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CHAPTER 1

1. (i)
x=—Nx+y)=x+ENIx+y)=xx+y)+ (-y)x+y)
=x(x+y) = [y(x + )] =2 +xy — [yx + ¥*]
=xl4xy—yt=x2—12
(iv)

= NE+xy + ¥ =302+ xy +y) — y* + xy + ¥H)]
=3+ 22y +xy2 — [yl + 2 + ¥’ 1 =2 -y

(v)
x—NE" T+ 2y 4+ xy 4y ]
=x(" V3" y 442y 24y
— [y " Iy - x4 YY)
=x" 4 x" Ly x2yn2 g pyn!
Sy 422 x4y
= x" — y".

Using the notation of Chapter 2, this proof can be written as follows:

n—1 n—1 n—1
@G-y Yy 2y = x(Zx’ y i ) - [y (Z xlyri=i )]
j=0 j=0 j=0

n—2 -n—1
=xn+zxj+1yn—l-—j_ ijyn——j_'_yn]

Jj=0 -j=1

n—=2 ) -n—2
=x" + Zx}+lyn—l—j _ Z:xk+1yn-(k+l) + yn]

=0 k=0

(lettingk=j— 1)

=x" —y"

A formal proof requires such a scheme, in which the expression (x"~! 4 x"~2y 4
n—1 .

.-+ +xy""2 4+ y"1) is replaced by the inductively defined symbol > x/y*~1-J,
j=0

Along the way we have used several other manipulations which can, if necessary,

be justified by inductive arguments.

3. (iv) (a/b)(c/d) = (ab™")(cd™") = (ac)(d~'d™") = (ac)(bd)~" (by (iii)) =
(ac)/(bd).
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(vi) If ab~! = cd™, then (ab—")bd = (cd~')bd, or ad = bc. Conversely, if
ad = bc, then (ad)d~b™! = (bc)d b, orab™! = cd™!. If ab™! = ba”!,
then a? = b?, so by Problem 1(iii), a = b or @ = —b. Conversely, if @ = b, then
a/b=>bja=1andif a = —b,thena/b=b/a = —1.

4. (ii) All x.

(iv) x>3orx <1.

(vi) x > [—1+\/§]/2 orx <[-1 —\/g]/l
(viil) All x, since x2+x + 1 =[x + (1/2)]* + 3/4.
(x) x>+2o0rx < V2.

(xii) x < 1.

(xiv) x > lorx < —1.

5. () b—aisin P,so —a— (—b)isin P,
(iv) b—aisin Pandcisin P,soc(b —a) = bc —ac isin P.
(vi) If a > 1, then a > 0, so a® > a - 1, by part (iv).

(viii) If a =0 or ¢ =0, then ac = 0, but bd > 0, 50 ac < bd. Otherwise we have
ac < bc < bd by applying part (iv) twice.

(x) If a < b were false, then either 2 = b or a > b. But if a = b, then a? = b?,
and if @ > b > 0, then a? > b2, by part (ix).

6. (a) From 0 < x < y and Problem 5(viii) we have x* < y? [as in Problem 5(ix)].
Then from 0 < x < y and x? < y? we have x> < y>. We can continue in this way
to prove that x" < y" forn = 2,3, ... (a rigorous proof uses induction, covered in
the next chapter).

) fO<x <y thenx" < y"bypart(a). f x <y<0,then0 < —y < —x, 50
(—¥)* < (—x)" by part (a); this means that —y" < —x" (since n is odd) and hence
x" < y" Finally, if x < 0 < y, then x® < 0 < y" (since n is odd). Thus, in all
cases, if x < y, then x" < y".

(c¢) This follows immediately from part (b), since x < y would imply that x" < y”",
while y < x would imply that y" < x".

(d) Similarly, if n is even, then using part (a) instead of part (b) we see that if
x,y > 0and x* = y", then x = y. Moreover, if x,y < 0 and x" = y”, then
—x,—y > 0 and (—x)* = (—y)", so again x = y. The only other possibility is
that one of x and y is positive, the other negative. In this case x and —y are both
positive or both negative. Moreover x" = (—y)", since n is even, so it follows from
the previous cases that x = —y.
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7. If a < b, then
_a+ta a+b b+b_

= b.
2 2 "2
If 0 < a < b, then a®> < ab by Problem 5(iv), so a < +ab by Problem 5(x).
Moreover, (a — b)* > 0, so

a

a® + b* > 2ab,
a? + 2ab + b* > 4ab,
(a + b)* > 4ab,

soa+b > 2+/ab. Moreover, for all a, b we have (a —b)? > 0, and thus (a + b)? >
4ab, which implies that a + b > 2+/ab fora, b > 0.

8. Two applications of P’12 show thatif a < band ¢ < d, then a+¢ < b+c < b+d,
soa+c¢ < b+d by P’11. In particular, if 0 < b and O < d, then 0 < b +d, which
proves P11. It follows, in addition, that if a < 0, then —a > O; forif —a < 0
were true, then 0 = a + (—a) < 0, contradicting P'10. Consequently, any number
a satisfies precisely one of the conditions a = 0, a > 0, a < 0, the last being
equivalent to —a > 0. This proves P10. Finally, P’13 shows that if 0 < a and
0 < ¢, then 0 < ac, which proves P12.

9. (i) |a| + |b| — |la + b|.
(iv) x* —2xy +y2

10. (ii)
x—1 ifx=1,
1—-x if0<x<l;
1+x if-1<x<0;
—1-x ifx<-1L
(iv)
aifa >0
3aif a <0.

11, (ii) -5 <x <11

(iv) x < 1 or x > 2 (the distance from x to 1 plus the distance from x to 2 equals
1 precisely when 1 < x <2).

(vi) No x.

(vili) If x > 1 or x < —2, then the condition becomes (x — 1}{(x + 2) = 3, or
x4+ x — 5 = 0, for which the solutions are (—1 + «/2_1)/2 and (—1 — \/2_1)/2
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Since the first is > 1 and the second is < —2, both are solutions to the equation
|[x — 1] - |x + 2| = 3. For —2 < x < 1 the condition becomes (1 —x)(x +2) =3
or x2 + x + 1 = 0, which has no solutions.

12. (i) [1/x]- |x] = ](1/x) - x| (by (})) = [1] = 1, so |1/x| = 1/]x].
iv) Ix—=yl=Ix+ = < xl+ =yl = I« + ]yl

(vi) Interchanging x and y in part (v) gives |y| — |x] < |x — y|. Combining this
with part (v) yields |(Ix| — |yD| < [x — y|.

13. If x <y, then|y—x|=y—x,s0x+y+|ly—x|=x+y+y—x =2y,
which is 2 max(x, y). Interchanging x and y proves the formula when x > y, and
the same type of argument works for min(x, y). Also

max(x, y, z) = max(x, max(y, z))

+z+|y—z +z+|y—z2
i y—zl | ly—z _

_ 2 2
- 2

_ly—zd+y+z+2x+ly+z+ly—zl— 2|
= 7 :

14. (a) If @ = O, then |a] = a = —(—a) = |—al, since —a < 0. The equality is
proved for a < O by replacing a by —a.

(b) If |a| < b, then clearly » > 0. Now |a] < b means that a < b if a > 0, and
surely a < b if a < 0. Similarly, |a] < b means —a < b, and hence —b < g, if
a<0,andsurely —b <aifa>0.So—-b<a=<bh.

Conversely, if —~b <a < b, then |a| =a < bifa = 0, while |a] = —a < b if
a <0,

(¢) From —|a| < a < |a| and —|b| < b < |b] it follows that
—(lal+ b)) <a+b < |a| +|b|,
so la+ b| < |al + |b|.

15, If x # y, then

33—y
xX—y

Problem 6(b) shows that the quotient on the right is always positive (since x> —y* >
0ifx—y>0and x* —y® < 0if x — y < 0). Moreover, if x = y # 0, then
x2 4+ xy + y* = 3x? > 0. The other inequality is proved similarly, using the
factorization for x> — y°.

3

2 +xy+yt=
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16. (a) If
4y =4y =22+ 2y + 5%

thenxy =0,so0x =0o0r y =0. If
Ay =+ =23+ 3%y + 30y  + 53,
then 3xy(x +y)=0,so0x=0ory=0o0rx = —y.
(b) The first equation implies that
4x% +8xy +4y* > 0.

Suppose that we also had
4x’ + 6xy + 4y% < 0.

Subtracting the second from the first would give 2xy > 0. If neither x nor y is 0,
this means that we must have 2xy > 0; but this implies that 4x2 +6xy +y> > 0, a
contradiction.

Moreover, it is clear that if one of x and y is 0, but not the other, then we also
have 4x2 4+ 6xy + 4y > 0.

(c) If
4yt =+ ) =2t 43y + 6%y + 4y + ¥4,

then
0 =4x’y + 6x%y? + dxy® = xy(4x* + 6xy + 4y?),

sox = 0ory=0,or 4x2 + 6xy + 4y? = 0. But by part (b), the last equation
implies that x and y are both 0. Thus we must always have x =0 or y = 0.

(d) If
2+ =@ +y) =2 +5xy + 1063y + 10x%y* + 5xv* + 52,
then
0 = 5x*y + 10x3y? + 10x2y® + 5xy*
=5xy(x® + 2x%y + 2xy* + %),
soxy=0or

X3+ 2x2y + 2)t:y2 + y3 = (.
Subtracting this equation from
(x +y) =23+ 322y + 3xy* + °

we obtain
(x+y) =xty+xy* =xy(x +y).

So either x+y = 0 or (x+y)? = xy; the latter condition implies that x> +xy+y? =
0,sox =0or y=0by Problem 15. Thusx =0or y=0o0r x = —y.
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17. (a) Since

~ 3\ L2
- 4 8’
the smallest possible value is 23/8, when (x — 3/4)2 =0, or x = 3/4.

(b) We have

3\° 9
x2—3x+2y2+4y+2=( —5) +2(y+1)2—z,

so the smallest possible value is —9/4, when x =3/2 and y = —1.

(c¢) For each y we have
2 hdxy+ 5y  —dx —6y+T=x>+4(y - Dx+5> —6y+7
=[x +2(y — D + 5y — 6y +7 — 4(y — 1)?
=kk+20-DP+ G+ 1)*+2,
s0 the smallest possible value is 2, when y = —1 and x = —-2(y — 1) = 4.

18. (a) is a straightforward check.

(b) We have
b\?2 b? b?
x2+bx+c=(x+5) +( ——)zc——;

but ¢ — »2/4 > 0, so x2 + bx + ¢ > 0 for all x.

(c) Apply part (b) with y for b and y? for ¢: we have b2 — 4c = y?2 — 4y? < 0 for
y #0,s0x2+xy+ y* > 0forall x, if y # 0 (and surely x2+xy + y? > 0 for all
x#0if y=20).

(d) o must satisfy (ay)? —4y? <0, or a? <4, or |a| < 2.

(e) Since
2 2 2
xX+bc+c= x+2 + _r >c—b—,
2 4 ]~ 4
and since x? + bx + ¢ has the value ¢ — b?/4 when x = —b/2, the minimum value

is ¢ — b%/4. Since

ax2+bx+c=a(x2+2x+£).
a a
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the minimum value is

19. (a) The proofs when x; = Ay, and x; = Ay, or y; = y» = 0, are straightfor-
ward. If there is no such A, then the equation

X%+ 3% = 200y + 2y + (0 +n?) =0
has no solution A, so by Problem 18(a) we must have
[Z(xlyl +x2y2)]2 _AmPty?)
%+ y?) (01?2 + y2%) ’
which yields the Schwarz inequality.

(b) We have 2xy < x2 + y?, since 0 < (x — y)? = x2 — 2xy + y2. Thus

2x x12 2
) N <— 1 — 4+ 2)’1 -,
\/x12+x22 \/y12+y22 (x1“+ x5 (m*+»9
2% 2 2
@) 1) X2 y2

< + ;
‘/;12 + x22 \/}’12 + )’22 (xlz + x22) (}’12 + y22)

addition yields
2(x1y1 + x2¥2)

\/112+122\/}’12+}’22 a

(¢) The equality is a straightforward computation. Since (x;y; — x2y,)2 > 0, the
Schwarz inequality follows immediately.

(d) The proof in part (a) already yields the desired result.
In part (b), equality holds only if it holds in (1) and (2). Since 2xy = x2 + y?
only when 0 = (x — y)?, i.e., x = y, this means that

adl = L forx=1,2,

val+x?  nt+y?
so we can choose A = vx12 4+ x,2/v/y12 + y;2.
In part (c), equality holds only when x;y; — x2y; = 0. One possibility is y; =
y2 = 0. If y1 # 0, then x; = (x1/y1)y and also x; = (x1/y1)yz; similarly, if
y, = 0, then A = x3/y».

20, 21, 22. See Chapter 5.

23. According to Problem 21, we have |x/y — xo/yol < € if

[x — xp| <min( £ ,1)
2(1/1yol + 1)
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and

1 1 £

— — — < —......__,

y Yol 2(xl+ 1)
and the latter is true, according to Problem 22, if

. (1wl slyol? )
— ¥o| < min , .
|y — Yol ( 2 x| + 1)

24. (a) For k = 1 the equation reads a; + a; = a; + a@,. If the equation holds for
k, then
(a1 +---+akt1) + a2 = [(@ + -+ - + ak) + agq1] + apy2
= (a1 +---+ax)+ (ak+1 +ax+2) by Pl
=a;+ - +ag + (@g+1 + ax42)
since the equation holds for &
=a1+---+ a2
by the definition of a; + - - - + ag43.

(b) For k = 1 the equation reduces to the definition of a; + - - - +ay. If the equation
is true for some k < n, then
@+t ax1) + (@2 +---+an)
=({a+ -+ al+a)+ @2+ +apn)
by part (a)
= (a1 + - +a) + (a1 + 42+ - - +an))
by P1
= (a1 + -+ ar) + (@1 + -+ + an)
by the definition of g1 + - -+ a,
=a1+---+a, by assumption.

(c¢) The proof is by “complete induction” on k (see Chapter 2). The assertion is
clear for k = 1. Assume that it is true for all [ < k. Then

s@y,...,ax) =5, ....,aq)+s" (@41, ..., 68)
=(a+---+a)+ (@ +---+ar) by assumption
=a+---+a by part (b).

25. P2, P3, P4, P6, P7, P8 are obvious from a glance at the tables. There are eight
cases for P1, and even this number can be reduced: because P2 is true, it is clear
thata+(b+c)=@+b)+cifa,b,orcis0,soonlythecasea=b=c=1
must be checked. Similarly for P5. Finally, P9 is true for a = 0, since 0- b = 0 for
all b, and for a = 1, since 1 - b = b for all b.
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1. (ii) Since 13 = 12, the formula is true for n = 1. Suppose that the formula is
true for k. Then

A+ +h+E+1DP =0+ + B +2(1+ -+ Bk + 1) + (c+ 1)

k(k; 1)(k + 1)+ (k+ 1)?

=P+ + P+ E 282+ + KEP+2k+1)
=1+ +E+ k+1),
so the formula is true for k + 1.

=P+ +E+2

2. (ii)
dY@i-1Y=1+3+...+@n -1y
i=1

=[12+22 4+ + @)1 - [22 + 42+ 62 + - .- + (2n)"]
=[124+224+ -+ 2n)2] =412+ 22+ 32+ -+ (0)?]
_ 2n(n+ D@n +1) _ dn(n+ 1D@2n+1)

6 6
_2n@n+D4n+1-2n+1)]

6

_ n2n+1)2n-1)

> :

3 (a)

n n) _ n! n!
(k-— 1) + (k T (k—Din—k+1)! +k!(n —k)!
kn! (n+1-—k)n!

- kin+1—-k)! klin+1-k)!

_ (e+Dn! (n+1
"k:(n+1—k)!_( k )

(b) Clearly (}) is a natural number. Suppose that (;) is a natural number for all

p < n. Since
(1)-(2)+C) wree
p p—1 p

it follows that (":;1) is a natural number for all p < n, while "I:) is also a natural

number. So (";') is a natural number for all p <n + 1.

9
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(c) There are n(n — 1)---(n — k + 1) k-tuples of distinct integers each chosen
from 1, ..., n, since the first can be picked in n ways, the next in n — 1 ways,
etc. Now each set of exactly £ integers can be arranged in k! k-tuples, so there are
n(n—1)---(n — k+1)/k! = (}) such sets.

(d) The binomial theorem is clear for n = 1. Suppose that

(@+b)" = zn: (;f)a"—fbf.

j=0
Then
n
@+b"* = @+h)@+b"=@+n Y (’J’,)an—fbi
j=0
(n.)an+l—jbf + Z": (’f)an—jbj+1
=0 J j=0 J
n+1

(e 157 o
—o \J j=1 ji—=1

(we have replaced j by j — 1 in the second sum)

n

Yy

T

n+1

= z (n -JI- l)a""‘l“fbj by part (a),
j=0

so the binomial theorem 1is true for n + 1.

© O )
Y =(1+1)=) (")
j=0 M
(ii)

0=(1+-1)"=) (-1) (")
j=0 /

(iif) Subtracting (ii) from (i) we obtain
2} (") =2,
foaa \
(iv) Add (i) and (ii).

4. (a) Since
A +x)"1+x)" = (14 x)"*"

S0 L0 =500

k=0 j=0 I=0

we have
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But the coefficient of x’ on the left is clearly

> (D)

one term of the sum occurring for each pair k, j =1 — .

(b) Let m,! = n in part (a) [note that () = (,”,)].

6. (ii) From
k+1P -k =5+ 10>+ 10K +5k+1  k=1,...,n

we obtain

n+1P°-1= S(Zn:k“) + 10(ik3) + 10(ik2) +5(Zn:k) +n
k—1 k=1 k=1 k=1

S0
ik“ n+1)°—1- 10( +2 e ) — 102e+)@+) _ sn@t)) _
k=1 5

_ n5 n n4 + n3 n
5 2 3 30
(iv) From
1 1 2k + 1 :
2 = =1,...,n
k2 (k+ 12 k2(k+ 1)?
we obtain

n

1 Z 2k+1
S+ 12 < k2(k + 1)
7. The proof is by complete induction on p. The statement is true for p = 1, since

n 1 2
Z:k=n(l'z-+- )="++n
p 2 2

Suppose that the statement s true for all natural numbers < p. The binomial theorem
yields the equations

(k + 1)P+! — gP+1 = (p + 1)kP + terms involving lower powers of k.
Adding for k =1, ..., n, we obtain

p+1 n
-(l;%)l-— = ka -+ terms involving Zk' for r < p.
k=1
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n
By assumption, we can write each ) k" as an expression involving powers #° with
k=1
5 < p. It follows that

S B

p+1
+ terms involving powers of n less thatn p + 1.
=1 p+1

10. Suppose A contains 1, and that A contains n 4 1 if it contains n. If A does not
contain all natural numbers, then the set B of natural numbers not in A is not @.
So B has a smallest member ny. Now ng # 1, since A contains 1, so we can write
ng = (ng — 1) + 1, where ng — 1 is a natural number. Now ng — 1 is not in B, so
ng — 1 is in A. By hypothesis, no must be in A, so ng is not in B, a contradiction.
(By the way, the assertion that a natural number n # 1 can be written n = m + 1
for some other natural number m, can itself be proved by induction.)

11. Clearly 1isin B. If kisin B, then 1,...,k are all in A, so k+ 1 is in A, so
1,...,k+ 1arein A, sok + 1is in B. By (ordinary) induction, B = N, so also
A=N.

14. (a) If V2 + +/6 were rational, then (\/i + ~/6)2 would certainly be rational.
So 84+ 2+/12 = 84+ 4+/3 would be rational, so +/3 would be rational, which is false.

(b) Similarly, if V2 ++/3 were rational, then its square 5+ 2+/6 would be rational,
s0 +/6 would be rational, which is false.

15. (a) The assertion is true for m = 1. If it is true for m, then

(P+v/3)" ! = (p+ /2)a+by/q) = (ap + bg) + (@ + pb)/q,
and ap + bq and a + bp are rational.

(b) The assertion is true for m = 1. If it is true for m, then
(p— V@)™ = (p—q)a—-byg)=(ap+bqg) — @+ pb)/q,
whereas (p + JE)'"'H = (ap + bg) + (a + pb)./q by part (a).

16. (a) The inequality (m + 2n)?/(m + n)? > 2 is equivalent to

m? 4+ 4mn + 4n* > 2m* + 4mn + 2n?,
or simply 2n% > m2.
The second inequality is equivalent to

n*[(m + 2n) — 2(m + n)*] < @n? — m®(m + n)?,

or
n?(2n?2 — m?) < 2n% — m®(n? + [2mn + m?)),
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or
0 < 2n% — m®(2mn + m?).

(b) Reverse all inequality signs in the solution for part (a).

{c) Let m;y = m + 2n and ny = m + n, and then choose

m' =m; +2n; =3m+ 4n,
n=mi+ ny=2m+3n.

17. (a) Suppose that every number < n can be written as a product of primes. If
n > 1 is not a prime, then n = ab for a, b < n. By assumption, a and b are each
products of primes, so n = ab is also.

(b) If /n = a/b, then nb?* = a?, so the factorization into primes of nb? and of
a? must be the same. Now every prime appears an even number of times in the
factorization of a2, and of b?, so the same must be true of the factorization of 7.
This implies that » is a square.

(c) Repeat the same argument, using the fact that every prime occurs a muitiple of
k times in a* and b*.

(d) If py,..., pn were the only primes, then (p; - p2--- pn) + 1 could not be a
prime, since it is larger than all of them (and is not 1), so it must be divisible by
a prime. But py,..., p, clearly do not divide it, a contradiction. (Although this
is a proof by contradiction, it can be used to obtain some positive information: If
D1, ..., pp are the first n primes, then the (n + 1)* prime is < (p; - p2- - pn) + 1.
It is not necessarily true, however, that the number (p; - p2--- py) + 1 is a prime;
for example, (2-3.5-7.11-13) 4+ 1 = 30,031 =59 - 509.)

18. (a) Suppose x = p/q where p and ¢ are natural numbers with no common
factor. Then

n n—1
§—n+an_1§nj+---+ao=0,
SO
(%) P'+an1p" g+ +ang” =0.

Now if g # *1, then g has some prime number as a factor. This prime factor divides
every term of (*) other than p", so it must divide p" also. Therefore it divides p, a
contradiction. So g = +1, which means that x is an integer.

(b) If
x=+/6-v2-4/3,
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then
2 =6+ (V2++3)" - 2/6(v2 4+ v3)
=11+ 2V6[1 — (V2 +/3)],
(@ —112 = 24[1 - (V2+3)]
=24[1+ (V2 ++/3)* - 2(v2+ V3)]
=24[6 + 2(v6 — V2 — /3)]
+ 24[6 4 2x].

It follows from part (a) that either x is irrational or else x is an integer. But it is

easy to check that
0<v24+V3-V6<1

(the inequalities /6 < v2+ +/3 and v/2+ /3 < 1+ V6 are easily checked by
squaring them), so x is not an integer.

(c) Writing the various powers of x = 2%/64-23/6 in terms of the powers of 7 = 21/,
we obtain the following table for the coefficients.

x0 1

x! 1 1

x2 2 1 2
x3 2 6 6 2

x 2 8 12 8
x3 40 40 20 4 2 10
x6 12 24 60 80 60 24

We can then find numbers gy, . .., a5 such that
x84 asx’ + agx* + ag;x3 +ayxitax+a=0
by solving the equations ag + 2a; + 2a3 + 40as + 12 = 0, etc. It turns out that
x® —6x* —4x® + 124> —24x —4 =0.

Part (a) implies that either x is irrational or else x is an integer, and it is easy to
see that x is not an integer, because 1.4 < v2 < 1.5and 1.2 < V2 <13, so
26 <2+ 42 <28.

This is one of those problems where a little learning, though perhaps a dangerous
thing, could save a lot of work: The proper equation for x can also be found by
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noting that +/2 + +/2 clearly satisfies the equation
[(x —v2)’ = 2] - [(x +v2)’ 2] = 0;
when the left side is multiplied out we obtain
(x—2+4-2-[(x —v2) + (x ++2)"]
= (x — 2% +4—2.2x3 + 12x] (the odd powers of x cancel out)
=x% — 6x* —4x? + 1247 — 24x — 4.

Of course, this method depends on the observation that the equation for x = +/2 +

+/2 should also have —+/2 + /2 as a root (a hint as to why this should be true will
be found in Problem 25-8).

1+45)  [1-+5)
2 2 5

20. Since

=1,

V5 R
1+v5)" [1-+5)
2 T\ 2 _ 5
V5 5

the assertion is true for n = 1 and n = 2. Now suppose that the assertion is true for
all k < n, where n > 3. Then it is true, in particular, for n — 1 and n — 2, so

Qn = ap—1 + Gn-2

1+~/§ n-2 1_\/5 n—2 1+\/§ n—1 1“\/5 n—1
2 S\ 2 2 S\ 2

V5

n—2 n—2
(1+ 1+2~/§) ~ (1 —2«/5) (1 N 1—n~/§)

V3

(57
(5 (5 (=)
&

V5
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21. (a) As before, the proof is trivial if all y; = O or if there is some number A with
x; = AY; for all i. Otherwise,

n
0<) (y—x)?
i=1

= Az(iz;: )’iz) - ZA-(iz:]:xiJ’i) + ixiz,

i=l1
so Problem 1-18 again gives the result.

(b) Using 2xy < x% + y? with

Xi Yi
X = , y=
n n
> x? >y
i=l1 i=1
we obtain
2x;yi < x;2 + yi2

(1) - n n *
7 n ,2 .2
\/Z WYt B El 7

i=1 i=1

Adding we obtain

n n n
2y > xt o L w?
n n S i: 2 + Zn: 2 - 2'
.2 .2 X yi
El & ;=Z1 = =1

Again, equality holds only if it holds in (1) for all i, which means that
Xi %

n - n
Z x;2 Z J’i2
i=1 i=l1

for all i. If all y; are not 0, this means that x; = Ay; for

o8

ISR

Xi
1

.M::
=
ta



Chapter 2 17

(c) This is the most interesting proof—it depends on the equality

n n n 2
Y ox? ) wt= (Exiyi) + > iy -z
i=1 i=1

i=1 i<j

To check this equality, note that

n n n
PREED IS St D P L P
i=1 i=l i=1

i#j
n 2 n
(Z xi)’i) = Z(Jlfiyi)2 + inJ’r‘ij’j-
i—=1 i=1 i#j

The difference is

D oty —xiyixiyy) =2 &2y + %P0 — xiyixiyy)
i#j i<j
=2 Z(xi ¥i — X ¥)>
i<j
If equality holds in the Schwarz inequality, then all x;y; = x;y;. If some y; # 0,
say y; # 0, then x; = ;—ly,- for all i, so we can let A = x;/y1.
1

22. (a) We have to prove that
Ap(a) +a; — Ap) > a1a3
or

0> A2 — (a1 + a)An + a1,
= (A, — ai)(A, — az),

which is indeed true, since a; < A, < ay. If fact, we actually have a;a; > a;a,.

This shows that G, < G,, the geometric mean of a,, @, ..., @, while the
arithmetic mean A, is the same as A,. So it suffices to prove that G, <A, =A,.
In other words, we can assume that one of the numbers (namely a;) actually equals
the arithmetic mean. But now we can repeat this process and see that it suffices to
prove the inequality when two of the numbers equal the arithmetic mean. Continuing
enough times, it suffices to prove the inequality when all numbers are equal, in which
case it is clearly true, and in fact, is an equality. This is clearly the only case where
we have equality, since at the very first stage we get G, < G, if some a; # Ap.
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(b) We know that G, < A, when rn = 2!, Suppose that G < A, for n = 2* and
let m = 28+! = 25, Then

Gm= mfal...am=J:/al...an Van_{_l...am

Val...an.i. :/an+1...am

< 5 using G, < A;
@t tan | Gnpiteo+an
< n 5 n by assumption
a4 +an
- 2n
= Am-

(c) Applying (b) to these 2™ numbers yields, for k = 2™ —n,

(a1---8,)(An)* < T

"nA, + kA, TP m
z—m] = (4",

'a:+---+a,.+kA,.]2'"

SO
ay---an < (A)? F = (A"

23. Since a"*! =g"-a = a” -a’, the first equation is true for m = 1. Suppose that
a"t™ =g" . a™. Then

a"tmF) = flAmF - grtm 5 by definition
=(@".a™) - a
=ag". (@™ a)
=a"-a™*! by definition,
so the first equation is true for m + 1.

Since (a")! = a" = a™!, the second equation is true for m = 1. Suppose that
(a"y"* = a™". Then

(@)™t = (@)™ .a" by definition
= "™ . g"
—_ anm+n by (l)

— an(m+1).



Chapter 2 19

24. Since

1-b+c)=b+c by definition
=1-b+1-c by definition,

the first result is true for a = 1. Suppose thata - (b+c¢) =a-b+a-cforall b
and c¢. Then

a@a+1)-b+cy=a-b+o)+(d+rc) by definition
=(@-b+a-c)+ (b+c)
={@a-b+b)+(@-c+c) by P1 and P4
=@+1)-b+@+1)-c by definition.

The equation a - 1 = a is true for @ = 1 by definition. Suppose thata - 1 = a.
Then

@+1)-1=a-14+1-1 by definition
=a+1.

For b = 1, the equation a - b = b - a follows from a - 1 = a, which has just been
proved, and 1 - @ = a, which is true by definition. Suppose that @ - b5 = b - a. Then

a-b+1)=a-b+a-1
=a-b+a
=b-a+ta
=®b+1)-a by definition.,

25, (a) (i) is clear.
(ii) This is clear, because 1 is positive, and if k is positive, then k£ + 1 is positive.

(iii) Clearly 1 is in this set. If condition (2) failed for this set, then there would be
some k in the set with k +1 = 1/2. But his is false, since k = —1/2 is not positive.

(iv) This set contains 4 but not 4 + 1.

(v) Since 1isin A and B, also lisin C. If k is in C, then k is in both A and B,
sok+1isin Aand B,sok+1isin C.

(b) (i) 1 is a natural number because 1 is in every inductive set, by definition of

inductive sets.

(ii) If k is a natural number, then £ is in every inductive set. So k + 1 is in every
inductive set. So k -+ 1 is a natural number.



20 Chapter 2

26. If there is only n = 1 ring, it can clearly be moved onto spindle 3in 1 = 2! —1
moves. Assume the result for £ rings. Then given k + 1 rings,

(a) move the top k rings onto spindle 2 in 2% — 1 moves,
(b) move the bottom ring onto spindle 3,
(c) move the top k rings back onto spindle 3 in 2 — 1 moves.

This takes 2(2¥ — 1) + 1 = 2¥+1 — 1 moves. If 2¥ — 1 moves is the minimum
possible for k rings, then 25+! — 1 is the minimum for & + 1 rings, since the bottom
ring can’t be moved at all until the top k rings are moved somewhere, taking at least
2% — 1 moves, the bottom ring has to be moved to spindle 3, taking at least 1 move,
and then the other rings have to be placed on top of it, taking at least another 2% — 1
moves,

27. Everyone resigned on the seventeenth luncheon meeting.

The reasoning is as follows (for the sake of sanity, “he or she” shall be rendered as
“he” throughout). First suppose there were only 2 professors, Prof. A and Prof. B,
each knowing of the error in the other’s work, but unaware of any error in his own.
Then neither is surprised by Prof. X’s statement, but each expects the other to be
surprised, and to resign at the first Juncheon meeting next year. When this doesn’t
happen, each (being a mathematics professor capable of logical deduction) realizes
that this can only be because he has also made an error. So at the next meeting, both
resign.

Next consider the case of 3 professors, Profs. A, B and C. Prof. C knows that
Prof. A is aware of an error in Prof. B’s work (either because Prof. A found the error
and informed him, or because he found the error and informed Prof. A). Similarly, he
knows that Prof. B knows that there is an error in Prof. A’s work. But Prof. C thinks
he has made no errors, so as far as he is concerned, the situation vis-a-vis Profs. A
and B is precisely that analyzed in the previous paragraph (Prof. C is assuming, of
course, that no one believes an error to exist when one doesn’t). So Prof. C expects
both Prof. A and Prof. B to resign at the second meeting. Of course, Profs. A and B
similarly expect the other two to resign at the second meeting. When no one resigns,
everyone realizes that he has made an error, so all resign at the third meeting.

Now you can turn this into a proof by induction (can’t you?).

28. Again itis a good idea to start with the case when the department consists only of
Profs. A and B. Now, of course, both professors know that some one has published
an incorrect result, but Prof. A thinks that Prof. B doesn’t know, and vice-versa.
Once Prof. X makes his announcement, Prof. A knows that Prof. B knows. And
that’s why he expects Prof. B to resign at the next meeting.

In the case of three professors, the situation is more complicated. Each knows that
some one has made an error, and moreover each knows that the others know—for
example, Prof. C knows that Prof. A knows, since he and Prof. A have discussed
the error in Prof. B’s work, and he knows similarly that Prof. B knows. But Prof. C
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doesn’t think that Prof. A knows that Prof. B knows. So Prof. X’s announcement
changes things: now Prof. C knows that Prof. A knows that Prof. B knows.

Well, you can see what happens in general. This seems to prove that statements
like “A knew that B knew that C knew that ... ” actually make sense.
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1. (ii) x/(x + 1) (for x # 0, —1).
i) 1/(0+x+y)(forx+y#—1).
(vi) For all ¢, since f{c-0) = f(0).

2. (ii) Rational y between —1 and 1, and all y with |y| > 1.
(iv) AlwwithO<w<1,

3. Gi) {x:—-1<x<I1}.

(v) {—1,1}.

4. (ii) sin®y.

(iv) sin#3.

5. (i) soP.

(iv) Sos.

(vi) so (P + PoS).

(viii) PoSos+soS4+Poso(S+5s).

6. (a) Let
l—[(x — Xj)
j=1

=2

[Texi — =)
Jj=1
J#i

(b) Let

f&y=) afi(x)
i=1

N, T e —x)
- 155,

J#i

7. (a) If the degree of f is 1, then f is of the form
fx)=cx+d=c(x —a)+(d+ac),

22



Chapter 3 23

so we can let g(x) = cand b = d+ac. Suppose that the result is true for polynomials
of degree < k. If f has degree k + 1, then f has the form

f&) =arx* + -+ aix + a0

Now the polynomial function h(x) = f(x) — ar+1(x — a) has degree < k, so we
can write
fx)—ar1(x —1) = (x —a)g(x) + b,

or
F(x) = (x —a)lg(x) + ar1] + b,

which is the required form.

(b) By part (a), we can write f(x) = (x —a)g(x) + b. Then
O0=f@a=(@—a)g@a+b=>nb,

s0 f(x) = (x —a)g(x).

(¢) Suppose f has n roots a;,...,a,. Then by part (b) we can write f(x) =
(x — a)g1(x) where the degree of gi(x) is n — 1. Now

0 = flaz) = (a2 — a1)g1(a2),
s0 gi(ay) = 0, since a; # a;. Thus we can write

F(x) = (x — a)(x — az)g2(x),
where the degree of g; is n — 2. Continuing in this way, we find that

f@) =& —a)x —a) - (x —ap)c

for some number ¢ # 0. It is clear that f(a) #0if a # a1, ...,a,. So f can have
at most n roots.

@ If f(x) = (x —1){(x —2)---(x —n), then f has n roots. If n is even, then
f(x) = x™+1 has noroots. If # is odd, then f(x) = x" has only one root, namely 0.

ax -+ b
b
a(cx +d) +
C(ax+b)+d
cx +d
for all x, then

(ac+cd)x®*+@d*—a)x —ab—bd =0  forall x,

8. If

x=f(f(x))=

SO
ac+ecd =0,
ab+ bd =0,

d*—a®=0.
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It follows that @ = d or a = —d. One possibility is a = d = 0, in which case
f(x) = b/(cx), which satisfies f(f(x)) =xforallx #0. If a =d # 0, then
b =c=0,s0 f(x) = x. The third possibility is a + d = 0, so that f(x) =
(ax + b)/(cx — a), which satisfies f(f(x)) = x for all x #£ a/c (strictly speaking
we should add the proviso that f(x) # a/c for x # a/c, which means that

ax+b a
cx—a’' ¢
or a® + bc # 0).
9. (a)
Cang =Ca - Cp,
Cr-a =1—Cy4,

Caup=C4s+Cp—Cy4-Cp.

(b) Let A=1{x: f(x)=1}.
(¢) f = f*if and only if f(x) =0 or 1 for all x; so part (b) may be applied.

10. (a) Those functions f satisfying f(x) > 0 for all x.
(b) Those functions f with f(x) 5 0 for all x.
(¢) Those functions b and c satisfying (b(t))2 — 4c(t) > O for all £.

(d) b(t) must = O whenever a(¢) = 0. If a(t) # 0 for all ¢, then there is a unique
such function, namely x(¢) = a(t)/b(t). If a(t) = O for some ¢, then x(¢) can be
chosen arbitrarily, so there are infinitely many such x.

11. (d) Let H(1), H(2), H(13), H(36), H(m/3) and H(47) have the values already
prescribed, and let H(x) = 0 for x # 1,2, 13,36, 7/3,47. Since, in particular,
H(0) =0, the equation H(H(x)) = H(x) holds for all x.

(e) Let H(1) = 7, H(7) = 7, H(17) = 18, H(I18) = 18, and H(x) = O for
x#1,7,17,18.

13. (a) Let

&)+ £(=x) ) = &)

E(x) = 5 , O(x) = 7

(b) If f = E + O, where E is even and O is odd, then
f(x) = E(x)+ O(x),
f(=x) = E(x) — O(x).

Solving, we obtain the above expressions for E(x) and O(x).
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14. max(f,g) = (f+ g+ |f —g/2; min(f, g) = (f + g — | f — gl)/2. (See
Problem 1-13.)

15. (a) f = max(f, 0) + min(f, 0) because
f(x) = max(f(x), 0) + min(f(x), 0) for all x,
the equation a = max(a, 0) 4+ min(a, 0) holding for all numbers a.
(b) For each x, choose numbers g(x), h(x) > 0 with f(x) = g(x) — h(x). Since

we can choose each pair g(x) and A(x) in infinitely many ways, there are infinitely
many such functions g and 4.

16. (a) Theresultistrueforrn = 1. If f(x;+---+x4) = f(x1)+---+ f(xp) for
all x1,...,x,, then

flxr+- o+ xpgr) = flx1 + -+ - + x0] + Xpq1)
=fl 4+ +x)+ f(Xpt1)
= f(x1) + -+ fxn) + f(Xnt1).

(b) Let ¢ = f(1). Now for any natural number #,
f(ﬂ)=fQ+-;-+1)=f(1)+---+f(11=cn.

n times n times

Since

F&@)+ fO) = f(x+0)= fx),
it follows that f(0) = 0. Then since
fx)+ f(=x) = flx+ (—x)) = f(0) =0,
it follows that f(—x) = f(x). In particular, for any natural number n,
f(=n) =—f(n) = —cn =c(—n).

Moreover,
1 1 (1 1)
:f(;)-i-....l.f(;z—)):f ;+-..+-r-‘- =f(1)=(,‘,
SO

and consequently
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Finally, any rational number can be written 7/r for m a natural number, and n an
integer; and

f(%)=f(%+---+%’=Lf(%)+...+f(%)J

-

m times m times

=c-

I

3

iy
S
SE

17. (a) Since f(a) = f(a-1) = f(a)- f(1) and f(a) # O for some a,we have
f) =1

(b) According to Problem 16, f(x) = f(1)x = x for all rational x.

(¢) If ¢ > 0, then ¢ = 42 for some d, so f(c) = f(d?) = (f(d))? > 0. Moreover,
we cannot have f(c) = 0, since this would imply that

f@=r C'%)=f(c)-f(%)=0 for all a.

(d) If x > y,thenx — y > 0,50 f(x) — f(¥) > O, by part (c).
(e) Suppose that f(x) > x for some x. Choose a rational number r with x < r <
f(x). Then, by parts (b) and (d),

f&x) < f(r)=r < flx),

a contradiction. Similarly, it is impossible that f(x) < x. (There is a minor detail
here which requires justification. See Problem 8-5.)

18. If either f = O or g = 0 holds, and also either # = 0 or k = 0, then the
equation certainly holds. If not, then there is some x with f(x) # 0, and some y
with g(y) # 0. Then 0 # f(x)g(y) = h(x)k(y), so we also have h(x) # 0 and
k(y) # 0. Letting o0 = h(x)/f(x), we have g(y") = ak(y’) for all y’. Moreover a =
g(»)/k(y), so we also have A(x') = af (x") for all y’. Moreover a = g(y)/k(y),
so we also have A(x") = af (x) for all x’. Thus we have ¢ = ak and 2 = af for
some number ¢ # 0.

19. (a) (i) If f(x) + g(y) = xy for all x and y, then, in particular,
f(x)+20)=0 for all x.
So f(x) = —g(0) for all x, and
—80)+g(y)=xy foraly,
setting x = 0 we obtain g(y) = g(0). So we must have
0=—g(0)+ g(0) =xy for all x and y,

which is absurd.
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(ii) Setting y = 0, we obtain f(x) = x/g(0). Similarly, setting x = 0, we obtain
g(y) = y/f(0). So

i L=x+y for all x and y.

2(0) £

Choosing y = 0 we obtain x = 0 for all x, which is absurd.

(b) Let f and g be the same constant function. (Arguments similar to those used
in part (a) show that these are the only possible choices.)

20. (a) Let f(x) =x.

(b) For every natural number n we have
1 k k-1
Zf(x+—[y—x1) —f(x+—[y—x])
po n n
2 k k—1
<> f(x+—[y—x]) —f(x+—[y-x])
— n n

n
1
<Y S@-x?
="

(y — x)?
—.

Therefore f(y) = f(x) for all x and y.

If() — fGx) =

—

22. (a) If f(x) = f(y), then g(x) = R(f(x)) = A(f(¥)) = 8(¥).

(b) If z = f(x), define A(z) = g(x). This definition makes sense, because if
z = f(x"), then g(x) = g(x’) by part (a). For z not of the form f(x), define &
any old way (or leave it undefined). Then for all x in the domain of f we have

g(x) = h(f(x)).

23. (a) Suppose x # y. Then g(x) = g(y) would imply that x = f(g(x)) =
f(g(y)) =y, a contradiction.

(b) b = f(g(b)), soleta = g(b).

24. (a) The hypothesis can be stated as follows: If x = y, then g(x) = g(y). The
conclusion now follows from Problem 22(b), applied to g and I.

(b) For each x, choose some number a such that x = f(a). Call this number g(x).

Then f(g(x)) = x = I(x) for all x.

25. It suffices to find a function f such that f(x) # f(y) if x # y, but such that
not every number is of the form f(x), because by Problem 24(a) there will be a
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function g with g o f = I, and by Problem 23(b) there will not be a function g with
f o g = I. One such function is
X, x<0

f(x)=lx+l, x >0
no number between O and 1 is of the form f(x).

26. hofog=ho(fog)=hol =h,andalsoho fog =(hoflog=1Iog=g.

27. (a) The condition f o g = g o f means that g(x) + 1 = g(x + 1) for all x.
There are many such g. In fact, g can be defined arbitrarily for 0 < x < 1, and its
values for other x determined from this equation.

(b) If f(x) = cforall x,then fog = go fif and only if ¢ = f(g(x)) =
g(f(x)) = g(x), i.e, c = g(c).

(c) If fog = go f forall g, then in particular this is true for all constant functions
g(x) = c. It follows from part (b) that f(c) = c for all c.

28. (a) is a straightforward check.

(b) Let f be a function with f(x) = O for some x, but not all x. Then f # 0, but
there is clearly no function g with f(x) - g(x) = 1 for all x.

(c) Let f and g be the two functions which are 0 except at xg and x;, with f(xp) =
1, f(x;1) = 0and g(xp) =0, g(x;) = 1. Neither is 0, so f or —f would have to be
in P, and likewise g or —g. But (£ f)(£g) = 0, which contradicts P12.

(d) P’11, P’12 and P’13 are true. P’10 is false; although at most one of the condi-
tions holds, it is not necessarily true that at least one holds. For example, if f(x) > 0
for some x and < 0 for other x, then neither f =0, f <0, nor 0 < f is true.

(e) The first inequality is not necessarily true. In fact, if h(x) = —x, then f < g
actually implies that k o f > h o g. The second inequality is true, since f(h(x)) <
g(h(x)) for all x.
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1. (i) 2,4)

SRS R N
(ii) [2, 4]
o 1z 5 4
(iii) (a —¢e,a+¢)
@) (~v372, ~/T2) U (V172 Y375).
W (-2,2).
D S

(vi) gifa <0
Risa > 1;

(=00, —y/(1/a) —1]U[y/(1/a) — 1,00} if 0 < a < L.

Y I F .

— T

= J(i/a)-1 0 V(i17a)-1

(vii) (—o0, 11U[1, o0).

-1 0 ?
(viii) (—1,1) U (2, o0).
: — :
-1 o I 2
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2. (a) Since 0 < x < b,wehave 0 < x/b < 1, and x = (x/b) - b; so choose
t = x/b. Clearly t represents the ratio in which x divides the interval [0, ]. The
midpoint of [0, b] is b/2.

(b) If x 1s in [a, b], so that

then
O0<x—-—a<b-—a,

so that x —a is in [0, b — a]. It follows from part (a) that for some # with0 <¢ < 1
we have
x—a=t(b—a)

or
x=a+tb—a)=((1—1t)a+1b.

The midpoint of [a, b] is

b—a a+b
a-+ > =5

The point 1/3 of the way from a to b is
b—a 2 1

(c¢) and (d) are clear.

3. (i) (ii)




N
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(ix) (x)

4. (i) (i)

(iii), (iv) )
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(vi) i x2—2x+ ¥y =(x—-1)24y2 -1

e
N

(viii)

5. (i) (i)
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(iii) (iv)

)

8. (a) The angle PO Q is aright angle if and only if (P Q)? = (P0O)? + (0 Q)2

P (I,m)

(I,n)

This means that
m—n¥=m?>+14n%+1,

which is equivalent to —2mn = 2, or mn = —1. This proves the result when
b = ¢ = 0. The general case follows from this special case, since perpendicularity
depends only on the slope.

(b) If B # 0 and B’ # 0, these straight lines are the graphs of
fx) =(-A/B)x —C/A,
g(x) =(—A'/B")x — C/A;

so, by part (a), the lines are perpendicular if and only if

) (5
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which is equivalent to AA’+ BB’ = 0. If B = 0 (and consequently A # 0), then
the first line is vertical, so the second is perpendicular to it if and only if A’ = 0,
which happens precisely when AA’ + BB’ = 0. Similarly if B’ = 0.

9. (a) This inequality is equivalent to the squared inequality,

1+ y)2 + 2+ ¥2)? < 2 F 02 + 012+ 1) + 2V 2+ 02V 2 + 322

which is easily seen to be equivalent to the Schwarz inequality.

(b) In part (a), replace
x; by x—x,

x2 by y2—u,
i by x3—ux,
y2 by yi—»

Geometrically, this inequality says that the length of one side of a triangle is less
than the sum of the lengths of the other two. (Notice that the additional information
about the Schwarz inequality which was presented in Problem 1-19(d) shows that
< can be replaced by < in the triangle inequality except when (x1, y1), (x2, y2) and
(x3, y3) lie on a straight line.)

(x3,Y¥s)

Vixz-x)Z+(y3 -y, 2 i xo Prlys-yo P

{x5,y5)
Vixg-x12+(yp-y, B

(K], y,)

10. (The following figures do not indicate any particular points, since they were
drawn using the method of Chapter 11, rather than by plotting points.)
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(i) This function is odd. (ii) This function is odd.

11. (i) The graph of f is symmetric with respect to the vertical axis.
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(ii) The graph of f is symmetric with respect to the origin. Equivalently, the part
of the graph to the left of the vertical axis is obtained by reflecting first through the
vertical axis, and then through the horizontal axis.

\
N\

N

(iif) The graph of f lies above or on the horizontal axis.

—

-

(iv) The graph of f repeats the part between 0 and a over and over.

a
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12. When n is odd, the domain of f is R, but when » is even, the domain of f is
[0, 00).

f(x)=Vx .

-—"
— —

13. The graphs of f(x) = |x| and f(x) = | sin x| contain ‘“corners”.
(a)

f(x)=x2

(b)

f(x)=|sin x| f(x)= sinx

VNN NN ANNAAAL
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14. (i) The graph of g is the graph of f

7

/"

39

moved up ¢ units.

~. /

-

"

(i) The graph of g is the graph of f moved over c units to the left (if ¢ > 0).

/\ f

e B

(iii) The height of the graph of f is multiplied by a factor of c everywhere. If

¢ = 0, this means that g = 0; if ¢ > 0, d
in the same direction; if ¢ < 0, distances

istances from the horizontal are increased
are increased, but directions are changed.
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(iv) The graph of f is compressed by a factor of ¢ if ¢ > 0; if ¢ < 0, the com-
pression is combined with reflection through the vertical axis. If c =0, then gisa

constant function, g(x) = f(0).
g{x)=f(2x)

] alx)=f(-2x)
/

(v) “Everything that happens far out happens near 0, and vice versa”, amply illus-
trated by the graph of g(x) = sin(1/x).

(vi) The graph of g consists of the part of the graph to the right of the vertical axis,
together with its reflection through the vertical axis.

f""‘"'_'"‘\.\
g
~

(vii) The graph of g is obtained by flipping up any parts of the graph of f which

lie below the horizontal axis.
' \Y\QQQL

~
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(viii) The graph of g is obtained by “cutting off” the part of the graph of f which
lies below the horizontal axis.

~ '/ o~

(ix) The graph of g is obtained by “cutting off™ the part of the graph of f which
lies above the horizontal axis.

N\
7N TN

(x) The graph of g is obtained by “cutting off”” the part of the graph of f which
Iies below the horizontal line at height 1.

N _._V.__X\ AT N\

15. Since

b
f(x)=ax2+bx+c=a(x2+;x+£)

() - (-]
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the graph looks like the figure below.

'
[= g

n
]

16. Suppose C = 0, so that we have the equation
Ax> 4+ Bx+ Dy+E =0.

If D # 0, this is equivalent to

__A, B __E
Y==p* T D

so the set of all (x, y) satisfying this equation is the same as the graph of f(x) =
(—A/D)x*—(B/D)x —(E /D), which is a parabola, by Problem 15. [If D = 0, we
have the equation Ax? + Bx + E = 0, (A # 0), which may have zero, one or two
solutions for x; in this case the set of all (x, y) satisfying the equation is either @,
one straight line, or two parallel straight lines.] Similarly, if A = 0, then we again
have a parabola [compare Problem 5(i)]. When A, C s 0 we can write the equation

as BN2 A2
= _—\Y=F
A(x+2A) +C(y+2c)
for some F.

When A = C > 0 we have a circle [compare page 65 of the text], unless F = 0,
in which case we have a point (a “circle of radius 07), or F < 0, in which case
we have @. In general, when A, C > 0 we have an ellipse not necessarily centered
at the origin (or a point, or #). There is no need to consider separately the case
A, C < 0, since we have the same situation, replacing F by —F.
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When A and C have different signs we have a hyperbola for F # 0 (which way
it points depends on the signs of A, C and F). For F = 0 we have the equation

+B_:’:—C +D
*Toa™ a2 UTac

which gives two intersecting lines (a “degenerate hyperbola”).

17. ()

(ii)

LSS LSS S
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(iif)

Vosdssssssssdss

(iv)
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(v)

—t -
r—p
o> =+
o

(vi) Notice that the domain of fis {x: —1 <x <1 and x # 0}.

45
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18. See pages 500 and 502 of the text.

19. (i) Notice that different scales have been used on the two axes.

-
—g —yy
8+ o
*>—e
6+ >—
P
4+ *—e
-—e
2¢ -——e
- -—
o
i

(ii) The graph of f is similar to the graph in part (i), except that there are ten sets
of ten steps between n and n + 1.

(iii) The graph of f contains points in every interval of each of the horizontal lines
at distance 0, 1, 2, ... , above the horizontal axis.

LAL R AL RN EJIE BRI IIIRATITYE REJITITRRIFIINNTY ITNRNYTYY )

__mmwwmh

(iv) The graph of f contains points in every interval of the horizontal axis and of
the horizontal line at distance 1 above the horizontal axis.

------ LR L R N AR LR EIEIII NN NENNEIENNEIZ SRR NY]LY )

Bttt ittt
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(v) The figure below shows a (rough) picture of the part of the graph of f which

lies over [6/10, 1].

87

67

i

6 <+
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(vi) The figure below shows a (rough) picture of the graph of f. Notice that different
scales have been used on the two axes.

3-— — e D A Sl - -— e ek G S L
2+ =8 ae
| = - -9

A .2 .3

20. See page 97 of the text.

22, (a) The first part is a straightforward computation, By Problem 1-18, the min-
imum of these numbers is

g2 42— (S2md — 2c)>  4m?d* +4d” + 4m?c® + 4c? — (4m?d” + 8med + 4c?)

4m2+1) 4(m? + 1)
_d*+m*c? —2mecd  (cm —d)?
- m2+1 T om241

(b) The distance from (c, d) to the graph of f is the same as the distance from
(c,d — b) to the graph of g(x) = mx. By part (a), this is

lcm — d + bj
mi+1

23. (a)

x' = distance from (x, y) to the graph of f(x) = —x if (x, y) lies
above this grpah (i.e., if x + y > 0), and the negative of this
distance if x + y < 0.

y’ = distance from (x, y) to the graph of f(x) = x if (x, y) lies above

this grpah (i.e., if x — y < 0), and the negative of this when
x—y=>0.
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By Problem 22, these distances are given by

from which the desired formulas follow.

(b) Since

I—Jc—yl= X
V2 V2 V2l
x—yl _|* _ ¥
V2 V2 V20
x’ X
_=_+X,

V2 22
!

DA 4
V2 2 2

we have (x'/v/2)? — (v//+/2)* = 1 if and only if

= (E+2) - (-2 42)

2 2 2 2
_EL Yy (2 Y xy
4 4 2 4 4

49
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1. (a) The first formula is basically just the definition of sinf and cosd. For the
second formula, note that Rg(0, 1) makes an angle of 6 + 90° with the first axis, so
Rg(0, 1) = Rg490(1, 0) = (cos(@ + 90°), sin(8 + 90°))

= (—sin§, cos ).

(b) Let the rotation Ry be applied to Figure 3 on page 76. Then v moves to Ry(v),
and w moves to Rg(w). Moreover, the (dashed) lines parallel to v and w become
lines parallel to Rg(v) and Rg(w), respectively. This means that the intersection of
those two lines, i.e., v + w, must move to the intersection of the two lines parallel
to Rp(v) and Rg(w), i.e., Rg(v) + Rg(w). This shows that

Ry (v + w) = Rg(v) + Re(w).

To prove the second equation, simply note that since a - w lies along the line through
the origin and w, it follows that Rg(a - w) must lie along the line through the origin
and Rp(w). Moreover, since the length of a - w is a times the length of w, the length
of Rg(a - w) must also be a times the length of Rg(w).

(c) We have
Ro(x,y) = Rp(x - (1,0)+y- (0. 1))
= Rp(x - (1,0)) + Ro(y - (0, 1))
=x-Rp(1,0) 4+ y - Rp(0, 1)
=x-(cos@,sinf)+ y - (—sind, cos9)
= (xcos B, xsinf) + (—ysinb, ycosh)
= (xcosf® — ysinf, xsinf + ycos8).

(d) For 8 = —45° we have
(x', ¥) = Ry(x, ¥) = (x cos(—45°) — y sin(—45°), x sin(—45°) + y(— cos 45°)).

Substituting
| |
sin(—45°) = — — cos(—45°) = —
( ) 7 ( ) 7
we get
' y’)—(ix+Ly ——1—x+—1—y)

and thus the desired formulas for x’ and y’.

2. (a) If w satisfies this equation, then so do all multiples a - w. To solve

viw + vaw, = 0,

50
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where v, and v, are fixed, we can assign w, arbitrarily, and then obtain

vy
Wy = — .
L)

Multiplying w; by a factor simply multiplies w, by the same factor, so the solutions
are precisely the multiples of the one we obtain for any particular w;.

This works provided vy 7 0. If v, = 0, so that v is a multiple of (1, 0), then it is
easy to see that the possible w’s consist of all muitiples of (0, 1), and vice-versa.

(b) These are all straightforward computations from the definition.

(c) Since v-v = v;? + v,2, this is obvious. The norm

lvll = Vvev = Vv + v

is just the distance from v to the origin.

(d) This is simply Problem 4-9: The squared inequality is equivalent to the Schwarz
inequality (Problem 1-19); equality holds in this squared inequality only when v = 0
or w =0 or w = a - v for some a. For the original inequality it is then easy to see
that equality holds only when a > 0.

(e) We have
lv+wP=@+w -+wy=vev+20ewtwew
lv—wlP=@—-w)  @—w)=vev—2v-w+w-w.
Subtracting the second from the first we get

lv+wli> = v — w|? =4 - w).

3. (a) We have
Rs(v) » Rg(w) = (v1cos@ — vo8in @, vy Sin@ + vy cos ) »
(wicosf — w,sin @, wysinf 4+ wycosH)
= ywy cos? O + vywy sin® 8 + vyw, sin® @ + vyw, cos® 6
+ sin§ cos O[—vywy — w1V + Vywy + Wy V3]
=NW + Wy =v-Ww.
(b) The formula for e - w is a straightforward calculatton. For the vectors v =a - ¢
and u = b - w we then have, using Problem 2(b),
veu={(a-e)su=a-(e-u)
=a-(e(b-w))=a-(b-(e-w))
= ab - (e - w),
which gives the formula

vew = ||v| - Jw] - cos8
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when v a multiple of (1,0).

For the general case, choose ¢ to be the angle from the first axis to v, so that
v = Ry(v') for some v’ pointing along the first axis, and let w = Ry(w’). Since
rotation doesn’t change lengths, we have

vl = 1"}, Twll = lw'll;

moreover, the angle 9’ between v’ and w’ is the same as the angle 6 between v
and w. Then by part (a) we have

vew = Ry(v') » Ry(w'’)
= v’ - w,
= v'[| - llw’|| - cos &’

= |lv]l - |lw] - cos@.

4. Using the “point-slope” form (Problem 4-6) the line L is the graph of
w
fE) == -v)+u.
W

Solving f(x) = 0, we find the desired first coordinate of B, and thus the formula
for the area of the parallelogram, which has that base and height w,.

5. (a) For vy = 0 the formula for det reduces to vyws, and v; (> 0) is the base of
the parallelogram; the height is w, (and hence the area is vy w, = det) for wy > 0,
while the height is —w, (and hence the area is —vyw; = — det) for w, < 0.

(b)
det(Rgv, Ryw) = det((vi cos§ — v, sin @, vy sin@ + vy cosh),
(wy cos@ — ws, sin 8, wy sin 8 + w4 cos 9))
= [v1c0s6 — vy sinB] - [w; sin8 + w; cos )]
— [vl sin@ + vy cos 8] - [w1 cosf — ws sinf]
= njws — vw; = det(v, w).

For any v and w, we can write v = Rg(v’) for some v’ that points along the positive
horizontal axis; then w = Rg(w’) for some w’, and w lies above the horizontal
axis when the rotation from v to w is counterclockwise, and below the axis when
the rotation is clockwise. The area of the parallelogram spanned by v and w is the
same as that spanned by v’ = Ry(v) and w’ = Rg(w), which by part (a) is therefore
=+ det(v’, w'), depending on whether the rotation is clockwise or counterclockwise.
But we have just seen that this is & det(v, w).

6. These are all straightforward computations from the definition.
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7. As in Problem 3, we first check the formula when v is a multiple of (0, 1).
Then choose ¢ so that v = Ry (v’) for some v’ pointing along the first axis, and let
w = Ry(w'); we again have

vl = 1", hwll = llw'll;

moreover, the angle 8’ between v’ and w’ is the same as the angle & between v
and w. Then by the formula in Problem 5(b) we have

det(v, w) = det(Ry(v"), Ry(w'))
= det(v’, w’)
= [lv'|| - lw'|| - sin 6’
= |lull - |lw]| - sin@.
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1. The point (x, y, z) is in the cylinder if and only if

xt4y*=CL
Choosing coordinates in the plane P as on page 81, we see that the points in the
intersection of P and the cylinder are those satisfying

(ex + B)* + y* = C%,

The possibilities are @, a straight line, two paralle] straight lines, or an ellipse (or
circle).

2. (a) Consider the plane containing the line L; from z to F; and the line L: it
intersects the sphere S; in a circle C. Since S is tangent to the plane P at Fj it
follows that L, is tangent to C at F;, and L is also tangent to C. The desired result
now follows from the fact that the two line segments tangent to a circle from an
outside point have the same length.

(b) Similarly, the length of the line from z to F; is the length of the vertical line L’
from z to C5. But L and L’ together form a vertical straight line from the plane of
C; to the plane of C,. Hence the distance from z to F; plus the distance from z to
F, is always exactly the distance between these two planes.

3. The proof is similar, except that now the sum will always be the length of a
straight line generator of the cone between the planes of the two circles.

54
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1. The points with polar coordinates (r{, 8,) and (r2, 6;) are
(rycos 6y, rysinf;) and (r2 cos 63, rp 5in 6;)
and the distance d between them is given by

d? = (ryc086; — r1 cos6,)” + (rzsin 6, — ry sin 6;)?
= rzz(COS2 6, + sin® 62) + r12(cos2 6, + sin> f1)
— 2ryra[cos &, cos 83 + sin 6 sin 8,]
= 112 + ry% — 2ryry cos(6) — 8,).

This is just the “law of cosines”.

2. (i) For each point (x, y) on the graph of f, with
x = f(B)coséb, y = f(0)sin6
we also have the point (x’, y') with

x' = f(—8)cos(—0) = f(B)cosf = x,
y = f(—0)sin(—6) = — f(8)sinf = —y.

The point (x, y') = (x, —y) is the reflection of (x, y) through the horizontal axis,

35
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so the graph of f in polar coordinates is symmetric with respect to this axis.

(i) Similarly, if f is odd, then
x' = f(—0)cos(—0) = —f(@)cosO = —x,
y = f(—8)sin(—8) = — f(#)(—sind) = y.

The point (x/, y') = (—x, y) is the reflection of (x, y) through the vertical axis, so
the graph of f in polar coordinates is symmetric with respect to the vertical axis.

(-r cos(-8), -t sin (-8)) (1 cos @, rsin 8)

=(-rcos §, rsin §)
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(iif) The graph of f in polar coordinates is symmetric with respect to the origin.

3. () r = asin® implies r? = ar sin@, so if (x,y) = (rcos®, r sinH), then x2 +

| -2 - )

y“ =ay, or
so (x, y) lies on the circle of radius a/2 with center (0, a/2). [Conversely, if (x, y)
satisfies x2 4+ y2 = ay and (r, 9) are polar coordinates for (x, y), so that x = r cos 8
and y = rsin#@, then r> = arsind. This implies that r = asin@, except when
r = 0. In this case we have the point (x, y) = (0, 0), which also lies on the graph
of r = asin@, since it has polar coordinates r = 8 = 0.]

(ii) If a = 0, we have the equation r = 0, which is the single point (0, 0). Suppose
a # 0. Now r = asecf = a/fcosf implies that

rcosf =a,
so if {(x, y) = (r cos 8, r sin 8), then
x=a,

and (x, y) lies on the vertical line through (a,0). Notice that we must exclude
points with cos@ = 0, but they can’t be on this vertical line anyway, since a # 0.
[Conversely, if (r, 8) are polar coordinates for a point (x, y) on this line, then

a=rcosé, y =rsind,
and in particular r = a/ cos @ (cos @ # 0, since a # 0).]

(iii) Figure (a) shows the part of the graph from 8 = 0 to 8 = 90°. Figure (b) shows
the part from 8 = —90° to 8 = 90°, It is symmetric with respect to the horizontal
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axis, since cos is even. Finally, Figure (c) shows the whole graph, a four-leaf clover.
The graph appears to be symmetric under a rotation by 90°, and hence, in particular,
symmetric with respect to the vertical axis also. In fact, when the point with polar
coordinate (cos 26, 0) is rotated by 90° we get the point with polar coordinates

(cos 26, 6 + 90°).

This is the same as the point with polar coordinates
(—cos 26,8 +90° + 180°)
and this point is also on the graph, since
cos(2(6 +90° + 180°)) = cos(26 + 180°)
= —Co0s 26.

(b)

(c)

Although Figure (c) shows 6 going from —90° to 270°, it could just as well show
8 going from 0° to 360°. Note that if we do not allow negative values for r, the
graph will contain only the left and right leaves.

(iv) Figure (a) shows the part of the graph from 8 = 0° to 8 = 60°. Figure (b) shows
the part from 8 = —60° to & = 60°. It is symmetric with respect to the horizontal
axis, as before. Finally, Figure (c) shows the whole graph. It is symmetric under
a rotation by 120°, for if the point with polar coordinates {cos 30, 6) is rotated by
120° we get the point with polar coordinates

(cos 30, 68 + 120°)
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and this is on the graph, since

c0s 36 = cos(3(0 + 120°)).

(a) (b) (c)

Notice that in this case we will get the whole graph even if we allow only r > 0:
90°< 6 = 150°

0 =120°

~30°29 =30°

6 =240°
210° <9 2270°

The proof of symmetry with respect to rotation through 120° didn’t involve replacing
@ by 8 + 180°, as in the previous example.

(v) The graph is the same as in (iii). (However, now we obtain 4 leaves no matter
what conventions we adopt about the sign of r, since r > 0 in any case.)
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(vi) The graph has 6 leaves (each leaf in (iv) arises from an interval on which < 0
as well as from one on which r > 0).

4, (i) and (ii) have already been given.

(iii)

3 2 2 2 2

r} =r2cos20 = r?cos?6 — r*sin?6 = x? — y?

SO
(x> + y2)3/2 =2 ¥

5. As before, the distance r from (x, y) to O is given by
(N ri=xt+y,
while the distance s to f is given by

s? = (x + 2ea)? + y*.

Now writing the condition
r—s=12a

as
r—2a=s

and squaring, we get the same equation as before,
2) 4a® — 4ar + r? = x* + deax + 4e%a® + y?,
so subtracting (1) from (2) again gives
a—r=ex+&a,
and thus
3) r=A —e¢x, for A = (1 — &%)a,
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and once again

A

4 = ——
) r 1+ &ecos®

It remains to consider the points satisfying

s—r=2a,
or
r+2a=s
Squaring we now obtain
2 r? +4ar + 4a* = x* + 4eax + 46%a® + y*.

Subtracting (1) from (2') gives
a+t+r=&x-+ eza,
or

r=(&—1a+ex
= —(A — &x),

which is simply the negative of the r found previously; thus, the other branch of the
hyperbola is obtained by choosing —A for A.

6. The distance from the line to (x, y) is just
a—x=a-—rcosg;

thus our condition is
r=a-—rcosé,

or equivalently
a=r(l+cos8).

7. Squaring (3) and substituting x* + y? for r%, we get
x2+y? = A% — 2eAx + %2,
which gives the desired equation,
(1 —e)x? + y? = A2 — 2Aex.

Problem 4-16 shows that this is a circle or ellipse when 1 — g2 > 0 is positive, i.e.,
when £ < 1 (remember that we have already specified £ > 0), a hyperbola when
1 ~¢% <0,ie., when & > 1, and a parabola when 1 — £2 =0, i.e.,, when & = 1.
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8. (a) The graph is the heart-shaped curve shown below. (Hence the name
“cardioid” = heart-shaped).

NN

(b) The point with polar coordinates (r, &) is also the point with polar coordinates
(—r, 8 + 180°). So the graph of r = 1 — sin = @ is also the graph of

—r =1 —sin(f + 180°) =1 +sinf.

(c) Since r = 1 — sin & we have
r’=r —rsiné

or
24yl =yxl4y2—y.

(Notice that if we start with » = —1 — sin 8, then we obtain the same result since

now r < 0,s0r = —/x24y2)

The squared equation
2+ +yP =2 +y
might seem to have the extraneous solutions
Xty =—vxt+y -y,
but for x 5 0 this has no solutions, for we have

—y <yl <vx2+y?,

and hence
—y—+/x2+y?2 <.
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9. (i) The graph is shown below (the dashed line is the cardioid » = 1 — sin 9).

(iii) This graph has the same shape as (i): Since
cos@ = —sin(6 — 90°)

we can write
r =2 —sin(@ — 90°)
= 2(1 — 1 sin(9 — 90°)),
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which shows that the graph is twice as large as the curve in (i) and rotated 90°
counter-clockwise.

10. (a)

(V2a, 0)

(b) Since
r* = 24%r% cos 29 = 2a*r*(cos? 6 — sin® 6)

we obtain
(2 + 2 =24 (x* — y?).

(c) If P =(x, y), then
(d1dr)* = [(x —a)* + y*]- [(x +a)* + y*]
= [(x — a)(x + &) + Y*[(x + a)* + (x — )1 + y*
— (x2 _02)2 + y2[2x2 +2ﬂ2] + y4
= x* — 2% + & +2x2y2 +2a2y2 + y4
— (x?. + y2)2 _ 2a2(x2 _ y2) +a4’
so didy = a? if and only if

(x2 + y2)2 — 2a2(x2 _ y2)
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(d) For b < a we obtain two curves, inside the two portions of the lemniscate, as
in the figure below.

For b < a we obtain a single curve surrounding the lemniscate. It happens to be
indented for b < av/2.




1. @)

(iii)

(v)

2. (i)

(i)

(i)

2_1
lim 2 _0 0
=1 x+1 2
x>—8 27-8
1 - =19
1o x — 3_2
n__,n n__.n
lim Y —tim 25 a1, by (iv)
yox x—y  yx y—x

(1-vx)(1+ V)

ng—>ml 1—=x _}i—rl (1—x)(1+f)
I 1—-x
1 (= x)(1+ /%)

. (1=vV1-x2)(14++1-2x2)
—— e = M
= 50 x(1+,/m—z)
1—(1—x? x
= lim

ch"Ox(1+\/1—i——xi) +V1—x2

l1—+v1—x2 1

lim ————— = lim ———

x—0 x? x>0 4 /1 T2

3. (iv) Let 8 = &, since |x/(1 + sin® x)| < |x|.

(vi) If ¢ > 1,let 6 = 1. Then |x — 1| < & implies that 0 < x < 2,50 0 < /x < 2,
so|v/x—1| < 1. If £ < 1, then (1 —&)? < x < (1 +¢&)? implies that |[/x — 1| < &,
so it suffices to choose § so that (1 —¢)2 <1 —48and 1448 < (1 +&)2 Thus we

can choose 6 = 2& — £°.

4. (i)

2

(i) (iii) All numbers a which are not integers.

(iv) All a.

66
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(v) All a with g # 0 and a # 1/n for any integer n.
(vi) All a with |a] < 1 and a # 1/n for any integer n.

5. (a) (i) All a not of the form n 4 k/10 for integers n and k.

(ii) All a not of the form n + k/100 for integers n and k.

(iif), (iv) No a.

(v) All numbers a whose decimal expansion does not end 7999. ...

(b) The answers are the same as in part (a) (although the description of the numbers
in terms of their new “decimal expansions” may be different).

6. (ii) We need

] & £
lf(x)—2| < min (1, m) and |g(X)-'4| < m’
so we need
. 2
0 < |x — 2| < min (sin2 ( [m“’(l';/ 101 ) + min(1, £/10), [min1, 8/6)]2)
= 4.
(iv) We need
1 1 £ ) £
50 Z‘ <@+ ¢ V@ -2<min (1’ 201741+ 1)) ’
so we need
0<|x-—2]
_ _ 8¢ 2, ([min(l, 28/5)]2) _
< min ([mm (2, m)} , sin ( 5 + min(1, 2¢/5)
= §.

7. Let f(x) = +/|x| witha = 0and! = 0. Then for ¢ < 1 we have l,/lxl —0[ <E
when 0 < [x — 0] < &% butif 0 < |x — 0] < &%/2, it does not follow that
|v/1x] — 0] < £/2 (instead we must let 0 < |x — 0] < (£/2)?).

8. (a) Yes. For example, if g = 1 — f, then }1}3}1 [f{x) + g(x)] exists even if
}1_% f(x) [and consequently }1_13}: g(x)] does not exist; and if g = 1/f where f(x) #
0 for all x # a, then }E’)IL f(x)g(x) does exist even if }1_1)131 f(x) and :}}E}: g(x) do
not exist [for example, if f(x}) =1/(x —a) for x #£0, and g(x) = x —al.

(b) Yes,sinceg=(f+g)—f.
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(c) No. (This is just another way of stating part (b).)

(d) No. The argument analogous to part (b), that g = (f - g)/f, will not work if
}1_1& f(x) = 0, and this is precisely the case in which one can find a counterexample.

For example, let f (x) = x—a, and let g(x) = O for x rational and 1 for x irrational.
Then }l_rg g(x) does not exist, but }1};1}1 F(x)gx) =0,since | f(x)g(x)—-0| < |f(x)].

11. Intuitively, this is true because we only have to consider x’s satisfying 0 <
|[x —a| < &', where we can pick §' < §. In fact, if lim f(x) = I, and & > 0, there
X—a

is a &’ such that if 0 < |x —a| < &, then | f(x) — | < &. Now there is also a
&’ < & with this property (namely, min(3, §’)). Since f(x) = g(x) for all x with
0 < |[x —a] < 8, we also have f(x) = g(x) for all x with 0 < |[x —a| < &, so the
conclusion | f(x) — I] < & can just as well be written |g(x) — | < £. This shows
that }1_13}‘ gx)=1

12. (a) Intuitively, f(x) cannot be made close to a number > }I_IRI g(x) because
f(x) < g(x) and g(x) is close to }y& g(x). A rigorous proof is by contradiction.
Suppose that ! = lim f(x) > lim g(x) =m. Lete =1 —m > 0. Then there is a
5 > 0 such that if 0 < |x — a| < 8, then |l — F(x)] < &/2 and |m — g(x)| < &/2.

L A
|

! f'(x) £

m ;(rx)

Thus for 0 < |x — a| < § we have
g0) <m+2 =1-2 < f(x),

contradicting the hypothesis,

(b) It suffices to assume that f(x) < g(x) for all x satisfying 0 < |x — a| < 4, for
some 6 > 0.

(¢) No. For example, let f(x) = 0 and let g(x) = |x| for x # 0, and g(0) = 1.
Then linh f{(x)=0= linhg(x).
X—r X—r
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13. Intuitively, g is squeezed between f and h, which approach the same number:

Letl=;!i_r>r}1 f(x). Given & > 0, there is a § > O such that if 0 < |x —a| < §, then

lh(x) —1l| <eand |f(x) — | < &. Thus,if 0 < |x —a| < 4§, then
l—e<f(x)<gx)<h(x)<l+e,

so |gx)—1| <e.

14. (a) We ought to have
tim L85 _ fim 22O g i OB _ g L)

x>0 x =0 bx =0 bx y—=>0 y

bl.

The next to last equality can be justified as follows. If £ > O thereisa d > 0
such that if 0 < |y| < &, then |f(y)/y| < €. Then if 0 < |x| < €/|b|, we have
0 < |bx| < &, 50 | f(bx)/bx| < &.

(b) In this case, lirr}) fbx)/x = lin}) f(0)/x does not exist, unless F(0) = 0.
x— x>

(c) Part (a) shows that lin%} (sin2x)/x = 2 linh (sinx)/x. We can also use the fol-
= x—
lowing computation:
sin 2x B 2(sin x)(cos x) sin x sin x

lim = lim =2limcosx lim — =2 lim ——,
x—0 X x>0 X x—0 x—=0 x =0 X

(Of course this method won’t work in general for lin}) (sinbx)/x.)
x—

15. (i) o _
lim T cohim 22X o 20, by Problem 14.
x—0 X x—»0 X
(ii)
. sinax . Sinax . X
im — = lim - lim —
x=0sinbx x-0 x x—0 sin bx
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Chapter 5
(i ,
in22 :
tim 2% 2% _ fim sin2x - lim S22 — 0. 20 = 0.
x—0 X x—0 x>0 Xx
(iv)
. sin®2x . sin2x\? 3
km 57— = | lim = 4o”.
x—=0 X x—»0 X
v)
lim 1l —cosx I (1 —cosx)(1 +cosx) o sin® x
x—=0  x?2 T x>0 x2(1 4+ cosx) "~ x>0 x2(1 4 cos x)
o
T2
(vi)
)
sin“ x +2
lim tan? x + 2x — lim X cos2 x
=0 x4+ x2 x—0 1+x
— lim (smx ~ sinx +2) /1
x—»0\ X cosx
=o-0+2=2.
(vii)
. xsinx ) x sinx(1 4+ cos x) . xsinx(l +cosx)
lim ——— = lim = lim -
=01 —cosx x-0(1 —cosx)(1+cosx) x—0 sin? x
_ 2
T«
(viii)
sin(x + h) — sinx Em sinxcosh +cosxsinh —sinx
=Hh
h—0 h h—0 h
. . (cosh—1) sin h
= lim sinx—= 4+ cosx——
h—0 h h
—1
= COSX [we have lim s _ 0 by (V).
h—0 h
(ix)
.osinx2-1 . (x+Dsin(x2—=1 . (x+ Dsin(x?*~1)
m —=1i = lim
-1 x-—1 =1 x4+ Dx-1 x—>1 x2~1
« 2 _
— 2 lim sin(x 1)
x=>1 x2-1
. Sinh . i
=2 fllmh _ [same reasoning as in Problem 14(a)]
—

= 20o.
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(x)
x2(3 +sinx) 3+sinx 3
Im —————— = lim = .
x=>0 (x +sinx)?2  x—0 , sinx\2 (Q+a)?
(xi)
TR 1\’ . . 3
llml(x —~ 1)’ sin I = ( [since |sin1/(x —1)°| <1 for all x # 0].
x> -

16. (a) Intuitively, if f(x) is close to I, then | f(x)| is close to |I[. In fact, given
€ <Qthereisad > Osuchthatif 0 < |Jx —g| < §, then |f(x) — 1| < £. But
| | f(x) — |1 | < |f(x) — 1} < & (by Problem 1-12(vi)).

(b) This follows from (a) and Theorem 2, since

max(f, g) = f+g4;|f—gl,
min(f, g) = f+g—2If~gI_

18. Pictorially, this means that f is bounded in any interval around a.

—e— e—— — —— — i — P s e v —

a-3| a |a+8

Choose § > Oso that |f(x) —I| < 1for 0 < |x —a| < & (we are picking ¢ = 1).
Thenl —1 < f(x) <+ 1, so wecan let M = max(|l 4 1], |/ — 1}).

19. For any § > 0O we have f(x) = O for some x satisfying 0 < {x —a| < §
(namely, irrational x with 0 < |x —a| < §) and also f(x) = 1 for some x satisfying
0 < |x — a| < & (namely, rational x with 0 < |x — a} < §). This means that we
cannot have | f(x) —I] < 1/2 for all x no matter what ! is. (There is a slight bit of
cheating here; see Problem 8-5.)
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20. Consider, for simplicity, the case a > 0. The basic idea is that since f{(x) is
close to a for all rational x close to a, and close to —a for all irrational x close to a,
we cannot have f(x) close to any fixed number. To make this idea work, we note
that for any § > O there are x with 0 < |[x —a| < § and f(x) > a/2 as well as x
with 0 < [x —a| < § and f(x) < —a /2. Since the distance between a/2 and —a/2
is a, this means that we cannot have | f (x} — | < a for all such x, no matter what I

is.
/1
a/2 /

-a/2 \

N

21. (a) Follows from (b), since |sin 1/x| < 1 for all x (£ 0).

(b) If 8§ > Oissuchthat |g(x)| < &/M forall x with0 < |x| < é, then [g(x)h{x)| <
¢ for all such x.

22. If hm f(x) does exist, then it is clear that 11m [ f(x) + g(x)} does not exist
whenevcr hm g(x) does not exist [this was Problcm 8(b) and (c)]. On the other
hand, if ;1_% f (x) does not exist, choose g = — f; then ll_lﬂ) g(x) does not exist, but
}i_lﬂ) [f(x) + g(x)] does exist.

23. (@) If lin}) f(x)g(x) existed, then }:1_% g{x) = ;gl}) f(x)g(x)/f(x) would also

exist.

(b) Clearly, if lin}) F(x)g(x) exists, then lin%) glx) =
X=> X—>

(¢) In case (1) of the hint, we clearly cannot have }1_1}1}] f(x) = 0, so by assumption
the limit does not exist at all. Let g = 1/f. Since it is not true that }1_% |f(x)| =
00, it follows that if ;1_13}] g(x) exists, then }1_1)15 g(x) # 0. But this would imply
that :ll_rﬂ) f(x) exists, so P_tﬂ) g(x) does not exist. On the other hand, iﬂ[}) f(x)g(x)

clearly exists. In case (2), choose x, as in the hint. Define g(x) = 0 for x # x,,
and g(x) = 1 for x = x,. Then linh g(x) does not exist, but lin%) f(x)gx) =
X—> X—>
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24. Given ¢ > 0, pick n with 1/n < £ and let § be the minimum distance from
a to all points in Ay,..., A, (except a itself if a is one of these points). Then
0 < |x —a|] < & implies that x is not in A,,..., A,, so f(x) = 0 or 1/m for
m>n,s0|f(x)| <e.

26. (a) Although liml 1/x = 1 is true, it is not true that for qll § > 0 there is an
X—>

e>0with |1/x — 1] < gfor 0 < |x — 1| < 4. In fact, if § = 1, there is no such ¢,
since 1/x can be arbitrarily large for 0 < [x — 1] < 1.

Moreover, any bounded function f automatically satisfies the condition, whether
}1_[)1}1 f{x) =1 is true or not.

(b) If f is a constant function, f(x) = c, this condition does not hold, since | f (x)—
¢| < 1 certainly does not imply that 0 < |x — a| < & for any 4.

Moreover, the function f(x) = x, for example, satisfies this condition no matter
what a and [ are.

27. (i), (ii), (iii), (iv) Both one-sided limits exist for all a.

(v) Both one-sided limits exist for a # 0 and neither exits for a = 0.

(vi) Both one-sided limits exist for all @ with |a| < 1; moreover, lim f(x) and
x—>1-

lim f(x) exist.
=1+

28. (a) (i), (ii) Both one-sided limits exist for all a.
(iifi), (iv) Neither one-sided limit exists for any a.
(v) Both one-sided limits exists for all a.

(vi) Both one-sided limits exist for all 2 whose decimal expansion contains at least
one 1; in addition, the right-hand limit exists for all a whose decimal expansion
contains no 1’s, but which end in 0999 . .. .

(b) The answers are the same as in part (a).

31.
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Letl= lim f(x)andm = 1im+f(x). Sincem — 1 > 0, there is a § > 0 so that

x—>a- x—a
|f(x)—l|<—’?2;l when a-8<x<a,
|f()’)—m|<£12;l— when a<y<a+sd.

This implies that
f(x)<l+E2:i=m—T——2_—l<f(y).

The converse is false, as shown by f(t) = ¢ and any a. It is only possible to
conclude that lim f(x) < lim+ f(x).
X—=raq- X—ra

32. Naturally we are assuming a, # 0 and b, # 0. If x # 0, then

ap, — 1 do
a,,x"+"'+do_a"+ . +"'+;F_f(x)
bux™ 4+ -+by  bm bo T g(x)’
m o Tt

If m < n,then lim f(x) =a,but lim g(x) = 0. Thisimplies that lim f(x)/g(x)
X—>00 X—=>00 X—=>00
does not exist—otherwise we would have

Jdim f(x) =[lim f(x)/gC)]-[lim g(x)]=0.

If m > n, we write

an ao
anx"+-tay _gmA VT om f@)
Bux™ + -+ by bo '

xm
Then lim f(x) = 0if m > n, and a, if m = n, while lim g(x} = b,. So
X—>00 X—>00

xlﬂl)ngo fx)/g(x)=0if m > n, and a, /by, if m =n.

33. (i)

sin” x

X +sin” x
xg]go 5+ 6 = 5

| ov=

N o—



(ii)

(iii)

Chapter 5

. xsinx ) .
lim = lim -sin x
x—>00 x2 4 X—»00 5
x
=0, since |sinx| < 1.

lim vVx2+x —x = lim (V22 +x —x)(Vx2+x +x)

(iv) The limit

does not exist, since (1 +

X — Q.

35. (i)

=00 X—00 x2+x +x
) x
= lim
1
= lim —————
X—> 00 1
1/ 1+-+1
x
_ 1
=3
x2(1 + sin® x) . 1+ sin®x
im - = li
1> (x + sinx)? x—>00 sinx\?
(1+ : )

sin x

x

since | sinx| < 1 for all x.

(if)

lim ¥ _ o,
X200 X
sin !
X .1 ] v . sinx
lim xsin— = lim lx = lim ——= by Problem 34
X-»0Q X x—>00 x—=0F X
x

75

2
) — 1 but 1+ sin? x does not approach a limit as

36. Emm f(x) =l means that for all ¢ > 0 there is some N such that | f(x)—I| < &
x —

for some x < N.

(a) The answer is the same as when x — oo (Problem 32).
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(b) If I = xlgrgo f(x), then for every & > Q there is some N such that | f(x)—1| < ¢

forx > N. Nowif x < —N,then —x > N,so|f(—x)-I| <¢. So lim f(—x)=
X=»—=00

l.

() Ifl = xlir—{loo f(x), then forevery ¢ > Q there is some N such that | f(x)—!| < &

for x < N, and we can assume that N < 0. Now is I/N < x < 0,then1/x < N,
so |[f(l/x)—1] <e&.

37.

0O+ - —_— T

(a) Given N > 0,let8 = 1/+/N. ThenO < |x—3| < & implies that (x—3)% < 1/N,
so 1/(x —3)* > N. .
(b) Given N > 0, so that 1/N > 0, choose § > 0 such that |g(x)| < ¢/N for
0 < |x—a| <4§. Then 0 < |x —a| < & implies that | f(x)/g(x)] > &-(N/e) =N.

38. (a) lim+ f(x) = oo means that for all N there is a § > 0 such that, for all x,

X—>a
if a <x <a+4,then f(x) > N.
lim f(x) = o0 means that for all N there is a § > O such that, for all x, if
x—a-
a—38 <x <a,then f(x) > N.

xl_i)m f(x) = oo means that for all N there is some M such that, for all x, if x > M,
o0

then f(x) > N.
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It is also possible to define

lim f(x) = o0,

X—=>—00
lim f(x) = —o0,
X—>a
lim+ f{x) = —00,
lim f{x) =—o0,
Xx—>a-
lim f(x) = —o0,
X—>00
lim f(x) = —o0.
X—>—00

(b) Given N > 0,choose § = 1/N. If 0 < x < §,then 1/x > N.

77

(c) If xllf‘éo f(1/x) = oo, then for all N there is some M such that f(1/x) < N
forx > M. Choose M > 0. If 0 <x < 1/M, thenx > M, so f(x) > N. Thus

lim f(x) = co. The reverse direction is similar.

x—0t
39. (i)

x+4 7

34 4x -7 I 2

lim =X g —x 22

x—>00 Tx2 — x +1 x—>00 1 1

T— -+

X X

(i) lim x(1 +sin?x) = 0o, since 1 < 1 + sin®x < 2 for all x.
X—=2>00

(iii) lim x sin® x does not exist, since sin®
X—=>00

(iv)
] 2 . 1 . 1
lim x“sin— = lim x - xsin— = 00,
X—=00 X X—00 X

since lim xsin1/x = o, by Problem 35(ii).
X—>r 00
v)

lim vx242x — x = lim ( x2+2x_x)(vx2+2x+X)

x oscillates between 0 and 1.

x->00 x—>00 VXt 42 +x

2x
= lim
TP Vx2+ 2+ x
2
= lim ——— = 1.

X—»00 2
J1+=+1
X
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(vi)
2 — 2
i X((TT T vE) = tim F/ET2=VE) (/T FD 4 V)
X—00 =00 ,/x+2_|_\/;
. 2x
= lim
100 \J/x + 24+ /x
. 2
= lim = 0.
I ) 1
R
x x x
(vii)
im Y 2 im % - im Lo
=00 X X—>00 X x—>oo,‘/;

40. (a) The figure below shows one side of the n-gon, subtending an angle of 27 /n.
Angle BOC is thus n/n, so BC = rsin(n/n), and AC = 2rsin(n/n). So the
whole perimeter is 2rn sin(w/n).

C

(b) As n becomes very large this approaches
lim 2rxsin (E) = lim 31'21"i sin (E)
X—>Q X X—=>00 T X

=2nro,

where o = II'LH;O (sinx)/x, by Problem 35(ii). [Since you know that the perimeter

should approach the circumference of the circle, which is 27 r, you can guess that
lin}) (sinx)/x = 1, when x is in radians.]
X=>

41. How do we know that v/a2 — ¢ and va? 4 ¢ exist!? In Chapter 7 we prove
(Theorem 8) that every positive number has a square root, but the proof of this
theorem uses the fact that f(x) = x2 is continuous, which is essentially what we
are trying to prove. In fact, the existence of square roots is essentially equivalent to
the continuity of f—compare Problem 8-8.
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1. (ii) No F, since lin}) [x]/x does not exist.
X—>

(iv) No F, since F(a) would have to be O for irrational a, and then F is not con-
tinuous at a is a is rational.

2. Problem 4-17:

(i), (i), (iii) All points except integers.

(iv) All points.

(v) All points except 0 and 1/n for integers n.

(vi) All points in (—1, 1) except O (where it is not defined) and 1/n for integers n.
Problem 4-19:

(i} All points not of the form n + k/10 for integers k and n.

(if) All points not of the form n + k/100 for integers & and n.
(iii), (iv) No points.

(v) All points whose decimal expansion does not end 7999 ... .
(vi) All points whose decimal expansion contains at least one 1.

3. (a) Clearly }{in}) f(h) =0, since |h| < & implies that | f(h) — fF(O)| = |f(h)| <
3.

(b) Let f(x) = O for x irrational, and f(x) = x for x rational.

(¢) Notice that | f(0)] < |g(0})] = 0, so f(0) = 0. Since g is continuous at 0, for
every ¢ > O thereis a § > 0 such that |g(h) — g(0)]| = |g(h)| < ¢ for |k| < 4. Thus,
if |h| < &, then | f(h) — f(O)| = | f(h)| < |g(h)| < e&. So ,{l_% fh) =0= f(0).

4. Let f(x) =1 for x rational, and f(x) = —1 for x irrational.

5. Let f(x) = a for x irrational, and f(x) = x for x rational.

.....‘.‘D..ll.“........ LY}
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6. (a) Define f as follows (see the solution to Problem 4-17(vi)):

r 0, x<0
—1-—~, D<xx<l1
fix) =1 [1]
x
L 2, x>1
(b) Let
[ -1, x=<0
L O<x<1
fxy=1 1] B
H
[ 2, x>1

7. Note that f(x + 0) = f(x) + f(0), so f(0) = 0. Now
’Ei_lfhf(a+h)—f(a)=}}i_%f(a)+f(h)—f(a)
=gi_%f(h)
=,5I_I)I})f(h)—f(0)=0,

since f is continuous at 0.

8. Since (f + a)(a) # 0, Theorem 3 implies that f + « is non-zero in some open
interval containing «.

9. (a) This is just a restatement of the definition: If the condition did not hold, then

for every ¢ > 0 we would have | f(x) — f(a)l < £ < 2¢ for all x sufficiently close
to a, i.e., for all x satisfying |x — a| < & for some § > 0. If this were true for all ¢,

then f would be continuous at a.

fla)+e -

fla) 1

L]

flal-e +—— —ivrmer— —————

Q o
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(b) If neither of these conditions held, then for every ¢ > 0 there would be §;, §; > 0
such that f(x) > f(a)—e for [x —a| < é; and f(x) < f(a)+¢& for |x —~a| < §,. If
|x —a| < & = min(41, 82), then f(a)—e < f(x) < f(a)+¢&,50|f(x)— fla)l < e.
Since this would be true for all £ > 0, it would follow that f is continuous at aq.
10. (a)

lim | f](x) = |lim f(x)l by Problem 5-16

X—>a X—>a

= [f@)] = [fl(a).

(b) The formulas for E and O in the solution to Problem 3-13 show that E and O
are continuous if f is.

(c) This follows from part (a), since

max(f, g) = f+g-;If—gl’
min(f, g) = f+g—2|f“"g|-

(d) Let g = max(f, 0) and A = —min(f, 0).

11. 1/g = f o g and f is continuous at g(a) if g(a) # 0. So by Theorem 2, 1/g
is continuous at a if g(a) # 0.

12. (a) Clearly G is continuous at a, since G(a) =1 = }Lma glx) = }!g}z G(x). So
f o G is continuous at @ by Theorem 2. Thus

fO = F(G@) = (f 2 6)(@) = im (f 0 G)(x) = lim f(g(x)).

(b) Let g(x)=1+x —a and
0, l
f@) = [ *7

1, x=lI.

Then J!i_:}}zg(x) =1 so f(xli_rjzg(x)) = f() = 1; but g(x) # I for x # a, so
lim f(g(x)) = lim 0 =0.

13. (a) Since f is continuous on [a, b] the limits 1im+ f(t) and lil‘;)l f(t) exist.
t>a t—>b-
Let

lim f(#), x<a
t—at

gix)=1 fx), a<x<b
1i1}71 f@), b=<nx.
t—b—
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(b) Let f(x) =1/(x — a).

14. (a) The limit tll_!)l(l) f(a + t) exists, and equals f(a) = g(a) = h(a), since
tgr{)g fla+t) = :l_if?+ gla +1) = g(a),
tlitg_ fla@a+1t)= tlil{)l_h(a +t) = h(a).

(b) f is continuous at ¢ by (a), and at any x # c in [a, b], since f agrees with
either g or A in some interval around x.

15. If f is continuous on [a, ] and f(a) > 0, then there is some § > 0 such that
forall x,if a < x < x4+, then | f(x) — f(a)| < f(a). This last inequality implies
that f(x) > 0. The proof for f(b) > 0 is similar.
16. (a) No in the first case; yes in the second.
(b) We have

lim g(x) = lim f(x) since g(x) = f(x) for x # a.

X—>0a x—a

= g(a) by definition of g(a).

(c) g(x) =0 for all x.
(d) Since g(a) = )I;I_IB; f(¥), by definition, it follows that for any £ > O there is a
3 > O such that | f(y) — g(a)| < & for |y — a] < 4. This means that
g@)—e < f(y)<gla)+e
for |y —al < 4. Soif |x —al| < 8, we have

gla) —¢ < )}gl} f(y) <gla) +e,

which shows that |[g(x) — g{a)| < ¢ for all x satisfying [x — a| < 4. Thus g is
continuous at 4.
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1. (i) Bonded above and below; no maximum or minimum value.
(iv) Bounded below but not above; minimum value 0.

(v) Bounded above and below. It is understood thatg > —1 (sothat —a—1 < a+1).
If -1<a<1/2,thena<—a—1,s0 f(x)=a+2forallxin(—a—1,a+ 1),
so a + 2 is the maximum and minimum value. If —1/2 < a < 0, then f has
the minimum value a2, and if a > 0, then f has the minimum value 0. Since

a+2 > (a+1)? only for [—1 - \/g]/Z <a< [1 +\/§]/2, when a > —1/2 this
function f has a maximum value only for a < [1 +4/5 ] / 2 (the maximum value
being a + 2).

(vi) Bounded above and below. As in part (v), it is assumed that ¢ > —1. If
a < —1/2 then f has the minimum and maximum value 3/2. If @ > 0, then f has
the minimum value 0, and the maximum value max(a?,a +2). If —1/2 < a < 0,
then f has the maximum value 3/2 and no minimum value.

(viii) Bounded above and below; maximum value 1; no minimum value.

(x) Bounded above and below; maximum value 0; the maximum value is g if a is
rational, and there is no maximum value if a is irrational.

(xii) Bounded above and below; minimum value 0; maximum value [a].

2. (ii) n = -5, since f(-5)=2(-5)+1 <0< f(—4).
(iv) n = 0 since both roots of f(x) = 0 lie in [0, 1].

3, (if) If f(x) =sinx —x + 1, then £(0) > O and f(2) = (sin2) — 1 <O.

4. (a) Let! = (n —k)/2 and let
fO=04+DE-DE—-2)---(x —k).

(b) If f hasroots ay, ..., @, with multiplicities my, ..., m,,sothatk = m;4.--+
m,, then
f(x)=(@x—a)™---(x —ar)™ g(x)

where g is a polynomial function of degree n — (m; + --- + m;) = n — k with no
roots. It follows from Theorem 9 that n — k is even.

6. If not, then f takes on both positive and negative values, so f would have the
value 0 somewhere in (—1, 1), which is impossible, since /1 — x2 # 0 for x in
(—1, 1).

83
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8. If not, then f(x) = g(x) for some x and f(y) = —g(y) for some y. But f is
either always positive or always negative, since f(x) # O for all x. So g(x) and g(y)
have different signs. This implies that g(z) = O for some z, which is impossible,

since 0 # f(z) = £g(2).

9. (a) f(x) > O for all x # a. For if x5 > a is the point with f(xg) > 0, and if
f{x) < 0 for some x > a, then f(z) = 0 for some z in the interval between x and
x; since z # a, this contradicts the hypothesis. The proof for x < a is similar.

(b) f(x)>O0forall x > a, and f(x) < O for all x < a [the proof is essentially the
same as for part (a)].

(¢) For y #0,let f(x) = x? + x2y + xy* + y° (to be very explicit we could write
Jfy instead of f). Since

4 _ 4
FOy =" forxsky
x—y
fO) =4y #0

we have f(x) = 0 only when x = —y.

Say that y > 0. Then f(y) = 4y’ > 0, while f(—2y) = -5y < 0. It follows
from part (b) that f(x) > O for x > —y and f(x) < O for x < —y. Similarly, if
y < 0,sothat y < 0 < —2y, then f(y) < 0 while f(~2y) > 0, so again f(x) > 0
for x > —y and f(x) < O for x < —y. In short, x3 + x2y + xy2 + y* > 0 for
x+y>0and <Oforx+y<0.

12. (a) Use the proof in the solution to Problem 11, but applied to f and —1I.

(b) Apply the same proof to f and g.

13. (a) No, f is not continuous on [—1,1]. If a < b are two points in [—1, 1]
witha,b > Qor a, b <0, then f takes every value between f(a) and f(b) on the
interval [a, b] since f is continuous on [a, b]. On the other hand, if a < 0 < b, then
f takes on all values between —1 and 1 on [a, &], so f certainly takes on all values
between f(a) and f(b). The same argument works for a = 0 or b = 0 (because
f(0) was defined to be in [—1, 1]).

(b) If f were not continuous at a, then (by Problem 6-9(b)) for some ¢ > 0O there
would be x arbitrarily close to @ with f(x) > f(a)+ ¢ or f(x) < f(a) — &,
say the first. We can even assume that there are such x’s arbitrarily close to a and
> a, or else arbitrarily close to a and < a, say the first. Pick some x > a with
f(x) > f(a) + . By the Intermediate Value Theorem, there is x” between a and x
with f(x") < f(a)+&. But there is also y between a and x’ with f(y) > f(a)+e.
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By the Intermediate Value Theorem, f takes on the value f(a) + ¢ between x and
x" and also between x’ and y, contradicting the hypothesis.

fla)Jte o —— — — — — — -—\v— _____

f{a) + .

x <+

(¢) Asin(b), choose x; > a with f(x1) > f(a)+¢&. Then choose x| between a and
x1 with f(x]) < f(a)+¢&. Then choose x; between a and x; with f(x3) > f(a)+e¢
and x; between a and x; with f(x;) < f(a) + €. Etc. Then f takes on the value
f(a) + € on each interval [x,, x,], contradicting the hypothesis.

14. (a) This is obvious since |cf|{x) = |c| - | f(x)] for all x in [0, 1].

(b) We have
|f +8l(x) = 1f(x) + g(x) = 1 fF ()l + [g(¥)] < | F1(x) + |gl(x).
If | f + g| has its maximum value at xq, then
I +&ll =1f +gl(x0) < |fl(x0) + Igl(x0) < Il + llgll.
If f and g are the two functions shown below, then

WAl =lgl=Hf+el=1,

so || f+gll # || FllI+ligll. (Notice that this happens even though we have | f4+-gl(x) =
| £1(x) + |gl(x) for all x.)
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(c) Apply part (b) with f replaced by h — g and g replaced by g — f.

15. (a) Choose b > 0 so that |¢p(b)/b?| < 1/2. Then

n
b” + ¢(b) =b" (1+M) > b > 0.
b" 2
Similarly, if a < 0 and |¢(a)/a?| < 1/2, then a” + ¢(@) < a*/2 < 0. So
x™ + ¢(x) = 0 for some x in [a, b].

(b) Choose a > 0such that a" > 2¢(0) and such that |¢(x)/x"| < 1/2 for |x] > a.
Then for |x| > a we have

n n
+ex)=x"(1+ ox) -2 .2 . ¢ (0),
xn 2 2
so the minimum of x"* + ¢ (x) for x in [—a, a] is the minimum for all x.
16. If
f@ =x"+a,_x"""+ - +ap,
let
M = max(1, 2n|a,-1|, ..., 2n|agl).
Then for all x with |x| > M we have
1 an—| ap
- <] .. —,
7 = + +---+ pr

SO

Fol= | (1422 4t ;‘—")\ > x"/2.

If b > M satisfies |[b"| > 2 (0), then | f(x)| = | f(0)] for |x| = b. So the minimum

value of | f(x)| on [—b, b] is the minimum value on R. (Naturally this problem can

be generalized exactly as in Problem 15: If ¢ is continuous and lirrgo ¢g(x)/x" =
x>
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0= x_lir_nw @(x)/x", then there is some number y such that |y*+¢(y)| < |x"+¢ (x)]
for all x.)

17. Pick b > 0 so that f(x) < f(0) for |x| > b. Then the maximum of f on
[—b, b] is also the maximum on R.

1
CF ==
[« g 3

18. (a) Apply Theorem 3 to the (continuous) function

d(@) = V(f@)? + (z — x)?,
which gives the distance from (x, 0) to (z, f(z)), for z in [a, b].

(b) If f(x) = x on (a, b), then no point of the graph is nearest to the point (a, a).

(¢) Clearly the function d of part (a) satisfies lim d(z) = 0o = lim d(z), since
=00 I—>—00

d(z) = |z — x). Choose ¢ > 0 so that d(z) > d(0) for |z] > ¢. Then the minimum
of d on [—c¢, ¢] will be the minimum of 4 on R.

(d) By definition, g(x) = v/ (f(2))? + (z — x)? for some z in [a, b]. Now

VE@QP+ G-y <VF@QP+G@—x)2+|z—y|  forallz

So g(y), the minimum of all v/(f(2))2 + (z — y)2, is less than or equal to |z — y| +

the minimum of all v/(f(2))? + (z — x)2, which is g(x) + |y — x|. Since lg(y) —
g(x)| < |y — x| it follows that g is continuous (given ¢ > 0, let § = ¢).

(e) Apply Theorem 3 to the continuous function g on [a, b].

19. (a) If the continuous function g satisfied g(x) # O for all x, then either g(x) >
Oforall x or g(x) < Oforall x,i.e.,either f(x) > f(x+1/n)or f(x) < f(x+1/n)
for all x. In the first case, for example, we would have

fO) > f(1/n) > f2/n) > --- > f(n/n) = f(1),
contradicting the hypothesis that f{0) = f(1).
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(b) The picture below illustrates such a function f when 1/4 <a < 1/3.

In general, if 1/(n + 1) < a < 1/n, define f arbitrarily on [0, a], subject only
to the condition that f(0) = 0, f(a) > 0, and f(1 — na) = —nf(a). Since
1/(n+1) < a < 1/n, the numbers 0, 1 —na, and g are all distinct, so this is possible.
Then define f on [ka, (k + 1)a] by f(ka + x) = f(x) + ka. In particular, we have
f() = f(na+(1—na)) =na+ f(1—na) =0,but f(x+a)~ f(a)= f(a) >0
for all x.

20. (a) If f(a) = f(b) for a < b, then we cannot have f(x;) > f(a) and f(x;3) <
f(a) for some x;, x; in [a, b], since this would imply that f(x) = f(a) for some
x between x; and x;, so that f would take on the value f(a) three times. So either
f(x) > f(a) forall x in (a, b), orelse f(x) < f(a) for all x in (a, b), say the first.
Pick any xp in (a, b).
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The Intermediate Value Theorem implies that f takes on all values between f(a)
and f(xg) in the interval [a, xg] and also in the interval [xg, b]. So we cannot have
f(x) > f(a) for x < a or x > b, since this would imply that f takes on these
values yet a third time (on [x, a] or [b, x]). So f is actually bounded above on R
(since it is bounded on [a, b]), which means that f does not take on every value.

(b) Moreover, even if we allowed the situation where f did not take on all values,
it would still be true that f actually has a maximum value M on R (the maximum
on [a, b] will be the maximum on R). Now f must take on this maximum value
twice, say at xg and x;. Pick e < xp < B < yo < ¥.

/\\/\

L
L

A [
L) | J

a xo B x. Y

If m is the maximum of f(a), f(B), f(y), then f takes on all values between m
and M on each interval [er, xp], [x0, B], [B, x1] and [x;, y], which is impossible.

(c) The following picture, for n = 5, will indicate the general case.

— ey — — — ]

(d) Pick x; <+ < x, with f(x1) = -+ = f(x,) = a. In each interval (x;, x;4+1),
either f > a or f < a. Since n is even, there are an odd number, » — 1, of such
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intervals, so either f > a in more than half of them, or f < a in more than half
of them. Thus f > g in at least n/2 of them, or f < a in at least n/2 of them,
say the first. Then f takes on all values slightly larger than a at least twice in at
least n/2 intervals. This shows that f cannot take on these values any where else,
so f is bounded above. (Moreover, the same sort of argument as in part (c) shows
that f would have to take on values slightly less that the maximum value at least 2n

times.)
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1. (ii) 1 is the greatest element and —1 is the least element.

(iv) O is the least element, and the least upper bound is +/2, which is not in the set.
(vi) Since {x : x> +x+1 <0} = ([-1— ~/5—]/2, [-1+ \/g]/2), the greatest
lower bound is [—1 — +/5]/2 and the least upper bound is [—1 + +/5]/2; neither
belongs to the set.

(viii) 1 — 1/2 is the greatest element, and the greatest lower bound is —1, which is
not in the set.

2. (b) Since A is bounded below, B # @. Since A # @, there is some x in A. Then
any y > x is not an upper bound for A, so no such y is in B, so B is bounded above.
Let o = sup B. Then « is automatically > any lower bound for A, so it suffices to
prove that « is a lower bound for A. Now if o were not a lower bound for A, then
there would be some x in A with x < «. Since « is the least upper bound of B,
this would mean that there is some y in B with x < y < «. But this is impossible,
since x < y means that y is not a lower bound for A, so y would not be in B.

3. (a) No. For example, the functions f shown below have no second smallest x
with f{x) =0.

- 0O

/.

"

Since b — a + x varies between b and a as x varies between a and b, the function
g(x) = f(b — a + x) satisfies g(a) = f(b) > 0 and g(b) = f(a) < 0. So there is
a smallest y with g(y) = 0. Then x = b — a + y is the largest x with f(x) = 0.

(b) Clearly B # @, since a is in B; in fact, there is some § > 0 such that B contains
all points x satisfying a < x < a + 8, by Problem 6-15, since f is continuous on
[a,b] and f(x) < O. Similarly, b is an upper bound for B, and, in fact, there is a
& > 0 such that all points x satisfying b — 8§ < x < b are upper bounds for A; this
also follows from Problem 6-15, since f is continuous on [a, ] and f(b) > 0.
Let « = sup A. Then a < o < b. Suppose f(a) < 0. By Theorem 6-3, there is
a § > O such that f(x) < 0fora —8 < x < o+ 4. This would mean that o + §/2
is in A, a contradiction. Similarly, suppose f(a) > 0. Then there is a 6 > 0 such

%1
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that f(x) > Oforo — 6 < x < oo+ §. But then & — §/2 would also be an upper
bound for B, contradicting the fact that « is the least upper bound. So f(a) = 0.

This « is the greatest x in [a, b] with f(x) = 0. The sets A and B are different
for the function shown below.

4. (a) Let c be the largest x in [a, xp] with f(x) = 0 and d the smallest x in [xg, b]
with f(x) =0.

(b) Let c be the largest x in [a, b] with f(x) = f(a), and let d be the smallest x
in [c, b] with f(x) = f(b).

6. (a) By definition of continuity, we have f(a) = }9331 f{(x) for all a, so it suffices
to prove that lim f(x) = O (knowing that the limit / exists). Now given ¢ > 0,
X—>d

there is a § > 0 such that | f(x) — | < ¢ for all x satisfying 0 < |x —a| < 4. Since
A is dense, there is a number x in A satisfying 0 < [x —a| < §;s50 |0 —1| < &.
Since this is true for all £ > 0, it follows that = 0.
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(b) Apply part (a) to f — g.

(c) Asin part (b), it obviously suffices to show that if f is continuous and f(x) > 0
for all numbers x in A, then f(x) > O for all x. Now there is a § > 0 such that, for
all x,if 0 < [x —a| < §, then | f(x)—I| < |I|/2. This implies that f(x) <1+]!|/2;
if I < 0, it would follow that f(x) < 0, which would be false for those x in A
which satisfy 0 < |x —a| < 8.

It is not possible to replace > by > throughout. For example, if f(x) = |x|, then
f(x) > 0 for all x in the dense set {x : x 7 0}, but it is not true that f(x) > 0 for

all x.

7. According to Problem 3-16, we have f(x) = cx for all rational x (where ¢ =
F(1). Since f is continuous, it follows from Problem 6 that f(x) = cx for all x

(apply Problem 6 to f and g(x) = cx).

8. (a) The set {f(x) : x < a} is bounded above (by f(a)); let & = sup{f(x) :

x < a}. Then lim f(x) = a. Given any ¢ > 0, there is some f(x) for x < a
X~->a"
with f(x) > « — &, since « is the least upper bound of {f(x) : x < a}. Let

d=a—x.lfa—-8<y<a,thenx <y <a,so f(x) < f(y). This means that
a > f(y) > a —¢g,sosurely | f(y) —a| <e.
The proof that 1im+ = inf{ f(x) : x > a} 1s similar.
x=—>a
(b) It is clear from part (a) that
m f(x) < f(a) £ lim f(x).
x—a” x—>at
If lim f(x) exists, it follows that
X==>
lim f(x) = lim f(x) < f(a) £ lim f(x)= lim f(x),
X—=ra X~->a" x—=at X-->q

so lim f(x) = f(a). Thus f is continuous at @, so f cannot have a removable
X—>

discontinuity at a.
(c) If f is not continuous at some point a, then
sup{f(x) :x <a}= lim f(x) < lim+ fx)=inf{f(x):x > a}.
X—=ra- X—=ra

It follows that f(x) cannot have any value between lim f(x) and lim+ f(x),
X—ra~ x—=>a

except f(a), so f cannot satisfy the Intermediate Value Theorem.

9. (a) is obvious for ||| ||, since lcf|(x) = [¢]| - | f(x)] for all x in [0, 1].

(b) We have |f + g|(x) < |f|(x) + Ig|(x) for all x in [0, 1]. Since [|f + g]ll is
sup{| f + g|(x) : x in [0, 1]}, there is some xp in [0, 1] with

Wf+gll —If + gl(xo) <&,
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which implies that

I +gll = [1f1(x0) + 1g1(x0)] < &.
Since | f|(x0) < [l fll and |g{(x0) < lllglll, it follows that

If 4+ gl = (AN + Ngll] < e.
Since this is true for every € > 0, it follows that || f + g|l| < Il + Niglll-

(c) follows from (b), just as in Problem 7-14,
11. (@) We have a,4+1 < @;/2" < a;/n. Choose n so that 1/n < g/a;. Then
dp41 < E.

(b) Let R; be the area of region number i in the following figure,

We must show that
Ry < 3(Ri + Ra),

or
R2 < RI.

This is clear, since R, < R, + R3 = R;.

(c) Apply part (a) with a, = area of the circle minus the area of an inscribed regular
polygon with 2"**1 sides; part (b) says that a,; < a,/2.

(d) Let r; and r; be the radii of the two circles C; and C,, and let A; be the area
of the region bounded by C;. We know that there are numbers §;, 8 > 0 such that

A, B

Ay B
for any numbers By, By with |A; — B;| < §;. By part (c) there are numbers n; such
that the area of a regular polygon, with n; sides, inscribed in C; differs from A; by
less than §;. Let P; be the area of a regular polygon inscribed in C; with max(n,, n;)
sides. Then

< &

A B

<eé,
A, P
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S0
A r?

< €.
Ay r?

Since this is true for each & > 0, it follows that A{/A; = r12/rp2.

14. (a) For each n and m we have a, < by, because a, < @y1m < bpym < bn.
It follows from Problem 12 that sup{a, : n in N} < inf{b, : n in N}. Let x be any
number between these two numbers. Then a, < x < b, for all n, so x is in every I,,.

(b) Let I, = (0, 1/n).

173
¢ L S W\ 3
\ 1—1 7

15. Let ¢ be in each I,. If f(c) < 0, then there is some § > 0 such that f(x) < 0
for all x in [a, b] with |x —c| < §. Choose n with 1/2" < §. Since c is in 1,,, which
has total length 1/2", it follows that all points x of I, satisfy |x — ¢/ < 8. This
contradicts the fact that f changes sign on I,,. Similarly, we cannot have f(c) > 0.
So f(c) =0.

16. Let ¢ be in each I,. Since f is continuous at c, there is a § > 0 such that f
is bounded on the set of all points in [0, 1] satisfying |x — ¢ < §. Choose n with
1/2" < 4. Since c is in I,, all points x of I, satisfy |x — ¢| < 8. This contradicts
the fact that f is not bounded on I,,.

17. (a) (i) If xisin Athenx <. Soy<x <@,50y < o, s0 y is in A.

(i) « — 1isin A.

(iii) o -+ 1 is not in A.

(iv) If x isin A, then x < . Let x' = (x + ®)/2. Then x < x’ < &, so x’ is in A.
(b) According to (iii) there is some y with y not in A. If y < x, then x cannot be
in A, because (i) would imply that y is in A. Thus y is an upper bound for A, and
A 3# @ by (ii), so sup A exists. Given x in A, choose x’ in A with x < x/, by (iv).

Then x < x’ < sup A, so x < sup A. Conversely, if x < sup A, then there is some
y in A with x < y. Hence x is in A, by ().
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18. (a)
Almost upper bounds Almost lower bounds

() Al > 0. Alla <0.

(1) Al > 0. All ¢ < 0.

(iii) Ale > 0. Allx < 0.

(iv) Ala > 2. Alla < 0.

(v) None. None.

(vi) Alle >[-1++/5]/2. Alla <[-1++/5]/2.
(vii) Alle > 0. Alla <[-1++/5]/2.
(viii) Alla > 1. Alla < —1.

(b) Every upper bound for A is surely an almost upper bound, so B # . No lower
bound for A can possibly be an almost lower bound (since A is infinite), so B is
bounded below by any lower bound for A.

¢. (i), (if), (iii) O.
(iv) v2.

(v) Does not exist.
™) [-1++/5]/2.
(vii) 0.

(viii) 1.

(d) lim A = sup C, where C is the set of all almost lower bounds.
(i), (i), (iii) (iv) 0.
(v) Does not exist.
vi) [-14++/5]/2.
(vii) [-1++/5]/2.

(viii) —1.

19. (a) If x is an almost lower bound of A, and y is an almost upper bound, then
there are only finitely many numbers in A which are < x or > y. Since A is infinite,
it follows that we must have x < y. Thus (Problem 12) lim A < lim A.

(b) This is clear, since lim A < o for any almost upper bound &, and o: = sup A is
an almost upper bound.

(c) If imA < sup A, there is some almost upper bound x of A with x < sup A.
So there are only finitely many numbers of A which are greater than x (and there
is at least one, since x < sup A). The largest of these finitely many elements is the
largest element of A.
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(d) Reverse the inequalities in the arguments for parts (b) and (c).

20. (a) Notice that we must have f(x) < f(sup A), because f is continuous at
supA and there are points y arbitrarily close to supA with f(x) < f(y). (A
simple ¢-§ argument is being suppressed.) Now suppose that supA < b. Then
f(B) < f(x). Moreover, sup A is a shadow point, so there is some z > sup A with
f() > f(sup A) > f(x). We cannot have z < b, for this would mean that z is
in A. So z > band f(b) < f(x) < f(z), contradicting the fact that b is not a
shadow point.

(b) Since f is continuous at @, and f(x) < f(b) for all x in (a, b), it follows that
f(x) < f(b) (either by a simple - argument, or using Problem 6, if you prefer).

(c) If f(a@) < f(b), then a would be a shadow point, so f(a) = f(b).
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1. (a) For y > x we have, by the Mean Value Theorem,
y* —x% = (y — x)at®"! x<E<y.

So for o > 1 we have
y* —x% > ax®1(y - x).

Since x*~! is unbounded on [0, oc), we cannot make y* —x% < & simply by making
y — x less than any fixed 4. So f is not uniformly continuous on [0, c0) for @ > 1.
For 0 < o < 1 we have to be a little more careful. We have
¥ =¥ <ay*l(y —x)
<a(y —x) fory> 1.
which at least shows that f is uniformly continuous on [1, c0). Since it is also
uniformly continuous on [0, 1] by the Theorem, it follows that it is uniformly con-
tinuous on [0, 0o). (The argument for this is a simple corollary of the Lemma [with
¢ = 00].)

(b) f(x) =sin(1/x)

(c¢) Just let f have portions with larger and larger slopes:

2. (a) Given ¢ > 0, choose § > 0 such that, for all x and y in A,
if |x — y| <4, then | f(x) — F(WI, |g(x) —g(W)| < &/2.

Then also
I(f +8)x) —(f +8)) <e.

(b) Choose M > 0 so that | f(x)|, [g(x)| < M for all x in A. Given & > 0, choose
& > 0 such that, for all x and y in A,

if [x — y| < 8, then | f(x) — fF(Y)I, |g(x) - g < 5‘;7
Then also

| fx)g(x) — FMeN = | FX)g(x) — g(N]+ Nf x) — FN]I

£ E
<M. — +M - — =¢.
=Meomt M oy =t

o8
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(¢) Let f(x) = x and g(x) = sinx, both uniformly continuous on [0, oo). The
product is not uniformly continuous on [0, o), since there will be places where the
graph is growing arbitrarily fast.

(d) Given ¢ > 0, choose & > 0 such that, for all « and 8 in B,
if [ — B] < &, then |g(a) — g(B)| < &.
Then choose § > 0 such that, for all x and y in A4,
if [x — y| < &, then |f(x) - f()| < &’
It follows that

if |x — yl <6, then [g(f(x)) — g(f(¥)| <&.

3. Given £ > 0, suppose f is not &-good on [a, b]. Then, by the Lemma, either
f is not e-good on [a, (a + b)/2] or f is not e-good on [(a + b)/2, b]. Let I, be
one of the halves on which f is not e-good. Now bisect I;, and let I; be a half on
which f is not g-good. Etc. Let xo be a point in all Z,. Choose § > 0 such that,
if |x — xo| < &, then |f(x) — f(x0)| < £/2. It follows that if |x — xy| < 4 and
|y — xof < &, then |f(x) — f(¥)| < ¢, i.e., f is e-good on (xo — &, xg + €). But
some I, is contained in this interval, a contradiction.

4. Choose 8 > 0 such that, if x and y are in [a, ] and |y — x| < §, then |f(y) —
f(x)| < €. Let K = [(b — a)/3] + 1. Then for any point x in [a, b], there is a
sequence

a=4aq,a,4z,...,8, =X
with k < K and |g;41 — a;| < . It follows that

I fla) — f@)| <¢
| flaz) — fla)| <&

| f(x) — flar-1)| <&
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which implies that

[f(x) — f@a)l < Ke
and hence

|f(x)] < fla)+ Ke
for all x in [a, b].
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1. (b) The following figure illustrates the tangent lines to the graph of f(x) = 1/x.

f(x)=1/x

-
—
—
—
——

2. (b) The following figure illustrates the tangent lines to the graph of f(x) = 1/x2.

101
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6. (a) The picture below indicates the relation between £’ and (f + cY.

(b) The figure below indicates the relation between f’ and (cf)’.

INL
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8. (a) The figure below indicates the relation between f’ and g’ if g(x) = f(x+¢).

—r

12. (a) a’(t) = L{a(?)) (the velocity at time ¢ should be the velocity allowed at the

point a(t), where the car is located).
(b) The hypothesis means that b(t) = a(t — 1). Thus
b'(ty =a'(t —1)= L(a(t — 1)) = L(b(1)).

(c) Suppose b(t) = a(t)—c. Then b’'(t) = a'(t) = L(a(t)), whereas b’ (¢) should be
L(®(#)) = L(a(t) — c). So B travels at the speed limit if the function L is periodic,

with period c.

13. The limit

lim hia+1t) — h(a)
t—0 t
exists, because
. h(a+1t)—h(a) . gla+1)—g(a)
lim = lim
t—0t t t—0+ t
= right-hand derivative of g,

km h(a +t) — h(a) — lim f(a+f:—f(a)

t—0- t t—0-
= right-hand derivative of f,

and these two limits are equal.

14.
. Jx)—f0) . fh)
! - — S
SO = =i
Now 0 k irrational
, irration
M — hZ
h — = h, hrational,

h



104 Chapter 9
SO }}1_1;% f(h)/h =0,

15. (a) Notice that f(0) = 0. Since |f(h)/h| < h%/|h| < |h|, it follows that
’Eirrh fh)/h=0,ie., f/(0)=0.

(b) If g(0) = 0 and g'(0) = O, then f'(0) = 0: For, |f(h)/h| < |gh)/h| =
I[g(h) —20)1/h | , which can be made as small as desired, by choosing & sufficiently
small, since g’(0) = 0.

16. Since |f(0)] < |0|*, we have f(0) = 0. Now |f(h)/hl < lh|*"!, and

lim [#|*~! =0, since & > 1, so lim f(kh)/k = 0. Thus f’(0) = 0.
h->0 h—0

17. | f(h)/ | > [h|P~1; since 8 — 1 < 0O, the number [#]?~! becomes large as A
approaches 0, so '%in}) f(h)/ h does not exist.
_.-)

18. Since f is not continuous at a if a is rational, f is also not differentiable
at rational a. If a = m.ai;a,a; ... is irrational and h is rational, then a + & is
irrational, so f(a + h) — f(a) = 0. Butif h = —0.00...0a,416n42..., then
a+h =maay...a,000..., s0 f(a+ k) > 107", while || < 107", so we
have |[f(a + k) — f(a)l/h| = 1. Thus [f(a + k) — f(a)l/h is O for arbitrarily
small £ and also has absolute value > 1 for arbitrarily small #. It follows that
}Ei_r}r}][f(a + h) — f(a)]/h cannot exist.

19. (a) For t > 0 we have
fla+t— f@ _gla+n—g@ _h@+t—h

t o t o t
since f(a) = g(a) = h(a). The left and right sides approach f'(a) = h'(a) as
t — 0%, so the middle term must also approach this limit. For ¢t < 0 we have the
inequalities reversed, which shows that as ¢ — 0~ the middle term again approaches

f'(a) = h'(a).

(b) A counterexample without the condition f(a) = g(a) = h(a) is shown below.
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20. (a)
d=f(x)—- fla)(x —a)— f(a)
=x*—4d*x —a)-a*
= x* — 4a*x + 3a*
= (x — a)(x3 + ax? + a®x — 3a3)
= (x —a)(x — a)(x* + 2ax + 3a?).

(b) f(x) — f(a) clearly has a as a root, so f(x) — f(a) is divisible by x — a by
Problem 3-7. This means that [f(x) — f(a)]/(x — a) is a polynomial function, so
d(x)/(x — a) is the polynomial function
(x) — f(a)
hey = LR =T@ e,
x—a
Then li_rp h(x) = 0 by the definition of f’(a). This implies that 2(a) = 0, since

the (polynomial) function % is continuous. So d(x)/(x — a) has a as a root, so
d(x)/(x — a) is divisible by (x — a), i.e., d(x) is divisible by (x — a)>.

22. (a)

ron o SR —fx) . fx—hk)—fx) . fx)— f(x—h)

f() = hm A = _h = X '

So

. fax+m)y=f(x~h) 1]. f&+h)—fx) .. f&x)—f(x—h)

) 2h _E[ﬁlfb h i h ]

= f'(x).

(b)

fx+h)—fx—k)  h _f(x+h)—f(x)+ ko fx)=f(x=h
h+k  h+k h h+k k '

Since [f{x + k) — f(x)1/h and [ f(x) — f(x — k)]/k are close to f'(x) when A
and k are sufficiently small, this would seem to imply that

x+h)— f(x—k) h k
s h+k+h+k)f’(x)=f’(x)'
However, some care is required to carry this argument out, for the following reason.
If h/(h + k) were very large, then
B fG+h) = f@)
h+k h
could differ from Af’(x)/(h + k) by a large amount, even if [f(x + k) — fF(x)1/ h

differed from f’(x) by only a small amount. It will be essential to use the fact that
both k and k are positive; otherwise h/(h+ k) could be made very large by choosing

is close to (
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k close to —A. In fact the result is false if & and % are allowed to have different signs,
even when 2 + k = 0 is not allowed. The proper argument is as follows. If £ > 0
thereisa d > Osuch that for0 < A < 4 and 0 < k < § we have

L fetn - @

P ~ f'(x) <,
- < f ) —’{(x -k _ (x) <e.

Since A, k > 0, we can multiply these inequalities by #/(h + k) and by k/(k + k),
respectively. Upon adding we obtain

h k f&x+h)— f(x—k) h k ,
_£(h+k+h+k)< ) —(h+k+h+k)f@)

<Eh+k
h+k h+k)’

or

fx+h)—flx—k)
<

Tk - fl(x) <e.

This proves the required limit.

23. If g(x) = f(—x) then g’(x) = — f/(—x), by Problem 8(b). But also g(x) =
f(x), s0 g'(x) = f(x),s0 f'(x) = —f'(—x).
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24. If g(x) = f(—x), then g'(x) = — f'(—x). Butalso g(x) = — f(x), so g'(x) =

—f'(x), so f'(x) = f'(—x).

25. f® js even if k is even and f is even, or if k is odd and f is odd; f® is odd

in the other two cases.

26. (i) f"(x) = 20x3.
(iv) f"(x) =20(x —3)%.

27. Proof by induction on k. The result is true for k = 0. If

@y M n—k
Sn (x)"'- (ﬂ——k)'x ’
then
U)oy — MR pp
S = o
_ n! =)
[n — (k + 1)]! '
28. (a) Since
x3, x>0
x)} =
1) { —x3, x <0,
we have
, 3x2, x>0 " i 6x, x>0
f(x)_{—sz, x <0 &= —6x, x <0.

Moreover, f'(0) = f"(0) = 0. But f"(0) does not exist.
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(b) The same sort of reasoning shows that

4x3 x>0 12x2 x>0
fx — ¥ ”x —_ ’
f®) {—4x3, x<0 F &) {—IZxZ, x <0
24x x>0
" ’
X)) =
Fr @) —24x, x<0

and that £'(0) = f”(0) = f"(0) = O, but that f*(0) does not exist.

29. Clearly f®(x) = n!l/(n —k)!x"* for 0 < k < n—1and x > 0, while
F®(x) = Oforall k if x < 0. From these formulas it is easy to see that £®(0) = 0
for 0 < k < n — 1. In particular, f® D (x) =n!x forx > 0, and f®D(x) =0 for
x <0. So £®(0) does not exist, since lim n!h/h = n!, while lim 0/h = 0.

h—0t h—0—
30. (ii) means that f'(a) = —1/a? if f(x) = 1/x.
(iv) means that g’(a) = cf'(a) if g(x) = cf (x).
(vi) means that f'(a%) = 3a* if f(x) = x3.
(vili) means that g’(b) = cf’(cb) if g(x) = f(cx).
(x) means that f®(a) = k!(})a"* if f(x) =x".
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2. (ii) cosx + 2x cosx2.

(iv) cos(sinx):cosx.
(vi)
x cos(cos x)(— sin x) — sin(cos x)
x2 ]

(viii) cos(cos(sinx)) - (— sin(sinx)) - cos x.

2. (i) 3sin®(x2 + sinx) - cos(x? + sin x)x) - (2x + cos x).

(iv)

( x3 ) (cos x3)3x2 4+ x3sinx3 - 3x2
cos . .
cos x3 cos? x3
(vi) 31%(cos x)*""~! . (—sinx).
(viii) 3 sin?(sin?(sinx)) - cos(sin?(sin x)) - 2 sin(sin x) - cos(sin x) - cos x.
(x)
cos(sin(sin(sin(sin x)))) - cos(sin(sin(sin x))) - cos(sin(sin x)) - cos(sin x) - cos x.
(xii)

S5((G2 + 2 + 0)* + )% [T+ 42+ x)° + 22 {1+ 3G + )1 + 2]}
(xiv)
cos(6 cos(6 sin(6 cos 6x))) - 6(— sin(6 sin(6 cos 6x)) -6 cos(6 cos 6x) - 6(— sin 6x) - 6

(xvi)
3 [1 _ -2 +cosx)]
(x + sin x)?
5 2
[ x4 sinx]
(xviii)
)
x
coS X

A x
X —sin - )
X —sinx
) X X x —sinx — x[1 — cos x]
x — sin - —x|1—cos - —
x —sinx i X —sinx (x —sinx)

- . x 2
x —sin -
i x —sinx

109
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3. See page 307 of the text.

4. (ii) cos(sinx).
(iv) 0.

5. (i) (2x)%
@iv) 17-17.

6. (i) f'(x) =g'(x-ga)) - g(a).
(iv) f'(x) =g'x)(x —a)+ g(x).
(Vi) f'(x) =g ((x —3)* - 2(x = 3).
8. If the two circles have radii r;(t) < r(t) at time ¢, with corresponding areas
A;(t) = mri(1)?, then
nra(t): — wry(t)? = 9,
AY(r) = 10m.

Consequently,
107 — 2mr(D)r{(t) = 0.

Now the smaller circle has area 16a when r;(t) = 4, so at this time r;(¢) = 5/4.
The circumference C(¢) = 2ar,(t) thus satisfies C'(t) = 2mr{(t) = 57/2 at this
time,

9. Let (a(1), 0) be the position of A at time ¢. Then at the time in question we have
a(t) =35, a’'(t) =3.

If (b(t), -3 b(t)) is the position of B at time ¢, then its distance from the origin
18

VB2 +3b(1)2 = —2b(1)
and its speed is —2b/(t). At the time in question we have
b(t) =—-3/2, b)) = -2.
The distance d(t) between A and B satisfies
d(1)* = [a(t) — b(1)]* + 3b(t)?,

so at the time in question

a0 =y(5+3)7+3(3)’ =7,

Moreover,
2d(1)d’'(t) = 2[a(t) — b)) - [a'(1) — V' (£)] + 66’ (DB (1).
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Substituting the values found for a(¢), b(t), a’(z), b'(¢) and d(t) at the time in
question, we obtain 4'(¢) = %.

10. @ii) (ko f)'(O) =K'(f(0)- f'(0)=0.

11. By definition

£/(0) = lim S -0
x—=0 X
_ lim g(x)sinl /x.
x—0 X
Now

lim gx) lim g(x) —g(0)

x-=>0 x - x—0 X
= g'(0) = 0.

Since |sin 1/x| < 1, it follows that f/(0) = 0 (as in Problem 5-21).

13. (a) The Chain Rule and Problem 9-3 imply that
1

=7

X

\/I—xz.

—2x

(b) The tangent line through (a, v1-— a2) is the graph of

g(x)=—\/1_‘j—_a£(x—a)+v1—a2.

Soif f(x) = g(x), then

v1—x2= l—a 2(x—a)+'\/1—02.
v1i-a

Squaring yields
20y — m2
1—x%= a_(J_c__a_l_ —2a(x —a)+1—a?
1 —a?
Multiplying through by 1 — a2, and multiplying out, everything reduces to
—x% - a? = —2ax,

ie., (x —a)? =0, so x = a. Notice that the same argument shows that g does not
intersect the graph of f(x) = —v1 — x2, which is the bottom half of the unit circle.
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14. The graph of the function

f(x)--b\/l—x—2

is the top half of the ellipse with consists of all points (x, y) satisfying

Now

The easiest way to solve this equation is to use the following trick. If welet x’ = x/a
and ¢’ = c/a, then the equation becomes

—bca) x' =y a+bJ/1—(c)?,

AT

) b1 — ()2 =

or simply
7

x' =N+ 1 - ()2

J1 - f2=__f___

The solution to Problem 13 shows that x’ = ¢/, so x = c.
For the hyperbola, we consider

f(x) =b‘/2—; ~1.

Then

so if the tangent line through (c, by/c2/a? — 1) intersects the graph at x, then
c2
(2) ——(x—c)+b -—2—1.
a
‘/ﬁ _1

Squaring equations (1) and (2) produces the same result, so the solutions of (2) are
also x =c.
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15. No. For example, g mightbe — f. If f(a) # 0and f-g and f are differentiable
at a, then g is differentiable at a.

16. (a) Since f is differentiable at a, it is continuous at a. Since f(a) # 0, it
follows that f(x) # O for all x in an interval around a. So f = |f| or f = —|f]
in this interval, so | f{’(a) = f'(a) or | f|'(@a) = —f'(a). 1t is also possible to use
the Chain Rule, and Problem 9-3: | f] = v/f2, so

1
! —_ .2 ’
I16) = sz - 20 )

Y i f(x)
=IO Feor

(b) Let f(x) =x —a.

(c) This follows from part (a), since max(f, g) = [f+g+lf—g|]/2 and min(f, g)
=[f+eg—-1f-¢l]/2.

(d) Use the same example as in part (b), choosing g = 0.

17. (a) We have
(fog)(x)=f'(g(x)) & x)
(fog)(x) = f"(gx)) - 8'x)+ f'(g(x))- 8" (x)
(fog)"(x)=1f"(g(x))-&'(x)’ +2f"(g(x)) - g'(x)g" (x)]
+ 1" (gx) - ' x)g" (x) + f'(g(x)) - 8" ()]
= "(g(x)) - g'(x)* + 31" (g(x)) - £ (*)g"(x) + f(g(x))g” (x).

So
(fog)” 3((fog)”)2
B(fog) = e — =
o) ="Fogy "2\ (Fogy
_U"og)g?  3(f"og)” 8" 3 ((f”og)-g’ +g_”)2
flog fleg g 2 flog g’
_ (fmog)gfz N 3(f”og)g” N g_m _ —3- ((fuog),g.-)z
flog flog g 2 flog
_3(f”°g)g”_§_(§f)2
flog 2\¢
fm 3 f”o g] ' gm 3 ( g”)Z
=|—-—0opf — — - +___._ =
[f’ 827 os g 2\g
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(b) We have
') = a(cx+d)—clax+b)  ad—bc
f x) = (cx+d)2 - (cx+d)2
" _ 2c(ad — bc)
frix)y= NP
Hoon 6c%(ad — bc)
frex)= P
So
@ 3 (f’”(x))2 63 ( _2¢ )2
fiixy 2\ fl(x))  (cx+d)? 2\cx+d
=0.

18. The proof is by induction on n. For n = 1, Leibnitz’s formula is Theorem 4.
Suppose that for a certain n, Leibnitz’s formula is true for all numbers @ such that
F®(a) and g™ (a) exist. Suppose that £+ (a) and g+ (a) exist. Then ™ (x)
and g™ (x) must exist for all x in some interval around a. So Leibnitz’s formula
holds for all these x, that is,

n

(f @ =3 (Z) PARORY Sl

k=0
for all x in some interval around a. Differentiating, and using Theorem 4, we find
that

n

(F-" =3 (k) (F© - " @

k=0

-3 (Z)[f"‘“’(a)g‘"—"’(a)+f""(a)8‘"+’_k)(“)]
k=0

=Y (k ! l)f"‘) @g™' (@)

+) (:) FB(@)g" M a)

k=0

n+l n +1
=y ( N ) F®@)g"t1-B(g) by Problem 2-3(a).
k=0

19. The formulas
(fog)(x)= f'(g(x))- & x)
(fog)'(x) = f"(gx))- &'(®)*+ f'(g(x)) - g" (x)
(Fog)"(x)=f"(g(x)) - 8'(x)* +3f"(g(x)) - g' ()" (x) + f'(g(x))g" ),
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lead to the following conjecture: If f®™(g(a)) and g™ (a) exist, then also
(f o g)™a) exists and is a sum of terms of the form

c-[g'@I™ .- [g™ @1 - f®(g(a)),

for some number ¢, nonnegative integers m,, ..., m,, and a natural number £ < n.
To prove this assertion by induction, note that it is true for n = 1 (witha = m; =
k = 1). Now suppose that for a certain n, this assertion is true for all numbers a
such that f®(g(a)) and g™ (a) exist. Suppose that f#+D(g(a)) and g™+ (a)
exist. Then g%®)(x) must exist for all ¥ < n and all x in some interval around a,
and £®(y) must exist for all k < n and all y in some interval around g(a). Since
g is continuous at a, this implies that f®)(g(x)) exists for all x in some interval
around a. So the assertion is true for all these x, that is, (f 0 2)® is a sum of terms
of the form

c- g™ - gPEN™ - fP@), my,....my20, 1<k<n
Consequently, (f o g)**V(a) is a sum of terms of the form
c-mylg' @™ - gD @™ [g® @)™ fP(g@) me >0

or of the form
c-[g'@I™* - [g™ @)™ - fE(g(a)).

20. (a) We can choose
2

a,x"tl g, x" ax
g(x) = —— + ” +.--4 > +apx + ¢
for any number c.
(b) Let
box71  byx2 bpx M+l
g{x) = 1 + ) +"'+T;l'+—l.

(c) No, the derivative of f is

h 2b; mby,

’ —_— n_l - — — — — S R —
fF&xX)=nax"""+---+a 2 5 prws

21. (a) Let g be a polynomial function of degree n — 1 with precisely n — 1 roots
(as in Problem 3-7(d)); then g = f’ for some polynomial function f of degree n
(Problem 20).

(b) Proceed as in part (a), starting with a polynomial function g of degree n — 1
with no roots (notice that n — 1 is even).

(c) We can proceed as in part (a), or simply note that f(x) = x" has the desired
property.
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(d) Proceed as in part (a), starting with a polynomial function g of degree n — 1
with k roots (thts exists by Problem 7-4).

22, (a) If a is a double root of f, so that f(x) = (x — a)’g(x), then f'(x) =
(x —a)2g’ (x) + 2(x — a)g(a), so f’(a) = 0. Conversely, if f(a) =0and f'(a) =
0, then f(x) = (x — a)g(x) for some g and f'(x) = (x — a)g'(x) + g(x), so
0 = f'(a) = g(a); thus g(x) = (x — a)h(x), so f(x) = (x — a)?h(x).

(b) The only root of 0 = f'(x) = 2ax + b is x = —b/2a, so f has a double root

if and only if
b b? —b
-1 (-5) (@) (@) +

b2
=_E+C:

or b* — 4ac = 0. Geometrically, this is precisely the condition that the graph of f
touches the horizontal axis at the single point —&/2a (compare with Figure 22 in
Problem 9-20).

23. Since d'(x) = f'(x) — f'(a), we have d’(a) = 0. So a is a double root of d.
24. (a) Clearly f will have to be of the form

n
@) =[] - x)*ax +b)
j=1
j#H
(because each x;, j # i is a double root, by Problem 22). It therefore suffices to
show that ¢ and b can be picked so that f(x;) = q; and f/(x;)} = b;. If we write f
in the form f(x) = g(x)(ax + b), then we must solve
[g(xi)xi]-a+g(xi)-b=a;
(' (xi)xi + g(x:)]-a+ g'(x:) - b =b;.
These equations can always be solved because

[gC)xil - g'(xi) — [8'(xi)xi + g(x)1g(xi) = [g(x)]* # 0.
(b) Let f; be the function constructed in part (a), and let f = fi + -+ fa.

25. (a) If g(a) and g(b) had different signs, then g(x) would be 0 for some x
in (a, b), which implies that f(x) = 0, contradicting the fact that a and b are
consecutive roots.

(b) We have
f@x)=(x—b)g) + (x —a)g(x) + (x — a)(x — b)g'(x),
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S50
f'(@) = (a — b)g(a),
f'®) = (b~ a)g ().

Since g(a) and g(b) have the same sign, f'(a) and f’(b) have different signs. So
f'(x) = 0 for some x in (a, b), since f’ is a continuous function.

a X b

(¢) Since
Fl@x)=m@x —a)" ' (x — b)"g(x) + (x —a)"n(x — b)" ' g(x)
+ (x —a)™(x — b)"g'(x),
we have
h(a) = m(a — b)g(a),
h(b) = n(a — b)g(b),

s0 h(a) and h(b) have different signs, so A(x) = O for some x in (a, b), which
implies that f/(x) = 0.

26.
o o f(B) = £(0)
o = fim 2
— Km hg(h) — 0
h—0 h

= ’Ein}) g(h) = g(0), since g is continuous at 0.

27. Let £y
x
= 0
gy=1 "z~ #

(), x=0.
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Then f(x) = xg(x) for all x, and

fx)—fO)
X

20 = £(0) = lim = lim g(x),

so g is continuous at 0.

28. The proof is by induction on k. For k = 1 we have

fl@x)=—nx—""!
= (—1)'(11(—:__1_-;)—'1)!x_"'1 for x # 0.
Suppose that
(k) o k(ﬂ+k‘—1)' —n—k
[y =(-1) Dl x
= (—Dkk!(n jf_; l)x_"'k for x # 0.
Then
)y _ gk CR—RY+E—DI
FEDE) = (D
= (—1)k+1—-—$ i?;:x—"_(‘Hl) for x # 0.

29. If x = f(x)g(x), then 1 = f'(x)g(x) + f(x)g'(x). In particular, 1 =
F(0)g(0) + f(0)g’(0) = 0, a contradiction.

30. (a) Using Problem 28 and the Chain Rule, we obtain

PR (x —a) "k for x # a.

fPw =D

(b) Since

1 1 1 1
f(x)—x2—1 _-2-(x—1 _x+1)’
we obtain, using part (a),

-D¥(n+ k- 1)!
2(k — 1)!

B = [(x— 1D F—x+ 1™
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31, 32. The formulas

|
f(x) =x™sin—,
x
i 1
f/(x) = mx™ sin— — x™ %cos —,
x x

L1 1 1
F"(x) = m(m — Dx™ 2 sin i mx™ 3 cos i (m — 2)x™ 3 cos S

1
— x™*sin -,
X
m-=2 _: 1 m—3 1 m—4 1
=m(m— 1x s1n;_~ + (2 —2m)x cos— — X sin P
1 1
F"(x) = m(m — 1)(m — 2)x™3sin ~= m(m — 1)x™ 4 cos -

1
+ (m — 3)(2 — 2m)x™* cos — + (2 — 2m)x™ 5 sin 1
x
1

1
— (m — 4)x™ 3 sin — + x" % cos -
x x

y

suggest the following conjecture: If f(x) = x™ sin 1/x, for x # O, then

1
F®x) = ax™* sin -
x

1
2%—1 1 1 x™ % gin— keven
+ Z (agx’"_l sin Z +bx™ ! cos ;) + xl
I=k+1 x" % cos —, k odd

X

for certain numbers a, a;, b;. Once this conjecture is made, it is easy to check it by
induction. In fact, differentiating the first term yields

cos —,

a(m — k)x™~®+D gin 1 — ax™~*+2) !
x x

2k+1
and the second half of this expression can be incorporated in the sum ) appearing

I=k+2
in the desired expression for f®+1(x). Similarly, differentiating the last term yields

1 1
+(m — 2k)xm~ @+ gin — ¢ ym-20+) 05— k even (k + 1 odd)
x

1 1
+(m — 2k)x™—@k+1) cog < + xm~2k+tDgin = k odd (k + 1 even)
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241
and the first half of each expression can be incorporated in the sum ) . Finally,
I=k+2
2%—1
each term appearing in the sum »_ yield upon differentiation two terms that can
I=k+1
241
be incorporated in the new sum ) .
I=k+2

It follows, in particular, that if m = 2n, then f®)(x) always has a factor of at
least x2 for k < n (while the remaining factor is bounded in an interval around 0).
So if we define f(0) = 0, then

. () — O
’ =1
f(0) = lim p
= ’lirrh %)- =0, since f (k) has a factor of at least h%;

consequently, if 2 < n, then

f'(h) = ()

1 —_ 1-
f70) lim

h
’
h
= }{in%) f i(: ) - 0, since f'(k) has a factor of at least 42;
consequently, if 3 < n, then f”(0) = 0, etc. This argument (which is really
another inductive argument) shows that f/(0) = --- = f®(0) = 0. On the other

hand, £ (x) is a sum of terms which do have a factor of at least x2, together with
+sin 1/x or cos 1/x, so £ is not continuous at 0.

If m = 2n + 1, then f® always has a factor of at least x> for k < n, so
Fl0)=...= f® =0, but £™(x) is a sum of terms which do have a factor of at
least x2, together with +x cos 1/x or 4x sin 1/x. It follows that £® is continuous,
but not differentiable, at 0.

33. (ii)

v 4 s (cos y) - (—sinx) = cos(cos x) - (—sinx).

= (cos v)(— sin #)(cos x) = cos(cos(sin x)) - (— sin(sin x)) - cos x.
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1. (i) f'(x) =5x*+1 =0 for no x;
f(-1)=-1, f(1)=3;

maximum = 3, minimum = —1.

o Gxt)
W r® =Ty

F(=1/2) =32/15, f(1) =1/3;

maximum = 32/15, minimum = 1/3.
(Notice that g(x) = x + x + 1 is increasing, since g’(x) = 5x* + 1 > 0 for all x;
since g(—1/2) = 15/32 > 0, this shows that g(x) # 0 for all x in [-1/2,1], s0 f
is differentiable on [—1/2, 1].)

(vi) f is not bounded above or below on [0, 5].

= 0 for no x;

2. (i) —4/3 is a local maximum point, and 2 is a local minimum point.

203727

L ]
-

-

N o=

/ ~4/3

121
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(ii) No local maximum or minimum points.

(iii) O is a local minimum point, and there are no local maximum points.
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(iv) No local maximum or minimum points. In the figure below, a is the unique
rootof x>+ x+1=0.

]
+4-

-1-v2Z -1+/2

(vi) No local maximum or minimum points, since

; (1+x?)
f(x)=—m<0 forx-,éil.
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—_——— i — — e e ——— o — it
_— e — e, . —— . — — — -

3. (i) fisodd; ,
1 -1
F@=1-— =5
f'(x) =0for x # %1, f'(x) > 0for |x| > 1;
f)y=2, f(-1)=-2.

-+
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3 _
W Fo=1-5 =32
X X
flx)=0forx = N f'(x) > 0for x > /6 and x < 0;
f(x) =0 for x = —/3,

¥z }
3
(iii) f is even;
ooy 2x(x*—1) = 2xx? =2
fx) = (x2—1)2 - (x2 — 1)?’

ff(x)=0forx =0, f'(x) <O0forx >0, f'(x) > 0 otherwise;
f(0) =0.

ittty SEEEL T T ..
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(iv) fiseven, f(x) > O for all x;

oo —2x
flx)=0forx=0, f'(x) >0forx <0, f/(x) < 0 otherwise;
f(0) =1.

4. (b) Suppose x and y are points in [a;_y, a;] and [a;, a;1], respectively, with
Ix - aj| = |y - ajl.

=
-+ =
-

a;-1 a; Qj+

Then
ly—ail=Ix —ail + |y — x| fori <j-—1,
ly —ail = lx —a;| — |y — x| fori > j+1.
So
fO)=r)+ly—x1-{G-1—-@n- )}
=f(x)+|y—x|-{2j—n—-1}.

This shows that f decreases until it reaches the “middlemost @;” and then increases.
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The minimum occurs at a(,—1)/2 if n is odd and on the whole interval [an /3, 84 /2.41]
if n is even.

\

(¢) We have . .
0
1—-x+1+a—x’ x=
1 1
= 4 0
Ffx) 1+x+1+a—x’ <x<da
1 + L a<x
| 1+x 1l4x—a’ ’
SO
! + ! <0
(1-x32 {d+4+a-x)?* x
-1 1
f
= 1 , O
FO=1 a5 T Graap 9<%
! ! a<x
[ (14x)2 (14 x —a)?’ )

Thus f is increasing on (—o00, 0] and decreasing on [a, 00), so the maximum of f
on [0, a] is the maximum on R. If f’(x) = 0 for x in (0, @), then

A+x)2-0+a—-x)*=0,
whose only solution is x = a/2. Since

a 4 24+a
FG) =53 <1, = fO=r@.

the maximum value is (2 4+ a)/(1 + a).

5. (ii) All irrational x are local minimum points, and all rational x are local maxi-
mum points.

(iv) All 1/n for n in N are local maximum points, and all other x are local minimum
points.



128 Chapter 11

6. (a) The distance d(x) from (xg, yo) to (x, f(x)) satisfies
D(x) = [d®))* = (x — x0)* + (mx + b — y)?,
so the minimum occurs when
0 = D'(x) = 2(x — x0) 4+ 2m(mX + b — yo)

or
xo +m(yo — b)

1+ m?

X =

(b) The slope (mx +b — yp)/(x — x¢) of the line from (xg, yo) to (X, mX + b) must
satisfy

mitb—yo . _ 4
X — Xo
which yields the same result,
(¢} For b = 0 we have
5= X0 + myp
14+m2’°
hence
PR m(yo — mxg)
I+m2 °
m% ~ yp = mXxo —J’o_
14+m?2
So the distance d from (xg, yo) to (X, mX) is
1 lmxo — yol

- 214+ m?) = :
1+m2\/(J’o mxg)?(1 + m?) Ny

The general case can now be solved as in Problem 4-22, to give
|mxo — yo + bl

V14+m?

(d) For B # 0, this line is the graph of f(x) = (—A/B)x — C/B, so the distance
is

A C
B)™ 7" B| Ao+ By+Cl

A2 - JArt B2
1+E

For B = 0 we have the line parallel to the y-axis through —C/A. The distance to

(x0, Yo) is
o _(=€)| _ 1Ax+C]
0 A - iAl L]

which is the same result for B = 0.
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7. If g(x) = f(x)?, then
g'(x)=2f(x)f"(x),

so the critical points of g are those of f, together with the zeros of f (notice that g
may be differentiable at points where f(x) = 0 even when f isn’t, e.g., f(x) = |x|).

11. Let x be the height of the cone. The volume V(x) is given by

So the volume is greatest when

0=V'(x)= %[az — 3x7],

or x = a/x/g. For this x we have

a’ a’
v0=35(%5)
2343

|

—

2

iy

12. In the Figure below we have

= ™ =]

| o
)
Q|

so the length of the dashed line is

252
VB2 @ 4 = P+ Vb = (14 2) V4 22,
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The maximum length of a ladder which can be carried horizontally around the corner
is the minimum length of this dashed line. This occurs when

0=—SV2+b7+ (1+7) 2x+b2
v

1
\/xz—}-bz,

- [—%(x2+b2)+x+a]-

or
ax® +ab® = x* +ax?,
x= a1/3b2/3’
and the length is
(1 + E—z—;;) \/a2/3b4/3 4 b2 = (b2/3 n a2/3)\/a2/3b;:;+ b2
= (b2/3 + a2/3)3/2_

13. If R(#) is the appropriate value of R for given €, we have

7]
— . R(8)* = A.
> RO)

The perimeter for this 8 will have value
P(9) = 0R(6) + 2R(0)
= 2A(6 +2)-67172,

So the minimum occurs when

0=P’(9)=~/2_A[ ! —9"'2]

g1/2 203/2

9 2
= 29372

or @ = 2 radians, and R = VA,

14, If |
f(x)=x+; x>0

then |
1

=1—-—

fx) ok

which has the minimum value for x = 1, with f(x) =
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15. If x is the height of the trapezoid, then the area is

/— a? - x?

a
X
A(x)=(a+va%—1x2) x /

50 the maximum occurs when

2
0=AGx)=a+Va® -5t — ———
JaZ — 12

_ava?—x2+a>—2?
- Jat — 22 '

or
al(@® —xH) =(2x*—ad?* = 4x* — 4x%a% + a*,
SO
4x* = 3x242,
Vi
=—
The area is
+ /a2 3a2\ +3a _ (a+a) V3a _ 34/3a?
¢ 4 ] 2 T 2) 2 T T4

16. The vertex of the right angle will obviously be to the left of the center of the
circle. If x is the distance from the center to the vertex, then the length L of A+ B

is
Lix)y=a+x+ Va2 —x2

so the maximum occurs when

0=L'(x)=1— ——

Jaz — 2
or

a?—x?=x2?,

x =a/\/§.
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2
a+%+‘/a2—-%=(1+«/§)a.

17. (i) Obviously walking all the way around will be the longest path.

The length is

(i) Let 6 be the angle from the center to the point where he lands after rowing.

B

Then

BAC =0, AB = /2 +2cos6 (by the law of cosines).

The total time required is

v2+2cosf 8
T)= ——— + —.
2 4
Now 0 :
— sin
0=T(0) = + -
24/2+2cosf 4
when
4sinf = 24/2 +2cos§ = 16sin’6 = 8 + 8cosH,
thus
2(1 —cos?8) =1+ cos® => 2cos?8 +cosf —1 =0,
hence
cosf = 1 or —1.
Here cos ® = —1 for & = m, one of the endpoints of the interval [0, ] that we must

consider for 8, while cos8 = % for & = 5. We have
T (0) = 1 hour, to row across
_ 3
T(%) =% + 5 hours
T(w) = 7 hours, to walk around.
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Since
3§+%>%— (i.e.,£>1r(-'-—-1—)=%),
walking around is fastest.

18. If x = BC and y = AB

then we have

ED = /x2 - (@ — x)? = y20x — a2 from AEDC
a’+(y—ED) =y
SO
a2+(y—\/m)2=y2
—ym+ax =0

y2(2ax —o?) = oa®x?

) oZx? ox?
2o0x —a? 2x—o

The square of the length of the crease is

y

x2 2x3

2422 % —
¥ty _x+2x—a 2x —a’

so the length is smallest when

0 = 6x2(2x — o) — 4x° = 8x3 — 6x%a = x?(8x — 6),

from AEE'A,

133
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or x = 3o /4. For this x the length is

20.

5
-
-+

+

n even n odd

21. (a) 1 is a local minimum point, and 2 is a local maximum point. The nature of
the critical points —1 and 3 can be determined by the behavior of f(x) for large |x|:

——

n even n odd

{b) No, for if 2 were the largest critical point, then f would have to be decreasing
on (3, 00}, since 2 is a local maximum point.
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22. Let f(x) = r(x)/s{x) for polynomial functions r and 5. It is possible that r and
s have acommon root a, but in this case 7 (x) = (x —a)r;(x) and s(x) = (x—a)s;(x)
for certain polynomial functions r; and s; (Problem 3-7). This means that f{a) is
undefined but that f(x) = ri(x)/s;(x) for x # a (and s,(x) # 0). After factoring
out all common linear factors of r and s, we find that the graph of f consists, except
for a finite number of points, of the graph of

anx" +ap 13" +---+ag  p(x)

bnx™ + by_1x™ '+ ...+ by qx)’

where p and ¢ have no common roots. The function g is defined at all points a
except those with g(@) = O (of which there are at most m). Near such a point a
the graph of g looks like (a), (b), (c), or (d), depending on the sign of p(a) and
whether a is a local maximum or minimum point for ¢ or whether g is increasing
or decreasing in an interval around a.

g(x) =

}
!
I
I
|
[
a

o

— —— — — e  wr— w—— w— -

(a) (b)

—— e —— — g (Y —— — — —

—_——— ——

(¢c) (d)

Since
_qx)p'(x) — p(x)q'(x)

g )= [g(x)]?

and gp’ — pq’ is a polynomial function of degree at most m + n, there are at most
m + n local maximum and minimum points. On the intervals between these points
and the points of discontinuity, g is either increasing or decreasing. The behavior of
g(x) for large x or large negative x has been discussed in Problems 5-32 and 5-36.
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23. (a) This follows from Problem 3-7 and the fact that the difference of the two
polynomial functions has degree at most max(m, n).

(b) If m > n, let fj be a polynomial function which has m roots, and let f(x) =
fi(x) + x™ and g(x) = x".

24. (a) The polynomial function f’, of degree n — 1, has k roots, and no multiple
roots, since f”(x) % 0 when f’(x) = 0. It follows from Problem 7-4 that n — 1 —k
is even.

(b) Since n — 1 — k is even, there is a polynomial function g of degree n — 1
with exactly k roots. Let f be a polynomial function of degree n with f’ = g
(Problem 10-20).

(c) Letl =kj+kyandlet ¢ < a;_; < --- < a; be all the local maximum and
minimum points. On the intervals between these points f is either decreasing or
increasing. Since xllrnclao f(x) = oo, the function f must be increasing on (a,, 00).
Thus a; must be a local minimum point. Consequently, f must be decreasing on
(az, a1), which shows that a; must be a local maximum point. Continuing in this
way we see that g; is a local minimum point if % is odd and a local maximum point
if k is even.

Now if n is even, then g; must be a local minimum point, since lim f(x) = oc.
X—»—00

Thus ! must be odd, so ay, a3, . .., a; are the local minimum points, and ay, ..., aj—

are the local maximum points. Consequently k; = k; -+ 1. If n is odd, then a must

be a local maximum point, since lim f(x) = —o00. The same sort of reasoning
X—r =00

then shows that ky; = k;.

(d) The hypotheses imply that n—1—(k; +k2) iseven. Letl = [n—1— (k1 +k2)]/2,
and choose a polynomial function f of degree n with f’ as in the hint. Since
(1 4+ x2)! > 0 for all x, it follows that f/(x) > 0 for x > @k, +k, and that the sign of
f’ changes as we go from (g;_1, a;) to (a;—2, @i—1). Thus ag 4x,, Gk, +k,—2, - - - are
local minimum points and ag, 4,1, @k, 4k,~3, . .. are local maximum points.
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26. Note that f is increasing. If f()1/2) > 0, then f(3/4) > M/4, so certainly
f = M /4 on the interval [3/4, 1]. On the other hand, if f(1/2) <0, then f(1/4) <
—M/4,s0 f < —-M/4 on the interval [0, 1/4].

27. (a) Apply the Mean Value Theorem to f — g: If x > a, then
f(x)—gx)  f(x)—gk)—=1[f(a)—gla)l
x—a x—a
=f'(y)—g(y) forsome yin (a,x)
> 0.

Since x — a > 0, it follows that f(x) — g(x) > 0. Similarly, if x —a < 0, then
fx) < g(x).

(b) An example is shown below.

e

/

30. (a) The position at time ¢ is
((veosa)t, —16t> + (vsina)t).

If cosa = 0, so that the cannon ball is shot straight up, then these points all lie on
a straight line. If cosa # 0, then the set of all such points is equal to the set of all

points
1612
t, — + (tana)t },

vcoso

so the path of the cannon ball lies on the graph of

2

—16x
+ (tana)x,
VCos &

fx)=
which is the graph of a parabola.

(b) The cannon ball hits the ground at time ¢ > 0 when
0 = —16¢% + (vsina)t,
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or t = (vsina)/16 (of course we consider only a > 0). It has then traveled a
horizontal distance of

d(a) = (vecosa) - ysmo
16
_ v’sinocose
=—1c
Now d(«) is a maximum at that « for which

2
0=d(a) = —:,—6—[005201 — sina],

so tana = X1. Since only positive @ are considered, « is a 45° angle.

31. (a) Such a function f is pictured below. As an explicit example we can take
f(x) + (sin x?)/x. Then xllf%o f(x) =0, but

, 2x2 sin x% — sin x?
fi(x)= 3
x
., sinx?
=2sinx“ — ,
2
x

so lim f’(x) does not exist.
X—>00

/\U“u"u“v’iﬂﬂ*

(b) Let! = lingo f'(x). If | < 0, then there would be some N such that | f'(x)—I| <
x—

|11/2 for x > N. This would imply that f'(x) > |I[/2. But that would imply, by

the Mean Value Theorem, that

(x = N)I|

fx) > f(N)+ —

which would mean that im f(x) does not exist. Similarly, Jclirgo f'(x) cannot be
X=->0Q —

< 0.

forx > N,

(¢) Let ! = lim f”(x). If I > 0, then, as in part (a), we have xll{%o flix) =
X—>00
0o. Another application of the Mean Value Theorem shows that x1"1+rrc§° fx) = o0,
contradicting the hypothesis. Similarly, lin‘;o f"(x) cannot be < 0.
x>



Chapter 11 139

32, If g(x) # O for all x in (a, b), then the function h(x) = f(x)/g(x) is differen-

tiable on (a, b), and by hypothesis

gx)f'(x) = f(x)g'(x) _
[g(x)]?

This means that f/g is constant on (a,b), so f = c - g on (a, b) for some ¢ #
0. Since f and g are continuous it follows that f(a) = ¢ - g(a), so g(a) = 0,
contradicting the hypothesis.

h'(x) = 0.

33. We have

y=2x  y—x
Now
ﬂﬁ—f&wﬁu_ﬂph
y —
and ;!_13} lx — y|*~! = 0, since n — 1 > 0. Consequently f’(x) = 0 for all x, so f
is constant.

34. (a) Since | £(x) — £(x + k)| < CIhl", it follows that lim f(x + k) = f(x).

(b) Given ¢ > 0, choose § = £/®/C. Then for all x and y in the interval with
|x — y| < & we have

C(sl/a)ot
=£.

f&x)—fMI=Clx —y|* < =

(c) If f is differentiable at x, then
i SO = )

y>x  y—x

= f'(x),
so for all y in some interval around x we have

‘ﬂw—ﬂm_fa)
y—x

<1,

hence

ﬂn—fuw<1+”hn
y—x

FO) = fF@ <A+ 1Dy — x|,

so we can choose C = 1+ |f'(x)|. (Actually, we can choose C = ¢ + | f/(x)| for
any ¢ > (0.) The converse is not true, e.g., f(x) = |x|.

(d) No, because the derivative f’, and hence the required C, may not be bounded
on [a, b]. For example, f(x) = x?sin 1/x? on [0, 1].

(e) Same proof as Problem 33.
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35. Let
2

aix apx"t
x — x+—..—.-+...+ .
Fx) =ao 2 n+1

Then f(0) = 0and f(1) = 0 by hypothesis. Rolle’s Theorem implies that for some
x in (0, 1) we have

O0=f'(x)=ap+a1x+- - +a,x".

36. If fin(x0) = fin(x1) = 0 for xo < x; in [0, 1], then f,,’(x) = O for some x
which is in (xg, x1), and hence satisfies 0 < x < 1. But

S’ (0) =3x* =3 =3(x% - 1),
SO fm'(x) = 0 only for x = £1.

37. Problem 7-11 shows that there is at least one x. Suppose there were two, xy <
x1. The Mean Value Theorem, applied to [xg, x;], would imply that

fO) = fo) _x1—%0 _

X1 —Xo X1 —Xp

flx) = 1

for some x in [xg, x1], contradicting the hypothesis.

38. (a) Clearly f has at least two zeros, in fact at least two zeros in [—1, 1], since
f(0) < 0 while f(x1) > 0. If f had more than two zeros, then f’ would have at
least two zeros. But

f(x) =2x +sinx

and this is an increasing function, since

ffx)=2+cosx>1 for all x.



Chapter 11 141

(b) We have f(0) < 0, while f(x) will be > 0 for large enough |x|, since |x sin x|
is small compared to 2x? and | cos? x| < 1. In fact, writing

f(x)=x(2x —sinx) — cos? x,

and noting that 2x —sinx > 1 for x > 1, we see that f(x) > 0 for x > 1, and also
for x < —1, since f is even. So f has at least two zeros in [—1, 1], and no zeros
outside of [—1, 1]. If f had more than two zeros, then f’ would have two zeros in
[—1, 1]. But

f/(x) =4x —sinx — x cosx + 2 cos x sinx
=4x —sinx — xcosx + sin2x

and this is increasing on [—1, 1], since
f’(x)=4—2cosx +xsinx + 2cos2x

which is > 1 on [—1, 1], since x sinx > O on [—1, 1], while |cos x|, |cos2x| < 1.

39. (a) Suppose that f”(x) < 4 for all x in [0, 1/2]. Then, by the Mean Value
Theorem, for all x in [0, 1/2] we have

’ — f!
f ()2 ({ © = f"(x") for some x’ in [0, x]
< 4,
so f'(x) < 4x. Applying the Mean Value Theorem again, we have
w = f'(x")  for some x’ in (0, x)

< 4x’ < 4x,

s0 f(x) < 4x2. Consequently f(1/2) < 1/2.

The same sort of analysis can be applied to f on [1/2,1] if f"(x) < —4 for
all x in [0, 1/2]. It is a little more convenient to introduce the function g(x) =
1 — f(1 — x), which satisfies g(0) = 0 and g"(x) = —f"(1 —x) < 4 for x in
[0, 1/2]. As we have just shown,

1/2 > g(1/2) =1 - f(1/2),
so f(1/2) > 1/2, contradicting the result found before.

(b) Note first that we cannot have f”(x) = 4for0 < x < 1/2and also f”(x) = —4
for 1/2 < x < 1, since this would imply that f/(x) = 4x for 0 < x < 1/2 and
f’(x) = —4x for 1/2 < x < 1, in which case f”(1/2) would not exist. On the
other hand, if we have f”(x) < 4 for all x in (0, 1/2) but f”(x) < 4 for at least
one x, then we have f'(x) < 4x for at least one x, and consequently for all larger x
in (0, 1/2), and therefore f(x) < 4x? for these x, so that f(1/2) < 1/2; if we also
had f”(x) > —4 for all x in (1/2, 1), then f(1/2) > 1/2, a contradiction.
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40. If g(x) = f(xy), then

gx) =y flxy)
1 1
=y —===f().
xy x

So there is a number ¢ such that g(x) = f(x) + ¢ for all x > 0. Now
FO)=g(l)=f(D+c=c,
so g(x) = f(x) + f(y).

41. Suppose f(a) = f(b) = 0. If x is a local maximum point of f on [a, ], then
f'(x) =0and f”(x) < 0; from the equation

@)+ fx)gx) — f(x)=0

we can conclude that f(x) < 0. Similarly, f cannot have a negative local minimum
on (a, b).

42, If f(x;) =0forx; < x; <-+- < xpq1, then f/(x) = O for some x in each of
the n intervals (x;, x;+1). Consequently f”(x) = O for n — 1 numbers x, etc. (In
other words, we are all set up for a proof by induction.)

43. If x is one of the x;, then f(x) — P(x) =0 = Q(x), so we can choose any c.
Otherwise, let

F(t) = Q@)Lf(t) — P()] — QL f(x) — P(x)].
Thenfori=1,...,n+ 1 we have
F(x;) =0, since f(x;) — P;=0and Q(x;) =0

and also
F(x) =0.

By Problem 42, we have F**D(¢) = 0 for some c in (a, b). That is,
0= FO*(e) = QI F ™ (c) — 01 ~ (n + DILF(x) ~ P(2)]).

45. This is a trivial consequence of the Mean Value Theorem because if we define
lim f(y), x=a
y—at

gx) =14 fx), a<x<b
lim f(y), x=b,
y—b-
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then g is continuous on [a, b] and differentiable on (a, b) and g’(x) = f'(x) for x
in (a, b), so there is some x in (a, b) with

g(b) —g(a)

fo =g ="=—]

46. We have
[f(B) — f(a)lg' (x) = f'(x)[g(b) — g(a)].

If g'(x) =0, then f'(x)[g(b) — g(a)] = 0. But this contradicts the assumption that
g(b) # g(a), and the fact that f’(x) # 0 (since g’(x) = 0).

47. Let
h(x) = f(x)g®) + gx)f(a) — f(x)gx).

Then
h(a) = h(b) = f(a)g(b),

so by Rolle’s Theorem there is some x in (a, b} with
0=h'(x) = f'(x)g(b) + &' (x) f(a) — f'(x)g(x) — f(x)g'(x),

or

F(x)g®) — g(0)] = g'®)Lf (x) — f@)].

Since g’(x) # O for all x in (a, b), we also have g(b) # g(x) for x in (a, b)
(otherwise Rolle’s Theorem, applied to the interval [x, b], would imply that g’(x) =
0 for some x’ in (x, b).)

50. Since g(0) =0, and g is continuous at 0, we have limo g(x) = 0. Therefore, by
X=>
I’Hopital’s Rule

. fx) . g(x)
f —_— —
f (0) - ll_l’ﬂ] X - J!l—rﬂ) x2
_ o 8 g - @ 1., o 17
—}c]—»o 2x _;ljﬂ) 2x =28 0 = 2"

(The limit lin}] g'(x)/2x could also be found by I’Hdpital’s Rule.)
XxX=—>

51. (a) Use exactly the same proof as for ’Hopital’s Rule, but consider only x in
(a,a+ 8) orin (a — 4, a), respectively.

(b) Again the proof of I’Hopital’s Rule will work, almost verbatim. (It is tempt-
ing to apply I'Hopital’s Rule to g/f: Since lin}) g'(x)/f'(x) = 0, it follows that
x—

}i_l;[}x g(x)/f (x) = 0. Unfortunately, this implies only that }1_{)1:: | f(x)/gx)| = oc0.)
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(c) Since 11m f(/x) = l_i)n;of(x) = 0 and lir{)l+ g(l/x) = Jclj}rr;cg(x) =

x—0

part (a) 1mp11es that

o B V) NI V2 Vil Vo)
w00 g(x) 20t g(1/x " smar —(1/xDg (1)
i F®
o0 gD

(d) Similar to part (c), using the case x — a™ of part (b) instead of part (a).

52. (a) For any £ > 0 there is some a such that
f'(x)
g'(x)
This means, in particular, that g’(x) # 0 for x > a; it follows that g(x) — g(a) # 0

for x > a (by Rolle’s Theorem). Therefore the Cauchy Mean Value Theorem can
be written in the form

fG) — fla) _ J'(x")
gix)—gl@) gx)
Since x’ > a, the desired inequality follows,

—ll<s for x > a.

for some x’ in (a, x).

(b) We have

@ _f@=f@  fx)  gkx)—g@

gx) gx)—gl@ [f(x)— fa) g(x)
where f(x)— f(a) # 0, g(x) # 0 for large enough x, since xl-l»,lgo f(x)= xlgréo g(x)
= 00. These limits also imply that

f(x) . g(x)—g(a)
lim ————=lim ———— =
00 f(x) — f@) =00 g(x)

It follows that f(x)/g(x) can be made as close to [ f(x) — f(a)l/[g(x) — g(a)] as
desired by choosing x large enough. Together with part (a), this shows that
f(x)
g(x)

-1

< 2¢ for sufficiently large x.

53. One other form of ’Hdpital’s Rule will be used in later problems: If xl_l)tlgo fx)
o . . , , _ . o
= lim g(x) = oo and lim f'(x)/g'(x) = oo, then lim f(x)/g(x) =
To prove this, apply Problem 52 to g/f: Since xll'ngo g'@/f'(x) = 0, we have
xl_Lngo g(x)/f({x) = 0. This implies (as we remarked in the solution to Problem 51)
that lim | f(x)/g(x)] = 00. Since lim f(x) = lim g(x) = oo, we can conclude
X—> 00 X=X X—>00
that lin(;o f(x)/g(x) =00
x—
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54. (a) Since a is a minimum point for f on [a, b], for all sufficiently small # > 0
we have 3
fath-1@
b >
this implies that f’(a) > 0. The proof that f'(b) < 0 is similar.

(b) Part (a) shows that we cannot have the minimum of f at @ or at b, since we are
assuming that f'(x) < 0 and f'(») > 0. So the minimum occurs at some point x
in (a, b). Then f'(x) =0.

(¢c) Let g(x) = f(x)—cx. Then g’(a) = f'(a)—c < 0and g'(h) = f/'(b)—c > 0.
So by part (b), 0 = g'(x) = f'(x) — c for some x in (@, b).

55. (a) A simple modification of the proof of Theorem 7 shows that if lim+ f(x)

xX—=a
exists, then £ V- (@)
. a+h)— f(a
li ‘)= 1 = f'(a).
Jim, 6) = i, T = 1@
Similarly, if lim f’(x) exists, then lim f’(x) = f'(a). So if both one-sided
x—a~ x—>a~—

limits existed, f’ would be continuous at 4.

(b) Suppose, for example, that 1im+ f'(x) = oco. This means that f'(x) > f'(a)+1
X--»a
for all x > a sufficiently close to a. But by Darboux’s Theorem, if xp is such an

x, then f’ takes on all values between f’'(a) and f'(xo) on the interval (a, xo), a
contradiction.

56. If f(a) # 0, then continuity of f implies that f = | f| or f = —|f| in some
interval around @, so f is differentiable at a. If f(a) = 0, then @ is a minimum
point for | f|, so | f|'(a) = 0. This means that

_ i [f@ B 1£@)

0 h—0 h
" | f(a+ )l
=m —————--.
h—0 h

This equation also says that f'(a) = 0.

57. (a) Let f(x) =x"+y"—(x+y)". If f(xo) = 0 for some xy # 0, then Rolle’s
Theorem would imply that

0= f(x)=nx""1—n@x+ y)"! for some x in (0, xo) or (xg, 0).

But this means that x*~! = (x + y)*~! for y # 0, which is impossible, since
g(x) = x""! is increasing (n — 1 is odd).

(b) Now we have f(0) = f(—y) = 0. If f were zero at three points a < b < c,
then Rolle’s Theorem could be applied to [a, ] and [b, ¢} to prove that there are



146 Chapter 11

two numbers x with
0= f'(x) =nx""" —n(x+ )"
but this equation holds only for x = —(x + y) (Problem 1-6).

58. The tangent line through (a, a™) is the graph of
gx) =na" '(x —a)+ a"
=na"x + 1 - n)a".

If g(xg) = f(xo) for some xp # a, then Rolle’s Theorem may be applied to g — f
on the interval [a, xo], or [xo, al:

0=g'(x)— fl(x) =na""! — nx"! for some x in (a, xp) or (xg, a).

This is impossible, since x # a and n — 1 is odd, so a®~! # x"~1,

59. The tangent line through (a, f(a)) is the graph of
g(x) = f'@x —a) + f(a)
= f'(x)x + f(a) — af'(a).
If g(xo) = f(xp) for some xq # a, then
0=g'(x)— f'(x)= f'(a)— f'(x) for some x in (a, xp) or (xg, a).

This is impossible, since f’ is increasing.

60. Since

_xf'(x)— f(x)
= = ,

g'(x)

it suffices to show that
xf'(x) — f(x) >0,
or

S (x)

fl(x) > — for x > 0.
x
Now the Mean Value Theorem, applied to f on [0, x], shows that
f@) _ f® - £0)

= f'(x)  for some x’ in [0, x].
x x—0

< f'(x), since f’ is increasing.

61. Let g(x) = (I + x)" — (1 + nx). Then g(0) = 0, but
gx)=n+x)""1 —n.
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Since n — 1 > 0 this means that

gx <0 for -1 <x <0,
>0 forx > 0.

Thus g(x) > 0for -1 <x <0and 0 < x.

62. (a) O is actually a minimum on all of R, since f(0) = 0 and f(x) > O for
all x.

(b) 4 2

"0) = Lim TS A/R)

7@ = tim ITU/D) _
and

F/(hy = 4R sin*(1/ k) = 2K sin(1/R) cos(1/k)  for h 0.
So
32 Cop2a
£/(0) = lim 2 sin(1/ k) — 247 sin(1/ ) cos(1/ k)
h—0 h
—0.

63. (a) Since f’ is continuous, f'(x) > 0 for all x in some interval around a, so f
is increasing in this interval.

(b) We have

1 1
g (x) = 2x sin — — cos —.
x x

So g’(x) = 1 when cos 1/x = 1 (and consequently sin 1/x = 0), and g’'(x) = —1
when cos 1/x = —1,

(c) We have f'(x) = a + g'(x), so f/(x) > O when g’(x) = 1, and f'(x) < 0
when g'(x) = —1.

64. (a) We have ”ei
Sin
gly) = y Y _ cos y,

SO
2ycosy — 2sin .
g'(y) = Y yy2 2 4 sin y.

So if ¢g’(y) =0, then
0=2ycosy—2siny+ y*siny,

or

2sin y — y?si 2 —y?
(1) cosy = Sy~ smy =(siny)( 4 )
2y 2y
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Hence
2 sin . 2 —y2
@) ) =22 _ (Giny) ( Y )
y 2y
2 g2
- (smy)(— b )
y 2y
2 2
= (siny) ( Ty )
2y
(b) Moreover, from (1) we have
2 —y2\?
1—sin2y=coszy=(sin2y)( y) .
2y
50 )
siny = ! 5 = 4y ,
2 — y? 44+ y4
14 ( )
2y
so, by (2),
. 2+ y?
lg(y) = |siny]| - ‘ 2y
_ Pyl 24y 24
Va+yt 12y a4yt
(c) We have

f'(x) =1+ g(1/x).

Now we clearly have g(y) < O for arbitrarily large y (since g(y) is practically
— cos y for large y), so for arbitrarily large y we have

24 y?

g(y)<-m

by part (b). Thus f'(x} < O for arbitrarily small x, while we also have f'(x) > 0
for arbitrarily small x.

(d) We have

< —1

f(x) =a+g(l/x).
For sufficiently large y we have g(y) > —a. So for sufficiently small x we have

f'(x) > 0.

65. (a) If the minimum of f on [b, 1] occurred at some ¢ with b < ¢ < 1, then
f would clearly not be increasing at c, since we would have f(x) > f(c) for all
x < c sufficiently close to ¢. Now if 0 < a < b < 1, then the minimum of f on
[a, 1] is a, so f(a) < f(b). To obtain the strict inequality f(a) < f(b), pick some
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a’ with @ < a’ < b such that f(a’) > f(a) (this is possible since f is increasing

at a); then f(a) < f(a') < f(b)

(b) Let = sup Sp. If b < y < «, then there is some x in Sy with y < x. Therefore
f(y) = f(b). Moreover, since f is increasing at oz, we have f(o) > f(x)forx <«
sufficiently close to «, so f(a) > f(b). This shows that « is actually in sup Sp.
Now if o < 1 there would be a § > O such that f(x) > f(a) fora <x <a+4.
This shows that all such x are in S, contradicting the fact that « = sup S,. So
a=supSp,=1. So f(y) > f(b) forall y > b.

(c) For sufficiently small 4 we have

f{a+h)> f(a) if h >0,
fla@a+h) < f(a) if h <0,

This implies that
f@t+h - f@

0,
h

which implies that
0.

;o . fla+h)— f(a)
f(a)—;l_rg h >

(d) Since f’(a) > 0, for sufficiently small # we have
fla+h)— f(a) -

h
This implies that f(a + k) > f(a) for h > 0 and f(a+ h) < f(a) forh <O.

0.

(e) Part (d) implies that f is increasing at a for all @ in [0, 1], so part (a) implies
that f is increasing on [0, 1].

(f) If £ > 0, then g'(@) = f'(a) + € = & > O for all @ in [0, 1], so g is increasing
on [0, 1] by part (e), so f(1) +¢& > f(0), or f(1) — f(0) > —e. Similarly, % is
increasing on [0, 1], so ¢ — f(1) > —f(0), or f(1) — f(0) < &. Thus |f(1) —
f(0)] < &. Since this is true for all & > 0, it follows that f(1) = £(0). (Of course,
the same argument, applied to [a, ], for 0 < a < b < 1, shows that f(a) = f(b).)

66. (a) Suppose f is not constant, so that f(a’) # f (') for some a’ < b’ in [a, b].
To be specific, say f(a’) < f(b’). By Problem 8-4(b), thereare a’ <c <d < ¥’
with f(¢) = f(a’) < f(¥") = f(d) and f(c) < f(x) < f(d) for all x in (c, d).

But then @’ is not a local maximum for f.

(b) We can assume f(ag) < f(x) < f(bg) by Problem 8-4(b) [renaming c to be gy
and d to be by]. By Theorem 1 of the Appendix to Chapter 8 there is some £ > 2
such that

() — F) < L) = F@o) bo—ao.

— < 8§ =
5 for [x —y| < T
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Let ¢c; = ap + ié. Since

fle1) — flao) < £ (bo) “2" f(ao)
fb) — flep—y) < f(bO) ; f(ao)
we must have }
f(bo) = f(ao) .
— 7 .
f(e1) < fleg—1). |
a5 € . g

Consequently there is some i with | < i < k — 1 such that f(¢;) < f(c;4+1). Let
¢i =ayand ¢j41 = by. Then gy < a1 < by < by and f(a;) < f(b,). Moreover,
we can assume that f(a;) < f(x) < f(b) forall @) < x < by [use Problem 8-4(b)
again].

Continuing in this way, we find intervals [a,, b,] with @, < ap+1 < bp4y <
bn, and f(a,) < x < f(b,) for a, < x < b,; moreover, we can assume that
by, — a, < 1/n. Now let x be in all [a,, b,]. Then every interval around x contains
some [ag, bi], with f(xx) < f(x) < f(bx); hence x is not a local maximum or
minimum.

67. (a) The local strict maximum points are the rational numbers.

(b) Let x be a point in all intervals I, = [a,, bx]. Since the points x, are chosen
to be distinct, x = x,, for at most one n. Since x is a local strict maximum point,
there is a § > O such that x is a strict maximum point for f on (x — 4§, x + ). But
I, is contained in (—x — &, x + &) for all sufficiently large n; choose such an n for
which x # x,. Then f(x) > f(x,), since I, is contained in (x — &, x + §), while
f(xz) > f(x), since x is in I,.
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L@ ff(x)=6x—2>0forx>1/3.

f convex

f concave

-4/3 §/3 2

inflecti
point O‘r

() f7(x) =20x? +1 > 0 for x > —1//20.

f convex
/
7
/4
inflection
point
-~
/
/
y;
f concave
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(i) f'(x) =36x2—48x +12=12(3x* —4x+1) = 12(3x — I)(x — 1) > 0O for
x<1/30rx>1.

f convex

f convex
inflection points

(iv) We have
£y = — (% +x +2)%202% + Gx* + D23 +x + DG+ 1)
- (x5 4+ x4+ 1)
_2(x% 4 x 4+ DIGx* 4+ 1) — 10x° (x5 4+ x + 1)]
B S +x+ 14
2

— 8 3
iy s 1)3[15x — 10x° + 1].

To determine the sign of f(x) it suffices to determine the sign of

g(x) = 15x% — 104% + 1.

Now
g'(x) = 120x" — 30x% = 30x%(4x> — 1).

So g’'(x) =0forx =0orx = /1/4. We have g(0) = 1 and
g({1/8) = (J174) [15 : % - 10] +1
= (1/4)° (——fé) +1

< 0,

since /1/4 > 4/25. So g attains it (negative) minimum value at 3/1/4. Moreover,
since h(x) = 4x> — 1 is increasing, g’'(x) > 0 for x > /1/4 and g’(x) < O for
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x < {/1/4. So g is decreasing on (—oc, /1/4 ] and increasing on [ /1/4, 00).

>f7a

—

Consequently, g has two zeros, both in [0, 1], since g(1) > 0. It follows that if
a is the unique root of x> + x -+ 1 = 0, then f”(x) < 0 for x < a, but f"(x) >0
for all x > a except those x in a certain interval contained in (0, 1). Thus the graph
of f is convex on (a, ©0), except for a bump lying over some interval contained in

O, 1).

f convex

f concave

)

inflection
points

f convex
a

fm

!
|
|
I
!
I
|
|
I
|
|

(v) We have

oon (B2 1P(=2—2x) — (1 —2x — x?)2(x% 4 1)2x
fix)= 2D

3 +3x2-3x—1] = (x—DE2+4x+ 1)

Ty
s = D = [2+ V3] - [2- ¥3))

=('+_1)3

( 2+1)3
s0 f’(x) > 0for =2 —4/3 <x<-2++3and x > 1.
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f concave

R

2

inflaction point

wflection

-2-/3 vz Ny SE
fcm\ / '2"",-3__'_5“
';Ii'rffm" f convex k3 I
(vi)
£700) = (2 = 1D2(-2x) + (A +xH2(x? - D2x
B (x2 — D)4
2x 2
BN i

so f’(x)>0forx>1land —1 <x <0.

f convex f convex

I
l
|
|
|
|
|
!
l

inflection point

[
|
l
I
|
!
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2. If f(0) = 0, the graph looks like the following.

/
f convex
£ /
f convex /

f convex

3. Two such functions are shown below.

4. According to Problem 4-2, the points in (x, y) are precisely those of the form
tx+(1—1t)yfor 0 <t < 1. Definition 2 thus shows that f is convex if and only if

fx+A -0y —f®) _ fO)— fx)
tx+(1—-1)y—x y—x
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which is equivalent to

fax+ (1 —-0y) <tf(x)+ A=) f(Q).

5. (a) We have
gx+ (1 -0y <tgix)+ (1 —-1t)g(y) since g is convex,
SO
f@x+ (A -1y < ftgx)+ (1 -1gQk)) since f is increasing
<tflgxN+ A -f(eg(y) sicne f is convex.

Thus, f o g is convex.
(b) Let f(x)=1+x2%, x> 0and g(x) =1/x,x <O0.
(c) We have
(fog) =(fog)
(fog) =(f"og)g*+(f 8"
Since f”,g", g'* > 0 it follows that (f o g)” > 0if f' > 0.

6. (a) Since f is convex, f’ is increasing. If f’ isn’t either always negative or
always positive, let ¢ = sup{x : f'(x) < 0}. Then f’ < O to the left of ¢ and
f’ > 0to the right of ¢. [Actually, f’ will be continuous, see Problem 10; so ¢ can
be described more simply as the zero of f'.]

(b) For x < y consider
(fo8)(x) = f'(g(x))- &' (x),
(fo8) ()= f'El) g0
Suppose first that g is increasing. Then
0<g'(x) <g'(y) since g is increasing and convex.
Moreover, g(x) < g(y) implies that
0< flg(x)) < flg(a) since f is increasing and convex.

It follows that
figx))-g'(x) < f'(gy) - &' ().

Next suppose that g is decreasing. Then
g'(x) <g'(y =0,
and g(x) > g(y) implies that
') > f'gyn =0.
It again follows that f'(g(x)) - g'(x) < f'(g(»)) - 8'(¥)-
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Finally, suppose that g is decreasing to the left of ¢ and increasing to the right
of c. If x <y <corc <x <y, then we have already shown that f/(g(x))-g'(x) <

fllg() -2 (). If x <c <y, then
f(g(x))-8'(x) < f'(g(e)) - £'(c) < f'(g(y)) - &',
so we still have f'(g(x)) - g'(x) < f'(g(y)) - §'(y). Thus, (f o g)’ is increasing.

(¢) Lemma. Suppose f is convex on an interval and a < b are points in this interval.
If f(a) < f(b), then f is increasing to the right of b; and if f(a) > f(b), then f
is decreasing to the left of b.

Proof. Consider the case f(a) < f(b) (the proof in the other case is similar or one
can apply this first case to g(x) = f(—x)).

If b < d, then the definition of convexity shows immediately that we cannot have
f(d) < f(b). Moreover, if b < d; < d,, then the same argument shows (since we
now know that f(b) < f(d))) that f(d;) < f(d;). Thus f is increasing on [b, 00).

With the aid of this lemma we can now prove the theorem. Since f is not constant,
there is some a < b with f(a) # f(b). We consider only the case f(a) < f(b).
We already know from the lemma that f is increasing to the right of . Suppose now
that the minimum of f on [a, b] occurs at some c in (@, b). Then f is decreasing
to the left of a by the lemma. Moreover, if ¢’ is any number with a < @’ < ¢,
then we must have f(a’) > f(c) (if we had f(a) = f(c), then f(x) < f(c) for
x in (@, ¢), contradicting the fact that ¢ is the minimum point). So the lemma also
implies that f is decreasing to the left of a’ for all such a’. This shows that f is
decreasing to the left of c¢. Similarly, f is increasing to the right of c.

On the other hand, suppose that the minimum of f on [a, b] occurs at a. The
same sort of reasoning as before shows that f is increasing to the right of a. There
are then two possibilities:

It may happen that f(d) > f(a) for some d < a. In this case, the minimum of
f on [d, a] occurs at some ¢ with d < ¢ < a. The same reasoning as before shows
that f is decreasing to the left of ¢ and increasing to the right of c.

It may also happen that f(d) < f(a) for all d < a. Then we may apply the
results already proved (for @ < b) to d < a: If the minimum of f ever occurs at
a point c in (d, a), then f is decreasing to the left of ¢ and increasing to the right
of ¢, but if the minimum is always at d, then f is increasing to the right of d for all
d, so f is increasing.

7. Choose x > 0 so that f(x) < f(0). The Mean Value Theorem implies that there
is some xg in (0, x) with f’(xo)} < 0. If we had f/(y) < f/(xo) for all y > xq, then
for all x > xo we would have

f(x) — fxo) = f(x0)(x — x0),

which would imply that f(x) is eventually negative (since f'(xo) < 0). Therefore
f'(x1) > f'(xp) for some x; > x¢. This implies that the minimum of f’ on [0, x;]
occurs at some x in (0, x1). Then f”(x) =0.



158 Chapter 11, Appendix

T~

»”
ot
_“.-
e
o
»°

8. (a) This follows from Problem 4 with ¢t = 1/2.

(b) The assertion is true for n = 1, i.e., k = 1/2. Suppose that for some n it is
true for all x and y. If k = m/2"*! is in lowest terms, then £ is odd. Consequently
ky = (m — 1)/2"*! and k; = (m + 1)/2"*! can be expressed in the form a/2",
so the assertion is true for k; and k;. Notice also that k = (k; + k2)/2. From the
result for ky and k,, and the assertion for n = 1 applied to x" = kyx + (1 — ky)y and
y' = kyx + (1 — k3)y we obtain
f 7 !

f(kx+(1—k)y)=f(x J;”) < f(;)+ f(zy)

< ki f(x)+ (1 —ki)f(y) + kaf(y)+ (1= k) f(y)
2 2

=kfx)+ 1A -k fQ).

(c) Let 0 <t < 1. For any £ > (0 there is a number k of the form m /2" which is
so close to ¢ that

|flkx + (1= k)y) = fx+ (1 -0yl <&,
[kf )+ A=K - [Ef )+ A = FON]| <&

Then

fx+ Q=) < flkx+ (A =-k)y)+¢
<kf(x)+ (A=) f(y)+e
<tf(xy+ A —1t(f(y) + 2.
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Thus f(tx + (1 —18)y) <tf(x) + (1 —t) f(y). The following diagram shows that
if strict inequality holds for even one ¢, then it holds for all ¢ (by applying the weak
inequality to x and tx + (1 — t)y orto tx + (1 — ¢)y and y). But we have strict
inequality for ¢ of the form m /2", so we must have strict inequality for all ¢.

the graph of f cannot
lie above this line

tx+(1-t)y

2 o
T o

9. (a) Let x, and xg be the smallest and largest of the x;. Then

n n n
Xo =) Ppi%a < ) piXi < ) Pixp = Xp.
i=l i=1 i=1

(b) Part (a), applied to p, /¢, ..., pn—1/t, shows that (1/1) Z pix; lies between the
=1
smallest and largest of xi, ..., x,—1, SO it certainly lies between the smallest and

largest of x,, ..., x,.

(c) Jensen’s inequality is true for n = 1. Suppose it is true for n — 1. Then by
Problem 4 we have, since p, =1 —1¢,

f(z P:‘xi) = f(f (DY pixi 4+ (1 - t)xn)
i=l i=1
n—1
< tf(z:(m/f)xi) + (1 =1} f(xn)
i=1
n—1 _
<t B0 + puf(on)
i=1

=) pf).
i=1

(The same sort of proof shows that strict inequality holds for n > 1 (begin by
checking that strict inequality holds for n = 2).)
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10. (a) As the proof of Theorem 1 shows, [f(a + k) — f(a)]/h is decreasing as
h — 01, s0

fa+m~f@ _. l fa+h) — f@
h

fo@ = lim ZEED >0,

This inf exists because each quotient [f(a+ k) — f(a)]/h for h > 0 is greater than
any one such quotient for 2 < 0. Similarly,

{f(a+h)—f(a)
h

fL(a) = sup th <0}.

The relation f.(a) < f{(a) is obvious from the previous considerations. The
functions f and f’ are increasing, because if @ < b, then (as in the proof of
Theorem 1; see Figure 6 of the text) we have

, / fla+ (b —a))— fla) (b + (a — b)) — f(b)
@ < fL@ < a b_c:z f@ _f aa_b f

< fL(b) = fL(®).

(b) If b < a, then as in part (a) (with a and b interchanged) we have
fi(B) < fL(a) < fi(a).
If f1 is continuous at a, then l'}im f1(b) = f} (a), so we must have f’ (a) = f| (a).
—>(]

To prove the converse, we first show that f} will always be continuous on the
right, i.e.,

lim_£1(6) = £,(@).

In fact for any £ > 0 we can choose ¢ > a so that

f©) - f(a)

Py < fi(a)+e.

v

Py

o
o
[ 9]

Since f|(a) exists, f satisfies blim+ () = f(a) (as a matter of fact, f is con-
b d

tinuous at g even if f) (a) does not exist; see Problem 11). So we can choose b > a
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close to @ with f(b) as close to f(a) as desired. Thus we can choose b > a so that

fO-i®) _f@-f@,

c—b c—a
Therefore
— f®
fi@ < £y < LE=IE)
< f(C)—f(a)+£
c—a

< fi(a) + 2e.

This shows that f} is continuous on the right.
It remains to show that if f (2) = f’(a), then f} is continuous on the left at a.
Given ¢ > 0, choose ¢ < a so that

fr@—e=f_(a)—¢<

fa) — f(c)
—

—da

Then if ¢ < b < a, the secant line through (b, f(b)) and (a, f(a)) lies between the
tangent line at a and the secant line through (c, f(c)) and (a, f(a)), i.e.,

fla) — flc) _ f@)— f(b)

c—a a—b»b

< f1(b) < fi(a).

fil@)—¢<

This shows that lim f1(b) = fi(a).
b=a-
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11. (a) Let a be a point of the interval. Let ¢ > 0. Pick some x5 > a. Notice
that no matter what value f(xo) may have, the line segment between (a, f(a)) and
(x0, f(x0)) eventually lies below the horizontal line at height f(a) + €. Since the
graph of f must lie below this line on (a, xy), this shows that f(x) < f(a) + ¢ for
all x > a sufficiently close to a. A similar argument works for all x < a sufficiently

close to a.

fla)+e 4 —————— ———

fla 1

It remains to show that f(x) > f(a) — & for all x sufficiently close to a. If
f(x) = f(a) for all x there is nothing to prove, so suppose that f(xg) < f(a) for
some xg with xo > a, say. Then we must have f(y) > f(a) for all y < a, because
of convexity, so all y < a certainly satisfy f(y) > f(a) — &. Moreover, if we pick
some yg < a, then the line segment between (yg, f(y0)) and (a, f(a)) lies above
the horizontal line at height f(a) — £ in some interval to the right of a. Since the

graph of f must lie above this line to the right of a, it follows that f(x) > f(a)—¢
for all x > a sufficiently close to a.

f{a)d

f(a)~-et+——————————————
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(b) The following Figure shows the possible kinds of discontinuities on a closed
interval.

12. (a) Clearly f is weakly convex on an interval if and only if for all 2 and b in the
interval, the line segment joining (a, f(a)) and (b, f (b)) lies above or on the graph
of f. If f is actually convex, then it clearly contains no straight line segments.
Conversely, suppose that f is weakly convex and its graph contains no straight
line segments. To prove f convex we have to show that the line segment joining
(a, f(a)) and (b, f (b)) cannot contain even one point (x, f(x)) fora < x < b.

f(b)+ »
f(x)+ ,ﬂ" *
fa)y+

a X X! b

Suppose it did. Since the graph of f does not contain the entire line segment from
(x, F(x)) to (b, f (b)), there must be some x’ in (x, b) such that the point (x’, f(x))
lies below this line segment. But then we easily see that (x, f(x)) lies above the
line segment from (a, f(a)) to (x’, f(x")), contradicting the fact that f is weakly
convex.

(b) Theorem 1. If f is weakly convex and differentiable at a, then the graph of f
lies above or on the tangent line through (a, f(a)) at all points. If @ < b and f is
differentiable at a and b, then f'(a) < f'(b). Lemma. Suppose f is differentiable
and f’ is nondecreasing. If a < b and f(a) = f(b), then f(x) < f(a) = f(b)
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for a < x < b. Theorem 2'. If f is differentiable and f’ is nondecreasing, then f
is weakly convex. Theorem 3'. If f is differentiable and the graph of f lies above
or on each tangent line at every point, then f is weakly convex. Theorem 4'. If f
is differentiable on an interval and intersects each of its tangent lines in an interval,
then f is either weakly convex or weakly concave on that interval.

13. Suppose first that Ar is convex. Then for x; < x3, the points (x1, f(x1)) and
(x2, f(x2)) are in Ay, so all points of the line segment between them are in A¢. But
this just means that all of these points lie above or on the graph of f, so f is weakly
convex.

Conversely, suppose that f is weakly convex, and let (x;, y;) and (x3, y») be two
points of Ay, so that we have f(x;) < yi.

(x,,%,)

Ny2) f

——
-

Modifying Problem 4 in the obvious way, we have

t 1—1t¢ < 1—1¢
) ftxy +( )x2) < fx1) +( ) f(x2) for0<t<1,
<ty+{dA-Dy
But every point of the line segment between (x1, y1) and (xz, y2) is of the form
(txy + (1 = )xz, ty1 + (1 — t)ys),

and (x) shows that these points are in Ay.
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L G) fFlx) =241 Iy = f'(x), thenx = f(y) = (y ~ 1)} s0
y=1+x173)

(iv)
s =0V x<0
f (x)_{(l—x)l/s, x> 1
(f y = f~'(x), then
v | Y y=z0
x—f(y)—{l_yg,’ ) <0,

Since —y? <0if y>0and1—y* > 1if y <0, we have y = (—x)/2 for x <0
and y = (1 —x)12 forx > 1.)

(vi) f~1(x) = x —[x/2] for [x] even. (If y = f~'(x), then

x=f()=y+hl
=y+n forn<y<n+1

Thus
2n<x<2n+1,

and
y=x—-n=x-—[x/2].)

165
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(viii)

~1 4 /14 4x2
o= o 70

0, x=0.

(Ify=f1(x),thenx = f(3) =y/(1 = ¥*). Soxy’+y—x=0. If x =0, then
y =0. If x 5 0, then

—14 /14 4x2 1 + 4x2
> :

or y=-1-

y=

The first possibility is the correct one, since x and y must have the same sign.)




Chapter 12

167

2. (i) f~!is increasing and f~!(x) is not defined for x < 0.

]

(i) f~! is increasing and f~!(x) is not

l
J
/

f"l

defined for x > Q.

(iii) f~! is decreasing and f~!(x) is not defined for x < 0.

AN
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(iv) f~!is decreasing and f~!(x) is not defined for x > 0.

/ \
/
/

5. () If h(x) = 14x,theng = hof,s0g7 ' = f~loh™ !, 50 g7 (x) = fF1(x—-1).
It is also possible to find g~! directly: if y = g~1(x), then x = g(3) = 1+ F(),
soy=f"lx—1))

7. (ii) Any interval [a, b], since f is increasing.

(iv) Those intervals [a, b] which are contained in the interval (--oo, —1- «/5] orin

[—1 + V2, oo) or in [—1 + 42, oo), since these are the intervals on which f is
increasing or decreasing.

8. We have

’ _ =157 _ 1
£@) =0 = Fiss

= {1+ [f ' x)P)/?

3P )

T2 {1+ [f P2
3

=3 )P

_3
—zgu)-

g" (x)

9. Apply Theorem 5 to f~.
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10. (a) For @ f(y) to exist f'(y¥), f"(¥), and f"’(y) must exist, with f'(y) # 0.
Then

1
F e =

PO
g =) - (P G)
Y E = TP
_ ="y
PP

(F71)"(x) =

< A=LFETEPF U@ - (W)
+ GO BT @ 0]

_ —LF NP L@+ 3@ - (P )P
L (1T
all exist (compare Problem 21), with (f~1)(x) # 0.

(b) Since we know that @ f~1(x) exists, we can use Problem 10-17(a) to write
1=B(fo fAHX) =BT EN- TP+, (x)
D))

1
L (1Nt

= G £ (x),
e T
or
_ DS (X))
lx)y=1— :
AR =1 e
11. (a) Let f = g~!, where g(x) = —x> — x. Notice that g is one-one, since

g'(x) = =5x* — 1 < 0, and that g takes on all values. So f is defined on R, and
for all x we have

x=g(f(x)) = —[f(x)P — Fx).
Moreover, f is differentiable, since g’(x) # O for all x.

(b)

ffx)=g"Yx= by Theorem 5

1
CgUfR)  SSlF@KE -1

(c) Differentiating both sides of
[FOOP+ f(xX)+x=0

g'(g71(x))
1

yields
S[IFEOI*- Fx)+ Fix)+1=0,
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S0
-1

P& = I5rmr

12, (a) f(x)=+v1—x2and f(x) = —v1 —x2.

(b) There are no functions with this property.

(c¢) Let
g1(x) x <=1
g2(x) s = gix)for { —1<x<1
83(x) x> 1.

-1\
9, \

Then each g; is one-one. If f; = g;', then each f; satisfies [ f; (x)]* — 3£ (x) = x.

The domain of

fl ('—OO, 2)
b is (-2,2)
f3 (2’ OO)

(Tofind y = fi(x) = g; 1(x) explicitly we would have to solve the equation x =
g(y) = y*> — 3y. This can be done, but only with great difficulty; see Chapter 25.)

It is not hard to see that any continuous function f satisfying [ f(x)]>—3f(x) = x,
and defined on an interval, must be (part of) some f;. For such a function f satisfies
g(f(x)) = x; this equation implies that f is one-one (Problem 3-23) and that f~!
coincides with g on the domain of f~!. But the domain of f~! is an interval, and
the only intervals on which g is one-one are contained in (—oo, —1) or (—1, 1), or

(1, c0).

13. (a) Differentiating both sides of [ f(x)]* + x2 = 1 yields
2f(x)f'(x)+2x =0,
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or
X

f(x)=—m-

(b) This equation is true for

f(x) =+v1—x2, inwhichcase f'(x)= \/1:;?2_ = f_(i)’
and B
f(x) = —=v1—1x2, in whichcase f'(x)= \/Ix—ixz = f(.:)'
(c) We have
P @) =3 () =1,
S0

1
3Lf)P -1

'y =

14. (a) Differentiating both sides of x3 + [f(x)]® = 7 yields
3x% + 3 f )PP f(x) =0,
6x + 6 F(X)f (x)* +3[f )PP f"(x) =0,

or
, 2
I =ror
—x2 7?
—2x—2
flx)y= FoH® [[f(x)]z]
[f(x)P
_ —2x[f()1* — 2x* f(x)
B [f(0)1° '
(b) For this f we have
)= -1
f(-1)= 2
" 2.24-2.2
-1 ="
7
=T

171

15. Differentiating both sides of 3x3 + 4x2 f(x) — x[f (x)1* + 2[f (x)PP = 4 yields

9x% + 8xf(x) + 4x% f'(x) — [f (0)])* — 2xf (x) f'(x) + 6L () f'(x) = 0.
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At the point (—1, 1) we have
9—84+4f (-1)=142f'(-1)+6f(-1)=0

or
fi(=1=0.
So the equation of the tangent line is y = 1.

16. Consider a differentiable function f which satisfies
FON +f P +xf(x) =1
then

ALFEOPF®) +3F@PF () + f&x) +xf (x) =0,

' — —f(x)
f O = P+ P+ x

19. (i) B~1(3) = —1, since B(—1) = #(0) = 3. So

1 1
—1y 1) = =
EY0) = g6y~ FD
1

~ W)

_ 1

B sin?(sin 1)

(The answer is not surprising, since the equation B(x) = h(x + 1) implies that
ﬁ_l = h_l - 1)

21. As in Problems 10-19 and 10-31, the main difficulty is in formulating a reason-
able conjecture for the form of (f~1)*)(x). It is not hard to prove the following
assertion by induction on k: If F®(f~1(x)) exists, and f'(f~1(x)) is non-zero,

then
A(x)

LA CF1 et

for some integer m, where A(x) is a sum of terms of the form

LG enr™ - LF O ™.

(FH®E) =

22. (a) Suppose f is increasing and g is decreasing, and f(a) = g(a). If a < b,
then
g(b) < gla) = f(a) < f(b),

and similarly if b < a.
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(b) Appropriate functions f and g are shown below (to be explicit we can take
gx) =x and f(x) = [x]+ +/x — [x] (Problem 4-17)).

(c) Appropriate functions f and g are shown below. (Using the exponential function
from Chapter 18, we can define f(x) = ¢* and g(x) = —e*, but at the moment

explicit definitions would be awkward.)
/
\

23. (a) The geometric idea behind the proof is indicated below: If f(a) > a, then
f(f(a)) =a < f(a). Since f(a) > a, and f(b) < b for some b (namely, f(a)),
it follows that f(x) = x for some x in [a, b].

.—/
\

(a,f(a

(f(a),0)
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(b) Let f be any decreasing function on (—co, a] which takes on all values > a,
and define
f(x), =x=<a

8()= [ @), xza

/

7/

(©) If f(x) < x, then x = f~Y(f(x)) < f~1(x) = f(x), a contradiction. Simi-
larly, we cannot have f(x) > x.

24. The functions with this property are precisely the one-one functions, because
reflecting through the antidiagonal is the same as reflecting through the vertical axis,
then reflecting through the diagonal, and finally refiecting through the vertical axis
again,

\\ //
\ ® b @9
L L _ ‘\ ®
/
K
7 I\
/ AN
/ AN
/ AN

If a more analytic proof is desired, notice that the reflection of (a, b) through
the antidiagonal is (—b, —a). Thus if (a, f(a)) and (b, f(b)) are two points on
the graph of f, we require that (— f(a), —a) and (— f(b), —b) should not have the
same first coordinate if a # b. In other words f(a) and f(b) must be different. So
f must be one-one.

25, (a) Since f is not increasing, there is some x < y with f(y) < f(x). Since
f is nondecreasing, if x < z < y, then f(x) < f(2) < f(y) < f(x). So
fx)=f@ =1
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() f(x+h)> f(x)forh >0and f(x+h) < f(x)for h <0, so

fa+m - &)
: >

forall A #0, so f/(x) > 0.
(c) If y > x, then

FO) - fx)
y—x

= f'(z)  for some z in (x, y),

>0
so f(y) = f(x). Similarly, if y < x, then f(y) < f(x).

26. (a) The idea behind the proof is indicated in the figure below. On the interval
[n, n+1], let g be the linear function with g(n) = f(n+1) and g(n+1) = f(n+2).

N

(b) Ontheinterval [z, n+1] let g be the linear function with g(n) = f(n+1)/(n+1)
and g(n+2) = f(n+2)/(n+2).
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1. (a) Sets =x —a,sothat x =a + .
(b) The tangent line according to our new definition consists of all points
c@+s-c@) =(a, f(@)+s5-(1, f(a)
= (a, f@) + (5, sf' @) = (a +5, f(@) + 5f'(@)),
the same set of points obtained in part (a).

2. We have
(2,2 t>0

(-12,13) t<0

and these points are all on the graph of h(x) = |x|, since [—£2| = ¢2. On the other
hand, if S(f) = ¢, then our straightforward definition of ¢’ gives

¢'(0) = (£'(0), §'(0)) = (0,0),
since we have f/(0) = §'(0) = 0.

c(t) = (f(t), 1} = {

1

3. (a) Since #’ # 0 on the interval, « is one-one on the interval, so ¥~" exists, and

each point

(u(t), v(2)) = (), v~ @@))) = (u(@), v o u™ (u(2)))

is on the graph of vou~1.

(b) We have
ff=@ouY =@ou™) Y
B v o u—l
u oy-! !
50 ’ ’ 0
Fx)=fu@)= 70
(c¢) Then
£ = @ ou)W ou™y — (W ou)u outy
(uf o u—l)z
@ ouH 0w _ (W ou )W ou!)
B (ur o u—]) (uf o u—l)
- (u o w12
_@Wou ) ou Ty — (W ouT )" ou"")
- (' ou—1)3

176
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SO .
@OV () = v (Ou" ()

W ()

f(x)

4. (i) Differentiating the equation x2/® + f(x)%/* = 1 yields
2 2™ _ o
3x1/3 " 3f)1B

, f(x)3
fx)y=- W

(ii) Problem 3(b) gives

3sinzcost sint

flx) =

3cos2t(—sint)  cost

for x = cos® ¢. Substituting this value of x into the equation x2/3 + y?/3 = 1 gives
cos?t 4+ f(x)#* =1,

F)3 =1 —cos?t =sint,

/3
fix)=— —f)(;;:, :

S0

5. The square of the distance from P to (u(t), v()) is

(xo — #(1))* + (yo — v(1))*,

which has it minimum at 7 when
(%) 0 =2[xo — u(®)] - [~u' ()] + 2[yo — v()] - [-V'(D)].
If «/(t) s 0, this can be written as

V(E) yo-—v@)

w'(t) xo—u(t)
thus the tangent line, with slope v'(f)/u’ (f), is perpendicular to the line from P to
Q, with slope [yo — v(£)]/[xo — u(t)).

If w’'(f) = 0, so that the tangent line is parallel to the first axis, then [since we
assumed that #’(f) and v'(¢) are not both 0], () implies that y; — v(f) = 0, i.e.,
that the line from P to Q is parallel to the second axis, and thus perpendicular to
the tangent line.

6. (a) Letting u(®) = f(8)cosb, v(f) = f(8)sind, the slope of the point with
polar coordinates (f (8}, 8) is

v'(0) _ f(B)cos® + f'(9)sind

(@) —f(©)sind + f'(@)cosb’
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(b) When f(6) = 0, this formula shows that the slope of the tangent line through
the point with polar coordinates (0, #) [i.e., the origin] is tan8, which is just the
slope of the line making an angle of 6 with the positive horizontal axis.

For the Archimedian spiral r = f(0@) = 8 we have f(0) = 0 so the tangent line
through the origin is the horizontal axis.

For the graph of r = cos 26 (Problem 3(iii) of that Appendix) we have
cos20 =0 for 0 = 45°, 135°,...

so the lines through the origin making angles with the horizontal axis of 45° and
—45° are tangent lines.

For r = [cos 29| (Problem 3(v)) we clearly have the same tangent lines through
the origin.

Similarly, for the graph of r = cos 36 (Problem 3(iv)) the lines through the origin
making angles of 30°, 60°, —30° and —60° are tangent lines, and the same is true
for r = | cos 38| (Problem 3(v1)).

For the graph of the lemniscate 7* = 2a2 cos 20 (Problem 10 of that Appendix)
we again have r = 0 for cos 28 = 0, so the lines through the origin making angles
of 45° and —45° are tangent lines.

(c) We must have f’(9) = 0, since f(8) is the distance from the origin to the point
with polar coordinates ( f(0), 6). According to part (a), the slope of the tangent line
is then —cotd = —1/tan@8. Since tan @ is the slope of the line from the origin to
the point with polar coordinates ( £ (&), 8), this shows, in agreement with Problem 5,
that this line is perpendicular to the tangent line.

(d) By part (a) we have

_ f(B)cosd + f'(6)sind

N = By sind + F(8)cosd

SO
tano — tan @
1 +tanatan 8
f(@)cosb + f'(9)sind sin 8
—f(8)sin6 + f'(6)cosb " cos@
f(@)cos@ + f'(@)sinf sind
—f(@)sin@ + f'(8)cosd " cos@
f(8)cos?0 + f'(@)sinfcosd + f(0)sin26 — f'(0) sin 6 cos b
—f(0)sinfBcosf + f'(8)cos?26 + f(6) cosOsind + f’(B)sin29

_1®
o)

tan(a — 9) =

1+
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7. (a) () If
(2 + FP + F(0)* =22+ f(x),
then

(P + FE*+ FE)[2x +2f X F () + £ ®)] =x + fF) f (%),
SO
FO{1+2f®](x*+ £ + F &) — F0)) =x[1-2(x> + F(x)* + f(x))]
SO
3 x[1-2(x2+ Fx)* + f(0)]
T [+ 2f@](x2+ F@F+ fF()) — f(x)

x[1-2yx2+ f(x)?]

N [142Fx)]Va2+ f@x)? - fx)

(ii} At the point with polar coordinates (x,0) = (1 — sin@, ) the slope of the
tangent line is
(1 —sinf)cos@ —cosfsind  cosf(1 —2sinf)
(=1 +sin@)sin — cosfcosd  sin’H — cos2H — sin @
cos@(1 — 2sin @)
= 1—2cos20 —sinf’

f'(x)

(b) We have r = 0 for 8 = 90°, so the line through the origin making an angle of
90° with the horizontal axis is a tangent line. [More precisely, there is no tangent
line at this point, but there are appropriate left- and right-hand derivatives of oo
and —00.]

8. (a) From the Figure, the distance from P to the radius passing through Q is
asint. Since the distance from O to Q is at, the first coordinate of P is the differ-
ence, at — a sint.

Similarly, the second coordinate of P is a minus the distance from P to the center
of the circle, and thus a — a cos?.

(b) We have
u'(t) =a(l —cost) >0,

since cost < 1; in fact, u'(¢) > 0 except at isolated points. So u is increasing.

(c) We have

v(t) =a—acost

a— v(t)
cost = ,
a
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and thus
t = - arccos - v(t)’
a

with the + sign for ¢ > 0, and the — sign for ¢ < 0, since arccos is always positive.

Moreover,
sint = %+ 1 —cos?t

2
=i‘/1__(a—v(t))
a
= &~ /2 — v OO,

with the sign being the same as that of sinz Hence

u(t) =at —asint
a — v(t)

+ V[2a — v(Olv(@),

where the first  is the same as the sign of ¢ and the second is the opposite of the
sign of sint.

= +q arccos

(d) For the first half of the first arch of the cycloid we have t > 0 and sinz > 0, so
— vz
a0 _ e =l .

This means that this curve consists of points

— V[2a — v(@®)1v(®), v(t)) : 0<t<l

u(t) = a arccos

a— v(t)

u@®), v@®)) = (a arccos

or of points

(aarccosa;y—\/[Za-y]y,y) 0 <y<2a,

which is indeed the graph of g~

9. By the Cauchy Mean Value Theorem (Theorem 11-8), there is a number x in
(a, b) with
(*) [u(b) — u(@)]v'(x) = [v(b) — v(a)lu'(x).
If we write this as

v'(x) _ v(b) —v(a)

u'(x) “ u(b) — u(a)
then the right-hand side is just the slope of the line from P to Q, while Problem 3
shows that the left-hand side is the slope of the tangent line of the curve (since
u'(x) # 0, u is one-one in an interval containing x, so part of the curve is the graph
of a function f =vou™!).
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Of course, this assumes that the denominators are not 0, so we really have to
exercise more care. To begin with, note that either u(b) # u(a) or v(b) # v(a),
since otherwise P = Q and there is nothing to prove. We might as well assume
u(b) # u(a), since the whole argument can be made with # and v interchanged.
Then the only problem is that we might have u'(x) = 0 in (x). Since u(b) # u(a),
this means that we must also have v’'(x) = 0. This possibility can actually arise, as
mentioned in Problem 2, and really should be eliminated by hypothesis.

10. (a) Obviously
u(t) — | < Iu(t) — L2+ |v(t) — L2 = [le@) =1,

and similarly for |[v(t) — I5].
Now suppose that tlg!(l! c(t) = I by the above definition. Given £ > 0,let 6 > 0

be the one given by the definition. Then for 0 < |t — a| < § we have
lut) ~ | < llc(t) = 1| <e&.

Thus tl—l-I>I¢lz u(t) = l;. Similarly for v.

(b) Conversely, suppose that ,ll’f}, ¢(t) = | according to the definition in terms of
component functions, so that tlir)rtlz u(t) =l and rll{ltll v(t) = I;. Suppose we are
given ¢ > 0. Choose d;, 3 > 0 so that

if 0 < |t —a] < &y, then |u(t) — Ij] < —=

V2
: £
if 0 < |t —a| <&, then |v(t) — L] < E'
and let § = min(é, 83): Then if 0 < |t — a| < § we have
2 &
M@*h|<7
2
£
lv@) — L < >
and thus
g2 g2
lle@) = 1 = lu(@®) = L * + lv(®) — B < Sst5= £%,
so that

le@) — 1} <e.
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3. (a) Problem 2-7 shows that
1 A

0
k=1 LA

nptl =pv+1 n

13

B

+;+...,

which can clearly be made as close to 1/(p + 1) as desired by choosing n large

enough.

(b) We have

bp+l
L(f, P) =

nPt1

p+i

n—-1
FZ §P

b =0 -

.
Zk?.

U(f, P) = PYESY

=1 -

Part (a) shows that L(f, P,) and U(f, P,)} can be made as close to the number
BPT1/(p + 1) as desired by choosing n sufficiently large. As in Problem 1, this

b
implies that fo xPdx =bPH J(p + 1).

4. (a) We have

sot; =arl =a-c/",

(b) We have

U(fs P) = Z[a . Ci/n]p . [a . ci/" —a- c(i-—l)/n]
=1

n
— ap+1(1 _ c—l/n) (c(p+1)/n)i
2

n—

= gP+I(1 — ¢~ VM)l +D/n Z(C(Pﬂ)ln)i

i=0

— ap-l-l(l _ C—l/n)c(p+l)/n

182

1 —cPH
1— c(P+1)/"

by Problem 2-5
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— A PHle1 o pHINA(PHD/R [—cl/m
=aPT' (1 —-cP ) T
1-— c(P"'l)/"
1— c—l/n
— (qPt! — pPtIy (/0 = =
(a b )e 1 — cp+Dy/n
I/n _ 1
— (gP+! _pptlypin €T T
=(a D i ey
Problem 2-5 also gives
1 — c(p-l-l)/n
n 4 P
I+ + +c 1—cl/n
So
1
— (pPF! _ ooty .p/n
U(f, P)=(b a” e 14cl/n4 ... 4 cp/n”
Similarly,

1

= o P/n = (pPT! — gPt+1ly.
L(f,P)=c Uf,P)=( a ) 14+ct/n4...4cP/n’

(c) By making n large enough, we can make c!/” as close as we like to 1 (see
Problem 22-10 for a rigorous proof). The same holds, of course, for each of the
p numbers ¢'/*, ..., cP/™. So U(f, P) and L(f, P) can both be made as close as
desired to

bp+l _ap+1 bp+l _ap+l
1+14---+1" p+1
— e
p times

5. (i) The integral is O, since the part from —1 to 0 is the negative of the part from
Otol.

(ii) By the same reasoning the integral is
1
T
1 —x%2dx =3—,
j; 1 3 x*dx =3 2

since f(x)} = 3+ 1 — x2 is a semi-circle of radius v3on [—1,1].

6. Since sint > 0 on [0, /2] (using radians) we clearly have

* sint
[s"' dt>0 for0<x<n/2
) TF1

Moreover, the integral f,f /2 sint dt is exactly the negative of fonl 2sint dt, while
1/(t + 1) is smaller on [7/2, 7] than on [0, 7 /2], so the entire integral

_—
f sin¢ d
w2 t+1
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is smaller in absolute value that the same integral on [0, 7 /2]. The same is certainly

true of
f" smt
nj2 1

for all /2 < x < m. This shows that

X

t

f S1n dt >0 alsoform/2 <x <.
o t+1

Etc.

7. (i) [ f=0.
(iv) f is not integrable.

(vi) f is integrable; a rigorous proof can be given in several ways, using various
problems in this chapter, for example Problem 20. (Presumably, the integral of f is

LI 1y 11 1y
2 2\2 3 3\3 4

At the moment we do not even know what an infinite sum means, let alone how to
work with them, but the following likely looking manipulations are actually valid:

1 141 1 1/1 1
5+5(5“5)+§(§“z)+
1 1 1 1 1 1
(zz+3z+4z+ )%‘5‘5‘3‘1""
(1+1+1+1+ )_1__1__;_...
22 32 42 2.3 3.4

(111
tatmtat

From the fact that

1
-1__2+ +n(n+1)_n+1’

derived in Problem 2-6, we might guess that

! + - + ! +.o=1
1-2 2.3 3.4 T
The other infinite sum happens to equal 772/6 (but we will not get to a proof of this
fact anywhere in the text), so the integral of f is 72/6 — 1.)
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8. (i)

(ii)
! 4
2 . 2 T
f_]x (—x)dx 3
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(iii)

(iv)

7 Va/2 V2
f 2—x2dx+f 2-—(1-—x2)dx+f 2 — x2dx =2v/2.
) ) N7




Chapter 13 187

v) ,
f (x? = 2x +4) —x%dx = 4.
]

(vi) The area should be

2
Zﬁ—f x2dx = %.2-
0

Ve

10. The first inequality is a special case of Problem 8-13, and the second inequality
follows from the fact that { f(x1) + g(x2) : ti—1 < x1, x2 < t;} contains all numbers
in {f(x)+g(x):t_1 <x <t}, and possibly some smaller ones.

11. (a) If L(f, P) = U(f, P) for even one partition P, then each m; = M;, so f is
constant on each [#;_1, t;]. Since these closed intervals overlap, f must be constant
on all of [a, b].

() If L(f, ;) = U(f, P,) and P contains both P; and P,, then L(f, P}) <
L(f! P) = U(fa P) < U(f9 PZ) = L(fs P]): SO L(.fs P) = U(f’ P) It follows
from part (a) that f is constant on [a, b].
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(c) Only constant functions. For suppose f is not constant on [a, »], and let m be
the minimum value of f on [a, b]. Since f(x) > m for some x, and since f is
continuous, we can choose a partition P = {t, ..., t,} of [a, b] so that f > m on
some interval [y, t;]. Then m; > m, so L(f, P) > m(b — a). On the other hand,
if Q is the partition Q = {a, b}, then L(f, Q) = m(b — a).

(d) If f isintegrable on [a, b] and all lower sums are equal, then f takes on the value
m = inf{ f(x) : a < x < b} at a dense set of points in [a, b]. In fact, Problem 30
shows that f is continuous at a dense set of points. Now if f is continuous at x
and f(x) > m, then, as in part (c), there is a partition P with L(f, P) > m(b — a),
while L(f, Q) = m(b—a) if O = {a, b}, contradicting the hypothesis. Conversely,
it is easy to see that if f takes on its minimum value m on a dense set of points in
[a, b], then L(f, P) = m(b — a), since each m; = m. (The condition that f be
integrable is essential in this problem. For example, if f(x) = 1/g for x = p/q in
lowest terms, and f(x) = 1 for x irrational, then L(f, P) = 0 for all P, but f does
not take on the value 0 = inf{ f(x) : @ < x < b} anywhere.)

12. Theorem 4, applied to a < b < d, implies that f is integrable on [b, d]. Then
Theorem 4, applied to b < ¢ < d, implies that f is integrable on [b, c].

14. Let P = {1, ..., t,} be a partition of [a, b]. If g(x) = f(x — ), then

m; =inf{f(x) 1 =x =4} =inf{g(x) 1 i1 +c<x <t +c}

and similarly for M;, so L(f, P) = L(g, P’) and U(f, P) = U(g, P’). If f is
integrable, so that for every ¢ > 0 we have U(f, P) — L(f, P) < ¢ for some P,
then g is also integrable, since we have U(g, P') — L(g, P’) < &. Moreover,

b+c

b
f F@ dx = suplL(f. P} = splLie. P = [ pe—ya.

a b a:I—c btc

15. Notice that
1 1
b-inf{?:z,-,_l 5!‘51‘,-} =inf{? tbti_ 1 <x 5bz,-].



Chapter 13
Denoting the first inf by m; and the second by m;’, we have

L(f, Py =) m;'(bt; — bt;_y)
i=1

= ibmi’(ti —t-1)

i=1

=) mi(t; — ti1)
i=1
= L(f, P).
So
ab 1 , a
f L ar = sup{L(f, P')} = sup(L(f, P)} = f Lat
b I 1 ¢

16. If P = {t,,...,t,} is a partition of [a, b], and P’ = {cty, ..., ctp}, then
m; =inf{f(ct) : ti <t S} =inf{f(t) 1 ctig <t <} =m;.

So if g(t) = f(ct), then

cL(g, Py =c) mi(t — ti-)
i=1

n
= Zmi(cti — Cti—1)
i=1

= L(f, P).
So

cb b
f f(@)dt = sup{L(f, P)} =c-sup{L(g,P)}=c- f f(ct)dt.

189

(Actually, this proof is valid only for ¢ > 0, but the case ¢ < 0 can then be deduced

easily.)

17. The upper half of the unit circle is the graph of

fx)=+v1-x2

while the upper half of the ellipse is the graph of

g(x) =b/1— (2)2
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so the area enclosed by the ellipse is
a t 2 a t 2
2[ b‘fl-(-) dt=2b[ 1—(—) dt
—a a —a a

1
=2abf 1 —1t2dt
-1

=2ab-n/2 = nab.

18. (a) We have

a 1 1
f x"dx = af (ax)*dx = a"*t! f x"dx = c,a"t!.
0 0 0

(b) From part (a) we have

n+l n+l 2 n _ * < n\ k n—k
2" cpa = x"dx = Z i xta" “dx
0

—a k=0
a
) Z (:)a”_"c f x* dx (compare Problem 5)
k even 0
= ZkZ (:)a""kak"'lck = 2q" ! Z (:)Ck.
even k even

(c) The proof is by complete induction. We know that ¢y = 1/2. Assume that
cx =1/(k + 1) for k < n. Then

n

k

2"Cn=2z m

k even

2 n+1/n
=n+1k§;nk+1(k)

2 n+1
=n+1k§n(k+l)

2 n+1
2"+11§1:d( k )

2?1

by Problem 2-3(e)(iii)

n+1

19. Choose M > 1 so that |f(x)| < M for all x in [a,b]. Given ¢ > 0, let
8 = ¢/3M. Since f is continuous on [a, xg — §/2] and [xo + 8/2, b] there are
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partitions Py = {ty, ...,1,} of [a,xg — &/2] and P, = {sg, ..., sp} of [xo + 8/2, b]
such that U(f, P\) — L(f, P1) < /3 and U(f, Py) — L(f, P,) < ¢/3. If P =
{t09'--9tng50g--. .Sm}, then

U(f,P)-L(f,P)<[U(f, P) - L(f, P)]1+4é- M +[U(f, P») — L(f, P))]
<e/34+¢e/34+&/3=c¢.

20. (a)

L(f,P) =) ) — tiz),
i=1

U, PY=)_ fl)(t —tim1).

i=1

(b) If t; — t;—; = é for each i, then

U(f, P) = L(f, P) =) _[ft:) — fO-)I(t — ti-1)
i=1

=8 ft:)— f(tim)
i=l
= 8[f () — f(@)].

(c) For every ¢ > 0 we have U(f,P) — L(f,P) < egif t; —t;i_y = § <
e/Lf(b) — f(a)l

(d) The function in Problem 7(vi) is an example (on the interval [0, 1]).
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21. (a)
L(f ', PY+ U(f, P')

=Y D@ — )+ Y 6T = 7 EG-D)
i=l1 i=1

=Y 7N — tima £ (-0)]
i=1
=bf'(b) —af(a).
(b) It follows from (a) that

b
[ £ = sup{L(F~", P)} = sup(bf ' (b) — af (@) — U(F, P'))

= bf ~1(b) — af "(a) — inf{U (£, P')}
'®)

= bf ' ®) —af (@) ff N

(¢) If f(x) =x" for x > 0, then for 0 < a < b we have

b b Pl ()
f :/de=f ! =bf"1(b)—af_‘(a)—f x" dx
a a fa)

VS (0 G €0
_bﬁ_aﬁ_[ n+1 - n+1
_nVE nifa
T n+l n+1

22. The Figure below shows the case b < f(a).

B=(0,b){—
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We have
ab = area OACB < area OAE + area OBD

a b
=f f(x)dx+f f_l(x)dx.
0 0

If b = f(a) we clearly have equality. It is easy to see that we have the same
inequality if b > f(a) [or simply apply the first inequality to f —1.

23. (b) To show that continuity is necessary, first choose any continuous one-one
function f on [a, b]. Then fab f(x)dx = (b — a)f(E) for a unique §&. Now let
g(x) = f(x) for x # §, but g(§) # f(§).

(¢) From the inequality mg(x) < f(x)g(x) < Mg(x), we obtain

b b b
mf g(x)dx Sf f(x)g(x)dx SMf g(x)dx.
Consequently
b b
[ sz = [ swa

for some p with m < yu < M. This u = f(&) for some £ in [a, b].
(d) Replace g by —g.

(e) If g(x) =xon[—1,1] and f(x) = x, then
1

1 1 y)
— 2 - Z .
/;lf(x)g(x)dx—ﬁlx dx—3 # U f xdx.

-1

24. If P =1y, ...,1,)} is a partition of [6y, 6], then

i — i

L(f2/2,P)=Zn:m:2 5 and  U(f?/2,P)=} M’
i=1 i=1

i —1i—
2

represent the total area of sectors contained in A and containing A, respectively. So

L(f?/2, P) <area A < U(f%/2, P)

&
for all P. It follows that area A must be /2.
8o
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25. (a) If f(x) = ax + B, then for every P we have

LfP) =) Vi —ti))? + o2t — ti1)?

i=1

= Z(fi — V1 +a?
i=1
= (b —a)1+a?,

and the distance from (a, aa + B8) to (b, ab + B) is
Vie@@-bP+@-b2=0-a)y1l+al

(b) If f is not linear, then there is some ¢ in [a, b] such that (a, f(a)), (¢, f(t))
and (b, f(b)) do not liec on a straight line. Thus if P = {a, ¢, b}, then

UEPY=VE—a)+[f(t) = F@E+V (B -1+ [f®) — FOP
> —a2+[f(b)— f(@]?2, by Problem 4-9.

(¢) follows immediately from part (b).
(d) For each i there is some x; in (#;_1, ;) with

F o)t — timq) = f(tim1) — F(8).
So

L(V1+ ()% P) <Y (6 — tieW 1+ [F' )P < U(V1+ ()2, P)
i=l1

and

D = i)W+ PP =)V — ) + [/ ) — 4-0)P
i=1 i=1

=Y Vo=t + 7@ ~ fE-)P
i=1
= £(f, P).

(e) Since sup{£(f, P)} is an upper bound for the set of all £(f, P), it is also an
upper bound for the set of all L(v/1+ (f”)2, P) by part (a).

(f) It suffices to show that
sup{€(f, P)} < U(v/1+ (f')2, P")

for any partition P”, and to prove this it suffices to show that

LS, P <UL+ () P")



Chapter 13 195

for any partition P’. If P contains the points of P’, then
£(f, Py > £(f, P');

the proof is similar for the proof for lower sums, putting in one point at a time and
using Problem 4-9 to see that this increases €. This if P contains the points of both
P’ and P”, then

¢f, P < &f, P) < U1+ (72 P) < U(YT+ (F)2, P”).

(g) We are considering

f JIT P
lim

20 fx—a@ +[f(x) - f@P

By the Mean Value Theorem, f(x) — f(a) = (x —a) f'(§) for some £ in (a, b), and
by the Mean Value Theorem for Integrals (Problem 23), the numerator is

(x —a)y/1+ f'(n)? for some 5 in [a, b]. So we are considering
(x—a)V1+f(mM?* 1+ f(n)?

Vo —a + FERG—a)?  J1+ f1E2

which approaches 1 as x — a (we need to assume that f” is continuous at a).

26. (a) If P = {1, ..., 1.} is a partition of [a, b] with U(f, P)—L{f, P) < &, then
U, P)— [°f < eand [P f — L(f, P) < &. Let 51(x) be m; for x in (i1, ;)
and 0, say, for x = ty, ..., t,; similarly let s,(x) be M; for x in (¢;—q, ;) and O for
X =t0,...,tn.

(b) The existence of such step functions implies the existence of partitions P; and
P, with U(f, P2) — L(f, P,) < &.

(c) The function in Problem 34 is an example.

27. It obviously suffices to show that for any ¢ > O there are g < f with [ ab f—

{ ab g <eand h > f with [ ab h—{ : f < &. Moreover, the second follows from the
first by considering — f, so we just have to find the desired g < f.

Choose a step function s < f with fab f—=f abs < &/2, by Problem 26(a). Choose
M > 1sothat |f(x)| < M for all x in [a, b], and if s is constant on (;—;, #;) for
i=1,...,n,choosed <e/2nM.Letg=s5on[t;_1+8/2,¢; —4&/2] and let g be
a linear function on [t; — 8/2, t;] and [#;, ; + &/2] with g(;) = —M.
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-M+-— N — e L — . —— — -

Thengs.ssfandfabs—f:gsnMa<s/2,sofabf—fabg<a.

28. (a) If s; (respectively s;) is constant on each subinterval for a partition P
(respectively P;), then s + 57 is constant on the intervals for the partition P which
contains Py and Ps.

(b) Part (a) shows that there is a partition P = {fy, ..., 1,} such that s; and s, are
constant on each (%1, #;), with values g; and b;, say. Then

b n
/ (51 +52) = ) (@ + b))t — tioy)
a i=1
= Zai(fi — i)+ Zbi(fi —ti-1)
=1 i=1

b b
=f S]'i'f 5.
a a

(c) Given £ > 0, choose step functions sy, 52 and #, 2 with s5; < f < s and
th <g<tand fab 53 — fab s1 < £/2 and f: ty — fab h < &/2. Part (b) implies that

b b b b b b b b
f(81+t1)=fs1+f 1‘15[ f+[35fsz+f t2=/(sz+tz)
a a a a a a a a

and that , )
f (S2+f2)—f (s1+1)<e.
a a

This shows that f is integrable, and also that [ ab( F+e)=/[ : f+/ : g, since there
is only one number between all such [ ab (s1+ 1) and [ ab(sz + ).
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29. Let g(x) = [ f — fxb f. Then g is continuous and g(a) = —fab f and
g)= [ ab f; so g(a) and g(b) have different signs and consequently g(x) = 0 for
some x in [a, b], unless g(a) = 0, in which case we can choose x = a.

For the function f shown below, only x = a or x = b will work; f has been

chosen so that [ f = —fcb f-

30. (a) Clearlyif M; =m; > 1 forall i, then U(f, P) — L(f, P)>b—a.
(b) If i =1, let b) = #; and choose any a; with &) < a; < #;. Similarly if { = n.

(c) Choose a partition P of [a;, b1] with U(f, P} — L(f, P) < (b; — a;)/2. Then
M; —m; < 1/2 for some i. Choose [az, b3] = [t;—1, ;] unless i = 1 or n, in which
case use the modification of part (b).

(d) Let x be a point in each I,. Notice that we cannot have x = a, or b,, since x
is also in [@p+1, bny1] and ap < @py1 < bayy < by, If € > 0, there is some n such
that

sup{f(x) :xin I} —inf{ f(x) : xin I,,} < €/2.
Then | f(y) — f(x)|] < € for all y in I;; since x is in (a,, b,), this means that
| f(¥) — f(x)| < € for all y satisfying |y — x| < & where § > 0 is the minimum of
x —ap and b, — x. Thus f is continuous at x.

(e) f must be continuous at some point in every interval contained in [a, b], since
f is integrable on every such interval.

31. (a) Choose xp in [a, b] and let f(x) = O for all x # xp, and f(xp) = 1. (The
function in Problem 34 is another example.)

(b) There is a partition P of [a, b] such that f(x) > xo/2 for all x in some [#;—;, ;].
Then L(f, P) = xo(t; — ti—1)/2.

(c) This follows from part (b), since f is continuous at some xp, by Problem 20.

32. (a) Choose g = f. Then | : f? = 0. Since f is continuous, this implies that
f=0.
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(b) If f(x0) > O, then f(x) > O for all x in (xog — d, xp + 3) for some § > 0.
Choose a conttnuous g with g > 0 on (xg — J, xo + ) and g = O elsewhere. Then
f : fg > 0, a contradiction.

34. Let ¢ > 0. Choose n so that 1/n < /2. Let xg < x1 < --- < xm;, be those
rational points p/q in [0, 1] with ¢ < n. Choose a partition P = {fg, ..., t;} such
that the intervals [#;_i, ;] which contain some x; have total length < ¢£/2. On each
of the other intervals we have M; < 1/n < ¢/2. Let I, denote all those i from

1,...,n for which [#_,, ;] contains some x;, and let I, denote all other i from
1,...,n. Since f < 1 everywhere, we have
U(f,PY= D Mt —ti)+ ) Mi(t —ti-y)
i in 11 iin Iz
£
<L) =t)+5 ) Gi—ti)
iin I; iinl,
E &
<l.—4+~.1=¢.
stgtyri=e

35. Let f be the function in Problem 34, and let g(x) =0forx =0, and g(x) =1
for x # 0. Then (g o f)(x) = 0 if x is irrational, and 1 if x is rational.

36. (a) If f=0on[t_1, %], then M," = M; and m,-’ =m;. If f<0on[t-,%4],
then M;’ = —m; and m;' = —M;, so again M;' —m;’ = M; —m;. Now suppose that
f has both positive and negative values on [#;_,, #;], so that m; < 0 < M;. There
are two cases to consider. If —m; < M;, then

M, =M,

SO
M/ —m;/ <M/=M <M —m;, since m; < 0.

A similar argument works if —m; > M; (or consider - f).
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(b) If P is a partition of [a, b}, then

U(fl, P)— L(SFL, P) =) (M’ — mi)(t - ;1)
i—1

< D (M —my)(t — 1)
i=1

=U(f, P) - L(f, P).
So integrability of f implies integrability of | f|, by Theorem 2.

(¢) This follows from part (b) and the formulas

f+eg+1f-gl

f+e—1f—¢g
7 , .

2

min(f, g) =

max(f, ) =

(d) If f is integrable, then max( f, 0) and min( f, 0) are integrable, by part (d). Con-
versely, if max(f, 0) and min(f, O) are integrable, then f = max(f, 0) + min(f, 0)
is integrable, by Theorem 5.

38. (a) Since
0<m’<f(x)<M/ and 0=<m" <g(x)<M" forallxin [f_1, 4],

we have
mi'm;” < f(x)g(x) < Mi’M;"  forall x in [t;—y, ),

which implies that m;’m;” < m; and M; < M;'M;".
(b) This follows immediately from part (a).

(¢) By part (b),
U(fg, P)—L(fg. P)

<Y [IMi'M;" —mi'm;"1(t; — ti—1)

i=1

=Y MM/ —m 1t~ i)+ ) mi'IM — mi"1( — ti1)

< M[;[Mi’ ~m' |4 — ticy) + ;[Mi” —m;"1(t; — ti—l)}-

(d) Integrability of fg follows immediately from part (c) and Theorem 2.

(e) The same result clearly holds if f < 0 and/or g < 0 on [a,b]. Now write
f = max(f, 0) + min(f, 0) and g = max(g, 0) 4 min(g, 0), so that fg is the sum
of four products, each of which is integrable.
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39. (a) Given xy,...,x, and y,..., yn, let f and g be defined on [0, 1] by

' _ i—1< i
foy=1"% T =¥
0, x=1,
[ i—l<x<i
g =17 T =TS h
| 0, x=1
Then
1 1 n
[Ofg=;j§xiyis
Yo 15,
A== '«
[ =y
12 1 z 2
§ = — yi,
[ 9=
S0

(g xi)’i)2 =< (g x,z) (; )’;2)

this is the Schwarz inequality.

(b) First proof: If g = 0, then equality holds. Otherwise for all A we have

b b b b
OSf(f—lg)2=f fz—ZAf fg+A2f &,

b 2
L)
f f2 - a—b >0
©e([#)
Second proof: Using 2xy < x? + y? with
f(x) g(x)

X = ’ y =
b b
[r [
2f(x)g(x) o J&) g(x)z_

(EIENGNG

SO

we obtain
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So
b
f fx)g(x)dx f fx)2dx f g(x)*dx

b
(LALs Lr [#

Third proof: The analogue of the formula in the solution to Problem 2-21(c) is:
b b b
(L) Ue)=(L#)

a a a
To check this equality we simply compute that

| ’ {f @00 + FO g0 - 2 (e F DN | dy
- fab {g(y)zfab f2+f(>’)2f:32—2f(y)g<y)[ab e a
(L)L) (L)L #)
-2(f ) ([ ),

(c) If f = g except at one point, then equality holds, even though f = Ag is false.
Butif f and g are continuous, then equality in the Cauchy-Schwarz inequality does
imply that f = Ag for g # 0. This follows from all of the above proofs: In the first

proof, we will have

2

1 [? b
+3 [{ [ 1r@so - rorewras} a

b
0<f (f - 2g)?

since (f — Ag)? is a continuous non-negative function that is somewhere positive.
Similarly, in the second proof, we have equality only if we have

fx) = 8(x) for all x

sO we can choose

/T

In the third proof, equality implies that

b b
/ { f Lf (x)g()’)—f(}’)g(x)]zdx}dy=0_



202

Chapter 13

This means that for all y,

b
f [F(x)e() — FG)g(x)Pdx =0,

which means that for all x,

F@)e(y) = f()e(x).
So if g(y) # 0, then

f ()
£(y0)

f(x) = g{x) for all x.

(d) Apply the Cauchy-Schwarz inequality to f and g(x) = 1 on [0, 1]. The correct

result for [a, b] is
b 2 b
(f f) s(b—a)(f fz)-

40. (a) If ¢ > 0, pick N > 0Osothat |f(t) —al <efort > N. Thenfor N >0

we have
N+M
j f@)ydt — Ma
N

< &M,

S0

N fN+M £ dt Ma eM ]
- < < €.
N+MJy N+M| N+M

Choose M so that

Ma 1 N
- d t)dt .
N+ M al < & an |N+Ml; f@®) <&
Then
1 N+-M
’N+M,[ f@®)dt —a| < 3e.
1
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1. Let |f(x)| < M for x in [a, b], and choose § > O so that |g(x) — g(y)| <
e/Mb—a)for |x —y|<d. Ifall; —;_y < &, then

D Fga)t — tim1) = ) f(xi)g(wi) @ — fi—l)k
i=1 i=1

Y falea) — gt —t,-_l)l
i=1

n

£
=M. Mo —a) D —ti)

i=1

=g,
n
So by making #; — t;—; small enough we can make > f(x;)g () —t;i—1) as close
i=1

n
to Y f(x:)g(x:)(t; — t;—y) as we like, and hence as close to f ab fg as we like.

i=l1

2. Let f(x)+g(x) < M on [a, b], and choose § > 0 so that +/x — /Y < &/(b —a)
for x, y in [0, M] with |x — y| < &. Then choose §’ > 0 so that |g(x;) — g(u;)| < &
for |x; —u;| < &.Ifall ; — ;1 < &/, then |x; — u;| < &', so

|Lf ) + g — [F(x) + g(x)]| = 18 (i) — glxi)| < 6,

hence

WG+ 8(a) — v Flr) + 8 | < 3{-;

and consequently

Y V&) + gt — 1)~ Y V) + gi)E — fi-l),

i=1 i=1

Z [V FGxi) +g:) — Fx) + g&i) ]| (& — tim1) I
i=1

£ n
<32 ;(ti —ti-1) =&

3. By the Mean Value Theorem we have

£e, Py =) Iu' )P + [v/ (up)P? (8 — tiz1)
i=1

203
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for some x;, u; in [t;—1, t;]. By Problem 2, these can be made as close as we like

tol = fab vu'2 4+ v'2 by choosing t; — t;_; small enough. This means, first of all,
that 7 must be an upper bound for all £(c, P): for if some £(c, P) > I, refining the
partition P would only increase £, and hence never make it close to 7. Since [ is
an upper bound and we can make £(c, P) as close as we like to I, it follows that I
must be the least upper bound.

4. The graph of f is given parametrically by
u(0) = f(@)cosb, v(8) = f(0)siné.
So its length is

9[ 61
f\/u’2+v’2=f VIf!cos—f sin]? + [f' sin+ f cos]?
fo to
&
—_ /f2+f12.
6o

5. Let {1y, ...,1;} be a partition of [a, b], and choose x; in [t;—1, #;]. Then the
Schwarz inequality shows that

D UG — ) =) OVt — i gV — i
< (Z fuy (- Ii-l)) . (Z g(xi)*(t — ti-l))-
i=1 i=1

But the left-hand side can be made as close as desired to [ : fg by making t; — t;_,
small enough, while the two factors on the right side can be made as close as desired

to 7 f2and [ ab g2. Hence we must have

[res(LA([ %)
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1. (ii)
~ L p 5 . sin’ x.
1 + sin® ( f sin3tdt) + ( f sin® tdt)
1 1
(iv)
-1
14 x2 +sinfx’
(vi) . , .
cos (f sin (f sin3tdt) dy) . sin (f sin3tdt) :
0 0 0
(viii)
=1yt _ 1 — ! — — -1 2
F® = mrigy = i = V1= [FI@P.

V1—[F 1)

2. (i) All x # 1.
(iv) All irrational x.

(vi), (viii) All x not of the form 1/n for some natural number n.

3. (a) Since f is differentiable at ¢ it is continuous at ¢, so F is differentiable at c.

(b) If we assume that f is continuous in an interval around c, then F’ will be con-
tinuous at ¢, since we will have F/(x) = f(x) in this interval, and differentiability
of f at ¢ implies continuity of f at c. But without this assumption F’ may not even
exist at all points near c. For example, f could be the function shown below.

/
\\ /
\ /
\
\ _ 2 /=
\ 8(X)=x /
\ y
/
\\ //l
\\ /-’1——--
g Tt 1
c=0 1/3 1/2 1

205
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(c) Since f’ is continuous at ¢, f'(x) must exist for all x in an interval around c,
so f is continuous in an interval around c. So, as in part (b), F' is continuous at c.

4, (i) If we let F(x) be this expression, then
-1 1

Flix)=—+— = 0.
) 1+x2+.7«:2 (1)2
1+ -
x
(ii) In this case
1
F'(x) =cosx - ———cx—
v1—sin’x
I (a minus sign because the derivative

—sinx———of —cos is sin, but it appears as a

V1—cos’x lower limit)

(The meaning of these facts will become clear in the next chapter).

5. (ii)
FYO) = e = :
©fI(fFTI0))  cos(cos(f1(0)))
1
- cos(cos(1))

6. (i) Differentiating the equation fox tg(t)dt = x+x2, we find that at points where
g is continuous it must satisfy

xg(x) =14 2x.
Now if we simply define
1
—+2, t#0
sy=1717% 17
0, t=0,

then tg(t) = 1 4 2¢ for all ¢ $ 0, so f; tg@t)dt = f; 1+ 2tdt =x+x2

(ii} We must have
x2g(x?) - 2x = 14 2x.

Let \
i+t t>0

g(t)=[0, t <0.

1
tg(t) = Et_% +1 fort >0,

L]

Then
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so for all x,
2 2

X X 1 1
f te(r) dt = f ~t73 4 1dt
0 o 2

= (xz)% +x%=x+x%

7. Clearly f? is differentiable everywhere (its derivative at x is f(x)). So f is
differentiable at x whenever f(x) # 0, and

fx)=2f(x)f"(x),

so f’(x) = 0 at such points. Thus, f is constant on any interval where it is non-zero.
Since f is continuous, it must be constant (proof left to the reader). Soif f(x) = K
for all x, then

X
f K=K*+C
0
so for all x we have
Kx=K*+C.
This is possible only if K = 0, which is possible only if C = 0.

8. Since the two sides of the desired inequality are equal for x = 0, we just need to
prove the same inequality for their derivatives, i.e.,

fufszfa{L.ﬁ

We have f(x) > 0 for x > 0, since f(0) = 0 and 0 < f’, so this inequality is
equivalent to

f&stL.ﬁ

But both sides of this inequality are true for x = 0, so we just need to prove the
inequality for their derivatives:

2f () f'(x) <21 (x).
This is true since f(x) > 0and 0 < f'(x) < 1.

9. If
1
25in —
2(x) = xsmx, x#0
0, x=0,
then
2xsins =cos, x#0
g'(x) = smx—cosx, X #

0, x=0.
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So if we define

we have
fx)=h(x)—g'(x) for all x.

Hence

Foy= [ h-g)

()

using the Second Fundamental Theorem of Calculus (and not merely the Corollary
of the First Fundamental Theorem). Since A4 is continuous we can then apply the
First Fundamental Theorem to conclude that

F'(0) = h(0) - g'(0)
= 0.

10. (i) In Problem 13-23(c), choose
1

_ _ 6
f(x)—m, glx) =x".

Then

1 6 1 1 1
f ad dx=———f Sdx = ———,
0 v1+x2 1+&2Jo TV 1+ &2

where 0 < ¢£ < 1, and hence

ot
[y

(ii) Write this integral as

-/‘1/2«/1—15 1—1{:_/‘1/2 1—x ix
o JT—xY1+x Jo J1—x2

and choose
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where 0 < £ < 1/2, and hence

| 2
1< .
T J1-¢2 = V3
12. If
F(x)=fxf(u)(x—u)du=fxxf(u)du—-[xuf(u)du,
0 0 0
then

F'(x) = I:ch(x)+‘/qC f(u)du] —xf(x) by Problem 11
0

= fo ' @) du.

Consequently, there is some number ¢ such that

—w)du = .
fof(u)(x u) du /o(fo f(t)dt)du+c for all x

Clearly ¢ = 0, since each of the other two terms is O for x = 0.

13. Applying Problem 12 to g(u) = f(u)(x — u), we obtain

fo £ — u)>du = fo LF (W) Cx — w)](x — u) du

X 74
_—_[ ([ f(t)(x—t)dt) du.
0 0
Therefore we must show that

[Dx (fou f(t)(x—t)dt) du =2f0x (fouz (j:l f(t)dr)) dul) dus,.

Nowx —t=(u—1t)+ (x —u), so

(1) fo fO)x — 1) dt = [D f(O@—1)dt + fo FO& — u)dt.

For the first integral on the right we have

@) fo * fu—1ydr = fo ’ ( fo " fo dr) duy

by Problem 12. The second can be written

3) fo FIOG —u)dt = (x — u) fo @) dr.
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From (1), (2), and (3) we have

_[ox (fouf(t)(x—t)dt) du=f0x (/: (j:lf(t)dt) dul) du
+fx [(x —u)fuf(r)dr] du.
0 0

On the other hand, applying Problem 12 to g(x) = fou f(t) dt we obtain
fx [(x - u)fkl f(t)dt] du = fx (fu (ful f(t)dt) du,) du.
0 0 o \Jo \Jo

15. (a) This follows from Problem 13-14, since f(x — a) = f(x) for all x.

(b) Let g be periodic and continuous with g > 0 (for example, g(x) = sin?x). If
fx)= fox g, then f’ = g is periodic, but f is increasing, so it is not periodic.

(c) Let g(x) = f(x +a). Then g'(x) = f/(x +a) = f'(x). If f(a) = f(0), then
we also have g(0) = f(a) = f(0). Consequently g = f, i.e, f(x +a) = f(x) for
all x.

Conversely, suppose that f is periodic (with some period not necessarily = a).
Let g(x) = f(x + a) — f(x). Then g'(x) = f'(x +a) — f/(x) =0, so g has the
constant value g(0) = f(a) — f(0). Le,,

fGx+a)= fx)+ f(a) — f(0).
It follows that
f(na) =nf(a)— (n—1)f(0)

n
— [(n = 1) f(a) — F(O)].

Now if f(a) # f(0), then this would be unbounded. But f is bounded since it is
periodic.

17. Let F = [ f. Then Problem 13-21 states that
x 1)
[ ri=sw-ar@- [
a [~
=xf~'(x) —af (@) - F(f7' (X)) + F(f'(a)).
Soif G(x) = xf~1(x) — F(f~1(x)), then G'(x) = f~1(x).
18. (a) For each point (x, 2x2) = (x, f(x)) on C, we have

X x3
areaA=f 282 — 2dt = =—.
0 3
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It is simplest to consider C; as the graph of g~1, for then

le
areaB:f fl—gt.
0

Clearly (compare Problem 13-21)
21'2

—1= _22__ * d
f x-2x ];f(t) t

X
=2x3—f 212 dt
0

43
—§x.

0

So
4 2
area B = —x> —f g .
3 0

Thus we require that for all x > 0,
2 4 3 2x? .
? = “3:15 - fo g

3x% =g~ 1(2x%) - 4x

and hence that

3x
~1n.2
2x) = —,
g (2x%) 2
and thus

- 32

g == 2,

Finally,

2(x) = 24

(b) Now for f(x) = cx™ we have

x c—1
area A =f ™ — " dt = xmt
0 m+1

and

cx
areaB=f fl—g
0

X cX
=x-cx”’—f ct"’dt—f g™ !
0 0

211
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So we require that

c—1 m+l _ . m m+1_fcxmg-——1
m+1 m+1 0
and thus
(c — Dx™ = cmx™ — g (ex™) - emx™ !
g~ (™) = (cm —c+ ll)x"' _cm—c+ lx_
cmx™— cm
* +1 /y\Y
_ cm—c¢ y\1/m
gl ="—"—(2)".
cm c
Finally,

cm—c+1 _mx'"
cm '

g&)=c(

19. (@) F'(x)=1/x; G’ (x) =(1/bx)-b = 1/x.

(b) It follows from part (a) that there is some ¢ such that F(x) = G(x) + ¢ for all
x > 0. Since F(1) = 0= G(1), we have F(x) = G(x) for all x > 0.

20. Suppose f is continuous on [a,?] and f(a) < 0 < f(b). The Fundamental
Theorem of Calculus shows that f = F’ for some F (namely F(x) = f[f .
Darboux’s Theorem then implies that f(x) = 0 for some x in [a, b].

21. We have

a g(x)
F(x)=f h(t)dt+f h{t)dt,
f(x) a

SO

F'(x) = —h(f(x)) - f'(x) + h(g(x)) - §'(x).

22. Applying the Cauchy-Schwarz inequality to f” and 1 on [0, 1] we have

1 2 1 1
(fra)=for [
0 0 0
since f(0) = O this gives
1
rars [ o
To show that the hypotheses f(0) = 0 is needed just take f(x) = 1 for all x.

23. (a) Equation (*) just says that (G o y)’ = F' in the interval, so there is a ¢ such
that Goy = F 4 c in this interval, i.e., G(y(x)) = F(x)+ ¢ for all x in the interval.
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(b) Conversely, if y satisfies (*x), then differentiation yields (x).

(¢) If
14 x2

1+ yx)’

y(x) =

so that
[1+ y(x)]y'(x) =1+,

then there is some ¢ such that

2 3
yéx) =x+x?+c

for all x in the interval on which y is defined. So

y(x) +

2
y2(x) + 2y(x) — 2x — §x3 —c=0, (calling 2¢ simply ¢)

SO

~2+ \J4+4(x + 22+ )
2

y(x) =

or

y(x)=—1-—‘/1+x+%x2+c.

These solutions are never defined on all of R, since 1+x+42x3/3+4+¢ < 0forx <0
with |x| sufficiently large.

@) If
(14 5[y(x)1hy' (x) = -1,

then there is some constant ¢ such that

Y@ +y(x)+x=c.

(e) If y(x)y'(x) = —x, then there is some ¢ such that

yx))P?  ~x*+c¢
2 2

y(x) =+vec—x?
y(x) = —vc — x2.

If y(0) = —1, then clearly y(x) = —v1 — x2 (for |x| < 1).

S0

or

24, (a) If the Schwarzian derivative is O then

szme _ 3f’f”2 =0.
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But then
(L’z)’ _ fr3 . 2fﬂfm - fnz . 3f!2fﬂ
f13 - f6
_ f’ f”[z frz fm -3 fr fnz]
- fr6
=0,

so f”2/f'3 is constant.

(b) Hence u = f' satisfies

u3? .4 =C  forsome C.

By Problem 23,
w12 =Cx+d  forsome D
SO
1) = () = o
- T (Cx + D)?’

This implies that

fx)= Cx T D +E for some E,
which is the desired form.
25. (a)

fo's) r+1 —_

[ x'dx:limN - 1 = !
1 Nosocor+1 r+1 r+1

(because 7 + 1 < 0 so lim N7+! =),
N—oo

(b) Problem 13-15 implies that

2" 21 21
f —dx=f —dx+---+f —dx
1 X 1 X 1 X

v

n times

[
=n - dx.
1 X

Since f7 1/x dx > 0, we have lim JE 1/xdx = oo

(¢) The function I(N) = fON g is clearly increasing, and it is bounded above by
f0°° f. Consequently, N}im I(N) exists (it is the least upper bound of {I(N) :
—0o0

N > 0}).
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(d) Clearly f0°° 1/(1 + x?) dx exists if f1°° 1/(1 + x®) dx exists; the latter integral
exists by part (c), because f; 1/x%dx exists, by part (a), and we have 1/(1+x2) <
1/x2.

26. (i) Since
1 1

<
Vi4x3 ~ %2

© dx. i
: m exists,
the integral [ 1/+/1 + x3dx also exists.
(ii) For x > 1 we have

1+ x3/2 < 2532

50
X 1 x 1 12

1+02 =2 pi ="
Since f;° x1/2dx does not exist, neither does [ x/(1+ x3/%)dx.

(iii) For large x the integrand looks like 1/x4/x = x 7372 which causes no problem,
but for x <1 we have v1+x <2,50
1 1
————— 2 —_—
xv/14+x
and f0°° dx/x does not exist (this is really an integral of the sort considered in
Problem 28).

27. (a) Clearly f_(_)oo 1/(1 + x%) dx exists; in fact, it equals jbm 1/(1 +x%)dx.
(b) J° xdx does not exist.

. . — o0 -
(¢) If A}l_inooh(N) = 00 and Nll)riloog(N) = —ooand [, f exists, then

h(N) 00
lim f= f f
—00

N—oo 2(N)

Proof. Given ¢ > 0 choose Mj so that
0 0 e
f f—f f|<— for all M > M,.

Now choose N so that A(N) > M and g(N) < —M for all N > N,. Then for
N > Ny we have

[
—00 g(N)

h(N)

0
+f f— f‘< +Z=e
—c0 g(N) 2
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28. (a)
|
i —dx = lim 2/a — 2./ = 2./a.
s—l:g“* £ \/; * s—lﬂ)l*' f JE \/E
®) +1 +1 +1
a a r r r
fx’dx:lim X dx = lim — £ =2
0 g0+ e=»otr+1 r4—1 r-1
(because r + 1 > 0, so lim ¢! =0)
g—0t

(c) Problem 13-15 implies that

11 1 L |
[ —dx 4+ —dx=f —dx,
J1/2 x 172 X ) 1/ X

50

so lim f 1/x dx.does not exist. Of course, this implies that hm f 1/x dx does
g0t

not exist for any a > 0.

(d)

0 £
f |x]" dx = lim f |x|* dx
a &0~ Jq

= — lim x dx
e—0t J,

a’t1

_r+1'
(e) Since lim 1/vV1—x%= liﬂ_l 1/v'1 — x2 = oo, we define

1 1
dx+f dx

v1—x2

flmd"‘f Sims

1 & 1
=%, md”sli,“i‘— o S
YL
=28_l:13+ j mdx
Now the limit . , 1
Joml ) At hm ] B



Chapter 14 217

exists by part (a). For —1 < x < 0 we have

x(1+4+x) <0,
x < —x2,

1+x<1—x2

s/_x<\/1—x2
Wrridve

It follows that

lim
8—)—1+ & 1/1 _x2

also exists.

29. (a) By the version of I’'Hépital’s Rule given in Problem 11-52 we have

-1
limx — = lim x_ = Q.
x—¥0+ x_)0+ 1

xz

(Note that we have the necessary hypothesis 1il’{)l+ f, xl dt/t = oo by Problem 28(c).
x—
Actually, in the solution for Problem 28(c) we showed that

11 11
f —dx=nf —dx,
1/ X 12X

1 o n 11
2" ,/2nx 2n 1/21

which implies that

from which we could immediately deduce the result.)
Now if | f| < M on [0, 1], then

o) (r) l M j‘ dt
P4
so we sttll have
lim x f &dt 0.
x>0t J, t

(b) For f =1 we have

1 dt 1
lim x —2—--11mx (——1):1.

x—=0t Sy 1 x>0t X
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In general, let I = lim f(x). Given & > 0 choose § > 0 so that |l — f(¢)]| < ¢ for

0 <t < 4. Then o
1 _ _ -
Ixf f(ft)2 Idt’ f If() ”dr+ f f(t) l I

Sfo f(t)—-l I
or 1
&dr+ l—l‘<a——+ f&ldt’,
. 12 ) ; 12
or, finally,
Ix @dr—zl ——+ f()_ldt+l

This shows that by making x small enough we can make

1
’xf &dt—-ll
X tz

as close to ¢ as we like. Since this is true for every ¢ > 0,

‘fo _,

30. (a)
o 1 1 N 1
f f(x)dx = lim —dx + lim — dx
0 g0t X N-ooo J; X
=2+1= 3,
by Problem 28(a) and 25(a).
(b) If -1 < r < 0, then f1°° x" dx does not exist, since x” > x~! for x > 1 and

f!°° x~1dx does not exist. If x < —1, then fol x" dx does not exist, since x” > x~!

for 0 < x <1 and fol x~1dx does not exist. (Of course, if r > 0, then fl°° x" dx
does not exist.)
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1. (ii)
1 1 -1

/1 — [arctan(arccos x )2 "1+ (arccosx)? J1—x2

(iv)
1 —X _ 1 —~X
L\ ¢ +a22 [T A+
1_(\/1+x2) L2
-1
T 14 x2

(This result is not surprising, since f(x) = arctan 1/x = /2 — arctan x.)

2. (ii)
i sinx —x+x3/6 li S95% = 1+x%/2 lim —sinx 4+ x
xl—)O x4 T x—0 4x3 - xl—>0 12x2
—cosx+1 I sin x

= lim —F =
xl—lﬂ) 24x x=0 24

(iv)
- cosx —1+x2/2 lim —sinx +x ’ —cosx+1
x—0 x4 T x>0 4x3 10 12x2

(vi)

1 1 ., sinx —x ) cosx —1
- = lim ———— = lim —
x sinx x—0 xsinx x—08inx 4 x cosx

. —sinx
= lim — = 0.
x—>02cosx —xsinx

3. (a)

219



Chapter 15

220
(b) Since
Fl(x) = xcos:;z— sin x for x 0,
we have
hcosh —sinh
" — 1
7O = i =
— km cosh — hsinh —cosh
T ks 32
_ 1
=-3
4, (a)

— I--—-——-

..._—__I..——.—-———-—--—

(b) Clearly f(x) = 0 for x = vkm. The numbers vkx become arbitrarily large,
of course (since k2w > k), but the also cluster closer and closer together, because,

for example,
—— _ 1 for some x in (k, £+ 1), by the Mean
E+1-Vi= 2Jx Value Theorem
1
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(c) If
0= f'(x) = cosx + 2cos2x = cos x + 2(cos*x — [1 — cos® x])
=cosx + 2(2cos?x — 1)
= 4cos’x +cosx — 2,
then

—1+/T+32  —1++/33
8 -8

Cosx =

Since 0 < [~1++/33]/8 < 1 and —1 < [-1 —+/33]/8 < 0, there will be four
such x in [0, 27]:

The critical points x; and x4, with cosx; = cosxs = [—1+ V33 1/8, satisfy
0<x; <m/2and 3n/4 < x4 < 27, s0 f(x1) > 0and f(x3) < 0, since sin x and
sin 2x are both positive on (0, w/2) and both negative on (37 /4, 1). To determine
the sign of f(x3) and f(x4) notice that

f(x) =sinx 4 sin2x
=sinx 4+ 2sinx cosx
= sinx(1 + 2cos x).
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Now sin(x,) > 0, since 0 < x; < m, but 1+2cos(x;) < 0, s0 f(x1) < 0. Similarly,

f(x3) > 0.

2w

(d) f'(x) = sec’x — 1 = tan’x > O for all x, so f is always increasing. On
(—m/2,n/2) clearly f increases from —oo to co. On (kmw — n/2, kn + 7 /2) the
derivative f’ is the same as on (—n /2, w2), so f differs by a constant from f on
(—n /2, m/2) The constant is clearly —.

Ny
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() f'(x) =cosx —1 <0 forall x, so f is decreasing. Moreover f’ is periodic,
so f is the same on [27,4m] as on [0, 27] except moved down by 2x. Since
f”(x) = —sinx, it follows from the Appendix to Chapter 11 that f is concave on
[0, =] and convex on [x, 27 ].

) IfO0 = f'(x) = (xcosx — sinx)/x?, then x = tanx. The graph in part (d)
shows that on the right side of the vertical axis this happens for0 < x; <x3 < ---,
where x,, is slightly smaller than nw + 7/2.




224 Chapter 15

(g f/(x) =sinx+xcosx,so0= f/(x) when tan x = —x. Comparing the graphs
of tan and —7 we see that this happens for x = 0 and for x sightly larger than
nt + /2 (n > 0) or sightly smaller than nm + 7 /2 (n < 0). The graph is even,
and f(x) = O at multiples of 7.

5. The point with polar coordinates (¢, a/6) has cartesian coordinates
a a
= — .cos0, = — -sinf.
=% =5

For 8 close to 0, x is large, but y is close to a.

6. For any particular number y, define f(x) = cos(x + y). Then

f/(x) = —sin(x + ),
f7(x) = —cos(x + y),
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50
ff+f=0,
f(@©) =cosy
f'(0) = —siny.
So
f = (—siny) - sin+(cos y) - cos,
SO

cos(x + y) =cosycosx — sin ysinx.

8. (a) Clearly f(x) = Asin(x + B) satisfies f + f” = 0. (Moreover, a = f/(0) =
AcosB and b= f(0) = Asin B.)

(b) It clearly suffices to choose A and B so that a = Acos B and b = Asin B.

Since we want
a? + b? = (A cos B)? + (A sin B)?

A=+Va’+ b2

we must clearly choose

If a # 0, we can choose

B = arctan —.
a

If a = 0, we can choose B = 7 /2.

(c) V3sinx + cos x = Asin(x + B), where

A=(V3)+1=2
B=arctan%=1r/6,

so v 3sinx 4 cosx = 2sin(x + 7 /6).
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10. From the addition formula for sin we obtain, for |o| <1 and |8] <1,

sin(arcsin« -+ arcsin 8) = sin(arcsin ¢r) cos(arcsin §)
+ cos(arcsin &) sin{arcsin )

=ay1— B2+ BvV1 —a.

Consequently

arcsin @ + arcsin 8 = arcsin(aty/1 — 2 + BvV'1 — 02),

provided that —x /2 < arcsin at-arcsin 8 < z /2. [If /2 < arcsin+arcsin 8 < m,

the right side must be replaced by 7 —arcsin(cty/1 — 2+ Bv/1 —02), and if ~7 <
arcsin o + arcsin 8 < /2, replaced by —n — arcsin(a/1 — B2+ Bv'1 —a?).]

13. (a) If

H(a) = " (f(x) —acosnx)*dx

'

b 4 n R
= a? f cos?nxdx —2a | f(x)cosnxdx+ | f(x)?dx,
=

- -

then the minimum occurs for

b4

0 = H'(a) =2af

-

n
cos’ nx dx — 2[ f(x)cosnxdx,
-

SO
m
f(x)cosnxdx x

Lo = — f(x)cosnx dx,
T J_
f cos® nx dx 4

-

a =

by Problem 12. The proof for sin nx is similar.

(b)

-

X co N 2
f fx)— E+;cnc0snx+dnsinnx dx =
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[f(x)Ide—Zf fix )l: +chcosnx +dy s1nnx:| dx

bt 4

Tle
+[ [: +Zc,, cos® nx + dy,” sin nx] dx

+ f E Cndm COSnX Sin mx dx
T nm=1
Co N

+ . Echcosnx + dp sinnx dx

n=1

[f(x)*dx

-

—2Jr(a00+2ancn+bd) ( +Z,.+d)

using Problem 12, the definition of a, and b,, and the fact that the last integral
vanishes because [* cosnxdx = f"_sinnxdx = 0. The second equality follows
by algebra.

14. (a) Substitutinga = (x + y)/2, b= (x — y)/2 in
sin(a + b) + sin(a — b) = sinacosb + cosasinb
+ sina cos(—b) + cos a sin(—b)

= 2sinacosb

sinx 4 sin y = 2sin (x ; y) cos (x ; y) .

(b) Using the same substitution in the equation

yields

cos(a + b) + cos(a — b) = cosacosb —sinasinb
+ cosa cos(—b) — sina sin(—b)

= 2cosacosb

cosx +cosy = 2cos (x:y)cos (x ; y) .

Similarly, from the equation

we obtain

cos(a + b) —cos(a — b) =cosacosb —sinasinb
— cos a cos(—b) + sina sin(—b)

= —2sinasinb
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cosx —cosy = —2sin (x-;y) sin (x ; y).

we obtain

15. (d)

f(x)=1-cos 2x = sin? x

\
15 %\

3

(ST =

ol i T
o s —at
R A
L’ | ‘e f(x) = -cos 2x
/ \ 2
/ \
// \\f(x) = -cos 2X
16. If y = arctan x then
tan y sin y sin y
X = = = ,
CosY  +/1—sin’y
SO
xV1—sin®y =siny,
x*(1 —sin y) =sin? y
2
sin2 y= -x—,
1+ x2
SO

x
1+x2’

[ 2. 1
cos(arctanx) = cosy = v 1 —sin’y =

1+x2-

sin(arctan x) = siny =

:

:
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17. If x =tanu/2, then ¥ = 2 arctan x, so by Problem 16

sin u == sin(2 arctan x)

= 2 sin{arctan x) cos(arctan x)

_ 2x
1422
1 — 2
cosu =+v1~—sinu = x .
14 x2

18. (a) By the addition formula,

sin(x + 7 /2) =sinxcosmw/2 +cosxsinn/2 = cosx.

(b) Part (a) implies that x + /2 = arcsin(cosx) for —n/2 < x4+ mw/2 < mw/2, or
equivalently —w < x < 0. If x = 2knr + x’ for —w < x < 0, then cosx = cosx/,
and if x = 2kmw + x’ for 0 < x’ < 7, then cos x = cosx’ = cos(—x"). So

x—2kn+m/2, Ck—-1Dm <x<2kmw

arcsin(c =
(cos x) l 2Uer + )2 —x, 2km <x < (2k+ .

Similarly, from
cos(x — m/2) = sinx,

we conclude that
x—2kn —m/2, 2Zkn+n/2<x<2k+Dr+n/2

arccos(sin x) = Qk+Drw —nw/2—x, 2%n —n/2<x <2kmw+m/2

22. If (x, y) is on the unit circle, then x2 + y? = 1. In particular, [x?| < 1, so
—1 < x < 1. On the intervals [0, ®] and [—m, 0] the function cos takes on all
values between —1 and 1 so there is some @ in {0, 7] with x = cos 4, and also some
@ in [—n, 0] with x = cos 8. If y > 0, then y = sin@ when @ is in [0, 7], and if
y <0, then y = sinf when @ is in [—x, 0].

23. (a) If a < 2kmw + /2 < b, then sin is not one-one on [a, b], because sin has a
maximum at 2k + 7 /2, so sin takes on all values slightly less than 1 on both sides
of 2km + n/2. Similarly, we cannot have @ < 2km — m/2 < b. Since the numbers
of the form 2kn £ /2 are within 7 of each other, z is the maximum length of an
interval [a, b] on which sin is one-one, and in this case [a, b] must be of the form
[2kn —n/2,2kx + /2] or [2krn +nm/2,2(k + 1)m — /2].

(b) (g7 (x) = 1/v'1 —x2, since g~1(x) = arcsin x + 2k=.
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24, The domain of ! is (—o0, 1JU[1, 00).

4
|
| r
t/ — — -
£ z
NV . —{z —_—
x| £-!
21 7 .
f ' '
| -1 I
—ld- I
|
| [f
|
|
25. By the Mean Value Theorem,
|sinx —siny| = [x — y| - | cos 6| form some & between x and y

<l|x—yl

Strict inequality holds unless 6 = 2kx. But in any case, if x < y, say, then we
can choose x < z < y so that (x, z) does not contain any number of the form 2kx.
Then

sin y — sinx = (sin y — sin z) 4+ (sinz — sin x)
= (y—2z)cosf; + (z— x)cosb,
for some 6, in (¥, z) and &, in (x, z). Since |cos 8| < 1 and [cos 82| < 1, it follows

that
|siny —sinx| < |y — x|.

26. (a) ,

lim sinAxdx = lim
A0 [ A=s00 A A

cosic cosAd —0

(b) If s has the values 5; on (t;_1, t;), then
t

b n
lim f s(x)sinAxdx = lim Zs,- f sin Ax dx
a A—o0 =1 &

A—>00 1

=0, by part (a).
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(c) For any £ > 0 there is, by Problem 13-16, a step function s < f with

b
f [f(x}—s(x)ldx < e.
Now

b
f LF () — sCo)] sin Ax dx

b b
f f(x)sinAx dx ——[ s(x)sinAx dx
a a

b
< f [F () = s(x)] - | sin Ax| dx

b
Sf [f(x) —s(x)]dx < e.
Part (b) then shows that

lim < E.
A—>00

b
f f(x)sinAxdx

Since this is true for every & > 0, the limit must be 0.

27. (a) We have
area OAB < % < area OCB,

SO
sin x < x sin x
—_— < = <
2 2 2cosx
(b) From
sinx < X
2 2
we obtain .
sin x i
—_— < 1
2
from )
X - sin x
2 2cosx
we obtain ]
sinx
Cosx < —.
X
Since lim cos x = 1, it follows that lim (sinx)/x = 1.
x—=0 x—0
(c)
. 1l—cosx . 1 —cos?x
m ——— = lim —8—
x—0 X x—0 x(1 4+ cos x)
. Ssinx sin x
= lim =1.-0=0.

=0 X 14cosx
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(d)
. . sin(x +h) —sinx
sin'(x) = lim
-0 h
. sinxcosh+cosxsinh —sinx
= lim
h—0 h
. Sinh . cosh—1 .
=lim —cosx 4+ lim ———sinx
h-—>0 h h—0
= COS X.

28. (a) Problem 13-25 shows that

1 1 ¢ 2
EE(x):f \/1+[f’(r)]2dt=f 1+( ) dt

1 1
=f d.
x 1 —12

[Actually, a more detailed argument is necessary, because fxl 1/4/1 —¢2dt is not
an ordinary integral, but an improper integral. It does follow immediately from
Problem 13-25 that

1—¢
lengthof fon[x,1—¢]l= [
X

1

V1-—12

To obtain the desired expression for £(x) we must then use the fact that

dt.

lirr:)(length of f on [x, 1 —&]) = length of f on [x, 1].
E—>

This is proved as follows. First of all, the following figure shows that the “length of
f on [x, 1] does make sense; in fact, the length of f on [0, 1] is < 2.

total length 2

The same sort of figure also shows that the length of f on [1 — &, 1] is < 2¢. The
desired limit then follows from this inequality and the fact that

length of f on [x, 1] = length of f on [x, 1 — ¢] + length of f on [1 — ¢, 1].
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The proof of this latter fact is very similar to the corresponding assertion for inte-
grals.]

(b) This follows from part (a) and the Fundamental Theorem of Calculus.

(¢) By the definition given, cos = ¢! so
1

/ —_ -1/ —
cos'(x) = (L7 ) (x) _—.SB’(EB‘I(x))

—— 1 — 3
——"—_1— = sSimx.

v1—cos?x

The proof for sin’(x) is the same as the one in the text.

29. (a) Clearly o is odd and increasing. The limit len;o «(x), 1.e., the improper

integral f;°(1 + ¢?)~! dt, exists by Problem 14-25.
(b)
@@ = —r—
(@)
= i =1+ [ ()]
1+ [a~1(x)P

(¢) If —-1/2 < x < m/2, then

cosx = 1 =1+l '@,

V14 [ 1(x)]2

SO

cos'(x) = —a ()@Y ()1 + [~ ()2
= —a~ ()1 + [a~ @) P)~1/2
= —tanx cosx.

Naturally the same result hold if x is not of the form kmw + n/2 or km — w /2. (For
x which are of this form we have, by Theorem 11-7,

cos’(x) = lim cos'(y)
y—>x

= lim —tanycosy
y—=>x

— lim ——an
y—=x /1 + tan2 y
=—1 since lim tanx = 00.)

y—=>X
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Now for x not of the form kn + 7/2 or kmx — /2 we have

cos”(x) = — tan x cos'(x) — tan’(x) cos x
= —tan’xcosx — [1 + tan® x]cos x by part (b)
= —COSX.

For x which are of this form we have
cos”(x) = lim cos”(y) = lim —cos y,
y—x y—x

-1
= lim ——— =10, since lim tan y = o0.

y—=x /1 +tan2y y—=x

30. (@) (>+ (') = 2y030"+2y0' 0" = 2%’ (0" +30") = 0, 50 Yo+ () is a
constant. The constant is non-zero, since y, is not always 0, so y(0)2+ yo'(0)? # 0,
so either yo(0) # 0 or y'(0) # 0.

(b) Any function s = ayg + by’ satisfies s” + 5 = 0, so we just have to choose a
and b such that

ayo(0) + byo'(0) = 0

ayo'(0) — by (0) = 1.
This is always possible, since

—¥0(0)* — y'(0)* # 0.

(c) Suppose that cosx > O for all x > 0. Then sin would be increasing, since
sin’ = cos. Since sin0 = 0, this would mean that sinx > O for all x > 0. Thus
we would have cos’(x) = —sinx < 0 for all x > 0, so cos would be decreasing.
Thus cos would satisfy all the hypotheses for f in Problem 7 of the Appendix to
Chapter 11. But then the problem implies that cos”(x) = —cosx = 0 for some
x > 0, a contradiction.

(d) Suppose cosx > 0 for 0 < x < xp = m/2, the function sin is increasing on
[0, 7 /2). Since sin0 = 0, it follows that sinz/2 > 0, so sinx/2 = 1.

(e)
cos =cos(m/2 +m/2) =cos’ /2 —sin’w/2=0—1=—1.
sinw =sin(zx/2+/2) =2sinnw/2cosn /2 =0.

2 2

cos2n =cos(m +m)=cos“mw —sin“w = 1.

sin2m =sin(wr + ) = 2sinwcos = 0.

®

sin(x + 2w} = sinx cos 2 + cos x sin 2w = sin x.
cos(x + 2mr) = cosx cos 2w — sinx sin2w = cos x.
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31. (a) A rational function cannot be 0 at infinitely many points unless it is 0 ev-
erywhere.

(b} The assumed equation implies that f3(x) = 0 for x = 2km, so fo = 0. So
(sin X)[(sinx)* ! + fum1 )(sinx)" 2+ -+ + fi(x)] = 0.

The term in brackets in continuous and 0 except perhaps at multiples of 2=, so it
is 0 everywhere. We have just shown that if sin does not satisfy such an equation
for n — 1, then it does not satisfy it for n. Since it clearly does not satisfy such an
equation for n = 1, it does not satisfy it for any .

32. (a) Multiplying the equation for g; by ¢» and the equation for g, by ¢ we
obtain

$1" P2+ g19192 =0
& 1 + g2t = 0.

Subtraction yields the desired equation.
(b)
b b
[[@e:-001= [ @2~ evoren >0,
a a

since g2 > g1 and ¢;¢» > 0 by assumption. Since
(D192 — 102y = "2+ @1/ — b1/ b2’ — 1"
=¢1"¢ — 162",
we have
b
0< f (91" 2 — &2 1]

= [¢1' (B)¢2(B) — ¢1(B)2(B)] — [ (@)¢2(a) — ¢1(a)g2'(a)]
= 91’ (b)g2(b) — ¢1' (@)¢2(a) + [¢1(b)¢2' (B) — $r1(a)¢' ()]

(¢) If ¢1(a) = ¢1(b) = 0, then it follows from part (b) that
¢1' (D)2 (b) — 1’ (a)¢2(a) > 0.
But clearly
$2(a) = 0, $2(b) =0
$'(a) 20, ¢/ (b) <O0.

This implies that
¢ (0)d2(b) — ¢y’ (a)$2(a) < 0,

a contradiction.

(d) This follows from part (c) by replacing ¢; by —¢; and/or ¢, by —¢s.
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33. (a) Substitute (k + 3)x for x and (k — 1)x for y in the formula

sinx — siny = sin x + sin(—y) = 2sin (x ; y) cos (x -;y) .

(b) We have

1
5 +cosx +cos2x +...+cosnx

t| =

1 n
+ = [ E sin(k + %)x — sin(k — %)x]
2sin 3 k=1

B =

1 : i
+ — [sin(n + 1)x — sin(§)x]
2sin -
2
sin(n + %)x
B 2sin x
2

(c) Substituting (k + %)x for x and (k — %)x for y in the formula

(x) cosx-—cosy:—28in(x;y)sin(x;y)

from Problem 14 we obtain

cos(k + %)x — cos(k — %)x = —2sinkx sin %

So

sinx +...-4sinnx

___1 . I:Z cos(k + 3)x — cos(k — %)x]

2sin 5 b=l
1
=~ — [cos(n + 3)x — cos(3x)]
2sin —
2
1 . n . n + 1 ‘
T 2sin = [_2 - (Ex) sin ( ) x)] by (*) again.
2

(d) It obviously suffices to compute the integral for » < /2, which makes things
sightly easier, since sin is increasing and cos is decreasing on this interval. Let
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P = {t,...,t,} be the partition of (0, b} with ; = ib/n. Then
b & ib
L(cos, P) = - ’Z:l:cos (:)

sin ([n + %]%) b

2n sin b S
b 2n
For n large, sin([n + 112) = sin([1 + 1b) is close to sinb, and Zsin 2 =

(sinb/2n)/(b/2n) is close to 1. So L(cos, P) can be made as close as desired to
sin b, which means that fob cos = sinb. For fob sin it is best to use the next-to-last
equation in the derivation of part (c):

: b~ ., [ib
U(sin, P) = - §3m (—n—)

For n large this is close to —cosb + 1, so fy sin = 1 — cosb.
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1. (a) Let A = area OAB. Since

xy =2A,

2A\?
() o=
y

4A2+y4=y2,
}’4"y2+4A2=0,

,_ 1£V1-16A7
> .

we have

y

We have

, 1-+y/1-16A

— > ’

provided that y2 < 1/2, or y < «/5/2. So

1 [1—-+/1— 16(area OAB)?

area OAC =
2 2

S

(b) Let P, be the union of m triangles congruent to the triangle O AA’ in the figure

below.
f

238
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Each such triangle has area A,,/m so triangle O AB had area A, /2m. Now Py, is
the union of 2m triangles congruent to OAC. So by part (a),

- — OAB)?
Ayy =2marea OAC =m ! Jl 16(arca )

2
1—+/1—16A,2/4m2
=m 2
m
= -2-\/2 — 21— QAR/m)>.
2. (a)
An  2marea(OAB)
— =0B = Xy
Ay 2marea(0OAC)
(b)
2 2 Ag Ay
Ap  Ag A Ap
A4 Azt—l
e e — =a4"’a2k—l-
As Azk
()
Q4 = COS m_ V2 1
4 = _——_—— = >
4 2 2
e — cos n/4 ___\/1 +cos.n'/4
8= 2 ) V2 2
_ 1, 1T
“¥2 2V

etc.
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1. (ii)
1 1
1 +log(l + log(l + e!*+¢'™**)) 1+ log(l + el+€'**)
L e el
1+ elte!™* :

(iv)
(f e dt) e %,
0

(vi) We have
log(sin x) __ log(sinx)

F@x) = log e* - X

50 cosx
x - pro log(sin x)
’ —

f (x) - xz

(viii)
1
4log(3 + e*)e¥* + (log 3)(arcsin x) (8 I-! ﬁ
1 —x

(x) f(x) =€*1°8%, 50

1
fl(x) = &*lo8* (x =41 logx) = x*(1 +log x).
x

2. (@) (logof) = (log'of)- f' = (1/f)- f.
(b) (@) log(f(x)) = log(l + x) + log(l + €*) so

2
2xe*

o 1
(ogefYM) = 2+ 1 em
SO
e o 1 2xe*
fRD=Q1Q+x)1+e )[1+x+1+ex2:|‘
(ii)
1 ’ _ .+.._2.. 1 2
(ogOf)(x)——3(3_x) x+1-x_3(3+x),
’ _ (S_x)1/3x2 1 2 1 2
fx)= d—x00 + )2 ["3(3—x)+;+ 1-x 33+

240

I
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(iiii)

: cosx |
F'(x) = (sin x)°** [cosx T T sinx log cos x]

. . ~sinx .
+ (cos x)""* [smx . + cos x log sin x] .
COS X
(iv)
_ 1 _ 1
fx) = (14 x3) (1 +x¥)’
, 1 3x2 1 3x2
F®=Zirs [_1 N 1+x3] T+ 1) [_3 1 +x3]
3
b f’(f) b ,
j ?Tt—)-dt =fa (logo fY (1) dt = log(f (b)) — log(f (a)).
4. (a)
I+
-
(b)
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(c), (D)
(e)
5. (i)
I T X 2, S -] —x—x¢
limex 1—x—x%/2 x/6_li e —1—-x—x°/2
x—=0 x3 x—0 3x2
. e —1-x et —1
= lim = lim
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(iv)
! 1+
lim log(1 +x) —x — x2/2 _ fim Lt *
x>0 x2 x—0 2x
! + 1
2
=1im —UFX° g
x—0 2
(vi)
lim log(1 +x) —x +x2/2 - x3/3
x=>0 x3
1 14 2
_ xX—x
= lim 1%
x—-0 3x2
+1—-2x 2
oy (14 x)? e (U 4x)?
= lim = Im = Q.
x—=0 6x x>0 6

6.

7. (b) Since cosh? —sinh? = 1 by part (a), we have
sinh? 1

1~ = .
cosh?  cosh?
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(d)
cosh x cosh y + sinh x sinh y
_ e*+e* evt+e) + ef—e™* ¢y —e™Y
2 2 2 2
e*ty e—x—y ex—y ey—x ex+y e Xy ey —* exX—y
=3 vttty t 4
x4y -x+y
_¢ +2e = cosh(x + y).
(f) Since
cosh x ete”
= 5
we have
ef—e*
cosh’(x) = — = sinh x.

8. (b) It follows from Problem 7(a) that

cosh?(sinh~! x) = 1 + sinh?(sinh ! x) = 1 + x2,

50

cosh(sinh™'x) = 1+ x2,

since cosh y > 0 for all y.

(d)
(cosh™!Y(x) = !
cosh’(cosh™! x)
_ 1
- sinh(cosh™! x)
. 1
V-1

10. Since 0 < logt < ¢ for t > 1 we have

1
f—dt>f —dt =logx,
logt t

and log is not bounded on [2, c0).

11. If | f| < M on [1, 00), then
IF(x)lsf EAU )ldt<Mf —dt = Mlogx,
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s0 |F(x)|/logx < M for all x > 1. To prove the converse, first suppose f > 0 on
[1, o). Then since f is nondecreasing,

*f( 1
F(x)=/; @drgf(x)_/l. -t-dr=f(x)logx,

so |F/log | bounded implies | f| bounded. For the general case note that since f is
nondecreasing it is certainly bounded on any interval to the right of 1 on which it is
negative. If f(b) = 0 for some b > 1, then for x > b

br@ X f(t)

F(x) = : _I_dt+ A Tdt
] x
5[ @dr+f(x)f ldt
1 t p ¢
b f@)

= | =Fdt+ f(x)ogx —logb],
1

S0

f@)

F b —
@ _ 1 f f@® 4., Hogx —loghl
logx logx J; t log x

= A(x) + B(x)f(x), say.

The for x > b we have
F(x)
|B(x)| | [logx

Now |A(x)] is bounded [it = 0 as x — oo] and 1/|{B(x)| is bounded [B(x) — 1
as x — oo], soif |F/log]| is bounded, then so is | f|.

[f(x)] <

+ IA(x)I] :

12. (b)

(d)

1 n
(-n" (log —)
lim x(logx)” = lim *
x—0t

x>0t l
x

1y (1 n

- lim (—=1)"(log y) _o.

y—>o0 y
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13. f is convex, since
J'(x) = x*(1+logx),
X
£"(x) = %*(1 +logx) + — = 0.

i
e
14. (a) If x > 0 and
e —nx" e eF(x —n)
— , —— —
0=f(x)= P = Tl
then x = n, so the minimum is at n, since lim f(x) = oo = lim f(x). So for
x—0t x—00
x > nwehave f(x) > f(n) =e"/n".
(b) If x > n+1, then
e* en+1
!
f&)>—> (n + Dt

by part (a) applied in the case n + 1. It follows immediately that xll)ngc f(x) =0
(merely using the fact that f'(x) > £ > 0 for some £ and all sufficiently large x).

15. f is convex, since
ff(x) =y " — nexx—n—l,
fﬂ(x) =efx~ " — nexx—n—l _ nexx—n—l + n(n + l)exx—n—z
X

e

JCn_l_z[xz—an+nz+n] >0 for all x.
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S+

16. (e} If f(x) = e’* then f'(0)=b,so

by __ 1
lim 2 —b.
y=20 Yy
Thus
lim x(e* — 1) = b.
X—>00
So

logh = lim x({°8%/* _ 1)
X=> 00

= lim x(®/* - 1).

X—»C0

17. We have lim f(x) = e by Problem 16(c) and
X—>»00
lim f(x)= lim |1+ 1y’ e lim xlog{ 1+ !
— — = X -—
x—{)0+ * x—=0t X P x—0t g p 4

. x+1
= exp Jlrl_l}}ﬂ(}erlog e

= exp ( lim [x log(x + 1) — x log x])
x—0
=exp0=1, using Problem 12(d).

Moreover,

x) = 1Y DNt (LY.
f(x)—(1+;) [log(1+x) x+1]—(1+x) g{x), say.

247
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To analyze f’, we notice that

| -1 1
I
gx)=——F —
I x2 (x+1)2
1+~
+x
-1

=m<0

Thus g is decreasing. Since xl_l}:go g(x) = 0, we must have g(x) > 0 forall x > 0.
So f is increasing. We also have

1 1
lim f(x)=1- lim {log(1+ =)~
o ) xi"3+[°g( +x) x+1]

1
= li 1) — -
iy [ote+ 0~ ogx - 1

= CCQ.

20. (a) We have
, S
1 = — =
(og | f1) 7

SO
log|[f(x)| =cx+d

for some number d, so

If(x)| = ee®*, & >0.

(b) On an interval where f is non-zero it has the form f(x) = ke®*. But this
can’t approach 0 at the endpoint of the interval; so f couldn’t be 0 at the endpoints.
This proves that if f is non-zero at one point xq, then it is nowhere O (consider

sup{x > xp : f(x) % 0} and inf{x < xg : f(x) # 0}).
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(d) Let h(x) = f(x)/e2*). Then

ooy = EOf(x) = F(x)gx)es™)
) = 2280)

_ SOU() — fx)g0 _

e28(x)

0,

so f(x)/e2® = k for some constant k.

23. Notice that f is continuous, by Theorem 13-8. We therefore have f/(x) = f(x),
so there is a number ¢ such that f(x) = ce*. But f(0) =0,s0¢c =0.

24. (i) Differentiating fox f = €*, we see that f must satisfy f(x) = e*, but this
f doesn’t work, since

X
f eddt=e -’ =¢" — 1.
0

So there is no such f (easier proof: set x =0, to get 0 = €0 1),
(i) Differentiating, we obtain
2xf(x2) = —4xe™

SO
fO)=-2% y=>0.

This f does work.

25. We need

1) FUf) - g(fx)) - F ) =g'(f(x) - f'(x)
or

(2) FMe) =g'm.

According to Problem 20(d), if F is a function with F' = f, then we must have
g(y) = ke O,

For this g to work we need
f&x)
f kf@)e"© dt = keF T _ 1,
0

Since f ef is the derivative of ef, this means

k [eF(f(x)) _ eF(O)] — kPO _ 1

or ke¥® = 1, We can choose F(0) arbitrarily; we might as well make F(0) = 0.
Then we need k = 1.
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This derivation is not complete, because we assumed f/(x) # O in order to go
from (1) to (2). In fact, if f(x) = c for all x, then our equation simply says

f cg =g(c)—1,
0

and any g satisfying this will work. Even if we assume that f'(x) # O for all x,
there is the further problem that equation (2) only holds for y in the range of f! In
order not to get too involved, let’s simply assume that f is defined on [0, 00), with
f’ > 0 everywhere on [0, o0), with £(0) = a > 0 and [a, 0o) being the range of f.
Then

g0) =kef?  y>a.

For this g to work we need

a fx) .
j fg +f kf()e® dt = ke (F&) _ 1
0 a

or

(fa fg) iy [e.v(f(x)) _ eF(a)] — keFU) _q
0

(fa fg) — kef@ = —1.
0

Choosing F(a) = 0O, this says
a
%) k= [ e+t
0

or

On [0, a) we can choose g arbitrarily, and then let g(y) = ke™O) for y > a, where
F is the function with F(a) =0, F' = f, and k is determined by (x).

26. We have f"(t) = f'(), so f'(t) = ce' for some ¢, so f(t) = a + ce* for
some a. So

1
ce' = (a+ce‘)+f (a+ ce')dt
0

=a+ce' +a+ce—c,

soa=c(l —e)/2.

27. The given equation implies that f? is differentiable, so f is also differentiable
at any x with f(x) # 0, and for such x we have

2f () f'(x) = f(x)

x
14 x2°

SO
log(1 + x2)

f(x) = g'(x), where g(x) = 2
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So on any interval where f # 0 we have

for some C.
If x = 0 is in the interval we immediately have 0 = f(0)? = C. But it is possible
to have a pieced-together solution like

> 0.

0 x<0
f(x)= I log(1 + x?) .
—— =

28. (a) Let N
h(x)=C+f fge=C=>0 on [a, b].
Then A'(x) = f(x)g(x) > 0 on [a, &] and
h(x) = f(x)g(x)

) [c + f fg]

— g(D)h(x),
SO ,
(log o ) (x) = % < g().
If we set .
G(x) = f g,

then since log(h{a)) = log C, we can write
(logoh —logcl’ < G’
where both G and log o 2 — log C are 0 at a. It follows that
A
log(h(x)) —logC < G(x) = f g for x > a,
a

or .
h(x) < Cefa g

(b) If N
£ < f fe

then for every ¢ > (0 we have

f(x)sa+f fe
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50 by part (a)
0<fx) <&k ?;

since this is true for every £ > 0, we must have f(x) = 0.

f(x)=foxf’=f0xfg;

by part (b), this proves that f(x) = O for all x (but we need to assume f, g > 0).

(c) We have

29. (a) For n = 0 the inequality reads 1 < ¢* for x > 0, which is certainly true,
since ¢® = 1 and exp is increasing. Suppose the inequality is true for n. Let

x2 xn+1
=1 4. .
F@=l+x+ o+ 40D
Then
x? xh
FfERy=1+x+—=+ -+ — <€,
2! n!

while £(0) = €°. It follows that f(x) < e* for x > 0.

(b)
- fiz i 14+ x+x2/21+ -+ 2" /(n 4+ 1)}
n—>o00 xn n—00 xt
o1 1 1 x
= e e o Y oy
= .

30. Using the form of I'Hopital’s Rule which was proved in the answer to Prob-
lem 11-53, we have
e* e* e*

Iim — = lim =-..= lim — = 00.
x—=o00 x®  x—oo pxh-1 x—00 !

31. (a) A good guess is that the limit is 0. Reason: On [0, x] the maximum value
of ¢ is e*"; on most of the interval the value is much smaller, so that integral should
be much smaller than e**. We can easily evaluate the limit by the form of 'Hopital’s
Rule that appears in Problem 11-52:

x 2
f e’ dt exz
CAV I | =0.

lim —— = lim 5
1200 e* x—=00 Dxe*
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(b) (i) Using I'Hdpital’s Rule, we obtain

x+f 2
-/- (4 df e[x_i_%iz _ xz
lim 2% = i d
] = lm ———
X—>00 ex x—0Q 2xe*
1
. elext — 1
= m -—-—
X—00 2x
=0.
(ii)
logx
X+ 2 )
e dt g(‘H"EF) ex2
lim X 2 - lim 2
X—>00 ex xX—>00 2xex
2
log x
) ezlogx e(-;’—) -1
= lim
=00 2x
2
logx
. x2e( 5 ) —1
= lim
x—>00 2x
= Q.
(iii)
logx
g 2
4 dt e(x+l_°i'ti) exl
lim =% 5 = lim 5
X->00 ex X 00 2xe*
logx
- elogx e( 2x ) -1
= lim
X— 00 2x
1
= 5

32. (a) We have

log,(x + k) —log, x
h

x+h
log, (—x )

l jim tog (1 + 1)
= fim,—— " = jimlog (1+7)

1
x

log; (x) = lim

l—

x 1
_ A=
= él_l?olog (1 + ;) = é% log(1 + k)

253
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.1 11 1
=£}E});log(l + k) = ;%ﬂt})log(l + k)*

e

1
== log (%irl}] (14 k) ) , by continuity of log.

(b) By the binomial theorem,

1\* 1 & 1\*
a,,=(1+—) =l+n-1-—+2(n)(—)
n n &= k n

LI 1
=2+’;f’;—!n(n—1)---(n—k+l)-;l-7c-

N Y S B CEEEN

k=2

L | 1 2 k-1
=2 —{1=-= —Z)... (1= ]
+;k!(1 n)(1 n) (1 n)
Similarly,

n+1
1 1 1 k—1
-2 —{1- - 1= _
I+l +Ek!(1 n+1)(1 n+1) (1 n+1)

k=2

All terms in these sums are positive, and for each k¥ < n we have
1 2 k—
— 11— ! 1- o 1~ L
k! n+1 n+1 n+1
D5
k! n n n

since each (1 — n+|-1) > (1- :T) S0 ani1 > an.

(c) Since each (1 ~£) < 1and 1/k! < 1/2*7! for k > 2, we have

a <2+Zn:—1——2+ LI
n k=22k_1_ 2 4 2n—1

1
s (1 50)

SO an < 3.
For any € > 0, there is some n with e — a, < ¢, since e is the least upper bound.
Since a, < @pyy) <--- wehavee —agy < e forallk > n.
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d) Ifn<x<n+1, then

1 1 1
< — < =
n+1 " x " n
SO
n 1 n 1 x n+1 1 n+1
(+ir) =(+2) =<(+5) =<(1+3) = (+3)
n+1 x X n
Now

(o) =)

For large enough n the terms in brackets [ ] is close to e, and (n + 1)/n is close
to 1, so the whole expression is close to e. Similarly, (1 + 1/7)**! is close to e for
large n. So (1 + 1/x)* is close to e for large x, i.e., xl_i)rgo(l + 1/x)* = e. This

implies that hli:l(}+(l + h)/E = ¢ (Problem 5-34).
We also have
1 X
(1+3)
. X
lim =

- 1\* —
x 00(1__) X—00
X

SO

Consequently,

It follows that hlim (14 h)/* = e, and thus that lim (1 + RVE =,
—0- -

33. If A(t) = P(t) = 107, then
A'(t) = P'(t) = 107 — P(t) = —A(t).



256 Chapter 18

So (by Problem 20) there is some number & such that
A(t) = ke™*.

Since A(0) = P(0) — 107 = —107, we obtain k = —10, so

P(t)— 10" = —10"¢™,
SO

107t = Nap log[107 — P(#)]
= Nap log 107¢7;

letting x = 1077, so that ¢ = log(107/x), we obtain

107
Nap log x = 107 log —

34. (a) We have lim f(x) = —ocand lim f(x) = 0 by Problem 12.
x>0t X—00

1 A
i
L
e

(b) Since f has its maximum at e, we have

1 1
oge logm

b

e /4
SO
elognm > mwloge,
SO
nf > e”.

(c) The equation x> = y* is equivalent to f(x) = f(y). The assertions in part (c)
amount to the fact that the values f(x) for 0 < x < 1 or x = e are taken on only
once, while the values f(x) for 1 < x < ¢ are taken on for some x” > e and vice
versa.

(d) Part (c) shows that the only possible natural numbers x < y with x¥ = y* must
involve 1 < x <e,s0x =2,
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(e), ) If f, and f;, are defined as in part (f), then g = f2“1 o fi. The curve in
part (e) is the graph of g on (1, e); the straight line is the graph of the identity
function. They “intersect” at (e, €) [more precisely lim g(x) = e].

X—e

|
!
|
l
I
l

A T~—

/ x e g(x)

Moreover, g is differentiable, since f; and f> are differentiable and f>'(x) # 0 for
all x in the domain of f;. In fact, we have

g@ =" )@ =Y A®)
1 !

R B

g 1-logx

T 1—-logg(x) %2

35. (a) exp is convex, since exp”(x) = exp(x) > O for all x. Similarly, log is
concave, since log”(x) = —1/x? < 0 for all x > 0.

(b) Naturally we are assuming that z; > 0. Problem 9 of the Appendix to Chap-
ter 11, applied to the convex function exp, shows that

n n
exp (Z pilog Zi) > Y piexp(logz:)
i=1 i=1

or
1Pt zg” < przi+ -+ paza.

(¢) Choose p; = 1/n.

36. (a) If m; is the inf of f on [#;—1, #;], then

1 | b—a 1
——L(log f, P) = —— ) logm; =—) logm;
5o Log f, Fn) b_a§0gm: " n; ogm;

S —
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while

1 1 &
log (Z"_—G'L(f, Pn)) = 108[; : Zmi]-
i=l1

n
Since (m, - --m,)!/" < (1/n) - Y m; by Problem 2-22, and log is increasing, we
e

have the desired inequality.

(b) Theorem 1 shows that if f is integrable then for every & > O there is § > 0
such that

<gf2

n b
> £ -0 - [ feds

i=l1

for any partition P = {ty, ..., t,} of [a, b], and choices x; in [#;_1, #;], for which all
t; — t;—1 < 4. It is easy to conclude that we then have

<é&

b
L(f, P) - f F(x) dx

for such partitions {we need to increase £/2 to £ since m; may not actually be f(x;)
for any x; in [#-1, #] ). In particular,

b
IL(log [ Pr) —f log fl <&

b
L(f,Pn)-f fl<e

for n sufficiently large. The desired result then follows easily from part (a).

(c) Let P = {1, ..., t,} be any partition of [a, b], and let m; be the inf of f on
[ti—1, ;). Letting p; = (t; — t;—1)/(b — a), we have

1 n n
5 Lo f, P)= D pilogm; < log(Z p:-m:)

i=1 i=1
1
= log (b—_;L(f, P)) .

Since this is true for all partitions P, we have
1 [ 1 b
— {1 <log| —— .

(d) More generally, if g is concave and increasing, then

biaj:gong(bf_a[a"f).
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37. From f' = f we conclude that f(x) = ce* for some ¢. From

fx+0)=f(x)f(0)

we conclude that etther f(x) = O for all x, or else that £(0) = 1, in which case
c=1.

38. Suppose that f # 0. From f(x 4+ 0) = f(x)f(0) it follows that f(0) = 1.
Then from

1=70)=f(x+(-x))= f(x)- f(—x)
it follows that f(x) £ O for all x. Moreover f(x) > O for all x, since
f@x)= f(x/2+x/2) = f(x/2)%.

Now if » is a natural number, then

f)=f(1+---+1)=fF1)"%

n times
moreover,
l=f0)=f(n+ (—n)) = f(n)- f(—n),
S0 1 1
T =T =7y 70
Similarly,
foy=f{x 4+ =f(1) ,
n n H
n times

SO 1

f (;) = I/FD = FO™.
Finally

m 1 1 1\™
Y = ‘_ _)— 2l = m/n
f(n)—-f n+ +n -—f(n) = f(1)"".

m times
Since f agrees with g(x) = [f(1)]* for rational x, it follows from Problem 8-6 that
f=g

39, If g(x) = f(e*), then
g(x +y) = f(&M) = f(eF - &) = f(F) + f(&¥) = g(x) + g(»).

It follows from Problem 8-7 that g(x) = cx for some ¢. If ¢ = 0, then f = 0. If
¢ # 0, then
fe)=fle)=zgl) =c,
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50

f(e*) = fle)x

or
f(x) = f(e)logx forx > 0.

40. The formulas for f/(x) and f”(x) (for x # 0) given in the text suggest the
following conjecture, which is easy to prove by induction on k:

3k
2 a;
f(")(x) = /X E —i for some numbers a,, ..., as;.
i=1

It is then clear that £*)(0) = O for all k, using the same argument as in the text.

41. The following conjecture is easy to verify:

3k %
; 1 i 1

O = e“/"z[ 4 in— + ﬁ cos —]
i=1 x! x i=1 xf x

for some numbers ay, ..., @, by, ..., b3.

It is then clear that £®(0) = O for all k, as in the previous example (note that
|sinl/x| <1and |cosl/x] <1 for all x # 0).

42. (a) If y(x) = e**, then
any® (%) + a1 y® V@) + -+ a1y (x) + aoy(x)
= a,a"e® + ap_10" " 1e® + - - + ayoe® + ape®™

= e“"(a,,a" +ap_1&" 1+t are +ao) = 0.

(b) If y(x) = xe™*, then
yO(x) = alxe®™ + lo!1e2*.
(This formula can be verified by induction, or deduced from Problem 10-18.) So
any® (x) + @1y (x) + - - + @1y (x) + a0y (x)
= xe™ [ano" + ap_10" " + - +aja + ap)
+ e [naa™ ' + - + a1

=0

(the second term in brackets is 0 because « is a double root of (x)).

(c) If y(x) = x*¢**, then by Problem 10-18,

Drn (K s ] e
)’(x)—zs(k—_-—;)“!-x o e .

§=0
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So

n k n 1 kl
)] . i-» : k—s ox __
;a;y (x) = Z[Z (S)a;a ](k __S)!x e =0

s=0L]==0
{the terms in brackets are ( because « is a root of (x) of order s + a, for each s < k).

(d) If y1,..., y, satisfy (%), then

n

n n
Zat(cm +F o) = Z(Cj Zazyj“)) = (.
1=0

i=0 Jj=1

43. (a) From
Ly gt ! gt ! 1 ! 4
0= (" = H=FF —ff = 5[~ 1]
it follows that (f')* — f2 is constant. The constant must be 0, since f(0) = f'(0)
=0.

(b) Since f(x) # 0 for x in (a, b), it follows from part (a) that either f'(x) = f(x)
for all x in (a, b) or else f'(x) = — f(x) for all x in (a, b). Thus either f(x) = ce*
or else f(x) = ce™ for all x in (a, b).

{c) Let a be the largest number in [0, xg] with f(a) = 0. Then f(x) # O for x in

(a, xo). But then f(x) = ce* or f(x) = ce™* for all x in (a, x¢), where ¢ # 0.

This contradicts f(a) = 0, since f is continuous, because f(a) = 0 # lim ce* or
xX—a

lim ce™.
X—rd
44, (a) Let
_fO+FO
2
,_ fO-F©O
3 .
If g(x) =ae* +be ™ — f(x),then g”" — g =0, 50 f(x) = ae* + be*.
(b) Note that
X __ ,—X x —x
ae* +be™* =(a —b)e 2e +(a+b)e te

= (a — b)sinhx + (a + b) cosh x.
(Comparing with part (a) we see that
f(x) = f'(0)sinhx + £(0) cosh x,

in exact analogy with the trigonometric functions.)
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45. (a) We have f@1(x) = ce*, so

fx)=ag+aix + -+ apox2 + ce*.

(b) We have
FO2D(x) = ce* +de™*

by Problem 44, so
fx)=as+aix + -+ +ap3x"3 +ce* +de*.

46. (a) Since

g'(x) = fi(xo+x)f(xo — x) — fxo+ x)f'(x0 — x)
= f(xo+x) f(xo — x) — f(xo+ x) f(xo —x) =0,

the function g is constant, Moreover, g(0) = f(x9)?> # 0. So

fxo+x)flxo—x)#0 for all x,
which implies that f(x) # 0 for all x.

(b) Let f = f1/£1(0), where f; #0and fi’ = fi.

(¢) Since
o _ @ x+y)— flx+y)f'(x)
g(x)= o2
_f@fG 4 - FENF® _
f(x)? ’
the function g is constant, and clearly g(0) = f(y), so f(x + y)}/f(x) = f(y) for
all x.

(d) f is increasing, since f'(x) = f(x) = f(x/2 +x/2) = [f(x/2)? > 0.
Moreover,

—1y7 _ 1
YW= Sy
1 1

= T x

47. (a) No. For example, let f(x) = x and let g(x) = x(2 + sinx).
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(b) We have

f@) +g(x) . _ )
T rwm TS Y e e

(c) For sufficiently large x we have

log f(x) > clog g(x)

S0
fx)zg(x)* c>1

and therefore
f(x)
gx) —

Since we are assuming that lim g(x) = oo, this implies that lim f(x)/g(x) = oc.
X—=>r00 X—>00

> g(x)¢! c—-1>0.

(d) Yes. Proof: Given N > 0, choose xg such that f(y) > 2Ng(y) forall y > x.
Then

Flxo+x) = fx°+xf ff+fxo+xf>f f+2fo°+x
f f+2fo°+xg 2Nf

=f f—-ZNf g+2NG{xp+x)
0 0
= A+ 2NG(xp + x), say.

So

F

Foot®) _,yyp 4

G(xp + x) G(xp + x)
Since G(xg + x) = 00 as x = 00, it follows that F(xq + x)/G(xo + x) > N for
large enough x.

(e) (i) logdx € x + e & x3 + log(x®) ~ x3 [by part (b)] € xX3logx € &* K
(logx)* < x*.

(i) log(x*) [= xlogx] & x log? x [« x’] « x!°8* & &’ « (logx)* € ¥ K e*
[the last four « follow easily from part (c)].

(ii) x¢ « /2 € 2* € & € (logx)¥ &« x* < &* [the second « depends on
the fact that log2 > 1/2 which is true since 2 > /e].
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48. Let M, be the maximum of |g| + --- + |g,| on [0, n] and choose f so that
f(x) > nM, on [0, n].

49. If there were natural numbers a and b with log,, 2 = a/b, then 2 = 10%/%, so
2> = 10°.

This contradicts the fact, mentioned in Problem 2-17, that an integer can be factored
uniquely into primes (since the product 22 does not involve the prime 5, while the
product 10% does).
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2. (i) —e7 /2. (Let u = —x2)
(iv) —1/(e*+1). (Letu =€*.)
(vi) (arcsinx2)/2. (Let u = x2.)
(viii) —(1 — x?)*2/3. (Letu =1 — x2))
(x) [log(logx)]?/2. (Let u = log(log x).)

3. (i)
2, x?
fJA:E’«e"’|C2 dx = fxz(xexz) dx =2 ; - fxexz dx
x2er eF
T2 2
(iv)
fxzsinxdx =x2(——cosx)+2fxcosxdx
= —x%cosx + 2 [x sin x —]sinxdx]
= —x2cosx + 2xsinx + 2 cos x.
(vi)
flo(l x) ldx (log x) - log(log x) flo ! ld
" — — . X} — . » —
glUog T g gllog g X logx x X
= (logx) - log(log x) — log x.
(viii)

1
f 1-cos(logx)dx = xcos(logx) + f x sin(log x) - o dx
= x cos(logx) + f 1-sin(logx)dx
1
= x cos{logx) + x sin(log x) — f x cos(log x) - < dx,
SO

x cos(log x) 4 x sin(log x)
> .

f cos(logx)dx =

265
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(x)
21 2 2 1
logx)2=f—(9&—fx—-210gx-—dx
2 2 X
21 2
=£—(—(—)Zgi—fxlogxdx

x2(log x)? ( x%logx [x J )
2 2
£2

x%(log .?c)2 x2logx L
2 2 4

4. (if) Let x = tan u, dx = sec? u du. The integral becomes

sec udu

Vi

sec u du = log(sec u + tan u)

= log(x + v'1 + x2).

(iv) Let x = secu, dx = secu tan u du. The integral becomes
/‘ secutanu du

secuy/seczu — 1

[This can be written in terms of more familiar functions as arctan( x2 -1 ).]

= f 1du = u = arcsecx.

(vi) Let x = tanu, dx = sec? u du. The integral becomes

j‘ sec2udu secu du j’
= = f cscudu

tanuv/' 1 + tan? 4 tan u

1
= — log(cscu + cotu) = —log (-; +

=)

X

x
=log| ——1.
(1+v1+x2)

(viii) Let x = sinu, dx = cos u du. The integral becomes

1 2
fVl—sinzucosudu=fcoszudu=f$du

u sin2u

274

¥ sinucosu

2 2

__ arcsinx + xv1—x2

2 2
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(x) Let x = secu, dx = secutanu du. The integral becomes

f\/sec2u— 1secutanudu

=fsecutan2udu

=f(secu)(seczu - Ddu = fscc3udu —fsecudu

1
= E[tan u sec u + log(sec u + tan u)] [Problem 3(vi)]
— log(sec u + tan u)

= %x\/x2 -1~ -;—log(x +vVx2—1).

5. (ii) Let u = €¢*, x =logu, dx = 1/u du. The integral becomes

/‘ du _/'1 1 4
u(l+u)  J u 1+uu

= logu — log(1 + u)
= x — log(1 + &%).

(iv) Letu = /14 ¢*, x = log(u®—1), dx = 2u/(u?>—1) du. The integral becomes

f 2udu j‘ 1 4 1 4
u(uz —1) u+1 u-—1
= —log(u + 1) + log(u — 1)
= —log(l + v1+ &%) +log(v/1+¢€* — 1).

(vi) Letu = v /x + 1, x = (u? ~ 1)2, dx = 4u(u? — 1) du. The integral becomes
f du(w?® —du 4

3
=—ud—4
” 3u U

= ) a(vE )

(viii) Let u = +/x, x = u?, dx = 2u du. The integral becomes
f2ue“ du = 2uée® —2fe" du
= 2/xeV* — 2eV*.

(x) Let u = 1/x, x = 1/u, dx = —1/u* du. The integral becomes

f Yu—-1 , 1 Vi—u 1—u
U .——2 Uu—=— du:-—' du.
1/u+1 u 1+ u v1—u?
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Now let u = sint, du = cost dt. The integral becomes

1 —sint
—f costdt:—fl—sintdt
cost

= —t —cost
= —arcsinu — 1 — u?
1 x2—-1
= - arcsin — —
x x

6. In this answer set, / will denote the original integral.

o 2 3
"f(x—l)z (x—1)3d T a-D 22—
(iv)
I—f ! + ! + 1 dx = log(x + 3) + log(x — 1) 1
T RS T 8 =1
(vi)
X 2
I=fx2+1+(x2+1)2dx
log(x2 + 1) x 1]’ 1 ]
= = d
2 +2[2(x2+1)+2 PN
_log(x2+1) x
= ) ch_|_1+alrctanx.
(vil)

dx x
I=fx4+2x2+1—2x2= 2+ )2 —2x2
dx

=f(x2+J§x+1)(x2-J§x+1)
£x+l '——\/_—-2-154'1
_ 4" "3 a2
_f(x2+\/§x+1)+(x2— )d
V2 @x+2)dx 1
- f(x2+~/§x+1)+4f(x2+«/§x+1)
(2x )dx

(x2 - 2x+1 f «/_x+1)
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| &

log(x® + v/2x +1) - g log(x? — v2x + 1)

1 X 1
5f(ﬁx+1)2+1+5f (—vV2x +1)" + 1

I

=| &

log(x +~/§x+1)—£log(x —2x + 1)

+ JTE arctan(«/ix +1) - if— arctan(—«/ix +1).

(x)

2x +1
f(x2+x+1)3 f(x2+x+1)3
3]’ dx
4(Jc2+x+1)2 ((x+2)2+ )

N -3 3(4)7 dx
TaGxz+x+12 2\3 2 3
(x X ((x+%) +1)

J3/4
(letu=:c/:7i, dx=\/§/—4du)
4(x2+:+1)2 32‘/_f( 24 1)
4(x2+3+1)2 3‘/5/—[4(2“)2 4 (u2+1)2]
___4(x2_|__3+1)2_?u23;{‘:;’2 24\/_—[2(2+1) 1fu2:-1du]
-3 8x+4 4 12x+6 [4 12

=4(Jc2-l-x+1)2m(x2+x+1) 3 x24x+1 3+x2+x+1'

7. () (arctan)?/2.
(i)

X ctanx dx = 1 arctan x X dx
f 1+ x2)3 ar - 4(1 + x2)2 (1+ x2)4
— arctan x 1

=i +22 TeiT o
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(i)

flog\/1+x2dx—xlog\/1+x2 f \/ 2 dx
1

22 Jl+x2
=xlogv1+x2— _[1+x2
=xlog\/1+x2—f —2 dx

1+ x2

=xlog 1+ x2 — 2x 4 2 arctan x.

(iv)

2 2 2
/xlog 1+x2dx=x7log\/1+x2—f§—2--1 Y _dx
x2
_—.?log\/1+x2—f
2 2 2
=x_log|/1+x2_x_+lo_g(.l_+_._x._)_
2 2 2
{v) Let
_xz—l
Y
so that
yxl4y=x2-1,
y+1=x*(1-y)
P L
=iz,
1—y 1
dx = dy.
yiry a—»?
The integral becomes
1 vV1—y 1 y 1 Vi—y
y 5 dy = 7 dy
1+y 2\/1+y(1—)’) 1-y 2 +2y2 ,/1+y
t+(122)
1—y (1—)’)2
[
(l—y)\/2+2y Vity

ydy

=ﬁf¢1—y2J1+y2'
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Now let u = y%, du = 2y dy. The integral becomes

1f du lf du
wW2J VT—uvT+u 2v2J) 1-u2
1

= —— arcsin u

24/2

(vi) Let u = «/x, x = u?, dx = 2u du. The integral becomes

2
. ) u
/2u arcsin u du = u’ arcsinu — f du.
1 —u?

Now let u = sint, du = cost dt. The integral becomes

. 2
sin“t cost ) 1 —cos2t
f = sm%dt:f——dt

V1 —sin’t

2
_t sin 2¢
2 4
_t sint cost
2 2

So the original integral is

9 . arcsinu  uyv'1—u?
u” arcsin y — -
2 2
arcsin/x  /xv/1—x

2 2

= x arcsin /x —

(vii) Since

1
f ———dx =tanx —secx (Problem 1(viii}))
1+4sinx

we have

1
fx-—_—-—dx=x(tanx-secx)—-]tanx—secxdx
1+sinx

= x(tan x — sec x) + log({cos x) + log(sec x + tan x).
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(i)

fxcosxes“”‘ dx — fsecx tan xe** dx

_— (xesmx — -[eSlle dx)
- (secxes“" —fsecx cos xe¥"* dx)

smx sccxesmx_

= xe
(ix) Let
u = +/tanx,
so that
u2 =tanx
x = arctan u>
d 2u du
X = )
14 ut

The integral becomes (compare with Problem 6(viii)}))
j‘ 2u?du
1+ ut

_V2 V2
_ f 2" 2"
W+ V2u+1 u2—V2u+1
-2
4

du

j——

log(u® + +2u + 1) + ? log(u? — v/2u + 1)

+ % arctan(v/2u + 1) — ? arctan(—+/2u + 1)

_f log(tanx + v2tanx + 1) + -}?-log(tanx ~+/2tanx +1)

+ 2 arctan(/ Tiams + 1) — 2 actan(— s + 1)

(x)

dx _ /’ dx _ dx
f x64+1 ) 24+DE*=x2+1) " J 24+ DIx*+2x2+ 1) — 3x2]
dx
B f (2 + DI + 1)2 = 3x2]
dx

=.[ (2 4+ D(x2 +V3x +1)(x2 = V3x + 1)
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V3 1 V31

.._...+_.. __......_x+_.
_ 6 3 ,__6 3,

1
_f 3.
x24+1 x2483x4+1 x2—3x+1

arctanx /3 2x + /3 1 f dx
+ dx + —
3 12/ x2+4/3+1 12/ x24+4/3x+1

_Ji 2x — /3 d+1 dx

x ———
12 J x2—3x +1 12 x2—-3x+1

arctan x + V3
3 12

log(x*++/3x +1) — 3{—3 log(x? — +/3x + 1)

1 1
+ g arctan(2x + «/3) + -6—a:ctan(2x — \/5)

8. ®

2x?
2, .2 _ 2, .2
flog(a + x*)dx = xlog(a“ +x )_fa2+x2 dx
—2q?
2, .2
= x log(a“ 4+ x )—-f2+a2+x2dx
=xlog(a2+x2)—-f2+——:_—dx

1+ ()

= x log(a? + x%) — 2x + 2a arctan(x /a).

(ii)

1 COS
f—-'.-czosxdx='[csc2 dx+f : zx dx
sin” x sin® x

1

=-cotx — —.
sin x

(i)

'/'_x+1 _ xdx +j‘ dx
Va—x2 S a—ga S [ (}_)2
2
= —v'4 — x2 4 arcsin(x /2).
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(iv)
fxarctanxdx x2 arctan x 1]‘ x? J
= ——— x
2 2J (14x2)
xtarctanx 1 -1
=— 1 d
2 2[ T
_ xZarctanx x N larctanx
- 2 22 ‘
)
fsin3xdx =fsinx(1 —cos?x)dx
cos x
= —cosx +
3
(vi)
f sin3 x gy — f sinx(1 — cos? x)
cos2x cos2 x
= f sm2x —sinxdx
cos? x
1
= 4 cosx.
cosS X
(vii)
3 3
2 __x arctanx 1 X
[x arctanxdx——s———gfl_l.xzdx
__xgarctanx lfx+ —X dx
- 3 3 1+ x2
_ xlarctanx  x? | log(1+x?)
- 3 6 6 ‘
(vit)

xdx _ xdx
[\/x2—2x+2— Vix=12+1
_ (x — 1)dx dx
- it e
=2m+log(x—l+m)

(by Problem 4(ii))).
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(ix)
fscc3xtanxdx = f(secxtanx)seczxdx
_sec’x
=—

(x) Let f(x)=x,2g(x) = ftanzxdx = tanx — x (Problem 1(v)). Then

fxmnzxdx=ff(x)g'(x)dx=x(tanx—-x)—ftanx—xdx

2
= x(tanx — x) + logcos x 4 -)-;—

9. (i) Let x = atanu, dx = asec? udu. The integral becomes

j' asec’udu __f sec? udu
(@2 +a’tan?u)? ~ | a3(sec? u)?

1 du i 5
=;§ seczu=E§ cos“udu
_ 1 1+ cos2u y
T a3 2
_u +sin2u
T 283 4a®

1 X 2 . X X
=§-a—3arctan-£+al—3-sm (arctan E) cos (arctan E)
1 tanx+ 1 x/a 1
=23 M T N2 N2

1+(Z) {1+(3)

= ! arctanx+ ! x
243 a 2a%(x2+a?)

(Or one could write x = au and use the reduction formula.)

(ii) Let u = sinx, x = arcsinu, dx = du/y/1 — u?. The integral becomes

1 —udu du
= =214 u=2+1+sinx.
f v1—u? ~14+u

(iii) Let # = /x, x = u?, dx = 2udu. The integral becomes

f 2u arctan u du = u? arctan u — u + arctan u by Problem 8(iv)

= x arctan /x — +/x + arctan /x.

275
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(iv) Let u =+/x + 1, x = u? — 1, dx = 2u du. The integral becomes

f2u sinu du = 2u(—cosu) — 2[(—cosu)du

= —2ucosu+ 2sinu

=-2vx+1lcosv/x+14+2sinvx+1.

(v) Let u = vx3 =2, x = (?+ )3, dx = 2udu/3(u® + 2)>. The integral
becomes

2 2du /' u? du f
3] W+2BE2+22A " 3) w2+2 3
22

3

2\/x3 2 2f

3

(vi) Let

u=x++vxt-1

u—x=+x2-1
wr—2u+xt=x2-1

so that

u:+1 1 1
X= dx-(a:"ﬁf)d“

The integral becomes

1 1 1
iflogudu—ifﬁlogudu

1 1
(ulogu—l)—-—[——logu-l—f— -—du]

Il

1 1
— 1+ —1 el
(ulogu )+2u ogu+2u

[(x+\/x2—1)log(x+w/x2—l)
log(x + vx2—1) 1
* x+vx2-1 +x+\/x2—l].

B = B = N =
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(vii) Let
u=x++x
u—x=+x

ut —-2ux+x*=x
2—~Qu+Dx+u:=0
so that

_ 2u 14+ (Qu+ 1)2 — 4u?
B 2

_2u+1+«/4u+1

The integral becomes

1
logu du + locudu =ulogu — 1+
f g ~4u + 1 g g

vau +1
=ulogu —1+4 £;+ — .
Now let
=+4u+1
v2—1 v
u= e du——z-dv.
The integral I; becomes
v:dv 1/2 1/2
1 dv= |1 - d
fv2—1 f+ 1"f+u—1 v+1°%7

1 1
=u+§log(v—l)—§log(v+1)
1 1
=«/4u+1+—2—log(«/4u+1—1) —Elog(«/4u+1+1).

So the answer is

(x4 V&) loglx + VE) = 1 = 5/4x +4/5 +1
—%1og(\/4x+4f+1-1) —1og(J4x+4f+1+1)

(viii) Let u = x'%, x = u®, dx = 5u* du. The integral becomes

4
Su*du _5 udu 5 log(u 1= 5 log(x2/5 .
u’ — u’ 21"

277

~4u +1 du + 1
2 B 2u du
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(ix) Let u = arcsinx, x = sinu, dx = cosu du. The integral becomes
fuzcosudu = u’sinu — f2u sinudu

= u?sinu — [Zu(— Cos ) +f2003udu]

=u?sinu +2ucosu — 2sinu du

= (arcsin x)x + 2(arcsin x)v/ 1 — x2 — 2x.

(x) Let u = x2, x = u!/?, dx = du/2u'/?. The integral becomes

u’/2 arctan u 1 2
f—ﬂuz—du=§[u arctan u du
wdarctanu  u?  log(l + u?)
_ Warctanu u”  log{l+u’) Pr ..
6 B 5 by Problem 8(vii)
_ xSarctanx?  x*  log(1+ x*)
B 6 12 12

10. (iv) Let x = coshu, dx = sinh u du. The integral in Problem 4(iv) becomes
j‘ sinh u du f 1
—_— du
cosh u sinh u cosh u

2 2et
= [ o= [ T

= 2 arctan ¢*

= 2arctan(x + vx2 — 1),

since # = cosh™! x = log(x +vx2— 1), as found in Problem 18-9.
Comparing with Problem 4(iv) we cannot conclude that

2arctan(x + vx%2 — 1) = arctan(v'x2 - 1),

but only that these two expressions differ by a constant. As a matter of fact, we can
only conclude that there are two constants ¢; and ¢» with

2arctan(x + v/x2 ~ 1) = arctan(vx2 — 1) + ¢ for x > 1,
2arctan(x + vx2 — 1) = arctan(vx2 ~ 1)+ ¢,  forx < —1.

By setting x = 1 and —1 it is easy to see that c; = /2 and ¢; = —x/2.
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(vi) Let x = sinh u, dx = cosh u, du. The integral becomes
[ coshudu _ /’ du
sinhucoshu J sinhu
_ 2 du = 2e* du
- eu — e—u U= ezu — 1
—e® e¥
= d
f e* +1 + et —1 "

= —log(e* + 1) + log(e* — 1)

—log(eu_l)—-log Vx4 14x-~-1
e“+1 ‘/x2+1+x+1 '

(ix) Let x = sinhu, dx = cosh u du. The integral becomes

2u —2u
fcoshzuduzf%—+%+e du

4
eZu u e-—2u

8 '3 8
__(x+\/1+x2)2+log(x+\/1+x2)_ 1
8 2 8(x+\/1+x2)2-

(x) Let x = cosh u, dx = sinh u du. The integral becomes

2u 1 —2u
fsinhzudu= eT_E+e4 du
82" u e-—Zu
8 2 8

(VR -1) logx+Vx2-1) 1
- 8 2 8(x +vVx2 —1)*

11, (@)

[ 1 2 dt—f 2dt _ 2dt _ -2 _ -2
e N A DR T AT
1412 2
Comparing with the formula
1 1 —si
f - dx=f————§_-l—r12f—dx=fsec2x—secxtanxdx=tanx-—-secx,
1+sinx 1 —sin”x
we can conclude that

-2

1+ tan —
+n2

=tanx —secx — 1.
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This can be checked most easily by expressing everything in terms of ¢:

-2 2t 14¢2

= - -1,
14t 1—22 1-—-¢2

(ii) Let t =tanx, dx = 1/(1 + ¢2)dt. Then sin? x can be expressed in terms of ¢

as
1
sinx =1—cos’x=1-— 5
sec? x
_ 1
tanZ x 4 1
_1 17
T 1412 1422

So the integral becomes

1 1 1
. dt = dt
f t? 1+ 2 f2t2+1

1+1+t2
__ arctanv/2¢
=—7
arctan(+/2 tan x)
= 7 :
(iii)
1 2 2
2at  b—bt? 1+t2dt=f2at+b—br2dt'
14 ¢2 + 142
If b > 0, this can be written
f —2dt
bt2 —2at - b
_j‘ -2dt
B a\* a4 bp?
(‘/5’ B 75) T
- VB vB ]
N Joip B

7 75 b

2
=f («/Et— a +1/a2—ll)-b2) - ('\/l_)t-— a w/a2+b2)
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= ! [log (JZ: — '+ bz)

Jein VAR
log( bt — ,a2+b2)]
f Vb '

If b < 0, the integral can be written

f 2dt _ f 2dt
~bt2+2at+b 2 a2 42

b b
1 Ja? + b2
qm[log(«/_t+r A )
a va?z+ b2
_1og(JTbt+J__b+ 7 )]

It is also possible to write

[ dx _ f dx
asinx +bcosx J Asin(x + b)
1
=-Z log(csc(x + B) + cot(x + B)),

where
A=+var+b?
b

vat+b?

a

NI

sin B =

cos B =

(iv)
2
arme T+

1
=8f(1+r2)2= TEo

1 t 3 1 1
='8[Z(1+r2>2+2f(1+r2)2‘“]+8f(1+z2)2‘“

=_i+2[l ¥ = dr]

(14 £2)2 21462 2J 1+41¢2
-2t t

SaroEtiye

+ arctant
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_ —2tanx/2 tanx/2  x

sectx/2  sec2x/2 2
= —2sinx/2cos’ x/2 — sinx/2cos x/2 + x /2
= —2sinx/2cosx/2(1 —sin’x/2) — sinx/2cosx/2 + x/2

o sinx '1 1—cosx sinx_l_x
- i 2 2 2

o [14cosx 1 x
= —sinx —2———2-] 3
—sin2x x
v)

f 1 _ 2 dt=f 2dt

3+_& 1412 32410t +3
14122
=/‘ 3/4 B 1/4 it

2t+1 t4+3

1 1
= —log(3t+1) — 2 log(t + 3)

Bl—

x 1 X
log(3tan5+l)—zlog(tan5 +3).

12. (a) The given formula shows that

1 cos X 1 CoS X
= — d - —d
fsecxdx 2 1+4sinx x+2fl—sinx *

1 1
=3 log(l 4+ sinx) — 5 log(1l — sinx)
= log+/1 +sinx —log+/1 —sinx

1 4+sinx
1 —sinx

= log

(1 4+ sinx)?

1 —sin?x

— o 14sinx
=108 COS X

= log(secx + tan x).

= ]
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(b) With the substitution ¢ = tan x/2 the integral [ sec x dx becomes

14422 2 1 1
. dt = dt
fl—ﬂ 1412 fl+t+l-—t

= log(l +¢) —log(1 — 1)
—1og (L FF
=B \1T= )

1
tanx = —— 2
secx + tan x c0s2(x/2) + tan 2(x /2)

1 2tan x /2

cos?x/2 —sin®x/2 1 —tan2x/2

1 2 tan x /2
2cos?x/2—1  1-—tan2x/2

1 2tanx/2
= +

21—k

1 4+ tan?x/2

Now

1+tan?x/2 4 2tanx/2
1 —tan?x/2
142t 412 (140> 141
t—12 T 1—2  1—t

14. We have
n - n
[ f(x)sinxdx = f'(x) sinx‘0 —f f'(x)cosxdx
0 0

=0- |:)‘”(J|c)cosx|;r + fﬂ f(x) sinxdx]
0

= f(Jr)—f(O)—j; F(x)sinx dx.

So
2= fo [F () + F()Isinxdx = f(1) = F(0) = 1 — £(0),

hence f(0) = —1.

15. (b) We have
] £ dr = f 1 f @)y dx = xf 1 (x) — f (P () dx
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—xf )= | —F
=370 - [ iy o

If F = [ f(x)dx, the substitution u = f~1(x), x = f(u), dx = f’(u) du changes
the new integral to

fw _ _ -1
F(—ﬁf (W)du = F(uw) = F(f~ (x)),
SO
f F®dx =xf~'(x) - F(F~'(x)).
17.
flog(logx)dx = f 1-log(logx)dx
1 1
= x log(log x) —[x . ogx g
= x log(log x) —j logx dx.
18.

fxze_""2 dx = fx(xe_"z)dx

2

+1f"’d
= X _— e .
2 2 *

19. (Use the substitution u = e*.) The function g(x) = 1/(x> + x + 1) has an
elementary primitive G, since it is a rational function. Then G o exp is a primitive

of f.
21. (a)
./'J(:"eJc dx = x"e* — nfx"—lex dx.
(b)
1
f(logx)“ =x(logx)" —n f x(logx)*~!. " dx

= x(logx)" —n f(logx)""'1 dx.
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22. By Problem 4(x),

cosh x
Vi —1dt= - coshxv cosh?x —1— = log (coshx + v/ cosh? — )

h x sinh
== m%{ ~3 log(cosh x + sinh x)
_ coshxsinhx x
— 2 2

23. By Theorem 2, with g(x) =a + b —x,

b b
ff(a+b—x)dx=—f f(g(x)) - g'(x)dx

(b) a b
= — ) f(x)dx:—fb f(x)dx:fa fx)dx.

g(a)
24. By Theorem 2, with g(x) = x/r,
fr r2—x%dx = rzfr %1[ 1- (;)2dx
=r2f_:~/1—[gWg'(x)dx
= r2f11 V1= x2dx

ar?

2

25. (a) If |x| = A, then |x/h| > 1, 50

1
On(x) = 2(x/h) =

Moreover, using the substitution g(x) = x/h we have

h h 1
f on(x) dx = f $0x/h) dx
—h ~h
1
= f ) du =1.
-1
(b) We have

h—0Ot

1
lim f o f = llm f Onf since ¢p(x) = O for |x| > A.
1
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Since f is continuous at 0, for any £ > O thereis § > O such that | f(0)— f(x)| < &
for |x| < 4. Then for 0 < A < § we have

h
< [ 00 1) — F O] d

h h
f s fO — [ s
_h —h

h
’f(O) - f_ Ky,

h
< Ef Pp(x)dx = €.
—h

[If f is continuous on an interval around O then there is a simpler argument, using
the Mean Value Theorem for Integrals (Problem 13-23).]

(c) We have
L B N S
h? + x? h H_(gr-_)z
h
=arctan£
h’
SO

(d) Let|f(x)| < Mon[—1,1]. Notice thatif 0 < & < 8, then for all jx| > d = +/8
we have

h )
= /3.
h? + x? <,/§ v

So for 0 < h < § we have

1 d h
W ‘ f | h fxydx— [ Fx)dx

h? 4 x2 _dh2+x2

d 1
< J§M+f VIM <23 M.
d

-1

In particular, choosing the constant function f(0) we have

d
nf(0) — f h £(0)dx| < 28 £(0).

—d h? +x2

(2)

Given ¢ > 0, choose § > 0 so that [ f(0) — f(x)] < ¢ for |x]| < /5. Then
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3)

d p d p
Ld—h2+x2f(0)dx ,[hz 2f(x)a'x

d p
< [_ O - f@ldz

d 1
<e[ h dx<sf h d T
—_ ——dx = 7e.
— J_ah?+x? _1 h% 4 x?

It follows form (1), (2) and (3) that for 0 < & < & we have

< 2/8M + 25 F(0) + me,

1 h
wf O~ [ e

<(x 4+ e for small enough §.

26. (i) The whole circle of radius a/2 is traversed as 8 goes from 0 to &. So

1
area-—/ a’sin 9d9——f (1 —cos20)d6

a? sin 29
4
Ta?

4

j—

(i)
2x

1 1 T
area = — (1+cos€)2d9=5f 4+ 4cos6 + cos>6 do
0

2 Jo
1 % 1 26
=—f 4+4cosl9++c%d6
1 in20 |**
- 87r+4sm9 +Jr+sm
) 4 |
_97:
==

287

(iii) This will look something like the graph of f(8) = acos26 (Problem 3(iit) of
Chapter 4, Appendix 3), but there can be only two leaves, since cos 26 must be > 0.

Each leaf has area
1 [r/4 in 26 |/*
— 2a%cos20d0 = a? - Sin
2) 4 —1/4
2

a
2 .
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(iv) Each leaf (two or four, depending on conventions for the sign of r) has area
a® ™% 1+ cos26

1 w/4 ) y
5[,/4‘1 cos“20d6 = > " > de
_ a_2 l:i sin 26 |7/* ]
214 4 |_nsm
1
= (5+3):
27. In the integral
f N g(x)dx
X1
make the substitution
x = f(B)cosf

dx = f'(#)cos6 — f(6)sind d@,
g(x) = f(f)sin6

to obtain
X0 By
f g(x)dx = f FO)f'(6)sind cos@ — f(6)sin?6 do
X1 o,

2 6 By 2 &
_1® sinf cos —f A [— sin® 6 + cos” 6] —f f(6)*sin’ 0 d6
2 91 & 91
_ f@)sin f@)cos6 | 1 (%5
2 90 2 91

xoyo—x1y1 1 % 2
—— e e — 9 de’
where yp and y; are the second coordinates of A and B. Hence

X &
f g(x)dx = area AOxgA —area AOx1 B + 3 f(¢9)2 de,
x &

as desired.

28. (a) For each partition P = {tg, ..., ta} of [a, b], let

P={r"Y),....h’ 't =1{..., 0}

Then P is a partition of [, b] and
u(h;) = u(t), (%) = v(t).
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So the £ for ¢ corresponding to P is

(e, Py =Y VIa@®) — i) + [5) — 5(-1)P
i=l1

n
=Y Vlu) — ulti_)P + [v(t:) — vt
i=1
= £(c, P).
Thus, every £(c, P) is_l_ (c, 13) for some partition P of [a, 5] and, conversely, it is
easy to see that every ! for ¢ is £(c, P) for some partition P. So the length of £ on

[a, b] and the length of £ on [@, b] are the sup’s of the same set of numbers, and
hence are equal.

(b) The length of c on [a, b] is

b
[ Ve verax
a
Letting
x = h(y)
dx = h’(y) dys
the integral becomes
A=l (b)
- V' (R())2 + v/ (R(3)) - 1 (y) dy
—a

' (b)
= fh @ VI () - P + [ (h(3)) - B ()2 dy
#'(0)

B fn-l( ) Vo hyY ()2 + (vohy(y)*dy

b
- f JEGY F 5GP dy
a
= length of ¢ on [a, b].

29. (i) Since
Fl(x) = x(x? + 2)/2
() =x*(x*+2)
1+ ) =142x24+x*=(1+x%?,
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we have

1 1
f V1+ F(x)2dx =f +x2dx
0 ]

e

(ii) Since

fl(x) =3x* -

122
f/(x)? =9x* — 1 + !
B 2 ' 144x*

1 1 1 \?
1 "(x)2 =9x% + = = | 3x24+ —
+ f(x) x+2+lllx4 (x +12x2 ;

we have

2 2
1
V1+ fl(x)2dx = 2
/; + f'(x)*dx fl 3x“+ 252 dx
=7+ 2.

3¢ we have

(iii) For u(t) = a®cos’¢, v(¢) = a3sin
u'(t) = 3a’cos?t - (—sint)
v (t) = 3a3sin®t cost
SO
u (t‘)2 + /()% = 9a5[sin? ¢ cos* t + cos? ¢ sin 1]
= 945 sin? r cos? ¢,
S0 2 2
fo wr4v?= 3azf0 | sint cosz| dt.

On each of the four intervals [0, 7 /2], [7/2, 7], [®, 37/2], [3% /2, 27] we can write
|sinfcost| =sintcost or |sinfcost| = —sinfcost,

so on each interval we are considering

f ¢ cost di sin® ¢ sin® ¢
sin ¢ cos = or — .
2 2
So the integrals are the same on all four intervals, namely
: : : 3 /2 : vl
sin? ¢ |72 sin?¢|” sin? ¢t #/ sin® ¢ 1
2 0 2 w2 2 wf2 2 In/2 2

Hence the total integral is
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(iv) Since
f'(x) = —tanx
fl(x)z — tanzx
1+ f(x)* = sec?x,
and secx > 0 for 0 <x < 7w /6, we have
n/6

T/6 w/6
f V14 f/(x)2dx = f sec x dx = log(sec x 4+ tanx) .
0 0

1
= log«/g = Elog3.

(v) We have
-4 4 1 e / 2 1
f 1+f'(x)2dx=f 1/1+—5¢:1x=f i dx.
1 1 X 1 x
Letting
x =tanu
dx =sec udu
we have

-/‘\/xz-i-ld fdwn2u+lsec2udu
X =
X

tanu

fsec3udu
- tan u

f sec u(1 + tan® u)
= du
tan u

= fcscu+secutanua’u

= —log(cscu + cotu) + secu

v1 2 1
=—log( :—x +;)+\/1+x2.

So our integral is

< 2
_log(_];-i-_:i) +.‘/1+x2

e
1

291

= —log (1+v1+e?) —1+log(1 +v2) +V1+e2 - V2.
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(vi) Since
! ex
fl@) = —
V1=eZx
2x
! 2 €
1
1 "(x)? =
+ 0=
we have
[ Yy 7 S RS S
+ X): = —_—dx.
—log2 —log2 /1 — &%
Letting
y=e'
x=logy
d
dx = s
y
we have

f dx _ /’ dy
V1-—e* yW1-y?
1 1—y2
=—log{—+ by Problem 4(v)
y y
= —log(e ™ + e~ V1 — &)

= —log(e™*[1 +v1—¢e*])

=x —log(1+ V1 —e?).

So our integral is

x —log(1+ 1 —e¥)

0

= —log2+log2 + log(1 + V1 — e?'e2)
—log2

=log(1+ 1-—51;)
=log(1+‘/§)

=log(1+ 14/3).
30. According to the Appendix to Chapter 13, the graph on the interval {6y, 6] has

length
&
/ f2 + f!2.
o
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(i) We have

f(@) =acos8
f(6) = —asing,
SO
6 + f'(8)* = a?,
and the length is

fr a=nmna (=2n-(a/2)).
0

(ii) The length is

2w 2w
f \/az(l — cos )2 + a2 sin® A de =f av/'2 —2cos20de
0

0

2 / - 2
_ j’ 24 1 —cos26 46
o 2

2
=f 2a |sin8| d8.
0

Breaking up the interval as in Problem 29(iii), we find that the length is

/2
4-2a-f sin9 dé = 8a.
0

(iii) Since
asi? = g 12280
2 2
by (ii) the length is 4a.
(iv) The length is
2n

1+62d8 = % [9\/1 + 62+ log (9+\/1 +92)]
by Problem 4(ix)

[Zn\/l +4n2 + log (2n'+\/1 +47r2)].

2
0

0

rI |

(v) The length is
/3 /3
3[ Vsec2 0 + sec2 0 tan? 9 do =3f secG+/ 1 +tan26 do
0 0

/3
=3 f sec? 6 d6
0
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/3
—3tan9|

V3

= 3 v —
2 y
which is hardly surprising, since the graph is a straight line from (3, 0) to (3, 3tan %).
31. (a) The length is

2 2
f \/az(l-cost)2+azsin2tdt=a /2 —2costdt
0

o

2 -
=2“f I costdt
0 2
m g
=2af sin — dt

0 2

;127
= (2a) (—2cos§ . )

= 8a.
(b) In the integral

2ma 2ra
fx)dx = f v(u‘l(x)) dx
0

0
let
t=u""(x)
x =u(t) =a(t —sint)
dx =a —acostdt;

the integral becomes
2

2
a f v(t)(1 — cost)dt = a® (1 — 2cost +cos’t) dt
0 0

2 1 2t
=a2f (1—2cost+—+':os )dt
0

2 2

= 3a%n

32. The formula is true for n = 1 by Problem 14-12. Suppose that it is true for n.
Let F(u) = [, f(#)dt. Then F is a primitive of f with F(0) = 0. So

[ Ju)(x — M)’”’1
(n+ D!
F(u)(x — u)*t!
ST @+ D!

ur f ~F@& —w"
u=0 0

n!




Chapter 19

"°+f (fo ( (/ F(t)d!‘)dul)...)dun
LU (f o) ) am) )

which can also be written as

fox ( f(, ( ( fo o dt) dul) ) ditn1.

33.
I fb N sin At dt = i —f(#)cos At b+ bf’(t)cos)ttd
Jim, | ssinaear = tim | ~EEEEE] 4 [FERE
={,
since
— A 1
=fOcsMl| Lo o+ 5@,

b g b
L iﬁ)-:—o—s-)—“—tdt s%fa 1)) dt.

295

34. (a) Simply replace ¢ by —¢; multiplying the resulting formula for —¢ by —1

we get the formula for ¢, with the same £.

(b) The function ¥ = ¢ — ¢ (b) satisfies ¥ (b) = 0. The formula for  gives

b 3 b
f FOBE) - $B)]dx = [(@) — (B)] fo F)dx +0- fg F)dx.

So

b £ b 3
f FEP) dx = $(a) f FG)dx + 6 ®) f FG)dx — ¢ (B) f F(x)dx

£ b
= $(@) f F)dx + ¢ (®) fg Fyde.

(¢) If F(x) = 7 f, then
b

b b
f F )¢ (x)dx = F(x)p(x) —f F(x)¢'(x)dx

a
b

b
=F(x)p(x)| — F({,—')f ¢'(x)dx, by Problem 13-23

a
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§
=0~(f f)-[—-¢(d)]

£
= $(@) f f(x)dx.

(d) If ¢(a) =) =0,but ¢ > G on (a, b), and f > 0 on (a, b), then we clearly

cannot have , ) )
fo =¢(a) +¢(b) :
[ ro=s@ [ r+em [ s

35. (a) We have

arby + -+ apby,
= b1s1 + ba(s2 — 1) + b3(s3 —51) + - -
+ bp—1(Sn—1 — Sn~2) + bp(Sn ~ Sp—1)
= 51(b1 — b2) + s2(b2 — b3) + - -+ + Sp—1(bn—1 — bn) + spbn.

(b) Since {bi} is nonincreasing we have by — by—1 > 0 for each k. Also, m < 5z <
M for each k. So
m(by — by) + m(by — b3) + -« - +m(bp—1 — bn) + mby,
<sibr —by) + s2(b2 —b3) + - -+ +5p(bu—-1 — bn) + Snbn
S My —by) + My —b3) + -+ M(bp—y — by) + Mby,
or
mby <a1by +---+apby < Mb,.

Applying this result to a, agy1,...,a,, and by, b, ..., b, we get bpm <
axby + - -+ apby < i M.

(c) If we set
a; = f(xi)(t;i —ti—1)

and let

) — 1)

k
m = smallest of the

i=1

k
M = largest of the Z Fx)( — ti—q)
i=1
thenm < a; + -+ ax < M for all k. Letting by = ¢(x;) in part (b), we find that

n

> Fe )t — tim1)

i=1
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lies between the smallest and the largest of the sums

k
$(x1) Y )l — tim1).

i=1

Since we can approximate f : f(x;)¢(x)dx by sums i Fxie(x) @ — 1),

i=1

k
and [* f(£)dt by sums like " f(x;)(& — #;—1), the final result should follow from
i=1
the above. However, some care is required for the argument:

Given £ > 0 we can choose § > 0 so that whenever all ; — #;_; < § we have

< £.

1)

b n
f f@)dx =) i)t — tim1)
a i=1

We claim that for any &’ > ¢ it also follows that for each %

I k
[ rerax=) s -nn) <.
a i=1
The idea is that if we had
Iy k
(2) fxydx =) flti)@ —ti_p)| = €,
a i=1

then by choosing some p > n and new fy) < fr42 < --- <t = b we could make
the sums on [#, b] so close to fti’ f(x)dx that inequality (2) would contradict (1).
More precisely, choose fgy1, ..., p, still with ; —;_; < 8, so that

b P

© [ r@az- 3 s -n-n| <e —s>0
% i=k+1

Then

b P
f Fxydx =" fllim)(l — tim)
a i=1
1 k
[ f F@Ydx =" flt-) — ri_l)]
a i=1
p b
- [ D )t —tin) - f fx) dx]

i=k+1
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2

g k
f f@x)dx =Y fti-) —l‘i—l)’
a i=1

b P
f(x)dx — Z Jf@i-)@ — fi—l)l

t i=k+1
>e' — (' —&) =g,

contradicting the fact that (1) is supposed to hold whenever all t; — £;_; < é.
If we now choose the #; so that for some f; and # the integrals [ ;* f(x)dx and

J2 f(x)dx are the minimum and maximum of [ f(¢) dt on [a, b], then the small-
est and largest of the sums

k
$@) Y FlEi-) —tioy)

i=l1

includes two sums within ¢ (a)&’ of the minimum and maximum of f: f(t)dt. The
remainder of the argument is straightforward.

36. (a) Using the substitution

1

y=-

X

1

X = -

Y

1
dx=~—?dy

the integrals become

. *1 1 . *®1 ., 1
(i) f —sin|y+—)dy (ii) —sin” |y + - dy.
1Y y TR Y

The second integral is the easiest, since le sin2(y + 1/y)/y*dy is an increasing
function < le 1/y* dy, which is bounded. For the first we have to argue slightly

differently: Since
»(r+3)
sin{y+— )| dy
y

N1 1 N1
f——z-smy+—dysf—2
MY y MY

<fNid <i forall N > M
y_M, = M,

the value of the integral from 1 to M is within 1/M of all later values, so the limit
must exist. [For a precise proof, prove an analogue of Theorem 3 in Chapter 22: If
]grm |F(M) — F(N)| =0, then Nlim F(N) exists.]

o0 ->00

1
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(b) The substitution y = 1/x yields
b1 1 .,
@) f — sinydy (ii) f — sin“ dy.
0 ¥ o »? Y

Since )
sin
tim =2 =1,
y-0 Yy

the second integral involves a bounded function and converges, while the first is
essentially like fol 1/y dy and does not converge.

1

8)

37. (a) We have

1

lim §{ logxdx = lim (x logx —x
e—0 J, £—0

= -1,

since lir% x log x = 0 by Problem 12(d) of Chapter 18.
X—>r

(b) To investigate the behavior near 0, write

sin x

log(sin x) = log (— -x)
x

sin x
= log (T) + logx.

Since (sin x)/x is close to 1, this is close to log x, and part (a) shows that this causes
no problem near 0.
The behavior near 7 is essentially the same, since sin(z — x) = sin x.

(c) The substitution x = 2u, dx = 2du gives
b 4 /2
f log(sinx)dx =2 f log(sin 2u) du
0 0
/2
= 2[ log(2 sinu cosu) du
o

n/f2
=2 f log2 + log(sin u) 4 log(cos u) du.
0

(d) Since the substitution ¥« = 7 — x gives

wf2 /4
f log(sinx)dx = f log(sin(str — u)) du
0 /2

b1
= f log(sin ) du,
/2
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and thus
n /2
f log(sinx) dx = 2[ log(sin x) dx,
0 0

the result of part (c) becomes

/2 log2
f log(cos x) = — 7108 .
0 2

(e) The substitution x = 7/2 — u gives

n/2 n/2
/ log(cos x)dx = f log(cos(m/2 — u)) du
0 0

nf2
= f log(sin u) du,
0
SO
T w2
f log(sinx)dx =2 f log(cosx) dx
0 0

= —m log 2.

38. For each N we have

N N
f u' ()v(x) dx = u(x)v(x) —f u(x)v'(x)dx.

The desired equation follows by taking limits (and shows that if any two of the three
symbols involved exist, the third does also).

00
f e 5 gy
1

certainly exists, because fl°° t~2 dt exists (Problem 14-25), and for sufficiently large
t we have e 't*~! < ¢t~% (by Theorem 18-6). On the other hand, if t > 0, then
e~ t*~1 < t*~1; since the integral fol t*~1dt exists for x > 0 (Problem 14-28), it
follows that fol e~ 't*~1 dt exists for x > O (it is an improper integral if x < 1).

(b)

N

a

39. (a) The integral

o0
I‘(x+1)=f e~'t* dt
0

=00 o
+ f xe 't*lds
0

=—e 't

t=0

o0
=O+xf e ' t* 7V dt = xI"(x).
0
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(If x < 1, then we are also using a second version of integration by parts to take
care of the integral from 0 to 1.)

(©)

00
= 1.
0

o0
r'(l) = f etdt =—e~!
0

This proves that F(1) = (1 —D!. If I'(n) = (n — 1)!, then "'(n 4+ 1) = nl'(n) =
n-(n—1)! =n!, so the formula is true for all #, by induction.

40. (a)
/2 1 Tl 1 T2
f sin® xdx = — —sin" ! x cos x 4 f sin" 2 xdx
0 n 0 n 0
-1 /2
== f sin” 2 x dx.
n 0
(b)
n/2 2 mf2
f sin?H x dy = —— . f sin?” ! x dx
0 Zn + 1 0
2n  2n-2 (™% . 4
= . . m* " xd
m+1 2n—1 fo S *ax

o 2 2f”/23in1xdx
T T 2n41 2n—1 3 J,

2n 2n—2 2

. m—

“om+1 2n—1 3

(A proof by induction is lurking in the wings.) Similarly,

mf2 - m/2
f sinz"xdx=2n 1---1f sinx dx
0 0

2n E
_2n—-1 1 o
~ 2n 2 27

(©
/2 w2 /2
0< / sin?*t! x dx < f sin? x dx < f sin? ! x dx
0 0 0
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so
/2

m/2
f sin?* x dx f sin?* ! x dx
0 < Jo

w2 /2
f sin?*t! x dx f sin?* ! x dx
0 0

/2
f sin?~! x dx
0

= 2 /2
" f sin® ! x dx
0

1<

(d) If n is large, then % is close to

1-3-3.5---2n—D@a+1) 2ntl1-1-3-5-2n—1)

2n
Vo411 1 2..-2n

V2 Jml3..@n-1)

Since /(2n)/(2n + 1) is close to 1 for large n, the result follows. [Wallis’ procedure
was quite different. He worked with the integral

1
f (1 —x)*dx
4]

(which appears in Problem 41), hoping to recover, from the values obtained for

\/ 2.2.4.4.--2n-2n 2.4...2n

natural numbers n, a formula for
1
il =f (1 —x)V2dx.
4 b

Wallis first obtained the formula

0
B (2-4---2n)2 2 (a?
T 2.3.4...2n2n+1) 2n+10Cn)!’

(by what method I am not certain). He then reasoned that 7 /4 should be

1 21 (11)? ’
[fa-syra= 350 gy
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If we interpret %! to mean I"(1/2), this agrees with Problem 44, but Wallis did not
know of the gamma function (which was invented by Euler, guided principally by
Wallis’ work). Since (2n)!/(n!)? is the binomial coefficient (**), Wallis hoped to
find 1! by finding (p';q) for p =q = 1/2. Now

(p+q) _p+pt+g-1---(p+1)
p q!
and this makes sense even if p is not a natural number. Wallis therefore decided

that
(%+q)_(%+q)---(%)
1 - q' )

3
With this interpretation of (? ;'q) for p = 1/2, it is still true that

(p+q+1)__p+q+1(p+q)
p g+1 p /)

+

1
Denoting (2 q) by W(q) this equation can be written

1
2
3+q+ 29 +3

1
- 2 — =——
W+ =2 W@ =5 "o W@.

which leads to the table
q 1 2 3
5

W) 3

[ TLP]

q

W(g)

Next Wallis notes that if a,, a2, a3, a4 are 4 successive values W(g), W(g 4+ 1),
W(g + 2), W(q + 3), appearing in either of these tables, then

2g+3 . 29 +5 2q+7)

29+2° 2g+4 29+6)°

as as ay
—_— > — > —_—
ai as as

Wallis then argues that this should still be true when ay, a, a3, a4 are four successive
values in a combined table where g is given both integer and half-integer values!
Thus, taking as the four successive values W{(n + %), W), Wn + %), Wn+ 1),

Qe o=
F-9
F-9
F-9

[44) as aa
ay as aj

(because

which implies that
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he obtains
i 4 6 2n+4 4 4 6 2n+2 3 5 2n+3
Tt 3 5 2n+3>7r 3 5 2n+1 2 4 2n+2
4 4 9 2n+2 35 7 2n+1 357 2n+1
Nm 35 2n41 2 4 6 2n N2 4 6 2n
which yields simply

2n+d 4 [2:4:4:6-6--CmCmQn+2)] _ [n+3
m+3 x| 3-3-5-5---@n+D@n+1)

from which Wallis’ product follows immediately.]

4]1. (a) Let x = cosu, dx = —sinu du. Then

1 H m/2
f (1 -x>"dx = f (sin® u)(~ sinu) du = f sin®**tl u du
0 —n/2 0

2 4 2n
= .. lem 40.
3'5 amgq Oy Problem
Now let x = cotu, dx = — csc? u du. Then

o0 1 0 on -1
—dx = sin“” u d
fo (14 x2)n * 11'/2( ) (sin2 u) “

by Problem 40.

() If f(y)=1-yand g(y) = e, then f(0) = g(0) and
Ffo=—-1<—-e? for y > 0,

so f(y) < g(y)fory = 0,ie., 1 —y < e for y > 0. So, in particular,
1 —x2 < e~ (for all x).

The second inequality follows from the inequality 1 + y < e¥, which can be
proved similarly (and has already appeared in Problem 18-29).

()

SO
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Using the substitution y = /n x, dx = 1/4/ndy, we obtain

1
j —n dx——f e dy,
0
o0
f e dx = ———f e dy,
0

from which the desired inequalities follow.

(@) It follows from Problem 40(d) that by choosing a sufficiently large, the numbers

2n -3 1 3 2n-3
_f_._..._'L_=£ n [.r-—,,_ L n ]

2n—2 2Vn-1 2 4 2n —2
and
2 4 2n 1 2 2
N T =" ...
3 5 2n+1 2n+1|./n3 2n — 1
can be made as close as desired to
T 1 Jm
2 T 2
and
1 ST
2 V=T
42. (a)
| 1>t 1
sinx-—dx=—cosx-—| — —COoSX - ——2dx
a X X a a X
cosa cosh f” cos X
= - — dx.
a b a X2
In particular,
f°° sin x cos 1 f cos x
—_—dx = — - dx;
1 X 1 1 x2

the latter integral exists because the integral

[» ¢}
1
[ \cosxldx [ _de
H 1 X

exists (compare Theorem 23-4).
On the other hand, the integral

j‘ sinx dx
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exists and equals fol f(x)dx, where f is the continuous function with
1, x=0
f(x)={ sinx

—, x#0.
X

(b) According to Problem 15-33,
/‘” sin(n + %)t
0

i3
- dt=f (14+2cost+---+4+2cosnt)dt
sint/2 0

=T.

(c) The hint is the whole answer, since the function

0, t=0
fo=42 1
t sint/2’ t#0

is integrable on [0, 7 ].

(d) From parts (b) and (c) we have

T 2sin(A + 1)z
li —2 = i
A>00 Jo : e

T sin(A + Dt
0 sint/2

Using the substitution u = (A + %)t, we have

lim " M(it = lim i 2sinu - (4 + %) . du
A—00 Jo t A—=00 Jo u
00 .:
=2 f SINY du.
0 u
43. We have

oQ 00 1
+f —2sinxcosxdx
0 o X

[ s e =t (=)
sin x-—zdx=sm - -
0 X X

=f sin xdx.
0 b4

Setting u = 2x, du = 2dx, so that du/u = dx /x, this becomes

00 .:

sin u T
f du = —.
0

u 2
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44. (a) Let u = t*, du = xt*~1 dt. Then
o0 o0
- d
I'x) = f e ft" dt = f e
0 0

X
100_1/1
=—f e " du.
X Jo

(b)
o0 2
rg3) = 2[ e ™ du
0
= /7 by Problem 40.

45. (a) The substitution # = ax, du = a dx gives

N aN
f fex) , _ (Ve
£ X aE u
Similarly, the substitution ¥ = Bx, du = Bdx gives
N BN
f (Nl (O
£ X Be U
So
N _ aN BN
RS (PR i (CHWRY [ (O
£ ae Bs
Be BN
_ f(w) Ju — fu) du.
ae U aN U
As ¢ = 0 and N — oo, this approaches
Be BN
f id‘--du~f Edu:(A—B)logE.
ae U oN U o
(b) In this case the same substitutions give
[» e} o0 o0 o0
f fex) 21w f G N (O
£ x ae U P> x pe U
SO p
00 — £
[ GO AW L (O PR )
E x ne u o

(c) (i) Since

o0 ,—X
€
[
0 X



308 Chapter 19

converges and lim ¢e™* = 1, we have

x—0
o0 ,—ax __ ,—Px
f e =gl
0 X o

(iii) For a > 0, the integral

o0
f cosx dx
a x
exists (same reasoning as in Problem 42(a)), and lirr}) cosx =1, so
X—r
00 —
f cos(ax) — cos(Bx) dx = log E .
0 X o

46. (a) Choosing n = 1 in Problem 11-43, with x; = #;,_; and x, = ¢;, so that
Q) = (x — t;—1){x — 1;), it follows that for each x in [#;_1, ;] we have

f"(©
2

f&x)— Pi(x)=(x —ti-)(x — 4) -
for some ¢ in [;_1, ;]. So
i Ni
o=t — 1) 2 f&) — R 2 7 ( — h)x— )
(the inequalities are reversed because (x — #;—1)(x — #) < 0 on [#i-1, #]).
(b)

]
I = [ x2—(t + ti—)x + it dx

i

34 2k
= —(@+t_)- 5 + (G — t—1)@G1)
fi—y li—y
53 5.3 K4 G2t + 1
=l?_ :31 _ t(z‘; 1)+1 1(12+t 1)+ti2ti—l_ti—lzti
4 K 3P 3474
T 6 6 6 6
(ti-1 — 1;)°
6
h3
~76
(¢) Summing the equations in (b) fori =1,...,n and using h = (b —a)/n, we get
n J’I'
N.
b—ap & b—ap 5"

i b
i=l
< — %, <
12n2 n —fa f= s 12n2 n
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Now the minimum m of f” on [a, b] is < n;, for each i, so

n
2.
i=1

n

m=<

And similarly the maximum M of f” on [a, b] satisfies

n
Y

i=l < M,

n
sO we obtain
(- a)? b (b —a)
< - <
12n2 "= _/; f=ZEns 12n2 M,

from which the desired result follows.

47. (a) Using Problem 3-6, we can explicitly write P as

- LOEZDETD gy SO
2 3 2
=[R2 rw+ L2 s -Fro+2r0 - 2]+ s,

So
2
[ r=3|52-ro+ L2]+2|-3ro+ 200 - L2] 4250

3 2 2
- %[f(O) +4F () + FL.
(b) If
Fix)= P (a G ‘2“”‘)

then since P agrees with f at a, (a + b)/2 and b, it is easy to see that P agrees
with f at 0, 1 and 2. So the substitution

b—ax
u=a+ )

b—a

dx

du =
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gives

b _ 2
/ Pu)du = bT“f P(x)dx
a 0

b— 1 - - -
= == 3F@+4f D)+ F@1 by part (2

- [f(a) +af (f—;—f) + f(b)} .

(c) According to Problem 11-43, for each x in [a, b] there is a number ¢ in (a, b)
with

f(x) — P(x) = (x —a)(x — b) (x ~ a;—b) . fﬂ6(c)

=(x—a)(x-b)(x—“;“b)-c

for some constant C. So

b b
f f—P=C-[ (x—a)(x—b)(x—#) dx.

This latter integral has the value 0. An easy way to see this is to check it for a = 0,
b = 2 and then use the substitution of part (b) to express the general case in terms
of this one. Another way is by using the substitution

b b
a;, x=u+a;

to make the integral more symmetric. Letting

b—a

h=
2

we have

b h
f(x—a)(x—b)(x—a;—b) dx=f (i + h) (e — hYu du
a —-h

h
= f u® — uh’du =0,
—h

since we are integrating an odd function.
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48. (a) Writing Q(x) as in the hint, so that the first three equations automatically
hold, we have

,fa+b\ __,fatb at+b at+b
o (7)) = () (o) (5 -0)
i fatb A(b —a)?
‘P( 2 )" 4

Since b — a # 0, we can then choose A so that Q’ (5'%”-) has any desired value,

(b) If xisa,bor “—*2'5 there is nothing to prove. Otherwise, consider the function

b 2
‘“; ) & — B)LF (1) — Q)]

FO)=x—a) (x -
—(—a) (r _ “—ﬂ) ¢ = BLF() — Q).

The F is 0 at a, b, # and x. To be specific, say -"%’3 < x < b. Then F' is O at
pOintS gl’ §2i 53 with

at+b

a<é < <E <x <& <b

But it is easy to see that we also have
a+b
F' =0.
(%)

So F’ is 0 at 4 points in (a, b), and consequently, as in Problem 11-42, F® is 0 at
some point &, that is

b 2
&% ) (x =B FOE) - 41 [f(x) — Q)]

0=F®¢)=(x—a) (x -
as required.

(¢) If m and M are the minimum and maximum of f® on [a, b], it follows that

, . 2
™i (x—a) (x _ 5‘-—;53) (b < -0 < 7 (-a) (x _ #) (x—b)

for all x in [a, b] (note that the expression (x —a)(x — g%b-)(x —b)is > 0 on [a, b]).
It follows that

b 4)
f f-g=1 (C)f(x— )(x—“;’b) (x — b)dx
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for some ¢ in [a, b). To evaluate the integral on the right we use the same substitution
as in Problem 47(c), to obtain

h h
f (u+h) (@ —h)udu = / ut — u?h’du
-h -h

28 2R
-5 T3
4 4 (b—a\’
-t (5°)
(b —-a)
120
(d) By part (c) we have, noting that t; — f5; > = (b — a)/n,
i b-ay
[ = 2t ) + 4 ) + ) = ” 19
hi—
for some ¢; in (t2;—2, 13;). When we sum for i = 1, ..., n, each t; occurs twice,

once in the above expression, and once in the same expression for i 4 1; the only
exceptions are f(f) = f(a) and f(t,) = f(b), which occur just once. Moreover,
if m < f® < M on {a, b], then

nm < i @) <nM,
F=1
SO n
3 O =nfP@
i=l1

for some ¢ in [a, b]. Thus,

—_— b 5
f F=2 (f(a) +4 Z fltai1) + 22 Fleu) + f(b)) (2880“)4 r4@.
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1. (a) The graphs intersect at (0, 0) and (1, 1), so the volume is

)

1 3 5
JI'f xX—xtdx=nw r_r
0 3 5

—nt - .
(b) The shell method gives
1 ¥3 4!
2 x—xNde=2r|Z2 L
tho x-(x—x“)dx JI'(3 7,
=2r(} - D).

2. Rotating the graph of

we get

3. Rotating the graph of

we get

4. The shell method gives
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Letting

x—a=bu
dx = bdu

we get

1
2 f (a + bu)b*/'1 — u?du
-1
1 1
= 27rab2f V1 —u2du+2nab3f uv'1—u?du
-1 -1

1

. —

= 2nab? mszm” 4+ > “ +0 by Problem 19-4(viii)
-1

— 2 E)

= 2mwab (2

= n2ab®

= ma - (7b?).

(Thus, the volume is the area of the circle of radius b times the length ma of the
circle that its center revolves around. This is a special case of “Pappus’ rule”.)

5. Using the shell method the volume is
2a
2-2n f xv4a? - x2dx
a

(the extra factor of 2 comes about because the shell method gives only the part with
y = 0). Letting

x =2au
dx = 2adu

this becomes

1 1 2N3/2
4 f 8aluv/1 —u2du = 32na® - ((1—3”2—
1/2

_32:ra3 §3/2
-3 4

4
(as compared to §(2a)3rr, the volume of the entire sphere).
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6. (a) The volume is

/2
2:7[ xcosxdx =2m | xsinx
0

/2 Tf2
— f sinxdx
0 0

=27 -E—l]

=n(mr — 2).

(b) The volume is also
1
b/ f (arccos)?.
0

7. Actually, instead of using the formula for [ f ~1, it is simplest to go through the
steps by which this formula was derived: In the integral

HORES
f vy (ydy
Fla)

let
x=f7'(y)
y = f(x)
dy = f'(x)dx.

The integral becomes

b ! 1 b 247
[ stwremas =3 ["xry@as

B b b
_ f f(x)zdx]

xf(x)?
i b
bf (b)* — af(a)® — f f(x)? dx] :

N S I

as required.

8. (a) If the diameter AB lies on the horizontal axis with A at (—a,0) and B at
(0, a), then the square intersected by the plane through (x, 0) has sides of length

2V a? — x2, so
4(a® ~ x*)(t; — ti~1)
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is the volume of a “slab”, and the sum of these approaches

a [~ x3a
4| @-xHdx=4 azx—?
—-a i —a
) 2a3
=424 -
-5
_ 164°
-3

2ra’
(as compared to Ta’ the volume of the top part of the sphere of radius a).

(b) Now the triangle intersected by the plane through (x, 0) has area
V3

- 4@ —x)
so the volume is
V3 1643 __4~/§a3
4 3 3

9. A plane parallel to the base at distance x from the vertex has area
x\2 4
)

h 2A
A =lna
o R 3

so the volume is

10. If (x, y, z) are the coordinates of a point P, then P is inside the first cylinder

of radius a if and only if
2

+2<a
and inside the second if and only if
v+ 22 < @
For points with z = b (i.e, the horizontal plane at distance b above the plane with
the axes) we must have
2<a®—b?, Y <d®—p,

so we have a square with sides of length v/a2 — b2, and area a —b2. So the volume

of the intersection is
a 3
z
f a’ -z2dz=a*z— =
—a 3

a

—-a
443
3
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11. (a) Using the formula

b
on [ fWTF Favar
we have

f@=Vrr-x

—X

T
2
1+ () = 53—

so the surface area is

r r
271:[ \/rz—xz-—-i——dx=2n’/ rdx
- r2 — x2 -r

= 4mr?,

(b) The area of the portion is

a+th
21!'/ rdx =2nrh.
d

12. (a) The ellipse is the graph of

7 p
fx)=b 1—-;—2=;\/a2—x2.

It is convenient to set

b
b= -.
a
Then
f(x) = uva?—x?
Fx) = ——
a2 — x2
) px?
fx)* = 2
, a? 4+ (u* — x?
1+ () =——7F—
FOW1+ f1(x)? = pv/a? + (u? — 2.
So the area is

a
A=2mp | a2+ (u? — Dx2dx.

—a
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Case 1: a < b, so i > 1. We use the substitution

_ver-1

Then

2 Vi
n'ap, vaz+a2y?dy
\/ —a 121

2 Ve
\/ﬂ 1\/1+y dy

V-1
yV1+ y2 +log(y + 1+ y?)

N/
by Problem 19-4(ix)

J:%[zur T+ log (Vi = 1+ 1) — log(—ViZ — 1+ 1)
— 2 na o \/u.———+u,
e (2

nab ( [Vi? =1+ p] )
\/ [Vu?—14+pu]-[Vu2—1+pu]

m log(m + u).

- 7

= 27 b? +

= 27b® +

Note that
d +1

2 —_—
lim CBVE Z1HR) o V2 by I’Hépital’s Rule

pn—r1 m - n—>1 H
vt —1

pt+vut—1
7

= lim
p—>1

=1.

So as a — b, and thus . — 1, the above area approaches 4w b?, the area of the
sphere of radius » (Problem 11).
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Case 2: a < b, so i < 1. The substitution

V1—p?
Y=g

gives

ZJra,u, V1=
A= vat—a*ytdy
v1— —af 1=l

2na? 2matu Vi-u
1 —y2d
Ny A \/ y

Ty
mab 1-p

1—y? by Problem 19-4(viii)

1—p?

= _7ab_ -2arcsin\/1 — 2+ 2u/1 —,u,z]

Again, we have

either by 1’'Hopital’s Rule, or using Airr:] (sinh)/h = 1.
—>

(b) The outer portion of the torus is obtained by revolving the graph of
f=a+yb2—y* —b=<y=<b

around the vertical axis, and the inner portion is obtained by revolving the graph of

f)=a—b?—y? —b<y<h.

In both cases
ffn = %
bt —y
b?.
1+ () = ——.
b2 — y?
so the area i1s

2”[:,(“4'”’2_)’2) ~ Vb2 =y

b
T e R

dy
=47mb[ e a—
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Letting y = bu, dy = b du, this becomes
1

1 d 1
41tabf —-P—-—L—t——— = 4Jrabf —L = 4mab arcsin u
-1 v/b? — b?u? -1y 1—u? -1
= 4m2ab.

(Notice [Compare Problem 4] that this is the product of 27 b, the radius of the re-
volved circle, and 27 a, the distance around which the center of this circle is revolved.
This is a special case of another version of “Pappus’ rule”.)

13. (a) The volume is

(b) The surface area is

o0 1 2
27rf it sdr=m [ Y24y
X 1 X

Since
V14 x2 X 1
2 T 2= 5
X X X

and [ dx/x = oo, this surface area is infinite.

(¢) The paint that covers the distant portions of the trumpet will get thinner and
thinner—it’s easy to paint an infinite area with a finite amount of paint if you're
allowed to spread the paint as thin as you like!
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1. (ii) Pso(x) =1+ x4 x%/2.

(iv) ,
B (x — ) (=™ (x - a)"
Pna®) =14 ==~ @n)!
(vi)
~ x-2) (x—2)7? (—1y* (x — 2"
Pya(x) =log2 + T T oo o .
(viii)

26(x —1)2  66(x — 1) 120(x — 1)*
21 LY + 4! '

(x) Pn,o(x) =1 ---JC-I—J&:2 —x3-|—...+(__1)nxn.

Po1(x) =3+ 9(x — 1) +

2. (i) 160+ 50(x —3) — 10(x — 3)2 4 (x — 3)*.
(iv) 9a +3b + c + (6a + b)(x — 3) + a(x — 3)%.

3. (i)

( 1)1221+1 . 22n+2 1
Z 2T D! (sm m_lo for 2n + 2 > 20, orn>9)

(iv)

LI 3
Z—' (smce 1)'_104forn+1>8 orn>7)
i=0

4, (i) To obtain
1
(2n + 2)!
it certainly suffices to choose 27 + 2 = 10!°”; we can also choose 21 + 2 = 10'°,
since (101%)! is clearly > 10'°". So one possible sum is

< 10719 or (2n +2)! > 1010°

(i)

. -~
[ —

oy
—

(since surely (1001)! > 3. 101:99%),

321
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(iii) We need to find an n with

102n+2 20
— < 10”
en+2)! -
Now
10!+ 10 10 10 0 109 1
(100+k)! 100! 101 102 100+k 100! 10K’
S0
10100+k 20
a0t oi < 1°
when 100 :
10 1 o 10120 ‘
100' 10" < 10 or 1001 < 10°,

This certainly happens for ¥ = 120, so we can take 2n + 2 = 220 or n = 109,
giving the sum

Z( 1)'10%+!
Qi+ D!
(iv)
3 10 since 30102 < 10°- 1077 _1 10730
iz (235)! (100)! 10135 -
(v)

12 (L )2z+1 (_)2n+3
Z:(—l)I 10 (since ZI;’IT <1070 for 2n +3 = 1010) .
l

5. (a) Let
x2 |x |3
cosx=1- ? + R(x), |R(x)} < —6"""

Then if x satisfies cos x = x2 we have
£2
(%) xt=1- - + R).

Ignoring the term R(x) gives the equation
3x* =2,

with solutions ++/2/3 = ++/6/3. To find bounds on the error, recall first, from
Problem 11-38, that |x| < 1. So (*) gives

13x% — 2| = 2|R(x)| <

L[
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or
1 1
——=<13 2 -2 < =
3 =% 723
5 7
- <13 2 < —
3 =% =3
V5 V7
— < x| £ —.
3 3
We can get a better approximation if we write
x2  x* P _ 1
=]-— R R < —
cosx 7 T TRO).  IRMI= 155 = 155
If x satisfies cos x = x% we have
x2  xt
—1-Z R(x);
(%) x2 3 + — 2 + R(x);

ignoring R(x) gives the equation
x—36x24+24=0

with the solution
x2 =18 — 10+/3,

sO x is approximately

(4%%) +v18 — 104/3 = +.82431

(compared to /2/3 = .81649).
Similarly, to find bounds on the error, we have
1 x*—36x*+24 1
— < <
120 — 24 — 120
so x? lies between the solutions of

¥ =36y+ (24— =0

and
y? =36y + 24+ 1) =0,
1.e., between
36 — v'1200 + 3 q 36 — V1200 — %
an ’
2 2

thus between

18—v300+1 and 18 —+v300+L;

SO

\/18 V300 +1 <|x|<\/18 v300 - 1
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or

82080 < |x| < .82780,
so the error in (*%**) is at most .00351.

(b) Writing

sinx = x + R(x),
the equation 2x2 = x sin x + cos? x becomes

_ 4 2
2 =x24+xR(x)+1-x%+ % + R(x)®2 4+ 2R(x) (1 - x—)
Ignoring terms involving R and R gives the equation

xt—8x2+4=0
or

2 8+ /64 — 16
- 2

=44 24/3.
Since |x| < 1, we must have
x2=4-2/3
x =+vV4—23.
6. (a)
1.1 .
arctan%+arctan% = arctan i f = arctanl = —.
Since
l+ 1
arctan% + arctan% = arctan (—5—15) = arctan 1—52-,
1-%
we have
1 % + % 120
4arctan§ = arctan I__T_s == arctan 1ig,
144
SO

120 1
4arctan 1 — arctan =L = arctan | 212—22_ | = arctan 1 =
5 239 14120, L
119 " 239

A H

(b) To compute 7 with an error < 1075, we must compute x/4 with an error

< 107%/4, so it suffices to compute arctan 1/5 and arctan 1/239 with an error
< 107%/20 = 1077 /2. Now
x3 (_l)nx?Jl+1 |x|2n+3
fanx =x — — 4+ + ~——— —— LR, R| <
arctanx = x — — +-+ P + IR| <

2n+43°
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Sofor x =1/5 and x = 1/239 we need

1 i
@n+ 3521 = 2107
1 1

@2n + 3)(239)7F ~ 2-107°

respectively. We can take n = 4 and n = 0, respectively. So « is

16 1 1 + 1 1 + 1 4 |
5 3.5 5.5 7.57 9.59 239
with an error < 1075, To find the first 5 decimals of 7 we must convert each term

in parentheses into a decimal. If we compute each one to 7 correct decimals, then
we will introduce an extra error of at most 107, Since we actually have

1 1
2-4+3)52+5 ~3.107
1 1

3.(2397° 3.107°

this extra error will be no problem. The calculations are as follows:

1 = 20000000
x5 = 00006400 557 =.00266666
55 = 00000005 77 =.00000182
20006405 00266848
—.00266848 <« I
19739557 75 =0041841
x 16 X 4
3.1583280 0167364
— 0167364 < |
3.1415916

The error in this result is < 10~%; consequently we can be sure that 14159 are the
first five decimals of 7 (because of the fortunate circumstance that the next digit in
our answer is not 9!). The first ten decimals of & are

3.1415926535

7. Clearly
fO@ =a@—1-@—k+DA+x)**,
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SO

(k) —_1y...{q —
no()_zf (O)k Za(a 1)---(a k+1)xk

= k!
Z k
= x
2()
The Cauchy form of the remainder is
ale — 1) --- —
Rug(r) = ZEZD @20 () g peoncie e~ ),
and the Lagrange from is
ale—1)--- (@ —n) o
R — 1 oa-n-le 0 n+l_
n,0(X) Y (141 (x—-0)
i
8. (if) ¢; = ) ajbi—j.
j=0
(iv) co=0;¢; =a;_ /i fori > 0.
9. (a) Since
. R(x)
}:l—lﬂ) X+ 0,
we have
Rx*) . R(xH
0= Gyt = 1T v
Now

sin(x?) = P(x2) + R(x?);

since Q(x) = P(x?) is a polynomial of degree 4n + 2, it follows from the corollary
to Theorem 3 that Q is the Taylor polynomial of degree 4n + 2 for f at 0.

(b)
0, k#4l+2
f®©) = { (=)} 4l +2)!

TR k=41+2.

(c)
0, k # nl
f®©) = l 2@ nd)!

T , =nl.
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10.
x ,t 0D _t
f e—(x—-t)"dt =f e—lx—tl"dt
0 n! x n!
0 _tn
_<_f Ixn'| dt since e* <1forx <0
|x|n+1
T+

11. For —1 < x <t < (0 we have

O<l4+x<14+t<1,
0< 1 < 1 .
“ 14t " 14x

So
0 n n-l

t X

o [0 1xI

—fx i+ xS Ut 0m+D

X tn
f dt
0 14¢

12. (a) By hypothesis,
-Mx—-a)* <g'(x) < M(x - a)* for x > a.
It follows from the Mean Value Theorem that

-M(x —a)**! M(x — ay**!
——y <glx)—ga) =< ——

ie., that |g(x) — g(a)| < M(x —a)"*!/(n+1). The case x < a is treated similarly.

(b) For every £ > 0 there is a § > 0 such that |g'(x)/(x —a)*| < ¢ for |x —a| <
8. This means that |g'(x)| < &|x — a|" for |[x — a] < &. Part (a) implies that
1g(x) — g(@)] < &lx —al|"t1/(n+1) for |x — a| < &. Since this is true for every
8 > 0, it follows that

lim g(x) —gla) _

x—a (x — ag)tt!

(¢) Since

()] ,
1@y,

i!

gx) = f@x) =)
i=0
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we have

(x — a)i—l

Veon _ p = fO)
g(")—“")“‘;(i_l):

n=1 r(j+1) )
=fe-) f—,(")(x —ay’
j=0
oy e (F)Ya) -
= f(x)—Z—j,—(x—a)’
i=0 '

= f'(x)— Py_y.q ().

(d) Theorem 1 is true for n = 1, by the definition of f’. Now assume that Theorem 1
is true for n — 1, and all functions f for which f'(@), ..., f® V(a) exist. If g is
a function for which g’(a), ..., g™ (a) exist, then f = g’ is a function for which
fl(@), ..., f® (a) exist. Consequently,

im 8’(-’5) - Pn—l,a,g’(x) _

}l—ra (x — a)ﬂ—l

Since (g — Py a.0) = & — Py—1,a,¢' it follows from part (b) that

g(x) — Pn.a.g(x) =0

0.

}1—151 (x —a)

13. Suppose | f®*+V)]| is bounded, by some M, on some interval around a. Then for
x in this interval we have

Rt = L2l g,
SO
—',f"fi"lf,' < Mix —al,
SO
lim Rn.a(x) =0

x->a (x —a)*

A similar proof works for the integral from of the remainder, and for the Cauchy
form, if | f®+D] is assumed bounded.

14. Problem 13-23 implies that
X (n+l) 1
Rna(x) = f A0 o ( )(x — )" dt
a .

(n--1
=i_l2u—mu—m
n!
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for some ¢ in (a, x). Similarly, choosing f@+V/n! for f and g(t) = (x — £)",
we obtain the Lagrange form. (In both cases, however, we begin with the extra
assumption that @+ js integrable.)

15. (a) Taylor’s Theorem, with n = 1, gives

f(x+h)=f(x)+f’(x)h+f()(x+h—t)h tin (x,x +h).
So
1 13
F@I < L1+ R) = fl+ D0
2 h
zMo‘l‘ 2M2

(b) The best inequality from (a) is obtained by choosing that # > 0 which minimizes
g(h) =2My/h 4+ h M, /2. Thus, we choose h to satisfy

—2My M,
0=g'(h)=
g h) ot
or
h = 2vMy/ M,

g(h) = 2v MoM,.
(c) The previous results can clearly be applied to any interval (a, 00); for all x > a,

we have
lf,(x)l S 2V MO,GM 3

where | f"(x)| < M, for all x > 0, and | f(x)| < My, for all x > a. Since f(x)
approaches 0 as x — 00, My, can be picked arbitrarily small by choosing a large
enough. Thus f'(x) — 0.

(d) Problem 11-31 shows that lim f”(x) = 0, while part (c) shows that lim f’'(x)
. 0 X=>»00 X300

16. (a) This follows from

fa+h) = f@)+ f@h+ -—i—)h2+ Raa(h),

fa—h)=f@—f@h+i ( @ Ry ey,

since
. Ry q(h) . Ry q(—h)
lim = lim ———

h—0 h2 h->0  h? =0.
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(b)
fO+m+fO0-m~-2f0) _ ., hz—hz—O_O
pm, h? =Y ) -

and similarly for lim .
h—0—

(c¢) For sufficiently small h we have f(a + h) < f(a) and f(a — h) < f(a) so

f(a+h)+f(a—h)—2f(a)
h?

(d) Using the Taylor polynomial of degree 3, we have

" " 3
f@a+h) = f@+ f'(ah + M;ﬁ + ! (g)h + Ry 4(h)

I " h3
fla—h)=f@-f@h+l 2(“) LI

Now subtract the second equation from the first.

17. If f” > 0, then

X
0 = f@+ F@e-a+ [ f6 -
a
> fla)+ f(a)(x —a) for x #a,
which says that the graph of f at x lies above the tangent line through a.

18. The proof is almost exactly the same as the proof given in the text for the
equation f” + f =0.

19. (a)

n—1 n—2
FO+D (f(n))’ = Zajf(’ﬂ) = (Z ajf(J"'l)) +an—1 f®
= Z:aj lf(") + an- lza f(j)
J""'O

= }:(a,-_l + an_1a;) f9.

j=0
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(b) Letting a_; = a_; = 0, we have

n—1
O = (aj_1 + an_1a)) fID
j=0
n-2
= Z(a, 1+ an-18) FUHD + (an—z + G )Ea i f
=
n—1

= Z(aj—z +an—18j—1 +anp—2a; + an—lzaj)f(j)-
j=0

{c¢) From the equation

n—l1
f(ﬂ+1) — ijlf(f)
j=0

we obtain
n-2 _
f(n+2) — ijlf(j-Fl) + bn-—llf(n)
j—O
— ij i f(J) + By Za f(J)
j=0
= Z_:bfzf .
j=0
where

b;> =bj_1' +bn—1'a;,
1521 < |bj—1'| + 1bn—1"] - laj] < 2N? 42N> < 4N°.
The general formula is proved similarly, by induction on k.

(d) Let M =M, +---+ M,_,, where
M; =sup{lfOm: 0=t <x}.

(e) Clearly f®(0) = 0 for all k. Then by Taylor’s Theorem,
(n+k+1)( )

(n +k)!

5 M_2k+1Nk+2|x|n+Ic+l

= (n+k+ D!

- M- |2Nx|"+"+l
(n+k+1)!

| f(x} = ———(x—)"**dr
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Since [2Nx|"**+1/(n + k + 1)! can be made as small as desired by choosing & (and
hence n + k + 1) sufficiently large, it follows that f(x) =

(f) Thedifference f = f1— /> satisfies the same differential equation, and £)(0) =
Ofor0<j<n-—-1So f=0
[In the case n = 2, the equations
fO=c+c
F(0) = aic1 + ey

can always be solved if a1 # ap:

o f(0) — £/(0) _ a1 f(0) — f1(0)
Cy) = .

¢ = )
) — o —

The case n = 3 involves more complicated answers, but is equally straightforward.
The general case, for those who know about determinants, depends upon the fact
that the “Vandermonde determinant”

1 1 - 1
C(l a2 « s an
det
alu—l azn-l . Oln"_l

is non-zero if the o; are distinct—in fact, it has the value [] o; —a;.]
i>j

20. (a) The second derivative of A(x) = (x — a)(b — x) is h”(x) = —2. Now
applying Problem 16(c) to g with a maximum point y in (a, b), we have

0 > Schwarz second derviative of g at y
= (Schwarz second derivative of f at y) +2¢
=04 2¢,

a contradiction.

(b) We want to show that

=@+ 1818 g
so we consider the function
b) —
s =10 - L0806 o)

Then g(a) = f(a) and g(b) = f(a), and the Schwarz second derivative of g is 0
at all points of (a, b). So part (a), g is constant.
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21. (a) Clearly f = 0 up to order 2 at 0. The second derivative f”(0) does not
exist because

0, x=0
"(x) = 12 12
F) 4x3sin— —xcos—, x#0
x x
and
4h3 sin —1— - kcosi
lim h? h?
h—0 h

does not exist.

(b) Choosing x = a + & and then x = g — h in (x) we have

lim (£ + )~ £@ +hf' @] =0=lim (7@~ k)~ f@ ~hf' @),
It follows that
-1 fla+h)+ fla—h)—2f(a)
= 11im )
h—0 h2

i.e., the Schwarz second derivative of f is 0. Problem 20 implies that f is linear,
so f"(a) = 0 = m(a) for all a.

0

(¢) Let g be a function with g” = m. Then the function f — g satisfies (x) with
m = 0. So f — g is linear, by part (b). So f” = g" =m.
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1. (a) If « is a solution of the equation
(1) nx" + an_1x" V4 4 ay =0,
then /¢ is a solution of the equation

anx? + an1x 24 4 a,=0.

(b) If « satisfies (1), then o + r satisfies
an(x—r) " +an(x—r)" "+ tag=0;

this equation, with rational coefficients, has the same solutions as the equation with
integer coefficients that is obtained by multiplying through by a common denomi-
nator of the various coefficients.

Similarly, ar satisfies

x\n xy\n—1
() o () e

2. Since

(V2++3) =5+2v6,
(vV2++/3)* = (5+2v6)" = 49+ 20V6,

it is clear that +/2 + /3 satisfies x4 — 10x2+ 1 = 0.
Since

[vV2(1 ++3)]* =2(4 +2v/3) = 8 + 443,
[V2(1 +v3a)]* = (8 +4+3)* = 112 + 443,

clearly v2(1 + +/3) satisfies x* — 16x? + 16 = 0.

3. (@ If f(p/q) =0, then
anx" + a,,_lx"_1 +---+ap= (x — g) (b,,_p\:"'“l 4 ..+ bp)

for some by, ..., by—1, which will be rational numbers. Since o — p/gq # 0, we
have
bp_1o" ' 4 4+ b =0,

contradicting the assumption about the minimal degree of the original polynomial.

(b) Clearly f(p/q) can be written as a rational number of the form r/g". Since
f(p/q) # 0, we have [r| > 1,50 | f(p/g)| > 1/4".

334
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(¢) If | — p/gq| < 1, then

_ fp/g) — f@)
fpla) = ===

= f'(x) for|x —af <1

<M,

SO
le — p/ql > | f(p/@)}/M > 1/(Mq").

4. If o satisfied a polynomial equation of degree n, then there would be some num-
ber ¢ with | — p/q| > c/q" for all rational p/gq. Now

: + ! e R & 1
ot 102 10*!
can be written as »
108

for some integer p, and

p 2
10 < 10%&+Dt

O<a

Thus for every k we must have
c 2
(10%!)n < 10%+1)!

or

10¢%+D! 2

10y < ¢’
or

(lok!)k+1 2

acy ¢’
or

(lok!)k-l-l—n < 2,
c

which is clearly false for large enough n.

5. (a) If the elements of A and B can be arranged in the respective sequences a;,
ay, s, a4, ... and by, by, by, by, ... , then the elements of A U B can be arranged
in the sequence

ai, b, as, by, as, b3, ‘e

(except that repetitions must be thrown away, if A and B have any elements in
common.)

(b) Arrange the positive rational numbers in a list by following the arrows (deleting
repetitions).
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(c) Follow the arrows in the picture

) )

0, 0) (0, 1) 0, -1) (0, 2) 0, -2)

S S S

(1,0) (1,1) (1,-1) (1,2) (1,-2)

S

(-,0 1,1 ¢1,-1) (—.,2) (-1,-2)

g

(2,0) 2, D (2,-1) (2,2) 2,-2)

(d) Let the elements in A; be arranged in a list a;1, a;2, @;3, . . .. Then the elements
in A UA;UA3U-.. can be arranged in the array

an 4z 4a;y 4y
Gy ax» ax»n axu
Q31 G327 Q33 4z

Now use the same trick as in parts (b) and (c), deleting any repetitions.

(e) Apply part (d) with A; the set of all triples (m, n, i). (A; is countable, by part
().)

(f) If the set of all n-tuples is countable, then the set of all (n+ 1)-tuples is seen to be
countable by applying part (d) with A; the set of all (n+1)-tuples (a;, a3, ..., an, i).

(g) Since every such polynomial function f(x) = a,x™ + - - - + aq of degree n can
be described by an (n4- 1)-tuple of integers (ao, . . ., a,), these polynomial functions
can be arranged in a list py, p2, p3, ... . Foreach p;, let ; 1, ... , @i, be its roots
(if there are fewer than n roots, choose 0 for the remaining «;, ;). Then

Q1,19 s @ na 21500 s X2, X3 1y 000y X3 1y 0 s

is a list of all the desired roots. Now delete repetitions.

(h) Apply part (d) with A; the set of all roots of polynomial functions, with integer
coefficients, of degree i.
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6. If this number were in the list, it would be «, for some n. But it cannot be
oy, since it differs from o, in the ath decimal place. (This tricky construction, and
others modeled on it, is known as the “Cantor diagonal method™.)

7. (a) Suppose 0 < gy <:--- <ap, <1,and lim f(x)— lim f(x) > e. Choose
a—a; x—»a;
O<ai<aj<a) <’ <az<ay’ <---<a,)’ <a, <a,” <1.

Then
f@"y - f@a') > ¢,

50

F) = fO) > ) f@") — fla') > ne,
i=1

son < [f(1) — f(®)]/e.

(b) Let A, be the set of all a in [0, 1] with lim+ f(x)— lim f(x) > 1/n. Then
X=>q X~

A, is finite, so by Problem 5(d), A; U A, U A3 U .- . is countable,

8. (a) There are only countably many such intervals, since each interval is deter-
mined by a pair of rational numbers, and there are countably many rational numbers.
Since each value f(x) can be described in terms of these intervals (as the maximum
value on such an interval), there are only countably many values of f(x).

(b) If f happens to be continuous, then f cannot take on two values, for if it did,
it would also take on all values in between, and hence an uncountable set of values.

(c) A minor variation of the proof in part (a) shows that if every point is either
a local maximum point or a local minimum point for f, then f takes on only a
countable set of values. So, again, if f is continuous, then f must be a constant,
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1. i)
! + 3 lim ! + 3
n+ 1+ — lim 1+ —
n3 n—>00 n3

(iv) If n is even, then

n! _ nn—1)--(n/2)! - (n/2)! < (%)nlz;

an nhi2 . pni2 = Tpn/2

similarly, if » is odd, then

nl_n=D- (=12 _ = D/2 (1)<"-1>/2

Pra n+D/2 (=1)/2 = -2 2

(vi) nILHgO (logn)/n = 0 (since xll,"éo (logx)/x = 0, by Problem 18-12(b)). So

lim %/n = lim ¢%8"/% = ¢° (by Theorem 1) = 1.

n-—»00 n—»0c0

(viii) Suppose @ > b > 0. Then ¥a" < ¥a"+b" < ¥a" +a" ie., a <
Ya* +b* < ¥2a, and nl_il)‘l(‘)lo /2 =1, by part (v).

(x) According to Problem 2-7,

n n_p-H
3 kP + AnP 4+ BnP1 4 ...
lim =l — Jim 2+1
n—-oo pbtl n—0o nptl
= lim L +A+B+ -
T ascop+l n o n? T p+
2. (i)
1 1
im —— — 2" fim " hm 2T 11 =0,
n—soon+1 n nsoon+1 n-so00 n

338
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(ii)

n—+n+avn+b)(n++/n+avn+b)
lim n — V/n+avn+b= lim (

n—>00 n—oo n+\/n+a\/n+b

n? — (n+a)(n +b)

= lim
n>00 pt /nt+avn+b
— lim —{a+b)n _ ab
n>oopt+.J/ntavn+b n+/ntavn+b
1
= lim —(@+b)-
e 1+~/n+a vn+b
Jnoo Jn
1

= lim —(@a+b)-
n-»00

1+,/1+5‘/1+2
n n

_ _(at+b)
= >
(iii)
-n"
P i VP
n—l{%o n+l1 _|..(_.1)n+1 T a—roo (_1)n+1 - '2':
24
zn
(iv)
. A1 1 n —~1)" si n
fim (-1) ﬁsm(n)= tim (=1)"sin(@") n —0.1=0.
n—00 n+1 n—o0 ﬁ n+1

(v) If a = b, the limit is 0. If a = —b, the quotient is undefined for odd n, so the
limit'is meaningless. If |a| > |b|, then

bﬂ.
a" - 1_(2) _1_

nllrrgo a™ + b# =nl—l>nc‘>lo (b)" - 1 -
1+

a
Similarly, if |a| < ||, then the limit is —1.
(vi) Suppose first that ¢ > 0. We have

lim xc* = lim &98%e*108¢ = |im elo8*+xlogc,
X=X X000 =00
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Now

]
lim logx +xlogec = lim x ( ofx +logc) ,

X300 X—>»00

= lim xlogc = —ox,
X—00

so lim xc¢* = 0. In particular, lim nc” = 0. The result clearly follows also for
X—=>00 n—-»eo

¢ < 0.

(vii) Since
2n2 (2my" on on on on

n! nl  n n—1 n-2 1
and each factor is > 1, and in fact — 00, the whole quotient — 0.

3. (a) The sequence {a,} must be eventually constant, that is, there is some N such
that all a,, are equal forn > N.

(b) All convergent subsequences are of the form
a,....ap, 1,1,1,1,1,...

or
a,....ap,—1,-1,-1,-1,...,

where ay, ..., a, is some finite sequence of 1’s and —1’s.

{c) All convergent subsequences are of the form
a,...,ap,m,m,m,...,

where ay, ..., a, and m are natural numbers.

(d) All ¢ in [0, 1].

4. (a) Let {a,} be a Cauchy sequence, and suppose that lim a,, =I. For any £ >
Jj—00

0, choose J so that |l—an;| < £/2for j > J. Thenchoose N sothat |a, —ap| < £/2

for n,m > N. Let No = max(N,ny). If n > Ny, then |a, — a,,,,| < £/2 and

[Gn,,, — Il < &/2. Consequently, |a, —I| < &/2.

(b) Suppose that nl_l*rr;o an = 1, and let {a,;} be a subsequence of {a,}. If ¢ > O,

then there is some N such that || —a,| < eforn > N. Sinceny <ny, <ny < ---,
there is some J such that n; > N for j > J. Thus [l —ap} < & for j < J. So

lim a, =1.
joo

6. (a) Using the inequality vab < (a + b)/2, it is easy to prove by induction that

a) < ap < ap41 < bpy1 < by < by.
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Thus the sequence {a,} is increasing and bounded by b; and the sequence {b,} is
decreasing and bounded by a;. So both converge.

(b) Ifl= lim a, and m =
n—»00

lim b,, then
n—»00

l=1lma = lim /a,b
N> 00 n-+1 N> 00 ntn

= lim a,vb,
H—00
= Vivm,
som=1.
7. (a) If
m
a = —,
n
then
m+2n (m+4+n)+n n 1 1
= = =1 =14 V—=1
it m+n m+n +m+n t 7 +

—+1 1+a;
(b) It is easy to check, first, that

1 \? a+2\*
if a% < 2, then | 1 = 2,
if a® < en(+1+a) (a+1) >
and that the same result holds with the two inequalities reversed. Since a1? < 2, we
thus have a; < V2 for k odd and a; > /2 for k even. Moreover,

Ak+2

>ar forag? <2

_ 3a, +4
T 24+ 3

<a; for a;? > 2.
This shows that {a»,+1} is increasing and < V2 and {azn} 1s decreasing and > s@,
so they have limits / and m, respectively.

To show that { = m, we note that for both even and odd n we have

a a _an+2 a _2—(1,12
n+1 n—'an+1 n—1+an-
Hence
. 2—-ag,2 2-m?
I—m=nll>rgol = 1
n even tan +m
and also

m—l=lim 3 ST
X + ay +

341
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This gives
l4+Im—m=2
m4im—1=2;
hence I = m = /2.
(¢) This is a straightforward generalization of part (b). For convenience, let
c=a’+b.

We consider
b axr +c¢

at+ax  atog

o) =a, Orp =a-+

Note that a;2 < ¢. Also, the inequality
(aa + c)2
>c
a+t+c«

(@® — o)a? > c(a® —¢)

is equivalent to

or simply

So we see that

2
ax 4 ¢
if @ = ¢ then > .
> (a+a) <

S0 {an+1} is increasing and < v/ a2 + b and {a,,} is decreasing and > v'a? + b, so
they have limits / and m. Moreover,

aoy, + ¢ c— oy
a-+ oy - a+ o,
for both even and odd n. As before, this gives

Upy) — Oy =

l+4Im—m=c

m+im-—1=c

hence I = m = J/c.

9. (i) [fefFdx=e>—1.

(iv) 0, since
: + ! +---+ <n 1 <
nz (mn+1)?2 2n)2 = n2

b

(vi)

1
f ! dx =mn /4.
0 1+x2
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10. @) f a = 1+ h, thena” = (1 + A)" > 1 + nh. Since h > 0, clearly

lim nh = o0.

n—o0

(b) lim a" = 0, because lim 1/a" = co, by part (a).
n—00 n=>»00

© If /a =14+h,thena = (1 4+h)" > 14+nh,soh < (a—1)/n. Thus
15%51+(av1)/n,son[i+%%=l.

(d) ul_i}ngo:/5= 1/ (nl_lrngo ¥1/a) =1, by part (c).
(e) If /n =1+ h, then

n=(1+h)"zn("2_l)h2,
SO
2
h< ,
“Yn-1
SO
2
1<¥n<1+ :
n—1
so lim ¥/n=1.

n—=>00
11. (a) Suppose that nllﬂ"lo ap = 1. Choose N so that |a, —1| < 1 forn > N. Then
lan| < max(|I| + 1, lail, ..., lan]|) for all n.
(b) Choose N so that |a, — 0] < a; for n > N. Then the maximum of a,, a,, ...,

ay is the maximum of a, for all n.

12. (a) This relation is equivalent to

1 n+11 1
<f —dx < —,
n

n+1 X n
which is true because

1 1
<—<; for x in (n,n + 1).

(b) Since

1
— =1 N =1 -
an — ant1 = log(n +1) —logn ——

>0 by part (a),

the sequence {a,} is decreasing.
To prove that a, > 0, add the inequalities

1
log(j+1)—logj < 7
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for j=1,...,n—1, to obtain

logn < 1+4... 4

n—1

13. (a) Since f is increasing

i+1
ro< [ fwax < s+
4
add these inequalities for i = 1,...,n — 1.
(b) From part (a) we have

n
logl 4 ---+log(n — 1) <f logxdx <log2+---+logn
1

log(n — 1)! < n logn —n;, <logn!
n

n—1)! < —

< nl.
en_l
So
n® (n + 1)n+1 nn+1
<n! < < .
en—l el en—l

14. (a) The tangent line has slope f'(xp) so it is the graph of
g(x) = f'(x0)(x — x0) + f(x0).

So x; is the solution of

0 = g(x1) = f'(x0)(x1 — x0) + f(x0)

X —Xo = — f(xo)
S (x0)

X1 = xp — f(xo).

S (xo)

(b) From f/(x¢) > 0 we immediately have xo > x;. We also know that f is convex
by Theorem 2 of the Appendix to Chapter 11. So by Theorem 1 of that Appendix, the
graph lies above the tangent line through (xo, f(xp)). So clearly x; > ¢. Obviously
F'(x1) > 0, for otherwise the convex function f already has its (unique) minimum
between x; and xp, so doesn’t even have a zero. This shows that x; > x», etc.
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{¢) We have
Sk t1 = X1 — € = X — €+ (X 41 — Xz)
- — J(xx)
J'(xx)
_ SO flu)
&) o)
Hence
F(xi) ' '
Okl = ———— - -
k41 FEDT 00 L (xk) — F (8]
_ f(xk) e _
= FE ) ST i) x — k)
S ()
=3 .
o
_ f”(nk) 5 )
= Ok .
I (xx)
@) If
dpg=Xg—C< »
0 — A0 Ms
then
—fp=a<l, for some a.
m
Then from (x) we have first
& < '1‘-{502
m
2
£31 < (ﬂao) = o?.
m m
Then
dy < Ealz
m
2
M < (ﬂal) <at,
m m

etc. Since o < 1 the powers af - 0,508, — 0, i.e., Newton’s method works.

(e)

xn2 - A
2x,

Xntl = Xp —

15. To do this Problem you will need a calculator, of course.
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() x; = 1, x; = .7081, x3 = .6055, x; = .5988 [ f(xs) = 7.97 x 1075].
() x; = 1, x, = .8382, x5 = .8258, x4 = .8243; [f(xs) = 3.9 x 1074].
(i) x; = 1, xp = .75, x3 = .68604, x4 = .68234; [f(xs) = 2.9 x 1075).
(iv) x; = 1, x = .6667, x3 = .6527, x5 = .6527; [ f(x4) = 9.13 x 1075].

16. If € > 0, pick N so that |a, — | < & for n > N. Then

lay + an+1+ - +avim — M| < eM,

SO
| ! l[ay +any1 + -+ Fay+ml — M |< eM < 8.
N+ M N+M N+M
Choose M so that
M —ll<e¢ and | [ai +---+an]| <e.
N+M N+M
Then
IN+M[G1+---+GN+M]-—I|<3£.

17. Leta, = f(n+ 1) — f(n). Then Engoan = (. So by Problem 16
n
al+...+au

0= lim = fim LW SO g SO
n— 00 n n—oo n n—o0 n

Since f is continuous, it follows easily that lim f(x)/x = 0.
n—00

18. If ¢ > 0, pick N so that |a@,+1/an — | < £ forn > N. Then

an41
[ —g < 2% <l+e¢ forn > N,
an
SO a a a
-1 1
(I—&‘)m< ntm  “ntm-—-1 n+ <(l+8)m,
An+m-1 Qnim-2 an
SO
nf Sntm —-1| <e.
an
Now

/an+m
r+m /an+m o= ftm T . ftm /an
n

2 m/n+m
— m n+m . n4m
( Va+n ) Van-

Since mleoo nnfa, = 1, it follows that **%/a,, can be made within 2¢ of / by
choosing m sufficiently large.
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19. (a) Suppose nl-ggo an =1 > 1. Since I — 1 > 0, there would be some n with
|l —a,| <1—1, and hence a, > 1, a contradiction. Similarly, we cannot have ! < 0.

(b) a, =1/n.

20. Let us denote
FUS . fx)...)
S .

k times
by f¥(x). Then by Theorem 1,
f@ = f(lim f5(x)) = lim f(fcx)

= lim f*x) =1.
k—0o0

21. (a) Suppose f(x) > x. Since f is increasing, f(f(x)) > f(x). Consequently,
FUF(F(x)) > f(f(x)), etc. Thus the sequence x, f(x), f(f{(x)), ... is increas-

ing, and bounded by 1, so it has a limit. The proof when x < f(x) is similar.

(b) There is some m with g(m) = m (by Problem 7-11). According to part (a),
the sequence f*(m) has a limit {, which is a fixed point for f (using the notation
introduced in the solution to Problem 20). Moreover,

X (m) = fe(m)) = g(f*@my),
since f o g = g o f. Hence, by Theorem 1,

t= lim fiom)= lim g(f*(m))=g(lim f*(m)=g®.

22, (a)
cm_i_cm+l+__.+cn=CM(1+C+'.'+CH—M)
cm(l _ cn—m+1)

l-¢
cm__cn+1

I

Il

1—c¢c

(b) Since |c| < 1, we have lim ¢" = lim ¢*t! = 0.
n—»00 n—»00
(©)

[%n — Xm| = (X0 — Xn41) + X1 — Xp42) + -+ + (Xme1 — Xm)|
< Ixp — X1l + 1Xn41 — xn—2| + -+ Xm—1 — X
Scn+."+cm"-l’

so lim |x, — x,| = 0, by part (b).

nm,n—>o0
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23. (a) If ¢ = 0, then f is constant, so continuous. If ¢ 5% 0 and £ > 0, then
[f(x) — fa)| <efor |x —a| < g/c.
(b) If f(I) =1 and f(m) = m, then

f—ml=|f{)— fm)| <cll —ml,

sol =m,sincec < 1.

(c) If x is any point in R and
xn = f"x) = f(f(f...f{x)...)),
N —, —

n times
then
[%n — Xa41| = | f(xn=1) — F(xn)| S clxp—1 — Xn| < Czlxn-—l — Xn—2|
< - <" My —xql.

Consequently, Problem 22(c) implies that {x,} is a Cauchy sequence, so converges.
It converges to a fixed point, by Problem 20.

24. (a) f f(x) = x and f(y) = y, then by the Mean Value Theorem, for some &
between x and y we have

fON—fG) _

y—x

@)= 1,

a contradiction.

(b) The Mean Value Theorem gives

fx) = fON =If' &) Ix—y|  for some & between x and y
<clx —yl,

so the result follows from the previous Problem.

(c) Let f(x) =x+1.

25. Since f is continuous at b we have

F®) = Jim, §o0) = i bur = Jim bn =

Choose n so that b,, by, ... are all in the interval around & on which | f’| > 1.
Then , .
1) = FON b1 — bl > b — b
|br — b
Similarly,

|bryz — b| > |bpy1 — b| > |by — b,
\buss — b| > 1bn — b, ...
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This contradicts the fact that lim b,, = b.

m—00

26. (a)

ab = a(ﬂlin;b") = lim g%
n—»od

= Jim, bus1 =b.

(b) If f(x) = x1/* = ¢Uo8X)/x then

fr(x)=x1/x l:_l___Ing] { < forx>e
x2

x2 >0 forx <e.

Since (logx)/x — 0 as x = oo and —o0 as x — 01 (Problem 18-34), f(x) — 1
as x — oo and f(x) — O0asx — 0T
In particular, 0 < f(x) < e/ forall x > 0. So 0 < a < el’®,

(¢) Since 1 < a we have
a<d®, ie., by < by.

And if b, < by 41, then

b b

bn+1 =a" <a"t= bn+2s

so by induction {b,} is increasing. Moreover, if b, < e, then

b

" < g < (e!/*

bny1=a ) =e.

(d) Choosing f(x) = a* in Problem 25, we see that if b exists then

|lf )l <1,
where
f'(b) = a®(loga) = bloga = log(a®) = logb,
SO
—1 <logh <1,
or
el <b<e.

Since @ = b'/? we have
(e——l)lle“l <a< el/e

or
e € <a<eéle
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(e) Since
log x(loga)a* — a* /x
! =
f(x) (og 2)2
LY logx loga — !
" (logx)2 gx08e =3

~ we need to show that

1
logxloga < — on (0, 1)
x

or

loga > .
B¢ =3 logx

Now x logx = —oo0 as x = 0% or x — 17, so the maximum of 1/x log x occurs

for

0=[x-l+logx]
x

x=¢l.

Thus we need to show

1

logg > — = —
084 = -1 log(e™)

which is true since a > e~¢,

(f) We know from part (b) that the graph of g(x) = x'/* increases from O to 1 on
[0, 1] (and then increases further on [1, ] and then decreases to 1 on [e, 00)). So
there is a unique b with a = b'/? (we don’t even need e~¢ < a for this, just a < 1).
For 0 < x < 1 we have 1/x > 150 x!/* < x (the signs reverse since logx < 0), so

a=b"? <p.
For x < b we have
a>al=b
SO
a® <a®=»b

(the inequalities reverse since a < 1). Moreover, part (e¢) shows that for 0 < x < b
we have
a* a®

log x ” logb
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SO
a*logh > a’logx (since log b, log x < 0)
a*(log(a®) > blog x
a*bloga > blogx
a*loga > logx
log(a“x) > logx
a® > x.
In particular,

a2
O<a<bh SO x<a® <b

0<a® <b so a%<a® <b, et
So the sequence by, is increasing and bounded by b, so has a limit {. Clearly

I = lim b2n+1 = lim b2n+3
n—»00 n-+00

( lim IB‘:t.n+l)
= lim a®™" =g*""" =a

(g) Since a® = b we have a® = a® = b. Since we also have a® = | we must have
| = b by part (e).

(h) .
. . m Dap41
lim b9 = lim abm+ = grooo =ab =b.
=00 R~ 00

27. (a) Clearly {y,} is decreasing, and bounded below (by a lower bound for {x,}).

) (@) 0.
@) 0.
(iif) 1.
(iv) 1.

(c) lim x" = lim z,, where z, = inf{xn, Xn+1, Xn4+2,...}. Since z, < y, for
n—CO n—-00
each n, it is clear that lim x, < lim,_ o X5.
n—o0

(d) Suppose first that nI_igo xn = 1. If & > 0 there is some N with |x, —I| < & for

n>N.Soxy<l+e xyp1<li+e...,50yw <I!+e Similarly zy > 1 —&.

Since this is true for all £ > 0, we have lim x, = = lim x,.
n—->—00 n—00
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m x, = [. Then for any ¢ > 0 there is

Conversely, suppose that lim x, = I
e n—>00

n—-00
some N withl — & < zy < yy <!+ ¢. This implies that ] — & < x, < [ + ¢ for

every n > N.

(¢) Let/ = lim x, = lim y,. If a < [, then @ < y, for all n. Consequently,
n-»00 n—>00

a < xp for infinitely many x,, so a is not an almost upper bound for A. On the
other hand, if a > [/, then a > y, for all but finitely many n. Consequently, a > x,
for all but finitely many », so a is an almost upper bound. Thus, / is the greatest
lower bound of all almost upper bounds of A.

28. (a) First choose § > 0 so that | f(x) — f(y)| < 1 for rational x and y with
|x—y| < é. Since x, — x, there is some N so that |x, —x| < /2 forn > N. Hence
|Xp—xm| < dform,n > N. So|f(xm)— f(xn+1)| < 1form > N. This shows that
the sequence {f(xn)} is bounded. It follows that it has a convergent subsequence,
say f(xn,)s f(xn,), ... approaches the limit I. We claim finally that the original
sequence { f (x,)} approaches /. In fact, for any € > 0 we can choose K so large that
| f(xn,) =1l < &/2 for k > K and also choose § so that |f(x) — f(¥)| < &/2 for
rational x and y with |x — y| < . Finally, we choose N so large that |x —x,| < /2
for n > N. Then for n > N we have, for any k > K with x,, > N,
|xn = Xne| < |xp — x| + X, — x|
< 8/2+46/2,

80

| f(xn) — 1] < |f(xn) — )+ 1f (Xny) — 1
<ef24+¢g/2.

(b) Given another sequence {y,} with lingo ¥n = X, consider the sequence x, yi,
n

X2, ¥2, ... . This also approaches x, so the sequence f(x1), f(3), f(x2), f(32),
... has a limit, which must be the limit of the two sequences { f(x,)} and { f(y,)}.

(¢) Given £ > 0 choose é > 0 so that for rational x and y with |x — y| < § we have

1) | f(x) = fFONI < /3.

If z and w are any two numbers in the interval with |z — w| < 4, then by the
definition of f we can choose rational x and y so that

2) 1f(x) — fD)| <&/3
(3) [fO) — f(w)| <e/3.

Moreover, by choosing x sufficiently close to z and y sufficiently close to w, we can
insure that |[x — y| < é, so that (1) holds. It follows that | f(z) — f(w)| < e.

29. (a) Since a¥ = a’™* - a* we just need that a®* > 1 for rational z > 0, and this
follows immediately from the elementary definitions.
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(b) Problem 10 (c), (d) shows that for large enough n we have

l—e<a V" <ag<14¢ a>1
l—e<a’ <a V" <1+¢ a<1.
So, by (a), for rational x with |x| < 1/n we have |a* — 1| < &.

(c) For rational x, y in the closed interval [-M, M] we have
la* —a’| =a”| - |a" — 1]
< max(a™, —a=M)|a*"Y - 1|.
Since |{@*7Y — 1| can be made < & by making |x — y| sufficiently small, f is

uniformly continuous on [~M, M].

(d) If x, and y, are rational and x, — x and y, — y,thenx, +y, - x+ y, so

fx+y)= lim fOn+yo) = Uim_f(xa)f(n)
= lim f(xa) im f(y)
= f()f ).

If x < y then we can choose rational x, — x and y, — y with all x,, < all yp,, so
f@) = lim f(xs) < lim f(yn) = f(3).
To prove strict inequality choose rational x’, y’ with x < x’ <y’ < y. Then

fx) < f&N = f&Y < FO) = FOY) < F).

30. (a) (i) O.

(ii) 0 and 1/n for each natural number n.
(iii) —1 and 1.

(iv) No limit points.

(v) All real numbers.

(b) If there are infinitely many points a of A satisfying |[x — a| < &, then there is
surely one such a with a # x. Conversely, if there were only finitely many such
points ay, ..., a, and g1 > 0 is the minimum of all those |x — a;| which are # 0,
then there would be no points a in A satisfying |x — aj < &;.

(¢) For any & > 0, the number lim A — ¢ is not an almost upper bound of A, so there
are infinitely many numbers y in A with y > lim A + £. Moreover, there cannot
be infinitely many such numbers y with y > lim A + &, for in this case no numbers
between lim A and lim A + ¢ could be almost upper bounds of A, so lim A+ ¢ would
be a larger lower bound for the set of all almost upper bounds. This shows that there
are infinitely many numbers y in A between [im A — ¢ and lim A +&. Consequently,
lim A is a limit point of A. If there were another limit point & > lim A, then no
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number less that & could be an almost upper bound so a would be a lower bound
for the set of almost upper bounds, a contradiction. The proof for lim A is similar.

(d) Choose distinct points x;, x3, x3, ... in A. The sequence {x,} is bounded, since
A is contained in [a,b]. So there is a convergent subsequence {xn,}. Let ! =
lim xp,. For any £ > 0 there is some J such that |l — x,,| < & forall j > J. Since
j—=oo

the x,,; are distinct, this shows that there are infinitely many a in A with |l —a| < &.

(e) Choose a sequence of intervals I), I, I5, ... with I} = [a, b), and each [;4, a

half of I;, such that each I; contains infinitely many points of A. If x is the point
in all I;, then x is a limit point of A.

31. (a) Choose x, with f(x,) > n. There is a subsequence x,,; which converges to
a point x, which is in [a, b]. Thus for every £ > 0 there are infinitely many x,,, with
|x —xp;| < &, and consequently f is unbounded on [x — &, x + £], contradicting the
fact that f is continuous at x.

(b) Given £ > 0, suppose there is no § > 0 such that | f(x) — f(y)| < e forall x, y
with [x — y] < 4. Then for each » there are points x,, y, such that |x, — y,| < 1/n
but | f(xx) — f(ya)| = &. Choose subsequences x,; and y,, converging to points x,
y in {a, b]. Then
| —yl = lim |xn; — yq;] =0,
J—00

so x =y, but
| F(x) — FI =j1_i>t§° | f (xn;) — £ (ym)]

S

a contradiction.

32. (a) Let #(n) be the number of j for which j/n is in [a, b]. To estimate #(n),
let j/n be the smallest such fraction in [a, b] and k/n the largest. Then (j —1)/n <
a<j/mandk/n<b < (k+1)/n.

J-bg k kil
n n n n
} +—— +H t
¢} a b |
So
k k+1 -1
k_Jp gkl izt
n n n n

k—j<nb—a)<k~j4+2.
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Since #(n) =k — j + 1, we also have
k—j<#n)<k—j+2,
$0O
[#(n) — nb —a)| < 2.
Adding these inequalities for 1, ..., n we obtain
#(1) 4+ - +#@n)—[1+---+nl(d —a)| < 2n.
Consequently,
#(1)+ - +#n) 2n
—-b-a)| < ——.
14---+n l+---+n
Since lin;o 2n/(1 + - -- + n) = 0, this shows that
n—

#(1) + -+ +#(n)
1+---+n
Of course #(1) + - - +#(n) = N(1+ .-+ +n; a, b). For an arbitrary number m, let
n be the largest number with 1 4 --- 4+ 2 < m. Then

m—(14---+n)<n

approaches (b — a).

Clearly,
|NGn; a,b) —#D) +---+#@)] [ <m— 1+ +n) <n.
Consequently
N(m;a,b)  [#(1)+---+#(n)] <

(L <
m m m
<—ou— 0, asn — o0.
1+...+n

Moreover,

#(1)+---F#(0n) _#(1)+---+#(n) I1+---+n

m T 14 4n m ’

since

l4.---+n <1+...+n<1+...+n_l
14+ @+1)~ m “14-+n
it follows that [#(1)+- - - +#(n)]/m can be made as close to [#(1)+- - - +#(n)1/(1+
.+- 4+ n) as desired by choosing m (and hence n) sufficiently large. Since the latter
expression can be made as close as desired to 5 —a by choosing m sufficiently large,
it follows from (1) that mlgnoo N(m;a,b)/m =b —a.

]

(b) Consider the special case where s(x) = ¢ for x in [a, b] and s(x) = 0 for other
x in [0, 1]. Then

N(n;a,b 1
lim s(a) + -+ s(ay) — lim c_._.(_"__.‘.l_)=c(b——a)=/ 5.
R 0O n R0 n 0
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This holds, in particular, when @ = b. A similar proof works when s(x) = ¢ for x
in (a, b). Any step function s can be written s = sy + - - - + s, where s; is one of
these special kinds. Then

si(@1) + - -- + si(an)
fS—Z:f Sl_ n--l-oo n

i=l
. S@a)+---+s(a,)
= lim .

n—>»00 n

(c) Let € > 0. According to Problem 13-16, there is a step function s < f with
1 b[f = 51 < &. Thus for sufficiently large n,

_8+[ f<[ s@) +-- +s(an) fad et fa)

n

Similarly, since there is a step function s > f with f ab[s — f] < &, we have

b b
_2t«a+ff<f(“‘)+ +f(“")<2s+ff

n

for sufficiently large n.

33. (a) If there were infinitely many such points a in [0, 1], then the set of all such

points would have a limit point x in [0, 1]. For every § > 0 there would be some a

with |a — x| < /2 and | li-ﬂ F() — f(a)| > &. Consequently there would be a’
y

with |a’ — a| < 8/2 (and consequently |a’ — x| < &) such that |f(a’) — f(a)| > e.
But since )}1_1& f(x) = for some [, there is some § > O such that | f(y) —I| < &/2

for |y —x| < 4. In particular, if [@ —x| < é and |a’ — x| < 4, then | f(a) — f(a)} <
| f(a) — 1| + | f(a’) — | < &, a contradiction.
(b) By part (a), the set A, of points a where |}1_I;I}z f — f(a)| > 1/n is finite. By

Problem 21-5, the union A; U A, U A3 U - .. is countable. This union is the same
as the set of all points a at which f is discontinuous.
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1. (ii) Convergent, by Leibnitz’s Theorem. The series is not absolutely convergent,
since
1+1+1+1+...>l+l+l+1+...=1(1+_1_+1+1+...)_
3 5 7 2 4 6 8 2 2 3 4
(iv) Convergent, by Leibnitz’s Theorem. (The function f(x) = (logx)/x is de-
creasing for x > e, since f/(x) = (1 — logx)/x2.) The series is not absolutely
convergent (see (viii)).

(vi}) Divergent, since
1 1

> :

(viii) Divergent, since

Nl 2
[ 0g X dx = (log N)
1 X

— o0as N — oo,

and f(x) = (logx)/x is decreasing for x > e (see (iv)).

(x) Divergent, since
1

(log )k
for sufficiently large n (Problem 18-12).
(xii) (Absolutely) convergent, by (xi).

1
- -
n

(xiv) Divergent, since

sin1 > 1
n_ 2n’

for sufficiently large n.
(xvi) Convergent, since

fN ! dx = ! 4+ ! — ! as N - o
, x(logx)2 ~~  logN log2 log2 |

(xviii) Convergent, since

DY+ . (mn+Dn"
lim = lm —m—m———
n—00 n!/n" n—o0 (n + 1)n+1

1

1
= lim ————— s = -,
e

n—+00 1\"
(1+7)
n

by Problem 18-16.

357
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(xx) Divergent, since
34D (n+ D . 3(n+ Dn"
lim = lim ———
n—+00 3"n!/nn n->00 (n + 1)n+1
3 3
e

= lim ——————— =

n—»00 1\"
(1+3)
n

by Problem 18-16.

2. (a) According to Problem 22-13,

so the series certainly diverges.

(b) Since

' (n + 1)n+1/an+1 (n + 1)! . (n + 1)n+1
lim = lim ——M—
7—>00 n"/a"n! n—00 a(n + 1)n"

.1 1\" e
= lim - |14~} =—,
n—->o0 n a

the series converges for a > e and diverges for a < e. By Problem 22-13,

nt nt (n+ 1)n+1 n"
enl - (n+ 1P etnl . (nt DrH
1 n " 1 1
=n+1(n+l) = ' Ze(n+ 1)
n+1) (1 4+ E)

for sufficiently large n, so Y oo , n"/e"n! diverges.

3. (a) The function f(y) = €”/y” is decreasing for y > 1, since

y'e? —y(l +logy) _ &

fo= en = Sy (~log ).

Now the series Y oo ,(e/n)" clearly converges, since (e/n)" < e2/n® for n > 2, so
the integral also converges.

(b) Since f(x) = (logx)~'°8* js clearly decreasing for x > 1, the series converges
if fo°°(log x)~108% gy exists. The substitution y = logx, dx = e” dy, changes this
integral to

which exists, by part (a).
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(c) The substitution y = log x, dx = e’ dy changes [ (log x)~1°8(0&*) dx 1o
./; S5 dy.

= ¥~ (o8 _ oy(1—(logy)*/y)

Now
ey ey
ylogy — gllogy)

Since l_1>lré° (log y)?/y = O (Problem 18-12), it follows that ¢? /y'°8Y is close to e”
y
for large y, so the integral certainly diverges.

4. Note that
1 1 1

nl¥l/n — p  pl/n

and apply Theorem 2 to a, = 1/(n!*1/) and b, = 1/n: We have

1
lim a,/b, = lim =1 (Problem 22-10(e)).
n—>00

n—»o00 nI/" -

o0
Since ) 1/n diverges the given series also diverges.
n=1

5. (b) Define {a,} inductively as follows:

a; = [10x],
ap, = [10"x — (10" gy + - - - + 10a,_1)].

For each n we have

0<10™x — (10" 'a; +--- + 106" ) —a, < 1,
SO
(%) 0 < 10™x — (10"%a; + - - - + 10%an—; + 10a,) < 10,
s0 0 < ap+1 < 9 for each n. Moreover, from (*) we have

0<x—(@l107 ' +a1072 4 ... +10™"a,) < 107",

00
sox =) a,10™".
n=1
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(c) Let ¢ = 10%aq; + - - - + 10, + ai. Then

Zan 107" = + « + « 4.
10" 102t 103k

- L 1+l+ 1 2+
-1+ (E

_« 1
=T l_i
10
_ 9«
1051

(d) The number a, in part (b) satisfies
10"
0< Tp 10"y 4 -+ 10a,_; +a) < 1.

Now 10" p/q can be written as k + r/gq where k is an integerand 0 <r < g — 1.
In this case a,—1 = [10r/q]. Since there are at most g different fractions r/q, there
will have to be some m and n with m > n and a,+1 = [10r/q] = am+1. It is easy
to see that we will then have a,, = ap42, etc.

6. The proof of Leibnitz’s Theorem shows that if N is even then

00
SN < Z (=D**a, < sy41,
n=1

50 |3 o2 (—1)"*la, —sy| < sw41 — sy = an41 < an. (Strict inequality holds
unless sy = sy+t, or ay+1 = 0.) The proof is similar if N is odd.

7. Suppose r < 1. Choose s with r < s < 1. There is some N such that }/a, < s
forn > N. Then a, < s, so

Sasys
n=N n=N

converges. If r > 1, and r > 5 > 1, then there is some N such that {/a, > s for
n>N.Thusa, > s" > 1, so Zﬁi] ay does not converge.

8. We have
B ( l)k( 1)n+1—k h
C"_kg Vikv/n+1—k Zx/_\/n+1—

We can easily obtain estimates on the individual terms in this sum. In fact the
minimum of +/x+/n 4+ 1 — x [occurs at the minimum of x (n + 1 — x) which] occurs
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at x = (n4 1)/2, so each
1 1 2

> = .
JI?Jn+1—k‘\/Z+1\/H+1 n+1
2 2

There are n such terms, so

onl =~ > 1
=41 T
9. The sequence 1, —1,—1, 1, —1,... is Cesaro summable to 1/2.

10. Say |na,| < M. We have
_at@mta)t--+(@+---+an) nay+(n—Dap+---+a,

On n n
50 n na (n—Da a
1 - 2 n
A1 T arit Tar1 T e
and
n
Sn-n+10n

n n—-1) 1
=(1— - 1 —
(1 n+1)al+(1 n+1)02+ +( n+1)a"

ai+2a+---+na,
n+1
(the essentially irrelevant factor n/(n + 1) was simply used to get this rather than
an expression with a; + 2a3 + - -+ in the numerator). So

n n
< — M,
n+1 | " n+1
hence is bounded. Since {o,} approaches a limit, |o,| is bounded. Hence |s,] is
bounded. Since a, > 0, this means that } >0 a, converges.

$n — On

11. (a) Choose m so that ay, ..., a, appear among by, ..., bp.

(b) This follows immediately from part (a), since E;";l ay is the last upper bound
of all partial sums sy,.

(c) The reverse inequality Y oo, by < Y oo, an follows from part (b), since {an} is
also a rearrangement of {b,}. It follows that 3 - | by, exists and equals Y oo | a,.

(d) Let {p,} and {g,} be the series formed of the positive and negative terms, re-
spectively, of {a,}, and let {p,'} and {g,"} be defined similarly for {b,}. Then {p,'}
is a rearrangement of {p,} and similarly for {g,}. So by part (c), >_p,’ = 3. pn
and ¥ g," = }_ gy, the sums on the right existing because {a, } is absolutely conver-
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gent. Therefore, {b,} is absolutely convergent, and Y o0 b, = Y pn' — Y. qa' =
an - ZQn = Eﬁil an.

12. (a) Let b; = an;. Then
[Bj1 + 1641 + - - - + |be] = lan;| + lan;, | + - - + |G, |
=< |anjl + |an,-+1| + lanj+2| +---+ |am,l-

Consequently, lim |b;| 4 .-+ |be] = 0.
Jj.k—>00

o0
(b) If ) a, does not converge absolutely, then either )_ p, or ) _ g, diverges,

n=1
where Y py is the series of positive terms, and ) _ gy, is the series of negative terms.
Choose the appropriate one as ) _ by,

(c) The series a;+as+as+--- and a;+a4+ag+-- - - both converge by part (a). The
same is true of the series a;j +0+a3+0+as+--- and 0+a+0+a4+0+ag+---,
whose sum is Y oc | an.

13. For every N, we have

N 00
<Y laal <) lanl.

n=1 n=1

N
D an

n=l1

00 N
Since Y} _ ap, = lim ) a, the result follows.
n=1 N—=00 =)

14. Choose d > O so that |sinx| > 1/2 on (kr +7n/2 — 8, kn + /24 6). Then

kr+m /248
j‘ sin x dx >
x | T a2
kn+m/2—8
Since the series
o0
Z kr + 7:/2

diverges, the same is true for the integral.

15. Let f be the function whose graph is show below.
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‘Al
4 4l
16. For the partition
2 2
P—{O’m'---’;"}
we have
2 2 2 2 1
S, P)> = 4 - ... =Z{14+=4... )
B> et Gat n rr(+3+ +2n+1)

and these sums are not bounded.

( o )r’”"
k+1 _ra(a—-l)---(oe-—-k)/(k-l—l)!_ a—k
T T @-D-(a—k+r DK kL
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Clearly
m 2- kl =1
k»oo|k+ 1|
SO

Rl W s
. k+1
lim - = |r|.
k—00 44 k
r
(k)

a e
IRy o(x)| = (n+1)x"+1(1+1‘)a n=l

< ] xn+1
“\n+1

(c) Wehave 0 < 1+x <14t <1. Ifo—1>0,then (1+2)* ! <1. Ifa—1 <O,
then (1 + %! < (1 +x)*7L So(1+6)*! < M, so |x(1+8)*1| < |x|M.
Moreover, since —1 < x and # < 0, we have

(b)

- 0, by part (a).

—t > xt,

O0>x—1t>x+xt,

O<xx <141, since x < 0
O<l—-t/x<1+1,
1-t/x
<1, i 14+t >0.
< Tx: = since 1l +¢ >

Thus

|Rn0(0) = |(n+ 1)(n : l)x(l +1)*-1 (ﬁ{)

~1
slnaMl-‘(a )x" >0 by part (a).

n

19. (a) According to Problem 19-35(b),if m <a; +--- +a, < M, then
bim < agby + -+ - + apby < by M.
Since lim b, = 0, this shows that lim apby + -+ a,b, = 0.

k—00 k,n—>00

(b) Let a, = (—1)"*1; the partial sums are bounded. Soif by > b, > b3 > --- >0
and nl—lrnc:o bp, = 0, then) 22 (—1)**1b, converges.
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(¢) Choose b, = 1/n and a, = cosnx. The partial sums of {a,} are bounded
because, by Problem 15-33,

sin(n+1/2)x 1 sin(n + 1/2)x 1

e — — | T -—

|cosx +-- 4 cosnx| 2sinx/2 2| =|" 2sinx/2 2
1 1

< — 4 -,

— 2|sinx /2| + 2
(d) It clearly suffices to consider the case where {b,} is nonincreasing. Then so
is {b, — b}, and nl_il)rgo bn — b = 0. Since } 2, a, converges, the partial sums of

{a,} are surely bounded, so by Dirichlet’s test Z;’il anpb, — a,b converges. Since
Y 9% | anb also converges, this implies that 322 | a,b, converges.

20. Since
a1 > a2>a3>044 2052 06 = a7 = ag = )
we have
a<a+a
2a4 < az+ay
4ag < as + as + a7 + ag,
etc.

So

N 2N 00
2 Yar <) a <) a
k=1 k=1

n=1

21. (a) By Problem 2-21 we have

|Gnbn + - - + Gmbm| _<_‘/anz'l'"'+am2\/bn2+"'+bm2-

This shows that the Cauchy condition for {a,2} and {,2} implies the Cauchy con-
dition for {anbn}.

(b) Apply part (a) with b, = 1/n".
22. Choose n so that a, + - - - + a;m < & for m > n. Then
(m—n)am <ap+---+am <&
Since lim m/(m+4n) =1 and
m—0o0
ma, = = _. (m — n)ay,
m-—n

it follows that ma,, < 2¢ for sufficiently large m.
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23. Let {a,} be

24. We can assume a; — 0, for otherwise we will not have ax /(1 + a;) — 0, so
that divergence will be automatic. We might as well assume that a; < 1 for all &,
so that 1 + gz > 2ax. Then

2 2

a axg ax < ay aj
J— — < _,
k 14+ a; 1+ ag 2ay 2
SO _
n Esta mal... tomar las desigualdades
Z a; de los extremos: a_k-\frac{a_k}{1+a_k}
. a; =1 <a_k/2. Entonces:

Z: 1+a < 5 \frac{a_kH1+a_k}>\frac{3{2}*a_k
k=1 k Asi, como a_k no es sumable,

1 | lado derecho tampoco.
Thus, the partial sums on the left are unbounded. entonces e p

The converse hold trivially, since a; > ax /(1 + ai) (for a; > —1).

25. (a) Since 0 %[ = lim p, we have
=00

lim Pn i
lim (14a,) = lim % == _!_.
R—00 n-»00 pn_ nl_{)n;lo Pn—1 !

consequently lim a, = 0. Note, in particular, that 1 + a, > 0 for sufficientl
n—>00Q y

large n. In the remaining parts we assume 1 + g, > 0 for all #, which is really no
restriction, since a finite number of terms do not affect the question of convergence.

(b) We have

n
log pn = Y _ log(1 +ay).

i=1

If pp = 1 50, then

n o0
logl = nl_lbngo log p, = nlﬂl}rgo 21: log(1 4+ 4;) = Elog(l + a;).
= =
Conversely, if

o0 n
s = Zlog(l +a;) = 1nl_i)rxc}ozlog(l +a;) exists,
i=1

i=l


Lito
Typewriter
Está mal... tomar las desigualdades

de los extremos: a_k-\frac{a_k}{1+a_k}

<a_k/2. Entonces:

   \frac{a_k}{1+a_k}>\frac{3}{2}*a_k

Así, como a_k no es sumable, 

entonces el lado derecho tampoco.

 

Edited by Foxit Reader
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then

04 f = e(nlin‘:o T2, log(1+a))
E.’l

= lim e log(1+a;)
n-»00

= lim el°&P~
n—»00

= lim, -

(c) We have

1 +nau 5 log(l + an) S aﬂ.s

367

by looking at a lower and upper sum for log(1 + a,) = f11+"" 1/xdx. Soif ¥ a,
converges, then ) log(l + a,) converges, and hence the product converges by
part (b). Conversely, if the product converges, then ) log(1 + a,) converges, so
Y ap/(1 + a,) converges. It follows from Problem 24 that ) a, also converges.

Counterexamples without the hypothesis a, > 0 can be obtained as follows. Since

2 3

x X
log(1 =X——4——---
og(l+x)=x 2+3

we have

. x—log(l+x) 1
130 x2 — 2

so for sufficiently small x we have

() ;}xz <x-log(l+x) < %xz.

Now suppose that both ) a, and )_log(1 + a,) converge. Then by the Cauchy

criterion we have

m
lim Y a —log(l+a)=0.

mn—o0
i=n+1

It follows from (%) that
. .2 _
i, 2, 0" =0
i=n+1
so that 3" a,? must converge also. Now
o0 (__1 n

e

converges,

but 3" 1/n diverges, so

ﬁ (1 + (:/12") diverges.
n

n=2
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[We can actually conclude from () that if ) a, converges, then ) log(l + a,)
converges if and only if }_ a,2 converges. Also, if }_ a,? converges, then ¥ log(1+
ay,) converges if and only if ) a, converges.]

We can also find an example where ) a, diverges, but [](1+a,) converges. The
simple first guess, a, = —1/n, doesn’t quite work since

o 1
1(1-7)
n=2 n
doesn’t converge by our definition. In fact, if > a, is divergent with all @, < 0,

then ) log(l + a,) is also divergent. In fact, writing () as

ixz x < —log(l+x)

we see that
o0 oo o0
E—log(l +a,) > Z—an +3 Zanz = 00.
n=1 n=1 n=1

Here is a simple genuine counterexample (compare the answer to Problem 23):

{a)=1,— _l1 _11 11 _11_11_1

ni — 2, 3! 4 3 4 3 4 5 6' 5°? 61 5° 6"
—— v AN » o’
1 pair 3 pairs 5 pairs

This clearly diverges, since

1 —1
1-3 2
1 _ 1,1 _ 1,1 _1_41_3 _1
3—ats—ats—g=l-3 =3
1_1,... —1-5 =1
5 6+ =1 6 6

26. (a) We have

L 1 k2 —1 (k—-l)(k+l)
[1(-%)=11% =]I

k=2
Q- 1)(2+1) . (3—1)(3+1) (n—D@n+1)
- 2.2 3.3 n-n '
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Each factor (k¥ + 1), except for (n + 1), cancels a k + 1 in the denominator of the
next fraction, and each factor (k — 1), except for (2 — 1), cancels a k — 1 in the
denominator of the previous fraction, so the product is just

1 n+1

2 n

which approaches 1/2.
(b) Note that
A+x)A+xH=1+x2+x* +x8
A4+ 2)A+xHA +x3 = A+ x%2 +x* + 291 + 2%
= (14221 + 18+ 2%+ 210 + x12 4 x14,

and in general

f[(l 41y =14+ x4 122

k=1
so the infinite product is

1
T 1—x2

1+x*+x*+-

27. @ If1/(n+1) < p/q < 1/n, then np < g and
p 1  pn+p—gq

g n+1" gin+1)

The numerator pn + p — g is < g + p — g = p. Of course, the numerator may be
even smaller when the fraction is expressed in lowest terms. Notice, moreover, that

p__1 _1__1 1

I R T T
so that p/g — 1/(n + 1) must be a fraction with denominator > n + 1.

(b) Part (a) proves the result for x < 1. For x > 1, since ) 1/k diverges there is

some n > 1 with
l+1+ +1 1 1 1 1
1 2 =1 n41

If either inequality is an equality we are done. Otherw1se

( 1 1) 1
0<x— l+—+---+; <

2 n+1

It follows from part (a) that x — (1 +1/24- - -4 1/n) can be written as a finite sum
of distinct numbers of the form 1/k with k > n, which gives the desired expression
for x.
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1. (i) f(x) = n]_l)tgo Jfn(x) = 0. The sequence {f,} converges uniformly to f (in
fact, is eventually 0) on [a, b], but does not converge uniformly to f on R.

(iv)
= lim e"""‘z—[ box=0
FO =" =10 x40

{fa} does not converge uniformly to f.

2. () f(x)= nllngo fn(x) =0, since nl_i)ngox" =0for0 <x < 1and x® = x?* for

x = 1. The maximum of f,(x) — f(x) occurs when
nx" 1 —2nx"1 =
x=1/ Vi;
the maximum is 1/2 — 1/4 = 1/4. So convergence is not uniform.
(ii) We have

nx
= I —_— X,
fx) L et
Since nx
f(x)—fu(x)=x—m

is close to x — n for large x, convergence is not uniform.
(i) f(x) = lingo fn(x) = x. We could write f(x)— fo(x) =x—+/x2+1/n%asa
n—
fraction (as in the hint), by multiplying and dividing by x + +/x2 4+ 1/n2. Actually,
it’s easier to apply the Mean Value Theorem:
1
fO) = fa@) = Va2 =[x+ =
1

2n2/E

1
2 <t <x?+—,
n?

for some £ with

hence x < ,/_, or
1/x > 1/\/?.

So

1 i
f(x)“‘fu(x)<;“2';
1

2n2a’

370
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So convergence is uniform.
(iv) f(x) = |x|. As in (iii) we have

[f(x) — fa(x)| <

2n2a
On [—a, a] we have

F®) = o] < @t fa 4

< 3a for n large.

on (—o00, a] and [a, 00).

So by first taking g small, and then n sufficiently large, we can make | f(x) — fn(x)|
as small as desired on all of R.

(") f(x)=0and
FO) = fale) = E = fx+ =
1

= X <E<Xx+—
2n\/§ : n
1

2nx

< 1
2na’

So convergence is uniform.
(vi) Convergence is still uniform, arguing as in (iv).
(vil) We have

(%) fn(x)=n(\/x+%*ﬁ)=n-2ni/§_, x<§‘<x+-’1;

SO

F) = lim_fu(x) = 5%

Moreover, on [a, 00) we have

f(X)-fn(x)=-2—%—n(\/x+%-—«/§)

1 1
"5;7?—5—\/? a<x<§<x+;
_VE-Vx

2/x+/E
<M-—>O, by (x).

2a
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So convergence is uniform.

(viii) For x = 0 we have

fn(O) = n‘/I = ‘\/—s
n

so lim f,(x) does not exist. (Convergence cannot even be uniform on (0, o0), for
n—»00

each f, is bounded, so certainly not close to f(x) = 1/24/x near 0.)

2 3 4
3, (i) log(—-a)-—f——x _F _F

2a%2 3a4® 4a*
1/2
w £(7)

k=0

4. (ii) 1/(1 + x%).

5. (i) Since
S

2n)!

n=0
the sum is cos(27) = 1.

(i) Since

e* = X
= n!
R N s Vi
o “~ n! '’
we have
io: x2n _ e* + e~ *
@2n)y 2
so the sum is (e + ¢~ 1) /2.
(iif) Since
o0 (_1)n+1xn
log(1+x) = e —
n=1 n
g
log(l—x)=-) —,
n=1 h
we have
00 20+l 1

[log(1 + x) — log(1 ~ x)],

— 2n + 1 2



so the sum is

v) i

then

50

so the sum is

v If

then

80

so the sum 1s

(vi) If
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1/2)
1-1/22 " 7

00 n

f@ =3 =

n=0

o0 n+t

xf(x) = E :+1 = —log(1 — x)

n=0

log(1 — x)
x »

fx)=-

—log(1-1/3) _
173 = —~3log(2/3).

o0 2” 1 n
fo =y I
n=0 )



374 Chapter 24

then
oy =3 Gt Dt
B n=0 n!
00 s 2t/
2;( n! )
00, 2n r
- (2%
_ 2\ &Y
- ("; ! )
- ()
=2x2e* +ex2,
SO
f(x) = 2xe* + €,
so the sum is
7. 51: . el/2 +el/2 — 231/2.
7. (a)
A+ £ = 1 +03 ()
X X) = X) 2 n(n)x
0 o o "
-2 ()rern( )]
=Y a(%)s =ar
n=0 \
(b)

’ (L +x)* f'(x) = fx)a(l 4 x)*!
gx) = a+ )= =0 by part (a),

s0 g is a constant ¢. Thus f(x) = c(1 + x)*. Since f(0) = 1, we have ¢ = 1.

8. The maximum and minimum of



Chapter 24
occur when
0=n(l+nx?) — 2n%x?
x=x1/J/n
so the maximum and minimum have absolute value
1
2n3/2°
Since
> 1

D a7

n=1

converges, by the Integral Test, we can apply the Weierstrass M -test.

9. (a) For x > a we have

R o1 —
2s1n3nx _l_

3ny

=)
)

< — | =
—a\3 1
Inx

Since x > a, and since Ain}) (sinn)/ h = 1, for sufficiently large n we will have
_>

hence
1
2" sin —
si iy

16
<-1{=1.
“a\3

00
Since ) (%)n converges, we can apply the Weierstrass M-test.
n=1

(b) For x = 2/(n3N) the terms

1 ) 1 . 1

sin m, sin W_ﬁ;, sin EEH'TX,

are
n T b/ 3

sin—, sin—, sin—

2 6 18’

375
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all > Owithsinw/2 = 1. So

o0 1 N
n_. —
ZZ Slﬂmzz ’ whenx—m.
n=N
So "%, cannot be made arbitrarily small on (0, 00) simply by choosing N suffi-
ciently large, i.e., the sum does not converge uniformly.

10. (a) The maximum of x/(1 + n*x?) on [0, oo) occurs at x = 1/n2, and the
function decreases to 0 after that. So if a > 0, then for all but a finite number of n

we have
nx na

< <
14+n*x2 ~ 14 n%*a? — nia

on [a, 00).
Since }_ 1/n? converges we can apply the Weierstrass M-test.

(b) For f(x) =Y 2 ,nx/(1 + n*x?) we have

n=0
1
1 "N ) .
f N > Z — 1 since all terms are positive.
nzﬁ 1 + n4ﬁ§
Moreover, for n > /N we have
1
4
n ﬁ >1
SO .
4 4
1+n N2 2n F,
SO
1
1 "N N 1
f (ﬁ) 2, = 1T =725
n>vN 2?14-&—2' n>«N

If M is the smallest integer > VN , then
00 oy
) i>z_{.>f ax 1
n3 — nd ~ x3  2M?
nz,\/ﬁ n=M
SO

rather than 1/4 as stated. But this is hardly significant: obviously N/M? > 1/2 for
large enough N, so we always have f(1/N) > 1/8 for large enough N. Conse-
quently, the series cannot converge uniformly to 0 on [0, 00).
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(¢) This series is much easier. The maximum and minimum of nx/(1 4+ n3x2)
occur at # = +n~>/2, and the maximum absolute value is 1n~3/2. Since 3" n—3/2
converges, the series converges uniformly on all of R.

11. (a) Problem 15-33(c) shows that for x in [, 27 — €] we have
1

|sinx + .- +sinnx| < =7 < 57
sin—l |sin—|
I 2 2

Problem 19-35(b) then shows that

n

sinkx
2%

i=k

1

3
k sin—|
2

for x in [g, 2m — €]. So we just need the following result:

00

Suppose that » | f,(x) satisfies a “uoniform Cauchy condition” on an interval [a, b},
n=0

i.e., for every £ > O there is some N such that

(%) | fas1(x) -+ fm(X) <&

o0

for all n,m > N and all x in [a, b]. Then )  f,(x) converges uniformly to some
=0

f on[a,b] "

o0
Proof: Certainly Y  f,(x) converges to some f{x) for each x in [a, b] since (%)

n=0
00

shows that for each x the sum ) f,(x) satisfies the Cauchy criterion. Now given

n=0
£ > 0, choose N so that (x) holds for £/2 and all x in [a, #]. Then for n > N we

have
Y. filx)

k=n+1

<€

F@®) =D filx)

k=0

[0 4]
for all x in [a, b], which shows that ) f;(x) converges uniformly to f on [a, b].
k=0

(b) The terms

ridg
' k—) k=N,... 2N
Sln( N

can be written as
(4 n
i — ) =si k— k=0,...,N
sin ([N + k] N) sin (JI' + N) ,
and hence are the negatives of the positive terms

T
ink— k=0,...,N.
sin N
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Now for x = n /N we have

sin(N-}-1 ”)sin(N N)
N I rr
D sinkx = 2_N 2 N by Problem 15-33.

sin a
k=0 2N
For N large this is
1 1-1 N
> = = —,
-2 T T
2N
So for x = 7/N and N large we have
% sinkx | % —sinkx
i k - K
| 2N
> — —sinkx
2N &
1 &
> ?ﬁ;smkx
1 N 1
—2N n© 2x’

This shows that we cannot have a uniform Cauchy condition for the series on [0, 2],
so it cannot converge uniformly.

12. (@) a, = f™©0)/n! = 0.

(b) as = f(0) = nlgrolo f{x,) =0, since f is continuous at 0. Thus

fx) = ia,.x" = x(i a,,x"_l) = x(f: an+1x") = xg(x).
n=1 n=1

n=0

Now g(x,) = 0 (for all x, # 0), so by the result just proved, a; = 0. Thus

flx)=x? Zﬂn+2xn,

n=0

s0 a; = 0, etc.

(c) Apply part (b) to f — g.

13. If f is even, then £ is odd for n odd, so a, = f™(0)/n! = O for n odd. If
f is odd, then f® is odd for n even, so a, = 0 for n even.

14. The power series for f(x) = log(1 —x)is Y oo o(—1)"asx", where 3 oo, anx”"
is the power series for k(x) = log(l + x). Since Y po,anx" converges only for
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—1 < x < 1, the power series Z;";O(—l)"anx" converges only for -1 < x < 1.

Since g(x) = f(x) — h(x), its power series converges only for —1 < x < 1.

15. (a) Clearly a,—, < a,. Hence

a 2a
n+1 < n
an ay

< 2.

(b)
n
|@n41x"1 <oxl <1 for x| < 1/2.
lap x|
{¢) We have
o0
fx) =Eanx"_1 =14+x+2x243x3+-.-,
n=1
o0
@)= aux" = x4+ 2P+ 4.,
n=1
o0
xzf(x) = Zanxn'H = x2 + x3 Heen,
n=1
SO

fx)=14+xf(x) = x*f(x).

(d) Leta = (—1—+/5)/2 and B = (=1 ++/5)/2. Then

s 1/v/5 ~1//5
Aoy (—1—~/§) * (ﬂ1+\/§)
xX—{—— X—|—
2 2
1/v5 145
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(¢) Consequently,

16. If we have _
F(x)glx) = Z cpx”,

n=0

then
1
cn=—(f" 2)™ ()
n!

1 n
= i (Z) FAORF L)
° k=0

1 n!
- —— . oln—k)
Oy TR

B n f(k)(()) g(n—k)(o)
B K =k

k=0

n
=D abar.
k=0
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17. (a) We have

n—1 n—1
lbnxo”| = Zbkau-kxo" < Zlbkxo"an-kxo""‘
k=0 k=0
n—1
<M Zlbkxok|.
k=0

(b) By induction on n. It is clear for n = 0. Suppose true for all numbers < n.
Then by part (a)

n—1
|baxo"| < MY M*
k=0

n—1
=MD (MY
k=0
M»1_1
M2—1 "~
Since M > /2 we have M2 >2,so M2 — 1> 1,s0

|baxo™| < M(M*72 = 1)

=M-

< M2n—1
< M,
(¢) We have
X n
b = lbuxe] -
| xo]
()
< ,
| xol
so if
x| 1
—— T —_—
lxo] — 2M?
we have .
|b"xﬂ| S '2'_na

O Y |byx"| converges.

18. On [—a, a] the series
2,3

x
—1log(l — x) = 4+ 4.
og(l — x) x+2+3+
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converges uniformly and absolutely, so the same is true of the series

o0 x2n+1 oo x2n+2

and
—o 2n+1 e 2n+2

consisting of the odd powers, and even powers, respectively. Hence the same is true
of

i xn+1
o 2n+2

which is just the value of the second series at 4/x. It is easy to check that because
convergence is uniform and absolute, we can rearrange the series

o0 erH-l xn+1

u=02"+1 2n42

The odd powers can be paired as

L2+ @+l 2041 1
m+1 2@ +2  2n+1 ( "5)
1 g2n+l
T2
while the even powers appear once as
_—ﬂ_——l.xﬂli’l (n odd),

2n+2 2 n+t

thus giving altogether 1/2 the sum of the terms in the series for log(1 4 x). But for
x =1 we have

i 1 1 1 1+1 1+1 1
n+1 2n+2 1 2 3 45 6

n=0

19. f0 < x < 1,thenx > x? > x* > ... > 0. Consequently Abel’s Lemma
shows that |gmx™ + - - + anx"| < & if |am + - - - + ap] < &. The latter condition is
true for sufficiently large m and n. Consequently, |@mx™ + amy1x™1 4. | < ¢
for sufficiently large m and all x in [0, 1]. This means that for all x in [0, 1],

(o o]
Eanx" —f{ap+---+ am_lxm_l) <&
n=0

for sufficiently large m. This is precisely the assertion that 3y .o, a,x" converges
uniformly in [0, 1].
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20. Leta, = (—1)*. For 0 < x < 1, we have

2 1
Za,,x"=1—x+x2—x3+---=
~ 1+x
SO
lim f:a " = lim ! L
X = = -
x—>1- 2 " —»1-x+1 2
21. (a) (i) By Problem 4(iii) we have
x2 x3 x4
1 — — —_— e f .
(1+x)log(l +x)—x 71 3_2+4.3 or x| <1
Now the series on the right does converge for x = 1, so by Problem 19,
1 1 1
51 _3.2+4.3_...=210g2—2.
i) If
£t T g0
f(x)—x—z'+7—ﬁ+"-,
then for |x| < 1 we have
1
f’(x)=1—-x3+x6—x9+---=l+x3 by Problem 4(ii)

1
T+ DE2—x+1D
1/3  —x/3+2/3
= 4 .
x+1 x2-x+1

sO
f(x)=%log(x+1)—%log(x2—x+1)
3v/3 x—1/2 343 1/3
+ —— arctan + arctan ——
16 V34 16 V3/4
1
=%10g(x+1)—610g(x2—x+1)
+3J§mtanx—1/2+3ﬁn
16 J3/4 16 6°
Consequently,
1 1 1 . log2 = +/3
=3ttt = mim=tEn
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(b) Let

f(x)=2anx" x| < 1

n=0
00

g(x) = Zb,,x" x| < 1.
n=0

Then, as on page 505 of the text,

gcnx" = (io:anx") : (ib,,x“) x| < 1.

n=0 n=0
It follows from Problem 19 that

o0
Z ¢ = lim

x—>1"

(5e) (£

n=>0 n=0 n=>0
00 o0
= Zan . Z b,.
n= n=0

22, (a) Choose N so that if n > N, then |f(x) — fo(x)| < 1 for all x in [a, b].
Since fy is bounded, there is some M such that | fy(x)| < M for all x in [a, &].
Then | f(x)| < [fv(x)+1 <M+ 1.

(b) Let fo(x) =nx for 0 < x < 1/+4/n, and f(x) = 1/x for 1/s/n < x < 1. Then
nl_:)ngo fn(0) =0 and nl_lprgo x)=1/xfor0<x <1.

\
\

|
N
L]

—

23. Let fa(x) =[f(x +1/n) — f(x)/(1/n).

24, Let {a,} be the sequence

1 1 2 1
01 1: 2 3 3 g

E
b
thlw
tale
h=
-
ahln
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Let fa(x) =0if x #ay,...,an,and let fr(@j)=1for1 < j <n.

25. (a) Given £ > 0 choose f, so that

) ) = F@I < 35— forxinla,bl
Also choose a partition P of [a, 5] such that

(1) Ufas P) = L P) < 3.

It follows from (%) that

@) U P~ UCf, P < 5,

3 LU, P) = LU, PYI < 5.

From (1), (2) and (3) we obtain
\U(f, P)—L(f, P)] <e.

(b) The hypotheses of Theorem 3 say that { £, } converges uniformly to g, and the
proof shows that g = f’. Thus, {f;} converges uniformly to f’. Now since

£0) = f(a) + f Fx)dx

1) = fu@+ [ firax
we have

) — £ < 1fu(@) — F@] + f 1£1(6) = ()] dx

< — + f 2(b —a dx for large enough n

(c) Since we are still assuming that f, converges uniformly to g we have for any x

in [, b]
[o=tm [ 5
—nl_l_rﬂgo[fn(x) Jn(x0)].

Since [ = lim f,(xp) exists, it follows that
n—00

fx) = lim_fy(x) exists
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and .
[ e=rw-1
Xo
so f’ = g. Notice that this proof works even if [a, b] is replaced by an infinite
interval.
(d) If

& (=Y
Sn(x)—jzl:x_*_j,

then {5,(0)} converges to Z(—l)j /j. Moreover,

/ — S (_1)j+l
n (")“,.; i

and {s,’}, i.e., the series

converges uniformly on [0, c0) by the Weierstrass M-test. So by part (c), {sn}
converges uniformly on [0, 00), i.e., the series

i =1y
=l

converges uniformly on [0, 00).

1 1
ngngofo fn=f0 f,

1
lim £ =0.

First of all, choose § > Osothat | f(x)— f(1)| < 1 on[1-4, 1]. Then for sufficiently
large n we also have | f,(x) — f(1)] < 2 on[1 -4, 1]. Then | f(x)}] < f(1)+2 on
[1—6,1],s0for 1 — 38 < xp < 1 we have

1
[ o) dx

26. Since we have

we just have to show that

1
< | lfu(x)ldx

Xo
1
<[ ifeids
]_
<é-(f(1)+2).
So we just have to choose d so that this product is < &, and then n so large that
I1-6d<1-1/n
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This is not true if convergence is not uniform. If { f,} is the sequence of functions
in Figure 4 on page 492 of the text, then

gn(x) = fn(l —Xx)

give a counterexample.

27. (a) If convergence is not uniform, then for some &£ > 0 there are arbitrarily large
n with f,(x) > &£ for some x on [a, b]. So we can choose distinct x, x5, x3, ...
and ny < ny <n3 <--- with

fn* (xk) = E.

Some subsequence of the {x;} converges to a point x in [a, b]; simply by throwing
away terms from the original sequence and renumbering we can assume that the
original sequence x; — x. Now f,(x) — f{(x) = 0 so there is some » such that
fn(x) < e. Since f;, is continuous we have f,(y) < ¢ for all y close enough to x.
Hence, in particular,

fo(xk) <€

for large enough k. But if k is also large enough so that n; > n then
Ju(xe) < fa(xe) <&,

a contradiction.

(b) Apply part (a) to the functions { f, — f}.

(¢) The functions in Figure 1 on page 491 of the text give a counterexample on [0, 1]
when f isn’t continuous. They also give a counterexample on the open interval
(0, 1), with f = 0.

28. (a) Since x, — x and f is continuous, for any £ > 0 for large enough n we
have

(1) |f(x) — fa(x)] < &/2.

Moreover, for large enough n we have

lf) — faOM < &/2
for all y on [a, b], and in particular
2) | f(xn) — falxn)| < /2.
Adding (1) and (2) we obtain

| f(¥) = falxn)] < €.

(b) No, in fact, just choose all f, to be some function f which is not continuous
at x, and choose x, — x such that f(x,) — f(x) is false.
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(c) Choose x, as in the hint, so that

(%) | fa(xa) — f(xn)| > €.

By the Bolzano-Weierstrass theorem some subsequence of the {x,} converges. By
throwing away terms of the sequence and renumbering, assume that x, — x. Then
by assumption f,(x;) — f(x), so (x) gives

£ < lim |faCtn) = FG)l = 1£(x) = F(x) =0

29, (a) Suppose {ug, ..., um} contains {t, ..., #»}. For each i we have

=y <Ugy) <+ <UB =Ly
for some ugy,...,ug. Then f has the constant value s; on each (ug4j—1, Uotj).
Thus the sum le,(t, — t;_1) is the sum Z s (u, uj—1) where s; is the con-
stant value of f on (uj_1,u;). To deal w1th the general case, consider a partition
containing both {ug, ..., um} and {to, ..., ts}.

(b) Choose N so that for n > N we have | f(x) — sp(x)| < ¢/2 for all x in [a, b].

(c) From |s,(x) — s;m(x)| < ¢ it follows easily that

Sp — smi < (b — a).

(d) Choose N so that for n > N we have both | f(x) — sp(x)| < &/2 and | f(x) —
sm(x)] < £/2 for all x in [a, b].

(e) For any ¢ > 0, choose N so that if n > N, then

b b
lim[ s,,—f spl| <
n—00

W] m

t t £
H—POO n n < 5,
15 () — ta(X)] < 3(58— 5 forallxin[a,b]
The last equation implies that
£
Sp — | < 5

b b
It follows that | lim f Sp — lim | <eg

n—r 00 a n—o0o a
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(f) Let

A ={y:a <y < b and there is a step function s
on [a, y] such that | f(x) — s(x)| < ¢ for all x in [a, y]}.

Let o = sup A. Since f is continuous at «, there is a § > 0 such that | f(x) —
f(@)| < e for |x —a| < 4. Thereis some y in A with ® —§ < y < «. Thus there is
a step function s defined on [a, y] with | f(x) —s(x)| < ¢ for all x in [a, y]. Define
s1(x) = s(x) for x in [a, y] and 51(x) = f(a) for y < x < . Then s, is a step
function defined on [a, o] with | f(x) — s1(x)| < & for all x in [a, a]. This shows
that « is in A. Similarly, if @ < b, then pick § as before, and let s be a step function
defined on [a, a] with | f(x) — s(x)| < & for x in [a, a]. If 51(x) is defined as s(x)
for x in [a, o] and as f(a) fora@ < x < @+ 38/2, then | f(x) — 51(x)| < & for x in
[a,a +8/2]. Soa+48/2is in A, contradicting the definition of «. So o = b, which
completes the proof.

[The class of regulated functions can be determined more explicitly, as follows.
A step function S has the property that lim+ s(x) and lim s(x) existforall a. Itis

X—rd X—=>»q-
not hard to show that a uniform limit of step functions must have the same property

(the proof is a simple modification of the proof of Theorem 2). The converse is also
true—if f has right and left hand limits at every point, then f is regulated. Notice
that the class of regulated functions is smaller than the class of integrable functions.
For example, if f(0) =0and f(x) =sinl/x for 0 < x < 1, then f is integrable
on [0, 1] (by Problem 13-19, for example), but is not regulated.]

30. The function f, is shown below. The length of each f, is 2, since two sides of
an equilateral triangle have a total length of twice the other side.

3| —

[O |
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1. (i) |(3+4)~!| = 1/{3 +4i| = 1/5; 6 = —argument of 3 -+ 4i = — arctan 4/3.
(v) |3 +4i| = /13 +4i| = /5; 6 = (arctan4/3) /7.

2. (i) 24 x24+1=0,s0

x2_—1:l:«/1—4
- 2
_ —1+43i o L=V
- 2 2
= COS 2m -+ i sin 2 Oor cos ax 4+ sin an
=987 3 3 T
So x is one of the square roots of these numbers, so x is one of
T .. 7 1 «/g
cos§+tsm§-—5+71,
cos4n’+isin4n— 1 ﬁi
3 3 2 2
coszn-}-isinzn*— 1+\/§_
3 3 - 272"
cossjr+isinsn-—1 ﬁi
3 372 27
(iv)
x—7 44
3 3
1
y=§+21

3. (ii) All z with [z] = 1.

(iv) The ellipse consisting of all points the sum of whose distances from a and b is
¢, if ¢ > |a — b|; the line segment between a and b if la —b| =c; @ if |a — b| > c.

6. For one value of +/—i the point z+/—i is obtained by rotating z by an angle of
—m /2, so the diagonal goes into the real axis under multiplication by +/—i. Simi-

larly, for one value of Vi, multiplication by /i is rotation by n/2. So Vi-z/=i
is obtained by rotating the plane until the diagonal lies along the real axis, then re-
flecting through the real axis, and then rotating back by the same amount. Hence

390
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z and /i - z4/—i are reflections of each other through the diagonal; we obtain the
negative of this answer for the other choices of +/—i and Vi.

7. (a) Since ay, ..., a,— are real, we have
O=(@+biY+an_1(@+biYr14...4+ag
= (TFF) 4G (TFF) " g
= (@ —bi)* +ap—1{a — b)) '+ .-+ ap.

(b) Since a + bi and a — bi are roots, " + an—12" ! + -+ + ap is divisible by
z — (a + bi) and z — (a — bi), and by their product \

[z — (@ +b)]-[z— (@ — bi)] = 22 — 2az + (a* + b?).

8. (a) Suppose that a +by/c =a' +b'\/c. f b=V, thenalsoa=a'. If b # P/,
then we would have /¢ = (@ — a')/(b — &), contradicting the fact that /¢ is
irrational (Problem 2-17).

(b) The proofs are almost exactly the same as parts (1)~(6) of Theorem 1.
(c) Since ay, ..., a,— are integers, we have
0=(a+bc)" +an1(a+bsc) 4 +ag
n n—1
= (a+bﬁ) +a,1 (a+bJE) +---+ap.

9. The 4 roots of i are
cosf +isin@

for
0=2, Z4I IZin Z4Z
8 8§ 2 8 2
We have
n r 2
COSZ=SmI=T;

using Problem 15-15(b) we then have
n \/1+J§/2 _ V242

COS — =

) 2 2
T [1-v212 _ 2-42
8 2 - 2
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SO

%=J2;ﬁ+i\/2;\/§_

10. (a) If 0" = 1, then (0*)* = 0™ = (W")* = 1.

(b) There are two primitive 3™ roots and 4 primitive 5% roots (in each case, all roots
except 1); there are two primitive 4th roots (i and —i) and six primitive 9 roots
(if @ is the root with smallest argument, then 1, @, and @® are not primitive). [In
general, the number of primitive n™ roots is the number of numbers from 1 to n — 1
that have no factor in common with 7.]

(c) By Problem 2-5,

l+o+---+o™ = =0.

11. (a) The assertion is clear if the line is the real axis, because in that case the
imaginary parts of z, ..., zx are either all positive or all negative, so the same is
true for the sum. In general, let & be the angle between the line and the real axis,
and let w = cos@ + isin6. Then zyw™!, ..., zzw™! all lie on one side of the real
axis, so the same is true of zyw ™! +.- -+ zzw™! = (27 +- - - +zx)w™!, which shows

that z; + - - - + zx lies on the corresponding side of the original line.

(b) z~!is above the real axis if and only if z is below the real axis, and conversely.
This proves the assertion when the line is the real axis. The general case then follows
as in part (a).

12. The hypotheses remain true when each z; is multiplied by the same w. So we
can assume that z; is real, in fact, that z; = 1. It follows that z5 + z3 is real, so
22 = a + bi, 23 = a — bi. Moreover, 2a + 1 =0, so a = —1/2; since a? + b* = 1,
we have b = +/3/2. The points 1, —1/2 + ia/3/2, and —1/2 — i+/3/2 do lie on the
vertices of an equilateral triangle.
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1. (@) If |x — xo| < &, then |a(x) — a(x0)| < &. Similarly, if |y — yo|] < 4, then
1B(Y) — BOI < 4.
(b) g =foai h=fop.

2. (a) g is a continuous real-valued function on [0, 1] with g(0) = f(z) and g(1) =
f(w). So g takes on all values between f(z) and f(w) on [0, 1].

(b) Let f(x +iy) =x +i(y + x%), on [0, 1] x [-1, 0].

3. (a) There is, by the Fundamental Theorem of Algebra, some number z; such
that z;" +a,,_121"" +---+ay=0. Then

a1 4 b ag = (2 — )@+ baa?" P+ + o)

for some numbers by, ..., bp—2 (as in Problem 3-7). Using an inductive argument,
we can assume that

n
ZJv:--l + bn_2zn-2 4.+ bO = H(Z — Zi)
=2

for some numbers z,, ..., Z,.

(b) According to Problem 25-7, the non-real numbers z;, . . ., 2, from part (a) occur
in paris which are conjugates of each other, and (z — z;)(z — Z;) has real coefficients.

4. (a) is obvious.

(b) If f =37 h*and g =37 k;? then

f8=2_ (hikj)*.

i=1 j=1

(c) If f(a) =0, then f(x) = (x —a) f1(x) for some polynomial function f;. Then
Sitx) > 0for x > a, and fi(x) <O for x <a. So fi(a) = 0. Thus every root of

393
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f is a double root, so f(x) = ﬁ (x — a;)%g(x) where g(x) > O for all x. Since g
has no roots, Problem 3 shows ltTllat g is a product of quadratic factors x2 + ax + b
without roots. Thus a? — 4b < 0, so we can write

XX4ax+b= (x+§)2+ (\/B_—_¢1-2/—4)2,
which is a sum of squares. So f is a product of sums of squares, so f is a sum of
squares.

5. (a) Follow the procedure given in the hint, to obtain a decreasing sequence of
rectangles [a;, ;] x [ci, d;], each containing infinitely many points of A. By the
Nested Intervals Theorem (Problem 8-14), there is a point x in all [4;, ;] and a
point y in all [¢;, d;]. Then z = (x, y) = x +iyisinall [a;, b;] % [¢;, d;]. If &€ > O,
then for some i the set [a;, b;] X [c;, d;] is contained in {a : |z — a| < &}, so there
are infinitely many points of Ain {a : |z — a| < &}.

(b) If f were not bounded on [a, b] x [c, d], then there would be points a, in
[a, b] x [c, d] with | f(a,)| = N. If z is a limit point of {a, : n in N}, then for every
¢ > 0 there are points a, with |a, — z] < &, so f(a,) = N. This contradicts the
fact that f is continuous at z.

(c) Let o = sup{f(z): z in [a, b] x [c, d]}; this exists by part (b). If & # f(z) for
all z in [a, b] x [c, d], then g(z) = 1/(f(z) — ) would be a continuous unbounded
function on [a, ?] X [c, d].
6. (a) If ¢ = a + Bi, then z = a + bi satisfies z2 = c if and only if
al—pt = o,
2ab = 8,

which can be solved to give
a=\/2a+2\/a2+52 a=—\/2a+2\/a2+ﬁ2
B ] or 4 -B
b = b =
2\/2a+2\/c¢2+ﬂ2J \ 2\/2a+2\/0t2+ﬁ2

(b) If n = 2k, then a solution of z¥ — +/c = 0 will be a solution of z2* — ¢ = 0.
(If k is even, we can continue until we reach an odd number.)

(c) For this f we have
g(z)=fz+z20) =(z+2)" —c= (2" —x)+ (nzo)z+--- .

(d) Suppose, for example, that —c = o + Bi with ¢, 8 > 0. If 8" < «, then
| — ¢ — 8" < |—c|. The same argument works for all other cases.
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7. (a)

k
FEy=) mez—2)™ -z~ z)™ ... —2)™
a=1

k
= Zm“(z —a)™ . @=z)™ .. T )™~ 2) "

a=l

k
=@-z)"...2—z)"* ) maz—z)7"

a=1

(b) If z1,..., 2 did all lie on the same side of a straight line through z, then

Z—21,-..,2— zx would all lie on the same side of a straight line through 0. The
same would then be true of mi'(z — z1), ..., mp (2 — zx), since m;, ...mg > 0.
By Problem 25-11, this would imply that g(z) # 0, a contradiction.

(¢) If z satisfied f'(z) = O but z were not in the convex hull of the set {z;, ..., zx},
then there would be a straight line through z containing the points zy, ..., Z¢. This
contradicts part (b).

8. The proof is exactly the same as for real-valued functions defined on R.

9. (a) Let zo = xo + iyo. Since
fo+2) — f(z0)

Z

a+if = f(z0) = lim
z->0
it must be true, in particular, that for real § we have

fzo+8) — f(z0)

*+1p=

)
i [EF+ 8 —g(0) | hxo+8) — hixo)
T 550 3 S
= g'(x0) + ik (x0),

s0 o = g'(xo) and B = h’(xp).
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(b) We also have
Fxo+3i) — f(z0)

a+iﬁ=§in(1)

8i
= lim [k(yo + 8)_— k(o) 4 il (yo+ 6)_— l(}’o)]
50 o di
kl
= (i)io) +I'(y0),

s0 I'(y0) = « and k'(yo) = —B.

(c¢) Part (b) shows that u and v are constant along horizontal and vertical lines.

10. (a)

1/ (—D*k! (—1)*k!
By — - —
Frm =5 ((x —OF T i+ i)k+1) '

(b)
arctan®(0) = F&=1(0)
Dk -11 7 1 1
B 2i ((—1)* - z_*)
(=1 'k - 1)!
- 2i
[If k is even, then arctan® = 0. If k = 2/ 4 1, then arctan®+1(0) = (2D)1(—1)*.]

i1+ (=D 1.
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1. (ii) Absolutely convergent.
(iv) Absolutely convergent, since |1/2 4+i/2| = «/5/2 < 1.

2. (ii) The limit
n+1 1
lim |z|""" /(n + 1)

n—>0o |z|n/n

lz] lim —— = [¢]
= m — =
Zrl--><>on+1 ¢

is < 1for |z| < 1and > 1 for |z] > 1.

(iv) The limit

.z e+ 1427 . n41427"!

lim = |z| lim = |z|
n—00 |z|]?(n 4+ 271) n—»oo p4 278

is < 1for|z] < 1and > 1 for |z] > 1.

3. (ti) Since

L= = (by Problem 22-13),
e

n—oo nt n—-o0 n
the radius of convergence is e.

(iv) Since

_ Ynlpel _(¥m) Il .
nl_xmo o = |z|n1_l)llgo =3 (by Problem 22-1(vi)),

the radius of convergence is 2.

4, (a) Since nl__ipr_g'o via®iz| = nf_i:réo v lanz"|, Problem 23-7 shows that the series
¥ 20 o anz" converges (absolutely).
(b) If nﬁo Vl0anz"| = 1 + £ for ¢ > 0, then there are infinitely many n with

Vlanz*| = 1+ £/2, 50 |apz"| = (1 + &/2)" for infinitely many n, so the terms a,z"
are unbounded.

(¢) Since the terms +1/|a,| are unbounded, the same is true for {/|a,z"| for z # 0.
This is all the more true for |a,z"|, 0 3_ -, anz" diverges.

5. If z is on the unit circle, then |z”/n?| < 1/n2,50 Y o2 | |z4|/n* converges by the
comparison test.
The seties Y no, 2" certainly diverges for z = 1. If z # 1, then by Problem 2-5

ZZ 1—z
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If lim ZN ; 2" existed, then lim zV would exist, which is impossible, since

N-—»o00
l = hm zV would imply that zI = hm Nl =l orz=1
N-ooo N—co
The series Y ., z"/n diverges for z = 1 and converges for z = —1.

6. (a) We have the absolutely convergent series

o -Z g‘;’_

k—O

Theorem 23-9 holds just as well for complex series, so €° - e is given by any sum
containing all pairs of products. In particular, we can choose the Cauchy product

n—O cpn, where

Zkl (n—k!

But this is exactly the power series for

n=0
since
RN k, n—k
(Z+w) (k)z W
n! prd n!
_i n! kan—-k
e~ Kl(n—k)! n!
_ii’i wh— —k
—ok (n—i)!
(b)

sin z cos w + cos z sin w

er'z_e-iz eiw _|_e—iw eiz +e—t'z eiw_e—iw
-(555) () () (=)

ei (z+w) __ e—-i(z+w)

= T = sin(z + w)
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COS Z COS W — Sin z sin w

B eiz - e—iz eiw + e—iw eiz + e-—iz eiw - e—iw
- 2 2 2i 2i

gilztw) + e—iz+w)

399

)

= = COS
2% (z+w)
7. (a) Since ¢ = cosy + isiny, the problem is just a restatement of Prob-
lem 15-22.
(b)

et = |e* - €7] = |€*| - [cos y + i sin y| = |€*].

8. (a) If z # 0, then z = r(cos & + i sin @) for some r > 0. Then exp(logr + i8)

=2

(b) We have sin z = w when

2i
(€'%)? — 2iwe’* — 1 =0,

iz 2iwtv—4w+4
e’ =
2

=iwt+1—w,.

This equation can always be solved for z, by part (a), since iw = +1 —w # 0,

9. (i) We have

and if we write

COS Z
then we find
1
ay — E =0
an 1
TR
leading to
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Hence

2 3
Z 5 2 Z
tan — 1+—+-—4+... __+_.+..
Z ( 2 24Z )(z

6
2

14 5
-z+§z +-1—§z +e

(ii) If we write

Vi—z=14az+a>+--

5
120

then
l—z=14+2mz+ Qar+ a2 + -
so 2a; = —1 and 2a, + a;2 = 0, hence
1 1
l—z=1—=z—=2>+--
Z 2z 8z:+
Then if we write
1
=14biz+by2*+--
1—-2
we have
1
b1—5=0
bh 1
bg—E—-B-_O,
SO
1 1 3
=14+-z+=7°
— +2z+8z+

We could also get this from the binomial series (Problem 24-7), which holds for

1-2""2=1+ (_ 11/ 2) (—2) + (_1/ 2

1, G221 ,

lz] < 1:

)zz+...

=14+ =
+22+ 5

Finally, we have

1 3
21— V=gt 2+ 4.

2 8

)



Chapter 27 401

(iif)
3 2
3 Z——+-- 3
sinz __ 1 _Z_ ( 6 ) (z—--)
e 1—(2 6+ )+ 3 + 6 +
3 2 4 3
b4 F4 F4 F4
=tms T2 e 6T
2 4
Z 4
—Z+E“'E+'
S0
esinz _ 1 z 3
=142 4.
z +2 6+
(iv) We have
2 3

b4
loo(1 . S
og(l+2)=z 2+3

(we know there will be some power series for log(1 + z), so it must be this one,
since this works for z real). Hence

2 3
F4 z
log(l—2)= 7 — — — =— — ...
og( 2) b4 ) 3
SO
4 6
1 1_2=__2_Z__..Z__....
og(l —z%) 73
(\2)
3 5 3 5
2, _{(,_ % < _.. _r,
smz—(z 6+120 )(z 6+120+ )
4 6
_2_ %, 2%
=2z 3+45+
SO
sin? z 2z 274
—=1-—=+-——=++
z 3 45

(vi) From (i) we have

so
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‘o2 5 9
sin

@ _ (2,2 ...
zcos2z 6 120

50

P S T
2
(vii) We have
11 1
#-222+3 3 1__(2_22”5
3 3

3

2
1+z2+—z4+---)

_ 1 1Jr(zz2 z4)+(2z2 z4)2+
3 3 3 3 3
1 222 z4
=3ty gt
(viii) We have
1/2 1/2
«/m:(1+z)”2=1+({)z+( )z2+(£)z3+---
—1+1 1+1 > + -
22788 Y 16% T 13
80
wige-n (1, _ 12, s 5 a4, .
e (2z z+16z 1282+
1 1 2 1 1 3
R S L ST
+(2z 8z+ )+(22 8z+ )
2 6
_1+ 1+1 2y 1 +1 3
=37 8 7 8/% "\16 16 " a8
+ 5 L___!.. 4+
128 "128 64)°
1 1, 3,
EZ+Z§2 az+
SO

10. (a) This follows from Problem 26-9 with yo = 0.

(b) This follows from (a)} by induction.
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(c) Applying (b) we have, with a, = 1, for real x,
n
> a[a®w) +is®)| =o.
k=0

Since #® and 7®) are real, the real and imaginary parts of the left side are

n n
Zakﬁ(k)(x) and Zakﬁ(") (x),
k=0 k=0

so these must both be 0.

(d) If a = b + ci is a complex root of z" + a@,—1z2" 1 + --- + ap = 0, then
as in Problem 18-42, the function f(z) = €% = ePZcoscz + ieP?sin ¢z satisfies
(x). So (assuming the g; are real) it follows form (c) that g(x) = e”* coscx and
h(x) = eP* sin cx also satisfy (x).

11. (a), (b) € = ¥ = ¢*(cosy + i siny) = w means that ¢* = |w|, so x =
log |w|, and y is an argument of w. In particular % = ¢** if y, and y; are
arguments for w (for example, € = ¢2*'), so exp is not one-one.

(c¢) Suppose that there were a continuous function log defined for |z| = 1 such that
exp(log(z)) = z for all z with |z] = 1. Then we could write log(z) = a(z) + iB(z)
for continuous real-valued functions o and 8. We must have a(z) =0 for |z| = 1,
and B(z) an argument of z for |z} = 1. This contradicts the fact that there is no
continuous argument function.

(d) If @ is an argument for a, then one logarithm of a is
log |a| + i6.

It is easy to see that
em[log lal+if]

is indeed the product of £'8141+# with itself m times, i.e., ™. Moreover, any other
logarithm of a is
loglal 4 i@ +i - 2km

for some %, and
em[log lal-+i@+i-2kx] __ a™ . ezkm:rri

=a™,  since m is an integer and ¢*™* = 1.

(e) As we know from the proof of Theorem 25-2, the n' roots of a have absolute
values +/la| and arguments

1
;(B+2kn')i, k=0,....,n—1.



404 Chapter 27

So they are
¢lo8 VIal+5 @+2km)i _ ;i {loglal+(@+2km)i) k=0,... n—1.

The logarithms of a consist of
log la| + (6 + 2km)i.
So a™/™ consists of all values

m ,
e-n——[log Ia|+(6+2k:r)t],

where we can clearly consider only k = 0, ..., n — 1. Then these numbers are b™

for

b = enlloslal+@+2%km)i]

1.e., for b an nth root of a.
(f) The logarithms of a are

2kmi, a>0
(k+ Dri, a <0

So the values of a” are |a|? times the numbers
g2kbri (or e(2k+l)bm') .

logla| + [

Since b is irrational no two exponents differ by an integral multiple of 2xi, so all
these numbers are distinct.

(g) The logarithms of i are numbers of the form i (2kz + 7 /2), and the values of i’

are the real numbers
o~k +7/2)

(h) 1/ has the values ¢'®*™) = ¢=27_ The logarithms of these real numbers have
the values —2km + 2lmi. So (1')* has the values
pi (~2km42miy _ ~2An

But 1~! has only the values e~ = 1,

(i) The elements of a®€ are e?, where z is a logarithm of a, so that

et =a.

But then
e’ = (ez)b = ab,

so bz is a logarithm of a®, so eP°? = ¢%2¢ is an element of (a”)°. It is not generally
true that a?€ = (ab)c M (a°)?, attractive as that hypothesis might seem. It fact, part
(h) shows this is false whena =1,b=c =1.

12. (a) |x+i| = 1+ x2, and an argument for x +i is arctan 1/x = w/2 — arctan x,
while an argument for x — i is arctan(—1/x) = — arctan 1/x = —(x /2 — arctan x).
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(b) From part (a) we obtain

1 . ) 1 T
2—i[log(x —i) —log(x +i)] = % —2i (E - arctanx)
= arctanx — 7 /2,

which differs by a constant from the usual answer, arctan x.

13. (a) Since a, —am = (bn — bpy) + i(cn — Cm), We have |b, — by| < |a, — ap|
and |cp — cm| < |@an — aml, so {b,} and {c,} are Cauchy if {a,} is. Since we also
have |la, — am| < |bp — by| + |cn — cml, it follows that {a,} is Cauchy if {b,} and
{c,} are.

(b) If {a,} is Cauchy, then {b,} and {c,} are, so {b,} and {c,} converge to « and 8,
respectively. Thus {a,} converges to & 4 i, by Theorem 1.

(¢) The hint is the answer. Since Cauchy sequences of complex numbers are the

same as convergent sequences of complex numbers, there is a Cauchy criterion for

convergence of complex series: Y .o, an converges if and only if lim |an41 +
m,n—=>00

-+ -+ay| = 0. Now write down the proofs for the first halves of both Theorems 23-5
and 23-8, interpreting all numbers as complex numbers.

14. (a) We have

n—1
Zeikx — eix . Z(eix)k

k=1 k=0
1—- e!‘nx

1~ eix

einx/z . e-inx/Z(l — einx)
eix/2. e—ix/Z(l — eix)

—inxf2 _ inx/2
= eix/Zeinx/Z ] € et/

n
sin (—x)

= il +Dx/2 2
X

sin —

2

by the formulas on page 555 of the text.
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(b) The real and imaginary parts of this equation give

sin (g'X) (?l-l'-l )
—— +COS 2 X

cosx+:--+cosnx = =
sin —
2
sin(n )
-X
) ) 1
sinx +---+sinnx = __Zx - 8in (ix)
sin — 2
2

To transform the first, we note that by Problem 15-14 we have

1 _x My —[—ZX
ZSin(;x)cos(n:Ix)=sin([n+2]x2+[ 2])008([714-2]-; [ 2])

. . X
=sin(x + 3)x —sin=

2
SO
sin (EI) Sil'l(n 4+ l)x — sin f.
VIV L5 A 2 2
sin x 2 - 2sin x
2 2
sin(n + %)x 1
=T x 7
2 sin =
sin 5
15. (a)
1
Fogs = @n+2 _ Gntl + an —14 On_ _ 14—
n+1 dn+1 Qn+1 I'n
(b) If r = lim r, exists, then
n—00
. . 1 1
r=limr,=lim |+ — =14 — =1+-,
n=>»00 n—>00 rﬂ hm rn r
n—00

sor — (l +/5 ) /2 (clearly r > 0). To prove that the limit actually exists, note that
if rp < (1+«/5_)/2, thenr,2 —r,— 1 <0, s0

2r, + 1
rn < = Inya.
n " 1 n+
Thus ry < r3 < rs < -+ < 2,50 lim ry,4; exists. Similarly, lim ra, exists.
n->» 00 n-—»00

Moreover, the equation r, 2 = (2r, 4+ 1)/(rn, + 1) leads, as before, to the fact that
both limits are (1++/5)/2.
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(¢) The limit

. lan12¥t . Qpyl 14+ /5
lim ———— = lim |z| = H
n—»0  |a,z?| n—»0o  @q 2

is < 1 for |z <2/(1++/5) and > 1 for |z| > 2/(1 ++/5).

16. (a)
z z e€&+41 2z et +1
4z - _Z 1
2+2 ez —1 2( +ez—1)
— z .
T et —1"

e—z+1__(e“z+1)ez_1+ez e* +1
e Z—1 (e72—1)e2 1—e2 ez—1"
These formulas show that z/(e* —1) = —z/2 4+ h(z) where h is even. Consequently,

the power series for # contains only even powers of z. Thus —1/2 = b; is the
coefficient of z in the power series for z/(e* — 1), and b, = 0 forodd n > 1.

(b) If n > 1, then the coefficient of z* must be 0. But this coefficient is Y7~ (*)b.
i=0 \;

(c)
cos 2 (e + e72) /2
sing _ ° (e — e~i2) f2i
—2iz eziz/2+ e~ 2z/2
2 oZz/2 — g—2iz]2

=3 o™

1
0

E W( 1) 22'122".

n=1

(d) From the formula tan 2z = 2tan z(1 — tan? x) (Problem 15-9) we have

1 1—tan?z tan?z
cotz —2cot2z = - = =tanz.
tan z tan z tan z

(e)
tanz = cotz — 2cot 2z

= bZn
— _1)np2n 21 1)n92n ;201
Z(Zn),( 1) ;(2 T
2. by,
Z(_z_)_l.( l)u—122n(22n )2". 1.
n=1
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17. (a) Applying () to f*) we obtain

fOE+1)- O = Zf

(k+n) (x)

Thus ety
o0 b b n
> GO+ - 0= ’;‘;Z ALY
The coefficient of f1)(x) is by/0!1! = 1. The coefficient of fU)(x) for j > 1 is
Jj—1 bk 1 j—1 i
2k _ by =0, by Problem 16(b).
gk!(j—k): j!k=0(k)k y Problem 16(b)
(b)
n (s ¢] b
FO+-+ flm)= Z(Z k—’;[f“‘)(x +1) - f(")(x)])
x=0 Mk=0
Z =) O+ - B0
k_O Jc-O
=) 3 -—[f(")(n +1)— fPO)l.
k-O

{(¢) Let f be a polynomial function with f’ = g. Then f(n+ 1) - f(0) = "H g.

Since by = 1, part (b) becomes

n+1 oc
sO+ kg = [ g0+ Elgt D+ 1 - OO
k=1 """

(d) g(")(x) = p!xp‘k/(p — k)! for k < p, so part (c) applied with n — 1 instead of

n gives
n—1 n+1 p+1 b 1
ka=f x”dx+2—k——-£'——-——np_"+'
— 0 ~ k! (p—k+1)!
— np'l"l + P+1 ﬁ p np—k+]
p+1l = k\k—-1 ’
Thus
n nptl P+1 p
kP = P4 pnP p—k+1
; p+1+n+1n +E (k I)n
+
_ np+1 nP n 4 bk p np—k-}-l.
p+ 1 2 = k \k—1
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18. (a) Clearly ¢,(0) = b,. If n > 1, then

dn(1) = :Zz:o ( ) n—k = (:)bk, since (:) = (n i k)

(:) bi+bs =b,, by Problem 16(b).
k=0

LI
¢n’ = E k(k)bn—-kxk-l
k=1

n-1 n '
= k+1 b,_
;( + )(k—l-l) n—1+kX

To prove the last equation, note first that

¢2(1—x)=(1—x)2—(1—x)+1=x2—2x+1—1+x+é

=x*—x + = = ¢2(x).

Now suppose that ¢, (x) = (——1)”¢,,(1 — x) for some n > 1. Then the function
g(x) = ¢p41(1 — x) satisfies
g(x)=—@nti'(1 —x) = —(n+ 1¢(1 — x)
= (="' + Déu(x) = (1), (x).

Moreover, g(0) = @n41(1) = bpy1 = $n41(0), 50 g(x) = (=1)"*'@y41(x) for
all x.

(b) Substituting from (*) we have

N
S B0 +1) - O] = zj z !
k=0 °

The coefficient of f'(x) in the double sum is bo/0!1! = 1. For 1 < j < N, the
coefficient of fU )(x) is

(k-+n) ( x)

+ Z —RN k (x)

g kl(} B = by Problem 16(b).

(¢) The term Ry_z*(x) is the remainder Ry_z »(x + 1) for the function f®. Thus

x+1 p(k+N—k+1)
et = [ L4200

x+1-=0"d:.
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So
N N
>, -b—kRN_kk(x) = f i 3 b—(x +1 -0 fN*D () dt
~ k! x =L kUN —k)!
1 opn(x +1—1)
_— (N+D
= N f (t)dr.

(d) From parts (b) and (c¢) we obtain

N
@+ -+ fx+n =) %[f""(x +n+1)— fO@)]

k=0

- f‘”“ ¢nx+j+1-1)
X

FAFD gy dy,

j=0
Applying this to g = f’ we obtain the desired formula.

() Iftisin [x+j, x+j+1],then x—¢ isin [—j — 1, — j]. Therefore, by definition,
YNx—)=¢xy(x+j+1-1).

19. (a) Apply Problem 18(d) with g = log, x = 1,n — 2 fornand N = 2. We
obtain

logn — 1) =1logl+---+ log(n -1

by (1
=f logtdt+—(logn—log1)+ 2(;—1)
1
") 1
—1)3 c——dt
+ (=D 1 2! 12
n 1 1 /1 V200
._fl logtdt 2logn+12(; 1)+1 22

1 1 /1 'lfz(t)
_nlogn—n+1——2—'1c::ogn-|—12(——1)—!-—1 o2

(b) Consequently,

logn—n+——+ + dt.

122 12 ), 222

logn! = log(n — 1)! +logn = ( ;) 1 \bz(f)

So

. n! + ¢2(t)
08\ L nt1/2g—nt1/12n 12 . 2t2
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(¢) Since ¥, is periodic, it is bounded. Thus [ y(t)/2¢2dt exists, since
S 1/¢2 dt exists. So we have

1Og( n! ) 11+ wmdt_fw wz(t)dt

nHi2g—ntijizn | ~ 127 | o2 272
_ 11 * ¥ (1)
=B+ 5 fn 212 dt
o0
¥ (t)
= loga — i 7 dt,

or

n! % Yra(t)
log (ann+1/28—n+1/12n) =~ .[: 22 dt.

(d) Part (c) implies that

o 8]
. ¥ (?) : n!
0= lim — j}: 212 dt =ngngolog anht172g—n+1/12n

n—0d

S0
= Ii n! l n!
= lum = umm ——.

Thus

. (n!)?
lm D ———————————] 1.

Replacing n by 2n and taking square roots we have

" (2n)! _1
Ry a(2n)2n+1/2g-20 — 7’

SO
li (n |)2 a2n
naoo 2n)! o

a2n2n+l e—2n 22n

nl—l-g:lo a(2n)2"+1/2e“2"ﬁ

_ p2nt1/2 ﬁ22"
=« lim

n—o00 22"'\/5112""'1/2\/5
(14

—_— —

=7

ﬁ:

(e) By Problem 18(a) we have ¢’ = 2¢. Also ¢3(0) = b3 =0, and
$(x) = — (1 — x),



412 Chapter 27

from which it follows that

$3(1) =0
#s(1) =0.

It follows immediately that
1/2

1
ba(t) dt = f da(0) dt =
0

0

Clearly
>0 for0<x=<1/2

Vf(x)=f0 Ya(t) dt {50 for1/2<x <1,

with ¥ (n) = O for all .

Moreover, ¥ (x) = —¢ (1 — x) on [0, 1], since ¥ = ¢3/3, s0

- x -
¥ix) = f Y(t)dt >0 on [0, 1], and hence everywhere,
0

and 1!=J(n) = 0 for all n. Now we have

1
[ w0 gz =90 7| i [Th0 - ga

2t
= ¥(t) - 5 dt
= 1% i 1
=90 5| +3) V@) adt
= fn ¥ th

(f) The minimum of ¢ (x) for x in [0, 1] occurs at x = 1/2, where ¢ (x) = —1/12,
and the maximum occurs at x = 0 and x = 1, where ¢»(x) = 1/6. Clearly

o0 o0 o 0]
[ f 92014 < P O
L 22 L 212 . 122 12n
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(g) From parts (c) and (d) we have

1 n!
“1m = log (mnn+1/28-n+1/1u) <0
SO \
—1/12n n:
€ < Vom a2 ~nti]12n <1
or

V2 " 2678 < gt < 2 pt 2t 120
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1. Itis clear that a4b = b+a, since the table for 4 is symmetric. Clearly a40=a
for all a, and condition 2(ii) is satisfied because each row in the table contains 0.
To check that (a 4 b) + ¢ = a + (b + ¢) it suffices to consider only cases where
a, b, c # 0. Because x 4 y = y + x, this equation clearly holds when a = ¢. This
leaves the cases

A+ +2=14+bB+2),

CH+D)+1=2+E+1),
which are equivalent to each other, either of which can be checked by letting b = 1
and 2. Conditions (4)—(6) are checked similarly. Finally, (7) is clear if a = 0 or 1.
For a = 2 we can assume b, ¢ # 0 and the condition is clear if » = ¢ = 1. This
leaves only the casesa =2, b =2, c=2anda=2,b=1,c=2anda =2,
b =2, ¢ = 1, the last two being equivalent.

F cannot be made into an ordered field because 1 = 12 would have to be positive,

but l4=1+41=0.

2. F will not be a field because we will have 2.2 = 0.

3. As in Problem 1, conditions (2), (3), (5), and (6) are clear. Condition (1) can be
checked case-by-case. To check (5) we can assume that a, b, ¢ # 0, 1. This leaves
only the cases (€ +B)ea =(xB)saand (d+B)-B=a-(B-h).

4, @) a¥+a=a-1+1)=a-0=0

®B)0=a"1l0=a"la+a)=1+1

5. (a) The assertion is obvious when n = 1. Suppose it is true for n. Then

A+ - +D A+ +D=Q+---+D-([1+---+1]1+1)

m times n+1times m times n times
=q+-;-+1)-g1+-;-+1)+(1+---+1)
m times n times m times
=@+ +D+Q+- 4D = 1441 .
mn tYimes ml;mes mu+m——:m(n+1)

times

(b) If m were not prime, so that m = k! for some k,! < m, then

0=+ 4+ =4+ -4+ =a-b.
m=k] times  times ! times

Therefore either a = 0 or b = 0, contradicting the assumption about m.

414
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6. (a) If this were not true, then P would have infinitely many distinct elements,
namely, those of the form

14+.--+1

[ ——

n times
for all n.
(b) Suppose m > n. Then

14 #l=14 - +)=A+---+1)=0.

m—n times m times n times

7. The solutions are
x + (ad = Bb) + (ad = bc)~!,
y = (ac = Ba) « (bc = ad)™1,

8. (a) One, namely 0.

(b) If a has one square root b, then it also has the square root =b. Moreover, if
¢ = a =b?, then (c =~ b)* (c +b) =0, 50 ¢ = b or ¢ = —b. Consequently, b and
~b are the only square roots; these are distinct precisely when 141 5% 0.

9. (a) is a straightforward check

(b) In part (a), the symbol 2 means 1 4+ 1, which is 0 in F>; the solution in part (a)
is correct only if 141 # 0.

10. (a) Most conditions require only a straightforward check. The element (0, 0)
will play the role of 0 and (1, 0) will play the role of 1. To verify 5(ii), note that if
(x,y) # (0, 0), so that x # 0 and y £ 0, then x? — ay? £ 0, since a does not have
a square root. Then

(x,y)o( z = )=(1,0).

x2 ~ay?’ x2 — ay?

(b) 1s a straightforward check.

(¢) (0,1) is a square root of 4.

11. (a) The inverse of (a1, a2, as, as) is

(ﬂ e @ _E)
y oy oy y)

where ¥ = a2 + a2% + a3? + a4?.
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(b) Each entry in the following table is the product a - b where a is on the left and
b is above.

[If we denote 1, i, j and k by vy, v», v3, and vy, then the definition of multiplication

can be written
4 4 4
(Za;vi) . (ijvj) = Z a,-bj(v.-vj).
i=1 j=1

i, j=1
This allows a simpler proof that multiplication is associative, by first checking that
it 1s associative for &1, £i, £j, £k.]
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Since the detailed examination of other constructions of the real numbers was
recommended only for masochists, detailed answers to the two problems in this
chapter will not be given.

417
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1. (@) fO)=f04+0)= f(0)+ f(0),so f(0) = 0. Since f is an isomorphism
and 0 # 1, it follows that f(1) # 0. Consequently, the equation f(1) = f(1.1) =
f()+ £(1) implies that f(1) = 1.

() 0 = f(0) = f(a +=a) = f(a) + f(=a), 50 f(=a) = =f(a). Similarly,
1= f() = f@-a™") = f@ - f@™), so f@™ = fla)™.

2. As an example, a proof for (a) will be given. If a? + 1 = 0 for some « in Fj,
then by Problem 1, 0 = £(0) = f(e®+1) = f(a-c)+ f(1) = f(@)?+1,so f(a)
is a solution of the equation x> +1 = 0 in F,.

3. () If x # y, then f(x) # f(y), so g(f(x)) # g(f(y), so (g o fHlx) #

(g o H¥).
(2) If z is in F3, then z = g(y) for some y in F,, and y = f(x) for some x in F;.

Then z = (g o f)(x).
(3)
@oNx+y)=g(f(x+y)=g(f(x)+ f(¥) =g(f(x))+2(f(¥)
=(go fHx)+ (g° H),
go NHx-y)=g(f(x-y)=g(f(x)- fF(¥)) = g(f(x))-g(f(¥)
={(go f)x)-(go HHy.
(M If x < y,then f(x) < f(¥),s508(f(x)) < g(f(¥), Le., (gof)x) < (goHH(¥).

4. g~' o f is an isomorphism foom RtoR,sog o f =I,50 g = f.

5. Let f(x +iy) = x — iy. [Since i? = —1 we must have (i) = f(—1) = —1,
so f(i) = i or —i, which suggests the answer. This particular isomorphism is
the only one, aside from the identity, which any one can write down, but there are
actually infinitely many others. This is one of those facts which requires, aside from
a knowledge of algebra, some of the sophisticated theorems from set theory which
will be found in references [8] and [9] of the Suggested Reading.]
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