
PROBABILISTIC

ROBOTICS

Sebastian THRUN

Stanford University

Stanford, CA

Wolfram BURGARD

University of Freiburg

Freiburg, Germany

Dieter FOX

University of Washington

Seattle, WA

EARLY DRAFT—NOT FOR DISTRIBUTION
c©Sebastian Thrun, Dieter Fox, Wolfram Burgard, 1999-2000

CONTENTS

1 INTRODUCTION 1

1.1 Uncertainty in Robotics 1

1.2 Probabilistic Robotics 3

1.3 Implications 5

1.4 Road Map 6

1.5 Bibliographical Remarks 7

2 RECURSIVE STATE ESTIMATION 9

2.1 Introduction 9

2.2 Basic Concepts in Probability 10

2.3 Robot Environment Interaction 16

2.3.1 State 16

2.3.2 Environment Interaction 18

2.3.3 Probabilistic Generative Laws 20

2.3.4 Belief Distributions 22

2.4 Bayes Filters 23

2.4.1 The Bayes Filter Algorithm 23

2.4.2 Example 24

2.4.3 Mathematical Derivation of the Bayes Filter 28

2.4.4 The Markov Assumption 30

2.5 Representation and Computation 30

2.6 Summary 31

2.7 Bibliographical Remarks 32

3 GAUSSIAN FILTERS 33

3.1 Introduction 33

3.2 The Kalman Filter 34

v

vi PROBABILISTIC ROBOTICS

3.2.1 Linear Gaussian Systems 34

3.2.2 The Kalman Filter Algorithm 36

3.2.3 Illustration 37

3.2.4 Mathematical Derivation of the KF 39

3.3 The Extended Kalman Filter 48

3.3.1 Linearization Via Taylor Expansion 49

3.3.2 The EKF Algorithm 50

3.3.3 Mathematical Derivation of the EKF 51

3.3.4 Practical Considerations 53

3.4 The Information Filter 55

3.4.1 Canonical Representation 55

3.4.2 The Information Filter Algorithm 57

3.4.3 Mathematical Derivation of the Information Filter 58

3.4.4 The Extended Information Filter Algorithm 60

3.4.5 Mathematical Derivation of the Extended Information
Filter 61

3.4.6 Practical Considerations 62

3.5 Summary 64

3.6 Bibliographical Remarks 65

4 NONPARAMETRIC FILTERS 67

4.1 The Histogram Filter 68

4.1.1 The Discrete Bayes Filter Algorithm 69

4.1.2 Continuous State 69

4.1.3 Decomposition Techniques 73

4.1.4 Binary Bayes Filters With Static State 74

4.2 The Particle Filter 77

4.2.1 Basic Algorithm 77

4.2.2 Importance Sampling 80

4.2.3 Mathematical Derivation of the PF 82

4.2.4 Properties of the Particle Filter 84

4.3 Summary 89

4.4 Bibliographical Remarks 90

5 ROBOT MOTION 91

5.1 Introduction 91

Contents vii

5.2 Preliminaries 92

5.2.1 Kinematic Configuration 92

5.2.2 Probabilistic Kinematics 93

5.3 Velocity Motion Model 95

5.3.1 Closed Form Calculation 95

5.3.2 Sampling Algorithm 96

5.3.3 Mathematical Derivation 99

5.4 Odometry Motion Model 107

5.4.1 Closed Form Calculation 108

5.4.2 Sampling Algorithm 111

5.4.3 Mathematical Derivation 113

5.5 Motion and Maps 114

5.6 Summary 118

5.7 Bibliographical Remarks 119

6 MEASUREMENTS 121

6.1 Introduction 121

6.2 Maps 123

6.3 Beam Models of Range Finders 124

6.3.1 The Basic Measurement Algorithm 124

6.3.2 Adjusting the Intrinsic Model Parameters 129

6.3.3 Mathematical Derivation 134

6.3.4 Practical Considerations 138

6.4 Likelihood Fields for Range Finders 139

6.4.1 Basic Algorithm 139

6.4.2 Extensions 143

6.5 Correlation-Based Sensor Models 145

6.6 Feature-Based Sensor Models 147

6.6.1 Feature Extraction 147

6.6.2 Landmark Measurements 148

6.6.3 Sensor Model With Known Correspondence 149

6.6.4 Sampling Poses 150

6.6.5 Further Considerations 152

6.7 Practical Considerations 153

6.8 Summary 154

viii PROBABILISTIC ROBOTICS

7 MOBILE ROBOT LOCALIZATION 157

7.1 Introduction 157

7.2 A Taxonomy of Localization Problems 158

7.3 Markov Localization 162

7.4 Illustration of Markov Localization 164

7.5 EKF Localization 166

7.5.1 Illustration 167

7.5.2 The EKF Localization Algorithm 168

7.5.3 Mathematical Derivation 170

7.6 Estimating Correspondences 174

7.6.1 EKF Localization with Unknown Correspondences 174

7.6.2 Mathematical Derivation 176

7.7 Multi-Hypothesis Tracking 179

7.8 Practical Considerations 181

7.9 Summary 184

8 GRID AND MONTE CARLO LOCALIZATION 187

8.1 Introduction 187

8.2 Grid Localization 188

8.2.1 Basic Algorithm 188

8.2.2 Grid Resolutions 189

8.2.3 Computational Considerations 193

8.2.4 Illustration 195

8.3 Monte Carlo Localization 200

8.3.1 The MCL Algorithm 200

8.3.2 Properties of MCL 201

8.3.3 Random Particle MCL: Recovery from Failures 204

8.3.4 Modifying the Proposal Distribution 209

8.4 Localization in Dynamic Environments 211

8.5 Practical Considerations 216

8.6 Summary 218

8.7 Exercises 219

9 OCCUPANCY GRID MAPPING 221

9.1 Introduction 221

9.2 The Occupancy Grid Mapping Algorithm 224

Contents ix

9.2.1 Multi-Sensor Fusion 230

9.3 Learning Inverse Measurement Models 232

9.3.1 Inverting the Measurement Model 232

9.3.2 Sampling from the Forward Model 233

9.3.3 The Error Function 234

9.3.4 Further Considerations 236

9.4 Maximum A Posterior Occupancy Mapping 238

9.4.1 The Case for Maintaining Dependencies 238

9.4.2 Occupancy Grid Mapping with Forward Models 240

9.5 Summary 242

10 SIMULTANEOUS LOCALIZATION AND
MAPPING 245

10.1 Introduction 245

10.2 SLAM with Extended Kalman Filters 248

10.2.1 Setup and Assumptions 248

10.2.2 SLAM with Known Correspondence 248

10.2.3 Mathematical Derivation 252

10.3 EKF SLAM with Unknown Correspondences 256

10.3.1 The General EKF SLAM Algorithm 256

10.3.2 Examples 260

10.3.3 Feature Selection and Map Management 262

10.4 Summary 264

10.5 Bibliographical Remarks 265

10.6 Projects 265

11 THE EXTENDED INFORMATION FORM
ALGORITHM 267

11.1 Introduction 267

11.2 Intuitive Description 268

11.3 The EIF SLAM Algorithm 271

11.4 Mathematical Derivation 276

11.4.1 The Full SLAM Posterior 277

11.4.2 Taylor Expansion 278

11.4.3 Constructing the Information Form 280

11.4.4 Reducing the Information Form 283

x PROBABILISTIC ROBOTICS

11.4.5 Recovering the Path and the Map 285

11.5 Data Association in the EIF 286

11.5.1 The EIF SLAM Algorithm With Unknown Correspon-
dence 287

11.5.2 Mathematical Derivation 290

11.6 Efficiency Consideration 292

11.7 Empirical Implementation 294

11.8 Summary 300

12 THE SPARSE EXTENDED INFORMATION
FILTER 303

12.1 Introduction 303

12.2 Intuitive Description 305

12.3 The SEIF SLAM Algorithm 308

12.4 Mathematical Derivation 312

12.4.1 Motion Update 312

12.4.2 Measurement Updates 316

12.5 Sparsification 316

12.5.1 General Idea 316

12.5.2 Sparsifications in SEIFs 318

12.5.3 Mathematical Derivation 319

12.6 Amortized Approximate Map Recovery 320

12.7 How Sparse Should SEIFs Be? 323

12.8 Incremental Data Association 328

12.8.1 Computing Data Association Probabilities 328

12.8.2 Practical Considerations 330

12.9 Tree-Based Data Association 335

12.9.1 Calculating Data Association Probaiblities 336

12.9.2 Tree Search 339

12.9.3 Equivalency Constraints 340

12.9.4 Practical Considerations 341

12.10 Multi-Vehicle SLAM 344

12.10.1Fusing Maps Acquired by Multiple Robots 344

12.10.2Establishing Correspondence 347

12.11 Discussion 349

Contents xi

13 MAPPING WITH UNKNOWN DATA
ASSOCIATION 353

13.1 Latest Derivation 353

13.2 Motivation 356

13.3 Mapping with EM: The Basic Idea 358

13.4 Mapping with the EM Algorithm 365

13.4.1 The EM Mapping Algorithm 365

13.4.2 The Map Likelihood Function 367

13.4.3 Efficient Maximum Likelihood Estimation 370

13.4.4 The E-step 371

13.4.5 The M-step 376

13.4.6 Examples 379

13.5 Grid-Based Implementation 379

13.6 Layered EM Mapping 381

13.6.1 Layered Map Representations 382

13.6.2 Local Maps 383

13.6.3 The Perceptual Model For Layered Maps 384

13.6.4 EM with Layered Maps 386

13.6.5 The Layered EM Mapping Algorithm 389

13.6.6 Examples 389

13.7 Summary 390

13.8 Bibliographical Remarks 391

14 FAST INCREMENTAL MAPPING ALGORITHMS 393

14.1 Motivation 393

14.2 Incremental Likelihood Maximization 395

14.3 Maximum Likelihood as Gradient Descent 398

14.3.1 Search in Pose Space 398

14.3.2 Gradient Calculation 400

14.3.3 Suggestions for the Implementation 403

14.3.4 Examples 404

14.3.5 Limitations 406

14.4 Incremental Mapping with Posterior Estimation 407

14.4.1 Detecting Cycles 407

14.4.2 Correcting Poses Backwards in Time 408

14.4.3 Illustrations 410

xii PROBABILISTIC ROBOTICS

14.5 Multi-Robot Mapping 412

14.6 Mapping in 3D 414

14.7 Summary 418

14.8 Bibligraphical Remarks 419

14.9 Projects 419

15 MARKOV DEVISION PROCESSES 421

15.1 Motivation 421

15.2 Uncertainty in Action Selection 424

15.3 Value Iteration 427

15.3.1 Goals and Payoff 427

15.3.2 Finding Control Policies in Fully Observable Domains 431

15.3.3 Value Iteration 433

15.3.4 Illustration 435

16 PARTIALLY OBSERVABLE MARKOV DECISION
PROCESSES 437

16.1 Motivation 437

16.2 Finite Environments 439

16.2.1 An Illustrative Example 439

16.2.2 Value Iteration in Belief Space 448

16.2.3 Calculating the Value Function 450

16.2.4 Linear Programming Solution 455

16.3 General POMDPs 458

16.3.1 The General POMDP Algorithm 461

16.4 A Monte Carlo Approximation 462

16.4.1 Monte Carlo Backups 462

16.4.1.1Learning Value Functions 465

16.4.1.2Nearest Neighbor 465

16.4.2 Experimental Results 466

16.5 Augmented Markov Decision Processes 468

16.5.1 The Augmented State Space 469

16.5.2 Value Iteration in AMDPs 470

16.5.3 Illustration 472

16.6 Summary 475

16.7 Bibliographical Remarks 475

Contents xiii

16.8 Projects 475

REFERENCES 477

1
INTRODUCTION

1.1 UNCERTAINTY IN ROBOTICS

Robotics is the science of perceiving and manipulating the physical world through
computer-controlled mechanical devices. Examples of successful robotic systems in-
clude mobile platforms for planetary exploration [], robotics arms in assembly lines [],
cars that travel autonomously on highways [], actuated arms that assist surgeons [].
Robotics systems have in common that they are are situated in the physical world, per-
ceive their environments through sensors, and manipulate their environment through
things that move.

While much of robotics is still in its infancy, the idea of “intelligent” manipulating
devices has an enormous potential to change society. Wouldn’t it be great if all our
cars were able to safely steer themselves, making car accidents a notion of the past?
Wouldn’t it be great if robots, and not people, would clean up nuclear disasters sites
like Chernobyl? Wouldn’t it be great if our homes were populated by intelligent ser-
vice robots that would carry out such tedious tasks as loading the dishwasher, and
vacuuming the carpet, or walking our dogs? And lastly, a better understanding of
robotics will ultimately lead to a better understanding of animals and people.

Tomorrows application domains differ from yesterdays, such as manipulators in as-
sembly lines that carry out the identical task day-in day-out. The most striking char-
acteristic of the new robot systems is that they operate in increasingly unstructured
environments, environments that are inherently unpredictable. An assembly line is or-
ders of magnitude more predictable and controllable than a private home. As a result,
robotics is moving into areas where sensor input becomes increasingly important, and
where robot software has to be robust enough to cope with a range of situations—often
too many to anticipate them all. Robotics, thus, is increasingly becoming a software

1

2 Chapter 1

science, where the goal is to develop robust software that enables robots to withstand
the numerous challenges arising in unstructured and dynamic environments.

This book focuses on a key element of robotics: Uncertainty. Uncertainty arises if the
robot lacks critical information for carrying out its task. It arises from five different
factors:

1. Environments. Physical worlds are inherently unpredictable. While the degree
of uncertainty in well-structured environments such assembly lines is small, en-
vironments such as highways and private homes are highly dynamic and unpre-
dictable.

2. Sensors. Sensors are inherently limited in what they can perceive. Limitations
arise from two primary factors. First, range and resolution of a sensor is sub-
ject to physical laws. For example, Cameras can’t see through walls, and even
within the perceptual range the spatial resolution of camera images is limited.
Second, sensors are subject to noise, which perturbs sensor measurements in un-
predictable ways and hence limits the information that can be extracted from
sensor measurements.

3. Robots. Robot actuation involves motors that are, at least to some extent, unpre-
dictable, due effects like control noise and wear-and-tear. Some actuators, such
as heavy-duty industrial robot arms, are quite accurate. Others, like low-cost
mobile robots, can be extremely inaccurate.

4. Models. Models are inherently inaccurate. Models are abstractions of the real
world. As such, they only partially model the underlying physical processes of
the robot and its environment. Model errors are a source of uncertainty that has
largely been ignored in robotics, despite the fact that most robotic models used
in state-or-the-art robotics systems are rather crude.

5. Computation. Robots are real-time systems, which limits the amount of com-
putation that can be carried out. Many state-of-the-art algorithms (such as most
of the algorithms described in this book) are approximate, achieving timely re-
sponse through sacrificing accuracy.

All of these factors give rise to uncertainty. Traditionally, such uncertainty has mostly
been ignored in robotics. However, as robots are moving away from factory floors into
increasingly unstructured environments, the ability to cope with uncertainty is critical
for building successful robots.

Introduction 3

1.2 PROBABILISTIC ROBOTICS

This book provides a comprehensive overview of probabilistic algorithms for robotics.
Probabilistic robotics is a new approach to robotics that pays tribute to the uncertainty
in robot perception and action. They key idea of probabilistic robotics is to represent
uncertainty explicitly, using the calculus of probability theory. Put differently, instead
of relying on a single “best guess” as to what might be the case in the world, prob-
abilistic algorithms represent information by probability distributions over a whole
space of possible hypotheses. By doing so, they can represent ambiguity and degree
of belief in a mathematically sound way, enabling them to accommodate all sources
of uncertainty listed above. Moreover, by basing control decisions on probabilistic
information, these algorithms degrade nicely in the face of the various sources of un-
certainty described above, leading to new solutions to hard robotics problems.

Let us illustrate the probabilistic approach with a motivating example: mobile robot
localization. Localization is the problem of estimating a robot’s coordinates in an ex-
ternal reference frame from sensor data, using a map of the environment. Figure 1.1
illustrates the probabilistic approach to mobile robot localization. The specific local-
ization problem studied here is known as global localization, where a robot is placed
somewhere in the environment and has to localize itself from scratch. In the proba-
bilistic paradigm, the robot’s momentary estimate (also called belief) is represented
by a probability density function over the space of all locations. This is illustrated
in the first diagram in Figure 1.1, which shows a uniform distribution (the prior) that
corresponds to maximum uncertainty. Suppose the robot takes a first sensor mea-
surement and observes that it is next to a door. The resulting belief, shown in the
second diagram in Figure 1.1, places high probability at places next to doors and low
probability elsewhere. Notice that this distribution possesses three peaks, each corre-
sponding to one of the (indistinguishable) doors in the environment. Furthermore, the
resulting distribution assigns high probability to three distinct locations, illustrating
that the probabilistic framework can handle multiple, conflicting hypotheses that natu-
rally arise in ambiguous situations. Finally, even non-door locations possess non-zero
probability. This is accounted by the uncertainty inherent in sensing: With a small,
non-zero probability, the robot might err and actually not be next to a door. Now
suppose the robot moves. The third diagram in Figure 1.1 shows the effect of robot
motion on its belief, assuming that the robot moved as indicated. The belief is shifted
in the direction of motion. It is also smoothed, to account for the inherent uncertainty
in robot motion. Finally, the fourth and last diagram in Figure 1.1 depicts the belief
after observing another door. This observation leads our algorithm to place most of
the probability mass on a location near one of the doors, and the robot is now quite
confident as to where it is.

4 Chapter 1

���
���
���
���

���
���
���
���

x

bel(x)

���
���
���

���
���
���

x

bel(x)

x

p(z|x)

���
���
���

���
���
���

x

bel(x)

���
���
���
���

���
���
���
���

x

bel(x)

x

p(z|x)

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

x

bel(x)

Figure 1.1 The basic idea of Markov localization: A mobile robot during global localiza-
tion.

Introduction 5

This example illustrates the probabilistic paradigm in the context of a specific per-
ceptual problem. Stated probabilistically, the robot perception problem is a state es-
timation problem, and our localization example uses an algorithm known as Bayes
filter for posterior estimation over the space of robot locations. Similarly, when select-
ing actions, probabilistic approaches considers the full uncertainty, not just the most
likely guess. By doing so, the probabilistic approach trades off information gathering
(exploration) and exploitation, and act optimally relative to the state of knowledge.

1.3 IMPLICATIONS

What are the advantages of programming robots probabilistically, when compared to
other approaches that do not represent uncertainty explicitly? Our central conjecture
is nothing less than the following:

A robot that carries a notion of its own uncertainty and that acts accordingly
is superior to one that does not.

In particular, probabilistic approaches are typically more robust in the face of sensor
limitations, sensor noise, environment dynamics, and so on. They often scale much
better to complex and unstructured environments, where the ability to handle uncer-
tainty is of even greater importance. In fact, certain probabilistic algorithms are cur-
rently the only known working solutions to hard robotic estimation problems, such as
the kidnapped robot problem, in which a mobile robot must recover from localization
failure; or the problem of building accurate maps of very large environments, in the
absence of a global positioning device such as GPS. Additionally, probabilistic algo-
rithms make much weaker requirements on the accuracy of models than many classical
planning algorithms do, thereby relieving the programmer from the unsurmountable
burden to come up with accurate models. Viewed probabilistically, the robot learning
problem is a long-term estimation problem. Thus, probabilistic algorithms provide a
sound methodology for many flavors of robot learning. And finally, probabilistic al-
gorithms are broadly applicable to virtually every problem involving perception and
action in the real world.

However, these advantages come at a price. Traditionally, the two most frequently
cited limitations of probabilistic algorithms are computational inefficiency, and a
need to approximate. Probabilistic algorithms are inherently less efficient than non-
probabilistic ones, due to the fact that they consider entire probability densities. The
need to approximate arises from the fact that most robot worlds are continuous. Com-
puting exact posterior distributions is typically infeasible, since distributions over the

6 Chapter 1

continuum possess infinitely many dimensions. Sometimes, one is fortunate in that
the uncertainty can approximated tightly with a compact parametric model (e.g., dis-
crete distributions or Gaussians); in other cases, such approximations are too crude
and more complicated representations most be employed. Recent research has suc-
cessfully led to a range of are computationally efficient probabilistic algorithms, for a
range of hard robotics problems—many of which are described in depth in this book.

1.4 ROAD MAP

This book attempts to provide a comprehensive and in-depth introduction into proba-
bilistic robotics. The choice of material is somewhat biased towards research carried
out at Carnegie Mellon University, the University of Bonn, and affiliated labs. How-
ever, we have attempted to include in-depth descriptions of other, important proba-
bilistic algorithms. The algorithms described here have been developed for mobile
robots; however, many of them are equally applicable to other types of robots. Thus,
the coverage of the material is by no means complete; probabilistic ideas have recently
become extremely popular in robotics, and a complete description of the field would
simply not fit into a single book. However, we believe that the choice of material is
representative for the existing body of literature.

The goal of the book is to provide a systematic introduction into the probabilistic
paradigm, from the underlying mathematical framework to implementation. For each
major algorithm, this book provides

a complete mathematical derivation,

pseudo-code in a C-like language,

discussions of implementation details and potential pitfalls, and

empirical results obtained in fielded systems.

We believe that all four items are essential for obtaining a deep understanding of the
probabilistic paradigm. At the end of each chapter, the book also provides biblio-
graphical notes and a list of questions and exercises.

The book has been written with researchers, graduate students or advanced undergrad-
uate students in mind, specializing in robotics or applied statistics. We have attempted
to present the material in a way that requires a minimum of background knowledge.

Introduction 7

However, basic knowledge of probability theory will almost certainly help in under-
standing the material. The various mathematical derivations can easily be skipped at
first reading. However, we strongly recommend to take the time and study the mathe-
matical derivations, as a profound mathematical understanding is will almost certainly
lead to deep and important insights into the working of the probabilistic approach to
robotics.

If used in the classroom, each chapter should be covered in one or two lectures; how-
ever, we recommend that the study of the book be accompanied by practical, hands-on
experimentation as directed by the questions and exercises at the end of each chapter.

This book is organized in four major parts.

The first part, Chapters 2 through 5, discuss the basic mathematical framework
that underlies all of the algorithms described in this book. Chapters 2 through 4
introduce the basic probabilistic notation and describes a collection of filters for
probabilistic state estimation. Chapter 5 discusses specific probabilistic models
that characterize mobile robot perception and motion.

The second part, which comprised Chapters 7 to ??, describes a range of per-
ceptual algorithms, which map sensor measurements into internal robot beliefs.
In particular, Chapter 7 describes algorihtms for mobile robot localization, fol-
lowed by algorithms for map acquisition described in Chapters ??. This part also
contains a chapter on learning models.

The third part, in Chapters ?? to ??, introduces probabilistic planning and action
selection algorihtms.

Finally, Chapter ?? describes two robot systems that were controlled by proba-
bilistic algorithms. These robots were deployed in museums as interactive tour-
guide robots, where they managed to navigate reliably without the need to modify
the museums in any way.

The book is best read in order, from the beginning to the end. However, we have
attempted to make each individual chapter self-explanatory.

1.5 BIBLIOGRAPHICAL REMARKS

The term “robot” was invented in 1921 by the Czech novelist Karel Čapek [42], to describe a willing,
intelligent and human-like machines that make life pleasant by doing the type work we don’t like to do. In
the Fourties, Asimov coined the term “robotics” and postulated the famous three laws of robotics [1, 2],

8 Chapter 1

Robotics, as a scientific discipline has been an active field of research foer several decades. In the early
years, most of the research focused on

Major trends in robotics:

Seventies: classical (deliberate) approach, accurate models, no uncertainty, no sensing. Still: very
hard problem. Reif: planning problem NP hard, but only doubly exponential algorithms known.
Canny: first single exponential planning algorithm. Latombe: Many impressive randomized planning
algorithms. Important difference: randomization used for search, not for representing uncertainty.
Planning algorithm for special topologies: Schwartz, and Sharir. Some take sensor data into account.
Koditschek navigation function for feedback control, generalizes Khatib’s potential fields, which suf-
fer from local minima (navigation functions don’t).

Mid-Eighties: reactive approach, rejection of models, pure reliance on sensors, uncertainty (if any)
handled by feedback control. Relies on sensor data carrying sufficient information for action selec-
tion, therefore uncertainty not an issue. Typically confined to small environments, where everything
of importance can be perceived by the sensors. Nevertheless, some impressive results for control of
legged robots. Brooks, Mataric, Steels, Connell, and many others. Biologically inspired robotics.
Smithers.

Mid-Nineties: Hybrid approaches, reactive at low level (fast decision cycle), deliberate at higher
levels. Uses sensing mostly at low level, and models at high level. Gat, Arkins, Balch, Firby, Simmons
and many others. harvests best of both worlds: robust through reaction, but can do more powerful
tasks due to deliberation.

Late Ninties: Probabilistic robotics, different way to integrate models and sensor data.

Probabilistic robotics can be traced back to Sixties to advent of Kalman filters, which has been used exten-
sively in robotics. First serious advance is Smith and Cheeseman in mid-80s, who proppose an algorithm for
concurrent mapping and localization based on Kalman filters that is now in widespread use. Durrant-Whyte,
Leonard, Castellanos, and many others.

Main activity in past five years. Main advances: more flexible representations (beyond Kalman filters),
more efficient algorithms. Statistical approaches for solving hard correspondence problems.

What is new in probabilistic robotics, relative to approaches above?

seamlessly blends models and perception in a novel way

sound mathematical theory, clear assumptions, therefore it’s easier to predict failure modes

applies to all levels: lowest to highest, since uncertainty arises everywhere

currently the best known solutions in a range of hard robotics problems

2
RECURSIVE STATE ESTIMATION

2.1 INTRODUCTION

At the core of probabilistic robotics is the idea of estimating state from sensor data.
State estimation addresses the problem of estimating quantities from sensor data that
are not directly observable, but that can be inferred. In most robotic applications,
determining what to do is relatively easy if one only knew certain quantities. For
example, moving a mobile robot is relatively easy if the exact location of the robot
and all nearby obstacles are known. Unfortunately, these variables are not directly
measurable. Instead, a robot has to rely on its sensors to gather this information.
Sensors carry only partial information about those quantities, and their measurements
are corrupted by noise. State estimation seeks to recover state variables from the data.
Probabilistic state estimation algorithms compute belief distributions over possible
world states. An example of probabilistic state estimation was already encountered in
the introduction to this book: mobile robot localization.

The goal of this chapter is to introduce the basic vocabulary and mathematical tools
for estimating state from sensor data.

Section 2.2 introduces basic probabilistic concepts and notations used throughout
the book.

Section 2.3 describes our formal model of robot environment interaction, setting
forth some of the key terminology used throughout the book.

Section 2.4 introduces Bayes filters, the recursive algorithm for state estimation
that forms the basis of virtually every technique presented in this book.

9

10 Chapter 2

Section 2.5 discusses representational and computational issues that arise when
implementing Bayes filters.

2.2 BASIC CONCEPTS IN PROBABILITY

This section familiarizes the reader with the basic notation and probabilistic facts and
notation used throughout the book. In probabilistic robotics, quantities such as sensor
measurements, controls, and the states a robot and its environment might assume are
all modeled as random variables. Random variables can take on multiple values, and
they do so according to specific probabilistic laws. Probabilistic inference is the pro-
cess of calculating these laws for random variables that are derived from other random
variables, such as those modeling sensor data.

Let X denote a random variable and x denote a specific event that X might take on.
A standard example of a random variable is that of a coin flip, where X can take on
the values head or tail. If the space of all values that X can take on is discrete, as is
the case if X is the outcome of a coin flip, we write

p(X = x) (2.1)

to denote the probability that the random variable X has value x. For example, a fair
coin is characterized by p(X = head) = p(X = tail) = 1

2 . Discrete probabilities
sum to one, that is,

∑

x

p(X = x) = 1 , (2.2)

and of course, probabilities are always non-negative, that is, p(X = x) ≥ 0. To
simplify the notation, we will usually omit explicit mention of the random variable
whenever possible, and instead use the common abbreviation p(x) instead of writing
p(X = x).

Most techniques in this book address estimation and decision making in continuous
spaces. Continuous spaces are characterized by random variables that can take on a
continuum of values. Throughout this book, we assume that all continuous random
variables possess probability density functions (PDFs). A common density function
is that of the one-dimensional normal distribution with mean µ and variance σ2. This

Recursive State Estimation 11

distribution is given by the following Gaussian function:

p(x) =
(
2πσ2

)− 1
2 exp

{

− 1
2

(x− µ)2

σ2

}

(2.3)

Normal distributions play a major role in this book. We will frequently abbreviate
them as N (x;µ, σ2), which specifies the random variable, its mean, and its variance.

The Normal distribution (2.3) assumes that x is a scalar value. Often, x will be a
multi-dimensional vector. Normal distributions over vectors are called multivariate.
Multivariate normal distributions are characterized by density functions of the follow-
ing form:

p(x) = det (2πΣ)
−1

2 exp
{
− 1

2 (x− µ)T Σ−1(x− µ)
}

(2.4)

Here µ is the mean vector and Σ a (positive semidefinite) symmetric matrix called
covariance matrix. The superscript T marks the transpose of a vector. The reader
should take a moment to realize that Equation (2.4) is a strict generalization of Equa-
tion (2.3); both definitions are equivalent if x is a scalar value. The PDFs of a one-
and a two-dimensional normal distribution are graphically depicted in Figure 5.6.

Equations (2.3) and (2.4) are examples of PDFs. Just as discrete probability distribu-
tions always sums up to one, a PDF always integrates to 1:

∫

p(x) dx = 1 . (2.5)

However, unlike a discrete probability, the value of a PDF is not bounded above by 1.
Throughout this book, we will use the terms probability, probability density and prob-
ability density function interchangeably. We will silently assume that all continuous
random variables are measurable, and we also assume that all continuous distributions
actually possess densities.

The joint distribution of two random variables X and Y is given by

p(x, y) = p(X = x and Y = y) . (2.6)

12 Chapter 2

This expression describes the probability of the event that the random variableX takes
on the value x and that Y takes on the value y. If X and Y are independent, we have

p(x, y) = p(x) p(y) . (2.7)

Often, random variables carry information about other random variables. Suppose we
already know that Y ’s value is y, and we would like to know the probability that X’s
value is x conditioned on that fact. Such a probability will be denoted

p(x | y) = p(X = x | Y = y) (2.8)

and is called conditional probability. If p(y) > 0, then the conditional probability is
defined as

p(x | y) =
p(x, y)

p(y)
. (2.9)

If X and Y are independent, we have

p(x | y) =
p(x) p(y)

p(y)
= p(x) . (2.10)

In other words, if X and Y are independent, Y tells us nothing about the value of X .
There is no advantage of knowing Y if our interest pertains to knowing X . Indepen-
dence, and its generalization known as conditional independence, plays a major role
throughout this book.

An interesting fact, which follows from the definition of conditional probability and
the axioms of probability measures, is often referred to as theorem of total probability:

p(x) =
∑

y

p(x | y) p(y) (discrete case) (2.11)

p(x) =

∫

p(x | y) p(y) dy (continuous case) (2.12)

If p(x | y) or p(y) are zero, we define the product p(x | y) p(y) to be zero, regardless
of the value of the remaining factor.

Recursive State Estimation 13

Equally important is Bayes rule, which relates conditionals of the type p(x | y) to
their “inverse,” p(y | x). The rule, as stated here, requires p(y) > 0:

p(x | y) =
p(y | x) p(x)

p(y)
=

p(y | x) p(x)
∑

x′ p(y | x′) p(x′)
(discrete) (2.13)

p(x | y) =
p(y | x) p(x)

p(y)
=

p(y | x) p(x)
∫
p(y | x′) p(x′) dx′ (continuous) (2.14)

Bayes rule plays a predominant role in probabilistic robotics. If x is a quantity that we
would like to infer from y, the probability p(x) will be referred to as prior probability
distribution, and y is called the data (e.g., a sensor measurement). The distribution
p(x) summarizes the knowledge we have regarding X prior to incorporating the data
y. The probability p(x | y) is called the posterior probability distribution over X . As
(2.14) suggests, Bayes rule provides a convenient way to compute a posterior p(x | y)
using the “inverse” conditional probability p(y | x) along with the prior probability
p(x). In other words, if we are interested in inferring a quantity x from sensor data
y, Bayes rule allows us to do so through the inverse probability, which specifies the
probability of data y assuming that x was the case. In robotics, this inverse probability
is often coined “generative model,” since it describes, at some level of abstraction,
how state variables X cause sensor measurements Y .

An important observation is that the denominator of Bayes rule, p(y), does not depend
on x. Thus, the factor p(y)−1 in Equations (2.13) and (2.14) will be the same for
any value x in the posterior p(x | y). For this reason, p(y)−1 is often written as a
normalizer variable, and generically denoted η:

p(x | y) = η p(y | x) p(x) . (2.15)

If X is discrete, equations of this type can be computed as follows:

∀x : auxx|y = p(y | x) p(x) (2.16)

auxy =
∑

x

auxx|y (2.17)

∀x : p(x | y) =
auxx|y
auxy

, (2.18)

where auxx|y and auxy are auxiliary variables. These instructions effectively calculate
p(x | y), but instead of explicitly computing p(y), they instead just normalize the

14 Chapter 2

result. The advantage of the notation in (2.15) lies in its brevity. Instead of explicitly
providing the exact formula for a normalization constant—which can grow large very
quickly in some of the mathematical derivations to follow—we simply will use the
normalizer “η” to indicate that the final result has to be normalized to 1. Throughout
this book, normalizers of this type will be denoted η (or η′, η′′, . . .). We will freely
use the same η in different equations to denote normalizers, even if their actual values
are different.

The expectation of a random variable X is given by

E[X] =
∑

x

x p(x) ,

E[X] =

∫

x p(x) dx . (2.19)

Not all random variables possess finite expectations; however, those that do not are of
no relevance to the material presented in this book. The expectation is a linear function
of a random variable. In particular, we have

E[aX + b] = aE[X] + b (2.20)

for arbitrary numerical values a and b. The covariance of X is obtained as follows

Cov[X] = E[X − E[X]]2 = E[X2]− E[X]2 (2.21)

The covariance measures the squared expected deviation from the mean. As stated
above, the mean of a multivariate normal distribution N (x;µ,Σ) is µ, and its covari-
ance is Σ.

Another important characteristic of a random variable is its entropy. For discrete ran-
dom variables, the entropy is given by the following expression:

H(P) = E[− log2 p(x)] = −
∑

x

p(x) log2 p(x) . (2.22)

The concept of entropy originates in information theory. The entropy is the expected
information that the value of x carries: − log2 p(x) is the number of bits required

Recursive State Estimation 15

to encode x using an optimal encoding, and p(x) is the probability at which x will
be observed. In this book, entropy will be used in robotic information gathering, to
express the information a robot may receive upon executing specific actions.

Finally, we notice that it is perfectly fine to condition any of the rules discussed so far
on arbitrary other random variables, such as the variable Z. For example, conditioning
Bayes rule on Z = z gives us:

p(x | y, z) =
p(y | x, z) p(x | z)

p(y | z) (2.23)

Similarly, we can condition the rule for combining probabilities of independent ran-
dom variables (2.7) on other variables z:

p(x, y | z) = p(x | z) p(y | z) . (2.24)

Such a relation is known as conditional independence. As the reader easily verifies,
(2.24) is equivalent to

p(x | z) = p(x | z, y)
p(y | z) = p(y | z, x) (2.25)

Conditional independence plays an important role in probabilistic robotics. It applies
whenever a variable y carries no information about a variable x if another variable’s
value z is known. Conditional independence does not imply (absolute) independence,
that is,

p(x, y | z) = p(x | z) p(y | z) 6⇒ p(x, y) = p(x) p(y) (2.26)

The converse is also in general untrue: absolute independence does not imply condi-
tional independence:

p(x, y) = p(x) p(y) 6⇒ p(x, y | z) = p(x | z) p(y | z) (2.27)

In special cases, however, conditional and absolute independence may coincide.

16 Chapter 2

Control system

Environment, state

Perceptual/action data

Actions

World model, belief

Figure 2.1 Robot Environment Interaction.

2.3 ROBOT ENVIRONMENT

INTERACTION

Figure 2.1 illustrates the interaction of a robot with its environment. The environ-
ment, or world, of a robot is a dynamical system that possesses internal state. The
robot can acquire information about its environment using its sensors. However, sen-
sors are noisy, and there are usually many things that cannot be sensed directly. As
a consequence, the robot maintains an internal belief with regards to the state of its
environment, depicted on the left in this figure. The robot can also influence its en-
vironment through its actuators. However, the effect of doing so is often somewhat
unpredictable. This interaction will now be described more formally.

2.3.1 State

Environments are characterized by state. For the material presented in this book, it
will be convenient to think of state as the collection of all aspects of the robot and
its environment that can impact the future. State may change over time, such as the
location of people; or it may remain static throughout the robot’s operation, such as
the location of walls in (most) buildings. State that changes will be called dynamic
state, which distinguishes it from static, or non-changing state. The state also includes
variables regarding the robot itself, such as its pose, velocity, whether or not its sensors
are functioning correctly, and so on. Throughout this book, state will be denoted x;
although the specific variables included in x will depend on the context. The state at
time t will be denoted xt. Typical state variables used throughout this book are:

Recursive State Estimation 17

The robot pose, which comprises its location and orientation relative to a global
coordinate frame. Rigid mobile robots possess six such state variables, three for
their Cartesian coordinates, and three for their angular orientation, also called
Euler angles (pitch, roll, and yaw). For rigid mobile robots confined to planar
environments, the pose is usually given by three variables, its two location co-
ordinates in the plane and its heading direction (yaw). The robot pose is often
referred to as kinematic state.

The configuration of the robot’s actuators, such as the joints of robotic manipula-
tors. Each degree of freedom in a robot arm is characterized by a one-dimensional
configuration at any point in time, which is part of the kinematic state of the robot.

The robot velocity and the velocities of its joints. A rigid robot moving through
space is characterized by up to six velocity variables, one for each pose variables.
Velocities are commonly referred to as dynamic state. Dynamic state will play
only a minor role in this book.

The location and features of surrounding objects in the environment. An object
may be a tree, a wall, or a pixel within a larger surface. Features of such objects
may be their visual appearance (color, texture). Depending on the granularity of
the state that is being modeled, robot environments possess between a few dozen
and up to hundreds of billions of state variables (and more). Just imagine how
many bits it will take to accurately describe your physical environment! For many
of the problems studied in this book, the location of objects in the environment
will be static. In some problems, objects will assume the form of landmarks,
which are distinct, stationary features of the environment that can be recognized
reliably.

The location and velocities of moving objects and people. Often, the robot is not
the only moving actor in its environment. Other moving entities possess their
own kinematic and dynamic state.

There can be a huge number of other state variables. For example, whether or
not a sensor is broken is a state variable, as is the level of battery charge for a
battery-powered robot.

A state xt will be called complete if it is the best predictor of the future. Put differ-
ently, completeness entails that knowledge of past states, measurements, or controls
carry no additional information that would help us to predict the future more accu-
rately. It it important to notice that our definition of completeness does not require the
future to be a deterministic function of the state. The future may be stochastic, but
no variables prior to xt may influence the stochastic evolution of future states, unless

18 Chapter 2

this dependence is mediated through the state xt. Temporal processes that meet these
conditions are commonly known as Markov chains.

The notion of state completeness is mostly of theoretical importance. In practice, it
is impossible to specify a complete state for any realistic robot system. A complete
state includes not just all aspects of the environment that may have an impact on the
future, but also the robot itself, the content of its computer memory, the brain dumps of
surrounding people, etc. Those are hard to obtain. Practical implementations therefore
single out a small subset of all state variables, such as the ones listed above. Such a
state is called incomplete state.

In most robotics applications, the state is continuous, meaning that xt is defined over a
continuum. A good example of a continuous state space is that of a robot pose, that is,
its location and orientation relative to an external coordinate system. Sometimes, the
state is discrete. An example of a discrete state space is the (binary) state variable that
models whether or not a sensor is broken. State spaces that contain both continuous
and discrete variables are called hybrid state spaces.

In most cases of interesting robotics problems, state changes over time. Time, through-
out this book, will be discrete, that is, all interesting events will take place at discrete
time steps

0, 1, 2, (2.28)

If the robot starts its operation at a distinct point in time, we will denote this time as
t = 0.

2.3.2 Environment Interaction

There are two fundamental types of interactions between a robot and its environment:
The robot can influence the state of its environment through its actuators. And it can
gather information about the state through its sensors. Both types of interactions may
co-occur, but for didactic reasons we will distinguish them throughout this book. The
interaction is illustrated in Figure 2.1:

Sensor measurements. Perception is the process by which the robot uses its
sensors to obtain information about the state of its environment. For example,
a robot might take a camera image, a range scan, or query its tactile sensors
to receive information about the state of the environment. The result of such a

Recursive State Estimation 19

perceptual interaction will be called a measurement, although we will sometimes
also call it observation or percept. Typically, sensor measurements arrive with
some delay. Hence they provide information about the state a few moments ago.

Control actions change the state of the world. They do so by actively asserting
forces on the robot’s environment. Examples of control actions include robot
motion and the manipulation of objects. Even if the robot does not perform any
action itself, state usually changes. Thus, for consistency, we will assume that the
robot always executes a control action, even if it chooses not to move any of its
motors. In practice, the robot continuously executes controls and measurements
are made concurrently.

Hypothetically, a robot may keep a record of all past sensor measurements and control
actions. We will refer to such a the collection as the data (regardless of whether they
are being memorized). In accordance with the two types of environment interactions,
the robot has access to two different data streams.

Measurement data provides information about a momentary state of the envi-
ronment. Examples of measurement data include camera images, range scans,
and so on. For most parts, we will simply ignore small timing effects (e.g., most
ladar sensors scan environments sequentially at very high speeds, but we will
simply assume the measurement corresponds to a specific point in time). The
measurement data at time t will be denoted

zt (2.29)

Throughout most of this book, we simply assume that the robot takes exactly one
measurement at a time. This assumption is mostly for notational convenience, as
nearly all algorithms in this book can easily be extended to robots that can acquire
variables numbers of measurements within a single time step. The notation

zt1:t2 = zt1 , zt1+1, zt1+2, . . . , zt2 (2.30)

denotes the set of all measurements acquired from time t1 to time t2, for t1 ≤ t2.

Control data carry information about the change of state in the environment.
In mobile robotics, a typical example of control data is the velocity of a robot.
Setting the velocity to 10 cm per second for the duration of five seconds suggests
that the robot’s pose, after executing this motion command, is approximately 50
cm ahead of its pose before command execution. Thus, its main information
regards the change of state.

20 Chapter 2

An alternative source of control data are odometers. Odometers are sensors that
measure the revolution of a robot’s wheels. As such they convey information
about the change of the state. Even though odometers are sensors, we will treat
odometry as control data, since its main information regards the change of the
robot’s pose.

Control data will be denoted ut. The variable ut will always correspond to the
change of state in the time interval (t−1; t]. As before, we will denote sequences
of control data by ut1:t2 , for t1 ≤ t2:

ut1:t2 = ut1 , ut1+1, ut1+2, . . . , ut2 . (2.31)

Since the environment may change even if a robot does not execute a specific
control action, the fact that time passed by constitutes, technically speaking, con-
trol information. Hence, we assume that there is exactly one control data item
per time step t.

The distinction between measurement and control is a crucial one, as both types of
data play fundamentally different roles in the material yet to come. Perception pro-
vides information about the environment’s state, hence it tends to increase the robot’s
knowledge. Motion, on the other hand, tends to induce a loss of knowledge due to the
inherent noise in robot actuation and the stochasticity of robot environments; although
sometimes a control makes the robot more certain about the state. By no means is our
distinction intended to suggest that actions and perceptions are separated in time, i.e.,
that the robot does not move while taking sensor measurements. Rather, perception
and control takes place concurrently; many sensors affect the environment; and the
separation is strictly for convenience.

2.3.3 Probabilistic Generative Laws

The evolution of state and measurements is governed by probabilistic laws. In gen-
eral, the state at time xt is generated stochastically. Thus, it makes sense to specify the
probability distribution from which xt is generated. At first glance, the emergence of
state xt might be conditioned on all past states, measurements, and controls. Hence,
the probabilistic law characterizing the evolution of state might be given by a proba-
bility distribution of the following form:

p(xt | x0:t−1, z1:t−1, u1:t) (2.32)

(Notice that through no particular motivation we assume here that the robot executes
a control action u1 first, and then takes a measurement z1.) However, if the state x is

Recursive State Estimation 21

complete then it is a sufficient summary of all that happened in previous time steps.
In particular, xt−1 is a sufficient statistic of all previous controls and measurements
up to this point, that is, u1:t−1 and z1:t−1. From all the variables in the expression
above, only the control ut matters if we know the state xt−1. In probabilistic terms,
this insight is expressed by the following equality:

p(xt | x0:t−1, z1:t−1, u1:t) = p(xt | xt−1, ut) (2.33)

The property expressed by this equality is an example of conditional independence. It
states that certain variables are independent of others if one knows the values of a third
group of variables, the conditioning variables. Conditional independence will be ex-
ploited pervasively in this book, as it is the main source of tractability of probabilistic
robotics algorithms.

Similarly, one might want to model the process by which measurements are being
generated. Again, if xt is complete, we have an important conditional independence:

p(zt | x0:t, z1:t−1, u1:t) = p(zt | xt) (2.34)

In other words, the state xt is sufficient to predict the (potentially noisy) measurement
zt. Knowledge of any other variable, such as past measurements, controls or even past
states, is irrelevant if xt is complete.

This discussion leaves open as to what the two resulting conditional probabilities are:
p(xt | xt−1, ut) and p(zt | xt). The probability p(xt | xt−1, ut) is the state transition
probability. It specifies how environmental state evolves over time as a function of
robot controls ut. Robot environments are stochastic, which is reflected by the fact that
p(xt | xt−1, ut) is a probability distribution, not a deterministic function. Sometimes
the state transition distribution does not depend on the time index t, in which case we
may write it as p(x′ | u, x), where x′ is the successor and x the predecessor state.

The probability p(zt | xt) is called the measurement probability. It also may not
depend on the time index t, in which case it shall be written as p(z | x). The mea-
surement probability specifies the probabilistic law according to which measurements
z are generated from the environment state x. Measurements are usually noisy projec-
tions of the state.

The state transition probability and the measurement probability together describe the
dynamical stochastic system of the robot and its environment. Figure ?? illustrates
the evolution of states and measurements, defined through those probabilities. The

22 Chapter 2

state at time t is stochastically dependent on the state at time t − 1 and the control
ut. The measurement zt depends stochastically on the state at time t. Such a temporal
generative model is also known as hidden Markov model (HMM) or dynamic Bayes
network (DBN). To specify the model fully, we also need an initial state distribution
p(x0).

2.3.4 Belief Distributions

Another key concept in probabilistic robotics is that of a belief. A belief reflects the
robot’s internal knowledge about the state of the environment. We already discussed
that state cannot be measured directly. For example, a robot’s pose might be x =
〈14.12, 12.7, 0.755〉 in some global coordinate system, but it usually cannot know its
pose, since poses are not measurable directly (not even with GPS!). Instead, the robot
must infer its pose from data. We therefore distinguish the true state from its internal
belief, or state of knowledge with regards to that state.

Probabilistic robotics represents beliefs through conditional probability distributions.
A belief distribution assigns a probability (or density value) to each possible hypoth-
esis with regards to the true state. Belief distributions are posterior probabilities over
state variables conditioned on the available data. We will denote belief over a state
variable xt by bel(xt), which is an abbreviation for the posterior

bel(xt) = p(xt | z1:t, u1:t) . (2.35)

This posterior is the probability distribution over the state xt at time t, conditioned on
all past measurements z1:t and all past controls u1:t.

The reader may notice that we silently assume that the belief is taken after incorpo-
rating the measurement zt. Occasionally, it will prove useful to calculate a posterior
before incorporating zt, just after executing the control ut. Such a posterior will be
denoted as follows:

bel(xt) = p(xt | z1:t−1, u1:t) (2.36)

This probability distribution is often referred to as prediction in the context of prob-
abilistic filtering. This terminology reflects the fact that bel(xt) predicts the state at
time t based on the previous state posterior, before incorporating the measurement
at time t. Calculating bel(xt) from bel(xt) is called correction or the measurement
update.

Recursive State Estimation 23

2.4 BAYES FILTERS

2.4.1 The Bayes Filter Algorithm

The most general algorithm for calculating beliefs is given by the Bayes filter algo-
rithm. This algorithm calculates the belief distribution bel from measurement and
control data. We will first state the basic algorithm and elucidate it with a numerical
example. After that, we will derive it mathematically from the assumptions made so
far.

Table 2.1 depicts the basic Bayes filter in pseudo-algorithmic form. The Bayes filter is
recursive, that is, the belief bel(xt) at time t is calculated from the belief bel(xt−1) at
time t−1. Its input is the belief bel at time t−1, along with the most recent control ut

and the most recent measurement zt. Its output is the belief bel(xt) at time t. Table 2.1
only depicts a single step of the Bayes Filter algorithm: the update rule. This update
rule is applied recursively, to calculate the belief bel(xt) from the belief bel(xt−1),
calculated previously.

The Bayes filter algorithm possesses two essential steps. In Line 3, it processes the
control ut. It does so by calculating a belief over the state xt based on the prior
belief over state xt−1 and the control ut. In particular, the belief bel(xt) that the robot
assigns to state xt is obtained by the integral (sum) of the product of two distributions:
the prior assigned to xt−1, and the probability that control ut induces a transition from
xt−1 to xt. The reader may recognize the similarity of this update step to Equation
(2.12). As noted above, this update step is called the control update, or prediction.

The second step of the Bayes filter is called the measurement update. In Line 4, the
Bayes filter algorithm multiplies the belief bel(xt) by the probability that the measure-
ment zt may have been observed. It does so for each hypothetical posterior state xt.
As will become apparent further below when actually deriving the basic filter equa-
tions, the resulting product is generally not a probability, that is, it may not integrate
to 1. Hence, the result is normalized, by virtue of the normalization constant η. This
leads to the final belief bel(xt), which is returned in Line 6 of the algorithm.

To compute the posterior belief recursively, the algorithm requires an initial belief
bel(x0) at time t = 0 as boundary condition. If one knows the value of x0 with
certainty, bel(x0) should be initialized with a point mass distribution that centers all
probability mass on the correct value of x0, and assigns zero probability anywhere
else. If one is entirely ignorant about the initial value x0, bel(x0) may be initialized
using a uniform distribution over the domain of x0 (or related distribution from the
Dirichlet family of distributions). Partial knowledge of the initial value x0 can be

24 Chapter 2

1: Algorithm Bayes filter(bel(xt−1), ut, zt):
2: for all xt do
3: bel(xt) =

∫
p(xt | ut, xt−1) bel(xt−1) dx

4: bel(xt) = η p(zt | xt) bel(xt)
5: endfor
6: return bel(xt)

Table 2.1 The general algorithm for Bayes filtering.

expressed by non-uniform distributions; however, the two cases of full knowledge and
full ignorance are the most common ones in practice.

The algorithm Bayes filter can only be implemented in the form stated here for very
simple estimation problems. In particular, we either need to be able to carry out the
integration in Line 3 and the multiplication in Line 4 in closed form, or we need to
restrict ourselves to finite state spaces, so that the integral in Line 3 becomes a (finite)
sum.

2.4.2 Example

Our illustration of the Bayes filter algorithm is based on the scenario in Figure 2.2,
which shows a robot estimating the state of a door using its camera. To make this
problem simple, let us assume that the door can be in one of two possible states, open
or closed, and that only the robot can change the state of the door. Let us furthermore
assume that the robot does not know the state of the door initially. Instead, it assigns
equal prior probability to the two possible door states:

bel(X0 = open) = 0.5 (2.37)

bel(X0 = closed) = 0.5 (2.38)

Let us furthermore assume the robot’s sensors are noisy. The noise is characterized by
the following conditional probabilities:

p(Zt = sense open | Xt = is open) = 0.6

p(Zt = sense closed | Xt = is open) = 0.4 (2.39)

Recursive State Estimation 25

Figure 2.2 A mobile robot estimating the state of a door.

and

p(Zt = sense open | Xt = is closed) = 0.2

p(Zt = sense closed | Xt = is closed) = 0.8 (2.40)

These probabilities suggest that the robot’s sensors are relatively reliable in detecting
a closed door, in that the error probability is 0.2. However, when the door is open, it
has a 0.4 probability of a false measurement.

Finally, let us assume the robot uses its manipulator to push the door open. If the door
is already open, it will remain open. It it is closed, the robot has a 0.8 chance that it
will be open afterwards:

p(Xt = is open | Ut = push, Xt 1 = is open) = 1

p(Xt = is closed | Ut = push, Xt 1 = is open) = 0 (2.41)

p(Xt = is open | Ut = push, Xt 1 = is closed) = 0.8

p(Xt = is closed | Ut = push, Xt 1 = is closed) = 0.2 (2.42)

It can also choose not to use its manipulator, in which case the state of the world does
not change. This is stated by the following conditional probabilities:

p(Xt = is open | Ut = do nothing, Xt 1 = is open) = 1

p(Xt = is closed | Ut = do nothing, Xt 1 = is open) = 0 (2.43)

p(Xt = is open | Ut = do nothing, Xt 1 = is closed) = 0

p(Xt = is closed | Ut = do nothing, Xt 1 = is closed) = 1 (2.44)

26 Chapter 2

Suppose at time t, the robot takes no control action but it senses an open door. The re-
sulting posterior belief is calculated by the Bayes filter using the prior belief bel(X0),
the control u1 = do nothing, and the measurement sense open as input. Since
the state space is finite, the integral in Line 3 turns into a finite sum:

bel(x1) =

∫

p(x1 | u1, x0) bel(x0) dx0

=
∑

x0

p(x1 | u1, x0) bel(x0)

= p(x1 | U1 = do nothing, X0 = is open) bel(X0 = is open)

+p(x1 | U1 = do nothing, X0 = is closed) bel(X0 = is closed)

(2.45)

We can now substitute the two possible values for the state variable X1. For the
hypothesis X1 = is open, we obtain

bel(X1 = is open)

= p(X1 = is open | U1 = do nothing, X0 = is open) bel(X0 = is open)

+p(X1 = is open | U1 = do nothing, X0 = is closed) bel(X0 = is closed)

= 1 · 0.5 + 0 · 0.5 = 0.5 (2.46)

Likewise, for X1 = is closed we get

bel(X1 = is closed)

= p(X1 = is closed | U1 = do nothing, X0 = is open) bel(X0 = is open)

+p(X1 = is closed | U1 = do nothing, X0 = is closed) bel(X0 = is closed)

= 0 · 0.5 + 1 · 0.5 = 0.5 (2.47)

The fact that the belief bel(x1) equals our prior belief bel(x0) should not surprise, as
the action do nothing does not affect the state of the world; neither does the world
change over time by itself in our example.

Incorporating the measurement, however, changes the belief. Line 4 of the Bayes filter
algorithm implies

bel(x1) = η p(Z1 = sense open | x1) bel(x1) . (2.48)

Recursive State Estimation 27

For the two possible cases, X1 = is open and X1 = is closed, we get

bel(X1 = is open)

= η p(Z1 = sense open | X1 = is open) bel(X1 = is open)

= η 0.6 · 0.5 = η 0.3 (2.49)

and

bel(X1 = is closed)

= η p(Z1 = sense open | X1 = is closed) bel(X1 = is closed)

= η 0.2 · 0.5 = η 0.1 (2.50)

The normalizer η is now easily calculated:

η = (0.3 + 0.1)−1 = 2.5 (2.51)

Hence, we have

bel(X1 = is open) = 0.75

bel(X1 = is closed) = 0.25 (2.52)

This calculation is now easily iterated for the next time step. As the reader easily
verifies, for u2 = push and z2 = sense open we get

bel(X2 = is open) = 1 · 0.75 + 0.8 · 0.25 = 0.95

bel(X2 = is closed) = 0 · 0.75 + 0.2 · 0.25 = 0.05 , (2.53)

and

bel(X2 = is open) = η 0.6 · 0.95 ≈ 0.983

bel(X2 = is closed) = η 0.2 · 0.05 ≈ 0.017 . (2.54)

At this point, the robot believes that with 0.983 probability the door is open, hence
both its measurements were correct. At first glance, this probability may appear to be

28 Chapter 2

sufficiently high to simply accept this hypothesis as the world state and act accord-
ingly. However, such an approach may result in unnecessarily high costs. If mistaking
a closed door for an open one incurs costs (e.g., the robot crashes into a door), con-
sidering both hypotheses in the decision making process will be essential, as unlikely
as one of them may be. Just imagine flying an aircraft on auto pilot with a perceived
chance of 0.983 for not crashing!

2.4.3 Mathematical Derivation of the Bayes

Filter

The correctness of the Bayes filter algorithm is shown by induction. To do so, we need
to show that it correctly calculates the posterior distribution p(xt | z1:t, u1:t) from the
corresponding posterior one time step earlier, p(xt−1 | z1:t−1, u1:t−1). The correct-
ness follows then by induction under the assumption that we correctly initialized the
prior belief bel(x0) at time t = 0.

Our derivation requires that the state xt is complete, as defined in Section 2.3.1, and
it requires that controls are chosen at random. The first step of our derivation involves
the application of Bayes rule (2.23) to the target posterior:

p(xt | z1:t, u1:t) =
p(zt | xt, z1:t−1, u1:t) p(xt | z1:t−1, u1:t)

p(zt | z1:t−1, u1:t)

= η p(zt | xt, z1:t−1, u1:t) p(xt | z1:t−1, u1:t) (2.55)

We now exploit the assumption that our state is complete. In Section 2.3.1, we defined
a state xt to be complete if no variables prior to xt may influence the stochastic evo-
lution of future states. In particular, if we (hypothetically) knew the state xt and were
interested in predicting the measurement zt, no past measurement or control would
provide us additional information. In mathematical terms, this is expressed by the
following conditional independence:

p(zt | xt, z1:t−1, u1:t) = p(zt | xt) . (2.56)

Such a statement is another example of conditional independence. It allows us to
simplify (2.55) as follows:

p(xt | z1:t, u1:t) = η p(zt | xt) p(xt | z1:t−1, u1:t) (2.57)

Recursive State Estimation 29

and hence

bel(xt) = η p(zt | xt) bel(xt) (2.58)

This equation is implemented in Line 4 of the Bayes filter algorithm in Table 2.1.

Next, we expand the term bel(xt), using (2.12):

bel(xt) = p(xt | z1:t−1, u1:t)

=

∫

p(xt | xt−1, z1:t−1, u1:t) p(xt−1 | z1:t−1, u1:t) dxt−1 (2.59)

Once again, we exploit the assumption that our state is complete. This implies if we
know xt−1, past measurements and controls convey no information regarding the state
xt. This gives us

p(xt | xt−1, z1:t−1, u1:t) = p(xt | xt−1, ut) (2.60)

Here we retain the control variable ut, since it does not predate the state xt−1. Finally,
we note that the control ut can safely be omitted from the set of conditioning variables
in p(xt−1 | z1:t−1, u1:t) for randomly chosen controls. This gives us the recursive
update equation

bel(xt) =

∫

p(xt | xt−1, ut) p(xt−1 | z1:t−1, u1:t−1) dxt−1 (2.61)

As the reader easily verifies, this equation is implemented by Line 3 of the Bayes
filter algorithm in Table 2.1. To summarize, the Bayes filter algorithm calculates the
posterior over the state xt conditioned on the measurement and control data up to time
t. The derivation assumes that the world is Markov, that is, the state is complete.

Any concrete implementation of this algorithm requires three probability distributions:
The initial belief p(x0), the measurement probability p(zt | xt), and the state transition
probability p(xt | ut, xt−1). We have not yet specified these densities, but will do so
in later chapters (Chapters 5 and ??). Additionally, we also need a representation for
the belief bel(xt), which will also be discussed further below.

30 Chapter 2

2.4.4 The Markov Assumption

A word is in order on the Markov assumption, or the complete state assumption, since
it plays such a fundamental role in the material presented in this book. The Markov
assumption postulates that past and future data are independent if one knows the cur-
rent state xt. To see how severe an assumption this is, let us consider our example
of mobile robot localization. In mobile robot localization, xt is the robot’s pose, and
Bayes filters are applied to estimate the pose relative to a fixed map. The following
factors may have a systematic effect on sensor readings. Thus, they induce violations
of the Markov assumption:

Unmodeled dynamics in the environment not included in xt (e.g., moving people
and their effects on sensor measurements in our localization example),

inaccuracies in the probabilistic models p(zt | xt) and p(xt | ut, xt−1),

approximation errors when using approximate representations of belief functions
(e.g., grids or Gaussians, which will be discussed below), and

software variables in the robot control software that influence multiple control se-
lection (e.g., the variable “target location” typically influences an entire sequence
of control commands).

In principle, many of these variables can be included in state representations. How-
ever, incomplete state representations are often preferable to more complete ones to
reduce the computational complexity of the Bayes filter algorithm. In practice Bayes
filters have been found to be surprisingly robust to such violations. As a general rule
of thumb, one has to exercise care when defining the state xt, so that the effect of
unmodeled state variables has close-to-random effects.

2.5 REPRESENTATION AND

COMPUTATION

In probabilistic robotics, Bayes filters are implemented in several different ways. As
we will see in the next two chapters, there exist quite a variety of techniques and
algorithms that are all derived from the Bayes filter. Each such technique relies on dif-
ferent assumptions regarding the measurement and state transition probabilities and
the initial belief. Those assumptions then give rise to different types of posterior dis-
tributions, and the algorithms for computing (or approximating) those have different

Recursive State Estimation 31

computational characteristics. As a general rule of thumb, exact techniques for cal-
culating beliefs exist only for highly specialized cases; in general robotics problems,
beliefs have to be approximated. The nature of the approximation has important ram-
ifications on the complexity of the algorithm. Finding a suitable approximation is
usually a challenging problem, with no unique best answer for all robotics problems.

When choosing an approximation, one has to trade off a range of properties:

1. Computational efficiency. Some approximations, such as linear Gaussian ap-
proximations that will be discussed further below, make it possible to calculate
beliefs in time polynomial in the dimension of the state space. Others may re-
quire exponential time. Particle based techniques, discussed further below, have
an any-time characteristic, enabling them to trade off accuracy with computa-
tional efficiency.

2. Accuracy of the approximation. Some approximations can approximate a
wider range of distributions more tightly than others. For example, linear Gaus-
sian approximations are limited to unimodal distributions, whereas histogram
representations can approximate multi-modal distributions, albeit with limited
accuracy. Particle representations can approximate a wide array of distributions,
but the number of particles needed to attain a desired accuracy can be large.

3. Ease of implementation. The difficulty of implementing probabilistic algo-
rithms depends on a variety of factors, such as the form of the measurement
probability p(zt | xt) and the state transition probability p(xt | ut, xt−1). Parti-
cle representations often yield surprisingly simple implementations for complex
nonlinear systems—one of the reasons for their recent popularity.

The next two chapters will introduce concrete implementable algorithms, which fare
quite differently relative to the criteria described above.

2.6 SUMMARY

In this section, we introduced the basic idea of Bayes filters in robotics, as a means to
estimate the state of an environment (which may include the state of the robot itself).

The interaction of a robot and its environment is modeled as a coupled dynamical
system, in which the robot can manipulate its environment by choosing controls,
and in which it can perceive its environment through sensor measurements.

32 Chapter 2

In probabilistic robotics, the dynamics of the robot and its environment are char-
acterized in the form of two probabilistic laws: the state transition distribution,
and the measurement distribution. The state transition distribution characterizes
how state changes over time, possible as the effect of a robot control. The mea-
surement distribution characterizes how measurements are governed by states.
Both laws are probabilistic, accounting for the inherent uncertainty in state evo-
lution and sensing.

The belief of a robot is the posterior distribution over the state of the environ-
ment (including the robot state), given all past sensor measurements and all past
controls. The Bayes filter is the principal algorithm for calculating the belief in
robotics. The Bayes filter is recursive; the belief at time t is calculated from the
belief at time t− 1.

The Bayes filter makes a Markov assumption that specifies that the state is a
complete summary of the past. This assumption implies the belief is sufficient
to represent the past history of the robot. In robotics, the Markov assumption
is usually only an approximation. We identified conditions under which it is
violated.

Since the Bayes filter is not a practical algorithm, in that it cannot be imple-
mented on a digital computer, probabilistic algorithms use tractable approxima-
tions. Such approximations may be evaluated according to different criteria, re-
lating to their accuracy, efficiency, and ease of implementation.

The next two chapters discuss two popular families of recursive state estimation tech-
niques that are both derived from the Bayes filter.

2.7 BIBLIOGRAPHICAL REMARKS

3
GAUSSIAN FILTERS

3.1 INTRODUCTION

This chapter describes an important family of recursive state estimators, collectively
called Gaussian Filters. Historically, Gaussian filters constitute the earliest tractable
implementations of the Bayes filter for continuous spaces. They are also by far the
most popular family of techniques to date—despite a number of shortcomings.

Gaussian techniques all share the basic idea that beliefs are represented by multivariate
normal distributions. We already encountered a definition of the multivariate normal
distribution in Equation (2.4), which is restated here:

p(x) = det (2πΣ)
−1

2 exp
{
− 1

2 (x− µ)T Σ−1(x− µ)
}

(3.1)

This density over the variable x is characterized by two sets of parameters: The mean µ
and the covariance Σ. The mean µ is a vector that possesses the same dimensionality
as the state x. The covariance is a quadratic matrix that is symmetric and positive-
semidefinite. Its dimension is the dimensionality of the state x squared. Thus, the
number of elements in the covariance matrix depends quadratically on the number of
elements in the state vector.

The commitment to represent the posterior by a Gaussian has important ramifications.
Most importantly, Gaussians are unimodal, that is, they posses a single maximum.
Such a posterior is characteristic of many tracking problems in robotics, in which the
posterior is focused around the true state with a small margin of uncertainty. Gaus-
sian posteriors are a poor match for many global estimation problems in which many
distinct hypotheses exist, each of which forming its own mode in the posterior.

33

34 Chapter 3

The representation of a Gaussian by its mean and covariance is called the moments
representation. This is because the mean and covariance are the first and second mo-
ments of a probability distribution; all other moments are zero for normal distributions.
In this chapter, we will also discuss an alternative representation, called canonical rep-
resentation, or sometimes natural representation. Both representations, the moments
and the canonical representations, are functionally equivalent in that a bijective map-
ping exists that transforms one into the other (and back). However, they lead to filter
algorithms with orthogonal computational characteristics.

This chapter introduces the two basic Gaussian filter algorithms.

Section 3.2 describes the Kalman filter, which implements the Bayes filter using
the moments representation for a restricted class of problems with linear dynam-
ics and measurement functions.

The Kalman filter is extended to nonlinear problems in Section 3.3, which de-
scribes the extended Kalman filter.

Section 3.4 describes the information filter, which is the dual of the Kalman filter
using the canonical representation of Gaussians.

3.2 THE KALMAN FILTER

3.2.1 Linear Gaussian Systems

Probably the best studied technique for implementing Bayes filters is the Kalman filter
(KF). The Kalman filter was invented in the 1950s by Rudolph Emil Kalman, as a
technique for filtering and prediction in linear systems. The Kalman filter implements
belief computation for continuous states. It is not applicable to discrete or hybrid state
spaces.

The Kalman filter represents beliefs by the moments representation: At time t, the
belief is represented by the the mean µt and the covariance Σt. Posteriors are Gaussian
if the following three properties hold, in addition to the Markov assumptions of the
Bayes filter.

1. The next state probability p(xt | ut, xt−1) must be a linear function in its argu-
ments with added Gaussian noise. This is expressed by the following equation:

xt = Atxt−1 +Btut + εt . (3.2)

Gaussian Filters 35

Here xt and xt−1 are state vectors, and ut is the control vector at time t. In our
notation, both of these vectors are vertical vectors, that is, they are of the form

xt =

x1,t

x2,t

...
xn,t

and ut =

u1,t

u2,t

...
um,t

. (3.3)

At and Bt are matrices. At is a square matrix of size n × n, where n is the
dimension of the state vector xt. Bt is of size n×m, withm being the dimension
of the control vector ut. By multiplying the state and control vector with the
matrices At and Bt, respectively, the state transition function becomes linear in
its arguments. Thus, Kalman filters assume linear system dynamics.

The random variable εt in (3.2) is a Gaussian random vector that models the ran-
domness in the state transition. It is of the same dimension as the state vector. Its
mean is zero and its covariance will be denoted Rt. A state transition probability
of the form (3.2) is called a linear Gaussian, to reflect the fact that it is linear in
its arguments with additive Gaussian noise.

Equation (3.2) defines the state transition probability p(xt | ut, xt−1). This prob-
ability is obtained by plugging Equation (3.2) into the definition of the multi-
variate normal distribution (3.1). The mean of the posterior state is given by
Atxt−1 +Btut and the covariance by Rt:

p(xt | ut, xt−1) (3.4)

= det (2πRt)
− 1

2 exp
{
− 1

2 (xt −Atxt−1 −Btut)
TR−1

t (xt −Atxt−1 −Btut)
}

2. The measurement probability p(zt | xt) must also be linear in its arguments, with
added Gaussian noise:

zt = Ctxt + δt . (3.5)

Here Ct is a matrix of size k × n, where k is the dimension of the measurement
vector zt. The vector δt describes the measurement noise. The distribution of δt

is a multivariate Gaussian with zero mean and covariance Qt. The measurement
probability is thus given by the following multivariate normal distribution:

p(zt | xt) = det (2πQt)
−1

2 exp
{
− 1

2 (zt − Ct xt)
T Q−1

t (zt − Ct xt)
}

(3.6)

36 Chapter 3

1: Algorithm Kalman filter(µt−1,Σt−1, ut, zt):
2: µ̄t = At µt−1 +Bt ut

3: Σ̄t = At Σt−1 A
T
t +Rt

4: Kt = Σ̄t C
T
t (Ct Σ̄t C

T
t +Qt)

−1

5: µt = µ̄t +Kt(zt − Ct µ̄t)
6: Σt = (I −Kt Ct) Σ̄t

7: return µt,Σt

Table 3.1 The Kalman filter algorithm for linear Gaussian state transitions and measure-
ments.

3. Finally, the initial belief bel(x0) must be normal distributed. We will denote the
mean of this belief by µ0 and the covariance by Σ0:

bel(x0) = p(x0) = det (2πΣ0)
− 1

2 exp
{
− 1

2 (x0 − µ0)
T Σ−1

0 (x0 − µ0)
}

These three assumptions are sufficient to ensure that the posterior bel(xt) is always
a Gaussian, for any point in time t. The proof of this non-trivial result can be found
below, in the mathematical derivation of the Kalman filter (Section 3.2.4).

3.2.2 The Kalman Filter Algorithm

The Kalman filter algorithm is depicted in Table 3.1. Kalman filters represent the
belief bel(xt) at time t by the mean µt and the covariance Σt. The input of the Kalman
filter is the belief at time t − 1, represented by µt−1 and Σt−1. To update these
parameters, Kalman filters require the control ut and the measurement zt. The output
is the belief at time t, represented by µt and Σt.

In Lines 2 and 3, the predicted belief µ̄ and Σ̄ is calculated representing the belief
bel(xt) one time step later, but before incorporating the measurement zt. This belief is
obtained by incorporating the control ut. The mean is updated using the deterministic
version of the state transition function (3.2), with the mean µt−1 substituted for the
state xt−1. The update of the covariance considers the fact that states depend on
previous states through the linear matrix At. This matrix is multiplied twice into the
covariance, since the covariance is a quadratic matrix.

Gaussian Filters 37

The belief bel(xt) is subsequently transformed into the desired belief bel(xt) in Lines
4 through 6, by incorporating the measurement zt. The variable Kt, computed in
Line 4 is called Kalman gain. It specifies the degree to which the measurement is
incorporated into the new state estimate. Line 5 manipulates the mean, by adjusting
it in proportion to the Kalman gain Kt and the deviation of the actual measurement,
zt, and the measurement predicted according to the measurement probability (3.5).
Finally, the new covariance of the posterior belief is calculated in Line 6, adjusting for
the information gain resulting from the measurement.

The Kalman filter is computationally quite efficient. For today’s best algorithms, the
complexity of matrix inversion is approximately O(d2.8) for a matrix of size d × d.
Each iteration of the Kalman filter algorithm, as stated here, is lower bounded by
(approximately)O(k2.8), where k is the dimension of the measurement vector zt. This
(approximate) cubic complexity stems from the matrix inversion in Line 4. It is also at
least in O(n2), where n is the dimension of the state space, due to the multiplication
in Line 6 (the matrix KtCt may be sparse). In many applications—such as the robot
mapping applications discussed in later chapters—-the measurement space is much
lower dimensional than the state space, and the update is dominated by the O(n2)
operations.

3.2.3 Illustration

Figure 3.2 illustrates the Kalman filter algorithm for a simplistic one-dimensional lo-
calization scenario. Suppose the robot moves along the horizontal axis in each diagram
in Figure 3.2. Let the prior over the robot location be given by the normal distribution
shown in Figure 3.2a. The robot queries its sensors on its location (e.g., a GPS sys-
tem), and those return a measurement that is centered at the peak of the bold Gaussian
in Figure 3.2b. This bold Gaussian illustrates this measurement: Its peak is the value
predicted by the sensors, and its width (variance) corresponds to the uncertainty in the
measurement. Combining the prior with the measurement, via Lines 4 through 6 of
the Kalman filter algorithm in Table 3.1, yields the bold Gaussian in Figure 3.2c. This
belief’s mean lies between the two original means, and its uncertainty radius is smaller
than both contributing Gaussians. The fact that the residual uncertainty is smaller than
the contributing Gaussians may appear counter-intuitive, but it is a general character-
istic of information integration in Kalman filters.

Next, assume the robot moves towards the right. Its uncertainty grows due to the fact
that the next state transition is stochastic. Lines 2 and 3 of the Kalman filter provides
us with the Gaussian shown in bold in Figure 3.2d. This Gaussian is shifted by the
amount the robot moved, and it is also wider for the reasons just explained. Next, the

38 Chapter 3

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 (a)
0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 (b)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 (c)
0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 (d)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 (e)
0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 (f)

Figure 3.2 Illustration of Kalman filters: (a) initial belief, (b) a measurement (in bold)
with the associated uncertainty, (c) belief after integrating the measurement into the belief
using the Kalman filter algorithm, (d) belief after motion to the right (which introduces
uncertainty), (e) a new measurement with associated uncertainty, and (f) the resulting belief.

Gaussian Filters 39

robot receives a second measurement illustrated by the bold Gaussian in Figure 3.2e,
which leads to the posterior shown in bold in Figure 3.2f.

As this example illustrates, the Kalman filter alternates a measurement update step
(Lines 5-7), in which sensor data is integrated into the present belief, with a prediction
step (or control update step), which modifies the belief in accordance to an action.
The update step decreases and the prediction step increases uncertainty in the robot’s
belief.

3.2.4 Mathematical Derivation of the KF

This section derives the Kalman filter algorithm in Table 3.1. The section can safely
be skipped at first reading.

Part 1: Prediction. Our derivation begins with Lines 2 and 3 of the algorithm, in
which the belief bel(xt) is calculated from the belief one time step earlier, bel(xt−1).
Lines 2 and 3 implement the update step described in Equation (2.61), restated here
for the reader’s convenience:

bel(xt) =

∫

p(xt | xt−1, ut)
︸ ︷︷ ︸

∼N (xt;Atxt−1+Btut,Rt)

bel(xt−1)
︸ ︷︷ ︸

∼N (xt−1;µt−1,Σt−1)

dxt−1 (3.7)

The “prior” belief bel(xt−1) is represented by the mean µt−1 and the covariance Σt−1.
The state transition probability p(xt | xt−1, ut) was given in (3.4) as a normal distri-
bution over xt with mean Atxt−1 + Btut and covariance Rt. As we shall show now,
the outcome of (3.7) is again a Gaussian with mean µ̄t and covariance Σ̄t as stated in
Table 3.1.

We begin by writing (3.7) in its Gaussian form:

bel(xt) = η

∫

exp
{
− 1

2 (xt −At xt−1 −Bt ut)
T R−1

t (xt −At xt−1 −Bt ut)
}

exp
{
− 1

2 (xt−1 − µt−1)
T Σ−1

t−1(xt−1 − µt−1)
}
dxt−1 . (3.8)

In short, we have

bel(xt) = η

∫

exp {−Lt} dxt−1 (3.9)

40 Chapter 3

with

Lt = 1
2 (xt −At xt−1 −Bt ut)

T R−1
t (xt −At xt−1 −Bt ut)

+ 1
2 (xt−1 − µt−1)

T Σ−1
t−1 (xt−1 − µt−1). (3.10)

Notice that Lt is quadratic in xt−1; it is also quadratic in xt.

Expression (3.9) contains an integral. To solve this integral in closed form, we will
now decompose Lt into two functions, Lt(xt−1, xt) and Lt(xt):

Lt = Lt(xt−1, xt) + Lt(xt) (3.11)

so that all terms containing xt−1 are collected in Lt(xt−1, xt). This decomposition
will allow us to move Lt(xt) outside the integration, since its value does not depend
on the integration variable xt−1:

bel(xt) = η

∫

exp {−Lt} dxt−1

= η

∫

exp {−Lt(xt−1, xt)− Lt(xt)} dxt−1

= η exp {−Lt(xt)}
∫

exp {−Lt(xt−1, xt)} dxt−1 (3.12)

Furthermore, we will choose Lt(xt−1, xt) such that the value of the integral in (3.12)
does not depend on xt. Thus, the integral will simply become a constant relative to the
problem of estimating the belief distribution over xt. The resulting distribution over
xt will be entirely defined through Lt(xt).

bel(xt) = η exp {−Lt(xt)} (3.13)

Let us now perform this decomposition. We are seeking a function Lt(xt−1, xt)
quadratic in xt−1. (This function will also depend on xt, but that shall not concern us
at this point.) To determine the coefficients of this quadratic, we calculate the first two
derivatives of Lt:

∂Lt

∂xt−1
= −AT

t R−1
t (xt −At xt−1 −Bt ut) + Σ−1

t−1 (xt−1 − µt−1) (3.14)

Gaussian Filters 41

∂2Lt

∂x2
t−1

= AT
t R−1

t At + Σ−1
t−1 =: Ψ−1

t (3.15)

Ψt defines the curvature of Lt(xt−1, xt). Setting the first derivative of Lt to 0 gives
us the mean:

AT
t R−1

t (xt −At xt−1 −Bt ut) = Σ−1
t−1 (xt−1 − µt−1) (3.16)

This expression is now solved for xt−1

⇐⇒ AT
t R−1

t (xt −Bt ut)−AT
t R−1

t At xt−1 = Σ−1
t−1 xt−1 − Σ−1

t−1 µt−1

⇐⇒ AT
t R−1

t At xt−1 + Σ−1
t−1 xt−1 = AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 µt−1

⇐⇒ (AT
t R−1

t At + Σ−1
t−1) xt−1 = AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 µt−1

⇐⇒ Ψ−1
t xt−1 = AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 µt−1

⇐⇒ xt−1 = Ψt [AT
t R−1

t (xt −Bt ut) + Σ−1
t−1 µt−1] (3.17)

Thus, we now have a quadratic function Lt(xt−1, xt), defined as follows:

Lt(xt−1, xt) = 1
2 (xt−1 −Ψt [AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 µt−1])
T Ψ−1

(xt−1 −Ψt [AT
t R−1

t (xt −Bt ut) + Σ−1
t−1 µt−1]) (3.18)

Clearly, this is not the only quadratic function satisfying our decomposition in (3.11).
However, Lt(xt−1, xt) is of the common quadratic form of the negative exponent of a
normal distribution. In fact the function

det(2πΨ)−
1
2 exp{−Lt(xt−1, xt)} (3.19)

is a valid probability density function (PDF) for the variable xt−1. As the reader easily
verifies, this function is of the form defined in (3.1). We know from (2.5) that PDFs
integrate to 1. Thus, we have

∫

det(2πΨ)−
1
2 exp{−Lt(xt−1, xt)} dxt−1 = 1 (3.20)

42 Chapter 3

From this it follows that

∫

exp{−Lt(xt−1, xt)} dxt−1 = det(2πΨ)
1
2 . (3.21)

The important thing to notice is that the value of this integral is independent of xt, our
target variable. Thus, for our problem of calculating a distribution over xt, this inte-
gral is constant. Subsuming this constant into the normalizer η, we get the following
expression for Equation (3.12):

bel(xt) = η exp {−Lt(xt)}
∫

exp {−Lt(xt−1, xt)} dxt−1

= η exp {−Lt(xt)} (3.22)

Notice that the normalizers η left and right of the equal sign are not the same. This
decomposition establishes the correctness of (3.13).

It remains to determine the function Lt(xt), which is the difference of Lt, defined in
(3.10), and Lt(xt−1, xt), defined in (3.18):

Lt(xt) = Lt − Lt(xt−1, xt)

= 1
2 (xt −At xt−1 −Bt ut)

T R−1
t (xt −At xt−1 −Bt ut)

+ 1
2 (xt−1 − µt−1)

T Σ−1
t−1 (xt−1 − µt−1)

− 1
2 (xt−1 −Ψt [AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 µt−1])
T Ψ−1

(xt−1 −Ψt [AT
t R−1

t (xt −Bt ut) + Σ−1
t−1 µt−1]) (3.23)

Let us quickly verify that Lt(xt) indeed does not depend on xt−1. To do so, we
substitute back Ψt = (AT

t R−1
t At + Σ−1

t−1)
−1, and multiply out the terms above. For

the reader’s convenience, terms that contain xt−1 are underlined (doubly if they are
quadratic in xt−1).

Lt(xt) = 1
2 x

T
t−1A

T
t R−1

t At xt−1 − xT
t−1A

T
t R−1

t (xt −Bt ut)

+ 1
2 (xt −Bt ut)

T R−1
t (xt −Bt ut)

+ 1
2 x

T
t−1 Σ−1

t−1 xt−1 − xT
t−1 Σ−1

t−1 µt−1 + 1
2 µ

T
t−1 Σ−1

t−1 µt−1

− 1
2 x

T
t−1 (AT

t R−1
t At + Σ−1

t−1) xt−1

Gaussian Filters 43

+xT
t−1 [AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 µt−1]

− 1
2 [AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 µt−1]
T (AT

t R−1
t At + Σ−1

t−1)
−1

[AT
t R−1

t (xt −Bt ut) + Σ−1
t−1 µt−1] (3.24)

It is now easily seen that all terms that contain xt−1 cancel out. This should come at
no surprise, since it is a consequence of our construction of Lt(xt−1, xt).

Lt(xt) = + 1
2 (xt −Bt ut)

T R−1
t (xt −Bt ut) + 1

2 µ
T
t−1 Σ−1

t−1 µt−1

− 1
2 [AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 µt−1]
T (AT

t R−1
t At + Σ−1

t−1)
−1

[AT
t R−1

t (xt −Bt ut) + Σ−1
t−1 µt−1] (3.25)

Furthermore, Lt(xt) is quadratic in xt. This observation means that bel(xt) is indeed
normal distributed. The mean and covariance of this distribution are of course the
minimum and curvature of Lt(xt), which we now easily obtain by by computing the
first and second derivatives of Lt(xt) with respect to xt:

∂Lt(xt)

∂xt

= R−1
t (xt −Bt ut) −R−1

t At (AT
t R−1

t At + Σ−1
t−1)

−1

[AT
t R−1

t (xt −Bt ut) + Σ−1
t−1 µt−1]

= [R−1
t −R−1

t At (AT
t R−1

t At + Σ−1
t−1)

−1AT
t R−1

t] (xt −Bt ut)

− R−1
t At (AT

t R−1
t At + Σ−1

t−1)
−1 Σ−1

t−1 µt−1 (3.26)

The inversion lemma stated (and proved) in Table 3.2 allows us to express the first
factor as follows:

R−1
t −R−1

t At (AT
t R−1

t At + Σ−1
t−1)

−1AT
t R−1

t = (Rt +At Σt−1 A
T
t)−1

(3.27)

Hence the desired derivative is given by the following expression:

∂Lt(xt)

∂xt

= (Rt +At Σt−1 A
T
t)−1 (xt −Bt ut)

−R−1
t At (AT

t R−1
t At + Σ−1

t−1)
−1 Σ−1

t−1 µt−1 (3.28)

44 Chapter 3

Inversion Lemma. For any invertible quadratic matrices R and Q and any matrix P
with appropriate dimension, the following holds true

(R+ P Q P T)−1 = R−1 −R−1 P (Q−1 + PT R−1 P)−1 PT R−1

assuming that all above matrices can be inverted as stated.

Proof. It suffices to show that

(R−1 −R−1 P (Q−1 + PT R−1 P)−1 PT R−1) (R+ P Q P T) = I

This is shown through a series of transformations:

= R−1 R
︸ ︷︷ ︸

= I

+ R−1 P Q PT − R−1 P (Q−1 + PT R−1 P)−1 PT R−1 R
︸ ︷︷ ︸

= I

− R−1 P (Q−1 + PT R−1 P)−1 PT R−1 P Q PT

= I + R−1 P Q PT − R−1 P (Q−1 + PT R−1 P)−1 PT

− R−1 P (Q−1 + PT R−1 P)−1 PT R−1 P Q PT

= I + R−1 P [Q PT − (Q−1 + PT R−1 P)−1 PT

− (Q−1 + PT R−1 P)−1 PT R−1 P Q PT]

= I + R−1 P [Q PT − (Q−1 + PT R−1 P)−1 Q−1 Q
︸ ︷︷ ︸

= I

PT

− (Q−1 + PT R−1 P)−1 PT R−1 P Q PT]

= I + R−1 P [Q PT − (Q−1 + PT R−1 P)−1 (Q−1 + PT R−1 P)
︸ ︷︷ ︸

= I

Q PT]

= I + R−1 P [Q PT − Q PT

︸ ︷︷ ︸

= 0

] = I

Table 3.2 The (specialized) inversion lemma.

The minimum of Lt(xt) is attained when the first derivative is zero.

(Rt +At Σt−1 A
T
t)−1 (xt −Bt ut) = R−1

t At (AT
t R−1

t At + Σ−1
t−1)

−1 Σ−1
t−1 µt−1

(3.29)

Gaussian Filters 45

Solving this for the target variable xt gives us the surprisingly compact result

xt = Bt ut + (Rt +At Σt−1 A
T
t)R−1

t At
︸ ︷︷ ︸

At+At Σt−1 AT
t R−1

t At

(AT
t R−1

t At + Σ−1
t−1)

−1 Σ−1
t−1

︸ ︷︷ ︸

(Σt−1AT
t R−1

t At+I)−1

µt−1

= Bt ut +At (I + Σt−1 A
T
t R
−1
t At) (Σt−1A

T
t R−1

t At + I)−1

︸ ︷︷ ︸

= I

µt−1

= Bt ut +At µt−1 (3.30)

Thus, the mean of the belief bel(xt) after incorporating the motion command ut is
Bt ut +At µt−1. This proves the correctness of Line 2 of the Kalman filter algorithm
in Table 3.1. Line 3 is now obtained by calculating the second derivative of Lt(xt):

∂2Lt(xt)

∂x2
t

= (Rt +At Σt−1 A
T
t)−1 (3.31)

This is the curvature of the quadratic function Lt(xt), whose inverse is the covariance
of the belief bel(xt).

To summarize, we showed that the prediction steps in Lines 2 and 3 of the Kalman
filter algorithm indeed implement the Bayes filter prediction step. To do so, we first
decomposed the exponent of the belief bel(xt) into two functions, Lt(xt−1, xt) and
Lt(xt). Then we showed that Lt(xt−1, xt) changes the predicted belief bel(xt) only
by a constant factor, which can be subsumed into the normalizing constant η. Finally,
we determined the function Lt(xt) and showed that it results in the mean µ̄t and
covariance Σ̄t of the Kalman filter prediction bel(xt).

Part 2: Measurement Update. We will now derive the measurement update in
Lines 4, 5, and 6 (Table 3.1) of our Kalman filter algorithm. We begin with the general
Bayes filter mechanism for incorporating measurements, stated in Equation (2.58) and
restated here in annotated form:

bel(xt) = η p(zt | xt)
︸ ︷︷ ︸

∼N (zt;Ctxt,Qt)

bel(xt)
︸ ︷︷ ︸

∼N (xt;µ̄t,Σ̄t)

(3.32)

The mean and covariance of bel(xt) are obviously given by µ̄t and Σ̄t. The measure-
ment probability p(zt | xt) was defined in (3.6) to be normal as well, with mean Ct xt

46 Chapter 3

and covariance Qt. Thus, the product is given by an exponential

bel(xt) = η exp {−Jt} (3.33)

with

Jt = 1
2 (zt − Ctxt)

T Q−1
t (zt − Ctxt) + 1

2 (xt − µ̄t)
T Σ̄−1

t (xt − µ̄t)(3.34)

This function is quadratic in xt, hence bel(xt) is a Gaussian. To calculate its parame-
ters, we once again calculate the first two derivatives of Jt with respect to xt:

∂J

∂xt

= −CT
t Q−1

t (zt − Ctxt) + Σ̄−1
t (xt − µ̄t) (3.35)

∂2J

∂x2
t

= CT
t Q−1

t Ct + Σ̄−1
t (3.36)

The second term is the inverse of the covariance of bel(xt):

Σt = (CT
t Q−1

t Ct + Σ̄−1
t)−1 (3.37)

The mean of bel(xt) is the minimum of this quadratic function, which we now calcu-
late by setting the first derivative of Jt to zero (and substituting µt for xt):

CT
t Q−1

t (zt − Ctµt) = Σ̄−1
t (µt − µ̄t) (3.38)

The expression on the left of the equal sign can be transformed as follows:

CT
t Q−1

t (zt − Ctµt)

= CT
t Q−1

t (zt − Ct µt + Ct µ̄t − Ct µ̄t)

= CT
t Q−1

t (zt − Ctµ̄t)− CT
t Q−1

t Ct (µt − µ̄t) (3.39)

Substituting this back into (3.38) gives us

CT
t Q−1

t (zt − Ctµ̄t) = (CT
t Q−1

t Ct + Σ̄−1
t)

︸ ︷︷ ︸

= Σ−1
t

(µt − µ̄t) (3.40)

Gaussian Filters 47

and hence we have

Σt C
T
t Q−1

t (zt − Ct µ̄t) = µt − µ̄t (3.41)

We now define the Kalman gain as

Kt = Σt C
T
t Q−1

t (3.42)

and obtain

µt = µ̄t +Kt (zt − Ct µ̄t) (3.43)

This proves the correctness of Line 5 in the Kalman filter algorithm in Table 3.1.

The Kalman gain, as defined in (3.42), is a function of Σt. This is at odds with the
fact that we utilize Kt to calculate Σt in Line 6 of the algorithm. The following
transformation shows us how to expresses Kt in terms of covariances other than Σt.
It begins with the definition of Kt in (3.42):

Kt = Σt C
T
t Q−1

t

= Σt C
T
t Q−1

t (Ct Σ̄t C
T
t +Qt) (Ct Σ̄t C

T
t +Qt)

−1

︸ ︷︷ ︸

= I

= Σt (CT
t Q−1

t Ct Σ̄t C
T
t + CT

t Q−1
t Qt
︸ ︷︷ ︸

= I

) (Ct Σ̄t C
T
t +Qt)

−1

= Σt (CT
t Q−1

t Ct Σ̄t C
T
t + CT

t) (Ct Σ̄t C
T
t +Qt)

−1

= Σt (CT
t Q−1

t Ct Σ̄t C
T
t + Σ̄−1

t Σ̄t
︸ ︷︷ ︸

= I

CT
t) (Ct Σ̄t C

T
t +Qt)

−1

= Σt (CT
t Q−1

t Ct + Σ̄−1
t)

︸ ︷︷ ︸

= Σ−1
t

Σ̄t C
T
t (Ct Σ̄t C

T
t +Qt)

−1

= Σt Σ−1
t

︸ ︷︷ ︸

= I

Σ̄t C
T
t (Ct Σ̄t C

T
t +Qt)

−1

= Σ̄t C
T
t (Ct Σ̄t C

T
t +Qt)

−1 (3.44)

This expression proves the correctness of Line 4 of our Kalman filter algorithm. Line
6 is obtained by expressing the covariance using the Kalman gain Kt. The advantage

48 Chapter 3

of the calculation in Table 3.1 over the definition in Equation (3.37) lies in the fact that
we can avoid inverting the state covariance matrix. This is essential for applications
of Kalman filters to high-dimensional state spaces.

Our transformation is once again carried out using the inversion lemma, which was
already stated in Table 3.2. Here we restate it using the notation of Equation (3.37):

(Σ̄−1
t + CT

t Q−1
t Ct)

−1 = Σ̄t − Σ̄t C
T
t (Qt + Ct Σ̄t C

T
t)−1 Ct Σ̄t (3.45)

This lets us arrive at the following expression for the covariance:

Σt = (CT
t Q−1

t Ct + Σ̄−1
t)−1

= Σ̄t − Σ̄t C
T
t (Qt + Ct Σ̄t C

T
t)−1 Ct Σ̄t

= [I − Σ̄t C
T
t (Qt + Ct Σ̄t C

T
t)−1

︸ ︷︷ ︸

= Kt, see Eq. (3.44)

Ct] Σ̄t

= (I −Kt Ct) Σ̄t (3.46)

This proves the correctness of Line 6 of our Kalman filter algorithm.

3.3 THE EXTENDED KALMAN FILTER

The assumptions of linear state transitions and linear measurements with added Gaus-
sian noise are rarely fulfilled in practice. For example, a robot that moves with constant
translational and rotational velocity typically moves on a circular trajectory, which
cannot be described by linear next state transitions. This observation, along with the
assumption of unimodal beliefs, renders plain Kalman filters, as discussed so far, in-
applicable to all but the most trivial robotics problems.

The extended Kalman filter (EKF) overcomes one of these assumptions: the linearity
assumption. Here the assumption is that the next state probability and the measure-
ment probabilities are governed by nonlinear functions g and h, respectively:

xt = g(ut, xt−1) + εt (3.47)

zt = h(xt) + δt . (3.48)

Gaussian Filters 49

This model strictly generalizes the linear Gaussian model underlying Kalman filters,
postulated in Equations (3.2) and (3.5). The function g replaces the matricesAt andBt

in (3.2), and h replaces the matrixCt in (3.5). Unfortunately, with arbitrary functions g
and h, the belief is no longer a Gaussian. In fact, performing the belief update exactly
is usually impossible for nonlinear functions g and h, in the sense that the Bayes filter
does not possess a closed-form solution.

The extended Kalman filter (EKF) calculates an approximation to the true belief. It
represents this approximation by a Gaussian. In particular, the belief bel(xt) at time
t is represented by a mean µt and a covariance Σt. Thus, the EKF inherits from the
Kalman filter the basic belief representation, but it differs in that this belief is only
approximate, not exact as was the case in Kalman filters.

3.3.1 Linearization Via Taylor Expansion

The key idea underlying the EKF is called linearization. Figure ?? illustrates the ba-
sic concept. Suppose we are given a nonlinear next state function g. A Gaussian
projected through this function is typically non-Gaussian. This is because nonlineari-
ties in g distort the belief in ways that destroys its nice Gaussian shape, as illustrated in
the figure. Linearization approximates g by a linear function that is tangent to g at the
mean of the Gaussian. By projecting the Gaussian through this linear approximation,
the posterior is Gaussian. In fact, once g is linearized, the mechanics of belief propa-
gation are equivalent to those of the Kalman filter. The same argument applies to the
multiplication of Gaussians when a measurement function h is involved. Again, the
EKF approximates h by a linear function tangent to h, thereby retaining the Gaussian
nature of the posterior belief.

There exist many techniques for linearizing nonlinear functions. EKFs utilize a
method called (first order) Taylor expansion. Taylor expansion construct a linear ap-
proximation to a function g from g’s value and slope. The slope is given by the partial
derivative

g′(ut, xt−1) :=
∂g(ut, xt−1)

∂xt−1
(3.49)

Clearly, both the value of g and its slope depend on the argument of g. A logical
choice for selecting the argument is to chose the state deemed most likely at the time
of linearization. For Gaussians, the most likely state is the mean of the posterior µt−1.
In other words, g is approximated by its value at µt−1 (and at ut), and the linear

50 Chapter 3

extrapolation is achieved by a term proportional to the gradient of g at µt−1 and ut:

g(ut, xt−1) ≈ g(ut, µt−1) + g′(ut, µt−1)
︸ ︷︷ ︸

=: Gt

(xt−1 − µt−1)

= g(ut, µt−1) + Gt (xt−1 − µt−1) (3.50)

Written as Gaussian, the next state probability is approximated as follows:

p(xt | ut, xt−1)

≈ det (2πRt)
− 1

2 exp
{
− 1

2 [xt − g(ut, µt−1)−Gt (xt−1 − µt−1)]
T

R−1
t [xt − g(ut, µt−1)−Gt (xt−1 − µt−1)]

}
(3.51)

Notice that Gt is a matrix of size n × n, with n denoting the dimension of the state.
This matrix is often called the Jacobian. The value of the Jacobian depends on ut and
µt−1, hence it differs for different points in time.

EKFs implement the exact same linearization for the measurement function h. Here
the Taylor expansion is developed around µ̄t, the state deemed most likely by the robot
at the time it linearizes h:

h(xt) ≈ h(µ̄t) + h′(µ̄t)
︸ ︷︷ ︸

=: Ht

(xt − µ̄t)

= h(µ̄t) + Ht (xt − µ̄t) (3.52)

with h′(xt) = ∂h(xt)
∂xt

. Written as a Gaussian, we have

p(zt | xt) = det (2πQt)
− 1

2 exp
{
− 1

2 [zt − h(µ̄t)−Ht (xt − µ̄t)]
T

Q−1
t [zt − h(µ̄t)−Ht (xt − µ̄t)]

}
(3.53)

3.3.2 The EKF Algorithm

Table 3.3 states the EKF algorithm. In many ways, this algorithm is similar to the
Kalman filter algorithm stated in Table 3.1. The most important differences are sum-
marized by the following table:

Gaussian Filters 51

1: Algorithm Extended Kalman filter(µt−1,Σt−1, ut, zt):
2: µ̄t = g(ut, µt−1)
3: Σ̄t = Gt Σt−1 G

T
t +Rt

4: Kt = Σ̄t H
T
t (Ht Σ̄t H

T
t +Qt)

−1

5: µt = µ̄t +Kt(zt − h(µ̄t))
6: Σt = (I −Kt Ht) Σ̄t

7: return µt,Σt

Table 3.3 The extended Kalman filter (EKF) algorithm.

Kalman filter EKF
state prediction (Line 2) At µt−1 +Bt ut g(ut, µt−1)
measurement prediction (Line 5) Ct µ̄t h(µ̄t)

That is, the linear predictions in Kalman filters are replaced by their nonlinear gener-
alizations in EKFs. Moreover, EKFs use Jacobians Gt and Ht instead of the corre-
sponding linear system matrices At, Bt, and Ct in Kalman filters. The Jacobian Gt

corresponds to the matrices At and Bt, and the Jacobian Ht corresponds to Ct. A
detailed example for extended Kalman filters will be given in Chapter ??.

3.3.3 Mathematical Derivation of the EKF

The mathematical derivation of the EKF parallels that of the Kalman filter in Sec-
tion 3.2.4, and hence shall only be sketched here. The prediction is calculated as
follows (cf. (3.7)):

bel(xt) =

∫

p(xt | xt−1, ut)
︸ ︷︷ ︸

∼N (xt;g(ut,µt−1)+Gt(xt−1−µt−1),Rt)

bel(xt−1)
︸ ︷︷ ︸

∼N (xt−1;µt−1,Σt−1)

dxt−1

(3.54)

This distribution is the EKF analog of the prediction distribution in the Kalman filter,
stated in (3.7). The Gaussian p(xt | xt−1, ut) can be found in Equation (3.51). The

52 Chapter 3

function Lt is given by (cf. (3.10))

Lt = 1
2 (xt − g(ut, µt−1)−Gt(xt−1 − µt−1))

T

R−1
t (xt − g(ut, µt−1)−Gt(xt−1 − µt−1))

+ 1
2 (xt−1 − µt−1)

T Σ−1
t−1 (xt−1 − µt−1) (3.55)

which is quadratic in both xt−1 and xt, as above. As in (3.11), we decompose Lt into
Lt(xt−1, xt) and Lt(xt):

Lt(xt−1, xt)

= 1
2 (xt−1 − Φt [GT

t R−1
t (xt − g(ut, µt−1) +Gtµt−1) + Σ−1

t−1µt−1])
T Φ−1

(xt−1 − Φt [GT
t R−1

t (xt − g(ut, µt−1) +Gtµt−1) + Σ−1
t−1µt−1]) (3.56)

with

Φt = (GT
t R−1

t Gt + Σ−1
t−1)

−1 (3.57)

and hence

Lt(xt) = 1
2 (xt − g(ut, µt−1) +Gtµt−1)

T R−1
t (xt − g(ut, µt−1) +Gtµt−1)

+ 1
2 (xt−1 − µt−1)

T Σ−1
t−1 (xt−1 − µt−1)

− 1
2 [GT

t R−1
t (xt − g(ut, µt−1) +Gtµt−1) + Σ−1

t−1µt−1]
T

Φt [GT
t R−1

t (xt − g(ut, µt−1) +Gtµt−1) + Σ−1
t−1µt−1] (3.58)

As the reader easily verifies, setting the first derivative of Lt(xt) to zero gives us the
update µt = g(ut, µt−1), in analogy to the derivation in Equations (3.26) through
(3.30). The second derivative is given by (Rt +Gt Σt−1 G

T
t)−1 (see (3.31)).

The measurement update is also derived analogously to the Kalman filter in Sec-
tion 3.2.4. In analogy to (3.32), we have for the EKF

bel(xt) = η p(zt | xt)
︸ ︷︷ ︸

∼N (zt;h(µ̄t)+Ht (xt−µ̄t),Qt)

bel(xt)
︸ ︷︷ ︸

∼N (xt;µ̄t,Σ̄t)

(3.59)

Gaussian Filters 53

using the linearized next state transition function from (3.52). This leads to the expo-
nent (see (3.34)):

Jt = 1
2 (zt − h(µ̄t)−Ht (xt − µ̄t))

T Q−1
t (zt − h(µ̄t)−Ht (xt − µ̄t))

+ 1
2 (xt − µ̄t)

T Σ̄−1
t (xt − µ̄t) (3.60)

The resulting mean and covariance is given by

µt = µ̄t +Kt(zt − h(µ̄t)) (3.61)

Σt = (I −Kt Ht) Σ̄t (3.62)

with the Kalman gain

Kt = Σ̄t H
T
t (Ht Σ̄t−1 H

T
t +Qt)

−1 (3.63)

The derivation of these equations is analogous to Equations (3.35) through (3.46).

3.3.4 Practical Considerations

The EKF has become just about the most popular tool for state estimation in robotics.
Its strength lies in its simplicity and in its computational efficiency. As was the case for
the Kalman filter, each update requires timeO(k2.8 +n2), where k is the dimension of
the measurement vector zt, and n is the dimension of the state vector xt. Other algo-
rithms, such as the particle filter discussed further below, may require time exponential
in n.

The EKF owes its computational efficiency to the fact that it represents the belief by
a multivariate Gaussian distribution. A Gaussian is a unimodal distribution, which
can be thought of as a single guess, annotated with an uncertainty ellipse. In many
practical problems, Gaussians are robust estimators. Applications of the Kalman filter
to state spaces with 1,000 dimensions or more will be discussed in later chapters of
this book. EKFs have been applied with great success to a number of state estimation
problems that violate the underlying assumptions.

Sometimes, one might want to pursue multiple distinct hypotheses. For example, a
robot might have two distinct hypotheses as to where it is, but the arithmetic mean of

54 Chapter 3

these hypotheses is not a likely contender. Such situations require multi-modal repre-
sentations for the posterior belief. EKFs, in the form described here, are incapable of
representing such multimodal beliefs. A common extension of EKFs is to represent
posteriors using mixtures, or sums, of Gaussians. A mixture of J Gaussians may be of
the form (cf. (??)):

bel(x) =
∑

j

aj det (2πΣj,t)
− 1

2 exp
{
− 1

2 (xt − µj,t)
T Σ−1

j,t (xt − µj,t)
}

(3.64)

where aj are mixture parameters with aj ≥ 0 and
∑

j aj = 1. EKFs that utilize
such mixture representations are called multi-hypothesis (extended) Kalman filters, of
MHEKF.

An important limitation of the EKF arises from the fact that it approximates state
transitions and measurements using linear Taylor expansions. In virtually all robotics
problems, these functions are nonlinear. The goodness of this approximation depends
on two main factors. First, it depends on the degree of nonlinearity of the functions that
are being approximated. If these functions are approximately linear, the EKF approx-
imation may generally be a good one, and EKFs may approximate the posterior belief
with sufficient accuracy. However, sometimes, the functions are not only nonlinear,
but are also multi-modal, in which case the linearization may be a poor approximation.
The goodness of the linearization also depends on the degree of uncertainty. The less
certain the robot, the wider its Gaussian belief, and the more it is affected by nonlin-
earities in the state transition and measurement functions. In practice, when applying
EKFs it is therefore important to keep the uncertainty of the state estimate small.

We also note that Taylor series expansion is only one way to linearize. Two other ap-
proaches have often been found to yield superior results. One is the unscented Kalman
filter, which probes the function to be linearized at selected points and calculates a lin-
earized approximation based on the outcomes of these probes. Another is known as
moments matching, in which the linearization is calculated in a way that preserves the
true mean and the true covariance of the posterior distribution (which is not the case
for EKFs). Both techniques are relatively recent but appear to be superior to the EKF
linearization.

Gaussian Filters 55

3.4 THE INFORMATION FILTER

The dual of the Kalman filter is the information filter. Just like the KF and its nonlin-
ear version, the EKF, the information filter (IF) represents the belief by a Gaussian.
Thus, the standard information filter is subject to the same assumptions underlying
the Kalman filter. The key difference between the KF and the IF arises from the way
the Gaussian belief is represented. Whereas in the Kalman filter family of algorithms,
Gaussians are represented by their moments (mean, covariance), information filters
represent Gaussians in their canonical representation, which is comprised of an in-
formation matrix and an information vector. The difference in representation leads
to different update equations. In particular, what is computationally complex in one
representation happens to be simple in the other (and vice versa). The canonical and
the moments representations are often considered dual to each other, and thus are the
IF and the KF.

3.4.1 Canonical Representation

The canonical representation of a multivariate Gaussian is given by a matrix Ω and a
vector ξ. The matrix Ω is the inverse of the covariance matrix:

Ω = Σ−1 . (3.65)

Ω is called the information matrix, or sometimes the precision matrix. The vector ξ is
called the information vector. It is defined as

ξ = Σ−1 µ . (3.66)

It is easy to see that Ω and ξ are a complete parameterization of a Gaussian. In particu-
lar, the mean and covariance of the Gaussian can easily be obtained from the canonical
representation by the inverse of (3.65) and (3.66):

Σ = Ω−1 (3.67)

µ = Ω−1 ξ (3.68)

56 Chapter 3

The canonical representation is often derived by multiplying out the exponent of a
Gaussian. In (3.1), we defined the multivariate normal distribution as follows:

p(x) = det (2πΣ)
−1

2 exp
{
− 1

2 (x− µ)T Σ−1(x− µ)
}

(3.69)

A straightforward sequence of transformations leads to the following parameteriza-
tion:

p(x) = det (2πΣ)
−1

2 exp
{
− 1

2x
T Σ−1x+ xT Σ−1µ− 1

2µ
T Σ−1µ

}

= det (2πΣ)
−1

2 exp
{
− 1

2µ
T Σ−1µ

}

︸ ︷︷ ︸

const.

exp
{
− 1

2x
T Σ−1x+ xT Σ−1µ

}
(3.70)

The term labeled “const.” does not depend on the target variable x. Hence, it can be
subsumed into the normalizer η.

p(x) = η exp
{
− 1

2x
T Σ−1 x+ xT Σ−1 µ

}
(3.71)

This form motivates the parameterization of a Gaussian by its canonical parameters Ω
and ξ.

p(x) = η exp
{
− 1

2x
T Ω x+ xT ξ

}
(3.72)

In many ways, the canonical representation is more elegant than the moments repre-
sentation. In particular, the negative logarithm of the Gaussian (which plays an essen-
tial role in information theory) is a quadratic function in the canonical parameters Ω
and ξ:

− log p(x) = const.+ 1
2x

T Ω x− xT ξ (3.73)

Here “const.” is a constant. The reader may notice that we cannot use the symbol η
to denote this constant, since negative logarithms of probabilities do not normalize to
1. The negative logarithm of our distribution p(x) is quadratic in x, with the quadratic
term parameterized by Ω and the linear term by ξ. In fact, for Gaussians, Ω must

Gaussian Filters 57

1: Algorithm Information filter(ξt−1,Ωt−1, ut, zt):
2: Ω̄t = (At Ω−1

t−1 A
T
t +Rt)

−1

3: ξ̄t = Ω̄t(At Ω−1
t−1 ξt−1 +Bt ut)

4: Ωt = CT
t Q−1

t Ct + Ω̄t

5: ξt = CT
t Q−1

t zt + ξ̄t
6: return ξt,Ωt

Table 3.4 The information filter (IF) algorithm.

be positive semidefinite, hence − log p(x) is a quadratic distance function with mean
µ = Ω−1 ξ. This is easily verified by setting the first derivative of (3.73) to zero:

∂[− log p(x)]

∂x
= 0 ⇐⇒ Ωx− ξ = 0 ⇐⇒ x = Ω−1ξ (3.74)

The matrix Ω determines the rate at which the distance function increases in the dif-
ferent dimensions of the variable x. A quadratic distance that is weighted by a matrix
Ω is called Mahalanobis distance.

3.4.2 The Information Filter Algorithm

Table 3.4 states the update algorithm known as information filter. Its input is a Gaus-
sian in its canonical representation ξt−1 and Ωt−1, representing the belief at time t−1.
Just like all Bayes filters, its input includes the control ut and the measurement zt. The
output are the parameters ξt and Ωt of the updated Gaussian.

The update involves matrices At, Bt, Ct, Rt, and Qt. Those were defined in Sec-
tion 3.2. The information filter assumes that the state transition and measurement
probabilities are governed by the following linear Gaussian equations, originally de-
fined in (3.2) and (3.5):

xt = Atxt−1 +Btut + εt (3.75)

zt = Ctxt + δt (3.76)

58 Chapter 3

HereRt andQt are the covariances of the zero-mean noise variables εt and δt, respec-
tively.

Just like the Kalman filter, the information filter is updated in two steps, a prediction
step and a measurement update step. The prediction step is implemented in Lines 2
and 3 in Table 3.4. The parameters ξ̄t and Ω̄t describe the Gaussian belief over xt after
incorporating the control ut, but before incorporating the measurement zt. The latter
is done through Lines 4 and 5. Here the belief is updated based on the measurement
zt.

These two update steps can be vastly different in complexity, especially if the state
space possesses many dimensions. The prediction step, as stated in Table 3.4, involves
the inversion of two matrices of the size n × n, where n is the dimension of the state
space. This inversion requires approximately O(n2.8) time. In Kalman filters, the
update step is additive and requires at most O(n2) time; it requires less time if only a
subset of variables is affected by a control, or if variables transition independently of
each other. These roles are reversed for the measurement update step. Measurement
updates are additive in the information filter. They require at most O(n2) time, and
they are even more efficient if measurements carry only information about a subset of
all state variables at a time. The measurement update is the difficult step in Kalman
filters. It requires matrix inversion whose worst case complexity is O(n2.8). This
illustrates the dual character of Kalman and information filters.

3.4.3 Mathematical Derivation of the

Information Filter

The derivation of the information filter is analogous to that of the Kalman filter. To
derive the prediction step (Lines 2 and 3 in Table 3.4), we begin with the corresponding
update equations of the Kalman filters, which can be found in Lines 2 and 3 of the
algorithm in Table 3.1 and are restated here for the reader’s convenience:

µ̄t = At µt−1 +Bt ut (3.77)

Σ̄t = At Σt−1 A
T
t +Rt (3.78)

The information filter prediction step follows now directly by substituting the mo-
ments µ and Σ by the canonical parameters ξ and Ω according to their definitions in

Gaussian Filters 59

(3.67) and (3.72):

µt−1 = Ω−1
t−1 ξt−1

Σt−1 = Ω−1
t−1 (3.79)

Substituting these expressions in (3.77) and (3.78) gives us the set of prediction equa-
tions

Ω̄t = (At Ω−1
t−1 A

T
t +Rt)

−1 (3.80)

ξ̄t = Ω̄t(At Ω−1
t−1 ξt−1 +Bt ut) (3.81)

These equations are identical to those in Table 3.4. As is easily seen, the prediction
step involves two nested inversions of a potentially large matrix. These nested inver-
sions can be avoided when only a small number of state variables is affected by the
motion update, a topic which will be discussed later in this book.

The derivation of the measurement update is even simpler. We begin with the Gaussian
of the belief at time t, which was provided in Equation (3.34) and is restated here once
again:

bel(xt) (3.82)

= η exp
{
− 1

2 (zt − Ctxt)
T Q−1

t (zt − Ctxt)− 1
2 (xt − µ̄t)

T Σ̄−1
t (xt − µ̄t)

}

For Gaussians represented in their canonical form this distribution is given by

bel(xt) (3.83)

= η exp
{
− 1

2 x
T
t CT

t Q−1
t Ct xt + xT

t CT
t Q−1

t zt − 1
2 x

T
t Ω̄txt + xT

t ξ̄t
}

which by reordering the terms in the exponent resolves to

bel(xt) = η exp
{
− 1

2 x
T
t [CT

t Q−1
t Ct + Ω̄t] xt + xT

t [CT
t Q−1

t zt + ξ̄t]
}

We can now read off the measurement update equations, by collecting the terms in the
squared brackets:

ξt = CT
t Q−1

t zt + ξ̄t (3.84)

60 Chapter 3

1: Algorithm Extended information filter(ξt−1,Ωt−1, ut, zt):
2: µt−1 = Ω−1

t−1 ξt−1

3: Ω̄t = (Gt Ω−1
t−1 G

T
t +Rt)

−1

4: ξ̄t = Ω̄t g(ut, µt−1)
5: µ̄t = g(ut, µt−1)
6: Ωt = Ω̄t +HT

t Q−1
t Ht

7: ξt = ξ̄t +HT
t Q−1

t [zt − h(µ̄t)−Ht µ̄t]
8: return ξt,Ωt

Table 3.5 The extended information filter (EIF) algorithm.

Ωt = CT
t Q−1

t Ct + Ω̄t (3.85)

These equations are identical to the measurement update equations in Lines 4 and 5 of
Table 3.4.

3.4.4 The Extended Information Filter

Algorithm

The extended version of the information filter is analog to the EKF. Table 3.5 depicts
the algorithm. The prediction is realized in Lines 2 through 4, and the measurement
update in Lines 5 through 7. These update equations are largely analog to the linear
information filter, with the functions g and h (and their Jacobian Gt and Ht) replacing
the parameters of the linear model At, Bt, and Ct. As before, g and h specify the
nonlinear next state function and measurement function, respectively. Those were
defined in (3.47) and (3.48) and are restated here:

xt = g(ut, xt−1) + εt (3.86)

zt = h(xt) + δt . (3.87)

Unfortunately, both g and h require a state as an input. This mandates the recovery of
a state estimate µ from the canonical parameters. The recovery takes place in Line 2,
in which the state µt−1 is calculated from Ωt−1 and ξt−1 in the obvious way. Line 5
computes the state µ̄t using the equation familiar from the EKF (Line 2 in Table 3.3).

Gaussian Filters 61

The necessity to recover the state estimate seems at odds with the desire to represent
the filter using its canonical parameters. We will revisit this topic when discussing the
use of extended information filters in the context of robotic mapping.

3.4.5 Mathematical Derivation of the

Extended Information Filter

The extended information filter is easily derived by essentially performing the same
linearization that led to the extended Kalman filter above. As in (3.50) and (3.52),
EIFs approximate g and h by a Taylor expansion:

g(ut, xt−1) ≈ g(ut, µt−1) + Gt (xt−1 − µt−1) (3.88)

h(xt) ≈ h(µ̄t) + Ht (xt − µ̄t) (3.89)

Here Gt and Ht are the Jacobians of g and h at µt−1 and µ̄t, respectively:

Gt = g′(ut, µt−1) (3.90)

Ht = h′(µ̄t) (3.91)

These definitions are equivalent to those in the EKF. The prediction step is now derived
from Lines 2 and 3 of the EKF algorithm (Table 3.3), which are restated here:

Σ̄t = Gt Σt−1 G
T
t +Rt (3.92)

µ̄t = g(ut, µt−1) (3.93)

Substituting Σt−1 by Ω−1
t−1 and µ̄t by Ω̄−1

t ξ̄t gives us the prediction equations of the
extended information filter:

Ω̄t = (Gt Ω−1
t−1 G

T
t +Rt)

−1 (3.94)

ξ̄t = Ω̄t g(ut,Ω
−1
t−1 ξt−1) (3.95)

The measurement update is derived from Equations (3.59) and (3.60). In particular,
(3.60) defines the following Gaussian posterior:

bel(xt) = η exp
{
− 1

2 (zt − h(µ̄t)−Ht (xt − µ̄t))
T Q−1

t

62 Chapter 3

(zt − h(µ̄t)−Ht (xt − µ̄t))− 1
2 (xt − µ̄t)

T Σ̄−1
t (xt − µ̄t)

}
(3.96)

Multiplying out the exponent and reordering the terms gives us the following expres-
sion for the posterior:

bel(xt) = η exp
{
− 1

2 x
T
t HT

t Q−1
t Ht xt + xT

t HT
t Q−1

t [zt − h(µ̄t)−Ht µ̄t]

− 1
2x

T
t Σ̄−1

t xt + xT
t Σ̄−1

t µ̄t

}

= η exp
{
− 1

2 x
T
t

[
HT

t Q−1
t Ht + Σ̄−1

t

]
xt

+xT
t

[
HT

t Q−1
t [zt − h(µ̄t)−Ht µ̄t] + Σ̄−1

t µ̄t

]
(3.97)

With Σ̄−1
t = Ω̄t this expression resolves to the following information form:

bel(xt) = η exp
{
− 1

2 x
T
t

[
HT

t Q−1
t Ht + Ω̄t

]
xt

+xT
t

[
HT

t Q−1
t [zt − h(µ̄t)−Ht µ̄t] + ξ̄t

]
(3.98)

We can now read off the measurement update equations by collecting the terms in the
squared brackets:

Ωt = Ω̄t +HT
t Q−1

t Ht (3.99)

ξt = ξ̄t +HT
t Q−1

t [zt − h(µ̄t)−Ht µ̄t] (3.100)

3.4.6 Practical Considerations

When applied to robotics problems, the information filter possesses several advantages
over the Kalman filter. For example, representing global uncertainty is simple in the
information filter: simply set Ω = 0. When using moments, such global uncertainty
amounts to a covariance of infinite magnitude. This is especially problematic when
sensor measurements carry information about a strict subset of all state variables, a
situation often encountered in robotics. Special provisions have to be made to handle
such situations in EKFs. Furthermore, the information filter tends to be numerically
more stable than the Kalman filter in many of the applications discussed later in this
book.

Another advantage of the information filter over the Kalman filter arises from its nat-
ural fit for multi-robot problems. Multi-robot problems often involve the integration

Gaussian Filters 63

of sensor data collected decentrally. Such integration is commonly performed through
Bayes rule. When represented in logarithmic form, Bayes rule becomes an addition.
As noted above, the canonical parameters of information filters represent a probability
in logarithmic form. Thus, information integration is achieved by summing up infor-
mation from multiple robots. Addition is commutative. Because of this, information
filters can often integrate information in arbitrary order, with arbitrary delays, and in
a completely decentralized manner. While the same is possible using the moments
representation—after all, they represent the same information—the necessary over-
head for doing so is much higher. Despite this advantage, the use of information filters
in multi-robot systems remains largely under-explored.

These advantages of the information filter are offset by important limitations. A pri-
mary disadvantage of the EIF is the need to recover a state estimate in the update step,
when applied to nonlinear systems. This step, if implemented as stated here, requires
the inversion of the information matrix. Further matrix inversions are required for the
prediction step of the information filters. In many robotics problems, the EKF does
not involve the inversion of matrices of comparable size. For high dimensional state
spaces, the information filter is generally believed to be computationally inferior to
the Kalman filter. In fact, this is one of the reasons why the EKF has been vastly more
popular than the EIF.

As we will see later in this book, these limitations do not necessarily apply to problems
in which the information matrix possess structure. In many robotics problems, the
interaction of state variables is local; as a result, the information matrix may be sparse.
Such sparseness does not translate to sparseness of the covariance.

Information filters can be thought of as graphs, where states are connected whenever
the corresponding off-diagonal element in the information matrix is non-zero. Sparse
information matrices correspond to sparse graphs; in fact, such graphs are commonly
known as Gaussian Markov random fields. A flurry of algorithms exist to perform
the basic update and estimation equations efficiently for such fields, under names like
“loopy belief propagation.” In this book, we will encounter a mapping problem in
which the information matrix is (approximately) sparse, and develop an extended in-
formation filter that is significantly more efficient than both Kalman filters and non-
sparse information filters.

64 Chapter 3

3.5 SUMMARY

In this section, we introduced efficient Bayes filter algorithms that represent the pos-
terior by multivariate Gaussians. We noted that

Gaussians can be represented in two different ways: The moments representation
and the canonical representation. The moments representation consists of the
mean (first moment) and the covariance (second moment) of the Gaussian. The
canonical, or natural, representation consists of an information matrix and an
information vector. Both representations are duals of each other, and each can be
recovered from the other via matrix inversion.

Bayes filters can be implemented for both representations. When using the mo-
ments representation, the resulting filter is called Kalman filter. The dual of the
Kalman filter is the information filter, which represents the posterior in the canon-
ical representation. Updating a Kalman filter based on a control is computation-
ally simple, whereas incorporating a measurement is more difficult. The opposite
is the case for the information filter, where incorporating a measurement is sim-
ple, but updating the filter based on a control is difficult.

For both filters to calculate the correct posterior, three assumptions have to be
fulfilled. First, the initial belief must be Gaussian. Second, the state transition
probability must be composed of a function that is linear in its argument with
added independent Gaussian noise. Third, the same applies to the measurement
probability. It must also be linear in its argument, with added Gaussian noise.
Systems that meet these assumptions are called linear Gaussian systems.

Both filters can be extended to nonlinear problems. The technique described in
this chapter calculates a tangent to the nonlinear function. Tangents are linear,
making the filters applicable. The technique for finding a tangent is called Taylor
expansion. Performing a Taylor expansion involves calculating the first deriva-
tive of the target function, and evaluating it at a specific point. The result of
this operation is a matrix known as the Jacobian. The resulting filters are called
“extended.”

The accuracy of Taylor series expansions depends on two factors: The degree
of nonlinearity in the system, and the width of the posterior. Extended filters
tend to yield good results if the state of the system is known with relatively high
accuracy, so that the remaining covariance is small. The larger the uncertainty,
the higher the error introduced by the linearization.

One of the primary advantages of Gaussian filters is computational: The update
requires time polynomial in the dimensionality of the state space. This is not

Gaussian Filters 65

the case of some of the techniques described in the next chapter. The primary
disadvantage is their confinement to unimodal Gaussian distributions.

Within the multivariate Gaussian regime, both filters, the Kalman filter and the
information filter, have orthogonal strengths and weaknesses. However, the
Kalman filter and its nonlinear extension, the extended Kalman filter, are vastly
more popular than the information filter.

The selection of the material in this chapter is based on today’s most popular tech-
niques in robotics. There exists a huge number of variations and extensions of the
Gaussian filters presented here, that address the various limitations and shortcomings.
One of the most apparent limitations of the material presented thus far is the fact that
the posterior is represented by a single Gaussian. This confines these filters to situa-
tions where the posterior can be described by a unimodal distribution. This is often
appropriate in tracking applications, where a robot tracks a state variable with limited
uncertainty. When uncertainty grows more global, a single mode can be insufficient,
and Gaussians become too crude an approximation to the true posterior belief. This
limitation has been well recognized, and even within the Gaussian paradigm exten-
sions exist that can represent multimodal beliefs, e.g., using mixtures of Gaussians.
Popular non-Gaussian approaches are described in the next chapter.

3.6 BIBLIOGRAPHICAL REMARKS

Inversion lemma: G.H. Golub, C.F. Van Loan, Matrix Computations, North Oxford
Academic, 1986.

66 Chapter 3

4
NONPARAMETRIC FILTERS

A popular alternative to Gaussian techniques are nonparametric filters. Nonparamet-
ric filters do not rely on a fixed functional form of the posterior, such as Gaussians.
Instead, they approximate posteriors by a finite number of values, each roughly cor-
responding to a region in state space. Some nonparametric Bayes filters rely on a
decomposition of the state space, in which each such value corresponds to the cumu-
lative probability of the posterior density in a compact subregion of the state space.
Others approximate the state space by random samples drawn from the posterior dis-
tribution. In all cases, the number of parameters used to approximate the posterior
can be varied. The quality of the approximation depends on the number of parameters
used to represent the posterior. As the number of parameters goes to infinity, nonpara-
metric techniques tend to converge uniformly to the correct posterior (under specific
smoothness assumptions).

This chapter discusses two nonparametric approaches for approximating posteriors
over continuous spaces with finitely many values. The first decomposes the state space
into finitely many regions, and represents the posterior by a histogram. A histogram
assigns to each region a single cumulative probability; they are best thought of as
piecewise constant approximations to a continuous density. The second technique
represents posteriors by finitely many samples. The resulting filter is known as particle
filter and has gained immense popularity in certain robotics problems.

Both types of techniques, histograms and particle filters, do not make strong paramet-
ric assumptions on the posterior density. In particular, they are well-suited to repre-
sent complex multimodal beliefs. For this reason, they are often the method of choice
when a robot has to cope with phases of global uncertainty, and when it faces hard data
association problems that yield separate, distinct hypotheses. However, the represen-
tational power of these techniques comes at the price of added computational com-

67

68 Chapter 4

1: Algorithm Discrete Bayes filter({pk,t−1}, ut, zt):
2: for all k do
3: p̄k,t =

∑

i p(Xt = xk | ut, Xt−1 = xi) pi,t−1

4: pk,t = η p(zt | Xt = xk) p̄k,t

5: endfor
6: return {pk,t}

Table 4.1 The discrete Bayes filter. Here xi, xk denote individual states.

plexity. Fortunately, both nonparametric techniques described in this chapter make it
possible to adapt the number of parameters to the (suspected) complexity of the pos-
terior. When the posterior is of low complexity (e.g., focused on a single state with a
small margin of uncertainty), they use only small numbers of parameters. For com-
plex posteriors, e.g., posteriors with many modes scattered across the state space, the
number of parameters grows larger.

Techniques that can adapt the number of parameters to represent the posterior on-
line are called adaptive. They are called resource-adaptive if they can adapt based
on the computational resources available for belief computation. Resource-adaptive
techniques play an important role in robotics. They enable robots to make decisions in
real time, regardless of the computational resources available. Particle filters are often
implemented as a resource-adaptive algorithm, by adapting the number of particles
online based on the available computational resources.

4.1 THE HISTOGRAM FILTER

Histogram filters decompose the state space into finitely many regions, and represent
the cumulative posterior for each region by a single probability value. When applied
to discrete spaces, such filters are known as discrete Bayes filters. In continuous state
spaces, they are known as histogram filters. We will first describe the discrete Bayes
filter, and then discuss its use in continuous state spaces.

Nonparametric Filters 69

4.1.1 The Discrete Bayes Filter Algorithm

Discrete Bayes filters apply to problems with finite state spaces, that is, where the
random variable Xt can take on finitely many values. We already encountered a dis-
crete Bayes filter in Section 2.4.2, when discussing the example of a robot estimating
the probability that a door is open. Some of the robotic mapping problems discussed
in later chapters also involve discrete random variables. For example, occupancy grid
mapping algorithms assume that each location in the environment is either occupied or
free. The corresponding random variable is binary, that is, it can take on two different
values. Thus, finite state spaces play an important role in robotics.

Table 4.1 provides pseudo-code for the discrete Bayes filter. This code is derived from
the general Bayes filter in Table 2.1 by replacing the integration with a finite sum. The
variables xi and xk denote individual states, of which there may only be finitely many.
The belief at time t is an assignment of a probability to each state xk, denoted pk,t.
Thus, the input to the algorithm is a discrete probability distribution {pk,t}, along with
the most recent control ut and measurement zt. Line 3 calculates the prediction, the
belief for the new state based on the control alone. This prediction is then updated in
Line 4, so as to incorporate the measurement. The discrete Bayes filter algorithm is
popular in many areas of signal processing (such as speech recognition), where it is
often referred to as the forward pass of a hidden Markov models.

4.1.2 Continuous State

Of particular interest in this book will be the use of discrete Bayes filters as an ap-
proximate inference tool for continuous state spaces. Such filters are called histogram
filters. Histogram filters decompose a continuous state space into finitely many re-
gions:

range(Xt) = x1,t ∪ x2,t ∪ . . .xK,t (4.1)

Here Xt is the familiar random variable describing the state of the robot at time t. The
function range(Xt) denotes the state space, that is, the universe of possible values that
Xt might assume. Each xk,t describes a convex region. These regions together form
a partitioning of the state space, that is, for each i 6= k we have xi,t ∩ xk,t = ∅ and
⋃

k xk,t = range(Xt). A straightforward decomposition of a continuous state space
is a multi-dimensional grid, where each xk,t is a grid cell. Through the granularity
of the decomposition, we can trade off accuracy and computational efficiency. Fine-

70 Chapter 4

grained decompositions infer smaller approximation errors than coarse ones, but at the
expense of increased computational complexity.

As we already discussed, the discrete Bayes filter assigns to each region xk,t a proba-
bility, pk,t. Within each region, the discrete Bayes filter carries no further information
on the belief distribution. Thus, the posterior becomes a piecewise constant PDF,
which assigns a uniform probability to each state xt within each region xk,t:

p(xt) =
pk,t

|xk,t|
(4.2)

Here |xk,t| is the volume of the region xk,t.

If the state space is truly discrete, the conditional probabilities p(xk,t | ut,xi,t−1)
and p(zt | xk,t) are well-defined, and the algorithm can be implemented as stated. In
continuous state spaces, one is usually given the densities p(xt | ut, xt−1) and p(zt |
xt), which are defined for individual states (and not for regions in state space). For
cases where each region xk,t is small and of the same size, these densities are usually
approximated by substituting xk,t by a representative of this region. For example, we
might simply “probe” using the mean state in xk,t

x̂k,t = |xk,t|−1

∫

xk,t

xt dxt (4.3)

One then simply replaces

p(zt | xk,t) ≈ p(zt | x̂k,t) (4.4)

p(xk,t | ut,xi,t−1) ≈ η

|xk,t|
p(x̂k,t | ut, x̂i,t−1) (4.5)

These approximations are the result of the piecewise uniform interpretation of the
discrete Bayes filter stated in (4.2), and a linearization similar to the one used by
EKFs.

To see that (4.4) is a reasonable approximation, we note that p(zt | xk,t) can be
expressed as the following integral:

p(zt | xk,t) =
p(zt,xk,t)

p(xk,t)

Nonparametric Filters 71

=

∫

xk,t
p(zt, xt) dxt

∫

xk,t
p(xt) dxt

=

∫

xk,t
p(zt | xt) p(xt) dxt
∫

xk,t
p(xt) dxt

(4.2)
=

∫

xk,t
p(zt | xt)

pk,t

|xk,t| dxt
∫

xk,t

pk,t

|xk,t| dxt

=

∫

xk,t
p(zt | xt) dxt
∫

xk,t
1 dxt

= |xk,t|−1

∫

xk,t

p(zt | xt) dxt (4.6)

This expression is an exact description of the desired probability under the piecewise
uniform distribution model in (4.2). If we now approximate p(zt | xt) by p(zt | x̂k,t)
for xt ∈ xk,t, we obtain

p(zt | xk,t) ≈ |xk,t|−1

∫

xk,t

p(zt | x̂k,t) dxt

= |xk,t|−1 p(zt | x̂k,t)

∫

xk,t

1 dxt

= |xk,t|−1 p(zt | x̂k,t) |xk,t|
= p(zt | x̂k,t) (4.7)

which is the approximation stated above in (4.4).

The derivation of the approximation to p(xk,t | ut,xi,t−1) in (4.5) is slightly more
involved, since regions occur on both sides of the conditioning bar. In analogy to our
transformation above, we obtain:

p(xk,t | ut,xi,t−1)

=
p(xk,t,xi,t−1 | ut)

p(xi,t−1 | ut)

=

∫

xk,t

∫

xi,t−1
p(xt, xt−1 | ut) dxt, dxt−1

∫

xi,t−1
p(xt−1 | ut) dxt−1

72 Chapter 4

=

∫

xk,t

∫

xi,t−1
p(xt | ut, xt−1) p(xt−1 | ut) dxt, dxt−1
∫

xi,t−1
p(xt−1 | ut) dxt−1

(4.8)

We now exploit the Markov assumption, which implies independence between xt−1

and ut, and thus p(xt−1 | ut) = p(xt−1):

p(xk,t | ut,xi,t−1)

=

∫

xk,t

∫

xi,t−1
p(xt | ut, xt−1) p(xt−1) dxt, dxt−1
∫

xi,t−1
p(xt−1) dxt−1

=

∫

xk,t

∫

xi,t−1
p(xt | ut, xt−1)

pi,t−1

|xi,t−1| dxt, dxt−1
∫

xi,t−1

pi,t−1

|xi,t−1| dxt−1

=

∫

xk,t

∫

xi,t−1
p(xt | ut, xt−1) dxt, dxt−1
∫

xi,t−1
1 dxt−1

= |xi,t−1|−1

∫

xk,t

∫

xi,t−1

p(xt | ut, xt−1) dxt, dxt−1 (4.9)

If we now approximate p(xt | ut, xt−1) by p(x̂k,t | ut, x̂i,t−1) as before, we obtain
the following approximation. Note that the normalizer η becomes necessary to ensure
that the approximation is a valid probability distribution:

p(xk,t | ut,xi,t−1)

≈ η |xi,t−1|−1

∫

xk,t

∫

xi,t−1

p(x̂k,t | ut, x̂i,t−1) dxt, dxt−1

= η |xi,t−1|−1 p(x̂k,t | ut, x̂i,t−1)

∫

xk,t

∫

xi,t−1

1 dxt, dxt−1

= η |xi,t−1|−1 p(x̂k,t | ut, x̂i,t−1)|xk,t| |xi,t−1|
= η |xk,t| p(x̂k,t | ut, x̂i,t−1) (4.10)

If all regions are of equal size (meaning that |xk,t| is the same for all k), we can simply
omit the factor |xk,t|, since it is subsumed by the normalizer. The resulting discrete
Bayes filter is then equivalent to the algorithm outlined in Table 4.1. If implemented
as stated there, the auxiliary parameters p̄k do not constitute a probability distribution,
since they are not normalized (compare Line 3 to (4.10)). However, normalization
takes place in Line 4, so that the output parameters are indeed a valid probability
distribution.

Nonparametric Filters 73

4.1.3 Decomposition Techniques

In robotics, decomposition techniques of continuous state spaces come into two ba-
sic flavors: static and dynamic. Static techniques rely on a fixed decomposition that
is chosen in advance, irrespective of the shape of the posterior that is being approx-
imated. Dynamic techniques adapt the decomposition to the specific shape of the
posterior distribution. Static techniques are usually easier to implement, but they can
be wasteful with regards to computational resources.

A primary example of a dynamic decomposition technique is the family of density
trees. Density trees decompose the state space recursively, in ways that adapt the
resolution to the posterior probability mass. The intuition behind this decomposition
is that the level of detail in the decomposition is a function of the posterior proba-
bility: The less likely a region, the coarser the decomposition. Figure 4.1 illustrates
the difference between a static grid representation and a density tree representation
for a two-dimensional probability density. While both representations have the same
approximation quality, the density tree is more compact than the grid representation.
Dynamic techniques like density trees can often cut the computation complexity by
orders of magnitude over static ones, yet they require additional implementation ef-
fort.

An effect similar to that of dynamic decompositions can be achieved by selective up-
dating. When updating a posterior represented by a grid, selective techniques update
a fraction of all grid cells only. A common implementation of this idea updates only
those grid cells whose posterior probability exceeds a user-specified threshold. Selec-
tive updating can be viewed as a hybrid decomposition, which decomposes the state
space into a fine grained grid and one large set that contains all regions not chosen
by the selective update procedure. In this light, it can be thought of as a dynamic
decomposition technique, since the decision as to which grid cells to consider during
the update is made online, based on the shape of the posterior distribution. Selective
updating techniques can reduce the computational effort involved in updating beliefs
by many orders of magnitude. They make it possible to use grid decompositions in
spaces of three or more dimensions.

The mobile robotics literature often distinguishes topological from metric representa-
tions of space. While no clear definition of these terms exist, topological represen-
tations are often thought of as course graph-like representations, where nodes in the
graph correspond to significant places (or features) in the environment. For indoor
environments, such places may correspond to intersections, T-junctions, dead ends,
and so on. The resolution of such decompositions, thus, depends on the structure of
the environment. Alternatively, one might decompose the state space using regularly-

74 Chapter 4

(a) (b)

Figure 4.1 (a) Grid based representation of a two-dimensional probability density. The
probability density concentrates on the upper right and lower left part of the state space. (b)
Density tree representation of the same distribution.

spaced grids. Such a decomposition does not depend on the shape and location of the
environmental features. Grid representations are often thought of as metric although,
strictly speaking, it is the embedding space that is metric, not the decomposition. In
mobile robotics, the spatial resolution of grid representations tends to be higher than
that of topological representations. For instance, some of the examples in Chapter 7
use grid decompositions with cell sizes of 10 centimeters or less. This increased accu-
racy comes at the expense of increased computational costs.

4.1.4 Binary Bayes Filters With Static State

Certain problems in robotics are best formulated as estimation problems with binary
state that does not change over time. Problems of this type arise if a robot estimates
a fixed binary quantity in the environment from a sequence of sensor measurements.
Since the state is static, the belief is a function of the measurements:

belt(x) = p(x | z1:t, u1:t) = p(x | z1:t) (4.11)

where the state is chosen from two possible values, denoted by x and ¬x. In particular,
we have belt(¬x) = 1 − belt(x). The lack of a time index for the state x reflects the
fact that the state does not change.

Naturally, binary estimation problems of this type can be tackled using the discrete
Bayes filter in Table 4.1. However, the belief is commonly implemented as a log odds
ratio. The odds of a state x is defined as the ratio of the probability of this event

Nonparametric Filters 75

1: Algorithm binary Bayes filter(lt−1, zt):
2: lt = lt−1 + log p(x|zt)

1−p(x|zt)
− log p(x)

1−p(x)

3: return lt

Table 4.2 The binary Bayes filter in log odds form with an inverse measurement model.
Here lt is the log odds of the posterior belief over a binary state variable that does not
change over time.

divided by the probability of its negate

p(x)

p(¬x) =
p(x)

1− p(x) (4.12)

The log odds is the logarithm of this expression

l(x) := log
p(x)

1− p(x) . (4.13)

Log odds assume values from −∞ to ∞. The Bayes filter for updating beliefs in
log odds representation is computationally elegant. It avoids truncation problems that
arise for probabilities close to 0 or 1.

Table 4.2 provides the basic update algorithm. This algorithm is additive; in fact, any
algorithm that increment and decrement a variable in response to measurements can be
interpreted as a Bayes filter in log odds form. This binary Bayes filter uses an inverse
measurement model p(x | zt), instead of the familiar forward model p(zt | x). The
inverse measurement model specifies a distribution over the (binary) state variable as
a function of the measurement zt. Inverse models are often used in situations where
measurements are more complex than the binary state. An example of such a situation
is the problem of estimating whether or not a door is closed, from camera images.
Here the state is extremely simple, but the space of all measurements is huge. It is
easier to devise a function that calculates a probability of a door being closed from
a camera image, than describing the distribution over all camera images that show a
closed door. In other words, it is easier to implement an inverse than a forward sensor
model.

76 Chapter 4

As the reader easily verifies from our definition of the log odds (4.13), the belief
belt(x) can be recovered from the log odds ratio lt by the following equation:

belt(x) = 1− 1

1 + exp{lt}
(4.14)

To verify the correctness of our binary Bayes filter algorithm, we briefly restate the
basic filter equation with the Bayes normalizer made explicit:

p(x | z1:t) =
p(zt | x, z1:t−1) p(x | z1:t−1)

p(zt | z1:t−1)

=
p(zt | x) p(x | z1:t−1)

p(zt | z1:t−1)
(4.15)

We now apply Bayes rule to the measurement model p(zt | x):

p(zt | x) =
p(x | zt) p(zt)

p(x)
(4.16)

and obtain

p(x | z1:t) =
p(x | zt) p(zt) p(x | z1:t−1)

p(x) p(zt | z1:t−1)
. (4.17)

By analogy, we have for the opposite event ¬x:

p(¬x | z1:t) =
p(¬x | zt) p(zt) p(¬x | z1:t−1)

p(¬x) p(zt | z1:t−1)
(4.18)

Dividing (4.17) by (4.18) leads to cancellation of various difficult-to-calculate proba-
bilities:

p(x | z1:t)
p(¬x | z1:t)

=
p(x | zt)

p(¬x | zt)

p(x | z1:t−1)

p(¬x | z1:t−1)

p(¬x)
p(x)

=
p(x | zt)

1− p(x | zt)

p(x | z1:t−1)

1− p(x | z1:t−1)

1− p(x)
p(x)

(4.19)

Nonparametric Filters 77

We denote the log odds ratio of the belief belt(x) by lt(x). The log odds belief at time
t is given by the logarithm of (4.19).

lt(x) = log
p(x | zt)

1− p(x | zt)
+ log

p(x | z1:t−1)

1− p(x | z1:t−1)
+ log

1− p(x)
p(x)

= log
p(x | zt)

1− p(x | zt)
− log

p(x)

1− p(x) + lt−1(x) (4.20)

Here p(x) is the prior probability of the state x. As (4.20), each measurement update
involves the addition of the prior (in log odds form). The prior also defines the log
odds of the initial belief before processing any sensor measurement:

l0(x) = log
1− p(x)
p(x)

(4.21)

4.2 THE PARTICLE FILTER

4.2.1 Basic Algorithm

The particle filter is an alternative nonparametric implementation of the Bayes filter.
Just like histogram filters, particle filters approximate the posterior by a finite number
of parameters. However, they differ in the way these parameters are generated, and in
which they populate the state space. The key idea of the particle filter is to represent
the posterior bel(xt) by a set of random state samples drawn from this posterior. Fig-
ure ?? illustrates this idea for a Gaussian. Instead of representing the distribution by
a parametric form (the exponential function that defines the density of a normal dis-
tribution), particle filters represent a distribution by a set of samples drawn from this
distribution. Such a representation is approximate, but it is nonparametric, and there-
fore can represent a much broader space of distributions than, for example, Gaussians.

In particle filters, the samples of a posterior distribution are called particles and are
denoted

Xt := x
[1]
t , x

[2]
t , . . . , x

[M]
t (4.22)

Each particle x[m]
t (with 1 ≤ m ≤M) is a concrete instantiation of the state at time t,

that is, a hypothesis as to what the true world state may be at time t. Here M denotes

78 Chapter 4

1: Algorithm Particle filter(Xt−1, ut, zt):
2: X̄t = Xt = ∅
3: for m = 1 to M do

4: sample x[m]
t ∼ p(xt | ut, x

[m]
t−1)

5: w
[m]
t = p(zt | x[m]

t)

6: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

7: endfor
8: for m = 1 to M do

9: draw i with probability ∝ w[i]
t

10: add x[i]
t to Xt

11: endfor
12: return Xt

Table 4.3 The particle filter algorithm, a variant of the Bayes filter based on importance
sampling.

the number of particles in the particle set Xt. In practice, the number of particles M
is often a large number, e.g., M = 1, 000. In some implementations M is a function
of t or of other quantities related to the belief bel(xt).

The intuition behind particle filters is to approximate the belief bel(xt) by the set of
particles Xt. Ideally, the likelihood for a state hypothesis xt to be included in the
particle set Xt shall be proportional to its Bayes filter posterior bel(xt):

x
[m]
t ∼ p(xt | z1:t, u1:t) (4.23)

As a consequence of (4.23), the denser a subregion of the state space is populated by
samples, the more likely it is that the true state falls into this region. As we will discuss
below, the property (4.23) holds only asymptotically for M ↑ ∞ for the standard
particle filter algorithm. For finite M , particles are drawn from a slightly different
distribution. In practice, this difference is negligible as long as the number of particles
is not too small (e.g., M ≥ 100).

Just like all other Bayes filter algorithms discussed thus far, the particle filter algo-
rithm constructs the belief bel(xt) recursively from the belief bel(xt−1) one time step
earlier. Since beliefs are represented by sets of particles, this means that particle filters

Nonparametric Filters 79

construct the particle set Xt recursively from the set Xt−1. The most basic variant
of the particle filter algorithm is stated in Table 4.3. The input of this algorithm is
the particle set Xt−1, along with the most recent control ut and the most recent mea-
surement zt. The algorithm then first constructs a temporary particle set X̄ which is
reminiscent (but not equivalent) to the belief bel(xt). It does this by systematically
processing each particle x[m]

t−1 in the input particle set Xt−1 as follows.

1. Line 4 generates a hypothetical state x[m]
t for time t based on the particle x[m]

t−1

and the control ut. The resulting sample is indexed by m, indicating that it is
generated from the m-th particle in Xt−1. This step involves sampling from the
next state distribution p(xt | ut, xt−1). To implement this step, one needs to
be able to sample from p(xt | ut, xt−1). The ability to sample from the state
transition probability is not given for arbitrary distributions p(xt | ut, xt−1).
However, many major distributions in this book possess efficient algorithms for
generating samples. The set of particles resulting from iterating Step 4 M times
is the filter’s representation of bel(xt).

2. Line 5 calculates for each particle x[m]
t the so-called importance factor, denoted

w
[m]
t . Importance factors are used to incorporate the measurement zt into the

particle set. The importance, thus, is the probability of the measurement zt under
the particle x[m]

t , that is, w[m]
t = p(zt | x[m]

t). If we interpret w[m]
t as the weight

of a particle, the set of weighted particles represents (in approximation) the Bayes
filter posterior bel(xt).

3. The real “trick” of the particle filter algorithm occurs in Lines 8 through 11 in Ta-
ble 4.3. These lines implemented what is known as resampling or importance re-
sampling. The algorithm draws with replacementM particles from the temporary
set X̄t. The probability of drawing each particle is given by its importance weight.
Resampling transforms a particle set ofM particles into another particle set of the
same size. By incorporating the importance weights into the resampling process,
the distribution of the particles change: whereas before the resampling step, they
were distribution according to bel(xt), after the resampling they are distributed
(approximately) according to the posterior bel(xt) = η p(zt | x[m]

t)bel(xt). In
fact, the resulting sample set usually possesses many duplicates, since particles
are drawn with replacement. More important are the particles that are not con-
tained in Xt: those tend to be the particles with lower importance weights.

The resampling step has the important function to force particles back to the posterior
bel(xt). In fact, an alternative (and usually inferior) version of the particle filter would
never resample, but instead would maintain for each particle an importance weight

80 Chapter 4

that is initialized by 1 and updated multiplicatively:

w
[m]
t = p(zt | x[m]

t) w
[m]
t−1 (4.24)

Such a particle filter algorithm would still approximate the posterior, but many of its
particles would end up in regions of low posterior probability. As a result, it would
require many more particles; how many depends on the shape of the posterior. The
resampling step is a probabilistic implementation of the Darwinian idea of survival
of the fittest: It refocuses the particle set to regions in state space with high posterior
probability. By doing so, it focuses the computational resources of the filter algorithm
to regions in the state space where they matter the most.

4.2.2 Importance Sampling

For the derivation of the particle filter, it shall prove useful to discuss the resampling
step in more detail. Figure 4.2 illustrates the intuition behind the resampling step.
Figure 4.2a shows a density function f of a probability distribution called the target
distribution. What we would like to achieve is to obtain a sample from f . However,
sampling from f directly may not be possible. Instead, we can generate particles from
a related density, labeled g in Figure 4.2b. The distribution that corresponds to the
density g is called proposal distribution. The density g must be such that f(x) > 0
implies g(x) > 0, so that there is a non-zero probability to generate a particle when
sampling from g for any state that might be generated by sampling from f . However,
the resulting particle set, shown at the bottom of Figure 4.2b, is distributed according
to g, not to f . In particular, for any interval A ⊆ range(X) (or more generally, any
Borel set A) the empirical count of particles that fall into A converges to the integral
of g under A:

1

M

M∑

m=1

I(x[m] ∈ A) −→
∫

A

g(x) dx (4.25)

To offset this difference between f and g, particles x[m] are weighted by the quotient

w[m] =
f(x[m])

g(x[m])
(4.26)

Nonparametric Filters 81

2 4 6 8 10 12

0

0.1

0.2

0.3

f

2 4 6 8 10 12

0

0.1

0.2

0.3

f g

2 4 6 8 10 12

0

0.1

0.2

0.3

f g

(a)

(b)

(c)

Figure 4.2 Illustration of importance factors in particle filters: (a) We seek to approximate
the target density f . (b) Instead of sampling from f directly, we can only generate samples
from a different density, g. Samples drawn from g are shown at the bottom of this diagram.
(c) A sample of f is obtained by attaching the weight f(x)/g(x) to each sample x. In
particle filters, f corresponds to the belief bel(xt) and g to the belief bel(xt).

82 Chapter 4

This is illustrated by Figure 4.2c: The vertical bars in this figure indicate the magnitude
of the importance weights. Importance weights are the non-normalized probability
mass of each particle. In particular, we have

[
M∑

m=1

w[m]

]−1
M∑

m=1

I(x[m] ∈ A) w[m] −→
∫

A

f(x) dx (4.27)

where the first term serves as the normalizer for all importance weights. In other
words, even though we generated the particles from the density g, the appropriately
weighted particles converge to the density f .

The specific convergence involves an integration over a set A. Clearly, a particle set
represents a discrete distribution, whereas f is continuous in our example. Because
of this, there is no density that could be associated with a set of particles. The con-
vergence, thus, is over the cumulative distribution function of f , not the density itself
(hence the integration over A). A nice property of importance sampling is that it con-
verges to the true density if g(x) > 0 whenever f(x) > 0. In most cases, the rate of
convergence is in O(1√

M
), where M is the number of samples. The constant factor

depends on the similarity of f(s) and g(s).

In particle filters, the density f corresponds to the target belief bel(xt). Under the
(asymptotically correct) assumption that the particles inXt−1 are distributed according
to bel(xt−1), the density g corresponds to the product distribution:

p(xt | ut, xt−1) bel(xt−1) (4.28)

This distribution is called the proposal distribution.

4.2.3 Mathematical Derivation of the PF

To derive particle filters mathematically, it shall prove useful to think of particles as
samples of state sequences

x
[m]
0:t = x

[m]
0 , x

[m]
1 , . . . , x

[m]
t (4.29)

It is easy to modify the algorithm accordingly: Simply append to the particle x[m]
t

the sequence of state samples from which it was generated x[m]
0:t−1. This particle filter

Nonparametric Filters 83

calculates the posterior over all state sequences:

bel(x0:t) = p(x0:t | u1:t, z1:t) (4.30)

instead of the belief bel(xt) = p(xt | u1:t, z1:t). Admittedly, the space over all state
sequences is huge, and covering it with particles is usually plainly infeasible. How-
ever, this shall not deter us here, as this definition serves only as the means to derive
the particle filter algorithm in Table 4.2.

The posterior bel(x0:t) is obtained analogously to the derivation of bel(xt) in Sec-
tion 2.4.3. In particular, we have

p(x0:t | z1:t, u1:t)
Bayes
= η p(zt | x0:t, z1:t−1, u1:t) p(x0:t | z1:t−1, u1:t)

Markov
= η p(zt | xt) p(x0:t | z1:t−1, u1:t)

= η p(zt | xt) p(xt | x0:t−1, z1:t−1, u1:t) p(x0:t−1 | z1:t−1, u1:t)
Markov

= η p(zt | xt) p(xt | xt−1, ut) p(x0:t−1 | z1:t−1, u1:t−1) (4.31)

Notice the absence of integral signs in this derivation, which is the result of maintain-
ing all states in the posterior, not just the most recent one as in Section 2.4.3.

The derivation is now carried out by induction. The initial condition is trivial to verify,
assuming that our first particle set is obtained by sampling the prior p(x0). Let us
assume that the particle set at time t−1 is distributed according to bel(x0:t−1). For the
m-th particle x[m]

0:t−1 in this set, the sample x[m]
t generated in Step 4 of our algorithm

is generated from the proposal distribution:

p(xt | xt−1, ut) bel(x0:t−1)

= p(xt | xt−1, ut) p(x0:t−1 | z0:t−1, u0:t−1) (4.32)

With

w
[m]
t =

target distribution
proposal distribution

=
η p(zt | xt) p(xt | xt−1, ut) p(x0:t−1 | z1:t−1, u1:t−1)

p(xt | xt−1, ut) p(x0:t−1 | z0:t−1, u0:t−1)

= η p(zt | xt) (4.33)

84 Chapter 4

The constant η plays no role since the resampling takes place with probabilities pro-
portional to the importance weights. By resampling particles with probability propor-
tional to w[m]

t , the resulting particles are indeed distributed according to the product
of the proposal and the importance weights w[m]

t :

η w
[m]
t p(xt | xt−1, ut) p(x0:t−1 | z0:t−1, u0:t−1) = bel(x0:t) (4.34)

(Notice that the constant factor η here differs from the one in (4.33).) The algorithm in
Table 4.2 follows now from the simple observation that if x[m]

0:t is distributed according

to bel(x0:t), then the state sample x[m]
t is (trivially) distributed according to bel(xt).

As we will argue below, this derivation is only correct for M −→∞, due to a laxness
in our consideration of the normalization constants. However, even for finite M it
explains the intuition behind the particle filter.

4.2.4 Properties of the Particle Filter

Particle filters are approximate and as such subject to approximation errors. There
are four complimentary sources of approximation error, each of which gives rise to
improved versions of the particle filter.

1. The first approximation error relates to the fact that only finitely many particles
are used. This artifact introduces a systematic bias in the posterior estimate.
To see, consider the extreme case of M = 1 particle. In this case, the loop in
Lines 3 through 7 in Table 4.3 will only be executed once, and X̄t will contain
only a single particle, sampled from the motion model. The key insight is that
the resampling step (Lines 8 through 11 in Table 4.3) will now deterministically
accept this sample, regardless of its importance factor w[m]

t . Put differently, the
measurement probability p(zt | x[m]

t) plays no role in the result of the update,
and neither does zt. Thus, if M = 1, the particle filter generates particles from
the probability

p(xt | u1:t) (4.35)

instead of the desired posterior p(xt | u1:t, z1:t). It flatly ignores all measure-
ments. How can this happen?

The culprit is the normalization, implicit in the resampling step. When sampling
in proportion to the importance weights (Line 9 of the algorithm), w[m]

t becomes

Nonparametric Filters 85

its own normalizer if M = 1:

p(draw x
[m]
t in Line 9) =

w
[m]
t

w
[m]
t

= 1 (4.36)

In general, the problem is that the non-normalized values wt[m] are drawn from
anM -dimensional space, but after normalization they reside in a space of dimen-
sionM−1. This is because after normalization, them-th weight can be recovered
from theM−1 other weights by subtracting those from 1. Fortunately, for larger
values ofM , the effect of loss of dimensionality, or degrees of freedom, becomes
less and less pronounced.

2. A second source of error in the particle filter relates to the randomness intro-
duced in the resampling phase. To understand this error, it will once again be
useful to consider the extreme case, which is that of a robot whose state does not
change. Sometimes, we know for a fact that xt = xt−1. A good example is that
of mobile robot localization, for a non-moving robot. Let us furthermore assume
that the robot possesses no sensors, hence it cannot estimate the state, and that
it is unaware of the state. Initially, our particle set X0 will be generated from
the prior; hence particles will be spread throughout the state space. The random
nature of the resampling step (Line 8 in the algorithm) will regularly fail to draw
a state sample x[m]. However, since our state transition is deterministic, no new
states will be introduced in the forward sampling step (Line 4). The result is quite
daunting: With probability one, M identical copies of a single state will survive;
the diversity will disappear due to the repetitive resampling. To an outside ob-
server, it may appear that the robot has uniquely determined the world state—an
apparent contradiction to the fact that the robot possesses no sensors.

This example hints at an important limitation of particle filters with immense
practical ramifications. In particular, the resampling process induces a loss of di-
versity in the particle population, which in fact manifests itself as approximation
error. Such error is called variance of the estimator: Even though the variance of
the particle set itself decreases, the variance of the particle set as an estimator of
the true belief increases. Controlling this variance, or error, of the particle filter
is essential for any practical implementation.

There exist two major strategies for variance reduction. First, one may reduce the
frequency at which resampling takes place. When the state is known to be static
(xt = xt−1) one should never resample. This is the case, for example, in mobile
robot localization: When the robot stops, resampling should be suspended (and
in fact it is usually a good idea to suspend the integration of measurements as
well). Even if the state changes, it is often a good idea to reduce the frequency of
resampling. Multiple measurements can always be integrated via multiplicatively

86 Chapter 4

1: Algorithm Low variance sampler(Xt,Wt):
2: X̄t = ∅
3: r = rand(0;M−1)

4: c = w
[1]
t

5: i = 1
6: for m = 1 to M do
7: u = r + (m− 1) ·M−1

8: while u > c
9: i = i+ 1

10: c = c+ w
[i]
t

11: endwhile

12: add x[i]
t to X̄t

13: endfor
14: return X̄t

Table 4.4 Low variance resampling for the particle filter. This routine uses a single ran-
dom number to sample from the particle set X with associated weights W , yet the probabil-
ity of a particle to be resampled is still proportional to its weight. Furthermore, the sampler
is efficient: Sampling M particles requires O(M) time.

updating the importance factor as noted above. More specifically, it maintains the
importance weight in memory and updates them as follows:

w
[m]
t =

{
1 if resampling took place

p(zt | x[m]
t) w

[m]
t−1 if no resampling took place

(4.37)

The choice of when to resample is intricate and requires practical experience:
Resampling too often increases the risk of losing diversity. If one samples too
infrequently, many samples might be wasted in regions of low probability. A
standard approach to determining whether or not resampling should be performed
is to measure the variance of the importance weights. The variance of the weights
relates to the efficiency of the sample based representation. If all weights are
identical, then the variance is zero and no resampling should be performed. If, on
the other hand, the weights are concentrated on a small number of samples, then
the weight variance is high and resampling should be performed.

The second strategy for reducing the sampling error is known as low variance
sampling. Table 4.4 depicts an implementation of a low variance sampler. The
basic idea is that instead of selecting samples independently of each other in the

Nonparametric Filters 87

−1 r+2M−1 ...r r+M

...t
[2]ωt

[1]ω

Figure 4.3 Principle of the low variance resampling procedure. We choose a random
number r and then select those particles that correspond to u = r +(m− 1) ·M−1 where
m = 1, . . . , M .

resampling process (as is the case for the basic particle filter in Table 4.3), the
selection involves a sequential stochastic process.

Instead of choosing M random numbers and selecting those particles that corre-
spond to these random numbers, this algorithm computes a single random number
and selects samples according to this number but still with a probability propor-
tional to the sample weight. This is achieved by drawing a random number r in
the interval [0;M−1[, where M is the number of samples to be drawn at time t.
The algorithm in Table 4.4 then selects particles by repeatedly adding the fixed
amount M−1 to r and by choosing the particle that corresponds to the resulting
number. Any number u in [0; 1] points to exactly one particle, namely the particle
i for which

i = argmin
j

j
∑

m=1

w
[m]
t ≥ u (4.38)

The while loop in Table 4.4 serves two tasks, it computes the sum in the right-
hand side of this equation and additionally checks whether i is the index of the
first particle such that the corresponding sum of weights exceeds u. The selection
is then carried out in Line 12. This process is also illustrated in Figure 4.3.

The advantage of the low-variance sampler is threefold. First, it covers the space
of samples in a more systematic fashion than the independent random sampler.
This should be obvious from the fact that the dependent sampler cycles through
all particles systematically, rather than choosing them independently at random.
Second, if all the samples have the same importance factors, the resulting sam-
ple set X̄t is equivalent to Xt so that no samples are lost if we resample without
having integrated an observation into Xt. Third, the low-variance sampler has
a complexity of O(M). Achieving the same complexity for independent sam-
pling is difficult; obvious implementations require a O(logM) search for each
particle once a random number has been drawn, which results in a complexity of
O(M logM) for the entire resampling process. Computation time is of essence
when using particle filters, and often an efficient implementation of the resam-
pling process can make a huge difference in the practical performance. For these

88 Chapter 4

reasons, most implementations of particle filters in robotics tend to rely on mech-
anisms like the one just discussed.

In general, the literature on efficient sampling is huge. Another popular option
is stratified sampling, in which particles are grouped into subsets. The number
of samples in each subset can be kept the same over time, regardless of the total
weight of the particles contained in each subset. Such techniques tend to perform
well when a robot tracks multiple, distinct hypotheses with a single particle filter.

3. A third source of error pertains to the divergence of the proposal and target dis-
tribution. We already hinted at the problem above, when discussing importance
sampling. In essence, particles are generated from a proposal distribution that
does not consider the measurement (cf., Equation (4.28)). The target distribution,
which is the familiar Bayes filter posterior, depends of course on the measure-
ment. The efficiency of the particle filter relies crucially on the ’match’ between
the proposal and the target distribution. If, at one extreme, the sensors of the
robot are highly inaccurate but its motion is very accurate, the target distribution
will be similar to the proposal distribution and the particle filter will be efficient.
If, on the other hand, the sensors are highly accurate but the motion is not, these
distributions can deviate substantially and the resulting particle filter can become
arbitrarily inefficient. An extreme example of this would be a robot with deter-
ministic sensors. For most deterministic sensors, the support of the measurement
probability p(z | x) will be limited to a submanifold of the state space. For ex-
ample, consider a mobile robot that performs localization with noise-free range
sensors. Clearly, p(z | x) will be zero for almost every state x, with the ex-
ceptions of those that match the range measurement z exactly. Such a situation
can be fatal: the proposal distribution will practically never generate a sample
x which exactly corresponds to the range measurement z. Thus, all importance
weights will be zero with probability one, and the resampling step becomes ill-
conditioned. More generally, if p(z | x) is degenerate, meaning that its support
is restricted to a manifold of a smaller dimension than the dimension of the state
space, the plain particle filter algorithm is inapplicable.

There exist a range of techniques for overcoming this problem. One simple-
minded technique is to simply assume more noise in perception than there actu-
ally is. For example, one might use a measurement model p(z | x) that overes-
timates the actual noise in the range measurements. In many implementations,
such a step improves the accuracy of the particle filter—despite the oddity of
using a knowingly incorrect measurement probability. Other techniques involve
modifications of the proposal distribution in ways that incorporate the measure-
ment. Such techniques will be discussed in later chapters of this book.

4. A fourth and final disadvantage of the particle filter is known as the particle de-
privation problem. When performing estimation in a high-dimensional space,

Nonparametric Filters 89

there may be no particles in the vicinity to the correct state. This might be be-
cause the number of particles is too small to cover all relevant regions with high
likelihood. However, one might argue that this ultimately must happen in any
particle filter, regardless of the particle set size M . Particle deprivation occurs as
the result of random resampling; an unlucky series of random numbers can wipe
out all particles near the true state. At each resampling step, the probability for
this to happen is larger than zero (although it is usually exponentially small in
M). Thus, we only have to run the particle filter long enough. Eventually, we
will generate an estimate that is arbitrarily incorrect.

In practice, problems of this nature only tend to arise when M is small relative
to the space of all states with high likelihood. A popular solution to this prob-
lem is to add a small number of randomly generated particles into the set after
each resampling process, regardless of the actual sequence of motion and mea-
surement commands. Such a methodology can reduce (but not fix) the particle
deprivation problem, but at the expense of an incorrect posterior estimate. The
advantage of adding random samples lies in its simplicity: The software mod-
ification necessary to add random samples in a particle filter is minimal. As a
rule of thumb, adding random samples should be considered a measure of last re-
sort, which should only be applied if all other techniques for fixing a deprivation
problem have failed.

This discussion showed that the quality of the sample based representation increases
with the number of samples. An important question is therefore how many samples
should be used for a specific estimation problem. Unfortunately, there is no perfect
answer to this question and it is often left to the user to determine the required number
of samples. As a rule of thumb, the number of samples strongly depends on the di-
mensionality of the state space and the uncertainty of the distributions approximated
by the particle filter. For example, uniform distributions require many more samples
than distributions focused on a small region of the state space. A more detailed dis-
cussion on sample sizes will be given in the context of robot localization, when we
consider adaptive particle filters (see Section ??).

4.3 SUMMARY

This section introduced two nonparametric Bayes filters, histogram filters and particle
filters. Nonparametric filters approximate the posterior by a finite number of values.
Under mild assumptions on the system model and the shape of the posterior, both
have the property that the approximation error converges uniformly to zero as the the
number of values used to represent the posterior goes to infinity.

90 Chapter 4

The histogram filter decomposes the state space into finitely many convex re-
gions. It represents the cumulative posterior probability of each region by a single
numerical value.

There exist many decomposition techniques in robotics. In particular, the granu-
larity of a decomposition may or may not depend on the structure of the environ-
ment. When it does, the resulting algorithms are often called “topological.”

Decomposition techniques can be divided into static and dynamic. Static decom-
positions are made in advance, irrespective of the shape of the belief. Dynamic
decompositions rely on specifics of the robot’s belief when decomposing the state
space, often attempting to increase spatial resolution in proportion to the poste-
rior probability. Dynamic decompositions tend to give better results, but they are
also more difficult to implement.

An alternative nonparametric technique is known as particle filter. Particle filters
represent posteriors by a random sample of states, drawn from the posterior. Such
samples are called particles. Particle filter are extremely easy to implement, and
they are the most versatile of all Bayes filter algorithms represented in this book.

Specific strategies exist to reduce the error in particle filters. Among the most
popular ones are techniques for reducing the variance of the estimate that arises
from the randomness of the algorithm, and techniques for adapting the number
of particles in accordance with the complexity of the posterior.

The filter algorithms discussed in this and the previous chapter lay the groundwork
for most probabilistic robotics algorithms discussed throughout the remainder of this
book. The material presented here represents many of today’s most popular algorithms
and representations in probabilistic robotics.

4.4 BIBLIOGRAPHICAL REMARKS

5
ROBOT MOTION

5.1 INTRODUCTION

This and the next chapter describe the two remaining components for implementing
the filter algorithms described thus far: the motion and the measurement models. This
chapter focuses on the motion model. It provides in-depth examples of probabilistic
motion models as they are being used in actual robotics implementations. These mod-
els comprise the state transition probability p(xt | ut, xt−1), which plays an essential
role in the prediction step of the Bayes filter. The subsequent chapter will describe
probabilistic models of sensor measurements p(zt | xt), which are essential for the
measurement update step. The material presented here will find its application in all
chapters that follow.

Robot kinematics, which is the central topic of this chapter, has been studied thor-
oughly in past decades. However, is has almost exclusively been addressed in deter-
ministic form. Probabilistic robotics generalizes kinematic equations to the fact that
the outcome of a control is uncertain, due to control noise or unmodeled exogenous
effects. Following the theme of this book, our description will be probabilistic: The
outcome of a control will be described by a posterior probability. In doing so, the
resulting models will be amenable to the probabilistic state estimation techniques de-
scribed in the previous chapters.

Our exposition focuses entirely on mobile robot kinematics for robots operating in
planar environments. In this way, it is much more specific than most contemporary
treatments of kinematics. No model of manipulator kinematics will be provided, nei-
ther will we discuss models of robot dynamics. However, this restricted choice of
material is by no means to be interpreted that probabilistic ideas are limited to kine-
matic models of mobile robots. Rather, it is descriptive of the present state of the art, as

91

92 Chapter 5

probabilistic techniques have enjoyed their biggest successes in mobile robotics, using
models of the types described in this chapter. The use of more sophisticated probabilis-
tic models (e.g., probabilistic models of robot dynamics) remains largely unexplored
in the literature. Such extensions, however, are not infeasible. As this chapter illus-
trates, deterministic robot actuator models are “probilified” by adding noise variables
that characterize the types of uncertainty that exist in robotic actuation.

In theory, the goal of a proper probabilistic model may appear to accurately model the
specific types of uncertainty that exist in robot actuation and perception. In practice,
the exact shape of the model often seems to be less important than the fact that some
provisions for uncertain outcomes are provided in the first place. In fact, many of the
models that have proven most successful in practical applications vastly overestimate
the amount of uncertainty. By doing so, the resulting algorithms are more robust to
violations of the Markov assumptions (Chapter 2.4.4), such as unmodeled state and the
effect of algorithmic approximations. We will point out such findings in later chapters,
when discussing actual implementations of probabilistic robotic algorithms.

5.2 PRELIMINARIES

5.2.1 Kinematic Configuration

Kinematics is the calculus describing the effect of control actions on the configuration
of a robot. The configuration of a rigid mobile robot is commonly described by six
variables, its three-dimensional Cartesian coordinates and its three Euler angles (roll,
pitch, yaw) relative to an external coordinate frame. The material presented in this
book is largely restricted to mobile robots operating in planar environments, whose
kinematic state, or pose, is summarized by three variables. This is illustrated in Fig-
ure 5.1. The robot’s pose comprises its two-dimensional planar coordinates relative to
an external coordinate frame, along with its angular orientation. Denoting the former
as x and y (not to be confused with the state variable xt), and the latter by θ, the pose
of the robot is described by the following vector:

x
y
θ

 (5.1)

Robot Motion 93

<0,0>

θ

<x,y>

x

y

Figure 5.1 Robot pose, shown in a global coordinate system.

The orientation of a robot is often called bearing, or heading direction. As shown in
Figure 5.1, we postulate that a robot with orientation θ = 0 points into the direction
of its x-axis. A robot with orientation θ = .5π points into the direction of its y-axis.

Pose without orientation will be called location. The concept of location will be im-
portant in the next chapter, when we discuss measures to perceive robot environments.
For simplicity, locations in this book are usually described by two-dimensional vec-
tors, which refer to the x-y coordinates of an object:

(
x
y

)

(5.2)

Sometimes we will describe locations in the full 3D coordinate frame. Both the pose
and the locations of objects in the environment may constitute the kinematic state xt

of the robot-environment system.

5.2.2 Probabilistic Kinematics

The probabilistic kinematic model, or motion model plays the role of the state transi-
tion model in mobile robotics. This model is the familiar conditional density

p(xt | ut, xt−1) (5.3)

Here xt and xt−1 are both robot poses (and not just its x-coordinates), and ut is a
motion command. This model describes the posterior distribution over kinematics

94 Chapter 5

(a) (b)

Figure 5.2 The motion model: Posterior distributions of the robot’s pose upon executing
the motion command illustrated by the solid line. The darker a location, the more likely it
is. This plot has been projected into 2D. The original density is three-dimensional, taking
the robot’s heading direction θ into account.

states that a robots assumes when executing the motion command ut when its pose is
xt−1. In implementations, ut is sometimes provided by a robot’s odometry. However,
for conceptual reasons we will refer to ut as control.

Figure 5.2 shows two examples that illustrate the kinematic model for a rigid mobile
robot operating in a planar environment. In both cases, the robot’s initial pose is
xt−1. The distribution p(xt | ut, xt−1) is visualized by the grayly shaded area: The
darker a pose, the more likely it is. In this figure, the posterior pose probability is
projected into x-y-space, that is, the figure lacks a dimension corresponding to the
robot’s orientation. In Figure 5.2a, a robot moves forward some distance, during which
it may accrue translational and rotational error as indicated. Figure 5.2b shows the
resulting distribution of a more complicated motion command, which leads to a larger
spread of uncertainty.

This chapter provides in detail two specific probabilistic motion models p(xt |
ut, xt−1), both for mobile robots operating in the plane. Both models are some-
what complimentary in the type of motion information that is being processed. The
first model assumes that the motion data ut specifies the velocity commands given to
the robot’s motors. Many commercial mobile robots (e.g., differential drive, synchro
drive) are actuated by independent translational and rotational velocities, or are best
thought of being actuated in this way. The second model assumes that one is provided
with odometry information. Most commercial bases provide odometry using kine-
matic information (distance traveled, angle turned). The resulting probabilistic model
for integrating such information is somewhat different from the velocity model.

Robot Motion 95

In practice, odometry models tend to be more accurate than velocity models, for the
simple reasons that most commercial robots do not execute velocity commands with
the level of accuracy that can be obtained by measuring the revolution of the robot’s
wheels. However odometry is only available post-the-fact. Hence it cannot be used for
motion planning. Planning algorithms such as collision avoidance have to predict the
effects of motion. Thus, odometry models are usually applied for estimation, whereas
velocity models are used for probabilistic motion planning.

5.3 VELOCITY MOTION MODEL

The velocity motion model assumes that we can control a robot through two veloci-
ties, a rotational and a translational velocity. Many commercial robots offer control
interfaces where the programmer specifies velocities. Drive trains that are commonly
controlled in this way include the differential drive, the Ackerman drive, the synchro-
drive, and some holonomic drives (but not all). Drive systems not covered by our
model are those without non-holonomic constraints, such as robots equipped with
Mecanum wheels or legged robots.

We will denote the translational velocity at time t by vt, and the rotational velocity by
ωt. Hence, we have

ut =

(
vt

ωt

)

(5.4)

We arbitrarily postulate that positive rotational velocities ωt induce a counterclockwise
rotation (left turns). Positive translational velocities vt correspond to forward motion.

5.3.1 Closed Form Calculation

A possible algorithm for computing the probability p(xt | ut, xt−1) is shown in Ta-
ble 5.1. It accepts as input an initial pose xt−1 = (x y θ)T , a control ut = (v ω)T ,
and a hypothesized successor pose xt = (x′ y′ θ′)T . It outputs the probability
p(xt | ut, xt−1) of being at xt after executing control ut beginning in state xt−1, as-
suming that the control is carried out for the fixed duration ∆t. The parameters α1 to
α6 are robot-specific motion error parameters. This algorithm first calculates the con-
trols of an error-free robot; the meaning of the individual variables in this calculation
will become more apparent below, when we derive it. These parameters are given by
v̂ and ω̂.

96 Chapter 5

(a) (b) (c)

Figure 5.3 The velocity motion model, for different noise parameter settings.

The function prob(x, b) models the motion error. It computes the probability of its
parameter x under a zero-centered random variable with variance b. Two possible
implementations are shown in Table 5.2, for error variables with normal distribution
and triangular distribution, respectively.

Figure 5.3 shows examples of this velocity motion model, projected into x-y-space. In
all three cases, the robot sets the same translational and angular velocity. Figure 5.3a
shows the resulting distribution with moderate error parameters α1 to α6. The dis-
tribution shown in Figure 5.3b is obtained with smaller angular error (parameters α3

and α4) but larger translational error (parameters α1 and α2). Figure 5.3c shows the
distribution under large angular and small translational error.

5.3.2 Sampling Algorithm

For particle filters (cf. Section 4.2.1), it suffices to sample from the motion model
p(xt | ut, xt−1), instead of computing the posterior for arbitrary xt, ut and xt−1.
Sampling from a conditional density is different than calculating the density: In sam-
pling, one is given ut and xt−1 and seeks to generate a random xt drawn according to
the motion model p(xt | ut, xt−1). When calculating the density, one is also given xt

generated through other means, and one seeks to compute the probability of xt under
p(xt | ut, xt−1).

The algorithm sample motion model velocity in Table 5.3 generates random sam-
ples from p(xt | ut, xt−1) for a fixed control ut and pose xt−1. It accepts xt−1 and ut

as input and generates a random pose xt according to the distribution p(xt | ut, xt−1).
Line 2 through 4 “perturb” the commanded control parameters by noise, drawn from
the error parameters of the kinematic motion model. The noise values are then used
to generate the sample’s new pose, in Lines 5 through 7. Thus, the sampling pro-

Robot Motion 97

1: Algorithm motion model velocity(xt, ut, xt−1):

2: µ =
1

2

(x− x′) cos θ + (y − y′) sin θ

(y − y′) cos θ − (x− x′) sin θ

3: x∗ =
x+ x′

2
+ µ(y − y′)

4: y∗ =
y + y′

2
+ µ(x′ − x)

5: r∗ =
√

(x− x∗)2 + (y − y∗)2
6: ∆θ = atan2(y′ − y∗, x′ − x∗)− atan2(y − y∗, x− x∗)

7: v̂ =
∆θ

∆t
r∗

8: ω̂ =
∆θ

∆t

9: γ̂ = θ′−θ
∆t
− ω̂

10: return prob(v − v̂, α1|v|+ α2|ω|) · prob(ω − ω̂, α3|v|+ α4|ω|)
· prob(γ̂, α5|v|+ α6|ω|)

Table 5.1 Algorithm for computing p(xt | ut, xt−1) based on velocity information.
Here we assume xt−1 is represented by the vector (x y θ)T ; xt is represented by
(x′ y′ θ′)T ; and ut is represented by the velocity vector (v ω)T . The function prob(a, b)
computes the probability of its argument a under a zero-centered distribution with variance
b. It may be implemented using any of the algorithms in Table 5.2.

1: Algorithm prob normal distribution(a, b):

2: return 1√
2πb

e−
1
2

a2

b

3: Algorithm prob triangular distribution(a, b):

4: if |a| >
√

6b

5: return 0

6: else

7: return
√

6b−|a|
6b

Table 5.2 Algorithms for computing densities of a zero-centered normal distribution and
the triangular distribution with variance b.

98 Chapter 5

1: Algorithm sample motion model velocity(ut, xt−1):

2: v̂ = v + sample(α1|v|+ α2|ω|)
3: ω̂ = ω + sample(α3|v|+ α4|ω|)
4: γ̂ = sample(α5|v|+ α6|ω|)
5: x′ = x− v̂

ω̂
sin θ + v̂

ω̂
sin(θ + ω̂∆t)

6: y′ = y + v̂
ω̂

cos θ − v̂
ω̂
cos(θ + ω̂∆t)

7: θ′ = θ + ω̂∆t+ γ̂∆t

8: return xt = (x′, y′, θ′)T

Table 5.3 Algorithm for sampling poses xt = (x′ y′ θ′)T from a pose xt−1 =
(x y θ)T and a control ut = (v ω)T . Note that we are perturbing the final orienta-
tion by an additional random term, γ̂. The variables α1 through α6 are the parameters of
the motion noise. The function sample(b) generates a random sample from a zero-centered
distribution with variance b. It may, for example, be implemented using the algorithms in
Table 5.4.

1: Algorithm sample normal distribution(b):

2: return
b

6

12∑

i=1

rand(−1, 1)

3: Algorithm sample triangular distribution(b):

4: return b · rand(−1, 1) · rand(−1, 1)

Table 5.4 Algorithm for sampling from (approximate) normal and triangular distributions
with zero mean and variance b. The function rand(x, y) is assumed to be a pseudo random
number generator with uniform distribution in [x, y].

Robot Motion 99

(a) (b) (c)

Figure 5.4 Sampling from the velocity motion model, using the same parameters as in
Figure 5.3. Each diagram shows 500 samples.

cedure implements a simple physical robot motion model that incorporates control
noise in its prediction, in just about the most straightforward way. Figure 5.4 illus-
trates the outcome of this sampling routine. It depicts 500 samples generated by sam-
ple motion model velocity. The reader might want to compare this figure with the
density depicted in in Figure 5.3.

We note that in many cases, it is easier to sample xt than calculate the density of a
given xt. This is because samples require only a forward simulation of the physical
motion model. To compute the probability of a hypothetical pose amounts to retro-
guessing of the error parameters, which requires to calculate the inverse of the physical
motion model. The fact that particle filters rely on sampling makes them specifically
attractive from an implementation point of view.

5.3.3 Mathematical Derivation

We will now derive the algorithms mo-
tion model velocity and sample motion model velocity. As usual, the reader not
interested in the mathematical details is invited to skip this section at first reading, and
continue in Section 5.4 (page 107). The derivation begins with a generative model of
robot motion, and then derives formulae for sampling and computing p(xt | ut, xt−1)
for arbitrary xt, ut, and xt−1.

Exact Motion

Before turning to the probabilistic case, let us begin by stating the kinematics for an
ideal, noise-free robot. Let ut = (v ω)T denote the control at time t. If both velocities
are kept at a fixed value for the entire time interval (t−1, t], the robot moves on a circle

100 Chapter 5

<x ,y >c c

θ90−θ

<x,y>

r

x

y

Figure 5.5 Motion carried out by a noise-free robot moving with constant velocities v and
ω and starting at (x y θ)T .

with radius

r =
∣
∣
∣
v

ω

∣
∣
∣ (5.5)

This follows from the general relationship between the translational and rotational
velocities v and ω for an arbitrary object moving on a circular trajectory with radius r:

v = ω · r. (5.6)

Equation (5.5) encompasses the case where the robot does not turn at all (i.e., ω = 0),
in which case the robot moves on a straight line. A straight line corresponds to a circle
with infinite radius, hence we note that r may be infinite.

Let xt−1 = (x, y, θ)T be the initial pose of the robot, and suppose we keep the velocity
constant at (v ω)T for some time ∆t. As one easily shows, the center of the circle is
at

xc = x− v

ω
sin θ (5.7)

yc = y +
v

ω
cos θ (5.8)

Robot Motion 101

The variables (xc yc)
T denote this coordinate. After ∆t time of motion, our ideal

robot will be at xt = (x′, y′, θ′)T with

x′

y′

θ′

 =

xc + v
ω

sin(θ + ω∆t)
yc − v

ω
cos(θ + ω∆t)
θ + ω∆t

=

x
y
θ

+

− v
ω

sin θ + v
ω

sin(θ + ω∆t)
v
ω

cos θ − v
ω

cos(θ + ω∆t)
ω∆t

 (5.9)

The derivation of this expression follows from simple trigonometry: After ∆t units
of time, the noise-free robot has progressed v ·∆t along the circle, which caused it’s
heading direction to turn by ω ·∆t. At the same time, its x and y coordinate is given
by the intersection of the circle about (xc yc)

T , and the ray starting at (xc yc)
T at the

angle perpendicular to ω ·∆t. The second transformation simply substitutes (5.8) into
the resulting motion equations.

Of course, real robots cannot jump from one velocity to another, and keep velocity
constant in each time interval. To compute the kinematics with non-constant veloci-
ties, it is therefore common practice to use small values for ∆t, and to approximate
the actual velocity by a constant within each time interval. The (approximate) final
pose is then obtained by concatenating the corresponding cyclic trajectories using the
mathematical equations just stated.

Real Motion

In reality, robot motion is subject to noise. The actual velocities differ from the com-
manded ones (or measured ones, if the robot possesses a sensor for measuring ve-
locity). We will model this difference by a zero-centered random variable with finite
variance. More precisely, let us assume the actual velocities are given by

(
v̂
ω̂

)

=

(
v
ω

)

+

(
εα1|v|+α2|ω|
εα3|v|+α4|ω|

)

(5.10)

Here εb is a zero-mean error variable with variance b. Thus, the true velocity equals
the commanded velocity plus some small, additive error (noise). In our model, the
variance of the error is proportional to the commanded velocity. The parameters α1 to
α4 (with αi ≥ 0 for i = 1, . . . , 4) are robot-specific error parameters. They model the
accuracy of the robot. The less accurate a robot, the larger these parameters.

102 Chapter 5

-b b

(a)

b-b

(b)

Figure 5.6 Probability density functions with variance b: (a) Normal distribution, (b)
triangular distribution.

Two common choices for the error εb are:

Normal distribution. The normal distribution with zero mean and variance b is
given by the density function

εb(a) =
1√

2π · b
e−

1
2

a2

b (5.11)

Figure 5.6a shows the density function of a normal distribution with variance b.
Normal distributions are commonly used to model noise in continuous stochastic
processes, despite the fact that their support, that is the set of points awith p(a) >
0, is <.

Triangular distribution. The density of triangular distribution with zero mean
and variance b is given by

εb(a) =

{

0 if |a| >
√

6b√
6b−|a|
6b

otherwise
(5.12)

which is non-zero only in (−
√

6b;
√

6b). As Figure 5.6b suggests, the density
resembles the shape of a symmetric triangle—hence the name.

A better model of the actual pose xt = (x′ y′ θ′)T after executing the motion com-
mand ut = (v ω)T at xt−1 = (x y θ)T is thus

x′

y′

θ′

 =

x
y
θ

+

− v̂
ω̂

sin θ + v̂
ω̂

sin(θ + ω̂∆t)
v̂
ω̂

cos θ − v̂
ω̂

cos(θ + ω̂∆t)
ω̂∆t

 (5.13)

Robot Motion 103

This equation is simply obtained by substituting the commanded velocity ut = (v ω)T

with the noisy motion (v̂ ω̂) in (5.9). However, this model is still not very realistic,
for reasons discussed in turn.

Final Orientation

The two equations given above exactly describe the final location of the robot given
that the robot actually moves on an exact circular trajectory with radius r = v̂

ω̂
. While

the radius of this circular segment and the distance traveled is influenced by the con-
trol noise, the very fact that the trajectory is circular is not. The assumption of cir-
cular motion leads to an important degeneracy. In particular, the support of the den-
sity p(xt | ut, xt−1) is two-dimensional, within a three-dimensional embedding pose
space. The fact that all posterior poses are located on a two-dimensional manifold
within the three-dimensional pose space is a direct consequence of the fact that we
used only two noise variables, one for v and one for ω. Unfortunately, this degeneracy
has important ramifications when applying Bayes filters for state estimation.

In reality, any meaningful posterior distribution is of course not degenerate, and poses
can be found within a three-dimensional space of variations in x, y, and θ. To gener-
alize our motion model accordingly, we will assume that the robot performs a rotation
γ̂ when it arrives at its final pose. Thus, instead of computing θ′ according to (5.13),
we model the final orientation by

θ′ = θ + ω̂∆t+ γ̂∆t (5.14)

with

γ̂ = εα5|v|+α6|ω| (5.15)

Here α5 and α6 are additional robot-specific parameters that determine the variance
of the additional rotational noise. Thus, the resulting motion model is as follows:

x′

y′

θ′

 =

x
y
θ

+

− v̂
ω̂

sin θ + v̂
ω̂

sin(θ + ω̂∆t)
v̂
ω̂

cos θ − v̂
ω̂

cos(θ + ω̂∆t)
ω̂∆t+ γ̂∆t

 (5.16)

Computation of p(xt | ut, xt−1)

104 Chapter 5

The algorithm motion model velocity in Table 5.1 implements the computation of
p(xt | ut, xt−1) for given values of xt−1 = (x y θ)T , ut = (v ω)T , and
xt = (x′ y′ θ′)T . The derivation of this algorithm is somewhat involved, as it ef-
fectively implements an inverse motion model. In particular, motion model velocity
determines motion parameters ût = (v̂ ω̂)T from the poses xt−1 and xt, along with
an appropriate final rotation γ̂. Our derivation makes it obvious as to why a final ro-
tation is needed: For most values of xt−1, ut, and xt, the motion probability would
simply be zero without allowing for a final rotation.

Let us calculate the probability p(xt | ut, xt−1) of control action ut = (v ω)T

carrying the robot from the pose xt−1 = (x y θ)T to the pose xt = (x′ y′ θ′)T

within ∆t time units. To do so, we will first determine the control û = (v̂ ω̂)T

required to carry the robot from xt−1 to position (x′ y′), regardless of the robot’s
final orientation. Subsequently, we will determine the final rotation γ̂ necessary for
the robot to attain the orientation θ′. Based on these calculations, we can then easily
calculate the desired probability p(xt | ut, xt−1).

The reader may recall that our model assumes that the robot assumes a fixed velocity
during ∆t, resulting in a circular trajectory. For a robot that moved from xt−1 =
(x y θ)T to xt = (x′ y′)T , the center of the circle is defined as (x∗ y∗)T and given
by

(
x∗

y∗

)

=

(
x
y

)

+

(
−λ sin θ
λ cos θ

)

=

(
x+x′

2 + µ(y − y′)
y+y′

2 + µ(x′ − x)

)

(5.17)

for some unknown λ, µ ∈ <. The first equality is the result of the fact that the cir-
cle’s center is orthogonal to the initial heading direction of the robot; the second is
a straightforward constraint that the center of the circle lies on a ray that lies on the
half-way point between (x y)T and (x′ y′)T and is orthogonal to the line between
these coordinates.

Usually, Equation (5.17) has a unique solution—except in the degenerate case of ω =
0, in which the center of the circle lies at infinity. As the reader might want to verify,
the solution is given by

µ =
1

2

(x− x′) cos θ + (y − y′) sin θ

(y − y′) cos θ − (x− x′) sin θ
(5.18)

Robot Motion 105

and hence

(
x∗

y∗

)

=

(
x+x′

2 + 1
2

(x−x′) cos θ+(y−y′) sin θ

(y−y′) cos θ−(x−x′) sin θ
(y − y′)

y+y′

2 + 1
2

(x−x′) cos θ+(y−y′) sin θ

(y−y′) cos θ−(x−x′) sin θ
(x′ − x)

)

(5.19)

The radius of the circle is now given by the Euclidean distance

r∗ =
√

(x− x∗)2 + (y − y∗)2 =
√

(x′ − x∗)2 + (y′ − y∗)2 (5.20)

Furthermore, we can now calculate the change of heading direction

∆θ = atan2(y′ − y∗, x′ − x∗)− atan2(y − y∗, x− x∗) (5.21)

Here atan2 is the common extension of the arcus tangens of y/x extended to the <2

(most programming languages provide an implementation of this function):

atan2(y, x) =

atan(y/x) if x > 0
sign(y) (π − atan(|y/x|)) if x < 0
0 if x = y = 0
sign(y) π/2 if x = 0, y 6= 0

(5.22)

Since we assume that the robot follows a circular trajectory, the translational distance
between xt and xt−1 (along this circle) is

∆dist = r∗ ·∆θ (5.23)

From ∆dist and ∆θ, it is now easy to compute the velocities v̂ and ω̂:

ût =

(
v̂
ω̂

)

= ∆t−1

(
∆dist
∆θ

)

(5.24)

The angle of the final rotation γ̂ can be determined according to (5.14) as:

γ̂ = ∆t−1(θ′ − θ)− ω̂ (5.25)

106 Chapter 5

The motion error is the deviation of ût and γ̂ from the commanded velocity ut =
(u ω)T and γ = 0, as defined in Equations (5.24) and (5.25).

verr = v − v̂ (5.26)

ωerr = ω − ω̂ (5.27)

γerr = γ̂ (5.28)

Under our error model, specified in Equations (5.10), and (5.15), these errors have the
following probabilities:

εα1|v|+α2|ω|(verr) (5.29)

εα3|v|+α4|ω|(ωerr) (5.30)

εα5|v|+α6|ω|(γerr) (5.31)

where εb denotes a zero-mean error variable with variance b, as before. Since we
assume independence between the different sources of error, the desired probability
p(xt | ut, xt−1) is the product of these individual errors:

p(xt | ut, xt−1) = εα1|v|+α2|ω|(verr) · εα3|v|+α4|ω|(ωerr) · εα5|v|+α6|ω|(γerr)(5.32)

To see the correctness of the algorithm motion model velocity in Table 5.1, the reader
may notice that this algorithm implements this expression. More specifically, lines 2
to 9 are equivalent to Equations (5.18), (5.19), (5.20), (5.21), (5.24), and (5.25). Line
10 implements (5.32), substituting the error terms as specified in Equations (5.29) to
(5.31).

Sampling from p(s′ | a, s)

The sampling algorithm sample motion model velocity in Table 5.3 implements a
forward model, as discussed earlier in this section. Lines 5 through 7 correspond
to Equation (5.16). The noisy values calculated in lines 2 through 4 correspond to
Equations (5.10) and (5.15).

The algorithm sample normal distribution in Table 5.4 implements a common ap-
proximation to sampling from a normal distribution. This approximation exploits
the central limit theorem, which states that any average of non-degenerate random
variables converges to a normal distribution. By averaging 12 uniform distribu-
tions, sample normal distribution generates values that are approximately normal

Robot Motion 107

δrot1

δtrans

δrot2

Figure 5.7 Odometry model: The robot motion in the time interval (t − 1, t] is approxi-
mated by a rotation δrot1, followed by a translation δtrans and a second rotation δrot2. The
turns and translation are noisy.

distributed; though technically the resulting values lie always in [−2b, 2b]. Finally,
sample triangular distribution in Table 5.4 implements a sampler for triangular dis-
tributions.

5.4 ODOMETRY MOTION MODEL

The velocity motion model discussed thus far uses the robot’s velocity to compute pos-
teriors over poses. Alternatively, one might want to use the odometry measurements
as the basis for calculating the robot’s motion over time. Odometry is commonly
obtained by integrating wheel encoders information; most commercial robots make
such integrated pose estimation available in periodic time intervals (e.g., every tenth
of a second). Practical experience suggests that odometry, while still erroneous, is
usually more accurate than velocity. Both suffer from drift and slippage, but veloc-
ity additionally suffers from the mismatch between the actual motion controllers and
its (crude) mathematical model. However, odometry is only available in retrospect,
after the robot moved. This poses no problem for filter algorithms, but makes this
information unusable for accurate motion planning and control.

108 Chapter 5

1: Algorithm motion model odometry(xt, ut, xt−1):

2: δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄
3: δtrans =

√

(x̄− x̄′)2 + (ȳ − ȳ′)s

4: δrot2 = θ̄′ − θ̄ − δrot1

5: δ̂rot1 = atan2(y′ − y, x′ − x)− θ
6: δ̂trans =

√

(x− x′)2 + (y − y′)2
7: δ̂rot2 = θ′ − θ − δ̂rot1

8: p1 = prob(δrot1 − δ̂rot1, α1δ̂rot1 + α2δ̂trans)

9: p2 = prob(δtrans − δ̂trans, α3 δ̂trans + α4(δ̂rot1 + δ̂rot2))

10: p3 = prob(δrot2 − δ̂rot2, α1δ̂rot2 + α2δ̂trans)

11: return p1 · p2 · p3

Table 5.5 Algorithm for computing p(xt | ut, xt−1) based on odometry information.
Here the control ut is

5.4.1 Closed Form Calculation

This section defines an alternative motion model that uses odometry measurements
in lieu of controls. Technically, odometry are sensor measurements, not controls. To
model odometry as measurements, the resulting Bayes filter would have to include the
actual velocity as state variables—which increases the dimension of the state space.
To keep the state space small, it is therefore common to simply consider the odometry
as if it was a control signal. In this section, we will do exactly this, and treat odometry
measurements as controls. The resulting model is at the core of many of today’s best
probabilistic robot systems.

Let us define the format of our control information. At time t, the correct pose of
the robot is modeled by the random variable xt. The robot odometry estimates this
pose; however, due to drift and slippage there is no fixed coordinate transformation
between the coordinates used by the robot’s internal odometry and the physical world
coordinates. In fact, knowing this transformation would solve the robot localization
problem!

Robot Motion 109

(a) (b) (c)

Figure 5.8 The odometry motion model, for different noise parameter settings.

The odometry model uses the relative information of the robot’s internal odometry.
More specifically, In the time interval (t − 1, t], the robot advances from a pose xt−1

to pose xt. The odometry reports back to us a related advance from x̄t−1 = (x̄ ȳ θ̄)
to x̄t = (x̄′ ȳ′ θ̄′). Here the bar indicates that these are odometry measurements,
embedded in a robot-internal coordinate whose relation to the global world coordinates
is unknown. The key insight for utilizing this information in state estimation is that the
relative difference between x̄t−1 and x̄t, under an appropriate definition of the term
“difference,” is a good estimator for the difference of the true poses xt−1 and xt. The
motion information ut is, thus, given by the pair

ut =

(
x̄t−1

x̄t

)

(5.33)

To extract relative odometry, ut is transformed into a sequence of three steps: a rota-
tion, followed by a straight line motion (translation) and another rotation. Figure 5.7
illustrates this decomposition: the initial turn is called δrot1, the translation δtrans, and
the second rotation δrot2. As the reader easily verifies, each pair of positions (s̄ s̄′)
has a unique parameter vector (δrot1 δtrans δrot2)

T , and these parameters are suffi-
cient to reconstruct the relative motion between s̄ and s̄′. Thus, δrot1, δtrans, δrot2 is a
sufficient statistics of the relative motion encoded by the odometry. Our motion model
assumes that these three parameters are corrupted by independent noise. The reader
may note that odometry motion uses one more parameter than the velocity vector de-
fined in the previous section, for which reason we will not face the same degeneracy
that led to the definition of a “final rotation.”

Before delving into mathematical detail, let us state the basic algorithm for calculating
this density in closed form. Table 5.5 depicts the algorithm for computing p(xt |
ut, xt−1) from odometry. This algorithm accepts as an input an initial pose xt−1, a

110 Chapter 5

1: Algorithm sample motion model odometry(ut, xt−1):

2: δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄
3: δtrans =

√

(x̄− x̄′)2 + (ȳ − ȳ′)s

4: δrot2 = θ̄′ − θ̄ − δrot1

5: δ̂rot1 = δrot1 − sample(α1δrot1 + α2δtrans)

6: δ̂trans = δtrans − sample(α3 δtrans + α4(δrot1 + δrot2))

7: δ̂rot2 = δrot2 − sample(α1δrot2 + α2δtrans)

8: x′ = x+ δ̂trans cos(θ + δ̂rot1)

9: y′ = y + δ̂trans sin(θ + δ̂rot1)

10: θ′ = θ + δ̂rot1 + δ̂rot2

11: return xt = (x′, y′, θ′)T

Table 5.6 Algorithm for sampling from p(xt | ut, xt−1) based on odometry information.
Here the pose at time t is represented by xt−1 = (x y θ)T . The control is a differentiable
set of two pose estimates obtained by the robot’s odometer, ut = (x̄t−1 x̄t)T , with
x̄t−1 = (x̄ ȳ θ̄) and x̄t = (x̄′ ȳ′ θ̄′).

pair of poses ut = (x̄t−1 x̄t)
T obtained from the robot’s odometry, and a hypothesized

final pose xt. It outputs the numerical probability p(xt | ut, xt−1).

Let us dissect this algorithm. Lines 2 to 4 recover relative motion parame-
ters (δrot1 δtrans δrot2)

T from the odometry readings. As before, they im-
plement an inverse motion model. The corresponding relative motion parameters
(δ̂rot1 δ̂trans δ̂rot2)

T for the given poses xt−1 and xt are calculated in Lines 5 through
7 of this algorithm. Lines 8 to 10 compute the error probabilities for the individual
motion parameters. As above, the function prob(a, b) implements an error distribu-
tion over a with zero mean and variance b. Here the implementer must observe that all
angular differences must lie in [−π, π]. Hence the outcome of δrot2 − δ̄rot2 has to be
truncated correspondingly—a common error that tends to yield occasional divergence
of software based on this model. Finally, Line 11 returns the combined error proba-
bility, obtained by multiplying the individual error probabilities p1, p2, and p3. This

Robot Motion 111

(a) (b) (c)

Figure 5.9 Sampling from the odometry motion model, using the same parameters as in
Figure 5.8. Each diagram shows 500 samples.

last step assumes independence between the different error sources. The variables α1

through α4 are robot-specific parameters that specify the noise in robot motion.

Figure 5.8 shows examples of our odometry motion model for different values of the
error parameters α1 to α4. The distribution in Figure 5.8a is a “proto-typical” one,
whereas the ones shown in Figures 5.8b and 5.8c indicate unusually large transla-
tional and rotational errors, respectively. The reader may want to carefully compare
these diagrams with those in Figure 5.3 on page 96. The smaller the time between to
consecutive measurements, the more similar those different motion models. Thus, if
the belief is updated frequently e.g., every tenth of a second for a conventional indoor
robot, the difference between these motion models is not very significant. In gen-
eral, the odometry model is preferable to the velocity model when applicable, since
odometers are usually more accurate than velocity controls—especially if those veloc-
ity values are not sensed but instead submitted to a PID controller that sets the actual
motor currents.

5.4.2 Sampling Algorithm

If particle filters are used for localization, we would also like to have an algorithm for
sampling from p(xt | ut, xt−1). Recall that particle filters (cf. Chapter 4.2.1) require
samples of p(xt | ut, xt−1), rather than a closed-form expression for computing p(xt |
ut, xt−1) for any xt−1, ut, and xt. The algorithm sample motion model odometry,
shown in Table 5.6, implements the sampling approach. It accepts an initial pose xt−1

and an odometry reading ut as input, and outputs a random xt distributed according
to p(xt | ut, xt−1). It differs from the previous algorithm in that it randomly guesses
a pose xt (Lines 5-10), instead of computing the probability of a given xt. As before,
the sampling algorithm sample motion model odometry is somewhat easier to im-

112 Chapter 5

10 meters

Start location

Figure 5.10 Sampling approximation of the position belief for a non-sensing robot. The
solid line displays the actions, and the samples represent the robot’s belief at different points
in time.

plement than the closed-form algorithm motion model odometry, since it side-steps
the need for an inverse model.

Figure 5.9 shows exam-
ples of sample sets generated by sample motion model odometry, using the same
parameters as in the model shown in Figure 5.8. Figure 5.10 illustrates the motion
model “in action” by superimposing sample sets from multiple time steps. This data
has been generated using the motion update equations of the algorithm particle filter
(Table 4.3), assuming the robot’s odometry follows the path indicated by the solid line.
The figure illustrates how the uncertainty grows as the robot moves. The samples are
spread across an increasingly larger space.

Robot Motion 113

5.4.3 Mathematical Derivation

The derivation of the algorithms is relatively straightforward, and once again may be
skipped at first reading. To derive a probabilistic motion model using odometry, we
recall that the relative difference between any two poses is represented by a concatena-
tion of three basic motions: a rotation, a straight-line motion (translation), and another
rotation. The following equations show how to calculate the values of the two rotations
and the translation from the odometry reading ut = (x̄t−1 x̄t)

T , with x̄t−1 = (x̄ ȳ θ̄)
and x̄t = (x̄′ ȳ′ θ̄′):

δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄ (5.34)

δtrans =
√

(x̄− x̄′)2 + (ȳ − ȳ′)s (5.35)

δrot2 = θ̄′ − θ̄ − δrot1 (5.36)

To model the motion error, we assume that the “true” values of the rotation and trans-
lation are obtained from the measured ones by subtracting independent noise εb with
zero mean and variance b:

δ̂rot1 = δrot1 − εα1|δrot1|+α2|δtrans| (5.37)

δ̂trans = δtrans − εα3 |δtrans|+α4|δrot1+δrot2| (5.38)

δ̂rot2 = δrot2 − εα1|δrot2|+α2|δtrans| (5.39)

As in the previous section, εb is a zero-mean noise variable with variance b (e.g., with
normal or triangular distribution). The parameters α1 to α4 are robot-specific error
parameters, which specify the error accrued with motion.

Consequently, the true position, xt, is obtained from xt−1 by an initial rotation with
angle δ̂rot1, followed by a translation with distance δ̂trans, followed by another rotation
with angle δ̂rot2. Thus,

x′

y′

θ′

 =

x
y
θ

+

δ̂trans cos(θ + δ̂rot1)

δ̂trans sin(θ + δ̂rot1)

θ + δ̂rot1 + δ̂rot2

 (5.40)

Notice that algorithm sample motion model odometry implements Equations (5.34)
through (5.40).

114 Chapter 5

The algorithm motion model odometry is obtained by noticing that Lines 5-7 com-
pute the motion parameters δ̂rot1, δ̂trans, and δ̂rot2 for the hypothesized pose xt, rela-
tive to the initial pose xt−1. The difference of both,

δrot1 − δ̄rot1 (5.41)

δtrans − δ̄trans (5.42)

δrot2 − δ̄rot2 (5.43)

is the error in odometry, assuming of course that xt is the true final pose. The error
model (5.37) to (5.39) implies that the probability of these errors is given by

p1 = εα1|δrot1|+α2|δtrans|(δrot1 − δ̄rot1) (5.44)

p2 = εα3 |δtrans|+α4|δrot1+δrot2|(δtrans − δ̄trans) (5.45)

p3 = εα1|δrot2|+α2|δtrans|(δrot2 − δ̄rot2) (5.46)

with the distributions ε defined as above. These probabilities are computed in Lines
8-10 of our algorithm motion model odometry, and since the errors are assumed to
be independent, the joint error probability is the product p1 · p2 · p3 (cf., Line 11).

5.5 MOTION AND MAPS

By considering p(xt | ut, xt−1), we defined robot motion in a vacuum. In particular,
this model describes robot motion in the absence of any knowledge about the nature
of the environment. In many cases, we are also given a map m, which may contain
information pertaining to the places that a robot may or may not be able to navigate.
For example, occupancy maps, which will be explained in Chapter ??, distinguish
free (traversable) from occupied terrain. The robot’s pose must always be in the free
space. Therefore, knowing m gives us further information about the robot pose xt

before, during, and after executing a control ut.

This consideration calls for a motion model that takes the map m into account. We
will write this model as p(xt | ut, xt−1,m), indicating that it considers the map m in
addition to the standard variables. Ifm carries information relevant to pose estimation,
we have

p(xt | ut, xt−1) 6= p(xt | ut, xt−1,m) (5.47)

Robot Motion 115

The motion model p(xt | ut, xt−1,m) should give better results than the map-free
motion model p(xt | ut, xt−1). We will refer to p(xt | ut, xt−1,m) as map-based
motion model. The map-based motion model computes the likelihood that a robot
placed in a world with map m arrives at pose xt upon executing action ut at pose
xt−1. Unfortunately, computing this motion model in closed form is difficult. This
is because to compute the likelihood of being at xt after executing action ut, one has
to incorporate the probability that an unoccupied path exists between xt−1 and xt and
that the robot might have followed this unoccupied path when executing the control
ut—a complex operation.

Luckily, there exists an efficient approximation for the map-based motion model,
which works well if the distance between xt−1 and xt is small (e.g., smaller than
half a robot diameter). The approximation factorizes the map-based motion model
into two components:

p(xt | ut, xt−1,m) = η p(xt | ut, xt−1) p(xt | m) (5.48)

where η is the usual normalizer. According to this factorization, we simply multiply
the map-free estimate p(xt | ut, xt−1) with a second term, p(xt | m), which expresses
the “consistency” of pose xt with the map m. In the case of occupancy maps, p(xt |
m) = 0 if and only if the robot “collides” with an occupied grid cell in the map;
otherwise it assumes a constant value. By multiplying p(xt | m) and p(xt | ut, xt−1),
we obtain a distribution that assigns all probability mass to poses xt−1 consistent
with the map, which otherwise has the same shape as p(xt | ut, xt−1). As η can be
computed by normalization, this approximation of a map-based motion model can be
computed efficiently without any significant overhead compared to a map-free motion
model.

Table 5.7 states the basic algorithms for computing and for sampling from the map-
based motion model. Notice that the sampling algorithm returns a weighted sample,
which includes an importance factor proportional to p(xt | m). Care has to be taken in
the implementation of the sample version, to ensure termination of the inner loop. An
example of the motion model is illustrated in Figure 5.11. The density in Figure 5.11a
is p(xt | ut, xt−1), computed according to the velocity motion model. Now suppose
the map m possesses a long rectangular obstacle, as indicated in Figure 5.11b. The
probability p(xt | m) is zero at all poses xt where the robot would intersect the
obstacle. Since our example robot is circular, this region is equivalent to the obstacle
grown by a robot radius (this is equivalent to mapping the obstacle from workspace to
the robot’s configuration space [19] or pose space). The resulting probability p(xt |
ut, xt−1,m), shown in Figure 5.11b, is the normalized product of p(xt | m) and p(xt |

116 Chapter 5

1: Algorithm motion model with map(xt, ut, xt−1,m):

2: return p(xt | ut, xt−1) · p(xt | m)

1: Algorithm sample motion model with map(ut, xt−1,m):

2: do

3: xt = sample motion model(ut, xt−1)

3: π = p(xt | m)

4: until π > 0

5: return 〈xt, π〉

Table 5.7 Algorithm for computing p(xt | ut, xt−1, m), which utilizes a map m of the
environment. This algorithms bootstraps previous motion models (Tables 5.1, 5.3, 5.5, and
5.6) to models that take into account that robots cannot be placed in occupied space in the
map m.

ut, xt−1). It is zero in the extended obstacle area, and proportional to p(xt | ut, xt−1)
everywhere else.

Figure 5.11 also illustrates a problem with our approximation. The region marked (∗)
possesses non-zero likelihood, since both p(xt | ut, xt−1) and p(xt | m) are non-
zero in this region. However, for the robot to be in this particular area it must have
gone through the wall, which is impossible in the real world. This error is the result
of checking model consistency at the final pose xt−1 only, instead of verifying the
consistency of the robot’s path to the goal. In practice, however, such errors only occur
for relatively large motions ut, and it can be neglected for higher update frequencies.

To shed light onto the nature of the approximation, let us briefly derive it. Equation
(5.48) can be obtained by applying Bayes rule:

p(xt | ut, xt−1,m) = η p(m | xt, ut, xt−1) p(xt | ut, xt−1) (5.49)

If we approximate p(m | xt, ut, xt−1) by p(m | xt), we obtain the desired equation
by once again applying Bayes rule:

p(xt | ut, xt−1,m) = η p(m | xt) p(xt | ut, xt−1)

Robot Motion 117

(a) p(xt | ut, xt−1) (b) p(xt | ut, xt−1, m)

� (∗)

Figure 5.11 Velocity motion model (a) without a map and (b) conditioned on a map m.

= η p(xt | m) p(xt | ut, xt−1) (5.50)

where η is the normalizer (notice that the value of η is different for the different steps
in our transformation). This brief analysis shows that our map-based model is justified
under the rough assumption that

p(m | xt, ut, xt−1) = p(m | xt) (5.51)

Obviously, these expressions are not equal. When computing the conditional over m,
our approximation omits two terms: ut and xt. By omitting these terms, we discard
any information relating to the robot’s path leading up to xt. All we know is that its
final pose is xt. We already noticed the consequences of this omission in our example
above, when we observed that poses behind a wall may possess non-zero likelihood.
Our approximate map-based motion model may falsely assume that the robot just went
through a wall, as long as the initial and final poses are in the unoccupied space. How
damaging can this be? As noted above, this depends on the update interval. In fact,
for sufficiently high update rates, and assuming that the noise variables in the motion
model are bounded, we can guarantee that the approximation is tight and this effect
will not occur.

This analysis illustrates a subtle insight pertaining to the implementation of the algo-
rithm. In particular, one has to pay attention to the update frequency. A Bayes filter
that is updated frequently might yield fundamentally different results than one that is
updated occasionally only.

118 Chapter 5

5.6 SUMMARY

This section derived the two principal probabilistic motion models for mobile robots
operating on the plane.

We derived an algorithm for the probabilistic motion model p(xt | ut, xt−1)
that represents control ut by a translational and angular velocity, executed over a
fixed time interval ∆t. In implementing this model, we realized that two control
noise parameters, one for the translational and one for the rotational velocity,
are insufficient to generate a space-filling (non-generate) posterior. We therefore
added a third noise parameter, expressed as a noisy “final rotation.”

We presented an alternative motion model that uses the robot’s odometry as input.
Odometry measurements were expressed by three parameters, an initial rotation,
followed by a translation, and a final rotation. The probabilistic motion model
was implemented by assuming that all three of these parameters are subject to
noise. We noted that odometry readings are technically not controls; however, by
using them just like controls we arrived at a simpler formulation of the estimation
problem.

For both motion models, we presented two types of implementations: One in
which the probability p(xt | ut, xt−1) is calculated in closed form, and one that
enables us to generate samples from p(xt | ut, xt−1). The closed-form expres-
sion accepts as an input xt, ut, and xt−1, and outputs a numerical probability
value. To calculate this probability, the algorithms effectively invert the motion
model, to compare the actual with the commanded control parameters. The sam-
pling model does not require such an inversion. Instead, it implements a forward
model of the motion model p(xt | ut, xt−1). It accepts as an input the values ut

and xt−1 and outputs a random xt drawn according to p(xt | ut, xt−1). Closed-
form models are required for some probabilistic algorithms. Others, most notably
particle filters, utilize sampling models.

Finally we extended all motion models to incorporate a map of the environment.
The resulting probability p(xt | ut, xt−1,m) incorporates a map m in its condi-
tional. This extension followed the intuition that the map specifies where a robot
may be; which has an effect of the ability to move from pose xt−1 to xt. Our
extension was approximate, in that we only checked for the validity of the final
pose.

The motion models discussed here are only examples: Clearly, the field of robotic
actuators is much richer than just mobile robots operating in flat terrain. Even within

Robot Motion 119

the field of mobile robotics, there exist a number of devices that are not covered by
the models discussed here. Examples include holonomic robots which can move side-
wards. Further, our description does not consider robot dynamics, which are impor-
tant for fast-moving vehicles such as cars on highways. Most of these robots can be
modeled analogously: simply specify the physical laws of robot motion, and spec-
ify appropriate noise parameters. For dynamic models, this will require to extend the
robot state by a velocity vector which captures the dynamic state of the vehicle. In
many ways, these extensions are straightforward. Rather than cluttering this book
with more motion models, it is now time to move on to the important topic of sensor
measurements.

5.7 BIBLIOGRAPHICAL REMARKS

Typical drives covered by this model are the the differential drive, the Ackerman drive,
or the synchro-drive [4, ?]. Drive systems not covered by our model are those without
non-holonomic constraints [19] like robots equipped with Mecanum wheels [4, ?] or
even legged robots.

120 Chapter 5

6
MEASUREMENTS

6.1 INTRODUCTION

Measurement models comprise the second domain-specific model in probabilistic
robotics, next to motion models. Measurement models describe the formation pro-
cess by which sensor measurements are generated in the physical world. Today’s
robots use a variety of different sensor modalities, such as tactile sensors, range sen-
sors, or cameras. The specifics of the model depends on the sensor: Imaging sensors
are best modeled by projective geometry, whereas sonar sensors are best modeled by
describing the sound wave and its reflection on surfaces in the environment.

Probabilistic robotics explicitly models the noise in sensor measurements. Such mod-
els account for the inherent uncertainty in the robot’s sensors. Formally, the measure-
ment model is defined as a conditional probability distribution p(zt | xt,m), where
xt is the robot pose, zt is the measurement at time t, and m is the map of the en-
vironment. Although we mainly address range-sensors throughout this section, the
underlying principles and equations are not limited to this type of sensors. Instead the
basic principle can be applied to any kind of sensor, such as a camera or a bar-code
operated landmark detector.

To illustrate the basic problem of mobile robots that use their sensors to perceive their
environment, Figure 6.1 shows a typical range-scan obtained in a corridor with a mo-
bile robot equipped with a cyclic array of 24 ultrasound sensors. The distances mea-
sured by the individual sensors are depicted in black and the map of the environment
is shown in light grey. Most of these measurements correspond to the distance of the
nearest object in the measurement cone; some measurements, however, have failed to
detect any object. The inability for sonar to reliably measure range to nearby objects is
often paraphrased as sensor noise. Technically, this noise is quite predictable: When

121

122 Chapter 6

Figure 6.1 Typical ultrasound scan of a robot in its environment.

measuring smooth surfaces (such as walls) at an angle, the echo tends to travel into a
direction other than the sonar sensor, as illustrated in Figure ??. This effect is called
specular reflection and often leads to overly large range measurements. The likelihood
of specular reflection depends on a number of properties, such as the surface material
and angle, the range of the surface, and the sensitivity of the sonar sensor. Other errors,
such as short readings, may be caused by cross-talk between different sensors (sound
is slow!) or by unmodeled objects in the proximity of the robot, such as people.

As a rule of thumb, the more accurate a sensor model, the better the results—though
there are some important caveats that were already discussed in Chapter 2.4.4. In prac-
tice, however, it is often impossible to model a sensor accurately, primarily for two rea-
sons: First, developing an accurate sensor model can be extremely time-consuming,
and second, an accurate model may require state variables that we might not know
(such as the surface material). Probabilistic robotics accommodates the inaccuracies
of sensor models in the stochastic aspects: By modeling the measurement process
as a conditional probability density, p(zt | xt), instead of a deterministic function
zt = f(xt), the uncertainty in the sensor model can be accommodated in the non-
deterministic aspects of the model. Herein lies a key advantage of probabilistic tech-
niques over classical robotics: in practice, we can get away with extremely crude mod-
els. However, when devising a probabilistic model, care has to be taken to capture the
different types of uncertainties that may affect a sensor measurement.

Many sensors generate more than one numerical measurement value when queried.
For example, cameras generate entire arrays of values (brightness, saturation, color);
similarly, range finders usually generate entire scans of ranges. We will denote the

Measurements 123

number of such measurement values within a measurement zt by K, hence write:

zt = {z1
t , . . . , z

K
t } (6.1)

We will use zk
t to refer to an individual measurement(e.g., one range value). We will

approximate p(zt | xt,m) by the product of the individual measurement likelihoods

p(zt | xt,m) =

K∏

k=1

p(zk
t | xt,m) (6.2)

Technically, this amounts to an independence assumption between the noise in each
individual measurement value — just as our Markov assumption assumes independent
noise over time (c.f., Chapter 2.4.4). This assumption is only true in the ideal case.
We already discussed possible causes of dependent noise in Chapter 2.4.4. To recapit-
ulate, dependencies typically exist due to a range of factors: people, who often corrupt
measurements of several adjacent sensors; errors in the model m; approximations in
the posterior, and so on. For now, however, we will simply not worry about violations
of the independence assumption, as we will return to this issue at later chapters.

6.2 MAPS

To express the process of generating measurements, we need to specify the environ-
ment in which a measurement is generated. A map of the environment is a list of
objects in the environment and their locations. We have already informally discussed
maps in the previous chapter, where we developed robot motion models that took into
consideration the occupancy of different locations in the world. Formally, a map m is
a list of objects in the environment along with their properties:

m = {m1,m2, . . . ,mN} (6.3)

Here N is the total number of objects in the environment, and each mn with 1 ≤
n ≤ N specifies a property. Maps are usually indexed in one of two ways, knowns
as feature-based and location-based. In feature-based maps, n is a feature index. The
value of mn contains, next to the properties of a feature, the Cartesian location of the
feature. In location-based maps, the index n corresponds to a specific location. In

124 Chapter 6

planar maps, it is common to denote a map element by mx,y instead of mn, to make
explicit that mx,y is the property of a specific world coordinate, (x y).

Both types of maps have advantages and disadvantages. Location-based maps are vol-
umetric, in that they offer a label for any location in the world. Volumetric maps con-
tain information not only about objects in the environment, but also about the absence
of objects (e.g., free-space). This is quite different in feature-based maps. Feature-
based maps only specify the shape of the environment at the specific locations, namely
the locations of the objects contained in the map. Feature representation makes it eas-
ier to adjust the position of an object, e.g., as a result of additional sensing. For this
reason, feature-based maps are popular in the robotic mapping field, where maps are
constructed from sensor data. In this book, we will encounter both types of maps—in
fact, we will occasionally move from one representation to the other.

A classical map representation is known as occupancy grid map, which will be dis-
cussed in detail in Chapter 9. Occupancy maps are location-based: They assign to each
x-y coordinate a binary occupancy value which specifies whether or not a location is
occupied with an object. Occupancy grid maps are great for mobile robot navigation:
They make it easy to find paths through the unoccupied space.

Throughout this book, we will drop the distinction between the physical world and the
map. Technically, sensor measurements are caused by physical objects, not the map
of those objects. However, it is tradition to condition sensor models on the map m;
hence we will adopt a notation that suggest measurements depend on the map.

6.3 BEAM MODELS OF RANGE FINDERS

Range finders are among the most popular sensors in robotics. Our first sensor model
is therefore an approximative physical model of range finders. Range finders mea-
sure the range to nearby objects. Range may be measured along a beam—which is a
good model of the workings of laser range finders—or within a cone—which is the
preferable model of ultrasonic sensors.

6.3.1 The Basic Measurement Algorithm

Our model incorporates four types of measurement errors, all of which are essential to
making this model work: small measurement noise, errors due to unexpected objects,
errors due to failures to detect objects, and random unexplained noise. The desired

Measurements 125

(a) Gaussian distribution phit

p(zk
t | xt,m)

zk∗
t zmax

(b) Exponential distribution pshort

p(zk
t | xt,m)

zk∗
t zmax

(c) Uniform distribution pmax

p(zk
t | xt,m)

zk∗
t zmax

(d) Uniform distribution prand

p(zk
t | xt,m)

zk∗
t zmax

Figure 6.2 Components of the range finder sensor model. In each diagram the horizontal
axis corresponds to the measurement zk

t , the vertical to the likelihood.

model p(zt | xt,m) is therefore a mixture of four densities, each of which corresponds
to a particular type of error:

1. Correct range with local measurement noise. In an ideal world, a range finder
would always measure the correct range to the nearest object in its measurement
field. Let us use zk∗

t to denote the “true” range of the object measured by zk
t .

In location-based maps, the range zk∗
t can be determined using ray casting; in

feature-based maps, it is usually obtained by searching for the closest feature
within a measurement cone. However, even if the sensor correctly measures the
range to the nearest object, the value it returns is subject to error. This error arises
from the limited resolution of range sensors, atmospheric effect on the measure-
ment signal, and so on. This noise is usually modeled by a narrow Gaussian
with mean zk∗

t and standard deviation σhit. We will denote the Gaussian by phit.
Figure 6.2a illustrates this density phit, for a specific value of zk∗

t .

126 Chapter 6

In practice, the values measured by the range sensor are limited to the interval
[0; zmax], where zmax denotes the maximum sensor range. Thus, the measure-
ment probability is given by

phit(z
k
t | xt,m) =

{
η N (zk

t ; zk∗
t , σ2

hit) if 0 ≤ zk
t ≤ zmax

0 otherwise
(6.4)

where zk∗
t is calculated from xt and m via ray tracing, and N (zk

t ; zk∗
t , σ2

hit)
denotes the univariate normal distribution with mean zk∗

t and variance σ2
hit:

N (zk
t ; zk∗

t , σ2
hit) =

1
√

2πσ2
hit

e
− 1

2

(zk
t
−zk∗

t
)2

σ2
hit (6.5)

The normalizer η evaluates to

η =

(∫ zmax

0

N (zk
t ; zk∗

t , σ2
hit) dz

k
t

)−1

(6.6)

The variance σhit is an intrinsic noise parameter of the measurement model. Be-
low we will discuss strategies for setting this parameter.

2. Unexpected objects. Environments of mobile robots are dynamic, whereas maps
m are static. As a result, objects not contained in the map can cause range finders
to produce surprisingly short ranges—at least when compared to the map. A
typical example of moving objects are people that share the operational space
of the robot. One way to deal with such objects is to treat them as part of the
state vector and estimate their location; another, much simpler approach, is to
treat them as sensor noise. Treated as sensor noise, unmodeled objects have the
property that they cause ranges to be shorter than zk∗

t , not longer.

More generally, the likelihood of sensing unexpected objects decreases with
range. To see, imagine there are two people that independently and with the
same, fixed likelihood show up in the perceptual field of a proximity sensor. One
person’s range is z1, and the second person’s range is z2. Let us further assume
that z1 < z2, without loss of generality. Then we are more likely to measure z1
than z2. Whenever the first person is present, our sensor measures z1. However,
for it to measure z2, the second person must be present and the first must be
absent.

Mathematically, the probability of range measurements in such situations is
described by an exponential distribution. The parameter of this distribution,
λshort, is an intrinsic parameter of the measurement model. According to the

Measurements 127

definition of an exponential distribution we obtain the following equation for
pshort(z

k
t | xt,m):

pshort(z
k
t | xt,m) =

{

η λshort e
−λshortz

k
t if 0 ≤ zk

t ≤ zk∗
t

0 otherwise
(6.7)

As in the previous case, we need a normalizer η since our exponential is limited to
the interval

[
0; zk∗

t

]
. Because the cumulative probability in this interval is given

as

∫ zk∗
t

0

λshort e
−λshortz

k
t dzk

t = −e−λshortz
k∗
t + e−λshort0 (6.8)

= 1− e−λshortz
k∗
t (6.9)

the value of η can be derived as:

η =
1

1− e−λshortz
k∗
t

(6.10)

Figure 6.2b depicts this density graphically. This density falls off exponentially
with the range zk

t .

3. Failures. Sometimes, obstacles are missed altogether. For example, this happens
frequently with sonar sensors when measuring a surface at a steep angle. Failures
also occur with laser range finders when sensing black, light-absorbing objects,
or when measuring objects in bright light. A typical result of sensor failures are
max-range measurements: the sensor returns its maximum allowable value zmax.
Since such events are quite frequent, it is necessary to explicitly model max-range
measurements in the measurement model.

We will model this case with a point-mass distribution centered at zmax:

pmax(z
k
t | xt,m) = I(z = zmax) =

{
1 if z = zmax

0 otherwise
(6.11)

Here I denotes the indicator function that takes on the value 1 if its argument is
true, and is 0 otherwise. Technically, pmax does not possess a probability density
function. This is because pmax is a discrete distribution. However, this shall
not worry us here, as our mathematical model of evaluating the probability of a
sensor measurement is not affected by the non-existence of a density function.
(In our diagrams, we simply draw pmax as a very narrow uniform distribution
centered at zmax, so that we can pretend a density exists).

128 Chapter 6

zk∗
t zmax

Figure 6.3 “Pseudo-density” of a typical mixture distribution p(z k
t | xt, m).

4. Random measurements. Finally, range finders occasionally produce entirely
unexplained measurements. For example, sonars often generate phantom read-
ings when they bounce off walls, or when they are subject to cross-talk between
different sensors. To keep things simple, such measurements will be modeled
using a uniform distribution spread over the entire sensor measurement range
[0; zmax]:

prand(zk
t | xt,m) =

{
1

zmax
if 0 ≤ zk

t < zmax

0 otherwise
(6.12)

Figure 6.2d shows the density of the distribution prand.

These four different distributions are now mixed by a weighted average, defined by
the parameters zhit, zshort, zmax, and zrand with zhit + zshort + zmax + zrand = 1.

p(zk
t | xt,m) =

zhit

zshort

zmax

zrand

T

·

phit(z
k
t | xt,m)

pshort(z
k
t | xt,m)

pmax(z
k
t | xt,m)

prand(zk
t | xt,m)

(6.13)

A typical density resulting from this linear combination of the individual densities is
shown in Figure 6.3 (with our visualization of the point-mass distribution pmax as a
small uniform density). As the reader may notice, the basic characteristics of all four
basic models are still present in this combined density.

Measurements 129

1: Algorithm beam range finder model(zt, xt,m):

2: q = 1

3: for k = 1 to K do

4: compute zk∗
t for the measurement zk

t using ray casting

5: p = zhit · phit(z
k
t | xt,m) + zshort · pshort(z

k
t | xt,m)

6: +zmax · pmax(z
k
t | xt,m) + zrand · prand(zk

t | xt,m)

7: q = q · p
8: return q

Table 6.1 Algorithm for computing the likelihood of a range scan zt, assuming condi-
tional independence between the individual range measurements in the scan.

The range finder model is implemented by the algorithm beam range finder model
in Table 6.1. The input of this algorithm is a complete range scan zt, a robot pose xt,
and a map m. Its outer loop (Lines 2 and 7) multiplies the likelihood of individual
sensor beams zk

t , following Equation (6.2). Line 4 applies ray casting to compute the
noise-free range for a particular sensor measurement. The likelihood of each individ-
ual range measurement zk

t is computed in Line 5, which implements the mixing rule
for densities stated in (6.13). After iterating through all sensor measurements zk

t in zt,
the algorithm returns the desired probability p(zt | xt,m).

6.3.2 Adjusting the Intrinsic Model

Parameters

In our discussion so far we have not addressed the question of how to choose the vari-
ous parameters of the sensor model. These parameters include the mixing parameters
zhit, zshort, zmax, and zrand. They also include the parameters σhit and λshort. We
will refer to the set of all intrinsic parameters as Θ. Clearly, the likelihood of any
sensor measurement is a function of Θ.

One way to determine the intrinsic parameters is to rely on data. Figure 6.4 depicts
two series of 10,000 measurements obtained with a mobile robot traveling through a
typical office environment. Both plots show only range measurements for which the
expected range was approximately 3 meter (between 2.9m and 3.1m). The left plot

130 Chapter 6

300

500

0 5000 10000

(a) Sonar data

300

500

0 5000 10000

(b) Laser data

Figure 6.4 Typical data obtained with (a) a sonar sensor and (b) a laser-range sensor in
an office environment for a “true” range of 300 cm and a maximum range of 500 cm.

depicts the data for sonar sensors, and the right plot the corresponding data for laser
sensors. In both plots, the x-axis shows the number of the reading (from 1 to 10,000),
and the y-axis is the range measured by the sensor. Whereas most of the measurements
are close to the correct range for both sensors, the behaviors of the sensors differ
substantially. The ultrasound sensor appears to suffer from many more measurement
noise and detection errors. Quite frequently it fails to detect an obstacle, and instead
reports maximum range. In contrast, the laser range finder is more accurate. However,
it also occasionally reports false ranges.

A perfectly acceptable way to set the intrinsic parameters Θ is by hand: simply eyeball
the resulting density until it agrees with your experience. Another, more principled
way, is to learn these parameters from actual data. This is achieved by maximizing
the likelihood of a reference data set Z = {zi} with associated positions X = {xi}
and map m, where each zi is an actual measurement, xi is the pose at which the
measurement was taken, and m is the map. The likelihood of the data Z is given by

p(Z | X,m,Θ), (6.14)

and our goal is to identify intrinsic parameters Θ that maximize this likelihood. Algo-
rithms that maximize the likelihood of data are known as maximum likelihood estima-
tors, or ML estimators in short.

Table 6.2 depicts the algorithm learn intrinsic parameters, which is an algorithm
for calculating the maximum likelihood estimate for the intrinsic parameters. As we
shall see below, the algorithm is an instance of the expectation maximization algo-
rithm, an iterative procedure for estimating ML parameters. Initially, the algorithm

Measurements 131

1: Algorithm learn intrinsic parameters(Z,X,m):

2: repeat until convergence criterion satisfied

3: for all zi in Z do

4: η = [phit(zi | xi,m) + pshort(zi | xi,m)

+ pmax(zi | xi,m) + prand(zi | xi,m)]−1

5: calculate z∗i
6: ei,hit = η phit(zi | xi,m)

7: ei,short = η pshort(zi | xi,m)

8: ei,max = η pmax(zi | xi,m)

9: ei,rand = η prand(zi | xi,m)

10: zhit = |Z|−1
∑

i ei,hit

11: zshort = |Z|−1
∑

i ei,short

12: zmax = |Z|−1
∑

i ei,max

13: zrand = |Z|−1
∑

i ei,rand

14: σhit =
√

1∑

i
ei,hit

∑

i ei,hit(zi − z∗i)2

15: λshort =

∑

i
ei,short

∑

i
ei,short zi

16: return Θ = {zhit, zshort, zmax, zrand, σhit, λshort}

Table 6.2 Algorithm for learning the intrinsic parameters of the beam-based sensor model
from data.

learn intrinsic parameters requires a good initialization of the intrinsic parameters
σhit and λshort. In Lines 3 through 9, it estimates auxiliary variables: Each ei,xxx is
the probability that the measurement zi is caused by “xxx,” where “xxx” is chosen
from the four aspects of the sensor model, hit, short, max, and random. Subsequently,
it estimates the intrinsic parameters in Lines 10 through 15. The intrinsic parameters,
however, are a function of the expectations calculated before. Adjusting the intrinsic
parameters causes the expectations to change, for which reason the algorithm has to be
iterated. However, in practice the iteration converges quickly, and a dozen iterations
are usually sufficient to give good results.

132 Chapter 6

(a) Sonar data

zk∗
t zk∗

t

(b) Laser data

zk∗
t zk∗

t

Figure 6.5 Approximation of the beam model based on (a) sonar data and (b) laser range
data. The sensor models depicted on the left were obtained by a maximum likelihood
approximation to the data sets depicted in Figure 6.4.

Figure 6.5 graphically depicts four examples of data and the ML measurement model
calculated by learn intrinsic parameters. The first row shows approximations to
data recorded with the ultrasound sensor. The second row contains plots of two
functions generated for laser range data. The columns correspond to different “true”
ranges. The data is organized in histograms. One can clearly see the differences be-
tween the different graphs. The smaller the range zk∗

t the more accurate the measure-
ment. For both sensors the Gaussians are narrower for the shorter range than they are
for the longer measurement. Furthermore, the laser range finder is more accurate than
the ultrasound sensor, as indicated by the narrower Gaussians and the smaller number
of maximum range measurements. The other important thing to notice is the relatively
high likelihood of short and random measurements. This large error likelihood has a
disadvantage and an advantage: On the negative side, it reduces the information in
each sensor reading, since the difference in likelihood between a hit and a random
measurement is small. On the positive side however, this model is less susceptible
to unmodeled systematic perturbations, such as people who block the robot’s path for
long periods of time.

Measurements 133

(a) Laser scan and part of the map

(b) Likelihood for different positions

Figure 6.6 Probabilistic model of perception: (a) Laser range scan, projected into a pre-
viously acquired map m. (b) The likelihood p(zt | xt, m), evaluated for all positions xt

and projected into the map (shown in gray). The darker a position, the larger p(zt | xt, m).

Figure 6.6 illustrates the learned sensor model in action. Shown in Figure 6.6a is a 180
degree range scan. The robot is placed in a previously acquired occupancy grid map
at its true pose. Figure 6.6b plots a map of the environment along with the likelihood
p(zt | xt,m) of this range scan projected into x-y-space (by maximizing over the
orientation θ). The darker a location, the more likely it is. As is easily seen, all
regions with high likelihood are located in the corridor. This comes at little surprise,
as the specific scan is geometrically more consistent with corridor locations than with
locations inside any of the rooms. The fact that the probability mass is spread out

134 Chapter 6

throughout the corridor suggests that a single sensor scan is insufficient to determine
the robot’s exact pose. This is largely due to the symmetry of the corridor. The fact
that the posterior is organized in two narrow bands is due to the fact that the orientation
of the robot is unknown: each of these bands corresponds to one of the two surviving
heading directions of the robot.

6.3.3 Mathematical Derivation

To derive the ML estimator, it shall prove useful to introduce auxiliary variables ci,
the so-called correspondence variable. Each ci can take on one of four values, hit,
short, max, and random, corresponding to the four possible mechanisms that might
have produced a measurement zi.

Let us first consider the case in which the ci’s are known, that is, we know which of the
four mechanisms described above caused each measurement zi. Based on the values
of the ci’s, we can decompose Z into four disjoint sets, Zhit, Zshort, Zmax, and Zrand,
which together comprise the set Z. The ML estimators for the intrinsic parameters
zhit, zshort, zmax, and zrand are simply the normalized ratios:

zhit

zshort

zmax

zrand

= |Z|−1

|Zhit|
|Zshort|
|Zmax|
|Zrand|

(6.15)

The remaining intrinsic parameters, σhit and λshort, are obtained as follows. For the
data set Zhit, we get from (6.5)

p(Zhit | X,m,Θ) =
∏

zi∈Zhit

phit(zi | xi,m,Θ)

=
∏

zi∈Zhit

1
√

2πσ2
hit

e
− 1

2

(zi−z∗
i
)2

σ2
hit (6.16)

Here z∗i is the “true” range, computed from the pose xi and the map m. A clas-
sical trick of ML estimation is to maximize the logarithm of the likelihood, instead
of the likelihood directly. The logarithm is a strictly monotonic function, hence the
maximum of the log-likelihood is also the maximum of the original likelihood. The

Measurements 135

log-likelihood is given by

log p(Zhit | X,m,Θ) =
∑

zi∈Zhit

[

−1

2
log 2πσ2

hit −
1

2

(zi − z∗i)2

σ2
hit

]

, (6.17)

which is now easily transformed as follows

log p(Zhit | X,m,Θ) = −1

2

∑

zi∈Zhit

[

log 2πσ2
hit +

(zi − z∗i)2

σ2
hit

]

= −1

2

[

|Zhit| log 2π + 2|Zhit| log σhit +
∑

zi∈Zhit

(zi − z∗i)2

σ2
hit

]

= const.− |Zhit| log σhit −
1

2σ2
hit

∑

zi∈Zhit

(zi − z∗i)2 (6.18)

The derivative of this expression in the intrinsic parameter σhit is as follows:

∂ log p(Zhit | X,m,Θ)

∂σhit
= −|Zhit|

σhit
+

1

σ3
hit

∑

zi∈Zhit

(zi − z∗i)2

(6.19)

The maximum of the log-likelihood is now obtained by setting this derivative to zero.
From that we get the solution to our ML estimation problem.

σhit =

√

1

|Zhit|
∑

zi∈Zhit

(zi − z∗i)2 (6.20)

The estimation of the remaining intrinsic parameter λshort proceeds just about in the
same way. The posterior over the data Zshort is given by

p(Zshort | X,m,Θ) =
∏

zi∈Zshort

pshort(zi | xi,m)

=
∏

zi∈Zshort

λshort e
−λshortzi (6.21)

136 Chapter 6

The logarithm is given by

log p(Zshort | X,m,Θ) =
∑

zi∈Zshort

log λshort − λshortzi

= |Zshort| log λshort − λshort

∑

zi∈Zshort

zi (6.22)

The first derivative of this expression with respect to the intrinsic parameter λshort is
as follows:

∂ log p(Zshort | X,m,Θ)

∂λshort
=
|Zshort|
λshort

−
∑

zi∈Zshort

zi (6.23)

Setting this to zero gives us the ML estimate for the intrinsic parameter λshort

λshort =
|Zshort|

∑

zi∈Zshort
zi

(6.24)

This derivation assumed knowledge of the parameters ci. We now extend it to the
case where the ci’s are unknown. As we shall see, the resulting ML estimation prob-
lem lacks a closed-form solution. However, we can devise a technique that iterates
two steps, one which calculates an expectation for the ci’s and one that computes the
intrinsic model parameters under these expectations. The resulting algorithm is an in-
stance of the expectation maximization algorithm, or EM in short. We will encounter
EM in later chapters of this book, so this might be a good opportunity for the reader
to familiarize herself with the basic EM algorithm.

To derive EM, it will be beneficial to define the likelihood of the data Z first:

log p(Z | X,m,Θ)

=
∑

zi∈Z

log p(zi | xi,m,Θ)

=
∑

zi∈Zhit

log phit(zi | xi,m) +
∑

zi∈Zshort

log pshort(zi | xi,m)

+
∑

zi∈Zmax

log pmax(zi | xi,m) +
∑

zi∈Zrand

log prand(zi | xi,m)

(6.25)

Measurements 137

This expression can be rewritten using the variables ci:

log p(Z | X,m,Θ) =
∑

zi∈Z

I(ci = hit) log phit(zi | xi,m)

+I(ci = short) log pshort(zi | xi,m)

+I(ci = max) log pmax(zi | xi,m)

+I(ci = rand) log prand(zi | xi,m) (6.26)

where I is the indicator function. Since the values for ci are unknown, it is common
to integrate them out. Put differently, EM maximizes the expectation E[log p(Z |
X,m,Θ)], where the expectation is taken over the unknown variables ci:

E[log p(Z | X,m,Θ)]

=
∑

i

p(ci = hit) log phit(zi | xi,m) + p(ci = short) log pshort(zi | xi,m)

+p(ci = max) log pmax(zi | xi,m) + p(ci = rand) log prand(zi | xi,m)

=:
∑

i

ei,hit log phit(zi | xi,m) + ei,short log pshort(zi | xi,m)

+ei,max log pmax(zi | xi,m) + ei,rand log prand(zi | xi,m) (6.27)

With the definition of the variable e as indicated. This expression is maximized in two
steps. In a first step, we consider the intrinsic parameters σhit and λshort given and
calculate the expectation over the variables ci.

ei,hit

ei,short

ei,max

ei,rand

:=

p(ci = hit)
p(ci = short)
p(ci = max)
p(ci = rand)

= η

phit(zi | xi,m)
pshort(zi | xi,m)
pmax(zi | xi,m)
prand(zi | xi,m)

(6.28)

where the normalizer is given by

η = [phit(zi | xi,m) + pshort(zi | xi,m)

+pmax(zi | xi,m) + prand(zi | xi,m)]−1 (6.29)

This step is called the “E-step,” indicating that we calculate expectations over the
latent variables ci. The remaining step is now straightforward, since the expectations

138 Chapter 6

decouple the dependencies between the different components of the sensor model.
First, we note that the ML mixture parameters are simply the normalized expectations

zhit

zshort

zmax

zrand

= |Z|−1
∑

i

ei,hit

ei,short

ei,max

ei,rand

(6.30)

The ML parameters σhit and λshort are then obtained analogously, by replacing the
hard assignments in (6.20) and (6.24) by soft assignments weighted by the expecta-
tions.

σhit =

√

1
∑

zi∈Z ei,hit

∑

zi∈Z

ei,hit(zi − z∗i)2 (6.31)

and

λshort =

∑

zi∈Z ei,short
∑

zi∈Z ei,short zi

(6.32)

6.3.4 Practical Considerations

In practice, computing the densities of all sensor readings can be quite time-
consuming. For example, laser range scanners often return hundreds of values per
scan, at a rate of several scans per seconds. Since one has to perform a ray-tracing op-
eration for each beam of the scan and every possible pose considered, the integration
of the whole scan into the current belief cannot always be carried out in real-time. One
typical approach to solve this problem is to incorporate only a small subset of all mea-
surements (e.g., 8 equally spaced measurements per laser range scan instead of 360).
This approach has an important additional benefit. Since adjacent beams of a range
scan are often not independent, the state estimation process becomes less susceptible
to correlated noise in adjacent measurements by leaving out measurements.

When dependencies between adjacent measurements are strong, the ML model may
make the robot overconfident and yield suboptimal results. One simple remedy is
to replace p(zk

t | xt,m) by a “weaker” version p(zk
t | xt,m)α for α < 1. The

intuition here is to reduce, by a factor of alpha, the information extracted from a sensor

Measurements 139

measurement (the log of this probability is given by α log p(zk
t | xt,m)). Another

possibility—which we will only mention here—is to learn the intrinsic parameters in
the context of the application: For example, in mobile localization it is possible to
train the intrinsic parameters via gradient descent to yield good localization results
over multiple time steps. Such a multi-time step methodology is significantly different
from the single time step ML estimator described above. In practical implementations
it can yield superior results.

The main drain of computing time for beam-based models is the ray casting operation.
The runtime costs of computing p(zt | xt,m) can be substantially reduced by pre-
computing the ray casting algorithm, and storing the result in memory—so that the
ray casting operation can be replaced by a (much faster) table lookup. An obvious
implementation of this idea is to decompose the state space into a fine-grained three-
dimensional grid, and to pre-compute the ranges zk∗

t for each grid cell. This idea will
be further investigated in Chapter 4.1. Depending on the resolution of the grid, the
memory requirements can be significant. In mobile robot localization, we find that
pre-computing the range with a grid resolution of 15 centimeters and 2 degrees works
well for indoor localization problems. It fits well into the RAM for moderate-sized
computers, yielding speedups by an order of magnitude over the plain implementation
that casts rays online.

6.4 LIKELIHOOD FIELDS FOR RANGE

FINDERS

6.4.1 Basic Algorithm

The beam-based sensor model, while closely linked to the geometry and physics of
range finders, suffers two major drawbacks.

Lack of smoothness. In cluttered environments with many small obstacles, the
distribution p(zk

t | xt,m) can be very unsmooth in xt. Consider, for example,
an environment with many chairs and tables (like a typical conference room). A
robot like the ones shown in Chapter 1 will sense the legs of those obstacles. Ob-
viously, small changes of a robot’s pose xt can have a tremendous impact on the
correct range of a sensor beam. As a result, the measurement model p(zk

t | xt,m)
is highly discontinuous in xt (in particular in the heading direction θt). Lack of
smoothness has two problematic consequences. First, any approximate belief
representation runs danger to miss the correct state, as nearby states might have

140 Chapter 6

drastically different posterior likelihoods. This poses constraints on the accuracy
of the approximation which, if not met, increase the resulting error in the poste-
rior. Second, hill climbing methods for finding the most likely state are prone to
local minima, due to the large number of local maxima in such unsmooth models.

Computational complexity. Evaluating p(zk
t | xt,m) for each single sensor

measurement zk
t involves ray casting, which is computationally expensive. As

noted above, the problem can be partially remedied by pre-computing the ranges
over a discrete grid in pose space. Such an approach shifts the computation
into an initial off-line phase, with the benefit that the algorithm is faster at run
time. However, the resulting tables are very large, since they cover a large three-
dimensional space. Thus, pre-computing ranges is computationally expensive
and requires substantial memory.

We will now describe an alternative model, called likelihood field model, which over-
comes these limitations. This model lacks a plausible physical explanation. In fact,
it is an “ad hoc” algorithm that does not necessarily compute a conditional probabil-
ity relative to any meaningful generative model of the physics of sensors. However,
the approach works well in practice. In particular, the resulting posteriors are much
smoother even in cluttered space, and the computation is typically more efficient.

The key idea is to first project the end points of a sensor scan zt into the global co-
ordinate space of the map. To project an individual sensor measurement zk

t into the
global coordinate frame of the map m, we need to know where in global coordinates
the robot’s coordinate system is, where on the robot the sensor beam zk originates, and
where it points. As usual let xt = (x y θ)T denote a robot pose at time t. Keeping
with our two-dimensional view of the world, we denote the relative location of the
sensor in the robot’s fixed, local coordinate system by (xk,sens yk,sens)

T , and the an-
gular orientation of the sensor beam relative to the robot’s heading direction by θk,sens.
These values are sensor-specific. The end point of the measurement zk

t is now mapped
into the global coordinate system via the obvious trigonometric transformation.

(
xzk

t

yzk
t

)

=

(
x
y

)

+

(
cos θ − sin θ
sin θ cos θ

)(
xk,sens

yk,sens

)

+ zk
t

(
cos(θ + θk,sens)
sin(θ + θk,sens)

)

(6.33)

These coordinates are only meaningful when the sensor detects an obstacle. If the
range sensor takes on its maximum value, that is, zk

t = zmax, these coordinates have
no meaning in the physical world (even though the measurement does carry informa-
tion). The likelihood field measurement model simply discards max-range readings.

Measurements 141

(a) example environment (b) likelihood field

Figure 6.7 (a) Example environment with three obstacles (gray). The robot is located
towards the bottom of the figure, and takes a measurement zkt as indicated by the dashed
line. (b) Likelihood field for this obstacle configuration: the darker a location, the less
likely it is to perceive an obstacle there. The probability p(zk

t | xt, m) for the specific
sensor beam is shown in Figure ??.

Similar to the beam model discussed before, we assume three types of sources of noise
and uncertainty:

1. Measurement noise. Noise arising from the measurement process is modeled
using Gaussians. In x-y-space, this involves finding the nearest obstacle in the
map. Let dist denote the Euclidean distance between the measurement coordi-
nates (xzk

t
yzk

t
)T and the nearest object in the map m. Then the probability of

a sensor measurement is given by a zero-centered Gaussian modeling the sensor
noise:

phit(z
k
t | xt,m) = εσ2

hit
(dist2) (6.34)

Figure 6.7a depicts a map, and Figure 6.7b shows the corresponding Gaussian
likelihood for measurement points (xzk

t
yzk

t
)T in 2-D space. The brighter a

location, the more likely it is to measure an object with a range finder. The density
phit is now obtained by intersecting (and normalizing) the likelihood field by the
sensor axis, indicated by the dashed line in Figure 6.7. The resulting function is
the one shown in Figure 6.8a.

142 Chapter 6

(a) phit(z
k
t | xt, m)

o1 o2 o3 zmax

(b) p(zk
t | xt, m)

o1 o2 o3 zmax

Figure 6.8 (a) Probability phit(z
k
t) as a function of the measurement zk

t , for the situation
depicted in Figure 6.7. Here the sensor beam passes by three obstacles, with respective
nearest points o1, o2, and o3. (b) Sensor probability p(zk

t | xt, m), obtained for the
situation depicted in Figure 6.7, obtained by adding two uniform distributions.

2. Failures. As before, we assume that max-range readings have a distinct large
likelihood. As before, this is modeled by a point-mass distribution pmax.

3. Random measurements. Finally, a uniform distribution prand is used to model
random noise in perception.

Just as for the beam-based sensor model, the desired probability p(zk
t | xt,m) inte-

grates all three distributions:

zhit · phit + zrand · prand + zmax · pmax (6.35)

using the familiar mixing weights zhit, zrand, and zmax. Figure 6.8b shows an exam-
ple of the resulting distribution p(zk

t | xt,m) along a measurement beam. It should
be easy to see that this distribution combines phit, as shown in Figure 6.8a, and the
distributions pmax and prand. Much of what we said about adjusting the mixing pa-
rameters transfers over to our new sensor model. They can be adjusted by hand, or
learned using the ML estimator. A representation like the one in Figure 6.7b, which
depicts the likelihood of an obstacle detection as a function of global x-y-coordinates,
is called the likelihood field.

Table 6.3 provides an algorithm for calculating the measurement probability using the
likelihood field. The reader should already be familiar with the outer loop, which
multiplies the individual values of p(zk

t | xt,m), assuming independence between
the noise in different sensor beams. Line 4 checks if the sensor reading is a max
range reading, in which case it is simply ignored. Lines 5 to 8 handle the interesting

Measurements 143

1: Algorithm likelihood field range finder model(zt, xt,m):

2: q = 1

3: for all k do

4: if zk
t 6= zmax

5: xzk
t

= x+ xk,sens cos θ − yk,sens sin θ + zk
t cos(θ + θk,sens)

6: yzk
t

= y + yk,sens cos θ + xk,sens sin θ + zk
t sin(θ + θk,sens)

7: dist2 = min
x′,y′

{

(xzk
t
− x′)2 + (yzk

t
− y′)2

∣
∣
∣ 〈x′, y′〉 occupied in m

}

8: q = q ·
(

zhit · prob(dist2, σ2
hit) + zrandom

zmax

)

9: return q

Table 6.3 Algorithm for computing the likelihood of a range finder scan using Euclidean
distance to the nearest neighbor. The function prob(dist2, σ2

hit) computes the probability
of the distance under a zero-centered Gaussian distribution with variance σ2

hit.

case: Here the distance to the nearest obstacle in x-y-space is computed (Line 7),
and the resulting likelihood is obtained in Line 8 by mixing a normal and a uniform
distribution (the function prob(dist2, σ2

hit) computes the probability of dist2 under a
zero-centered Gaussian distribution with variance σ2

hit).

The most costly operation in algorithm likelihood field range finder model is the
search for the nearest neighbor in the map (Line 7). To speed up this search, it is
advantageous to pre-compute the likelihood field, so that calculating the probability of
a measurement amounts to a coordinate transformation followed by a table lookup. Of
course, if a discrete grid is used, the result of the lookup is only approximate, in that
it might return the wrong obstacle coordinates. However, the effect on the probability
p(zk

t | xt,m) is typically small even for moderately course grids.

6.4.2 Extensions

A key advantage of the likelihood field model over the beam-based model discussed
before is smoothness. Due to the smoothness of the Euclidean distance, small changes
in the robot’s pose xt only have small effects on the resulting distribution p(zk

t |

144 Chapter 6

(a) (b)

Figure 6.9 (a) Occupancy grid map of the San Jose Tech Museum, (b) pre-processed
likelihood field.

xt,m). Another key advantage is that the pre-computation takes place in 2D, instead
of 3D, increasing the compactness of the pre-computed information.

However, the current model has three key disadvantages: First, it does not explicitly
model people and other dynamics that might cause short readings. Second, it treats
sensors as if they can “see through walls.” This is because the ray casting opera-
tion was replaced by a nearest neighbor function, which is incapable of determining
whether a path to a point is intercepted by an obstacle in the map. And third, our
approach does not take map uncertainty into account. In particular, it cannot handle
unexplored areas, that is, areas for which the map is highly uncertain or unspecified.

The basic algorithm likelihood field range finder model can be extended to dimin-
ish the effect of these limitations. For example, one might sort map occupancy values
into three categories: occupied, free, and unknown, instead of just the first two. When
a sensor measurement zk

t falls into the category unknown, its probability p(zk
t | xt,m)

is assumed to be the constant value 1
zmax

. The resulting probabilistic model is that in
the unexplored space, every sensor measurement is equally likely, hence p(zk

t | xt,m)
is modeled by a uniform distribution with density 1

zmax
. Figure 6.9 shows a map and

the corresponding likelihood field. Here again the gray-level of an x-y-location indi-
cates the likelihood of receiving a sensor reading there. The reader may notice that the
distance to the nearest obstacle is only employed inside the map, which corresponds to
the explored terrain. Outside, the likelihood p(zk

t | xt,m) is a constant. For computa-
tional efficiency, it is worthwhile to precompute the nearest neighbor for a fine-grained
2-D grid.

Measurements 145

(a) sensor scan (b) likelihood field

Figure 6.10 (a) Sensor scan, from a bird’s eye perspective. The robot is placed at the
bottom of this figure, generating a proximity scan that consists of the 180 dots in front of
the robot. (b) Likelihood function generated from this sensor scan. The darker a region, the
smaller the likelihood for sensing an object there. Notice that occluded regions are white,
hence infer no penalty.

Likelihood fields over the visible space can also be defined for the most recent scan,
which in fact defines a local map. A straightforward extension is then to match a
scan and a map symmetrically: In addition to calculating the likelihood of a scan field
inside the map, a symmetric extension also calculates the likelihood of each (nearby)
object in the map object relative to the likelihood field of a scan. Such a symmetric
routine will be of importance in future chapters on mapping, in which we seek to align
scans with maps. In the interest of brevity, we omit the derivation of the resulting
algorithm, which in fact is mostly a straightforward extension of the one shown in
Table 6.3. However, we note that the leading implementations of the likelihood field
technique rely on the extended symmetric algorithm.

6.5 CORRELATION-BASED SENSOR

MODELS

There exists a number of range sensor models in the literature that measure correla-
tions between a measurement and the map. A common technique is known as map
matching. Map matching requires techniques discussed in later chapters of this book,
namely the ability to transform scans into occupancy maps. Typically, map matching
compiles small numbers of consecutive scans into local maps, denoted mlocal. Fig-
ure 6.11 shows such a local map, here in the form of an occupancy grid map. The
sensor measurement model compares the local map mlocal to the global map m, such

146 Chapter 6

Figure 6.11 Example of a local map generated from 10 range scans, one of which is
shown.

that the more similar m and mlocal, the larger p(mlocal | xt,m). Since the local map
is represented relative to the robot location, this comparison requires that the cells of
the local map are transformed into the coordinate framework of the global map. Such
a transformation can be done similar to the coordinate transform (6.33) of sensor mea-
surements used in the likelihood field model. If the robot is at location xt, we denote
by mx,y,local(xt) the grid cell in the local map that corresponds to (x y)T in global
coordinates. Once both maps are in the same reference frame, they can be compared
using the map correlation function, which is defined as follows:

ρm,mlocal,xt
=

∑

x,y(mx,y − m̄) · (mx,y,local(xt)− m̄)
√∑

x,y(mx,y − m̄)2
∑

x,y(mx,y,local(xt)− m̄)2
(6.36)

Here the sum is evaluated over cells defined in both maps, and m̄ is the average map
value:

m̄ =
1

2N

∑

x,y

(mx,y +mx,y,local), (6.37)

where N denotes the number of elements in the overlap between the local and global
map. The correlation ρm,mlocal,xt

scales between ±1. Map matching interprets the
value

p(mlocal | xt,m) = max{ρm,mlocal,xt
, 0} (6.38)

Measurements 147

as the probability of the local map conditioned on the global map m and the robot
pose xt. If the local map is generated from a single range scan zt, this probability
substitutes the measurement probability p(zt | xt,m).

Map matching has a number of nice properties: just like the likelihood field model, it is
easy to compute, though it does not yield smooth probabilities in the pose parameter
xt. One way to approximate the likelihood field (and to obtain smoothness) is to
convolve the map m with a Gaussian smoothness kernel, and to run map matching on
this smoothed map.

A key advantage of map matching over likelihood fields is that it explicitly considers
the free-space in the scoring of two maps; the likelihood field technique only considers
the end point of the scans, which by definition correspond to occupied space (or noise).
On the other hand, many mapping techniques build local maps beyond the reach of the
sensors. For example, many techniques build circular maps around the robot, setting
to 0.5 areas beyond the range of actual sensor measurements. In such cases, there is
a danger that the result of map matching incorporates areas beyond the actual mea-
surement range, as if the sensor can “see through walls.” Such side-effects are found
in a number of implemented map matching techniques. A further disadvantage is that
map matching does not possess a plausible physical explanation. Correlations are the
normalized quadratic distance between maps, which is not the noise characteristic of
range sensors.

6.6 FEATURE-BASED SENSOR MODELS

6.6.1 Feature Extraction

The sensor models discussed thus far are all based on raw sensor measurements. An
alternative approach is to extract features from the measurements. If we denote the
feature extractor as a function f , the features extracted from a range measurement are
given by f(zt). Most feature extractors extract a small number of features from high-
dimensional sensor measurements. A key advantage of this approach is the enormous
reduction of computational complexity: While inference in the high-dimensional mea-
surement space can be costly, inference in the low-dimensional feature space can be
orders of magnitude more efficient.

The discussion of specific algorithms for feature extraction is beyond the scope of
this book. The literature offers a wide range of features for a number of different
sensors. For range sensors, it is common to identify lines, corners, or local minima

148 Chapter 6

in range scans, which correspond to walls, corners, or objects such as tree trunks.
When cameras are used for navigation, the processing of camera images falls into the
realm of computer vision. Computer vision has devised a myriad of feature extraction
techniques from camera images. Popular features include edges, distinct patterns,
and objects of distinct appearance. In robotics, it is also common to define places as
features, such as hallways and intersections.

6.6.2 Landmark Measurements

In many robotics applications, features correspond to distinct objects in the physical
world. For example, in indoor environments features may be door posts or window
stills; outdoors they may correspond to tree trunks or corners of buildings. In robotics,
it is common to call those physical objects landmarks, to indicate that they are being
used for robot navigation.

The most common model for processing landmarks assumes that the sensor can mea-
sure the range and the bearing of the landmark relative to the robot’s local coordinate
frame. This is not an implausible assumption: Any local feature extracted from range
scans come with range and bearing information, as do visual features detected by
stereo vision. In addition, the feature extractor may generate a signature. In this book,
we assume a signature is a numerical value (e.g., an average color); it may equally be
an integer that characterizes the type of the observed landmark, or a multi-dimensional
vector characterizing a landmark (e.g., height and color).

If we denote the range by r, the bearing by φ, and the signature by s, the feature vector
is given by a collection of triplets

f(zt) = {f1
t , f

2
t , . . .} = {

r1t
φ1

t

s1t

 ,

r2t
φ1

t

s2t

 , . . .} (6.39)

The number of features identified at each time step is variable. However, many prob-
abilistic robotic algorithms assume conditional independence between features, that
is,

p(f(zt) | xt,m) =
∏

i

p(ri
t, φ

i
t, s

i
t | xt,m) (6.40)

Measurements 149

Conditional independence applies if the noise in each individual measurement
(ri

t φi
t si

t)
T is independent of the noise in other measurements (rj

t φj
t sj

t)
T (for

i 6= j). Under the conditional independence assumption, we can process one feature
at-a-time, just as we did in several of our range measurement models. This makes it
much easier to develop algorithms that implement probabilistic measurement models.

Let us now devise a sensor model for features. In the beginning of this chapter, we dis-
tinguished between two types of maps: feature-based and location-based. Landmark
measurement models are usually defined only for feature-based maps. The reader may
recall that those maps consist of list of features,m = {m1,m2, . . .}. Each feature may
possess a signature and a location coordinate The location of a feature, denoted mi,x

and mi,y , is simply its coordinate in the global coordinate frame of the map.

The measurement vector for a noise-free landmark sensor is easily specified by the
standard geometric laws. We will model noise in landmark perception by independent
Gaussian noise on the range, bearing, an the signature. The resulting measurement
model is formulated for the case where the i-th feature at time t corresponds to the
j-th landmark in the map. As usual, the robot pose is given by xt = (x y θ)T .

ri
t

φi
t

si
t

 =

√

(mj,x − x)2 + (mj,y − y)2
atan2(mj,y − y,mj,x − x)− θ

sj

+

εσ2
r

εσ2
φ

εσ2
s

(6.41)

Here εσ2
r
, εσ2

φ
, and εσ2

s
are zero-mean Gaussian error variables with variances σ2

r , σ2
φ,

and σ2
s , respectively.

6.6.3 Sensor Model With Known

Correspondence

To implement this measurement model, we need to define a variable that establishes
correspondence between the feature f i

t and the landmarkmj in the map. This variable
will be denoted by cit with cit ∈ {1, . . . , N + 1}; N is the number of landmarks in the
map m. If cit = j ≤ N , then the i-th feature observed at time t corresponds to the
j-th landmark in the map. In other words, cit is the true identity of an observed feature.
The only exception occurs with cit = N + 1: Here a feature observation does not
correspond to any feature in the map m. This case is important for handling spurious

150 Chapter 6

1: Algorithm landmark model known correspondence(f i
t , c

i
t, xt,m):

2: j = cit

3: r̂ =
√

(mj,x − x)2 + (mj,y − y)2
4: φ̂ = atan2(mj,y − y,mj,x − x)
5: q = prob(ri

t − r̂, σ2
r) · prob(φi

t − φ̂, σ2
φ) · prob(si

t − sj , σ
2
s)

6: return q

Table 6.4 Algorithm for computing the likelihood of a landmark measurement. The al-
gorithm requires as input an observed feature f i

t = (ri
t φi

t si
t)

T , and the true identity of
the feature ci

t, the robot pose xt = (x y θ)T , and the map m. It’s output is the numerical
probability p(f i

t | ci
t, m, xt).

landmarks; it is also of great relevance for the topic of robotic mapping, in which the
robot regularly encounters previously unobserved landmarks.

Table 6.4 depicts the algorithm for calculating the probability of a feature f i
t with

known correspondence cit ≤ N . Lines 3 and 4 calculate the true range and bearing to
the landmark. The probability of the measured ranges and bearing is then calculated
in Line 5, assuming independence in the noise. As the reader easily verifies, this
algorithm implements Equation (6.41).

6.6.4 Sampling Poses

Sometimes it is desirable to sample robot poses xt that correspond to a measurement
f i

t with feature identity cit. We already encountered such sampling algorithms in the
previous chapter, where we discussed robot motion models. Such sampling models
are also desirable for sensor models. For example, when localizing a robot globally, it
shall become useful to generate sample poses that incorporate a sensor measurement
to generate initial guesses for the robot pose.

While in the general case, sampling poses xt that correspond to a sensor measurement
zt is difficult, for our landmark model we can actually provide an efficient sampling
algorithm. However, such sampling is only possible under further assumptions. In
particular, we have to know the prior p(xt | cit,m). For simplicity, let us assume this

Measurements 151

1: Algorithm sample landmark model known correspondence(f i
t , c

i
t,m):

2: j = cit
3: γ̂ = rand(0, 2π)

4: r̂ = ri
t + sample(σ2

r)

5: φ̂ = φi
t + sample(σ2

φ)

6: x = mj,x + r̂ cos γ̂

7: y = mj,y + r̂ sin γ̂

8: θ = γ̂ − π − φ̂
9: return (x y θ)T

Table 6.5 Algorithm for sampling poses from a landmark measurement f i
t =

(ri
t φi

t si
t)

T with known identity ci
t.

prior is uniform (it generally is not!). Bayes rule then suggests that

p(xt | f i
t , c

i
t,m) = η p(f i

t | cit, xt,m) p(xt | cit,m)

= η p(f i
t | cit, xt,m) (6.42)

Sampling from p(xt | f i
t , c

i
t,m) can now be achieved from the “inverse” of the sen-

sor model p(f i
t | cit, xt,m). Table 6.5 depicts an algorithm that samples poses xt.

The algorithm is tricky: Even in the noise-free case, a landmark observation does not
uniquely determine the location of the robot. Instead, the robot may be on a circle
around the landmark, whose diameter is the range to the landmark. The indetermi-
nacy of the robot pose also follows from the fact that the range and bearing provide
two constraints in a three-dimensional space of robot poses.

To implement a pose sampler, we have to sample the remaining free parameter, which
determines where on the circle around the landmark the robot is located. This parame-
ter is called γ̂ in Table 6.5, and is chosen at random in Line 3. Lines 4 and 5 perturb the
measured range and bearing, exploiting the fact that the mean and the measurement
are treated symmetrically in Gaussians. Finally, Lines 6 through 8 recover the pose
that corresponds to γ̂, r̂, and φ̂.

Figure 6.12 illustrates the pose distribution p(xt | f i
t , c

i
t,m) (left diagram) and also

shows a sample

152 Chapter 6

Figure 6.12 Landmark detection model: (a) Posterior distribution of the robot’s pose
given that it detected a landmark in 5m distance and 30deg relative bearing (projected onto
2D). (b) Sample robot poses generated from such a detection. The lines indicate the orien-
tation of the poses.

drawn with our algorithm sample landmark model known correspondence (right
diagram). The posterior is projected into x-y-space, where it becomes a ring around
the measured range ri

t. In 3-D pose space, it is a spiral that unfolds the ring with the
angle θ.

6.6.5 Further Considerations

Both of our algorithms for landmark-based measurements assume known correspon-
dence. The case of unknown correspondence will be discussed in detail below, when
we address algorithms for localization and mapping under unknown correspondence.

We also introduced a signature value for landmarks. Most published algorithms do not
make the use of apearance features explicit. When the signature is not provided, all
landmarks look equal, and the data association problem of estimating the correspon-
dence variables is even harder. We have included the signature in our model because
it is a valuable source of information that can often be easily extracted form the sensor
measurements.

As noted above, the main motivation for using features instead of the full measurement
vector is computational in nature: It is much easier to manage a few hundred features
than a few billion range measurements. Our model presented here is extremely crude,

Measurements 153

and it clearly does not capture the physical laws that underly the feature formation
process. Nevertheless, the model tends to work well in a great number of applications.

It is important to notice that the reduction of measurements into features comes at a
price. In the robotics literature, features are often (mis-)taken for a sufficient statistic
of the measurement vector zt, that is

p(f(zt) | xt,m) ≈ p(zt | xt,m) (6.43)

In practice, however, a lot of information is sacrificed by using features instead of the
full measurement vector. This lost information makes certain problems more difficult,
such as the data association problem of determining whether or not the robot just re-
visited a previously explored location. It is easy to understand the effects of feature
extraction by introspection: When you open your eyes, the visual image of your envi-
ronment is probably sufficient to tell you unambiguously where you are—even if you
were globally uncertain before. If, on the other hand, you only sense certain features,
such as the relative location of door posts and window stills, you would probably be
much less certain as to where you are. Quite likely the information may be insufficient
for global localization.

With the advent of fast computers, features have gradually lost importance in the field
of robotics. Especially when using range sensors, most state-of-the-art algorithms rely
on dense measurement vectors, and they use dense location-based maps to represent
the environment. Nevertheless, features are of great importance. They enable us to
introduce the basic concepts in probabilistic robotics, and with proper treatement of
problems such as the correspondence problem they can be brought to bear even in
cases where maps are cmposes of dense sets of scan points. For this reason, a num-
ber of algorithms in this book are first described for feature representations, and then
extended into algorithms using raw sensor measurements.

6.7 PRACTICAL CONSIDERATIONS

This section surveyed a range of measurement models. We placed a strong emphasis
on models for range finders, due to their great importance in robotics. However, the
models discussed here are only representatives of a much broader class of probabilistic
models. In choosing the right model, it is important to trade off physical realism with
properties that might be desirable for an algorithm using these models. For example,
we noted that a physically realistic model of range sensors may yield probabilities
that are not smooth in the alleged robot pose—which in turn causes problems for

154 Chapter 6

algorithms such as particle filters. Physical realism is therefore not the only criterion
in choosing the right sensor model; an equally important criterion is the goodness of a
model for the algorithm that utilizes it.

As a general rule of thumb, the more accurate a model, the better. In particular, the
more information we can extract from a sensor measurement, the better. Feature-based
models extract relatively little information, by virtue of the fact that feature extractors
project high-dimensional sensor measurements into lower dimensional space. As a
result, feature-based methods tend to produce inferior results. This disadvantage is
offset by superior computational properties of feature-based representations.

When adjusting the intrinsic parameters of a measurement model, it is often useful
to artificially inflate the uncertainty. This is because of a key limitation of the prob-
abilistic approach: To make probabilistic techniques computationally tractable, we
have to ignore dependencies that exist in the physical world, along with a myriad of
latent variables that cause these dependencies. When such dependencies are not mod-
eled, algorithms that integrate evidence from multiple measurements quickly become
overconfident. Such overconfidence can ultimately lead to wrong conclusions, which
negatively affects the results. In practice, it is therefore a good rule of thumb to reduce
the information conveyed by a sensor. Doing so by projecting the measurement into
a low-dimensional feature space is one way of achieving this. However, it suffers the
limitations mentioned above. Uniformly decaying the information by exponentiating a
measurement model with a parameter α, as discussed in Section 6.3.4, is a much better
way, in that it does not introduce additional variance in the outcome of a probabilistic
algorithm.

6.8 SUMMARY

This section described probabilistic measurement models.

Starting with models for range finders—and lasers in particular—we also dis-
cussed measurement models p(zk

t | xt,m). The first such model used ray casting
to determine the shape of p(zk

t | xt,m) for particular maps m and poses xt. We
devised a mixture model that addressed the various types of noise that can affect
range measurements.

We devised a maximum likelihood technique for identifying the intrinsic noise
parameters of the measurement model. Since the measurement model is a mix-
ture model, we provided an iterative procedure for maximum likelihood estima-
tion. Our approach was an instance of the expectation maximization algorithm,

Measurements 155

which alternates a phase that calculates expectations over the type of error un-
derlying a measurement, with a maximization phase that finds in closed form the
best set of intrinsic parameters relative to these expectations.

An alternative measurement model for range finders is based on likelihood fields.
This technique used the nearest distance in 2-D coordinates to model the prob-
ability p(zk

t | xt,m). We noted that this approach tends to yield smoother dis-
tributions p(zk

t | xt,m). This comes at the expense of undesired side effects:
The likelihood field technique ignores information pertaining to free-space, and
it fails to consider occlusions in the interpretation of range measurements.

A third measurement model is based on map matching. Map matching maps
sensor scans into local maps, and correlates those maps with global maps. This
approach lacks a physical motivation, but can be implemented very efficiently.

We discussed how pre-computation can reduce the computational burden at run-
time. In the beam-based measurement model, the pre-computation takes place in
3-D; the likelihood field requires only a 2-D pre-computation.

We presented a feature-based sensor model, in which the robot extracts the range,
bearing, and signature of nearby landmarks. Feature-based techniques extract
from the raw sensor measurement distinct features. In doing so, they reduce the
dimensionality of the sensor measurement by several orders of magnitude.

At the end of the chapter, a discussion on practical issues pointed out some of the
pitfalls that may arise in concrete implementations.

156 Chapter 6

7
MOBILE ROBOT LOCALIZATION

7.1 INTRODUCTION

This chapter presents a number of probabilistic algorithms for mobile robot local-
ization. Mobile robot localization is the problem of determining the pose of a robot
relative to a given map of the environment. It is often called position estimation or
position tracking. Mobile robot localization is an instance of the general localiza-
tion problem, which is the most basic perceptual problem in robotics. This is because
nearly all robotics tasks require knowledge of the location of the robots and the objects
that are being manipulated (although not necessarily within a global map).

Localization can be seen as a problem of coordinate transformation. Maps are de-
scribed in a global coordinate system, which is independent of a robot’s pose. Lo-
calization is the process of establishing correspondence between the map coordinate
system and the robot’s local coordinate system. Knowing this coordinate transforma-
tion enables the robot to express the location of objects of interests within its own
coordinate frame—a necessary prerequisite for robot navigation. As the reader easily
verifies, knowing the pose xt = (x y θ)T of the robot is sufficient to determine this
coordinate transformation, assuming that the pose is expressed in the same coordinate
frame as the map.

Unfortunately—and herein lies the problem of mobile robot localization—the pose
can usually not be sensed directly. Put differently, most robots do not possess a (noise-
free!) sensor for measuring pose. The pose has therefore to be inferred from data. A
key difficulty arises from the fact that a single sensor measurement is usually insuf-
ficient to determine the pose. Instead, the robot has to integrate data over time to
determine its pose. To see why this is necessary, just picture a robot located inside a

157

158 Chapter 7

Figure 7.1 Example maps used for robot localization: a 2D metric layout, a graph-like
topological map, and an image mosaic of a ceiling

building where many corridors look alike. Here a single sensor measurement (e.g., a
range scan) is usually insufficient to disambiguate the identity of the corridor.

Localization has been applied in conjunction with a broad set of map representations.
We already discussed two types of maps in the previous chapter: feature-based and
location-based. An example of the latter were occupancy grid maps, which were in-
formally discussed and are subject to a later chapter in this book. Instances of such
maps are shown in Figure 7.1. This figure shows a hand-drawn metric 2-D map, a
graph-like topological map, and an image mosaic of a ceiling (which can also be used
as a map). The space of map representations used in today’s research is huge. A
number of later chapters will investigate specific map types and discuss algorithms for
acquiring maps from data. Localization assumes that an accurate map is available.

In this and the subsequent chapter, we will present some basic probabilistic algorithms
for mobile localization. All of these algorithms are variants of the basic Bayes filter
described in Chapter 2. We will discuss the advantages and shortcomings of each
representation and associated algorithm. The chapter also goes through a series of ex-
tensions that address different localization problems, as defined through the following
taxonomy of robot localization problems.

7.2 A TAXONOMY OF LOCALIZATION

PROBLEMS

Not every localization problem is equally hard. To understand the difficulty of a local-
ization problem, we will now discuss a brief taxonomy of localization problems. This
taxonomy will divide localization problems along a number of important dimensions

Mobile Robot Localization 159

pertaining to the nature of the environment and the initial knowledge that a robot may
possess relative to the localization problem.

Local Versus Global Localization

Localization problems are characterized by the type of knowledge that is available
initially and at run-time. We distinguish three types of localization problems with an
increasing degree of difficulty.

Position tracking. Position tracking assumes that the initial robot pose is known.
Localizing the robot can be achieved by accommodating the noise in robot mo-
tion. The effect of such noise is usually small. Hence, methods for position
tracking often rely on the assumption that the pose error is small. The pose un-
certainty is often approximated by a unimodal distribution (e.g., a Gaussian). The
position tracking problem is a local problem, since the uncertainty is local and
confined to region near the robot’s true pose.

Global localization. Here the initial pose of the robot is unknown. The robot is
initially placed somewhere in its environment, but it lacks knowledge of where
it is. Approaches to global localization cannot assume boundedness of the pose
error. As we shall see later in this chapter, unimodal probability distributions are
usually inappropriate. Global localization is more difficult than position tracking;
in fact, it subsumes the position tracking problem.

Kidnapped robot problem. This problem is a variant of the global localization
problem, but one that is even more difficult. During operation, the robot can get
kidnapped and teleported to some other location. The kidnapped robot problem
is more difficult than the global localization problem, in that the robot might
believe it knows where it is while it does not. In global localization, there robots
knows that it doesn’t know where it is. One might argue that robots are rarely
kidnapped in practice. The practical importance of this problem, however, arises
from the observation that most state-of-the-art localization algorithms cannot be
guaranteed never to fail. The ability to recover from failures is essential for truly
autonomous robots. Testing a localization algorithm by kidnapping it measures
its ability to recover from global localization failures.

Static Versus Dynamic Environments

A second dimension that has a substantial impact on the difficulty of localization is
the environment. Environments can be static or dynamic.

160 Chapter 7

Static environments. Static environments are environments where the only vari-
able quantity (state) is the robot’s pose. Put differently, only the robot moves in
static environment. All other objects in the environments remain at the same lo-
cation forever. Static environments have some nice mathematical properties that
make them amenable to efficient probabilistic estimation.

Dynamic environments. Dynamic environments possess objects other than the
robot whose location or configuration changes over time. Of particular interest
are changes that persist over time, and that impact more than a single sensor
reading. Changes that are not measurable are of course of no relevance to local-
ization, and those that affect only a single measurement are best treated as noise
(cf. Chapter 2.4.4). Examples of more persistent changes are: people, daylight
(for robots equipped with cameras), movable furniture, or doors. Clearly, most
real environment are dynamic, with state changes occurring at a range of different
speeds.

Obviously, localization in dynamic environments is more difficult than localization in
static ones. There are two principal approaches for accommodating dynamics: First,
dynamic entities might be included in the state vector. As a result, the Markov as-
sumption might now be justified, but such an approach carries the burden of additional
computational and modeling complexity; in fact, the resulting algorithm becomes ef-
fectively a mapping algorithm. Second, in certain situations sensor data can be filtered
so as to eliminate the damaging effect of unmodeled dynamics. Such an approach will
be described further below in Section 8.4.

Passive Versus Active Approaches

A third dimension that characterizes different localization problems pertains to the
fact whether or not the localization algorithm controls the motion of the robot. We
distinguish two cases:

Passive localization. In passive approaches, the localization module only ob-
serves the robot operating. The robot is controlled through some other means,
and the robot’s motion is not aimed at facilitating localization. For example, the
robot might move randomly or perform its everyday’s tasks.

Active localization. Active localization algorithms control the robot so as to
minimize the localization error and/or the costs arising from moving a poorly
localized robot into a hazardous place.

Mobile Robot Localization 161

local maxima

Figure 7.2 Example situation that shows a typical belief state during global localization in
a locally symmetric environment. The robot has to move into one of the rooms to determine
its location.

Active approaches to localization typically yield better localization results than passive
ones. We already discussed an examples in the introduction to this book: coastal
navigation. A second example situation is shown in Figure 7.2. Here the robot is
located in a symmetric corridor, and its belief after navigating the corridor for a while
is centered at two (symmetric) poses. The local symmetry of the environment makes
it impossible to localize the robot while in the corridor. Only if it moves into a room
will it be able to eliminate the ambiguity and to determine its pose. It is situations like
these where active localization gives much better results: Instead of merely waiting
until the robot incidentally moves into a room, active localization can recognize the
impasse and send it there directly.

However, a key limitation of active approaches is that they require control over the
robot. Thus, in practice, an active localization technique alone tends to be insuffi-
cient: The robot has to be able to localize itself even when carrying out some other
task than localization. Some active localization techniques are built on top of a pas-
sive technique. Others combine tasks performance goals with localization goals when
controlling a robot.

162 Chapter 7

This chapter exclusively considers passive localization algorithms. We will return
to the issue of active localization in Chapter ?? of this book, where we will present
probabilistic algorithms for robot control.

Single-Robot Versus Multi-Robot

A fourth dimension of the localization problem is related to the number of robots
involved.

Single-robot localization. The most commonly studied approach to localization
deals with a single robot only. Single robot localization offers the convenience
that all data is collected at a single robot platform, and there is no communication
issue.

Multi-robot localization. The localization problem naturally arises to teams of
robots. At first glance, each robot could localize itself individually, hence the
multi-robot localization problem can be solved through single-robot localization.
If robots are able to detect each other, however, there is the opportunity to do
better. This is because one robot’s belief can be used to bias another robot’s belief
if knowledge of the relative location of both robots is available. The issue of
multi-robot localization raises interesting, non-trivial issues on the representation
of beliefs and the nature of the communication between them.

These four dimensions capture the four most important characteristics of the mobile
robot localization problem. There exist a number of other characterizations that impact
the hardness of the problem, such as the information provided by robot measurements
and the information lost through motion. Also, symmetric environments are more
difficult than asymmetric ones, due to the higher degree of ambiguity. We will now
look at specific algorithms and discuss their applicability to the different localization
problems as defined thus far.

7.3 MARKOV LOCALIZATION

Probabilistic localization algorithms are variants of the Bayes filter. The straightfor-
ward application of Bayes filters to the localization problem is called Markov lo-
calization. Table 7.1 depicts the basic algorithm. This algorithm is derived from
the algorithm Bayes filter (Table 2.1 on page 24). Notice that Markov localization
also requires a map m as input. The map plays a role in the measurement model
p(zt | xt,m) (Line 4). It often, but not always, is incorporated in the motion model

Mobile Robot Localization 163

1: Algorithm Markov localization(bel(xt−1), ut, zt,m):

2: for all xt do

3: bel(xt) =
∫
p(xt | ut, xt−1,m) bel(xt−1) dx

4: bel(xt) = η p(zt | xt,m) bel(xt)

5: endfor

6: return bel(xt)

Table 7.1 Markov localization.

p(xt | ut, xt−1,m) as well (Line 3). Just like the Bayes filter, Markov localization
transforms a probabilistic belief at time t− 1 into a belief at time t. Markov localiza-
tion addresses the global localization problem, the position tracking problem, and the
kidnapped robot problem in static environments.

The initial belief, bel(x0), reflects the initial knowledge of the robot’s pose. It is set
differently depending on the type of localization problem.

Position tracking. If the initial pose is known, bel(x0) is initialized by a point-
mass distribution. Let x̄0 denote the (known) initial pose. Then

bel(x0) =

{
1 if x0 = x̄0

0 otherwise
(7.1)

Point-mass distributions are discrete and therefore do not possess a density.

In practice the initial pose is often just known in approximation. The belief
bel(x0) is then usually initialized by a narrow Gaussian distribution centered
around x̄0. Gaussians were defined in Equation (2.4) on page 11.

bel(x0) = det (2πΣ)
− 1

2 exp
{
− 1

2 (x0 − x̄0)
T Σ−1(x0 − x̄0)

}

∼ N (x0; x̄0,Σ) (7.2)

Σ is the covariance of the initial pose uncertainty.

Global localization. If the initial pose is unknown, bel(x0) is initialized by a
uniform distribution over the space of all legal poses in the map:

bel(x0) =
1

|X| (7.3)

164 Chapter 7

���
���
���

���
���
���

Figure 7.3 Example environment used to illustrate mobile robot localization: One-
dimensional hallway environment with three indistinguishable doors. Initially the robot
does not know its location except for its heading direction. Its goal is to find out where it is.

where |X| stands for the volume (Lebesgue measure) of the space of all poses
within the map.

Other. Partial knowledge of the robot’s position can usually easily be trans-
formed into an appropriate initial distribution. For example, if the robot is known
to start next to a door, one might initialize bel(x0) using a density that is zero ex-
cept for places near doors, where it may be uniform. If it is known to be located
in a specific corridor, one might initialize bel(x0) by a uniform distribution in the
area of the corridor and zero anywhere else.

7.4 ILLUSTRATION OF MARKOV

LOCALIZATION

We have already discussed Markov localization in the introduction to this book, as
a motivating example for probabilistic robotics. Now we can back up this example
using a concrete mathematical framework. Figure 7.3 depicts our one-dimensional
hallway with three identically looking doors. The initial belief bel(x0) is uniform over
all poses, as illustrated by the uniform density in Figure 7.4a. As the robot queries its
sensors and notices that it is adjacent to one of the doors, it multiplies its belief bel(x0)
by p(zt | xt,m), as stated in Line 4 of our algorithm. The upper density in Figure 7.4b
visualizes p(zt | xt,m) for the hallway example. The lower density is the result of
multiplying this density into the robot’s uniform prior belief. Again, the resulting
belief is multi-modal, reflecting the residual uncertainty of the robot at this point.

As the robot moves to the right, indicated in Figure 7.4c, Line 3 of the Markov lo-
cations algorithm convolves its belief with the motion model p(xt | ut, xt−1). The
motion model p(xt | ut, xt−1) is not focused on a single pose but on a whole con-
tinuum of poses centered around the expected outcome of a noise-free motion. The
effect is visualized in Figure 7.4c, which shows a shifted belief that is also flattened
out, as a result of the convolution.

Mobile Robot Localization 165

���
���
���
���

���
���
���
���

x

bel(x)

(a)

���
���
���

���
���
���

x

bel(x)

x

p(z|x)

(b)

���
���
���
���

���
���
���
���

x

bel(x)

(c)

���
���
���

���
���
���

x

bel(x)

x

p(z|x)

(d)

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

x

bel(x)

(e)

Figure 7.4 Illustration of the Markov localization algorithm. Each picture depicts the
position of the robot in the hallway and its current belief bel(x). (b) and (d) additionally
depict the observation model p(zt | xt), which describes the probability of observing a
door at the different locations in the hallway.

166 Chapter 7

The final measurement is illustrated in Figure 7.4d. Here the Markov localization
algorithm multiplies the current belief with the perceptual probability p(zt | xt). At
this point, most of the probability mass is focused on the correct pose, and the robot is
quite confident of having localized itself. Figure 7.4e illustrates the robot’s belief after
having moved further down the hallway.

We already noted that Markov localization is independent of the underlying represen-
tation of the state space. In fact, Markov localization can be implemented using any
of the representations discussed in Chapter 2. We will now consider three different
representations and devise practical algorithms that can localize mobile robots in real
time. We begin with Kalman filters, which represent beliefs by their first and second
moment. We then continue with discrete, grid representations and finally introduce
algorithms using particle filters.

7.5 EKF LOCALIZATION

The extended Kalman filter localization algorithm, or EKF localization, is a special
case of Markov localization. EKF localization represent beliefs bel(xt) by their their
first and second moment, that is, the mean µt and the covariance Σt. The basic EKF
algorithm was stated in Table 3.3 in Chapter 3.3. EKF localization shall be our first
concrete implementation of an EKF in the context of an actual robotics problem.

Our EKF localization algorithm assumes that the map is represented by a collection
of features. Thus, at any point in time t, the robot gets to observe a vector of ranges
and bearings to nearby features: zt = {z1

t , z
2
t , . . .}. We begin with a localization

algorithm in which all features are uniquely identifiable. The existence of uniquely
identifiable features may not be a bad assumption: For example, the Eiffel Tour in
Paris is a landmark that is rarely confused with other landmarks, and it is widely visible
throughout Paris. The identity of a feature is expressed by set of correspondence
variables, denoted cit, one for each feature vector zi

t . Correspondence variables were
already discussed in Chapter 6.6. In our first algorithm, the correspondence is assumed
to be known. We then progress to a more general version which allows for ambiguity
among features. Instead of the correspondence, the robot observes a feature signature,
si

t. The second, more general version applied a maximum likelihood estimator to
estimate the value of the latent correspondence variable, and uses the result of this
estimation as ground truth.

Mobile Robot Localization 167

���
���
���

���
���
���

x

bel(x)

1 2 3
(a)

���
���
���

���
���
���

x

bel(x)

1 2 3
(b)

���
���
���
���

���
���
���
���

x

bel(x)

x

p(z|x)

1 2 3
(c)

���
���
���
���

���
���
���
���

x

bel(x)

1 2 3
(d)

Figure 7.5 Application of the Kalman filter algorithm to mobile robot localization. All
densities are represented by uni-modal Gaussians.

7.5.1 Illustration

Figure 7.5 illustrates the EKF localization algorithm using our example of mobile
robot localization in the one-dimensional corridor environment (cf. Figure 7.3). To
accommodate the unimodal shape of the belief in EKFs, we make two convenient
assumptions: First, we assume that the correspondences are known: we will attach
unique labels to each door (1, 2, and 3), and we will denote the measurement model
by p(zt | xt, ct) where ct ∈ {1, 2, 3} is the identity of the door observed at time

168 Chapter 7

t. Second, we assume that the initial pose is relatively well known. A typical initial
belief is represented by the Gaussian distribution shown in Figure 7.5a, centered on
the area near Door 1 and with a Gaussian uncertainty as indicated in that figure. As
the robot moves to the right, its belief is convolved with the Gaussian motion model.
The resulting belief is a shifted Gaussian of increased width, as shown in Figure 7.5b.

Now suppose the robot detects that it is in front of door ct = 2. The upper density in
Figure 7.5c visualizes p(zt | xt,m, ct) for this observation—again a Gaussian. Fold-
ing this measurement probability into the robot’s belief yields the posterior shown in
Figure 7.5c. Note that the variance of the resulting belief is smaller than the variances
of both the robot’s previous belief and the observation density. This is natural, since
integrating two independent estimates should make the robot more certain than each
estimate in isolation. After moving down the hallway, the robot’s uncertainty in its
position increases again, since the EKF continues to incorporate motion uncertainty
into the robot’s belief. Figure 7.5d shows one of these beliefs. This example illustrates
the EKF in our limited setting.

7.5.2 The EKF Localization Algorithm

The discussion thus far has been fairly abstract: We have silently assumed the avail-
ability of an appropriate motion and measurement model, and have left unspecified
a number of key variables in the EKF update. We will now discuss a concrete im-
plementation of the EKF, for feature-based maps. Our feature-based maps consist
of point landmarks, as already discussed in Chapter 6.2. For such point landmarks,
we will use the common measurement model discussed in Chapter 6.6. We will also
adopt the velocity motion model defined in Chapter 5.3. The reader may take a mo-
ment to briefly reacquire the basic measurement and motion equations discussed in
these chapters before reading on.

Table 7.2 describes EKF localization known correspondences, the EKF algorithm
for localization with known correspondences. This algorithm is derived from the EKF
in Table 3.3 in Chapter 3. It requires as its input a Gaussian estimate of the robot pose
at time t − 1, with mean µt−1 and covariance Σt−1. Further, it requires a control
ut, a map m, and a set of features zt = {z1

t , z
2
t , . . .} measured at time t, along with

the correspondence variables ct = {c1t , c2t , . . .}. It output is a new, revised estimate
µt,Σt.

The individual calculations in this algorithm will be explained further below. Lines
2 through 4 implement the familiar motion update, using a linearized motion model.
The predicted pose after motion is calculated as µ̄t in Line 2, and Line 4 computes the

Mobile Robot Localization 169

1: Algorithm EKF localization known correspondences(µt−1,Σt−1, ut, zt, ct,m):

2: µ̄t = µt−1 +

− vt

ωt
sinµt−1,θ + vt

ωt
sin(µt−1,θ + ωt∆t)

vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

ωt∆t

3: Gt =

1 0 vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

0 1 vt

ωt
sinµt−1,θ − vt

ωt
sin(µt−1,θ + ωt∆t)

0 0 1

4: Σ̄t = Gt Σt−1 G
T
t +Rt

5: Qt =

σr 0 0
0 σφ 0
0 0 σs

6: for all observed features zi
t = (ri

t φ
i
t s

i
t)

T do

7: j = cit

8: δ =

(
δx
δy

)

=

(
mj,x − µ̄t,x

mj,y − µ̄t,y

)

9: q = δT δ

10: ẑi
t =

√
q

atan2(δy, δx)− µ̄t,θ

mj,s

11: Hi
t = 1

q

√
qδx −√qδy 0
δy δx −1
0 0 0

12: Ki
t = Σ̄t H

i,T
t (Hi

t Σ̄t H
i,T
t +Qt)

−1

13: endfor

14: µt = µ̄t +
∑

iK
i
t(z

i
t − ẑi

t)

15: Σt = (I −∑iK
i
t H

i
t) Σ̄t

16: return µt,Σt

Table 7.2 The extended Kalman filter (EKF) localization algorithm, formulated here for
a feature-based map and a robot equipped with sensors for measuring range and bearing.
This version assumes knowledge of the exact correspondences.

170 Chapter 7

Figure 7.6 Example of localization using the extended Kalman filter. The robot moves
on a straight line. As it progresses, its uncertainty increases gradually, as illustrated by the
error ellipses. When it observes a landmark with known position, the uncertainty is reduced.

corresponding uncertainty ellipse. Lines 5 to 15 implement the measurement update.
The core of this update is a loop through all possible features i observed at time t.
In Line 7, the algorithm assigns to j the correspondence of the i-th feature in the
measurement vector. It then calculates a predicted measurement ẑi

t and the Jacobian
Hi

t of the measurement model. The Kalman gain K i
t is then calculated in Line 12 for

each observed feature. The sum of all updates is then applied to obtain the new pose
estimate, as stated in Lines 14 and 15. Notice that the last row ofH i

t is all zero. This is
because the signature does not depend on the robot pose. The effect of this degeneracy
is that the observed signature si

t has no effect on the result of the EKF update. This
should come at no surprise: knowledge of the correct correspondence zi

t renders the
observed signature entirely uninformative.

Figure 7.6 illustrates the EKF localization algorithm in a synthetic environment with
a single landmark. The robot starts out on the left and accrues uncertainty as it moves.
Upon seeing the landmark, its uncertainty is gradually reduced as indicated.

7.5.3 Mathematical Derivation

To understand the motion update, let us briefly restate the motion model that was
defined in Equation (5.13):

x′

y′

θ′

 =

x
y
θ

+

− vt

ωt
sin θ + vt

ωt
sin(θ + ωt∆t)

vt

ωt
cos θ − vt

ωt
cos(θ + ωt∆t)

ωt∆t+ γt∆t

 (7.4)

Mobile Robot Localization 171

Here xt = (x y θ)T and xt = (x′ y′ θ′)T are the state vectors at time t − 1 and t,
respectively. As before, the control is a vector of two independent velocities:

ut =

(
vt

ωt

)

, (7.5)

where vt is a translational velocity, and ωt is a rotational velocity, and ∆t is the time
window over which the robot motion is executed. The variable vt

ωt
in (7.4) stands for

the quotient vt

ωt
.

We already know from Chapter 3 that EKF localization maintains its local posterior
estimate of the state, represented by the mean µt−1 and covariance Σt−1. We also re-
call that the “trick” of the EKF lies in linearizing the motion and measurement model.
For that, we decompose the motion model into a noise-free part and a random noise
component with (approximately) zero mean.

x′

y′

θ′

︸ ︷︷ ︸

xt

=

x
y
θ

+

− vt

ωt
sin θ + vt

ωt
sin(θ + ωt∆t)

vt

ωt
cos θ − vt

ωt
cos(θ + ωt∆t)

ω∆t

︸ ︷︷ ︸

g(ut,xt−1)

+N (0, Rt)(7.6)

This is of the form (3.50) defined in Chapter 3. We recall from that chapter that EKF
linearization approximates g through a Taylor expansion:

g(ut, xt−1) ≈ g(ut, µt−1) + Gt (xt−1 − µt−1) (7.7)

The function g(ut, µt−1) is simply obtained by replacing the exact state xt−1—-which
we do not know—by our expectation µt−1—which we know. The Jacobian Gt is the
derivative of the function g with respect to µt−1, and evaluated at ut and µt−1:

Gt = g′(ut, µt−1) =

1 0 vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

0 1 vt

ωt
sinµt−1,θ − vt

ωt
sin(µt−1,θ + ωt∆t)

0 0 1

(7.8)

Here µt−1,θ denotes the third component of the mean vector µt−1, which is the esti-
mate of the rotation θt.

172 Chapter 7

The reader may have noticed that we silently ignored the fact that the amount of noise
in motion Σu depends on the magnitude of robot motion ut. When implementing EKF
localization, the covariance Rt is a function of the velocities vt and ωt and the mean
µt−1. This issue was already discussed in more depth in Chapter 5, and for the sake
of brevity we leave the design of an appropriate Σu to the reader as an exercise.

EKF localization also requires a linearized measurement model with additive Gaussian
noise, as discussed back in Chapter 3. The measurement model for our feature-based
maps shall be a variant of Equation (6.41) in Chapter 6.6 which presupposes knowl-
edge of the landmark identity via the correspondence variables. x Let us denote by j
the identity of the landmark that corresponds to the i-th component in the measurement
vector. Then we have

zi
t =

ri
t

φi
t

si
t

=

√

(mj,x − x)2 + (mj,y − y)2
atan2(mj,y − y,mj,x − x)− θ

mj,s

+

N (0, σr)
N (0, σφ)
N (0, σs)

 (7.9)

Here (mj,x mj,y)T are the coordinates of the landmark observed at time t, and mj,s

is its (correct) signature. The variables ri
t and φi

t denote the range and bearing to this
landmark, and si

t denotes the signature as perceived by the robot. the variances of the
measurement noise is given by σr, σφ, and σs, respectively. To bring this into a form
familiar from Chapter‘3, we rewrite this model as follows:

zi
t = h(xt, j,m) +N (0, Qt) (7.10)

with xt = (x y θ)T and

h(xt, j,m) =

√

(mj,x − x)2 + (mj,y − y)2
atan2(mj,y − y,mj,x − x)− θ

mj,s

 (7.11)

and

Qt =

σr 0 0
0 σφ 0
0 0 σs

 (7.12)

Mobile Robot Localization 173

The Taylor approximation follows now directly from Equation (3.52):

h(xt, j,m) ≈ h(µ̄t, j,m) + Hi
t (xt − µ̄t) (7.13)

Here Ht is the Jacobian of h at µ̄t, calculated for the i-the landmark and the map m.
This approximation substitutes the exact robot pose xt in h(xt, j,m) by the estimate
µ̄t = (µ̄t,x µ̄t,y µ̄t,θ)

T . The Jacobian of h is given by the following matrix

Ht
t = h′(µ̄t, j,m) =

∂ri
t

∂µ̄t,x

∂ri
t

∂µ̄t,y

∂ri
t

∂µ̄t,θ

∂φi
t

∂µ̄t,x

∂φi
t

∂µ̄t,y

∂φi
t

∂µ̄t,θ

∂si
t

∂µ̄t,x

∂si
t

∂µ̄t,y

∂si
t

∂µ̄t,θ

(7.14)

in which µ̄t = (µ̄t,x µ̄t,y µ̄t,θ)
T denotes the estimate µ̄t factored into its individual

three values. Calculating the desired derivatives from Equation (7.11) gives us the
following matrix:

Hi
t =

mj,x − µ̄t,x√
q

t

yt − µ̄t,y√
q

t

0

µ̄t,y − yt

qt

mj,x − µ̄t,x

qt
−1

0 0 0

(7.15)

with qt = (mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2, and j = cit if the landmark that corresponds
to the measurement zi

t . This linear approximation, plugged into the standard EKF
equations, leads to lines 7 through 11 in the EKF localization algorithm shown in
Table 7.2.

Finally, we note that our feature-based localizer processes multiple measurements at-
a-time, whereas the EKF discussed in Chapter 3.2 only processed a single sensor item.
Our algorithm relies on an implicit conditional independence assumption, which we
briefly discussed in Chapter 6.6, Equation (6.40). Essentially, we assume that all fea-
ture measurement probabilities are independent given the pose xt and the map m:

p(zt | xt,m) =
∏

i

p(zi
t | xt,m) (7.16)

174 Chapter 7

This is usually a good assumption, especially if the world is static. It enables us to
add the information from multiple features into our filter, as specified in lines 14 and
15 in Table 7.2. This slightly non-obvious addition in Table 7.2 stems from the fact
that multiple features are integrated via Bayes rule (which is a product). The addition
takes place in information space, in which probabilities are represented logarithmically
(c.f., Chapter 3.4). The logarithm of a product is a sum, hence the additive form of
this integration step.

7.6 ESTIMATING CORRESPONDENCES

7.6.1 EKF Localization with Unknown

Correspondences

The EKF localization discussed thus is only applicable when landmark correspon-
dences can be determined with absolute certainty. In practice, this is rarely the case.
Most implementations therefore determine the identity of the landmark during local-
ization. Throughout this book, we will encounter a number of strategies to cope with
the correspondence problem. The most simple of all is known as maximum likelihood
correspondence, in which one first determines the most likely value of the correspon-
dence variable, and then takes this value for granted.

Maximum likelihood techniques are brittle if there are many equally likely hypotheses
for the correspondence variable. However, one can often design the system for this to
be not the case. To reduce the danger of asserting a false data association, there ex-
ist essentially two techniques: First, select landmarks that are sufficiently unique and
sufficiently far apart from each other that confusing them with each other is unlikely.
Second, make sure that the robot’s pose uncertainty remains small. Unfortunately,
these two strategies are somewhat counter to each other, and finding the right granu-
larity of landmarks in the environment can be somewhat of an art.

Nevertheless, the maximum likelihood technique is of great practical importance. Ta-
ble 7.3 depicts the EKF localization algorithm with a maximum likelihood estimator
for the correspondence. The motion update in Lines 2 through 4 is identical to the one
in Table 7.2. The key difference is in the measurement update: Here we first calculate
for all landmarks k in the map a number of quantities that enables us to determine
the most likely correspondence (Lines 6 through 12). The correspondence variable
is then chosen in Line 14, by minimizing a quadratic Mahalanobis distance function
defined over the measured feature vector zi

t and the expected measurement ẑk
t , for any

Mobile Robot Localization 175

1: Algorithm EKF localization(µt−1,Σt−1, ut, zt,m):

2: µ̄t = µt−1 +

− vt

ωt
sinµt−1,θ + vt

ωt
sin(µt−1,θ + ωt∆t)

vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

ωt∆t

3: Gt =

1 0 vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

0 1 vt

ωt
sinµt−1,θ − vt

ωt
sin(µt−1,θ + ωt∆t)

0 0 1

4: Σ̄t = Gt Σt−1 G
T
t +Rt

5: Qt =

σr 0 0
0 σφ 0
0 0 σs

6: for all landmarks k in the map m do

7: δk =

(
δk,x

δk,y

)

=

(
mk,x − µ̄t,x

mk,y − µ̄t,y

)

8: qk = δT
k δk

9: ẑk
t =

√
qk

atan2(δk,y, δk,x)− µ̄t,θ

mk,s

10: Hk
t = 1

qk

√
q

k
δk,x −√q

k
δk,y 0

δk,y δk,x −1
0 0 0

11: Ψk = Hk
t Σ̄t [Hk

t]T +Qt

12: endfor
13: for all observed features zi

t = (ri
t φ

i
t s

i
t)

T do
14: j(i) = argmin

k

(zi
t − ẑk

t)T Ψ−1
k (zi

t − ẑk
t)

15: Ki
t = Σ̄t [H

j(i)
t]T Ψ−1

j(i)

16: endfor
17: µt = µ̄t +

∑

iK
i
t (zi

t − ẑj(i)
t)

18: Σt = (I −∑iK
i
t H

j(i)
t) Σ̄t

19: return µt,Σt

Table 7.3 The extended Kalman filter (EKF) localization algorithm with unknown corre-
spondences. The correspondences j(i) are estimated via a maximum likelihood estimator.

176 Chapter 7

possible landmark mk in the map. The covariance in this expression is composed of
the measurement uncertainty, calculated in Line 5, and the robot uncertainty projected
into the measurement space (Line 11). The final EKF update in Lines 17 and 18 only
incorporates the most likely correspondences.

The algorithm in Table 7.2 is inefficient. It can be improved through a more thoughtful
selection of landmarks in Lines 6 through 12. In most settings, the robot only sees a
small number of landmarks at a time in its immediate vicinity; and simple tests can
reject a large number of unlikely landmarks in the map.

Further, the algorithm can be modified to accommodate outliers. The standard ap-
proach is to only accept landmarks for which the Mahalanobis distance in Line 14,
or the associated probability, passes a threshold test. This is generally a good idea:
Gaussians fall of exponentially, and a single outlier can have a huge effect on the
pose estimate. In practice, thresholding adds an important layer of robustness to the
algorithm without which EKF localization tends to be brittle.

7.6.2 Mathematical Derivation

The maximum likelihood estimator determines the correspondence that maximizes the
data likelihood.

ĉt = argmax
ct

p(zt | c1:t,m, z1:t−1, u1:t) (7.17)

Here ct is the correspondence vector at time t. The vector zt = {z1
t , z

2
t , . . .} is the

measurement vector which contains the list of features zi
t observed at time t. As

before, each feature vector now contains three elements, the range, the bearing, and
the signature:

zi
t = (ri

t φ
i
t s

i
t)

T (7.18)

The argmax in (7.17) selects the correspondence vector ĉt that maximized the like-
lihood of the measurement. Note that this expression is conditioned on prior corre-
spondences c1,t−1. While those have been estimated in previous update steps, the
maximum likelihood approach treats those as if they are always correct. This has two
important ramifications: It makes it possible to update the filter incrementally. But it
also introduces brittleness in the filter, which tends to diverge when correspondence
estimates is erroneous.

Mobile Robot Localization 177

The likelihood p(zt | c1:t,m, z1:t−1, u1:t) in Equation (7.17) is now easily computed
from the belief bel(xt) by integrating over the pose xt, and omitting irrelevant condi-
tioning variables:

p(zt | c1:t,m, z1:t−1, u1:t)

=

∫

p(zt | c1:t, xt,m, z1:t−1, u1:t) p(xt | c1:t,m, z1:t−1, u1:t) dxt

=

∫

p(zt | ct, xt,m) p(xt | c1,t−1,m, z1:t−1, u1:t) dxt

=

∫

p(zt | ct, xt,m) bel(xt) dxt (7.19)

This yields the following maximization

ĉt = argmax
ct

∫

p(zt | ct, xt,m) bel(xt) dxt (7.20)

This maximization is carried out over the entire correspondence vector ct.

Unfortunately, there are exponentially many terms in this maximization. When the
number of features per measurement is large, the number of possible feature vectors
may grow too large for practical implementations. The most common technique to
avoid such an exponential complexity performs the maximization separately for each
individual feature zi

t in the measurement vector zt = {z1
t , z

2
t , . . .}.

ĉit = argmax
ci

t

∫

p(zi
t | cit, xt,m) bel(xt) dxt (7.21)

The implications of this component-wise optimization will be discussed below; we
note that it is “justified” only when we happen to know that individual feature vectors
are conditionally independent—an assumption that is usually adopted for convenience,
and that we will discuss further below.

p(zt | ct, xt,m) =
∏

i

p(zi
t | ct, xt,m) (7.22)

This assumption is analogous to the one stated in Equation (6.40). Under this as-
sumption, the term that is being maximized in (7.20) becomes a product of terms with

178 Chapter 7

disjoint optimization parameters, for which the maximum is attained when each indi-
vidual factor is maximal.

The measurement probability for each zi
t is given by the following exponential func-

tion:

p(zi
t | cit, xt,m) (7.23)

= η exp
{
− 1

2 (zi
t − h(xt, c

i
t,m))T Q−1

t (zi
t − h(xt, c

i
t,m))

}

where h is defined as in (7.11). Applying once again our Taylor expansion as in (3.52)
gives us

p(zi
t | cit, xt,m) ≈ η exp

{
− 1

2 (zi
t − h(µ̄t, c

i
t,m) − Ht (xt − µ̄t))

T Q−1
t

(zi
t − h(µ̄t, c

i
t,m) − Ht (xt − µ̄t))

}
(7.24)

Thus, the integral (7.21) can be written as

∫

η exp{−Lt(z
i
t, c

i
t, xt,m)} dxt (7.25)

with

Lt(z
i
t, c

i
t, xt,m) = 1

2 (zi
t − h(µ̄t, c

i
t,m) − Ht (xt − µ̄t))

T Q−1
t

(zi
t − h(µ̄t, c

i
t,m) − Ht (xt − µ̄t))

+ 1
2 (xt − µ̄t)

T Σ̄−1
t (xt − µ̄t) (7.26)

We already encountered integrals of this form in Chapter 3.2, where we derived the
motion update of the Kalman filter and the EKF. The closed-form solution to this in-
tegral is derived completely analogously to those derivations. In particular, the Gaus-
sian defined by (7.25) has mean h(µ̄t, c

i
t,m) and covariance Ht Σ̄t H

T
t + Qt. Thus,

we have under our linear approximation the following closed form expression for the
measurement likelihood:

∫

p(zi
t | cit, xt,m) bel(xt) dxt ∼ N (h(µ̄t, c

i
t,m), Ht Σ̄t H

T
t +Qt) (7.27)

Mobile Robot Localization 179

and thus

p(zi
t | c1:t,m, z1:t−1, u1:t) (7.28)

= η exp
{
− 1

2 (zi
t − h(µ̄t, c

i
t,m))T [Ht Σ̄t H

T
t +Qt]

−1 (zi
t − h(µ̄t, c

i
t,m))

}

Since we only seek the value for cit that maximizes this function, it suffices to maxi-
mize the quadratic term in the exponential:

ĉit = argmax
ci

t

(zi
t − h(µ̄t, c

i
t,m))T [Ht Σ̄t H

T
t +Qt]

−1 (zi
t − h(µ̄t, c

i
t,m))

(7.29)

This calculation is implemented in Line 15 in Table 7.3.

This distribution is remarkably similar to the probability calculated by the algorithm
landmark model known correspondence in Table 6.4, the only difference arising
from the covariance term. In Table 6.4, the robot pose is assumed to be known, hence
the covariance reduces to the measurement covariance Qt. Here we only have a prob-
abilistic estimate of the pose, hence have to use our best estimate for the pose, and fold
in the uncertainty in our estimate. Our state estimate is given by µ̄t. As the deriva-
tion above shows, the covariance is adjusted by the additional uncertainty Ht Σ̄t H

T
t ,

which is the projection of the pose uncertainty under the linearized approximation of
the measurement function h. This shows the correctness of the calculation in lines 12
and 13 in our EKF algorithm in Table 7.3: πk is indeed the desired likelihood. The cor-
rectness of the algorithm follows from our assumption that feature measurements are
conditionally independent, as stated in Equation (7.22). Of course, this independence
is usually violated, which makes our algorithm approximate. A further approximation
is introduced by the Taylor expansion.

7.7 MULTI-HYPOTHESIS TRACKING

There exist a number of extensions of the basic EKF to accommodate situations where
the correct data association cannot be determined with sufficient reliability. Several of
those techniques will be discussed later in this book, hence our exposition at this point
will be brief.

A classical technique that overcomes difficulties in data association is the Multi-
hypothesis Tracking Algorithm (MHT). The MHT can represent a belief by multiple

180 Chapter 7

Gaussians, that is, the posterior is represented by the mixture

bel(xt) =
1

∑

l ψt,l

∑

l

ψt,l det (2πΣt,l)
− 1

2 exp
{

− 1
2 (xt − µt,l)

T Σ−1
t,l (xt − µt,l)

}

(7.30)

Here l is the index of the mixture component. Each such component, or “track” in
MHT slang, is itself a Gaussian with mean µt,l and covariance Σt,l. The scalar ψt,l ≥
0 is a mixture weight. It determines the weight of the l-th mixture component in the
posterior. Since the posterior is normalized by

∑

l ψt,l, each ψt,l is a relative weight,
and the contribution of the l-th mixture component depends on the magnitude of all
other mixture weights.

As we shall see below when we describe the MHT algorithm, each mixture component
relies on a unique sequence of data association decisions. Hence, it makes sense to
write ct,l for the data association vector associated with the l-th track, and c1:t,l for all
past and present data associations associated with the l-th mixture component. With
this notation, we can now think of mixture components as contributing local belief
functions conditioned on a unique sequence of data associations:

bell(xt) = p(xt | z1:t, u1:t, c1:t,l) (7.31)

Here c1:t,l = {c1,l, c2,l, . . . , ct,l} denotes the sequence of correspondence vectors as-
sociated with the l-th track.

Before describing the MHT, it makes sense to discuss a completely intractable algo-
rithm from which the MHT is derived. This algorithm is the full Bayesian implemen-
tation of the EKF under unknown data association. It is amazingly simple: Instead
of selecting the most likely data association vector, our fictitious algorithm maintains
them all. More specifically, at time t each mixture is split into many new mixtures,
each conditioned on a unique correspondence vector ct. Let m be the index of one of
the new Gaussians, and l be the index from which this new Gaussian is derived, for
the correspondence ct,l. The weight of this new mixture is then set to

ψt,m = ψt,l p(zt | c1:t−1,l, ct,m, z1:t−1, u1:t) (7.32)

This is the product of the mixture weight ψt,l from which the new component was
derived, times the likelihood of the measurement zt under the specific correspondence

Mobile Robot Localization 181

vector that led to the new mixture component. In other words, we treat correspon-
dences as latent variable and calculate the posterior likelihood that a mixture compo-
nent is correct. A nice aspect of this approach is that we already know how to compute
the measurement likelihood p(zt | c1:t−1,l, ct,m, z1:t−1, u1:t) in Equation (7.32): It is
simply the product

∏
πk of the individual feature likelihoods computed in line 13 of

our localization algorithm in Table 7.3. Thus, we can incrementally calculate the mix-
ture weights for each new component. The only downside of this algorithm is the fact
that the number of mixture components, or tracks, grow exponentially over time.

The MHT algorithm approximates this algorithm by keeping the number of mixture
components small. In essence, it terminates every component whose relative mixture
weight

ψt,l
∑

m ψt,m

(7.33)

is smaller than a threshold ψmin. It is easy to see that the number of mixture com-
ponents is always at most ψ−1

min. Thus, the MHT maintains a compact posterior that
can be updated efficiently. It is approximate in that it maintains a very small number
of Gaussians, but in practice the number of plausible robot locations is usually very
small.

We will omit a formal description of the MHT algorithm at this point, and instead
refer the reader to a large number of related algorithms in this book. However, when
implementing the MHT, it is useful to devise strategies for identifying low-likelihood
tracks before instantiating them.

7.8 PRACTICAL CONSIDERATIONS

The EKF localization algorithm and its close relative, MHT localization, are popular
techniques for position tracking. There exist a large number of variations of these
algorithm that enhance their efficiency and robustness.

Efficient search. First, it is often impractical to loop through all landmarks k in
the map. Often, there exist simple tests to identify plausible candidate landmarks
(e.g., by simply projecting the measurement into x-y-space), enabling one to rule
out all but a constant number of candidates. Such algorithms can be orders of
magnitude faster that our naive implementations.

182 Chapter 7

Mutual exclusion. A key limitation of our implementations arises from our as-
sumed independence of feature noise in the EKF (and, by inheritance, the MHT).
The reader may recall condition (7.22), which enabled us to process individual
features sequentially, thereby avoiding a potential exponential search through the
space of all correspondence vectors. Unfortunately, such an approach allows for
assigning multiple observed features, say zi

t and zj
t with i 6= j, to be assigned to

the same landmark in the map: ĉit = ĉit. For many sensors, such a correspondence
assignment is wrong by default. For example, if the feature vector is extracted
from a single camera image, we know by default that two different regions in the
image space must correspond to different locations in the physical world. Put dif-
ferently, we usually know that i 6= j −→ ĉit 6= ĉit. This (hard!) constraint is called
mutual exclusion principle in data association. It reduces the space of all possi-
ble correspondence vectors. Advanced implementations consider this constraint.
For example, one might first search for each correspondence separately—as in
our version of the EKF localizer—followed by a “repair” phase in which viola-
tions of the mutual exclusion principle are resolved by changing correspondence
values accordingly.

Outliers. Further, our implementation does not address the issue of outliers.
The reader may recall from Chapter 6.6 that we allow for a correspondence c =
N + 1, with N being the number of landmarks in the map. Such an outlier
test is quite easily added to our algorithms. In particular, if we set πN+1 to be
the a prior probability of an outlier, the argmax-step in line 15 EKF localization
(Table 7.3) will default to N +1 if an outlier is the most likely explanation of the
measurement vector. Clearly, an outlier does not provide any information on the
robot’s pose; hence, the corresponding terms are simply omitted in lines 18 and
19 in Table 7.3.

Both the EKF and the MHT localization are only applicable to position tracking prob-
lems. In particular, linearized Gaussian techniques tend to work well only if the posi-
tion uncertainty is small. There are three complimentary reasons for this observation:

A uni-modal Gaussian is usually a good representation of uncertainty in tracking
whereas it is not in more general global localization problems. Both the EKF and
the MHT start with a single unimodal Gaussian, although the MHT can poten-
tially branch into multiple local Gaussian.

A narrow Gaussian reduces the danger of erroneous correspondence decisions.
This is important particularly for the EKF, since a single false correspondence
can derail the tracker by inducing an entire stream localization and correspon-
dence errors. The MHT is more robust to this problem, though it can fail equally

Mobile Robot Localization 183

when the correct correspondence is not among those maintained in the Gaussian
mixture.

The Taylor expansion is usually only good in a close proximity to the lineariza-
tion point. As a rule of thumb, if the standard deviation for the orientation θ is
larger then ±20 degrees, linearization effects are likely to make the algorithm
fail. This problem applies equally to the EKF and the MHT and explains why
starting the MHT with a very wide initial Gaussian does not turn it into a global
localization algorithm.

For all those reasons, the Gaussian localization algorithms discussed in this chapter
are inapplicable to global localization problems or the kidnapped robot problem.

The design of the appropriate features for EKF localization is a bit of an art. This is
because multiple competing objectives have to be met. On the one hand, one wants
sufficiently many features in the environment, so that the uncertainty in the robot’s
pose estimate can be kept small. Small uncertainty is absolutely vital for reasons
already discussed. On the other hand, one wants to minimize chances that landmarks
are confused with each other, or that the landmark detector detects spurious features.
Many environments do not possess too many point landmarks that can be detected
with high reliability, hence many implementation rely on relatively sparsely distributed
landmarks. Here the MHT has a clear advantage, in that it is more robust to data
association errors. As a rule of thumb, large numbers of landmarks tend to work
better than small numbers even for the EKF. When landmarks are dense, however, it
is critical to apply the mutual exclusion principle in data association.

Finally, we note that EKF localization processes only a subset of all information in
the sensor measurement. By going from raw measurements to features, the amount
of information that is being processed is already drastically reduced. Further, EKF
localization is unable to process negative information. Negative information pertains
to the absence of a feature. Clearly, not seeing a feature when one expects to see it
carries relevant information. For example, not seeing the Eiffel Tour in Paris implies
that it is unlikely that we are right next to it. The problem with negative information
is that it induces non-Gaussian beliefs, which cannot be represented by the mean and
variance. For this reason, EKF implementations simply ignore the issue of negative
information, and instead integrate only information from observed features. The stan-
dard MHT also avoids negative information. However, it is possible to fold negative
information into the mixture weight, by decaying mixture components that failed to
observe a landmark.

With all these limitations, does this mean that Gaussian techniques are generally brittle
and inapplicable to more general localization techniques? The answer is no. In fact,

184 Chapter 7

the key to successful localization lies in the approach for data association. Later in this
book, we will encounter more sophisticated techniques for handling correspondences
than the ones discussed thus far. Many of these techniques are applicable (and will be
applied!) to Gaussian representations, and the resulting algorithms are often among
the best ones known.

7.9 SUMMARY

In this chapter, we introduced the mobile robot localization problem and devised a first
practical algorithm for solving it.

The localization problem is the problem of estimating a robot’s pose relative to a
known map of its environment.

Position tracking addresses the problem of accommodating the local uncertainty
of a robot whose initial pose is known; global localization is the more general
problem of localizing a robot from scratch. Kidnapping is a localization problem
in which a well-localized robot is secretly teleported somewhere else without
being told—it is the hardest of the three localization problems.

The hardness of the localization problem is also a function of the degree to which
the environment changes over time. All algorithms discussed thus far assume a
static environment.

Passive localization approaches are filters: they process data acquired by the
robot but do not control the robot. Active techniques control the robot. In this
and the next chapter, we study passive approaches; active approaches will be
discussed in Chapter ?? of this book.

Markov localization is just a different name for the Bayes filter applied to the
mobile robot localization problem.

EKF localization applies the extended Kalman filter to the localization problem.
EKF localization is primarily applied to feature-based maps.

The most common technique for dealing with correspondence problems is the
maximum likelihood technique. This approach simply assumes that at each point
in time, the most likely correspondence is correct.

The multi hypothesis tracking algorithm (MHT) pursues multiple correspon-
dences, using a Gaussian mixture to represent the posterior. mixture components

Mobile Robot Localization 185

are created dynamically, and terminated if their total likelihood sinks below a
user-specified threshold.

The MHT is more robust to data association problems than the EKF, at an in-
creased computational cost.

Both EKF and MHT localization are well-suited for local position tracking prob-
lems with limited uncertainty and in environments with distinct features. They
are less applicable to global localization or in environments where most objects
look alike.

Selecting features for EKFs and MHTs requires skill! The performance of both
algorithms can be improved by a number of measures, such as enforcing mutual
exclusion in data association.

In the next chapter, we will discuss probabilistic localization techniques that can cope
with more general localization problems, such as the global localization problem or
the problem of localizing in dynamic environments.

186 Chapter 7

8
GRID AND MONTE CARLO

LOCALIZATION

8.1 INTRODUCTION

This chapter describes two localization algorithms that are capable of solving global
localization problems. These algorithms possess a number of differences to the Gaus-
sian techniques discussed in the previous chapter.

They can process raw sensor measurements. There is no need to extract fea-
tures from sensor values. As a direct implication, they can also process negative
information.

They are non-parametric. In particular, they are not bound to a uni-modal distri-
bution as was the case with the EKF localizer.

They can solve global localization and—in some instances—kidnapped robot
problems. Neither the EKF nor the MHT are able to solve such problems—
although the MHT can be modified so as to solve global localization problems.

The techniques presented here have exhibited excellent performance in a number of
fielded robotic systems.

The first approach is called grid localization. It uses a histogram filter to represent the
posterior belief. A number of issues arise when implementing grid localization: with
a fine-grained grid, the computation required for a naive implementation may make
the algorithm unreasonably slow. With a coarse grid, the additional information loss
through the discretization negatively affects the filter and—if not properly treated—
may even prevent the filter from working.

187

188 Chapter 8

1: Algorithm Grid localization({pk,t−1}, ut, zt,m):
2: for all k do

3: p̄k,t =
∑

i

pi,t−1 motion model(mean(xk), ut,mean(xi))

4: pk,t = η measurement model(zt,mean(xk),m)
5: endfor
6: return {pk,t}

Table 8.1 Grid localization, a variant of the discrete Bayes filter. The function mo-
tion model implements one of the motion models, and measurement model a sensor
model. The function “mean” returns the center of gravity of a grid cell x k .

The second approach is the Monte Carlo localization (MCL) algorithm, arguably the
most popular approach to date. It uses particle filters to estimate posteriors over robot
poses. A number of shortcomings of the MCL are discussed, and techniques for ap-
plying it to the kidnapped robot problem and to dynamic environments are presented.

The material in this chapter covers some of the most successful methods to date. Ap-
propriately implemented, these techniques are able to localize robots globally, and to
recover from localization failure. These abilities make the algorithms presented here
the method of choice in many applications that require reliable robot operation.

8.2 GRID LOCALIZATION

8.2.1 Basic Algorithm

Grid localization approximates the posterior using a histogram filter over a grid de-
composition of the pose space. The discrete Bayes filter was already extensively dis-
cussed in Chapter 4.1 and is depicted in Table 4.1. It maintains as posterior a collection
of discrete probability values

bel(xt) = {pk,t} (8.1)

Grid And Monte Carlo Localization 189

where each probability pk,t is defined over a grid cell xk. The set of all grid cells
forms a partition of the space of all legitimate poses:

range(Xt) = x1,t ∪ x2,t ∪ . . .xK,t (8.2)

In the most basic version of grid localization, the partitioning of the space of all poses
is time-invariant, and each grid cell is of the same size. A common granularity used in
many of the indoor environments is 15 centimeters for the x- and y-dimensions, and
5 degrees for the rotational dimension. A finer representation yields better results, but
at the expense of increased computational requirements.

Grid localization is largely identical to the basic binary Bayes filter from which it
is derived. Table 8.1 provides pseudo-code for the most basic implementation. It
requires as input the discrete probability values {pt−1,k}, along with the most recent
measurement, control, and the map. Its inner loop iterates through all grid cells. Line
3 implements the motion model update, and line 4 the measurement update. The
final probabilities are normalized, as indicated by the normalizer η in line 4. The
functions motion model, and measurement model, may be implemented by any of
the motion models in Chapter 5, and measurement models in Chapter 6, respectively.
The algorithm in Table 8.1 assumes that each cell possesses the same volume.

Figure 8.1 illustrates grid localization in our one-dimensional hallway example. This
diagram is equivalent to that of the general Bayes filter, except for the discrete nature of
the representation. As before, the robot starts out with global uncertainty, represented
by a uniform histogram. As it senses, the corresponding grid cells raise its probability
value. The example highlights the ability to represent multi-modal distributions with
grid localization.

8.2.2 Grid Resolutions

A key variable of the grid localizer is the resolution of the grid. On the surface, this
might appear to be a minor detail; however, the type sensor model that is applicable,
the computation involved in updating the belief, and the type results to expect all
depend on the grid resolution.

At the extreme end are two types of representations, both of which have been brought
to bear successfully in fielded robotics systems.

190 Chapter 8

���
���
���

���
���
���

x

bel(x)

(a)

���
���
���

���
���
���

x

bel(x)

x

p(z|x)

(b)

���
���
���
���

���
���
���
���

x

bel(x)

(c)

���
���
���
���

���
���
���
���

x

bel(x)

x

p(z|x)

(d)

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

x

bel(x)

(e)

Figure 8.1 Grid localization using a fine-grained metric decomposition. Each picture
depicts the position of the robot in the hallway along with its belief bel(xt), represented by
a histogram over a grid.

Grid And Monte Carlo Localization 191

Bel(x)x

pose

Grid Environment

Figure 8.2 Example of a fixed-resolution grid over the robot pose variables x, y, and θ.
Each grid cell represents a robot pose in the environment. Different orientations of the robot
correspond to different planes in the grid (shown are only three orientations).

Coarse, variable-resolution grids. Some implementation decompose the space
of all poses into regions that correspond to “significant” places in the environ-
ment. Such places may be defined by the presence (or absence) of specific land-
marks, such as doors and windows. In hallway environments, places may corre-
spond to intersections, T-junctions, dead ends, and so on. In such representations,
the resolution of the decomposition depends on the structure of the environment,
and they tend to be course. Figure 8.5 shows such a coarse representation for
the one-dimensional hallway example. Course representation like these are com-
monly associated with topological representations of space.

Fine fixed-resolution grids. Other methods decompose the state space using
equally spaced grids. The resolution of such decompositions is usually much
higher than that of variable-resolution grids. For example, some of the examples
in Chapter 7 use grid decompositions with cell sizes of 15 centimeters or less.
Hence, they are more accurate, but at the expense of increased computational
costs. Figure 8.2 illustrates such a fixed-resolution grid. Fine resolution like
these are commonly associated with metric representation of space.

When implementing grid localization for coarse resolutions, it is important to compen-
sate for the coarseness in the resolution in the sensor and motion models. In particular,
for a high-resolution sensor like a laser range finder, the value of the measurement
model p(zt | xt) may vary drastically inside each grid cell xk,t. If this is the case, just
evaluating it at the center-of-gravity will generally yield a poor result. Similarly, pre-

192 Chapter 8

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

A
ve

ra
ge

 e
st

im
at

io
n

er
ro

r
[c

m
]

Cell size [cm]

Ultrasound sensor
Laser-range finder

Figure 8.3 Average localization error as a function of grid cell size, for ultrasound sensors
and laser range-finders.

dicting robot motion from the center-or-gravity may yield poor results: If the motion
is updated in 1-second intervals for a robot moving at 10cm/sec, and the grid resolu-
tion is 1 meter, the naive implementation will never result in a state transition. This is
because any location that is approximately 10cm away form the center-or-gravity of a
grid cell still falls into the same grid cell.

A common way to compensate this effect is to modify both the measurement and the
motion model by inflating the amount of noise. For example, the variance of a range
finder model’s main Gaussian cone may be enlarged by half the diameter of the grid
cell. In doing so, the new model is much smoother, and its interpretation will be
less susceptible to the exact location of the sample point relative to the correct robot
location. However, this modified measurement model reduces the information intake,
thereby reducing the localization accuracy. Similarly, a motion model may predict a
random transition to a nearby cell with a probability that it proportional to the length of
the motion arc, divided by the diameter of a cell. The result of such an inflated motion
model is that the robot can indeed move from one cell to another, even if its motion
between consecutive updates is small relative to the size of a grid cell. However, the
resulting posteriors are wrong in that an unreasonably large probability will be placed
on the hypothesis that the robot changes cell at each motion update—and hence moves
much much faster than commanded.

Grid And Monte Carlo Localization 193

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

A
ve

ra
ge

 lo
ca

liz
at

io
n

tim
e

[s
ec

]

Grid cell size [cm]

Ultrasound sensor
Laser-range finder

Figure 8.4 Average CPU-time needed for global localization as a function of grid resolu-
tion, shown for both ultrasound sensors and laser range-finders.

Figures 8.3 and 8.4 plot the performance of grid localization as a function of the res-
olution, for two different types of range sensors. As to be expected, the localization
error increases as the resolution decreases. The total time necessary to localize a robot
decreases as the grid becomes coarser, as shown in Figure 8.4.

8.2.3 Computational Considerations

When using a fine-grained grid such as some of the metric grids described in the
previous section, the basic algorithm cannot be executed in real-time. At fault are both
the motion and the measurement update. The motion update requires a convolution,
which for a 3-D grid is a 6-D operation. The measurement update is a 3-D operation,
but calculating the likelihood of a full scan is a costly operation.

There exist a number of techniques to reduce the computational complexity of grid
localization.

Pre-caching. The measurement model is costly since it may involve ray cast-
ing. As motivated in Chapter 6.3.4, a common strategy is to calculate for each
grid cell essential statistics that facilitate the measurement update. In particular,

194 Chapter 8

���
���
���

���
���
���

(a)

���
���
���

���
���
���

(b)

Figure 8.5 Application of a coarse-grained, topological representation to mobile robot
localization. Each state corresponds to a distinctive place in the environment (a door in this
case). The robot’s belief bel(xt) of being in a state is represented by the size of the circles.
(a) The initial belief is uniform over all poses. (b)b shows the belief after the robot made
one state transition and detected a door. At this point, it is unlikely that the robot is still in
the left position.

when using a beam model, it is common to cache away the correct range for
each center-of-gravity point in each grid cell. Further, the sensor model can be
precalculated for a fine-grained array of possible ranges. The calculation of the
measurement model reduces then to two table lookups, which is much faster.

Sensor subsampling. Further speed-ups can be achieved by evaluating the mea-
surement model only for a subset of all ranges. In some of our systems, we use
only 8 of our 360 laser range measurement and still achieve excellent results.
Subsampling can take place spatially and in time.

Delayed motion updates. Instead of applying the motion update every time a
control is issued or an odometry reading is obtained, it is possible to reduce the
frequency of motion update. This is achieved by geometrically integrating the
controls or odometry readings over short time period. This can speed up the
algorithm by an order of magnitude.

Selective updating. This technique was already described in Chapter 4.1.3.
When updating the grid, selective techniques update a fraction of all grid cells
only. A common implementation of this idea updates only those grid cells whose
posterior probability exceeds a user-specified threshold. Selective updating tech-
niques can reduce the computational effort involved in updating beliefs by many
orders of magnitude. Special care has to be taken to reactivate low-likelihood
grid cells when one seeks to apply this approach to the kidnapped robot problem.

Grid And Monte Carlo Localization 195

With these modifications, grid localization can in fact become quite efficient; Even 10
years ago, low-end PC were fast enough to generate the results shown in this chapter.
However, our modifications place an additional burden on the programmer, and make
a final implementation more complex than the short algorithm in Table 8.1 suggests.

8.2.4 Illustration

Figure 8.6 shows an example of Markov localization with metric grids, at a spatial
resolution of 15 centimeter and an angular resolution of 5 degrees. Shown there is
a global localization run where a mobile robot equipped with two laser range-finders
localizes itself from scratch. The probabilistic model of the range-finders is computed
by the beam model described in Section 6.3 and depicted in Table 8.1.

Initially, the robot’s belief is uniformly distributed over the pose space. Figure 8.6a
depicts a scan of the laser range-finders taken at the start position of the robot. Here,
max range measurements are omitted and the relevant part of the map is shaded in
grey. After incorporating this sensor scan, the robot’s location is focused on just a few
regions in the (highly asymmetric) space, as shown by the gray-scale in Figure 8.6b.
Notice that beliefs are projected into x-y space; the true belief is defined over a third
dimension, the robot’s orientation θ, which is omitted in this and the following dia-
grams. Figure 8.6d shows the belief after the robot moved 2m, and incorporated the
second range scan shown in Figure 8.6c. The certainty in the position estimation in-
creases and the global maximum of the belief already corresponds to the true location
of the robot. After integrating another scan into the belief the robot finally perceives
the sensor scan shown in Figure 8.6e. Virtually all probability mass is now centered at
the actual robot pose (see Figure 8.6f). Intuitively, we say that the robot successfully
localized itself. This example illustrates that grid localization is capable to globally
localize a robot very efficiently. A second example is shown in Figure 8.7.

Of course, global localization usually requires more than just a few sensor scans to
succeed. This is particularly the case in symmetric environments, and if the sensors
are less accurate than laser sensors. Figures 8.8 to 8.10 illustrate global localization
using a mobile robot equipped with sonar sensors only, and in an environment that
possesses many corridors of approximately the same width. An occupancy grid map
is shown in Figure 8.8. Figure 8.9a shows the data set, obtained by moving along one
of the corridors and then turning into another. Each of the “beams” in Figure 8.9a cor-
responds to a sonar measurement. In this particular environment, the walls are smooth
and a large fraction of sonar readings are corrupted. Again, the probabilistic model
of the sensor readings is the beam-based model described in described in Section 6.3.
Figure 8.9 additionally shows the belief for three different points in time, marked “A,”

196 Chapter 8

Robot position

Robot position

Robot position

(a)

(c)

(e)

(b)

(d)

(f)

Figure 8.6 Global localization in a map using laser range-finder data. (a) Scan of the
laser range-finders taken at the start position of the robot (max range readings are omitted).
Figure (b) shows the situation after incorporating this laser scan, starting with the uniform
distribution. (c) Second scan and (d) resulting belief. After integrating the final scan shown
in (e), the robot’s belief is centered at its actual location (see (f)).

Grid And Monte Carlo Localization 197

34

Room A

Room B

Start 21

5

Room C

I
II

II
I

(a)

(c)

(e)

(b)

(d)

(f)

Figure 8.7 Global localization in an office environment using sonar data. (a) Path of the
robot. (b) Belief as the robot passes position 1. (c) After some meters of robot motion, the
robot knows that it is in the corridor. (d) As the robot reaches position 3 it has scanned
the end of the corridor with its sonar sensors and hence the distribution is concentrated on
two local maxima. While the maximum labeled I represents the true location of the robot,
the second maximum arises due to the symmetry of the corridor (position II is rotated by
180◦ relative to position I). (e) After moving through Room A, the probability of being at
the correct position I is now higher than the probability of being at position II. (f) Finally
the robot’s belief is centered on the correct pose.

198 Chapter 8

31m

22m

Figure 8.8 Occupancy grid map of the 1994 AAAI mobile robot competition arena.

“B,” and “C” in Figure 8.9a. After moving approximately three meters, during which
the robot incorporates 5 sonar scans, the belief is spread almost uniformly along all
corridors of approximately equal size, as shown in Figure 8.9b. A few seconds later,
the belief is now focused on a few distinct hypotheses, as depicted in Figure 8.9c.
Finally, as the robot turns around the corner and reaches the point marked “C,” the
sensor data is now sufficient to uniquely determine the robot’s position. The belief
shown in Figure 8.9d is now closely centered around the actual robot pose. This ex-
ample illustrates that the grid representation works well for high-noise sonar data and
in symmetric environments, where multiple hypotheses have to be maintained during
global localization.

Figure 8.10 illustrates the ability of the grid approach to correct accumulated dead-
reckoning errors by matching sonar data with occupancy grid maps. Figure 8.10a
shows the raw odometry data of a 240m long trajectory. Obviously, the rotational
error of the odometry quickly increases. After traveling only 40m, the accumulated
error in the orientation (raw odometry) is about 50 degrees. Figure 8.10b shows the
path of the robot estimated by the grid localizer.

Obviously, the resolution of the discrete representation is a key parameter for grid
Markov localization. Given sufficient computing and memory resources, fine-grained
approaches are generally preferable over coarse-grained ones. In particular, fine-
grained approaches are superior to coarse-grained approaches, assuming that sufficient
computing time and memory is available. As we already discussed in Chapter 2.4.4,
the histogram representation causes systematic error that may violate the Markov as-
sumption in Bayes filters. The finer the resolution, the less error is introduced, and the

Grid And Monte Carlo Localization 199

C

A

B

3m

20m

Robot position (A)

Robot position (B) Robot position (C)

(a)

(c)

(b)

(d)

Figure 8.9 (a) Data set (odometry and sonar range scans) collected in the environment
shown in Figure 8.8. This data set is sufficient for global localization using the grid local-
ization. The beliefs at the points marked “A,” “B” and “C” are shown in (b) - (d).

(a) (b)

Figure 8.10 (a) Odometry information and (b) corrected path of the robot.

200 Chapter 8

1: Algorithm MCL(Xt−1, ut, zt,m):
2: X̄t = Xt = ∅
3: for m = 1 to M do

4: x
[m]
t = sample motion model(ut, x

[m]
t−1)

5: w
[m]
t = measurement model(zt, x

[m]
t ,m)

6: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

7: endfor
8: for m = 1 to M do

9: draw i with probability ∝ w[i]
t

10: add x[i]
t to Xt

11: endfor
12: return Xt

Table 8.2 MCL, or Monte Carlo Localization, a localization algorithm based on particle
filters.

better the results. Fine-grained approximations also tend to suffer less from “catas-
trophic” failures where the robot’s belief differs significantly from its actual position.

8.3 MONTE CARLO LOCALIZATION

8.3.1 The MCL Algorithm

We will now turn our attention to a popular localization algorithm which represents
the belief bel(xt) by particles. The algorithm is called Monte Carlo Localization, or
MCL. Like grid-based Markov localization, MCL is applicable to both local and global
localization problems. Despite its relatively short existence, MCL has already become
one of the most popular localization algorithms in robotics. It is easy to implement,
and tends to work well across a broad range of localization problems.

Table 8.2 shows the basic MCL algorithm, which is obtained by substituting the appro-
priate probabilistic motion and perceptual models into the algorithm particle filters
(Table 4.3 on page 78). The basic MCL algorithm represents the belief bel(xt) by a set
of M particles Xt = {x[1]

t , x
[2]
t , . . . , x

[M]
t }. Lines 4 in our algorithm (Table 8.2) sam-

Grid And Monte Carlo Localization 201

ples from the motion model, using particles from present belief as starting points. The
beam measurement model is then applied in line 5 to determine the importance weight
of that particle. The initial belief bel(x0) is obtained by randomly generating M such
particles from the prior distribution p(x0), and assigning the uniform importance fac-
tor M−1 to each particle. As in grid localization, the functions motion model, and
measurement model, may be implemented by any of the motion models in Chapter 5,
and measurement models in Chapter 6, respectively.

Figure 8.11 illustrates MCL using the one-dimensional hallway example. The initial
global uncertainty is achieved through a set of pose particles drawn at random and
uniformly over the entire pose space, as shown in Figure 8.11a. As the robot senses
the door, line 5 of in the algorithm MCL assigns importance factors to each particle.
The resulting particle set is shown in Figure 8.11b. The height of each particle in this
figure shows its importance weight. It is important to notice that this set of particles
is identical to the one in Figure 8.11a—the only thing modified by the measurement
update are the importance weights.

Figure 8.11c shows the particle set after resampling (line 8-11 in the algorithm MCL)
and after incorporating the robot motion (line 4). This leads to a new particle set
with uniform importance weights, but with an increased number of particles near the
three likely places. The new measurement assigns non-uniform importance weights
to the particle set, as shown in Figure 8.11d. At this point, most of the cumulative
probability mass is centered on the second door, which is also the most likely location.
Further motion leads to another resampling step, and a step in which a new particle
set is generated according to the motion model (Figure 8.11e). As should be obvious
from this example, the particle sets approximate the correct posterior, as would be
calculated by an exact Bayes filter.

Figure 8.12 shows the result of applying MCL in an actual office environment, for
a robot equipped with an array of sonar range finders. The figure depicts particle
sets after 5, 28, and 55, meters of robot motion, respectively. Each particle set is
defined over the 3-dimensional pose space, although only the x- and y-coordinates
of each particle are shown. A second illustration is provided in Figure 8.13, here
using a camera pointed towards the ceiling, and a measurement model that relates the
brightness in the center of the image to a previously acquired ceiling map.

8.3.2 Properties of MCL

MCL can approximate almost any distribution of practical importance. It is not bound
to a limited parametric subset of distributions, as was the case for EKF localization.

202 Chapter 8

���
���
���
���

���
���
���
���

x

bel(x)

(a)

���
���
���

���
���
���

x

bel(x)

x

p(z|x)

(b)

���
���
���
���

���
���
���
���

x

bel(s)

(c)

���
���
���

���
���
���

x

bel(x)

x

p(z|x)

(d)

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

x

bel(x)

(e)

Figure 8.11 Monte Carlo Localization, a particle filter applied to mobile robot localiza-
tion.

Grid And Monte Carlo Localization 203

Robot position

Start (a)

Robot position

(b)

Robot position

(c)

Figure 8.12 Illustration of Monte Carlo localization: Shown here is a robot operating in
an office environment of size 54m × 18m. (a) After moving 5m, the robot is still highly
uncertain about its position and the particles are spread trough major parts of the free-space.
(b) Even as the robot reaches the upper left corner of the map, its belief is still concentrated
around four possible locations. (c) Finally, after moving approximately 55m, the ambiguity
is resolved and the robot knows where it is. All computation is carried out in real-time on a
low-end PC.

204 Chapter 8

Figure 8.13 Global localization using a camera pointed at the ceiling.

The accuracy of the approximation is easily determined by the size of the particle set
M . Increasing the total number of particles increases the accuracy of the approxima-
tion. The number of particles M is a parameter that enables the user to trade off the
accuracy of the computation and the computational resources necessary to run MCL.
A common strategy for setting M is to keep sampling until the next pair ut and zt has
arrived. In this way, the implementation is adaptive with regards to the computational
resources: the faster the underlying processor, the better the localization algorithm.
Such a resource-adaptivity is difficult to achieve for grid localization and Gaussian
techniques.

A final advantage of MCL pertains to the non-parametric nature of the approximation.
As our illustrative results suggest, MCL can represent complex multi-modal probabil-
ity distributions, and blend them seamlessly with focused Gaussian-style distributions.
This provides MCL with the ability to solve global localization problems with high-
accuracy position tracking.

8.3.3 Random Particle MCL: Recovery from

Failures

MCL, in its present form, solves the global localization problem but cannot recover
from robot kidnapping, or global localization failures. This quite obvious from the
results in Figure 8.12: As the position is acquired, particles at places other than the

Grid And Monte Carlo Localization 205

most likely pose gradually disappear. At some point, particles only “survive” near a
single pose, and the algorithm is unable to recover if this pose happens to be incorrect.

This problem is significant. In practice, any stochastic algorithm such as MCL may
accidentally discard all particles near the correct pose during the resampling step.
This problem is particularly paramount when the number of particles is small (e.g.,
M = 50), and when the particles are spread over a large volume (e.g., during global
localization).

Fortunately, this problem can be solved by a rather simple heuristic. The idea of
this heuristic is to add random particles to the particle sets. Such an “injection” of
random particles can be justified mathematically by assuming that the robot might get
kidnapped with a small probability, thereby generating a fraction of random states in
the motion model. Even if the robot does not get kidnapped, however, the random
particles add an additional level of robustness.

The approach of adding particles raises two questions. First, how many particles
should be added at each iteration of the algorithm and, second, from which distri-
bution should we generate these particles? One might add a fixed number of random
particles at each iteration. A better idea is to add particles based on some estimate of
the localization a accuracy. One way to implement this idea is to monitor the proba-
bility of sensor measurements

p(zt | zt−1, ut,m) (8.3)

and relate it to the average measurement probability (which is easily learned from
data). In particle filters, an approximation to this quantity is easily obtained from the
importance factor, since, by definition, an importance weight is a stochastic estimate
of p(zt | zt−1, ut,m). The mean

p(zt | zt−1, ut,m) ≈ 1

M

M∑

m=1

w
[m]
t (8.4)

thus approximates the desired quantity. It is usually a good idea to smooth this estimate
by averaging it over multiple time steps. There exist multiple reasons why this mean
may be poor in addition to poor position tracking: the amount of sensor noise might
be unnatural high, or the particles may still be spread out during a global localization
phase. For these reasons, it is a good idea to maintain a short-term average of the
measurement likelihood, and relate it to the long-term average when determining the
number of random samples.

206 Chapter 8

1: Algorithm Augmented MCL(Xt−1, ut, zt,m):
2: static wslow, wfast

3: X̄t = Xt = ∅
4: for m = 1 to M do

5: x
[m]
t = sample motion model(ut, x

[m]
t−1)

6: w
[m]
t = measurement model(zt, x

[m]
t ,m)

7: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

8: wavg = wavg + 1
M
w

[m]
t

9: endfor
10: wslow = wslow + αslow(wavg − wslow)
11: wfast = wfast + αfast(wavg − wfast)
12: for m = 1 to M do
13: with probability max(0.0, 1.0− wfast/wslow) do
14: add random pose to Xt

15: else

16: draw i ∈ {1, . . . , N} with probability ∝ w[i]
t

17: add x[i]
t to Xt

18: endwith
19: endfor
20: return Xt

Table 8.3 An adaptive variant of MCL that adds random samples. The number of random
samples is determined by comparing the short-term with the long-term likelihood of sensor
measurements.

The second problem of determining which sample distribution to use, can be addressed
in two ways. One can draw particles according to a uniform distribution over the pose
space, and then weight them with the current observation. For some sensor models,
however, it is impractical to generate particles directly in accordance to the measure-
ment distribution. One example of such a sensor model is the landmark detection
model discussed in Chapter 6.6. In this case the additional particles can be placed di-
rectly at locations distributed according to the observation likelihood (see Table 6.5).

Table 8.3 shows a variant of the MCL algorithm that adds random particles. This al-
gorithm is adaptive, in that it tracks the short-term and the long-term average of the
likelihood p(zt | zt−1, ut,m). Its first part is identical to the algorithm MCL in Ta-
ble 8.2: New poses are samples from old particles using the motion model (line 5), and

Grid And Monte Carlo Localization 207

their importance weight is set in accordance to the measurement model (line 6). How-
ever, Augmented MCL calculates the empirical measurement likelihood in line 8, and
maintains short-term and long-term averages of this likelihood in lines 10 and 11. The
algorithm requires that 0 ≤ αslow � αfast. The parameters αslow, and αfast, are decay
rates for the exponential filters that estimate the long-term, and short-term, averages,
respectively. The crux of this algorithm can be found in line 13: During the resampling
process, a random sample is added with probability max(0.0, 1.0−wfast/wslow); oth-
erwise, resampling proceeds in the familiar way. The probability of adding a random
sample takes into consideration the divergence between the short- and the long-term
average of the measurement likelihood. If the short-term likelihood is better or equal
to the long-term likelihood, no random sample is added. However, if the short-term
likelihood is worse than the long-term one, random samples are added in proportion
to the quotient of these values. In this way, a sudden decay in measurement likeli-
hood induces an increased number of random samples. The exponential smoothing
counteracts the danger of mistaking momentary sensor noise for a poor localization
result.

Figure 8.15 illustrates our augmented MCL algorithm in practice. Shown there is a se-
quence of particle sets during global localization and relocalization of a legged robot
equipped with a color camera, and operating on a 3×2m field as it is used in RoboCup
soccer competitions. Sensor measurements correspond to the detection and relative
localization of six visual markers placed around the field. The algorithm described in
Table 6.4 is used to determine the likelihood of detections. Step 14 in Figure 8.3 is re-
placed by an algorithm for sampling according to the most recent sensor measurement,
which is easily implemented for our feature-based sensor model.

Figures 8.15a–d illustrate global localization. At the first marker detection, virtually
all particles are drawn according to this detection (Figure 8.15b). This step corre-
sponds to situation in which the short-term average of the measurement probability is
much worse than its long-term correspondent. After several more detections, the par-
ticles are clustered around the true robot position (Figure 8.15d), and both the short-
and long-term average of the measurement likelihood increases. At this stage of local-
ization, the robot is merely tracking its position, the observation likelihoods are rather
high, and only a very small number random particles are occasionally added.

As the robot is physically carried to a different location—a common even in robotic
soccer tournaments—the measurement probability drops. The first marker detection
at this new location does not yet trigger any additional particles, since the smoothed
estimatewfast is still high (see Figure 8.15e). After several marker detections observed
at the new location, wfast decreases much faster than wslow and more random particles
are added (Figure 8.15f,g). Finally, the robot successfully relocalizes itself as shown

208 Chapter 8

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.15 Mont Carlo localization with random particles. Each picture shows a particle
set representing the robot’s position estimate (small lines indicate the orientation of the
particles). The large circle depicts the mean of the particles, and the true robot position is
indicated by the small, white circle. Marker detections are illustrated by arcs centered at
the detected marker. The pictures illustrate global localization (a)–(d) and relocalization
(e)–(h).

Grid And Monte Carlo Localization 209

0

0.2

0.4

0.6

0.8

1

250 500 1000 2000 4000
number of samples

Mixture-MCL

MCL without random samples

MCL with random samples

er
ro

r
ra

te
 (

in
 p

er
ce

nt
ag

e
of

 lo
st

 p
os

iti
on

s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500 3000 3500 4000

D
is

ta
nc

e
[c

m
]

Time [sec]

Standard MCL
Mixture MCL

Figure 8.16 Left diagram: plain MCL (top curve), MCL with random samples (center
curve), and MCL with mixture proposal distribution (bottom curve). The error rate is mea-
sured in percentage of time during which the robot lost track of its position, for a data set
acquired by a robot operating in a crowded museum. Right: Error as a function of time for
standard MCL and mixture MCL, using a ceiling map for localization.

in Figure 8.15h, demonstrating that our augmented MCL algorithm is indeed capable
of “surviving” kidnapping.

8.3.4 Modifying the Proposal Distribution

A related limitation of MCL arises from its proposal mechanism; in fact, it inherits this
deficiency from the vanilla particle filter. As discussed in Chapter 4.2.4, the particle
filter uses the motion model as proposal distribution, but it seeks to approximate a
product of this distribution and the perceptual likelihood. The larger the difference
between the proposal and the target distribution, the more samples are needed.

In MCL, this induces a surprising failure mode: If we were to acquire a perfect sensor
which—without any noise—always informs the robot of its correct pose, MCL would
fail. This is even true for noise-free sensors that do not carry sufficient information for
localization. An example of the latter would be a 1-D noise-free range sensor: When
receiving such a range measurement, the space of valid pose hypotheses will be a 2-D
subspace of the 3-D pose space. We already discussed in length in Section 4.2.4 that
chances to sample into this 2-D submanifold are zero when sampling from the robot
motion model. Thus, we face the strange situation that under certain circumstances, a
less accurate sensor would be preferable to a more accurate sensor when using MCL
for localization. This is not the case for EKF localization, since the EKF update takes

210 Chapter 8

the measurements into account when calculating the new mean—instead of generating
mean(s) from the motion model alone.

Luckily, a simple trick provides remedy: Simply use a measurement model that arti-
ficially inflates the amount of noise in the sensor. One can think of this inflation as
accommodating not just the measurement uncertainty, but also the uncertainty induced
by the approximate nature of the particle filter algorithm.

An alternative, more sound solution involves a modification of the sampling process
which we already discussed briefly in Section 4.2.4. The idea is that for a small frac-
tion of all particles, the role of the motion model and the measurement model are
reversed: Particles are generated according to the measurement model

x
[m]
t ∼ p(zt | xt) (8.5)

and the importance weight is calculated in proportion to

w
[m]
t =

∫

p(x
[m]
t | ut, xt−1 bel(xt−1) dxt−1 (8.6)

This new sampling process is a legitimate alternative to the plain particle filter. It
alone will be inefficient since it entire ignores the history when generating particles.
However, it is equally legitimate to generate a fraction of the particles with either of
those two mechanisms and merge the two particle sets. The resulting algorithm is
called MCL with mixture distribution, or mixture MCL. In practice, it tends to suffice
to generate a small fraction of particles (e.g., 5%) through the new process.

Unfortunately, our ides does not come without challenges. The two main steps—
sampling from p(zt | xt) and calculating the importance weights w[m]

t —can be dif-
ficult to realize. Sampling from the measurement model is only easy if its inverse
possesses a closed form solution from which it is easy to sample. This is usually not
the case: imagine sampling from the space of all poses that fit a given laser range scan!
Calculating the importance weights is complicated by the integral in (8.6), and by the
fact that bel(xt−1) is itself represented by a set of particles.

Without delving into too much detail, we note that both steps can be implemented,
but only with additional approximations. Figure 8.16 shows comparative results for
MCL, MCL augmented with random samples, and mixture MCL for two real-world
data sets. In both cases, p(zt | xt) was itself learned from data and represented by

Grid And Monte Carlo Localization 211

a density tree—an elaborate procedure whose description is beyond the scope of this
book. For calculating the importance weights, the integral was replaced by a stochastic
integration, and the prior belief was continued into a space-filling density by convolv-
ing each particle with a narrow Gaussian. Details aside, these results illustrate that the
mixture idea yields superior results, but it can be challenging to implement.

We also note that the mixture MCL provides a sound solution to the kidnapped robot
problem. By seed-starting particles using the most recent measurement only, we con-
stantly generate particles at locations that are plausible given the momentary sensor
input, regardless of past measurements and controls. There exist ample evidence in
the literature that such approaches can cope well with total localization failure (Fig-
ure 8.16b happens to show one such failure for regular MCL), hence provides im-
proved robustness in practical implementations.

8.4 LOCALIZATION IN DYNAMIC

ENVIRONMENTS

A key limitation of all localization algorithms discussed thus far arises from the static
world assumption, or Markov assumption. Most interesting environments are popu-
lated by people, and hence exhibit dynamics not modeled by the state xt. To some
extent, probabilistic approaches are robust to such unmodeled dynamics, due to their
ability to accommodate sensor noise. However, as previously noted, the type sen-
sor noise accommodated in the probabilistic filtering framework must be independent
at each time step, whereas unmodeled dynamics induce effects on the sensor mea-
surements over multiple time steps. When such effects are paramount, probabilistic
localization algorithms that rely on the static world assumption may fail.

A good example of such a failure situation is shown in Figure 8.17. This example in-
volves a mobile tour-guide robot, navigating in museums full of people. The people—
their locations, velocities, intentions etc.—are hidden state relative to the localization
algorithm which is not captured in the algorithms discussed thus far. Why is this prob-
lematic? Imagine people lining up in a way that suggests the robot is facing a wall. As
a result, with each single sensor measurement the robot increases its belief of being
next to a wall. Since information is treated as independent, the robot will ultimately
assign high likelihood to poses near walls. Such an effect is possible with independent
sensor noise, but its likelihood is vanishingly small.

There exist two fundamental techniques for dealing with dynamic environments. The
first technique includes the hidden state into the state estimated by the filter; the

212 Chapter 8

RHINO

Figure 8.17 Scenes from the Deutsches Museum Bonn, where the mobile robot “Rhino”
was frequently surrounded by dozens of people.

other preprocesses sensor measurements to eliminate measurements affected by hid-
den state. The former methodology is mathematically the more general one: Instead
of just estimating the robot’s pose, one can define filter that also estimates people’s
positions, their velocities, etc. In fact, we will later on discuss such an approach, as an
extension to a mobile robot mapping algorithm.

The principle disadvantage of estimating the hidden state variables lies in its compu-
tational complexity: Instead of estimating 3 variables, the robot must now calculate
posteriors over a much larger number of variables. In fact, the number of variables
itself is a variable, as the number of people may vary over time. Thus, the resulting al-
gorithm will be substantially more involved than the localization algorithms discussed
thus far.

The alternative—preprocessing sensor data—works well in certain limited situations,
which includes situations where people’s presence may affect range finders or (to a
lesser extent) camera images. Here we develop it for the beam-based range finder
model from Chapter 6.3.

The idea is to investigate the cause of a sensor measurement, and to reject those likely
to be affected by unmodeled environment dynamics. The sensor models discussed thus
far all address different, alternative ways by which a measurement can come into exis-
tence. If we manage to associate specific ways with the presence of unwanted dynamic
effects—such as people—all we have to do it to discard those measurements that are
with high likelihood caused by such an unmodeled entity. This idea is surprisingly
general. In Equation(6.13), Chapter 6.3, we defined the beam-based measurement

Grid And Monte Carlo Localization 213

Figure 8.18 Laser range scans are often heavily corrupted when people surround the
robot. How can a robot maintain accurate localization under such circumstances?

model for range finders as a mixture of four terms:

p(zk
t | xt,m) =

zhit

zshort

zmax

zrand

T

·

phit(z
k
t | xt,m)

pshort(z
k
t | xt,m)

pmax(z
k
t | xt,m)

prand(zk
t | xt,m)

(8.7)

As our derivation of the model clearly states, One of those terms, the one involv-
ing zshort and pshort, corresponds to unexpected objects. To calculate the probabil-
ity that a measurement zk

t corresponds to an unexpected object, we have to intro-
duce a new correspondence variable, c̄kt which can take on one of the four values
{hit, short,max, rand}.

The posterior probability that the range measurement zk
t corresponds to a “short”

reading—our mnemonic from Chapter 6.3 for unexpected obstacle—is then obtained
by applying Bayes rule and subsequently dropping irrelevant conditioning variables:

p(c̄kt = short | zk
t , z1:t−1, u1:t,m)

=
p(zk

t | c̄kt = short, z1:t−1, u1:t,m) p(c̄kt = short | z1:t−1, u1:t,m)
∑

c

p(zk
t | c̄kt = c, z1:t−1, u1:t,m) p(c̄kt = c | z1:t−1, u1:t,m)

214 Chapter 8

=
p(zk

t | c̄kt = short, z1:t−1, u1:t,m) p(c̄kt = short)
∑

c

p(zk
t | c̄kt = c, z1:t−1, u1:t,m) p(c̄kt = c)

(8.8)

Here the variable c in the denominator takes on any of the four values
{hit, short,max, rand}. Using the notation in Equation (8.7), the prior p(c̄k

t = c)
is given by the variables zhit, zshort, zmax, and zrand, for the four different values of
c. The remaining probability in (8.8) is obtained by integrating out the pose xt:

p(zk
t | c̄kt = c, z1:t−1, u1:t,m)

=

∫

p(zk
t | xt, c̄

k
t = c, z1:t−1, u1:t,m) p(xt | c̄kt = c, z1:t−1, u1:t,m) dxt

=

∫

p(zk
t | xt, c̄

k
t = c,m) p(xt | z1:t−1, u1:t,m) dxt

=

∫

p(zk
t | xt, c̄

k
t = c,m) bel(xt) dxt (8.9)

Probabilities of the form p(zk
t | xt, c̄

k
t = c,m) were abbreviated as phit, pshort, pmax,

and prand in Chapter 6.3. This gives us the expression for desired probability (8.8):

p(c̄kt = short | zk
t , z1:t−1, u1:t,m) =

∫

pshort(z
k
t | xt,m) zshort bel(xt) dxt

∫
∑

c

pc(z
k
t | xt,m) zc bel(xt) dxt

(8.10)

In general, these integrals do not possess closed-form solutions. To evaluate them,
it suffices to approximate them with a representative sample of the posterior bel(xt)
over the state xt. Those samples might be high-likelihood grid cells in grid localizer,
or particles in a MCL algorithm. The measurement is then rejected if its probability
of being caused by an unexpected obstacle exceeds a user-selected threshold χ.

Table 8.4 depicts an implementation of this technique in the context of particle filters.
It requires as input a particle set X̄t representative of the belief bel(xt), along with a
range measurement zk

t and a map. It returns “reject” if with probability larger than χ
the measurement corresponds to an unexpected object; otherwise it returns “accept.”
This routine precedes the measurement integration step in MCL.

Grid And Monte Carlo Localization 215

1: Algorithm test range measurement(zk
t , X̄t,m):

2: p = q = 0
3: for m = 1 to M do
4: p = p+ zhit · phit(z

k
t | x[m]

t ,m)

5: q = q + zhit · phit(z
k
t | x[m]

t ,m) + zshort · pshort(z
k
t | x[m]

t ,m)

6: +zmax · pmax(z
k
t | x[m]

t ,m) + zrand · prand(zk
t | x[m]

t ,m)
7: endfor
8: if p/q ≤ χ then
9: return accept
10: else
11 return reject
12 endif

Table 8.4 Algorithm for testing range measurements in dynamic environment.

Figure 8.19 illustrates the effect of the filter. Shown in both panels are a range scan, for
a different alignment of the robot pose. The lightly shaded scans are above threshold
and rejected. A key property of our rejection mechanism is that it tends to filter out
measurements that are “surprisingly” short, but leaves others in place that are “sur-
prisingly” long. This asymmetry reflects the fact that people’s presence tends to cause
shorter-than-expected measurements. By accepting surprisingly long measurements,
the approach maintains its ability to recover from global localization failures.

Figure 8.20 depicts an episode during which a robot navigates through an environment
that densely populated with people (see Figure 8.18). Shown there is the robot’s esti-
mated path along with the endpoints of all scans incorporated into the localizer. This
figure shows the effectiveness of removing measurements that do not correspond to
physical objects in the map: there are very few “surviving” range measurements in
the freespace for the right diagram, in which measurements are accepted only if they
surpass the threshold test.

As a rule of thumb, filtering out measurements is generally a good idea.There exist al-
most no static environments; even in office environments furniture is moved, doors are
opened/closed, etc. Our specific implementation here benefits from the asymmetry of
range measurements: people make measurements shorter, not longer. When applying
the same idea to other data (e.g., vision data) or other types of environment modifi-
cations (e.g., the removal of a physical obstacle), such an asymmetry might not exist.
Nevertheless, the same probabilistic analysis is usually applicable. The disadvantage

216 Chapter 8

(a) (b)

Figure 8.19 Illustration of our measurement rejection algorithm: Shown in both diagrams
are range scans (no max-range readings). Lightly shaded readings are filtered out.

of the lack of such a symmetry might be that it becomes impossible to recover from
global localization failures, as every surprising measurement is rejected. In such cases,
it may make sense to impose additional constraints, such as a limit on the fraction of
measurements that may be corrupted.

We note that our rejection test has found successful application even in highly static
environments, for reasons that are quite subtle. The beam-based sensor model is dis-
continuous: Small changes of pose can drastically alter the posterior probability of a
sensor measurement. This is because the result of ray casting is not a continuous func-
tion in pose parameters such as the robot orientation. In environment with cluttered
objects, this discontinuity increases the number of particle necessary for successful lo-
calization. By manually removing clutter from the map—and instead letting the filter
manage the resulting “surprising” short measurements—the number of particles can
be reduced drastically. The same strategy does not apply to the likelihood field model,
since this model is smooth in the pose parameters.

8.5 PRACTICAL CONSIDERATIONS

Table 8.5 summarizes the main localization techniques discussed in this and the previ-
ous chapter. When choosing a technique, a number of requirements have to be traded
off. A first question will always be whether it is preferable to extract features from

Grid And Monte Carlo Localization 217

Distance at final position: 19 cm
Certainty at final position: 0.003

final position

Distance at final position: 1 cm
Certainty at final position: 0.998

final position

(a) (b)

Figure 8.20 Comparison of (a) standard MCL and (b) MCL with the removal of sensor
measurements likely caused by unexpected obstacles. Both diagrams show the robot path
and the end-points of the scans used for localization.

sensor measurement. Extracting features may be beneficial from a computational per-
spective, but it comes at the price of reduced accuracy and robustness.

EKF MHT Coarse (topo-
logical) grid

fine (metric)
grid

MCL

Measurements landmarks landmarks landmarks raw
measurements

raw
measurements

Measurement
noise

Gaussian Gaussian any any any

Posterior Gaussian mixture of
Gaussians

histogram histogram particles

Efficiency
(memory)

++ ++ + − +

Efficiency (time) ++ + + − +

Ease of
implementation

+ − + − ++

Resolution ++ ++ − + +

Robustness − + + ++ ++

Global
localization

no no yes yes yes

Table 8.5 Comparison of different implementations of Markov localization.

218 Chapter 8

While in this chapter, we developed techniques for handling dynamic environments
in the context of the MCL algorithm, similar ideas can be brought to bear with other
localization techniques as well. In fact, the techniques discussed here are only repre-
sentative of a much richer body of approaches.

When implementing a localization algorithm, it is worthwhile to play with the various
parameter settings. For example, the conditional probabilities are often inflated when
integrating nearby measurements, so as to accommodate unmodeled dependencies that
always exist in robotics. A good strategy is to collect reference data sets, and tune the
algorithm until the overall result is satisfactory. This is necessary because no mat-
ter how sophisticated the mathematical model, there will always remain unmodeled
dependencies and sources of systematic noise that affect the overall result.

8.6 SUMMARY

In this chapter, we discussed two families of probabilistic localization algorithms, grid
techniques and Monte Carlo localization (MCL).

Grid techniques represent posteriors through histograms.

The coarseness of the grid trades off accuracy and computational efficiency. For
course grids, it is usually necessary to adjust the sensor and motion models to
account for effects that arise from the coarseness of the representation. For fine
grids, it may be necessary to update grid cells selectively to reduce the overall
computation.

The Monte Carlo localization algorithm represents the posterior using particles.
The accuracy-computational costs trade-off is achieved through the size of the
particle set.

Both grid localization and MCL can globally localize robots.

By adding random particles, MCL also solves the kidnapped robot problem.

Mixture-MCL is an extension which inverts the particle generation process for a
fraction of all particles. This yields improved performance specifically for robots
with low-noise sensors, but at the expense of a more complex implementation.

Unmodeled environment dynamics can be accommodated by filtering sensor
data, rejecting those that with high likelihood correspond to an unmodeled ob-
ject. When using range sensors, the robot tends to reject measurements that are
surprisingly short.

Grid And Monte Carlo Localization 219

8.7 EXERCISES

Derive the additive form of the multi-feature information integration in lines 14 and
15 in Table 7.2.

220 Chapter 8

9
OCCUPANCY GRID MAPPING

9.1 INTRODUCTION

The previous two chapters discussed the application of probabilistic techniques to a
low-dimensional perceptual problem, that of estimating a robot’s pose. We assumed
that the robot was given a map in advance. This assumption is legitimate in quite a
few real-world applications, as maps are often available a priori or can be constructed
by hand. Some application domains, however, do not provide the luxury of coming
with an a priori map. Surprisingly enough, most buildings do not comply with the
blueprints generated by their architects. And even if blueprints were accurate, they
would not contain furniture and other items that, from a robot’s perspective, determine
the shape of the environment just as much as walls and doors. Being able to learn a
map from scratch can greatly reduce the efforts involved in installing a mobile robot,
and enable robots to adapt to changes without human supervision. In fact, mapping is
one of the core competencies of truly autonomous robots.

Acquiring maps with mobile robots is a challenging problem for a number of reasons:

The hypothesis space, that is the space of all possible maps, is huge. Since maps
are defined over a continuous space, the space of all maps has infinitely many
dimensions. Even under discrete approximations, such as the grid approximation
which shall be used in this chapter, maps can easily be described 105 or more
variables. The sheer size of this high-dimensional space makes it challenging
to calculate full posteriors over maps; hence, the Bayes filtering approach that
worked well for localization is inapplicable to the problem of learning maps, at
least in its naive form discussed thus far.

221

222 Chapter 9

Learning maps is a “chicken-and-egg” problem, for which reason is often re-
ferred to as the simultaneous localization and mapping (SLAM) or concurrent
mapping and localization problem problem. When the robot moves through its
environment, it accumulates errors in odometry, making it gradually less certain
as to where it is. Methods exist for determining the robot’s pose when a map
is available, as we have seen in the previous chapter. Likewise, constructing a
map when the robot’s poses are known is also relatively easy—a claim that will
be substantiated by this chapter and subsequent chapters. In the absence of both
an initial map and exact pose information, however, the robot has to do both:
estimating the map and localizing itself relative to this map.

Of course, not all mapping problems are equally hard. The hardness of the mapping
problem is the result of a collection of factors, the most important of which are:

Size. The larger the environment relative to the robot’s perceptual range, the
more difficult it is to acquire a map.

Noise in perception and actuation. If robot sensors and actuators were noise-
free, mapping would be a simple problem. The larger the noise, the more difficult
the problem.

Perceptual ambiguity. The more frequently different places look alike, the more
difficult it is to establish correspondence between different locations traversed at
different points in time.

Cycles. Cycles in the environment are particularly difficult to map. If a robot just
goes up and down a corridor, it can correct odometry errors incrementally when
coming back. Cycles make robots return via different paths, and when closing
the cycle the accumulated odometric error can be huge!

To fully appreciate the difficulty of the mapping problem, consider Figure 9.1. Shown
there is a data set, collected in a large indoor environment. Figure 9.1a was generated
using the robot’s raw odometry information. Each black dot in this figure corresponds
to an obstacle detected by the robot’s laser range finder. Figure 9.1b shows the result
of applying mapping algorithms to this data, including the techniques described in this
chapter. This example gives a good flavor of problem at stake.

In this chapter, we first study the mapping problem under the restrictive assumption
that the robot poses are known. Put differently, we side-step the hardness of the SLAM
problem by assuming some oracle informs us of the exact robot path during mapping.
We will discuss a popular family of algorithms, collectively called occupancy grids.

Occupancy Grid Mapping 223

(a)

(b)

Figure 9.1 (a) Raw range data, position indexed by odometry. (b) Map

Occupancy grid maps address the problem of generating consistent maps from noisy
and uncertain measurement data, under the assumption that the robot pose is known.
The basic idea of the occupancy grids is to represent the map as a field of random
variables, arranged in an evenly spaced grid. Each random variable is binary and
corresponds to the occupancy of the location is covers. Occupancy grid mapping
algorithms implement approximate posterior estimation for those random variables.

The reader may wonder about the significance of a mapping technique that requires
exact pose information. After all, no robot’s odometry is perfect! The main utility of
the occupancy grid technique is in post-processing: Many of the SLAM techniques
discussed in subsequent chapters do not generate maps fit for path planning and navi-

224 Chapter 9

gation. Occupancy grid maps are often used after solving the SLAM problem by some
other means, and taking the resulting path estimates for granted.

9.2 THE OCCUPANCY GRID MAPPING

ALGORITHM

To gold standard of any occupancy grid mapping algorithm is to calculate the posterior
over maps given the data

p(m | z1:t, x1:t) (9.1)

As usual, m is the map, z1:t the set of all measurements up to time t, and x1:t is the
path of the robot, that is, the sequence of all its poses. The controls u1:t play no role
in occupancy grid maps, since the path is already known. Hence, they will be omitted
throughout this chapter.

The types maps considered by occupancy grid maps are fine-grained grids defined over
the continuous space of locations. By far the most common domain of occupancy grid
maps are 2-D floorplan maps, which describe a 2-D slice of the 3-D world. 2-D maps
are often sufficient, especially when a robot navigates on a flat surface and the sensors
are mounted so that they capture only a slice of the world. Occupancy grid techniques
generalize to 3-D representations, but at significant computational expenses.

Let mi denote the grid cell with index i. An occupancy grid map partitions the space
into finitely many grid cells:

m =
∑

i

mi (9.2)

Each mi has attached to it a binary occupancy value, which specifies whether a cell
is occupied or free. We will write “1” for occupied and “0” for free. The notation
p(mi = 1) or p(mi) will refer to a probability that a grid cell is occupied.

The problem with the posterior (9.1) is its dimensionality: the number of grid cells in
maps like the one shown in Figure 9.1 are in the tens of thousands, hence the number
of maps defined in this space is often in the excess of 210,000. Calculating a posterior
for each single such map is therefore intractable.

Occupancy Grid Mapping 225

The standard occupancy grid approach breaks down the problem of estimating the map
into a collection of separate problems, namely that of estimating

p(mi | z1:t, x1:t) (9.3)

for all grid cell mi. Each of these estimation problems is now a binary problem with
static state. This decomposition is convenient but not without problems. In particular,
it does enable us to represent dependencies among neighboring cells; instead, the
posterior over maps is approximated as the product of its marginals:

p(m | z1:t, x1:t) = p(mi | z1:t, x1:t) (9.4)

We will return to this issue in Section 9.4 below, when we discuss more advanced
mapping algorithms. For now, we will adopt this factorization for convenience.

Thanks to our factorization, the estimation of the occupancy probability for each grid
cell is now a binary estimation problem with static state. A filter for this problem
was already discussed in Chapter 4.1.4, with the corresponding algorithm depicted in
Table 4.2 on page 75. The algorithm in Table 9.1 applies this filter to the occupancy
grid mapping problem. As in the original filter, our occupancy grid mapping algorithm
uses the log-odds representation of occupancy:

lt,i = log
p(mi | z1:t, x1:t)

1− p(mi | z1:t, x1:t)
(9.5)

This representation is already familiar from Chapter 4.1.4. The advantage of the log-
odds over the probability representation is that we can avoid numerical instabilities for
probabilities near zero or one. The probabilities are easily recovered from the log-odds
ratio:

p(mi | z1:t, x1:t) = 1− 1

1 + exp{lt,i}
(9.6)

The algorithm occupancy grid mapping in Table 9.1 loops through all grid cells i,
and updates those that fall into the sensor cone of the measurement zt. For those where
it does, it updates the occupancy value by virtue of the function inverse sensor model

226 Chapter 9

1: Algorithm occupancy grid mapping({lt−1,i}, xt, zt):
2: for all cells mi do
3: if mi in perceptual field of zt then
4: lt,i = lt−1,i + inverse sensor model(mi, xt, zt)− l0
5: else
6: lt,i = lt−1,i

7: endif
8: endfor
9: return {lt,i}

Table 9.1 The occupancy grid algorithm, a version of the binary Bayes filter in Table 4.2.

in line 4 of the algorithm. Otherwise, the occupancy value remains unchanged, as
indicated in line 6. The constant l0 is the prior of occupancy represented as a log-odds
ratio:

l0 = log
p(mi = 1)

p(mi = 0)
= log

p(mi)

1− p(mi)
(9.7)

The function inverse sensor model implements the inverse measurement model
p(mi | zt, xt) in its log-odds form:

inverse sensor model(mi, xt, zt) = p(mi | zt, xt) (9.8)

A somewhat simplistic example of such a function for range finders is given in Ta-
ble 9.2 and illustrated in Figure 9.7a&b. This model assigns to all cells within the
sensor cone whose range is close to the measured range an occupancy value of locc. In
Table 9.2, the width of this region is controlled by the parameter α, and the opening
angle of the beam is given by β.

The algorithm occupancy grid mapping calculates the inverse model by first deter-
mining the beam index k and the range r for the center-of-mass of the cell mi. This
calculation is carried out in lines 2 through 5 in Table 9.2. As usual, we assume that
the robot pose is given by xt = (x y θ)T . In line 7, it returns the prior for occupancy
in log-odds form whenever the cell is outside the measurement range of this sensor
beam, or if it lies more than α/2 behind the detected range zk

t . In line 9, it returns

Occupancy Grid Mapping 227

(a) (b)

Figure 9.2 Two examples of our inverse
measurement model inverse range sensor model for two different measurement ranges.
The darkness of each grid cell corresponds to the likelihood of occupancy.

locc > l0 is the range of the cell is within ±α/2 of the detected range zk
t . It returns

lfree < l0 if the range to the cell is shorter than the measured range by more than α/2.
The left and center panel of Figure 9.7 illustrates this calculation for a sonar beam
with a 15◦ opening angle.

Figures ?? shows an example map next to a blueprint of a large open exhibit hall, and
relates it to the occupancy map acquired by a robot. The map was generated using
laser range data gathered in a few minutes’ time. The grey-level in the occupancy map
indicates the posterior of occupancy over an evenly spaced grid: The darker a grid cell,
the more likely it is occupied. While occupancy maps are inherently probabilistic, they
tend to quickly converge to estimates that are close to the two extreme posteriors, 1 and
0. In comparison between the learned map and the blueprint, the occupancy grid map
shows all major structural elements, and obstacles as they were visible at the height
of the laser. Close inspection alleviates discrepancies between the blueprint and the
actual environment configuration.

Figure 9.4 compares a raw dataset with the occupancy grid maps generated from this
data. The data in Panel (a) was preprocessed by a SLAM algorithm, so that the poses
align. Some of the data is corrupted by the presence of people; the occupancy grid map
filters out people quite nicely. This makes occupancy grid maps much better suited
for robot navigation than sets of scan endpoint data: A planner fed the raw sensor
endpoints would have a hard time finding a path through such scattered obstacles,
even if the evidence that the corresponding cell is free outweigh that of occupancy.

228 Chapter 9

(a)

(b)

Figure 9.3 (a) Occupancy grid map and (b) architectural blue-print of a large open exhibit
space. Notice that the blue-print is inaccurate in certain places.

Occupancy Grid Mapping 229

(a)

(b)

Figure 9.4 (a) Raw laser range data with correct(ed) pose information. Each dot corre-
sponds to a detection of an obstacle. Most obstacles are static (walls etc.), but some were
people that walked in the vicinity of the robot. (b) Occupancy grid map built from the data.
The grey-scale indicates the posterior probability: Black corresponds to occupied with high
certainty, and white to free with high certainty. The grey background color represents the
prior. Figure (a) has been generated by Steffen Gutmann.

230 Chapter 9

1: Algorithm inverse range sensor model(i, xt, zt):
2: Let xi, yi be the center-of-mass of mi

3: r =
√

(xi − x)2 + (yi − y)2
4: φ = atan2(yi − y, xi − x)− θ
5: k = argminj |φ− θj,sens|
6: if r > min(zmax, z

k
t + α/2) or |φ− θk,sens| > β/2 then

7: return l0
8: if zk

t < zmax and |r − zmax| < α/2
9: return locc

10: if r ≤ zk
t

11: return lfree
12: endif

Table 9.2 A simple inverse measurement model for robots equipped with range finders
Here α is the thickness of obstacles, and β the width of a sensor beam. The values locc and
lfree in lines 9 and 11 denote the amount of evidence a reading carries for the two difference
cases.

We note that our algorithm makes occupancy decisions exclusively based on sensor
measurements. An alternative source of information is the space claimed by the robot
itself: When the robot’s pose is xt, the region surrounding xt must be navigable. Our
inverse measurement algorithm in Table 9.2 can easily be modified to incorporate this
information, by returning a large negative number for all grid cells occupied by a
robot when at xt. In practice, it is a good idea to incorporate the robot’s volume when
generating maps, especially if the environment is populated during mapping.

9.2.1 Multi-Sensor Fusion

Robots are often equipped with more than one type of sensor. Hence, a natural ob-
jective is to integrate information from more than one sensors into a single map. This
question as to how to best integrate data from multiple sensors is particularly inter-
esting if the sensors have different characteristics. For example, Figure 9.5 shows
occupancy maps built with a stereo vision system, in which disparities are projected
onto the plane and convolved with a Gaussian. Clearly, the characteristics of stereo are
different from that of a sonar-based range finder, in that that are sensitive to different
types obstacles.

Occupancy Grid Mapping 231

(a) (a) (a)

Figure 9.5 Estimation of occupancy maps using stereo vision: (a) camera image, (b)
sparse disparity map, (c) occupancy map by projecting the disparity image onto the 2-D
plane and convolving the result with a Gaussian.

There are two basic approaches for fusing data from multiple sensors is to
use Bayes filters for sensor integration. We can execute the algorithm occu-
pancy grid mapping in Table 9.1 with different sensor modalities, replacing the func-
tion inverse sensor model accordingly. However, such an approach has a clear draw-
back. If different sensors detect different types of obstacles, the result of Bayes filter-
ing is ill-defined. Consider, for example, consider an obstacle that can be recognized
by sensor A but not by sensor B. Then these two sensors will generate conflicting
information, and the resulting map will depend on the amount of evidence brought
by every sensor system. This is generally undesirable, since whether or not a cell is
considered occupied depends on the relative frequency at which different sensors are
polled.

The second, more appropriate approach to integrating information from multiple sen-
sors is to build separate maps for each sensor types, and integrate them using the most
conservative estimate. Let mk = {mk

i } denote the map built by the k-th sensor type.
Then the combined map is given by

mi = max
k

mk
i (9.9)

This map is the most pessimistic map given its components: If any of the sensor-
specific map shows that a grid cell is occupied, so will the combined map. While this
combined estimator is biased in factor of occupied maps, it is more appropriate than
the Bayes filter approach when sensors with different characteristics are fused.

232 Chapter 9

9.3 LEARNING INVERSE

MEASUREMENT MODELS

9.3.1 Inverting the Measurement Model

The occupancy grid mapping algorithm requires a marginalized inverse measurement
model, p(mi | x, z). This probability is called “inverse” since it reasons from effects
to causes: it provides information about the world conditioned on a measurement
caused by this world. It is marginalized for the i-th grid cell; a full inverse would be of
the type p(m | x, z). In our exposition of the basic algorithm, we already provided an
ad hoc procedure in Table 9.2 for implementing such an inverse model. This raises the
question as to whether we can obtain an inverse model in a more principled manner,
starting at the conventional measurement model.

The answer is positive but less straightforward than one might assume at first glance.
Bayes rule suggests

p(m | x, z) =
p(z | x,m) p(m | x)

p(z | x) (9.10)

= η p(z | x,m) p(m) (9.11)

Here we silently assume p(m | x) = p(m), that is, the pose of the robot tells us
nothing about the map—an assumption that we will adopt for sheer convenience. If
our goal was to calculate the inverse model for the entire map at-a-time, we would now
be done. However, our occupancy grid mapping algorithm approximates the posterior
over maps by its marginals, one for each grid cell mi. The inverse model for the i-th
grid cell is obtained by selecting the marginal for the i-th grid cell:

p(mi | x, z) = η

∫

m:m(i)=mi

p(z | x,m) p(m) dm (9.12)

This expression integrates over all maps m for which the occupancy value of grid cell
i equals mi. Clearly, this integral cannot be computed, since the space of all maps is
too large. We will now describe an algorithm for approximating this expression. The
algorithm involves generating samples from the measurement model, and approximat-
ing the inverse using a function approximator (or supervised learning algorithm), such
as a polynomial, logistic regression, or a neural network.

Occupancy Grid Mapping 233

9.3.2 Sampling from the Forward Model

The basic idea is simple and quite universal: If we can generate random triplets of
poses x[k]

t , measurements z[k]
t and map occupancy values m

[k]
i for any grid cell mi,

we can learn a function that accepts a pose x and measurement z as an input, and
outputs the probability of occupancy for mi.

A sample of the form (x
[k]
t z

[k]
t m

[k]
i) can be generated by the following procedure.

1. Sample a random map m[k] ∼ p(m). For example, one might already have
a database of maps that represents p(m) and randomly draws a map from the
database.

2. Sample a pose x[k]
t inside the map. One may safely assume that poses are uni-

formly distributed.

3. Sample an measurement z[k]
t ∼ p(z | x[k]

t ,m[k]). This sampling step is reminis-
cent of a robot simulator which stochastically simulates a sensor measurement.

4. Extract the desired “true” occupancy value mi for the target grid cell from the
map m.

The result is a sampled pose x[k]
t , a measurement z[k]

t , and the occupancy value the the
grid cell mi. Repeated application of this sampling step yields a data set

x
[1]
t z

[1]
t −→ occ(mi)

[1]

x
[2]
t z

[2]
t −→ occ(mi)

[2]

x
[3]
t z

[3]
t −→ occ(mi)

[3]

...
...

...

(9.13)

These triplets may serve as training examples for function approximator, to approxi-
mate the desired conditional probability p(mi | z, x). Here the measurements z and
the pose x are input variables, and the occupancy value occ(mi) is a target for the
output of the function approximator.

This approach is somewhat inefficient, since it fails to exploit a number of properties
that we know to be the case for the inverse sensor model.

Measurements should carry no information about grid cells far outside their per-
ceptual range. This observation has two implications: First, we can focus our

234 Chapter 9

sample generation process on triplets where the cell mi is indeed inside the mea-
surement cone. And second, when making a prediction for this cell, we only have
to include a subset of the data in a measurement z (e.g., nearby beams) as input
to the function approximator.

The characteristics of a sensor are invariant with respect to the absolute coordi-
nates of the robot or the grid cell when taking a measurement. Only the relative
coordinates matter. If we denote the robot pose by xt = (x y θ)T and the coor-
dinates of the grid cell by mi = (xmi

ymi
)T , the coordinates of the grid cell are

mapped into the robot’s local reference frame via the following translation and
rotation:

(
cos θ − sin θ
sin θ cos θ

)(
xmi
− x

ymi
− y

)

(9.14)

In robots with circular array of range finders, it makes sense to encode the relative
location of a grid cell using the familiar polar coordinates (range and angle).

Nearby grid cells should have a similar interpretation under the inverse sensor
model. This smoothness suggest that it may be beneficial to learn a single func-
tion in which the coordinates of the grid cell function as an input, rather than
learning a separate function for each grid cell.

If the robot possesses functionally identical sensors, the inverse sensor model
should be interchangeable for different sensors. For robots equipped with a cir-
cular array of range sensors, any of the resulting sensor beam is characterized by
the same inverse sensor model.

The most basic way to enforce these invariances is to constrain the function approxi-
mator by choosing appropriate input variables. A good choice is to use relative pose
information, so that the function approximator cannot base its decision on absolute co-
ordinates. It is also a good idea to omit sensor measurements known to be irrelevant to
occupancy predictions, and to confine the prediction to grid cells inside the perceptual
field of a sensor. By exploiting these invariances, the training set size can be reduced
significantly.

9.3.3 The Error Function

To train the function approximator, we need an approximate error function. A pop-
ular example are artificial neural networks trained with the Back-propagation algo-
rithm. Back-propagation trains neural networks by gradient descent in parameter

Occupancy Grid Mapping 235

space. Given an error function that measures the “mismatch” between the network’s
actual and desired output, Back-propagation calculates the first derivative of the tar-
get function and the parameters of the neural network, and then adapts the parameters
in opposite direction of the gradient so as to diminish the mismatch. This raises the
question as to what error function to use.

A common approach is to train the function approximator so as to maximize the log-
likelihood of the training data. More specifically we are given a training set of the
form

input[1] −→ occ(mi)
[1]

input[2] −→ occ(mi)
[2]

input[3] −→ occ(mi)
[3]

...
...

(9.15)

occ(mi)
[k] is the i-th sample of the desired conditional probability, and input[k] is the

corresponding input to the function approximator. Clearly, the exact form of the input
may vary as a result of the encoding known invariances, but the exact nature of this
vector will plays no role in the form of the error function.

Let us denote the parameters of the function approximator by W . Assuming that each
individual item in the training data has been generated independently, the likelihood
of the training data is now

∏

i

p(m
[k]
i | input[k],W) (9.16)

and its logarithm is

J(W) =
∑

i

log p(m
[k]
i | input[k],W) (9.17)

Here J defines the function we seek to maximize during training.

Let us denote the function approximator by f(input[k],W). The output of this func-
tion is a value in the interval [0; 1]. After training, we want the function approximator

236 Chapter 9

output the probability of occupancy, that is:

p(m
[k]
i | input[k],W) =

{

f(input[k],W) if m
[k]
i = 1

1− f(input[k],W) if m
[k]
i = 0

(9.18)

Thus, we seek an error function that adjusts W so as to minimize the deviation of this
predicted probability and the one communicated by the training example. To find such
an error function, we re-write (9.18) as follows:

p(m
[k]
i | input[k],W) = f(input[k],W)m

[k]
i (1− f(input[k],W))1−m

[k]
i

(9.19)

It is easy to see that this product and Expression (9.18) are identical. In the product,
one of the terms is always 1, since its exponent is zero. Substituting the product
into (9.20) and multiplying the result by minus one gives us the following function:

J(W) = −
∑

i

log
[

f(input[k],W)m
[k]
i (1− f(input[k],W))1−m

[k]
i

]

= −
∑

i

m
[k]
i log f(input[k],W) + (1−m

[k]
i) log(1− f(input[k],W))

(9.20)

J(W) is the error function to minimize when training the function approximator. It is
easily folded into any function approximator that uses gradient descent.

9.3.4 Further Considerations

Figure 9.6 shows the result of an artificial neural network trained to mimic the inverse
sensor model. The robot in this example is equipped with a circular array of sonar
range sensors mounted at approximate table height. The input to the network are rela-
tive coordinates in polar coordinates, and the set of five adjacent range measurements.
The output is a probability of occupancy: the darker a cell, the more likely it is occu-
pied. As this example illustrates, the approach correctly learns to distinguish freespace
from occupied space. The gray-ish area behind obstacles matches the prior probability
of occupancy, which leads to no change when used in the occupancy grid mapping al-
gorithm. Figure 9.6b contains a faulty short reading on the bottom left. Here a single
reading seems to be insufficient to predict an obstacle with high probability.

Occupancy Grid Mapping 237

(a) (b) (c)

Figure 9.6 Sensor interpretation: Three sample sonar scans (top row) and local occupancy
maps (bottom row), as generated by the neural network. Bright regions indicate free-space,
and dark regions indicate walls and obstacles (enlarged by a robot diameter).

We note that there exists a number of ways to train a function approximator using ac-
tual data collected by a robot, instead the simulated data from the forward model. In
general, this is the most accurate data one can use for learning, since the measurement
model is necessarily just an approximation. One such way involves a robot operating
in a known environment with a known map. With Markov localization, we can lo-
calize the robot, and then use its actual recorded measurements and the known map
occupancy to assemble training examples. It is even possible to start with an approx-
imate map, use the learned sensor model to generate a better map, and from that map
use the procedure just outlined to improve the inverse measurement model. As this
book is being written, the issue of learning inverse sensor models from data remains
relatively unexplored.

238 Chapter 9

(a) (b) (c)

(d) (e) (f)

Figure 9.7 The problem with the standard occupancy grid mapping algorithm in Sec-
tion 9.2: For the environment shown in Figure (a), a passing robot might receive the (noise-
free) measurement shown in (b). The factorial approach maps these beams into probabilistic
maps separately for each grid cell and each beam, as shown in (c) and (d). Combining both
interpretations yields the map shown in (e). Obviously, there is a conflict in the overlap
region, indicated by the circles in (e). The interesting insight is: There exist maps, such as
the one in diagram (f), which perfectly explain the sensor measurement without any such
conflict. For a sensor reading to be explained, it suffices to assume an obstacle somewhere
in the cone of a measurement, and not everywhere.

9.4 MAXIMUM A POSTERIOR

OCCUPANCY MAPPING

9.4.1 The Case for Maintaining Dependencies

In the remainder of this chapter, we will return to one of the very basic assumptions of
the occupancy grid mapping algorithm. In Section 9.2, we assumed that we can safely

Occupancy Grid Mapping 239

1: Algorithm MAP occupancy grid mapping(x1:t, z1:t):
2: set m = {0}
3: repeat until convergence
4: for all cells mi do

5: mi = argmax
k=0,1

(l0)
k +

∑

t

log

measurement model(zt, xt,m with mi = k)
6: endfor
7: endrepeat
8: return m

Table 9.3 The maximum a posteriori occupancy grid algorithm, which uses conventional
measurement models instead of inverse models.

decompose the map inference problem defined over high-dimensional space of all
maps, into a collection of single-cell mapping problems. This assumption culminated
into the factorization in (9.4). This raises the question as to how faithful we should be
in the result of any algorithm that relies on such a strong decomposition.

Figure 9.7 illustrates a problem that arises directly as a result of this factorization.
Shown there is a situation in which the the robot facing a wall receives two noise-free
sonar range measurements. Because the factored approach predicts an object along the
entire arc at the measured range, the occupancy values of all grid cells along this arc are
increased. When combining the two different measurements shown in Figure 9.7c&d,
a conflict is created, as shown in Figure 9.7e. The standard occupancy grid mapping
algorithm “resolves” this conflict by summing up positive and negative evidence for
occupancy; however, the result will reflect the relative frequencies of the two types of
measurements, which is undesirable.

However, there exist maps, such as the one in Figure 9.7f, which perfectly explains the
sensor measurements without any such conflict. This is because for a sensor reading
to be explained, it suffices to assume an obstacle somewhere in its measurement cone.
Put differently, the fact that cones sweep over multiple grid cells induces important
dependencies between neighboring grid cells. When decomposing the mapping into
thousands of individual grid cell estimation problems, we lose the ability to consider
these dependencies.

240 Chapter 9

9.4.2 Occupancy Grid Mapping with Forward

Models

These dependencies are incorporated by an algorithm that outputs the mode of the
posterior, instead of the full posterior. The mode is defined as the maximum of the
logarithm of the map posterior, which we already encountered in Equation (9.1):

m∗ = argmax
m

log p(m | z1:t, x1:t) (9.21)

The map posterior factors into a map prior and a measurement likelihood (c.f., Equa-
tion (9.11)):

log p(m | z1:t, x1:t) = log p(z1:t | x1:t,m) + log p(m) (9.22)

The log-likelihood log p(z1:t | x1:t,m) decomposes into a sum all individual mea-
surement log-likelihoods log p(zt | xt,m). Further, the log-prior log p(m) is simply a
sum of the type

log p(m) =
∑

i

[log p(mi)]
mi + [log(1− p(mi))]

1−mi

= M log(1− p(mi)) +
∑

i

(l0)
mi (9.23)

where M denotes the number of grid cells, and l0 is adopted from (9.7). The term
M log(1− p(mi)) is obviously independent of the map. Hence it suffices to optimize
the remaining expression and the data log-likelihood:

m∗ = argmax
m

∑

t

log p(zt | xt,m) +
∑

i

(l0)
mi (9.24)

A hill-climbing algorithm for maximizing this log-probability is provided in Table 9.3.
This algorithm starts with the all-free map (line 2). It “flips” the occupancy value
of a grid cell when such a flip increases the likelihood of the data (lines 4-6). For
this algorithm it is essential that the prior of occupancy p(mi) is not too close to 1;
otherwise it might return an all-occupied map. As any hill climbing algorithm, this
approach is only guaranteed to find a local maximum. In practice, there are usually
very few, if any, local maxima.

Occupancy Grid Mapping 241

(a) (b)

(c) (d)

Figure 9.8 (a) sonar range measurements from a noise-free simulation; (b) Results of
the standard occupancy mapper, lacking the open door. (c) A maximum a posterior map.
(d) The residual uncertainty in this map, obtained by measuring the sensitivity of the map
likelihood function with respect to individual grid cells..

Figure 9.8 illustrates the effect of the MAP occupancy grid algorithm. Figure 9.8a
depicts a noise-free data set of a robot passing by an open door. Some of the sonar
measurements detect the open door, while others are reflected at the door post. The
standard occupancy mapping algorithm with inverse models fails to capture the open-
ing, as shown in Figure 9.8b. The mode of the posterior is shown in Figure 9.8c.
This map models the open door correctly, hence it is better suited for robot naviga-
tion than the standard occupancy grid map algorithm. Figure 9.8d shows the residual
uncertainty of this map. This diagram is the result of a cell-wise sensitivity analysis:
The magnitude by which flipping a grid cell decreases the log-likelihood function is
illustrated by the grayness of a cell. This diagram, similar in appearance to the regular

242 Chapter 9

occupancy grid map, suggests maximum uncertainty for grid cells behind obstacles. It
lacks the vertical stripes found in Figure 9.8a.

There exists a
number of limitations of the algorithm MAP occupancy grid mapping, and it can
be improved in multiple ways. The algorithm is a maximum a posterior approach, and
as such returns no notion of uncertainty in the residual map. Our sensitivity analysis
approximates this uncertainty, but this approximation is overconfident, since sensitiv-
ity analysis only inspects the mode locally. Further, the algorithm is a batch algorithm
and cannot be executed incrementally. In fact, the MAP algorithm requires that all data
is kept in memory. At the computational end, the algorithm can be sped up by initial-
izing it with the result of the regular occupancy grid mapping approach, instead of an
empty map. Finally. we note that only a small number of measurements are affected
by flipping a grid cell in Line 5 of Table 9.3. While each sum is potentially huge,
only a small number of elements has to be inspected when calculating the argmax. We
leave the design of an appropriate data a structure to the reader as an exercise.

9.5 SUMMARY

This chapter introduced algorithms for learning occupancy grids. All algorithms in
this chapter require exact pose estimates for the robot, hence they do not solve the
general mapping problem.

The standard occupancy mapping algorithm estimates for each grid cell individu-
ally the posterior probability of occupancy. It is an adaptation of the binary Bayes
filter for static environments.

Data from multiple sensors can be fused into a single map in two ways: By
maintaining a single map using Bayes filters, and by maintaining multiple maps,
one for each sensor modality, and extracting the most most pessimistic occupancy
value when making navigation decisions. The latter procedure is preferable when
different sensors are sensitive to different types of obstacles.

The standard occupancy grid mapping algorithm relies on inverse measurement
models, which reason from effects (measurements) to causes (occupancy). This
differs from previous applications of Bayes filters in the context of localization,
where the Bayes filter was based on a conventional measurement model that rea-
sons from causes to effects.

Occupancy Grid Mapping 243

It is possible to learn inverse sensor models from the conventional measurement
model, which models the sensor from causes to effects. To do so, one has to
generate samples, and learn an inverse model using function approximation.

The standard occupancy grid mapping algorithm does not maintain dependencies
in the estimate of occupancy. This is a result of decomposing the map poste-
rior estimation problem into a large number of single-cell posterior estimation
problem.

The full map posterior is generally not computable, due to the large number of
maps that can be defined over a grid. However, it can be maximized. Maximizing
it leads to maps that are more consistent with the data. However, the maximiza-
tion requires the availability of all data, and the resulting maximum a posterior
map does not capture the residual uncertainty in the map.

Without a doubt, occupancy grid maps and their various extensions are vastly popular
in robotics. This is because they are extremely easy to acquire, and they capture
important elements for robot navigation.

244 Chapter 9

10
SIMULTANEOUS LOCALIZATION

AND MAPPING

10.1 INTRODUCTION

This and the following chapters address one of the most fundamental problems in
robotics, the simultaneous localization and mapping problem. This problem is com-
monly abbreviated as SLAM, and is also known as Concurrent Mapping and Local-
ization, or CML. SLAM problems arise when the robot does not have access to a
map of the environment; nor does it have access to its own poses. Instead, all it is
given are measurements z1:t and controls u1:t. The term “simultaneous localization
and mapping” describes the resulting problem: In SLAM, the robot acquires a map
of its environment while simultaneously localizing itself relative to this map. SLAM
is significantly more difficult than all robotics problems discussed thus far: It is more
difficult than localization in that the map is unknown and has to be estimated along the
way. It is more difficult than mapping with known poses, since the poses are unknown
and have to be estimated along the way.

From a probabilistic perspective, there are two main forms of the SLAM problem,
which are both of equal practical importance. One is known as the online SLAM
problem: It involves estimating the posterior over the momentary pose along with the
map:

p(xt,m | z1:t, u1:t) (10.1)

Here xt is the pose at time t, m is the map, and z1:t and u1:t are the measurements
and controls, respectively. This problem is called the online SLAM problem since it
only involves the estimation of variables that persist at time t. Many algorithms for the

245

246 Chapter 10

online SLAM problem are incremental: they discard past measurements and controls
once they have been processed.

The second SLAM problem is called the full SLAM problem. In full SLAM, we seek
to calculate a posterior over the entire path x1:t along with the map, instead of just the
current pose xt:

p(x1:t,m | z1:t, u1:t) (10.2)

This subtle difference in the formulation of the SLAM problem between online and
full SLAM has ramifications in the type algorithms that can be brought to bear. In
particular, the online SLAM problem is the result of integrating out past poses from
the full SLAM problem:

p(xt,m | z1:t, u1:t) (10.3)

=

∫ ∫

· · ·
∫

p(x1:t,m | z1:t, u1:t) dx1 dx2 . . . dxt−1

In online SLAM, these integrations are typically performed one-at-a-time, and they
cause interesting changes of the dependency structures in SLAM that we will fully
explore in the next chapter.

A second key characteristic of the SLAM problem has to do with the nature of the
estimation problem. SLAM problems possess a continuous and a discrete component.
The continuous estimation problem pertains to the location of the objects in the map
and the robot’s own pose variables. Objects may be landmarks in feature-based rep-
resentation, or they might be object patches detected by range finders. The discrete
nature has to do with correspondence: When an object is detected, a SLAM algorithm
must reason about the relation of this object to previously detected objects. This rea-
soning is typically discrete: Either the object is the same as a previously detected one,
or it is not.

We already encountered similar continuous-discrete estimation problems in previous
chapters. For example, EKF localization 7.5 estimates the robot pose, which is con-
tinuous, but to do so it also estimates the correspondences of measurements and land-
marks in the map, which are discrete. In this and the subsequent chapters, we will
discuss a number of different techniques to deal with the continuous and the discrete
aspects of the SLAM problem.

Simultaneous Localization and Mapping 247

At times, it will be useful to make the correspondence variables explicit, as we did in
Chapter 7 on localization. The online SLAM posterior is then given by

p(xt,m, ct | z1:t, u1:t) (10.4)

and the full SLAM posterior by

p(x1:t,m, c1:t | z1:t, u1:t) (10.5)

The online posterior is obtained from the full posterior by integrating out past robot
poses and summing over all past correspondences:

p(xt,m, ct | z1:t, u1:t) (10.6)

=

∫ ∫

· · ·
∫
∑

c1

∑

c2

· · ·
∑

ct−1

p(x1:t,m | z1:t, u1:t) dx1 dx2 . . . dxt−1

In both versions of the SLAM problems—online and full—estimating the full pos-
terior (10.4) or (10.5) is the gold standard of SLAM. The full posterior captures all
there is to be known about the map and the pose or the path. In practice, calculat-
ing a full posterior is usually infeasible. Problems arise from two sources: (1) the
high dimensionality of the continuous parameter space, and (2) the large number of
discrete correspondence variables. Many state-of-the-art SLAM algorithm construct
maps with tens of thousands of features, or more. Even under known correspondence,
the posterior over those maps alone involves probability distributions over spaces with
105 or more dimensions. This is in stark contrast to localization problems, in which
posteriors were estimated over three-dimensional continuous spaces. Further, in most
applications the correspondences are unknown. The number of possible assignment to
the vector of all correspondence variables, c1:t grows exponentially in the time t. Thus,
practical SLAM algorithms that can cope with the correspondence problem must rely
on approximations.

The SLAM problem will be discussed in a number of subsequent chapter. The remain-
der of this chapter develops an EKF algorithm for the online SLAM problem. Much of
this material builds on Chapter 3.3, where the EKF was introduced, and Chapter 7.5,
where we applied the EKF to the mobile robot localization problem. We will derive a
progression of EKF algorithms that first apply EKFs to SLAM with known correspon-
dences, and then progress to the more general case with unknown correspondences.

248 Chapter 10

10.2 SLAM WITH EXTENDED KALMAN

FILTERS

10.2.1 Setup and Assumptions

Historically the earliest, and perhaps the most influential SLAM algorithm is based on
the extended Kalman filter, or EKF. In a nutshell, the EKF SLAM algorithm applies
the EKF to online SLAM using maximum likelihood data association. In doing so,
EKF SLAM is subject to a number of approximations and limiting assumptions:

Feature-based maps. Maps, in the EKF, are composed of point landmarks.
For computational reasons, the number of point landmarks is usually small (e.g.,
smaller than 1,000). Further, the EKF approach tends to work well the less am-
biguous the landmarks are. For this reason, EKF SLAM requires significant en-
gineering of feature detectors, sometimes using artificial beacons or landmarks
as features.

Gaussian noise. As any EKF algorithm, EKF SLAM makes a Gaussian noise
assumption for the robot motion and the perception. The amount of uncertainty
in the posterior must be relatively small, since otherwise the linearization in EKFs
tend to introduce intolerable errors.

Positive measurements. The EKF SLAM algorithm, just like the EKF localizer
discussed in Chapter 7.5, can only process positive sightings of landmarks. It
cannot process negative information that arises from the absence of landmarks
in a sensor measurements. This is a direct consequence of the Gaussian belief
representation and was already discussed in Chapter 7.5.

10.2.2 SLAM with Known Correspondence

The SLAM algorithm for the case with known correspondence addresses the contin-
uous portion of the SLAM problem only. Its development is in many ways parallel
to the derivation of the EKF localization algorithm in Chapter 7.5, but with one key
difference: In addition to estimating the robot pose xt, the EKF SLAM algorithm also
estimates the coordinates of all landmarks encountered along the way. This makes it
necessary to include the landmark coordinates into the state vector.

Simultaneous Localization and Mapping 249

1: Algorithm EKF SLAM known correspondences(µt−1, Σt−1, ut, zt, ct):

2: Fx =

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

︸ ︷︷ ︸

2N

3: µ̄t = µt−1 + F T
x

− vt

ωt
sin µt−1,θ + vt

ωt
sin(µt−1,θ + ωt∆t)

vt

ωt
cos µt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

ωt∆t

4: Gt = I + F T
x

0 0 vt

ωt
cos µt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

0 0 vt

ωt
sin µt−1,θ − vt

ωt
sin(µt−1,θ + ωt∆t)

0 0 0

 Fx

5: Σ̄t = Gt Σt−1 GT
t + F T

x Rt Fx

6: Qt =

(
σr 0 0
0 σφ 0
0 0 σs

)

7: for all observed features zi
t = (ri

t φi
t si

t)
T do

8: j = ci
t

9: if landmark j never seen before

10:

(
µ̄j,x

µ̄j,y

µ̄j,s

)

=

(
µ̄t,x

µ̄t,y

si
t

)

+ ri
t

(
cos(φi

t + µ̄t,θ)
sin(φi

t + µ̄t,θ)
0

)

11: endif

12: δ =

(
δx

δy

)

=

(
µ̄j,x − µ̄t,x

µ̄j,y − µ̄t,y

)

13: q = δT δ

14: ẑi
t =

(√
q

atan2(δy, δx) − µ̄t,θ

µ̄j,s

)

15: Fx,j =

1 0 0 0 · · · 0 0 0 0 0 · · · 0
0 1 0 0 · · · 0 0 0 0 0 · · · 0
0 0 1 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 1 0 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 0 · · · 0
0 0 0 0 · · · 0

︸ ︷︷ ︸

2j−2

0 0 1 0 · · · 0
︸ ︷︷ ︸

2N−2j

16: Hi
t = 1

q

(√
qδx −√

qδy 0 −√
qδx

√
qδy 0

δy δx −1 −δy −δx 0
0 0 0 0 0 1

)

Fx,j

17: Ki
t = Σ̄t HiT

t (Hi
t Σ̄t HiT

t + Qt)
−1

18: endfor
19: µt = µ̄t +

∑

i
Ki

t(z
i
t − ẑi

t)
20: Σt = (I −

∑

i
Ki

t Hi
t) Σ̄t

21: return µt, Σt

Table 10.1 The extended Kalman filter (EKF) algorithm for the simultaneous localization
and mapping problem, formulated here for a feature-based map and a robot equipped with
sensors for measuring range and bearing. This version assumes knowledge of the exact
correspondences.

250 Chapter 10

For convenience, let us call the state vector comprising robot pose and the map the
combined state vector, and denote this vector yt. The combined vector is given by

yt =

(
xt

m

)

(10.7)

= (x y θ m1,x m1,y s1 m2,x m2,y s2 . . . mN,x mN,y sN)T

Here x, y, and θ denote the robot’s coordinates at time t, mi,x,mi,y are the coordi-
nates of the i-th landmark, for i = 1, . . . , N , and si is its signature. The dimension
of this state vector is 3N + 3, where N denotes the number of landmarks in the map.
Clearly, for any reasonable number of N , this vector is significantly larger than the
pose vector that is being estimated in Chapter 7.5, which introduced the EKF localiza-
tion algorithm. EKF SLAM calculates the online posterior

p(yt | z1:t, u1:t) (10.8)

The EKF SLAM algorithm is depicted in Table 10.1—notice the similarity to the
EKF localization algorithm in Table 7.2. Lines 2 through 5 apply the motion up-
date, whereas Lines 6 through 20 incorporate the measurement vector. In particular,
Lines 3 and 5 manipulate the mean and covariance of the belief in accordance to the
motion model. This manipulation only affects those elements of the belief distribution
concerned with the robot pose. It leaves all mean and covariance variables for the map
unchanged, along with the pose-map covariances. Lines 7 through 18 iterate through
all measurements. The test in Line 9 returns true only for landmarks for which we
have no initial location estimate. For those, Line 10 initializes the location of such a
landmark by the projected location obtained from the corresponding range and bearing
measurement. As we shall discuss below, this step is important for the linearization
in EKFs; it would not be needed in linear Kalman filters. For each measurement, an
“expected” measurement is computed in Line 14, and the corresponding Kalman gain
is computed in Line 17. Notice that the Kalman gain is a matrix of size 3 by 3N + 3.
This matrix is usually non-sparse, that is, information is propagated through the en-
tire state estimate. The final filter update then occurs in Lines 19 and 20, where the
innovation is folded back into the robot’s belief.

The fact that the Kalman gain is fully populated for all state variables—and not just the
observed landmark and the robot pose—is important. In SLAM, observing a landmark
does not just improve the position estimate of this very landmark, but that of other
landmarks as well. This effect is mediated by the robot pose: Observing a landmark
improves the robot pose estimate, and as a result it eliminates some of the uncertainty

Simultaneous Localization and Mapping 251

(a) (b)

(c) (d)

Figure 10.1 EKF applied to the online SLAM problem. The robot’s path is a dotted line,
and its estimations of its own position are shaded ellipses. Eight distinguishable landmarks
of unknown location are shown as small dots, and their location estimations are shown as
white ellipses. In (a)–(c) the robot’s positional uncertainty is increasing, as is its uncertainty
about the landmarks it encounters. In (d) the robot senses the first landmark again, and the
uncertainty of all landmarks decreases, as does the uncertainty of its current pose.

of landmarks previously seen by the same robot. The amazing effect here is that we do
not have to model past poses explicitly—which would put us into the realm of the full
SLAM problem and make the EKF a non-realtime algorithm. Instead, this dependence
is captured in the Gaussian posterior, more specifically, in the off-diagonal covariance
elements of the matrix Σt.

252 Chapter 10

Figure 10.1 illustrates the EKF SLAM algorithm for an artificial example. The robot
navigates from a start pose which serves as the origin of its coordinate system. As
it moves, its own pose uncertainty increases, as indicated by uncertainty ellipses of
growing diameter. It also senses nearby landmarks and maps them with an uncertainty
that combines the fixed measurement uncertainty with the increasing pose uncertainty.
As a result, the uncertainty in the landmark locations grows over time. In fact, it par-
allels that of the pose uncertainty at the time a landmark is observed. The interesting
transition happens in Figure 10.1d: Here the robot observes the landmark it saw in the
very beginning of mapping, and whose location is relatively well known. Through this
observation, the robot’s pose error is reduced, as indicated in Figure 10.1d—notice the
very small error ellipse for the final robot pose! Further, this observation also reduces
the uncertainty for other landmarks in the map! This phenomenon arises from a corre-
lation that is expressed in the covariance matrix of the Gaussian posterior. Since most
of the uncertainty in earlier landmarks is causes by the robot pose, and this very un-
certainty persists over time, the location estimates of those landmarks are correlated.
When gaining information on the robot’s pose, this information spreads to previously
observed landmarks. This effect is probably the most important characteristic of the
SLAM posterior: Information that helps localize the robot is propagated through map,
and as a result improves the localization of other landmarks in the map.

10.2.3 Mathematical Derivation

The derivation of the EKF SLAM algorithm for the case with known correspondences
largely parallels that of the EKF localizer in Chapter 7.5. The key difference is the
augmented state vector, which now includes the locations of all landmarks in addition
to the robot pose.

In SLAM, the initial pose is taken to be to origin of the coordinate system. This
definition is somewhat arbitrary, in that it can be replaced by any coordinate. None of
the landmark locations are known initially. The following initial mean and covariance
express this belief:

µ0 = (0 0 0 . . . 0)T (10.9)

Σ0 =

0 0 0 ∞ · · · ∞
0 0 0 ∞ · · · ∞
0 0 0 ∞ · · · ∞
∞ ∞ ∞ ∞ · · · ∞
...

...
...

...
. . .

...
∞ ∞ ∞ ∞ · · · ∞

(10.10)

Simultaneous Localization and Mapping 253

The covariance matrix is of size (3N +3)× (3N +3). It is composed of a small 3×3
matrix of zeros for the robot pose variables. All other covariance values are infinite.

As the robot moves, the state vector changes according to the standard noise-free
velocity model (see Equations (5.13) and (7.4)). In SLAM, this motion model is ex-
tended to the augmented state vector:

yt = yt−1 +

− vt

ωt
sin θ + vt

ωt
sin(θ + ωt∆t)

vt

ωt
cos θ − vt

ωt
cos(θ + ωt∆t)

ωt∆t+ γt∆t
0
...
0

(10.11)

The variables x, y, and θ denote the robot pose in yt−1. Because the motion only
affects the robot’s pose and all landmarks remain where they are, only the first three
elements in the update are non-zero. This enables us to write the same equation more
compactly:

yt = yt−1 + Fx

− vt

ωt
sin θ + vt

ωt
sin(θ + ωt∆t)

vt

ωt
cos θ − vt

ωt
cos(θ + ωt∆t)

ωt∆t+ γt∆t

 (10.12)

Here Fx is a matrix that maps the 3-dimensional state vector into a vector of dimension
3N + 3.

Fx =

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

︸ ︷︷ ︸

3N columns

(10.13)

The full motion model with noise is then as follows

yt = yt−1 + FT
x

− vt

ωt
sin θ + vt

ωt
sin(θ + ωt∆t)

vt

ωt
cos θ − vt

ωt
cos(θ + ωt∆t)

ω∆t

︸ ︷︷ ︸

g(ut,yt−1)

+N (0, F T
x Rt Fx)

(10.14)

254 Chapter 10

where F T
x RtFx extends the covariance matrix to the dimension of the full state vector

squared.

As usual in EKFs, the motion function g is approximated using a first degree Taylor
expansion

g(ut, yt−1) ≈ g(ut, µt−1) + Gt (yt−1 − µt−1) (10.15)

where the Jacobian Gt = g′(ut, µt−1) is the derivative of g at ut, as in Equation (7.8).
Obviously, the additive form in (10.14) enables us to decompose this Jacobian into
an identity matrix of dimension (3N + 3)× (3N + 3) (the derivative of yt−1) plus a
low-dimensional Jacobian gt that characterizes the change of the robot pose:

Gt = I + F T
x gt Fx (10.16)

with

gt =

0 0 vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

0 0 vt

ωt
sinµt−1,θ − vt

ωt
sin(µt−1,θ + ωt∆t)

0 0 0

 (10.17)

Plugging these approximations into the standard EKF algorithm gives us Lines 2
through 5 of Table 10.1. Obviously, several of the matrices multiplied in line 5 are
sparse, which should be exploited when implementing this algorithm. The result of
this update are the mean µ̄t and the covariance Σ̄t of the estimate at time t after up-
dating the filter with the control ut, but before integrating the measurement zt.

The derivation of the measurement update is similar to the one in Section 7.5. In
particular, we are given the following measurement model

zi
t =

√

(mj,x − x)2 + (mj,y − y)2
atan2(mj,y − y,mj,x − x)− θ

mj,s

︸ ︷︷ ︸

h(yt,j)

+N (0,

σr 0 0
0 σφ 0
0 0 σs

︸ ︷︷ ︸

Qt

)(10.18)

where x, y, and θ denotes the pose of the robot, i is the index of an individual landmark
observation in zt, and j = cit is the index of the observed landmark at time t. This

Simultaneous Localization and Mapping 255

expression is approximated by the linear function

h(yt, j) ≈ h(µ̄t, j) + Hi
t (yt − µ̄t) (10.19)

Here Hi
t is the derivative of h with respect to the full state vector yt. Since h depends

only on two elements of that state vector, the robot pose xt and the location of the j-th
landmark mj , the derivative factors into a low-dimensional Jacobian hi

t and a matrix
Fx,j , which maps hi

t into a matrix of the dimension of the full state vector:

Hi
t = hi

t Fx,j (10.20)

Here hi
t is the Jacobian of the function h(yt, j) at µ̄t, calculated with respect to the

state variables xt and mj :

hi
t =

mj,x − µ̄t,x√
q

t

yt − µ̄t,y√
q

t

0
µ̄t,x −mj,x√

q
t

µ̄t,y − yt√
q

t

0

µ̄t,y − yt

qt

mj,x − µ̄t,x

qt
−1

yt − µ̄t,y

qt

µ̄t,x −mj,x

qt
0

0 0 0 0 0 1

(10.21)

The scalar qt = (mj,x− µ̄t,x)2 +(mj,y− µ̄t,y)2, and as before, j = cit is the landmark
that corresponds to the measurement zi

t . The matrix Fx,j is of dimension (3N+3)×5.
It maps the low-dimensional matrix hi

t into a matrix of dimension (3N + 3)× 3:

Fx,j =

1 0 0 0 · · · 0 0 0 0 0 · · · 0
0 1 0 0 · · · 0 0 0 0 0 · · · 0
0 0 1 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 1 0 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 0 · · · 0
0 0 0 0 · · · 0

︸ ︷︷ ︸

2j−2

0 0 1 0 · · · 0
︸ ︷︷ ︸

2N−2j

(10.22)

These expressions make up for the gist of the Kalman gain calculation in Lines 8
through 17 in our EKF SLAM algorithm in Table 10.1, with one important extension.

256 Chapter 10

When a landmark is observed for the first time, its initial pose estimate in Equation
(10.9) leads to a poor linearization. This is because with the default initialization in
(10.9), the point about which h is being linearized is (µ̂j,x µ̂j,y µ̂j,s)

T = (0 0 0)T ,
which is a poor estimator of the actual landmark location. A better landmark es-
timator is given in Line 10 Table 10.1. Here we initialize the landmark estimate
(µ̂j,x µ̂j,y µ̂j,s)

T with the expected position. This expected position is derived from
the expected robot pose and the measurement variables for this landmark

µ̄j,x

µ̄j,y

µ̄j,s

 =

µ̄t,x

µ̄t,y

si
t

+ ri
t

cos(φi
t + µ̄t,θ)

sin(φi
t + µ̄t,θ)
0

 (10.23)

We note that this initialization is only possible because the measurement function h
is bijective. Measurements are two-dimensional, as are landmark locations. In cases
where a measurement is of lower dimensionality than the coordinates of a landmark,
h is a true projection and it is impossible to calculate a meaningful expectation for
(µ̄j,x µ̄j,y µ̄j,s)

T from a single measurement only. This is, for example, the case in
computer vision implementations of SLAM, since cameras often calculate the angle
to a landmark but not the range. SLAM is then usually performed by integrating mul-
tiple sightings to and apply triangulation to determine an appropriate initial location
estimate.

Finally, we note that the EKF algorithm requires memory that is quadratic in N , the
number of landmarks in the map. Its update time is also quadratic inN . The quadratic
update complexity stems from the matrix multiplications that take place at various
locations in the EKF.

10.3 EKF SLAM WITH UNKNOWN

CORRESPONDENCES

10.3.1 The General EKF SLAM Algorithm

The EKF SLAM algorithm with known correspondences is now extended into the
general EKF SLAM algorithm, which uses an incremental maximum likelihood (ML)
estimator to determine correspondences. Table 10.2 depicts the algorithm. The input
to this algorithm now lacks a correspondence variable ct. Instead, it includes the
momentary size of the map, Nt−1.

Simultaneous Localization and Mapping 257

1: Algorithm EKF SLAM(µt−1, Σt−1, ut, zt, Nt−1):
2: Nt = Nt−1

3: Fx =

(
1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

)

4: µ̄t = µt−1 + F T
x

− vt

ωt
sin µt−1,θ + vt

ωt
sin(µt−1,θ + ωt∆t)

vt

ωt
cos µt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

ωt∆t

5: Gt = I + F T
x

0 0 vt

ωt
cos µt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

0 0 vt

ωt
sin µt−1,θ − vt

ωt
sin(µt−1,θ + ωt∆t)

0 0 0

 Fx

6: Σ̄t = Gt Σt−1 GT
t + F T

x Rt Fx

7: Qt =

(
σr 0 0
0 σφ 0
0 0 σs

)

8: for all observed features zi
t = (ri

t φi
t si

t)
T do

9:

(
µ̄Nt+1,x

µ̄Nt+1,y

µ̄Nt+1,s

)

=

(
µ̄t,x

µ̄t,y

si
t

)

+ ri
t

(
cos(φi

t + µ̄t,θ)
sin(φi

t + µ̄t,θ)
0

)

10: for k = 1 to Nt+1 do

11: δk =

(
δk,x

δk,y

)

=

(
µ̄k,x − µ̄t,x

µ̄k,y − µ̄t,y

)

12: qk = δT
k δk

13: ẑk
t =

(√
qk

atan2(δk,y, δk,x) − µ̄t,θ

µ̄k,s

)

14: Fx,k =

1 0 0 0 · · · 0 0 0 0 0 · · · 0
0 1 0 0 · · · 0 0 0 0 0 · · · 0
0 0 1 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 1 0 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 0 · · · 0
0 0 0 0 · · · 0 0 0 1 0 · · · 0

15: Hk
t = 1

qk

(√
q

k
δk,x −√

q
k
δk,y 0 −√

q
k
δk,x

√
q

k
δk,y 0

δk,y δk,x −1 −δk,y −δk,x 0
0 0 0 0 0 1

)

Fx,k

16: Ψk = Hk
t Σ̄t [Hk

t]T + Qt

17: πk = (zi
t − ẑk

t)T Ψ−1
k (zi

t − ẑk
t)

18: endfor
19: πNt+1 = α

20: j(i) = argmin
k

πk

21: Nt = max{Nt, j(i)}
22: Ki

t = Σ̄t [H
j(i)
t]T Ψ−1

j(i)

23: endfor
24: µt = µ̄t +

∑

i
Ki

t (zi
t − ẑ

j(i)
t)

25: Σt = (I −
∑

i
Ki

t H
j(i)
t) Σ̄t

26: return µt, Σt

Table 10.2 The EKF SLAM algorithm with ML correspondences, shown here with outlier
rejection.

258 Chapter 10

The motion update in Lines 3 through 6 is equivalent to the one in
EKF SLAM known correspondences in Table 10.1. The measurement update loop,
however, is different. Starting in Line 8, it first creates the hypothesis of a new land-
mark with index Nt + 1; this index is one larger than the landmarks in the map at this
point in time. The new landmark’s location is initialized in Line 9, by calculating its
expected location given the estimate of the robot pose and the range and bearing in the
measurement. Line 9 also assigns the observed signature value to this new landmark.
Next, various update quantities are then computed in Lines 10 through 18 for allNt+1
possible landmarks, including the “new” landmark. Line 19 sets the threshold for the
creation of a new landmark: A new landmark is created if the Mahalanobis distance
to all existing landmarks in the map exceeds the value α. The ML correspondence is
then selected in Line 20. If the measurement is associated with a previously unseen
landmark, the landmark counter is incremented in Line 21, and various vectors and
matrices are enlarged accordingly—this somewhat tedious step is not made explicit
in Table 10.2. The update of the EKF finally takes place in Lines 24 and 25. The
algorithm EKF SLAM returns the new number of landmarks Nt along with the mean
µt and the covariance Σt.

The derivation of this EKF SLAM follows directly from previous derivations.
In particular, the initialization in Line 9 is identical to the one in Line 10 in
EKF SLAM known correspondences, Table 10.1. Lines 10 through 18 parallel
Lines 12 through 17 in EKF SLAM known correspondences, with the added vari-
able πk needed for calculating the ML correspondence. The selection of the ML cor-
respondence in Line 20, and the definition of the Mahalanobis distance in line 17, is
analogous to the ML correspondence discussed in Chapter 7.6; in particular, the al-
gorithm EKF localization in Table 7.3 on page 175 used an analogous equation do
determine the most likely landmark. (Line 14). The measurement updates in Lines
24 and 25 of Table 10.2 are also analogous to those in the EKF algorithm with known
correspondences, assuming that the participating vectors and matrices are of the ap-
propriate dimension in case the map has just been extended.

Our example implementation of EKF SLAM can be made more efficient by restrict-
ing the landmarks considered in Lines 10 through 18 to those that are near the robot.
Further, many of the values and matrices calculated in this inner loop can safely be
cached away when looping through more than one feature measurement vector zi

t . in
practice, a good management of features in the map and a tight optimization of this
loop can greatly reduce the running speed.

Simultaneous Localization and Mapping 259

(a)

(b)

(c)

Figure 10.2 EKF SLAM with known data association in a simulated environment. The
map is shown on the left, with the gray-level corresponding to the uncertainty of each land-
mark. The matrix on the right is the correlation matrix, which is the normalized covariance
matrix of the posterior estimate. After some time, all x- and all y-coordinate estimates
become fully correlated.

260 Chapter 10

−20

−15

−10

−5

0

5

10

15

20

−10 0 10 20 30 40

X
 (

m
)

Y (m)

Estimated Path of the Vehicle

Feature Returns
Tentative Features
Map Features
Vehicle Path

Figure 10.3 Example of Kalman filter estimation of the map and the vehicle pose. Image
courtesy of Stefan Williams and Hugh Durrant-Whyte from the Australian Centre for Field
Robotics, University of Sydney, Australia.

10.3.2 Examples

Figure 10.2 shows the EKF SLAM algorithm—here with known correspondence—
applied in simulation. The left panel of each of the three diagrams plots the posterior
distributions, marginalized for the individual landmarks and the robot pose. The right
side depicts the correlation matrix for the augmented state vector yt; the correlation
is the normalized covariance. As is easily seen from the result in Figure 10.2c, over
time all x- and y-coordinate estimates become fully correlated. This means the map
becomes known in relative terms, up to an uncertain global location that cannot be
reconciled. This highlights an important characteristic of the SLAM problem: The
absolute coordinates of a map relative to the coordinate system defined by the initial
robot pose can only be determined in approximation, whereas the relative coordinates
can be determined asymptotically with certainty.

In practice, EKF SLAM has been applied successfully to a large range of navigation
problems, involving airborne, underwater, indoor, and various other vehicles. Fig-

Simultaneous Localization and Mapping 261

Figure 10.4 Underwater vehicle Oberon, developed at the University of Sydney. Image
courtesy of Stefan Williams and Hugh Durrant-Whyte from the Australian Centre for Field
Robotics, University of Sydney, Australia.

ure 10.3 shows an example result obtained using the underwater robot Oberon, devel-
oped at the University of Sydney, Australia, and shown in Figure 10.4. This vehicle
is equipped with a pencil sonar, a sonar that can scan at very high resolutions an de-
tect obstacles up to 50 meters away. To facilitate the mapping problem, researchers
have deposited long, small vertical objects in the water, which can be extracted from
the sonar scans with relative ease. In this specific experiment, there is a row of such
objects, spaced approximately 10 meters apart. In addition, a more distant cliff offers
additional point features that can be detected using the pencil sonar. In the experiment
shown in Figure 10.3, the robot moves by these landmarks, then turns around and
moves back. While doing so, it measures and integrates detected landmarks into its
map. using the Kalman filter approach described in this chapter.

The map shown in Figure 10.3 shows the robot’s path, marked by the triangles con-
nected by a line. Around each triangle one can see an ellipse, which corresponds to
the covariance matrix of the Kalman filter estimate projected into the robot’s x-y posi-
tion. The ellipse shows the variance; the larger it is, the less certain the robot is about
its current pose. Various small dots in Figure 10.3 show landmark sightings, obtained
by searching the sonar scan for small and highly reflective objects. The majority of
these sightings is rejected, using a mechanism described further below, in the section
that follows. However, some are believed to correspond to a landmark and added to
the map. At the end of the run, the robot has classified 14 such objects as landmarks,
each of which is plotted with the projected uncertainty ellipse in Figure 10.3. These

262 Chapter 10

landmarks include the artificial landmarks put out by the researchers, but they also
include various other terrain features in the vicinity of the robot. The residual pose
uncertainty is small. In this example, the robot successfully finds and maps all of the
artificial landmarks in this highly noisy domain.

10.3.3 Feature Selection and Map

Management

Making EKF SLAM robust in practice often requires additional techniques for man-
aging maps. Many of them pertain to the fact that the Gaussian noise assumption is
unrealistic, and many spurious measurements occur in the far tail end of the noise dis-
tribution. Such spurious measurements can cause the creation of fake landmarks in
the map which, in turn, negatively affect the localization of the robot.

Many state-of-the-art techniques possess mechanisms to deal with outliers in the mea-
surement space. Such outliers are defined as spurious landmark sightings outside the
uncertainty range of any landmark in the map. The most simple technique to compen-
sate such outliers is to maintain a provisional landmark list. Instead of augmenting the
map by a new landmark once a measurement indicates the existence of a new land-
mark, such a new landmark is first added to a provisional list of landmarks. This list
is just like the map, but landmarks on this list are not used to adjust the robot pose
(the corresponding gradients in the measurement equations are set to zero). Once a
landmark has consistently been observed and its uncertainty ellipse has shrunk, it is
transitioned into the regular map.

In practical implementations, this mechanism tends to reduce the number of landmarks
in the map by a significant factor, while still retaining all physical landmarks with high
probability. A further step, also commonly found in state-of-the-art implementations,
is to maintain a posterior likelihood of the existence of a landmark. Such a probability
may implemented as log-odds ratio and be denoted oj for the j-th landmark in the
map. Whenever the j-th landmark is mj observed, oj is incremented by a fixed value.
Not observingmj when it would be in the perceptual range of the robot’s sensors leads
to a decrement of oj . Since it can never be known with certainty whether a landmark
is within a robot’s perceptual range, the decrement may factor in the probability of
such an event. Landmarks are removed from the map when the value oj drops below
a threshold. Such techniques lead to much leaner maps in the face of non-Gaussian
measurement noise.

As noted previously, the maximum likelihood approach to data association has a clear
limitation. This limitation arises from the fact that the maximum likelihood approach

Simultaneous Localization and Mapping 263

deviates from the idea of full posterior estimation in probabilistic robotic. Instead of
maintaining a joint posterior over augmented states and data associations, it reduces
the data association problem to a deterministic determination, which is treated as if
the maximum likelihood association was always correct. This limitation makes EKF
brittle with regards to landmark confusion, which in turn can lead to wrong results. In
practice, researchers often remedy the problem by choosing one of the following two
methods, both of which reduce the chances of confusing landmarks:

Spatial arrangement. The further apart landmarks are, the smaller the chance to
accidentally confuse them. It is therefore common practice to choose landmarks
that are sufficiently far away from each other to that the probability of confusing
one with another is negligible. This introduces an interesting trade-off: a large
number of landmarks increases the danger of confusing them. Too few landmarks
makes it more difficult to localize the robot, which in turn also increases the
chances of confusing landmarks. Little is currently known about the optimal
density of landmarks, and researchers often use intuition when selecting specific
landmarks.

Signatures. When selecting appropriate landmarks, it is essential to to maximize
the perceptual distinctiveness of landmarks. For example, doors might possess
different colors, or corridors might have different widths. The resulting signatures
are essential for successful SLAM.

With these additions, the EKF SLAM algorithm has indeed been applied successfully
to a wide range of practical mapping problems, involving robotic vehicles in the air,
on the ground, in the deep see, and in abandoned mines.

A key limitation of EKF SLAM lies in the necessity to select appropriate landmarks.
By doing so, most of the sensor data is usually discarded. Further, the quadratic update
time of the EKF limits this algorithm to relatively scarce maps with less than 1,000
features. In practice, one often seeks maps with 106 features or more, in which case
the EKF ceases to be applicable.

The relatively low dimensionality of the map tends to create a harder data association
problem. This is easily verified: When you open your eyes and look at the full room
you are in, you probably have no difficulty to recognize where you are! however, if
you are only told the location of a small number of landmarks—e.g., the location of
all light sources—the decision is much harder. As a result, data association in EKF
SLAM is more difficult than in some of the SLAM algorithms discussed in subsequent
chapter, and capable of handling orders of magnitude more features. This culminates
into the principal dilemma of the EKF SLAM algorithm: While incremental maxi-

264 Chapter 10

mum likelihood data association might work well with dense maps with hundreds of
millions of features, it tends to be brittle with scarce maps. However, EKFs require
sparse maps because of the quadratic update complexity. In subsequent chapters, we
will discuss SLAM algorithms that are more efficient and can handle much large maps.
We will also discuss more robust data association techniques. For its many limitation,
the value of the EKF SLAM algorithm presented in this chapter is mostly historical.

10.4 SUMMARY

This chapter described the general SLAM problem, and introduced the EKF approach.

The SLAM problem is defined as a concurrent localization and mapping problem,
in which a robot seeks to acquire a map of the environment while simultaneously
seeking to localize itself relative to this map.

The SLAM problem comes in two versions: online and global. Both problems
involve the estimation of the map. The online problem seeks to estimate the
momentary robot pose, whereas the global problem seeks to determine all poses.
Both problem are of equal importance in practice, and have found equal coverage
in the literature.

The EKF SLAM algorithm is arguably the earliest SLAM algorithm. It applies
the extended Kalman filter to the online SLAM problem. With known correspon-
dences, the resulting algorithm is incremental. Updates require time quadratic in
the number of landmarks in the map.

When correspondences are unknown, the EKF SLAM algorithm applies an in-
cremental maximum likelihood estimator to the correspondence problem. The
resulting algorithm works well when landmarks are sufficiently distinct.

Additional techniques were discussed for managing maps. Two common strate-
gies for identifying outliers include provisional list for landmarks that are not yet
observed sufficiently often, and a landmark evidence counter that calculates the
posterior evidence of the existence of a landmark.

EKF SLAM has been applied with considerable success in a number of robotic
mapping problems. Its main drawbacks are the need for sufficiently distinct land-
marks, and the computational complexity required for updating the filter.

In practice, EKF SLAM has been applied with some success. When landmarks are
sufficiently distinct, the approach approximates the posterior well. The advantage of

Simultaneous Localization and Mapping 265

calculating a full posterior are manifold: It captures all residual uncertainty and en-
ables the robot to reason about its control taking its true uncertainty into account.
However, the EKF SLAM algorithm suffers from its enormous update complexity,
and the limitation to sparse maps. This, in turn, makes the data association problem
a difficult one, and EKF SLAM tends to work poorly in situations where landmarks
are highly ambiguous. Further brittleness is due to the fact that the EKF SLAM algo-
rithm relies on an incremental maximum likelihood data association technique. This
technique makes is impossible to revise part data associations, and can induce failure
when the ML data association is incorrect.

The EKF SLAM algorithm applies to the online SLAM problem; it is inapplicable to
the full SLAM problem. In the full SLAM problem, the addition of a new pose to the
state vector at each time step would make both the state vector and the covariance grow
without bounds. Updating the covariance would therefore require an ever-increasing
amount of time, and the approach would quickly run out of computational time no
matter how fast the processor.

10.5 BIBLIOGRAPHICAL REMARKS

Place them here!

10.6 PROJECTS

1. Develop an incremental algorithm for posterior estimation of poses and maps
(with known data association) that does not rely on linearizing the motion model
and the perceptual model. Our suggestion: Replace the Kalman filter by particle
filters.

2. The basic Kalman filter approach is unable to cope with the data association
problem in a sound statistical way. Develop an algorithm (and a statistical frame-
work) for posterior estimation with unknown data association, and characterize
its advantages and disadvantages. We suggest to use a mixture of Gaussians rep-
resentation.

3. Based on the previous problem, develop an approximate method for posterior
estimation with unknown data association, where the time needed for each incre-
mental update step does not grow over time (assuming a fixed number of land-
marks).

266 Chapter 10

4. Develop a Kalman filter algorithm which uses local occupancy grid maps as its
basic components, instead of landmarks. Among other things, problems that have
to be solved are how to relate local grids to each other, and how to deal with the
ever-growing number of local grids.

5. Develop and algorithm that learns its own features for Kalman filter mapping.
There could be two different variants: One which chooses features so as to min-
imize the uncertainty (entropy) in the posterior, another which is given access to
the correct map and seeks to maximize the probability of the correct map under
the posterior.

11
THE EXTENDED INFORMATION

FORM ALGORITHM

11.1 INTRODUCTION

The EKF SLAM algorithm described in the previous chapter is subject to a number
of limitations, as discussed there. In this chapter, we introduce an alternative SLAM
algorithm, called the extended information form SLAM algorithm, of EIF SLAM. EIF
SLAM has in common with the EKF that it represents the posterior by a Gaussian.
Unlike EKF SLAM, which solves the online SLAM problem, EIF SLAM solves the
full SLAM problem. The reader may recall that the online SLAM posterior is defined
over the map and the most recent robot pose, whereas the full SLAM posterior is de-
fined over the map and the entire robot path. Another key difference is that EIF SLAM
represents the posterior Gaussian in its information form, that is, via the information
(or precision) matrix and the information state vector. Clearly, the information and
the moments representation carry the same information; however, as we shall see, the
update mechanisms of the information form are substantially different from that of the
EKF.

EIF SLAM is not an incremental algorithm; this is because it calculates posteriors over
a robot path. Instead, EIF SLAM processes an entire data set at a time, to generate
the full SLAM posterior. This approach is fundamentally different from EKF SLAM,
which is incremental and enables a robot to update its map forever. EIF SLAM is best
suited to problems where one seeks a map from a data set of fixed size, and can afford
to hold the data in memory up to the time where the map is built.

Because EIF SLAM has all data available during mapping, it can apply improved lin-
earization and data association techniques. Whereas in EKF SLAM, the linearization
and the correspondence for a measurement at time t are calculated based on the data
up to time t, in EIF SLAM all data can be used to linearize and to calculate correspon-

267

268 Chapter 11

dences. Further, EIF SLAM iterates the construction of the map, the calculation of
correspondence variables, and the linearization of the measurement models and mo-
tion models, so as to obtain the best estimate of all of those quantities. In doing so,
EIF SLAM tends to produce maps that are superior in accuracy to that of EKFs. EIF
SLAM is less brittle to erroneous data association, and it can cope with higher rota-
tional uncertainties in the data than EKF SLAM. And finally, EIF SLAM is applicable
to maps many orders of magnitude larger than those that can be accommodated by the
EKF.

This chapter first describe the intuition behind EIF SLAM and its basic updates steps.
We then derive the various update steps mathematically and prove its correctness rel-
ative to specific linear approximations. We then discuss actual implementations, in
which posteriors are calculated over maps

11.2 INTUITIVE DESCRIPTION

The basic intuition behind EIF SLAM is remarkably simple. Suppose we are given
a set of measurements z1:t with associated correspondence variables c1:t, and a set
of controls u1:t. The first step of EIF SLAM will be to use those data to construct
an information matrix and an information vector defined over the joint space of robot
poses x1:t and the map m = {mj}. We will denote the information matrix by Ω
and the information vector by ξ. As we shall see below, each measurement and each
control leads to a local update of Ω and ξ. In fact, the rule for incorporating a control
or a measurement into Ω and ξ is a local addition, paying tribute to the important fact
that information is an additive quantity.

Make Figure: a robot path, landmarks, and an information matrix.

Figure ?? illustrates the process of constructing the information matrix. Each control
ut provides information about the relative value of the the robot pose at time t− 1 and
the pose at time t. We can think of this information as a constraint between xt−1 and
xt, or a “spring” in a spring-mass model of the world. The control ut is incorporated
into Ω and ξ by adding a values between the rows and columns connecting xt−1 and
xt. The magnitude of these values corresponds to the stiffness of the constraint—or
the residual uncertainty between the relative poses caused by the noise in the motion
model. This is illustrated in Figure ??, which shows the link between two robot poses,
and the corresponding element in the information matrix.

The Extended Information Form Algorithm 269

Similarly, consider a measurement zi
t . This measurement provides information be-

tween the location of the landmark j = cit and the robot pose xt at time t. Again,
this information can be thought of as a constraint. The respective update in the EIF
amounts to adding values between the elements linking the pose xt and the map fea-
ture mj . As before, the magnitude of these values reflects the residual uncertainty due
to the measurement noise; the less noisy the sensor, the larger the value added to Ω
and ξ.

After incorporating all measurements z1:t and controls u1:t, we obtain an information
matrix Ω whose off-diagonal elements are all zero with two exceptions: Between
any two consecutive poses xt−1 and xt will be a non-zero value that represents the
information link introduced by the control ut. Also non-zero will be any element
between a map feature mj and a pose xt, if mj was observed when the robot was at
xt. All elements between pairs of different landmarks remain zero. This reflects the
fact that we never received information pertaining to their relative location—all we
receive in SLAM are measurements that constrain the location of a landmark relative
to a robot pose. Thus, the information matrix is sparse; all but a linear number of
elements are zero.

Of course, the information representation does not give us a map; neither does it tell
us the estimated path of the robot. Both obtained via µ = Ω−1ξ (see Equation (3.72)
on page 56). This operation involves the inversion of a sparse matrix. This raises
the question on how efficiently we can recover the map, and the posterior Σ. It is
the central question in EIF SLAM: EIF have been applied to maps with hundreds of
millions of features, and inverting a matrix of this size can be a challenge.

The answer to the complexity question depends on the topology of the world. If each
feature is seen only once, the graph represented by the constraints in Ω is linear. Thus,
Ω can be reordered so that it becomes a band-diagonal matrix, that is, all non-zero
values occur near its diagonal. The standard variable elimination technique for matrix
inversion will then invert Ω in linear time, by a single sweep through Ω. This intuition
carries over to cycle-free world that is traversed once, so that each feature is seen for
a short, consecutive period of time.

The more common case, however, involves features that are observed multiple times,
with large time delays in between. This might be the case because the robot goes back
and forth through a corridor, or because the world possesses cycles, and the robot
traverses a full cycle. In either situation, there will exist features mj that are seen at
drastically different time steps xt1 and xt2 , with t2 � t1. In our constraint graph,
this introduces a cyclic dependence: xt1 and xt2 are linked through the sequence of
controls ut1+1, ut1+2, . . . , ut2 and through the joint observation links between xt1 and
mj , and xt2 and mj , respectively. Such links make our linear matrix inversion trick

270 Chapter 11

inapplicable, and matrix inversion becomes more complex. Since most worlds possess
cycles, this is the case of interest.

The EIF SLAM algorithm now employs an important factorization trick, which we
can think of as propagating information trough the information matrix (in fact, it is a
generalization of the well-known variable elimination algorithm for matrix inversion).
Suppose we would like to remove a feature mj from the information matrix Ω and
the information state ξ. In our spring mass model, this is equivalent to removing the
node and all springs attached to this node. As we shall see below, this is possible
by a remarkably simple operation: We can remove all those springs between mj and
the poses at which mj was observed, by introducing new springs between any pair of
such poses. More formally, let τ(j) be the set of poses at which mj was observed
(that is: xt ∈ τ(j) ⇐⇒ ∃i : cit = j). Then we already know that the feature mj is
only linked to poses xt in τ(j); by construction, mj is not linked to any other pose,
or to any landmark in the map. We can now set all links between mj and the poses
τ(j) to zero by introducing a new link between any two poses xt, xt′ ∈ τ(j). Simi-
larly, the information vector values for all poses τ(j) are also updated. An important
characteristic of that this operation is local: It only involves only a small number of
constraints. After removing all links to mj , we can safely remove mj from the in-
formation matrix and vector. The resulting information matrix is smaller—it lacks an
entry for mj . However, it is equivalent for the remaining variables, in the sense that
the posterior defined by this information matrix is mathematically equivalent to the
original posterior before removing mj . This equivalence is intuitive: We simply have
replaced springs connecting mj to various poses in our spring mass model by a set
of springs directly linking these poses. in doing so, the total force asserted by these
spring remains equivalent, with the only exception that mj is now disconnected.

Make Figure: reducing the graph by shifting edges around

The virtue of this reduction step is that we can gradually transform our optimization
problem into a smaller one. By removing each featuremj from Ω and ξ, we ultimately
arrive at a much smaller information form Ω̃ and ξ̃ defined only over the robot pose
variables. The reduction can be carried out in time linear in the size of the map; in fact,
it generalizes the variable elimination technique for matrix inversion to the information
form, in which we also maintain an information state. The posterior over the robot path
is now recovered as Σ̃ = Ω̃−1 and µ̃ = Σ̃ξ. Unfortunately, our reduction step does
not eliminate cycles in the posterior, so the remaining matrix inversion problem may
still require more than linear time.

As a last step, EIF SLAM recovers the landmark locations. Conceptually, this is
achieved by building a new information matrices Ωj and information vectors ξj for

The Extended Information Form Algorithm 271

1: Algorithm EIF initialize(u1:t):

2:

µ0,x

µ0,y

µ0,θ

 =

0
0
0

3: for all controls ut = (vt ωt)
T do

4:

µt,x

µt,y

µt,θ

 =

µt−1,x

µt−1,y

µt−1,θ

+

− vt

ωt
sinµt−1,θ + vt

ωt
sin(µt−1,θ + ωt∆t)

vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

ωt∆t

5: endfor
6: return µ0:t

Table 11.1 Initialization of the mean pose vector µ1:t in the EIF SLAM algorithm.

each mj . Both are defined over the variable mj and the poses τ(j) at which mj were
observed. It contains the original links betweenmj and τ(j), but the poses τ(j) are set
to the values in µ̃, without uncertainty. From this information form, it is now very sim-
ple to calculate the location of mj , using the common matrix inversion trick. Clearly,
Ωj contains only elements that connect to mj ; hence the inversion takes time linear in
the number of poses in τ(j).

It should be apparent why the information representation is such a natural represen-
tation. The full SLAM problem is solved by locally adding information into a large
matrix, for each measurement zi

t and each control ut. To turn information into an
estimate of the map and the robot path, information between poses and features is
gradually shifted to information between pairs of poses. The resulting structure only
constraints the robot poses, which are then calculated using matrix inversion. Once
the poses are recovered, the feature locations are calculated one-after-another, based
on the original feature-to-pose information.

11.3 THE EIF SLAM ALGORITHM

We will now make the various computational step of the EIF SLAM precise. The full
EIF SLAM algorithm will be described in a number of steps. The main difficulty in
implementing the simple additive information algorithm pertains to the conversion of

272 Chapter 11

1: Algorithm EIF construct(u1:t, z1:t, c1:t, µ0:t):
2: set Ω = 0, ξ = 0

3: add

∞ 0 0
0 ∞ 0
0 0 ∞

 to Ω at x0

4: for all controls ut = (vt ωt)
T do

5: x̂t = µt−1 +

− vt

ωt
sinµt−1,θ + vt

ωt
sin(µt−1,θ + ωt∆t)

vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

ωt∆t

6: Gt =

1 0 vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

0 1 vt

ωt
sinµt−1,θ − vt

ωt
sin(µt−1,θ + ωt∆t)

0 0 1

7: add
(

1
−Gt

)

R−1
t (1 −Gt) to Ω at xt and xt−1

8: add
(

1
−Gt

)

R−1
t [x̂t +Gt µt−1] to ξ at xt and xt−1

9: endfor

10: for all measurements zt do

11: Qt =

σr 0 0
0 σφ 0
0 0 σs

12: for all observed features zi
t = (ri

t φ
i
t s

i
t)

T do
13: j = cit

14: δ =

(
δx
δy

)

=

(
µj,x − µt,x

µj,y − µt,y

)

15: q = δT δ

16: ẑi
t =

(√
q

atan2(δy, δx)− µt,θ

)

17: Hi
t = 1

q

(√
qδx −√qδy 0 −√qδx √

qδy
δy δx −1 −δy −δx

)

18: add HiT
t Q−1

t Hi
t to Ω at xt and mj

19: add HiT
t Q−1

t [zi
t − ẑi

t −Hi
t

µt,x

µt,y

µt,θ

µj,x

µj,y

] to ξ at xt and mj

20: endfor
21: endfor
22: return Ω, ξ

Table 11.2 Calculation of Ω and ξ in the EIF algorithm.

The Extended Information Form Algorithm 273

1: Algorithm EIF reduce(Ω, ξ):
2: Ω̃ = Ω

3: ξ̃ = ξ
4: for each feature j do
5: let τ(j) be the set of all poses xt at which feature j was observed
6: subtract Ω̃τ(j),j Ω̃−1

j,j ξj from ξ̃ at xτ(j) and mj

7: subtract Ω̃τ(j),j Ω̃−1
j,j Ω̃j,τ(j) from Ω̃ at xτ(j) and mj

8: remove the rows and columns corresponding to feature j from Ω̃ and ξ̃
9: endfor
10: return Ω̃, ξ̃

Table 11.3 Algorithm for reducing the size of the information representation of the pos-
terior.

a conditional probability of the form p(zi
t | xt,m) and p(xt | ut, xt−1) into a link

in the information matrix. The information matrix elements are all linear; hence this
step involves linearizing p(zi

t | xt,m) and p(xt | ut, xt−1). In EKF SLAM, this
linearization was found by calculating a Jacobian at the estimated mean poses µ0:t. To
build our initial information matrix Ω and ξ, we need an initial estimate µ0:t for all
poses x0:t.

There exist a number of solutions to the problem of finding an initial mean µ suitable
for linearization. For example, we can run an EKF SLAM and use its estimate for
linearization. For the sake of this chapter, we will use an even simpler technique: Our
initial estimate will simply be provided by chaining together the motion model p(xt |
ut, xt−1). Such an algorithm is outlined in Table 11.1, and called there EIF initialize.
This algorithm takes the controls u1:t as input, and outputs sequence of pose estimates
µ0:t. It initializes the first pose by zero, and then calculates subsequent poses by
recursively applying the velocity motion model. Since we are only interested in the
mean poses vector µ0:t, EIF initialize only use the deterministic part of the motion
model. It also does not consider any measurement in its estimation.

Once an initial µ0:t is available, the EIF SLAM algorithm constructs the full SLAM
information matrix Ω and the corresponding information vector ξ. This is achieved by
the algorithm EIF construct, depicted in Table 11.2. This algorithm contains a good
amount of mathematical notation, much of which shall become clear in our mathemat-
ical derivation of the algorithm further below. EIF construct accepts as an input the

274 Chapter 11

1: Algorithm EIF solve(Ω̃, ξ̃,Ω, ξ):
2: Σ0:t = Ω̃−1

3: µ0:t = Σ0:t ξ̃
4: for each feature j do
5: let τ(j) be the set of all poses xt at which feature j was observed
6: µj = Ω−1

j,j (ξj + Ωj,τ(j) µ̃τ(j))

7: endfor
8: return µ,Σ0:t

Table 11.4 Algorithm for updating the posterior µ.

set of controls, u1:t, the measurements z1:t and associated correspondence variables
c1:t, and the mean pose estimates µ0:t. It then gradually constructs the information
matrix Ω and the information vector ξ by locally adding submatrices in accordance
with the information obtained from each measurement and each control. In particular,
Line 2 in EIF construct initializes the information elements. The “infinite” infor-
mation entry in Line 3 fixes the initial pose x0 to (0 0 0)T . It is necessary, since
otherwise the resulting matrix becomes singular, reflecting the fact that from relative
information alone we cannot recover absolute estimates.

Controls are integrated in Lines 4 through 9 of EIF construct. The pose x̂ and the
Jacobian Gt calculated in Lines 5 and 6 represent the linear approximation of the non-
linear measurement function g. As obvious from these equations, this linearization
step utilizes the pose estimates µ0:t−1, with µ0 = (0 0 0)T . This leads to the updates
for Ω, and ξ, calculated in Lines 7, and 8, respectively. Both terms are added into the
corresponding rows and columns of Ω and ξ. This addition realizes the inclusion of
a new constraint into the SLAM posterior, very much along the lines of the intuitive
description in the previous section.

Measurements are integrated in Lines 10 through 21 of EIF construct. The matrixQt

calculated in Line 11 is the familiar measurement noise covariance. Lines 13 through
17 compute the Taylor expansion of the measurement function, here stated for the
feature-based measurement model defined in Chapter 6.6. This calculation culminates
into the computation of the measurement update in Lines 18 and 19. The matrix that is
being address to Ω in Line 18 is of dimension 5×5. To add it, we decomposes it into a
matrix of dimension 3× 3 for the pose xt, a matrix of dimension 2× 2 for the feature
mj , and two matrices of dimension 3 × 2 and 2 × 3 for the link between xt and mj .

The Extended Information Form Algorithm 275

Those are added to Ω at the corresponding rows and columns. Similarly, the vector
added to the information vector ξ is of vertical dimension 5. It is also chopped into
two vectors of size 3 and 2, and added to the elements corresponding to xt and mj ,
respectively. The result of EIF construct is an information vector ξ and a matrix Ω.
Ω is sparse, containing only non-zero submatrices along the main diagonal, between
subsequent poses, and between poses and features in the map. If the number map
features outnumber the number of poses by a factor of 10, some 99% of the elements
of Ω are zero. The running time of this algorithm is linear in t, the number of time
steps at which data was accrued.

The next step of the EIF SLAM algorithm pertains to reducing the dimensionality of
the information matrix/vector. This is achieved through the algorithm EIF reduce in
Table 11.3. This algorithm takes as input Ω and ξ defined over the full space of map
features and poses, and outputs a reduced matrix Ω̃ and vectors ξ̃ defined over the
space of all poses. This transformation is achieved by removing features mj one-at-
a-time, in Lines 4 through 9 of EIF reduce. The book keeping of the exact indexes
of each item in Ω̃ and ξ̃ is a bit tedious, hence Table 11.3 only provides an intuitive
account. Line 5 calculates the set of poses τ(j) at which the robot observed feature
j. It then extracts two submatrices from the present Ω̃: Ω̃j,j , which is the quadratic
submatrix between mj and mj , and Ω̃τ(j),j , which is composed of the off-diagonal
elements betweenmj and the pose variables τ(j). It also extracts from the information
state vector ξ̃ the elements corresponding to the j-th feature, denoted here as ξj . It then
subtracts information from Ω̃ and ξ̃ as stated in Lines 6 and 7. After this operation,
the rows and columns for the feature mj are zero. These rows and columns are then
removed, reducing the dimension on Ω̃ and ξ̃ accordingly. This process is iterated
until all features have been removed, and only pose variables remain in Ω̃ and ξ̃. The
complexity of EIF reduce is once again linear in t.

The last step in the EIF SLAM algorithm computes the mean and covariance for all
poses in the robot path, and a mean location estimate for all features in the map. This
is achieved through EIF solve in Table 11.4. Lines 2 and 3 compute the path estimates
µ0:t, by inverting thee reduced information matrix Ω̃ and multiplying the resulting co-
variance with the information vector. When Ω̃ involves cycles, the inversion becomes
the computationally most expensive step in the EIF SLAM algorithm. Subsequently,
EIF solve computes the location of each feature in Lines 4 through 7. The return
value of EIF solve contains the mean for the robot path and all features in the map,
but only the covariance for the robot path.

The quality of the solution calculated by the EIF SLAM algorithm depends on the
goodness of the initial mean estimates, calculated by EIF initialize. The x- and y-
components of these estimates effect the respective models in a linear way, hence the

276 Chapter 11

1: Algorithm EIF SLAM known correspondence(u1:t, z1:t, c1:t):
2: µ0:t = EIF initialize(u1:t)
3: repeat
4: Ω, ξ = EIF construct(u1:t, z1:t, c1:t, µ0:t)

5: Ω̃, ξ̃ = EIF reduce(Ω, ξ)

6: µ,Σ0:t = EIF solve(Ω̃, ξ̃,Ω, ξ)
7: until convergence
8: return µ

Table 11.5 The EIF SLAM algorithm for the full SLAM problem with known correspon-
dence.

linearization does not depend on they value. Not so for the orientation variables in
µ0:t. Errors in these initial estimates affect the accuracy of the Taylor approximation,
which in turn affects the result.

To accommodate errors in the initial µ0:t, the procedures EIF construct, EIF reduce,
and EIF solve are run multiple times over the same data set. Each iteration takes
as an input a estimated mean vector µ0:t for all poses, and outputs a new, improves
estimate. The iteration of the EIF SLAM optimization are only necessary when the
initial pose estimates have high error (e.g., more than 20 degrees orientation error). A
small number of iterations (e.g., 3) is usually sufficient.

Table 11.5 summarizes the resulting algorithm. It initializes the means, then repeats
the construction step, the reduction step, and the solution step. Typically, two or three
iterations suffice for convergence. The resulting mean µ comprises the best estimates
of the robot’s path and the map.

11.4 MATHEMATICAL DERIVATION

The derivation of the EIF SLAM algorithm begins with a derivation of a recursive
formula for calculating the full SLAM posterior, represented in information form. We
then investigate each term in this posterior, and derive from them the additive SLAM
updates through Taylor expansions. From that, we will derive the necessary equations
for recovering the path and the map.

The Extended Information Form Algorithm 277

11.4.1 The Full SLAM Posterior

As in the discussion of EKF SLAM, it will be beneficial to introduce a variable for the
augmented state of the full SLAM problem. We will use y to denote state variables
that combine one or more poses x with the map m. In particular, we define y0:t to
be a vector composed of the path x0:t and the map m, whereas yt is composed of the
momentary pose at time t and the map m:

y0:t =

x0

x1

...
xt

m

and yt =

(
xt

m

)

(11.1)

The posterior in the full SLAM problem is p(y0:t | z1:t, u1:t, c1:t), where z1:t are the
familiar measurements with correspondences c1:t, and u1:t are the controls. Bayes
rule enables us to factor this posterior:

p(y0:t | z1:t, u1:t, c1:t)

= η p(zt | y0:t, z1:t−1, u1:t, c1:t) p(y0:t | z1:t−1, u1:t, c1:t) (11.2)

where η is the familiar normalizer. The first probability on the right-hand side can be
reduced by dropping irrelevant conditioning variables:

p(zt | y0:t, z1:t−1, u1:t, c1:t) = p(zt | yt, ct) (11.3)

Similarly, we can factor the second probability by partitioning y0:t into xt and y0:t−1,
and obtain

p(y0:t | z1:t−1, u1:t, c1:t)

= p(xt | y1:t−1, z1:t−1, u1:t, c1:t) p(y1:t−1 | z1:t−1, u1:t, c1:t)

= p(xt | xt−1, ut) p(y1:t−1 | z1:t−1, u1:t−1, c1:t−1) (11.4)

Putting these expressions back into (11.2) gives us the recursive definition of the full
SLAM posterior:

p(y0:t | z1:t, u1:t, c1:t)

278 Chapter 11

= η p(zt | yt, ct) p(xt | xt−1, ut) p(y1:t−1 | z1:t−1, u1:t−1, c1:t−1) (11.5)

The closed form expression is obtained through induction over t. Here p(y0) is the
prior over the map m and the initial pose x0.

p(y0:t | z1:t, u1:t, c1:t) = η p(y0)
∏

t

p(zt | yt, ct) p(xt | xt−1, ut) (11.6)

= η p(y0)
∏

t

[

p(xt | xt−1, ut)
∏

i

p(zi
t | yt, c

i
t)

]

Here, as before, zi
t is the i-th measurement in the measurement vector zt at time t.

The prior p(y0) factors into two independent priors, p(x0) and p(m). In SLAM, we
have no initial knowledge about the map m. This allows us to replace p(y0) by p(x0),
subsuming the factor p(m) into the normalizer η.

The information from represents probabilities in logarithmic form. The log-SLAM
posterior follows directly from the previous equation:

log p(y0:t | z1:t, u1:t, c1:t) (11.7)

= const.+ log p(x0)
∑

t

[

log p(xt | xt−1, ut)
∑

i

log p(zi
t | yt, c

i
t)

]

This posterior has a simple form: It is a sum of terms. These terms include a prior,
one term for each control ut, and one term for each measurement zi

t . As we shall see,
EIF SLAM simply replaces those additive terms with quadratic constraints.

11.4.2 Taylor Expansion

The key approximation of EIF SLAM is the same as in the EKF: The motion and
measurement models are approximated using linear functions with Gaussian error dis-
tributions. Just as in Chapter 10, we assume the outcome of robot motion is distributed
normally according to N (g(ut, xt−1), Rt), where g is the deterministic motion func-
tion, and Rt is the covariance of the motion error. Similarly, measurements zi

t are
generated according to N (h(yt, c

i
t), Qt), where h is the familiar measurement func-

tion and Qt is the measurement error covariance. In equations, we have

p(xt | xt−1, ut) = η exp
{
− 1

2 (xt − g(ut, xt−1))
T R−1

t (xt − g(ut, xt−1))
}

The Extended Information Form Algorithm 279

p(zi
t | yt, c

i
t) = η exp

{
− 1

2 (zi
t − h(yt, c

i
t))

T Q−1
t (zi

t − h(yt, c
i
t))
}

(11.8)

The prior p(x0) in (11.7) is also easily expressed by a Gaussian-type distribution.
This prior anchors the initial pose x0 to the origin of the global coordinate system:
x0 = (0 0 0)T :

p(x0) = η exp
{
− 1

2 x
T
0 Ω0 x0

}
(11.9)

with

Ω0 =

∞ 0 0
0 ∞ 0
0 0 ∞

 (11.10)

It shall, at this point, not concern us that the value of ∞ cannot be implemented, as
we can easily substitute∞ with a large positive number. This leads to the following
quadratic form of the log-SLAM posterior in (11.7):

log p(y0:t | z1:t, u1:t, c1:t)

= const.− 1
2

[

xT
0 Ω0 x0 +

∑

t

(xt − g(ut, xt−1))
T R−1

t (xt − g(ut, xt−1))

+
∑

i

(zi
t − h(yt, c

i
t))

T Q−1
t (zi

t − h(yt, c
i
t))

]

(11.11)

This representation highlights an essential characteristic of the full SLAM posterior
in the information form: It is composed of a number of quadratic terms, one for the
prior, and one for each control and each measurement.

However, these terms are quadratic in the functions g and h, not in the variables we
week to estimate (poses and the map). This is alleviated by linearizing g and h via
Taylor expansion, analogously to Equations (10.15) and (10.19) in the derivation of
the EKF:

g(ut, xt−1) ≈ g(ut, µt−1) +Gt(xt−1 − µt−1)

h(yt, c
i
t) ≈ h(µt, c

i
t) +Hi

t (yt − µt) (11.12)

280 Chapter 11

Where µt is the current estimate of the state vector yt, and Hi
t = hi

t Fx,j as defined
already in Equation (10.20).

11.4.3 Constructing the Information Form

This linear approximation turns the log-likelihood (11.11) into a function that is
quadratic in y0:t. In particular, we obtain

log p(y0:t | z1:t, u1:t, c1:t) = const.− 1
2

{

xT
0 Ω0 x0 +

∑

t

[xt − g(ut, µt−1)−Gt(xt−1 − µt−1)]
T

R−1
t [xt − g(ut, µt−1)−Gt(xt−1 − µt−1)] (11.13)

+
∑

i

[zi
t − h(µt, c

i
t)−Hi

t(yt − µt)]
T Q−1

t [zi
t − h(µt, c

i
t)−Hi

t(yt − µt)]

}

This function is indeed a quadratic, but it shall prove convenient to reorder its terms.

log p(y0:t | z1:t, u1:t, c1:t) = const.

− 1
2 xT

0 Ω0 x0
︸ ︷︷ ︸

quadratic in x0

− 1
2

∑

t

xT
t−1:t

(
1
−Gt

)

R−1
t (1 −Gt) xt−1:t

︸ ︷︷ ︸

quadratic in xt−1:t

+ xT
t−1:t

(
1
−Gt

)

R−1
t [g(ut, µt−1) +Gt µt−1]

︸ ︷︷ ︸

linear in xt−1:t

(11.14)

− 1
2

∑

i

yT
t HiT

t Q−1
t Hi

t yt
︸ ︷︷ ︸

quadratic in yt

+ yT
t HiT

t Q−1
t [zi

t − h(µt, c
i
t)−Hi

tµt]
︸ ︷︷ ︸

linear in yt

Here xt−1:t denotes the vector concatenating xt−1 and xt; hence we can write (xt −
Gt xt−1)

T = xT
t−1:t (1 −Gt).

If we collect all quadratic terms into the matrix Ω, and all linear terms into a vector ξ,
we see that expression (11.14) is of the form

log p(y0:t | z1:t, u1:t, c1:t) = const.− 1
2 y

T
0:t Ω y0:t + yT

0:t ξ (11.15)

The Extended Information Form Algorithm 281

We can read off these terms directly from (11.14), and verify that they are indeed
implemented in the algorithm EIF construct in Table 11.2:

Prior. The initial pose prior manifests itself by a quadratic term Ω0 over the initial
pose variable x0 in the information matrix. Assuming appropriate extension of
the matrix Ω0 to match the dimension of y0:t, we have

Ω ←− Ω0 (11.16)

This initialization is performed in Lines 2 and 3 of the algorithm EIF construct.
EIF construct.

Controls. From (11.14), we see that each control ut adds to Ω and ξ the fol-
lowing terms, assuming that the matrices are rearranged so as to be of matching
dimensions:

Ω ←− Ω +

(
1
−Gt

)

R−1
t (1 −Gt) (11.17)

ξ ←− ξ +

(
1
−Gt

)

R−1
t [g(ut, µt−1) +Gt µt−1] (11.18)

This is realized in Lines 4 through 9 in EIF construct.

Measurements. According to Equation (11.14), each measurement zi
t transforms

Ω and ξ by adding the following terms, once again assuming appropriate adjust-
ment of the matrix dimensions:

Ω ←− Ω +H iT
t Q−1

t Hi
t (11.19)

ξ ←− ξ +HiT
t Q−1

t [zi
t − h(µt, c

i
t)−Hi

tµt] (11.20)

This update occurs in Lines 10 through 21 in EIF construct.

This proves the correctness of the construction algorithm EIF construct, relative to
our linear Taylor expansion approximation.

We also note that the steps above only affect elements on the (generalized) main diag-
onal of the matrix, or elements that involve at least one pose. Thus, all between-feature
elements are zero in the resulting information matrix.

282 Chapter 11

Marginals of a multivariate Gaussian. Let the probability distribution p(x, y) over the ran-
dom vectors x and y be a Gaussian represented in the information form

Ω =

(
Ωxx Ωxy

Ωyx Ωyy

)

and ξ =

(
ξx

ξy

)

(11.21)

If Ωyy is invertible, the marginal p(x) is a Gaussian whose information representation is

Ω̄xx = Ωxx − Ωxy Ω−1
yy Ωyx and ξ̄x = ξx − Ωxy Ω−1

yy ξy (11.22)

Proof. The marginal for a Gaussian in its moments representation

Σ =

(
Σxx Σxy

Σyx Σyy

)

and µ =

(
µx

µy

)

is N (µx, Σxx). By definition, the information matrix of this Gaussian is therefore Σ−1
xx , and the informa-

tion vector is Σ−1
xx µx. We show Σ−1

xx = Ω̄xx via the Inversion Lemma from Table 3.2 on page 44. Let
P = (0 1)T , and let [∞] be a matrix of the same size as Ωyy but whose entries are all infinite (and with
[∞]−1 = 0. This gives us

(Ω + P [∞]P T)−1 =

(
Ωxx Ωxy

Ωyx [∞]

)−1
(∗)
=

(
Σ−1

xx 0
0 0

)

The same expression can also be expanded by the inversion lemma into:

(Ω + P [∞]P T)−1

= Ω − Ω P ([∞]−1 + P T Ω P)−1 P T Ω

= Ω − Ω P (0 + P T Ω P)−1 P T Ω

= Ω − Ω P (Ωyy)−1 P T Ω

=

(
Ωxx Ωxy

Ωyx Ωyy

)

−

(
Ωxx Ωxy

Ωyx Ωyy

)(
0 0

0 Ω−1
yy

)(
Ωxx Ωxy

Ωyx Ωyy

)

(∗)
=

(
Ωxx Ωxy

Ωyx Ωyy

)

−

(
0 Ωxy Ω−1

yy

0 1

)(
Ωxx Ωxy

Ωyx Ωyy

)

=

(
Ωxx Ωxy

Ωyx Ωyy

)

−

(
Ωxy Ω−1

yy Ωyx Ωxy

Ωyx Ωyy

)

=

(
Ω̄xx 0
0 0

)

The remaining statement, Σ−1
xx µx = ξ̄x, is obtained analogously, exploiting the fact that µ = Ω−1ξ (see

Equation(3.72)) and the equality of the two expressions marked “(∗)” above:

(
Σ−1

xx µx

0

)

=

(
Σ−1

xx 0
0 0

)(
µx

µy

)

=

(
Σ−1

xx 0
0 0

)

Ω−1
(

ξx

ξy

)

(∗)
=

[

Ω −

(
0 Ωxy Ω−1

yy

0 1

)

Ω

]

Ω−1
(

ξx

ξy

)

=

(
ξx

ξy

)

−

(
0 Ωxy Ω−1

yy

0 1

)(
ξx

ξy

)

=

(
ξ̄x

0

)

Table 11.6 Lemma for marginalizing Gaussians in information form.

The Extended Information Form Algorithm 283

Conditionals of a multivariate Gaussian. Let the probability distribution p(x, y)
over the random vectors x and y be a Gaussian represented in the information form

Ω =

(
Ωxx Ωxy

Ωyx Ωyy

)

and ξ =

(
ξx
ξy

)

(11.23)

The conditional p(x | y) is a Gaussian with information matrix Ωxx and information
vector ξx + Ωxy y.
Proof. The result follows trivially from the definition of a Gaussian in information
form:

p(x | y)

= η exp

{

− 1
2

(
x
y

)T (
Ωxx Ωxy

Ωyx Ωyy

)(
x
y

)

+

(
x
y

)T (
ξx
ξy

)}

= η exp
{
− 1

2x
T Ωxxx+ xT Ωxyy − 1

2 + yT Ωyyy + xT ξx + yT ξy
}

= η exp{− 1
2x

T Ωxxx+ xT (Ωxyy + ξx)− 1
2 + yT Ωyyy + yT ξy

︸ ︷︷ ︸

const.

}

= η exp{− 1
2x

T Ωxxx+ xT (Ωxyy + ξx)} (11.24)

Table 11.7 Lemma for marginalizing Gaussians in information form.

11.4.4 Reducing the Information Form

The reduction step EIF reduce is based on a factorization of the full SLAM posterior.

p(y0:t | z1:t, u1:t, c1:t)

= p(x0:t | z1:t, u1:t, c1:t) p(m | x0:t, z1:t, u1:t, c1:t) (11.25)

Here p(x0:t | z1:t, u1:t, c1:t) ∼ N (Ω, ξ) is the posterior over paths alone, with the map
integrated out:

p(x0:t | z1:t, u1:t, c1:t) =

∫

p(y0:t | z1:t, u1:t, c1:t) dm (11.26)

As we will show shortly, this probability is caculated in EIF reduce in Table 11.3:

p(x0:t | z1:t, u1:t, c1:t) ∼ N (ξ̃, Ω̃) (11.27)

284 Chapter 11

In general, such an integration will be intractable, due to the large number of vari-
ables in m. For Gaussians, this integral can be calculates in closed form. The key
insight is given in Table 11.6, which states and proves the Marginalization Lemma for
Gaussians.

Let us subdivide the matrix Ω and the vector ξ into submatrices, for the robot path x0:t

and the map m:

Ω =

(
Ωx0:t,x0:t

Ωx0:t,m

Ωm,x0:t
Ωm,m

)

(11.28)

ξ =

(
ξx0:t

ξm

)

(11.29)

The probability (11.27) is then obtained as

Ω̃ = Ωx0:t,x0:t
− Ωx0:t,m Ω−1

m,m Ωm,x0:t
(11.30)

ξ̃ = ξx0:t
− Ωx0:t,m Ω−1

m,m ξm (11.31)

The matrix Ωm,m is block-diagonal. This follows from the way Ω is constructed,
in particular the absence of any links between pairs of landmarks. This makes the
inversion efficient:

Ω−1
m,m =

∑

j

FT
j Ω−1

j,j Fj (11.32)

where Ωj,j = FjΩF
T
j is the sub-matrix of Ω that corresponds to the j-th feature in

the map, that is

Fj =

0 · · · 0 1 0 0 0 · · · 0
0 · · · 0 0 1 0 0 · · · 0
0 · · · 0 0 0 1

︸ ︷︷ ︸

j−th feature

0 · · · 0

(11.33)

This makes it possible to to decompose the implement Equations (11.30) and (11.31)
into a sequential update:

Ω̃ = Ωx0:t,x0:t
−
∑

j

Ωx0:t,j Ω−1
j,j Ωj,x0:t

(11.34)

The Extended Information Form Algorithm 285

ξ̃ = ξx0:t
−
∑

j

Ωx0:t,j Ω−1
j,j ξj (11.35)

The matrix Ωx0:t,j is non-zero only for elements in τ(j), the set of poses at which
landmark j was observed. This essentially proves the correctness of the reduction
algorithm EIF reduce in Table 11.3. The operation performed on Ω in this algorithm
implments an incomplete variable elimination algorithm for matrix inversion, applied
to the landmark variables.

11.4.5 Recovering the Path and the Map

The algorithm EIF solve in Table 11.4 calculates the mean and variance of the
Gaussian N (ξ̃, Ω̃), using the standard equations, see Equations (3.67) and (3.72) on
page 55:

Σ̃ = Ω̃−1 (11.36)

µ̃ = Σ̃ ξ̃ (11.37)

In particular, this operation provides us with the mean of the posterior on the robot
path; it does not give us the locations of the features in the map.

It remains to recover the second factor of Equation (11.25):

p(m | x0:t, z1:t, u1:t, c1:t) (11.38)

The conditioning lemma, stated and proved in Table 11.7, shows that this probability
distribution is Gaussian with the parameters

Σm = Ω−1
m,m (11.39)

µm = Σm(ξm + Ωm,x0:t
ξ̃) (11.40)

Here ξm and Ωm,m are the subvector of ξ, and the submatrix of Ω, respectively, re-
stricted to the map variables. The matrix Ωm,x0:t

is the off-diagonal submatrix of Ω
that connects the robot path to the map. As noted before, Ωm,m is block-diagonal,

286 Chapter 11

hence we can decompose

p(m | x0:t, z1:t, u1:t, c1:t) =
∏

j

p(mj | x0:t, z1:t, u1:t, c1:t) (11.41)

where each p(mj | x0:t, z1:t, u1:t, c1:t) is distributed according to

Σj = Ω−1
j,j (11.42)

µj = Σj(ξj + Ωj,x0:t
µ̃) = Σj(ξj + Ωj,τ(j)µ̃τ(j)) (11.43)

he last transformation exploited the fact that the submatrix Ωj,x0:t
is zero except for

those pose variables τ(j) from which the j-th feature was observed.

It is important to notice that this is a Gaussian p(m | x0:t, z1:t, u1:t, c1:t) conditioned
on the true path x0:t. In practice, we do not know the path, hence one might want to
know the posterior p(m | z1:t, u1:t, c1:t) without the path in the conditioning set. This
Gaussian cannot be factored in the moments representation, as locations of different
features are correlated through the uncertainty over the robot pose. For this reason,
EIF solve returns the mean estimate of the posterior but only the covariance over the
robot path. Luckily, we never need the full Gaussian in moments form—which would
involve a fully populated covariance matrix of massive dimensions—- as all essential
questions pertaining to the SLAM problem can be answered at least in approximation
without knowledge of Σ.

11.5 DATA ASSOCIATION IN THE EIF

Data association in EIFs is realized through correspdoncence variables, just as in EKF
SLAM. Just like EKF SLAM, the EIF searches for a single best correspondence vector,
instead of calculating an entire distribution over correspondences. Thus, finding a cor-
respondence vector is a search problem. However, correspondences in EIF SLAM are
defined slightly differentely: they are defined over pairs of features in the map, rather
than associations of measurements to features. Specifrically, we say c(j, k) = 1 iffmj

and mk correspond to the same physical feature in the world. Otherwise, c(j, k) = 0.
This feature-correspondence is in fact logically equivalent to the correspondence de-
fined in the previous section, but it simplifies the statement of the basic algorithm.

Our technique for searching the space of correspondences is greedy, just as in the EKF.
Each step in the search of the best correspondence value leads to an improvement, as

The Extended Information Form Algorithm 287

measured by the appropriate log-likelihood function. However, because EIFs consider
all data at the same time, it is possible to devise correspondence techniques that are
considerably more powerful than the incremental approach in the EKF. In particular:

1. At any point in the search, EIFs can consider the correspondence of any set of
landmarks. There is no requirement to process the observed landmarks sequen-
tially.

2. Correspondence search can be interleaved with the calculation of the map. As-
suming that two observed landmarks correspond to the same physical landmark
in the world affects the resulting map. By incorporating such a correspondence
hypothesis into the map, other correspondence hypotheses will subsequently look
more or less likely.

3. Data association decisions in EIFs can be undone. The goodness of a data as-
sociation depends on the value of other data association decisions. What once
appears to be a good choice may, at some later time in the search

In the remainder of this chapter, we will describe one specific correspondence search
algorithms that exploits the first two properties (but not the third). Our data associaiton
algorithm will still be greedy, and it will sequentially seaerch the space of possible
correspondences to arrive at a plausibale map. However, like all greedy algorithms,
our approach is subject to local maxima; the true space of correspondences is of course
exponential in the number of features in the map, and searching through all of them
is infeasible in most environments. Hence, we will be content with a hill climbing
algorithm.

11.5.1 The EIF SLAM Algorithm With

Unknown Correspondence

The key component of our algorithm is a likelihood test for correspondence. Speci-
fially, EIF correspondence is based on a simple test: What is the probability that two
different features in the map, mj and mk, correspond to the same physical feature in
the world? If this probability exceeds a threshold, we will accept this hypothesis and
merge both features in the map.

The correspond test is depicted in Table 11.8: The input to the test are two feature
indexes, j and k, for which we seek to compute the probability that those two feagtures
corespond to the same feature in the physical world. To calculate this probability,

288 Chapter 11

1: Algorithm EIF correspondence test(Ω, ξ, µ,Σ0:t, j, k):

2: Ω[j,k] = Ωjk,jk − Ωjk,τ(j,k) Στ(j,k),τ(j,k) Ωτ(j,k),jk

3: ξ[j,k] = Ω[j,k] µj,k

4: Ω∆j,k =

(

1

−1

)T

Ω[j,k]

(

1

−1

)

5: ξ∆j,k =

(

1

−1

)T

ξ[j,k]

6: µ∆j,k = Ω−1
∆j,k ξ∆j,k

7: return |2π Ω−1
∆j,k|−

1
2 exp

{

− 1
2 µ

T
∆j,k Ω−1

∆j,k µ∆j,k

}

Table 11.8 The EIF SLAM test for correspondence: It accepts as input an information
representation of the SLAM posterior, along with the result of the EIF solve step. It then
outputs the posterior probability that mj corresponds to mk .

our algorithm utilizes a number of quantities: The information representation of the
SLAM posterior, as manifest by Ω and ξ, and the result of the procedure EIF solve,
which is the mean vector µ and the path covariance Σ0:t.

The correspondence test then proceeds in the following way: First, it computes the
marginalized posterir over the two target features. This posterior is represented by the
information matrix Ω[j,k] and vector ξ[j,k] computed in Lines 2 and 3 in Table 11.8.
This step of the computation utilizes various sub-elements of the information form
Ω, ξ, the mean feature locations as specifcied through µ, and the path covariance Σ0:t.
Next, it calculates the parameters of a new Gaussian random variable, whose value is
the difference between mj and mk. Denoting the difference variable ∆j,k = mj −
mk, the informaiton parameters Ω∆j,k, ξ∆j,k are calculated in Lines 4 and 5, and the
corresponding expectation for the difference is computed in Line 6. Line 7 return the
desired probability: the probability that the difference between mj and mk is 0.

The correspondence test provides us now with an algorithm for performing data as-
sociation search in EIF SLAM. Table 11.9 shows such an algorithm. It initializes the
correspondence variables with unique values. The four steps that follow (Lines 3-7)
are the same as in our EIF SLAM algorithm with known correspondence, stated in
Table 11.5. However, this general SLAM algorithm then engages in the data associ-
ation search. Specifically, for each pair of different features in the map, it calculates

The Extended Information Form Algorithm 289

1: Algorithm EIF SLAM(u1:t, z1:t):
2: initialze all cit with a unique value
3: µ0:t = EIF initialize(u1:t)
4: Ω, ξ = EIF construct(u1:t, z1:t, c1:t, µ0:t)

5: Ω̃, ξ̃ = EIF reduce(Ω, ξ)

6: µ,Σ0:t = EIF solve(Ω̃, ξ̃,Ω, ξ)
7: repeat
8: for each pair of non-corresponding features mj ,mk do
9: calculate πj=k = EIF correspondence test(Ω, ξ, µ,Σ0:t, j, k)
10: if πj=k > χ then
11: for all cit = k set cit = j
12: Ω, ξ = EIF construct(u1:t, z1:t, c1:t, µ0:t)

13: Ω̃, ξ̃ = EIF reduce(Ω, ξ)

14: µ,Σ0:t = EIF solve(Ω̃, ξ̃,Ω, ξ)
15: endif
16: endfor
17: until no more pair mj ,mk found with πj=k < χ
18: return µ

Table 11.9 The EIF SLAM algorithm for the full SLAM problem with unknown corre-
spondence. The inner loop of this version can be made more efficient by selective probing
feature pairs mj , mk , and by collecting multiple correspondences before solving the re-
sulting collapsed set of equations.

the probability of correspondence (Line 9 in Table 11.9). If this probability exceeds
a threshold χ, the correspondence vectors are set to the same value (Line 11). The
EIF SLAM algorithm them interates the construction, reduction, and solution of the
SLAM posterior (Lines 12 through 14). As a result, subsequent correspondence tests
factor in previous correspondence decisionsm though a newly constructed map. The
map construction is terminated when no further features are found in its inner loop.

Clearly, the alorithm EIF SLAM is not particularly efficient. In particular, it tests all
feature pairs for correspondence, not just nearby ones. Further, it reconstructs the map
whenevr a single correspondence is found; rather than processing sets of correspond-
ing features in batch. Such modifications, however, are relatively straiughtforward.
A good implementation of EIF SLAM will clearly be more refined than our basic
implementation discussed here.

290 Chapter 11

11.5.2 Mathematical Derivation

We essentially restrict our derivatoion to showing the correctness of the correspon-
dence test in Table ??. Our first goal shall be to define a posterior probability distribu-
tion over a variable ∆j,k = mj −mk, the difference between the location of feature
mj and feature mk. Two features mj and mk are equivalent iff their location is the
same. Hence, by calculating the posteiror probability of ∆j,k =, we obtain the desired
correspondence probability.

We obtain the posterior for ∆j,k by first calculating the joint over mj and mk:

p(mj ,mk | z1:t, u1:t, c1:t)

=

∫

p(mj ,mk | x1:t, z1:t, c1:t) p(x1:t | z1:t, u1:t, c1:t) dx1:t (11.44)

We will denote the information form of this marginal posterior by ξ[j,k] and Ω[j,k].
Note the use of the squared brackets, which distinguish these values from the subma-
trices of the joint information form.

The distribution (11.44)is obtained from the joint posterior over y0:t, by applying the
marginalization lemma. Specifically, here Ω and ξ represent the joint posterior over
the full state vector y0:t, and τ(j) and τ(k) denote the sets of poses at which the robot
observed feature j, and feature k, respectively. Further, from our EIF solution we are
given the mean pose vector µ̃. To apply the marginalization lemma (Table 11.6), we
shall leverage the result of the algorithm EIF solve. Specifically, EIF solve provides
us already with a mean for the featuresmj andmk. We simply restate the computation
here for the joint feature pair:

µ[j,k] = Ω−1
jk,jk (ξjk + Ωjk,τ(j,k)µτ(j,k)) (11.45)

Here τ(j, k) = τ(j) ∪ τ(k) denotes the set of poses at which the robot observed mj

or mk.

For the joint posterior, we also need a covariance. This covariance is not computed in
EIF solve, simply because the joint covariance over multiple features requires space
quadratic in the number of features. However, for pairs of feautures the covariance
of the joint is easily recovered. Specicially, let Στ(j,k),τ(j,k) be the submatrix of the
covariance Σ0:t restricted to all poses in τ(j, k). Here the covariance Σ0:t is calculated
in Line 2 of the algorithm EIF solve. Then the marginalization lemma provides us

The Extended Information Form Algorithm 291

with the marginal information matrix for the posterior over (mj mk)T :

Ω[j,k] = Ωjk,jk − Ωjk,τ(j,k) Στ(j,k),τ(j,k) Ωτ(j,k),jk (11.46)

The information form representation for the desired posterior is now completed by the
following information vector:

ξ[j,k] = Ω[j,k] µ[j,k] (11.47)

Hence we have for the joint

p(mj ,mk | z1:t, u1:t, c1:t)

= η exp

{

− 1
2

(
mj

mk

)T

Ω[j,k]

(
mj

mk

)

+

(
mj

mk

)T

ξ[j,k]

}

(11.48)

These equations are identical to Lines 2 and 3 in Table 11.8.

The nice thing about our representation is that it immediately lets us define the desired
correspondence probability. For that, let us consider the random variable

∆j,k = mj − mk (11.49)

=

(
1
−1

)T (
mj

mk

)

=

(
mj

mk

)T (
1
−1

)

(11.50)

Plugging this into the definition of a Gaussian in informtation representation, we ob-
tain:

p(∆j,k | z1:t, u1:t, c1:t)

= η exp

− 1
2 ∆T

j,k

(
1
−1

)T

Ω[j,k]

(
1
−1

)

︸ ︷︷ ︸

=: Ω∆j,k

∆j,k + ∆T
j,k

(
1
−1

)T

ξ[j,k]

︸ ︷︷ ︸

=: ξ∆j,k

292 Chapter 11

= η exp
{
− 1

2 ∆T
j,k Ω∆j,k + ∆T

j,k ξ∆j,k

}T
(11.51)

which is Gausian with information matrix Ω∆j,k and information vector ξ∆j,k as
defined above. To calculate the probability that this Gaussian assumes the value of
∆j,k = 0, it shall be useful to rewrite this Gaussian in moments form:

p(∆j,k | z1:t, u1:t, c1:t) (11.52)

= |2π Ω−1
∆j,k|−

1
2 exp

{

− 1
2 (∆j,k − µ∆j,k)T Ω−1

∆j,k (∆j,k − µ∆j,k)
}

where the mean is given by the obvious expression:

µ∆j,k = Ω−1
∆j,k ξ∆j,k (11.53)

These steps are found in Lines 4 through 6 in Table 11.8.

The desired probability for ∆j,k = 0 is the result of plugging 0 into this distribution,
and reading off the resulting probability:

p(∆j,k = 0 | z1:t, u1:t, c1:t) = |2π Ω−1
∆j,k|−

1
2 exp

{

− 1
2 µ

T
∆j,k Ω−1

∆j,k µ∆j,k

}

(11.54)

This expression is the probability that two features in the map, mj and mk, corre-
spond to the same features in the map. This calculation is implemented in Line 7 in
Table 11.8.

11.6 EFFICIENCY CONSIDERATION

Practical implementations of EIF SLAM rely on a number of additional insights and
techniques for improving efficiency. Possibly the biggest deficiency of EIF SLAM,
as discussed thus far, is due to the fact that in the very beginnning, we assume that
all observed features constitute different landmarks. Our algorithm them unifies them
one-by-one. For any reasonable number of features, such an approach will be unbear-
ably slow. Further, it will neglect the imprtant constraint that at any point in time, the
same feature can only be observed once, but not twice.

The Extended Information Form Algorithm 293

Existing implementations of the EIF SLAM idea exploit such opportunities. Spoecifi-
cally,

1. Features that are immediately identified to correspond with high likelihood are
often unified form the very beginning, before running the full EIF SLAM solu-
tion. For exmaple, it is quite common to compule short segments into local maps,
e.g., local occupancy grid maps. EIF inference is then performed onlhy between
those local occupancy grid maps, where the match of two maps is taken as a prob-
abilistic constraint between the relative poses of these maps. Such a hierarchical
technique reduces the complexity of SLAM by orders of magnitude, while still
retaining some of the key elements of the EIF solution, specifically the ability to
perform data association over large data sets.

2. Many robots are equipped with sensors that observe large number of features at
a time. For exampl, laser range finders observe dozens of features. For any such
scan, one commonly assumes that different measurements indeed correspond to
different features in the environment, by virtue of the fact that each scan points
in a different direction. It therefore follows that i 6= j −→ ci

t 6= cjt , that is, at no
point in time correspond to different measurements to the same feature.

Our pairwise data association technique above is unable to incorporate this con-
straint. Specifically, it may assign two measurements zi

t and zj
t to the same fea-

ture zk
s for some s 6= t. To overcome this problem, it is common to assiciate

entire measurement vectors zt and zs at the same time. This involves a calcula-
tion of a joint over all features in zt and zs. Such a calculation generalizes our
pairwaise calculation and is mathematically straightforward.

3. The EIF algorithm stated in this chapter does not make use of its ability to undo
data asociations. Once a data association decision is made, it cannot be reverted
further down in the search. mathematically, it is relatively straightforward to undo
past data association decisions in the information framework. in particular, one
can change the correspondence variables of any two measurements in arbitrary
ways in our algothm above. However, it is more difficult to test whether a data
associaiton should be undone, as there is no (obvious) test for testing wether
two previously associated features should be distinct. A simple implementation
involves undoing a data association in question, rebyuilding the map, and testing
whether our criterion above still calls for correspondence. Such an approach
can be computationally involved, as it provides no means of detecting which data
association to test. Mechnicsms for detecting unlikely associations are outside the
scope of this book, but should be considered when implementing this approach.

294 Chapter 11

Figure 11.1 The Groundhog robot is a 1,500 pound custom-built vehicle equipped with
onboard computing, laser range sensing, gas and sinkage sensors, and video recording
equipment. The robot has been built to map abandoned mines.

4. Finally, the EIF algorihtm does not consider negative information. In practice,
not seeing a feature can be as informative as seeing one. However, the simple
formulaiton above does not perform the necessary geometric computations.

In practice, whether or not we can exploit negative information depends on the
nature of the sensor model, and the model of our features in the world. For
example, we might have to compute probabilities of occlusion, which might be
tricky for certain type sensors (e.g., range and bearing sensors for landmarks).
However, contemporary implementations indeed consider negative information,
but often by replacing proper probabiliustic calculations through approximations.
One such example will be given in the next section.

11.7 EMPIRICAL IMPLEMENTATION

In the remainder of tihs chapter, we will highlight empirical results for an EIF SLAM
implementation. The vehicle used in our experiment is Figure 11.1; it is a robot de-
signed to map abandoned mines.

The type map collected by the robot is shown in Figure 11.2. This map is an occu-
pancy grid map, using effectively pairwise scan matching for recovering the robot’s
poses. Pairwise scan matching can be thought of as a version of EIF SLAM, but cor-
respondence is only established between immediately consecutive scans. The result
of this approach leads to an obvious deficiency of the map shown in Figure 11.2.

The Extended Information Form Algorithm 295

Figure 11.2 Map if a mine, acquired by pairwise scan matching. The diameter of this
environment is approximately 250 meters. The map is obvisouly inconsistent, in that several
hallways show up more than once.

296 Chapter 11

Figure 11.3 Map if a mine, acquired by pairwise scan matching. The diameter of this
environment is approximately 250 meters. The map is obvisouly inconsistent, in that several
hallways show up more than once.

To apply the EIF SLAM algorithm, our software decomposes the map into small local
submaps, one for each five meters of robot travel. Within these five meters, the maps
are sufficiently accurate, as general drift is small and hence the scan matching data
association technique performs essentially flawlessly. Each submap’s coordinates be-
come a pose node in the EIF SLAM. Adjacent submaps are linked through the relative
motion constraints between them. The resulting structure is shown in Figure 11.3.

The Extended Information Form Algorithm 297

Next, we apply the recursive data association search. The correspondence test is now
implemented using a correlation analysis for two overlaying maps, and the Gaussian
matching constraints are recovered by approximating this match function through a
Gaussian. Figure 11.4 illustrates the process of data association: The circles each cor-
respond to a new constraint that is imposed when contracting the information form of
the EIF. This figure illustrates the iterative nature of the search: Certain correspon-
dences are only discovered when others have been propagated, and others are dis-
solved in the process of the search. The final model is stable, in that additional search
for new data association induces no further changes. Displayed as a grid map, it yields
the 2-D map shown in Figure 11.5. While this map is far from being perfect (largely
due to a crude implementation of the local map matching constraints), it nevertheless
is superior to the one found through incremental scan matching.

298 Chapter 11

Figure 11.4 Data association search.

The Extended Information Form Algorithm 299

Figure 11.5 Final map, after optimizing for data associations.

300 Chapter 11

11.8 SUMMARY

This chapter introduced the extended information filter (EIF) approach to to the full
SLAM problem.

the EIF SLAM algorithm addresses the full SLAM problem. It calculates pos-
teriors over the full robot path along with the map. Therefore, EIF SLAM is a
batch algorithm, not an online algorithm like EKF SLAM.

The key insight of the EIF SLAM algorithm is that the structure of information
is sparse. Specifically,

– Measurements provide information of a feature relative to the robot’s pose
at the time of measurement. In information space, they form constraints
between these pairs of variables.

– Similarly, motion provides information between two subsequent poses. In
information space, each motion command forms a constraint between sub-
sequent pose variables.

EIF SLAM simply records all this information, through links that are defined
between poses and features, and pairs of subsequent poses. However, this infor-
mation representation does not provide estimates of the map, or the robot path.

The EIF SLAM algorithm recovers maps through an iterative procedure which
involves three steps: Construction of a linear information form through Taylor
extension; reduction of this form; and solving the resulting optimization problem.
These three steps effectively resolve the information, and produce a consistent
probabilistic posterior over the path and the map. Since EIF SLAM is run batch,
we can repeat the linearization step and achieve gradually improved results.

Data association in EIF SLAM is performed by calculating the probability that
two features have identical world coordinates. Since EIF SLAM is a batch al-
gorithm, this can be done for any pair of features, at any time. This led to an
iterative greedy search algorithm over all data association variables, which recur-
sively identifies pairs of features in the map that likely correspond.

Practical implementations of the EIF SLAM often use additional tricks, to keep
the computation low and to avoid false data associations. Specifically, practical
implementations tend to reduce the data complexity by extracting local maps and
using each map as the basic entity; they tend to match multiple features at-a-time,
and they tend to consider negative information in the data association.

We briefly provided results for a variant of EIF SLAM that follows the decom-
position idea, and that uses occupancy grid maps for representing sets of range

The Extended Information Form Algorithm 301

scans. Despite these approximations, we find that the EIF data association and
inference techniques yield favorable results in a large-scale mapping problem.

302 Chapter 11

12
THE SPARSE EXTENDED

INFORMATION FILTER

12.1 INTRODUCTION

The previous two chapters covered two ends of a spectrum of SLAM algorithms.EKF
SLAM is proactive. Every time information is acquired, it resolves this information
into a probability distribution. This step is computationally expensive: for n features
in the map, it requires O(n2) computations per update. The EIF SLAM algorithm is
different: It simply accumulates information. Such an accumulation is lazy: At the
time of data acquisition, EIF SLAM simply memorizes the information is receives. To
turn the accumulated information into a map, EIF SLAM had to perform inference. In
EIF SLAM, this inference is performed after all data is acquired. This makes EIF an
offline algortihm.

This raises the question as to whether we can devise an online SLAM algorithm which
inherits the efficiency of the information representation. The answer is yes, but only
with a number of approximations. The sparse extended information filter, or SEIF, im-
plements an information solution to the online SLAM problem. Just like the EKF, the
SEIF integrates out past robot poses, and only maintains a posterior over the present
robot pose and the map. But like EIFs and unlike EKFs, the SEIF maintains an in-
formation representation of all knowledge. In doing so, updating the SEIF becomes
a lazy information shifting operation; which is superior to the proactive probabilistic
update of the EKF. Thus, SEIFs can be seen as the best of both worlds: They can be
run online, and they are efficient.

303

304 Chapter 12

Figure 12.1 Illustration of the network of features generated by our approach. Shown on
the left is a sparse information matrix, and on the right a map in which entities are linked
whose information matrix element is non-zero. As argued in the paper, the fact that not all
features are connected is a key structural element of the SLAM problem, and at the heart of
our constant time solution.

As an online algorithm, the SEIF maintains a belief over the very same state vector as
the EKF:

yt =

(
xt

m

)

(12.1)

Here xt is the robot state, andm the map. The posterior under known correspondences
is given by p(yt | z1:t, u1:t, c1:t). This posterior differs from the one estimated by EIFs
in that EIFs recovr the entire robot path.

The key insight for turning EIFs into an online SLAM algorithm is illustrated in Fig-
ure ??. This figure shows the result of the EKF SLAM algorithm, in a simulated
environment containing 50 landmarks. The left panel shows a moving robot, along
with its probabilistic estimate of the location of all 50 point features. The central
information maintained by the EKF SLAM is a covariance matrix of these different
estimates. The correlation, which is the normalized covariance, is visualized in the
center panel of this figure. Each of the two axes lists the robot pose (location and
orientation) followed by the 2-D locations of all 50 landmarks. Dark entries indicate
strong correlations. We already discussed in the EKF SLAM chapter that in the limit,
all feature coordinates become fully correlated—hence the checker-board appearance
of the correlation matrix.

The Sparse Extended Information Filter 305

The right panel of Figure ?? shows the information matrix Ωt, normalized just like the
correlation matrix. As in the previous chapter, elements in this normalized information
matrix can be thought of as constraints, or links, which constrain the relative locations
of pairs of features in the map: The darker an entry in the display, the stronger the link.
As this depiction suggests, the normalized information matrix appears to be sparse:
it is dominated by a small number of strong links; and it possesses a large number of
links whose values, when normalized, are near zero. Furthermore, the strength of each
link is related to the distance of the corresponding features: Strong links are found only
between metrically nearby features. The more distant two features, the weaker their
link. This sparseness is distinctly different from that in the previous chapter: First,
there exist strong links between pairs of landmarks. In the previous chapter, no such
links could exist. Second, the sparseness is only approximate: In fact, all elements of
the normalized information matrix are non-zero, but nearly all of them are very close
to zero.

The SEIF SLAM algorithm exploits this insight by maintaining a sparse information
matrix, in which only nearby features are linked through a non-zero element. The
resulting network structure is illustrated in the right panel of Figure 12.1, where disks
correspond to point features and dashed arcs to links, as specified in the information
matrix visualized on the left. This diagram also shows the robot, which is linked
to a small subset of all features only. Those features are called active features and
are drawn in black. Storing a sparse information matrix requires space linear in the
number of features in the map. More importantly, all essential updates in SEIF SLAM
can be performed in constant time, regardless of the number of features in the map.
This result is somewhat surprising, as a naive implementation of motion updates in
information filters—a perhaps in Table ?? on page 60—requires inversion of the entire
information matrix.

The SEIF is an online SLAM algorithm that maintains such a sparse information ma-
trix, and for which the time required for all update steps is independent of the size of
the map. This makes SEIF the first efficiet online algorithm for the SLAM problem,
encountered in this book.

12.2 INTUITIVE DESCRIPTION

We begin with an intuitive description of the SEIF update, using grphical illustrations.
Specifically, a SEIF update is composed of 4 steps: a mogtion update step, a measure-
ment update step, a sparsificaiton step, and a state estimation step.

306 Chapter 12

(a) (b)

Figure 12.2 The effect of measurements on the information matrix and the associated
network of features: (a) Observing y1 results in a modification of the information matrix
elements Ωxt,y1 . (b) Similarly, observing y2 affects Ωxt,y2 . Both updates can be carried
out in constant time.

(a) (b)

Figure 12.3 The effect of motion on the information matrix and the associated network
of features: (a) before motion, and (b) after motion. If motion is non-deterministic, motion
updates introduce new links (or reinforce existing links) between any two active features,
while weakening the links between the robot and those features. This step introduces links
between pairs of features.

(a) (b)

Figure 12.4 Sparsification: A feature is deactivated by eliminating its link to the robot.
To compensate for this change in information state, links between active features and/or the
robot are also updated. The entire operation can be performed in constant time.

The Sparse Extended Information Filter 307

We egin with the measurement update step, depicted in Figure 12.2. Each of the two
panels show the information matrix maintained by the SEIF, along with the graph
defined by the information links. In the measurement update, sensing a feature y1

leads the SEIF to update the off-diagonal element of its information matrix that links
the robot pose estimate xt to the observed feature y1. This is illustrate din the left
panel of Figure 12.2a. Similarly, sensing y2 leads it to update the elements in the
information matrix that link the robot pose xt and the feature y2, as illustrated in
Figure 12.2b. As we shall see, each of these updates correspond to local additions in
the information matrix (and the information vector). In both cases (information matrix
and vector), this addition touches only elements that link the robot pose variable to the
observed feature. This makes the measurement update noticeably efficient than the
corresponding update steo in EKFs. In particular, the complexity of updating a SEIF
in response to a measurement takes time independent of the size of the map.

The motion update is shown in Figure 12.3. Here a robot’s pose changes; Figure 12.3a
depicts a the information state before, and Figure 12.3b after motion, respectively.
The motion affects the information state in multiple ways. First, the links between the
robot’s pose and the features y1, y2 are weakened. This is a result of the fact that robot
motion is erroneous, hence causes us to lose information about where the robot is
relative to features in the map. However, this information is not entirely lost. Some of
it is mapped into information links between pairs of features. This shift of information
comes about since even though we lost information on the robot pose, we did not
lose information on the relative location of features in the map. Whereas previously,
those features were linked indirectly through the robot pose, they are now linked also
directly after the update step.

The shift of information from robot pose links to between-feature links is a key el-
ement of the SEIF. In particular, the EIF discussed in the previous chapter never in-
troduced any links between pairs of features. It is a direct consequence of using the
information form as a filter, for the online SLAM problem. By integrating out past
pose variables, we lose those links, and they are mapped back into the between-feature
elements in the information matrix.

For a pair of features to acquire a direct link in this process, both have to be active
before the update, that is, their corresponding elements that links them to the robot
pose in the information matrix have to be non-zero. This is illustrated in Figure 12.3:
A between-feature link is only introduced between features y1 and y2. Feature y3,
which is not active, remains untouched. This suggests that by controlling the number
of active landmarks at any point in time, we can control the computational complexity
of the motion update, and the number of links in the information matrix. If the number
of active links remains small, so will the update complexity for the motion update, and
so will the number of non-zero between-landmark elements in the information matrix.

308 Chapter 12

The information matrix in SLAM problem is approximately sparse. As we have argued
above, the information matrix is dominated by a small number of elements between
nearby features in the world, and links between features further away are compar-
atively small. However, the sparseness is only approximate; it is not exact. SEIF
therefore employs a sparsification step, illustrated in Figure 12.4. The sparsification
involves the removal of a link between the robot and an active feature, effectively
turning the active feature into a passive one. In SEIFs, this arc removal leads to a
redistribution of information into neighboring links, specifically between other active
features and the robot pose, and the time to perform sparsification is independent of
the size of the map. However, it is an approximation, one that induces an information
loss in the robot’s posterior. The benefit of this approximation is that it induces true
sparseness, and hence makes it possible to update the filter efficiently.

There exists one final step in the SEIF algorithm, which is not depicted in any of the
figures. This step involves the propagation of a mean estimate through the graph.
As was already discussed in Chapter 3, the extended information filter requires an
estimate of the state µt for linearization of the motion and the measurement model.
SEIFs also require a state estimate for the sparsification step.

Clearly, one could recover the state estimate through the equation µ = Ω−1ξ, where
Ω is the information vector, and ξ the information state. However, this would require
inverting a large matrix, which would render SEIFs computationally inefficient. SEIFs
circumvent the step by an iterative algorithm that effectively propagates state estimates
through the information graph. Each local state estimate is updated based on the best
estimates of its neighbors in the information graph. This iterative algorithm converges
to the true mean µ. Since the information form is sparse in SEIFs, each such update
requires constant time, though with the caveat that more than a finite number of such
updates may be needed to achieve good results. To keep the computation independent
of the size of the state space, SEIFs perform a fixed number of such updates at any
iteration. The resulting state vector is only an approximation, which is used instead of
the correct mean estimate in all updating steps.

12.3 THE SEIF SLAM ALGORITHM

The outer loop of the SEIF update is depicted in Table 12.1. The algorithm accepts as
input an information matrix Ωt−1, the information vector ξt−1, and an estimate of the
state µt−1. It also accepts a measurement zt, a control ut, and a correspondence vector
ct. The output of the algorithm SEIF SLAM known correspondences is a new state

The Sparse Extended Information Filter 309

1: Algorithm SEIF SLAM known correspondences(ξt−1,Ωt−1, µt−1, ut, zt, ct):
2: ξ̄t, Ω̄t, µ̄t = SEIF motion update(ξt−1,Ωt−1, µt−1, ut)
3: µt = SEIF update state estimate(ξ̄t, Ω̄t, µ̄t)
4: ξt,Ωt = SEIF measurement update(ξ̄t, Ω̄t, µt, zt, ct)

5: ξ̃t, Ω̃t = SEIF sparsification(ξt,Ωt)

6: return ξ̃t, Ω̃t, µt

Table 12.1 The Sparse Extended Information Filter algorithm for the SLAM Problem,
here with known data association.

1: Algorithm SEIF motion update(ξt−1,Ωt−1, µt−1, ut):

2: Fx =

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

︸ ︷︷ ︸

2N

3: δ =

− vt

ωt
sinµt−1,θ + vt

ωt
sin(µt−1,θ + ωt∆t)

vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

ωt∆t

4: ∆ =

0 0 vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

0 0 vt

ωt
sinµt−1,θ − vt

ωt
sin(µt−1,θ + ωt∆t)

0 0 0

5: Ψt = FT
x [(I + ∆)−1 − I] Fx

6: λt = ΨT
t Ωt−1 + Ωt−1 Ψt + ΨT

t Ωt−1 Ψt

7: Φt = Ωt−1 + λt

8: κt = Φt F
T
x (R−1

t + Fx Φt F
T
x)−1 Fx Φt

9: Ω̄t = Φt − κt

10: ξ̄t = ξt−1 + (λt − κt) µt−1 + Ω̄t F
T
x δt

11: µ̄t = µt−1 + FT
x δ

12: return ξ̄t, Ω̄t, µ̄t

Table 12.2 The motion update in SEIFs.

310 Chapter 12

1: Algorithm SEIF measurement update(ξ̄t, Ω̄t, µt, zt, ct):

2: Qt =

σr 0 0
0 σφ 0
0 0 σs

3: for all observed features zi
t = (ri

t φ
i
t s

i
t)

T do
4: j = cit
5: if landmark j never seen before

6:

µj,x

µj,y

µj,s

 =

µt,x

µt,y

si
t

+ ri
t

cos(φi
t + µt,θ)

sin(φi
t + µt,θ)
0

7: endif

8: δ =

(
δx
δy

)

=

(
µj,x − µt,x

µj,y − µt,y

)

9: q = δT δ

10: ẑi
t =

√
q

atan2(δy, δx)− µt,θ

µj,s

11: Hi
t = 1

q

√
qδx −√qδy 0 0 · · · 0 −√qδx √

qδy 0 0 · · · 0
δy δx −1 0 · · · 0 −δy −δx 0 0 · · · 0
0 0 0 0 · · · 0

︸ ︷︷ ︸

3j−3

0 0 1 0 · · · 0
︸ ︷︷ ︸

3j

12: endfor
13: ξt = ξ̄t +

∑

iH
iT
t Q−1

t [zi
t − ẑi

t −Hi
t µt]

14: Ωt = Ω̄t +
∑

iH
iT
t Q−1

t Hi
t

15: return ξt,Ωt

Table 12.3 The measurement update step in SEIFs.

The Sparse Extended Information Filter 311

1: Algorithm SEIF sparsification(ξt,Ωt):
2: define Fm0

, Fx,m0
, Fx as projection matrices from yt to m0, {x,m0},

and x, respectively

3: Ω̃t = Ωt − Ω0
t Fm0

(FT
m0

Ω0
t Fm0

)−1 FT
m0

Ω0
t

+ Ω0
t Fx,m0

(FT
x,m0

Ω0
t Fx,m0

)−1 FT
x,m0

Ω0
t

− Ωt Fx (FT
x ΩtFx)−1 FT

x Ωt

4: ξ̃t = ξt + µt (Ω̃t − Ωt)

5: return ξ̃t, Ω̃t

Table 12.4 The sparsification step in SEIFs.

1: Algorithm SEIF update state estimate(ξ̄t, Ω̄t, µ̄t):

2: for a small set of map features mi do

3: Fi =

0 · · · 0 1 0 0 · · · 0
0 · · · 0
︸ ︷︷ ︸

2(N−i)

0 1 0 · · · 0
︸ ︷︷ ︸

2(i−1)x

4: µi,t = (Fi Ωt F
T
i)−1 Fi [ξt − Ωt µ̄t + Ωt F

T
i Fi µ̄t]

5: endfor

6: for all other map features mi do
7: µi,t = µ̄i,t

8: endfor

9: Fx =

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

︸ ︷︷ ︸

2N

10: µx,t = (Fx Ωt F
T
x)−1 Fx [ξt − Ωt µ̄t + Ωt F

T
x Fx µ̄t]

11: return µt

Table 12.5 The amortized state update step in SEIFs updates a small number of state
estimates.

312 Chapter 12

estimate, represented by the information matrix Ωt and the information vector ξt. The
algorithm also outputs an improved estimate µt.

The SEIF update is implemented in 4 steps. The motion update in Table 12.2 incorpo-
rates the control ut into the filter estimate. It does so through a number of operations,
which ensure computational efficiency. Specifically, the only components of the in-
formation vector/matrix that are modified in this update are those of the robot pose
and the active features. The measurement update in Table 12.3 incorporates the mea-
surement vector zt under known correspondence ct. This step is also local, just like
the motion update step. It only updates the informaiton values of the robot pose and
the observed features in the map. The sparsification step, shown in Table 12.4, is an
approximate step: It removes active features by transforming the informaiton matrix
and hte information vector accordingly. This step is again efficient; it only modifies
links between the robot and the active landmarks. Finally, the state estimate update
in Table 12.5, applies an amortized coordinate descent technique to recover the state
estimate µt. This step once again exploits the sparseness of the SEIF, through which it
only has to consult a small number of other state vector elements in each incremental
update.

Together, the entire update loop of the SEIF is constant time, in that the processing
time is independent of the size of the map. This is at stark contrast to the EKF, which
requires time quadraticin the size of the map for each update. However, this “constant
time” statement should be taken with a grain of salt: The recovery of state estimates is
a computational problem for which no linear-time solution is presently known, if the
environment possesses large cycles. Thus, the result of SEIF, when run as constant
time filter, may degrade as the map diameter increases. We will revisit this issue at the
very end of the paper.

12.4 MATHEMATICAL DERIVATION

As usual, the reader may skip the mathematical derivation of the SEIF, and proceed
directly to Section 12.7 on page 323.

12.4.1 Motion Update

The motion update in SEIF processes the control ut. It does so by transforming the
information matrix Ωt−1 and the information vector ξt−1 into a new matrix Ω̄t and
vector ξ̄t, representing the belief at time t. As usual, the bar in our notation indicates

The Sparse Extended Information Filter 313

that this prediction is only based on the control; it does not yet take the measurement
into account.

The derivation of the motion update is best started with the corresponding formula
for the EKF. We begin with the algorithm EKF SLAM known correspondences in
Table 10.1, page 249. Lines 3 and 5 state the motion update, which we restate here for
the reader’s convenience:

µ̄t = µt−1 + FT
x δ (12.2)

Σ̄t = Gt Σt−1 G
T
t + FT

x Rt Fx (12.3)

The essential elements of this update were defined as follows:

Fx =

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

 (12.4)

δ =

− vt

ωt
sinµt−1,θ + vt

ωt
sin(µt−1,θ + ωt∆t)

vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

ωt∆t

 (12.5)

∆ =

0 0 vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt∆t)

0 0 vt

ωt
sinµt−1,θ − vt

ωt
sin(µt−1,θ + ωt∆t)

0 0 0

 (12.6)

Gt = I + F T
x ∆ Fx (12.7)

In SEIFs, we have to define the motion update over the information vector ξ and the
information matrix Ω. From Equation (12.3), the definition of Gt in (12.7), and the
information matrix equation Ω = Σ−1, it follows that

Ω̄t =
[
Gt Ω−1

t−1 G
T
t + FT

x Rt Fx

]−1

=
[
(I + FT

x ∆ Fx) Ω−1
t−1 (I + FT

x ∆ Fx)T + FT
x Rt Fx

]−1
(12.8)

A key insight is this update can be implemented in constant time—regardless of the
dimension of Ω. The fact that this is possible for sparse matrices Ωt−1 is somewhat
non-trivial, since Equation (12.8) seems to require two nested inversions of matrices
of size (2n + 3) × (2n + 3). As we shall see, if Ωt−1 is sparse, this update step can

314 Chapter 12

be carried out efficiently. We define

Φt =
[
Gt Ω−1

t−1 G
T
t

]−1

= [GT
t]−1 Ωt−1 G

−1
t (12.9)

and hence Equation (12.8) can be rewritten as

Ω̄t =
[
Φ−1

t + FT
x Rt Fx

]−1
(12.10)

We now apply the matrix inversion lemma and obtain:

Ω̄t =
[
Φ−1

t + FT
x Rt Fx

]−1

= Φt − Φt F
T
x (R−1

t + Fx Φt F
T
x)−1 Fx Φt

︸ ︷︷ ︸

κt

= Φt − κt (12.11)

Here κt is defined as indicated. This expression can be calculated in constant time if
we can compute Φt in constant time from Ωt−1. To see that this is indeed possible,
we note that the argument inside the inverse, R−1

t + Fx Φt F
T
x , is 3-dimensional.

Multiplying this inverse with F T
x and Fx induces a matrix that is of the same size as

Ω; however, this matrix is only non-zero for the 3× 3 sub-matrix corresponding to the
robot pose. Multiplying this matrix with a sparse matrix Ωt−1 (left and right) touches
only elements for which the off-diagonal element in Ωt−1 between the robot pose and
a map feature is non-zero. Put differently, the result of this operation only touches
rows and columns that correspond to active features in the map. Since sparsity implies
that the number of active features in Ωt−1 is independent of the size of Ωt−1, the
total number of non-zero elements in κt is also O(1). Consequently, the subtraction
requires O(1) time.

It remains to be shown that we can calculate Φt from Ωt−1 in constant time. We begin
with a consideration of the inverse of Gt, which is efficiently calculated as follows:

G−1
t = (I + F T

x ∆ Fx)−1

= (I −F T
x I Fx + FT

x I Fx
︸ ︷︷ ︸

= 0

+FT
x ∆ Fx)−1

The Sparse Extended Information Filter 315

= (I − F T
x I Fx + FT

x (I + ∆) Fx)−1

= I − F T
x I Fx + FT

x (I + ∆)−1 Fxb

= I + F T
x [(I + ∆)−1 − I] Fx
︸ ︷︷ ︸

Ψt

= I + Ψt (12.12)

By analogy, we get for the transpose [GT
t]−1 = (I + F T

x ∆T Fx)−1 = I + ΨT
t . Here

the matrix Ψt is only non-zero for elements that correspond to the robot pose. It is
zero for all features in the map, and hence can be computed in constant time. This
gives us for our desired matrix Φt the following expression:

Φt = (I + ΨT
t) Ωt−1 (I + Ψt)

= Ωt−1 + ΨT
t Ωt−1 + Ωt−1 Ψt + ΨT

t Ωt−1 Ψt
︸ ︷︷ ︸

λt

= Ωt−1 + λt (12.13)

where Ψt is zero except for the sub-matrix corresponding to the robot pose. We nore
because Ωt−1, λt is zero except for a finite number of elements, which correspond to
active map features and the robot pose.

Hence, Φt can be computed from Ωt−1 in constant time, assuming that Ωt−1 is sparse.
Equations ... are equivalent to Lines ... in Table 10.1, which proves the correctness of
the information matrix update in EKF SLAM known correspondences.

Finally, we show a similar result for the information vector. Line From (12.2) we
obtain

µ̄t = µt−1 + FT
x δt (12.14)

This implies for the information vector:

ξ̄t = Ω̄t (Ω−1
t−1 ξt−1 + FT

x δt)

= Ω̄t Ω−1
t−1 ξt−1 + Ω̄t F

T
x δt

= (Ω̄t + Ωt−1 − Ωt−1 + Φt − Φt) Ω−1
t−1 ξt−1 + Ω̄t F

T
x δt

= (Ω̄t −Φt + Φt
︸ ︷︷ ︸

= 0

−Ωt−1 + Ωt−1
︸ ︷︷ ︸

= 0

) Ω−1
t−1 ξt−1 + Ω̄t F

T
x δt

316 Chapter 12

= (Ω̄t − Φt
︸ ︷︷ ︸

= −κt

+Φt − Ωt−1
︸ ︷︷ ︸

= λt

) Ω−1
t−1 ξt−1
︸ ︷︷ ︸

= µt−1

+Ωt−1 Ω−1
t−1

︸ ︷︷ ︸

= I

ξt−1 + Ω̄t F
T
x δt

= ξt−1 + (λt − κt) µt−1 + Ω̄t F
T
x δt (12.15)

Since λt and κt are both sparse, the product (λt − κt) µt−1 only contains finitely
many non-zero elements and can be calculated in constant time. Further, F T

x δt is a
sparse matrix. The sparseness of the product Ω̄t F

T
x δt follows now directly from the

fact that Ω̄t is sparse as well.

12.4.2 Measurement Updates

The second important step of SLAM concerns the update of the filter in accordance
to robot motion. The measurement update in SEIF directly implements the general
extended information filter update, as stated in Lines 6 and 7 of Table 3.5 on page 60:

Ωt = Ω̄t +HT
t Q−1

t Ht (12.16)

ξt = ξ̄t +HT
t Q−1

t [zt − h(µ̄t)−Ht µt] (12.17)

Writing the prediction ẑt = h(µ̄t) and summing over all individual elements in the
measurement vector leads to the form in Lines 13 and 14 in Table 12.3:

Ωt = Ω̄t +
∑

i

HiT
t Q−1

t Hi
t (12.18)

ξt = ξ̄t +
∑

i

HiT
t Q−1

t [zi
t − ẑi

t −Hi
t µt] (12.19)

Here Qt, δ, q, and Hi
t are defined as before (e.g., Table 11.2 on page 272).

12.5 SPARSIFICATION

12.5.1 General Idea

The key step in SEIFs concerns the sparsification of the information matrix Ωt. Be-
cause sparsification is so essential to SEIFs, let us first discuss it in general terms be-
fore we apply it to the information filter. Sparsification is an approximation whereby a

The Sparse Extended Information Filter 317

posterior distribution is approximated by two of its marginals. Suppose a, b, and c are
sets of random variables (not to be confused with any other occurrence of these vari-
ables in this book!), and suppose we are given a joint distribution p(a, b, c) over these
variables. To sparsify this distribution, suppose we would like to remove any direct
link between the variables a and b. In other words, we would like to approximate p
by a distribution p̃ for which the following property holds: p̃(a | b, c) = p(a | c) and
p̃(b | a, c) = p(b | c). In multivariate Gaussians, it is easily shown that this conditional
independence is equivalent to the absence of a direct link between a and b, that is, the
corresponding element in the information matrix is zero.

A good approximation p̃ is obtained by a term proportional to the product of the
marginals, p(a, c) and p(b, c). Neither of these marginals retain dependence between
the variables a and b, since they both contain only one of those variables. Thus, the
product p(a, c) p(b, c) does not contain any direct dependencies between a and b; in-
stead, a and b are conditionally independent given c. However, p(a, c) p(b, c) is not yet
a valid probability distribution over a, b, and c. This is because c occurs twice in this
expression. However, proper normalization by p(c) yields a probability distribution
(assuming p(c) > 0):

p̃(a, b, c) =
p(a, c) p(b, c)

p(c)
(12.20)

To understand the effect of this approximation, we apply the following transformation:

p̃(a, b, c) =
p(a, b, c)

p(a, b, c)

p(a, c) p(b, c)

p(c)

= p(a, b, c)
p(a, c)

p(c)

p(b, c)

p(a, b, c)

= p(a, b, c)
p(a | c)
p(a | b, c) (12.21)

In other words, removing the direct dependence between a and b is equivalent to ap-
proximating the conditional p(a | b, c) by a conditional p(a | c). We also note (without
proof) that among all approximations q of p where a and b are conditionally indepen-
dent given c, the one described here is “closest” to p, where closeness is measured
by the Kullback Liebler divergence, a common (asymmetric) information-theoretic
measure of the “nearness” of one probability distribution to another.

An important observation pertains to the fact that the original p(a | b, c) is at least as
informative as p(a | c), the conditional hat replaces p(a | b, c) in p̃. This is because

318 Chapter 12

p(a | b, c) is conditioned on a superset of variables of the conditioning variables in
p(a | c). For Gaussians, this implies that the variances of the approximation p(a | c)
is equal or larger than the variance of the original conditional, p(a | b, c). Further,
the variances of the marginals p̃(a), p̃(b), and p̃(c) are also larger than or equal to the
corresponding variances of p(a), p(b), and p(c). In other words, it is impossible that
the variance shrinks under this approximation.

12.5.2 Sparsifications in SEIFs

The SEIF applies the idea of sparsification to the posterior p(yt | z1:t, u1:t, c1:t),
thereby maintaining an information matrix Ωt that is sparse at all times. This sparse-
ness is at the core of SEIF’s efficiency. We already remarked that sparsification is an
approximative step, since information matrices in SLAM are naturally not sparse—
even though normalized information matrices tend to be almost sparse. In the context
of SLAM, it suffices to deactivate links between the robot pose and individual features
in the map; if done correctly, this also limits the number of links between pairs of
features.

To see, let us briefly consider the two circumstances under which a new link may be
introduced. First, observing a passive feature activates this feature, that is, introduces
a new link between the robot pose and the very feature. Second, motion introduces
links between any two active features. This consideration suggests that controlling
the number of active features can avoid violation of both sparseness bounds. Thus,
sparseness is achieved simply by keeping the number of active features small at any
point in time.

To define the sparsification step, it will prove useful to partition the set of all features
into three disjoint subsets:

m = m+ + m0 + m− (12.22)

where m+ is the set of all active features that shall remain active. The set m0 are one
or more active features that we seek to deactivate (remove the link to the robot). And
finally, m− are all currently passive features; they shall remain passive in the process
of sparsification. Since m+ ∪m0 contains all currently active features, the posterior
can be factored as follows:

p(yt | z1:t, u1:t, c1:t) (12.23)

= p(xt,m
0,m+,m− | z1:t, u1:t, c1:t)

The Sparse Extended Information Filter 319

= p(xt | m0,m+,m−, z1:t, u1:t, c1:t) p(m
0,m+,m− | z1:t, u1:t, c1:t)

= p(xt | m0,m+,m− = 0, z1:t, u1:t, c1:t) p(m
0,m+,m− | z1:t, u1:t, c1:t)

In the last step we exploited the fact that if we know the active features m0 and
m+, the variable xt does not depend on the passive features m−. We can hence
set m− to an arbitrary value without affecting the conditional posterior over xt,
p(xt | m0,m+,m−, z1:t, u1:t, c1:t). Here we simply chose m− = 0.

Following the sparsification idea discussed in general terms in the previous section,
we now replace p(xt | m0,m+,m− = 0) by p(xt | m+,m− = 0), that is, we drop
the dependence on m0.

p̃(xt,m | z1:t, u1:t, c1:t) (12.24)

= p(xt | m+,m− = 0, z1:t, u1:t, c1:t) p(m
0,m+,m− | z1:t, u1:t, c1:t)

This approximation is obviously equivalent to the following expression:

p̃(xt,m | z1:t, u1:t, c1:t) (12.25)

=
p(xt,m

+ | m− = 0, z1:t, u1:t, c1:t)

p(m+ | m− = 0, z1:t, u1:t, c1:t)
p(m0,m+,m− | z1:t, u1:t, c1:t)

12.5.3 Mathematical Derivation

In the remainder of this section, we show that the algorithm SEIF sparsification
in Table 12.4 implements this probabilistic calculation, and that it does so in con-
stant time. We begin by calculating the information matrix for the distribution
p(xt,m

0,m+ | m− = 0) of all variables but m−, and conditioned on m− = 0.
This is obtained by extracting the sub-matrix of all state variables but m−:

Ω0
t = Fx,m+,m0 FT

x,m+,m0 Ωt Fx,m+,m0 FT
x,m+,m0 (12.26)

With that, the matrix inversion lemma (Table 3.2 on page 44) leads to the following
information matrices for the terms p(xt,m

+ | m− = 0, z1:t, u1:t, c1:t) and p(m+ |
m− = 0, z1:t, u1:t, c1:t), denoted Ω1

t and Ω2
t , respectively:

Ω1
t = Ω0

t − Ω0
t Fm0

(FT
m0

Ω0
t Fm0

)−1 FT
m0

Ω0
t

Ω2
t = Ω0

t − Ω0
t Fx,m0

(FT
x,m0

Ω0
t Fx,m0

)−1 FT
x,m0

Ω0
t (12.27)

320 Chapter 12

Here the various F -matrices are projection matrices that project the full state yt into
the appropriate sub-state containing only a subset of all variables—in analogy to the
matrix Fx used in various previous algorithms. The final term in our approximation
(12.25), p(m0,m+,m− | z1:t, u1:t, c1:t), possesses the following information matrix:

Ω3
t = Ωt − ΩtFx(FT

x ΩtFx)−1FT
x Ωt (12.28)

Putting these expressions together according to Equation (12.25) yields the following
information matrix, in which the feature m0 is now indeed deactivated:

Ω̃t = Ω1
t − Ω2

t + Ω3
t (12.29)

= Ωt − Ω0
t Fm0

(FT
m0

Ω0
t Fm0

)−1 FT
m0

Ω0
t

+ Ω0
t Fx,m0

(FT
x,m0

Ω0
t Fx,m0

)−1 FT
x,m0

Ω0
t

−Ωt Fx (FT
x Ωt Fx)−1 FT

x Ωt

The resulting information vector is now obtained by the following simple considera-
tion:

ξ̃t = Ω̃t µt

= (Ωt − Ωt + Ω̃t) µt

= Ωt µt + (Ω̃t − Ωt) µt

= ξt + (Ω̃t − Ωt) µt (12.30)

This completes the derivation of Lines 3 and 4 in Table 12.4.

12.6 AMORTIZED APPROXIMATE MAP

RECOVERY

The final update step in SEIFs is concerned with the computation of the mean µ (since
the consideration in this section does not depend on the time index t, it is simply
omitted for brevity). Before deriving an algorithm for recovering the state estimate µ
from the information form, let us briefly consider what parts of µ are needed in SEIFs,
and when. SEIFs need the state estimate µ of the robot pose and the active features in
the map. These estimates are needed at three different occasions:

The Sparse Extended Information Filter 321

1. The mean is used for the linearization of the motion model, which takes place in
Lines 3, 4, and 10 in Table 12.2.

2. It is also used for linearization of the measurement update, see Lines 6, 8, 10, 13
in Table 12.3.

3. Finally, it is used in the sparsification step, specifically in Line 4 in Table 12.4.

However, we never need the full vector µ. We only need an estimate of the robot pose,
and an estimate of the locations of all active features. This is a small subset of all
state variables in µ. Nevertheless, computing these estimates efficiently requires some
additional mathematics, as the exact approach for recovering the mean via µ = Ω−1 ξ
requires matrix inversion—even when recovering a subset of variables only.

Once again, the key insight is derived from the sparseness of the matrix Ω. In particular
the sparseness enables us do define an iterative algorithm that enables us to recover
state variables online, as the data is being gathered and the estimates ξ and Ω are
being constructed. To do so, it will prove convenient to reformulate µ = Ω−1 ξ as an
optimization problem. As we will show in just a minute, the state µ is the mode

µ̂ = argmax
µ

p(µ) (12.31)

of the following Gaussian distribution, defined over the variable µ:

p(µ) = η exp
{
− 1

2 µ
T Ω µ+ ξT µ

}
(12.32)

Here µ is a vector of the same form and dimensionality as µ. To see that this is indeed
the case, we note that the derivative of p(µ) vanishes at µ = Ω−1 ξ:

∂p(µ)

∂µ
= η (−Ω µ+ ξ) exp

{
− 1

2 µ
T Ω µ+ ξT µ

} !
= 0 (12.33)

which implies Ω µ = ξ or, equivalently, µ = Ω−1 ξ.

This suggests that recovering the state vector µ is equivalent to finding the mode of
(12.32). Thus, it transforms a matrix inversion problem into an optimization problem.
For this optimization problem, we will now describe an iterative hill climbing algo-
rithm which, thanks to the sparseness of the information matrix, requires only constant
time per optimization update.

322 Chapter 12

Our approach is an instantiation of coordinate descent. For simplicity, we state it here
for a single coordinate only; our implementation iterates a constant number K of such
optimizations after each measurement update step. The mode µ̂ of (12.32) is attained
at:

µ̂ = argmax
µ

exp
{
− 1

2 µ
T Ω µ+ ξT µ

}

= argmin
µ

1
2 µ

T Ω µ− ξT µ (12.34)

We note that the argument of the min-operator in (12.34) can be written in a form that
makes the individual coordinate variables µi (for the i-th coordinate of µt) explicit:

1
2µ

T Ω µ− ξTµ = 1
2

∑

i

∑

j

µT
i Ωi,j µj −

∑

i

ξT
i µi (12.35)

where Ωi,j is the element with coordinates (i, j) in the matrix Ω, and ξi if the i-th
component of the vector ξ. Taking the derivative of this expression with respect to an
arbitrary coordinate variable µi gives us

∂

∂µi

1
2

∑

i

∑

j

µT
i Ωi,j µj −

∑

i

ξT
i µi

=

∑

j

Ωi,j µj − ξi (12.36)

Setting this to zero leads to the optimum of the i-th coordinate variable µi given all
other estimates µj :

µi = Ω−1
i,i

ξi −
∑

j 6=i

Ωi,j µj

 (12.37)

The same expression can conveniently be written in matrix notation. Here we define
Fi = (0 . . . 0 1 0 . . . 0) to be a projection matrix for extracting the i-th component
from the matrix Ω:

µi = (Fi Ω FT
i)−1 Fi [ξ − Ω µ+ Ω F T

i Fi µ] (12.38)

The Sparse Extended Information Filter 323

This consideration derives our incremental update algorithm. By repeatedly updating

µi ←− (Fi Ω FT
i)−1 Fi [ξ − Ω µ+ Ω F T

i Fi µ] (12.39)

for some element of the state vector µi reduces the error between the left-hand side
and the right-hand side of Equation (12.38). Repeating this update indefinitely for all
elements of the state vector converges to the correct mean (without proof).

As is easily seen, the number of elements in the summation in (12.37), and hence the
vector multiplication in the update rule (12.39), is constant if Ω is sparse. Hence, each
update requires constant time. To maintain the constant-time property of our SLAM
algorithm, we can afford a constant number of updates K per time step. This will
generally not lead to convergence, but the relaxation process takes place over multiple
time steps, resulting in small errors in the overall estimate.

However, a note of caution is in order. The quality of this approximation depends
on a number of factors, among them the size of the largest cyclic structure in the
map. In general, a constant number of K updates might be insufficient to yield good
results. How to best update µ is presently an open question. Also, there exists a
number of optimization techniques that are more efficient than the coordinate descent
algorithm described here. A “classical” example is conjugate gradeitn. In practical
implementations it is advisable to rely on efficient optimization techniques to recover
µ.

12.7 HOW SPARSE SHOULD SEIFS BE?

To determine the degree of sparseness one is willing to accommodate in SEIFs, one
should compare a sparse SEIF to a SEIF without the sparsification step and with
closed-form map recovery. Such a SEIF is functionally equvalent to the EKF SLAM
alorithm.

The following comparison characterizes the three key performance measures that set
sparse SEIFs apart from EKFs. Our comparison is based on a simulated robot world,
in which the robot senses the range, proximity, and identity of nearby landmarks,

1. Computation. Figures 12.6 compares the computation per update in SEIFs with
that in EKFs; in both cases the implementation is optimized. This graph illus-
trates the major computational ramification of the probabilistic versus informa-

324 Chapter 12

Figure 12.5 Comparison of SEIF without sparsification (top row) with SEIF with 4 active
landmarks (bottom row)m in a simulated environment with 50 landmarks. In each row,
the left panel shows the set of links in the filter; the center panel the correlation matrix; and
the right panel the noramlized information matrix. Obviously, the sparsified SEIF maintains
many fewer links, but its result is less confident as indicated by its less-expressed correlation
matrix.

tion representation in the filter. While EKFs indeed require time quadratic in the
map size, SEIFs level off and require constant time. .

2. Memory. Figure 12.7 compares the memory use of EKFs with that of SEIFs.
Here once again, EKFs scale quadratically, whereas SEIFs scale linearly, due to
the sparseness of its information representation.

3. Accuracy. Here EKFs outperform SEIFs, due to the fact that SEIFS require ap-
proximation for maintaining sparseness, and when recovering the state estimate
µt. This is shown in Figure 12.8, which plots the error of both methods as a
function of map size.

The number of acitve features in SEIFs determines the degree of sparseness. This
effective trades off two factors: the computational efficiency of the SEIF, and the
accuracy of the result. When implementing a SEIF algorithm, it is therefore advisable
to get a feeling for this trade-off.

The Sparse Extended Information Filter 325

Figure 12.6 The comparison of average CPU time between SEIF and EKF.

Figure 12.7 The comparison of average memory usage between SEIF and EKF.

Figure 12.8 The comparison of root mean square distance error between SEIF and EKF.

326 Chapter 12

Figure 12.9 The update time of the EKF (leftmost data point only) and the SEIF, for
different degrees of sparseness, as induced by a bound on the number of active features as
indicated.

Figure 12.10 The approximation error EKF (leftmost data point only) and SEIF for dif-
ferent degrees of sparseness. In both figures, the map consists of 50 landmarks.

The Sparse Extended Information Filter 327

One way to get a feeling for the effect of the degree of sparseness can be obtained via
simulation. Figure 12.9 plots the update time and the approximation error as a func-
tion of the number of active landmarks in the SEIF update, for a map consisting of 50
landmarks. The update time falls monotonically with the number of active features.
Figure 12.10 shows the corresponding plot for the error, comparing the EKF with
the SEIF at different degrees of sparseness. The solid line is the SEIF as described,
whereas the dashed line corresponds to a SEIF that recovers the mean µt exactly, via
matrix inversion and multiplication. As this plot suggests, 6 active features seem to
provide competitive results, at significant computational savings over the EKF. For
smaller numbers of active features, the error increases drastically. A careful imple-
mentation of SEIFs will require the experimento to vary this important parameter, and
graph its effect on key factors as done here.

328 Chapter 12

12.8 INCREMENTAL DATA

ASSOCIATION

We will now turn our attention to the problem of data association in SEIFs. Our first
technique will be the familiar incremental approach,which greedily identifies the most
liekly correspondence, and then treat this value as if it was ground truth. We already
encountered an instance of such a greedy data association technique in Chapter 10.3,
where we discussed data association in the EKF. In fact, the only difference between
greedy incremental data associaiton in SEIFs and EKSs pertains to the calculation of
the data association probability. As a rule of thumb, computing this probability is
generally more difficult in an information filter than in a probabilistic filter such as the
EKF, since the information filter does not keep track of covariances.

12.8.1 Computing Data Association

Probabilities

As before, the data association vector at time will be denoted ct. The greedy incre-
mental technique maintains a set of data assiciation guesses, denoted ĉ1:t. At time t,
we are already given from previous updates a set ĉ1:t−1. The data associaton step then
pertains to the estimation of the most likely value for the data association variable ĉt

at time t. This is achieved via the following maximum likelihood estimator:

ĉt = argmax
ct

p(zt | z1:t−1, u1:t, ĉ1:t−1, ct)

= argmax
ct

∫

p(zt | yt, ct) p(yt | z1:t−1, u1:t, ĉ1:t−1)
︸ ︷︷ ︸

Ω̄t,ξ̄t

dyt

= argmax
ct

∫ ∫

p(zt | xt, yct
, ct) p(xt, yct

| z1:t−1, u1:t, ĉ1:t−1) (12.40)

Our notation p(zt | xt, yct
, ct) of the sensor model makes the correspondence variable

ct explicit. Calculating this probability exactly is not possible in constant time, since
it involves marginalizing out almost all variables in the map (which requires the inver-
sion of a large matrix). However, the same type of approximation that was essential
for the efficient sparsification can also be applied here as well.

In particular, let us denote by m+
ct

the combined Markov blanket of the robot pose xt

and the landmark yct
. This Markov blanket is the set of all features in the map that

The Sparse Extended Information Filter 329

xx
tt

yy
nn

Figure 12.11 The combined Markov blanket of feature yn and the obsrved features is
usually sufficient for approximating the posterior probability of the feature locations, con-
ditioning away all other features.

are linked to the robot of landmark yct
. Figure 12.11 illustrates this set. Notice that

m+
ct

includes by definition all active landmarks. The spareness of Ω̄t ensures that m+
ct

contains only a fixed number of features, regardless of the size of the map N . If the
Markov blanket of xt and of yct

, further features are added that represent the shortest
path in the information graph between xt and of yct

.

All remaining features will now be collectively referred to as m−ct
, that is:

m−ct
= m−m+

ct
− {yct

} (12.41)

The set m−ct
contains only features which have only a minor impact on the tar-

get variables, xt and yct
. Our approach approximates the probability p(xt, yct

|
z1:t−1, u1:t, ĉ1:t−1) in Equation (12.40) by essentially ignoring these indirect influ-
ences:

p(xt, yct
| z1:t−1, u1:t, ĉ1:t−1)

=

∫ ∫

p(xt, yct
,m+

ct
,m−ct

| z1:t−1, u1:t, ĉ1:t−1) dm
+
ct
dm−ct

=

∫ ∫

p(xt, yct
| m+

ct
,m−ct

, z1:t−1, u1:t, ĉ1:t−1) p(m
+
ct
| m−ct

, z1:t−1, u1:t, ĉ1:t−1)

330 Chapter 12

p(m−ct
| z1:t−1, u1:t, ĉ1:t−1) dm

+
ct
dm−ct

(12.42)

≈
∫

p(xt, yct
| m+

ct
,m−ct

= µ−ct
, z1:t−1, u1:t, ĉ1:t−1)

p(m+
ct
| m−ct

= µ−ct
, z1:t−1, u1:t, ĉ1:t−1) dm

+
ct

This probability can be computed in constant time if the set of features considered in
this calculation is independent of the map size (which it generally is). In complete
analogy to various derivations above, we note that the approximation of the poste-
rior is simply obtained by carving out the submatrix corresponding to the two target
variables:

Σt:ct
= FT

xt,yct
(FT

xt,yct
,m+

ct

Ωt Fxt,yct
,m+

ct

)−1 Fxt,yct

µt:ct
= µtFxt,yct

(12.43)

This calculation is constant time, since it involves a matrix whose size is independent
of N . From this Gaussian, the desired measurement probability in Equation (12.40) is
now easily recovered, as described in Section ??.

As in our EKF SLAM algorithm, features are labeled as new when the likelihood
p(zt | z1:t−1, u1:t, ĉ1:t−1, ct) remains below a threshold α. We then simply set ĉt =
Ct−1 + 1 and Ct = Ct−1 + 1. Otherwise the size of the map remains unchanged,
that is, Ct = Ct−1 and the value ĉt is chosen that maximizes the data association
probebility.

As last caveat, sometimes the combines Markov blanket is insufficient, in that it does
not contain a path between the robot pose and the landmark that is being tested for
corresponence. This will usually xbe the case when closing a large cycle in the envi-
ronment. Here we need to augment the set of features m+

ct
by a set of landmarks along

at least one path between mct
and the robot pose xt. Depending on the size of thie

cycle, the numbers of landmarks contained in the resulting set may now depend on N ,
the size of the map. We leave the details of such an extension as an exercise.

12.8.2 Practical Considerations

In general, the incremental greedy data association technique is brittle. Spurious mea-
surements can easily cause false associations, and induce significant errors into the
SLAM estimate.

The Sparse Extended Information Filter 331

Figure 12.12 The vehicle used in our experiments is equipped with a 2D laser range finder
and a differential GPS system. The vehicle’s ego-motion is measured by a linear variable
differential transformer sensor for the steering, and a wheel-mounted velocity encoder. In
the background, the Victoria Park test environment can be seen.

The standard approach—in EKFs and SEIFs alike—-pertains to the creation of a can-
didate list. For any detected object that can not be explained by existing features, a
new feature candidate is generated but not put into SEIF directly. Instead it is added
into the candidate list with a weight representing its probability of being a useful fea-
ture. In the next measurement step, the newly arrived candidates are checked against
all candidates in the waiting list; reasonable matches increase the weight of corre-
sponding candidates. Candidates that are not matched lose weight because they are
more likely to be a moving object. When a candidate has its weight above a certain
threshold, it joins the SEIF network of features.

We notice that data association violates the constant time property of SEIFs. This is
because when calculating data associations, multiple features have to be tested. If we
can ensure that all plausible features are already connected in the SEIF by a short path
to the set of active features, it would be feasible to perform data association in constant
time. In this way, the SEIF structure naturally facilitates the search of the most likely
feature given a measurement. However, this is not the case when closing a cycle for
the first time, in which case the correct association might be far away in the SEIF
adjacency graph.

The remainder of this section describes an implementation of the SEIF algorithm us-
ing a physical vehicle. The data used here is a common benchmark in the SLAM
field [11, 23, 27]. This data set was collected with an instrumented outdoor vehicle
driven through a park in Sydney, Australia.

332 Chapter 12

Figure 12.13 The testing environment: A 350 meters by 350 meters patch in Victoria
Park in Sydney. Overlayed is the integrated path from odometry readings.

Figure 12.14 The path recovered by the SEIF, is correct within ±1m.

The Sparse Extended Information Filter 333

Figure 12.15 Overlay of estimated landmark positions and robot path.

The vehicle and its environment are shown in Figures 12.12 and 12.13, respectively.
The robot is equipped with a SICK laser range finder and a system for measuring steer-
ing angle and forward velocity. The laser is used to detect trees in the environment,
but it also picks up hundreds of spurious features such as corners of moving cars on
a nearby highway. The raw odometry, as used in our experiments, is poor, resulting
in several hundred meters of error when used for path integration along the vehicle’s
3.5km path. This is illustrated in Figure 12.13, which shows the path of the vehicle.
The poor quality of the odometry information along with the presence of many spuri-
ous features make this dataset particularly amenable for testing SLAM algorithms.

The path recovered by the SEIF is shown in Figure 12.14. This path is quantitatively
indistinguishable from the one produced by the EKF. The average position error, as
measured through differential GPS, is smaller than 0.50 meters, which is small com-
pared to the overall path length of 3.5 km. Comparing with EKF, SEIF runs approxi-
mately twice as fast and consumes less than a quarter of the memory EKF uses.

334 Chapter 12

Step t = 3 Step t = 62

Step t = 65 Step t = 85

Step t = 89 Step t = 500

Figure 12.16 Snapshots from our multi-robot SLAM simulation at different points in
time. Initially, the poses of the vehicles are known. During Steps 62 through 64, vehi-
cle 1 and 2 traverse the same area for the first time; as a result, the uncertainty in their
local maps shrinks. Later, in steps 85 through 89, vehicle 2 observes the same landmarks
as vehicle 3, with a similar effect on the overall uncertainty. After 500 steps, all landmarks
are accurately localized.

The Sparse Extended Information Filter 335

12.9 TREE-BASED DATA ASSOCIATION

SEIFs make it possible to define a radically different data association approach, which
can be proven to yield the optimal results (although possibly in exponential time). The
technique is built on three key insights:

Just like the EIF studied in the previous chapter, SEIFs make is possible to add
“soft” data association constraints. Given two features mi and mi, a soft data
association constraints is nothing else but an information link that forces the dis-
tance between mi and mj to be small. We already encountered examples of such
soft links in the previous chapter. In sparse extended information filters, intro-
ducing such a link is a simple, local addition of values in the information matrix.

We can also easily remove soft asociation constraints. Just as introducing a new
constraints amounts to a local addition in the information matrix, removing it is
nothing else but a a local subtraction. Such an “undo” operation can be applied
to arbitrary data association links, regardless when they were added, or when the
respective feature was last observed. This makes it possible to revise past data
association decisions.

The ability to freely add and subtract data associations arbitrarily enables us to
search the tree of possible data associations in a way that is both efficient and
complete—as will be shown below.

To develop tree-based data association, it shall prove useful to consider the data asso-
ciation tree that is defined over sequences of data association decisions over time. At
each point in time, each observed feature can be associated with a number of other fea-
tures, or considered a new, previously unobserved feature. The resulting tree of data
association choices, starting at time t = 1 all the way to the present time, is illustrated
in Figure 12.17a. Of course, the tree grows exponentially over time, hence searching
it exhaustively is impossible. The greedy approach described in the previous section,
in contrast, follows one path through this tree, defined by the locally most likely data
associations. Such a path is visualized in Figure 12.17a as the thick gray path.

Obviously, if the incremental greedy approach succeeds, the resulting path is optimal.
However, the incremental greedy technique may fail. Once a wrong choice has been
made, the incremental approach cannot recover. Moreover, wrong data association
decisions introduce errors in the map which, subsequently, can induce more errors in
the data association.

The approach discussed in the remainder of this chapter generalizes the incremental
greedy algorithm into a full-blown search algorithm for the tree that is provably op-

336 Chapter 12

timal. Of course, following all branches in the tree is intractable. However, if we
maintain the log-likelihood of all nodes on the fringe of the tree extracted thus far,
we can guarantee optimality. Figure 12.17b illustrates this idea: The tree-based SEIF
maintains not just a single path through the data association tree, but an entire fron-
tier. Every time a node is expanded (e.g., through incremental ML), all alternative
outcomes are also assessed and the corresponding likelihoods are memorized. This is
illustrated in Figure 12.17b, which depicts the log-likelihood for an entire frontier of
the tree.

Finding the maximum in Equation (12.40) implies that the log-likelihood of the chosen
leaf is greater or equal to that of any other leaf at the same depth. Since the log-
likelihood decreases monotonically with the depth of the tree, we can guarantee that
we indeed found the optimal data association values when the log-likelihood of the
chosen leaf is greater or equal to the log-likelihood of any other node on the frontier.
Put differently, when a frontier node assumes a log-likelihood greater than the one of
the chosen leaf, there might be an opportunity to further increase the likelihood of the
data by revising past data association decisions. Our approach then simply expands
such frontier nodes. If an expansion reaches a leaf, this leaf is chosen as the new
data association; otherwise the search is terminated when the entire frontier possesses
values that are all smaller or equal to the one of the chosen leaf. This approach is
guaranteed to always maintain the best set of values for the data association variables;
however, occasionally it might require substantial search.

12.9.1 Calculating Data Association

Probaiblities

We have now, on numerous occasions, discussed techniques for calculating data as-
sociation probabilities. In our case we need a technique which, for any two features
in the map, calculates the probability of equality. This is different from previous fil-
ter techniques, in which we only considered the most recent measurements, but the
mathematical derivation is essentially the same.

Table 12.6 lists an algorithm that tests the probability that two features in the map
are one and the same—this test is sufficient to implement the greedy data association.
The key calculation here pertains to the recovery of a joint covariance and mean vector
over a small set of map elements B. To determine whether two features in the map
are identical, we need to consider the information links between them. Technically,
the more links are included in this consideration, the more accrate the result, but at
the expense of increased compuation. In practice, it usually suffices to identify the
two Karkov blankets of the features in question. A Markov blanket of a feature is the

The Sparse Extended Information Filter 337

(a) (b)

(c)

Figure 12.17 (a) The data association tree, whose branching factor grows with the number
of landmarks in the map. The tree-based SEIF maintains the log-likelihood for the entire
frontier of expanded nodes, enabling it to find alternative paths. (c) Improved path.

338 Chapter 12

1: Algorithm SEIF correspondence test(Ω, ξ, µ,mj ,mk):

1: let B(j) be the blaket of mj

1: let B(k) be the blaket of mk

1: B = B(j) ∪B(k)
1: if B(j) ∩B(k) = ∅
1: add features along the shortest path between mi and mj to B
1: endif

1: FB =

0 · · · 0 1 0 0 · · · 0 · · ·
0 · · · 0 0 1 0 · · · 0 · · ·

· · · 0 · · · 0 1 0 0 · · · 0
· · · 0 · · · 0 0 1 0 · · · 0

. . .
· · · 0 · · · 0
· · · 0 · · · 0

1: (size (2N + 3) by 2|B|)

1: ΣB = (FB Ω FT
B)−1

1: µB = ΣB FB ξ

1: F∆ =

0 · · · 0 1 0 0 · · · 0 −1 0 0 · · · 0
0 · · · 0 0 1

︸︷︷︸

feature mj

0 · · · 0 0 − 1
︸ ︷︷ ︸

feature mj

0 · · · 0

1: Σ∆ = (F∆ Ω FT
∆)−1

1: µ∆ = Σ∆ F∆ ξ

1: return det(2π Σ∆)−
1
2 exp{− 1

2 µ
T
∆ Σ−1

∆ µ∆}

Table 12.6 The SEIF SLAM test for correspondence.

feature itself, and all other features that are connected via a non-zero element in the
information matrix. In most cases, both Markov blankets intersect; if they do not, the
algoithm in Table 12.6 identifies a path between the landmarks (which must exis if
both were observed by the same robot).

The algotihm in Table 12.6 then proceeds by cutting out a local information matrix
and informaiton vector, employing the very same mathamtical “trick” thta led to an
efficient sparsification step: we condition away features outside the Markov blankets.

The Sparse Extended Information Filter 339

As a result, we obtain an efficient technique for calculating the desired probability, one
that is approximate (because of the conditioning), but works very well in practoce.

The result is interesting in two dimensions. First, as before, it les us make a data asso-
ciation decision. But second, it provides the likelihood of this decision. The logarithm
of the result of this procedure corresponds to the log-likelihood of this specific data
item, and summing those up along the path in the data associaiton tree becomes the
total dta log-likelihood under a specific association.

12.9.2 Tree Search

The tree-based data association technique uses a search procedure for considering
alternative data association decisions not just at the present time step, but also for time
steps in the past. A simple argument (reminiscent of that underlying the correctness of
the A* algorithm [32]) enables us to drastically reduce the number of nodes expended
during this search. Figure 12.17b illustrates the basic idea: Our approach maintains
not just a single path through the data association tree, but an entire frontier. Every
time a node is expanded (e.g., through incremental ML), all alternative outcomes are
also assessed and the corresponding likelihoods are memorized. This is illustrated
in Figure 12.17b, which depicts the log-likelihood for an entire frontier of the tree.
Notice that we chose to represent the likelihood values as log-likelihoods, which is
numerically more stable than probabilities.

The goal of the tree search is to maximize the overall data likelihood

ĉ1:t = argmax
c1:t

p(z1:tΘ | u1:t, c1:t) (12.44)

Notice the difference to Equation (12.40), which only maximizes the most recent data
association. Finding the maximum in Equation (12.44) implies that the log-likelihood
of the chosen leaf is greater or equal to that of any other leaf at the same depth. Since
the log-likelihood decreases monotonically with the depth of the tree, we can guaran-
tee that we indeed found the optimal data association values when the log-likelihood
of the chosen leaf is greater or equal to the log-likelihood of any other node on the
frontier. Put differently, when a frontier node assumes a log-likelihood greater than
the one of the chosen leaf, there might be an opportunity to further increase the likeli-
hood of the data by revising past data association decisions. Our approach then simply
expands such frontier nodes. If an expansion reaches a leaf, this leaf is chosen as the
new data association; otherwise the search is terminated when the entire frontier pos-
sesses values that are all smaller or equal to the one of the chosen leaf. This approach is

340 Chapter 12

guaranteed to always maintain the best set of values for the data association variables;
however, occasionally it might require substantial search.

12.9.3 Equivalency Constraints

Once two features in the map have determined to be equivalent in the data association
search, we have to add a soft link. Suppose the first feature ismi and the second ismj .
The soft link constraints their position to be equal through the following exponential-
quadratic constraint

exp
{
− 1

2 (mi −mj)
T C (mi −mj)

}
(12.45)

Here C is a diagonal penalty matrix. The larger the elements on the diagonal of C,
the stronger the constraint. It is easily seen that this non-normalized Gaussian can be
written as a link between mi and mj in the information matrix. Simplyu define the
projection matrix

Fmi−mj
=

0 · · · 0 1 0 0 · · · 0 −1 0 0 · · · 0
0 · · · 0 0 1

︸︷︷︸

mi

0 · · · 0 0 − 1
︸ ︷︷ ︸

mj

0 · · · 0

 (12.46)

This matrix mapes the state yt to the differencemi−mj . Thus, the expression (12.45)
becomes

exp
{
− 1

2 (Fmi−mj
yt)

T C (Fmi−mj
yt)
}

= yT
t FT

mi−mj
C Fmi−mj

yt(12.47)

Thus, to implement this soft constraint, we have to add F T
mi−mj

C Fmi−mj
to the

information matrix, while leaving the information vector unchanged:

Ωt ←− Ωt + FT
mi−mj

C Fmi−mj
(12.48)

Clearly, the additive term is sparse: it only contains non-zero off-diagonal elements
between the features mi and mj . Once a soft link has been added, it can be removed
by the inverse operation

Ωt ←− Ωt − FT
mi−mj

C Fmi−mj
(12.49)

The Sparse Extended Information Filter 341

(a) (b)

Figure 12.18 (a) Mine map with incremental ML scan matching and (b) using our lazy
data association approach. The map is approximately 250 meters wide, and acquired with-
out odometry information.

In SEIFs, This removal can occur even if the constraint was added at a previous time
step. However, careful bookkeeping is necessary to guarantee that we never remove a
non-existend data associaiton constraints—otherwise the information matrix may no
longer be positive semidefinite, and the resulting belief might not correspond to a valid
probability distribution.

12.9.4 Practical Considerations

In any competitive implementation of this approach, there will usually only a small
number of data association paths that are plausible at any point in time. When closing
a loop in an indoor environment, for example, there are usually at most three plausible
hypothesis: a closure, a continuation on the left, and a continuation on the right. All
but all quickly should become unlikely, so the number of times in which the tree is
searched recursively should be small.

One way to make the data association succeed more often is to incorporate negative
measurement information. Negative information pertains to situations where a robot
fails to see a measurement. Range sensors, which are brought to bear in our imple-
mentation, return positive and negative information with regards to the presence of
objects in the world. The positive information are object detections. The negative
information applies to the space between the detection and the sensor. The fact that
the robot failed to detect an object closer than its actual reading provides information
about the absence of an object within the measurement range.

342 Chapter 12

-450

-400

-350

-300

-250

-200

-150

-100

0 10 20 30 40 50 60 70 80
-450

-400

-350

-300

-250

-200

-150

-100

0 10 20 30 40 50 60 70

(a) (b)

Figure 12.19 (a) Log-likelihood of the actual measurement, as a function of time. The
lower likelihood is caused by the wrong assignment. (b) Log-likelihood, when recursively
fixing false data association hypotheses through the tree search. The success is manifested
by the lack of a distinct dip.

(a) (b)

�
start

conflict
���

map after adjustment

Figure 12.20 Example of the tree-based data association technique: (a) When closing a
large loop, the robot first erroneously assumes the existence of a second, parallel hallway.
However, this model leads to a gross inconsistency as the robot encounters a corridor at a
right angle. At this point, the approach recursively searches for improved data association
decisions, arriving on the map shown in diagram (b).

An approach that evaluate the effect of a new constraint on the overall likelihood con-
siders both types of information: positive and negative. Both types are obtained by
calculating the pairwise (mis)match of two scans under their pose estimate. When
using range scanners, one way to obtain a combination of positive and negative infor-
mation is by superimposing a scan onto a local occupancy grid map build by another
scan. In doing so, it is straightforward to determine the probability of a measurement
in a way that incorporates both the positive and the negative information.

The remainder of this section highlights practical results achieved using SEIFs with
tree-based data association. The left panel of Figure 12.18a depicts the result of incre-
mental ML data association, which is equivalent to regular incremental scan matching.
Clearly, certain corridors are represented doubly in this map, illustrating the shortcom-
ings of the ML approach. The right panel, in comparison, shows the result. Clearly,
this map is more accurate than the one generated by the incremental ML approach. Its
diameter is approximately 250 meters wide, and the floor of the mine is highly uneven.

The Sparse Extended Information Filter 343

START

END

SECOND LOOP CLOSURE

FIRST LOOP CLOSURE

(a) (b) Incremental ML (map inconsistent on left)

(c) FastSLAM (see next Chapter) (d) SEIFs with trees (map consistent)

HHY
area of

inconsistency

HHY
area of

inconsistency

Figure 12.21 (a) Path of the robot. (b) Incremental ML (scan matching) (c) FastSLAM.
(d) Our approach.

Figure 12.19a illustrates the log-likelihood of the most recent measurement (not the
entire path), which drops significantly as the map becomes inconsistent. At this point,
the SEIF engages in searching alternative data association values. It quickly finds the
“correct” one and produces the map shown in Figure 12.18b. The area in question is
shown in Figure 12.20, illustrating the moment at which the likelihood takes its dip.
The log-likelihood of the measurement is shown in Figure 12.19b.

344 Chapter 12

12.10 MULTI-VEHICLE SLAM

The SEIF is also applicable to multi-robot SLAM problem. The multi-robot SLAM
problem involves several robots that independently explore and map an enviroment,
with the eventual goal of integrating their maps into a single, monolithic map? This
problem raises two key questions: First, how can robot teams establish correspondence
between individual robot maps. Second, once correspondence has been established,
what are the mechanics of integrating maps?

12.10.1 Fusing Maps Acquired by Multiple

Robots

Let Ωk
t , ξ

k
t and Ωj

t , ξ
j
t two local estimates (maps and vehicle poses) acquired by two

different vehicles, k and j. To fuse these maps, we need two pieces of information: a
relative coordinate transformation between these two maps (translation and rotation),
and a correspondence list, that is, a list of pairs of landmarks that correspond to each
other in the different maps.

Suppose we are given the translation d and the rotation matrix r that specify the co-
ordinate transformation from the j-th to the k-th robot’s coordinate system—we will
discuss our approach to finding d and r further below. Coordinates y in the j-th robot’s
coordinate system are mapped into the k-th coordinate system via the linear equation
yk←j = ry + d. This transformation is easily extended to the filter variables 〈Ωj

t , ξ
j
t 〉

Ωk←j
t = RT Ωj

t R (12.50)

ξk←j
t = (ξj

t + Ωj
t D

T) RT (12.51)

where R and D are matrices that extend r and d to the full dimension of the posterior
maintained by the j-th robot:

R =

1 0 · · · 0
0 r · · · 0
...

...
. . .

...
0 0 · · · r

 and D =

α
d
...
d

 (12.52)

Notice the special provision for the robot’s heading direction, which is the very first
element in the state vector. The heading simply changes by the angle of the rotation
between both maps, denoted α in (12.52).

The Sparse Extended Information Filter 345

Figure 12.22 Eight local maps obtained by splitting the data into eight disjoint sequences.

Figure 12.23 the multi-robot result, obtained using the algorithm described in this paper.

346 Chapter 12

To see the correctness of (12.50) and (12.51), we recall that the parameters 〈Ωj
t , ξ

j
t 〉

define a Gaussian over the j-th robot pose ans map x
j
t = (x

j
t Y)T. This gives us

the following derivation:

p(xj
t | Zj

,U
j)

∝ exp− 1
2
(R x

j
t − D − µ

j
t)

T
Σ

j,−1
t (R x

j
t − D − µ

j
t)

∝ exp− 1
2
x

j,T
t R

T
Σ

j,−1
t R x

j
t − (µj

t + D)T Σ
j,−1
t R

T
x

j
t

= exp− 1
2
x

j,T
t R

T
Ω

j
t R x

j
t − (ξj

t + Ω
j
t D

T) R
T

x
j
t (12.53)

The key observations here are that the alignment takes time linear in the state vector
(and not cubic as would be the case for EKFs). More importantly, the sparseness is
preserved by this update step. The reader may also notice that the transformation can
be applied to subsets of features (e.g., a local map), thanks to the sparseness of Ωj

t . In
such a case, one has to include the Markov blanket of the variables of interest.

After the alignment step, both maps are expressed in the same coordinate system. The
joint information state is obtained by concatenating both information matrices and
both information states. The correspondence list is then incorporated into this joint
map by collapsing the corresponding rows and columns of the resulting information
matrix and vector. The following example illustrates the operation of collapsing fea-
ture 2 and 4 in the filter, which would occur when our correspondence list states that
landmark 2 and 4 are identical:

h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44

−→

h11 h12+h14 h13

h21+h41 h22+h42+h24+h44 h23+h43

h31 h32+h34 h33

(12.54)

ξ1
ξ2
ξ3
ξ4

−→

ξ1
ξ2+ξ4
ξ3

 (12.55)

Collapsing the information state exploits the additivity of the information state. The
viability of a data fusion hypothesis is finally assessed by computing the likelihood
of the data after fusing two maps. This is achieved by plugging the fused map into
the original two Gaussians defining each vehicles’ local maps, and by multiply the
resulting probabilities. This calculation plays an important role in our algorithm’s
decision to accept or reject a fusion hypothesis. Technically, this operation involves

The Sparse Extended Information Filter 347

a recovery of the state, and the evaluation of two Gaussians (one per robot). The
mathematics for doing so are straightforward and omitted for brevity.

12.10.2 Establishing Correspondence

The data association between multiple robots is mathematically identical to the prob-
lem with a single robot relative to its map, with the important difference than in multi-
robot SLAM, the correspondence problem is global, that is, any pairs of features in
two robots’ maps can correspond. This makes global correspondence computatinally
expensive.

The previous section provided a method for evaluating the goodness of a map fusion
candidate, but left open how such candidates are found. Finding good candidates for
fusing maps is essentially a hybrid search problem, involving continuous (alignment)
and discrete (correspondence) variables.

Our approach performs this search in two states. First, it searches for corresponding
pairs of local landmark configurations in different maps. In particular, our approach
identifies for each landmark in each map all triplets of three adjacent landmarks that
fall within a small radius (a similar grouping was used in [39]). The relative distances
and angles in these triplets are then memorized in an SR-tree, to facilitate efficient
retrieval. Using these SR-trees, similar local configurations are easily identified in
different maps by searching the tree. Correspondences found in this search serve as a
starting hypotheses for the fusion process; they are also used to recover the alignment
parameters, the rotation r and the shift d (using the obvious geometric laws).

When an appropriate candidate has been identified, the space of possible data associa-
tions is searched recursively, by assuming and un-assuming correspondences between
landmarks in the different maps. The search is guided by two opposing principles:
The reduction of the overall map likelihood that comes from equating two landmarks,
and the increase in likelihood that results from the fact that if there were really two
separate landmarks, both robots should have detected both of them (and not just one).
To calculate the latter, we employ a sensor model that characterizes “negative” infor-
mation (not seeing a landmark).

In general, the search for the optimal correspondence is NP-hard. However, in all our
experiments with real-world data we found hill climbing to be successful in every sin-
gle instance. Hill climbing is extremely efficient; we suspect it to be in O(N logN)
for maps of size N . In essence, it associates nearby landmarks if, as a result, the over-
all likelihood increases. Once the search has terminated, a fusion is finally accepted

348 Chapter 12

if the resulting reduction of the overall likelihood (in logarithmic form) is offset by
the number of collapsed landmarks times a constant; this effectively implements a
Bayesian MAP estimator with an exponential prior over the number of landmarks in
the world.

———-

In our implementation, the robots are informed of their initial pose. This is a common
assumption in multi-robot SLAM, necessary for the type linearization that is applied
both in EKFs and SEIFs [30]. Recent work that enables vehicles to build joint maps
without initial knowledge of their relative pose can be found in [12, 37, 41].

Our simulation involves a team of three air vehicles. The vehicles are not equipped
with GPS; hence they accrue positioning error over time. Figure 12.16 shows the joint
map at different stages of the simulation. As in [30], we assume that the vehicles com-
municate updates of their information matrices and vectors, enabling them to generate
a single, joint map. As argued there, the information form provides the important ad-
vantage over EKFs that communication can be delayed arbitrarily, which overcomes a
need for tight synchronization inherent to the EKF. This characteristic arises directly
from the fact that the information matrix Ωt and the information vector ξt in SEIFs
is additive, whereas covariance matrices are not. In particular, let 〈Ωi

t, ξ
i
t〉 be the pos-

terior of the i-th vehicle. Assuming that all posteriors are expressed over the same
coordinate system and that each map uses the same numbering for all landmarks, the
joint posterior integrating all of these local maps is given by 〈∑i Ωi

t,
∑

i ξ
i
t〉. This ad-

ditive nature of the information form is well-known, and has in the context of SLAM
previously been exploited by Nettleton and colleagues [30]. SEIFs offer over the work
in [30] that the messages sent between vehicles are small, sue to the sparse nature
of the information form. A related approach for generating small messages in multi-
vehicle SLAM has recently been described in [29].

Figure 12.16 shows a sequence of snapshots of the multi-vehicle system, using 3 dif-
ferent air vehicles. Initially, the vehicle start our in different areas, and the combined
map (illustrated by the uncertainty ellipses) consists of three disjoint regions. During
Steps 62 through 64, the top two vehicles discover identical landmarks; as a result,
the overall uncertainty of their respective map region decreases; This illustrates that
the SEIF indeed maintains the correlations in the individual landmark’s uncertainties;
albeit using a sparse information matrix instead of the covariance matrix. Similarly,
in steps 85 through 89, the third vehicle begins to identical landmarks also seen by
another vehicle. Again, the resulting uncertainty of the entire map is reduced, as can
be seen easily. The last panel in Figure 12.16 shows the final map, obtained after
500 iterations. This example shows that SEIFs are well-suited for multi-robot SLAM,
assuming that the initial poses of the vehicles are known.

The Sparse Extended Information Filter 349

12.11 DISCUSSION

This paper proposed an efficient algorithm for the SLAM problem. Our approach is
based on the well-known information form of the extended Kalman filter. Based on
the empirical observation that the information matrix is dominated by a small number
of entries that are found only between nearby features in the map, we have developed
a sparse extended information filter, or SEIF. This filter enforces a sparse information
matrix, which can be updated in constant time. In the linear SLAM case with known
data association, all updates can be performed in constant time; in the nonlinear case,
additional state estimates are needed that are not part of the regular information form
of the EKF. We proposed a amortized constant-time coordinate descent algorithm for
recovering these state estimates from the information form. We also proposed an effi-
cient algorithm for data association in SEIFs that requires logarithmic time, assuming
that the search for nearby features is implemented by an efficient search tree. The
approach has been implemented and compared to the EKF solution. Overall, we find
that SEIFs produce results that differ only marginally from that of the EKFs, yet at a
much improved computational speed. Given the computational advantages of SEIFs
over EKFs, we believe that SEIFs should be a viable alternative to EKF solutions when
building high-dimensional maps.

SEIFs, are represented here, possess a number of critical limitations that warrant future
research. First and foremost, SEIFs may easily become overconfident, a property
often referred to as inconsistent [20, 15]. The overconfidence mainly arises from the
approximation in the sparsification step. Such overconfidence is not necessarily an
problem for the convergence of the approach [23], but it may introduce errors in the
data association process. In practice, we did not find the overconfidence to affect the
result in any noticeable way; however, it is relatively easy to construct situations in
which it leads to arbitrary errors in the data association process.

Another open question concerns the speed at which the amortized map recovery con-
verges. Clearly, the map is needed for a number of steps; errors in the map may
therefore affect the overall estimation result. Again, our real-world experiments show
no sign of noticeable degradation, but a small error increase was noted in one of our
simulated experiments.

Finally, SEIF inherits a number of limitations from the common literature on SLAM.
Among those are the use of Taylor expansion for linearization, which can cause the
map to diverge; the static world assumption which makes the approach inapplicable
to modeling moving objects [43]; the inability to maintain multiple data association
hypotheses, which makes the approach brittle in the presence of ambiguous features;
the reliance on features, or landmarks; and the requirement that the initial pose be

350 Chapter 12

known in the multi-robot implementation. Virtually all of these limitations have been
addressed in the recent literature. For example, a recent line of research has devised
efficient particle filtering techniques [13, 23, 26] that address most of these shortcom-
ings. The issues addressed in this paper are somewhat orthogonal to these limitations,
and it appears feasible to combine efficient particle filter sampling with SEIFs. We
also note that in a recent implementation, a new lazy data association methodology
was developed that uses a SEIF-style information matrix to robustly generate maps
with hundreds of meters in diameter [40].

The use of sparse matrices in SLAM offers a number of important insights into the de-
sign of SLAM algorithms. Our approach puts a new perspective on the rich literature
on hierarchical mapping discussed further above. As in SEIFs, these techniques focus
updates on a subset of all features, to gain computational efficiency. SEIFs, however,
composes submaps dynamically, whereas past work relied on the definition of static
submaps. We conjecture that our sparse network structures capture the natural depen-
dencies in SLAM problems much better than static submap decompositions, and in
turn lead to more accurate results. They also avoid problems that frequently occur at
the boundary of submaps, where the estimation can become unstable. However, the
verification of these claims will be subject to future research. A related paper dis-
cusses the application of constant time techniques to information exchange problems
in multi-robot SLAM [28].

Finally, we note that our work sheds some fresh light on the ongoing discussion on the
relation of topological and metric maps, a topic that has been widely investigated in the
cognitive mapping community [6, 17]. Links in SEIFs capture relative information,
in that they relate the location of one landmark to another (see also [7, 9, 31]). This
is a common characteristic of topological map representations [5, 35, 18, 22]. SEIFs
also offer a sound method for recovering absolute locations and affiliated posteriors
for arbitrary submaps based on these links, of the type commonly found in metric map
representations [25, 36]. Thus, SEIFs bring together aspects of both paradigms, by
defining simple computational operations for changing relative to absolute represen-
tations, and vice versa.

[...]

However, a note of caution is in order. If SEIFs were applied to a linear system (mean-
ing, we don’t need Taylor series approximations), the update would be truly constant
time. However, because of the need to linearize, we need an estimate of the mean
µt along with the information state. This estimate is not maintained in the traditional
information filter, and recovering it requires a certain amount of time. Our SEIF im-
plementation only approximates it, and the quality of the posterior estimate depends
on the quality of this approximation. We will return to this issue at the very end of

The Sparse Extended Information Filter 351

this chapter, where we discuss some of the shortcomings and extensions of the SEIF
paradigm. For now, we will begin with a derivation of the four essential update steps
in SEIFs.

[...]

However, to attain efficient online, updating the SEIF has to make a number of ap-
proximations, which make its result less accurate than that of the EIF. In particular,
the SEIF has two limitations: First, it linearizes only once, just like the EKF. The
EIF can re-linearize, which generally improves the accuracy of the result. Second, the
SEIF uses an approximation step to main sparsity of its information matrix. This spar-
sity was naturally given for the full-SLAM EIF algorithm, by nature of the information
that was being integrated. SEIFs integrate out past poses, and this very step violates
the sparseness of the information representation. The SEIF uses an approximation step
to retain sparseness, which is essential for efficient updating of the information matrix
in the context of online SLAM.

352 Chapter 12

13
MAPPING WITH UNKNOWN

DATA ASSOCIATION

13.1 LATEST DERIVATION

This is the correct derivation of EM, unfortunately using a slightly different notation
than in the rest of the book. It sits here to remind Sebastian that it has to be incorpo-
rated into the text and parts of it have to ultimately disappear into the appendix. So,
reader, don’t read this. If you do this anyhow, we use st for the pose at time t and st

for the poses leading up to time t. z is a measurement, and u is a control. Also, the
control for the interval (t− 1, t] is denoted ut, and not ut−1. Good luck!

Here it goes...

p(dt, st|m) = p(dt|st,m) p(st|m)

= η
∏

τ

p(uτ |sτ , sτ−1)
∏

τ

p(zτ |sτ ,m) (13.1)

Taking the logarithm on both sides gives us

log p(dt, st|m) = η′ +
∑

τ

log p(uτ |sτ , sτ−1) +
∑

τ

log p(zτ |sτ ,m) (13.2)

Here η and η′ are constants. Introduce binary fields of indicator variables Isτ
and

Isτ ,sτ−1
. Isτ

= 1 if and only if the robot’s pose at time t was sτ , and Isτ ,sτ−1
= 1 if

and only if the robot’s pose at time t was sτ and the pose at time t− 1 was sτ−1. The
set of all of those variable will be called I . They are the latent variables. This gives us

353

354 Chapter 13

the form:

log p(dt, I|m) (13.3)

= η′ +
∑

τ

∫ ∫

Isτ ,sτ−1
log p(uτ |sτ , sτ−1) dsτ dsτ−1 +

∑

τ

∫

Isτ
log p(zτ |sτ ,m) dsτ

Now calculate the expectations of those indicator variables I:

EI [log p(d
t, I|m)] (13.4)

= EI

[

η′ +
∑

τ

∫ ∫

Isτ ,sτ−1
log p(uτ |sτ , sτ−1) dsτ dsτ−1 +

∑

τ

∫

Isτ
log p(zτ |sτ ,m) dsτ

]

= η′ +
∑

τ

∫ ∫

E[Isτ ,sτ−1
] log p(uτ |sτ , sτ−1) dsτ dsτ−1 +

∑

τ

∫

E[Isτ
] log p(zτ |sτ ,m) dsτ

where the expectation of the indicator variables I is conditioned on the current map,
m[i]. In other words, we have (I am not sure it’s good to even write it in this form):

Est [log p(dt, st|m)] (13.5)

= η′ +
∑

τ

∫ ∫

p(sτ , sτ−1|m[i], zt, ut) log p(uτ |sτ , sτ−1) dsτ dsτ−1

+
∑

τ

∫

p(sτ |m[i], zt, ut) log p(zτ |sτ ,m) dsτ

Thus, in the E-step we have to calculate the expectations

Isτ
= p(sτ |m[i], zt, ut)

Isτ ,sτ−1
= p(sτ , sτ−1|m[i], zt, ut) (13.6)

for all t, sτ , and sτ−1. In the M-step, we seek to maximize (13.5) under these epec-
tations, which will give us the (i + 1)-st map. Fortunately, not all the terms in (13.5)
depend on the map m:

m[i+1] = argmax
m

∑

τ

∫

Isτ
log p(zτ |sτ ,m) dsτ (13.7)

Mapping with Unknown Data Association 355

In retrospect, we notice that we don’t even have to calculate the indicator variables
Isτ ,sτ−1

. Relative to the map m, the term is a constant. So we can omit them early on.

This gives us for the E-step, assuming uniform prior over robot poses (here zt\τ =
{zτ+1, zτ+2, . . . , zt}):

Isτ
= p(sτ |m[i], zt, ut)

= η p(zt\τ , ut\τ |m[i], sτ , z
τ , uτ) p(sτ |m[i], zτ , uτ)

= η p(zt\τ , ut\τ |m[i], sτ) p(sτ |m[i], zτ , uτ)

= η′ p(sτ |m[i], zt\τ , ut\τ) p(zt\τ , ut\τ |m[i]) p(sτ |m[i], zτ , uτ)

= η′′ p(sτ |m[i], zt\τ , ut\τ) p(sτ |m[i], zτ , uτ) (13.8)

which is a forwards-backwards localization.

For M-step, we have:

m[i+1] = argmax
m

∑

τ

∫

Isτ
log p(zτ |sτ ,m) dsτ (13.9)

Conveniently decouple this for each location 〈x, y〉. Notice, this is approximate, as
those cells aren’t independent. An alternative would be to run Simulated Annealing.
But decoupling common in the literature.

m[i+1]
x,y = argmax

mx,y

∑

τ

∫

Isτ
log p(zτ |sτ ,mx,y) dsτ (13.10)

We observe that

log p(zτ |sτ ,mx,y) = log[η p(mx,y|sτ , zτ) p(zτ |sτ)]

= η′ + log p(mx,y|sτ , zτ) + log p(zτ |sτ) (13.11)

and hence

m[i+1]
x,y = argmax

mx,y

∑

τ

∫

Isτ
[log p(mx,y|sτ , zτ) + log p(zτ |sτ)] dsτ

356 Chapter 13

= argmax
mx,y

∑

τ

∫

Isτ
log p(mx,y|sτ , zτ) dsτ (13.12)

Great, eh? The only thing I don’t like is the M-step. If we can fix that, we might
actually prove convergence!

All right, I let you read the motivation now. Don’t pay attention to any of the deriva-
tions.

13.2 MOTIVATION

In the previous chapter, we discussed a mapping algorithm that calculates the full, joint
posterior over poses and maps. From a probabilistic standpoint of view, the estimation
of the posterior is clearly the gold standard, as it carries information about the map
uncertainty, the pose uncertainty, and even the cross-dependencies between pose and
map estimates.

However, to obtain a posterior estimation algorithm, the approach described in the pre-
vious chapter had to resort to a number of restrictive assumptions. The most important
of those assumptions is the absence of a data association problem. Put differently, it is
critical for these algorithms that they can can establish correspondence between sights
of the same environment feature at different points in time—otherwise the posterior
would not be multi-modal!. For this reason, mapping algorithms using Kalman fil-
ters often extract from the sensor data a small number of landmarks (features) which
can be disambiguated easily. By doing so, they are forced to throw away most of the
data. For example, in the underwater mapping results mentioned in the previous chap-
ter, most of the measurements of the underwater sea bed were discarded, and only a
small number of feature detections were used for building a map. How much better
a map could one build by considering all available data! These observation motivates
our desire to develop mapping algorithms that can cope with ambiguous sensor data,
and with the data association problem. Such algorithms are subject of this and the
following chapter.

This chapter presents a family of mapping algorithms that specifically address the
data association problem. In particular, they can cope with ambiguous landmarks and
estimate the correspondence between them on-the-fly. Variants of the basic algorithm
can also cope with raw sensor data, by compiling sequences of data into small local
maps, and merging them in a statistical sound way into a global, consistent map. On
the downside, the algorithms developed here have two disadvantages when compared

Mapping with Unknown Data Association 357

to the Kalman filter approach. First, instead of computing the full posterior over maps
and poses, they only strive for the most likely map. Consequently, the result of this
algorithm does not explicitly represent the uncertainty in the map or the robot poses.
Second, the algorithms discussed here are batch algorithms. They require multiple
passes through the entire data set. Kalman filters, in contrast, are incremental. Once a
measurement has been processed, it does not have to be memorized.

Nevertheless, the algorithms discussed here are important from a practical point of
view. The data association problem is generally recognized as the most challenging
problem in concurrent mapping and localization, and these algorithms are currently
the only known approach that addresses this problem in a statistically sound way. The
algorithms have also generated some of the largest maps ever built, in environments
that are intrinsically difficult to map.

This chapter contains some statistical material which is slightly more advanced than
the material in the previous chapters. In particular, it uses (without proof) Dempster’s
EM algorithm [], which is a well-known statistical technique for maximum likelihood
estimation with missing data. To communicate the basic ideas first before diving into
mathematical formalism, this chapter begins with an informal description of the basic
ideas underlying all of the algorithms discussed in this chapter. In particular,

Section 13.3 introduces the basic ideas using two simple, artificial examples.

Section 13.4 states the basic EM algorithm for concurrent mapping and localiza-
tion, and derives it mathematically.

Section 13.5 discusses how implement EM. In particular, it discusses the imple-
mentation of a landmark-based mapping algorithm, which uses piecewise con-
stant approximation of probability density functions, and points out strategies of
reducing the computational complexity.

Section 13.6 introduces a layered version of this algorithm, which relies on local
maps as the basic entities for EM. As is discussed there, this layered version
makes it possible to apply EM to occupancy grids-style metric maps.

358 Chapter 13

Figure 13.1 Environment (thin line); the robot’s path (grey); and the measured path (thick
line). The robot can perceive whether or not it is in one of the indistinguishable corners,
within a certain maximum perceptual range. The dots indicate locations where the robot
perceived a corner.

13.3 MAPPING WITH EM: THE BASIC

IDEA

Let us begin by discussing the basic ideas and concepts in mapping with EM. As we
will see, the general idea are quite intuitive and, like everything else in this book,
critically linked to the notion of probabilities.

The goal of EM mapping is to find the most likely map given the data. Put mathemat-
ically, we are now interested in calculating

argmax
m

P (m | d) (13.13)

for arbitrary data sets and maps. Unfortunately, searching the space of maps exhaus-
tively is impossible, since it is too large. EM therefore performs hill climbing in the
space of all maps. More specifically, it starts out with a very poor map, then develops
a better map, and so on, until it finally arrives at a local maximum in likelihood space.

In particular, and this is the basic “trick” of EM, EM iterates two different estimation
steps

a localization step, also called E-step for reasons given below, in which the robot
localizes itself in its current best map, and

a mapping stape, also called M-step, where a new, improved map is calculated
based on the result of localization.

Mapping with Unknown Data Association 359

Figure 13.2 The initial alpha-values, using only odometry to compute posterior distribu-
tions over the robot’s poses.

Clearly, this problem decomposition has the advantage that the steps individually are
much easier than the concurrent In Chapter 7, we have already seen how to localize
robots in a known map (the E-step). In Chapter 9, we have discussed techniques for
building maps from known poses (M-step). The EM approach alternates localization
and mapping, using techniques that bear similarity to the ones described before.

To illustrate EM, consider the rectangular environment shown in Figure 13.1. Let us
for the moment assume that the robot has a sensor for detecting corners. Whenever
it is near or in a corner, it can perceive its relative location, but it is unable to tell
the corners apart. Notice that this environment is highly symmetric. The mapping
problem clearly raises the data association problem of establishing correspondence
between different detections of the same corner. Figure 13.1 also shows the robot’s
path (in gray). Dots along the path indicate when the robot’s sensors detected a corner.
Obviously, our robot tends to drift to right, relative to its odometry measurements.

The EM algorithm starts with a localization step without any map. Figure 13.2 shows
this for the different points in time. Initially, pose defined to be 〈x = 0, y = 0, θ = 0〉,
which is shown in the first (and leftmost) diagram in Figure 13.2. After the first motion
segment to the adjacent corner, robot’s belief shown in second diagram. This belief
is purely based on odometry; since there is no map, no opportunity to constrain the
belief in any way. The next three diagrams show robot’s belief after the next three
motion segment, illustrating that the robot’s uncertainty increases over time.

The pose estimates are now used to generate a first, highly uncertain map. This map
is shown in Figure 13.3. Here the grey-level corresponds to the likelihood that a x-
y-location in the map is a corner: Black means the robot is certain there is a corner,
white means the robot is certain there is none, and values in between indicate prob-
abilities for cornerness between 0 (white) and 1 (black). The map in Figure 13.3
possesses several remarkable properties. First, it is highly uncertain, as indicated by
the large regions that might possible be corners. The grey-ish circle at the bottom left
corresponds to the first perception, where the robot knew its pose (by definition it was
〈0, 0, 0〉) and only saw a single corner within its circular perceptual field. The other

360 Chapter 13

Figure 13.3 The initial map.

grey regions correspond to points in time where the robot perceived the same sensor
reading, but was less certain about its position. Hence, the resulting map is less sharp.

The robot now re-runs the localization, but this time using the initial map. The map,
while far from accurate, nevertheless leads to improved localization. The new local-
ization run based on the initial map is shown in Figure 13.4. Comparison with the
first localization results (Figure 13.2) shows that the margin of uncertainty has shrunk,
illustrates the positive effect of the map on localization.

So far, only talked about forward localization, using the data leading up to time t to
determine the robot’s pose at time t. Strictly speaking, even data collected after time
t carries information about the robot’s pose at time t. Thus, some sort of backwards
localization is called for that uses future data to revise past beliefs. Figure 13.5 shows
the result of backwards localization. This figure is to be read from right to left. Since
the robot’s final pose is unknown, we start with a uniform distribution as indicated in
the rightmost diagram in Figure 13.5. One time step earlier, the robot’s distribution is
given by the diagram next to the left. This is identical to global localization, just in
reverse time order. The fact that this diagram contains a collection of circles indicates
that after a single measurement followed by a motion command, the robot is probably
on a fixed distance to one of the (approximately) known corner locations. From right
to left, the diagrams in Figure 13.5 show the result of backwards localization all the
way to the initial time step.

Strictly speaking, our approach requires backwards in all iterations, even the first, but
in the absence of a map the resulting distributions are uniform, which explains why
we did not address this issue in the first round of localization.

Mapping with Unknown Data Association 361

Figure 13.4 These alpha-values are based on odometry (as before) and the initial, highly
uncertain map.

Figure 13.5 Backwards localization: The beta-values are computed form right to left,
effectively localizing the robot backwards in time.

Figure 13.6 The combined results of forward and backward localization.

Figure 13.7 The second map.

362 Chapter 13

Figure 13.8 The combined results of forward and backward localization.

Figure 13.9 The final map.

The true posterior over the robot location at the various points in time is shown in
Figure 13.6. Each diagram is the (normalized) product of the forward localization and
the backwards localization results (c.f., Figure 13.4 and 13.5, respectively).

The reader should notice that the pose estimates, while far from being certain, are an
improvement over the initial pose estimates when no map is used. The new, improved
pose estimates are now used to generate a new, improved map, shown in Figure 13.7.

Mapping with Unknown Data Association 363

A

B

C D

(a) (b) (c)

Figure 13.10 Test environment and data: (a) The environment possesses 4 indistinguish-
able landmark locations, labeled A to D. The robot’s path is: A-B-C-D-C-B. (b) First data
set, as measured by robot’s odometry. (c) Second data set, which contains one more step
than the first.

Figure 13.11 Data set 1, localization after three iterations of EM.

Figure 13.12 Data set 2, localization after three iterations of EM.

A comparison with the first map (Figure 13.3) shows that now the robot is more certain
where the corners in its environment are.

The process of localization and mapping is iterated. After 10 iterations, the process
nearly converged for our toy-like example. The resulting pose estimates are shown
in the bottom row in Figure 13.8; the top and middle row show the result of forward
and backward localization, respectively. At this point, the uncertain vanished almost
entirely, even for the intermediate locations. At the last point in time, the robot is now
certain that the current corner is identical with the first, as illustrated by the diagram in
the bottom-right corner. Remarkable are the results of backward localization, which
are spirals in x-y-θ space (and hence circles in the projective x-y space).

364 Chapter 13

The corresponding map, shown in Figure 13.9, shows the location of four corners that
is slightly rotated but otherwise consistent with the true arrangement. The final map
also contains a spurious fifth corner, which is the result of “over-fitting” at the very
border of the robot’s perceptual range.

A second example is shown in Figures 13.10 to 13.12. This example illustrates how
the algorithm effectively uses data to revise beliefs backwards in time. In this example,
our algorithm first fails to localize the robot correctly, due to lack of data. As more
data arises, the false beliefs are identified and corrected in favor of the correct ones.

Figure 13.10a shows the environment: A multi-corridor environment that possesses
four “significant” places (labeled A to D). For the sake of the illustration, we assume
that these places are all indistinguishable. The robot’s path is A-B-C-D-C-B, that is,
the robot moves up, turns right, then turns around and move half way back to where
it started. Of course, the odometry is erroneous. Figures 13.10b&c depict the path,
as obtained through the robot’s odometry. In Figure 13.10b, the situation is depicted
after the robot revisited location C. One step later, the robot is back at location B, as
shown in Figure 13.10c.

The interesting feature of this example is that after returning back to location C (Fig-
ure 13.10b), the robot’s pose is much close to location B. Since our robot actually
cannot receive any corridors/walls, this suggests that maximum likelihood solution
places the robot is at B, and not at C; this is a case where a false solution is actually
more likely than the correct one. Figure 13.11 confirms our suspicion. It shows the
robot’s pose beliefs after three iterations of EM. The interesting diagram is the one on
the right: Here the belief possesses two modes, one at the correct location and one at
location B. Since the odometry is closer to B than to C, the likelihood of being at B is
slightly larger. Thus, if one wanted to know the most likely path, EM would chose the
one shown in this diagram.

The picture changes as the last data item is added, in which the robot moved from
C to B, as shown in Figure 13.10c. This last step is easily explained if the robot is
at C; starting at B, however, the new observation is less consistent. Applying EM
to this new data set yields the beliefs shown in Figure 13.12. Here the most likely
path is actually the correct one, even though the likelihood is only changed by a small
amount. This example illustrates that EM is capable of using data to revise beliefs
backwards in time. This is important specifically when mapping cyclic environments.
Then first closing a cycle, the sensor data often is insufficient to determine the robot’s
pose correctly, requiring some sort of backwards-correction mechanisms that can fix
errors in maps as new evidence arrives.

Mapping with Unknown Data Association 365

This completes the examples of EM mapping. We will now formally describe the EM
mapping algorithm and derive it mathematically. Iterates localization and mapping.
The forward pose estimates will be called α, the backward estimates β, and the product
of both γ. Algorithm: maximizes the map likelihood. Pose estimated may not be
interpreted as posterior, since evidence is used multiple times and hence robot is “over-
confident.” Our illustration also has implications for the choice of the representation.
Even in this simple example,the intermediate pose estimates cover a wide range of
distributions.

13.4 MAPPING WITH THE EM

ALGORITHM

13.4.1 The EM Mapping Algorithm

Armed with the necessary mathematical derivation, we will now state the general EM
mapping algorithm. Table 13.1 depicts the algorithm EM mapping(). Here η denotes
a generic normalizer that ensures that the desired probability distributions integrate
(sum up) to 1.

The algorithm EM mapping() is a batch algorithm. Its input is a data set d, from
which it generates a map m. The algorithm EM mapping is initialized in line 2 by
assigning uniform distributions to each variable in the map. The main loop, which is
iterated until convergence, implements the E-step (lines 4 to 11) and the M-step (lines
12 to 16). The E-step consists of three parts: a forward localization (lines 4 to 6),
an inverse localization (lines 7 to 9), and a multiplication to obtain the full posterior
beliefs over all poses (lines 10 and 11). The M-step computes, for each map element
〈x, y〉, the non-normalizes likelihood that the world’s property at 〈x, y〉 is l (lines 13
and 14), and subsequently normalizes these probabilities (line 15). Finally, it compiles
a single, global map (line 16). After convergence, the final map is returned (line 17).
Empirically, 3 to 5 iterations often result in a map that is sufficiently close to the
asymptotic result, so that the computation can be terminated. Notice that when stating
the algorithm, EM mapping() we omitted the index j. This is legitimate because the
algorithm is incremental, ant it suffices to memorize the most recent map m[j] and
beliefs Bel[j](s(t)).

Make Figure: The L-shaped example environment, and maploc distributions

366 Chapter 13

1: Algorithm EM mapping(d):

2: initialize m by uniform-map

3: repeat until satisfied

4: α(0) = Dirac(〈0, 0, 0〉)
5: for t = 1 to T do

6: α(t) = η P (o(t) | s(t),m)
∫
P (s(t) | a(t−1), s(t−1)) α(t−1) ds(t)

7: β(T) = uniform()

8: for t = T − 1 down to 0 do

9: β(t) = η
∫
P (s(t) | a(t), s(t+1)) P (o(t+1) | s(t+1),m) β(t+1) ds(t+1)

10: for t = 1 to T do

11: Bel(s(t)) = α(t) β(t)

12: for all 〈x, y〉 do

13: for all l ∈ L do

14: m̄〈x,y〉=l =
∑T

t=0

∫
P (o(t) | s(t),m〈x,y〉 = l)·
·I〈x,y〉∈range(o(t),s(t)) Bel(s

(t)) ds(t)

15: m〈x,y〉=l =
(∑

l′∈L m̄〈x,y〉=l′
)−1

m̄〈x,y〉=l

16: m = {m〈x,y〉}

17: return m

Table 13.1 The general EM mapping algorithm.

Figure ?? shows an illustrative example of the algorithm EM mapping() in action.
Here an imaginary robot, equipped with a sensor that produces noisy measurements
of range and bearing to nearby landmarks, moves through an L-shaped environment.
The environment possesses four landmarks. To make things interesting, let us assume
the landmarks are indistinguishable to the robot, and the robot does not know how
many there are. Figure ?? shows the robot’s true trajectory, along with the measured
one. Obviously, there is odometry error. When returning the landmark labeled 4,
odometry suggests that the next landmark is closes to the one labeled 2; in reality
however, the robot encountered landmark 3, and then moved back to landmark 2.

[[[Insert picture, complete the story]]]

Mapping with Unknown Data Association 367

Illustrates the importance of uncertainty. Also demonstrates that the robot can revise
past beliefs as more evidence arrives. This is essential for “closing the loop.”

13.4.2 The Map Likelihood Function

We begin our formal derivation with a statement of the likelihood function, whose
maximization is our goal. As stated in the introduction of this chapter, our approach
maximizes

P (m | d), (13.14)

the likelihood of the map given the data. Our first exercise will be to express P (m | d)
in terms of familiar conditional probabilities, in particular the perceptual model P (o |
s,m) and the motion model P (s′ | a, s). In particular, we will find that

P (m | d)

= η P (m)

∫

· · ·
∫ T∏

t=1

P (o(t) | m, s(t))
T−1∏

t=1

P (s(t+1) | a(t), s(t)) ds(1), . . . , ds(T),(13.15)

where η is a numerical constant: a normalizer that ensures that the left-hand side inte-
grates to 1 over all m. Since we are only interested in maximization, not in computing
the actual likelihood of a map, η is irrelevant.

The term P (m) in (13.15) is the prior on maps. It allows one to express an a priori
preference for certain maps over others. For example, if the environment is known
to consist of parallel and orthogonal walls only—a commonly made assumption that
can greatly simplify the mapping problem—one might exclude maps that do not obey
that assumption. Throughout this text, however, we will consider the most general
case and assume that P (m) is uniformly distributed. Hence, P (m) is a constant and
can be ignored in the maximization, just like η. With these considerations, (13.15)
shows that, at least in principle, finding the most likelihood can be done solely from
the perceptual model P (o | s,m), the motion model P (s′ | a, s), and the data d.

To see that (13.15) is correct, let us begin by applying Bayes rule to P (m | d):

P (m | d) =
P (d | m) P (m)

P (d)
(13.16)

368 Chapter 13

Obviously, the denominator P (d) is a constant factor that does not depend on m. To
simplify the notation, we prefer to write

P (m | d) = η1 P (m) P (d | m) (13.17)

where η1 is a normalizer that ensures consistency:

η1 =

(
∑

m

P (d | m) P (m)

)−1

(13.18)

The rightmost term in Expression (13.17), P (d | m), can be rewritten using the The-
orem of Total Probability:

P (d | m) =

∫

· · ·
∫

P (d | m, s(0), . . . , s(T))

P (s(0), . . . , s(T) | m) ds(0), . . . , ds(T) (13.19)

Here we benefit from our careful definition of the motion model in Chapter ??, which
ensures that the rightmost term, P (s(0), . . . , s(T) | m), is a constant that does not
depend on m. Hence, we obtain

P (d | m) = η2

∫

· · ·
∫

P (d | m, s(0), . . . , s(T)) ds(0), . . . , ds(T) (13.20)

where η2 is another normalizer. Further below, we will subsume η1 and η2 into a
single constant, but for now let’s keep them separate.

The key observation in our derivation is that given the map m and all T poses
s(0), . . . , s(T), the Markov assumption renders all observations and motion commands
conditionally independent. In other words, P (d | m, s(0), . . . , s(T)) can be re-written
as a product of “local” probabilities, conditioned on the appropriate state information:

P (d | m, s(0), . . . , s(T)) =

T∏

t=0

P (o(t) | s(t),m)

T−1∏

t=0

P (a(t) | s(t+1), s(t),m)(13.21)

Mapping with Unknown Data Association 369

The last term, P (a(t) | s(t+1), s(t),m), is simplified by first noticing that a(t) does not
depend at all on the map m, hence

P (a(t) | s(t+1), s(t),m) = P (a(t) | s(t+1), s(t)) (13.22)

and then further applying Bayes rule

P (a(t) | s(t+1), s(t)) =
P (s(t+1) | a(t), s(t)) P (a(t) | s(t))

P (s(t+1) | s(t)) (13.23)

Again, the denominator P (s(t+1) | s(t)) is a constant and so is the distribution P (a(t) |
s(t)), since in the absence of any other information a single pose does not convey
information about subsequent poses or motion commands. Hence, we can re-write
(13.23) using the normalizer η3:

P (a(t) | s(t+1), s(t),m) = η3 P (s(t+1) | a(t), s(t)) (13.24)

Substituting (13.24) into (13.21) yields

P (d | m, s(0), . . . , s(T)) = η4

T∏

t=0

P (o(t) | s(t),m)
T−1∏

t=0

P (s(t+1) | a(t), s(t))(13.25)

Notice that we have managed to express the desired probability in terms of familiar
expressions: The perceptual model P (o(t) | s(t),m) and the motion model P (s(t+1) |
a(t), s(t)).

We now substitute (13.25) into (13.20) and obtain

P (d | m) = (13.26)

η2 η4

∫

· · ·
∫ T∏

t=0

P (o(t) | s(t),m)

T−1∏

t=0

P (s(t+1) | a(t), s(t)) ds(0), . . . , ds(T)

and back into (13.17):

P (m | d) = (13.27)

370 Chapter 13

η P (m)

∫

· · ·
∫ T∏

t=0

P (o(t) | s(t),m)

T−1∏

t=0

P (s(t+1) | a(t), s(t)) ds(0), . . . , ds(T)

Here we collapsed all normalizers into a single one (η = η1η2η4), which yields the
desired expression (13.15).

13.4.3 Efficient Maximum Likelihood

Estimation

Having successfully derived the formula for map likelihood the next logical question
is how to actually maximize it, thus, how to find the most likely map.

A simple-minded approach, which does not work, would be a generate-and-test ap-
proach:

Algorithm generate and test(d):

for all maps m do
compute non-normalized likelihood p ∝ P (m | d)
if p larger than that of any previous map then

m∗ = m
return m∗

Unfortunately, this algorithm fails for practical reasons. If each discrete map has 104

binary elements, which is much less than the number of grid cells for some of the maps
shown further below, then there will be 210,000 different maps. Evaluating a single one
of them requires summation often over as 104 nested integrals or more (T = 104 data
items may be easily collected in a few minutes), each of which can take another 106

values or so—this is clearly infeasible. The fact that the likelihood function is highly
non-linear suggests that no practical algorithm exists that may ever be able to find it.
We are certainly not aware of one.

The EM algorithm, which will be described in turn, implements hill-climbing in like-
lihood space. As noticed in the introduction, EM is an iterative algorithm. Let
j = 0, 1, . . . denote the iteration counter. For simplification of the presentation, let
us assume that m[−1] denotes the empty map, by which we mean a map where each
m〈x,y〉 is uniformly distributed. EM iterates two steps:

Mapping with Unknown Data Association 371

1. Localization (E-step): The E-step computes the belief distribution over poses
s(0), . . . , s(T)

Bel[j](s
(t)) = P (s(t) | m[j−1], d) ∀t = 1, . . . , T (13.28)

conditioned on the map m[j−1] and the data d.

2. Mapping (M-step): The M-step calculates the most likely map

m[j] = argmax
m

P (m | Bel[j](s(0)), . . . , Bel[j](s(T)), d) (13.29)

=

∫

· · ·
∫

argmax
m

P (m | s(0), . . . , s(T), d)

Bel[j](s
(0)) · · ·Bel[j](s(T)) ds(0), . . . , ds(T) (13.30)

In the initial E-step, m is the empty map and the E-step calculates

Bel[j](s
(t)) = P (s(t) | d) ∀t = 1, . . . , T (13.31)

Since the most likely map can be difficult to compute even if the poses are known,
further below we will introduce an additional independence assumption that allows us
to decouple the computation in an efficient way. During the optimization, we will also
consider probabilistic maps that contain a notion of uncertainty.

13.4.4 The E-step

Expression (13.28) is similar to localization (Chapter 7), but not identical. This is
because for t < T , Bel[j](s(t)) depends also on data collected at times t′ > t, i.e.,
“future” data (from the perspective of time t). With appropriate assumptions, however,
we will show that Bel[j](s(t)) can be expressed as the normalized product of two
terms:

Bel[j](s
(t)) = η P (s(t) | m[j−1], d

(0...t)) P (s(t) | m[j−1], d
(t...T)) (13.32)

This is convenient, as each of the terms on the right-hand side can be computed inde-
pendently using Markov localization, as explained in the previous chapter.

372 Chapter 13

To see, we recall

d = d(0...t) ∪ d(t...T) (13.33)

with

d(0...t) = a(0), o(1), . . . , a(t−1), o(t) (13.34)

d(t...T) = a(t), o(t+1), . . . , a(T−1), o(T) (13.35)

and note that

Bel[j](s
(t)) = P (s(t) | m[j−1], d) (13.36)

= P (s(t) | m[j−1], d
(0...t), d(t...T)) (13.37)

Bayes rule gives us

Bel[j](s
(t)) =

P (d(0...t) | m[j−1], s
(t), d(t...T)) P (s(t) | m[j−1], d

(t...T))

P (d(0...t) | m[j−1], d(t...T))
(13.38)

= η5 P (d(0...t) | m[j−1], s
(t), d(t...T)) P (s(t) | m[j−1], d

(t...T))(13.39)

= η5 P (d(0...t) | m[j−1], s
(t)) P (s(t) | m[j−1], d

(t...T)) (13.40)

where η5 is a normalizing constant. The last transformation exploits the Markov as-
sumption: knowledge of th map m[j−1] and the pose s(t) at time t renders past data
d(0...t) and future data d(t...T) independent. We will now apply Bayes rule again to the
second term in (13.40), namely P (d(0...t) | m[j−1], s

(t)), from which we obtain

P (d(0...t) | m[j−1], s
(t)) =

P (s(t) | m[j−1], d
(0...t)) P (d(0...t) | m[j−1])

P (s(t) | m[j−1])
(13.41)

= η6 P (s(t) | m[j−1], d
(0...t)) P (d(0...t) | m[j−1])(13.42)

Here η6 is yet another constant. Substituting this back into (13.40) yields

Bel[j](s
(t)) = η5η6 P (s(t) | m[j−1], d

(0...t)) (13.43)

P (d(0...t) | m[j−1]) P (s(t) | m[j−1], d
(t...T)) (13.44)

Mapping with Unknown Data Association 373

Since P (d(0...t) | m[j−1]) does not depend on s(t), it can be replaced by another
constant, which gives us

Bel[j](s
(t)) = η7 P (s(t) | m[j−1], d

(0...t)) P (s(t) | m[j−1], d
(t...T)) (13.45)

Here η7 is a constant that subsumes η4, η5, and P (d(0...t) | m[j−1]).

Henceforth, we will call

α
(t)
[j] = P (s(t) | m[j−1], d

(0...t)) (13.46)

β
(t)
[j] = P (s(t) | m[j−1], d

(t...T)) (13.47)

which implies

Bel[j](s
(t)) = η α

(t)
[j] β

(t)
[j] (13.48)

The reader may notice that the computation of α
(t)
[j] is analogous to forward-

localization as described in the previous chapter. The computation of β(t)
[j] can be

viewed as “inverse localization,” where data collected after time t is used to retroac-
tively estimate the position at time t. The β-values add additional knowledge to the
robot’s position, typically not captured in localization. They are, however, essential
for revising past belief based on sensor data that was received later in time, which is a
necessary prerequisite of building large-scale maps.

Computation of the α-values

The computation of the α-values is equivalent to the probabilistic localization algo-
rithm described in the previous chapter with known initial pose s(0) = 〈0, 0, 0〉. For
completeness, it is briefly restated here.

Initially, the robot is assumed to be at the center of the global reference frame. Thus,
α

(0)
[j] (for any j = 0, 1, . . .) is initialized by a Dirac distribution centered at 〈0, 0, 0〉:

α
(0)
[j] = P (s(0) | m[j−1], d

(0...0)) (13.49)

= P (s(0)) (13.50)

374 Chapter 13

=

{
1, if s(0) = 〈0, 0, 0〉
0, if s(0) 6= 〈0, 0, 0〉 (13.51)

All other α(t)
[j] with t = 1, . . . , T are computed recursively by Bayes filters (c.f. Chap-

ter ??):

α
(t)
[j] = P (s(t) | m[j−1], d

(0...t)) (13.52)

= P (s(t) | m[j−1], o
(t), a(t−1), d(0...t−1)) (13.53)

= η6 P (o(t) | s(t),m[j−1], a
(t−1), d(0...t−1)) P (s(t) | m[j−1], a

(t−1), d(0...t−1))(13.54)

= η6 P (o(t) | s(t),m[j−1]) P (s(t) | m[j−1], a
(t−1), d(0...t−1)) (13.55)

where η6 is again a probabilistic normalizer, and the rightmost term of (13.55) can be
transformed to

P (s(t) | m[j−1], a
(t−1), d(0...t−1)) (13.56)

=

∫

P (s(t) | s(t−1),m[j−1], a
(t−1), d(0...t−1)) P (s(t−1) | m[j−1], a

(t−1), d(0...t−1)) ds(t)(13.57)

=

∫

P (s(t) | a(t−1), s(t−1)) P (s(t−1) | m[j−1], d
(0...t−1)) ds(t) (13.58)

=

∫

P (s(t) | a(t−1), s(t−1)) α
(t−1)
[j] ds(t) (13.59)

Substituting (13.59) into (13.55) yields the recursive rule for the computation of all
α(t) with boundary condition (13.51):

α
(0)
[j] =

{
1, if s(0) = (0, 0, 0)
0, if s(0) 6= (0, 0, 0)

(13.60)

α
(t)
[j] = η6 P (o(t) | s(t),m[j−1])

∫

P (s(t) | a(t−1), s(t−1)) α
(t−1)
[j] ds(t)(13.61)

for all t = 1, . . . , T . Notice that (13.60) and (13.61) can be computed efficiently from
the data d, the model m[j−1], using the motion model P (s′ | a, s) and the perceptual
model P (s | o,m).

Computation of the β-values

Mapping with Unknown Data Association 375

The computation of β-values is analogous, to that of the α-values, with the exception
that it takes place backwards in time and that the boundary conditions differ. The
values β(T)

[j] do not depend on any data. Hence, β(T)
[j] , which expresses the probability

that the robot’s final position is s, is uniformly distributed:

β
(T)
[j] = uniform (13.62)

All other β-values are computed recursively by applying Bayes filters backwards in
time:

β
(t)
[j] = P (s(t) | m[j−1], d

(t...T)) (13.63)

=

∫

P (s(t) | s(t+1),m[j−1], d
(t...T)) P (s(t+1) | m[j−1], d

(t...T)) ds(t+1)(13.64)

=

∫

P (s(t) | a(t), s(t+1)) P (s(t+1) | m[j−1], d
(t+1...T), o(t+1)) ds(t+1)(13.65)

By now, the reader should recognize that the first transformation that led to (13.64) is
a result of applying the Theorem of Total Probability, and the second transformation
exploits the Markov assumption with some terms reordered.

Following the same rationale as in the derivation of the α-values, we will now trans-
form the last term in (13.65) using Bayes rule and then exploiting the Markov assump-
tion, to obtain

P (s(t+1) | m[j−1], d
(t+1...T), o(t+1)) (13.66)

=
P (o(t+1) | s(t+1),m[j−1], d

(t+1...T)) P (s(t+1) | m[j−1], d
(t+1...T))

P (o(t+1) | m[j−1], d(t+1...T))
(13.67)

= η7 P (o(t+1) | s(t+1),m[j−1], d
(t+1...T)) P (s(t+1) | m[j−1], d

(t+1...T))(13.68)

= η7 P (o(t+1) | s(t+1),m[j−1]) β
(t+1)
[j] (13.69)

Substituting (13.69) into (13.65) gives us, together with the boundary condition
(13.62):

β
(T)
[j] = uniform (13.70)

β
(t)
[j] = η7

∫

P (s(t) | a(t), s(t+1)) P (o(t+1) | s(t+1),m[j−1]) β
(t+1)
[j] ds(t+1)(13.71)

376 Chapter 13

Thus, the β values are best computed backwards in time, starting at t = T and back
to T = 0. For practical purposes, one might want to assume that the motion model is
symmetric, i.e., P (s′ | a, s) = P (s | a, s′).

First E-step

In the first computation of the E-step (j = 0), where no map is available, P (o |
s,m[−1]) is assumed to be distributed uniformly. This is equivalent to ignoring all ob-
servations {o(0), o(1), . . . o(T)} in the computation of the α- and β-values. The result-
ing position estimates are only based on the motion commands {a(0), a(1), . . . a(T−1)}
in the data d. This completes the derivation of the E-step.

13.4.5 The M-step

Recall that the goal of the M-step is to compute the most likely map from the pose
beliefs Bel[j](s(T)), d):

m[j] = argmax
m

P (m | Bel[j](s(0)), . . . , Bel[j](s(T)), d) (13.72)

To facilitate the generation of the map, we decompose the mapping problem into a
collection of local problems, that is, we independently generate local maximum like-
lihood maps for each 〈x, y〉-location

m〈x,y〉,[j] = argmax
m〈x,y〉

P (m〈x,y〉 | Bel[j](s(0)), . . . , Bel[j](s(T)), d) (13.73)

and construct the map m[j] by pasting together these pieces:

m[j] =
⋃

〈x,y〉
m〈x,y〉,[j] (13.74)

Strictly speaking, for some sensor types the resulting map does not maximize likeli-
hood. For example, a sonar reading of length o can be explained by a single obsta-
cle within its cone; hence, different 〈x, y〉-locations cannot be mapped independently.
However, the independent treatment of different locations is pervasive in the literature,
as it transforms the high-dimensional mapping problem (often with more than 104 di-
mensions) into an equal number of independent one-dimensional mapping problems,

Mapping with Unknown Data Association 377

which can be solved efficiently. Finding computationally feasible solutions for (13.72)
that circumvent this decomposition is an open problem with combinatorial character.

The locality of our decomposition makes it straightforward to compute the maxi-
mum likelihood expression (13.73). Recall that l ∈ L denotes a property (e.g., oc-
cupied, unoccupied), and L denotes the set of all properties that the world can have at
any location. The maximum likelihood map m〈x,y〉,[j] under fixed position estimates
Bel[j](s

(0)), . . . , Bel[j](s
(T) is computed according to the weighted likelihood ratio

m〈x,y〉=l,[j] = P (m〈x,y〉 = l | d,Bel[j](s(0)), . . . , Bel[j](s(T))

=
Expected # of times l was observed at 〈x, y〉

Expected # of times anything was observed at 〈x, y〉 (13.75)

The expectation is taken with respect to the beliefs Bel[j](s(0)) to Bel[j](s(T)). Ex-
pression (13.75) follows a frequentist approach, which equates the likelihood that lo-
cation 〈x, y〉 has property l with the empirical frequency, weighted appropriately. Intu-
itively, we just “count” how often the robot saw l at 〈x, y〉 and divide it by the number
of times it saw anything at 〈x, y〉. This ratio maximizes the likelihood of the data.

To make this more precise, let us now transform (13.75) into a mathematical expres-
sion. The enumerator of (13.75) is given by

T∑

t=0

∫

P (m〈x,y〉 = l | o(t), s(t)) I〈x,y〉∈range(o(t),s(t)) Bel[j](s
(t)) ds(t) (13.76)

This expression cumulates, with the appropriate weighting, the information we have
about the map at 〈x, y〉.

The term P (m〈x,y〉 = l | o(t), s(t)) specifies the probability that the property of the
map at 〈x, y〉 is l, judging from the t-th sensor measurement o(t) and under the as-
sumption that the robot’s pose was s(t). Of course, o(t) might not carry any informa-
tion about m〈x,y〉. This is the case, for example, if the distance between 〈x, y〉 and
s(t) exceeds the robot’s perceptual range, or if the sensor measurement is blocked by
an obstacle in-between. Hence, the probability is multiplied by an indicator variable
I〈x,y〉∈range(o(t),s(t)). Recall that the function range(o, s) returns, the set of coordi-
nates covered by the sensor measurement o taken at s. The indicator variable I checks

378 Chapter 13

if the sensor measurement carries any information on the map at 〈x, y〉:

I〈x,y〉∈range(o,s) =

{
1, if 〈x, y〉 ∈ range(o, s)
0, if 〈x, y〉 6∈ range(o, s)

(13.77)

Finally, expression (13.76) sums over all time steps t = 1, . . . , T and over all positions
s(t), weighted by their likelihood Bel[j](s(t)).

For the denominator of (13.75), we have sum (13.76) for all l ∈ L, which yields:

∑

l′∈L

T∑

t=0

∫

P (m〈x,y〉 = l′ | o(t), s(t)) I〈x,y〉∈range(o(t),s(t)) Bel[j](s
(t)) ds(t)(13.78)

=

T∑

t=0

∫
(
∑

l′∈L

P (m〈x,y〉 = l′ | o(t), s(t))
)

I〈x,y〉∈range(o(t),s(t)) Bel[j](s
(t)) ds(t)(13.79)

=
T∑

t=0

∫

I〈x,y〉∈range(o(t),s(t)) Bel[j](s
(t)) ds(t) (13.80)

since, trivially,
∑

l′∈L P (l′ | ·) = 1. Dividing (13.76) by (13.80) yields the likelihood
ratio

m〈x,y〉=l,[j] =

T∑

t=0

∫

P (m〈x,y〉 = l | o(t), s(t)) I〈x,y〉∈range(o(t),s(t)) Bel[j](s
(t)) ds(t)

T∑

t=0

∫

I〈x,y〉∈range(o(t),s(t)) Bel[j](s
(t)) ds(t)

(13.81)

To complete the derivation, we need one last step. The enumerator of (13.81) is a
function of a conditional density P (m〈x,y〉 | o, s). This density can be interpreted as
an “inverse” perceptual model, since it determines the state of the world from a sensor
measurement and a robot’s pose. Inverse perceptual models will be addressed in depth
elsewhere in this book. For the time being, it suffices to notice that our decomposition
into small, local maps allows us to conveniently write

P (m〈x,y〉 | o, s) =
P (o, | s,m〈x,y〉) P (m〈x,y〉 | s)

P (o, | m〈x,y〉)
(13.82)

Mapping with Unknown Data Association 379

Both P (m〈x,y〉 | s) and P (o, | m〈x,y〉) can safely be approximated by a constant η8,
so that we have

P (m〈x,y〉 | o, s) = η8 P (o, | s,m〈x,y〉) (13.83)

Notice that this expression is a version of the familiar perceptual model P (o, | s,m).

Substituting (13.83) into (13.81) gives us the final equation that is the M-step:

m〈x,y〉=l,[j] = P (m〈x,y〉 = l | d,Bel[j](s(0)), . . . , Bel[j](s(T))

=

T∑

t=0

∫

P (o(t) | s(t),m〈x,y〉 = l) I〈x,y〉∈range(o(t),s(t)) Bel[j](s
(t)) ds(t)

T∑

t=0

∫

I〈x,y〉∈range(o(t),s(t)) Bel[j](s
(t)) ds(t)

(13.84)

This completes the derivation of the M-step. While Equation (13.84) looks complex,
it basically amounts to a relatively straightforward frequentist approach. It counts how
often property l was observed for location 〈x, y〉, divided by the number anything was
observed for that location. Each count is weighted by the probability that the robot
was at a location s where it could observe something about 〈x, y〉. Frequency counts
are maximum likelihood estimators. Thus, the M-step determines the most likely map
at 〈x, y〉 from the position estimates computed in the E-step. By alternating both steps,
the E-step and the M-step, both the localization estimates and the map are gradually
improved.

13.4.6 Examples

Example:

13.5 GRID-BASED IMPLEMENTATION

So what is there to know about implementing the algorithm EM mapping()? In prin-
ciple, the algorithm can be married to any of the representations discussed in Chapter
2.5. As in the previous chapter, let us first consider the possibility of implementing

380 Chapter 13

the algorithm EM mapping() using grids. This involves approximating both Both
the beliefs Bel(s) and the map M using equally-spaced, metric grids. Consequently,
integrals in Table 13.1 are replaced by (finite) sums over the corresponding grid cells.

Under certain conditions, grids are well-suited to implemented the algorithm
EM mapping(). Due to the inefficiency of grids, however can be extremely slow
and memory-intensive. It can be sped up significantly by various modifications.

Data sub-sampling. Instead of computing a pose belief Bel(s(t)) for each point
in time t ∈ {0, . . . , T}, in practice it often suffices to estimate the pose for a
small subset thereof. This is because short-term control/odometry errors are usu-
ally small and therefore can be corrected by other and faster means. A simple
example is to estimate beliefs Bel(s) only after the robot progressed a certain
distance (e.g., 10 meters), assuming that in between odometry is error-free. Al-
ternatively, one might correct for in-between odometry errors by fast, linear in-
terpolation. Data sub-sampling clearly alters the output of the algorithm, but it
may be necessary given today’s computing constraints.

Selective updating. As described in Chapter ??, selectively updating the prob-
ability distributions can greatly speed up the algorithm. Recall that in selec-
tive updating, only those grid cells are considered whose probability Bel(s) is
larger than a threshold (e.g., 0.001 · maxsBel(s)). With careful adjustment of
the threshold, selective updating only minimally alters the result while speeding
up computation by orders of magnitude.

Selective memorization. Hand in hand with selective updating, the memory re-
quirements can be lowered by selectively memorizing only a subset of all values
in Bel(s). A straightforward approach is to identify the smallest axes-parallel
hypercube in the Grid that contains all cells whose likelihood exceeds the thresh-
old used in selective updating. Alternatively, one can maintain an explicit list of
such cells, and only store those whose probability exceeds the threshold.

Caching. Certain quantities, such as the motion model P (s′ | a, s), have to
computed in every iteration of the algorithm. To speed up the computation, one
may pre-compute P (s′ | a, s) for all a(t) in the data set d and memorize this in a
set of look-up tables.

Exploiting symmetry. The cached densities P (s′ | a, s) are highly symmetric.
For a fixed a, P (s | a, s′) might appear to be six-dimensional: three dimensions
for s = 〈x, y, θ〉 and three dimensions for s′ = 〈x′, y′, θ′〉. In practice, however,
it suffices to memorize this density for a single value of s: s = 〈0, 0, 0〉. This is
because

P (s′ | a, s) = P (〈x′, y′, θ′〉 | a, 〈x, y, θ〉) (13.85)

Mapping with Unknown Data Association 381

= P (〈x̂, ŷ, θ̂〉 | a, 〈0, 0, 0〉) (13.86)

with

x̂ = (x′ − x) cos θ + (y′ − y) sin θ (13.87)

ŷ = (y′ − y) cos θ − (x′ − x) sin θ (13.88)

θ̂ = θ′ − θ (13.89)

Obviously, the resulting density P (〈x̂, ŷ, θ̂〉 | a, 〈0, 0, 0〉) is only three-
dimensional. Further savings can be achieved exploiting symmetries in the mo-
tion model.

Empirically, the effect of these modifications will be gigantic! In one experiment,
we found that they lowered memory requirements by a factor of more than 108

when compared to a simple-minded grid-based implementation of the algorithm
EM mapping(), with computational savings at a similar rate. So we recommend you
try them out!

Make Figure: Landmark-based maps from Washington, Wean Hall.

Figure ?? shows examples....

Even though we chose landmarks as example, the reader should notice that our algo-
rithm EM mapping() is generally applicable to any type of sensors. Further below.
in Chapter ??, we will present a modified version of this algorithm which has been
successfully applied to build maps with one of the most widely used sensors in mobile
robotics: sonars.

13.6 LAYERED EM MAPPING

A pivotal problem with the algorithm EM mapping(), as presented in Table 13.1 on
page 366, is the fact for some sensors it may generate highly implausible maps during
search. Technically, the source of the problem lies in the M-step, and in particular
in the decomposition that estimates maximum likelihood map for each location 〈x, y〉
independently (c.f., Chapter 13.4.5).

Make Figure: Counterexample from Wolfram’s ICML paper

382 Chapter 13

[[[Actually, the 2-corridor map is a bad example, since it’s based on occupancy grid
maps, not the maximum likelihood estimate. Maybe we can generate a new counterex-
ample]]]

To give a concrete example, suppose we apply EM mapping() to a robot equipped
with range finders (e.g., sonars), in the hope of building a consistent map of an office
environment. If the robot’s poses are known, the mapping algorithm might produce
maps like the occupancy grid segment shown in Figure ??. Clearly, this is a nice and
crisp map of a corridor segment. The problem arises when the pose of the robot is not
known well, as is typically the case in the M-step of EM mapping(). For example, if
Bel(s) contains two distinct regions with high likelihood, the M-step might generate
a map like the one shown in Figure ??. It is worth noting that for each individual
location 〈x, y〉, the map in Figure ?? correctly estimates the likelihood of occupancy.
Nevertheless, the map as a whole misleads the E-step (localization): In some areas,
it shows three walls instead of two, and in others the corridor appears to be twice as
wide. Configurations like these can lead to erroneous results for the localization in the
E-step, if the range-based localization algorithm described in Chapter 7 is applied.

Fortunately, the basic algorithm can be augmented in a way that reduces the damag-
ing effects. We will now describe a layered version of the algorithm EM mapping(),
called layered EM mapping(). Technically, this algorithm does not fully sidestep the
independence assumption, but it keeps track of certain dependencies, thereby remedy-
ing the problem in practice.

13.6.1 Layered Map Representations

Make Figure: ICML Figure 5

The key idea of the algorithm layered EM mapping() is to represent the map by
a collection of small, local maps, instead of a monolithic, global map. Each local
map is generated from a short data sub-sequence. Figure ?? shows some examples,
where each local map is an occupancy grid generated from not more than 10 meters
of robot motion. To establish correspondence between the coordinates systems of
the local maps, and the global coordinate frame, each local map is annotated by the
corresponding transformation. We will refer to this new representation as layered, to
indicate that the global map is composed of a collection of small, local maps.

Layered maps can be learned with EM. However, our algorithm has to be modified
appropriately to account for the fact that maps are now layered. EM with layered
maps is graphically illustrated in Figure ??: Instead of moving back and forth between

Mapping with Unknown Data Association 383

pose estimates and a flat map as was the case in EM mapping(), the new algorithm
layered EM mapping() first generated a set of local maps, and uses EM to estimate
their location and orientation within the global coordinate frame. As we will see,
the advantage of the layered approach is that within the local maps, dependencies
between different 〈x, y〉 locations can be treated correctly. After the termination of
EM, the local maps are fused into a single, global map. This approach inherits its
name from the fact that two different map representations are used, a flat global map
and a collection of local maps.

13.6.2 Local Maps

Local maps are occupancy grid maps acquired over a motion segment of bounded
length. Purely to facilitate the notation, let us temporarily assume that the local map
is generated from a single sensor measurement o(t). This allows us to write

m(t) (13.90)

for the local map generated from the sensor measurement o(t). The reader may notice
that further below, after posing the main algorithm, we will integrate longer data se-
quences into a local map, which will reduce the computation and lead to more distinct
local maps. However, for now we will assume a one-to-one correspondence between
time steps t and local maps.

Each local map carries its own, local coordinate system. To map local map coordi-
nates back into the global coordinate frame(and thereby establishing correspondence
between the coordinate frames of different local maps), we have to annotate them by
a coordinate transformation. Let us write

σ(t) (13.91)

for the coordinate transformation of the local map m(t). Just like robot poses, map
poses are specified by three coordinates, σ = 〈x, y, θ〉. Occasionally, we will refer to
σ(t) as the pose of the t-th local map (poses of maps are essentially the same as robot
poses).

384 Chapter 13

In the vein of this book, our approach memorizes a belief distribution over σ(t) with
each map. This distribution will be denoted

Bel(σ(t)) (13.92)

and is similar to the pose belief Bel(s(t))

As we will see below, by representing maps in two layers we eliminate the prob-
lems arising from using a single, monolithic map. This is because local maps are not
convolved with their pose distribution; instead, the pose distribution is represented
explicitly.

13.6.3 The Perceptual Model For Layered

Maps

Our layered map representation requires a new definition of the perceptual model
P (o | m, s). Our approach assumes that given a percept o taken at location s, any
two local maps are conditionally independent:

P (m(t),m(t′) | o, s) = P (m(t) | o, s) P (m(t′) | o, s) (13.93)

for all t 6= t′. This assumption would be correct of none of the local maps ever
overlapped. In regions of overlap it is incorrect, and might in turn lead to overly
confident maps. Nevertheless, this assumption is essential to keep the computation
manageable, and in practice it seems to work well.

The independence assumption allows us to extend our perceptual model to layered
maps. Let us first apply Bayes rule to the familiar perceptual model:

P (o | s,m) =
P (m | o, s) P (o | s)

P (m | s) (13.94)

Notice that neither o nor m depend on s, hence

P (o | s,m) =
P (m | o, s) P (o)

P (m)
(13.95)

Mapping with Unknown Data Association 385

Under the assumption that—in the absence of any other information—all observations
and all maps are equally likely, P (o) and P (m) can both be subsumed into a constant
factor, called η:

P (o | s,m) = η P (m | o, s) (13.96)

Observing that m = {(m(0), . . . ,m(T)}, and by virtue of our independence assump-
tion (13.93), we obtain the nice product form:

P (m | o, s) = η P (m(0), . . . ,m(T) | o, s) (13.97)

=
T∏

t=1

P (m(t) | o, s) (13.98)

We will now expand using Total Probability and factoring out a collection of indepen-
dences:

T∏

t=1

P (m(t) | o, s) = η

T∏

t=1

∫

P (m(t) | o, s, σ(t)) P (σ(t) | o, s) dσ(t)(13.99)

= η

T∏

t=1

∫

P (m(t) | o, s, σ(t)) P (σ(t)) dσ(t) (13.100)

Bayes rule applied to the first term leads to

P (m(t) | o, s, σ(t)) =
P (o | s,m(t), σ(t)) P (m(t) | s, σ(t))

P (o | s, σ(t))
(13.101)

where, by the same logic as above, P (m(t) | s, σ(t)) and P (o | s, σ(t)) can be sub-
sumed into a (different) constant, which gives us:

P (o | s,m) = η1

T∏

t=1

∫

P (o | s,m(t), σ(t)) P (σ(t)) dσ(t) (13.102)

Here η1 is again a normalizer, but it is different from the η above. For convenience,
we will replace the terms P (σ(t)) by the beliefs Bel(σ(t)) obtained while learning the

386 Chapter 13

map, which leads to:

P (o | s,m) = η1

T∏

t=1

∫

P (o | s,m(t), σ(t)) Bel(σ(t)) dσ(t) (13.103)

The term P (o | s,m(t), σ(t)) is computed using our familiar perceptual model, dis-
cussed in Chapter ??:

P (o | s,m(t), σ(t)) = P (o | σ̄(t),m(t)) (13.104)

where σ̄(t) = 〈x̄(t), ȳ(t), θ̄(t)〉 is given by the appropriate coordinate transformation:

x̄(t) = x cos θ + y sin θ − x(t) (13.105)

ȳ(t) = y cos θ − x sin θ − x(t) (13.106)

θ̄(t) = θ − θ(t) (13.107)

Here we assumed that s = 〈x, y, θ〉 and σ(t) = 〈x(t), y(t), θ(t)〉.

Putting everything together, we obtain the perceptual model for layered maps:

P (o | s,m) = η1

T∏

t=1

∫

P (o | m(t), σ̄(t)) Bel(σ(t)) dσ(t) (13.108)

The perceptual model (13.108) has some interesting properties. The probability of a
sensor measurement o is computed by “localizing” it in each of the local maps (con-
volved by their pose beliefs), and them multiplying the results for all local maps.
Thus, the sensor model is essentially the product of the familiar model defined over
flat, monolithic maps. In practice, maps which cannot overlap with the robot’s posi-
tion can be safely eliminated, thereby speeding up the computation while not affecting
the final result.

13.6.4 EM with Layered Maps

The E-Step

Mapping with Unknown Data Association 387

With the appropriate perceptual model in place, the E-step is analogous to the flat
mapping case. We recall from (13.32) and (13.48) that Bel[j](σ(t)) can be factorized
conveniently (j is the iteration index) into

Bel[j](σ
(t)) = η P (σ(t) | m[j−1], d

(0...t))
︸ ︷︷ ︸

α
(t)

[j]

P (σ(t) | m[j−1], d
(t...T))

︸ ︷︷ ︸

β
(t)

[j]

(13.109)

for all t = 1, . . . , T . Using our new perceptual model, which requires us to substitute
P (o | s,m) by

∏T
t′=0 P (o | s,m(t′), σ̄(t′)) Bel[j−1](σ

(t′)) in the original equations

for computing the the distributions of α(t)
[j] and β(t)

[j] , (13.60) and (13.61), we obtain:

α
(0)
[j] =

{
1, if s(0) = (0, 0, 0)
0, if s(0) 6= (0, 0, 0)

(13.110)

α
(t)
[j] = η

[
T∏

t′=1

P (o(t) | s(t),m(t), σ̄(t′)) Bel[j−1](s
(t))

]

∫

P (s(t) | a(t−1), s(t−1)) α
(t−1)
[j] ds(t) (13.111)

and

β
(T)
[j] = uniform (13.112)

β
(t)
[j] = η7

∫

P (s(t) | a(t), s(t+1))

[
T∏

t′=1

P (o(t+1) | s(t+1),m(t), σ̄(t′)) Bel(s(t))(s(t))
]

β
(t+1)
[j] ds(t+1)(13.113)

for all t = 1, . . . , T .

The M-Step with Deterministic Annealing

The M-step calculates the most likely poses of the local maps. In the most generic
setting, the M-step calculates

s(t) = argmax
s(t)

Bel[j](s
(t)) (13.114)

388 Chapter 13

= argmax
s(t)

α(t(t)) β(t(t)) (13.115)

for all t = 1, . . . , T . Such an approach would be the natural extension of plain EM to
layered maps.

Unfortunately, this approach is problematic in practice. EM is a hill climbing method,
which only converges to local maxima. If the odometric error is large, the initial map
will be erroneous, and subsequent iterations of EM might not be able to recover.

The danger of getting stuck in a local maximum can be reduced significantly by a
modified M-step. Instead of keeping track of the most likely pose of each map, our
approach generates a distribution over poses that slowly converges to the most likely
one. Thus, our approach generates a “soft” version of the maximum likelihood esti-
mate. Over time, it gradually reduces the softness, until it finally generates the maxi-
mum likelihood pose. This approach is known as deterministic annealing.

In detail, the M-step generates a distribution over poses, denoted µ:

Bel[j](s
(t)) = η

(

α(t(t))β(t(t))
) 1

σ

(13.116)

Here η is a (different) normalizer that ensures that the probabilities integrate to 1. The
parameter σ is a control parameter in (0, 1] which, in analogy to the rich literature
on annealing, will be referred to as temperature. When σ = 1, the full distribution
over all poses is retained. When σ = 0, our approach is equivalent to the maximum
likelihood assignment (13.115).

The temperature σ is slowly driven to zero—a process often referred to as cooling. In
our approach, σ is initialized with 1 and annealed towards zero using an exponential
cooling schedule. The effect annealing is to avoid early commitment to a single map.
Instead, one can think of our approach as moving from density estimation (over the
pose parameters in the map) to maximum likelihood estimation. The reader should
notice that our approach is not the first to employ annealing to avoid local maxima in
EM [14, 34].

Post-Processing

Mapping with Unknown Data Association 389

To come up with a single global map of the environment, the local maps m(t) are
integrated based on their final maximum likelihood poses

argmax
s(t)

Bel(s(t)) = argmax
s(t)

α(t(t)) β(t(t)) (13.117)

The local maps, along with their poses, are fed into the algorithm occupancy grid()
which then produces a single, global map.

13.6.5 The Layered EM Mapping Algorithm

Figure 13.2 shows the resulting algorithm, called layered EM mapping().

Make Figure: Show ICML figures

13.6.6 Examples

More specifically, the data is separated into a stream of sub-datasets denoted

d =
⋃

i

d[i] (13.118)

during each of which the robot does not advance more than a pre-specified distance
(e.g., 5 meters). The superscript is not to be confused with the superscript (t) or the
subscript [j] in EM.

Let us denote the local maps

m[i] (13.119)

They are built under the assumption that the odometry error in each data segment d[i]

is small enough to be neglected; thus, in practice one has to adjust the size of each d[i]

in accordance to the quality of the robot’s odometry.

390 Chapter 13

1: Algorithm layered EM mapping(d):

2: initialize m by uniform-map

3: σ = 1.0

4: for t = 0 to T do

5: m(t) = occupancy grid(o(t))

6: Bel(s(t)) = uniform()

7: repeat until satisfied

8: α(0) = Dirac(〈0, 0, 0〉)
9: for t = 1 to T do

10a: α(t) = η
[
∏T

t′=0 P (o(t) | s(t),m(t′), s(t
′)) Bel(s(t

′))
]

·
10: ·

∫
P (s(t) | a(t−1), s(t−1)) α(t−1) ds(t)

11: β(T) = uniform()

12: for t = T − 1 down to 0 do

13a: β(t) = η
∫
P (s(t) | a(t), s(t+1))

[
∏T

t′=0

13b: P (o(t+1) | s(t+1),m(t′), s(t
′)) Bel(s(t

′))
]

β(t+1) ds(t+1)

14: for t = 1 to T do

15: Bel(s(t)) = η
(
α(t) β(t)

) 1
σ

16: σ = .9σ

17: m̄ = {m(0), argmaxsBel(s
(0)),m(1), . . . ,m(T), argmaxsBel(s

(T))}
18a: m = occupancy grid({m(0), argmaxs(0) Bel(s(0)),m(1), . . . ,
18b: m(T), argmaxs(T) Bel(s(T))})
19: return m

Table 13.2 The layered EM map learning algorithm.

13.7 SUMMARY

The EM algorithm builds maps by maximizing likelihood. It has been shown
to build large-scale metric maps, thereby resolve ambiguities and exploiting all
information in the data.

Mapping with Unknown Data Association 391

13.8 BIBLIOGRAPHICAL REMARKS

The problem of map acquisition has attracted a lot of attention in the last decade.
The literature commonly distinguishes two types of maps, robot-centered and world-
centered maps.

Robot-centered maps memorize the sensor measurements a robot is expected
receive at each location (or pose). In the general case, such maps are three-
dimensional, parameterized by the robot’s three-dimensional pose. In certain
cases, however, two dimensions are sufficient. Example include robots whose
sensor measurements are rotationally invariant (e.g., a “general brightness” sen-
sor), or robots for which a sensor measurement taken with a specific heading
direction θ is sufficient to compute sensor measurements under arbitrary heading
directions θ (e.g., omni-cams, which cover a 360 degree field of view).

In contrast, world-centered maps memorize the location of surrounding objects
in world coordinates. For robots equipped with sensors that operate in a two-
dimensional plane, such as most robots equipped with range finders, it suffices
to memorize two-dimensional maps. Other sensors, such as cameras, typically
require three-dimensional maps.

The advantage of robot-centered maps lies in the fact that they are almost universally
applicable, no matter what sensors being used. Unlike world-centered maps, robot-
centered maps do not require that correspondence is established between sensor input
and the location of objects in the outside world. However, this advantage comes at
a price. World-centered maps can usually be constructed from much less data than
robot-centered maps. Why? Knowledge of the relative location of objects makes it
possible to deduce how the world looks from nearby places. For example, picture
a robot with a laser range finder located in a convex room, such that all walls are
within the limits of the sensor’s perceptual range. A single scan can be sufficient to
determine the location of all walls; and geometry can be applied to predict sensor scans
from other viewpoints. This advantage is not shared by robot-centered maps, since the
transformation from one sensor view to another is, in the absence of geometry, far
from trivial.

A second taxonomy, frequently discussed in the literature, distinguishes topological
and metric approaches.

392 Chapter 13

Topological algorithms represent maps as graphs, where edges correspond to
places, and arcs to paths between them. For example, places might be locations
with specific distinguishing features, such as intersections and T-junctions in of-
fice building, and arcs may correspond to specific behaviors or motion commands
that enable the robot to move from one location to another, such as wall follow-
ing. Recently, it has become popular to augment topological maps with metric
information (relative distance, angle) to facilitate to disambiguation of similarly
looking places.

Metric approaches embed maps into the plane. Locations in metric maps are
memorized along with their global coordinates, typically expressed by x-y coor-
dinates and, in certain case, orientations θ. At first glance, it appears that metric
maps are more difficult to construct, since they have to be globally consistent. In
practice, however, metric information has been found to be seminal for the dis-
ambiguation of alike-looking places, and the metric paradigm has clearly led to
larger and more consistent maps.

Coincidentally, there is a strong correspondence in the literature between both tax-
onomies. Most topological approaches rely on robot-centered maps, and most metric
approaches build world-centered maps.

14
FAST INCREMENTAL MAPPING

ALGORITHMS

14.1 MOTIVATION

In the previous two chapters, two principled solutions to the concurrent mapping and
localization were presented. Both solutions are statistically sound. They both incor-
porate uncertainty in robot poses and maps. However, both suffered important de-
ficiencies. The Kalman filter approach cannot cope with ambiguities in perception,
that is, it requires that the data association problem is solved. It is also limited to a
relatively small number of features. Both limitations preclude its application to build-
ing high-resolution structural maps. The EM approach, on the other hand, provides
a sound solution to the data association problem. However, it does not work in real-
time, and all data has to be memorized. This is an important limitation. It precludes,
for example, using this algorithm for real-time exploration and mapping of unknown
environments.

This chapter discusses a family of algorithms that can generate maps in near real-
time, while simultaneously coping with the data association problem. The core of
the method is non-probabilistic. Instead of representing the uncertainty in map esti-
mates, it only calculates a single map, which is obtained as the maximum likelihood
solution to the incremental mapping problem. Clearly, the lack of a representation of
uncertainty in the estimates causes problems. In particular, the core algorithm is in-
capable of mapping cyclic environments. Cycles are generally difficult to map, since
the robot has to reconnect to a previously mapped area from a different direction. To
overcome these problems, we augment the algorithm with a probabilistic estimator,
a posterior estimator over robot poses. This estimator models the error of the maxi-
mum likelihood method in pose space. It makes it possible to handle problems with
large cycles, while simultaneously generating maps in near real-time. The algorithms
presented here have practical significance. For specific type of sensors, such as laser

393

394 Chapter 14

range finders, these algorithm have been shown to produce maps of relatively large
environments in real-time. They are also relatively easy to implement, and therefore
have been popular in mobile robotics.

Towards the end of this chapter, we will discuss extensions to two important mapping
problems that are mostly unexplored in robotics: The multi-robot mapping problem,
in which a team of robots collaboratively acquire a map, and the 3D mapping problem,
in which a robot seeks to generate a full three-dimensional map of its environment. As
we will see, algorithms for multi-robot mapping and 3D mapping can be implemented
with little effort on top of the algorithms discussed in this chaptr.

The chapter is organized as follows.

Section 14.2 defines the incremental mapping problem and derives the basic algo-
rithm for buiding maps incrementally using the maximum likelihood estimator.

Section 14.3 discusses gradient descent strategies fo hill climbing in log likeli-
hood space, with the goal of finding maximum likelihood maps in continuous
search spaces. It provides concrete gradient descent algorithms for some of the
perceptual models and motion models discussed in this book.

Section 14.4 introduces the idea of simultaneously estimating a posterior over
robot poses, and shows how to accommodate large residual errors when closing a
cycle. It presents the main algorithm in this chapter, which combines incremental
maximum likelihood estimation with a MCL-style posterior estimator.

Section 14.5 discusses extensions of the basic algorithm to the collaborative
multi-robot problem. The resulting algorithm is capable of fusing data from mul-
tiple robot platform whose initial pose relative to each other is unknown. How-
ever, they assume that there is a designated team leader; and other robots start off
in the map built by the team leader.

Finally, Section 14.6 presents an extension of the basic algorithm that enables
a robot to build a three-dimensional map of the environment. These 3D maps
combine structural and texture information, and lead to models similar to the
ones used in video games. They are acquired using a robot equipped with two
laser range finders and a panoramic camera.

Fast Incremental Mapping Algorithms 395

14.2 INCREMENTAL LIKELIHOOD

MAXIMIZATION

The rationale behind both algorithms is that of likelihood maximization. Instead of
computing a posterior over maps—which is the central objective in the next chapter—
the algorithms described here seek to compute the most likely map only, along with
the most likely robot poses. This is formally denoted by:

argmax
m,s(0)...,s(t)

P (m, s(0) . . . , s(t) | d) (14.1)

Unfortunately, as we will see in the following two chapters, computing this expres-
sion is highly intractable. Thus, the approaches described in this chapter implement
incremental maximum likelihood estimators. They compute a sequence of poses and
maps

{m(0), s(0)}, {m(1), s(1)}, {m(2), s(2)}, . . . , (14.2)

each by appending the most recent sensor measurement to the growing map. Notice
that these estimates are not probabilistic! Instead of calculating a distribution over
maps and poses, here we are only concerned with generating a single map, and a
single pose. This restriction, which greatly reduces the computational burden when
compared to a fully probabilistic approach, is the main source of brittleness of incre-
mental maximum likelihood mapping. Further below, we will add a probabilistic pose
estimator that will enable us to recover from certain estimation errors.

The first question we have to ask is: How can a robot find such an incremental se-
quence of maps and poses? Let us begin by restating the basic Bayes filter, which is
at the heart of so many algorithms described in this book:

Bel(s(t)) = P (s(t) | d) (14.3)

= η P (o(t) | s(t),m)

∫

P (s(t) | a(t−1), s(t−1),m) Bel(s(t−1)) ds(t−1)

In incremental concurrent mapping and localization, we seek to compute the belief
over maps as well as the belief over poses. Thus, we have to compute the belief over
maps and poses. Additionally, it is convenient to index the maps by time, since in the
incremental approach we will generate a whole sequence of maps. Hence the Bayes

396 Chapter 14

filter for concurrent mapping and localization looks as follows:

Bel(s(t),m(t)) = P (s(t),m(t) | d)

= η P (o(t) | s(t),m(t))

∫ ∫

P (s(t),m(t) | a(t−1), s(t−1),m(t−1))

Bel(s(t−1),m(t−1)) ds(t−1) dm(t−1) (14.4)

This important equation extends Bayes filters to estimating maps. Unfortunately,
Bayes filtering is inapplicable in practice. While Bayes filters can be calculated for
localization alone with relative ease, this is not the case any longer in the concurrent
mapping and localization problem. The reason for this is simple: tractability. While
a robot pose is a three-dimensional quantity, a map is often described by many thou-
sands of values.

Maximum likelihood estimation is a simpler problem than the full posterior compu-
tation. In maximum likelihood estimation, we seek to compute the maximum of the
posterior probability:

〈s(t),∗,m(t),∗〉 = argmax
s(t),m(t)

Bel(s(t),m(t)) (14.5)

Clearly, the maximum likelihood estimate carry a notion of its own uncertainty; how-
ever, as we will see in this and future chapters, computing the map that maximizes
likelihood is a challenging problem. While the maximum likelihood estimator is gen-
erally easier to compute than the full posterior—after all, this is ’just’ the mode of the
posterior—even this problem is highly intractable. Incremental maximum likelihood
estimators decompose the maximum likelihood estimation problem into a sequence
of local, tractable problems. More specifically, they assume at each point in time t,
one is readily a map and a pose estimate from the previous time step, that is, which
incorporate all data up to time t−1. They then calculate the maximum likelihood map
and pose at time t, an operation that can be performed efficiently.

Let us describe this a bit more formally. The incremental maximum likelihood esti-
mator maximizes the following conditional belief:

Bel(s(t),m(t)|s(t−1),m(t−1)) = P (s(t),m(t) | d, s(t−1),m(t−1)) (14.6)

which is the probability of the map and pose at time t given the data and the map and
pose one time step earlier. The Markov assumption renders data gathered before time

Fast Incremental Mapping Algorithms 397

t− 1 conditionally independent of the map and pose at time t given the map and pose
at time t− 1. Hence, we can write

Bel(s(t),m(t)|s(t−1),m(t−1)) = P (s(t),m(t) | o(t), a(t−1), s(t−1),m(t−1))(14.7)

that is, only the data gathered between time t− 1 and t have to be considered. Notice
the resulting incremental estimator, which is being maximized here, is much simpler
than the one in (14.4) above:

Bel(s(t),m(t)|s(t−1),m(t−1))

= η P (o(t) | s(t),m(t)) P (s(t),m(t) | a(t−1), s(t−1),m(t−1)) (14.8)

Why is this simpler? In comparison with (14.4), one does not have to integrate over
maps and poses any longer. In fact, the incremental posterior probability (14.8) can
be computed in closed form, making it extremely convenient for on-line estimation.
However, the question remains as to how incremental maximum likelihood approaches
obtain pose estimates and maps at each point in time, and why it suffices to keep track
of a single pose and map only, instead of a distribution over poses and maps.

The first question is easily answered. Incremental maximum likelihood algorithms
compute the map and pose pose at each time t by maximizing (14.8):

〈s(t),m(t)〉 = argmax
s̄(t),m̄(t)

Bel(s̄(t), m̄(t)|s(t−1),m(t−1)) (14.9)

Even this calculation can be difficult, since the robot operates in a continuum and
hence the space of all maps and poses cannot be searched efficiently. However, as we
will see below, efficient hill climbing methods exist that, given a good starting point,
tend to converge to a global optimum quickly. The resulting algorithm has the nice
property that it can be applied in real time.

The second question is more difficult to answer. By retaining only the most likely map
and pose at each point in time, the algorithms described in this chapter are brittle. In
certain environments, the likelihood function decomposes nicely and the brittleness
can be tolerated, In others, such as environments with large cyclic corridors, the de-
composition is invalid and the resulting maps are not only incorrect, but as a whole
score poorly in their overall likelihood—despite the fact that the stepwise likelihood
has been maximized. We will explicitly discuss such cases below, and offer a fix by

398 Chapter 14

1: Algorithm incremental ML mapping(o, a, s,m):

2: set s′ = argmaxs̄ P (s̄|a, s)
3: repeat until satisfied

4: s′ ←− s′ + κ∇s′ [logP (o|s′,m) + logP (s′|a, s)]

5: m′ ←− m with 〈s′, o〉
6: return 〈m′, s′〉

Table 14.1 The basic incremental maximum likelihood algorithm for concurrent mapping
and localization. It accepts as input a map and a robot pose, along with an action idem and
a sensor easurement. It outputs an updated map and pose estimate. Notice that none of the
representations are probabilistics, making this algorithm brittle in practice.

including a posterior estimator for the robot’s pose, along with an algorithm that per-
forms occasional adjustments. Unfortunately, additional brittleness is introduced by
the hill-climbing nature of the maximum likelihood estimator. If the estimator gets
stuck in a local minimum, the algorithms described here cannot recover. In practice,
this severely limits the types and sizes of environments that can be mapped with the
incremental maximum likelihood approach. Nevertheless, for accurate sensors rela-
tively large and accurate maps can be built in real-time, giving this algorithm some
practical importance.

14.3 MAXIMUM LIKELIHOOD AS

GRADIENT DESCENT

14.3.1 Search in Pose Space

We will now consider the question as to how to maximize the incremental likelihood
function (14.9). This incvolves search in the space of all poses and all maps at time t.

However, is we employ a fixed routine for map building (e.g., occupancy grid map-
ping), it suffices to search the space of all poses. This reduces the computation sig-
nificantly, as the space of poses if three-dimensional, where the space of all maps is
huge. To see, let us consider the sigutation where the robot pose is known. Following

Fast Incremental Mapping Algorithms 399

our assumptions, the t-th map m(t) is generated from the previous map m(t−1) by a
fixed, deterministic routing (e.g., occupancy grid mapping). Thus, the only parameter
that remains to be optimized is the pose:

s(t) = argmax
s̄(t)

Bel(s̄(t), m̄(t)(s̄(t), o(t),m(t−1))|s(t−1),m(t−1)) (14.10)

Here m̄(t)(s̄(t), o(t),m(t−1)) denotes the map that is obtained by incrementally in-
corporating the observation o(t) to the map m(t−1) at the alleged pose s̄(t). A little
thought should convince the reader that one can safely replace this map by the most
recent sensor measurement o(t) only (since the pose is known), giving us

s(t) = argmax
s̄(t)

Bel(s̄(t), o(t)|s(t−1),m(t−1)) (14.11)

which, according to the definition of the incremental belief (14.8) can be spelled out
as follows:

s(t) = argmax
s̄(t)

P (o(t) | s̄(t),m(t−1)) P (s̄(t) | a(t−1), s(t−1),m(t−1))

(14.12)

or in log-likelihood form:

s(t) = argmax
s̄(t)

logP (o(t) | s̄(t),m(t−1)) + logP (s̄(t) | a(t−1), s(t−1),m(t−1))

(14.13)

To summarize, we have exploited the fact that growing the map is done by a fixed
routine, which saves us the effort of searching the space of all possible maps. The
resulting maximum likelihood expression only searches in the space of all poses.

The resulting expression (14.13) is now simple enough to be searched directly. In
particular, we need to search the space of all poses at time t to find the pose that
maximizes the incremental posterior. A common strategy for searching continuous
spaces is gradient descent in log likelihood space. Luckily, all of the probabilities in
(14.13) are differentiable. The gradient of the log of the probability on the right-hand
side of (14.13) with respect to the desired pose is commonly written as

∇ ¯s(t) logP (o(t) | s̄(t),m(t−1)) + logP (s̄(t) | a(t−1), s(t−1),m(t−1)) (14.14)

400 Chapter 14

Since gradients are additive, we can decouple the gradient of the perceptual probability
from that of the motion model:

∇ ¯s(t) logP (o(t) | s̄(t),m(t−1)) +∇ ¯s(t) logP (s̄(t) | a(t−1), s(t−1),m(t−1))(14.15)

Gradient descent incrementally changes the estimate ¯s(t) in the direction of the gradi-
ent. That is, we apply the following search algorithm

¯s(t) ← ¯s(t) + κ
[

∇ ¯s(t) logP (o(t) | s̄(t),m(t−1))+

∇ ¯s(t) logP (s̄(t) | a(t−1), s(t−1),m(t−1))
]

(14.16)

Here κ > 0 is a step size close to zero that is required for gradient descent. The starting
point for gradient descent is obtained by simply applying the most recent action item
(odometry reading) to the pose:

s(t) = argmax
s̄(t)

P (s̄(t) | a(t−1), s(t−1)) (14.17)

which can be computed using the kinematic motion models discussed in Chapter 5
with noise parameters set to zero. Gradient descent then applies the update rule (14.16)
repeatedly, until a convergence criterion is met.

14.3.2 Gradient Calculation

What remains to be discussed are the technical details of calculating the desired gradi-
ents (14.16). Before we give details for specific perceptual models and motion models,
it is important to emphasize that the calculation of gradients of differentiable functions
is a purely mechanical exercise, though sometimes tedious. Gradients of log likeli-
hood functions often look complex; however, they are obtained by differentiating any
of the motion models or perceptual models discussed in this book, using the well-
known rules for differentiation. The models discussed in this book are all piecewise
differentiable, hence gradients can be calculated for all of them.

Table 14.2 shows an algorithm for calculating the first derivative of the log-perceptual
model

∇s̄(t) logP (o(t) | s̄(t),m(t−1)) (14.18)

Fast Incremental Mapping Algorithms 401

1: Algorithm first derivative log range finder model2(o, s,m):

2: dx = dy = dθ = 0

3: for all ok ∈ o do

4: if ok < omax − osmall

5: xok
= x+ xk cos θ − yk sin θ + ok cos(θ + θk)

6: yok
= y + yk cos θ + xk sin θ + ok sin(θ + θk)

7:
∂xok

∂θ
= −xk sin θ − yk cos θ − ok sin(θ + θk)

8:
∂yok

∂θ
= −yk sin θ + xk cos θ + ok cos(θ + θk)

9: 〈x̄, ȳ〉 = argminx′,y′

{
(xok

− x′)2 + (yok
− y′)2 | 〈x′, y′〉 occupied

}

10: dist2 = (xok
− x̄)2 + (yok

− ȳ)2

11: ∂dist2

∂x
= 2(xok

− x̄)
12: ∂dist2

∂y
= 2(yok

− ȳ)
13: ∂dist2

∂θ
= 2

[

(xok
− x̄)∂xok

∂θ
+ (yok

− ȳ)∂yok

∂θ

]

14: a = zhit
1√

2πσ2
hit

15: b = − 1
2

dist2

σ2
hit

16: c = 1−zhit

omax

17: ∂b
∂x

= − 1
2σ2

hit

∂dist2

∂x

18: ∂b
∂y

= − 1
2σ2

hit

∂dist2

∂y

19: ∂b
∂θ

= − 1
2σ2

hit

∂dist2

∂θ

20: log q = log(aeb + c)

21: ∂ log q
∂x

= aeb

c+aeb
∂b
∂x

22: ∂ log q
∂y

= aeb

c+aeb
∂b
∂y

23: ∂ log q
∂θ

= aeb

c+aeb
∂b
∂θ

24: dx+ = ∂ log q
∂x

25: dy+ = ∂ log q
∂y

26: dθ+ = ∂ log q
∂θ

27: return 〈dx, dy, dθ〉

Table 14.2 Algorithm for computing the first derivative of the log probability computed
by the range finder model in Table 6.3 on page 143.

402 Chapter 14

1: Algorithm first derivative log motion model odometry(s′, a, s):

2: δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄
3: δtrans =

√

(x̄− x̄′)2 + (ȳ − ȳ′)s

4: δrot2 = θ̄′ − θ̄ − δrot1
5: δ̂rot1 = atan2(y′ − y, x′ − x)− θ
6: δ̂trans =

√

(x− x′)2 + (y − y′)2
7: δ̂rot2 = θ′ − θ − δ̂rot1
8: ∂δ̂rot1

∂x′ =???; ∂δ̂rot1

∂y′ =???

9: ∂δ̂trans

∂x′ = x′−x

δ̂trans
; ∂δ̂trans

∂y′ = y′−y

δ̂trans

10: arg11 = δrot1 − δ̂rot1; arg12 = α1δ̂rot1 + α2δ̂trans

11: arg21 = δtrans − δ̂trans; arg22 = α3 δ̂trans + α4(δ̂rot1 + δ̂rot2)

12: arg31 = δrot2 − δ̂rot2; arg32 = α1δ̂rot2 + α2δ̂trans

13: ∂arg11

∂x′ = −∂δ̂rot1

∂x′ ; ∂arg11

∂y′ = −∂δ̂rot1

∂y′ ; ∂arg11

∂θ′ = 0

14: ∂arg12

∂x′ = α1
∂δ̂rot1

∂x′ + α2
∂δ̂trans

∂x′ ; ∂arg12

∂y′ = α1
∂δ̂rot1

∂y′ + α2
∂δ̂trans

∂y′ ; ∂arg12

∂θ′ = 0

15: ∂arg21

∂x′ = −∂δ̂trans

∂x′ ; ∂arg21

∂y′ = −∂δ̂trans

∂y′ ; ∂arg21

∂θ′ = 0

16: ∂arg22

∂x′ = α3
∂δ̂trans

∂x′ + α4
∂δ̂rot1

∂x′ ; ∂arg22

∂y′ = α3
∂δ̂trans

∂y′ + α4
∂δ̂rot1

∂y′ ; ∂arg22

∂θ′ = α4

17: ∂arg31

∂x′ = 0; ∂arg31

∂y′ = 0; ∂arg31

∂θ′ = −1

18: ∂arg32

∂x′ = α2
∂δ̂trans

∂x′ ; ∂arg32

∂y′ = α2
∂δ̂trans

∂y′ ; ∂arg32

∂θ′ = α1

19: for i = 1 to 3

20: pi = prob(argi1, argi2)

21: ∂pi

∂x′ = ∂prob(argi1,argi2)
∂argi1

∂argi1

∂x′ + ∂prob(argi1,argi2)
∂argi2

∂argi2

∂x′

22: ∂pi

∂y′ = ∂prob(argi1,argi2)
∂argi1

∂argi1

∂y′ + ∂prob(argi1,argi2)
∂argi2

∂argi2

∂y′

23: ∂pi

∂θ′ = ∂prob(argi1,argi2)
∂argi1

∂argi1

∂θ′ + ∂prob(argi1,argi2)
∂argi2

∂argi2

∂θ′

24: p =
∑3

i=1 log pi

25: ∂p
∂x′ =

∑3
i=1

1
pi

∂pi

∂x′ ; ∂p
∂y′ =

∑3
i=1

1
pi

∂pi

∂y′ ; ∂p
∂θ′ =

∑3
i=1

1
pi

∂pi

∂θ′

26: return 〈 ∂p
∂x′ ,

∂p
∂y′ ,

∂p
∂θ′ 〉

Table 14.3 Algorithm for computing the first derivative of the logarithm of the motion
model log P (s′ | a, s) based on odometry information (see Table 5.5 on page 108).

Fast Incremental Mapping Algorithms 403

1: Algorithm first derivative prob normal distribution(d, b):

2: prob = 1√
2πb

e−
1
2

d2

b

3: ∂prob
∂d

= −probd
b

4: ∂prob
∂b

=
(

d2

2b2
− π(2πb)−

3
2

)

prob

5: return 〈∂prob
∂d

, ∂prob
∂b
〉

Table 14.4 Algorithm for computing the first derivative of the zero-centered normal dis-
tribution with variance b (see Table 5.2 on page 97).

for the perceptual model discussed in Chapter ?? (see Table 6.3 on page 143). The
calculation of the gradient is fairly straightforward, and we arranged the algorithm in
Table 14.2 in a way that should make it easy to understand the mechanics of calculating
the desired derivative. Similarly, Table 14.3 depicts an algorithm for calculating the
first derivative of the logarithm of the odometry-based motion model,

∇s̄(t) logP (s̄(t) | a(t−1), s(t−1)) (14.19)

which was originally discussed in Chapter ?? (see Table 14.3 on page 402). This al-
gorithm requires the first derivative of the zero-centered noise model prob(), which
is provided in Table 14.4 (zero-mean normal distribution). While this model is not
exactly the one required in (14.16)—it does not take the model m into account—it is
close (the extension is trivial). It demonstrates one more the mechanics of calculat-
ing a derivative of a complex function using the chain rule of differentiation. When
implementing fast gradient descent, we strongly recommend to calculate the gradients
by hand, instead of blindly copying the algorithms listed here.

14.3.3 Suggestions for the Implementation

Our algorithm for scan alignment is asymmetric. It only relies on measurements in o
that fall into the free-space of the map m. What it not uses is the converse: if the map
shows an occupied region in an area that, according to the scan s, should be free—
this “mismatch” is not used for adjustment. Clearly, this is a deficiency of the basic
perceptual model. If possible, we recommend to implement a symmetric version of
the model, which penalizes both: measurements in s that fall into m’s free-space, and
regions in m that fall into s’s free-space. The resulting perceptual model is slightly

404 Chapter 14

more complex. Calculating the gradient with respect to the pose s′ is analogous to the
algorithm given here.

Additionally, the gradient calculation can be sped up significantly by caching specific
information. If implemented as described above, we found that only approximately
ten gradient calculations could be carried out per second, using 500Mhz Pentium II
Computers running Linux. By far most of the time is consumed calculating the per-
ceptual model and its first derivative, which spend most of the time with a single
operation: The search for the nearest occupied location, which is performed in line
9 in the gradient algorithm shown in Table 14.2 (and also line 9 in the algorithm
range finder model2 shown in Table 6.3 on page 143). This search is expensive;
furthermore, when changing the estimated pose s(t), the search has to be repeated.

Alternatively, one can first calculate the location of the nearest occupied location for
a fine-grained grid, overlayed the x-y-space. Calculating this grid takes some start-up
time, however, with it the search reduces to a table-lookup operation. The result of
the search is then only approximate, as not all locations within a grid cell necessarily
map to the same nearest neighbor. Using this technique with grid resolutions between
10 and 20 cm, we found that the resulting gradients were still well-suited for hill-
climbing in likelihood space. Moreover, we found that the calculation of the gradient
could be sped up by two orders of magnitude, making it possible to perform hundreds
of iterations per second.

14.3.4 Examples

Figure 14.1 shows two example sequences (arranged vertically) of applying gradi-
ent descent for scan alignment. In both examples, the likelihood is maximized using
the function first derivative log range finder model2 in Table 14.2. Both examples
were recorded by a moving robot. We manually perturbed the second scan relative to
the first by 10 cm along each axis, and 30 degrees rotational error.

Despite this large error, the routine reliably converges to the “right” alignment in ap-
proximately 100 iterations. Shown in Figure 14.1 are the initial alignments, and the
alignments after 10, 50, and 100 iterations of gradient descent. These examples sug-
gest that the likelihood function possesses few, if any, local minima in the proximity
of the global optimum. In practice, we found that for scans recorded in sequence (e.g.,
with 3 Hertz), the gradient descent search routine practically always converges to the
right maximum and aligns the scans with high accuracy.

Fast Incremental Mapping Algorithms 405

(a) Initial match (e) Initial match

(b) After 10 iterations (f) After 10 iterations

(c) After 50 iterations (g) After 50 iterations

(d) After 100 iterations (h) After 100 iterations

Figure 14.1 To examples of gradient descent for aligning scans (arranged vertically). In
both cases, the initial translational error is 10 cm along each axis, and the rotational error
is 30 degrees. The gradient descent algorithm safely recovers the maximum likelihood
alignment.

406 Chapter 14

-mismatch

-robot

6

path

Figure 14.2 A typical map obtained using the most simple incremental maximum likeli-
hood approach. While the map is locally consistent, the approach fails to close the cycle
and leads to inconsistent maps. This elucidates the limitations of stepwise likelihood maxi-
mization, and illustrates the difficulty of mapping cyclic environments.

14.3.5 Limitations

The basic limitation of stepwise likelihood maximization is that it can fail to generate
globally optimal solutions. The problem is typically not observed when mapping a
single hallway, or a simple non-cyclic environments—since here local consistency be-
tween adjacent measurements suffices to build a globally consistent map. However, in
cyclic environments the robot has to establish correspondence to previously gathered
data with potentially unbounded odometric error, and has to revise pose estimates
backwards in time. Consequently, local consistency as achieved by the incremental
maximum likelihood method is insufficient to achieve global consistency.

Figure 14.2 illustrates this problem using an example. It shows a map, acquired in a
cyclic environment. The robot traversed a sequence of corridors, finally reaching its
initial location. While along the way the maps appear locally consistent, it neverthe-
less accrues some localization error. As the robot closes the cycle, the accumulated
localization error is too large to be accommodated locally, and the inability to cor-
rect maps backwards in time leads to a permanent mismatch shown in that figure. The
resulting map happens to be still good enough for navigation. It is not difficult to imag-

Fast Incremental Mapping Algorithms 407

ine, though, that larger cycles will lead to bigger mismatches that make it impossible
to navigate.

In summary, the incremental maximum likelihood approach suffers two main limita-
tions:

1. It is unable to cope with large odometry error.

2. It is unable to correct poses backwards in time.

Next we will describe an extension that addresses these two shortcomings, leading to
an algorithm that has been found to work reliably in environments with cycles.

14.4 INCREMENTAL MAPPING WITH

POSTERIOR ESTIMATION

To overcome the cycle mapping problem, it is necessary to revise past pose estimates
backwards in time. This has implications for the way data is memorized. If, for
example, we only maintained a single occupancy grid at each point in time, it would
be impossible to modify the grid in response to an inconsistency that was discovered
when closing a cycle. Thus, it is necessary to memorize past sensor measurements
along with their estimated pose, so that pose estimates can be corrected retrospectively.

14.4.1 Detecting Cycles

Next, we need a mechanism for detecting cycles. This is realized by introducing
a second estimator, which performs full posterior estimation over the robot’s poses,
concurrently to the map estimation. Posterior pose estimation is the same as localiza-
tion. Robot pose estimators were already discussed extensively in the chapters on state
estimation (Chapter 2) and localization (Chapter 7) . Let us briefly restate the basic
filter equation:

Bel(x(t)) = P (o(t)|x(t),m(t))

∫

P (x(t)|a(t−1), x(t−1),m(t−1)) Bel(x(t−1)) dx(t−1)(14.20)

Where x(t) is the pose of the robot at time t. An algorithm for posterior estimation
over poses was given in Table 7.1 on page 163.

408 Chapter 14

When implementing the localization algorithm, one has to take into account that it is
run concurrently with an incremental map estimator, which already estimates robot
poses. At the very least, it must be consistent with the maximum likelihood estimator
in non-cyclic situations. Thus, the term P (x(t)|a(t−1), x(t−1),m) is not a model of
robot motion. Instead, it is a model of the residual error induced by the maximum
likelihood estimator. To be consistent, the mode of P (x(t)|a(t−1), x(t−1),m),

argmax
x(t)

P (x(t)|a(t−1), x(t−1),m) (14.21)

must equivalent to the result of the maximum likelihood pose estimator (14.13). The
uncertainty in the conditional reflects the posterior uncertainty of this estimate. As-
suming that the uncertainty it normally distributed with zero mean, its inverse covari-
ance matrix can be recovered from the second derivative of the log likelihood function
in (14.13) (notice that the second derivative of the log of a multivariate normal dis-
tribution is always the inverse of its covariance). Similarly, one can use any of the
motion models described in this book and “guess” the motion noise parameters by
trial-and-error. In either case, P (x(t)|a(t−1), x(t−1),m) should be a much more fo-
cussed probability distribution than the original robot motion model, since it models
the uncertainty after correcting the pose based on a sensor measurement.

Similarly, the term P (o(t)|x(t),m(t)) is not the perceptual probability. If one were to
use the perceptual probability, the information from the most recent sensor scan would
be used twice—once in the maximum likelihood estimator and once in the posterior
estimate—and the robot could become falsely over-confident of its pose. Instead,
we suggest to evaluate P (o(t)|x(t),m(t)) only with regards to sensor measurements
that create conflicts when closing a cycle. Such past measurements can easily be
identified, by keeping track of their time and their maximum likelihood location. As a
result, the posteriorBel(x(t)) grows as the robot moves into unexplored terrain. When
reconnecting with a previously mapped area, its uncertainty will decrease as a result
of factoring in the perceptual probability P (o(t)|x(t),m(t)).

14.4.2 Correcting Poses Backwards in Time

For the purpose of mapping, the robot’s pose estimate is now replaced with the mode of
the posterior Bel(x(t)). In other words, instead of using (14.13) as the pose estimate,
it is merely used to define the posterior P (x(t)|a(t−1), x(t−1),m). When the robot
moves into unexplored terrain, argmaxx(t) Bel(x(t)) will be identical to the estimate
of the maximum likelihood estimator. However, when closing a cycle, both estimates
may differ.

Fast Incremental Mapping Algorithms 409

1: Algorithm incremental ML mapping for cycles(o, a, s,m,Bel(s)):

2: 〈m′, s′〉 = incremental ML mapping(o, a, s,m)

3: Bel(s′) = P (o, s′)
∫
P (s′|a, s) Bel(s) ds

4: s′′ = argmaxs′Bel(s′)

5: if s′′ 6= s′

6: linearly distribute s′′ − s′ along cycle

7: refine past poses with algorithm incremental ML mapping

8: return 〈m′, s′′, Bel(s′)〉

Table 14.5 Extension of the algorithm incremental ML mapping for mapping cyclic
environments. The algorithm carries a posterior estimate over poses, along with the step-
wise maximum likelihood map. When a cycle is closed, the maximum likelihood estimate
s′ and the mode of the posterior s′′ will differ, initiating the backwards adjustment of robot
poses.

To maintain consistent maps, these differences have to be propagated backwards in
time, along the cycle. This is again a nested maximum likelihood estimation problem.
However, care has to be applied with regards to computational efficiency. One way to
implement the backwards correction efficiently is the following two-phase algorithm:

1. The deviation between the stepwise maximum likelihood estimate and the mode
of the posterior is distributed linearly among all poses along the cycle. Calcu-
lating linear correction terms is extremely fast and places the robot poses some-
where close to their desired corrected estimates. However, the optimization prob-
lem is highly non-linear.

2. Subsequently, the incremental maximum likelihood estimator is applied back-
wards in time to maximize the probability of poses given their neighbors (in
time). This algorithm is very similar to the one above, hence will not be de-
scribed here in detail.

Table 14.5 sketches the resulting algorithm, which simultaneously maintains a maxi-
mum likelihood map and a full posterior estimate over poses. When a cycle is closed,
the maximum likelihood pose estimate and the mode of the posterior will deviate,

410 Chapter 14

which is detected in Step 5 of the algorithm. Steps 6 and 7 correspond to the mecha-
nism for refining poses backwards in time.

14.4.3 Illustrations

Figure 14.3 shows an example of applying this algorithm in practice, generated from
the same data that was used to generate the map shown in Figure 14.2. Here the poste-
rior estimate is implemented using Monte Carlo localization (MCL). In the beginning,
as the robot maps unknown terrain, the sample set spreads out, though it does not
spread quite as much as a raw robot motion model would suggest. This is shown in
Figure 14.3a, which shows the posterior samples along with the map obtained by the
incremental maximum likelihood estimates.

Figure 14.3b shows the situation just before closing the cycles. As before, the robot has
accrued significant pose estimation error in its maximum likelihood estimate. How-
ever, this error appears to be well captured in the posterior estimate of the pose, rep-
resented by the particle set. Figure 14.3c depicts the situation after closing the cycle.
The posterior estimate is now very focussed, since it incorporates perceptual measure-
ments relative to earlier parts of the map.

Despite its reliance on maximum likelihood estimates, the algorithm incremen-
tal ML mapping for cycles is very robust. Figure 14.4 shows the result of an ex-
treme experiment, where this algorithm was applied to the mapping problem in the
absence of any odometry (action) data. Consequently, the raw data is extremely dif-
ferent to interpret. Figure 14.4a shows the data set in the absence of odometry infor-
mation. Clearly, overlaying scans produces an image that is impossible to interpret for
the human eye. Our algorithm, applied to this data set, nevertheless produces a rea-
sonably accurate map, as shown in Figure 14.4b. The only modification to the basic
algorithm is the omission of the gradient ∇s′ logP (s′|a, s), which is simply assumed
to be zero due to the lack of action items a. The error accrued during mapping is
approximately twice as large as with odometry information; however, as the cycle is
closed, the residual error along the loop shrinks significantly and the resulting map is
of the same quality as if odometry information were available. However, these results
have to be taken with a grain of salt. Our approach will clearly fail in long, featureless
corridors which lack the necessary structure for estimating poses from laser range data
alone. All these results demonstrate, thus, is the robustness of the basic routine.

All the maps above have been obtained in real time on a 300Mhz Pentium II Laptop
PC, with a robot moving at approximately 60 cm/sec (see Figure 14.5). However, we
should notice that the current approach is unable to handle nested loops, and if the

Fast Incremental Mapping Algorithms 411

(a)

���
robot

and samples

(b)

���
robot and

samples

(c)

� robot and samples

Figure 14.3 Mapping cyclic environments using particle filters for posterior pose estima-
tion. The dots, centered around the robot, indicate the posterior belief which grows over
time (a and b). When the cycle is closed as in (c), the map is revised accordingly and the
posterior becomes small again.

412 Chapter 14

Figure 14.4 Mapping without odometry. Left: Raw data, right: map, generated on-line in
real-time.

loop is very large, it may be impossible to correct the pose estimates along the cycle
in real time.

14.5 MULTI-ROBOT MAPPING

Estimating a full posterior over poses has a second advantage: It makes it possible to
localize a robot in the map built by another. This is an essential step towards multi-
robot robot mapping, which requires that robots determine their poses relative to each
other. If one robot is known to be started in the map built of another, this estimation is
equivalent to global localization, which can be carried out using MCL.

The basic algorithm for cooperative mobile robot mapping is very similar to incre-
mental ML mapping for cycles stated in Table 14.5, with two modifications: First,
the initial belief Bel(s(0)) for the second robot is initialized by a uniform distribution
over poses, instead of a point-mass distribution. Second, map measurements are only
integrated when the robot feels confident enough that it knows its pose relative to the
first. This is determined using the entropy of the posterior Bel(s(t)): If the entropy
H[Bel(s(t))] falls below a certain threshold, localization is assumed to be completed
and the second robot integrates its sensor measurements into the map of the first one.

Figure 14.6 illustrates how a second robot localizes itself in the map built by another
robot (called there: the team leader). The robots used here are Pioneer robots equipped
with laser range finders, such as the ones shown in Figure 14.5. Figure 14.6a shows
the belief after incorporating one sensor scan, represented by particles scattered al-
most uniformly through the map built by the team leader. A few time steps later, all

Fast Incremental Mapping Algorithms 413

Figure 14.5 RWI Pioneer robots used for multi-robot mapping. These robots are equipped
with a SICK laser range finder.

surviving particles are focused on the same pose. Now the robot knows with high
probability its pose relative to the other robot’s map.

We finally briefly outline an architecture for fusing maps from many robots, oper-
ating distributedly. If maps from many robots shall be integrated, one can build a
hierarchical architecture. At the bottom of the hierarchy, each robot builds its own
maps, estimating poses within its local coordinate frame. The corrected poses and
measurements are than communicated to a higher level program, which uses the iden-
tical mapping approach, to develop a single map by localizing each robot relative to
its coordinate frame. The integration then continues recursively up the hierarchy, un-
til the final module integrates the data of its submodules. The resulting map is then
communicated back (at high frequency) to all modules, including the robots, to aid the
process of localization.

Such an architecture has been implemented and led to the results shown in Figure 14.7.
This map was acquired in real-time using three robots, which locally corrected their
pose estimates. A higher level module collected these pre-corrected data, and used the
maximum likelihood estimator described above to build a single map for the robots.
This map has been constructed in real-time, while the robot were in motion. This
is necessary for robot that seek to systematically explore an unknown environment.
More detail will be given in Chapter ??, where we talk about probabilistic strategies
for robot exploration.

414 Chapter 14

(a)

���
robot

� team leader

(b)

���
robot

� team leader

Figure 14.6 A second robot localizes itself in the map of the first, then contributes to
building a single unified map. In (a), the initial uncertainty of the relative pose is expressed
by a uniform sample in the existing map. The robot on the left found its pose in (b), and
then maintains a sense of location in (c).

(a) (b)

Figure 14.7 (a) Team of 3 robots, which produced the map shown in (b) in real-time. Also
shown in (b) are the paths of the robots.

14.6 MAPPING IN 3D

Finally, we will be interested in developing full three-dimensional maps if building in-
teriors. Such maps offer three key advantages over the two-dimensional maps studied
throughout most of this book.

First, 3D maps are easier to acquire than 2D maps, at least from a perceptual point
of view. By looking at the full 3D structure of a building interior, the problem
of estimating correspondence is simpler. This is because places that might look
alike in 2D often do not in 3D, reducing the danger of confusing them with each
other.

Fast Incremental Mapping Algorithms 415

(a) (b)

Figure 14.8 (a) Pioneer robot equipped with 2 laser range finders used for 3D mapping.
(b) Panoramic image acquired by the robot. Marked here is the region in the image that
corresponds to the vertical slice measured by the laser range finder.

Second, 3D maps facilitate navigation. Many robot environments possess signif-
icant variation in occupancy in the vertical dimension. Modeling this can greatly
reduce the danger of colliding with an obstacle.

Third, many robot tasks require three-dimensional information, such as many
tasks involving the localization and retrieval of objects or people.

Finally, 3D maps carry much more information for a potential user of the maps.
If one builds a map only for the sake of robot navigation, then our argument does
not apply. However, if map are being acquired for use by a person (e.g., a rescue
worker entering a building after an earthquake), 3D information can be absolutely
critical.

Given these obvious advantages of 3D over 2D maps, it is surprising that the robotics
community has paid so little attention to mapping in 3D.

The estimation of 3D maps is a challenging computational problem, which is
amenable to many of the techniques described in this book. However, even with pow-
erful 2D mapping one can obtain reasonable 3D maps. In the remainder of this chapter,
we will briefly show results of a routine for acquiring 3D maps. At its center is a Pio-
neer robot equipped with two laser range finder and a panoramic camera. The robot is
shown in Figure 14.8a. One of the laser range finders is directed forward, emitting a
horizontal plateau of laser light. This laser range finder is used for concurrent mapping
and localization using the algorithm described in this chapter. The second is pointed
upwards, orthogonal to the robot’s motion direction. This this laser the robot can scan
the walls and the ceiling, gathering critical range information for building 3D maps.
Finally, the panoramic camera is mounted adjacent to the upward laser scanner, en-

416 Chapter 14

(a) (d)

(b) (e)

(c) (f)

Figure 14.9 Views of the 3D structural map, for the high-res model (left column) and the
reduced resolution model (right column).

abling to acquire color information that are easily matched to the corresponding range
measurements. Figure 14.8b shows an example of a panoramic image. The line in the
image corresponds to the range data acquired by the upwards-pointed laser.

Figure 14.9 shows images of a 3D structural map acquired in a multi-corridor indoor
environment, after traversing it once. Localization is provided by the algorithm in-

Fast Incremental Mapping Algorithms 417

(a) (b)

(c) (d)

Figure 14.10 Snapshots of 3D texture maps, acquired using the modified Pioneer robot.
These views are generated using a VRML viewer. Some of these views are similar to those
one would see when entering the building. Others show the building from perspectives that
are not available in the physical world.

cremental ML mapping for cycles. The vertical range measurements are then con-
verted into polygones without additional pose estimation. The resulting map can be
displayed in a VRML viewers, enabeling users to “fly through the building” virtually,
without actually entering it. It also enables users to assume viewpoints that would be
impossible in reality, such as the ones shown in Figure 14.9a and d.

A limitation of this map is its very large number of polygones, which increases lin-
early with robot operation. Simplifying polygonial maps has long been studied in the
computer graphics literature, which concerns itself (among other things) with methods
for fast rendering of complex polygonal maps. While the left column in Figure 14.9
shows views from the high-complexity map, the right column stems from a map which
possesses only 5% of the polygones of the left map. The reduction of the polygonal
map is achieved thorugh a routine adopted from the computer graphics literature [10].

418 Chapter 14

The reduced map can be rendered in real-time without much of a noticeable loss of
accuracy.

Finally, Figure 14.10 shows images obtained from a full 3D texture map. This map has
been obtained by projecting the color information gathered by the panoramic camera
onto the structural model. This map can equally be rendered in VRML. Again, the
texture information is not used for localization. Instead, the location estimates of the
structural components and the texture is directly obtained from the 2D map, exploit-
ing knowledge of the location of the upward pointed laser and the panoramic camera
relative to the robot’s local coordinate system.

14.7 SUMMARY

This section discussed a collection of algorithms that blend together maximum likeli-
hood estimation and posterior estimation over poses. In particular:

We introduces a fast maximum likelihood algorithm for incrementally growing
maps.

We showed how to implement this algorithm using gradient descent, providing
example programs for calculating derivatives in log likelihood space for a specific
perceptual and motion model.

We discussed the strengths and shortcomings of the approach. In particular, we
showed that the incremental approach fails to find good maps in cyclic environ-
ments.

We then introduced an extension which integrates a full posterior estimator over
robot poses. We showed how to use these posterior estimates for resolving in-
consistencies in cyclic environments.

We illustrated, through examples, the robustness of the algorithm, while pointing
out that at the same time, the algorithm is incapable of accommodating nested
cycles.

We discussed extensions to multi-robot mapping, pointing out that the posterior
estimation enables one robot to localize itself in the map of another.

Finally, we showed examples of three-dimensional maps generated using a robot
with an upward pointed laser range finder and a panoramic camera.

Fast Incremental Mapping Algorithms 419

14.8 BIBLIGRAPHICAL REMARKS

Shall we show images of Gutmann/Konolige? I’d opt for yes.

14.9 PROJECTS

1. Develop a 3D mapping algorithm that exploits the full 3D structure for pose and
map estimation during mapping.

2. The multi-robot algorithm described in this chapter requires that each robot starts
in the map built by another robot. Develop a multi-robot mapping algorithm
that relaxes this assumption, that is, where robots can start at arbitrary poses and
might only later traverse the same terrain.

3. Develop a 3D mapping algorithm that represent the enviroment by typical build-
ing components, such as walls, doors, tables, chairs, instead of sets of polygones.

420 Chapter 14

15
MARKOV DEVISION PROCESSES

15.1 MOTIVATION

Thus far, the book has focused on robot perception. We have discussed a range of
probabilistic algorithms that estimate quantities of interest from sensor data. However,
the ultimate goal or any robot software is to choose the right actions. Accurate state
estimation is only desirable insofar it facilitates the choice of action. This and the
following chapter will therefore discuss probabilistic algorithms for action selection.

To motivate the study of probabilistic action selection algorithms, consider the follow-
ing examples.

1. A a robotic manipulator grasps and assembles parts arriving in random configu-
ration on a conveyer belt. The configuration of a part is unknown at the time it
arrives, yet the optimal manipulation strategy requires knowledge of the config-
uration. How can a robot manipulate such pieces? Will it be necessary to sense?
If so, are all sensing strategies equally good? Are there manipulation strategies
that result in a well-defined configuration without sensing?

2. An underwater vehicle shall travel across the North Pole. Shall it take the shortest
route, running risk of loosing orientation under the Ice? Or sould it avoid large
featureless areas at the risk of using more time to reach its goal.

3. An robotic helicopter flies autonomously in a wooded area. The helicopter should
stay clear of obstacles such as the ground so that even an unexpected wind gust
can make it crash. But how far is far enough?

4. A team of robots explore an unknown planet. The problem is particularly hard if
the robots do not know their initial pose relative to each other. Shall the robots

421

422 Chapter 15

seek each other to determine their relative location to each other? Or shall they
instead avoid each other so that they can cover more unknown terrain? And what
are the optimal ways to explore a planet with teams of robots?

These examples illustrate that action selection in many robotics tasks is closely tight
to the notion of uncertainty. In some tasks, such as robot exploration, reducing un-
certainty is the direct goal of action selection. Such tasks are known as information
gathering tasks. Information gathering tasks will be studied in the next chapter. In
other cases, a reducing uncertainty is merely a means to achieving some other goal,
such as reliably arriving at a target location. Such tasks will be studied here.

From an algorithm design perspective, is convenient to distinguish two types of uncer-
tainty: uncertainty in action, and uncertainty in perception.

1. Deterministic versus stochastic action effects. Classical robotics often assumes
that the effects of control actions are deterministic. In practice, however, actions
cause uncertainty, as outcomes of actions are non-deterministic. The uncertainty
arising from the stochastic nature of the robot and its environments mandates that
the robot senses at execution time, and reacts to unanticipated situations—even
if the environment state is fully observable. It is insufficient to plan a single
sequence of actions and blindly execute it at run-time.

2. Fully observable versus partially observable systems. Classical robotics often
assumes that sensors can measure the full state of the environment. As argued
repeatedly throughout this book, this is an unrealistic assumption. The lack of
perfect sensors has two ramifications: First robot control must be robust with
respect to current uncertainty. Second, it must cope with future, anticipated un-
certainty, and choose actions accordingly. An example of the latter was given
above, where we discussed a robot which has the choice between a shorter path
through a featureless area, and a longer one that reduces the danger of getting
lost.

Throughout this chapter, we will take a very liberal view and make virtually no dis-
tinction between planning and control. Fundamentally, both planning and control ad-
dress the same problem: to select actions. They differ in the time constraints under
which actions have to be selected and in the role of sensing during execution. The
algorithms described in this chapter are all similar in that they require a off-line opti-
mization (planning) phase, in which they calculate a control policy. During execution,
the control policy can be invoked very efficiently, and it can cope with a range of dif-
ferent situations. By no means is the choice of algorithms meant to suggest that this

Markov Devision Processes 423

is the only way to cope with uncertainty in robotics. Instead, it reflects the style of
algorithms that are currently in use.

The majority of algorithms discussed in this chapter assume finite state and action
spaces. Continuous spaces are approximated using grid-style representations. The
chapter is organized as follows.

Section 15.2 discusses in depth the role of the two types of uncertainty and lays
out their implications on algorithm design.

Section 15.3 introduces value iteration, a popular planning algorithm. Value iter-
ation, as introduced there, addresses the first type of uncertainty: the uncertainty
in robot motion. It rests on the assumption that the state is fully observable.
The underlying mathematical framework is known as Markov Decision Processes
(MDP).

Section 16.2 discusses a more general planning algorithm that addresses both
types of uncertainty: Uncertainty in action and uncertainty in perception. This
algorithm adopts the idea of value iteration, but applies it to a belief space rep-
resentation. The framework underlying this algorithm is called Partially Observ-
able Markov Decision Processes (POMDPs). The POMDP algorithm can antici-
pate uncertainty, actively gather information, and explore optimally in pursuit of
an arbitrary performance goal, at the expense of increased computational com-
plexity.

Finally, Section 16.5 discusses augmented MDP algorithms, which are cross-
overs between MDP and POMDP algorithms. Augmented MDP algorithms con-
sider uncertainty, but abstract away detail and hence are computationally much
more efficient than POMDP solutions.

In the following chapter, we will discuss a more general algorithms that addresses
both types of uncertainty: Uncertainty in action and uncertainty in perception. The
framework underlying these algorithm is called Partially Observable Markov Decision
Processes (POMDPs). The POMDP algorithm can anticipate uncertainty, actively
gather information, and explore optimally in pursuit of an arbitrary performance goal,
at the expense of increased computational complexity.

424 Chapter 15

+---+
| |
| +---+ +----------+ +----------+ +---+ |
| | | | | | | | | +-+
+---+ |Goal----------+Rob+----------+Pit| | | |
| | | +----------+ +----------+ | +-+ |
| | | | | | | | | |
| +---+ +----------+ +----------+ +---+ |
| |
+---+

Figure 15.1 Near-symmetric environment with narrow and wide corridors. The robot’s
initial location is known, but not its pose.

15.2 UNCERTAINTY IN ACTION

SELECTION

Make Figure: Classical Planning

Make Figure: MDP planning

Make Figure: POMDP planning

Figure 15.1 shows a toy-like environment that illustrates the different types of uncer-
tainty. Shown there is a mobile robot in a corridor-like environment. The environment
is highly symmetric; the only distinguishing feature are two walls at its far ends. At
symmetric locations, the environment possesses a small number distinct places, one
labeled the goal location (G), another which contains a pit (P), and one that contains
a unique landmark that can help the robot finding out where it is. The robot’s task is
to advance to the goal location as quickly as possible while avoiding falling into the
pit. Let us suppose the goal and the pit are perceptually indistinguishable—unless the
robot actually enters the region, running risk to fall into the pit. Finally, we notice
that there are multiple paths to either the goal, one that is short but narrow, and two
others that are longer but wider. Clearly, this environment is less complex than natural
robotic environments; however, it is complex enough to distinguish different types of
uncertainty.

In the classical robot planning paradigm, there is no uncertainty. The robot knows its
initial pose and it knows the location of the goal. Furthermore, actions are executed
in the physical world as commanded. In such a situation, it suffices to plan off-line

Markov Devision Processes 425

a single sequence of actions, which is then executed at run-time. There is no need
to sense. Figure ?? shows an example of such a plan. Obviously, in the absence of
errors in the robot actuator, the narrow shorter path is superior to the longer, wider
one. Hence, a planner that strives for optimality would choose the former path over
the latter. Many existing planning algorithm are only concerned with finding a path,
regardless of optimality. Thus, they might choose either path. What happens if the
plan is executed? Of course, physical robot hardware is inaccurate. A robot blindly
following the narrow hallway might run danger of colliding with the walls. Further-
more, a blindly executing robot might miss the goal location because to the error it
accrued during plan execution. In practice, thus, planning algorithms of this type are
often combined with a sensor-based, reactive control module that consults sensor read-
ings to adjust the plan so as to avoid collisions. Such a module might prevent the robot
from colliding in the narrow corridor. However, in order to do so it may have to slow
down the robot, making the narrow path inferior to its alternative.

A paradigm that encompasses uncertainty in robot motion is known as Markov deci-
sion processes, or MDPs. MDPs assume that the state of the environment can be fully
measured at all times. In other words, the perceptual model P (o|s) is deterministic
and bijective. However, is allows for stochastic action effects, that is, the action model
P (s′|s, a) may be non-deterministic. As a consequence, it is insufficient to plan a sin-
gle sequence of actions. Instead, the planner has to generate actions for a whole range
of situations that the robot might find itself in, either because of its actions, or be-
cause of other environment dynamics. One way to cope with the resulting uncertainty
is to generate a policy for action selection defined for all states that the robot might
encounter. Such mappings from states to actions are also known as universal plans
or navigation functions. An example of a policy is shown in Figure ??. Instead of a
single sequence of actions, the robot calculates a mapping from states to actions indi-
cated by the arrows. Once such a mapping is computed, the robot can accommodate
non-determinism by sensing the state of the world, and acting accordingly. Addition-
ally, this framework opens the opportunity to guide the action selection process based
on future, anticipated uncertainty. Consider, for example, a highly inaccurate robot
which, if placed in the narrow corridor, is likely to collide with a wall. Planning algo-
rithms that consider motion uncertainty can assess this risk at planning time and might
choose the wider, safer path.

Let us now return to the most general, fully probabilistic case, by dropping the as-
sumption that the state is fully observable. This case is known as partially observable
Markov decision processes, or POMDPs. In most if not all robotics applications, mea-
surements o are noisy projections of the state s. Hence, the state can only be estimated
up to a certain degree. To illustrate this, consider the situation depicted in Figure ??
under the assumption that the robot does not know its initial orientation. Clearly,
the symmetry of the environment makes it difficult to disambiguate the robot’s pose.

426 Chapter 15

By moving directly towards the projected goal state the robot faces a 50% chance of
falling into the pit—which would tell it where it is but result in mission failure. The
optimal plan, thus, is to move to the small area in the upper right (or lower left), which
enables the robot to disambiguate its pose. After that, the robot can then safely move
to its goal location. Thus, the robot has to actively gather information while suffering
a detour. This is an example of the most interesting scenario in probabilistic robotics:
The robot’s sensors pose intrinsic limitations as to what the robot knows. Similar situ-
ations occur in locate-and-retrieve tasks, planetary exploration, and many other robot
tasks.

How can one devise an algorithm for action selection that can cope with this type of
uncertainty? One might be tempted to solve the problem of what to do by analyzing
each possible situation that might be the case under the current state of knowledge.
In our example, there are two such cases: the case where the goal is on the upper
left relative to the initial robot heading, and the case where the goal is on the lower
right. In both these cases, however, the optimal policy does not bring the agent to a
location where it would be able to disambiguate its pose. That is, the planning prob-
lem in partially observable environment cannot be solved by considering all possible
environments and averaging the solution.

Instead, the key idea is to generate plans in belief space (sometimes referred to infor-
mation space). The belief space comprises the space of all belief distributions b that
the robot might encounter. The belief space for our example is shown in Figure ??.
It reflects what the robot knows about the state of the world. The center diagram cor-
responds to the case where the robot is ignorant of its heading direction, as indicated
by the two question marks. As the robot enters any of the locations that reveal where
there goal is, it will make a transition to one of the two diagrams at the border. Both of
those correspond to cases where the robot pose is fully known: The robot faces north
in the left diagram, and it faces south in the right one. Since the a priori chance of each
location is the same, the robot will experience a random transition with a 50% chance
of ending up in either state of knowledge.

The belief state is rich enough to solve the planning problem. In our toy example, the
number of different belief states happens to be finite. This is usually not the case. In
worlds with finitely many states the belief space is usually continuous, but of finite
dimensionality. If the state space is continuous, the belief space is usually infinitely-
dimensional.

This example illustrates a fundamental property that arises from the robot’s inability
to sense the state of the world—one whose importance for robotics has often been
under-appreciated. In particular, in uncertain worlds a robot planning algorithm must
consider the state of knowledge (the belief state). In general it does not suffice to

Markov Devision Processes 427

consider the most likely state only. By conditioning the action on the belief state—
as opposed to the most likely actual state—the robot can actively pursue information
gathering. In fact, the optimal plan in belief state optimally gathers information, in that
it only seeks new information to the extent that it is actually beneficial to the expected
utility of the robot’s action. This is a key advantage of the probabilistic approach to
robotics. However, it comes at the price of an increased complexity of the planning
problem.

15.3 VALUE ITERATION

We will now describe a first algorithm for action selection under uncertainty. The
algorithm is a version of various flooding-type algorithms that recursively calculate
the utility of each action relative to a payoff function. Value iteration, as discussed
in this section, addresses only the first type of uncertainty: It devises control policies
that can cope with the stochasticity of the physical world. It does not address the
uncertainty arising from perceptual limitations, Instead, we will assume that the state
of the world is fully observable at any point in time.

15.3.1 Goals and Payoff

Before describing a concrete algorithm, let us first define the problem in more concise
terms. In general, robotic action selection is driven by goals. Goals might correspond
to specific configurations (e.g., a part has been picked up by a robot arm), or they
might express conditions over longer periods of time (e.g., a robot balances a pole).
Some action selection algorithms carry explicit notions of goals; others use follow
implicit goals. The algorithms discussed in this book all use explicit descriptions of
goals. This enables them to pursue different goals. In contrast, control algorithm with
implicit goals are usually unable to generate actions for more than just one goal.

In robotics, one is often concerned with reaching specific goal configurations, while
simultaneously optimizing other variables, often thought of as cost. For example, one
might be interested in moving the end-effector of a manipulator to a specific location,
while simultaneously minimizing time, energy consumption, jerk, or the number of
collisions with surrounding obstacles. At first glance, one might be tempted to express
these desires by two quantities, one that is being maximized (e.g., the binary flag
that indicates whether or not a robot reached its goal location), and the other one
being minimized (e.g., the total energy consumed by the robot). However, both can
be expressed using a single function called the payoff function (also known as utility,

428 Chapter 15

cost). The payoff, denoted c, is a function of the state. For example, a simple payoff
function is the following:

c(s) =

{
+100 if robot reaches goal
−1 otherwise

(15.1)

This payoff function rewards the robot with +100 if a goal configuration is attained,
while it penalizes the robot by −1 for each time step where is has not reached that
configuration.

Why using a single payoff variable to express both goal achieval and costs? This is
primarily because of two reasons: First, the notation avoids clutter in the formulae
yet to come, as our treatment of both quantities will be entirely analogous throughout
this book. Second, and more importantly, it pays tribute to the fundamental trade-
off between goal achievement and costs along the way. Since robots are inherently
uncertain, they cannot know with certainty as to whether a goal configuration has
been achieved; instead, all one can hope for is to maximize the chances of reaching a
goal. This trade-off between goal achieval and cost is characterized by questions like
Is increasing the probability of reaching a goal worth the extra effort (e.g., in energy,
time)? Treating both goal achieval and costs as a single numerical factor enables us to
trade off one against the other, hence providing a consistent framework for selecting
actions under uncertainty.

We are interested in devising programs that generate actions so as to optimize future
payoff in expectation. Such programs are usually referred to as control policies, de-
noted π:

π : d(0...t) −→ a(t) (15.2)

A policy π is a function that maps date into actions. Taking as general a view as
possible, a policy might be an elaborate planning algorithm, or it might be a fast,
reactive algorithm that bases its decision on the most recent data item only. The policy
π may deterministic or non-deterministic, and it might only be partially defined in the
space of all data sets d(0...t).

An interesting concept in the context of creating control policies is the planning hori-
zon. Sometimes, it suffices to choose an action so as to maximize the immediate next
payoff value. Most of the time, however, an action might not pay off immediately. For
example, a robot moving to a goal location will receive the final payoff for reaching
its goal only after the very last action. Thus, payoff might be delayed. An appropriate

Markov Devision Processes 429

objective is then to choose action so that the sum of all future payoff is maximal. We
will call this sum the cumulative payoff. Since the world is non-deterministic, the best
one can optimize is the expected cumulative payoff, which is conveniently written as

CT = E

[
T∑

τ=1

γτ ct+τ

]

(15.3)

Here the expectation E[] is taken over future momentary payoff values ct+τ that the
robot might accrue between time t and time t + T . The individual payoffs ct+τ are
multiplied by an exponential factor γτ , called the discount factor, which is constrained
to lie in the interval [0; 1]. If γ = 1, we have γτ = 1 for arbitrary values of τ , and
hence the factor can be omitted in Equation (15.3). Smaller values of γ discount
future payoff exponentially, making earlier payoffs exponentially more important than
later ones. This discount factor, whose importance will be discussed below, bears
resemblance to the value of money, which also looses value over time exponentially
due to inflation.

We notice that CT is a sum of T time steps. T is called the planning horizon, or
simply: horizon. We distinguish three important cases:

1. T = 1. This is the greedy case, where the robot only seeks to minimize the im-
mediate next payoff. While this approach is degenerate in that it does not capture
the effect of actions beyond the immediate next time step, it nevertheless plays
an important role in practice. The reason for its importance stems from the fact
that greedy optimization is much simpler than multi-step optimization. In many
robotics problems, greedy solutions are currently the best known solutions that
can be computed in reasonable time. Obviously, greedy optimization is invariant
with respect to the discount factor γ, as long as γ > 0.

2. T is finite (but larger than 1). This case is known as the finite-horizon case. Typi-
cally, the payoff is not discounted over time, that is, γ = 1. One might argue that
the finite-horizon case is the only one that matters, since for all practical purposes
time is finite. However, finite-horizon optimality is often harder to achieve than
optimality in the discounted infinite-horizon case. Why is this so? A first insight
stems from the observation that the optimal action is a function of time horizon.
Near the far end of the time horizon, for example, the optimal action might differ
substantially from the optimal action earlier in time, even under otherwise iden-
tical conditions (e.g., same state, same belief). As a result, planning algorithms
with finite horizon are forced to maintain different plans for different horizons,
which can add undesired complexity.

430 Chapter 15

3. T is infinite. This case is known as the infinite-horizon case. This case does not
suffer the same problem as the finite horizon case, as the number of remaining
time steps is the same for any point in time (it’s infinite!). However, here the
discount factor γ is essential. To see why, let us consider the case where we have
two robot control programs, one that earns us $1 per hour, and another one that
makes us $100 per hour. In the finite horizon case, the latter is clearly preferable
to the former. No matter what the value of the horizon is, the expected cumulative
payoff of the second program exceeds that of the first by a factor of a hundred.
Not so in the infinite horizon case. Without discounting, both programs will earn
us an infinite amount of money, rendering the expected cumulative payoff CT

insufficient to select the better program.

Under the assumption that each individual c is bounded in magnitude (that is,
|c| < cmax for some value cmax), discounting guarantees that C∞ is finite—
despite the fact that the sum has infinitely many terms. In our example, we have

C∞ = c+ γc+ γ2c+ γ3c+ . . . (15.4)

=
c

1− γ (15.5)

where c is either $1, or $100. Using, for example, a discount factor of γ = 0.99,
we find that our first program gives us a discounted return of C = $100, whereas
the second results in C = $10, 000. More generally, C∞ is finite γ as long as it
is smaller than 1. An popular alternative to discounting involve maximizing the
average payoff instead of the total payoff. Algorithms for maximizing average
payoff will not be studied in this book.

We will now introduce a few, useful variations on the basic notation. In particular,
sometimes we would like to refer to the cumulative payoff CT conditioned on the
state at time t being s. This will be written as follows:

CT (s) = E

[
T∑

τ=1

γτ ct+τ |s(t) = s

]

(15.6)

The cumulative payoff CT is a function the robot’s policy for action selection. Some-
times, it is beneficial to make this dependence explicit:

CT
π = E

[
T∑

τ=1

γτ ct+τ |a(t) = π(d(0...t))

]

(15.7)

Markov Devision Processes 431

This notation enables us to compare two control policies π and π′, and determine
which one is better. Simply compare CT

π to CT
π′ and pick the algorithm with higher

expected discounted future payoff.

Finally, we notice that the expected cumulative payoff is often referred to as value, to
contrast them with the immediate state payoff denoted c.

15.3.2 Finding Control Policies in Fully

Observable Domains

Traditionally, the robotics planning literature has investigated the planning problem
predominately in deterministic and fully observable worlds. Here the assumption is
that P (s′ | a, s) and P (o | s) both are point mass distributions—which is a fancy
way of saying that state transitions and observations are deterministic. Moreover, the
measurement function P (o | s) is usually assumed to be bijective, which implies
that the state s can be determined from the observation o. In such cases, a perfectly
acceptable plan is a fixed sequence of actions that does not involve sensing during plan
execution. Naturally, this case plays no role in the probabilistic setting, as it does not
accommodate the inherent uncertainty in robotics.

More realistic is the case where P (s′ | a, s) is stochastic, but the state s is fully
observable. Two reasons make it worthwhile to study this special case in some depth.
First, it encompasses some of the uncertainty in robotics, making sensing an integral
part of plan execution. Second, it prepares us for the more general case of partial
observability in that it allows us to introduce the idea of value iteration. The framework
for action selection in stochastic environments with fully observable state is known as
Markov decision processes, abbreviated as MDPs.

The problem that arises in MDPs is that of determining a policy π that maximizes the
expected future payoff CT . Since the state is fully observable, it suffices to condition
the policy on the current state s, instead of the entire data history as in (15.2). Thus,
we assume the policy is of the form

π : s −→ a (15.8)

Why the policy can be conditioned on the most recent state only should be immedi-
ately obvious. Formally, this follows directly from the Markov assumption defined in
Chapter 2.4.4 of this book.

432 Chapter 15

Let us now derive a basic algorithm for constructing such a policy known as value iter-
ation. Let us begin with defining the optimal policy for a planning horizon of T = 1,
that is, we are only interested in a policy that maximizes the immediate next pay-
off. The optimal policy is denoted π1(s) and is obtained by maximizing the expected
payoff over all actions a:

π1(s) = argmax
a

∫

c(s′) P (s′|a, s) ds′ (15.9)

Thus, an optimal action is that that maximizes the immediate next payoff in expecta-
tion, and the policy that chooses such an action is optimal.

Every policy has an associated value function, which measures the expected value
(cumulative discounted future payoff) of this specific policy. For π1, the value function
is simply the expected immediate payoff, discounted by the factor γ:

C1(s) = max
a

γ

∫

c(s′) P (s′|a, s) ds′ (15.10)

The definition of the optimal policy with horizon 1 and the corresponding value func-
tion enables us to determine the optimal policy for the planning horizon T = 2. In
particular, the optimal policy for T = 2 selects the action that maximizes the one-step
optimal value C1(s):

π2(s) = argmax
a

∫

[c(s′) + C1(s′)] P (s′|a, s) ds′ (15.11)

It should be immediately obvious why this policy is optimal. The value of this policy
conditioned on the state s is given by the following discounted expression:

C2(s) = max
a

∫

[c(s′) + C1(s′)] P (s′|a, s) ds′ (15.12)

Notice that the optimal policy and its value function for T = 2 was constructed re-
cursively, from the optimal value function for T = 1. This observation suggests that
for any finite horizon T the optimal policy, and its value function, can be obtained
recursively from the optimal policy and value function T − 1.

Markov Devision Processes 433

This is indeed the case. We can recursively construct the optimal policy and the cor-
responding value function for the planning horizon T from the optimal value function
for T − 1, via the following equation:

πT (s) = argmax
a

∫

[c(s′) + CT−1(s′)] P (s′|a, s) ds′ (15.13)

The resulting policy πT (s) is optimal for the planning horizon T . Analogously, its
value function is defined through the following recursion:

CT (s) = max
a

∫

[c(s′) + CT−1(s′)] P (s′|a, s) ds′ (15.14)

Equations (15.13) and (15.14) give us a recursive definition of the optimal policy and
optimal value function for any finite horizon T .

In the infinite horizon case, the optimal value function reaches an an equilibrium:

C∞(s) = max
a

∫

[c(s′) + C∞(s′)] P (s′|a, s) ds′ (15.15)

This invariance is known as Bellman equation. Without proof, we notice that every
value function C which satisfies the following recursion:

C(s) = max
a

∫

[c(s′) + C(s′)] P (s′|a, s) ds′ (15.16)

is optimal, in the sense that the policy that is greedy with respect to C

π(s) = argmax
a

∫

[c(s′) + C(s′)] P (s′|a, s) ds′ (15.17)

maximizes the infinite-horizon payoff.

15.3.3 Value Iteration

This consideration leads to the definition of value iteration, a popular and decades-old
algorithm for calculating the optimal infinite-horizon value function. Value iteration is

434 Chapter 15

a practical algorithm for computing the optimal policy fully observable problems with
finite state and action spaces. It does this by successively approximating the optimal
value functions, as defined in (15.16).

Let us denote the approximation by Ĉ Initially, the approximation is set to zero (or,
alternatively, some large negative value):

Ĉ ←− 0 (15.18)

Value iteration then successively updates the approximation via the following recur-
sive rule, which computes the value of a state s from the best expected value one time
step later:

Ĉ(s) ←− max
a

∫

[c(s′) + Ĉ(s′)] P (s′|a, s) ds′ (15.19)

Notice that the value iteration rule bears close resemblance to the calculation of the
horizon-T optimal policy above. Value iteration converges if γ < 1 and, in some
special cases, even for γ = 1. The order in which states are updated in value iteration
is irrelevant, as long as each state is updated infinitely often. In practice, convergence
observed after much smaller number of iterations.

At any point in time, the value function Ĉ(s) defines the policy of greedily maximizing
Ĉ(s):

π(s) = argmax
a

∫

[c(s′) + Ĉ(s′)] P (s′|a, s) ds′ (15.20)

After convergence of value iteration, the policy that is greedy with respect to the final
value function is optimal.

Table 15.1 outlines the basic value iteration algorithm MDP value iteration. The
value function is initialized in lines 2 and 3. Line 4 through 6 implement the recursive
calculation of the value function. If the state space is discrete, the integral is replaced
by a finite sum. Once value iteration converges, the resulting value function Ĉ induces
the optimal policy.

Markov Devision Processes 435

1: Algorithm MDP value iteration():

2: for all s do

3: Ĉ(s) = 0

4: repeat until convergence

5: for all s

6: Ĉ(s) = maxa

∫
[c(s′) + Ĉ(s′)] P (s′|a, s); ds′

7: return Ĉ

Table 15.1 The value iteration algorithm for MDPs with finite state and action spaces.

15.3.4 Illustration

Figure 15.2 illustrates value iteration in the context of a robotic path planning prob-
lem. Shown there is a a two-dimensional projection of a configuration space of a
circular robot. The configuration space is the space of all 〈x, y, θ〉 coordinates that the
robot can physically attain. For circular robots, the configuration space is obtained
by ‘growing’ the obstacles in the map by the radius of the robot. These increased
obstacles shown in black in Figure 15.2.

The value function is shown in grey, where the brighter a location, the higher its value.
Following the color gradient leads to the respective goal location, as indicated by the
path shown in Figure 15.2. The key observation is that the value function is defined
over the entire state space, enabling the robot to select an action no matter where it is.
This is important in non-deterministic worlds, where actions have stochastic effects
on the robot’s state.

The path planner that generated Figure 15.2 makes specific assumptions in order to
keep the computational load manageable. For circular robots that can turn on the spot,
it is common to compute the value function in x-y-space only, basically ignoring the
cost of rotation. It is also quite common to ignore the robot’s velocity, despite the
fact that it clearly constrains where a robot can move. Obviously, path planners that
plan in x-y-space are unable to factor the cost of rotation into the value function, and
they cannot deal with robot dynamics (velocities). It is therefore common practice
to combine such path planners with fast, reactive collision avoidance modules that

436 Chapter 15

(a) (b)

Figure 15.2 Example of value iteration over state spaces in robot motion. Obstacles are
shown in black. The value function is indicated by the grayly shaded area. Greedy action
selection with respect to the value function lead to optimal control, assuming that the robot’s
pose is observable. Also shown in the diagrams are example paths obtained by following
the greedy policy.

generate motor velocities while obeying dynamic constraints. A path planner which
considers the full robot state would have to plan in at least five dimensions, comprising
the full pose (three dimensions), the translational and the rotational velocity of the
robot. In two dimensions, calculating the value function for environment like the one
above takes only a fraction of a second on a low-end PC.

16
PARTIALLY OBSERVABLE

MARKOV DECISION PROCESSES

16.1 MOTIVATION

Let us now shift focus to the partially observable problem. The algorithms discussed
thus far only address uncertainty in action effects, but they assume that the state of
the world can be determined with certainty. For fully observable Markov decision
processes, we devised a value iteration algoithm for controlling robots in stochastic
domains. We will now be interested in the more general case where the state is not
fully observable. Lack of observability means that the robot can only estimate a pos-
terior distribution over possible world state, which we refer to as the belief b. This
setting is known as Partially Observable Markov Decision Processes, or POMDPs.

The central question addressed in the remainder of this chapter is the following: Can
we devise planning and control algorithms for POMDPs? The answer is positive, but
with caveats. Algorithms for finding the optimal policy only exist for finite worlds,
where the state space, the action space, the space of observations, and the planmning
horizon T are all finite. Unfortunately, these exact methods are computationally ex-
tremely complex. For the more interesting continous case, the best known algorihms
are all approximative.

All algorithms studied on this chapter build on the value iteration approach discussed
previously. Let us restate Equation (15.14), which is the central update equation in
value iteration in MDPs:

CT (s) = max
a

∫

[c(s′) + CT−1(s′)] P (s′|a, s) ds′ (16.1)

437

438 Chapter 16

In POMDPs, we apply the very same idea. Howewver, the state s it not observable.
All we have is the belief state b, which is a posterior distributon over states. POMDPs,
thus, compute a value function over belief spaces:

CT (b) = max
a

∫

[c(b′) + CT−1(b′)] P (b′|a, b) db′ (16.2)

and use this value function to generate control:

πT (b) = argmax
a

∫

[c(b′) + CT−1(b′)] P (b′|a, b) db′ (16.3)

Unfortunately, calculating value functions is more complicated in belief space than it
is in state space. A belief is a probability distribution; thus, values CT in POMDPs
are functions over probability distributions. This is problematic. If the state space is
finite, the belief space is continuous, since it is the space of all distributions over the
state space. The situation is even more delicate for continuous state spaces, where the
belief space is an infinitely-dimensional continuum. Furthermore, Equations (16.2)
and (16.3) integrate over all beliefs b′. Given the complex nature of the belief space,
it is not at all obvious that the integration can be carried out exactly, or that effective
approximations can be found.

Luckily, exact solutions exist for the interesting special case of finite worlds...

This chapter is organized as follows.

Section 16.2 discusses a more general planning algorithm that addresses both
types of uncertainty: Uncertainty in action and uncertainty in perception. This
algorithm adopts the idea of value iteration, but applies it to a belief space rep-
resentation. The framework underlying this algorithm is called Partially Observ-
able Markov Decision Processes (POMDPs). The POMDP algorithm can antici-
pate uncertainty, actively gather information, and explore optimally in pursuit of
an arbitrary performance goal, at the expense of increased computational com-
plexity.

Finally, Section 16.5 discusses augmented MDP algorithms, which are cross-
overs between MDP and POMDP algorithms. Augmented MDP algorithms con-
sider uncertainty, but abstract away detail and hence are computationally much
more efficient than POMDP solutions.

Partially Observable Markov Decision Processes 439

16.2 FINITE ENVIRONMENTS

We begin our consideration with the important special case of finite worlds. Here we
assume that we have a finite state space, finitely many actions a at each state, a finite
number of different observations o, and a finite planning horizon T . Under these con-
ditions, the optimal value function can be calculated exactly, as can the optimal policy.
This is not at all obvious. Even if the state space is finite, there are in fact infinitely
many possible beliefs. However, in this and the following section we establish a well-
known result that the optimal value function is convex and composed of finitely many
linear pieces. Thus, even though the value function is defined over a continuum, it can
be represented on a digital computer—up to the accuracy of floating point numbers.

16.2.1 An Illustrative Example

An example of a finite world is shown in Figure 16.1. This specific example is ex-
tremely simple and artificial, and its sole role is to familiarize the reader with the key
issues of POMDPs before discussion the general solution. We notice that the world in
Figure 16.1 possesses four states, labeled s1 through s4, two actions, a1 and a2, and
two observations, labeled o1 and o2. The initial state is drawn at random from the two
top states, s1 and s2. The robot is now given a choice: executing action a1, which will
with high probability (but not always) teleport it to the respective other state. Alterna-
tively, it can execute action a2, which results in a transition in one of the two bottom
states, s3 or s4 with the probabilities as indicated. In s3 the robot will receive a large
positive payoff, whereas in s4 the payoff is negative. Both of those states are terminal
states, that is, once entered the task is over. Thus, the robot’s goal is to execute action
a2 when in state s1. If the robot knew what state it was in, performing the task would
be extremely easy: Simply apply action a1 until the state is s1, then apply action a2.
However, the robot does not know its state. Instead, it can perceive the two observa-
tions o1 and o2. Unfortunately, both observations are possible at both of these states,
though the probability of observing one versus the other is different, depending on
what state the robot is in. Since the robot does not know whether its initial state is s1

or s2, it must carefully keep track of past observations to calculate its belief. So the
key policy questions are: When should the robot try action a2? How confident must
it be, and how long will it take to try this action? These and other questions will be
answered further below.

Our goal in this section is to develop an algorithm for computing the optimal value
function exactly for finite worlds with finite horizon T . Let us denote the planning
horizon by T and the states by s1, . . . , sn. Exploiting the finiteness of the state space,

440 Chapter 16

four states
states s1, s2 are initial states
action a1: change states with with prob 0.9 (if in s1) 0.8 (if in s2)
action s2: go to s3, s4. 90% chance that we’ll go to the other state
payoff: 100 in s3, -100 in s4
observations: o1 .7 in s1, 0.4 in s2
observations: o2 .3 in s1, 0.6 in s2

Figure 16.1 Finite State Environment, used to illustrate value iteration in belief space.

we notice that the belief b(s) is given by n probabilities

pi = b(s = si) (16.4)

with i = 1, . . . , n. The belief must satisfy the conditions

pi ≥ 0
n∑

i=1

pi = 1 (16.5)

Partially Observable Markov Decision Processes 441

Because of the last condition, b(s) can be specified by n− 1 parameters p1, . . . , pn−1

instead of n parameters. The remaining probability pn can be calculated as follows:

pn = 1−
n∑

i=1

pi (16.6)

Thus, if the state space is finite and of size n, a belief is a (n− 1)-dimensional vector.

In our example shown in Figure 16.1, it might appear that the belief is specified by
three numerical probability values, since there are four states. However, the action
a2 separates (with certainty) the states {s1, s2} from the states {s3, s4}. Thus, the
only uncertainty that the robot may encounter is a confusion between states s1 and
s2, and a confusion between states s3 and s4. Both can be represented by a single
numerical probability value, thus, the only continuous component of the belief state is
one-dimensional. This makes this example convenient for plotting value functions.

Let us now focus on the question as to whether we can calculate the optimal value
function and the optimal policy exactly in finite domains. If not, we might be forced to
approximate it. At first, one might conclude that calculating the optimal value function
is impossible, due to the fact that the belief space is continuous. However, we observe
that for finite worlds, the value function has a special shape: It is composed of finitely
many linear pieces. This makes it possible to calculate the optimal value function
in finite time. We also notice that the value function is convex and continuous—these
latter two properties also apply to optimal value functions over continuous state spaces
and infinite planning horizons.

We begin our consideration with the immediate payoff of a belief state b. Recall
that the payoff of b is given by the expectation of the payoff c under the probability
distribution b:

c(b) =

∫

c(s) b(s) ds (16.7)

Using the fact that b is uniquely specified by the probabilities p1, . . . , pn, we can write

c(b) = c(p1, . . . , pn) =
n∑

i=1

c(si) pi (16.8)

which is indeed linear in p1, . . . , pn.

442 Chapter 16

0.2 0.4 0.6 0.8 1

-100

-50

0

50

100 (a)

c(b)

p3s = s4 s = s3
0.2 0.4 0.6 0.8 1

-100

-50

0

50

100 (b)

C1(b, a1)

p1s = s1 s = s2

0.2 0.4 0.6 0.8 1

-100

-50

0

50

100 (c)

C1(b, a2)

p1s = s1 s = s2
0.2 0.4 0.6 0.8 1

-100

-50

0

50

100 (d)

a1 optimal

a2 optimal

C1(b) = maxaC
1(b, a)

p1s = s1 s = s2

0.2 0.4 0.6 0.8 1

-100

-50

0

50

100 (e)

C2(b, a1)

p1s = s1 s = s2
0.2 0.4 0.6 0.8 1

-100

-50

0

50

100 (f)

a1 optimal

a2 optimal

C2(b) = maxaC
2(b, a)

p1s = s1 s = s2

Figure 16.2 Expected payoff c(b) as a function of the belief parameter p3, assuming that
the robot is either in state s3 or s4.

It is interesting to plot the function c(b) for belief distributions over the two states s3

and s4 in our example, the only states with non-zero payoff. The payoff in state s3
is 100, whereas the payoff in state s4 is −100. Figure 16.2a shows the function c(b)
for the subspace of the belief defined by 〈0, 0, p3, 1− p3〉 which is a belief space that
places all probability in the states s3 and s4. Here the expectation c(b) is plotted as a
function of the probability p3. Obviously, if p3 = 0, the environment state is s4, and
the payoff will be c(s4) = −100. On the other hand, if p3 = 1, the environment’s

Partially Observable Markov Decision Processes 443

state is s3 and the payoff will be c(s3) = 100. In between, the expectation is linear,
leading to the graph shown in Figure 16.2a.

This consideration enables us to calculate the value function for planning horizon
T = 1. From now on, we will only consider the subset of the belief space that places
all probability on the two states s1 and s2. This belief space is parameterized by a
single parameter, p1, since p2 = 1 − p1 and p3 = p4 = 0. The value function
C1(b, a1) is constant zero for action a1:

C1(b, a1) = 0 (16.9)

since whatever the true state of the robot, action a1 will not lead it to a state that makes
it receive non-zero payoff. This value function C1(b, a1) if graphed in Figure 16.2b.
The picture becomes more interesting for action a2. If the state of the environment is
s1, this action will lead with 90% chance to state s3, where the robot will receive a
payoff of 100. With 10% probability it will end up in state s4, where its payoff will
be −100. Thus, the expected payoff in state s1 is 0.9 · 100 + 0.1 · (−100) = 80.
By an analogous argument, the expected payoff in state s2 is −80. In between, the
expectation is linear, yielding the value function

C1(b, a2) = γ(80p1 − 80p2) = 72p1 − 72p2 (16.10)

Here we use the discount factor γ = 0.9. This function is shown in Figure 16.2c, for
beliefs of the type 〈p1, 1− p1, 0, 0〉.

So what is the right action selection policy? Following the rationale of maximizing ex-
pected payoff, the best action depends on our current belief, assuming that it accurate
reflects our knowledge about the real world. If the probability p1 ≥ 0.5, the optimal
action will be a2, since we expect positive payoff. For values smaller than 0.5, the
optimal action will be a1, since it avoids the negative expected payoff associated with
action a2. The corresponding value function is the maximum of the action-specific
value functions:

C1(b) = max
a

C1(b, a)

= max{0 ; 72p1 − 72p2} (16.11)

This value function and the corresponding policy for action selection is illustrated by
the solid graph in Figure 16.2d, which maximizes the two linear components indicated

444 Chapter 16

by the dashed lines. We notice that this value function is not linear any longer. Instead,
it is piecewise linear and convex. The non-linearity arises from the fact that different
actions are optimal for different parts of the belief space.

From the value function in Figure 16.2d, can we conclude that for beliefs p1 < 0.5
there is no way to reap payoffs larger than 0? Of course, the answer is no. The
value function C1(b) is only optimal for the horizon T = 1. For larger horizons, it
is possible to first execute action a1, followed by action a2. Executing action a1 has
two beneficial effects: First, it helps us estimate the current state better due to the fact
that the we can sense, and second, with high probability it changes the state from s1

to s2 or vice versa. Thus a good policy might be to execute action a1 until we are
reasonably confident that the state of the robot is s1. Then, the robot should execute
action a2.

To make this more formal, let us derive the optimal value function for horizon T = 2.
Suppose we execute action a1. Then two things can happen: We either observe o1 or
o2. Let us first assume we observe o1. Then the new belief state can be computed
using the Bayes filter:

p′1 = η1 P (o′1|s′1)
2∑

i=1

P (s′1|a1, si) pi

= η1 0.7(0.1p1 + 0.8p2)

= η1 (0.07p1 + 0.56p2) (16.12)

where η1 is the normalizer in Bayes rule. Similarly, we obtain for the posterior proba-
bility of being in s2:

p′2 = η1 P (o′1|s′2)
2∑

i=1

P (s′2|a1, si) pi

= η1 0.4(0.9p1 + 0.2p2)

= η1 (0.36p1 + 0.08p2) (16.13)

Since we know that p′1 + p′2 = 1—after all, when executing action a1 the state will
either be s1 or s2—we obtain for η1:

η1 =
1

0.07p1 + 0.56p2 + 0.36p1 + 0.08p2
=

1

0.43p1 + 0.64p2
(16.14)

Partially Observable Markov Decision Processes 445

We also notice that the variable η1 is a useful probability: It is the probability of
observing o1 after executing action a1 (regardless of the posterior state).

We now have expression characterizing the posterior belief given that we execute ac-
tion a1 and observe o1. So what is the value of this belief state? The answer is ob-
tained by plugging the new belief into the value function C1(b) as defined in Equation
(16.11), and discounting the result by γ:

C2(b, a1, o1) = γ max{0 ; 72p′1 − 72p′2}
= 0.9 max{0 ; 72 η1 (0.36p1 + 0.08p2)− 72 η1 (0.43p1 + 0.64p2)}
= 0.9 max{0 ; 72 η1 (0.36p1 + 0.08p2 − 0.43p1 − 0.64p2)}
= 0.9 max{0 ; 72 η1 (−0.07p1 − 0.56p2)}
= 0.9 max{0 ; η1 (−5.04p1 − 40.32p2)} (16.15)

We now move the factor η1 out of the maximization and move 0.9 inside, and obtain:

C2(b, a1, o1) = η1 max{0 ; −4.563p1 − 36.288p2} (16.16)

which is a piecewise linear, convex function in the parameters of the belief b.

The derivation for observing o2 after executing action a1 is completely analogous. In
particular, we obtain the posterior

p′1 = η2 0.3(0.1p1 + 0.8p2) = η2 (0.03p1 + 0.24p2)

p′2 = η2 0.6(0.9p1 + 0.2p2) = η2 (0.54p1 + 0.12p2) (16.17)

with the normalizer

η2 =
1

0.57p1 + 0.36p2
(16.18)

The corresponding value is

C2(b, a1, o1) = γ max{0 ; 72p′1 − 72p′2}
= η2 max{0 ; −33.048p1 + 7.776p2} (16.19)

446 Chapter 16

As an aside, we also notice that η−1
1 + η−1

2 = 1. This follows directly from the fact
that the normalizer in Bayes filters is the observation probability

ηi =
1

P (o′i|a1, b)
(16.20)

and the fact that there are exactly two possible observations in our example, o1 and o2.

Let us now calculate the value C2(b, a1), which is the expected value upon executing
action a1. Clearly, the value is a mixture of the values C2(b, a1, o1) and C2(b, a1, o2),
weighted by the probabilities of actually observing o1 and o2, respectively. Put into
mathematical notation, we have

C2(b, a1) =

2∑

i=1

C2(b, a1, oi)P (oi|a1, b) (16.21)

The terms C2(b, a1, oi) were already defined above. The probability P (oi|a1, b) of
observing oi after executing action a1 is η−1

i . Thus, we have all the ingredients for
calculating the desired value C2(b, a1):

C2(b, a1) = η−1
1 η1 max{0 ; −4.563p1 − 36.288p2}

+η−1
2 η2 max{0 ; −33.048p1 + 7.776p2} (16.22)

= max{0 ; −4.563p1 − 36.288p2}+ max{0 ; −33.048p1 + 7.776p2}

This expression can be re-expressed as the maximum of four linear functions:

C2(b, a1) = max{0 ; −4.563p1 − 36.288p2 ; (16.23)

−33.048p1 + 7.776p2 ; −37.611p1 − 28.512p2}

Figure 16.2e shows those four linear functions for the belief space 〈p1, 1 − p2, 0, 0〉.
The value function C2(b, a1) is the maximum of those four linear functions. As is
easy to be seen, two of these functions are sufficient to define the maximum; the other
two are smaller over the entire spectrum. This enables us to rewrite C2(b, a1) as the
maximum of only two terms, instead of four:

C2(b, a1) = max{0 ; −33.048p1 + 7.776p2} (16.24)

Partially Observable Markov Decision Processes 447

Finally, we have to determine the value C2(b), which is the maximum of the following
two terms:

C2(b) = max{C2(b, a1), C
2(b, a2)} (16.25)

As is easily verified, the second term in the maximization, C2(b, a2), is exactly the
same as above for planning horizon T = 1:

C2(b, a2) = C1(b, a2) = 72p1 − 72p2 (16.26)

Hence we obtain from (16.24) and (16.26):

C2(b) = max{0 ; −33.048p1 + 7.776p2 ; 72p1 − 72p2} (16.27)

This function is the optimal value function for planning horizon T . Figure ?? graphs
C2(b) and its components for the belief subspace 〈p1, 1 − p2, 0, 0〉. As is easy to be
seen, the function is piecewise linear and convex. In particular, it consists of three
linear pieces. For beliefs under the two leftmost pieces (i.e., p1 < 0.5), a1 is the
optimal action. For p1 = 0.5, both actions are equally good. Beliefs that correspond
to the rightmost linear piece, that is, beliefs with p1 > 0.5, have the optimal action
a2. If a1 is the optimal function, the next action depends on the initial point in belief
space and on the observation.

The value function C2(b) is only optimal for the horizon 2. However, our analysis
illustrates several important points.

First, the optimal value function for any finite horizon is continuous, piecewise linear,
and convex. Each linear piece corresponds to a different action choice at some point
in the future, or to a different observation that can be made. The convexity of the
value function indicates the rather intuitive observation, namely that knowing is al-
ways superior to not knowing. Given two belief states b and b′, the mixed value of the
belief states is larger or equal to the value of the mixed belief state, for some mixing
parameter β with 0 ≤ β ≤ 1:

βC(b) + (1− β)C(b′) ≥ C(βb+ (1− β)b′) (16.28)

Second, the number of linear pieces can grow tremendously, specifically if one does
not pay attention to linear functions becoming obsolete. In our toy example, two

448 Chapter 16

out of four linear constraints defining C2(b, a1) were not needed. The ‘trick’ of ef-
ficiently implementing POMDPs lies in identifying obsolete linear functions as early
as possible, so that no computation is wasted when calculating the value function.
Unfortunately, even if we carefully eliminate all unneeded linear constraints, the num-
ber of linear functions can still grow extremely rapidly. This poses intrinsic scaling
limitations on the exact value iteration solution for finite POMDPs.

16.2.2 Value Iteration in Belief Space

The previous section showed, by example, how to calculate value functions in finite
worlds. Let us now return to the general problem of value iteration in belief space. In
particular, in the introduction to this chapter we stated the basic update equation for
the value function, which we briefly restate here:

CT (b) = max
a

∫

[c(b′) + CT−1(b′)] P (b′|a, b) db′ (16.29)

In this and the following sections, we will develop a general algorithm for value it-
eration in belief space that can be implemented on a digital computer. We begin by
noticing that Equation (16.2) suggests an integration over all beliefs, where each belief
is a probability distribution. If the state space is finite and the number of states is n,
the space of all probability distributions is a continuum with dimension n− 1. To see,
we notice that n−1 numerical values are required to specify a probability distribution
over n discrete events (the n-th parameter can be omitted since probabilities add up to
1). If the state space is continuous, the belief space possesses infinitely many dimen-
sions. Thus, integrating over all belief appears to be computationally daunting a task.
However, we can avoid this integration by reformulating the problem and integrating
over observations instead.

Let us examine the conditional probability P (b′|a, b), which specifies a distribution
over posterior beliefs b′ given a belief b and an action a. If only b and a are known, the
posterior belief b′ is not unique, and P (b′|a, b) is a true probability distribution over
beliefs. However, if if we also knew the measurement o′ after executing action a, the
posterior b′ is unique and P (b′|a, b) is a degenerate point-mass distribution. Why is
this so? The answer is provided by the Bayes filter. From the belief b before action
execution, the action a, and the subsequent observation o′, the Bayes filter calculates
a single, posterior belief b′ which is the single, correct belief. Thus, we conclude that
if only we knew o′, the integration over all beliefs in (16.2) would be obsolete.

Partially Observable Markov Decision Processes 449

This insight can be exploited by re-expressing

P (b′|a, b) =

∫

P (b′|a, b, o′) P (o′|a, b) do′ (16.30)

where P (b′|a, b, o′) is a point-mass distribution focussed on the single belief calcu-
lated by the Bayes filer. Plugging this integral into the definition of value iteration
(16.2), we obtain

CT (b) = max
a

∫ ∫

[c(b′) + CT−1(b′)] P (b′|a, b, o′) db′P (o′|a, b) do′(16.31)

The inner integral

∫

[c(b′) + CT−1(b′)] P (b′|a, b, o′) db′ (16.32)

contains only one non-zero term. This is the term where b′ is the distribution calculated
from b, a, and o′ using Bayes filters. Let us call this distribution B(b, a, o′), that is,

B(b, a, o′)(s′) = P (s′|o′, a, b)

=
P (o′|s′, a, b) P (s′|a, b)

P (o′|a, b)

=
1

P (o′|a, b) P (o′|s′)
∫

P (s′|a, b, s) P (s|a, b) ds

=
1

P (o′|a, b) P (o′|s′)
∫

P (s′|a, s) b(s) ds (16.33)

The reader should recognize the familiar Bayes filter derivation that was extensively
discussed in Chapter 2, this time with the normalizer made explicit. We notice that
the normalizer, P (o′|a, b), is a factor in the value update equation (16.31). Hence,
substituting B(b, a, o′) into (16.31) eliminates this term, which leads to the recursive
description of the value iteration algorithm:

CT (b) = max
a

∫

[c(B(b, a, o′)) + CT−1(B(b, a, o′))] P (o′|a, b) do′ (16.34)

450 Chapter 16

This form is more convenient than the one in (16.2), since it only requires integration
over all possible measurements o′, instead of all possible belief distributions b′. This
transformation is a key insight for all value iteration algorithms derived in this chap-
ter. In fact, it was used implicitly in the example above, where a new value function
was obtained by mixing together finitely many piecewise linear functions in Equa-
tion (16.22).

Below, it will be convenient to split the maximization over actions from the integration.
Hence, we notice that that (16.34) can be rewritten as the following two equations:

CT (b, a) =

∫

[c(B(b, a, o′)) + CT−1(B(b, a, o′))] P (o′|a, b) do′ (16.35)

CT (b) = max
a

CT (b, a) (16.36)

Here CT (b, a) is the horizon T value function over the belief b assuming that the
immediate next action is a.

16.2.3 Calculating the Value Function

In our example, the optimal value function was piecewise linear and convex. Is this
specific to this example, or is this a general characteristic of value functions in finite
worlds? Luckily, it turns out that the latter is the case: All optimal value functions in
finite POMDPs with finite horizon are piecewise linear and convex. Piecewise linear-
ity means that value function CT is represented by a collection of linear functions. If
CT was linear, it could be represented by set of coefficients CT

1 , . . . , C
T
n :

CT (b) = CT (p1, . . . , pn) =

n∑

i=1

CT
i pi (16.37)

where as usual, p1, . . . , pn are the parameters of a belief distribution. As in our ex-
ample, a piecewise linear and convex value function CT (b) can be represented by the
maximum of a collection of K linear functions

CT (b) = max
k

n∑

i=1

CT
k,ipi (16.38)

Partially Observable Markov Decision Processes 451

where CT
k,1, . . . , C

T
k,n denote the parameters of the k-th linear function, and K de-

notes the number of linear pieces. The reader should quickly convince herself that the
maximum of a finite set of linear functions is indeed a convex piecewise linear, convex
function.

In value iteration, the initial value function is given by

C0 = 0 (16.39)

We notice that this value function is linear, hence by definition it is also piecewise
linear and convex. This assignment establishes the (trivial) baseline of the recursive
value iteration algorithm.

We will now derive a recursive equation for calculating the value functionCT (b). This
equation assumes that the value function one time step earlier,CT−1(b), is represented
by a piecewise linear function as specified above. As part of the derivation, we will
show that under the assumption thatCT−1(b) is piecewise linear and convex, CT (b) is
also piecewise linear and convex. Induction over the planning horizon T then proves
that all value functions with finite horizon are indeed piecewise linear and convex.

Equations (16.35) and (16.36) state the following:

CT (b, a) =

∫

[c(B(b, a, o′)) + CT−1(B(b, a, o′))] P (o′|a, b) do′ (16.40)

CT (b) = max
a

CT (b, a) (16.41)

In finite spaces, all integrals can be replaced by finite sums, and we obtain:

CT (b, a) = γ
∑

o′

[
c(B(b, a, o′)) + CT−1(B(b, a, o′))

]
P (o′|a, b) (16.42)

CT (b) = max
a

CT (b, a) (16.43)

The belief B(b, a, o′) is obtained using the following expression, which ‘translates’
Equation (16.33) to finite spaces by replacing the integral by a sum:

B(b, a, o′)(s′) =
1

P (o′|a, b) P (o′|s′)
∑

s

P (s′|a, s) b(s) (16.44)

452 Chapter 16

If the belief b is represented by the parameters {p1, . . . , pn}, and the belief B(b, a, o′)
by {p′1, . . . , p′n}, the i-th parameter of the belief b′ is computed as follows:

p′i =
1

P (o′|a, b) P (o′|s′i)
n∑

j=1

P (s′i|a, sj) pj (16.45)

The reader may recognize the discrete Bayes filter that was already discussed in length
in Chapter 4.1, where introduced the basic filtering theory.

To compute the value function CT (b, a), we will now derive more practical expres-
sions for the terms c(B(b, a, o′)) and CT−1(B(b, a, o′)), starting with the one in
(16.42). With our parameterization B(b, a, o′) = {p′1, . . . , p′n}, we obtain for the
term c(B(b, a, o′)):

c(B(b, a, o′)) = c(p′1, . . . , p
′
n) =

n∑

i=1

cip
′
i (16.46)

Substituting (16.45) into this expression gives us

c(B(b, a, o′)) =

n∑

i=1

ci
1

P (o′|a, b) P (o′|s′i)
n∑

j=1

P (s′i|a, sj) pj

=
1

P (o′|a, b)
n∑

i=1

ci P (o′|s′i)
n∑

j=1

P (s′i|a, sj) pj (16.47)

The latter transformation is legal since the term P (o′|a, b) does not depend on i. This
form still contains an expression that is difficult to compute: P (o′|a, b). However, the
beauty of the finite case is that this expression cancels out, as we will see very soon.
Hence, it does not have to be considered any further at this point.

The derivation of the term CT−1(B(b, a, o′)) in (16.42) is similar to that of
c(B(b, a, o′)) above. In particular, we have to replace the the immediate payoff func-
tion c by the the value functionCT−1, which is only piecewise linear and convex. This
gives us

CT−1(B(b, a, o′)) = CT−1(p′1, . . . , p
′
n) = max

k

n∑

i=1

CT−1
k,i p′i (16.48)

Partially Observable Markov Decision Processes 453

for sets of linear parameters function CT−1
k,i . As above, we now substitute the defini-

tion of the posterior belief B (see (16.45)) into this expression, and obtain:

= max
k

n∑

i=1

CT−1
k,i

1

P (o′|a, b) P (o′|s′i)
n∑

j=1

P (s′i|a, sj) pj

 (16.49)

The term P (o′|a, b)−1 can be moved out of the summation and the maximization,
since it does not depend on i or k:

=
1

P (o′|a, b) max
k

n∑

i=1

CT−1
k,i P (o′|s′i)

n∑

j=1

P (s′i|a, sj) pj

 (16.50)

It may not be immediately obvious that this expression is also piecewise linear and
convex. However, reordering the terms inside the summation gives us the following
expression:

=
1

P (o′|a, b) max
k

n∑

j=1

pj

(
n∑

i=1

CT−1
k,i P (o′|s′i) P (s′i|a, sj)

)

 (16.51)

In this form, it is easy to verify that that for any fixed value of k, the argument of
the maximization is indeed linear in the parameters pj . The maximum of those linear
pieces is, thus, piecewise linear and convex. Moreover, the number of linear pieces is
finite.

Let us now return to the main problem addressed in this section, namely the problem
computing CT (b, a), the value function for horizon T . We briefly restate Equation
(16.42):

CT (b, a) = γ
∑

o′

[
c(B(b, a, o′)) + CT−1(B(b, a, o′))

]
P (o′|a, b) (16.52)

Let us first calculate the sum c(B(b, a, o′)) + CT−1(B(b, a, o′)), using Equations
(16.47) and (16.50):

c(B(b, a, o′)) + CT−1(B(b, a, o′))

454 Chapter 16

=
1

P (o′|a, b)
n∑

i=1

ci P (o′|s′i)
n∑

j=1

P (s′i|a, sj) pj

+
1

P (o′|a, b) max
k

n∑

i=1

CT−1
k,i P (o′|s′i)

n∑

j=1

P (s′i|a, sj) pj

 (16.53)

With some reordering, we obtain

c(B(b, a, o′)) + CT−1(B(b, a, o′))

=
1

P (o′|a, b) max
k

n∑

i=1

(ci + CT−1
k,i)P (o′|s′i)

n∑

j=1

P (s′i|a, sj) pj

 (16.54)

Substituting this expression into Equation (16.52) gives us:

CT (b, a) = γ
∑

o′

{

1

P (o′|a, b) max
k

[
n∑

i=1

(ci + CT−1
k,i)

P (o′|s′i)
n∑

j=1

P (s′i|a, sj) pj

P (o′|a, b) (16.55)

We notice that the term P (o′|a, b) appears in enumerator and in the denominator of
this expression, thus cancels out:

CT (b, a) = γ
∑

o′

max
k

n∑

i=1

(ci + CT−1
k,i)P (o′|s′i)

n∑

j=1

P (s′i|a, sj) pj

(16.56)

This cancellation is an essential characteristic of the POMDP solution in finite worlds,
which accounts for a simpler update equation when compared to the general solution
described in the previous section. The desired value function is then obtained by
maximizing CT (b, a) over all actions a:

CT (b) = max
a

CT (b, a) (16.57)

Partially Observable Markov Decision Processes 455

As is easily verified, CT (b) is indeed piecewise linear and convex in the belief pa-
rameters p1, . . . , pn. In particular, for each fixed k the term inside the large brackets
in (16.56) is linear. The maximum of those K linear functions is a piecewise linear
function that consist of at most K linear pieces. The sum of piecewise linear, con-
vex functions is again piecewise linear and convex. Hence the summation over all
observations o′ produces again a piecewise linear convex function. Finally, the max-
imization over all actions in Equation (16.57) again results in a piecewise linear and
convex function. Thus, we conclude that CT (b) is piecewise linear and convex for any
finite horizon T .

16.2.4 Linear Programming Solution

How can we turn the mathematical insight into an algorithm that can be carried out
on a digital computer in finite time? As in our example above, the key insight is that
solutions to equations like the one above can be calculated using linear programming.
Linear programming provides solutions for optimization problems under linear con-
straints.

Suppose we know that

C = max
a:1≤a≤m

x(a) (16.58)

for some fictitious set of values x(a), and some positive integer m. A solution to this
equation can be obtained by a linear program which possesses a collection of m linear
constraints, one for each possible value of a:

Φ = {C ≥ x(a)} (16.59)

The value of C is then obtained by minimizing C under these constraints, which is a
standard linear programming problem. Now suppose we are given the slightly more
complicated expression

C =

n∑

i

max
a:1≤a≤m

x(a, i) (16.60)

for some fictitious values x(a, i) and some positive integer n. How can we obtain
the solution to this problem by a linear program? Clearly, for each i there might be

456 Chapter 16

a different a that maximizes the inner term x(a, i). The solution to this problem is
therefore attained for a specific set of values for a, one for each element in the sum.
Let us for a moment assume we knew those values of a. If we denote this set by
a(1), . . . , a(n), we have

C =

n∑

i

x(a(i), i) (16.61)

which gives us the single linear constraint

Φ = {C ≥
n∑

i

x(a(i), i)} (16.62)

Unfortunately, we do not know the values of a(i) where C attains its maximum. The
linear programming solution for (16.60) contains therefore one constraint for any such
sequence a(i):

⋃

a(i):1≤a(i)≤m,1≤i≤n

{C ≥
n∑

i

x(a(i), i)} (16.63)

The total number of constraints is mn, since there are n free variables a(i) which
each can take on m different values. This constraint set ensures that the maximizing
constraint(s) is always included. Minimizing C under these constraints then generates
the solution of (16.60).

We also notice that it is common practice to divide the set of constraints into active and
passive constraints, depending on whether they actively constrain the solution for C.
In this particular example, active constraints are those where the maximum maxa x(a)
is attained; whereas passive constraints correspond to smaller x(a)-values. If we are
interested in the value of a that maximizes an expression (the ‘argmax’), we simply
choose an a whose corresponding constraint is active. Active constraint are easily
identified using any of the existing linear programming algorithms.

These insights enable us to provide a concrete algorithm for calculating the optimal
value function and the optimal policy. Initially, for horizon T = 1, the value function

Partially Observable Markov Decision Processes 457

is defined by (16.39), which we briefly restate here:

C1 = γ

n∑

i=1

c(si) pi (16.64)

The corresponding constraint set contains only a single constraint:

Φ1 = {C1 ≤ γ
n∑

i=1

c(si) pi} (16.65)

Minimizing C1 under the constrain set Φ1 gives the desired solution.

Let us now consider how to construct the constraint set ΦT from the set of constraints
ΦT−1. According to Equations (16.56) and (16.57), the desired value function is

CT (b) = γmax
a

∑

o′

max
k

n∑

i=1

(ci + CT−1
k,i)P (o′|s′i)

n∑

j=1

P (s′i|a, sj) pj

(16.66)

which is similar in shape to the linear constraints discussed above (Equation (16.60)).
For each action a, we therefore have to generate to following set of constraints:

⋃

a

⋃

k(o′):1≤k(o′)≤|ΦT−1|

{

CT (b) ≤ γ
∑

o′

n∑

i=1

(ci + CT−1
k(o′),i)P (o′|s′i)

n∑

j=1

P (s′i|a, sj) pj

(16.67)

which are |O||ΦT−1| linear constraints. Here |O| denotes the number of observations,
and |ΦT−1| is the number of constraint set obtained for horizon T − 1. The total
number of constraints is multiplicative in the number of actions |A|, thus our simple
solution obtains

|ΦT | = |A| · |O||ΦT−1| (16.68)

458 Chapter 16

1: Algorithm finite world POMDP(T):

2: Φ1 = {C1 ≤ γ∑n
i=1 c(si) pi}

3: For each t from 2 to T

4: Φt = ∅
5: l = 0

6: For each action a

7: For each k(1), . . . , k(|O|) with 1 ≤ k(o′) ≤ |Φt−1|, 1 ≤ o′ ≤ |O|
8: CT

l,j = γ
∑

o′

∑n
i=1(ci + CT−1

k(o′),i)P (o′|s′i)
∑n

j=1 P (s′i|a, sj)

9: Φt = Φt ∪ {〈a,C ≤∑n
j=1 C

T
l,jpj〉}

10: l = l + 1

11: return ΦT

Table 16.1 The POMDP algorithm for discrete worlds. This algorithm represents the
optimal value function by a set of constraints, which are calculated recursively.

constraints for horizon T , with the boundary condition |Φ1| = 1.

Table 16.1 depicts the value iteration algorithm for finite POMDP.

16.3 GENERAL POMDPS

The previous section derived a value iteration algorithm for POMDPs in finite worlds.
In particular, this algorithm requires finite numbers of states, observations, and actions,
and it also requires a finite horizon T .

[...]

There are still terms in (16.35) that require further consideration. First, the immediate
payoff function c has thus far only been defined over states. Here we need to calculate
it for belief distributions. The payoff of a belief b is simply the expectation of the

Partially Observable Markov Decision Processes 459

per-state payoff c(s) under the belief b(s):

c(b) = Eb[c] =

∫

c(s) b(s) ds (16.69)

It might seem odd that the payoff depends on the robot’s belief. However, the robot’s
belief represents the true posterior over world states, which justifies the expectation.

Second, we need to derive an expression for the probability P (o′|a, b), which is the
distribution of observations o′ one might receive after executing b in a state distributed
according to b. Deriving this expression is a straightforward mathematical exercise.
In particular, let us first integrate over the state s′ at which the observation o′ is made:

P (o′|a, b) =

∫

P (o′|a, b, s′) P (s′|a, b) ds′ (16.70)

Thus, s′ refers to the state after action execution. As usual, we exploit the Markov
property to simplify this expression

=

∫

P (o′|s′) P (s′|a, b) ds′ (16.71)

If we now integrate over states s before action execution:

=

∫

P (o′|s′)
∫

P (s′|a, b, s) P (s|a, b) ds ds′ (16.72)

we obtain the simplified term

=

∫

P (o′|s′)
∫

P (s′|a, s) b(s) ds ds′ (16.73)

Armed with the necessary expression, we can now return to the original question of
how to perform value iteration in belief space and give a concrete algorithm. In partic-
ular, let us substitute (16.73) back into (16.34), which leads to the following recursive

460 Chapter 16

definition of the value function in belief space:

CT (b) = max
a

∫ ([

CT−1(B(b, a, o′)) +

∫

c(s′) B(b, a, o′)(s′) ds′
]

∫

P (o′|s′)
∫

P (s′|a, s) b(s) ds ds′
)

do′ (16.74)

This recursive definition defines the optimal value function for any finite horizon T .
The optimal value function for infinite horizons is chacterized by Bellman’s equation:

C∞(b) = max
a

∫ ([

C∞(B(b, a, o′)) +

∫

c(s′) B(b, a, o′)(s′) ds′
]

∫

P (o′|s′)
∫

P (s′|a, s) b(s) ds ds′
)

do′ (16.75)

As in the MDP case, value iteration approximates C∞(b) using a function Ĉ by repet-
itively applying this update equation. The central value iteration algorithm is therefore
as follows:

Ĉ(b) ←− max
a

∫ ([

Ĉ(B(b, a, o′)) +

∫

c(s′) B(b, a, o′)(s′) ds′
]

∫

P (o′|s′)
∫

P (s′|a, s) b(s) ds ds′
)

do′ (16.76)

This update equation generalizes value iteration to belief spaces. In particular, it pro-
vides a way to backup values among belief spaces using the familiar motion model
and the familiar perceptual model. The update equation is quite intuitive: The value
of a belief b is obtained by maximizing over all actions a. To determine the value of
executing action a under the belief b, Equation (16.76) suggests to consider all ob-
servations o′. One such an observation is fixed, the posterior belief is calculated via
Bayes filtering, and the corresponding value is calculated. Thus, what is missing is a
calculation of the probability of measuring o′. In Equation (16.76), this probabilist is
obtained by integrating over all states s, all subsequent states s′, and weighing these
state combinations by the corresponding probabilities under the belief b and the mo-
tion model P (s′|a, s).

Partially Observable Markov Decision Processes 461

1: Algorithm POMDP(T):

2: for all b do

3: Ĉ(b) = 0

4: repeat until convergence

5: for all b do

6: C∗ = −∞
7: for all actions a do

8: Ca =
∫ ([

Ĉ(B(b, a, o′)) +
∫
c(s′) B(b, a, o′)(s′) ds′

]

∫
P (o′|s′)

∫
P (s′|a, s) b(s) ds ds′

)

do′

9: if Ca > C∗

10: C∗ = Ca

11: Ĉ(b) = C∗

12: return Ĉ

Table 16.2 The general POMDP algorithm with finite horizon T , where the function
B(b, a, o′) is as specified in the text. This version leaves open as to how the value function
Ĉ is represented, and how the integrals in Step 8 are calculated.

16.3.1 The General POMDP Algorithm

Table 16.2 depicts a general algorithm for value iteration in belief space. This algo-
rithm is only an in-principle algorithm that cannot be implemented on a digital com-
puter, since it requires integration over infinite spaces, and lacks a specification as to
how the value function Ĉ is represented. The algorithm accepts the planning horizon
T as input, which is assumed to be finite. As in the state-based version of value it-
eration, the value function is initialized by 0 (lines 2 and 3 in Table 16.2). Lines 6
through 11 identify the best action for a belief state b relative to the value function
Ĉ. The central update, in line 8, is equivalent to the argument of the maximization in
Equation (16.76).

462 Chapter 16

The most important remaining question concerns the nature of Ĉ. To perform value
iteration in belief space, we need a way to represent a value function over beliefs.
Beliefs are probability distributions. Thus, we need a method for assigning values
to probability distributions. This, unfortunately, is a difficult problem that lacks a
general solution. As noticed above, belief spaces over continuous state spaces pos-
sess infinitely many dimensions, suggesting that the value function is defined over an
infinitely-dimensional space. Even for finite state spaces, the value function is defined
over a continuum, making it questionable as to whether the optimal value function can
be represented on a digital computer. However, it turns out that the value function can
be calculated exactly for the important special case of finite problems, in particular,
for problems with finite state, action, and observation spaces, and with finite planning
horizon. An exact such algorithm will be give in the next section.

16.4 A MONTE CARLO

APPROXIMATION

Let us now study a concrete algorithm that approximates the general POMDP algo-
rithm, and that has shown promise in practical applications. The basic idea is to ap-
proximate the belief state using particles, using the particule filter algorithm for calcu-
lating beliefs. Particule filters were already extensively discussed in various chapters
of this book. They were mathematically derived in Chapter 4.2.1.

16.4.1 Monte Carlo Backups

For the sake of completeness, let briefly review the basic update equations. Initially,
N random samples are drawn from the initial belief distribution b(0). Then, at time t,
a new set of weighted particles is generated.

Table 16.3 shows a variant of the particle filter algorithm that accepts an action a, an
observation o′, and a belief b as input. It then transforms the belief b into a new belief.
This algorithm implements the function B(b, a, o′), assuming that belief states are
represented by weighted sets of particles. It is trivially obtained from the algorithm
particle filter in Table 4.3 on page 4.3 of this book. See Chapter 4.2.1 for a more
detailed explanation.

Armed with B(b, a, o′), the update equation can be implemented using a straight-
foward Monte Carlo algorihm. Recall that value function in belief space is defined by

Partially Observable Markov Decision Processes 463

1: Algorithm particle filter 2(b, a, o′):

2: b′ = ∅

3: do N times:

4: sample 〈s, p〉 from b according to p1, . . . , pN in b

5: sample s′ ∼ P (s′|a, s)
6: w′ = P (o′|s′)
7: add 〈s′, w′〉 to b′

8: normalize all weights w′ ∈ b′
9: return b′

Table 16.3 A variant of the particle filter algorithm, which accepts an action a and an
observation o′ as input.

the following recusive equation:

CT (b) = max
a

∫ ([

CT−1(B(b, a, o′)) +

∫

c(s′) B(b, a, o′)(s′) ds′
]

∫

P (o′|s′)
∫

P (s′|a, s) b(s) ds ds′
)

do′ (16.77)

Inner projection loop:

1: Algorithm MCPOMDP inner loop(b):

2: CT (b) = −∞
3: for all a do

4: CT (b, a) = 0

5: do N times

6: Sample s ∼ b
7: Sample s′ ∼ P (s′|a, s)

464 Chapter 16

8: Sample o′ ∼ P (o′|s′)
9: b′ = particle filter 2(b, a, o′)

10: CT (b) = CT (b) + 1
N
γ[CT−1(b′) + c(s′)]

11: if CT (b, a) > CT (b)

12: CT (b) = CT (b, a)

13: return CT (b)

Outer McPOMDP loop:

1: Algorithm MCPOMDP outer loop(b):

2: for all b do

3: Ĉ(b) = 0

4: repeat until convergence

5: for all b

6: Ĉ(b) = MCPOMDP inner loop(b)

7: return Ĉ

1: Algorithm MCPOMDP alterative outer loop(b):

2: for all b do

3: Ĉ(b) = 0

4: repeat until convergence

5: b = P (s0)

6: s ∼ P (s0)

7: do until trial over

8: Ĉ(b) = MCPOMDP inner loop(b)

9: if rand(0, 1) > 0.1

10: a = argmaxa Ĉ(b, a)

11: else

12: select a at random

Partially Observable Markov Decision Processes 465

13: draw s′ ∼ P (s′|a, s)
14: s = s′

15: return Ĉ

16.4.1.1 Learning Value Functions

Following the rich literature on reinforcement learning [16, 38], our approach solves
the POMDP problem by value iteration in belief space. More specifically, our ap-
proach recursively learns a value function Q over belief states and action, by backing
up values from subsequent belief states:

Q(θt, at) ←− E
[

R(ot+1) + γmax
ā

Q(θt+1, ā)
]

(16.78)

Leaving open (for a moment) how Q is represented, it is easy to be seen how the al-
gorithm particle projection can be applied to compute a Monte Carlo approximation
of the right hand-side expression: Given a belief state θt and an action at, parti-
cle projection computes a sample of R(ot+1) and θt+1, from which the expected
value on the right hand side of (16.78) can be approximated.

It has been shown [3] that if both sides of (16.78) are equal, the greedy policy

σQ(θ) = argmax
ā

Q(θ, ā) (16.79)

is optimal, i.e., σ∗ = σQ. Furthermore, it has been shown (for the discrete case!) that
repetitive application of (16.78) leads to an optimal value function and, thus, to the
optimal policy [44, 8].

Our approach essentially performs model-based reinforcement learning in belief space
using approximate sample-based representations. This makes it possible to apply a
rich bag of tricks found in the literature on MDPs. In our experiments below, we use
on-line reinforcement learning with counter-based exploration and experience replay
[21] to determine the order in which belief states are updated.

16.4.1.2 Nearest Neighbor

We now return to the issue how to represent Q. Since we are operating in real-valued
spaces, some sort of function approximation method is called for. However, recall

466 Chapter 16

0 20 40 60 80
-75

-50

-25

0

25

50

75

0 5 10 15 20 25 30
-100

-50

0

50

(a) (b) (c)

Figure 16.3 (a) The environment, schematically. (b) Average performance (reward) as
a function of training episodes. The black graph corresponds to the smaller environment
(25 steps min), the grey graph to the larger environment (50 steps min). (c) Same results,
plotted as a function of number of backups (in thousands).

that Q accepts a probability distribution (a sample set) as an input. This makes most
existing function approximators (e.g., neural networks) inapplicable.

In our current implementation, nearest neighbor [24] is applied to represent Q. More
specifically, our algorithm maintains a set of sample sets θ (belief states) annotated
by an action a and a Q-value Q(θ, a). When a new belief state θ′ is encountered, its
Q-value is obtained by finding the k nearest neighbors in the database, and linearly
averaging their Q-values. If there aren’t sufficiently many neighbors (within a pre-
specified maximum distance), θ′ is added to the database; hence, the database grows
over time.

Our approach uses KL divergence (relative entropy) as a distance function1. Techni-
cally, the KL-divergence between two continuous distributions is well-defined. When
applied to sample sets, however, it cannot be computed. Hence, when evaluating the
distance between two different sample sets, our approach maps them into continuous-
valued densities using Gaussian kernels, and uses Monte Carlo sampling to approxi-
mate the KL divergence between them. This algorithm is fairly generic an extension
of nearest neighbors to function approximation in density space, where densities are
represented by samples. Space limitations preclude us from providing further detail
(see [24, 33]).

16.4.2 Experimental Results

Preliminary results have been obtained in a world shown in two domains, one synthetic
and one using a simulator of a RWI B21 robot.

1Strictly speaking, KL divergence is not a distance metric, but this is ignored here.

Partially Observable Markov Decision Processes 467

(a) (b) (c)

% success

iteration

Figure 16.4 Find and fetch task: (a) The mobile robot with gripper and camera, holding
the target object (experiments are carried out in simulation!), (b) three successful runs (tra-
jectory projected into 2D), and (c) success rate as a function of number of planning steps.

In the synthetic environment (Figure 16.3a), the agents starts at the lower left corner.
Its objective is to reach “heaven” which is either at the upper left corner or the lower
right corner. The opposite location is “hell.” The agent does not know the location of
heaven, but it can ask a “priest” who is located in the upper right corner. Thus, an op-
timal solution requires the agent to go first to the priest, and then head to heaven. The
state space contains a real-valued (coordinates of the agent) and discrete (location of
heaven) component. Both are unobservable: In addition to not knowing the location of
heaven, the agent also cannot sense its (real-valued) coordinates. 5% random motion
noise is injected at each move. When an agent hits a boundary, it is penalized, but it is
also told which boundary it hit (which makes it possible to infer its coordinates along
one axis). However, notice that the initial coordinates of the agent are known.

The optimal solution takes approximately 25 steps; thus, a successful POMDP planner
must be capable of looking 25 steps ahead. We will use the term “successful policy” to
refer to a policy that always leads to heaven, even if the path is suboptimal. For a policy
to be successful, the agent must have learned to first move to the priest (information
gathering), and then proceed to the right target location.

Figures 16.3b&c show performance results, averaged over 13 experiments. The solid
(black) curve in both diagrams plots the average cumulative reward J as a function
of the number of training episodes (Figure 16.3b), and as a function of the number of
backups (Figure 16.3c). A successful policy was consistently found after 17 episodes
(or 6,150 backups), in all 13 experiments. In our current implementation, 6,150 back-
ups require approximately 29 minutes on a Pentium PC. In some experiments, a suc-
cessful policy was identified in 6 episodes (less than 1,500 backups or 7 minutes).
After a successful policy is found, further learning gradually optimizes the path. To

468 Chapter 16

investigate scaling, we doubled the size of the environment (quadrupling the size of
the state space), making the optimal solution 50 steps long. The results are depicted
by the gray curves in Figures 16.3b&c. Here a successful policy is consistently found
after 33 episodes (10,250 backups, 58 minutes). In some runs, a successful policy is
identified after only 14 episodes.

We also applied MC-POMDPs to a robotic locate-and-retrieve task. Here a robot
(Figure 16.4a) is to find and grasp an object somewhere in its vicinity (at floor or table
height). The robot’s task is to grasp the object using its gripper. It is rewarded for
successfully grasping the object, and penalized for unsuccessful grasps or for moving
too far away from the object. The state space is continuous in x and y coordinates,
and discrete in the object’s height.

The robot uses a mono-camera system for object detection; hence, viewing the object
from a single location is insufficient for its 3D localization. Moreover, initially the
object might not be in sight of the robot’s camera, so that the robot must look around
first. In our simulation, we assume 30% general detection error (false-positive and
false-negative), with additional Gaussian noise if the object is detected correctly. The
robot’s actions include turns (by a variable angle), translations (by a variable distance),
and grasps (at one of two legal heights). Robot control is erroneous with a variance
of 20% (in x-y-space) and 5% (in rotational space). Typical belief states range from
uniformly distributed sample sets (initial belief) to samples narrowly focused on a
specific x-y-z location.

Figure 16.4c shows the rate of successful grasps as a function of iterations (actions).
While initially, the robot fails to grasp the object, after approximately 4,000 iterations
its performance surpasses 80%. Here the planning time is in the order of 2 hours.
However, the robot fails to reach 100%. This is in part because certain initial con-
figurations make it impossible to succeed (e.g., when the object is too close to the
maximum allowed distance), in part because the robot occasionally misses the object
by a few centimeters. Figure 16.4b depicts three successful example trajectories. In
all three, the robot initially searches the object, then moves towards it and grasps it
successfully.

16.5 AUGMENTED MARKOV DECISION

PROCESSES

So far, we have studied two frameworks and algorithms for action selection under
uncertainty: MDP and POMDP algorithms. Both frameworks accommodate non-

Partially Observable Markov Decision Processes 469

deterministic action outcomes. Only the POMDP algorithms can cope with uncer-
tainty in perception, whereas MDP algorithms assume that the state is fully observ-
able. On the other hand, MDP algorithms are polynomial in the number of states,
whereas POMDP algorithms are doubly exponential.

Both MDP and POMDP are in fact extreme ends of a spectrum of possible probabilis-
tic algorithms. MDP algorithms ignore the issue of uncertainty in a robot’s belief en-
tirely. In contrast, POMDPs consider all possible belief functions, even though many
of them might be extremely unlikely in practice. This raises the question of the middle
ground: Are there probabilistic algorithms that can accommodate some of the robot’s
uncertainty, yet are computationally more efficient than the full POMDP solution?

The answer is yes. In many robotics domains, the range of belief distributions the
robot might encounter is a small subspace of the space of all belief distributions that
can be defined over the state space. This insight enables us to devise probabilistic plan-
ning algorithms that are significantly more efficient than solutions to the full POMDP
problem, which still coping with robot beliefs in adequate ways.

16.5.1 The Augmented State Space

The augmented MDP algorithm (AMDP) applies to situations where the belief state
can be summarized by a lower-dimensional statistic. Values and actions are calculated
from this statistic, instead of the full belief b. The smaller the statistic, the more
efficient the resulting algorithm.

In many situations a good choice of the statistic is the tuple

b̄ = 〈argmax
s

b(s);H[b]〉 (16.80)

where argmaxs b(s) is the most likely state under the belief distribution b, and

H[b] = −
∫

b(s) ln b(s) ds (16.81)

is the entropy of the belief distribution. Calculating a value function parameterized on
b̄, instead of b, is similar to the MDP approach assuming that the most likely state is
the actual state of the world. It differs, however, by a one-dimensional statistic that

470 Chapter 16

characterizes the amount of uncertainty in the state estimate. The entire uncertainty—
usually an infinitely dimensional quantity—is thus summarized by a one-dimensional
quantity: the entropy. The representation is mathematically justified if b̄ is a sufficient
statistic of b with regards to the estimation of value, that is:

C(b) = C(b̄) (16.82)

for all b the robot may encounter. In practice, this assumption will rarely hold true.
However, the resulting value function might still be good enough for a sensible choice
of action. Alternatively, one might consider different statistics, such as moments of
the belief distribution (mean, variance, . . .), modes, and so on.

16.5.2 Value Iteration in AMDPs

Value iteration can easily be applied to the augmented MDP model. Let f be the
function that extracts the statistic from b, that is

b̄ = f(b) (16.83)

for arbitrary beliefs b. Then the POMDP value iteration equation (16.76) can be rewrit-
ten as

Ĉ(f(b)) = max
a

∫ [

Ĉ(f(B(b, a, o′))) +

∫

c(s′) B(b, a, o′)(s′) ds′
]

∫

P (o′|s′)
∫

P (s′|a, s) b(s) ds ds′ do′ (16.84)

This suggests an algorithm similar to the one in Table 16.2, replacing the value func-
tion Ĉ by the concatenated function Ĉf . This algorithm would still loop over all belief
states b, but the estimation of the value function would be considerably faster due to
the fact that many belief b share the same statistic f(b).

Here we will formulate this algorithm similar to the algorithm MDP value iteration
in Table 15.1.

Partially Observable Markov Decision Processes 471

1: Algorithm Augmented MDP value iteration():

2: for all b̄

3: Ĉ(b̄) = 0

4: repeat until convergence

5: for all b̄

6: Ĉ(b̄) = maxa

∫
[c(b̄′) + Ĉ(b̄′)] P (b̄′|a, b̄); db̄′

7: return Ĉ

Table 16.4 The value iteration algorithm for augmented MDPs with finite state and action
spaces.

In analogy to the derivation in the Section on POMDPs, Section 16.3.1, we can calcu-
late P (b̄′|a, b̄) as follows:

P (b̄′|a, b̄) =

∫

P (b̄′|a, b) P (b|b̄) db (16.85)

=

∫ ∫

If(b)=b̄ P (b̄′|o′, a, b) P (o′|a, b) do db

=

∫ ∫ ∫

If(b)=b̄ P (b̄′|o′, a, b) P (o′|s′) P (s′|a, b) ds′ do db

=

∫ ∫ ∫

If(b)=b̄ P (b̄′|o′, a, b) P (o′|s′) P (s′|a, s) P (s|b) ds ds′ do db

=

∫ ∫ ∫

If(b)=b̄ If(B(o′,a,b))=b̄′ P (o′|s′) P (s′|a, s) P (s|b) ds ds′ do db

The function I is the indicator function whose value is 1 iff its condition is true. The
resulting conditional probability P (b̄′|a, b̄) is the motion model, formulated in the
space defined by b̄.

Similarly, the expected costs can be expressed as a function of b̄ as follows:

c(b̄) =

∫

If(b)=b̄ c(b) db

472 Chapter 16

=

∫ ∫

If(b)=b̄ c(s); (
¯
s) ds db (16.86)

The resulting value iteration algorithm for the augmented MDP is shown in Table 16.4.
Notice that this algorithm is essentially the same as the one derived for MDPs. It is also
highly related, though less obvious, to the general POMDP value iteration algorithm
in Table 16.2. Lines 2 and 3 in Table 16.4 initialize the value function, defined over
the space of all belief statistics b̄. Lines 4 through 6 calculate the value function, using
the probability P (b̄′|a, b̄) defined above.

The resulting algorithm still appears inefficient, due to the difficulty of computing
P (b̄′|a, b̄).

[reword the following]

We have employ two strategies for speeding up the calculation. Both are approximate.
First, we have replaced the exhaustive integration in Equations (16.85) and (16.86)
by a stochastic integration, in which the belief b, the states s and s′ and the observa-
tion o′ are drawn at random from the corresponding distributions. Second, the model
P (b̄′|a, b̄) was cached using a look-up table, avoiding computing the same probabil-
ity twice. This leads to an explicit preprocessing phase where the familiar proba-
bilistic models P (o|s) and P (s′|s, a) are ‘translated’ into the augmented state model
P (b̄′|a, b̄), for which the subsequent application of value iteration is then straightfor-
ward.

16.5.3 Illustration

The augmented state model considers the robot’s uncertainty when executing actions.
In particular, it characterizes the increase and decrease of certainty upon moving and
sensing. This enables the robot to anticipate and avoid situations with increased danger
of loosing critical state information.

In the context of mobile robot navigation, the augmented MDP algorithm anticipates
the increase and decrease of uncertainty in a robot’s pose estimate. For example, a
robot traversing a large featureless area is likely to gradually loose information as to
where it is. This is reflected in the conditional probability P (b̄′|a, b̄), which with high
likelihood increases the entropy of the belief in such areas. In areas populated with
localization features, e.g., near the walls, the uncertainty is more likely to decrease.
Planners using the augmented MDP can anticipate such situations, and generate poli-
cies that minimize the time of arrival while simultaneously maximize the certainty at

Partially Observable Markov Decision Processes 473

(a) (b)

(c) (d)

Figure 16.5 Examples of robot paths in a large, open environment, for two different con-
figurations (top row and bottom row). The diagrams (a) and (c) are paths generates by a
conventional dynamic programming path planner that ignores the robot’s perceptual un-
certainty. The diagrams (b) and (d) are obtained using the augmented MDP planner, which
anticipates uncertainty and avoids regions where the robot is more likely to get lost. In anal-
ogy to ships who often stay close to the shore for orientation, the augmented MDP planner
is known as ‘coastal planner.’

the time of arrival at a goal location. Since the uncertainty is an estimate of the true
positioning error, it is a good measure for the chances of actually arriving at the desired
location.

In the context of mobile robot navigation, the augmented MDP algorithm is also
known as coastal navigation. This name indicates the resemblance to ships, which
often stay close to the coastline so as to not loose track of their location (unless, of
course, the ship is equipped with a global navigation system).

474 Chapter 16

-2

0

2

4

6

8

10

12

14

16

18

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

E
nt

ro
py

 a
t G

oa
l

Maximum Range of Laser Range Sensor in Meters

Positional Uncertainty at Goal

Conventional Navigation
Coastal Navigation

(a)

Figure 16.6 Performance comparison of MDP planning and Augmented MDP planning.
Shown here is the uncertainty (entropy) at the goal location as a function of the sensor range.

Figure 16.5 shows example trajectories for two constellations (two different start and
goal locations). The diagrams on the left correspond to a MDP planner, which does not
consider the robot’s uncertainty. The augmented MDP planner generates trajectories
like the ones shown on the right. In Figures 16.5a&b, the robot is requested to move
through a large open area in a museum (approximately 40 meters wide). he MDP
algorithm, not aware of the increased risk of getting list in the open area, generates
a policy that corresponds to the shortest path form the start to the goal location. The
coastal planner, in contrast, generates a policy that stays close to the obstacles, where
the robot has an increased chance of receiving informative sensor measurements at the
expense of an increased travel time. Similarly, Figure 16.5c&d considers a situation
where the goal location is close to the center of the featureless, open area. Here the
coastal planner recognizes that passing by known objects reduces the pose uncertainty,
increasing the chances of successfully arriving at the goal location.

Figure 16.6 shows a performance comparison between the coastal navigation strategy
and the MDP approach. In particular, it depicts the entropy of the robot’s belief b
at the goal location, as a function of the sensor characteristics. In this graph, the
maximum perceptual range is varied, to study the effect of impoverished sensors. As
the graph suggests, the coastal approach has significantly higher chances of success.
The difference is largest if the sensors are very poor. For sensors that have a long
range, the difference ultimately disappears. The latter does not come as a surprise,
since with good range sensors the amount of information that can be perceived is less
dependent on the specific pose of the robot.

Partially Observable Markov Decision Processes 475

16.6 SUMMARY

In this section, we introduced three major algorithms for action selection under uncer-
tainty.

The Markov Decision Process (MDP) framework addresses the problem of action
selection in situations where the outcomes of actions are stochastic, but the robot
knows its state with absolute certainty.

Value iteration solves discrete MDPs by computing a value function over states.
Selecting actions by greedily maximizing value leads to optimal action choices.
A key characteristic of value functions is that they induce policies for action
selection that are defined over the entire state space. No matter what the outcome
of an action is, the robot knows what to do.

The more general framework of Partially Observable Markov Decision Processes
(POMDPs) addresses the question of action selection with imperfect sensors.
POMDP algorithms have to base decisions on belief states. Solutions trade off
information gathering (exploration) and exploitation.

Value iteration can also be applied to solve POMDPs. In worlds with finitely
many states, actions, and observations, the value function is piecewise linear in
the parameters of the belief space. However, in the worst case calculating the
value function is doubly exponential in the planning horizon.

Finally, we introduced the Augmented Markov Decision Process (AMDP) frame-
work, which blends MDPs and POMDPs. AMDPs represent the robot’s uncer-
tainty by a low-dimensional statistic (e.g., the entropy), opening the door to effi-
cient planning algorithms that consider some of the uncertainty in state estima-
tion.

Value iteration was also applied to AMDPS. Within mobile robot navigation, the
resulting algorithm is known as coastal navigation, since it navigates robots in a
way that minimizes the anticipated uncertainty in localization.

16.7 BIBLIOGRAPHICAL REMARKS

16.8 PROJECTS

1. ???

476 Chapter 16

REFERENCES

[1] I. Asimov. Runaround. Faucett Crest, New York, 1942.

[2] I. Asimov. I, Robot. Doubleday, 1950.

[3] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957.

[4] J. Borenstein, B. Everett, and L. Feng. Navigating Mobile Robots: Systems and
Techniques. A. K. Peters, Ltd., Wellesley, MA, 1996.

[5] H. Choset. Sensor Based Motion Planning: The Hierarchical Generalized
Voronoi Graph. PhD thesis, California Institute of Technology, 1996.

[6] E. Chown, S. Kaplan, and D. Kortenkamp. Prototypes, location, and associa-
tive networks (plan): Towards a unified theory of cognitive mapping. Cognitive
Science, 19:1–51, 1995.

[7] M. Csorba. Simultaneous Localization and Map Building. PhD thesis, Depart-
ment of Engineering Science, University of Oxford, Oxford, UK, 1997.

[8] P. Dayan and T. J. Sejnowski. TD(λ) converges with probability 1. February
1993.

[9] M. Deans and M. Hebert. Invariant filtering for simultaneous localization and
mapping. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 1042–1047, San Francisco, CA, 2000. IEEE.

[10] M. Garland and P. Heckbert. Surface simplification using quadric error metrics.
In Proceedings of SIGGRAPH, 1997.

[11] J. Guivant and E. Nebot. Optimization of the simultaneous localization and map
building algorithm for real time implementation. IEEE Transactions of Robotics
and Automation, May 2001. In press.

[12] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic environ-
ments. In Proceedings of the IEEE International Symposium on Computational
Intelligence in Robotics and Automation (CIRA), 2000.

477

478 PROBABILISTIC ROBOTICS

[13] D. Hähnel, D. Fox, W. Burgard, and S. Thrun. A highly efficient FastSLAM
algorithm for generating cyclic maps of large-scale environments from raw laser
range measurements. In Proceedings of the Conference on Intelligent Robots
and Systems (IROS), 2003.

[14] T. Hofmann, J. Puzicha, and M. Jordan. Learning from dyadic data. In Advances
in Neural Information Processing Systems 11 (NIPS), Cambridge, MA, 1999.
MIT Press.

[15] S.J. Julier and J. K. Uhlmann. Building a million beacon map. In Proceedings of
the SPIE Sensor Fusion and Decentralized Control in Robotic Systems IV, Vol.
#4571, 2000.

[16] L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4, 1996.

[17] B. Kuipers and Y.-T. Byun. A robust qualitative method for spatial learning
in unknown environments. In Proceeding of Eighth National Conference on
Artificial Intelligence AAAI-88, Menlo Park, Cambridge, 1988. AAAI Press /
The MIT Press.

[18] B. Kuipers and Y.-T. Byun. A robot exploration and mapping strategy based
on a semantic hierarchy of spatial representations. Journal of Robotics and Au-
tonomous Systems, 8:47–63, 1991.

[19] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
MA, 1991.

[20] J.J. Leonard and H.J.S. Feder. A computationally efficient method for large-scale
concurrent mapping and localization. In J. Hollerbach and D. Koditschek, edi-
tors, Proceedings of the Ninth International Symposium on Robotics Research,
Salt Lake City, Utah, 1999.

[21] L.-J. Lin. Self-improving reactive agents based on reinforcement learning, plan-
ning and teaching. Machine Learning, 8, 1992.

[22] M. J. Matarić. A distributed model for mobile robot environment-learning and
navigation. Master’s thesis, MIT, Cambridge, MA, January 1990. also available
as MIT Artificial Intelligence Laboratory Tech Report AITR-1228.

[23] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0: An
improved particle filtering algorithm for simultaneous localization and mapping
that provably converges. In Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003. IJCAI.

References 479

[24] A.W. Moore, C.G. Atkeson, and S.A. Schaal. Locally weighted learning for
control. AI Review, 11:75–113, 1997.

[25] H. P. Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine,
9(2):61–74, 1988.

[26] K. Murphy. Bayesian map learning in dynamic environments. In Advances in
Neural Information Processing Systems (NIPS). MIT Press, 2000.

[27] J. Neira, J.D. Tardós, and J.A. Castellanos. Linear time vehicle relocation in
SLAM. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2003.

[28] E. Nettleton, S. Thrun, and H. Durrant-Whyte. A constant time communications
algorithm for decentralised SLAM. Submitted for publication, 2002.

[29] E. Nettleton, S. Thrun, and H. Durrant-Whyte. Decentralised slam with low-
bandwidth communication for teams of airborne vehicles. In Proceedings of the
International Conference on Field and Service Robotics, Lake Yamanaka, Japan,
2003.

[30] E.W. Nettleton, P.W. Gibbens, and H.F. Durrant-Whyte. Closed form solutions
to the multiple platform simultaneous localisation and map building (slam) prob-
lem. In Bulur V. Dasarathy, editor, Sensor Fusion: Architectures, Algorithms,
and Applications IV, volume 4051, pages 428–437, Bellingham, 2000.

[31] P. Newman. On the Structure and Solution of the Simultaneous Localisation
and Map Building Problem. PhD thesis, Australian Centre for Field Robotics,
University of Sydney, Sydney, Australia, 2000.

[32] N. J. Nilsson. Principles of Artificial Intelligence. Springer Publisher, Berlin,
New York, 1982.

[33] D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Technical Report
1999-8, Department of Statistics, Stanford University, 1999.

[34] K. Rose. Deterministic annealing for clustering, compression, classification, re-
gression, and related optimization problems. Proceedings of IEEE, D, November
1998.

[35] H Shatkay and L. Kaelbling. Learning topological maps with weak local odo-
metric information. In Proceedings of IJCAI-97. IJCAI, Inc., 1997.

[36] R.C. Smith and P. Cheeseman. On the representation and estimation of spatial
uncertainty. International Journal of Robotics Research, 5(4):56–68, 1986.

480 PROBABILISTIC ROBOTICS

[37] B. Stewart, J. Ko, D. Fox, and K. Konolige. A hierarchical bayesian approach
to mobile robot map structure estimation. In Proceedings of the Conference on
Uncertainty in AI (UAI), Acapulco, Mexico, 2003.

[38] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

[39] J.D. Tardós, J. Neira, P.M. Newman, and J.J. Leonard. Robust mapping and
localization in indoor environments using sonar data. Int. J. Robotics Research,
21(4):311–330, April 2002.

[40] S. Thrun, D. Hähnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Burgard,
C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker. A system for volumetric
robotic mapping of abandoned mines. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2003.

[41] S. Thrun and Y. Liu. Multi-robot SLAM with sparse extended information fil-
ers. In Proceedings of the 11th International Symposium of Robotics Research
(ISRR’03), Sienna, Italy, 2003. Springer.

[42] K. Čapek. R.U.R. (Rossum’s Universal Robots). (out of print), 1921.

[43] C.-C. Wang, C. Thorpe, and S. Thrun. Online simultaneous localization and
mapping with detection and tracking of moving objects: Theory and results from
a ground vehicle in crowded urban areas. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2003.

[44] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s Col-
lege, Cambridge, England, 1989.

