = L(g, P') and U(f, P) = U(g, P'). If f is
integrable, so that for every e > 0 we have U( f, P) - L (f, P) < e for some P,
then g is also integrable, since we have U(g, P') - L(g, P') < e. Moreover,

/b
b+c

f(x)dx = sup{L(f, P)} = sup{L(g, P')} = f(x
-c)dx.

a a+c

o b a+c b+c

15. Notice that
1 1

b · inf - : t¿ i 5 t 5 t¡ = inf - : bt¿_i 5 x 5 bt; .

t t
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Denoting the first inf by m¿ and the second by m¿', we have

L(f,P')= m¿'(bt¿-bt¿_i)
i=1

= bm¿'(t¿ - t¿-i )
i=1

= m¿(t¿ - t¿_i )
i=l

= L( f, P).

So
ab

dt = sup{L(f, P')} = sup{L(f, P)} =

a
dt.

16. If P = {to,..., tn) is a partition of [a,b], and P' = {cto,..., ct,}, then

m¿=inf{f(ct):t¿-i Etst¿}=inf{f(t):cti_i stsct¿}=m¿'.
So if g(t) = f (ct),then

cL(g, P') = c m¿(t; - ti-1)
i=1

= m¿(ct¿ - ct¿_:)
i=l

= L(f, P').

So

Ï
cb b

f(t)dt=sup{L(f,P')}=c.sup{L(g,P)}=c- f(ct)dt.
ca Ja

(Actually, this proof is valid only for c > 0, but the case c < 0 can then be deduced
easily.)

17. The upper half of the unit circle is the graph of

f(x)= J1-x2
while the upper half of the ellipse is the graph of

g(x) = b 1- ,
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so the area enclosed by the ellipse is

2 b I - dt = 2b 1 - dt

Ï
l

= 2ab VI - t2dt
-1

= 2ab - x/2 = rab.

18. (a) We have
a

ndx = a (ax)ndx = an+1
1

ndx = cna"**.

(b) From part (a)we have
2a a n

2n+1cuan+1 n dx = xk n-k dx
-a

k=0

= 2 n an-k
a

k dx (compareProblem 5)
k even / 0

= 2 n an-kak+1ck = 2an+1 n
ca.

k even
k k even

k

(c) The proof is by complete induction. We know that ci = 1/2. Assume that
ca = 1|(k + 1) for k < n. Then

2"cn = 2
k + 1k even

2 n+1 n
n+1kevenk+1 k

2 +1
n + I k even

k + 1

2 n + 1
n + 1 k odd k

2"
= by Problem 2-3(e)(iii)

n + 1

19. Choose M > 1 so that f (x)| 5 M for all x in [a,b]. Given e > 0, let
8 = s/3M. Since f is continuous on [a,xo - 8/2] and [xo+ 8/2, b] there are
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partitions Pi = {to,..., tn) of [a,xo - 8/2] and P2 = {so,.. . , smÌof ÏXo + 8/2, b]
such that U(f, PI) - L(f, Pi) < s/3 and U(f, P2) - L(f, P2) < 8/3• If Ë =

{to,...,ta,so,...,sm},then
U(f,P)-L(f,P)<[U(f,PI)-L(f,Pi)]+ô-M+[U(f,P2)-L(f,P2)]

< e/3 + e/3 + s |3 = e.

20. (a)

L(f, P) = f(ti-1)(ti
-ti-1),

i=1

U( f, P) = f(t¿)(t¿- ti-1).
i-l

(b) If t¿ - t¡_; = 8 for each i, then

U(f,P)-L(f,P)= [f(t¿)- f(tt-1)](ti
-ti-1)

i=1

= ô f (t¿)- f (tt i )
i=l

=8[f(b)
- f(a)].

(c) For every s > 0 we have U(f,P) - L(f,P) < s if t¿ - t¿_i = 8 <

s/[f(b)- f(a)].
(d) The function in Problem 7(vi) is an example (onthe interval [0,1]).
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21. (a)
L(f¯', P)+U(f, P')

i=1 i=1

= [t¿f¯IM - ti-if¯1(ti-1)]
i-1

= bf¯'(b) - af-1(a).

(b) It follows from (a)that

/bf¯I = sup{L(f-1, P)} = sup{bf *(b)
- af-1(a) - U(f, P')}

a
=bf-1(b)-af¯I(a)-inf{U(f,P')}

l
f¯l(b)

= bf-1(b) -
af¯I (a) - f.

f¯!(a)

(c) If f (x) = x" for x >_ 0, then for 0 _<

a < b we have

Ï
b b f¯ (b)

dx = f¯' = bf
-1(b)

-
af¯I (a) - xn dx

n+1 n+1

n+1 n+1

22. The Figure below shows the case b < f (a).

E

D
B = (0,b) C

f

O A = (a,0)
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We have

ab = area OACB < area OAE + area OBD

Ïa
b

= f(x)dx+ f¯I(x)dx.

O O

If b = f (a) we clearly have equality. It is easy to see that we have the same
inequality if b > f(a) [orsimply apply the first inequality to f¯IL

23. (b) To show that continuity is necessary, first choose any continuous one-one
function f on [a,b]. Then f f (x)dx = (b - a) f (g) for a unique (. Now let
g(x) = f (x) for x ¢ (, but g(g) ¢ f (g).

(c) From the inequality mg(x) 5 f(x)g(x)5 Mg(x), we obtain

Ï
b b b

m g(x)dx 5 f(x)g(x)dx 5 M g(x)dx.
a

Consequently

Ï
b b

f(x)g(x)dx = µ g(x)dx
a a

for some µ with m 5 µ $ M. This µ = f (g) for some ( in [a,b].

(d) Replace g by -g.

(e) If g(x) = x on [--1,1] and f (x) = x, then

Ï1
1 2 *

f(x)g(x)dx = x2dx = - ¢ µ· xdx.
-i

_i 3 i

24. If P = {to,.. . , tn} is a partition of [80,01], then

L(f2/2, P) = m;2
¯'

and U(f2/2, P) = M¿
¯

:=1 i=1

represent the total area of sectors contained in A and containingA, respectively. So

L(f2/2, P) 5 area A 5 U(f2/2, P)

0,
for all P. It follows that area A must be f2/1
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25. (a) If f (x) = œx + ß, then for every P we have

f(f,P)= (t¿-ti-1) +Œ2(ti-ti-1)
i=l

= (t¿- ti i) 1 # Œ2

i=1

= (b - a) 1 + «2,

and the distance from (a,aa + ß) to (b,ab + ß) is

[a(a -- b)]2 + (a - b)2 = (b - a) 1 + a2.

(b) If f is not linear, then there is some t in [a,b] such that (a, f (a)), (t, f (t))
and (b,f (b))do not lie on a straight line. Thus if P = {a,t, b}, then

£(f, P) = (t - a)2 + [f t) - Ran2 + (b - t)2 + f (b) - f tB2
> (b - a)2 + U b) - Ran2, by Problem 4-9.

(c) follows immediately from part (b).

(d) For each i there is some x¿ in (t¿_i,t¿) with

f'(x¿)(t¿-t i)= f(t¿_i) - f(t¿).
So

L(Jl + (f')2 p /(X¿y;2 5 U()1+ (f')2, P)
i=l

and

(t¿- t¿_i) 1 + [f'(x¿)]2= (t¿- t¿_i)2+ [f'(x¿)(t¿- t¿_i)]2
i=l i=1

= (t¿- t¿_i )2+ [f (t¿)- f (t¿ i )12
i=1

= £(f, P).

(e) Since sup{£( f, P)} is an upper bound for the set of all £(f, P), it is also an
upper bound for the set of all L(V1+(f')2, P) by part (a).

(f) It sufficesto show that

sup{L(f, P)} 5 U( 1+ (f')2, P")

for any partition P", and to prove this it suffices to show that

£(f, P') 5 U( 1 + (f')2, P")
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for any partition P'. If P contains the points of P', then

£(f, P) > £(f, P');

the proof is similar for the proof for lower sums, putting in one point at a time and
using Problem 4-9 to see that this increases £. This if P contains the points of both
P' and P", then

£(f, P') $ £(f, P) $U( 1+(f')2, P) $ U( 1+(f')2, P").

(g) We are considering

Ï
x

1+ (f')2
alim

x-a _ g)2 + [f (x) - f (a)]2
By the Mean Value Theorem, f(x) - f(a) = (x

-a)

f'(g) for some g in (a, b), and
by the Mean Value Theorem for Integrals (Problem 23), the numerator is
(x - a) 1 + f'(r¡)2for Some r¡ in [a, b]. So we are considering

(x - a) 1 + f'(r¡)2 1 + f'(Q2
(x - a)2 + f'(g)2(x - a)2 1+ f'(g)2°

which approaches 1 as x
->

a (weneed to assume that f' is continuous at a).

26. (a) If P = {to,.. ., t,} is a partition of [a,b] with U( f, P)-L( f, P) < e, then
U(f, P) - | f < e and f f - L(f, P) < s. Let st(x) be m¿ for x in (ti-1,ti)
and 0, say, for x = to, ..., tn; similarly let s2(x) be M¿ for x in (ti-1,t¿) and 0 for
x = to, ..., ts.

(b) The existence of such step functions implies the existence of partitions Pi and
P2 with U(f, P2) - L(f, P1) < 8-

(c) The function in Problem 34 is an example.

27. It obviously suffices to show that for any e > 0 there are g 5 f with | f -

f g < e and h > f with f h - | f < e. Moreover, the second follows from the
first by considering - f, so we just have to find the desired g 5 f.

Choose a step function s 5 f with f f - fs < e/2, by Problem 26(a). Choose
M > 1 so that |f (x)| <_ M for all x in [a,b], and if s is constant on (ti-1,t¿) for
i = 1, ..., n, choose 8 < e/2nM. Let g = s on [t¿_i+ 8/2, t¿ - 8/2] and let g be
a linear function on [t¿- 8/2, t¿] and [t¿,ti + ô|2] with g(t¿) = -M.
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I I
a b

-M·----- ---- -------

Thengssi fand f s-f g5nMB<s|2,so f f-| g<e.

28. (a) If si (respectivelys2) is constant on each subinterval for a partition Pi
(respectivelyP2), then si + s2 is constant on the intervals for the partition P which
contains Pi and P2.

(b) Part (a)shows that there is a partition P = {to,..., t,} such that si and s2 are
constant on each (ti-1,ti), with values a¿ and b¿, say. Then

/b
n

(si + s2) = f(a¿+b¿)(t¿-t¿_i)
a i-1

= a¿(t¿ - ti-1) + b¿(t¿ - t¿-i )
i=1 i=1

Ï
b b

= si + s2.
a a

(c) Given e > 0, choose step functions si, 52 and ti, t2 with si 5 f 5 52 and

ti 5 g 5 t2 and f s2 - | si < e/2 and f t2 - | ti < e|2. Part (b)implies that

Ib
b b b b b b b

(si +11) = 51 + ti 5 f + E 5 52 + 12 = (52+12)
a aaaaa

and that

I
b b

(s2+ t2) - (si + ti ) < s.
a a

This shows that f is integrable, and also that f (f + g) = f f + | g, since there
is only one number betweenall such | (si+ ti) and | (s2 f2)-
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29. Let g(x) = f f - f f. Then g is continuous and g(a) =

-|

f and
g(b) = f f; so g(a) and g(b) have different signs and consequently g(x) = 0 for
some x in [a, b], unless g(a) = 0, in which case we can choose x = a.

For the function f shown below, only x = a or x = b will work; f has been
chosen so that | f =

-|

f.

a c b

30. (a) Clearly if M¿ = m¿ >_ 1 for all i, then U( f, P) - L( f, P) > b - a.

(b) If i = 1, let bi = ti and choose any ai with to < ai < ti. Similarly if i = n.

(c) Choosea partition P of [ai,bi] with U(f, P) - L(f, P) < (bi - al)/2. Then
M¿ - mg < 1/2 for some i. Choose [a2,b2] = [ti-1, t¿] unless i = 1 or n, in which
case use the modification of part (b).
(d) Let x be a point in each I,. Notice that we cannot have x = an or bn, since x
is also in [a, i, b, i] and an < an+i < b,41 < bn. If s > 0, there is some n such
that

sup{f (x) : x in In} - inf{f (x) : x in In} < 8/2.

Then |f (y) - f (x)| < e for all y in In; since x is in (as,bn), this means that
|f(y) - f(x)| < e for all y satisfying |y - xl < 8 where 8 > 0 is the minimum of
x - an and bn - x. Thus f is continuous at x.

(e) f must be continuous at some point in every interval contained in [a,b], since
f is integrable on every such interval.

31. (a) Choosexo in [a,b] and let f (x) = 0 for all x ¢ xo, and f (xo)= 1. (The
function in Problem 34 is another example.)

(b) There is a partition P of [a,b] such that f (x)> xo/2 for all x in some [t¿_i,t¿].
Then L( f, P) >_ xo(t¿ - ti-1)/2-

(c) This follows from part (b),since f is continuous at some xo, by Problem 20.

32. (a) Choose g = f. Then f f2 = 0. Since f is continuous, this implies that
f = 0.
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(b) If f (xo)> 0, then f (x) > 0 for all x in (xo- d, xo + 8) for some 8 > 0.
Choose a continuous g with g > 0 on (xo- 8, xo + 8) and g = 0 elsewhere. Then

f fg > 0, a contradiction.

f

g
I I I

xo-8 xo xo +8

34. Let e > 0. Choose n so that 1/n < s|2. Let xo < xi < · · · < xm be those
rational points p/q in [0,1] with q < n. Choose a partition P = {to,..., tk} such
that the intervals [t¿_i,t¿] which contain some xj have total length < e/2. On each
of the other intervals we have M¿ 5 1/n < e/2. Let Ii denote all those i from
1,...,n for which [t¿_i,t¿]contains some xj, and let I2 denote all other i from
1, ..., n. Since f 5 1 everywhere, we have

U( f, P) = M¿(t¿ - ti-1) + M¿(t¿ - ti-1)
iinIt iin12

5 1 - (t¿- t¿_ i) + (t¿- t¿_
i)

i in li i in 12

e s<1·-+--1=E.
¯

2 2

35. Let f be the function in Problem 34, and let g(x) = 0 for x = 0, and g(x) = 1
for x

-/

0. Then (go f)(x) = 0 if x is irrational, and 1 if x is rational.

36. (a) If f ;> 0 on [ti-1, t¿], then M¿' = M¿ and m¿' = m¿. If f 5 0 on [ti-1, til,
then M¿' =

-m¿ and m¿' = -M¿, so again M¿'-m¿' = M¿ -m¿. Now supposethat
f has both positive and negative values on [t¿_i,t¿], so that m¿ < 0 < M¿. There
are two cases to consider. If -m¿

5 M¿, then

M¿' = M¿,

so
M¿' - m¿' s M¿' = M¿ 5 Mg - m¿, since m¿ < 0.

A similar argument works if -m¿ > M¿ (orconsider - f).
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(b) If P is a partition of [a,b], then

U(|f|,P)-L( f|,P)= (M¿'-m¿')(t¿--t¿_i)
i-1

5 (M¿ - m¿)(t¿ - t¿_i)
i=1

= U( f, P) - L( f, P).

So integrability of f implies integrability of |f|, by Theorem 2.

(c) This follows from part (b)and the formulas

f+g+|f-g| . f+g-|f-g|max(f, g) =
, min(f, g) = .

2 2

(d) If f is integrable, then max( f, 0) and min( f, 0) are integrable, by part (d).Con-
versely, if max( f, 0) and min( f, 0) are integrable, then f = max( f, 0) + min( f, 0)
is integrable, by Theorem 5.

38. (a) Since

0 5 m¿' s f(x) 5 M¿' and 0 5 m¿" 5 g(x) 5 M¿" for all x in [ti-i, t¿],

we have
m¿'m¿" 5 f(x)g(x)5 M¿'Mg" for all x in [t¿_i,t¿],

which implies that m¿'m¿" 5 m¿ and M¿ 5 M¿'M¿".

(b) This follows immediately from part (a).

(c) By part (b),
U(fg, P) - L(fg, P)

5 [M¿'M¿" - m¿'m¿"](t¿ - t¿ i )
i=1

= M¿"[M¿' - m¿'](t¿ - ti-1) + m¿'[M¿" - m¿"](t¿ - t¿_i)
i=l i=1

sM [M¿' - m¿'](t¿ - t¿_i) + [M¿" - m¿"](t¿ - ti-1) -

i=1 i=1

(d) Integrability of fg follows immediately from part (c)and Theorem 2.

(e) The same result clearly holds if f 5 0 and/or gs 0 on [a,b]. Now write

f = max( f, 0) + min( f, 0) and g = max(g, 0) + min(g, 0), so that fg is the sum
of four products, each of which is integrable.
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39. (a) Given xi, ..., xn and yi, ..., yn, let f and g be defined on [0,1] by

i - 1 i
x¿,

_<x<-

f (x) = n n
0, x=1,

i-1 i
y¿, <x<-

g(x) = n
¯¯

n
0, x = 1.

Then

i=1
1

2

i=l

SO

(n
2 n n

i=l i=1 i=1

this is the Schwarz inequality.

(b) First proof: If g = 0, then equality holds. Otherwise for all I we have

Ib
b b b

0 5 (f - Ag)2 = f2 - 2A fg Ÿ À2 2

a a a a

SO

(Ï
b 2

b 4 fg

Ï f2 _ a
b

a 4 g2
a

Second pmof: Using 2xy 5 x2 + y2 with

f (x) g(x)

we obtain
2f (x)g(x) f (x)2 g(X)2

(Lb
b b

2
b
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So

2 f(x)g(x)dx
b

f(x)2dx g(x)2dx

2 2 f2
a

2

= 2.

Third proof: The analogue of the formula in the solution to Problem 2-21(c) is:
b

2 2
b 2 b b

_ 2 dx dy.

To check this equality we simply compute that

[f (x)2 2 2g(x)
- 2f (x)g(x)f (y)g(y)]dx dy

lb
b b b

= g(y) f2 + f (y)2 2
- 2f (y)g(y) fg dy

a a a a

= 2 2 2 2

-2

fg fg .

(c) If f = g except at one point, then equality holds, even though f = Ag is false.
But if f and g are continuous, then equality in the Cauchy-Schwarz inequality does
imply that f = Ig for g

-/

0. This follows from all of the above proofs: In the first
proof, we will have

b
0 < (f - Ag)2

since (f - Ag)2 is a continuous non-negative function that is somewhere positive.
Similarly, in the second proof, we have equality only if we have

f(x) g(x)
for all x,

so we can choose

In the third proof, equality implies that

[f(x)g(y)- f(y)g(x)]2dx dy=0.
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This means that for all y,

I
b

[f (x)g(y)- f (y)g(x)] dx = 0,
a

which means that for all x,

f (x)g(y)= f (y)g(x).
So if g(yo) =f 0, then

f (yo)f (x) = g(x) for all x.g(yo)

(d) Apply the Cauchy-Schwarz inequalityto f and g(x) = 1 on [0,1]. The correct
result for [a, b] is

40. (a) If e > 0, pick N >_ 0 so that |f (t) - a| < e for t > N. Then for N ;> 0
we have

N+M

f(t)dt - Ma < eM,

so
N N+M Ma sM

f (t)dt - < < e.N+M N N+M N+M

Choose M so that
Ma 1 N

-a

<e and f(t)dt <s.
N+M N+M i

Then
1 N+M

N /(t) dt - a < 3e.
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1. Let |f(x) 5 M for x in [a,b], and choose 8 > 0 so that |g(x) - g(y)| <

e/M(b - a) for |x - y| < 8. If all t¿ - t¿-i < 8, then

f (x¿)g(x¿)(t¿- t¿_i) - f (x¿)g(u¿)(t¿- ti-1)
i=1 i=1

= f (x¿)[g(x¿)-- g(u¿)](t¿ - ti-1)
i=1

5 M (t¿-- t¿_i )M(b
-a)

i=1
= s.

n
So by making t¿ - t¿_ i small enough we can make i f (x¿)g(u)(t¿- t¿ i) as close

i=1

to i f(x¿)g(x¿)(t¿- ti-1) as we like, and hence as close to f fg as we like.
i=1

2. Let f(x)+g(x) 5 M on [a,b], and choose 8 > 0 so that -- < s/(b
-a)

for x, y in [0,M] with |x - y| < 8. Then choose 8' > 0 so that |g(x¿)- g(u¿)| < 8
for |x¿-- u¿\ < 8'. If all t¿ -- ti_i < 8', then x¿ - u¿| < J', so

[f (x¿)+ g(u¿)] - [f (x¿)+ g(x¿)] = |g(u¿)- g(x¿) | < 8,

hence

f (x¿)+ g(u¿) - ) f (x¿)+ g(x¿) <
b - a

and consequently

f (x¿)+ g(u¿)(t¿ -- t¿_i) - f (x¿)+ g(x¿)(t¿ - ti--1)
i=1 i=1

= f (x¿)+ g(u¿) - f (x¿)+ g(x¿) ](t¿- ti-1)
i=1

< (t¿-- t¿_i) = s.b - a i=1

3. By the Mean Value Theorem we have

£(c, P) = [u'(x;)]2+ [v'(u¿)]2(t¿- t¿ i)

i=1

203
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for some x¿, u¿ in [t¿_i,t¿]. By Problem 2, these can be made as close as we like
to I = f n'2 + v'2 by choosing t¿ - t¿_i small enough. This means, first of all,
that I must be an upper bound for all £(c, P): for if some f(c, P) > I, refining the
partition P would only increase £, and hence never make it close to I. Since I is
an upper bound and we can make £(c, P) as close as we like to I, it follows that I
must be the least upper bound.

4. The graph of f is given parametrically by

u(9) = f (0)cos 0, v(0) = f (0)sin0.

So its length is

n'2 + v'2 - f' cos - f sin]2 + [f' sin + f cos]2

Go

5. Let {to,..., tn} be a partition of [a,b], and choose x¿ in [t¿-i,ty]. Then the
Schwarz inequality shows that

(fg)(x¿)(t¿- ti-1) = f (zi) ti -- ti-i g(Xi ) ti - ti-1
i=l i=1

i=1 i=l

But the left-hand side can be made as close as desired to f fg by making t¿ - ti-1
small enough, while the two factors on the right side can be made as close as desired
to f f2 and f g2. Hence we must have

b b b
2
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1. (ii)
1 sin' x.

1 + sin6 sin' t dt + sin* t dt

(iv) -1

1 + x2 + sin x

(vi)
cos sin sin3 t dt dy sin sin' t dt .

(viii)
(F-1 , 1 1

= 1 - [F-1(x)]2.
F'(F-1(x)) 1

1 - [F¯I(x)]2

2. (ii) All x ¢ 1.

(iv) All irrational x.

(vi),(viii)All x not of the form 1/n for some natural number n.

3. (a) Since f is differentiable at c it is continuous at c, so F is differentiable at c.

(b) If we assume that f is continuous in an interval around c, then F' will be con-
tinuous at c, since we will have F'(x) = f (x)in this interval, and differentiability
of f at c implies continuity of f at c. But without this assumption F' may not even
exist at all points near c. For example, f could be the function shown below.

c = 0 1/3 1/2 1

205
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(c) Since f' is continuous at c, f'(x) must exist for all x in an interval around c,
so f is continuous in an interval around c. So, as in part (b),F' is continuous at c.

4. (i) If we let F(x) be this expression, then
1

-1

1F'(x) = + - - = 0.
1+ x x 1

1+ -

x

(ii) In this case
1F'(x) = cos x -

1 -- sin2 x

1 (aminus sign because the derivative
- sin x of - cos is sin, but it appears as a

1 - cos2x lower limit)
= 1-1=0.

(The meaning of these facts will become clear in the next chapter).

5. (ii)
1 1

(f¯')'(0) -

f'(f
-1(0))

cos(cos( f-I (0)))
1

cos(cos(1))

6. (i) Differentiating the equation g tg(t) dt = x +x2, we find that at points where
g is continuous it must satisfy

xg(x) = 1+ 2x.

Now if we simply define
1-+2,

t¢0g(t) = t
0, t = 0,

then tg(t) = 1 + 2t for all t ¢ 0, so g tg(t) dt = g 1 + 2t dt = x + x2.

(ii) We must have
x g(x2) 2x = 1+ 2x.

Let
It¯I + t¯I, t > 0g(t) = 2

0, t 5 0.

Then
1 i

tg(t) =
-t¯ï

+ 1 for t > 0,
2
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so for all x,
x2tg(t)dt=

t¯$+1dt

= (x2 X2 = X § X2

7. Clearly f2 is differentiable everywhere (itsderivative at x is f (x)). So f is
differentiable at x whenever f (x)¢ 0, and

f(x) = 2f(x) f'(x),
so f'(x) = 0 at such points. Thus, f is constant on any interval where it is non-zero.
Since f is continuous, it must be constant (proofleft to the reader). So if f (x) = K
for all x, then

lxK=K2+C
0

so for all x we have
Kx = K2 + C.

This is possible only if K = 0, which is possibleonly if C = 0.

8. Since the two sides of the desired inequality are equal for x = 0, we just need to
prove the same inequality for their derivatives, i.e.,

f (x)35 2f (x) f.

We have f (x) > 0 for x > 0, since f (0) = 0 and 0 < f', so this inequality is
equivalent to

x

f (x)25 2 f.
But both sides of this inequality are true for x = 0, so we just need to prove the
inequality for their derivatives:

2f (x)f'(x) 5 2f (x).
This is true since f (x) > 0 and 0 < f'(x) 5 1.

9. If
1x2 sin -, x ¢ 0g(x) = x

0, x = 0,

then

g'(x) =
2x sin = cos , x ¢ 0

0 ' x = 0.
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So if we define
1

2x sin -, x ¢ 0h = x
0, x = 0

we have

f (x) = h(x) - g'(x) for all x.

Hence
ÏX

F(x)= (h-g')

= h - g,

using the Second Fundamental Theorem of Calculus (andnot merely the Corollary
of the First Fundamental Theorem). Since h is continuous we can then apply the
First Fundamental Theorem to conclude that

F'(0) = h (0)- g'(0)
= 0.

10. (i) In Problem 13-23(c), choose

1
f (x) =

, g(x) = x6.
1+x2

Then

li
76 1 1 1

dx = x6 dx =
,

o 1+x2 1+(2 o 7 1+g2

where 0 5 g 5 1, and hence

1 1 1
742 ¯

fl + $2
¯

7

(ii) Write this integral as

li¡2Ál-x 1-x */2 1-x
= dx,

o VI-x 1+x gy _ 2

and choose
1

f(x)= , g(x)=1-x.
1-x2

Then
1/2 1 - x 1 1/2 1 3

1-x2dx=
1-g2 e

1-xdx= -,
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where 0 5 g 5 1/2, and hence

1 2

12. If

Ïx
x x

F(x)= f(u)(x-u)du= xf(u)du- uf(u)du,
O O

then

F'(x)= xf(x)+ f(u)du
-xf(x)

by Problem11

X

= f(u)du.

Consequently, there is some number c such that
IX X N

f (u)(x - u) du = f (t)dt du + c for all x.
O

Clearly c = 0, since each of the other two terms is 0 for x = 0.

13. Applying Problem 12 to g(u) = f(u)(x - u), we obtain
X X

f(u)(x-u)2du= [f(u)(x-u)](x-u)du

= f(t)(x - t)dt du.

Therefore we must show that
x u

f(t)(x - t)dt du = 2 f(t)dt) dui du2.

Nowx-t=(u-t)+(x-u),so
/M N N

(1) f(t)(x - t)dt = f(t)(u - t)dt + f(t)(x - u)dt.
0 0 0

For the first integral on the right we have

(2) f(t)(u-t)dt= f(t)dt dui

by Problem 12. The second can be written

(3) f(t)(x - u)dt = (x - u) f(t)dt.
0 0
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From (1),(2),and (3)we have
x uf

(t)(x - t)dt du = f (t)dt dui du

X M

+ (x - u) f(t) dt du.
O

On the other hand, applying Problem 12 to g(u) = "f(t) dt we obtain
x

(x - u) f(t)dt du = f(t)dt dui du.

15. (a) This follows from Problem 13-14, since f (x - a) = f (x) for all x.

(b) Let g be periodic and continuous with g > 0 (forexample, g(x) = sin2 x). If

f (x) = £2g, then f' = g is periodic, but f is increasing, so it is not periodic.

(c) Let g(x) = f(x + a). Then g'(x) = f'(x + a) = f'(x). If f(a) = f(0), then
we also have g (0) = f (a) = f (0). Consequently g = f, i.e., f (x+ a) = f (x)for
all x.

Conversely, suppose that f is periodic (withsome period not necessarily = a).
Let g(x) = f(x + a) - f(x). Then g'(x) = f'(x + a) - f'(x) = 0, so g has the
constant value g(0) = f (a) - f (0). I.e.,

f (x+ a) = f (x)+ f (a) - f (0).
It follows that

f (na) = nf (a) - (n - 1)f (0)
n

= n+1[(n- 1)f(a) - f(0)].

Now if f (a) ¢=f (0), then this would be unbounded. But f is bounded since it is
periodic.

17. Let F = £2f. Then Problem 13-21 states that

Ï
x -1 -1(x)

- af¯'(a) - f
a Jf-1(a)

=xf-1(x)-af¯I -F f-1(x))+F(f-1(a)).

So if G(x) = xf-1(x) - F( f¯*(x)),then G'(x) = f¯'(x).

18. (a) For each point (x,2x2) = (x,f (x))on C, we have

area A = 22 _
2 dt = .
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It is simplest to consider C2 as the graph of g¯', for then

/2x2area B = f I
-

g-I

O

Clearly (compareProblem 13-21)

l2xf¯' = x - 2x2 - f (t)dt
0 JO

lx= 2x" - 2t2 dt
0

4 s=
-x

.

3
So

area B = x3 - g¯I.

Thus we require that for all x > 0,

and hence that
3x2 = g-1(2x2) · 4x

3x
g

' (2x2)= --,

4
and thus

g (y)= .

8
Finally,

32
g(x) =

--x2

9

(b) Now for f (x) = cxm we have

Ï
x c - 1

area A = ctm _ ymdt = xm+1
o m + 1

'

and

I
CXm

area B = f I
- g-1

0

lx
cxm

= x - cxm - ctmdt - g.-1
0 0

m
cx"

m+1
-1

=c x - g .

m+1 e
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So we require that

c - 1 m
ex=

m+1 m+1
-1

x=c x- gm+1 m+1 e
and thus

(c - 1)xm = cmxm _

-1

m) - cmxm-i
-1 (cm- c + 1)xm cm - c + 1

g (xcm cmxm-i cm
so

1 cm-c+1 y 1/m

g (y) = -
.

cm c
Finally,

cm-c+1
g(x) = c xm

cm

19. (a) F'(x) = 1/x; G'(x) = (1/bx)- b = 1/x.

(b) It follows from part (a)that there is some c such that F(x) = G(x) + c for all
x > 0. Since F(1) = 0 = G(1), we have F(x) = G(x) for all x > 0.

20. Suppose f is continuous on [a,b] and f (a) < 0 < f (b). The Fundamental
Theorem of Calculus shows that f = F' for some F (namelyF(x) = fe'f).
Darboux's Theorem then implies that f (x) = 0 for some x in [a, b].

21. We have

Ï
a g(x)

F(x)= h(t)dt+ h(t)dt,
f(x) a

so
F'(x)=-h(f(x))- f'(x)+h(g(x)).g'(x).

22. Applying the Cauchy-Schwarzinequality to f' and 1 on [0,1] we have

since f (0) = 0 this gives

Ï1f(1)25 (f')2.
O

To show that the hypotheses f (0) = 0 is needed just take f (x) = 1 for all x.

23. (a) Equation (*)just says that (Go y)' = F' in the interval, so there is a c such
that Goy = F + c in this interval,i.e., G(y(x))= F (x)+ c for all x in the interval.
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(b) Conversely,if y satisfies(**),then differentiationyields (*).

(c) If
1 + x2

y' (x) =
,

1+y(x)

so that
[1+ y(x)]y'(x) = 1+ x2,

then there is some c such that
y2(x) x3

y(x)+ =x+-+c

2 3
for all x in the interval on which y is defined. So

2y2(x) + 2y(x) - 2x -

-x"

- c = 0, (calling2c simply c)
3

so
-2+ 4+4(x+)x2+c)

y(x) =

2
or

y(x)=-1- 1+x+)x2+c.

These solutions are never defined on all of R, since 1+ x + 2x3/3 + c < 0 for x < 0
with |x| sufficiently large.

(d) If
(1+5[y(x)]4 f(X) = -Î,

then there is some constant c such that
[y(x)]S + y(x) +x = c.

(e) If y(x)y'(x) =
-x, then there is some c such that

[y(x)]2
--x2+c

2
¯

2
'

SO

y(x) = c - x2

or
y(x)=- c-x2.

If y(0) =
-1,

then clearly y(x) = - 1 - x2 (for W < 1)

24. (a) If the Schwarzian derivative is 0 then

2f'2 f"' - 3f' f"2 = 0.
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But then

(f"2
' f'3-2f"f'"- f"2-3f/2 //

f' f"[2f'2f"' - 3f' f"2]

= 0,

so f"2 f'3 is constant.

(b) Hence u = f' satisfies

u¯'I -u'=C forsomeC.

By Problem 23,
2u¯'I2 = Cx + d for some D

so
4

f'(x) = u(x) = .

(Cx + D)2

This implies that
-4

f(x) =

Cx + D
+ E for some E,

which is the desired form.

25. (a)

Ï°°
Nr+1 1

-1

xr dx = lim - =

1 N->oor‡l r#1 r‡l

(becauser + 1 < 0 so lim Nr+1 = 0).
N->oo

(b) Problem 13-15 implies that

/2"1
21 21

-dx= -dx+---+ -dx

n dmes

l2g=n
-dx.

i X

Since f,'1/x dx > 0, we have lim f,' 1/x dx = oo.
n-+oo

(c) The function I(N) =
fN

g is clearly increasing, and it is bounded above by

f°°f. Consequently, lim I(N) exists (it is the least upper bound of {I(N) :
N-woo

N > 0}).
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(d) Clearly fg°°1/(1 + x2) dx exists if f,°°1/(1 + x2) dx exists; the latter integral
exists by part (c),because f,°°1/x2 dx exists, by part (a),and we have 1/(1+ x2) 5
1/x2.

26. (i) Since
1 1

1 + xy
- ¿3/2

and

/°°dx. ,

exists,
1

the integral fg°°1/ 1 + x3 dx also exists.

(ii) For x > 1 we have
1 + x3/2 5 2x3/2

so
x lx 12

> - · = -x'I
1 + x3/2 ¯

2 x3/2 2

Since f°°x
l/2 dx does not exist, neither does fg°°x/(1 + x3/2) dx.

(iii)For largex the integrand looks like 1/x = x¯3/2, which causes no problem,
but for x 5 1 we have 41+ x 5 2, so

1 1
xd1+x

¯

2x

and fg°°dx/xdoes not exist (thisis really an integral of the sort considered in
Problem 28).

27. (a) Clearly f°œ1|(1 + x2) dx exists; in fact, it equals fg°°1/(1 + x2) dx.

(b) f,°°x dx does not exist.

(c) If lim h(N) = oo and lim g(N) =
-oo and f°° f exists, then

N->oo N->-oo

Ï
h(N) oc

lim f = f.N-+oo g(N) -oo

Proof Given s > 0 choose Ma so that

f - f < and f - Mf < for all M > Mo.

Now choose N so that h(N) > M and g(N) < -M for all N > No. Then for
N > No we have

Ï
oo h(N) oo h(N) 0 0

f- f 5 f- f + f- f <-+-=8.
-oo g(N) 0 -co g(N) 2 2
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28. (a)

La1lim - dx = lim 2 - 2 = 2S.E40+ e->0+

(b)
a a ar+1 gr+1 ar+1

xr dx = lim xr dx = lim - =

eso+ , e-wo+ r + 1 r + 1 r + 1

(becauser + 1 > 0, so lim er+1 = 0.)
e-+0+

(c) Problem 13-15 implies that

Ï11
11 1 1-dx+-··+ -dx= -dx,

1/2 x 1/2 x /2=x

numes

so

Ï11 1 1
- dx = n - dx,

1/2= x 1/2 x

so lim / 1/x dx.does not exist. Of course, this implies that lim ja 1/x dx does
e-vo+ e-vo+

not exist for any a > 0.

(d)

Ï
o e

x |rdx = lim |x|*dx

Ï
a

= - lim xr dx
e-->o+ ,

Gr+1

r + 1

(e) Since lim 1/ 1 - x2 = lim 1/Jl - x2 = oo, we define
x->1 x->-l

li 1 1 I 1
dx = dx + dx

-l 1-x2 -1 1-x2 o Ál-x2

lo 1 * I
= lim dx + lim dx

e->-1+ e Ál -- x2 e-1¯ 0 1 - x2

Ïo 1
= 2 lim dx.

e->-1+ e Ál- x2

Now the limit

lo 1 1 1
lim dx = lim - dx

E->-1
e Î # X E¯ 0 e O
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exists by part (a).For
-1

< x < 0 we have

x(1 + x) < 0,

x <
-x2,

1+x <1-x2,

1+x < 1-x2,
1 1

It follows that
lim

1
dx

es-1+ Je 1 - x2

also exists.

29. (a) By the version of l'Hôpital's Rule given in Problem 11-52 we have
-1

lidt
lim x - = lim *

= 0.
x-÷o+ xd x-o+ 1

(Note that we have the necessary hypothesis lim f,'dt/t = oo by Problem 28(c).
x-+o+

Actually, in the solution for Problem 28(c) we showed that

l' 1 11
-dx=n -dx,

1/2n X 1/2 X

which implies that
1 1 1 n

il
-dx=-- -dx

2" ¡¡2. x 2n 1/2 x
'

from which we could immediatelydeduce the result.)
Now if |f| 5 M on [0,1], then

/*f(t) 1 dt
dt 5 M -,

x i x i

so we still have

Ï'f(t)lim x --- dt = 0.
xwo+ x t

(b) For f = 1 we have

/1dt 1
lim x -- = lim x · - -- 1 = 1.

x-+o+ x t2 x-o+ x
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In general, let l = lim f (x). Given e > 0 choose 8 > 0 so that |l - f (t)| < e for
x-+o+

0<t<8.Then

XÏ1f(t)-l a _; i _;

dt 5 x dt + x dt
x

72 2
; t2

Ï
©dt I f (t) - l

E xe - +x dt ,

x 72 a t2
or

Ï1f(t) ex
I f(t)-lx dt+xl-l <s--+x dt ,

x
72 ¯

& t2

or, finally,

lif(t) ex
I f(t) - l

x dt - l E - - +x dt +xl.
x

g2 2

This shows that by making x small enough we can make

x
1

dt - l

as close to e as we like. Since this is true for every e > 0,

Ï
i

lim x = l.
x-÷o+ x t2

30. (a)

loo
i 1 Ny

f (x)dx = lim -- dx + lim - dx
o e 0* eO N 00 i

X2

= 2+1 = 3,

by Problem 28(a) and 25(a).

(b) If
-1

< r < 0, then f°°xr dx does not exist, since x' > x-1 for x > 1 and

f°°x-I dx does not exist.
Ilf

x <
-1,

then f-1,rdx does not exist, since x' >_ x¯I

for 0 < x 5 1 and je x-i dx does not exist (Of course, if r > 0, then f°°xrdx
does not exist.)
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1. (fi)
1 1

-1

1 - [arctan(arccosx)]2 1 + (arccosx)2 1 - x2

(iv)
1 -x 1 -x

2 (1+ x2)3/2 2 (1+ x2)3/2

\
1-

1+x2 1+x2
-1

1+ x2

(This result is not surprising, since f(x) = arctan 1/x = Jr/2 - arctanx.)

2. (ii)
sin x - x + x3/6

. cos x - 1 + x2/2
.

- sin x + xlim = lim = lim
xw0 X4 x-o 4x3 x-o 12x2

- cos x + 1 sin x
= lim = lim = 0.

x-o 24x xo 24

(iv)
cos x - 1 + x2/2 - sin x + x .

- cos x + 1
lim = lim = hm
x->o x4 x->o 4x3 x-+o 12x2

sin x cos x 1
= lim = lim = -.

x->o 24x x->o 24 24

(vi)

(1 1 . sinx -x

cosx - 1
lim - -

,
= lim .

= lim .

x-0 x smx x-+o xsinx x-vosmx+xcosx

- sin x
= lim = 0.

x->o 2cosx - x sinx

3. (a)
sinh

- 1
h sin h - h

f'(0) = lim = lim
h->o h h->o h

cos h - 1
= lim = 0.

h->o h

219
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(b) Since
x cos x - sin xf'(x) = for x ¢ 0,

x
we have

h cos h - sin hf"(0) = lim
hoo h3

. cos h - h sin h - cos h
= hm

hoo 3h2
1
3

4. (a)

(b) Clearly f (x) = 0 for x = N. The numbers & become arbitrarily large,
of course (sinceO > k), but the also cluster closer and closer together, because,
for example,

k + 1 - J =
1 for some x in (k,k+1), by the Mean

2 Value Theorem

1

2Ã
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(c) If

0 = f'(x) = cosx + 2 cos 2x = cos x + 2(cos x - [1 - cos2x])
=cosx+2(2cos x-1)
= 4 cos2 x + cos x -- 2,

then
-1±41+32

-1±&

cosx 8 8

Since 0 < (-1+ Ñ]|8 < 1 and
-1

< [-1- ß]|8 < 0, there will be four
such x in [0,2x]:

cos

X¡ x2 X K4

The critical points xi and x4, with cos xi = cos x4 = Î # Ë 8, Satisfy

0 < x1 < x|2 and 3x/4 < x4 < 2x; so f (xi) > 0 and f (x2)< 0, since sin x and
sin 2x are both positive on (0,x/2) and both negative on (3x/4, 1). To determine
the sign of f (x3)and f (x4)notice that

f (x) = sin x + sin 2x
= sin x + 2 sin x cos x
= sinx(1 + 2cosx).
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Now sin(x2) > 0, since0 < x2 < x, but 1+2cos(x2) < 0, so f(xt) < 0. Similarly,
f (xa)> 0.

27
0

(d) f'(x) = sec2 x - 1 = tan2x > 0 for all x, so f is always increasing. On
(-x/2, x/2) clearly f increases from -oo

to oo. On (kn - x/2, kr + x/2) the
derivative f' is the same as on (-z/2, x2), so f differs by a constant from f on
(-x/2, x|2) The constant is clearly -x.

I I I || | \

\

\ \ \
i i I

I i i I
I I I

I i I
i i I

i i

I I I
i I i |
| | | i
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(e) f'(x) = cos x - 1 <: 0 for all x, so f is decreasing. Moreover f' is periodic,
so f is the same on [2x,4x] as on [0,2x] except moved down by 2x. Since
f"(x) = - sin x, it follows from the Appendix to Chapter 11 that f is concave on
[0,x] and convex on [x,2x].

« 27 3x 2x
I l i I i I I

(f) If 0 = f'(x) = (xcos x - sin x)/x2, then x = tan x. The graph in part (d)
shows that on the right side of the vertical axis this happens for 0 < xi < x2 <

where xn is slightly smaller than nr + x/2.

I
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(g) J'(x) = sin x + x cos x, so O = f'(x) when tanx =
-x. Comparing the graphs

of tan and --I we see that this happens for x = 0 and for x sightly larger than
nr + x|2 (n > 0) or sightly smaller than nr + x/2 (n < 0). The graph is even,
and f (x) = 0 at multiples of x.

2 «

5. The point with polar coordinates (0,a/0) has cartesian coordinates
a a

x = - - cos 0, y = - · sin 9.
0 0

For 0 close to 0, x is large, but y is close to a.

a - -----------------------------

0 = x/2

0 = 5r/2

6. For any particular number y, define f (x) = cos(x + y). Then

f'(x) = - sin(x + y),

f"(x) = -- cos(x + y),
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so

f"+ f = 0,

f (0) = cos y
f'(0) = - sin y.

So
f = (- sin y) - sin +(cos y) · cos,

so
cos(x + y) = cos y cos x - sin y sin x.

8. (a) Clearly f(x) = A sin(x + B) satisfies f + f" = 0. (Moreover, a = f'(0) =

A cos B and b = f(0) = A sin B.)

(b) It clearly suffices to choose A and B so that a = A cos B and b = A sin B.
Since we want

a2 + b2 = (A COs B)2 + (A sin B)

we must clearly choose
A = a2 + b2.

If a ¢ 0, we can choose
b

B = arctan -.

a
If a = 0, we can choose B = x/2.

(c) E sin x + cos x = A sin(x + B), where

A= d) +1=2
1

B = arctan -- = x|6,

so á sin x + cos x = 2 sin(x + x/6).

2

6 6

-2
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10. From the addition formula for sin we obtain, for |œ|5 1 and |ß| 5 1,

sin(arcsin a + arcsin ß) = sin(arcsin a) cos(arcsin ß)
+ cos(arcsin a) sin(arcsin ß)

=a 1-ß2+ß 1-œ2.

Consequently

arcsin « + arcsin ß = arcsin(a/1 - ß2+ ß 1 -
œ2),

provided that
-r/2

5 arcsin a+arcsin ß 5 x/2. If x/2 < arcsin a+arcsin ß 5 n,
the right side must be replaced by x

-arcsin(a/1

- ß2+ß 1 -
œ2), and if -X $

arcsin « + arcsin ß < x/2, replaced by -x
- arcsin(«J1-- ß2+ ß l - œ2).

13. (a) If

ÏxH(a)= (f(x)-acosnx)2dx
=a2 cos2nxdx -2a

f(x)cosnxdx+ f(x)2dx,

then the minimum occurs for

I
K X

0 = H'(a) = 2a cos2nx dx - 2 f (x)cos nx dx ,

SO

Ï
K

f (x)cos nx dx
1 "a =

¯"

,
= ---- f (x)cos nx dx ,

I cos2nxdx "
¯"

by Problem 12. The proof for sin nx is similar.

(b)
2N

f (x) - + c, cos nx + da sinnx dx =
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N
'

[f(x)]2dx - 2 f(x) + cacosnx +d, sinnx dx

x 2 N

+ + Cn2 COS2
nx + d,2 sin2 nx dx

Ï
x N

+ cndmcos nx sin mx dx
-x

n,m=1

+ cn cos nx + dn sin nx dx

=
[f(x)]Idx

- 2x ao2co+ anc, + bad, + x + cn* + 42 ,

n=1 n=1

using Problem 12, the definition of as and bn, and the fact that the last integral
vanishes because f_",cos nx dx = |_",sin nx dx = 0. The second equality follows
by algebra.

14. (a) Substituting a = (x+ y)/2, b = (x - y)/2 in

sin(a + b)+ sin(a - b) = sinacosb + cosasinb
+sinacos(-b)+cosasin(-b)

= 2 sin a cos b

yields
. x+y x-ysinx + sin y = 2sm cos .

2 2

(b) Using the same substitution in the equation

cos(a + b) + cos(a - b) = cos a cos b - sin a sin b

+ cos a cos(-b) - sin a sin(-b)
= 2 cos a cos b

we obtain
x+y x-y

cos x + cos y = 2 cos cos .

2 2

Similarly, from the equation

cos(a + b) - cos(a - b) = cos a cos b - sin a sin b
- cos a cos(-b) + sin a sin(-b)

=
-2

sin a sin b
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we obtain
.x+y.x-y

cos x - cos y =
-2

sin sin .

2 2

15. (d)

f(x) = 1-cos 2x = sin2x
\ 2

I \
/

.*"*, \
I * 4 a

,*' I \ ', f(x) = -cos 2x
/ \ 2

f(x) =
-cos 2x

16. If y = arctan x then
sin y sin y

x=tany= =
,

cos y Ál - sin2 y
so

x 1 - sin2 y = sin y,
x2(1 - sin2 y) =

Sin2

2xsin2 y
-

,

1+ x2

so
xsin(arctan x) = sin y =

1 + x2

cos(arctan x) = cos y = 1 - sin2 y = .

1 + x2
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17. If x = tan u/2, then u = 2 arctan x, so by Problem 16

sin u = sin(2 arctan x)
= 2 sin(arctan x) cos(arctan x)

2x
1+ x2'

1--x2
cos u = 1 - sin2 u = .

1+ x2

18. (a) By the addition formula,

sin(x + x|2) = sin x cos x|2 + cos x sin x|2 = cos x.

(b) Part (a)implies that x + x/2 = arcsin(cos x) for
-x/2

5 x + x/2 5 x|2, or
equivalently -x

5 x 5 0. If x = 2kn + x' for -x

5 x 5 0, then cos x = cos x',
and if x = 2kx + x' for 0 5 x' s x, then cos x = cos x' = cos(-x'). So

x - 2kn + x/2, (2k - 1)x 5 x 5 2kr
arcsin(cos x) =

2kx + x/2 - x, 2kx 5 x 5 (2k+ 1)x.

Similarly, from
cos(x - x|2) = sin x,

we conclude that

x - 2kx - x/2, 2kr + x |2 5 x 5 (2k+ 1)x + x |2arccos(sin x) =

(2k+ 1)x - x |2 - x , 2kx -- x |2 5 x 5 2kx + x |2.

22. If (x,y) is on the unit circle, then x2 + y2 = 1. In partiCUÏßf,ÍX2 Î, SO
-1

5 x 5 1. On the intervals [0,x] and [-r, 0] the function cos takes on all
values between

-1

and 1 so there is some 8 in [0,x] with x = cos Ð, and also some
0 in [-x,0] with x = cos0. If y > 0, then y = sinÐ when 9 is in [0,x], and if
y 5 0, then y = sin 8 when 0 is in [-x, 0].

23. (a) If a < 2kx + x/2 < b, then sin is not one-one on [a, b], because sin has a
maximum at 2kx + x|2, so sin takes on all values slightly less than 1 on both sides
of 2kx + x/2. Similarly, we cannot have a < 2kx - x/2 < b. Since the numbers
of the form 2kn ± x/2 are within x of each other, x is the maximum length of an
interval [a,b] on which sin is one-one, and in this case [a,b] must be of the form
[2kr - x/2, 2kx + x/2] or [2kr + x/2, 2(k + 1)x - x/2].

(b) (g-1)'(x)= 1| 1 - x2 SÎH C g-1(x) = arcsin x + 2kr.
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24. The domain of f is (--oo,1] U [1,oo).

I

I
f

I
I

25. By the Mean Value Theorem,

| sin x - sin y| = x - y| - | cos 8| form some 8 between x and y

Strict inequality holds unless 9 = 2kr. But in any case, if x < y, say, then we

can choose x < z < y so that (x,z) does not contain any number of the form 2kr.
Then

sin y - sin x = (siny - sin z) + (sinz
- sin x)

= (y - z) cos0; + (z - x) cos02

for some 0; in (y,z) and 02in (x,z). Since | cos Ði| 5 1 and |cos02| < 1, it follows
that

sin y - sin x| < |y - x|.

26. (a)
d cosic cos1d

lim sin Ax dx = lim - = 0.
X-+oo Amoo A 1

(b) If s has the values s¿ on (t¿_i,t¿), then

Ib
n t,

lim s(x) sin1x dx = lim s¿ sin Ax dx
a i=1

-1

= 0, by part (a).
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(c) For any e > 0 there is, by Problem 13-16, a step function s 5 f with

Ï
b

[f (x) - s(x)]dx < e.

Now

f(x)sinAxdx-- s(x)sinAxdx = [f(x)-s(x)]sin1xdx

Ï
b

$ [f (x) - s(x)] - | sin1x | dx
a

Ï
b

$ [f (x) - s(x)] dx < e.
a

Part (b)then shows that

Ï
b

lim f (x)sin Axdx < e.

Since this is tme for every s > 0, the limit must be 0.

27. (a) We have
x

area OAB < - < area OCB,
2

so sin x x sin x
2 2 2cosx

(b) From
sin x x

2 2
we obtain

sin x
-- < 1;

2
from

x sinx
2 2 cos x

we obtain
sin x

cos x < .

x
Since lim cos x = 1, it follows that lim (sinx)/x = 1.

x-vo x-vo

(c)
lim

1 - cos x
= lim

1 - cos2x
x->0 x x-vo x(1 + cos x)

sin x sin x
= lim - = 1 · 0 = 0.

x->0 x 1 + cos x
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(d)
. sin(x + h) - sin xsin'(x) = lim

hoo h
. sin x cos h + cos x sin h - sin x= hm

hoo h
. sin h . cos h - 1 .

= hm cosx + lim smxh-o h hoo h
= cosx.

28. (a) Problem 13-25 shows that

li
1

2(x) = 1+ [f'(t)]2dt = 1+ dt

Ï
l 1

x 1 - t2
dt.

(Actually, a more detailed argument is necessary, because f,'1|J1- t2 dt is not
an ordinary integral, but an improper integral. It does follow immediately from
Problem 13-25 that

1¯' 1
length of f on [x, 1 - s] = dt.

1 - t2

To obtain the desired expression for 2(x) we must then use the fact that
lim (lengthof f on [x, 1 - e]) = length of f on [x, 1].
840

This is proved as follows. First of all, the following figure shows that the "lengthof
f on [x, 1]" does make sense; in fact, the length of f on [0,1] is 5 2.

-total length 2

The same sort of figure also shows that the length of f on [1 - e, 1] is 5 28. The
desired limit then follows from this inequality and the fact that

length of f on [x, 1] = length of f on [x, 1 - s] + length of f on [1 - s, 1].
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The proof of this latter fact is very similar to the corresponding assertion for inte-
grals.]

(b) This follows from part (a)and the Fundamental Theorem of Calculus.

(c) By the definition given, cos = 2¯', so
1cos'(x) = (2-1 r

1 .

¯ -1
¯

-smx.

1 - cos2 x

The proof for sin'(x) is the same as the one in the text.

29. (a) Clearly œ is odd and increasing. The limit lim a(x), i.e., the improper
x->oo

integral f°°(1+ t2)¯I dt, exists by Problem 14-25.

(b)
1

- --- 1 + [œ-1 2

1 + [a-! (x)]2

(c) If
--z/2

< x < x/2, then

cos x = = (1+ [a¯' (x)]2)¯'I2,
1 + [œ¯I (x)]2

so
cos'(x) =

-a¯'(x)(a'¯')'(x)(1

+ [a¯'(x)]2)--3/2
=

-a¯*(x)(1

+ [a¯I (x)]2)-1/2
= - tanx cos x.

Naturally the same result hold if x is not of the form kr + x/2 or kx - x/2. (For
x which are of this form we have, by Theorem 11-7,

cos'(x) = lim cos'(y)
y->x

= lim - tan y cos y
y->x

- tan y
= lim

y->x Ál+ tan2 y
=

--1

since lim tanx = oo.)
y->x
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Now for x not of the form kr + x/2 or kx - x/2 we have
cos"(x) = - tanx cos'(x) - tan'(x) cos x

= - tan2 x cos x - [1+ tan2x] cos x by part (b)
=

-cosx.

For x which are of this form we have
cos"(x) = lim cos"(y) = lim - cos y,

y->x yax
-1

= lim = 0, since lim tan y = oo.
y->x fl + tan2y 7-**

30. (a) (yo2+(yo')2)'= 2yoyo'+2yo'yo" = 2yo'(yo'+ yo") = 0, so yo2+(y')2 is a
constant. The constant is non-zero, since yo is not always 0, so yo(0)2+ yo'(0)2 ¢ 0,
so either yo(0)¢ 0 or yo'(0) ¢ 0.

(b) Any function s = ayo + byo' satisfies s" + s = 0, so we just have to choose a
and b such that

ayo(0) + byo'(0) = 0
ayo'(0) - byo(0) = 1.

This is always possible, since
-yo(0)2

- ¾'(0) ¢ 0.

(c) Suppose that cos x > 0 for all x > 0. Then sin would be increasing, since
sin' = cos. Since sin 0 = 0, this would mean that sin x > 0 for all x > 0. Thus
we would have cos'(x) = - sinx < 0 for all x > 0, so cos would be decreasing.
Thus cos would satisfy all the hypotheses for f in Problem 7 of the Appendix to
Chapter 11. But then the problem implies that cos"(x) = - cos x = 0 for some
x > 0, a contradiction.

(d) Suppose cos x > 0 for 0 < x < xo = x/2, the function sin is increasing on
[0,x/2]. Since sin0 = 0, it follows that sin x/2 > 0, so sin x/2 = 1.

(e)
cos x = cos(x/2 + x/2) = cos2 x/2 - sin2 x/2 = 0 - 1 =

-1.

sin n = sin(x/2 + x/2) = 2 sin x/2 cos x/2 = 0.

cos 2x = cos(x + x) = cos2 x -- sin2x = 1.
sin 2ñ = sin(x + x) = 2 sin x cos x = 0.

(f)
sin(x + 2x) = sin x cos 2x + cos x sin 2x = sin x.

cos(x + 2x) = cos x cos 2x - sin x sin2x = cos x.
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31. (a) A rational function cannot be 0 at infinitely many points unless it is 0 ev-
erywhere.

(b) The assumed equation implies that fo(x) = 0 for x = 2kx, so fo = 0. So

(sinx)[(sin x)n-1 + Ín-i(x)(sinx)n-2 + - · - + fi (x)]= 0.

The term in brackets in continuous and 0 except perhaps at multiples of 2x, so it
is 0 everywhere. We have just shown that if sin does not satisfy such an equation
for n - 1, then it does not satisfy it for n. Since it clearly does not satisfy such an
equation for n = 1, it does not satisfy it for any n.

32. (a) Multiplying the equation for gi by ¢2 and the equation for g2 by ¢1 we
obtain

¢i"¢2+ gi¢i¢2 = 0

¢2"¢i+ x2¢i¢2= 0.

Subtraction yields the desired equation.

(b)

Ï
b b
[¢i"¢2- ¢2"¢il= (g2- g2)¢i¢2 > 0,

a a

since g2 > gi and ¢i¢2 > 0 by assumption. Since

(¢i'¢2 - ¢i¢2')' = ¢i"¢2+ ¢i'¢2' - ¢i'¢2' - ¢1¢2
= ¢i"¢2- ¢1¢2",

we have
b

o < [¢,"¢2-- ¢2"¢,]
= [¢i'(b)¢2(b)- ¢1(b)¢2(b)] - [¢i (a)¢2(a)- ‡1(a)¢2(a)]
= ¢i'(b)¢2(b)- ¢1'(a)¢2(a)+ [¢1(b)¢2'(b)- ¢1(a)¢2'(a)].

(c) If ¢i(a) = ¢i(b) = 0, then it follows from part (b)that

¢i'(b)¢2(b)- ¢i'(a)¢2(a) > 0.

But clearly

¢2(a)> 0, ¢2(b)> 0

‡1'(a)> 0, ¢i'(b) 5 0.

This implies that
¢i'(b)¢2(b - ¢i'(a)¢2 :

a contradiction.

(d) This follows from part (c)by replacing ¢i by
-¢i

and/or ¢2by
-¢2•



236 Chapter 15

33. (a) Substitute (k+ ()xfor x and (k - ()xfor y in the formula

. x-y x+y
sin x - sin y = sin x + sin(-y) = 2 sm cos .

2 2

(b) We have

1
- + cos x + cos 2x + . . . + cos nx2

= + sin(k + ()x- sin(k - ()x2sm - k=I
2

1 1
= - + , [sin(n+ ()x- sin(i)x]

2 sin -

2
sin(n + ()x

2 sin -

2

(c) Substituting (k+ ()xfor x and (k - ;)xfor y in the formula

. x‡y . x-y(*) cos x - cos y =
-2

sm sin2 2

from Problem 14 we obtain

cos(k + ()x- cos(k - ¼)x=
-2

sin kx sin .

So

sin x + . . . + sin nx

= -

1
cos(k + ()x- cos(k - ()x2 sm - k=1

2
1

= - [cos(n+ ()x- cos(jx)]
2 sin -

2
1 in i n+1

= -

-2

sin x) sin
2 x by (*)again.

2 sm -

2

(d) It obviously suffices to compute the integral for b 5 x/2, which makes things
sightly easier, since sin is increasing and cos is decreasing on this interval. Let
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P = {to,..., tn} be the partition of [0,b] with ti = ib|n. Then

b n ib
L (cos,P) = -- cos --

n ni=1

sin [n+ j] b
2n , b

--- sm --

b 2n
For n large, sin([n + (Jf) = sin([1 + ]b) is close to sin b, and g sin =

(sinb|2n)/(b|2n) is close to 1. So L(cos, P) can be made as close as desired to
sin b, which means that ) cos = sin b. For f sin it is best to use the next-to-last
equation in the derivation of part (c):

bn ib
U(sin, P) = - sin -

n ni=1

=
2n

1
cos [n + j] - cos .

-- sin
b 2n

For n large this is close to - cos b + 1, so f sin = 1 - cos b.
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1. (a) Let A = area OAB. Since

xy = 2A,
x2+y2=1,

we have

(2A 2
- +y2=1,
y

4A2 + y4 _ 2

y4_ 2+4A2=0,

2 1 ± 1 - 16A2
y = .

2

We have

2 1- 1-16A2
y =

,

2

provided that y2 < 1/2, or y < |2. So

y 1 1 - 1 - 16(area OAB)2
area OAC = - = -

.

2 2 2

(b) Let Pm be the union of m triangles congruent to the triangle OAA' in the figure
below.

A

O B C

A'

238
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Each such triangle has area Am/m so triangle OAB had area Am/2m. Now P2m is
the union of 2m trianglescongruent to OAC. So by part (a),

1 -- 1 - 16(area OAB)2
À2m= 2mareaOAC = m 2

1 - jl - 16Am2/4m2
= m 2

= -- 2 - 2 1 - (2Am/m)2.

2. (a)
Am 2marea(OAB)

OB=am-
A2m 2marea(OAC)

(b)
2 2 As A2e-,

Agk Ag Am Â2*

= = a4•••Œ2*-!·Ag A2

(c)

G4=COS-=--= -,

4 2 2

(x/41 cosr/4
as = cos -- = - +2 2 2

etc.
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1. (ii)
1 1

1 + log(1 + log(1 + et+el+ )) 1 + log(1 + e1+el+=

Î i+x 1+x
.

-e -e

.

1 + «I+"**

(iv)
x

e¯" dt - e¯ .

(vi) We have
log(sin x) log(sin x)

f (x) - -

,

log e2 x
so cos x

x - - log(sin x)
f'(x) =

sin x
x

(viii)
1

4 log(3 + e4 4x + (log3)(arcsin x)U°53)¯'
.

1--x2

(x) f (x) = ex'° 2, so

( 1f'(x)=e*°52 x·--+1-logx =x2(1+logx).

x

2. (a) (logo f)' = (log'o f) · f' = (1/f) - f'.

(b) (i) log(f (x)) = log(1 + x) + log(1 + e**) so
2

1 2xeX

(logo f)'(x) = + 21+x 1+e*
so . 2^

1 2xex
f'(x) = (1+x)(1+ e + 2 .

1+x 1+e2

(ii)
1 2 1 2

(logo f)'(x) = - + - + -

,

3(3-x) x 1-x 3(3+x)

(3 - x)'l3x2 1 2 1 2
f'(x)= - +-+ -

(1 - x)(3 + x)2/3 3(3 - x) x 1 - x 3(3 + x)

240
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(iii)

[ cosxf'(x) = (sinx)°°"2 cos x - -- - sin x log cos xsin x

+ (cosx)"i"2 sin x -

-- sin x + cos x log sin x .

cos x

(iv)
i 1

f (x) = -

eX(1+x3) g3x(Î#X3)'

1 3x2 1 3x2
f'(x) =

-1

- -

-3

-

eX(1+ x3) Î #X3 €3 (Î #X3) 1 #X3

3.

dt = (logo f)'(t) dt = log(f (b)) -- log( f (a)).

4. (a)

I
- I

(b)

I
I

1
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(c),(d)

\ I I
\ f(x)=eX+e¯X /

\ exp/

f(x)=e'e

(e)

5. (ii)
.

ex-1-x-x2/2-x3/6
.

ex-1-x-x2/2
lim = lim
x->0 X3 x->0 3X2

e2-1-x ex-1
= lim = lim = 0.

x-vo 6x x->o 6
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(iv)
1

- 1 + xlog(1+ x) -x

-x2/2

1+xlim = lim
x-vo x2 x-vo 2x

1
- +1

(1+ x)2
= lim = 0.

x-vo 2

(vi)
log(1 + x) - x + x2/2 - x3/3

lim
x->0 X3

1 -1+x-x2

1 + x= lim
x-o 3x2

1 2
- +1--2x

-2

(1+ x)2 (1+ x)3
= lim = lim = 0.

x-o 6x x-vo 6

6.

cosh

sinh

tanh
.- e×Þ/2

tonh

sinh

7. (b) Since cosh2 - sinh2 = 1 by part (a),we have
sinh2 1

1-- cosh2 cosh2
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(d)
cosh x cosh y + sinh x sinh y

ex + e¯* ei + e¯Y e - e ei - e-I

2 2 2 2

4 4 444 4 44
e2*7 + e¯ f'*T)

cosh(x + y).
2

(f) Since
€ # €¯

cosh x =
,

2
we have

x
-x

e - ecosh'(x) sinh x.2

8. (b) It follows from Problem 7(a) that
cosh2(sinh¯' x) = 1 + sinh2Wä¯I x) = 1 + x ,

so
cosh(sinh¯I x) = Vl+ x2

since cosh y > 0 for all y.

(d)
1(cosh¯')'(x)=

cosh'(cosh-¯1

1
sinh(cosh-1

1
x2 - 1

10. Since 0 < log t < t for t > 1 we have

Ï
x 1 2 1

-- dt > - dt = logx,
2 ÎOg i 2

and log is not bounded on [2,oo).

11. If |f | EM on [1,oo), then

lx|f(t)| 2 1
|F(x)|< dt<M -dt=Mlogx,

I i 11
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so |F(x)||log x < M for all x > l. To prove the converse, first suppose f à 0 on
[1,oo). Then since f is nondecreasing,

F(x) = dt s f(x) dt = f(x)logx,

so |F/ log | bounded implies |f [bounded. For the general case note that since f is
nondecreasing it is certainly bounded on any interval to the right of 1 on which it is
negative. If f (b) = 0 for some b > 1, then for x à b

Ï
b f(t) I f(t)F(x) = dt + dt

t b I

5 dt + f (x) dt

I
b

= dt + f(x)[logx - logb],
i i

so
F(x) 1 bf (t) [logx - log b]

= - dt + f (x)log x log x i t log x
= A(x) + B(x) f (x), say.

The for x > b we have

1 F(x)
|f(x) 5 + |A(x)| .

|B(x)| logx

Now |A(x)| is bounded [it 4 0 as x
-> oo] and 1||B(x)| is bounded [B(x) -> 1

as x
-> oo], so if |F|log | is bounded, then so is |f .

12. (b)
x ei

lim = lim - = oo.
x-oo (logx)n ysoo yn

(d)

lim x (logx)n = lim
x-o+ x-o+ 1

= hm = 0.
y oo y
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13. f is convex, since

f'(x) = x'(1 + log x),
x

f"(x) = x2(1 + log x)2 + - > 0.

I
I

14. (a) If x > 0 and

xne" - nxn-le" e*(x - n)
0 = f'(x) --

2n
¯

Xn+1 '

then x = n, so the minimum is at n, since lim f (x) = oo = lim f (x). So for
X-+0+ X- 00

x > n we have f (x) > f (n) = en/n".

(b) If x > n + 1, then

€ €n+1

f'(x) > >
xn+1 (n+ 1)n+1

by part (a)applied in the case n + 1. It follows immediately that lim f (x) = oox-voo

(merelyusing the fact that f'(x) > e > 0 for some e and all sufficiently large x).

15. f is convex, since

f'(x) = e*x¯" -
ne*x¯"¯I,

f"(x) = e x-n - n
xx-n-i

- nexx-n-1 + n(n + 1)exx-n-2

= [x2- 2nx + n2 + n] > 0 for all x.Xn+2
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I
n

16. (e) If f(x) = ebx, then f'(0) = b, so

lim
eb _ y

= b.
y->o y

Thus
lim x(eb/x - 1) = b.

x->oo

So

logb = lim x(e0ogbyx
x-+oo

= lim x(b'12 - lb
xwoo

17. We have lim f (x) = e by Problem 16(c) and
xsoo

( 1 * 1
lim f (x) = lim 1 + - = exp lim x log 1 + -

x-o+ x-vo+ x xwo+ x

(( x+1
= exp lim x log

x-vo+ x

= exp lim [xlog(x ‡ 1) - x log x]
xso+

= exp 0 = 1, using Problem 12(d).

Moreover,

( 1 1 1 1 *

f'(x) = 1+ - log 1+ - - = 1+ - - g(x), say.
x x x + 1 x
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To analyze f', we notice that
1

-1

1g'(x) = +1 7 (x+1)21+-
x

-1

= <0.
x (x+ 1)2

Thus g is decreasing. Since lim g(x) = 0, we must have g(x) > 0 for all x > 0.
x-oo

So f is increasing. We also have

( 1 1lim f'(x) = 1 - lim log 1 + - -

x-o+ x-o+ x x + 1
1

= lim log(x + 1) - logx -

x-o+ x + 1
= oo.

le -------------------------------

20. (a) We have
f'(log|f|)' = - = cf

so
log|f(x) =cx+d

for some number d, so

f (x)| = e ecx e > 0.

(b) On an interval where f is non-zero it has the form f (x) = kecx. But this
can't approach 0 at the endpoint of the interval; so f couldn't be 0 at the endpoints.
This proves that if f is non-zero at one point xo, then it is nowhere 0 (consider
sup{x >xo: f(x) ¢0} and inf{x <xo: f(x) ¢0}).



Chapter 18 249

(d) Let h(x) = f (x)/eaf2).Then
e&f')f'(x) - f(x)g(x)eaf2)h' (x) =

42g (x)
e&f')[ f'(x) - f(x)g(x)] 042g(x) '

so f (x)/eaf') = k for some constant k.

23. Notice that f is continuous, by Theorem 13-8. We therefore have f'(x) = f (x),
so there is a number c such that f (x) = ce2. But f (0) = 0, so c = 0.

24. (i) Differentiating fe'f = ex, we see that f must satisfy f (x) = ex, but this
f doesn't work, since

I
X

er dt = ex - e° = e2 - 1.
O

So there is no such f (easierproof: set x = 0, to get 0 = e° g
(ii) Differentiating, we obtain

2xf (x ) =
-4xe

so
f (y) =

-2e

y > 0.

This f does work.

25. We need

(1) f (f (x)) g( f (x)) - f'(x) = g'( f (x)) - f'(x)
or

(2) f (y)g(y)= g'(y).

According to Problem 20(d), if F is a function with F' = f, then we must have

g(y) = ke'ff).

For this g to work we need

I
f(x) kf(t)eF(t) dt = keF(f(x))

O

Since fe' is the derivative of e', this means

k «F(f(x)) _ F(0) = k€F(f(x))

or keF(0) = 1. We can choose F(0) arbitrarily; we might as well make F(0) = 0.
Then we need k = 1.
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This derivation is not complete, because we assumed f'(x) ¢ 0 in order to go
from (1)to (2). In fact, if f (x) = c for all x, then our equation simply says

I
C

cg = g(c) -- 1,
O

and any g satisfying this will work. Even if we assume that f'(x) ¢ 0 for all x,
there is the further problem that equation (2)only holds for y in the range of f! In
order not to get too involved, let's simply assume that f is defined on [0,oo), with

f' > 0 everywhere on [0,oo), with f(0) = a > 0 and [a,oo) being the range of f.
Then

g(y) = ke'f) y > m
For this g to work we need

a f(x)
fg + kf (t)eF(t) dt = keF(f(x))

or a

fg +k e' -eF(a) =keF(f(x)

or a
fg -

keF(a)

Choosing F(a) = 0, this says

Ï
a

(*) k = fg + 1.
o

On [0,a) we can choose g arbitrarily, and then let g(y) = ke' Il for y > a, where
F is the function with F(a) = 0, F' = f, and k is determinedby (*).

26. We have f"(t) = f'(t), so f'(t) = cel for some c, so f(t) = a + ce' for
some a. So

ce' = (a + ce') + (a + cet) dt
=a+ce'+a+ce--c,

so a = c(1 - e)/2.

27. The given equation implies that f2 is differentiable,so f is also differentiable
at any x with f (x) ¢ 0, and for such x we have

x2f (x)f'(x) = f (x) ,

1 + x
so

log(1 + x2)
f'(x) = g'(x), where g(x) = .

4
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So on any interval where f ¢ 0 we have

log(1+ x2)
f (x) = + C

4
for some C.

If x = 0 is in the interval we immediately have 0 = f (0)2= C. But it is possible
to have a pieced-together solution like

0 x 5 0
f (x) = log(1 + x2)

x > 0.
4

¯

28. (a) Let

lxh(x) = C + fg > C > 0 on [a, b].

Then h'(x) = f(x)g(x) > 0 on [a, b] and

h'(x) = f (x)g(x)
5 g(x) C + fg
= g(x)h(x),

SO
h'(x)

(logo h)'(x) = 5 g(x).
h(x)

If we set

lxG(x) = g,
a

then since log(h(a)) = log C, we can write

[logoh -- log c]' s G'

where both G and log oh - log C are 0 at a. It follows that
x

log(h(x)) - log C 5 G(x) = g for x >_ a,

or
h(x) 5

Ce$ '.

(b) If
IX

f(x) 5 fg
a

then for every e > 0 we have

lxf(x) 5 e+ fg
a
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so by part (a)
0 5 f (x) 5

si ';

since this is true for every e > 0, we must have f (x) = 0.

(c) We have

Ï
x x

f(x) = f'= fg;
O O

by part (b),this proves that f (x) = 0 for all x (butwe need to assume f, g > 0).

29. (a) For n = 0 the inequality reads 1 < ex for x > 0, which is certainly true,
since e° = 1 and exp is increasing. Suppose the inequality is true for n. Let

X2 Xnkl

f(x)=1+x+-+-·-+ .

2! (n+ 1)!
Then

X2 Xn

f'(x)=1+x+-+---+- sex,2! n!

while f (0)= e°. It follows that f (x) < ex for x > 0.

(b)
. e2 . 1+x+x2/2!+-··+xn+i/(n+1)!

hm - > lim
n-woo Xn

¯

R 00 Xn

. 1 1 1 x
= lim

-+

+ +--·+
n-woo xn n-1 2! xn-2 (n+ 1)!

= oo.

30. Using the form of l'Hôpital's Rule which was proved in the answer to Prob-
lem 11-53, we have

ex ex /
lim - = lim = - - - = lim - = oo.x->oo X" X 00 NXn-1 x-yce y

31. (a) A good guess is that the limit is 0. Reason: On [0,x] the maximum value
of e" is e2'; on most of the interval the value is much smaller, so that integral should
be much smaller than ex'. We can easily evaluate the limit by the form of l'Hôpital's
Rule that appears in Problem 11-52:

x
e" dt 2

e2
lim = lim = 0.

x->oo e22 x->oo 2xe22
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(b) (i) Using l'Hôpital's Rule, we obtain

Ï
x+- , e" dt el *il'

- e2°
lim 2

= lim
xsoo ex' x-+co 2xe22

1
e2 y _ y

= lim
x-+oo 2x

=0.

(11)
x+

e" dt
e

'
- e*'

lim 2
= lim

x-oo e
*

x->oo 2xe22

= lim
e21ogxe - 1

x-÷oo 2x
x2e = I - 1=lim

x-÷oo 2x
=oo.

(m)
x+

e dt
e

'
- ex'

lim x = lim
x-÷oo e2' x-+oo 2xe '

e!°8 e - 1=lim

x->oo 2x
1
2

32. (a) We have

loga(x + h) - loga X
loga(x) = lim

hoo h

(x+hloga
x h I

= lim = lim log 1 ‡ -

h->o h h->0 x
xl

( h II ii
= lim log 1 + - = lim log(1 + k) I

¯

A->0 X k-+0
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1 : 1 i
= lim -log(1+k)I = -- limlog(1+k)I

k-+0 X X k-+0

1
= - log lim (1+ k) I

, by continuity of log.
x ko0

(b) By the binomial theorem,

an= 1+
n=1+n.l·

+
k

=2+ n(n-1)- (n-k+1)-
k=2

n 1 n-1 n-k+1=2+

n nk=2

=2+ 1- 1- ---

1-k-1

Similarly,
n+1 1 1 1 k - 1an+1=2+ - 1- 1- -- 1- .

k=2k! n+1 n+1 n+1

All terms in these sums are positive, and for each k < n we have

1 1 2 k-1
- 1- 1- -·- 1-
k! n+1 n+1 n+1

1 1 2 k-1
>- I-- 1-- --· 1- ,

kl n n n

since each 1 - > (1- ¼).So an i > an.

(c) Since each (1- 1) < 1 and 1/k! < 1/2k-1 for k > 2, we haven - -

n 1 1 1 1
an <2+ =2+ -+-+·--+

2k-1 2 4 2n-1k=2

( 1=2+ 1-
2n-i

1=3---,

2=-I

so an < 3.
For any e > 0, there is some n with e - a, < s, since e is the least upper bound.

Since a, < an i < - - - we have e - at < e for all k > n.
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(d) Ifngx5n+1,then
1 1 1

n+1¯ x
¯

n
so

1+
n+1

n

5 1+
n

5 1+ 5 1+
n+1

5 1+
n+1

Now

( 1 " 1 n+1 .

1+n+1) ¯

\ n+1)

For large enough n the terms in brackets [ ] is close to e, and (n+ 1)/n is close
to 1, so the whole expressionis close to e. Similarly, (1+ 1/n)n+i is close to e for
large n. So (1+ 1/x)2 is close to e for large x, i.e., lim (1+ 1/x)* = e. This

x->oo
implies that lim (1+ h)1/ h = e (Problem 5-34).

h->0+
We also have

1+
. x+1 * 2 2

lim ,
= hm = lim 1 +

x->oo 1 x-voo \x - 1) x-voo \ x - 1/
1 - -

x 2rx-1 * -

)( 2
- x-I2

= lim 1 +
x->oo x - 1

( 1 I
= lim 1 + -

,

y- oo y
= e2,

SO

( )1
x 1 *

lim 1 - - = lim 1 + - - e¯2 = e-1
x-woo x x-voo x

Consequently,

( 1 * 1
¯*

lim 1 + - = lim 1 - -

x->-oo X x->co X

1
=--=e.

e-1

It follows that lim (1+ h)l/h = e, and thus that lim (1+ h)1/h
h->0- h->0

33. If A(t) = P(t) = 107, t11en

A'(t) = P'(t) = 102 - P(t) = -A(t).
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So (byProblem 20) there is some number k such that
A(t) = ke¯'.

Since A(0) = P(0) - 107 =

-107,

we obtain k =

-107,

so
P(t) - 107 =

-10'e¯',

so
10't = Nap log[102 - PON

= Nap log 10'e¯';

letting x = 10'e¯', so that t = log(107/x), we obtain

107
Nap log x = 10T log -.

x

34. (a) We have lim f (x) =
-oo and lim f (x) = 0 by Problem 12.

e

(b) Since f has its maximum at e, we have
log e log x

e x
so

e log x > x log e,

so

(c) The equation x> = y* is equivalent to f (x) = f (y). The assertions in part (c)
amount to the fact that the values f (x)for 0 < x < 1 or x = e are taken on only
once, while the values f (x) for 1 < x < e are taken on for some x' > e and vice
versa.

(d) Part (c)shows that the only possible natural numbers x < y with xi = y2 must
involve 1 < x < e, so x = 2.
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(e),(f) If fi and f2 are defined as in part (f),then g = f2-1° Í1. The curve in
part (e) is the graph of g on (1,e); the straight line is the graph of the identity
function. They "intersect"at (e,e) [moreprecisely lim g(x) = e].

I
I

Moreover, g is differentiable, since fi and f2 are differentiable and f2'(x) ¢ 0 for
all x in the domain of f2. In fact, we have

g'(a) = (fg¯'o ft )'(x) = (f2¯1r r

1
- fi'(x)f2'(f2 '(fi(x)))

[g(x)]2 1 - log x
1 - log g(x) x2

35. (a) exp is convex, since exp"(x) = exp(x) > 0 for all x. Similarly, log is
concave, since log"(x) =

-1|x2

< 0 for all x > 0.

(b) Naturally we are assuming that z¿ > 0. Problem 9 of the Appendix to Chap-
ter 11, applied to the convex function exp, shows that

exp p¿ logz¿ > p¿ exp(log z¿)
i=1 i=1

or
zif

··zn'"

< Pizi +·· + Pnzn-

(c) Choose p¿ = 1/n.

36. (a) If mi is the inf of f on [ti-1,t¿], then

1 1 " b-a 1 "L(log f, P,) = logm¿ = - logm¿
b-a b-a n ni=1 i=1

= log (mi - - - m.)1/n
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while

log
b a

L( f, Pn) = log - m¿ .

i=1

Since (mi - - - mn)'/" 5 (1/n) - m¿ by Problem 2-22, and log is increasing, we
i=1

have the desired inequality.

(b) Theorem 1 shows that if f is integrable then for every e > 0 there is 8 > 0
such that

n b

f (x¿)(t¿- ti-1) - f (x)dx < e/2
i=1 a

for any partition P = {to,..., tn} of [a,b], and choices x¿ in [ti-1,t¿], for which all
ti - ti-1 < ô. It is easy to conclude that we then have

I
b

L(f, P) - f(x)dx < e

for such partitions (weneed to increase e/2 tO E since m¿ may not actually be f (x¿)
for any x¿ in [t¿-i,t¿]). In particular,

Ï
b

L(log f, Pn) - 108f < 8
a

lbL( f, Pn) - / < E

for n sufficiently large. The desired result then follows easily from part (a).

(c) Let P = {to,...,tn} be any partition of [a,b], and let m¿ be the inf of f on
[t¿_i,t¿]. Letting p¿ = (t¿- t¿_i)/(b - a), we have

b a
L(log f, P) = p¿ log m¿ $ log p¿m¿

.=1 :=1

( 1
= log L( f, P) .

b - a
Since this is true for all partitions P, we have

1 b y b
log f 5 log f .

b-a a b-a a

(d) More generally, if g is concave and increasing, then

1 b b
gof<g f .

b-a a b-a a
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37. From f' = f we conclude that f (x) = ce* for some c. From

f (x+ 0) = f (x)f (0)
we conclude that either f (x) = 0 for all x, or else that f (0) = 1, in which case
c = 1.

38. Suppose that f ¢ 0. From f (x+ 0) = f (x)f (0)it follows that f (0) = 1.
Then from

1 = f (0) = f (x+ (-x)) = f (x) - f (--x)
it follows that f (x)¢ 0 for all x. Moreover f (x) > 0 for all x, since

f (x) = f (x/2 + x/2) = f(x/2)2.
Now if n is a natural number, then

f (n) = f ( = f (1)"·
n times

moreover,
1 = f (0) = f (n+ (-n)) = f (n) - f (-n),

so
1 1

f (-n) f (1)-n
f (n) f (1)n

Similarly,

f (1) = f = f
n

n times

SO

f = | f (1) = f (1)1/n

Finally

f - = f = f
m

= f (1)m/n

m times

Since f agrees with g(x) = [f (1)]*for rational x, it follows from Problem 8-6 that
f = g.

39. If g(x) = f (eX), then

g(x+y)= f(e**T)= f(ex-e?)- f e*)+ f «I)=g(x)+g(y).

It follows from Problem 8-7 that g(x) = cx for some c. If c = 0, then f = 0. If

c ¢ 0, then
f(e) = f(ei) = g(1) = c,
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SO

f (e') = f (e)x
or

f (x) = f (e)log x for x > 0.

40. The formulas for f'(x) and f"(x) (forx ¢ 0) given in the text suggest the
following conjecture, which is easy to prove by induction on k:

f(k)(X)
=

€¯1/x2 for some numbers at, ..., a3k·
i=1

It is then clear that f(k)(0)= 0 for all k, using the same argument as in the text.

41. The following conjecture is easy to verify:

f (k)(X) = €¯ Sin COS

i=l i=1

for some numbers ai, ..., ask, bi, ..., b3k-

It is then clear that f (k)(0) = 0 for all k, as in the previous example (note that
| sin 1/x| 5 1 and |cos1/x| 5 1 for all x ¢ 0).

42. (a) If y(x) = e"*, then
any">(x)+an-17(n-1)(X)+· + ly'(x)+aoy(x)

=amane"'+an-1Œn-le"2+-··+alae"*+age"*

= e"2 (ana"+ an-¡œn-i + - - - + aia + ao) = 0.

(b) If y(x) = xe"', then

y (x) = œIxe"* + œt-le"2.

(This formula can be verified by induction, or deduced from Problem 10-18.) So
any(n) (x)+ an_: y(n-1) (x)+ - - - + ai y'(x) + aoy(x)

=xeux( nŒn+ n-lan-1+ + la+ao

+ e"2 [nasan-1+ - - - + ai
= 0

(thesecond term in brackets is 0 because a is a double root of (*)).
(c) If y(x) = x*e"", then by Problem 10-18,

y (x) =

(k s)!
k-sŒ €ax
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So
n k n k!

aiy (x)= aga' '

k - s !
k-s x = 0

l=0 s=0 l=0

(theterms in brackets are 0 because œ is a root of (*)of order s + a, for each s
_< k).

(d) If 71, . . . , yn satisfy (**),then

ai(ciyi+--·+caya) = cj aiyj
=0.

l=0 j=1 l-0

43. (a) From

0= f'(f"- f)= f'f"- ff'= (f')2- f j'
it follows that (f')2 - f2 is constant. The constant must be 0, since f(0) = f'(0)
= 0.

(b) Since f (x) ¢ 0 for x in (a,b), it follows from part (a)that either f'(x) = f (x)
for all x in (a,b) or else f'(x) = - f (x)for all x in (a,b). Thus either f (x) = ce'
or else f (x) = ce

2 for all x in (a,b).

(c) Let a be the largest number in [0,xo] with f(a) = 0. Then f(x) ¢ 0 for x in
(a,xo). But then f (x) = ce* or f (x) = ce-2 for all x in (a,xo), where c ¢ 0.
This contradicts f (a) = 0, since f is continuous, because f (a) = 0 ¢ lim ce* orx->a
lim ce-2.

x-va

44. (a) Let

f (0)+ f'(0)
a =

2
f (0)- f'(0)b = .

2
If g(x) = aex + be¯2 - f (x),then g" - g = 0, so f(x) = ae2 + be¯2.

(b) Note that
ex - e¯* ex + e-X

ae2 + be-2 -

a - b) + (a + b)
2 2

= (a -- b) sinh x + (a + b) cosh x.
(Comparing with part (a)we see that

f (x) = f'(0) sinh x + f (0)cosh x,
in exact analogy with the trigonometric functions.)
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45. (a) We have f (n-1) (x) = ce*, so

f (x) = ao + aix + · - - + an-2xn-2 + ce'.

(b) We have

f "¯2(x) = ce2 +de '

by Problem 44, so

f (x) = ao + aix + - ·· + an-axn--3 + ce" + de .

46. (a) Since

g'(x) = f'(xo+ x) f (xo- x) - f (xo+ x) f'(xo - x)
= f (xo+ x) f (xo- x) - f (xo+ x) f (xo- x) = 0,

the function g is constant. Moreover, g(0) = f (xo)2¢ 0. So

f (xo+ x) f (xo- x) ¢ 0 for all x,

which implies that f(x) ¢ 0 for all x.

(b) Let f= fi/fi(0),wherefi¢0and fi'= fr.

(c) Since

f (x)f'(x + y) - f (x+ y) f'(x)g'(x) =

f(x)
f(x)f(x+y)- f(x+y)f(x) 0

f (x)2 '

the function g is constant, and clearly g(0) = f(y), so f(x + y)/f(x) = f(y) for
all x.

(d) f is increasing, since f'(x) = f (x) = f (x/2 + x/2) = [f (x/2)]2 > 0.
Moreover,

1(f¯')'(x)=
f'( f

-1(x))

1 1
f(f-1

47. (a) No. For example, let f (x) = x and let g(x) = x (2+ sin x).
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(b) We have

f(x)+g(x) g(x) f(x)lim = 1 + lim = 1 + 0, since lim = oo.x-÷oo f(x) x-oo f(x) x4oo g(x)

(c) For sufficiently large x we have

log f(x) > clogg(x)

so

f(x) à g(x)c c > 1

and therefore
f (x) g(x)c-i c - 1 > 0.
g(x)

Since we are assuming that lim g(x) = oo, this implies that lim f (x)/g(x) = oo.
x->oo x->oo

(d) Yes. Proof: Given N > 0, choose xo such that f (y) > 2Ng(y) for all y >_ xo.
Then

Ï
xo+x xo xo+x xo xo+x

F(xo+x)= f= f+ f > f+2N g
0 0 zo O xo

Ï
zo xo+x xo

= f+2N g-2N g
o o o

Ï
Jo xo

= f -2N g+2NG(xo+x)
o o

= A + 2NG(xo + x), say.

So
F(xo+x) A

= 2N + .

G(xo +x) G(xo +x)

Since G(xo + x) e oo as x
->

oo, it follows that F(xo + x)/G(xo + x) > N for
large enough x.

(e) (i) log4x « x + e¯62 « x3 + log(x3) ~ x3 [bypart (b)]« x3 log x « e2 «
(logx)* « x2.

(ii) log(xx) [= x log x] « x log2x [« x3] « xiogx « e** « (logx)2 « xx « e2°

[thelast four « follow easily from part (c)].

(iii)x' « ex/2 « 22 « ex « (logx) « x2 « ex' [thesecond « depends on
the fact that log 2 > 1/2 which is true since 2 > f ].
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48. Let Mn be the maximum of |gi[+ · -· + [gn|on [0,n] and choose f so that
f (x) > nMn on [0,n].

3M3 '---- -¯¯

2Ma · -- ---- - -

I i i I

49. If there were natural numbers a and b with logio 2 = a/b, then 2 = 10aß, so
2b - 10a

This contradicts the fact, mentioned in Problem 2-17, that an integer can be factored
uniquely into primes (sincethe product 2b does not involvethe prime 5, while the
product 10a does).
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2. (ii) -e "|2.(Let u =

-x2

)
(iv)

-1/(e

+ 1). (Let u = e2 )
(vi) (arcsinx2)/2. (Let u = x2

(viii)
-(1

- x2) /3. (Let u = 1 - x2.)

(x) [log(logx)]2/2. (Let u = log(log x).)

3. (ii)

x3e" dx =
x2(xe") dx = - xe dx

x2ex' ex'

2 2

(iv)
X2 sinx dx = x2(-cosx) + 2 x cosx dx

=

-x2

cos x + 2 x sin x - sin x dx

=

-x2

cos x + 2x sin x + 2 cos x.

(vi)

/ 1 1 1
log(log x) - - dx = (logx) · log(log x) - log x - - dx

x log x x
= (logx) - log(log x) - logx.

(viii)

1 - cos(log x) dx = x cos(log x) + x sin(log x) - dx

= x cos(logx) + 1 - sin(log x) dx

/ 1
= x cos(log x) + x sin(log x) - x cos(log x) - dx,

x

so

/ x cos(log x) + x sin(log x)
cos(log x) dx = .

2

265
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(x)

/
x2(logx)2 x2 1

log x)2 = - -- · 21ogx - - dx
2 2 x

x2(log x)2
= - xlogxdx

2
x2(log x)2 x2 log x x2 1

= - -

----dx

2 2 2 x
x2(log x)2 x2 log x x2

= - + -.

2 2 4

4. (ii) Let x = tan u, dx = sec2u du. The integral becomes

/
sec2u du

= sec u du = log(secu + tanu)
1 + tan2 u

= log(x + 1+ x2).

(iv)Let x = sec u, dx = sec u tan u du. The integral becomes

Ï sec u tan u du
= 1du = u = arcsecx.

sec u sec2 u - 1

[This can be written in terms of more familiarfunctionsas arctan( x2 - 1

(vi) Let x = tan u, dx = sec2 u du. The integral becomes

/
sec2 u du sec u du

- - csc u du
tan u 1 + tan2 u tan u

(1 1+x2
= - log(csc u + cot u) = - log -- +

x x

( x
= log

1 + 1 + x2

(viii)Let x = sin u, dx = cos u du. The integral becomes

Ï/// 1+cos2u
y 1 - sin2 u cos u du = cos2 u du = du

2
u sin 2u

= - +
2 4
u sin u cos u

= --- +2 2
arcsin x x 1 -- x2

= + .

2 2
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(x) Let x = sec u, dx = sec u tan u du. The integral becomes

sec2u - 1 sec u tan u du

= sec u tan2 u du

= (secu)(sec2 u - 1) du = sec2 u du - sec u du

1
=

-[tan

u sec u + log(sec u + tan u)] [Problem 3(vi)]
2

- log(sec u + tan u)

= x x2 - 1 -

1 log(x + y/x2
- 1).

2 2

5. (ii) Let u = ex, x = log u, dx = 1/u du. The integral becomes

Ï du 1 1
= - -- du

u(1+u) u 1+u
= log u - log(1 + u)
= x - log(1 + e*¾

(iv) Let u = 41 + ex, x = log(u2-1), dx = 2u/(u2-1) du. The integral becomes

Ï 2udu 1 1=-+du

u(u2-1) u+1 u-1
= - log(u + 1) + log(u - 1)
= - log(1 + Ál + e2 )+ log(41 + e2 - 1þ

(vi) Let u = + 1, x = (u2- 1)2, dx = 4u(u2 - 1) du. The integral becomes

/4u(u2-1)du4 ,
=

-u

-4u

u 3

= ( + 1) - 4( + 1)1/2

(viii)Let u =
, x = u2, dx = 2u du. The integral becomes

2ue" du = 2ue" - 2 e" du

= 2 ed
- 2ed.

(x) Let u = 1/x, x = 1|u, dx =

-1|u2

du. The integral becomes

! 1/u-1 1 41-u 1-uu2 - - du = - du = - du.
1|u+1 u2 21+u 1-u2
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Now let u = sin t, du = cos t dt. The integralbecomes

-

1 - sin t
cos t dt = - 1 - sin t dt

cos t
=

-t

- COS t
= - arcsinu - Ál- u2

. 1 Jx2--1
= - arcsm - -

.

x x

6. In this answer set, I will denote the original integral.

(ii)

Ï 2 3 2 3
I= dx+ dx= .

(x - 1)2 (x - 1)3 (x - 1) 2(x - 1)2

(iv)

/ 1 1 1 1
I = + + dx = log(x + 3) + log(x - 1) -

x+3 x-1 (x-1)2 x-1

(vi)

lx 2
I=

x2+1 (x2+1)2dx
log(x2 + 1) x 1 1

= + 2 + - dx
2 2(x2 + 1) 2 x2 + 1

log(x2 + 1) x
= + + arctan x.2 x2+1

(vili)

I dx dx
I x4 # 2X2 # Î - 2X2 (X2 1)2 - 2x2

/ dx

(x2+ñx + 1)(x2- Ex + 1)

Ä l Ã 1-x+- ----x+-

/ 4 2 4 2= + dx
(x2+ Áx + 1) (x2- Ãx + 1)

Ä (2x+ Ä )dx 1 dx
= - + -

8 (x2+ñx + 1) 4 (x2+ñx + 1)

Ä (2x- Ã) dx 1 dx
8 (x2 - dx + 1) 4 (x2 _ g 1)
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= - log(x + Áx + 1) - - log(x2 - Ex + 1)

1 dx 1 dx
+- +2 (Äx+1)+1 2 ;)2+1

= - log(x2 + Ãx + 1) - - log(x2 - dx + 1)

+ -- arctan(Äx+ 1) - -- arctan(-Äx+ 1).

(x)
3 2x+1 3 1

I = - dx - dx
2 (x2+x+1)3 2 (x2+x+1)3

-3

3 dx
¯

4(x2 + x + 1)2 2 ; ;24 )3
-3

3 4 3 dx
4(x2+x+1)2 2 3 J 1 2 '

x+,
+1

(
x+1

let u =
2

, dx = du

--3

du
= - 32Ñ4(x2 + x + 1)2 (u2+ 1)3

-3

1 u 3 du
= - 32Ñ - + -

4(x2+x+1)2 4(u2+1)2 4 (u2+1)2
-3

8 u 1 u 1 1
- - 24Ñ -- + -- du

4(x2 # X § Î)2 2 2 2 2 1
-3

8x + 4 4 12x + 6 4 12
4(x2 + x + 1)2 (x2+ x + 1) 3 x2 # X Ÿ Î V 3 X2 # X Ÿ Î

7. (i) (arctan)2/2.

(ii)

Ï x
--1

xdx
arctan x dx = arctan x -

(1+x2)3 4(1+x2)2 (Î #X2)4

- arctan x 1
4(1+x2)2 6(1+x2 3°
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(iii)

llog1+x2dx = xlog 1+x2 - x -

1 2x
dx

1+x2 V1+x2
= x log 1+ x2 -

1 x2 dx

/
-2

= x log 1 + x2 - 2 + dx
1 + x2

= x log 1 + x2 - 2x + 2 arctan x.

(iv)

xlog 1+x2dx = log)1+x2 - -

1 x2 dx

2
x x=-logÅl+x2- x- dx
2 1+x2

x2 x2 log(1+ x2)=-logjl+x2--+

.

2 2 2

(v) Let
x2 - 1

I
¯

x2 4 1'

so that

yx2+y=x2_g

y+1=x (1-B
1+y

x= 1-y'

1-y 1
dx = dy.

1 + y (1 - y)2

The integral becomes

1+
2 y (1

-1

dy = dy

/ y 1 |1 - y
= dy

(1 - y) 2+ 2y2 /1+ y
1 y dy

Ã Ál- y2)1 + y2
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Now let u = y2, du = 2y dy. The integral becomes

1 du 1 du
2d J J1-ud1+u ./ V1--u2

1 .

= --- arcsmu

1 .
x2-1 2

= --- arcsm .

2Ã X2 1

(vi) Let u =
, x = u2, dx = 2u du. The integral becomes

2u arcsin u du = u2 arcsin u -

1 u2
du.

Now let u = sin t, du = cos t dt. The integral becomes

Ï
sin2tcost

. 1-cos2t
= sin2t dt = dt

1-sin2t 2

t sin 2t
2 4
t sin t cos t
2 2

So the original integral is

arcsinu udl-u2
u2 arcsinu - -

2 2
arcsin Ál - x

= x arcsin - -

.

2 2

(vii)Since

Ï 1
dx = tan x - sec x (Problem 1(viii)))

1+sinx

we have

Ï 1
x- dx=x(tanx-secx)- tanx-secxdx

1 + sin x
= x(tan x - sec x) + log(cos x) + log(sec x + tan x).
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(viii)
xcosxe"'"'dx - secx tanxe""2dx

= xe""" - el"' dx

- secxe'i"2 - secxcosxe''"2dx

= xel"' - sec xe"'"".

(ix) Let
u = Jtanx,

so that
u2 = tan x
x = arctan u2

2u
dx = du.

1+ u4

The integral becomes (comparewith Problem6(viii)))

Ï
2u2du
1+u4

/
---u --u

2 2= + du
u2+Ãu+1 u2-nukl

= log(u +hu+1)+ log(u2-hu+1)

+ arctan(Eu+ 1) - - arctan(-nu + 1)

=

4
log(tan x + J2 tanx + 1) + - log(tan x -- 42 tan x + 1)

+ - arctan(J2tan x + 1) - - arctan(-J2tan x + 1).

(x)

I dx dx dx
X6 # Î J (X2 # 1)(X4 - X2 # Î) J (X2 # Î)((X4 + 2x2 + 1) - 3x2]

Ï dx
(x2+ 1)[(x2 + 1)2 - 3x2]

/ dx

(x2#Î) X2#ËX#Î X2-ËX#1)
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1 Ã 1 Ã 1
-

-+- ---x+-

Ï 3 6 3 6 3= + + dxx2+1 x2+Ãx+1 x2-Äx+1

arctan x Ä 2x + Á l dx
= +- dx+--

3 12 x2+ñ+1 12 x2+ßx+1

Á 2x-Ä 1 dx
-- dx+-

12 x2-Äx+1 12 x2-ËX#Î
arctan x Ä

=

3 O
log(x2 + Ãx + 1) - - log(x2 - hx + 1)

+ arctan(2x + d) + arctan(2x - Ã).

8. (i)

log(a2 + x2) dx = x log(a2 + x ) -

22x2x2

dx

/
-2a2

= x log(a2 + x2) - 2+ dxa2#X

=xlog(a2+x2)--

2+ dx
1+ Í-3\a/

= x log(a2 + x2) - 2x + 2a arctan(x|a).

(ii)

/ 1 + cos x cos xdx = csc2 dx + dx
sin2x sin2 x

1
= - cot x - ---.

sinx

(iii)

Ï x+1 xdx dx
- = +

4-x2 4-X2 X 2
2 1- -

2

= - 4 - x2 + arcsin(x/2).
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(iv)

/
x2 arctan x 1 x2

x arctan x dx = - - dx
2 2 (1+ x2)

X2 BrCÍRR X Î - Î
= - - 1+ dx

2 2 1 + x2
X2 RTCtan X X Î

= - - + - arctan x.2 2 2

(v)
sin' x dx = sin x(1 - cos2x) dx

cos3x
= - cos x +

3
°

(vi)

Ï
sin3x sinx(1-cos2x)

dx =
COS2 X COS2 X

sin x
=

cos2 x
- sin x dx

1
= + cos x.

COSX

(vii)

/
X3 RTCtan X 1 X3

x2 arctan x dx = - - dx
3 3 1+x2

x3 arctan x 1 -x

- - x + dx331+x2
x2 arctan x x2 log(1 + x2)

+ .

3 6 6

(viii)

Ï x dx x dx

x2-2x+2 (x-1)2+1

/ (x - 1)dx dx
= +

1 + (x - 1)2 1 + (x - 1)2
=2 1+(x-1)2+log(x-1+ 1+(x-1)2)

(byProblem 4(ii))).
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(ix)
sec' x tan x dx = (secx tanx) sec2x dx

sec3 x
=

3

(x) Let f(x) = x, g(x) = ftan2xdx= tanx
-x (Problem 1(v)). Then

xtan2xdx = f(x)g'(x)dx = x(tanx - x) - tanx
-x dx

2x
= x (tanx - x) + log cos x + --.

2

9. (i) Let x = a tan u, dx = a sec2u du. The integral becomes

Ï a sec2 u du sec2 u du
(a2+ a2 tan2 u)2 a3(sec2 u)2

1 du 1
- -- - - cos2u dua3 sec2 u a3

1 1 + cos 2u
= - dua3 2

u sin 2u
= --- +2a3 4a3

1 x 2 x x
= -- arctan - + --- sin arctan - cos arctan -

2a3 a 4a3 a a
1 x 1 x|a 1

= -- arctan - +2a3 a 2a3 x 2 x 2
1+ - 1+ -

a a
1 x 1 x

= - arctan - + --
.

2a3 a 2a2 (x2+ a2)

(Or one could write x = au and use the reduction formula.)

(ii) Let u = sin x, x = arcsinu, dx = du/91 - u2. The integral becomes

! 1-udu du 241 + u = 221 + sin x.
1 - u2 J1 + u

(iii) Let u = , x = u2, dx = 2u du. The integral becomes

2u arctan u du = u2 arctan u - u + arctan u by Problem 8(iv)

= x arctan - S+ arctan .
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(iv)Let u = Qx+ 1, x = u2 - 1, dx = 2u du. The integralbecomes

2u sinudu = 2u(-cosu)
-2

(-cosu)du
=

-2u

cos u + 2 sin u
=

-24x

+ 1cos dx + 1 + 2 sin dx + 1.

(v) Let u = x3 - 2, x = (u2+ 2)I/3, dx = 2u du/3(u2 + 2)2/3. The integral
becomes

2 u2 du 2 u2 du 2 2
=- =- 1- du

3 (u2+ 2)1/3(X2 y g)2/3 ) y2 gg 3 y2 4 2

2u 2n u
= - - arctan -

3 3 g
2 x3-2 2d x3-2

= - arctan .

3 3 2

(vi) Let

u=x+ x2-1

u-x= x2_.1
u2-2u+x =x2-1

so that
u2 + 1 1 1

x= dx= ---- du.
2u

'

2 2u2

The integral becomes

log u du - log u du

1 1 1 1 1
=

-(ulogu-1)-- --logu+ -·-du

2 2 u u u
1 1 1

=
-(ulogu-1)+-logu+-

2 2u 2u
= (x+ x2 - 1) log(x + x2 - 1)

log(x + Vx2- 1) 1
+ + .

x+Vx2-1 x+)x2-1
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(vii)Let

u = x +

u - x =

u - 2ux + x = x
x2-(2u+1)x+u2=0

so that
2u + 1+ (2u+ 1)2

-4u2

x =

2

2u+1+J4u+1
2
1

dx = 1+
V4u+ 1

du.

The integral becomes

Ï l 1 44u+1 V4u+1log u du + log u du = u log u - 1 + - du
V4u+ 1 2 2u

V4u+ 1=ulogu-1+ -Ii.
2

Now let

v = J4u+ 1
v2 - 1 v

u =
, du =

-dv.

4 2
The integral Ii becomes

I v2dv 1 1/2 1/2
= 1+ dv = 1+ - do

v2_) y2_1 p_1 y 1
1 1

= v + - log(v - 1) - - log(v + 1)
2 2

= J4u+ 1 + log(J4u+ 1 - 1) - log(J4u+ 1 + 1).

So the answer is

(x+ )log(x+ )-1- 4x+4 +1

- log 4x + 4 + 1 - 1 + log 4x + 4 + 1 + 1 .

(viii)Let u = xils s, dx = 5u4 du. The integral becomes

/
5u4du udu 5 5

= 5 = -- log(u2 - 1) = - log(x2/3 - 1).
us-u u

-1

2 2
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(ix) Let u = arcsin x, x = sin u, dx = cos u du. The integral becomes

u2 cos u du = u2 sin u - 2u sin u du

=u2sinu-

2u(-cosu)+ 2cosudu

= u2 Sin M # MCOS M - 2 Sin u du
= (arcsinx) x + 2(arcsin x) 1 - x2 - 2x.

(x) Let u = x2, x = ui/2, dx = du/2ul/2. The integral becomes

I
us!* arctan u 1

du = - u2 arctan u du2ui/2 2
u3 arctan u ui log(1 + u2)

= - - + by Problem 8(vii)
6 12 12

x6arctanx2 x4 ÏOg(Î#X4
= - - + .

6 12 12

10. (iv)Let x = cosh u, dx = sinh u du. The integral in Problem 4(iv) becomes

/ sinh u du 1
= du

cosh u sinh u cosh u

/ 2 2eN
= du = du

e" + e-" 1 + e2"
= 2 arctan e"

= 2 arctan(x + x2 - 1),

since u = cosh¯* x = log(x + x2 - 1), as found in Problem 18-9.
Comparing with Problem 4(iv) we cannot conclude that

2 arctan(x + x2 - 1) = arctan(Jx2-- 1),

but only that these two expressionsdifferby a constant. As a matter of fact, we can
only conclude that there are two constants ci and c2 with

2 arctan(x + x2 - 1) = arctan( x2 - 1) + ci for x > 1,

2 arctan(x + x2 - 1) = arctan( x2 -- 1) + C2 f0f X < -Î.

By setting x = 1 and
-1

it is easy to see that ci = x/2 and c2 =
-x/2.
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(vi) Let x = sinh u, dx = cosh u, du. The integral becomes

I coshudu du
sinh u cosh u sinh u

/ 2 2e" du
= du =

e" - e¯" e2u _ y

Ï
-e"

e"
= + du

e"+1 e"-1

= -
log(eN Ÿ Î) # ÎOg(€ -- Î)

(e"
- 1 x2 + 1 + x -- 1

= log = log .

e"+1 2#Î#X#Î
(ix)Let x = sinh u, dx = cosh u du. The integral becomes

/ Ï
e2" I e¯2"

cosh2 u du = - + - + du
4 2 4

=-+--

8 3 8

(x+ 1+x2) log(x+ 1+x2) 1
= + .

8 2 8(x+/1+x2)

(x) Let x = cosh u, dx = sinh u du. The integral becomes

/Ï
2u

-2x

e 1 esinh2 u du = - - - + du
4 2 4

€2u
-2u

8 2 8

(x+ x2 - 1)2 log(x + Qx2- 1) 1
8 2 8(x + fx2_ 1 2

11. (i)

Ï 1 2 2dt 2dt
-2 -2

dt - -- -

1+
2t 1+t2 1+2t+t2 2

1+t2 2

Comparing with the formula

/ 1 1 - sin xdx = dx = sec2 x -- sec x tan x dx = tan x - sec x,1 + sin x 1 -- sin2X

we can conclude that
-2

= tanx - secx - Lx1 + tan --

2
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This can be checked most easily by expressingeverything in terms of t:
-2

2t 1 + t2
= -

-1

1+t 1-t2 1-t2

(ii) Let t = tan x, dx = 1/(1 + t2) dt. Then sin2 x can be expressed in terms of t
as

1sin2 x = 1 - cos2x = 1 -

sec2 x
1

= 1 -

tan2x + 1
1 t2

= 1- = .

1+ t2 1+ t2

So the integral becomes

Ï 1 1 1
dt= dtt2 2 272 g

1+
1+t2

arctan Et

arctan( tanx)

(iii)

Ï 1 2 2
dt= dt

2at b-bt2 1+t2 2at+b-bt2
1 + t2 1+ t2

If b > 0, this can be written

/
-2dt

bt2 - 2at - b

/
-2dt

a
2 a2 + b2

a2 + b2 Ja2+ b2
dt

J a Ja2+ b2 a Ja2+ b2
Åt---+ Åt-
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1 a Ja2+ b2
= log Ä t - -- +

a2 + b2
_ \ Á Á |

( a Ja2+b2-log åt- .

If b < 0, the integral can be written

/ 2dt 2dt
-bt2

+ 2at + b J a
2 a2 + b2(Ñ t + +

b

1 a Ja2+ b2
= log Ñ t +

( a a2+b2
- log -¯Ñt + + .

It is also possible to write

I dx dx
a sin x + b cos x A sin(x + b)

1
= - - log(csc(x + B) + cot(x + B)),

A
where

A= a2+b2

b
sin B =

a2 + b2
a

cos B =

a2 + b2

(iv)

Ï
4t2 2

dt
(1+ t2)2 1 + t2

Ï l 1
= 8 = dt

(1+ t2)2 (1+ t2)3

1 t 3 1 1=-8 +- dt +8 dt
4 (1+ t2)2 4 (1+ t2)2 (1+ t2)2

-2t

1 t 1 1
= +2 +- dt

(1+ t2)2 2 1+ t2 2 1+ t2
--2t

t

(1+ t2)2 1 + t2 ut
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-2

tanx/2 tanx/2 x
= - + -

sec4 x/2 sec2x/2 2
=

-2sinx/2cos3x/2--

sinx/2cosx/2+ x/2

=
-2sinx/2cosx/2(1-

sin x/2) - sinx/2cosx/2+ x/2

(1
- cos x sin x x=-sinx 1-

--+-

2 2 2

1+ cosx 1 x
= - sin x - - + -

2 2 2
- sin 2x x

= + -.

4 2

(v)

Ï 1 2 2dt
dt =

10t 1 + t2 3t2 + 10t + 33+ 1+t2

/ 3/4 1/4
= - dt

2t+1 t+3
1 1

= - log(3t + 1) - - log(t + 3)
4 4
1 x 1 x

= - log 3 tan - + 1 - - log tan - + 3 .

4 2 4 2

12. (a) The given formula shows that

/ 1 cosx 1 cosx
secx dx = - dx + - dx

2 1 + sin x 2 1 - sin x
1 1

= - log(1 + sin x) - - log(1 - sin x)
2 2

=log41+sinx-log41-sinx

1 + sin x
= log

1 - sin x

(1+ sin x)2
= log

1 - sin2 X

(1+ sin x
= log

cos x
= log(secx + tanx).
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(b) With the substitution t = tan x/2 the integral f sec x dx becornes

ll+t22 1 1
dt = + dt1-t2 1+t2 1+t 1-t

= log(1 + t) - log(1 - t)

(1+ t
= log .

1 - t
Now

1
sec x + tan x =

cos 2(x/2) + tan 2(x/2)

1 2 tan x/2
= +cos2 x/2 - sin2 x/2 1 - tan2 x/2

1 2 tan x/2
= +2 cos2 x/2 - 1 1 - tan2x/2

1 2 tan x/2
= +2 1 - tan2x/2

- 1
1 + tan2 x/2

1 + tan2 x/2 + 2 tan x/2

1 - tan2x/2

1 + 2t + t2 (1+ t)2

14. We have

f"(x) sinx dx = f'(x) sinx -- f'(x) cosx dx

=0- f(x)cosx + f(x)sinxdx
IK

= f (x) - f (0)- f (x)sinx dx.
O

So

Ï
K

2= [f(x)+ f"(x)]sinxdx= f(x)- f(0)=1- f(0),
O

hence f (0) =
-1.

15. (b) We have

f~'(x)dx = 1- f¯I(x)dx=xf¯*(x)
- x(f¯')'(x)dx
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/ x
=

xf¯I (x) - dx.
f'( f

-1

If F = | f (x)dx, the substitution u = f¯'(x), x = f (u),dx = f'(u) du changes
the new integral to

/ f (u)f'(u) du = F(u) = F(f-1
f'(u)

so

f¯'(x) dx = xf¯'(x) - F( f-1

17.

log(log x) dx = 1 . log(logx) dx

/ 1 1
= x log(log x) - x - · - dx

logx x

Ï 1
= x log(log x) - dx.

18.

x2e¯2°dx = x(xe¯") dx
2-X-e 1 2

= x + - e¯' dx.
2 2

19. (Use the substitution u = ex.) The function g(x) = 1/(x6 + x + 1) has an
elementary primitive G, since it is a rational function. Then Go exp is a primitive
of f.

21. (a)
x"e* dx = x"e" - n xn-te* dx.

(b)

(logx)"= x(logx)" -n x(logx)"¯I
- dx

= x (logx)" - n (logx)"¯' dx.
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22. By Problem 4(x),
coshx

g2 - 1dt = cosh x cosh2 x - 1 - log cosh x + cosh2 -1

cosh x sinh x 1
= - - log(cosh x + sinh x)

2 2
cosh x sinh x x

2 2

23. By Theorem 2, with g(x) = a + b - x,

Ï
b b

f(a+b-x)dx=- f(g(x))-g'(x)dx
a a

Ï
g(b) a b

= - f(x)dx = - f(x)dx = f(x)dx.
g(a) b a

24. By Theorem 2, with g(x) = x|r,

Ï
r

r2
-x2dx

= r2
r

1- Ñ12dx
-r J-rry \r/

= r2
r

1 - [g(x)]2g'(x) dx
J-r

=r2

1-x2dx
./-1

KT2

2

25. (a) If |x| 2 h, then |x/h| > 1, so
1

¢h(x)=
-¢(x/h)

= 0.
h

Moreover, using the substitution g(x) = x/h we have

Ï
h h j

Éh(x)dx= ¢(x/h)-dx-h -h h

Ï
l

= ¢(u)du = 1.
-1

(b) We have

Ï
l h

lim ¢hf = lim Èhf Since Èh(x) = 0 for |x h.
ha0+ --1 h->0+ -h
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Since f is continuous at 0, for any e > 0 there is 8 > 0 such that |f (0)- f (x)| < s
for |x| < 8. Then for 0 < h < 8 we have

Ï
h h h h

f (0) - ¢hÍ = Èhf (0) - ¢hÍ Ñh(x) |f (x) - f (0)|dx
-h -h -h -h

Ïhse ¢h(x)dX=E.
-h

[If f is continuous on an interval around 0 then there is a simpler argument, using
the Mean Value Theorem for Integrals (Problem 13-23).]

(c) We have

Ï h 1 1
dx = - dxh2+x2 h I 2

1+ -

h
x

= arctan -,

h

so

Ï1 h x
'

lim dx = lim arctan -

ho0+ -1 h2 + x2 h->0+ h

2 2

(d) Let jf (x)| 5 M on [-1, 1]. Notice that if 0 < h < 8, then for all |x| > d = 6
we have

h 8
h2 + x2

So for 0 < h < 8 we have

(1)
i h2 x2 f (x)dx -

d h2 x2 f (x)dx

Ï-d
1

5 EM+ ÃM<2ÁM.
-1

In particular, choosing the constant function f (0)we have

(2) xf (0) -

d h2 x2 f (0)dx < 2E f (0).

Given e > 0, choose &> 0 so that |f (0) - f (x)| < e for |x! < W. Then
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(3)
d h2 x2 f (0)dx -

d h2 x2 f (x)dx

5
d h2

h
|f (0) - f (x)|dx

Ï
d h 1 h

de dx<s dx=xe.-dh2+x2

ih2+x2

It follows form (1),(2)and (3)that for 0 < h < 8 we have

uf (0) -

11

h2 x2 f (x)dx < 2ÁM + 2E f (0)+ xe,

< (x + 1)s for small enough ô.

26. (i) The whole circle of radius a/2 is traversedas 0 goes from 0 to x. So

area = a2 sin20 d0 = (1 - cos 20) dB

a2 sin 20 "
4 2 e

KG2

4

(ii)
1 2x y 2x

area = - (1+ cos 0)2 d0 = - 4 + 4 cos 8 + cos2 0 d0
2 2 o
1 2" 1 + cos 20

= - 4+4cos0 + dÐ
2 2

1 2" sin 20
= - 8x + 4 sin 9 + x +

2 a 4 e
9x
2

(iii) This will look something like the graph of f (0) = a cos 20 (Problem 3(iii) of
Chapter 4, Appendix3), but therecan be only two leaves,since cos 2Ðmust be > 0.
Each leaf has area

1 x|4 Sin 20 r|4
- 2a2 cos 20 dB = a2 ,

2 -X/4 4 -r/4

82

2
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(iv) Each leaf (twoor four, dependingon conventions for the sign of r) has area

1 "I* a2 "I* 1 + cos 20
- a2 cos2 20 d0 = - dÐ
2 A-r|4 2 J-n|4 2

a2 x sin 20 x/4
=-

-+

2 4 4
.

-r|4

(x1=a2 -+-

.

8 4

27. In the integral

Ï
Xo

g(x) dx
X1

make the substitution

x = f (0)cos0
dx = f'(0) cos 0 - f (0)sin0 d0,

g(x)= f(9)sinÐ
to obtain

Ï
xo 4

g(x) dx = f (0)f'(0) sin0 cos 8 - f (0)2sin2Ðd0

sin 0 cos 0C- [- sb2 0 + cos20 - RO 2 sin2 0 d0

f (0)sin0 f (0)cos0 o' 1 0,

f (0) dG
2 g 2 e

xoyo - x171 1 *
- - f(0) dÐ,

2 2 g,

where yo and yi are the second coordinates of A and B. Hence

lx 1 *I

g(x)dx = area AOxoA - area AOxiB + - f(0)2dB,
x, 2 go

as desired.

28. (a) For each partition P = {to,..., tn} of [a,b], let

Ë = {h-1(to),...,h¯I(ts)} = {Ïo...,in).
Then Ë is a partition of [ä,5]and

ü(Ï¿)= u(t¿), O(Ï¿)= v(t¿).
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So the Ëfor ö corresponding to Ë is

Ï(¿,Ë) = [ü(i¿)- ü(Ï¿_i)]2+[B(Ï¿)- O(Ïi-1)]2
i=1

= [M(ti) - M(ti-1)]2 # [U(TD- U(ty 2

i=1
= £(c, P).

Thus, every £(c, P) is Ï(J, Ë) for some partition Ë of [ä,5]and, conversely, it is
easy to see that every Ï for ö is 2(c, P) for some partition P. So the length of £ on
[a,b] and the length of £ on [ä,b] are the sup's of the same set of numbers, and
hence are equal.

(b) The length of c on [a,b] is

I
b

u'(x)2 + v'(x)2 dx.
a

Letting

x = h(y)
dx = h'(y) dy,

the integral becomes

I
h¯'(b)

Ju'(h(y))2+ v'(h(y))2 · h'(y) dy
h-I (a)

=

h¯*(b)

[u'(h(y)) - h'(y)]2 + [v'(h(y)) - h'(y)]2dy
Jh-1(a)

=

h¯I (b)
f (uo h)'(y)2 + (t>o h)'(y)2 dy

Jh-1(a)

Jã

= length of ã on [ä,5].

29. (i) Since

f'(x) = x(x2 + 2)1/2

f'(x)2 = x2(x2 + 2)
1 + f'(x)2 = 1 + 2x2 + x4 = Q # X2 2
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we have

1+ f'(x)2dx =

1+x2dx

= 1+ ¼.
(ii) Since

f'(x) = 3x2 -

12 2

1 1f'(x)2 = 9x* - - +2 144x4
1 1 1 2

1+ f'(x)2 = 9x*+ - + = 3x2 + ,

2 144x4 12x2

we have
2

1 # j'(X)2 dx = 3x2
12x2 dx

=7+¾.

(iii) For u(t) = a3 cos3 t, U(t) = a3 Sin3 t we have
u'(t) = 3a3 cos2t - (- sin t)
v'(t) = 3a3 sin2 t cos t

so
u'(t)2 + v'(t)2 =

9a6[SÎH2 t COS4 i Ÿ COS2 t SÎH4

= 9a6 sin2 t cos2 t
SO

2x 2r
u'2 + v'2 = 3a | sin t cos t| dt.

O

On each of the four intervals [0,x/2], [x/2, x], [x, 3x/2], [3x/2,2x] we can write

| sin t cos t| = sin t cos t or | sin t cos t| = - sin t cos t,

so on each interval we are considering

Ï
sin2t sin2tsin t cos t dt = or -

.

2 2
So the integralsare the same on all four intervals, namely

2 r|2 2 I 2 3r/2 . 2 2x
sin t sin t sin t sin t 1

2 2 ,72

¯

2 ,72 2 3,72 i
Hence the total integral is

13a3 - 4 - - = 6a3.
2
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(iv) Since

f'(x) = - tan x
f'(x)2 = tan2x

1+ f'(x)2 =
sec2X,

and sec x > 0 for 0 < x < x/6, we have
x|6 x|6 X/6

1 + f'(x)2dx = sec x dx = log(sec x + tanx)
o

= log Ã = log 3.
2

(v) We have

ejl
+ f'(x)2dx= 1+ dx =

' Jx2+1dx.

Letting

x = tan u
dx = sec2 u du

we have

/
X2 gg

dx =
tan2 u + 1sec2 u du

x J tan u

Ï
sec3 u du

tan u
secu(1+ tan2u)

du

= csc u +

snec

u tan u du

= - log(csc u + cot u) + sec u

(J1+x2 1
= - log + - + 1 + x2.

x x

So our integral is

-log 1+ 1+x2
+ 1+x2

e

x i

=-log 1+)1+e -1+log(1+Ã)+)1+e2-d.
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(vi) Since
ex

f'(x) =

1 - en

f'(x)2 =
e

1 - e
i

1+ f'(x)2 =

1 - e
we have

Ïo o 1
1+ f'(x)2 = dx.

-log2
-log2

1 - e
Letting

y = e'

x = log y
dy

dx = -

y
we have

I dx dy

1-e J y/1-y2

(11 - y2
= - log - + by Problem 4(v)

y y
=-log(e¯*+ 1-e )
= - log(e¯*[1 + 1 - e )
= x

-log(1+

V1- ek).

So our integral is
O

x
-log(1+

1-en) =

-log2+1og2+1og(1+)1-e21°52)

- log 2

= log 1 + 1 -

= log 1 +

= log(1+ (h).
30. According to the Appendix to Chapter 13, the graph on the interval [00,Gi] has
length
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(i) We have

f(0)=acos0
f'(0) =

-a sin0,

so
f (0)2+ f'(Ð)2= a2,

and the length is

Ï
K

a = ra (= 2x · (a/2)).
0

(li) The length is

/2x
2x

a2(1 - cos 0)2 + a2 sin2 0 dÐ = ad2 - 2 cos 20 dÐ
O

2" 1-cos20
= 2a d0

2

/2x= 2a | sin 0| d0.
O

Breaking up the interval as in Problem 29(iii), we find that the length is
r|2

4 - 2a · sin 8 d0 = 8a.

(iii)Since
2 Û Î - COS Û

a sin - = a ,

2 2
by (ii)the length is 4a.

(iv) The length is

1+02dB = 0)1+02+1og 0 +)1+ 02

by Problem 4(ix)

= 2x)1 + 4x2 + 1og 2x + 1 + 4x2 n.

(v) The length is
x/3 «¡3

3 sec20 + sec2 0 tan2 9 d0 = 3 sec 9) 1 + tan2Ðd0
O

/x/3= 3 sec 0 dG
0
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= 3tan9
10

= 3 - -

2
'

which is hardly surprising, since the graph is a straight line from (3,0) to (3,3 tan ").
31. (a) The length is

Ï
2x 2x

a2(1 - cos t)2 + a2 sin2 t dt = a 22 - 2 cos t dt
0 0

= 2a
2" 1 - cos t dt

Y 2
* t

= 2a sin - dt
2

(
2x

t
= (2a)

-2

cos -

2 e
= 8a.

(b) In the integral

Ï
2xa 2xa

f (x)dx = v(u¯* (x))dx
0 0

let

t = u~' (x)
x = u(t) = a(t - sint)

dx = a - a cos t dt;

the integral becomes

Ï
2x 2x

a v(t)(1
-cost)

dt = a2 (1
-2cost

+ cos2t)dt
0 0

Ï2x Î COs2t
=a2

1-2cost+-+ dt
o 2 2

= 3a2x.

32. The formula is true for n = 1 by Problem 14-12. Suppose that it is true for n.
Let F(u) = f" f (t)dt. Then F is a primitive of f with F(0) = 0. So

du
(n+ 1)!

F(u)(x - u)n+1 =2
x -F(u)(x - u)"

- dx
(n+1)! n!
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=0+
- F(t)dt dut --- du,

f (s)ds dt dui - - - dun,

which can also be written as
x u.... ut

f(t)dt dui --- dun i.

33.

I
b

¯

- f (t)COS At b b /(t) COS At
lim f (t)sin At dt = hm + dt

1-> oc , 1-+ oo À a a 1

= 0,

since

-f(t)cosAt b

5
-(|f(b)|+

|f(a)|),
a

Ï
b /(t) COS1t I b

dt 5 - |f'(t)|dt.
a 1 1 a

34. (a) Simply replace ¢ by
-¢;

multiplying the resulting formula for
-¢

by
-1

we get the formula for ¢, with the same (.
(b) The function ‡ = ¢ - ¢(b)satisfies ‡ (b) = 0. The formula for ‡ gives

f (x)[¢(x) - ¢(b)]dx = [¢(a) - ¢(b)] f (x)dx + 0 f (x)dx.

So

Ï
b ( b (

f(x)¢(x)dx =¢(a) f(x)dx+¢(b) f(x)dx
--¢(b)

f(x)dx
a

=¢(a) f(x)dx+¢(b) f(x)dx.

a

(c) If F(x) = /*f, then

Ï
b b b

f(x)¢(x)dx = F(x)¢(x) - F(x)¢'(x)dx
a a a

b b
= F(x)¢(x) - F(g) ¢'(x) dx, by Problem 13-23

a



296 Chapter 19

= 0 - f - [-¢(a) ]

If=¢(a) f(x)dx.
a

(d) If ¢ (a) = ¢ (b) = 0, but ¢ > 0 on (a, b), and f > 0 on (a,b), then we clearly
cannot have

b b b

f¢ = ¢(a) f +¢(b) f.

35. (a) We have

albi +·-- +anb,
=bisi+b2(s2-si)+bs(s3-si)+---

+ bn-1(sa-1 - En-2) + bn(En - Sn-1)

= s1(bi - b2) + s2(b2 - bs) + - ·· + sn-1(bn-1 - bn) + snbn.

(b) Since {bk}is nonincreasing we have bk - bk-1 ;> 0 for each k. Also, m 5 sk
M for each k. So

m(bi - b2) + m(b2 - b3) + - - + m(bn-1 - bs) + mb,

5 si (bi - b2) + s2(b2 - b3) + - - - + ss(b,_i - bn) + snbn

5 M(bi - b2) + M(b2 - bs) +···+ M(b,_i - bs) + Mbn,

or
mbi 5 aibi +·--+anbn 5 Mbi.

Applying this result to ak , ak+1, . . . , an, and bk, bk+1, . . . , bn, we get bkm
akba + - -

·+ anb, 5 bkM.

(c) If we set
a¿ = f (x¿)(t¿- ti-1)

and let
k

m = smallest of the f(x¿)(t¿- t¿_i)
i-1

k
M = largest of the L f(xi)(t¿- t¿-i)

i=1

then m 5 ai + - - - + ak 5 M for all k. Letting bk = È(Xk) in part (b),we find that

f (x¿)¢(x¿)(t¿- t¿_i)
i=1
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lies between the smallest and the largest of the sums

k

¢(xi) f (x¿)(t¿-- ti-1)-
i=l

Since we can approximate |b f(x¿)¢(x)dx by sums i f(x¿)¢(x¿)(t¿- t¿_i),
i=1

k
and f f (t)dt by sums like i f (x¿)(t¿-- t¿

_i),

the final result should follow from
i=1

the above. However, some care is required for the argument:
Given E > 0 we can choose 8 > 0 so that whenever all t¿ -- t¿_1 < 8 we have

b n

(1) f(x)dx- f(t¿_i)(t¿-t¿_i) <e.

i=l

We claim that for any s' > s it also follows that for each k

Ï
Ik k

f(x)dx - f (t¿_i)(t;- t¿_g) < e'.
a i=1

The idea is that if we had

Ï
te k

(2) f(x)dx - f(ti_i)(ti - ti_i) >_e',

then by choosingsome p > n and new tk+1 < Ik+2 < < Ip = b we could make
the sums on [tk,b] so close to f f (x)dx that inequality (2)would contradict (1).
More precisely, choose tk+1, - - 9 Ip, still with t¿ - t¿_i < 8, so that

Ï
b P

(3) f (x)dx - f (ti-1)(ti- ti-1) < e' - e > 0.
f* i=kkl

Then

Ï
b P

f(x)dx- f(t¿ i)(t¿-ti-1)

¯

Ik k
= f(x)dx - f(t¿_i)(t¿- t¿_i)

i=1
P b

- f(t¿_i)(t¿- t¿_i) - f(x)dx
i-k+1 Ik
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/tk2 f(x)dx - i f(t¿_i)(t¿- t¿._i)
a i=1

lb
P

- f (x)dx - f (t¿_i)(t¿- t¿_i)

contradicting the fact that (1)is supposed to hold whenever all t¿ -- ti-1 < ô-
If we now choose the t¿ so that for some te and ti the integrals f f (x)dx and

f f (x)dx are the minimum and maximum of f f (t)dt on [a,b], then the small-
est and largest of the sums

k

¢(a) f(t¿_i)(t¿-ti-1)
i=1

includes two sums within ¢(a)s' of the minimum and maximum of f f(t) dt. The
remainder of the argument is straightforward.

36. (a) Using the substitution

1
y = -

x
1

1
dx = - - dy

the integrals become

(i) sin y + dy (ii) sin2 y + dy.

The second integral is the easiest, since JN SN2 2 dy is an increasing
function i

flN y 2 dy, which is bounded. For the first we have to argue slightly
differently: Since

N
sin y + dy 5

LN

sin y + dy

Ï
N

< - dy < -, for all N 2 M,¯¯

M y2 ¯¯

M

the value of the integral from 1 to M is within 1/M of all later values, so the limit
must exist. [For a precise proof, prove an analogue of Theorem 3 in Chapter 22: If

lim |F(M) - F(N) = 0, then lim F(N) exists.]
M,N->oo N-+oo
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(b) The substitution y = 1/x yields

(i) sin y dy (ii) sin dy.

Since
. sin yhm = 1,

yso y
the second integral involves a bounded function and converges, while the first is
essentially like fi 1/y dy and does not converge.

37. (a) We have

Ï
i i

lim log x dx = lim x logx - x

=
-1,

since lim x logx = 0 by Problem 12(d) of Chapter 18.
x->0

(b) To investigate the behavior near 0, write

(sinxlog(sin x) = log -- - x

(
x

sin x
= log --- + logx.

x
Since (sinx)/x is close to 1, this is close to log x, and part (a)shows that this causes
no problem near 0.

The behaviornear n is essentially the same, since sin(x - x) = sin x.

(c) The substitution x = 2u, dx = 2 du gives

log(sin x) dx = 2 log(sin 2u) du

x/2
=2 log(2sinucosu)du

lx|2= 2 log 2 + log(sin u) + log(cos u) du.
O

(d) Since the substitution u = x - x gives
x/2 x

log(sin x) dx = log(sin(x - u)) du

= log(sin u) du,
|2
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and thus

la
x|2

log(sin x) dx = 2 log(sin x) dx,
o

the result of part (c)becomes

/"/2 x log 2
log(cos x) = -

.

o 2

(e) The substitutionx = x/2 - u gives

Ï
X/2 x/2

log(cos x) dx = log(cos(x/2 - u)) du
o

Ï
x|2

= log(sin u) du,
O

SO

lx
x |2

log(sin x) dx = 2 log(cos x) dx
0

=
-x log 2.

38. For each N we have

Ï
N N N

u'(x)v(x)dx = u(x)v(x) - u(x)v'(x)dx.
a a a

The desired equation follows by taking limits (andshows that if any two of the three
symbols involved exist, the third does also).

39. (a) The integral

Ï
oc

€¯ fx-1 dt
l

certainly exists, because f,°°t¯2 dt exists (Problem 14-25), and for sufficiently large
t we have e¯'tx-1 < t¯2 (byTheorem 18-6). On the other hand, if t > 0, then
e¯'tx-1 « gx-1; since the integral fe't2¯I dt exists for x > 0 (Problem 14-28), it
follows that fee¯'t2¯I dt exists for x > 0 (it is an improper integral if x < 1).

(b)

ÏooT(x+1)= e¯'t'dt
0

ft=oo oo
=

-e~'t'

+ xe¯'t*¯' dt
=0 0

loo=0+x e¯'tx-idt=xf(x).
o
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(If x < 1, then we are also using a second version of integration by parts to take
care of the integral from 0 to 1.)

(c)

Ïoo
oo

f(1)= e¯'dt=-e¯' =1.

o o
This proves that f(1) = (1 - 1)!. If F(n) = (n - 1)!, then P(n + 1) = nf(n) =

n . (n - 1)! = n!, so the formula is true for all n, by induction.

40. (a)

Ï
r/2 r|2

_ g x/2
sin" x dx = - - sin"¯' x cos x + sin" 2

x dx
o n a n o

=
n - 1 x/2

san-2 x dx.
n

(b)

lx/2 2n X/2

sin2"*' x dx = - sin2"¯' x dx
o 2n + 1 e

2n 2n - 2 "/2- 2n 3= · - sm
¯

x dx
2n+1 2n-1 o

2n 2n - 2 2 "li=··-= · ·--- sinixdx
2n+1 2n-1 3 o

2n 2n - 2 2
¯2n+1

2n-1

(A proof by induction is lurking in the wings.) Similarly,

Ï
x/2 2n -- 1 1 x/2

sin2n x dx = · - - - sin x dx
o 2n 2 o

2n--1 lx
2n 2 2

(c)

Ï
x/2 x/2 x/2

0 < sin2n+1x dx < sin x dx < sin2n-1x dx
0 0
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SO

/x|2
x|2

2n 2n-1sin x dx sin x dx
1< <

- x/2 - x|2
sin2n+1 x dx sin2n+i x dx

0

Ï
x/2

sin2n-1 x dx
= 0

r|22n 2n-isin x dx
2n + 1

1=1+-.

2n

(d) If n is large, then - is close to

2
-2 -4 -4 ---2n -2n

2
-4---2n

l·3·3-5···(2n-1)(2n+1) 2n+1-1-3-5---(2n-1)

2n
Y 2n+1 1 2-·-2n

1·3--·(2n-1)

Since (2n)/(2n+ 1) is close to 1for large n, the result follows. [Wallis' procedure
was quite different. He worked with the integral

Ï
l

(1 - x2)n dx
0

(whichappears in Problem 41), hoping to recover, from the values obtained for
natural numbers n, a formula for

= (1 - x2)'I'dx.

Wallis first obtained the formula

Ï1 2 4 2n
(1 - x2)n dx = - - - - - -

o 3 5 2n+1

(2 - 4 - - - 2n)2 2" (n!)2
¯2-3-4---2n(2n+1) ¯2n+1(2n)!'

(bywhat method I am not certain). He then reasoned that x/4 should be

i(1
- x2)1/2 dx = = Q!).
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If we interpret (!to mean l'(1/2), this agrees with Problem 44, but Wallis did not
know of the gamma function (whichwas invented by Euler, guided principally by
Wallis' work). Since (2n)!/(n!)2is the binomial coefficient ( ),Wallis hoped to
find (!by finding (P ) for p = q = 1/2. Now

(p+q(p+q)(p+q-1)·--(p+1)
p q!

and this makes sense even if p is not a natural number. Wallis therefore decided
that

( +q ((+q)··-( )
)

¯

q!

With this interpretation of ( )for p = 1/2, it is still true that

(p+q+1p+q+1 p+q
p / q+1 \ p /

Denoting 2 by W(q) this equation can be written

1+q+ 1 2q+3
W(q+1)= 2 W(q)= W(q),

q+1 2q+2

which leads to the table

q 1 2 3

W(a) 3 35 357
2 2 24 246

But, since W(j) should be 4/7r, Wallis also constructs the table
1 3 5
2 2 2

Wa) 4 44 446
2 x x3 x35

Next Wallis notes that if ai, a2, as, a4 are 4 successive values W(q), W(q + 1),
W(q + 2), W(q + 3), appearing in either of these tables, then

a2 a3 a4 2q + 3 2q + 5 2q + 7
- > - > - because > -

,

al a2 aa 2q + 2 2q + 4 2q + 6

which implies that
3 a3 a4

ai a2 a2
Wallis then argues that this should still be true when ai, a2, a3, a4 Bre fOUT SUCCOSSÎVO

values in a combined table where q is given both integer and half-integer values!
Thus, taking as the four successive values W(n + (),W(n), W(n + (),W(n + 1),
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he obtains

4 4 6 2n+4 4 4 6 2n+2 3 5 2n+3
5 2n+3 5 2n+1 2n+2

4 4 6 2n+2 3 5 7 2n+1 3 5 7 2n+1
\ F Ï 5 2n + 1 i 2n \ i 6 2n

which yields simply

2n+4 4 2.4-4-6 6- (2n)(2n)(2n+2) 2n+3
2n+3 x 3-3-5-5---(2n+1)(2n+1) 2n+2'

from which Wallis' product follows immediately.]

41. (a) Let x = cos u, dx = - sin u du. Then

Ï
l O x|2

(1 - x2)" dx = (sin*u)(-- sin u) du = sin2n+1 u du
0 -X/2 0

2 4 2n
= by Problem 40.i 5 2n+1

Now let x = cot u, dx = - esc2 u du. Then

I 1
-1

dx = (sinku) du
o (1+x )" /2 siniu

= sin2(n-1) u du

x 135 2n-3
= -- - - · - · - · · · by Problem 40.

2246 2n-2

(b) If f(y) = 1 - y and g(y) = en, then f(0) = g(0) and

f'(y) =
-1

5
-ed

for y > 0,

so f (y) 5 g(y) for y > 0, i.e., 1 - y 5 en for y >_ 0. So, in particular,
1 - x2

-x2

(fOr BÎÎX).

The second inequality follows from the inequality 1 + y 5 «I, which can be
proved similarly (andhas already appeared in Problem 18-29).

(c)

li
i oo oo 1

(1 - x2 n dx <
«¯",2 dx < e¯"" dx < dx,

o o (1+ x2)"

so
2 2n i

2 2 x 1 2n - 3
- - - - < e¯"" dx < e¯"* dx s -- - - - - -

.

3 2n+1¯
¯

2 2 2n-2
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Using the substitution y = x, dx = 1/ dy, we obtain

e¯"" dx = e¯" dy,

loo
, oo-nX2 1 2

e dx = -- e I dy,
o á o

from which the desired inequalities follow.

(d) It follows from Problem 40(d) that by choosing a sufficiently large, the numbers

x 1 3 2n - 3 x n 1 3 2n - 3-á------

=- An-1------
2 2 4 2n-2 2 n-1 2 4 2n-2

and
242n n122n

3 5 2n+1 2n+1 3 2n-1

can be made as close as desired to

x 1 R- - 1 -- = --

2 2

and
1
2 2

42. (a)

lb
b b

sinx--dx=-cosx - -
-cosx

---dx

a x 24 a
X2

cos a cos b b COs x
= -- - dx.

a b a
22

In particular,

l°°sin x cos 1 °°
cos xdx = dx;

i I I 1 x

the latter integral exists because the integral

Ï
oc oocosx 1

--- dx 5 - dx
1

X2
1

X2

exists (compareTheorem 23-4).
On the other hand, the integral

lisinx--dx

0 X
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exists and equals fe'f (x)dx, where f is the continuous function with

1, x = 0
f (x) = sin x

, x ¢ 0.
x

(b) According to Problem 15-33,

Ï"sin(n + 1), x
2 dt = (1+2cost+-.-+2cosnt)dt

o sin t/2 o

(c) The hint is the whole answer, since the function

0, t = 0
f (t) = 2 1

-- -

, t ¢ 0
t sin t/2

is integrable on [0,x].

(d) From parts (b)and (c)we have

" 2 sin(A + ¼)t " sin(1+ ()tlim dt = lim dt = x.Isoo t A-+oo sin t|2

Using the substitution u = (A+ ¼)t,we have

Ï"2sin(1+ ()t (***/2)"
. (1+ Š) du

lim dt = lim 2 sm u -

=2
°°sinudu.

u

43. We have
°° 1 1 °° °° 1sin' x · - dx = sin2 x - - +

-2

sin x cos x dxX2 XO OX
°° sin 2x

dx.
Jo X

Setting u = 2x, du = 2 dx, so that du/u = dx|x, this becomes

Ï
oo sin u xdu = -.

o u 2
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44. (a) Let u = t*, du = xt" dt. Then

f (x) = e¯'t*¯' dt = e¯"
Jo lo X

= e¯" du.
x Jo

(b)
P(j) = 2 e¯"' du

O

= by Problem 40.

45. (a) The substitution u = ax, du = a dx gives

Ï
N f(Œx)dx =

aN
du.

Similarly, the substitution u = ßx, du = ß dx gives

I
N f(þX)

dx =

ßN
du.

e X Jße M

So

I
N f(ŒX) - f(þX)

dx =

«N
du -

ßN
du

e X Jas Ape

Ï
06 f(u) ßN

= -- du - -- du.
as N aN U

As en 0 and N ->

oo, this approaches

Lpe A ßN g
- du - - du = (A -- B) log -.

e «N N

(b) In this case the same substitutions give

Ï
°° f (a x ) °° f (u) °° f (ßx ) °° f (u)dx = du, dx = -- du,

e x as e x ße
so

Ï°°f(ax) - f(ßx) E' f ) ßdx = du -+ Alog -.

e X ae u a

(c) (i) Since

loo
-x

e--dx

o X
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converges and lim e¯' = 1, we have
x->D

°° e-ax - e¯U2 ßdx = log -.

x a

(iii) For a > 0, the integral

Ï
oo cos x dx

a X

exists (samereasoning as in Problem 42(a)), and lim cos x = 1, sox->0

l°°cos(ax) - cos(ßx) ßdx = log -.

o X

46. (a) Choosing n = 1 in Problem 11-43, with xi = ti-i and x2 = t¿, so that
Q(x)= (x - ti-1)(x -- t¿), it follows that for each x in [t i, t¿] we have

f"(c)f (x) - Pi (x) = (x - ti-1)(x - t¿) -

2
for some c in [t¿_i,t¿]. So

n¿ N¿-(x

- ti-1)(x - ti) 2 f(x) - Pi(x) 2
-(x

- ti-1)(x - ti)
2 2

(theinequalities are reversed because (x - t¿_i)(x - t¿) < 0 on [t¿-i,t¿]).

(b)
t.

I = x2 - (t¿+ ti-1)x + ti-it¿dx
--1

X3 ti X2 i

= -- - (ti+ ti-1) · -- + (ti - ti-1)(ti-iti)
3 2fi-1 -1

ti' ti-l' ti'(ti + ti-1) ti--12(ti+ ti-1) 2
= - - --- - + + t¿2t¿_i - ti-1 ti3 3 2 2

ti-13 t¿3 3t¿_i2t¿ 3t¿2t¿_i
= ---- +

6 6 6 6

6
h3

(c) Summing the equations in (b)for i = 1, . . . , n and using h = (b - a)/n, we get
a n

i n¿ b 3(b - aý ¿_1 (b - a) i=1
· < f-En< ·

-

12n2 ¯

a
¯¯ 12n2 n
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Now the minimum m of f" on [a,b] is 5 ni, for each i, so

n

And similarly the maximum M of f" on [a,b] satisfies

i=1
5 M,

n

so we obtain
(b-a)3 b b- 3

m 5 f -- En < M,
12n2 a

¯ 12n2

from which the desired result follows.

47. (a) Using Problem 3-6, we can explicitly write P as

f (0)(x- 1)(x - 2) f (2)x(x- 1)
P(x) = - f (1)x(x- 2) +

2 2
f (0) f (2) 3 f (2)

= x2 -- - f (1)+ + x - - f (0)+ 2f (1) - + f (0).2 2 2 2

So

Ï
2 8 f (0) f (2) 3 f (2)P = - - f (1)+ -- + 2 - - f (0)+ 2f (1) - + 2f (0)

o 3 2 2 2 2
1

=
-[f(0)

+4 f(1) + f(2)].3

(b) If
- (b - a)x

P(x) = P a+ 2
- (b - a)x

f(x)= f a+ ,

2

then since P agrees with f at a, (a + b)/2 and b, it is easy to see that Ë agrees
with j at 0, 1 and 2. So the substitution

(b - a)x
u = a +

2
b - adu = dx

2
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gives

Ïb b-a 2
-

P(u)du = P(x)dx
a 2 o

b-a 1 - - -

= -

-[f(0)+4f(1)

+ f(2)] by part (a)2 3
b -a a+b

= f(a)+4f + f(b) .

6 2

(c) According to Problem 11-43, for each x in [a,b] there is a number c in (a,b)
with

( a+b f"(c)f(x)-P(x)=(x-a)(x-b) x- -

2 6

( a+b=(x-a)(x-b)

x- -C
2

for some constant C. So

f-P=C (x-a)(x-b)
x-a+b

dx.

This latter integral has the value 0. An easy way to see this is to check it for a = 0,
b = 2 and then use the substitution of part (b)to express the general case in terms
of this one. Another way is by using the substitution

a+b a+b
u=x- , x=uk

2 2
du = dx

to make the integral more symmetric. Letting

b - ah =

2

we have

(x - a)(x - b) x -

a + b
dx = (u+ h)(u - h)u du

= u3 - uh du = 0,

since we are integrating an odd function.
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48. (a) Writing Q(x)as in the hint, so that the first three equations automatically
hold, we have

(a+b a+b a+b a+b
Q' = P' + A - a - b

2 2 2 2

, a + b A(b - a)2

2 4

Since b -- a ¢ 0, we can then choose A so that Q'(g) has any desired value.

(b) If x is a, b or j there is nothing to prove. Otherwise, consider the function

( a+b *

F(t) = (x -- a) x - (x - b)[ f (t) - Q(t)]2

( a+b 2
- (t

-a)

t - (t -- b)[ f(x) - Q(x)].2

The F is 0 at a, b, and x. To be specific, say < x < b. Then F' is 0 at
points (1,$2,03with

a+b
a<gi< <g2<x<gs<b.

2

But it is easy to see that we also have

(a+ bF' = 0.
2

So F' is 0 at 4 points in (a,b), and consequently, as in Problem 11-42, F(4) is 0 at
some point g, that is

0=F(4)(g)=(x-a) x-- (x-b)ff')(g)--4][f(x)-Q(x)],

as required.

(c) If m and M are the minimum and maximum of f (*) on [a,b], it follows that

m¿ a+b M¿ a+b 2
--(x--a)

x -- (x-b) 5 f(x)-Q(x) 5
-(x-a)

x - (x-b)41 2 4! 2

for all x in [a,b] (notethat the expression (x - a) (x - g) (x - b) is >_ 0 on [a,b]).
It follows that

Ï
b (4) b a + b 2

f-Q= (x-a) x- (x-b)dx
a 24 a 2
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for some c in [a,b]. To evaluate the integral on the right we use the same substitution
as in Problem 47(c), to obtain

I
h h

(u+ h)(u - h)u2du = u* - u2h'du
-h -h

2h' 2h3
5 3

4 4 b-a 6
=--h'---

15 15 2

(b - a)S

120

(d) By part (c)we have, noting that t2¿ - t2i-2 = È ¯ Ø) Se

la b - a (b - a)*
f = [f(t2i-1) +4f(t2¿_i)+ f(t2iŠl¯

5
(4)(C¿)

g_, 6n 2880n

for some c¿ in (t2i-2,f2i).When we sum for i = 1,...,n, each t2¿ occurs twice,
once in the above expression,and once in the same expression for i + 1; the only
exceptions are f (to)= f (a) and f (t24)= f (b),which occur just once. Moreover,
if m 5 f (4) _<

M on [a,b], then

nm 5 f (4)(c¿) 5 nM,
i=1

SO

f (4)(CJ) = Ef (4)
i=1

for some E in [a, b]. Thus,
b b - a n n-i (b - a)*

f =

6n f (a) + 4 f (t2¿_i) + 2 f (t2¿)+ f (b) -

2880n*
(4)

i=1 i=1
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1. (a) The graphs intersectat (0,0) and (1,1), so the volume is

(b) The shell method gives

2. Rotating the graph of

f(x)= r2-x2 -ršx5r,

we get

x
r

r2
-x2dx

= x r2x -

r

-r

=2x r3-

r

= (xr".
3. Rotating the graph of

X2

f(x)=b 1-- -aix

sa,a
we get

x b2 1 - dx = b2x x --

a

= 2b2x a --

= grab2.
4. The shell method gives

2x
a+b

x b2 - (x - a)2 dx.
Ja-b

313
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Letting

x-a=bu

dx=bdu

we get

Ï12x (a+ bu)b2)1 - u2du
-1

Ll
1

=2xab2 V1-u2du+2xab3 u 1-u2du
l

-1

arcsinu
udl - u2

1

= 2xab2 + + 0 by Problem 19-4(viii)
2 2 -1

= 2xab2

=
X2 b2

= ra - (xb2).
(Thus, the volume is the area of the circle of radius b times the length xa of the
circle that its center revolves around. This is a special case of "Pappus' rule" )

5. Using the shell method the volume is

l2a2-2x- x 4a2-x2dx

(theextra factor of 2 comes about because the shell method gives only the part with

y >_ 0). Letting

x = 2au
dx = 2adu

this becomes

4x 8a3udl-u2du=32xa3-
3

32xa3 3
3 4

4 3Ã
=

-(2a)3x

-

3 8
4

(ascompared to
-(2a)3x,

the volume of the entire sphere).
3
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6. (a) The volume is

Ï
x|2 x|2 r|2

2x xcosxdx=2x xsinx - sinxdx
0 0

=2x --1

2
= x(x -- 2).

(b) The volume is also

X (arccos)2.

7. Actually, instead of using the formula for ff
-1,

it is simplest to go through the
steps by which this formula was derived: In the integral

I
f(b)

If-1(y) dy
f(a)

let

x = f¯I (y)
y = f (x)

dy = f'(x) dx.

The integralbecomes

xf(x)f'(x)dx = x(f2 r(x)dx

= xf(x)2 - f(x)2dx

= bf(b)2-ang2-
b

2dx
,

as required.

8. (a) If the diameter AB lies on the horizontal axis with A at (-a, 0) and B at
(0,a), then the square intersected by the plane through (x,0) has sides of length
2/a2 - x2, so

4(a2 - x2)(t¿ - ti-1)
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is the volume of a "slab",and the sum of these approaches

4
a

(a2- x2) dx = 4 a2X
-

2a3
=4 2a"--

3
16a3

3
2xa3

(ascompared to , the volume of the top part of the sphere of radius a).
3

(b) Now the triangle intersected by the plane through (x,0) has area

-- - 4(a - x
2)

4
so the volume is

Ã 16a3 4ña3
4 3 3

9. A plane parallel to the base at distance x from the vertex has area
(X 2

- A
h

so the volume is
lhX2g g

-- dx = -hA.
o h2 3

10. If (x,y, z) are the coordinates of a point P, then P is inside the first cylinder
of radius a if and only if

x2 + z2 5 a2

and inside the second if and only if
y2 2 2

For points with z = b (i.e,the horizontal plane at distance b above the plane with
the axes) we must have

x2 5 a2 - b2, y 5 a2 - b2,

so we have a square with sides of length a2 - b2, and area a2
--b2.

So the volume
of the intersection is

laa
-z2dz=a

z-
a

3-a

-a

4a3
3
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11. (a) Using the formula

Ï
b

2x f(x))1+ f'(x)2dx,
a

we have

f (x) = Jr2 - x2
-x

f'(x) =

r2 - x2
2

1 + f'(x)2 =
r

r2 - x2

so the surface area is

2x
r

dr2- x2 -
r dx = 2x

rr

dx
.I--r r2 - X2 J-r

= 4xr2.

(b) The area of the portion is

la+h2x r dx = 2xrh.
a

12. (a) The ellipse is the graph of

x2 b
f (x) = b 1 - -- = - Ja2- x2.

a a
It is convenient to set

b
µ=-.

a
Then

f(x)=µ a2-x2
-µx

f'(x) =

Ja2-x2
f'(x)2 _

92X2

2a2 - x
2

2 2 -- Î)X2

1 + f'(x) =

a - x

f (x) 1 + f'(x)2 - µ)a2 + µ2 - 1)x2.

So the area is
A = 2xµ

a

Ja2+ (µ2- 1)x2dx.
J-a
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Case 1: a < b, so µ > 1. We use the substitution

µ2-1
y= x

a
ay

x=
µ2-1
ady

dx= .

µ2-1

Then

2xaµ '¯I

A= a2+a2y2dy
µ2 - 1 - 2-1

2xa2µ
= 1+y2dy

=
nab

y 1+y2+log(y+/1+y2)

by Problem 19-4(ix)

=
rab 2µ|µ2-1+log( µ2-1+µ)-log(- µ2-1+µ)
µ2-1

xab |µ2-1+µ= 2xb2 + log
µ2-1 - µ2-1+µ

rab [ 42 _ y 2

= 2xb2 + log
µ2-1 [- µ2-1+µ]-[ µ2-1+µ]

2xab
= 2xb2 + log( µ2 - 1 + µ).

µ2 - 1
Note that

+1log( µ2-1+µ) µ2-1
lim = lim by l'Hôpital's Rule
µmi µ2 - 1 E-+1 A

µ2-1

. µ+ µ2-1
= hm

So as a a b, and thus µ
-+ 1, the above area approaches 4xb2, tlie area of tlie

sphere of radius b (Problem 11).
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Case 2: a < b, so µ < 1. The substitution

1-µ2
y= x

a
gives

2xaµ
VI

A = a2
-a2y2dy

1 - y2dy

= arcsin y + y 1 - y2 by Problem 19-4(viii)
1 - µ2 I

=
xab

2 arcsin fl - µ2 + 2µ 1 - µ2
1 - µ2

2xab
= 2xb + arcsin 1 - µ2.

1 - µ2

Again, we have
.

arcsin)1 -- µ2
hm = 1,

either by l'Hôpital's Rule, or using lim (sinh)/h = 1.
hw0

(b) The outer portion of the torus is obtained by revolving the graph of

f(y)=a+)b2-y2 -b5y5b

around the vertical axis, and the inner portion is obtained by revolving the graph of

f(y)=a- b2-y2
-b<y<b.

In both cases
-y

f'(y) =

b2
1+ f'(y)2 --

,

b2 - y2

so the area is

Ï
b b b b

2x (a+ b2 - y2 ) dy + 2x (a- b2 - y2 ) dy
-b b2 - y2 -b b2 - y2

Ï
b dy

= 4xab .

-b b2 - y2
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Letting y = bu, dy = b du, this becomes

Ï1 bdu i du 1

4xab = 4xab = 4xab arcsinu
-1 b2 - b2u2 -1 Ål- u2 -1

= 4x2ab.

(Notice [Compare Problem 4] that this is the product of 2xb, the radius of the re-
volved circle, and 2na, the distancearound which the center of thiscircle is revolved.
This is a special case of another version of "Pappus' rule".)

13. (a) The volume is

Ï°°1 1 °°

x
-dx=x-

-- =x.

1 x2 x i

(b) The surface area is

Ï°°1 1 °° 1 + x 2
2x -- 1+-dx=2x dx.

Since
1+x2 X Î

X2 X2 X

and f°°dx/x= oo, this surface area is infinite.

(c) The paint that covers the distant portions of the trumpet will get thinner and
thinner--it's easy to paint an infinite area with a finite amount of paint if you're
allowed to spread the paint as thin as you like!
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1. (ii) P3,o(x) = 1 + x + x2/2.

(iv)
(x - x)2 (-1)n+1(, _ ,)24

P2n,r(X) = -Î # -

-••#

.

2! (2n)!
(vi)

(x - 2) (x -- 2)2 (-1)n+1(x- 2)nPn,2(x) = log 2 + + - - - + .

2 22-2 2"-n

(viii)
26(x - 1)2 66(x - 1)3 120(x - 1)4

P4,1(x) = 3 + 9(x - 1) + 21 3! 4!

(x) Pn,o(x) = 1 - x + x2 - x3 + - - - + (-1)n n

2. (ii) 160 + 50(x - 3) - 10(x - 3)2 + (x - 3)4

(iv) 9a+3b+c+(6a+b)(x-3)+a(x-3)2.

3. (ii)
9 (-1)'22i+1 22n+2

since < 10-12 for 2n + 2 > 20, or n >_ 9. .

(2i+ 1)! (2n+ 2)!
¯

(iv)
1

since 3
< 10-4 fOT N # Î > 8, Or n > 7 .

i=o i ! (n+ 1)!
¯

4. (i) To obtain

< 10¯<'°°) or (2n+ 2)! > 101o=

(2n+ 2)!

it certainly suffices to choose 2n + 2 = 10101; we can also choose 2n + 2 = 10 ,

since (101°)!is clearly > 10'°'
. So one possible sum is

10¯

(-1)
(2i+ 1)!

(ii)
1,o°° 1

(sincesurely (1001)!> 3 · 10" X
i=o

·

321
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(iii)We need to find an n with

102n+2
< 10-20

(2n+ 2)!
Now

10100+k 101oo 10 10 10 101 1
(100+ k)! 1001 101 102 100 + k 100! W'

so
101

< 10¯
(100+ k)!

when
101oo 1 10120

< 10¯© or < 10k
100! Ñ 100!

This certainly happens for k = 120, so we can take 2n + 2 = 220 or n = 109,
giving the sum

io" (-1)'102i+1
(2i+ 1)!i=0

(iv)
234 10' 31°10235 105 - 101°° 1

-- since < < 10¯3°
.

i! (235)! (100)! 10135
i=0

(v)
1 2i+1 1 24+3

(-1)* since < 10 1°") for 2n + 3 = 101 .

2i + 1 2n + 3i=0

5. (a) Let
x2 |x|3

cosx = 1 - - + R(x), |R(x) | < ---.

2 6
Then if x satisfies cos x = x2 we have

2x(*) x2 = 1 - - + R(x).
2

Ignoring the term R(x) gives the equation

3x2 = 2,

with solutions ± = ±Ã|3. To find bounds on the error, recall first, from
Problem 11-38, that lx| 5 1. So (*)gives

1|3x2- 2| = 2]R(x)| < -,

3
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or
1 1--<3x2-2<-

3¯
¯3

5 7-<3x2<-

3~
¯3

3¯
¯¯3

We can get a better approximation if we write

x2 x4 X |5 g
cosx = 1 - -- + - + R(x), |R(x) | < -- < -.

2 24
¯

120
¯

120
If x satisfies cos x = x2 we have

2 4
x x(**) x2 = 1 -- - + -- + R(x);
2 24

ignoring R(x) gives the equation

x'-36x2+24=0

with the solution
x = 18 - 10E,

so x is approximately

(***) ± 18 - 10W= ±.82431

(comparedto =
.81649).

Similarly, to find bounds on the error, we have

1 x4 - 36x2 + 24 1
120

-

24
-

120

so x2 lies between the solutions of
y2-36y+(24-¼)=0

and

y - 36y + (24+ ¼)= 0,

i.e., between

36 - 1200 +
-4

36 - 1200 - 4
5 and 6

,

2 2
thus between

18 - 300 + j and 18 - 300 + ¼;
so

18 - 300 + 1 < |x| < 18 - 300 - 1
5 - -· 5
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or
.82080 _<

x| 5
.82780,

so the error in (***)is at most
.00351.

(b) Writing
sin x = x + Ë(x),

the equation 2x2 = x sin x + cos2 x becomes

2x2 = x2 + xË(x)+ 1 - x2 + + R(x)2 + 2R(x) 1 -

Ignoring terms involving R and Ë gives the equation
X4

- 8x2 + 4 = 0

or
8±464-16X2 4 ± 2Ê.2

Since |x| 5 1, we must have
x2=4-2d

x = ± 4 - 2h.

6. (a)

('+
1 ,

arctan (+ arctan ¼= arctan 2 3
= arctan 1 = -.

1 - - 46

Since

(1
1

arctan ¼+ arctan ¼= arctan = arctan ,

25

we have

4 arctan 1 = arctan 12 12 = RTCtSD ,5 3 119
144

SO

(
120 1

4 arctan 1 - arctan -I-- = arctan = arctan 1 =
.5 23 1 + 1-2-- I 4119 239

(b) To compute x with an error < 10¯6, we must compute x/4 with an error
< 10¯6/4, so it suffices to compute arctan 1/5 and arctan 1/239 with an error

< 10¯6/20 = 10¯7/2. Now
x3 (-1)ng2n+1 2n+s

arctanx=x--+.-.+ +R, |R|< .

3 2n+1 2n+3
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So for x = 1/5 and x = 1/239 we need

1 1

(2n+ 3)52"+3 2 - 107
1 1

(2n+ 3)(239)2"+3 2 - 107'

respectively. We can take n = 4 and n = 0, respectively. So x is

(1 1 1 1 1 1
16-- + - +

-4-

5 3-53 5-55 7·57 9·59 239

with an error < 10¯6. To find the first 5 decimalsof x we must convert each term
in parentheses into a decimal. If we compute each one to 7 correct decimals, then
we will introduce an extra error of at most 10¯'. Since we actually have

1 1
(2 · 4 + 3)52-4+3 3 - 107 '

1 1
3-(239)3 3-107'

this extra error will be no problem. The calculations are as follows:

=
.20000000

=
.00006400 =.00266666

=
.00000005 =.00000182

.20006405 .00266848

-.00266848

< l
.19739557

=.0041841

× 16 x 4
3.1583280

.0167364

-

.0167364

:

3.1415916

The error in this result is < 10¯6; consequently we can be sure that 14159 are the
first five decimals of x (becauseof the fortunate circumstance that the next digit in
our answer is not 9!). The first ten decimals of x are

3.1415926535

7. Clearly

f (k)(x) = a(a - 1) - - - (a - k + 1)(1 + x)a--k
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so
n (k)(0) k

n a(a - 1) - - - (a - k + 1) kPn,o(x) =

kt k!k-0 k=0

= k

k=o k

The Cauchy form of the remainder is

a(a-1)--·(a-n)
R4,o(x) = (1+ t)a-n-i _ ;)n(x - 0),

n!
and the Lagrange from is

a(a-1)··-(a-n)
Rn,o(X ) = (1+ t)œ-n-1(x - 0)"** .

(n+ 1)

i
8. (ii) c¿ = L ajb; _j.

j=0

(iv) co = 0; c¿ = a¿_i/i for i > 0.

9. (a) Since
. R(x)

hm =0

xw0 X 2n+1 '

we have
.

R(x2) R(x2)
0 = hm = lim .

xwo (x2)2n+1 24g 74n+2

Now
sin(x2) = P(x2) + R(x2¾

since Q(x) = P(x2) is a polynomial of degree 4n + 2, it follows from the corollary
to Theorem 3 that Q is the Taylor polynomial of degree 4n + 2 for f at 0.

(b)
0, k ¢ 4l + 2

f (k) i(4l + 2)!
k=4l+2.

(2l+ 1)!
'

(c)
0, k ¢ nl

f (k)(0) = g (0)(nl)!
, k=nl.

l!



Chapter 20 327

10.
x

(x -- t)" dt = lx - t |"dt

ox - t\"
< dt since e' s 1 for x 5 0¯

n!

|x|n+1
(n+ 1)!

11. For
-1

< x 5 t 5 0 we have

0<1+x51+ts1,
1 1

0 < < .
¯¯

1+t
¯

1+x

So

lxga o n n+1

dt < dt < .

o 1+t x 1+x
~

(1+x)(n+1)

12. (a) By hypothesis,

-M(x - a)n 5 g'(x) 5 M(x - a)" for x :> a.

It follows from the Mean Value Theorem that

-M(x - a)n+1 M(x -- a)n+1
5 g(x) - g(a) 5 ,

n‡l n+1

i.e., that g(x) - g(a)| 5 M(x
-a)n+1/(n

+ 1). The case x 5 a is treated similarly.

(b) For every e > 0 there is a 8 > 0 such that |g'(x)/(x - a)"\ 5 e for \x - al <

8. This means that Ig'(x) 5 e|x
-a[n

for |x
-al

< 8. Part (a) implies that
\g(x)- g(a)| 5 e\x - a|n+1/(n + 1) for |x - a| < 8. Since this is true for every
&> 0, it follows that

. g(x) - g(a)
hm = 0.
x-a (x - a)n+1

(c) Since

g(x) = f (x) - f (a)(x - a) ,

i=0
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we have

g'(x) = f'(x) - f (a) (x - a)'¯'
(i - 1)!i-0

n-1 (j+1)
= f'(x) - (x - a)I

j=O

j=0
= f'(x) - Pn-i,a, f (x).

(d) Theorem 1 is true for n = 1, by the definition of f'. Now assume that Theorem 1
is true for n - 1, and all functions f for which f'(a), . . . , f (n-1) (a) exist. If g is
a function for which g'(a), ... ,

gf"3(a) exist, then f = g' is a function for which
f'(a), . . . , f (n-1) (a) exist. Consequently,

g'(x) - Pn-1,a,g'(x)
lim = 0.

x-va (x - a)"¯I

Since (g - Ps,a.g)' = E' En-1,a,gr, it follows from part (b)that
g(x) - Ps,a,g(x)

lim = 0.
x-wa (x - a)n

13. Suppose |f ("*13| is bounded, by some M, on some interval around a. Then for
x in this interval we have

|f (n+1)(t)||Rn,a(x) | = (x - aIn+1
n!

so
|Rn,a(x)]

< Mlx
-a|,

|x - a n
-

so
Rn,a(x)

lim = 0.
x a (x - a)n

A similar proof works for the integral from of the remainder, and for the Cauchy
form, if |f ("**) is assumed bounded.

14. Problem 13-23 implies that
x (n+1)(t)

Rn.a(x) = (x - t)" dt
n!

f("**M
= (x - t)"(x - a)

n!
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for some t in (a,x). Similarly, choosing f ("*0 /n! for f and g(t) = (x - t)",
we obtain the Lagrange form. (In both cases, however, we begin with the extra
assumption that f("*0 is integrable.)

15. (a) Taylor's Theorem, with n = 1, gives

f"(t)f(x+h)= f(x)+ f'(x)h+ 2 (x+h--t)h, t in(x,x+h).

So
1 1 |f"(t) ||f'(x)\ 5 - |f (x+ h) - f (x)| + - h2
h h 2
2 h

5 - Mo + - M2.
h 2

(b) The best inequality from (a)is obtained by choosing that h > 0 which minimizes
g(h) = 2Mo/h + hM2/2. Thus, we choose h to satisfy

-2Mo M2
0 = g'(h) =

h2 2
or

h = 2d Mo/M2
g(h) = 2dMoM2.

(c) The previous results can clearly be applied to any interval (a,oo); for all x > a,
we have

|f'(x) | 5 2dMo.aM2,

where |f"(x)| 5 M2 f0r all x > 0, and |f (x)| 5 Mo,a for all x > a. Since f (x)
approaches 0 as x

-+

oo, Mo,a can be picked arbitrarily small by choosing a large
enough. Thus f'(x) 4 0.

(d) Problem 11-31 shows that lim f"(x) = 0, while part (c)shows that lim f'(x)
xsoo xwoo

= 0.

16. (a) This follows from

f"(a)f(a+h) = f(a)+ f'(a)h+ h2+ R2,4(h),
2

f"(a)f (a - h) = f (a) - f'(a)h + h2 + R2,a(-h),
2

since
R2,a(h) R2,a(-h)

lim = lim = 0.
hoo h2 hoo h2
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(b)
f(0+h)+ f(0-h)-2f(0) . h2-h2-0

lim = lim = 0
h-+o+ h2 hw0 h2

and similarly for lim .

h-+0¯

(e) For sufficiently small h we have f (a+ h) 5 f (a) and f (a - h) 5 f (a) so

f(a+h)+ f(a-h)-2f(a)
h2

(d) Using the Taylor polynomial of degree 3, we have

f"(a) J'"(a)h"
f(a+h) = f(a)+ f'(a)h+ h2+ + R3.a(h)

2 6
f"(a) f"'(a)h3f (a - h) = f (a) - f'(a)h + h2 - + R3,a(-h).

2 6

Now subtract the second equation from the first.

17. If f" > 0, then

Ï
x

f(x) = f(a) + f'(a)(x
-a)

+ f"(t)(x - t)dt
a

> f (a) + f'(a)(x - a) for x ¢ a,

which says that the graph of f at x lies above the tangent line through a.

18. The proof is almost exactly the same as the proof given in the text for the
equation f" + f = 0.

19. (a)
n-1 n-2

(n+1) (n))' (1+1) - ag(j+1) + an-i f
j=0 j=0
n-1 n-1

= aj-i fU) +an-1 aj fU)
)=0 j=0
n--1

= (aj_i +an_iaj) fo,
j=0
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(b) Letting a-1 = a 2 = 0, we have
n-1

f(n+2)¯ j-1 Ÿ Un-18j) (f+1)
j=0
n-2 n-1

= (aj-1+ an-laj) f I + (an-2+ an-1 ) aj f
j=0 j=0
n-1

= (aj-2+ an-laj_; + a,_2aj + an-12aj) f .

j=0

(c) From the equation
n-1

(n+1) = bji (j)

j=0

we obtain
n-2

f (n+2) = bj lfU +1) + bn-1' f
j=0
n-I n--I

= bj-il fU) +bn-l' aj f
j=0 )=0
n-1

= E bj2fU)
j=0

where

bj2 = bj_i' + bn-1'O
lbj2|5 lbj-ill + lb,_il - |aji 5 2N2 + 2N3 5 4N3.

The general formula is proved similarly, by induction on k.

(d) Let M = Mi + - · · + Mn-1, where

M¿ = sup{| f (t)] : 0 5 t 5 x}.

(e) Clearly f (k)(0) = 0 for all k. Then by Taylor's Theorem,

Ï
x (n+k+1)

|f (x)| = (x - t)n+k dt
o (n+k)!

M · 2k+1N**2|xIn+k+1
¯¯

(n+k+1)!
M · |2Nx n+k+1

¯¯

(n+k+1)!
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Since |2Nx|n+k+1/(n + k + 1)! can be made as small as desired by choosing k (and
hence n + k + 1) sufficiently large, it follows that f (x) = 0.

(f) The difference f = fr
-f2

satisfies the same differential equation, and fW (0) =

Ofor05 j±n-1.So f=0.
[In the case n = 2, the equations

f (0) = ci + c2

f'(0) = aici + 2C2

can always be solved if «1 ¢ a2:
œ2 f(0) - f'(0) at f(0) - f'(0)

c1 = , C2
Œ2 - Œl Œ1 - Œ2

The case n = 3 involves more complicated answers, but is equally straightforward.
The general case, for those who know about determinants, depends upon the fact
that the "Vandermonde determinant"

1 1 ... 1
Œl Œ2 . . . Œn

det . . .

G1n-1 Œ2n-1
. . . Œg

is non-zero if the «¿ are distinct--in fact, it has the value B œ¿ - œj.]

i>j

20. (a) The second derivative of h(x) = (x - a)(b - x) is h"(x) =
-2.

Now
applying Problem 16(c) to g with a maximum point y in (a,b), we have

0 :> Schwarz second derviative of g at y
= (Schwarz second derivative of f at y) +2e
= 0 + 2e,

a contradiction.

(b) We want to show that

f (b) - f (a)f(x)= f(a)+ (x
-a),

b -a

so we consider the function

f (b) - f (a)g(x) = f (x) - (x - a).
b - a

Then g(a) = f(a) and g(b) = f(a), and the Schwarz second derivative of g is 0
at all points of (a,b). So part (a),g is constant.
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21. (a) Clearly f = 0 up to order 2 at 0. The second derivative f"(0) does not
exist because

0, x=0
f'(x) =

.
12 124x3Sm- -Xcos- , x:¢0
x x

and
1 14h3 sin -- - h cos -

h2 h2lim
hoo h

does not exist.

(b) Choosing x = a + h and then x = a - h in (*)we have
1 1

lim--[f(a+h) - f(a)+hf'(a)]=0= lim-[f(a-h)- f(a)
-hf'(a)].

hoo h hoo h
It follows that

. f(a+h)+ f(a-h)-2f(a)0 = hm ,
hoo h2

i.e., the Schwarz second derivative of f is 0. Problem 20 implies that f is linear,
so f"(a) = 0 = m(a) for all a.

(c) Let g be a function with g" = m. Then the function f - g satisfies (*)with
m = 0. So f - g is linear,by part (b).So f" = g" = m.
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1. (a) If a is a solution of the equation

(1) anx" + an-ixn-1 + - - - + ao = 0,

then is a solution of the equation

anx2" + an-1x2"¯2 + - - - + ao = 0.

(b) If a satisfies (1),then a + r satisfies

an(x-r)"+a,-i(x-r)"¯'+···+ao=0;

this equation, with rational coefficients, has the same solutions as the equation with
integer coefficients that is obtained by multiplying through by a common denomi-
nator of the various coefficients.

Similarly, ar satisfies
(XR X n-1

a, - + a,_i - + - - · + ao = 0.
r r

2. Since

(n+ Ã)' = 5 +2E,
(n + Ã )4= (5+ 2Ã )2= 49 + 20E,

it is clear that Ã + Ä satisfies x4 - 10x2 + 1 = 0.
Since

[h(1+ ß)]' = 2(4 + 2E) = 8 + 4Ã,
[d(1+ Ea)]* = (8+ 4h)* = 112 + 4ñ,

clearly Ã(1 + d) satisfies x* - 16x2 + 16 = 0.

3. (a) If f (p/q) = 0, then

anx" + an-ixn-1 + - - - + ao = x -
(bn-1x"¯I + - - + bo)

for some bo, ... , b,_i, which will be rational numbers. Since « - p/q ¢ 0, we
have

bn-ia"¯I + - - - + bo = 0,

contradicting the assumption about the minimal degreeof the original polynomial.

(b) Clearly f (p/q) can be written as a rational number of the form r|q". Since
f(p/q) ¢ 0, we have |r| 1, so |f(p/q)| 2 1|q".

334
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(c) If |a - p/q \ < 1, then
f (p/q) -- f (a)f (p/q) f'(x) for |x - al < 1

p |q - a
< M,

so
|a - p/q | > |f (p/q)\|M > 1/(Mqn

4. If a satisfied a polynomial equation of degree n, then there would be some num-
ber c with |œ- p/q| > c/qn for all rational p/q. Now

1 1 1-+---+···+-

101: 1021 10k!

can be written as
p

lon
for some integer p, and

p 2
0<a--< .

10 I 10(k+1)!
Thus for every k we must have

c 2
(10kijn 10(k+1)!

or 10(k+1)! 2
(10k!)n C'

or
(10k!k+1 2
(10*!)= c

'

or
(10k!k+1-n 4

C

which is clearly false for large enough n.

5. (a) If the elements of A and B can be arranged in the respective sequences ai,
a2, as, a4, ... and bi, b2, bs, b4, ..., then the elements of A UB can be arranged
in the sequence

ai, bi, a2, b2, as, b3, ••·

(exceptthat repetitions must be thrown away, if A and B have any elements in
common.)

(b) Arrange the positive rational numbers in a list by following the arrows (deleting
repetitions).
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(c) Follow the arrows in the picture

(0,0) (0, 1) (0,
-1)

(0,2) (0,
-2)

. . .

(1,0) (1,1) (1,
-1)

(1,2) (1,
--2)

. . .

(-1, 0) (-1, 1) (-1,
-1)

(-1, 2) (-1,
-2)

...

(2,0) (2,1) (2,
-1)

(2,2) (2,
-2)

. . .

(d) Let the elements in A¿ be arranged in a list a¿i, a¿2, a¿s, .... Then the elements
in A1 U A2 U As U - - - can be arranged in the array

aii al2 ais at4 ...

a21 a22 a23 a24 • • -

asi as2 a33 G34 · · -

Now use the same trick as in parts (b)and (c),deleting any repetitions.

(e) Apply part (d)with A¿ the set of all triples (m,n, i). (A¿ is countable, by part
(c).)

(f) If the set of all n-tuples is countable, then the set of all (n+1)-tuplesis seen to be
countable by applyingpart (d)with A¿the set of all (n+1)-tuples(ai,a2, - ••9 n, i).

(g) Since every such polynomial function f (x) = anx" + · - - + ao of degree n can
be described by an (n+ 1)-tuple of integers (ao,. . . , an), these polynomial functions
can be arranged in a list p1, P2, P3, ... . For each p¿, let«¿,1, --. , Œi,n be its roots
(ifthere are fewer than n roots, choose 0 for the remaining «¿, j). Then

Œl,1,...,Œl,n,Œ2,1,...,Œ2,n,Œ3,1,...,Œ3,ns•••

is a list of all the desired roots. Now delete repetitions.

(h) Apply part (d)with As the set of all roots of polynomial functions, with integer
coefficients, of degree i.
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6. If this number were in the list, it would be as for some n. But it cannot be
an, since it differs from as in the nth decimalplace. (This tricky construction, and
others modeled on it, is known as the "Cantor diagonal method".)

7. (a) Suppose 0 < ai < - - - < a, < 1, and lim f (x) - lim f (x) > e. Choose

0<al'<a1<ai"<a2'<a2<a2"<-··<an'<an<an"<1.

Then
f (a¿")- f (a¿')> e,

so

f (1) - f (0) > f (a¿")- f (a¿')> ne,
i=1

so n < [f (1) - f (0)]|s.
(b) Let As be the set of all a in [0,1] with lim f (x) - lim f (x) > 1/n. Then

x-a+ x-a-
A, is finite, so by Problem 5(d), Ai U A2 U A3 U · - - is countable.

8. (a) There are only countably many such intervals, since each interval is deter-
mined by a pair of rational numbers, and there are countably many rational numbers.
Since each value f (x)can be described in terms of these intervals (asthe maximum
value on such an interval),there are only countably many values of f (x).
(b) If f happens to be continuous, then f cannot take on two values, for if it did,
it would also take on all values in between, and hence an uncountable set of values.

(c) A minor variation of the proof in part (a) shows that if every point is either
a local maximum point or a local minimum point for f, then f takes on only a
countableset of values. So, again, if f is continuous, then f must be a constant.
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1. (ii)
1 3 1 3

- + - lim - + -

. n+3 n2 43 44xy2 43 0
hm = lim = = - = 0.

naoo n3 + 4 naoo 4 4 11 + -- lim 1 + -

n n-voo n

(iv) If n is even, then

n ! n(n - 1) . - · (n/2)! (n/2)! 1 n/2

nn nal2 - na/2 ' ns/2 ¯¯

2

similarly, if n is odd, then

n! n(n - 1) - - - [(n - 1)/2]! [(n - 1)/2]! 1 (n-iy2
¯

g(n+1)/2 , g(n-1)/2 (n-1)/2

(vi) lim (logn)/n = 0 (since lim (logx)/x = 0, by Problem 18-12(b)). So
n-voo x-voo

lim = lim e(tognyn - e° (byTheorem 1) = 1.
n-+oo n-+oo

(viii)Suppose a > b 2 0. Then Ñ 5 Ja" + bn gan+ an, i.e., a 5
Va"+ b"

_< 6 a, and lim 6 = 1, by part (v).
naoo

(x) According to Problem 2-7,

n n?**
kP + AnP + Bn2¯I +-·-

. k=1 P Ÿ Î
lun = lim

n oo nP+1 n->oo nP+1

1 A B l
= lim +-+-+---= .

n-+oo p + 1. n n2

2. (i)
. n n+1 . n , n+1

lim - = hm - hm = 1 - 1 = 0.
naoo n + 1 n n->oo n + 1 n-+oo n

338
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(ii)

(n-Jn+adn+b)(n+ Jn+adn+b)
lim n- Jn+adn+b= lim

naoo naoo n + Ån+ adn + b

.
n2-(n+a)(n+b)

= hm
a ©© n+)n+adn+b

.

-(a

+ b)n ab
= hm -

naoon+)n+adn+b n+)n+adn+b

1
= lim

-(a

+ b) -

naoo gn + a jn + b
1 +

1
= lim

-(a

+ b) -

naoo a b
1+ 1+- 1+-

n n
(a + b)

2

(iii)
(-1)"

. 2" + (-1)n 1 + 2n 1
hm = lim = --.

naoo 2n+1+ (-1)n+1 a oo (-1)n+1 2
2 + 2"

(iv)

(-1)" sin(nn) (-1)" sin(n") nlim = lim = 0 - 1 = 0
n oo n+1 a oo n+1

(v) If a = b, the limit is 0. If a =
-b,

the quotient is undefined for odd n, so the
limit-ismeaningless. If ja > lb|,then

(bn1- -

an-b" a 1
lim = lim = - = 1.

n ma"+bn now b " 1
1+ -

a

Similarly, if |a| < b|, then the limit is
-1.

(vi)Supposefirst that c > 0. We have

lim xc2 = lim e'° 2exlogc
= lim elogx+xlogc

xwoo x-oo x-oo
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Now

(logxlim log x + x log c = lim x -- + log c ,
x-oo x-+oo x

= lim x logc =
-oo,

xwoo

so lim xc" = 0. In particular, lim nc" = 0. The result clearly follows also for
xwoo naoo

c < 0.

(vii) Since
2n2 (2nyn 2" 2" 2n 2n
n! n! n n-1 n-2 1

and each factor is > 1, and in fact ->

oo, the whole quotient ->

oo.

3. (a) The sequence {as)must be eventually constant, that is, there is some N such
that all an are equal for n > N.

(b) All convergent subsequences are of the form

a1, . . . , an, 1, 1, 1, 1, 1, . . .

or
a1, ..., an,

-1, -1, -1, -1,

...,

where ai, ..., as is some finite sequence of l's and
-l's.

(c) All convergent subsequences are of the form

ai , ..., an, m, m, m, ... ,

where al, ..., an and m are natural numbers.

(d) All œ in [0,1].

4. (a) Let {aa}be a Cauchy sequence, and suppose that lim an, = l. For any e >
Jaco

0, choose J so that |l-as, | < s/2 for j > J. Then choose N so that la,
-am|

< e/2
for n, m > N. Let No = max(N, n y). If n > No, then la. - an, | < s/2 and
anni - l| < s|2. Consequently, |an - l| < e/2.

(b) Suppose that lim a, = l, and let {an,}be a subsequence of {a,}. If e > 0,
n-÷oo

then there is some N such that |l - ani < E fOr n > N. Since ni < n2 < na < - - -,

there is some J such that ny > N for j > J. Thus |l - an,| < E fOr j < J. So
lim anj = l.

jooo

6. (a) Using the inequality Ñ < (a + b)/2, it is easy to prove by induction that

a1<an<an i<b, i<b,<bi.
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Thus the sequence {a,}is increasing and bounded by bi and the sequence {b,}is
decreasing and bounded by al. So both converge.

(b) If l = lim an and m = lim b., then
nooo usoo

l = lim an+1 = lim ¾naoo naoo

= lim ÑÁ¯

so m = l.

7. (a) If
m

ak = ~

9

n

then
m+2n (m+n)+n n 1 1

ak+1= =
=1 =lŸ =1

-

m+n m+n m+n m i 1+ak
n

(b) It is easy to check, first, that

( 1 2 a+2
if a2 < 2, then 1 + = > 2,

1+a a+1

and that the same result holds with the two inequalities reversed. Since a12 < 2, we
thus have ak < Ä for k odd and ak > Ä for k even. Moreover,

3ak + 4 > at for ak2 < 2
ak+2 =

2ak + 3 < ak for ak2 > 2.

This shows that {a2, i} is increasing and < Ä and {a2,}is decreasingand > n,
so they have limits I and m, respectively.

To show that l = m, we note that for both even and odd n we have

an + 2 2 - an2
an+1 - an = - an = .

a,+1 1+an

Hence
.

2--a,2 2-m2
l - m = lim =

naoo 1+a, 1+m
A CVOH

and also
.

2-an2 2-l2
m - l = hm = .

naoo 1 + an 1 + l
n odd
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This gives

l+lm-m=2
m+lm-l=2;

hence l = m = n.
(c) This is a straightforward generalization of part (b).For convenience, let

c = a2

We consider
b aŒk # C

Œl = a, Œk+1 = = ·

a+Œk a#Œk

Note that Œl2 < c. Also, the inequality
(aa+C 2

>c
aka

is equivalent to
(a2- c)a2 > c(a2 - c)

or simply
a2<c.

So we see that

if a2 c then c.

So {a2, i} is increasing and < Ja2+ b and {a2n}is decreasing and > Ja2+ b, so
they have limits l and m. Moreover,

aa, + c c - «,2

a,4i - as =

a + as a + as
for both even and odd n. As before, this gives

l+lm-m=c
m+lm-l=c;

hence l = m = f.

9. (ii) ) ex dx = e2 - 1.

(iv) 0, since
1 1 1 1 1-+

+···+ sn--s-.n2 (n+ 1)2 (2n)2 n2 n

(vi)
1 1

dx = x/4.
1+ x2



Chapter 22 343

10. (a) If a = 1 + h, then a" = (1 + h)n > 1 + nh. Since h > 0, clearly
lim nh = oo.

naoo

(b) lim a" = 0, because lim 1/a" = oo, by part (a).
naoo naoo

(c) If 6 = 1 + h, then a = (1+ h)" > 1 + nh, so h 5 (a - 1)/n. Thus
15 51+(a-1)/n,so lim =1.

n-+oo

(d) lim 6 = 1 (lim g) = 1, by part (c).
naoo asoo

(e) If = 1 + h, then
n(n - 1)

n = (1+ h)" > h2
2

so
2

hs ,
n-1

so
2

15 51+ ,

n-1

so lim = 1.
naoo

11. (a) Suppose that lim an = l. Choose N so that ja. - l| < 1 for n > N. Then
naoo

a,| < max(|ll + 1, |ai|, ..., |aN|) for all n.

(b) Choose N so that |an - 01 < ai for n > N. Then the maximum of a1, a29 - · -

aN is the maximum of an for all n.

12. (a) This relation is equivalent to
1 n+1 1 1

<
-dx<-,

n+1 , x n
which is true because

1 1 1
< - < -- for x in (n,n + 1).

n+1 x n

(b) Since
1

an-an i=log(n+1)-logn-
n+1

> 0 by part (a),
the sequence {an}is decreasing.

To prove that a, >_ 0, add the inequalities
1

log(j + 1) - log j < -

1
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for j = 1, . . .., n - 1, to obtain

1
logn<1+···+ .

n-1

13. (a) Since f is increasing

li+1f(i) < f(x)dx < f(i +1);
i

add these inequalities for i = 1, . . . , n - 1.

(b) From part (a)we have

Ï
n

log1+---+log(n-1)< logxdx<log2+---+logn
i

log(n - 1)! < n logn -ni

< logn!
nn

(n-1)!<-<n!.en-i

So
nn (n+ 1)n+1 n+1

en-1 en en-1

14. (a) The tangent line has slope f'(xo)so it is the graph of

g(x) = f'(xo)(x- xo) + f (xo).
So xi is the solution of

0 = g(xi) = f'(zo)(It - Jo) + f(zo)
f (xo)

xi - Io = -

f'(xo)
f (xo)

(b) From f'(xo) > 0 we immediately have xo > xi. We also know that f is convex
by Theorem 2 of the Appendix to Chapter 11. So by Theorem 1of thatAppendix, the
graph lies above the tangent line through (xo,f (xo)).So clearly x1 > c. Obviously
f'(xi) > 0, for otherwise the convex function f already has its (unique)minimum
between xi and xo, so doesn't even have a zero. This shows that xi > x2, etc.
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(c) We have

Ek+1= Ik+1 - C = Ik - C # (xk+1'¯ Xk)

f (xk)= Ok-

f'(xk)
f (xk) f (Xk)

f'($k) I'(Xk)

Hence
f(xk)Ok+1= · [f'(Xk) ¯¯ Í ($k)Ìf'($k)f'(Xk)

f (xk)
= ·

f"(Uk)(Ik
- $k)f'($k)J'(Xk)

f"(Ut)
=8k Ok

f'(xk)
f"(Uk) 2

= -Sk•
f'(xk)

(d) If
&o=xo--c<--,

M
then

M---ôo

= a < 1, for some a.
m

Then from (*)we have first
M

ôt i -So'
m

M M *
-81

5 -Bo = «2.

m m
Then

M

m
M M 2

-ô2

5
---81 Œ4

m m

etc. Since a < 1 the powerS Œk --+ 0, so 8, 4 0, i.e., Newton's method works.

(e)
Xg2

_ g
x, i = x, -

2x,

15. To do this Problem you will need a calculator, of course.
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(i) xi = 1, x2 =
.7081,

xa =
.6055,

x4 =
.5988

[f(x4) = 7.97 X ÎÛ-5

(ii) xi = 1, X2 =
.8382,

x3 =
.8258,

x4 =
.82

, [f (x4)= 3.9 x 10¯*L
(iii) xi = 1, x2 =

.75,

xa =
.68604,

x4 =
.68234;

[f (x4)= 2.9 x 10¯*L
(iv) xi = 1, x2 =

.6667,

xs =
.6527,

x4 =
.6527;

[f(x4)= 9.13 × 10-6L

16. If e > 0, pick N so that |a, -- i < e for n > N. Then
|aN Ÿ UN+1 · N+M - Ml | < sM,

so

I 1 Ml «M
[aN i UN+1 N+M] -- < < 8·

N+M N+M N+M
Choose M so that

i Ml 1-l

<e and [ai+---+aN) <8-
N+M N+M

Then
1

[ai+.-.+aN+M]-l <3e.
N+M

17. Let an = f (n+ 1) - f (n). Then lim an = 0. So by Problem 16
n-+oo

. at +···+a, . f(n) - f(1) . f(n)O = hm = hm = hm -.

naoo n naoo n n-+oo n
Since f is continuous, it follows easily that lim f (x)/x = 0.

naoo

18. If s > 0, pick N so that |an+i/an- Il < E fOr n > N. Then

l-e< <l+s forn>N,
an

SO
m an+m an+m-1 an+1(l - E) < • •••---- < (I # E)m

an+m-1 an+m-2 an
so

an+m --l

<e.
an

Now

y an

)(
m|n+m

an+m
a+n

Since lim "+=f = 1, it follows that "+gan+mcan be made within 2e of l by
mooo

choosing m sufficiently large.
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19. (a) Suppose lim as = l > 1. Since l - 1 > 0, there would be some n with
naoo

l
-an|

< l - 1, and hence an > 1, a contradiction. Similarly, we cannot have l < 0.

(b) a, = 1/n.

20. Let us denote
f(f(f ... f(x)...))

k times

by fk(x). Then by Theorem 1,

f (l) = f (lim fk(x)) = lim f (fkknoo k-woo

= lim fk+1(X)
= I.

k->oo

21. (a) Suppose f (x) > x. Since f is increasing, f (f (x)) > f (x). Consequently,
f(f(f(x))) > f((f(x)), etc. Thus the sequence x, f(x), f(f(x)), ... is increas-
ing, and bounded by 1, so it has a limit. The proof when x < f(x) is similar.

(b) There is some m with g(m) = m (by Problem 7-11). According to part (a),
the sequence fk(m)has a limit l, which is a fixed point for f (usingthe notation
introduced in the solution to Problem 20). Moreover,

fk(m) = fk k

since fog = go f. Hence, by Theorem 1,

l = lim fk(m)= lim g fk(m))= g( lim fk(m))= g(l).
k-woo k->oo k->oo

22. (a)
c" + cm+1 + -

-·+ c" = cm(1+ c +·- + co-m)
cm(1 - cn-m+1)

1 - c
Cm - Cn+l

1 - c

(b) Since |c| < 1, we have lim crn = lim cn+1 = 0.
n-+oo naoo

(c)
lx, - xml = |(In - In+1) + (In+1 - In+2) +

·+ (Im-1 - Im¾

5 Ixa-·-In+1\+ lxn+1-In-21+ + ixm-1-Iml

sc"+---+cm-1
so lim |x, - xml = 0, by part (b).

m,n->oo
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23. (a) If c = 0, then f is constant, so continuous. If c
=/= 0 and E > 0, then

|f (x) - f (a) < s for |x - a < e/c.

(b) If f (l) = l and f (m)= m, then

|l-m = |f(l)- f(m)]5 cl-m|,

so l = m, since c < 1.

(c) If x is any point in R and

n times

then

x, - xn+1 | = If (In-1) - f (xn)| 5 c xn-1 - In 5 c2|xn-1- In-2 |
5---Sca-1 _Xil-

Consequently,Problem 22(c) implies that {xn}is a Cauchy sequence, so converges.
It converges to a fixed point, by Problem 20.

24. (a) If f (x) = x and f (y) = y, then by the Mean Value Theorem, for some i
between x and y we have

f (y) --- f (x)f'(g) = = 1,
y - x

a contradiction.

(b) The Mean Value Theorem gives

|f (x) - f (y) = |f'(g)| - |x - y| for some ( between x and y

s clx - y |,
so the result follows from the previous Problem.

(c) Let f(x) = x + 1.

25. Since f is continuous at b we have

f (b) = lim f (ba)= lim bn+1 = lim b, = b.
naoo naoo naoo

Choose n so that b., b,41, . . . are all in the interval around b on which f'] > 1.
Then

|f (ba)- f (b)| > 1 or Ibn+1- bi > |bn- b|.|ba-b|
Similarly,

bn+2 - b | > |b, i
- b | > |b, - b | ,

bn*3
-b|

> |bn-b|,....
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This contradicts the fact that lim bm = b.
mooo

26. (a)

(Hm b,ab = a = = Îim ab,
naoo

= lim ba i = b.
n-+oo

(b) If f(x) = xil" = eß°ax)/2, then

i¡x 1 log x < 0 for x > ef'(x) = x - -

x2 x2 > 0 for x < e.

Since (logx)/x -+ 0 as x
-+

oo and -oo

as x
-> 0* (Problem 18-34), f (x) -> 1

as x
->

oo and f (x) -+ 0 as x
-+ 0*.

In particular, O < f(x) 5 ell' for all x > 0. So O < a 5 «I/*.

(c) Since 1 5 a we have

a 5 aa, i.e., bi 5 b2.

And if b, 5 bn+1, then

bn+1 = ab" abn+1= bn+2,

so by induction {bn}is increasing. Moreover, if bn 5 e, then

ba i = ab" i ae 1/e e _ L

(d) Choosing f (x) = a* in Problem 25, we see that if b exists then

|f'(b)| 5 1,

where
f'(b) = ab(loga) = bloga = log(ab) = logb,

so
-1

5 1ogb 5 1,

or
e-15bde.

Since a = bl/b we have

(e
')1/e·¯'

5 a 5 e'I'

or
e-® 5 a 5 elle.
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(e) Since

logx(loga)ax
-ax/x

f'(x) =

(108X)2

ax 1
= log x log a - -

(logx)2 x

we need to show that
1

log x log a 5 - on (0,1)
x

or
1

log a
_>

.

Now x log x
-> -oo

as x
-> 0+ or xe 1 , so the maximum of 1/x log x occurs

for

1
0 = x - - + logx

x

x = e¯' .

Thus we need to show

1
loga > =

-e,

¯ e-1 log(e-1)

which is true since a > e¯'.

(f) We know from part (b) that the graph of g(x) = x1/x increases from 0 to 1 on
[0,1] (andthen increases further on [1,e] and then decreases to 1 on [e,oo)). So
there is a unique b with a = bl/b (wedon't even need e¯' s a for this, just a 5 1).
For 0 < x < 1 we have 1/x > 1 so x1/x < x (thesigns reverse since log x < 0), so

a = bl |b < b.

For x < b we have
ax>ab=b

SO

aa'<ab=b

(theinequalities reverse since a < 1). Moreover, part (e)shows that for 0 < x < b
we have

a2 ab

log x log b
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so

a' log b > ab log x (sincelog b, log x < 0)
ax(log(ab) > blogx

a2b loga > b log x
ax loga > log x
log(aa') > log x

aa

In particular,

0<a<b so x<aa <b

0 < aa < b so aa < aa " < b, etc.

So the sequence b2,4i is increasing and bounded by b, so has a limit l. Clearly

l = lim b2, i = lim b2n+3
naoo n-+oo

a½=+= a - I a'
= lim a = a = a .

n->oo

(g) Since ab = b we have aa - ab = b. Since we also have aa' = l we must have
l = b by part (e).

(h)
lim b2.gi

lim b2n+2= Ïim ßb2.wi _

a "
- ab - b

n-+oo n-+oo

27. (a) Clearly {yn}is decreasing,and bounded below (bya lower boundfor {x,}).
(b) (i) 0.

(ii) 0.

(iii) 1.

(iv) 1.

(c) lim xn = lim z,, where zu = inf {xn,In+i, xn+2, . . . }. Since z, 5 y, for
n-woon->oo

each n, it is clear that lim xn 5 En- oo In-

n-woo

(d) Suppose first that lim xn = l. If e > 0 there is some N with |xn-- l| < e for
n-+oo

n 2 N. So xN < l # 8, XN+1 < l # E, . . . , SO FN 5 l + e. Similarly ZN 2 I -- E-

Since this is true for all e > 0, we have lim x, = l = 6 xn.-

n->oon-+oo
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Conversely,suppose that lim x, = ÏÏmx, = l. Then for any s > 0 there is
naoonaoo

some N with l - e < ZN < FN < l + s. This implies that l - e < x, < l + e for
every n >_ N.

(e) Let l = ÏÃ x, = lim y.. If a < l, then a < y, for all n. Consequently,
naoo naoo

a < x, for infinitely many xa, so a is not an almost upper bound for A. On the
other hand, if a > l, then a > y, for all but finitely many n. Consequently, a > xn
for all but finitely many n, so a is an almost upper bound. Thus, l is the greatest
lower bound of all almost upper bounds of A.

28. (a) First choose 8 > 0 so that f(x) - f(y)| < 1 for rational x and y with
|x - y| < 8. Since x,

->

x, there is some N so that |x,
-x]

< 8/2 for n > N. Hence
|x,

-xm|

< &for m, n 2 N. So |f (xm)- f (IN+1)| < 1for m à N. This shows that
the sequence {f (xn)}is bounded. It follows that it has a convergent subsequence,
say f(x, ), f(xn,), ... approaches the limit l. We claim finally that the original
sequence {f (x.)}approaches l. In fact, for any e > 0 we can choose K so large that
|f (xa,) - l| < e/2 for k > K and also choose 8 so that If (x) - f (y)| < Ej fOT

rational x and y with |x - y| < 8. Finally, we choose N so large that |x
-x,|

< 8/2
for n 2 N. Then for n 2 N we have, for any k > K with xe, > N,

lxn
-xnal

5 IXn -Il + lxna-1

< 8/2 + 8/2,

so
If(In) - Il 5 If(In) - f(xak) |(XEkI¯

5 e/2 + e/2.

(b) Given another sequence {Fn} with lim y, = x, consider the sequence xt, yi,
naoo

x2, y2, . . . . This also approaches x, so the sequence f (x1),f (71),f (x2),f (72),
. . . has a limit, which must be the limit of the two sequences {f (xx)}and {f (ys)}.
(c) Given e > 0 choose 8 > 0 so that for rational x and y with |x - y| < 8 we have

(1) |f(x)- f(y)| <e/3.

If z and w are any two numbers in the interval with |z - w < 8, then by the
definitionof j we can choose rational x and y so that

(2) |f (x) - f(x)| < s/3

(3) |f(y)- f(w)|<e/3.

Moreover, by choosing x sufficiently close to z and y sufficiently close to w, we can
insure that |x - y| < 8, so that (1)holds. It follows that |f(z) - f(w)| < s.

29. (a) Since af = aT¯2 - ax we just need that at > 1 for rational z > 0, and this
follows immediately from the elementary definitions.
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(b) Problem 10 (c),(d)shows that for large enough n we have

1-e<a¯II"<altn<1+s a>1
1-e<all"<a-II"<1+e a<1.

So, by (a),for rational x with |x| < 1/n we have la2 - 1 < e.

(c) For rational x, y in the closed interval [-M, M] we have

|a' - af | - af | - a2¯T - 1|

5 max
M, -a-M |a ¯I - 16

Since la2-7 - 1| can be made < E by making |x - y| sufficiently small, f is
uniformly continuous on [-M, M].

(d) If xn and y, are rational and x,
->

x and yn
-+

y, then xn + yn I + y, so

f(x+ y) = lim f (xn+ yn) = lim f (xn)f(yn)naoo n->oo
= lim f(xn) lim f(yn)
= f(x)f(y).

If x < y then we can choose rational xn
->

x and y,
->

y with all x, < all ym, so

f(x)= lim f(xn)5 lim f(yn) = Ì(7)-n-voo n-voo

To prove strict inequality choose rational x', y' with x < x' < y' < y. Then

f(x)5 f(x')= f(x') < f(y') = f(y')5 f(y).

30. (a) (i) 0.

(ii) 0 and 1/n for each natural number n.

(iii)
-1

and 1.

(iv)No limit points.

(v) All real numbers.

(b) If there are infinitely many points a of A satisfying |x - a [ < E, then there is
surely one such a with a ¢ x. Conversely, if there were only finitely many such
points ai, ..., an and ei > 0 is the minimum of all those |x - a,| which are ¢ 0,
then there would be no points a in A satisfying |x - a| < el-

(c) For any s > 0, the number E A -s is not an almost upper boundof A, so there
are infinitely many numbers y in A with y > E A + s. Moreover, there cannot
be infinitely many such numbers y with y > E A + E, fOT in (Ilis case no numbers
between lim A and lim A+ e could be almost upper bounds of A, so lim A + e would
be a larger lower bound for the set of all almost upper bounds. This showsthat there
are infinitely many numbers y in A between lim A -- E and lim A + e. Consequently,
lim A is a limit point of A. If there were another limit point œ > lim A, then no
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number less that a could be an almost upper bound so a would be a lower bound
for the set of almost upper bounds, a contradiction. The proof for limA is similar.

(d) Choosedistinctpoints xi, x2, xs, . . . in A. The sequence {x,}is bounded,since
A is contained in [a,b]. So there is a convergent subsequence {xy}. Let l =

lim xnj. For any e > 0 there is some J such that |l - xp| < e for all j > J. Since
j-woo
the x, are distinct, this shows that there are infinitely many a in A with |l - a| < s.

(e) Choose a sequence of intervals 11,72, Is, . . . with li = [a,b], and each lj i a
half of Ij, such that each Ij contains infinitely many points of A. If x is the point
in all Ij, then x is a limit point of A.

31. (a) Choose x, with f (x,) > n. There is a subsequence x, which converges to
a point x, which is in [a,b]. Thus for every e > 0 there are infinitelymany In, with

x - x, | < e, and consequentlyf is unbounded on [x -- e, x + s], contradicting the
fact that f is continuous at x.

(b) Given e > 0, suppose there is no ô > 0 such that f (x) - f (y)| < e for all x, y
with |x - y| < 8. Then for each n there are points xn, yn such that |xn- yn| < 1/n
but |f(xn) - f(yn)\> s. Choose subsequences xn; and ya, converging to points x,
y in [a, b]. Then

lx - y| =
_lim

|xx,- yng| = 0,
J->oo

so x = y, but

|f(x)- f(y)|= lim |f(xn;)-f(Inj)\

a contradiction.

32. (a) Let #(n) be the number of j for which j/n is in [a,b]. To estimate #(n),
let j/n be the smallest such fraction in [a, b] and k/n the largest. Then (j-1)/n <

a <_ j/n and k/n 5 b < (k+ 1)/n.

J-I J k k+I
n n n n

I III III I
O a b i

So
k j k+1 j-1---5b-a<

-

,

nn n n
k-j±n(b-a)<k-j+2.
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Since #(n) = k - j + 1, we also have

k - j < #(n) < k - j + 2,

so
|#(n)- n(b - a) | < 2.

Adding these inequalities for 1, . . . , n we obtain

|#(1)+ - ·· +#(n) - [1+ - - · + n](b - a) | < 2n.

Consequently,
#(1) + - - · + #(n) 2n-(b-a)

< .

1+--.+n 1+-·-+n
Since lim 2n/(1 + - - - + n) = 0, this shows that

naoo

#(1) + · · - + #(n)
approaches (b - a).

1+---+n
Of course #(1) + - - - + #(n) = N (1+ - - - + n; a, b). For an arbitrary number m, let
n be the largest number with 1 + - · · + n 5 m. Then

m- (1+-·-+n) 5 n.

Clearly,
N(m; a, b) - [#(1)+ - -

-+#(n)]|

5 m - (1+
-··+n)

5 n.

Consequently

N(m;a,b) [#(1)+...+#(n)] n(1) - 5-
m m m

n< -> 0, as n
-+

oo.¯

1+---+n
Moreover,

#(1)+---+#(n) #(1)+-··+#(¤) 1+·--+n
m

¯

1+--·+n m
'

since
1+---+n 1+---+n 1+---+n

< < =1

1+.--+(n+1)
¯

m
¯

1+---+n
'

it follows that [#(1)+·-

-+#(n)]|m

can be made as close to [#(1)+· -

-+#(n)]/(1+

- - - + n) as desired by choosing m (andhence n) sufficiently large. Since the latter
expression can be made as close as desired to b -a by choosing m sufficiently large,
it follows from (1)that lim N(m; a, b)/m = b - a.

mooo

(b) Consider the special case where s (x) = c for x in [a, b] and s (x) = 0 for other
x in [0,1]. Then

. s(ai)+-··+s(as) . N(n; a, b) 1

lim = lim c - = c(b -- a) = s.
naoo n naoo n o
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This holds, in particular, when a = b. A similar proof works when s(x) = c for x
in (a,b). Any step function s can be written s = si + - · - + s. where s¿ is one of
these special kinds. Then

l
i m t m

. s¿(at) + - -

·+

s¿(as)
s = s¿ = hm

o o n-+oo ni=1 i=1
. s(ai)+---+s(an)

= hm .

n-+oo n

(c) Let e > 0. According to Problem 13-16, there is a step function s i f with

| [f - s] < e. Thus for sufficiently large n,

/b
b S(al) 4"' S n) Í(UI) ‡••- # f(an)-e+

f< s< +e5 +s.
a a n n

Similarly, since there is a step function s > f with j [s - f] < e, we have

I
b f(al) ‡

·••#

f(an) b
-2s

+ f < < 2e + f
a n a

for sufficiently large n.

33. (a) If there were infinitely many such points a in [0,1], then the set of all such
points would have a limit point x in [0,1]. For every&> 0 there would be some a
with |a - x| < ô|2 and i lim f (y) - f (a)| > e. Consequently there would be a'

y-+a
with |a' - a < 8/2 (andconsequently |a' - x| < 8) such that |f (a') - f (a) > e.
But since lim f (x) = l for some l, there is some ô > 0 such that If(y) - l| < e/2

for |y
-x|

< 8. In particular, if |a
-x|

< 8 and |a'-x| < 8, then if(a)- f(a')| <

|f (a) - l| + |f (a') - l| < e, a contradiction.

(b) By part (a),the set As of points a where | lim f (y) - f (a)| > 1/n is finite. By
yea

Problem 21-5, the union Ai U A2 U As U - - - is countable. This union is the same
as the set of all points a at which f is discontinuous.
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1. (ii) Convergent, by Leibnitz's Theorem. The series is not absolutely convergent,
since

1 1 1 1 1 1 1 1 1 1 1
1+-+-+-+·· >-+-+-+-+··-=- 1+--+-+-+--- .

3 5 7 2 4 6 8 2 2 3 4

(iv) Convergent, by Leibnitz's Theorem. (The function f (x) = (logx)/x is de-
creasing for x > e, since f'(x) = (1 - log x)/x2.) The series is not absolutely
convergent (see(viii)).
(vi) Divergent, since

1 1
2 + 1 2n2

(viii)Divergent, since

Ï
N log x (logN)2

- dx =
-+

oo as N --->

oo,
1 x 2

and f (x) = (logx)/x is decreasing for x > e (see(iv)).
(x) Divergent, since

1 1

(logn)k n

for sufficiently large n (Problem 18-12).

(xii) (Absolutely) convergent, by (xi).
(xiv)Divergent, since

. 1 1
sm - > ----,

n 2n
for sufficiently large n.

(xvi)Convergent, since
N

dx = - + - 4 ---

as N ->

oo.x(log x)2 logN log 2 log 2

(xviii)Convergent, since

. (n+1)!/(n+1)"** . (n+1 n"
hm = lim

naoo n!/nn n-+oo (n+ 1)n+1
1 1

= lim n
= -,

n-+oo 1 e1+-
n

by Problem 18-16.

357
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(xx) Divergent, since

.
3n+1(n + 1)!/(n + 1)n+1 3 n + 1)n"

lim = lim
n-+oo 3"n l/n" n-+oo (n+ 1)n+1

3 3
= lim n

= -.

n-+oo 1 e1+-
n

by Problem 18-16.

2. (a) According to Problem 22-13,
e"n!

nn
> e,

so the series certainly diverges.

(b) Since

, (n+ 1)n+1 an+1(n + 1)I . (n+ 1)n+1
lim = lim

naoo nn gan! n oo a(n + 1)n"
1 1 n e

= lim - 1 + - = -,

naoo a n a
the series converges for a > e and diverges for a < e. By Problem 22-13,

nn n" (n+ 1)n+1 n"
e"n! (n* 1)n+1 eng! (y4 gyn+1

1 n " 1 1
n+1 n+1 1 " 2e(n+1)

(n+ 1) 1 + -

n

for sufficiently large n, so inii n"/enn! diverges.

3. (a) The function f(y) = e>/y? is decreasing for y > 1, since

yief -eTy?(1+ log y) e7
f'(y) - -

-(-

log y).
y27 yT

Now the series Egi,(e/n)nclearly converges, since (e/n)" 5 e2/n2 for n ;> 2, so
the integral also converges.

(b) Since f (x) = (logx)¯!° 2 is clearly decreasing for x > 1, the series converges
if f°°(logx)-I°82 dx exists. The substitution y = log x, dx = «I dy, changes this
integral to

/°°e
I

- dy ,

i 17
which exists, by part (a).
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(c) The substitution y = logx, dx = «I dy changes fl°°(logx) 1°5('°52) dx to

l°°e
i

dy .

Now
- =

ei
= ey-(logy)2

= ey(1-(iosy)2/W
ylogy e(l°8I)

Since lim (logy)2/y = 0 (Problem 18-12), it follows that ef /y'°E I is close to ei
ysoo

for large y, so the integral certainly diverges.

4. Note that
1 1 1

n1+1/n n n1¡n

and apply Theorem 2 to an = 1/(n1+iin) and b, = 1/n: We have

1
lim an/b, = lim --- = 1 (Problem 22-10(e)).

naoo n-+oo nt/

oo
Since i 1/n divergesthe given series also diverges.

n=1

5. (b) Define {a,}inductively as follows:

al = [10x],
a, = [10"x--

(10"¯Iai + · · - + 10a,_i)].

For each n we have

0 5 10"x - (10"~1ai+ - - - + 10an-1) - an < 1,

so

(*) O 5 10"*'x -- (10nai+ - -· + 102an-1 + 10an) < 10,

so O 5 an+1 5 9 for each n. Moreover, from (*)we have

0 5 x -
(ail0¯I + a210¯2 + -.- + 10¯"as) < 10 ",

00

so x = L an10¯".
n=1
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(c) Let a = 10kal • k-1 Øk. Then
oo

a a a
an 10'" = -- + + + - . .

10k 10* 103kn=1

1 1 1 2
= -- 1+-+ -- +-·-10* 10 10

œ 1
10* I

1--
10

9œ
¯

10k-1
·

(d) The number an in part (b)satisfies

0 5
10"p

-- (10n-1ai+ - - - + 10an_i + an) < 1.
q

Now 10"p/q can be written as k + r/q where k is an integer and 0 5 r < q - 1.
In this case a,_i = [10r|q]. Since there are at most q different fractions r/q, there
will have to be some m and n with m > n and as i = [10r|q] = am+i. It is easy
to see that we will then have as 2 = am+2, etc.

6. The proof of Leibnitz's Theorem shows that if N is even then

SN Î)n+1an SN+1,

n=1

so |L,ig(-1)n+1 _ SN SN+1 ¯¯ SN = UN+1 UN. (Strict inequalityholds
unless sN = SN+1, Or GN+1 = 0.) The proof is similar if N is odd.

7. Suppose r < 1. Choose s with r < s < 1. There is some N such that & 5 s
for n > N. Then as 5 s", so

as 5 s"
n=N n=N

converges. If r > 1, and r > s > 1, then there is some N such that
¯

> s for
n > N. Thus an > s" > 1, so E°° an does not converge.- - n=1

8. We have

" (-1)k n+1-k n

c,=
=±

.

k=1 J Jn + 1 - k k=1 ÄJn + 1 - k

We can easily obtain estimates on the individual terms in this sum. In fact the
minimum of n + 1 - x [occursat the minimum of x (n+ 1 -- x) which] occurs
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at x = (n+ 1)/2, so each
1 1 2

Edn+1-k
¯

n+1 n+1 n+1

2 2
There are n such terms, so

2n
Ic,| > >_ 1.

n + 1

9. The sequence 1,
-1, -1,

1,
-1,

. . . is Cesaro summable to 1/2.

10. Say inan 5 M. We have
a1+(a1+a2)+·--+(al+---+an) nai+(n-1)an+- -+a,

n n
SO

n nai (n - 1)a2 an
an = + +···+n+1 n+1 n+1 n+1

and
n

sn-n+1 n

( n (n - 1) 1
= 1- a1+ 1- a2+---+ 1- ann+1 n+1 n+1

ai+2a+---+nan
n+1

(theessentially irrelevant factor n/(n + 1) was simply used to get this rather than
an expression with a2 + 2as + - · - in the numerator). So

n n
sn- n+1 n 5 n+1M,

hence is bounded. Since { n} approaches a limit, I n| is bounded. Hence \salis
bounded. Since an > 0, this means that Ei, as converges.

11. (a) Choose m so that ai, ..., an appear among bi, ..., bm.

(b) This follows immediatelyfrom part (a),since 22, an is the last upper bound
of all partial sums sn.

(c) The reverse inequalky Lii bn i Lii an follows from part (b),since {an)is
also a rearrangement of {bn}.It follows that 2,i, bn exists and equals Lil an.

(d) Let {Pn} and {qn}be the series formed of the positive and negative terms, re-
spectively, of {an},and let {Pn'} and {qu'}be definedsimilarly for {bn}.Then {ps'}
is a rearrangement of {ps} and similarly for {q,}.So by part (c),i pn' = 2 Pn
and E qn' = 2 94, the sums on the right existing because {a,}is absolutely conver-
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gent. Therefore, {b,}is absolutely convergent, and Ei, b, = E ps' - E qs' =

2 pn - E qn = En=1an.

12. (a) Let bj = a, . Then

Ibj|+[bj+1|+---+|bkÍ= nj ng: " na

5 |as,| + |a, i | + |a, 42 + - - - + las |.
Consequently, lim |bj| + · · · + |bt = 0.

j,k-+oo

oo
(b) If E an does not converge absolutely, then either i pn or i q, diverges,

n=1

where i p, is the series of positive terms, and E q, is the series of negative terms.
Choose the appropriate one as i bn-

(c) The series a1+a3+as+-· · and a2+a4 6+- - - both converge by part (a).The
sameistrueoftheseriesa1+0+a3+0+as+·-- and0+a2+0+a4+0+as+--.,
whose sum is Egg an.

13. For every N, we have

N N oo

n=1 n=1 n=1

oo N
Since E an = lim i as the result follows.

n=1 N->oo ,_1

14. Choose 8 > 0 so that | sin x| >_ 1/2 on (kx+ x/2 - 8, kr + x/2 + 8). Then

kx+x/2+8

Il sinx 8
dx> .

x kx + x/2
kx+r/2-ô

Since the series
°° 1

kr +x/2k=1

diverges, the same is true for the integral.

15. Let f be the function whose graph is show below.
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I 2 2 3 3¼ 4 4

16. For the partition

2 2
P = 0, ,...,

--, 1
(2n+ 1)x x

we have
2 2 2 2 1 1

£(f,P)>--+-+ + =- 1+-+
-+

,

x 3x (2n+1)x x 3 2n+1
and these sums are not bounded.

/ 2

18. (a)

( a rk+1
k+1 ra(a-1)···(a--k)/(k+1)! «-k

rk
¯

(œ-1)-··(a-k+1)/k!
=rk+1
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Clearly
a - k

lim = 1,
kooo k + 1

so

( a rk+1
. k+1)

k oo Yk

= r |.

(b)

|Ra,o(x)] =
a x" *(1+ t)a-a-1

n + 1

5
œ

x" I -+ 0, by part (a).
n + 1

(c) We have 0 < 1+ x < 1+ t 5 1. If a - 1 > 0, then (1+t)a-1 5 1. If a - 1 < 0,
then (1+ t)"-I < (1+ x)"¯I. So (1+ t)œ-i 5 M, so |x(1+ t)a-1| 5 |x|M.
Moreover, since

-1

< x and t 5 0, we have
-t

> xt,

0>x-tyx+xt,

x - t0 < 5 1 + t, since x < 0
x

0<1-t/x s1+t,
1-t/x

0 < < 1, since 1 + t > 0.
1 + t

¯¯

Thus

( a x - tRn,o(0)|= (n+1) x(1+t)a-1
n+1 1+t

5 |naM| -
a - 1 x" -> 0 by part (a).

n

19. (a) According to Problem 19-35(b), if m 5 ai + · - · + an 5 M, then

bkm akbt +
···+

anb, 5 bkM.

Since lim bk = 0, this shows that lim akbk + · - - + aab, = 0.
k--+oo k,n-+oo

(b) Let an = (-1)"*1;the partial sums are bounded. So if bi à b2 à b3 à - · - à 0
and lim b, = 0, thenigi, (-1)"*Ibn converges.naoo
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(c) Choose bn = 1/n and as = cosnx. The partial sums of {an}are bounded
because, by Problem 15-33,

sin(n + 1/2)x 1 sin(n + 1/2)x 1
|cosx+--.+cosnx|= -- < +-2sinx/2 2 2sinx/2 2

1 1
< +-.2 sin x/2| 2

(d) It clearly suffices to consider the case where {bn}is nonincreasing. Then so
is {bn- b}, and lim b, - b = 0. Since Lii an converges, the partial sums of

naoo

(a,}are surely bounded, so by Dirichlet's test fit anbn - anb converges. Since
Eg, anb also converges, this implies that fit aabn converges.

20. Since

we have

a2 5 al + a2
2a4 3 4

4ag 5 as + a6 7 8,

etc.

So
N 2N

2"a2. 5 ak ak-
n=1 k=1 k=1

21. (a) By Problem 2-21 we have

anbn+--·+ambml 5 an2+---+am2 bn +---+bm'-

This shows that the Cauchy condition for {an2)and {bn2}implies the Cauchy con-
dition for {anbn}.

(b) Apply part (a)with b, = 1/na

22. Choose n so that a, + - - · + am < e for m >_ n. Then

(m-n)amian+--·+am<e-
Since lim m/(m + n) = 1 and

m-woo

m
mam = - (m - n)an,

m - n
it follows that mam < 28 fOr sufficiently large m.
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23. Let {a,}be

1 1 1 1 1 1 1 1 1
1' 2' 2' 3' 3' 3' 4' 4' 4' 4'

24. We can assume ak
-+ 0, for otherwise we will not have ak/(1 # ak) -+ 0, so

that divergence will be automatic. We might as well assume that at < 1 for all k,
so that 1 + ak > 2ak. Then

Uk Øk2 ak2 ak
ak- = <-<-

1 + ak 1 ‡ ak 2ak 2
'

so
n Está mal... tomar las desigualdades

ak de los extremos: a_k-\frac{a_k}{1+a_k}
n ak k=1

<a_k/2. Entonces:
\frac{a_k}{1+a_k}>\frac{3}{2}*a_k

k=1 Uk Así, como a_k no es sumable,

Thus, the partial sums on the left are unbounded. entonces el lado derecho tampoco.

The converse hold trivially,since ak > Øk/(1 ‡ ak) (forak >
--1).

25. (a) Since 0 ¢ l = lim pn we have
n->oo

lim pnPn naoo I
lim (1+ an) = lim = = - = 1;

naoo n-+oo p,_; lim p,_: l
n-+oo

consequently lim an = 0. Note, in particular, that 1 + a, > 0 for sufficiently
n-+oo

large n. In the remaining parts we assume 1 + an > 0 for all n, which is really no
restriction, since a finite number of terms do not affect the question of convergence.

(b) We have

log p, = log(1 + an).
i=1

If pn
-> l ¢ 0, then

n oo
log I = lim log pn = lim log(1 + a¿) = log(1 + a¿).

n->oo n-+oo i=l i=1

Conversely, if

oo a

s = log(1 + a¿) = lim log(1 + a¿) exists,
n->ooi=1 i=1

Lito
Typewriter
Está mal... tomar las desigualdades
de los extremos: a_k-\frac{a_k}{1+a_k}
<a_k/2. Entonces:
   \frac{a_k}{1+a_k}>\frac{3}{2}*a_k
Así, como a_k no es sumable, 
entonces el lado derecho tampoco.
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then
lim log(1+a¿)

0¢e'=e =-

= lim eR-1log(1+a¿)
n-+oo

= lim e!°8 "n-+oo
= lim pn.naoo

(c) We have
a" 5 log(1 + an) 5 an,1 + a,

by looking at a lower and upper sum for log(1 + an) = fii+a"1/x dx. So if i as
converges, then i log(1 + an) converges, and hence the product converges by
part (b). Conversely, if the product converges, then i log(1 + an) converges, so
E an/(1 + an) converges. It follows from Problem 24 that E an also converges.

Counterexamples without the hypothesis an > 0 can be obtainedas follows. Since
2 3x xlog(1+x)=x--+-----

2 3

we have
x - log(1 + x) 1

lim = --

x-vo x2 2'

so for sufficiently small x we have

(*) ¼x25 x - log(1 + x) 5 x2.

Now suppose that both i an and i log(1 + an) converge. Then by the Cauchy
criterion we have

m
lim a; - log(1 + a¿) = 0.

m,n->oo ,

r=n+1

It follows from (*)that
m

lim a¿ = 0,
m,n-+oo i=n+1

so that i an2 must converge also. Now
°° (-1)"

converges,

but i 1/n diverges, so
°° (--1)n1 + diverges.

n=2
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[We can actually conclude from (*) that if i as converges, then E log(1 + an)
converges if and only if i as2 COHVerges. AISO, if i an2 converges, then ilog(1+
as) converges if and only if E as converges.]

We can also find an example where E an diverges, but Q(1+an)converges. The
simple first guess, an =

-1/n,

doesn't quite work since

1 -

n=2

doesn't converge by our definition. In fact, if i as is divergentwith all a, < 0,
then i log(1 + an) is also divergent. In fact, writing (*)as

¼x2- x 5
-log(1+

x)

we see that
- log(1 + as) > -an + ¼ an = 00.

n=1 n=1 n=1

Here is a simple genuine counterexample (comparethe answer to Problem 23):

I ) 1 11 11 11 11 11 11 1
an =

, 2, ,, 4' 3' 4' 3' 4' 5' 6' 5' 6' 5' 6'
'

1 pair 3 pairs 5 pairs

This clearly diverges, since

1-1 =1

2 2
I_1 1-141_1=1--3 =1

343434 4 4
I_1+--- =1-2 =1

5 6 6 6

But

(1+an)
n=1

= (1+1)- 1- - 1+ - 1- ... 1+ - 1- ...

1 4 3 6 5
= 2 -

... ...

2 3 4 5 6
=1.

26. (a) We have
n 1 " k2-1 n (k-1)(k+1)1-- =

k2 k·kk=2 k=2 k=2

(2 - 1)(2+ 1) (3 - 1)(3+ 1) (n - 1)(n+ 1)
2-2 3·3 n·n
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Each factor (k+ 1), except for (n+ 1), cancels a k + 1 in the denominator of the
next fraction, and each factor (k - 1), except for (2 - 1), cancels a k - 1 in the
denominator of the previous fraction, so the product is just

1 n + 1
2 n

which approaches 1/2.

(b) Note that
(1+x2)(1+x4)=Î#X2#X4 6

(1+x2)(1+x )(1+ x") = (1+ x2+x + x6)(1+x")
=(1+x2#X4 6‡X #X10#X12#Xl4

and in general

(1+x2k) = Î #X
ŸX4#···#X2k+1-2

k=1

so the infinite product is
11+x2+x'+---= .

1-x2

27. (a) If 1/(n + 1) < p/q < 1/n, then np < q and

p 1 pn+p-q

q n+1 q(n+1)
The numerator pn + p - q is < q + p - q = p. Of course, the numerator may be
even smaller when the fraction is expressed in lowest terms. Notice, moreover, that

p111 1

q n+1 n n+1 n+1'

so that p/q - 1/(n + 1) must be a fraction with denominator > n + 1.

(b) Part (a)proves the result for x 5 1. For x > 1, since i 1/k diverges there is
some n > 1 with

1 1 1 1 1 1 1-+-+···+-

Ex 5
-+-+···+-+

.

12 n 12 nn+1

If either inequality is an equality we are done. Otherwise

( 1 1 1
0<x- 1+-+---+- < .

2 n n+1

It follows from part (a)that x - (1+ 1/2+ - -

-+

1/n) can be written as a finite sum
of distinct numbers of the form 1/k with k > n, which gives the desired expression
for x.
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1. (ii) f (x) = lim fn(x) = 0. The sequence {fn) converges uniformly to f (innaco
fact, is eventually 0) on [a,b], but does not converge uniformly to f on R.
(iv)

2 Î, X = 0
f (x) = lim e-nx

naoo 0, x ¢ 0.

{f,} does not converge uniformly to f.

2. (i) f(x) = lim f,(x) = 0, since lim x" = 0 for 0 < x < 1 and x" = x2" for
naoo naoo

x = 1. The maximum of f,(x) - f(x) occurs when

nxn-1 - 2nx2n-1

x = 1|Ã;
the maximum is 1/2 - 1/4 = 1/4. So convergence is not uniform.

(ii) We have
nxf(x) = lim = x.

n oo1+n+x

Since
nxf(x) - fs(x) = x -

1+n+x
is close to x - n for large x, convergence is not uniform.

(iii) f(x)= lim fn(x)=x.Wecouldwrite f(x)-f,(x)=x- x2+1/n2asa
naoo

fraction (asin the hint), by multiplying and dividing by x + x2 2. Actually,
it's easier to apply the Mean Value Theorem:

f (x) - fn(x) = Ñ - x +

1
2n2

for some g with
1x2 < g <x2+-,

n2

hence x < , or
1/x > 1/Å.

So
1 1

f (x) - f,(x) < - · -

n 2x
1

2n2a

370
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So convergence is uniform.

(iv) f (x) = |x|. As in (iii)we have
1

|f(x) - f,(x)| < - on (-oo, a] and [a,oo).2n2a
On [-a, a] we have

f (x) - f,(x) ] < a + a2 +

< 3a for n large.

So by first taking a small, and then n sufficiently large, we can make f (x) - f,(x)|
as small as desired on all of R.
(V) f(x) = 0 and

I
f(x)- fn(x)=E- X+-

n
1 1

= x<g<x+-
2ng n

1
2nx

1
2na

So convergenceis uniform.

(vi) Convergence is still uniform, arguing as in (iv).
(vii)We have

( 1 1 1
(*) f,(x)=n x+--J =n-

, x<g<x+-
n 2ng n

so 1
f (x) = lim fn(x)= .

n-+oo 25

Moreover, on [a,oo) we have

1 1
f (x) - f,(x) = ------ - n x + - - S2 n

1 1 1
= - ------ a < x < g < x + -

2E 2g n

< a 0, by (*).2a
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So convergence is uniform.

(viii)For x = 0 we have

fn(0) = n =
,

so lim f,(x) does not exist. (Convergence cannot even be uniform on (0,oo), for
naoo

each f, is bounded, so certainly not close to f (x) = 1/2 near 0.)

2 3 4
x x x x3. (ii) log(-a) --

.

a 2a2 3a3 4a4

(iv)
-1/2

2k

k-D

4. (ii) 1/(1 + x3).

5. (i) Since
°° (-1)"x

cosx =
,

(2n)In=o

the sum is cos(2x) = 1.

(ii) Since

ex -

n=o
°° (-1)"x"e¯2-L n!

'

n=0

we have
00 X2n gx

-x

no (2n)! 2
'

so the sum is (e+ e-1)/2.

(iii) Since
°° (-1)n+1 n

log(1 + x) = L nn=1

log(1 - x) = - -

,

n=1

we have

n=o 2n * I 2
X) - Jog(I
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so the sum is

1 3 1 1 31 1
- log - - log - = - log - - = - log 3.
2 2 2 2 22 2

(iv) If

f (x) = nxn
n=o

then

n=1 n=1

( x
' 1

1-x (1-x)2'
SO

f (x) =
,

(1 - x)2

so the sum is
(1/2)

= 2.
(1 - 1/2)2

(v) If

f (x) =

n

n+1n=o

then
00 n+1

xf (x) = = - log(1 - x)
n + 1n=0

SO

f (x) = -

log(1 - x)

x

so the sum is
- log(1 - 1/3)

=
-31og(2/3).

1/3

(vi) If
°° (2n+ 1)x"

f (x) =

n!
'

n=0
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then
°° (2n+ 1)xf(x2) =

n!n=0
00 X2n+1 /

ni

n=o

(
co 2)n r

= x n!n=o

= xe

= 2x e2 + e* ,

SO

f (x) = 2xe* + e*,

so the sum is
1

2 · - · e1¡2+ el/2 = 2el/2.
2

7. (a)

(1+ x) f'(x) = (1+ x) n xn-1
n=1 n

= n + (n+ 1)
n 1

= a
a x" = af (x).

n=o n

(b)
(1+ x)a f'(x) - f (x)a(1+ x)a-t

Z'fx) =

(1+ x)
= 0 by part (a),

so g is a constant c. Thus f (x) = c(1 + x)". Since f (0) = 1, we have c = 1.

8. The maximum and minimum of
x

g (x) =

n(1 + nx2)
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occur when

0 = n(1 + nx2) - 2n2x2

x = ±1/

so the maximum and minimum have absolute value
1

2nV2

Since

converges, by the Integral Test, we can apply the Weierstrass M-test.

9. (a) For x > a we have
. 1

n sm --

. 1 1 2 3n2n sm -- = - -

3"x x 3 1

(1n sin -

1 2 3"x
¯a

3
_1

3"x
Since x > a, and since lim(sinh)/h = 1, for sufficiently large n we will have

h->0

(1sin ---

3"x
$21 '

hence
1 2 2 "2n sin -- < - -

.

3"x
¯

a 3

Since Q)"converges, we can apply the Weierstrass M-test.
n=i

(b) For x = 2|(n 3N) the terms
.1 .1 .1

sm---, sm , sm , ...

3NX 3N+1x 3N+2X

are
sm -, sm -, sm --,

...

2 6 18
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all >_ 0 with sin x/2 = 1. So
* 1 22n sin -- > 2N, when x = -.

3"x
¯ x3N

n=N

So i N cannot be made arbitrarily small on (0,oo) simply by choosing N suffi-
ciently large, i.e., the sum does not converge uniformly.

10. (a) The maximum of x/(1 + n4X2) OR [Û,00) OCCUTS at X = Îfn2, and the
function decreases to 0 after that. So if a > 0, then for all but a finite number of n
we have

nx na 1
< < --- on [a, oo).

1 + n4X2 -

) g4G2 - 438

Since i 1/n* converges we can apply the Weierstrass M-test.

(b) For f (x) = Ego nx/(1 + n4X2) we have

1

f > L
n

1
since all terms are positive.

ned 1+ n4-
N2

Moreover, for n > Ñ we have
1n4_yg

N2 ¯

so
1 1

1 + n4- < 2n'-,
N2 N2

SO
1

If M is the smallest integer ;> 5, then

1 " 1 dx 1
n3

- g3 -

M
73 2M2nyg n=M

so
N 1 N 1 1N
2 n3 ¯

2 2M2 4 M2 '

rather than 1/4 as stated. But this is hardly significant: obviously N/M2 > 1/2 for
large enough N, so we always have f (1/N) >_ 1/8 for large enough N. Conse-
quently, the series cannot converge uniformly to 0 on [0,oo).
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(c) This series is much easier. The maximum and minimum of nx/(1 + n3x2)
occur at n = ±n¯5/2, and the maximum absolute value is (n¯3/2.Since E n-3/2

converges, the series converges uniformly on all of R.

11. (a) Problem 15-33(c) shows that for x in [e,2x - s] we have
1 1

|sinx+·--+sinnx|< < .-I xi-l. E
sin - sm -

2 2
Problem 19-35(b) then shows that

a sin kx 1
k

¯

i=k k sin -

2
for x in [e,2x - e]. So we just need the following result:

oo
Suppose that i f,(x) satisfies a "uniformCauchy condition" on an interval [a, b],

n=o
i.e., for every e > 0 there is some N such that

(*) |fn+1(x)+ + frn(x)\< E

oo
for all n, m > N and all x in [a,b]. Then i fn(x) converges uniformly to some

n=0

f on [a,b]

oo
Proof: Certainly E f,(x) converges to some f(x) for each x in [a,b] since (*)

n=0
oo

shows that for each x the sum i fn(x) satisfies the Cauchy criterion. Now given
n=o

e > 0, choose N so that (*)holds for e/2 and all x in [a,b]. Then for n > N we
have

f(x) - fk(X) = fk(X) < €

k=0 k=n+1

oo
for all x in [a,b], which shows that i fk(x)converges uniformly to f on [a,b].

k=0

(b) The terms
sin k- k = N,...,2N

can be written as

sin [N + k]- = sin x + k- k = 0, ..., N
N N

and hence are the negatives of the positive terms

sink- k = 0, ..., N.
N
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Now for x = x|N we have
.N+1x.Nx

N Sln · - Sm - · -

2 N 2 N
sin kx = by Problem 15-33.

k=0 8111 --

2N
For N large this is

1 1-1 N

IN¯

So for x = x|N and N large we have
2N sin kx 2N

- sin kx

k-N k k=N k

1 2N
> - - sin kx¯

2N k=N

1 N
> -- sinkx¯

2N k=0
1 N 1

¯¯

2N x 2x
This shows that we cannot have a uniform Cauchy condition for the series on [0,2x],
so it cannot converge uniformly.

12. (a) a, = f (">(0)/n! = 0.

(b) ao = f (0) = lim f (x,) = 0, since f is continuous at 0. Thus
naoo

f (x) = anxn = x anx"¯' = x an+1xn
n=1 n=i n=o

Now g(xn) = 0 (forall xn
·¢

0), so by the result just proved, ai = 0. Thus

f (x) = x2 an+2x",
n=0

so a2 = 0, etc.

(c) Apply part (b)to f - g.

13. If f is even, then f f") is odd for n odd, so a, = f f">(0)/n! = 0 for n odd. If
f is odd, then f (*) is odd for n even, so a, = 0 for n even.

14. The power series for f (x) = log(1 - x) is Lie(-1)n nxn, where in-o anxn
is the power series for h(x) = log(1 + x). Since Lianxn converges only for
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-1

< x 5 1, the power series Ege(-1)"anx"converges only for
-1

5 x < 1.
Since g(x) = f(x) - h(x), its power series converges only for

-1

< x < 1.

15. (a) Clearly an-1 5 an. Hence

a,41 2a,
an an

(b)
|a, ixn

|anx"~'l 5 2|x| < 1 for 1x|< 1/2.

(c) We have

f(x) = anx"¯I = 1+x +2x2+3x"+ -

n=i

xf (x) = anx" = x + 12 # X3

n=1

x2f (x) = anxn+1 2 4 3

n=1

so
f(x)=1+xf(x)=x2f(x).

(d) Let a = (-1- Ã)/2 and ß = (-1+ d)/2. Then

-1 1/E -1|Ãf(x) +x2+x
-1

-1-Ä -1+E
x- x-2 2

1/E 1/E
x-a x-ß

1 1 x x2

1 1xx2
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(e) Consequently,

1 (1 1\
an=

1 1 1

-1+Ë n
-

-1-Ä( 2 2

¯
-1

- E n -1+ Á
1 2 2

-1- Á -1+ Á
2 2

-1-E -l+Ê n.

1 2 2
=

2 1-5 "

1 -1+Ã -1-Ä n-

¯

g 2 2

16. If we have

f (x)g(x)= cax",
n=o

then

c, = - (f · g )("I (0)n!

n (k)(0) - g(n-k)(0)
'

k=o k

1 n! (k)(0) · g(n-k)(0)
n! k!(n-k)!k=0

m (k)(0) g(n-k)(0)

k=o k ! (n - k) !

= akbn-k-
k-0
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17. (a) We have
n-i n-1

|bnzon| = bk n-kxon 5
bkXOkün-kXDn-k

k=0 k=0
n--1

5 M i bkXOk

k=0

(b) By induction on n. It is clear for n = 0. Suppose true for all numbers < n.
Then by part (a)

n-1

|bnxo"| 5 M M2k
k=0
n-1

= M f(MI)k

k=0
M2"¯2 - 1

=M- M2-1

Since M Ä we have M2 à 2, so M2 -- 1 à 1, so
baxo"| 5 M(M2"¯2 -

5 M2n-1

(c) We have

|x|nIbax"|= lbaxo"|- lxol
(M2|x|

¯

lxol
'

soif
|x| 1
xo|

¯ 2M2

we have
1

so 2 |baxn|converges.

18. On [-a, a] the series
2 3X X-log(1--x)=x+-+--+.--

2 3
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converges uniformly and absolutely, so the same is true of the series
°° x2n+1 00 X2n+2

and
2n+ 1 2n+2n=o n=o

consisting of the odd powers, and even powers, respectively. Hence the sarne is true
of

2n 2'
n=o

which is just the value of the second series at . It is easy to check that because
convergence is uniform and absolute, we can rearrange the series

oo x2n+t n+1

2n+1 2n+2

The odd powers can be paired as
x2n+1 (2n)+1 72n+1 y

- = 1--
2n + 1 2(2n) + 2 2n + 1 2

1 x2n+1

2 2n+1'

while the even powers appear once as
x"** 1 x2n‡l

- = - - - (n odd),
2n+2 2 n+1

thus giving altogether 1/2 the sum of the terms in the series for log(1 + x). But for
x = 1 we have

°° 1 1 111111
- =---+---+------

2n+12n+2 123456n=o

= log 2.

19. If 0 5 x 5 1, then x > x2 > x3 > · - - > 0. ConsequentlyAbel's Lemma
shows that |amxm+ · - · + anx"| < s if |am+ · - · + an I < E. Tile ÎRtter COndition is
true for sufficiently large m and n. Consequently, |amxm+ am+1xm+1 .

for sufficiently large m and all x in [0, 1]. This means that for all x in [0, 1],

anx" - (ao+ - -
·+ am_.ix"¯') < e

n=D

for sufficiently large m. This is precisely the assertion that in anxn converges
uniformly in [0,1].
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20. Let a, = (-1)n. For 0 <_ x < 1, we have
°° 1anxn=1-x+x2_ 3

1+xn=0

so °° 1 1
lim anx" = lim = -.

x-1- x-1- x + 1 2n=0

21. (a) (i) By Problem 4(iii) we have
2 3 4

x x x(1+ x) log(1 + x) - x = - + --- - · · for |x| < 1.
2·1 3-2 4-3

Now the series on the right does converge for x = 1, so by Problem 19,
1 1 1

--- - + - - - - = 21og 2 - 2.
2-1 3-2 4-3

(ii) If
4 7 10x x xf(x)=x--+---+-··,4 7 10

then for |x| < 1 we have
1

f'(x) = 1
--x3+x6 -x"+.-·

= by Problem4(ii)
1+ x

1
(x+1)(x2-x+1)
1/3

-x/3

+ 2/3
= + ,

x+1 x2-x+1

1/3 1 2x - 1 1 1
= +x+1 6 x2-x+1 2 x2-x+1'

so
1 1

f (x) = - log(x + 1) - - log(x2 - x + 1)
3 6

3d x - 1/2 3d 1/3
+ arctan + arctan16 g 16 g

1 1
= - log(x + 1) - -- log(x2 - x + 1)

3 6
3ñ x - 1/2 3ñ x

+ arctan + -.

16 g 16 6

Consequently,

1 1 1 log 2 Ã1-
-+

- -

--+

-.- = lim f(x) = +
---x.

4 7 10 x-1 3 16



384 Chapter 24

(b) Let

f (x) = anx" |x| < 1
n=o

g(x) = b,xn |x| < 1.
n=o

Then, as on page 505 of the text,

cnxn = anxn bax" |x[ < 1.
n=0 n=0 n=0

It follows from Problem 19 that

c, = anxn - bnx"
n=o n=o n=o

= an - b,.
n=0 n=0

22. (a) Choose N so that if n > N, then |f(x) - f,(x)| 5 1 for all x in [a,b].
Since fN is bounded, there is some M such that fN(x)| 5 M for all x in [a, b].
Then |f (x)| 5 |fN (x)| + 1 5 M + 1.

(b) Let f, (x) = nx for 0 5 x 5 1/ , and f (x) = 1/x for 1/ 5 x 5 1. Then
lim fn(0) = 0 and lim fn(X) = 1/x for 0 < x 5 1.

naoo naoo

I

I I
I

23. Let fn(x)= [f(x+1/n) - f(x)]|(1/n).

24. Let {an}be the sequence
0 1 1 1 2 1 3 1 2 3 4 1 5

, , , 4' 4' 5' 5' 5' 5' 6' 6'
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Let fn(x) = 0 if x ¢ ai, ..., an, and let f,(a¡) = 1 for 1 5
.j

5 n.

25. (a) Given e > 0 choose f, so that
s(*) |fn(x)- f(x)| < for x in [a,b].

3(b - a)

Also choose a partition P of [a,b] such that
8

(1) U( fa, P) - L( fn,P) < --

3
It follows from (*)that

€
(2) |U(fs, P) -U(f, P)| 5 -,

3

(3) L( fa, P) - L( f, P) | 5 -.

3
From (1),(2)and (3)we obtain

|U(f, P) - L(f, P)| < s.

(b) The hypotheses of Theorem 3 say that {fn'}converges uniformly to g, and the
proof shows that g = f'. Thus, {f'} converges uniformly to f'. Now since

lxf (x) = f (a) + f'(x) dx
a

I
X

f, (x) = f,(a) + f,'(x)dx
a

we have

Ï
x

|f (x) - f,(x) 5 |fn(a)- f (a)| + |f,'(x) - f'(x) |dx
a

8 * €
5 - + dx for large enough n2 a 2(b - a)

(c) Since we are still assuming that f' converges uniformly to g we have for any x
in [a,b]

Ï
x x

g = lim f'
n-+ooxo xo

= lim [f,(x) - fn(zo)]-n-+oo

Since l = lim f, (xo)exists, it follows that
naoo

f (x) = lim fa(x)exists
n-+oo
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and

Lxg = f(x) - l,
O

so f' = g. Notice that this proof works even if [a, b] is replaced by an infinite
interval.

(d) If

" (-1) J

x + )j=1

then {ss(0)}converges to E(-1)A/j. Moreover,

(x+ ;)j=1

and {sn'},i.e., the series

" (-1)]+'
(x+ j)2'j=1

converges uniformly on [0,oo) by the Weierstrass M-test. So by part (c),{s,}
converges uniformly on [0,oo), i.e., the series

°° (-1)i
x + j]=1

converges uniformly on [0,oo).

26. Since we have

Il
1

lim fn = f,n->oo O 0

we just have to show that

Ï
l

lim fn = 0.
n-+oo 1-1/n

First of all, choose 8 > 0 so that |f (x)- f (1)|< 1on [1-8, 1]. Then for sufficiently
large n we also have 1fn(x) - f (1)| < 2 on [1 - 8, 1]. Then |fa(x)| < f (1)+ 2 on
[1 - 8, 1], so for 1 - 8 5 xo < 1 we have

fn(x)dx 5 Li|f,(x)|dx

Ï15 Ifn(x)\dx
1-ô

<_ 8 - (f(l) + 2).

So we just have to choose 8 so that this product is < e, and then n so large that
1-8<1-1|n.
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This is not true if convergence is not uniform. If {fn) is the sequence of functions
in Figure 4 on page 492 of the text, then

g,(x) = f,(1 - x)

give a counterexample.

27. (a) If convergence is not uniform, then for some E > 0 there are arbitrarily large
n with fn(x)à e for some x on [a,b]. So we can choose distinct xi, x2, X3, . . .

and ni < n2 < n3 < · · · witli

Ák(Xk) 2 E-

Some subsequence of the {xk}converges to a point x in [a,b]; simply by throwing
away terms from the original sequence and renumbering we can assume that the
original sequence xk

-+

x. Now f,(x) -> f (x) = 0 so there is some n such that
f,(x) < E. Since fn is continuous we have fn(y) < e for all y close enough to x.
Hence, in particular,

fn(Xk) < 8

for large enough k. But if k is also large enough so that nk > n then
fne(IA) < Ín(Ik) < 89

a contradiction.

(b) Apply part (a)to the functions {f, - f }.
(c) The functions in Figure 1 on page 491 of the text give a counterexample on [0,1]
when f isn't continuous. They also give a counterexample on the open interval
(0,1), with f = 0.

28. (a) Since x, ex and f is continuous, for any e > 0 for large enough n we
have

(1) |f (x) - f,(x)| < e/2.

Moreover, for large enough n we have

|f (y) -- f,(y) | < e/2

for all y on [a, b], and in particular

(2) |f (x,) - f,(xn)\< E 2.

Adding (1)and (2)we obtain

If(x) - fn(In) | < e.

(b) No, in fact, just choose all fu to be some function f which is not continuous
at x, and choose x,

->

x such that f (x,) -> f (x) is false.
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(c) Choose xn as in the hint, so that

(*) |f,(xa) - f(xn)I> E.

By the Bolzano-Weierstrass theorem some subsequence of the {x,}converges. By
throwingaway terms of the sequence and renumbering, assume that x,

-+

x. Then
by assumption f,(xn) 4 f(x), so(*)gives

E < ÏÎm fg(Xn) - f (xx) = |f (x) - f (x)| = 0.

29. (a) Suppose {uo,..., um} contains {to,..., tn}. For each i we have

t¿ = u, < ua+1 < < p = ti+1

for some um, . . . , up. Then f has the constant value s¿ on each (ua+j-i, ua+ j)-
n m

Thus the sum E s¿(t¿ - t¿_i) is the sum E sj(uj - uj-1) where sj is the con-
i=1 j=1

stant value of f on (uj_i,uj). To deal with the general case, consider a partition
containing both {uo,..., um} and {to,..., tn).

(b) Choose N so that for n > N we have |f (x) - sn(x)]< e|2 for all x in [a,b].

(c) From |sn(x) -- sm(x)| < e it follows easily that

Ilb
b

s. - Sm < E(b - a).
a a

(d) Choose N so that for n > N we have both |f (x) - s,(x)| < e/2 and |f (x) -

sm(x)| < e/2 for all x in [a, b].

(e) For any e > 0, choose N so that if n > N, then

lim s, - s, < -,

n a 3

lb
b 8

lim tn - in < -

,
now a a 3

ssn(x) - in(x) | < for all x in [a,b].
3(b - a)

The last equation implies that

I lb
b

It follows that lim s. - lim tn < 8.
now a now a
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(f) Let

A = {y : a 5 y 5 b and there is a step function s

on [a, y] such that |f (x) - s(x)| < e for all x in [a, y] }.
Let « = sup A. Since f is continuous at a, there is a 8 > 0 such that |f (x) -

f (œ) < e for |x - a| < 8. There is some y in A with a - 8 < y < a. Thus there is
a step function s defined on [a,y] with If(x) - s(x)| < s for all x in [a,y]. Define
si(x) = s(x) for x in [a,y] and s1(x) = f(a) for y < x 5 a. Then si is a step
function defined on [a, a] with |f(x) - si(x)| < E for all x in [a,a]. This shows
that a is in A. Similarly, if a < b, then pick &as before, and let s be a step function
defined on [a, a] with |f(x) - s(x)| < s for x in [a, a]. If si(x) is defined as s(x)
for x in [a, œ] and as f (a) for a < x 5 a + 8/2, then |f (x) - s1(x)| < e for x in
[a,« + 8/2]. So a + ô|2 is in A, contradicting the definitionof a. So a = b, which
completes the proof.

[The class of regulated functions can be determined more explicitly, as follows.
A step function S has the property that lim s(x) and lim s(x) exist for all a. It is

x-+a+ x-+a-
not hard to show that a uniform limit of step functions must have the same property
(theproof is a simple modification of the proof of Theorem 2). The converse is also
true-if f has right and left hand limits at every point, then f is regulated. Notice
that the class of regulated functions is smaller than the class of integrable functions.
For example, if f (0) = 0 and f (x) = sin 1/x for 0 < x 5 1, then f is integrable
on [0, 1] (byProblem 13-19, for example), but is not regulated.]

30. The function fn is shown below. The length of each f, is 2, since two sides of

an equilateral trianglehave a total length of twice the other side.

O



CHAFTER 25

1. (ii) |(3+ 4i)-1| = 1||3 + 4i| = 1/5; Ð =
-argument of 3 + 4i = -- arctan 4/3.

(iv) |U3+ 4i | = )|3+ 4i| = ; 9 = (arctan4/3)/7.

2. (li) (x2)2+ x2 + 1 = 0, so

2

-1±41-4

x =

2
-1

+ ßÏ -1

- ÁÏ
2 or 2

2x . 2x 4x 4x
= cos - + i sm - or cos -- + i sin -.

3 3 3 3
So x is one of the square roots of these numbers, so x is one of

x x 1 Ecos-+isin-- =
-+--i,

3 3 2 2

4x . . 4x 1 E .

cos-+r sm- =
-----r,

3 3 2 2

2x . 2x 1 Ãcos-+ism-=--+-i,
3 3 2 2

5x 5x 1 Ä
cos - + i sin - = - -

--i.

3 3 2 2

(iv)
7 4i

x=----
·

3 3'
I

y=-+2i.
3

3. (ii) All z with |z!= 1.

(iv) The ellipse consisting of all points the sum of whose distances from a and b is
c, if c > [a - b|; the line segment between a and b if la - bi = c; Øif la - b| > c.

6. For one value of -Ï the point z -Ï is obtained by rotating z by an angle of
-X/2, so the diagonal goes into the real axis under multiplication by -Ï. Simi-
larly, for one value of W,multiplication by á is rotation by x/2. So á - zR
is obtained by rotating the plane until the diagonal lies along the real axis, then re-
flecting through the real axis, and then rotating back by the same amount. Hence

390
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z and á - z ¯Ïare reflections of each other through the diagonal; we obtain the
negative of this answer for the other choices of Ñ and Á.

7. (a) Since ao, ..., a,_i are real, we have

0= (a+bi)"+an-1(a+bi)n-14...44
= (a+bi)"+as_i(a+bi)"¯'+---+4
= (a - bi)n +an-1(a - bi)n-1+.-·+ao.

(b) Since a + bi and a -- bi are roots, z" + an-iz"¯I + - - - + ao is divisible by
z - (a + bi) and z

-- (a - bi), and by their product

[z-(a+bi)]·[z-(a-bi)]=z2-2az+(a2+b2L

8. (a) Suppose that a + bd = a' + b'd. If b = b', then also a = a'. If b ¢ b',
then we would have = (a - a')/(b - b'), contradicting the fact that O is
irrational (Problem 2-17).

(b) The proofs are almost exactly the same as parts (IM6)of Theorem 1.

(c) Since ao, . . , , as-i are integers, we have

0= (a+bé)n+an-1(a+bá)n-1+---+ao
= a+b +an-1 a+b

n-r+---+ao.

9. The 46 roots of i are
cos Ð+ i sin Ð

for
0=-,

-+-, -+x, -+--.

8828 82
We have

cos - = sm --- =
--;

4 4 2
using Problem 15-15(b) we then have

x 1+Á|2 2+Ã
COS -- - -

8 2 2

x 1-h/2 2-Ãsin - = =
,

8 2 2
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SO

2+ñ i 2-Ä
2 2

10. (a) If o" = 1, then (ok n . nk
_

nk
_ y

(b) There are two primitive 3* roots and 4 primitive 5* roots (ineach case, all roots
except 1); there are two primitive 4th roots (i and

-i)

and six primitive 9 roots
(if o is the root with smallest argument, then 1, m3, and o6 are not primitive). [In
general, the number of primitive n* roots is the number of numbers from 1 to n - 1
that have no factor in common with n.]

(c) By Problem 2-5,
1 - on1+o+··-+on-1= =0.

1 - o

11. (a) The assertion is clear if the line is the real axis, because in that case the
imaginary parts of zi, ..., Zk are either all positive or all negative, so the same is
true for the sum. In general, let 0 be the angle between the line and the real axis,
and let w = cos Ð+ i sin Ð. Then Zi m-1, . . . , Zk

W-1 all lie on one side of the real
axis, so the same is true of zi w + - · · + ZkE-1 = (Zl k)E-1, which shows
that zi + · - - + za lies on the corresponding side of the original line.

(b) z-I is above the real axis if and only if z is below the real axis, and conversely.
This proves the assertion when the line is the real axis. The general case then follows
as in part (a).

12. The hypotheses remain true when each tj is multiplied by the same w. So we
can assume that zi is real, in fact, that zi = 1. It follows that z2 + zs is real, so
z2 = a + bi, za = a - bi. Moreover, 2a + 1 = 0, so a =

-1/2;

since a2 + b2 = 1,
we have b = Ã|2. The points 1,

-1/2

+ iÃ|2, and
-1/2

- iñ|2 do lie on the
vertices of an equilateral triangle.
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1. (a) If |x - xo[ < ô, then |a(x) - a(xo)\ < 8. Similarly, if |y - yo| < 8, then
[ß(y)- ß(yo)|< 8.

(b) g= f oa; h= f oß.

2. (a) g is a continuous real-valued function on [0,1] with g(0) = f (z)and g(l) =

f(w). So g takes on all values between f(z) and f(w) on [0,1].

(b) Let f (x+ iy) = x + i(y + x2), on [0,1] × [-1, 0].

3. (a) There is, by the Fundamental Theorem of Algebra, some number zi such
that zin +an-izin-i + -·

-+ao

= 0. Then

zn + an-izn-t + - - - + ao = (z -
zi)(z"¯I + bs_2zn-2 + · - + bo)

for some numbers bo, ..., b,_2 (as in Problem 3-7). Using an inductive argument,
we can assume that

z"¯I + ba_2zn-2 + - -· + bo = (z - zt)
i=2

for some numbers z2, ..., En-

(b) According to Problem 25-7, the non-real numbers zi, ..., In from part (a)occur
in paris which are conjugates of each other, and (z - z¿)(z - ž¿)has real coefficients.

4. (a) is obvious.

(b) If f = EL h;2 and g = 2" , k 2, then

fg = (h¿kj)2
i=l j=1

(c) If f(a) = 0, then f(x) = (x
-a)

fi(x) for some polynomial function fl. Then
fi (x) > 0 for x > a, and fi (x) < 0 for x < a. So fi (a) = 0. Thus every root of

393
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k

f is a double root, so f(x) = fl(x - a¿)2g(x) where g(x) > 0 for all x. Since g
i=1

has no roots, Problem 3 shows that g is a product of quadratic factors x2 + ax + b
without roots. Thus a2 - 4b < 0, so we can write

x2 + ax + b = x +
2

+ b - a2/4 ,

which is a sum of squares. So f is a product of sums of squares, so f is a sum of
squares.

5. (a) Follow the procedure given in the hint, to obtain a decreasing sequence of
rectangles [a¿,b¿] x [c¿,d¿], each containing infinitely many points of A. By the
Nested Intervals Theorem (Problem 8-14), there is a point x in all [ag,b¿] and a
point y in all [c¿,d¿]. Then z = (x,y) = x + iy is in all [a¿,b¿] × [c¿,d¿]. If s > 0,
then for some i the set [a¿,b¿] × [c¿,d¿] is contained in {a : Iz- a| < E}, So there
are infinitely many points of A in {a: It - a| < s}.

(b) If f were not bounded on [a,b] × [c,d], then there would be points an in
[a,b] × [c,d] with |f (an)|> N. If z is a limit point of {an: n in N}, then for every
e > 0 there are points an with |a, - gl < e, so f (an)> N. This contradicts the
fact that f is continuous at z.

(c) Let « = sup{f (z) : z in [a,b] × [c,d]}; this exists by part (b).If a
-/

f (z) for
all z in [a,b] × [c,d], then g(z) = 1/( f (z)

-a)

would be a continuous unbounded
function on [a, b] × [c,d].

6. (a) If c = a + ßi, then z = a + bi satisfies z2 = c if and only if

a
-b2=a,

2ab = ß,
which can be solved to give

a= 2œ+2 a2+ß2 a=- 2œ+2 a2+ß2

ß or
-ß

b= b=
2 2a+2 a2+ß2 2 2a+2 a2+ß2

(b) If n = 2k, then a solution of Zk - = 0 will be a solution of z* - c = 0.
(If k is even, we can continue until we reach an odd number.)

(c) For this f we have

g(z) = f (z+ zo) = (z+ zo)" - c = (zon- x) + (nzo)z+ ···
.

(d) Suppose, for example, that -c

= a + ßi with a, ß > 0. If 8" < a, then
| - c - 8n| < |-c|. The same argument works for all other cases.
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7. (a)
k

f'(x) = ma(z - zi)m' (z - za)m,-1 . - · (Z - Zk)mg

«=1

k

a=1

k
= (z - zt)mi _

k)m+k
· ma(z - Za)¯1

«=1

(b) If Zl,...,Zk did all lie on the same side of a straight line through z, then
Z - Zi, . . . , Z ~ Zk would all lie on the same side of a straight line through 0. The
same would then be true of m¯I(z

- zi), ..., mk IG - Zk), sillCe ml, ... mk > 0.
By Problem 25-11, this would imply that g(z) ¢ 0, a contradiction.

(c) If z satisfied f'(z) = 0 but z were not in the convex hull of the set {Z1, - - · , ZkÌ,
then there would be a straight line through z containing the points zi, ..., Zk. is
contradicts part (b).

8. The proof is exactly the same as for real-valued functions defined on R.

9. (a) Let zo = xo + iyo. Since
, f (zo+ z) - f (zo)

a + rß = f'(zo) = lim ,

zoo z
it must be true, in particular, that for real 8 we have

œ + rß = lim
ô->0 å

. g(xo+8)-g(xo)
.h(xo+8)-h(xo)

=hm +r
amo ô 8

= g'(xo) + ih'(xo),

so a = g'(xo) and ß = h'(xo).
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(b) We also have
. .

f(Ko+6i) - f(zo)a+iß= hm
amo Ji

. k(yo+8) - k(yo)
_l(yo+8)

- l(yo)
= hm + r

a-+o ßi ßi
k'(yo)

= + l'(yo),
i

so l'(yo) = a and k'(yo) =
-ß.

(c) Part (b)shows that u and v are constant along horizontal and vertical lines.

10. (a)
(k) 1 (-1)kk! (-1)kk!

f (x)=- -

2i (x - i)k+1 (X # i)k+1

(b)
arctan(k)(0) = f(k-1)(0)

(-1)k-1(k- 1)! 1 1
2i \ (-1)k

(-1)k-l(k - 1)! . k-1

2i
[If k is even, then arctan(k) = 0. If k = 2l + 1, then arctan(2l+1)(0)= (2l)!(-1) ]
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1. (ü) Absolutely convergent.

(iv)Absolutely convergent, since |1/2+ i/2| = Á/2 < 1.

2. (ii) The limit
. It\"*'/(n + 1) nlim = |z| lim = |z|n-woo Iz|"/n n-+oo n + 1

is < 1 for lz| < 1 and > 1 for |z > 1.

(iv) The limit
. |z|"**(n+ 1 + 2-n-1)

. n + 1 + 2-"¯'
hm = |z| hm = |z|

n->oo |z"(n+ 2-n) n-+oo n + 2-n
is < 1 for |z! < 1 and > 1 for |z!> 1.

3. (ii) Since

lim = |z| lim = -- (byProblem 22-13),
naoo y naoo n e

the radius of convergence is e.
(iv)Since

Elzi ( )2lim ,
= |z| lim = --- (byProblem 22-1(vi)),

n-woo g n-voo 2 2
the radius of convergence is 2.

4. (a) Since ÏÏmQ|z| = ÏÏiii anz"|, Problem 23-7 shows that the series
n-+oo naoo

E°°, anz" converges (absolutely).

(b) If ÏÏiii lanz"| = 1 + e for e > 0, then there are infinitely many n with
n-+oo

|antn| > 1+ s/2, so |antn]> (1+ E 2)" fOr infinitely many n, so tlie terms anz"

are unbounded.

(c) Since the terms are unbounded, the same is true for |anz"|for z ¢ 0.
This is all the more true for |anz"|,so E°°, anz" diverges.

5. If z is on the unit circle, then |z"/n2 < 1/n2, so 2411|zn||n2converges by the
comparison test.

The series 22, z" certainly divergesfor z = 1. If z ¢ 1, then by Problem 2-5
N y N

1 - zn=1

397
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If lim 2,N=1 n existed, then lim zN would exist, which is impossible, since
N-+oo N-+oo

l = lim zN would imply that zl = lim ZN+1 = I, Of Z = 1.
Neoo Neoo

The series Ei, zn/n divergesfor z = 1 and converges for z =
-1.

6. (a) We have the absolutely convergent series

e= - e" - .

k=0
'

k=0
'

Theorem 23-9 holds just as well for complex series, so e2 - e" is given by any sum
containing all pairs of products. In particular, we can choose the Cauchy product
2°° e cn, where

n k n-k

Cn -
¯¯

-

k! (n-k)!k=0

But this is exactly the power series for

n=0

since

(nk n--k

(z‡ w), n k
n! k=0

°° n! zkyn-k

k=o k!(n - k)! n!

00 k n-k

k=o k ! (n - k) !

(b)
sin z cos w + cos z sin w

(eiz-e-itel"+e¯** ef=+e¯2 e**-e¯i
= +

2i 2 2 2i
€i(z+w)

_
g--i(z+w)

sin(z + w)
2i
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cos zcos w - sin z sin w

(ef=
- e¯*2 e'* + e¯'" e'2 + e¯I2 el" - e¯i"

2 2 2i 2i
i(z+w) y e-i(z+w)

cos(z + w)
2i

7. (a) Since e = cos y + i sin y, the problem is just a restatement of Prob-
lem 15-22.

(b)
|e***T I = |e' · e'Il = |e*| · | cos y + i sin y| = |e*|

8. (a) If z ¢ 0, then z = r(cos O+ i sin Ð) for some r > 0. Then exp(log r + iß)

(b) We have sin z = w when

eit - e¯I2

2i
'

(e*2)2- 2iweiz - 1 = 0,

e2 -

2iw ±V-4w+4
2

=iw±J1-w.
This equation can always be solved for z, by part (a),since i w ± 1 - w ¢ 0.

9. (i) We have
2 4

cosz = 1--+------
2! 4!

and if we write
1

= 1 + a2z2 + a4Z4 Ÿ · ·

cos z
then we find

1
a2--=0

2!
a2 1

a4 ¯ ·¯ ·¯ = Û
2! 4!

leadingto
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Hence

(
72 5 z3 zs

tanz= 1+--+-z44,
2 24 6 120

1 2=z+-z'+--z'+
.

3 15

(ii) If we write

Vl-z=1+aiz+a2z2+-
then

1 -

z = 1 + 2aiz + (2a2+ a12)Z2

so 2ai =
-1

and 2a2 + ai2 = 0, hence

1 1Vl-z=1--z--z +·-2 8

Then if we write
1

= 1 + biz + b2z2+
41 - z

we have

1
bi--=0

2
bi 1

b2-----=0,
2 8

SO

1 1 3=1+-z+-z2+·--.

Vl-z 2 8

We could also get this from the binomial series (Problem 24-7), which holds for
Iz!<1:

(-1|
-1/2

(1-z)~¯I/2=1+ (-z)+ z +--·1 2

1 (-l/2)(-1/2 - 1)=1+-z+

z +·· ·

2 2

Finally, we have
1 3

z(1 - z)-1/2 _ 2 _ 3

2 8
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(iii)

(
Z3 2

( )
z--+z3 6 / (z -

·)3

esinz-1= z--+--- + + +·--6 2 6
3 2 4 3

z z z z=z--+---+-+ ·-

6 2 6 6
2 4

=z+---+
·

2 6
so

esi"2 - 1 z z3=1+---+--·.

z 2 6

(iv) We have
2 3

log(1+z)=z--+--···
2 3

(we know there will be some power series for log(1 + z), so it must be this one,
since this works for z real). Hence

2 3
z zlog(1-z)= -z-----···

2 3
so

log(1-z2)=
-z2-

- ---·.

2 3

(v)

(
3 5 3 5

z z z zsin2t= z--+--· · z--+-+---6 120 6 120

2 _

4 2z6
= z +--+··

3 45
so

sin z z2 2z4
= 1-

-+
--· + ---

.

z2 3 45

(vi) From (i)we have

1 z2 5=1+-+-z'+-

cos z 2 24
so

1 2
= 1+Z2 _

4
COS2 g
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so
sin(z2) / ts z* \ / 2 4

= z--+--+--- 1+z2+-z +---
z cos2 z 6 120 3

1=z+z3 5

2

(vii)We have
1 1 1

Z4 _ 2,2 + 3 5 2z2 z4
1- ---

3 3

1 2z2 z* 2z2 z* *
=- 1+ --- + --- + -

3 3 3 3 3

1 2z2 z4
=-+-+-+-··.

3 9 27

(viii)We have

1 + z = (1+ z)1/2 - 1 +
1/2

z +
1/2 1/2

z +

1 1 1 5
= 1+ -z

-

-z2

+
-z3

-

--z4

2 8 16 128
SO

e
¯I)

- z -

1z2
+

-1

z' -

-5

Z4

\2 8 16 128 /

(1 1 1 1-z--z2+--

-z--z +
2 8 2 8

+ 2 6

1 1 1 2 3=-z+ --+-

z +
---+-

z2 8 8 16 16 48

( 5 1 1
+ - -- + - - -- z4

128 128 64
1 1 3_ 4=-z+-z

z +--·
2 48 64

so
e(E-1)¯| _ i 4

_1

3
zL J 2 48 64

10. (a) This follows from Problem 26-9 with yo = 0.

(b) This follows from (a)by induction.
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(c) Applying (b)we have, with a, = 1, for real x,

aa
ü(k)(X) # iÜ(k)(x) = 0.

k=0

Since ü(k) and O(k)are real, the real and imaginary parts of the left side are

ak-(k)(x) and akg(k)(X),

k=-0 k=0

so these must both be 0.

(d) If a = b + ci is a complex root of z" + an-iz"¯1 + - - - + ao = 0, then
as in Problem 18-42, the function f(z) = eaz = ebz COSCZ # i€bzSin CZ SatiSÍÎe5
(*). So (assumingthe a¿ are real) it follows form (c) that g(x) = ebxcos cx and
h(x) = ebk sin cx also satisfy (*).

11. (a),(b) e2 - e**i? - ex(cos y + isin y) = w means that ex = |w|, so x =

log |w|,and y is an argument of w. In particular e***I =
e***TI if yo and yi are

arguments for w (forexample, e° = e*'), so exp is not one-one.

(c) Suppose that there were a continuous function log defined for |z = 1 such that
exp(log(z)) = z for all z with [z| = 1. Then we could write log(z) = a(z) + iß(z)
for continuous real-valued functions œ and ß. We must have a(z) = 0 for |z| = 1,
and ß(z) an argument of z for |z! = 1. This contradicts the fact that there is no
continuous argument function.

(d) If Ð is an argument for a, then one logarithm of a is

log |a| + i0.

It is easy to see that
€m[log |a|+i0]

is indeedthe productof elogtal+iewith itself m times, i.e., am. Moreover, any other
logarithm of a is

loglal+i0+i-2kx

for some k, and
€m[log |al+iB+i·2kx] - am ,

2kmri

= am, since m is an integer and ek' = 1.

(e) As we know from the proof of Theorem 25-2, the n* roots of a have absolute
values Ñ and arguments

1-(0+2kx)i,

k=0,...,n-1.
n
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So they are
elog"g+¼(0+2kr)i_ [logla|+(0+2kr)il, k = 0, ..., n - 1.

The logarithms of a consist of

log a | + (0+ 2kx)i.

So am!" consists of all values
[loglal+(0+2kr)il

where we can clearly consider only k = 0, ..., n - 1. Then these numbers are bm
for

b _ ¼[log|a|+(0+2kr)i]- e ,

i.e., for b an nth root of a.

(f) The logarithms of a are
2kni, a > 0

log|a|+
(2k+ 1)xi, a < 0.

So the values of ab are jü|b times the numbers

e2kbri or e(2k+1)bri

Since b is irrational no two exponents differ by an integral multiple of 2xi, so all
these numbers are distinct.

(g) The logarithms of i are numbers of the form i(2kr + x/2), and the values of if

are the real numbers

(h) l' has the values ei 2kri)
-2k".

The logarithms of these real numbers have
the values

-2kr

+ 2lzi. So (li)i has the values

ei(-2kx+2lni) -

But l¯1 has only the values e-(2kri)

(i) The elements of ab.c ate
€bcz, where z is a logarithm of a, so that

e2 -

a

But then
ebt zb _ b

so bz is a logarithm of ab, SO €bcz bz.c iS an element Of (ab c. It is not generally
true that ab-c _ bcm c)b, attractive as that hypothesis might seem. It fact, part
(h)shows this is false when a = 1, b = c = i.

12. (a) |x+ i| = 1+ x2, and an argument for x + i is arctan 1/x = x/2 - arctan x,
while an argument for x - i is arctan(-1/x) = - arctan 1/x =

-(x/2

- arctan x).
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(b) From part (a)we obtain

1 1 x-[log(x

- i) - log(x + i)] = -- -

-2i

- - arctan x2i 2: 2
= arctan x - x/2,

which differsby a constant from the usual answer, arctan x.

13. (a) Since a, - a. = (b. - bm) + i(c, - cm), we have |bn - bm| 5 |an - am Í
and |c, - cm| 5 |an- ami, so {b,}and (ca}are Cauchy if {an}is. Since we also
have |a, - am| 5 |b, - bm| + |cn- cm|, it follows that {an}is Cauchy if {bs}and
{ca}are.

(b) If {an}is Cauchy, then {bn}and {cn}are, so {bn}and {c.}converge to œ and ß,
respectively. Thus {a,}converges to a + iß, by Theorem 1.

(c) The hint is the answer. Since Cauchy sequences of complex numbers are the
same as convergent sequences of complex numbers, there is a Cauchy criterion for
convergence of complex series: inii a, converges if and only if lim lan+1+m,n-oo
- -

-+am|

= 0. Now write down the proofs for the first halves of both Theorems 23-5
and 23-8, interpreting all numbers as complex numbers.

14. (a) We have

n n-1
eikx ix ix k

k=1 k=0

1 - einx
= ex

1 - eix

ix
inx|2 .

-inx/2

g _ inx
= e €ix/2 .

--ix/2

1 _ ix)

-inx/2

inx/2
=

€ix/2 inx|2 .

¯ *

e--ix/2 __ gix |2

(nsin -x

= ei(n+1)x/2 . 2
. x =

sm -

2

by the formulas on page 555 of the text.
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(b) The real and imaginary parts of this equation give
. n

sm
-x

2 n + 1
cosx +

--·+cosnx

=

x
·cos

2sin-
2

. n
sm

-x

2 · n+1
sin x + - - - + sin nx =

,
- sin 2sin -

2
To transform the first, we note that by Problem 15-14 we have

. n n+1 . [n+¾]x + [-(] [n+ ]x - [-g]2 sm
-x

cos x = sm cos2 2 2 2
x

= sin(x + ()x- sin -

so

(n xsin -x sin(n + 1)x - sin -

2 n+1 2 2cos x =

x 2sin - 2sin -

2 2
sin(n + ()x 1

2sin
2

15. (a)
an+2 an+1 + an an 1

rn+1 1 + -- = 1 + --.

an+1 an i an+1 rn

(b) If r = lim r, exists, then
n-woo

1 1 1
r = lim r, = lim 1 + - = 1 + = 1 + --,

n-+oo n-+oo r, lim r, r
n-boo

so r - (1+Ë)/2 (clearlyr > 0). To prove that the limit actually exists, note that
if r, < (1+E)/2, then rn2 - ru - 1 < 0, so

2r,+1
r, <

rn + 1
= rn+2-

Thus ri < rs < rs < - - - < 2, so lim r2, i exists. Similarly, lim r2n CXÎStS.
n-+oo n-+oo

Moreover, the equation r,42 = (2rn+ 1)/(rn + 1) leads, as before, to the fact that
both limits are (1+ Ã )/2.
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(c) The limit

. jan+1tn+1| . an+1 1 + Álim = hm
---|z|

= Iz!n-+oo |asz"| n-+oo an 2

is < 1 for |z| < 2 (1+Ã) and > 1 for |z| > 2 (1+d).
16. (a)

z z e2+1 z ezyg--+--

=-
-1+

2 2 ez - 1 2 er - 1

er-l'

e 2 + 1 (e-3+ 1)e2 1 + e2 e= + 1
e-z - 1 (e-z - 1)ez 1 - e2 er -- 1

These formulas show that z/(e2 - 1) =
-z/2+

h (z)where h is even. Consequently,
the power series for h contains only even powers of z. Thus

-1/2

= bi is the
coefficient of z in the power series for z/(et - 1), and b, = 0 for odd n > 1.

(b) If n > 1, then the coefficient of z" must be 0. But this coefficient is Egal( )bi.
(c)

COSZ (€izy e-iz)/2
zcotz=z .

=z·

sin z (eiz- e¯iz)/2i
-2iz e2i2/2 + e-2iz/2

2 e2tz/2 - e-2tz/2

= (2iz)2n
n=1

°° b
= L 2n

_ y n22"z2".

(2n)!n=1

(d) From the formula tan2z = 2 tanz(1 - tan2x) (Problem 15-9) we have
1 1 -- tan2z tan2zcot z - 2 cot 2z - - - -- tanz.tanz tan z tan z

(e)
tan z = cot z - 2 cot 2z

b ob
= f

-*-(-1)n2

z2"¯I
- i *" (-1)"22n 2n-1

(2n)! (2n)!n=i n=i

(--1)n-122"(22"- 1)z2"¯'.
n=i
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17. (a) Applying (*)to f(k)we obtain
(k+n)(X )f (k) (k)

n i

Thus

[f (k)(X # 1) - f (k) _

(k+nn)(X )
k-0 k=0 n=1

The coefficient of ffi)(x) is bo/0!1! = 1. The coefficient of ff)(x) for j > l is

k!(jb
k)!

= bk = 0, by Problem 16(b).

(b)

f'(0) +
··+ f'(n) = [f(k)(X # 1) -

f(k)(X)

x=0 k=0

= [f (k) _
(k)(X )

k=0 x=0

= [f (k) _ (k)(0)].
k=0

(c) Let f be a polynomial function with f' = g. Then f (n+ 1) - f (0) = fe"I
&

Since bo = 1, part (b)becomes

g(0) + - - - + g(n) = g(t) dt + [g(k-1) (k-1)(0)].
0 k=1

(d) g(k)(X)
- X p-k/(p - k)! for k 5 p, so part (c)applied with n - 1 instead of

n gives
n-1 n+1 P+1 b !kP = xP dx +

-k

P p-k+1

k=1 0 k=1 k ! (p - k + 1)!

-

n?** p np-k+1
p+1 k=1 k k-1

Thus
n p i p+1

kP= n +n?+bin?+ nP
p+1 k k-1k=l k=1

n2+1 p np-k+1
p+1 2 k=1 k k-1
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18. (a) Clearly ¢,(0) = bn. If n > 1, then

¢n(1)= bn--k= bk , Sluce =

n k
n-1

= bk + b, = bs, by Problem 16(b).
k=0

¢,' = k bn-kXk-1

= (k+ 1)
k 1

bn-1+kXk

k=0

=
nn - 1 bn-1+kXk

k=0
= n¢n-i (x).

To prove the last equation, note first that
1 1¢2(1-x)=(1-x)2-(1-x)+-=x2-·2x+1-1+x+-
6 6

1
= x2 - x + - = ¢2(x).6

Now suppose that ¢, (x) = (-1)"¢, (1 - x) for some n > 1. Then the function
g(x) = ‡n+1(1- x) satisfies

g'(x) =

-#n+1'(1

- x) =
-(n

+ 1)¢n(I - X)

= (-1)n+1(n+ 1)‡n(x) = (-1)"**¢,'(x).
Moreover, g(0) = ¢n+1(1)= bn+1 = ‡n+1(0),so g(x) = (-1)"*1¢, i(x) for
all x.

(b) Substituting from (*)we have
N by N-k (k+n)(X)

‡ EN-kk(X).(k) gg 1) - f (k)(X)] =

n! k=o klk--0

The coefficient of f'(x) in the double sum is bo/0!1! = 1. For 1 < j
_<

N, the
coefficient of f (x) is

J-1 bk
= 0 by Problem 16(b).

k=ok!(j-k)!

(c) The term RN-kk (x) is the remainder RN-k,x (x+ 1) for the function f (k). Thus
x+1 |(k+N-k+1)

RN-kk(X)
= (X + 1 - t)ndt.

(N - k)!
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So

RN-kk
x+1

k! N - k !(x+ 1 - t)n (N+1)(t) dt
k=0 k=0

N(X # Î - t) (N+1)(t) dt.

(d) From parts (b)and (c)we obtain

f'(x) + - - · + f'(x + n) = [f (k)(X
n ‡ 1) - f(k)XB

k=0
x+j+1 ÈN(X # j# Î

-1)

(N+1)(t)dt.

j=0

Applying this to g = f' we obtain the desired formula.

(e) If t is in [x+ j, x + j+ 1], thenx
-t is in [- j

-1,

- j]. Therefore, by definition,
‡N (X - t) = ÈN (X ‡ j + Î - t).

19. (a) Apply Problem 18(d) with g = log, x = 1, n - 2 for n and N = 2. We
obtain

log(n - 1)! = log 1 + - - · + log(n - 1)

=

nlogtdt+

(logn-log1)+
-1

I
n ‡2(t) 1

+ (-1)3 dt

= log t dt - logn + - 1 + dt

1 1 1 "‡2(t)=nlogn-n+1---logn+--
--1

+ dt.
2 12 n 1 2t2

(b) Consequently,

( 1 1 11 "‡2(t)logn!=log(n-1)!+logn= n+- logn-n+--+-+ dt.
2 12n 12 1 2t

So

( n! 11 n ‡2(t)log = - + dt.nn+1/2e-n+1/12n 12 i 2t2
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(c) Since ‡2 is periodic, it is bounded. Thus f,"‡2(t)/2t2dt exists, since
f,°°1/t2dtexists. So we have

( n! 11 °° ý2(t) °° ‡2(t)log = - + dt - dtnn+1¡2e-n+1/12n 12 1 2t2 n 2t2

11 °° ‡2 )= ß+--- dt
12 , 2t2

= log a - dt,
2t2

Or

( n! °° ‡2(t)log = - dtann+1/2,-n+1/12n , 2t2

(d) Part (c)implies that

.

°° ‡2(t) n!
0 = lim - dt = lim log

"*°° n 2t2 n-woo ann+1/2e-n+1/12n

SO
n! n!

1 = lim = lim .

n->oo Œnn+1/2g-nkl |12n 5*00 Œnn+1/2g-n

Thus
. (n!)2hm =1.

n->oo a2n2"+1e-2"

Replacing n by 2n and taking square roots we have

. (2n)!lim = 1
n-woo a(2n)2n+1/2e-2" '

SO

(n!)2 22n
= lim - --

n-+oo (2n)!
.

a2n2n+1e--2n22n
=lim

n-+oo a(2n)2n+1/2
->

g
.

n2n+1/2 2"
=a hm

naoo 22nÄ n2n+1/2p

(e) By Problem 18(a) we have ¢3' = 2¢2. Also ¢a(0)= b3 = 0, and

¢3(x)=
-¢s(1

- x),
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from which it follows that

¢a(1) = 0
¢9(¼)= 0.

It follows immediatelythat

Ï
t/2 i

¢2(t)dt = ¢2(t)dt = 0.
0 0

Clearly

lx > 0 for 0 Exs 1/2
#(x)= ‡2(t)dt

¯

o 5 0 for 1/2 5 x 5 1,
with #(n)= 0 for all n.

x0 1

Moreover, (x) = - (1 - x) ori [0, 1], since # = ¢3/3,so

ý(x) = ‡(t)dt ;> 0 on [0,1], and hence everywhere,
O

and #(n)= 0 for all n. Now we have

Ï
°° 1 - 1 |°° f °°

- 1

n
È2(t)· dt = ‡(t) - -

L+ L ‡(t) - dt

Ï°°
- 1

= ‡(t) - dt
n I

= 1 °° °°
= 1

= ‡(t) - - + 3 ‡(t) - - dt
n

Ï
= 1=3 ‡--dt

n I
>0.

(f) The minimum of ¢2(x)for x in [0,1] occurs at x = 1/2, where ¢2(x) =
-1|12,

and the maximum occurs at x = 0 and x = 1, where ¢2(x)= 1/6. Clearly

l°°‡2(t) °° |‡2(t) 1 1
dt < dt 5 dt = --.

n 2t2 , 2t2 , 12t2 12n
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(g) From parts (c)and (d)we have
1 n!--<log

<0
12n n"**/ e¯" 17'2"

so
-i¡is n!

e < < 1nn+1/2e-n+1/12n

or
nn‡1/2 -n

n+1/2
-n+1/12n
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1. It is clear that a+b = b+a, since the table for + is symmetric. Clearly a+0 = a
for all a, and condition 2(ii) is satisfied because each row in the table contains 0.
To check that (a + b) + c = a + (b + c) it suffices to consider only cases where
a, b, c ¢ 0. Because x + y = y + x, this equation clearly holds when a = c. This
leaves the cases

(1+b)+2=1+(b+2),
(2+b)+1=2+(b+1),

which are equivalent to each other, either of which can be checked by letting b = 1
and 2. Conditions (4)-(6)are checked similarly. Finally, (7)is clear if a = 0 or 1.
For a = 2 we can assume b, c ¢ 0 and the condition is clear if b = c = 1. This
leaves only the cases a = 2, b = 2, c = 2 and a = 2, b = 1, c = 2 and a = 2,
b = 2, c = 1, the last two being equivalent.

F cannot be made into an ordered field because 1 = 12would have to be positive,
but1+1+1=0.

2. F will not be a field because we will have 2 · 2 = 0.

3. As in Problem 1, conditions (2),(3),(5),and (6)are clear. Condition (1)can be
checked case-by-case. To check (5)we can assume that a, b, c ¢ 0, 1. This leaves
only the cases («•ß)•œ = (a•ß) -a and (a•ß)•ß = «•(ß•ß).

4. (a) a+a=a-(1+1) = a.0= 0.

(b) 0=a¯*•0=a-1(a+a)=1+1.

5. (a) The assertion is obvious when n = 1. Suppose it is true for n. Then

m times n+1 dmes m dmes n times

= (1 ).(1+---+1)+( )
m times a times m dmes

mn times m times mn+m=m(n+1)
dmes

(b) If m were not prime, so that m = kl for some k, l < m, then

0=( )=
-(1

)=a-b.
m=kl times k times I times

Therefore either a = 0 or b = 0, contradicting the assumption about m.

414
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6. (a) If this were not true, then P would have infinitely many distinct elements,
namely, those of the form

1+---+1
n times

for all n.

(b) Supposem > n. Then

1+---+1=(1 -(

)=0.
m-n times m times a times

7. The solutions are

x + (œd- ßb)•(ad - bc)-1

y = (œc- ßa)
•(bc

- ad)-1

8. (a) One, namely 0.

(b) If a has one square root b, then it also has the square root
-b.

Moreover, if
c2 - a = b2, then (c - b) · (c+ b) = 0, so c = b or c =

-b.

Consequently,b and
-b

are the only square roots; these are distinct precisely when 1 + 1 ¢ 0.

9. (a) is a straightforward check

(b) In part (a),the symbol 2 means 1 + 1, which is 0 in F2; the solution in part (a)
is correct only if 1 + 1 ¢ 0.

10. (a) Most conditions require only a straightforward check. The element (0,0)
will play the role of 0 and (1,0) will play the role of 1. To verify 5(ii), note that if
(x,y) ¢ (0,0), so that x ¢ 0 and y ¢ 0, then x2 - ay2 ¢ 0, since a does not have
a square root. Then

( x
-y

(x,y) O ,
= 1, .

x - ay x - ay2

(b) is a straightforward check.

(c) (0,1) is a square root of a.

11. (a) The inverse of (ai, a2, a3, a4) ÎS

(ala2 a3 G4

y y y y
where y = ai2 # G22 # G32

4 •
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(b) Each entry in the following table is the product a - b where a is on the left and
b is above.

i j k

i
-1

k - j
j

-k -1

i
k j

-i -1

[If we denote 1, i, j and k by vi, v2, va, and v4, then the definition of multiplication
can be written

(4
4 4

aiv¿ - bjvj = a¿bj(v¿vj).
i=l j=1 i, j=1

This allows a simpler proof that multiplication is associative, by first checking that
it is associative for ±1, ±i, ±j, ±k.]



CHAPTER 29

Since the detailed examination of other constructions of the real numbers was
recommended only for masochists, detailed answers to the two problems in this
chapter will not be given.
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CHAPTER 30

1. (a) f (0) = f (0+ 0) = f (0)+ f (0),so f (0) = 0. Since f is an isomorphism
and 0 ¢ 1, it follows that f (1)¢ 0. Consequently, the equation f (1) = f (1•1) =

f (1)• f (1) implies that f (1) = 1.

(b) 0 = f (0) = f (a +
-a)

= f (a) + f (-a), so f (-a) = - f (a). Similarly,
1= f(1) = f(a•a--1) - f(a · f(a¯*), so f(a¯*) = f(a)-1.

2. As an example, a proof for (a)will be given. If a2 + 1 = 0 for some a in F1,
thenbyProbleml,0= f(0)= f(a2+1)= f(a·a)+f(1)= f(œ)2#Î,SO f(Œ)
is a solution of the equation x2 + 1 = 0 in F2.

3. (1) If x ¢ y, then f (x) ¢ f (y), so g( f (x)) ¢ g( f (y)), so (go f)(x) ¢
(go f)(y).
(2)If z is in F3, then z = g(y) for some y in F2, and y = f (x) for some x in F1-
Then z = (gof)(x).
(3)

(go f)(x+y)=g(f(x+y))=g(f(x)+ f(y))= g(f(x))+g(f(y))
= (go f)(x) + (go f)(y),

(go f)(x - y) = g(f(x - y) = g(f(x) - f(y)) = g( f(x)) - g(f(y))
= (go f)(x) - (gof)(y).

(4)Ifx <y,then f(x) < f(y),sog(f(x)) <g(f(y)),i.e.,(gof)(x) <(gof)(y).

4. g-1 of is an isomorphism form R to R, so g¯I of = I, so g = f.

5. Let f (x+ iy) = x - iy. [Since i2 =
-1

we must have f (i)2= f(-1) =
-1,

so f(i) = i or
-i,

which suggests the answer. This particular isomorphism is
the only one, aside from the identity, which any one can write down, but there are
actually infinitelymany others. This is one of those facts which requires, aside from
a knowledge of algebra, some of the sophisticated theorems from set theory which
will be found in references [8]and [9]of the Suggested Reading.]
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