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Preface to the third edition 

In thIS new edItIon, I have added a Supplement on Measure and Integral. 
The subject matter is first treated in a general setting pertinent to an abstract 
measure space, and then specified in the classic Borel-Lebesgue case for the 
leal line. The lattel matelial, an essential pall of leal analysis, is plesupposed 
in the original edition published in 1968 and revised in the second edition 
of 1974. When I taught the course under the title "Advanced Probability" 
at Stanford University beginning in 1962, students from the departments of 
statistics, operations research (formerly industrial engineering), electrical engi-
neenng, etc. often had to take a prereqUIsIte course gIven by other Instructors 
before they enlisted in my course. In later years I prepared a set of notes, 
lithographed and distributed in the class, to meet the need. This forms the 
basis of the present Supplement. It is hoped that the result may as well serve 
in an introductory mode, perhaps also independently for a short course in the 
stated topics. 

The presentation is largely self-contained with only a few particular refer-
ences to the main text. For instance, after (the old) §2.1 where the basic notions 
of set theory are explained, the reader can proceed to the first two sections of 
the Supplement for a full treatment of the construction and completion of a 
general measure; the next two sections contain a full treatment of the mathe
matical expectation as an integral, of which the properties are recapitulated in 
§3.2. In the final section, application of the new integral to the older Riemann 
integral in calculus is described and illustrated with some famous examples. 
Throughout the exposition, a few side remarks, pedagogic, historical, even 
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judgmental, of the kind I used to drop in the classroom, are approximately 
reproduced. 

In drafting the Supplement, I consulted Patrick Fitzsimmons on several 
occasions for support. Giorgio Letta and Bernard Bru gave me encouragement 
for the uncommon approach to Borel's lemma in §3, for which the usual proof 
always left me disconsolate as being too devious for the novice's appreciation. 

A small number of additional remarks and exercises have been added to 
the main text. 

Warm thanks are due: to Vanessa Gerhard of Academic Press who deci
phered my handwritten manuscript with great ease and care; to Isolde Field 
of the Mathematics Department for unfailing assistence; to Jim Luce for a 
mission accomplished. Last and evidently not least, my wife and my daughter 
Corinna performed numerous tasks indispensable to the undertaking of this 
publication. 



Preface to the second edition 

This edition contains a good number of addItIons scattered throughout the 
book as well as numerous voluntary and involuntary changes. The reader who 
is familiar with the first edition will have the joy (or chagrin) of spotting new 
entries. Several sections in Chapters 4 and 9 have been rewritten to make the 
material more adaptable to application in stochastic processes. Let me reiterate 
that this book was designed as a basic study course prior to various possible 
specializations. There is enough material in it to cover an academic year in 
class instruction, if the contents are taken seriously, including the exercises. 
On the other hand, the ordenng of the tOpICS may be vaned conSIderably to 
suit individual tastes. For instance, Chapters 6 and 7 dealing with limiting 
distributions can be easily made to precede Chapter 5 which treats almost 
sOle convergence. A specific recommendation is to take up Chapter 9, where 
conditioning makes a belated appearance, before much of Chapter 5 or even 
Chapter 4. This would be more in the modem spirit of an early weaning from 
the independence concept, and could be followed by an excJ]fsion into the 
Markovian territory. 

Thanks are due to many readers who have told me about errors, obscuri
ties, and inanities in the first edition. An incomplete record includes the names 
below (with apology for forgotten ones): Geoff Eagleson, Z. Govindarajulu. 
David Heath, Bruce Henry, Donald Iglehart, Anatole Joffe, Joseph Marker, 
P. Masani, Warwick Millar, Richard Olshen, S. M. Samuels, David Siegmund, 
T. Thedeen, A. Gonzalez Villa lobos, Michel Weil, and Ward Whitt. The 
revised manuscript was checked in large measure by Ditlev Monrad. The 



xii I PREFACE TO THE SECOND EDITION 

galley proofs were read by David Kreps and myself independently, and it was 
fun to compare scores and see who missed what. But since not all parts of 
the old text have undergone the same scrutiny, readers of the new edition 
are cordially invited to continue the fault-finding. Martha Kirtley and Joan 
Shepard typed portions of the new material. Gail Lemmond took charge of' 
the final page-by-page revamping and it was through her loving care that the 
revision was completed on schedule. 

In the third printing a number of misprints and mistakes, mostly minor, are 
corrected. I am indebted to the following persons for some of these corrections: 
Roger Alexander, Steven Carchedi, Timothy Green, Joseph Horowitz, Edward 
Korn, Pierre van Moerbeke, David Siegmund. 

In the fourth printing, an oversight in the proof of Theorem 6.3.1 is 
corrected, a hint is added to Exercise 2 in Section 6.4, and a simplification 
made in (VII) of Section 9 5 A number of minor misprints are also corrected I 
am indebted to several readers, including Asmussen, Robert, Schatte, Whitley 
and Yannaros, who wrote me about the text. 



Preface to the first edition 

A mathematics course is not a stockpile of raw material nor a random selection 
of vignettes. It should offer a sustamed tour of the field bemg surveyed and 
a preferred approach to it. Such a course is bound to be somewhat subjective 
and tentative, neither stationary in time nor homogeneous in space. But it 
should represent a considered effort on the part of the author to combine his 
philosophy, conviction, and experience as to how the subject may be learned 
and taught. The field of probability is already so large and diversified that 
even at the level of this introductory book there can be many different views 
on orientation and development that affect the choice and arrangement of its 
content. The necessary decIsIons bemg hard and uncertam, one too often takes 
refuge by pleading a matter of "taste." But there is good taste and bad taste 
in mathematics just as in music, literature, or cuisine, and one who dabbles in 
it must stand judged thereby. 

It might seem superfluous to emphasize the word "probability" in a book 
dealing with the subject. Yet on the one hand, one used to hear such specious 
utterance as "probability is just a chapter of measure theory"; on the other 
hand, many still use probability as a front for certain types of analysis such as 
combinatorial, Fourier, functional, and whatnot. Now a properly constructed 
course in probability should indeed make substantial use of these and other 
allied disciplines, and a strict line of demarcation need never be drawn. But 
PROBABILITY is still distinct from its tools and its applications not only in 
the final results achieved but also in the manner of proceeding. This is perhaps 
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best seen in the advanced study of stochastic processes, but will already be 
abundantly clear from the contents of a general introduction such as this book. 

Although many notions of probability theory arise from concrete models 
in applied sciences, recalling such familiar objects as coins and dice, genes 
and particles, a basic mathematical text (as this pretends to be) can no longer 
indulge in diverse applications, just as nowadays a course in real variables 
cannot delve into the vibrations of strings or the conduction of heat. Inciden
tally, merely borrowing the jargon from another branch of science without 
treating its genuine problems does not aid in the understanding of concepts or 
the mastery of techniques. 

A final disclaimer: this book is not the prelude to something else and does 
not lead down a strait and righteous path to any unique fundamental goal. 
Fortunately nothing in the theory deserves such single-minded devotion, as 
apparently happens m certain other fields of mathematics. QuIte the contrary, 
a basic course in probability should offer a broad perspective of the open field 
and prepare the student for various further possibilities of study and research. 
To this aim he must acquire knowledge of ideas and practice in methods, and 
dwell with them long and deeply enough to reap the benefits. 

A brief description will now be given of the nine chapters, with some 
suggestions for reading and instruction. Chapters 1 and 2 are preparatory. A 
synopsis of the requisite "measure and integration" is given in Chapter 2, 
together wIth certam supplements essentIal to probabIlIty theory. Chapter I IS 
really a review of elementary real variables; although it is somewhat expend-
able, a reader with adequate background should be able to cover it swiftly and 
confidently with something gained flOm the effOl t. FUI class instruction it 
may be advisable to begin the course with Chapter 2 and fill in from Chapter 1 
as the occasions arise. Chapter 3 is the true introduction to the language and 
framev/ork of probability theory, but I have restricted its content to what is 
crucial and feasible at this stage, relegating certain important extensions, such 
as shifting and condItioning, to Chapters 8 and 9. This IS done to avoid over
loading the chapter with definitions and generalities that would be meaningless 
without frequent application. Chapter 4 may be regarded as an assembly of 
notions and techniques of real function theory adapted to the usage of proba
bility. Thus, Chapter 5 is the first place where the reader encounters bona fide 
theorems in the field. The famous landmarks shown there serve also to intro
duce the ways and means peculiar to the subject. Chapter 6 develops some of 
the chief analytical weapons, namely Fourier and Laplace transforms, needed 
for challenges old and new. Quick testing grounds are provided, but for major 
battlefields one must await Chapters 7 and 8. Chapter 7 initiates what has been 
called the "central problem" of classical probability theory. Time has marched 
on and the center of the stage has shifted, but this topic remains without 
doubt a crowning achievement. In Chapters 8 and 9 two different aspects of 
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(discrete parameter) stochastic processes are presented in some depth. The 
random walks in Chapter 8 illustrate the way probability theory transforms 
other parts of mathematics. It does so by introducing the trajectories of a 
process, thereby turning what was static into a dynamic structure. The same 
revolution is now going on in potential theory by the injection of the theory of 
Markov processes. In Chapter 9 we return to fundamentals and strike out in 
major new directions. While Markov processes can be barely introduced in the 
limited space, martingales have become an indispensable tool for any serious 
study of contemporary work and are discussed here at length. The fact that 
these topics are placed at the end rather than the beginning of the book, where 
they might very well be, testifies to my belief that the student of mathematics 
is better advised to learn something old before plunging into the new. 

A short course may be built around Chapters 2, 3, 4, selections from 
Chapters 5, 6, and the first one or two sections of Chapter 9. For a richer fare, 
substantial portions of the last three chapters should be given without skipping 
anyone of them. In a class with solid background, Chapters 1, 2, and 4 need 
not be covered in detail. At the opposite end, Chapter 2 may be filled in with 
proofs that are readily available in standard texts. It is my hope that this book 
may also be useful to mature mathematicians as a gentle but not so meager 
introduction to genuine probability theory. (Often they stop just before things 
become interesting!) Such a reader may begin with Chapter 3, go at once to 
Chapter 5 WIth a few glances at Chapter 4, skim through Chapter 6, and take 
up the remaining chapters seriously to get a rea] feeling for the subject 

Several cases of exclusion and inclusion merit special comment. I chose 
to construct only a sequence of independent random variables (in Section 3.3), 
rather than a more general one, in the belief that the latter is better absorbed in a 
course on stochastic processes. I chose to postpone a discussion of conditioning 
until quite late, in order to follow it up at once with varied and worthwhile 
applications. With a little reshuffling Section 9.1 may be placed right after 
Chapter 3 if so desired. I chose not to include a fuller treatment of infinitely 
divisible laws, for two reasons' the material is well covered in two or three 
treatises, and the best way to develop it would be in the context of the under-
lying additive process, as originally conceived by its creator Paul Levy. I 
took pains to spell out a peripheral discussion of the logarithm of charac-
teristic function to combat the errors committed on this score by numerous 
existing books. Finally, and this is mentioned here only in response to a query 
by Doob, I chose to present the brutal Theorem 5.3.2 in the original form 
given by Kolmogorov because I want to expose the student to hardships in 
mathematics. 

There are perhaps some new things in this book, but in general I have 
not striven to appear original or merely different, having at heart the interests 
of the novice rather than the connoisseur. In the same vein, I favor as a 



xvi I PREFACE TO THE FIRST EDITION 

rule of writing (euphemistically called "style") clarity over elegance. In my 
opinion the slightly decadent fashion of conciseness has been overwrought, 
particularly in the writing of textbooks. The only valid argument I have heard 
for an excessively terse style is that it may encourage the reader to think for 
himself. Such an effect can be achieved equally well, for anyone who wishes 
it, by simply omitting every other sentence in the unabridged version. 

This book contains about 500 exercises consisting mostly of special cases 
and examples, second thoughts and alternative arguments, natural extensions, 
and some novel departures. With a few obvious exceptions they are neither 
profound nor trivial, and hints and comments are appended to many of them. 
If they tend to be somewhat inbred, at least they are relevant to the text and 
should help in its digestion. As a bold venture I have marked a few of them 
with * to indicate a "must," although no rigid standard of selection has been 
used. Some of these are needed in the book, but in any case the reader's study 
of the text will be more complete after he has tried at least those problems. 

Over a span of nearly twenty years I have taught a course at approx
imately the level of this book a number of times The penultimate draft of 
the manuscript was tried out in a class given in 1966 at Stanford University. 
Because of an anachronism that allowed only two quarters to the course (as 
if probability could also blossom faster in the California climate!), I had to 
omit the second halves of Chapters 8 and 9 but otherwise kept fairly closely 
to the text as presented here. (The second half of Chapter 9 was covered in a 
subsequent course called "stochastic processes.") A good fraction of the exer-
cises were assigned as homework, and in addition a great majority of them 
were worked out by volunteers Among those in the class who cooperated 
in this manner and who corrected mistakes and suggested improvements are: 
Jack E. Clark, B. Curtis Eaves, Su~an D. Hom, Alan T. Huckleberry, Thomas 
M. Liggett, and Roy E. Welsch, to whom lowe sincere thanks. The manuscript 
was also read by 1. L. Doob and Benton Jamison, both of whom contributed 
a great deal to the final revision. They have also used part of the manuscript 
in their classes. Aside from these personal acknowledgments, the book owes 
of course to a large number of authors of onginal papers, treatIses, and text
books I have restricted bibliographical references to the major sources while 
adding many more names among the exercises. Some oversight is perhaps 
inevitable; however, inconsequential or irrelevant "name-dropping" is delib
erately avoided, with two or three exceptions which should prove the rule. 

It is a pleasure to thank Rosemarie Stampfel and Gail Lemmond for their 
superb job in typing the manuscript. 



1 Distribution function 

1 1 Monotone functions 

We begm with a discussion of distribution functions as a traditional way 
of introducing probability measures It serves as a convenient hridge from 
elementary analysis to probability theory, upon which the beginner may pause 
to review his mathematical background and test his mental agility. Some of 
the methods as well as results in this chapter are also useful in the theory of 
stochastic processes. 

In this book 'r'v'e shall follow the fashionable usage of the words "posi 
tive ", "negative ", "increasing ", "decreasing" in their loose interpretation. 
For example, "x is positive" means "x > 0"; the qualifier "strictly" will be 
added when "x > 0" is meant By a "fl]nction" we mean in this chapter a real 
finite-valued one unless otherwise specified. 

Let then f be an increasing function defined on the real line (-00, +(0). 
Thus for any two real numbers XI and X2, 

(1) 

We begin by reviewing some properties of such a function. The notation 
"t t x" means "t < x, t ----+ x"; "t ,} x" means "t > x, t ----+ x". 
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(i) For each x, both unilateral limits 

(2) lim f(t) = f(x-) and lim f(t) = f(x+) 
ttx t~x 

exist and are finite. Furthermore the limits at infinity 

lim f(t) = f(-oo) and lim f(t) = f(+oo) 
t~-oo tt+oo 

exist; the former may be -00, the latter may be +00. 

This follows from monotonicity; indeed 

f(x-) = sup f(t), f(x+) = inf f(t). 
-oo<t<x x<t<+oo 

(ii) For each x, f is continuous at x if and only if 

f(x-) = f(x) = f(x+). 

To see this, observe that the continuity of a monotone function f at x is 
equivalent to the assertion that 

limf(t) = {(x) = lim (Ct). 
tfx tJx 

By (i), the limits above exist as f (x-) and f (x+) and 

(3 ) f(x-) < f(x) ::: f(x+), 

from which (ii) follows. 

In general, we say that the function f has a jump at x iff the two limits 
in (2) both exist but are unequal. The value of f at x itself, viz. f (x), may be 
arbItrary, but for an mcreasmg j the relatIOn (3) must hold. As a consequence 
of (i) and (ii), we have the next result. 

(iii) The only possible kind of discontinuity of an increasing function is a 
jump. [The reader should ask himself what other kinds of discontinuity there 
are for a function in general.] 

If there is a jump at x, we call x a point of jump of f and the number 
f (x+) - f (x-) the size of the jump or simply "the jump" at x. 

It is worthwhile to observe that points of jump may have a finite point 
of accumulation and that such a point of accumulation need not be a point of 
jump itself. Thus, the set of points of jump is not necessarily a closed set. 
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Example 1. Let Xo be an arbitrary real number, and define a function I as follows: 

l(x)=O forx~xo-l; 

1 1 1 
= 1 - - for Xo - - ~ x < Xo - --, n = 1. 2, ... ; 

n n n + 1 

= 1 for x ~ Xo. 

The point Xo is a point of accumulation of the points of jump {xo - 1/11, n ~ I}, but 
I is continuous at Xo. 

Before we discuss the next example, let us introduce a notation that will 
be used throughout the book. For any real number t, we set 

(4 ) 
for x < t, 
for x > t. 

We shall call the functIOn Ot the pOint mass at t. 

Example 2. Let {an, n ~ I} be any given enumeration of the set of all rational 
numbers, and let {b ll , n > I} be a set of positive (>0) numbers such that £:'_, bll < 00. 

For instance, we may take bn = 2-11 • Consider now 

00 

(5) f(x) - E bllDan (x). 

11=' 

Since 0 ~ Dan (x) ~ 1 for every n and x, the series in (5) is absolutely and uniformly 
convergent. Since each 8an is increasing, it follows that if x, < X:c. 

00 

I(X7J - I(x,) = Lb ll [Dan (X2) - Dan (x,)] ~ O. 
11 1 

Hence f is increasing Thanks to the uniform convergence (why?) we may deduce 
that for each x, 

00 

(6) f(x+) - f(x-) = b b" [Da, (x+) - Da. (x- )]. 

But for each n, the number in the square brackets above is 0 or 1 according as x i= all 

or x = all' Hence if x is different from all the all's, each term on the right side of (6) 
vanishes; on the other hand if x = ab say, then exactly one term, that corresponding 
to n = k, does not vanish and yields the value bk for the whole series. This proves 
that the function I has jumps at all the rational points and nowhere else. 

This example shows that the set of points of jump of an increasing function 
may be everywhere dense; in fact the set of rational numbers in the example may 
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be replaced by an arbitrary countable set without any change of the argument. We 
now show that the condition of countability is indispensable. By "countable" we mean 
always "finite (possibly empty) or countably infinite". 

(iv) The set of discontinuities of f is countable. 

We shall prove this by a topological argument of some general applica
bility. In Exercise 3 after this section another proof based on an equally useful 
counting argument will be indicated. For each point of jump x consider the 
open interval Ix = (f(x-), f(x+ )). If x' is another point of jump and x < x', 
say, then there is a point x such that x < x < x'. Hence by monotonicity we 
have 

f(x+) < f(x) < f(x'-). 

It follows that the two intervals I x and I x' are disjoint, though they may 
abut on each other if f (x+) = f (x' -). Thus we may associate with the set of 
points of jump in the domain of f a certain collection of pairwise disjoint open 
intervals in the range of f. Now any such collection is necessarily a countable 
one, since each interval contains a rational number, so that the collection of 
intervals is in one-to-one correspondence wIth a certam subset of the ratIonal 
numbers and the latter is countable. Therefore the set of discontinuities is also 
countable, since it is in one-to-one correspondence with the set of intervals 
associated with it. 

(v) Let f I and f 2 be two increasing functions and D a set that is (every
where) dense in (-00, +(0). Suppose that 

"Ix c D: fl (x) fzEx). 

Then f I and f 2 have the same points of jump of the same size, and they 
coincide except possibly at some of these points of jump. 

To see this, let x be an arbitrary point and let tn C D, t;1 c D, til t x, 
t;1 ,} x. Such sequences exist since D is dense. It follows from (i) that 

fl(x ) -lim!I(t/1) -limf2(t,J - f2(x ), 
(6) 

n /1 

In particular 

The first assertion in (v) follows from this equation and (ii). Furthermore if 
f I is continuous at x, then so is f 2 by what has just been proved, and we 
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have 

proving the second assertion. 
How can f I and f 2 differ at all? This can happen only when f I (x) 

and f2(X) assume different values in the interval (fI(X-), fI(X+)) = 
(f 2 (X- ), f 2 (x+ )). It will tum out in Chapter 2 (see in particular Exercise 21 
of Sec. 2.2) that the precise value of f at a point of jump is quite unessential 
for our purposes and may be modified, subject to (3), to suit our convenience. 

More precisely, given the function f, we can define a new function f In 

several different ways, such as 

- - - f(x-) + f(x+) 
f(x) = f(x-), f(x) = f(x+), f(x) = 2 ' 

and use one of these instead of the original one. The third modification is 
found to be convenient in Fourier analysis, but either one of the first two is 
more suitable for probability theory. We have a free choice between them and 
we shall choose the second, namely, right continuity. 

(vi) If we put 

"Ix: f(x) = f(x+), 

then f is increasing and right continuous everywhere. 

Let us recall that an arbitrary function g is said to be right continuous at 
x iff limt,J.-x get) exists and the limit, to be denoted by g(x+), is equal to g(x). 
To prove the assertion (vi) we must show that 

\:Ix: lim f(t+) f(x+). 
t,J.-x 

This is indeed true for any f such that f (t +) exists for every t. For then: 
given any E > 0, there exists D(E) > 0 sllch that 

\:Is E (x, x + 8): If(s) f(x+)1 < €. 

Let t E (X, x + 8) and let s t t in the above, then we obtain 

If(t+) - f(x+)1 < E, 

which proves that j is right continuous. It is easy to see that it is increasing 
if f is so. 

Let D be dense in (-00, +(0), and suppose that f is a function with the 
domain D. We may speak of the monotonicity, continuity, uniform continuity, 
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and so on of J on its domain of definition if in the usual definitions we restrict 
ourselves to the points of D. Even if f is defined in a larger domain, we may 
still speak of these properties "on D" by considering the "restriction of J 
to D". 

(vii) Let J be increasing on D, and define j on (-00, +(0) as follows: 

"Ix: J(x) = inf J(t). 
x<tED 

Then J is increasing and right continuous everywhere. 
This is a generalization of (vi). j is clearly increasing. To prove right 

continuity let an arbitrary Xo and E > 0 be given. There exists to E D, to > xo, 
such that 

J(to) - E < J(xo) < J(to). 

Hence if tED, Xo < t < to, we have 

o ::::: J(t) - j(xo) ::::: J(to) - !(xo) < E. 

This implies by the definition of j that for Xo < x < to we have 

- -o < J(x) - J(xo) < E. 

Since E is arbitrary, it follows that j is right continuous at Xo, as was to be 
shown. 

EXERCISES 

1. Prove that for the J in Example 2 we have 

00 

](-00) - 0, ](+00) - Lb/!. 
11-1 

2. Constmct an increasing function on (-00, +(0) with a jump of size 
one at, each integer, and constant between jumps. Such a function cannot be 
represented as 2:~ 1 bll Dn (x) with bl1 1 for each n, but a slight modification 
will do. Spell this out. 

**3. Suppose that J is increasing and that there exist real numbers A and 
B such that "Ix: A ::::: J(x) ::::: B. Show that for each E > 0, the number of jumps 
of size exceeding E is at most (B - A)/E. Hence prove (iv), first for bounded 
J and then in general. 

** indicates specially selected exercises (as mentioned in the Preface). 

- - • • - ••• .., ... "" IIVI~~ I 7 
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b j the size at jump at a j, then 

since F (a j+ ) = F (a j). Consider the function 

Fd(x) = 2: bjoaj (x) 
j 

which represents the sum of all the jumps of F in the half-line (-00, x]. It is. 
clearly increasing, right continuous, with 

(3) Fd(-OO) = 0, Fd(+oo) = 2:bj < 1. 
j 

Hence F d is a bounded increasing function. It should constitute the "jumping 
part" of F, and if it is subtracted out from F, the remainder should be positive, 
contain no more jumps, and so be continuous. These plausible statements will 
now be proved - they are easy enough but not really trivIal. 

Theorem 1.2.1. Let 

then F c is positive, increasing, and continuous. 

PROOF. Let x < x', then we have 

x<aj<x' x<aj<x' 

< F(x') - F(x). 

It follows that both F d and F c are increasing, and if we put x = -00 in the 
above, we see that F d < F and so F c is indeed positive. Next, F d is right 
continuous since each Oaj is and the series defining Fa converges unifonnly 
in x; the same argument yields (cf. Example 2 of Sec. 1.1) 

J boj Fa Ex) Fa(x) 1. 
otherwise. 

Now this evaluation holds also if F d is replaced by F according to the defi
nition of a j and b j, hence we obtain for each x: 

Fc(x) - Fc(x-) = F(x) - F(x-) - [Fd(x) - Fd(x-)] = O. 

This shows that F c is left continuous; since it is also right continuous, being 
the difference of two such functions, it is continuous. 
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Theorem 1.2.2. Let F be a dJ. Suppose that there exist a continuous func
tion G e and a function G d of the form 

Gd(x) = Lbj8ajCx) 
) 

[where {ail is a countable set of real numbers and L) Ibil < 00], such that 

F = Ge +Gd, 

then 

where Fe and F d are defined as before. 

PROOF. If F d =f. G d, then either the sets {a)} and {aj} are not identical, 
or we may relabel the ai so that aj = a) for all j but bi =f. b) for some j. In 
either case we have for at least one j, and a = aj or aj: 

Since Fe - Ge - Gd - F d , this implies that 

contradicting the fact that Fe C e is a continuous function. Hence Fa Ca 
and consequently Fe = Ge. 

DEFINITION A d f F that can be represented in the fODD 

j 

where {a)} is a countable set of real numbers, bj > ° for every j and Lj b j = 1, 
is called a discrete dJ. A d.f. that is continuous everywhere is called a contin-
uous dJ. 

SlIppose Fe =/= 0, Fd =/= ° in Theorem 1 2 1, then we may set a - Fd(oo) 

so that ° < a < 1, 

and write 

(5) F = aF1 + (1 - a)F2. 

Now F 1 is a discrete dJ., F 2 is a continuous d.f., and F is exhibited as a 
convex combination of them. If Fe = 0, then F is discrete and we set a = 1, 
Fl = F, F2 = 0; if F d = 0, then F is continuous and we set a = 0, Fl = 0, 
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F2 = F; in either extreme case (5) remains valid. We may now summarize 
the two theorems above as follows. 

Theorem 1.2.3. Every d.f. can be written as the convex combination of a 
discrete and a continuous one. Such a decomposition is unique. 

EXERCISES 

1. Let F be a dJ. Then for each x, 

lim[F(x + E) - F(x - E)] = 0 
EtO 

unless x is a point of jump of F, in which case the limit is equal to the size 
of the jump. 

* 2. Let F be a d.f. with points of jump {a j}. Prove that the sum 

X-E<aj<X 

converges to zero as E 1 0, for every x. What if the summation above is 
extended to x - E < aj < x instead? Give another proof of the continuity of 
Fe in Theorem 1.2.1 by using this problem. 

3. A plausible verbal definition of a discrete dJ. may be given thus: "It 
is a d.f. that has jumps and is constant between jumps." [Such a function is 
sometimes called a "step function", though the meaning of this term does not 
seem to be well established.] What is wrong with this? But suppose that the set 
of POInts of Jump is "discrete" in the Euclidean topology, then the definition 
is valid (apart from our convention of right continuity) 

4. For a general increasing function F there is a similar decomposition 
F - Fe + F d, where both Fe and Fd are IncreasIng, Fe IS contInUOUS, and 
F d is "purely jumping". [HINT: Let a be a point of continuity, put Ed (a) -
F(a), add jumps in (a, (0) and subtract jumps in (-00, a) to define F d. Cf. 
Exercise 2 in Sec. 1.1.] 

5. Theorem 1.2.2 can be generalized to any bounded increasing function. 
More generally, let f be the difference of two bounded increasing functions on 
( 00, +(0); such a function is said to be of bounded Val iatioll there. Define 
its purely discontinuous and continuous parts and prove the corresponding 
decomposition theorem. 

* 6. A point x is said to belong to the support of the d.f. F iff for every 
E > 0 we have F(x + E) - F(x - E) > O. The set of all such x is called the 
support of F. Show that each point of jump belongs to the support, and that 
each isolated point of the support is a point of jump. Give an example of a 
discrete dJ. whose support is the whole line. 
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7. Prove that the support of any d.f. is a closed set, and the support of 
any continuous d.f. is a perfect set. 

1.3 Absolutely continuous and singular distributions 

Further analysis of dJ.' s requires the theory of Lebesgue measure. Throughout 
the book this measure will be denoted by m; "almost everywhere" on the real 
line without qualification will refer to it and be abbreviated to "a.e."; an 
integral written in the form J ... dt is a Lebesgue integral; a function f IS 

said to be "integrable" in (a, b) iff 

1b f(t)dt 

is defined and finite [this entails, of course, that f be Lebesgue measurable]. 
The class of such functions will be denoted by L 1 (a, b), and L 1 (-00, (0) is 
abbreviated to Ll. The complement of a subset S of an understood "space" 
such as (-00, +(0) will be denoted by SC. 

DEFINITION. A function F is called absolutely continuous [in (-00, (0) 
and with respect to the Lebesgue measure] iff there exists a function f in L 1 

such that we have for every x < x'. 

(1) F(x') - F(x) = [' f(t)dt. 

It follows from a well-known proposition (see, e g , Natanson [3]*) that such 
a function F has a derivative equal to f a.e. In particular, if F is a dJ., then 

(2) f > 0 ae and [00 f(t) dt - 1 
}-oo J 

Conversely, given any f in L 1 satisfying the conditions in (2), the function F 
defined by 

(3) 
ex 

Vx: F(x) = J-oo f(t)dt 

is easily seen to be a d.f. that is absolutely continuous. 

DEFINITION. A function F is called singular iff it is not identically zero 
and F' (exists and) equals zero a.e. 

* Numbers in brackets refer to the General Bibliography. 
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The next theorem summarizes some basic facts of real function theory; 
see, e.g., Natanson [3]. 

Theorem 1.3.1. Let F be bounded increasing with F ( - 00) = 0, and let F' 
denote its derivative wherever existing. Then the following assertions are true. 

(a) If S denotes the set of all x for which F'(x) exists with 0 < F'(x) < 
00, then m(SC) = O. 

(b) This F' belongs to L 1, and we have for every x < x': 

(4) 
x' 1 F' (t) dt < F(x') - F(x). 

(c) If we put 

(5) Vx: Fac(x) = F'(t)dt, Fs(x) = F(x) - Fac(x), 
00 

o a.e. and consequently F s is 

DEFINITION Any positive function f that is equal to F' a.e. is called a 
density of F. Fac is called the absolutely continuous part, Fs the singular part 
of F. Note that the previous F d is pan of F s as defined here. 

It is clear that F ac is increasing and F ac < F. From (4) it follows that if 
x <x' 

F(r') F(r) Jx J 

(

Xl 

f(t) dt > 0 

Hence Fs IS also mcreasmg and F s :s F. We are now in a position to announce 
the following result, which is a refinement of Theorem 1 2 3 

Theorem 1.3.2. EvelY d.t. F can be written as the convex combination of 
a discrete, a singular continuous, and an absolutely continuous d.f. Such a 
decomposition is unique. 

EXERCISES 

1. A d.f. F is singular if and only if F = Fs; it is absolutely continuous 
if and only if F = Fac. 

2. Prove Theorem 1.3.2. 

* 3. If the support of a d.f. (see Exercise 6 of Sec. 1.2) is of measure zero, 
then F is singular. The converse is false. 
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* 4. Suppose that F is a d.f. and (3) holds with a continuous I. Then 
F' = I ~ 0 everywhere. 

5. Under the conditions in the preceding exercise, the support of F is the 
closure of the set {t I l(t> > OJ; the complement of the support is the interior 
of the set {t I I(t) = OJ. 

6. Prove that a discrete distribution is singular. [Cf. Exercise 13 of 
Sec. 2.2.] 

7. Prove that a singular function as defined here is (Lebesgue) measurable 
but need not be of bounded variation even locally. [HINT: Such a function is 
continuous except on a set of Lebesgue measure zero; use the completeness 
of the Lebesgue measure.] 

The remainder of this section is devoted to the construction of a singular 
continuous distribution. For this purpose let us recall the construction of the 
Cantor (ternary) set (see, e.g., Natanson [3]). From the closed interval [0,1], 
the "middle third" open interval (~, ~) is removed; from each of the two 

remaining disjoint closed intervals the middle third, (!, ~) and (~, ~), respec
tively, are removed and so on. After n steps, we have removed 

i 2 2n - 1 + + ... + 
disjoint open intervals and are left with 2n disjoint closed intervals each of 
length 1 /3 n . Let these removed ones, in order of position from left to right, 
be denoted by In,b 1 ~ k < 2n - 1, and their union by Un. We have 

As n t 00, Un Increases to an open set U; the complement C of U wIth 
respect to [0,1] is a perfect set, called the Cantor set. It is of measure zero 
sInce 

m(C) - 1 m(U) - 1 1 - O. 

Now for each nand k, n > I, I ~ k < 211 - I, we put 

k 
C . 

n,k = 2n ' 

and define a function F on U as follows: 

(7) F(x) = Cn k for x E I n k. 

This definition is consistent since two intervals, J n ,k and J n' ,k', are either 
disjoint or identical, and in the latter case so are Cn,k = Cn',k', The last assertion 
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becomes obvious if we proceed step by step and observe that 

J n+1.2k = J n,k, Cn+l,2k = Cn,k for 1 < k < 2n 
- 1. 

The value of F is constant on each J n ,k and is strictly greater on any other 
J n',k' situated to the right of J n,k. Thus F is increasing and clearly we have 

lim F(x) = 0, lim F(x) = 1. 
xtO xtl 

Let us complete the definition of F by setting 

F(x) = 0 for x <0, F(x) = 1 for x > 1. 

F is now defined on the domain D = (-00, 0) U V U (1, (0) and increasing 
there. Since each J n,k is at a distance > 1/3n from any distinct J n,k' and the 
total variation of F over each of the 2n disjoint intervals that remain after 
removing In,b 1 < k < 2n 1, is 1/2n , it follows that 

0< x - x < - =} 0 < F(x ) - F(x) < -. - - 3n - - 2n 

,1 , 1 

Hence F is uniformly continuous on D. By Exercise 5 of Sec. 1.1, there exists 
a continuous increasing F on (-00, +(0) that coincides with F on D. This 
:LV is a continuous d.f. that is constant on each In,k. It follows that P' 0 
on V and so also on (-00, +(0) - C. Thus F is singular. Alternatively, it 
is clear that none of the points in D is in the support of F, hence the latter 
is contained in C and of measure 0, so that F is singular by Exereise 3 
above. [In Exercise 13 of Sec. 2.2, it will become obvious that the measure 
correspondmg to F IS smgular because there is no mass in V.] 

EXERCISES 

The F in these exercises is the F defined above. 

8. Prove that the support of F is exactly C. 

*9. It is well known that any point x in C has a ternary expansion without 
the digit 1: 

Prove that for this x we have 

all = 0 or 2. 

00 

~ an 
F(x) = ~ 211+1 . 

n=1 



1.3 ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS I 15 

10. For each x E [0, 1], we have 

2F (~) = F(x), 2F (~+~) - 1 = F(x). 

11. Calculate 

10' xdF(x), 10' x2 dF(x), 10' ej,x dF(x). 

[HINT: This can be done directly or by using Exercise 10; for a third method 
see Exercise 9 of Sec. 5.3.] 

12. Extend the function F on [0,1] trivially to (-00, (0). Let {Tn} be an 
enumeration of the rationals and 

00 1 
G(x) = ~ -FCrn + x). 

~2n 
n=l 

Show that G IS a d.f. that is strictly increasing for all x and singular. Thus we 
have a singular d f with support ( 00, 00) 

*13. Consider F on [0,1]. Modify its inverse F-1 suitably to make it 
smgle-valued m [0,1]. Show that F 1 so modified is a discrete dJ. and find 
its points of jump and their sizes 

14. Given any closed set C in (-00, +(0), there exists a d.f. whose 
support IS exactly c. [HINT: Such a problem becomes easier when the corre
sponding measure is considered; see Sec 2 2 below] 

* 15. The Cantor d.f. F is a good building block of "pathological" 
examples. For example, let H be the inverse of the homeomorphic map of [0,1] 
onto itself: x ---7 ~ [F(x) + x]; and E a subset of [0,1] which is not Lebe£gue 
measurable. Show that 

where H(E) is the image of E, IB is the indicator function of B, and 0 denotes 
the compo£ition of functions. Hence deduce: (1) a Lebesgue measurable func 
tion of a strictly increasing and continuous function need not be Lebesgue 
measurable; (2) there eXIsts a Lebesgue measurable functIOn that is not Borel 
measurable. 



2 Measure theory 

2.1 Classes of sets 

Let Q be an "abstract space", namely a nonempty set of elements to be 
called "points" and denoted generically by (j). Some of the usual opera
tions and relations between sets, together with the usual notation, are given 
below. 

Union 

Intersection 

Complement 

Difference 

Symmetric difference 

Singleton 

EUF, UEn 

11 

E\F =En Fe 
(E\ Jf') U (Jf'\ E) ,.... .... '\ 

{{j) } 

Containing (for subsets of Q as well as for collections thereof): 

ECF, F :) E (not excluding E = F) 

.c/ c .13, .J) :) .0/ (not excluding ,c/ = ~:f:3) 
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Belonging (for elements as well as for sets): 

(j) E E, 

Empty set: 0 

The reader is supposed to be familiar with the elementary properties of these 
operations. 

A nonempty collection sl of subsets of Q may have certain "closure 
properties". Let us list some of those used below; note that j is always an 
index for a countable set and that commas as well as semicolons are used to 
denote "conjunctions" of premises. 

(i) E E .sI =} E C E .sI. 

(li) El E d,E2 E.sI =} El UE2 E.sI. 

(iii) El E ,91, E2 E ,91 =? El 0 E2 E ,9/ 

(iv) Vn > 2 : E j E d, 1 < j < n =} l Jj 1 E j E d. 

(v) V n > 2 : E JEd, 1 < j < n =} OJ 1 E jEd, 

(vi) EJ E d; E j C Ej+l, 1 < j < 00 =} Uj 1 EJ E d. 

(viii) E j E .sI, 1 < j < 00 =? Uj 1 E j E .sI. 

J oJ ) J 

(x) El E L91, E2 E sl, El c E2 =} E2\El E LQ/. 

It follows from simple set algebra that under (i). (ii) and (iii) are equiv-
alent; (vi) and (vii) are equivalent; (viii) and (ix) are equivalent. Also, (ii) 
implies (iv) and (iii) implies (v) by induction. It is trivial that (viii) implies 
(ii) and (vi); (ix) implies (iii) and (vii). 

DEFINITION. A nonempty collectIOn !/r of subsets of Sl IS called a field Iff 

(i) and (ii) hold. It is called a monotone class (M.C.) iff (vi) and (vii) hold. It 
is called a Borel field (B.F.) iff (i) and (viii) hold. 

Theorem 2.1.1. A field is a B.F. if and only if it is also an M.e. 

PROOF. The "only if" part is trivial; to prove the "if" part we show that 
(iv) and (vi) imply (viii). Let E j E Lel for 1 ~ j < 00, then 
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n 

Fn = UEj E ,0/ 
j=l 

by (iv), which holds in a field, F n C Fn+l and 

00 00 

UEj=UFj; 
j=l j=l 

hence U~l E j E ,C/ by (vi). 

The collection J of all subsets of Q is a B.P. called the total B.F.; the 
collection of the two sets {0, Q} is a B.P. called the trivial B.F. If A is any 
index set and if for every ex E A, :--':fra is a B.P. (or M.C.) then the intersection 
naEA .':"fa of all these B.F.'s (or M.C.'s), namely the collection of sets each 
of which belongs to all .:J+a , is also a B.F. (or M.C.). Given any nonempty 
collection (if of sets, there is a ,ninilnal B.P. (or field, or M.e.) containing it; 
this is just the intersection of all B.F.'s (or fields, or M.C.'s) containing {f, 

of which there is at least one, namely the J mentioned above. This minimal 
B F (or field, or Me) is also said to be generated by £ In particular if 'JIo 
is a field there is a minimal B.P. (or M.C.) containing stj. 

Theorem 2.1.2. Let jib be a field, {j' the minimal M.C. containing jIb,.:J+ the 
minimal B.P. containing jib, then q; = fl. 

PROOF. Since a B.P. is an M.e., we have ~ ::) fl. To prove.:J+ C {j it is 
sufficient to show that {j is a B.F. Hence by Theorem 2.1.1 it is sufficient to 
show that § is a field. We shall show that it is closed under intersection and 
complementation. Define two classes of subsets of § as follows: 

(} = {E E (/' : E n F E § for all F E .':"/t)}, 

&-2 = {E E V : En F E {j for all F E v}. 

The identities 

00 

- UCFn E;) 
J 

show that both {I and (/2 are M.C.' s. Since :1"t) is closed under intersection and 
contained in /j, it is clear that .J~ C (,'·i. Hence .<7 C ?l by the minimality of .r; 
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and so i/ = t6i. This means for any F E ::"Ju and E E {l we have F nEE i/, 
which in tum means ~ C -02. Hence {/ = 02 and this means (/ is closed under 
intersection. 

Next, define another class of subsets of {/ as follows: 

-03 = {E E § : E C E §} 

The (DeMorgan) identities 

show that -03 is aM C Since ~ c -t&), it fo11o",,£ a£ before that fl- 43, which 
means § is closed under complementation. The proof is complete. 

Corollary. Let 8i be a field, P7 the minimal B F containing -%; tf' a class 
of sets containing 9ti and having the closure properties (vi) and (vii), then -(ff' 

contains ;j4 . 

The theorem above is one of a type called monotone class theorems. They 
are among the most useful tools of measure theory, and serve to extend eertain 
relations which are easily verified for a special class of sets or functions to a 
larger class. Many versions of such theorems are known; see Exercise 10, 11, 
and 12 below 

EXERCISES 

*1. (UjAj)\(UjBj ) C U/Aj\Bj).(njAj)\(njBj) c U/Aj\Bj ). When 
i£ there equality? 

*2. The best way to define the symmetric difference is through indicators 
of sets as follows: 

(mod 2) 

where we have arithmetical addition modulo 2 on the right side. All properties 
of t,. follow easily from this definition, some of which are rather tedious to 
verify otherwise. As examples: 

(A t,. B) t,. C = A t,.(B t,. C), 

(A t,.B)t,.(B t,. C) = At,. C, 
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(A t, B) t,( C t, D) = (A t, C) t,(B t, D), 

At, B = C <¢} A = B t, C, 

At, B = C t, D <¢} At, C = B t, D. 

3. If n has exactly 11 points, then J has 211 members. The B.P. generated 
by 11 given sets "without relations among them" has 2211 members. 

4. If n is countable, then J is generated by the singletons, and 
conversely. [HINT: All countable subsets of n and their complements form 
a B.P.] 

5. The intersection of any collection of B.P.'s {.':"fa, ex E A} is the maximal 
B.P. contained in all of them; it is indifferently denoted by naEA ~ or AaEA.':"fa . 

* 6. The union of a countable collection of B.P.' s {~j} such that q; c ~j+l 
need not be a B.P., but there is a minimal B.P. containing all of them, denoted 
by v j ;;'fj. In general vaEA~a denotes the minimal B.P. containing all s+a, ex EA. 
[HINT: n = the set of positive integers; ~fj = the B.P. generated by those up 
to j.] 

7. A B.P. is said to be countably generated iff it is generated by a count-
able collection of sets. Prove that if each '2fj is countably generated, then so 
is \/00 ~ 

"J I~J' 

*8. Let?T be a B.P. generated by an arbitrary collection of sets {Een ex E 

A}. Prove that for each E E ~, there exists a countable subcollection {Eaj' j > 
I} (depending on E) such that E belongs already to the B.F. generated by thIS 
subcollection. [HINT: Consider the class of all sets with the asserted property 
and show that it is a B.P. containing each Ea.] 

9. If:Yr is a B.P. generated by a countable collection of diSjoint sets 
{All}, such that Un All = n, then each member of :1t is just the union of a 
countable subcollection of these Ail's. 

10. Let Q be a class of subsets of Q having the closure property (in); 
let ,I:I be a class of sets containing n as well as ~, and having the closure 
properties (vi) and (x). Then sf contains the B.P. generated by fZ. (This is 
Dynkin's form of a monotone class theorem which is expedient fO! certain 
applications. The proof proceeds as in Theorem 2.1.2 by replacing .':"/t) and {/ 
with:7 and ,<./ respectively.) 

11. Take n = };?Il or a separable metric space in Exercise 10 and let 9 
be the class of all open sets. Let ;Y(' be a class of real-valued functions on n 
satisfying the following conditions. 

(a) 1 E ;/(' and 1D E ,/(' for each D E ~; 

(b) dr' is 'a vector space, namely: if fIE ;Yr', f 2 E ,'I(' and CI, C2 are any 
two real constants, then CI f 1 + c2f 2 E ,It; 
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(c) £' is closed with respect to increasing limits of positive functions, 
namely: if / n E £',0 < / n < /n+l for all n, and / = limn t / n < 
00, then / E :J(. 

Then £' contains all Borel measurable functions on Q, namely all finite
valued functions measurable with respect to the topological Borel field (= the 
minimal B.P. containing all open sets of Q). [HINT: let {i' = {E C Q: 1£ E df'}; 
apply Exercise 10 to show that -e contains the B.P. just defined. Each positive 
Borel measurable function is the limit of an increasing sequence of simple 
(finitely-valued) functions.] 

12. Let {i' be a M.e. of subsets of llln (or a separable metric space) 
containing all the open sets and closed sets. Prove that (i' :) qjn (the topological 
Borel field defined in Exercise 11). [HINT: Show that the minimal such class 
is a field.] 

2.2 Probability measures and their distribution 
functions 

Let Q be a space, g;; a B.P. of subsets of Q. A probability measure gP( ) on ;j6 

is a numerically valued set function with domain EF, satisfying the following 
axIOms: 

(i) VE E;j+ : 9(E) > O. 

(n) If {E j} IS a countable collectIOn of (paIrwIse) dIsJomt sets m:# , then 

(iii) q>(Q) = 1. 

The abbreviation "p.m." will be used for "probability measure". 
These aXIOms Imply the followmg consequences, where all sets are 

members of EF. 

(iv) 9(£) < 1. 

(v) g7>(0) = O. 

(vi) g7>(EC) = 1 - P!J(E). 

(vii) :?/J(E U F) + :?/J(E n F) = 9(E) + :?/J(F). 

(viii) E c F =} :?/J(E) = g7>(F) - :?/J(F\E) < :?/J(F). 

(ix) Monotone property. En t E or En t E ~ ~?(En) -+ :fee). 
(x) Boole' s inequality. g'l(U j E j) < L /?P(E j ). 
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Axiom (ii) is called "countable additivity"; the corresponding aXIOm 
restricted to a finite collection {E j} is called "finite additivity". 

The following proposition 

(1) 

is called the "axiom of continuity". It is a particular case of the monotone 
property (x) above, which may be deduced from it or proved in the same way 
as indicated below. 

Theorem 2.2.1. The axioms of finite additivity and of continuity together 
are equivalent to the axiom of countable additivity. 

PROOF. Let En ,}. We have the obvious identity: 

00 00 

k n k 1 

If En t 0, the last term is the empty set. Hence if (ii) is assumed, we have 

00 

'in ~ 1: 2O(En) = L gP(Ek \EHd; 
k n 

the series being convergent, we have limn=foo :?J?(En) - O. Hence (1) is true. 
Conversely, let {Eb k ~ I} be pairwise disjoint, then 

00 

k=n+l 

(why?) and consequently, if (1) is true, then 

Now if finite additivity is assumed, we have 

k=1 k=1 k=n+l 

This shows that the infinite series 2.:=:1 o/Y(Ek) converges as it is bounded by 
the first member above. Letting n ---7 00, we obtain 
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:-f'! (U Ek) = lim ~ ?fJ(Ek) + lim ;~j) (UOO 

Ek) 
n-+oo L 11-00 

k=l k=l k=l1+l 

Hence (ii) is true. 

Remark. For a later application (Theorem 3.3.4) we note the following 
extension. Let 9 be defined on a field Y"? which is finitely additive and satis
fies axioms (i), (iii), and (1). Then (ii) holds whenever Uk Ek E ~ . For then 
U~Il+1 Ek also belongs to ?7, and the second part of the proof above remains 
valid. 

The triple (Q, ~ ,9) is called a probability space (triple); Q alone is 
called the sample space, and (j) is then a sample point. 

Let Do C n, then the trace of the B F q;- on A is the collection of all sets 
of the form /j. n F, where F E :?7. It is easy to see that this is a B.P. of subsets 
of /j., and we shall denote It by is n sr. Suppose ZS E?f and 81J(n) > 0, then 
we may define the set function 9/\ on /j. n'3T as follows: 

9't, (E) 
q!)(E) 

It is easy to see that 9t, is a p.m. on /j. n yj! . The triple (/j., /j. n ;"f , 9 t,) will 
be called the trace of (Q, :F, 9') on n. 

Example 1. Let Q be a countable set: Q = {Wj, j E J}, where J is a countable index 
set, and let ¥ be the total B.F. of Q Choose any sequence of numbers {Pj, j E J} 

satisfying 

(2) v j E J: Pj 2: 0; 
jEi 

and define a set function ?7' on ~~ as follows: 

(3 ) vE E ;-,7": ?l'(E) 2: Pj' 
wjEE 

In words, we assign P j as the value of the "probability" of the singleton {w j}, and 
for an arbitrary set of w/s we assign as its probability the sum of all the probabilities 
assigned to its elements. Clearly axioms (i), (ii), and (iii) are satisfied. Hence ?Jl so 

defined is a p.m. 
Conversely, let any such;/fl be given on '17. Since {Wj} E /7 for every j, :;fJ({Wj}) 

is defined, let its value be P j. Then (2) is satisfied. We have thus exhibited all the 
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possible p.m.'s on Q, or rather on the pair (Q, J); this will be called a discrete sample 
space. The entire first volume of Feller's well-known book [13] with all its rich content 
is based on just such spaces. 

Example 2. Let 11 = (0, 1], {f the collection of intervals: 

{f= {(a,b]:O < a < b:s I}; 

Y3 the minimal B.F. containing e, m the Borel-Lebesgue measure on £13. Then 
(1'1,93, m) is a probability space. 

Let ::130 be the collection of subsets of CZI each of which is the union of a finite 
number of members of e. Thus a typical set B in £130 is of the form 

n 

B = U(aj, bj ] 
j=l 

It is easily seen that 330 is a field that is generated by {ff' and in turn generates £13. 
If we take 1'1 = [0, 1] instead, then £130 is no longer a field since CZf rf. £130 , but 

93 and m may be defined as before. The new YB is generated by the old YB and the 
singleton {OJ. 

Example 3. Let J?1 = (-00, +00), -t5 the collection of intervals of the form (a, b]. 
-00 < a < b < +00. The field 930 generated by {ff' consists of finite unions of disjoint 
sets of the form (a, b], (-00, a] or (b, 00) The Euclidean B F @1 on @1 is the B F 
generated by e or 330 . A set in 9?31 will be called a (linear) Borel set when there is no 
danger of ambiguity. However, the Borel Lebesgue measure m on ,enl is not a p.m.; 
indeed m(J?I) = +00 so that m is not a finite measure but it is a-finite on £130 , namely: 
there eXIsts a sequence of sets Ell E Y':Io, En t 911 WIth m(En) < 00 for each n. 

EXERCISES 

1. For any countably infinite set Q, the collection of its finite subsets 
and their complements forms a field ?ft. If we define ~(E) on q; to be 0 or 1 
according as E is finite or not, then qp is finitely additive but not countably so. 

* 2. Let Q be the space of natural numbers. For each E C Q let N n (E) 
be the cardinality of the set E I I [0, n] and let {{ be the collection of E's for 
which the following limit exists: 

l
' Nil (E) 
1m . 

Il~OO n 

,7> is finitely additive on (? and is called the "asymptotic density" of E. Let E = 
{all odd integers}, F = {all odd integers in. [22n ,22n+l] and all even integers 
in [22n+1, 22n+2] for 11 ::: OJ. Show that E E (f, F E -0, but E n F t/: {f. Hence 
(:' is not a field. 
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3. In the preceding example show that for each real number a in [0, 1] 
there is an E in (7 such that ??(E) = a. Is the set of all primes in ? ? Give 
an example of E that is not in {f. 

4. Prove the nonexistence of a p.m. on (Q, .1'), where (Q, J) is as in 
Example 1, such that the probability of each singleton has the same value. 
Hence criticize a sentence such as: "Choose an integer at random". 

5. Prove that the trace of a B.F. ;:"/1 on any subset I!!.. of Q is a B.F. 
Prove that the trace of (Q, ;:",,? , 0") on any I!!.. in;}J is a probability space, if 
.o/>(I!!..) > O. 

* 6. Now let I!!.. t/: gT be such that 

I!!.. C F E ?7 =} P?(F) = 1. 

Such a set is called thick in (Q, .~, ~). If E = I!!.. n F, F E ?7, define :?/J*(E) = 
:?/J(F). Then :?/J* is a well-defined (what does it mean?) p.m. on (I!!.., I!!.. n 5T). 
This procedure is called the adjunction of n to (ft, 'ff, go). 

7. The B F .q(11 on @l is also generated by the class of all open intervals 
or all closed intervals, or all half-lines of the form (-00, a] or (a, (0), or these 
intervals with rational endpoints. But it is not generated by all the singletons 
of gel nor by any finite collection of subsets of gel. 

8. gj1 contains every singleton, countable set, open set, closed set, Go 
set, F (J set. (For the last two kinds of sets see, e.g., Natanson [3].) 

*9. Let {ff be a countable collection of pairwise disjoint subsets {E j, j > 1} 

10. Instead of requiring that the E/s be pairwise disjoint, we may make 
the blOader assumption that each of them intersects only a finite number in 
the collection. Carry through the rest of the problem. 

The question of probability meaSUles on :-;81 is closely related to the 
theory of distribution functions studied in Chapter 1. There is in fact a one-to-
one correspondence between the set functions on the one hand, and the point 
functions on the other. Both points of view are useful in probability theory. 
We establish first the easier half of this correspondence. 

Lemma. Each p.m. fJ. on :1(31 determines adJ. F through the correspondence 

(4) Vx E ~111: fJ.(( -00, x]) = F(x). 
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As a consequence, we have for -00 < a < b < +00: 

(5) 

f.J-((a, b]) = F(b) - F(a), 

f.J-((a, b)) = F(b-) - F(a), 

f.J-([a, b)) = F(b-) - F(a-), 

f.J-([a, b]) = F(b) - F(a-). 

Furthermore, let D be any dense subset of 9'(1, then the correspondence is 
already determined by that in (4) restricted to xED, or by any of the four 
relations in (5) when a and b are both restricted to D. 

PROOF. Let us write 

Vx E 9'(1: Ix = (-00, x]. 

Then Ix E gl so that f.J-(J'\) is defined; call it F(x) and so define the function 
F on 9'(1. We shall show that F is a d.f. as defined in Chapter 1. First of all, F 
is increasing by property (viii) of the measure. Next, if Xn t x, then IX

n 
t Ix, 

hence we have by (ix) 

(6) 

Hence F is right continuous. [The reader should ascertain what changes should 
be made if we had defined F to be left continuous.] Similarly as x t -00, I x ,} 

0; as x t +00, Ix t 21(1. Hence it follows from (ix) again that 

lim F(x) = lim f.J-(/x) = f.J-(0) = 0; 
x,!.-oo x,!.-oo 

lim F(x) = lim f.J-(/x) = f.J-(Q) = 1. 
xt 100 xt I 00 

This ends the verification that F is adJ. The relations in (5) follow easily 
from the following complement to (4): 

f.J-(( -00, x)) = F(x-). 

To see this let Xn < x and Xn t x. Since lXI/ t (-00, x), we have by (ix): 

F(x-) = lim F(xn ) = f.J-(( -00, xn )) t f.J-(( -00, x)). 
n--+oo 

To prove the last sentence in the theorem we show first that (4) restricted 
to XED implies (4) unrestricted. For this purpose we note that f.J-(( -00, x]), 
as well as F(x), is right continuous as a function of x, as shown in (6). 
Hence the two members of the equation in (4), being both right continuous 
functions of x and coinciding on a dense set, must coincide everywhere. Now 
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suppose, for example, the second relation in (5) holds for rational a and b. For 
each real x let an, bn be rational such that an t -00 and bn > x, bn t x. Then 
f.J-((a n , bn )) -+ f.J-(( -00, x]) and F(bn -) - F(an) -+ F(x). Hence (4) follows. 

Incidentally, the correspondence (4) "justifies" our previous assumption 
that F be right continuous, but what if we have assumed it to be left continuous? 

Now we proceed to the second-half of the correspondence. 

Theorem 2.2.2. Each dJ. F determines a p.m. f.J- on g(31 through anyone of 
the relations given in (5), or alternatively through (4). 

This is the classical theory of Lebesgue-Stieltjes measure; see, e.g., 
Halmos [4] or Royden [5]. However, we shall sketch the basic ideas as an 
important review. The dJ. F being given, we may define a set function for 
intervals of the form (a, b] by means of the first relation in (5). Such a function 
is seen to be countably additive on its domain of definition. (What does this 
mean'?) Now we proceed to extend its domain of definition while preserving 
this additivity. If S is a countable union of such intervals which are disjoint: 

we are forced to define f.J-(S), if at all, by 

i i 

But a set S may be representable In the form above In dIfferent ways, so 
we must check that this definition leads to no contradiction: namely that it 
depends really only on the set S and not on the representation. Next, we notice 
that any open intelval (u, b) is in the extended domain (why?) and indeed the 
extended definition agrees with the second relation in (5). Now it is well 
known that any open set U in ;y}?1 is the union of a countable collection of 
disjoint open intervals [there is no exact analogue of this in ;;?lln for n > 1], say 
U = Ui(Ci, d i ); and this representation is unique. Hence again we are forced 
to define f.J-CU), If at all, by 

Having thus defined the measure for all open sets, we find that its values for 
all closed sets are thereby also determined by property (vi) of a probability 
measure. In particular, its value for each singleton {a} is determined to be 
F(a) - F(a-), which is nothing but the jump of Fat a. Now we also know its 
value on all countable sets, and so on - all this provided that no contradiction 
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is ever forced on us so far as we have gone. But even with the class of open 
and closed sets we are still far from the B.F. ,q;I. The next step will be the Go 
sets and the F (j sets, and there already the picture is not so clear. Although 
it has been shown to be possible to proceed this way by transfinite induction, 
this is a rather difficult task. There is a more efficient way to reach the goal 
via the notions of outer and inner measures as follows. For any subset 5 of 
,0'(1 consider the two numbers: 

p, *(5) = inf p,(U), 
Uopen, u:;s 

p,*(5) = sup p,(C). 
C closed, CCS 

p, * is the outer measure, p,* the inner measure (both with respect to the given 
F). It is clear that p,*(5) ~ p,*(5). Equality does not in general hold, but when 
it does, we call 5 "measurable" (with respect to F). In this case the common 
value will be denoted by p,(5). ThIS new definition requires us at once to 
check that it agrees with the old one for all the sets for which ,u has already 
been defined. The next task is to prove that: (a) the class of all measurable 
sets fonns a B.P., say :t'; (b) on this :t', the function p, is a p.m. Details of 
these proofs are to be found in the references given above. To finish: since 
L is a B.F., and it contains all intervals of the fonn (a, b], it contains the 
minimal B.P. .:Jjl with this property. It may be larger than ;EI, indeed it is 
(see below), but this causes no harm, for the restriction of p, to 9')1 is a p.m. 
whose existence is asserted in Theorem 2.2.2. 

Let us mention that the introduction of both the outer and inner measures 
is useful for approximations. It follows, for example, that for each measurable 
set Sand E > 0, there eXIsts an open set U and a closed set C such that 
U :::) 5 ::) C and 

(7) 

There is an alternative way of defining measurability through the use of the 
outer measure alone and based on Caratheodory's criterion. 

It should also be remarked that the construction described above for 
(0l'I, ~I , 11') is that of a "topological measure space", where the B.P. is gener-
ated by the open sets of a given topology on 9'(1, here the usual Euclidean 
one. In the general case of an "algebraic measure space", in which there is no 
topological structure, the role of the open sets is taken by an arbitrary field 0'b, 
and a measure given on dtJ may be extended to the minimal B.F. q; containing 
~ in a similar way. In the case of 921, such an 0'b is given by the field illo of 
sets, each of which is the union of a finite number of intervals of the fonn (a, 
b], (-00, b], or (a, (0), where a E 9il , bE 911. Indeed the definition of the 
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outer measure given above may be replaced by the equivalent one: 

(8) 
n 

where the infimum is taken over all countable unions Un Un such that each 
Un E.:13o and Un Un::) E. For another case where such a construction is 
required see Sec. 3.3 below. 

There is one more question: besides the fJ, discussed above is there any 
other p.m. v that corresponds to the given F in the same way? It is important 
to realize that this question is not answered by the preceding theorem. It is 
also worthwhile to remark that any p.m. v that is defined on a domain strictly 
containing a'] 1 and that coincides with fJ, on a'31 (such as the fJ, on c:i' as 
mentioned above) will certainly correspond to F in the same way, and strictly 
speaking such a v is to be considered as distinct from fJ,. Hence we should 
phrase the question more precisely by considering only p.m.'s on ;.:21. This 
will be answered in full generality by the next theorem. 

Theorem 2.2.3. Let fJ, and v be two measures defined on the same B.F. '!:f , 

which is generated by the field ~. If either fJ, or v IS O"-fimte on Yi), and 
f.,£ (E) - v(E) for every E E 0\i, then the same is true for every E E '!:f, and 
thus fJ, = v. 

PROOF. We give the proof only in the case where fJ, and v are both finite, 
leavmg the rest as an exercise. Let 

(i = {E E q;: fJ,(E) = vee)}, 

then (P ::) :'lU by hypothesis. But -(f' is also a monotone class, for if EnE -(f' for 
every 1l and En t E or En t E, then by the monotone property of fJ; and v, 
respectively, 

fJ,(E) = limfJ,(En) = lim v(En) = vee). 
n n 

It follows from Theorem 2.1.2 that (if ::) '!:f, which proves the theorem. 

Remark. In order that fJ; and 'vi coincide on .#0, it is sufficient that they 
coincide on a collection § such that finite disjoint unions of members of § 

constitute ~. 

Corollary. Let fJ, and v be O"-finite measures on ;d31 that agree on all intervals 
of one of the eight kinds: (a, b], (a, b), [a, b), [a, b], (-00, b], (-00, b), [a, (0), 
(a, (0) or merely on those with the endpoints in a given dense set D, then 
they agree on ,cj31. 
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PROOF. In order to apply the theorem, we must verify that any of the 
hypotheses implies that J1 and v agree on a field that generates 213. Let us take 
intervals of the first kind and consider the field d30 defined above. If J1 and v 
agree on such intervals, they must agree on g(3o by countable additivity. This 
finishes the proof. 

Returning to Theorems 2.2.1 and 2.2.2, we can now add the following 
complement, of which the first part is trivial. 

Theorem 2.2.4. Given the p.m. J1 on ill 1 , there is a unique dJ. F satisfying 
(4). Conversely, given the dJ. F, there is a unique p.m. satisfying (4) or any 
of the relations in (5). 

We shall simply call J1 the p.m. of F, and F the d.f of J1. 
Instead of (?J?I , :JJI) we may consider its restriction to a fixed interval [a, 

b]. Without loss of generality we may suppose this to be '11 = [0, 1] so that we 
are in the situation of Example 2. We can either proceed analogously or reduce 
it to the case just discussed, as follows. Let F be a d.f. such that F 0 for x ::s ° and F = 1 for x 2: 1. The probability measure J1 of F will then have support 
in [0, 1], since J1((-00, 0» = ° = J1((1, 00» as a consequence of (4). Thus 
the trace of (,24>1, .'";'1)1, f.,/,) on '1/ may be denoted simply by (0£1, ill, f.,/,), where 
g(3 is the trace of .J7)1 on '11. Conversely, any p.m. on 93 may be regarded as 
such a trace. The most mterestmg case IS when F IS the "umform dIstrIbutIOn" 
on '11: 

F(x) - {~ 
for x < 0, 
forO<x<l, 
for x > 1. 

The corresponding measure m on 93 is the usual Borel measure on [0, 1], 
while its extension on :L as described in Theorem 2.2.2 is the usual Lebesgue 
measure there. It is well known that J is actually larger than !/3~ indeed (1:, m) 
is the completion of (.;13, m) to be discussed below. 

DEFINITION. The probability space (n, :':f ,~) is said to be complete iff 
any subset of a set in./ft with :7>(F) = ° also belongs to :':f . 

Any probability space (n, :':f , ,0/) can be completed according to the next 
theorem. Let us call a set in .Jf with probability zero a null set. A property 
that holds except on a null set is said to hold almost everywhere (a.e.), almost 
surely (a.s.), or for almost every (.r). 

Theorem 2.2.5. Given the probability space (n, dJ ,9), there exists a 
complete space (n, ,], .P) such that ,-0 C :J:f and.J? = ;~ on :Jf. 
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PROOF. Let c I " be the collection of sets that are subsets of null sets, and 
let ~;f be the collection .of subsets of Q each of which differs from a set in g;; 
by a subset of a null set. Precisely: 

(9) g; = {E C Q: E ~ F E ~+/" for some F E :-0 }. 

It is easy to verify, using Exercise 1 of Sec. 2.1, that ~;f is a B.F. Clearly it 
contains g;;. For each E E g;;, we put 

:??(E) = :??(F), 

where F is any set that satisfies the condition indicated in (7). To show that 
this definition does not depend on the choice of such an F, suppose that 

E ~ Fl E .A/, 

Then by Exercise 2 of Sec. 2.1, 

(E ~Fd~(E ~F2) = (F] ~F2)~(E ~E) = FJ ~F2. 

as was to be shown. We leave it as an exercise to show that:?? is a measure 
on :if . If E E ;j6, then E tJ. E 0 E vV, hence @2(E) @2(E). 

Finally, it is easy to verify that if E E g; and :??(E) = 0, then E E ~/V. 

Hence any subset of E also belongs to .AI" and so to :-0. This proves that 
(Q, 4, UP) is complete 

What is the advantage of completion? Suppose that a certain property, 
such as the existence of a certain limit, is known to hold outside a certain set 
N with 9(N) O. Then the exact set on which it fails to hold is a subset 
of N, not necessarily in g;, but will be in ~ with :??(N) = O. We need the 
measurability of the exact exceptional set to facilitate certain dispositions, such 
as defining or redefining a function on it; see Exercise 25 below. 

EXERCISES 

In the following, fJ, is a p.m. on :E1 and F is its d.f. 
*11. An atom of any measure g on gel is a singleton {x} such that 

fJ,({x}) > O. The number of atoms of any O"-finite measure is countable. For 
each x we have p;({x}) F(x) F(x ). 

12. fJ, is called atomic iff its value is zero on any set not containing any 
atom. This is the case if and only if F is discrete. fJ, is without any atom or 
atomless if and only if F is continuous. 

13. fJ, is called singular iff there exists a set Z with m(Z) = 0 such 
that fJ,(ZC) = O. This is the case if and only if F is singular. [HINT: One ha1f 
is proved by using Theorems 1.3.1 and 2.1.2 to get IB F' (x) dx ~ fJ,(B) for 
B E <~l; the other requires Vitali's covering theorem.] 
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14. Translate Theorem 1.3.2 in terms of measures. 
* 15. Translate the construction of a singular continuous d.f. in Sec. 1.3 in 

terms of measures. [It becomes clearer and easier to describe!] Generalize the 
construction by replacing the Cantor set with any perfect set of Borel measure 
zero. What if the latter has positive measure? Describe a probability scheme 
to realize this. 

16. Show by a trivial example that Theorem 2.2.3 becomes false if the 
field ~ is replaced by an arbitrary collection that generates 87. 

17. Show that Theorem 2.2.3 may be false for measures that are O"-finite 
on ;:",h. [HINT: Take Q to be {I, 2, ... , oo} and st to be the finite sets excluding 
00 and their complements, JL(E) = number of points in E, JL(oo) =1= v(oo).] 

18. Show that the;!f in (9) I is also the collection of sets of the form 
FUN [or F\N] where F E q; and N E ~,V. 

19. Let L I" be as in the proof of Theorem 2.2.5 and A6 be the set of all 
null sets in (Q, ;!f , .:?P). Then both these collections are monotone classes, and 
closed with respect to the operation "\". 

*20. Let (Q,;!f, £:?P) be a probability space and .'1+1 a Borel sub field of 
;:",h. Prove that there exists a minimal B.F. 9<2 satisfying S?1 C 9<2 c?7 and 
L 16 C .::fhz, where ~ 16 is as in Exercise 19 .• A~ set E belongs to 862 if and only 
if there exists a set F in ;!f1 such that E f::.F E ,A6. This ~ is called the 
augmentatwn of !}1 wIth respect to (n, qT, E7'). 

21. Suppose that F has all the defining properties of a dJ. except that it 
is not assumed to be right continuous. Show that Theorem 2.2.2 and Lemma 
remain valid with F replaced by ft, provided that we replace F(x), F(b), F(a) 
in (4) and (5) by F(x±), F(b± ). F(a± ), respectively. What modification is 
necessary in Theorem 2.2.4? 

22. For an arbitrary measure €7' on a B.F. tf, a set E in g; is called an 
atom of ,q; iff ,CiJi(E) > ° and FeE, F E;!/r imply 9(F) = £:?P(E) or £:?P(F) = 
0. ~j"J is called atomic iff its value is zero over any set in ?7 that is disjoint 
from all the atoms. Prove that for a measure M on :::-,(31 this new definition is 
equivalent to that given in Exercise 11 above provided we identify two sets 
whIch dIffer by a ?P-null set. 

23. Prove that if the p.m. g; is atomless. then given any a in [0. 1] 
there exists a set E E !,h with ::P(E) = a. [HINT: Prove first that there exists E 
with "arbitrarily small" plObability. A quick plOof then follows flOm Zom's 
lemma by considering a maximal collection of disjoint sets, the sum of whose 
probabilities does not exceed a. But an elementary proof without using any 
maximality principle is also possible.] 

*24. A point x is said to be in the support of a measure JL on 273n iff 
every open neighborhood of x has strictly positive measure. The set of all 
such points is called the support of JL. Prove that the support is a closed set 
whose complement is the maximal open set on which JL vanishes. Show that 
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the support of a p.m. on ~1 is the same as that of its d.f., defined in Exercise 6 
of Sec. 1.2. 

*25. Let f be measurable with respect to ~, and Z be contained in a null 
set. Define 

f={~ on ZC, 
on Z, 

where K is a constant. Then f is measurable with respect to ~ provided that 
(Q, ~ , gP) is complete. Show that the conclusion may be false otherwise. 



3 

3.1 

Random variable. 
Expectation. Independence 

General definitions 

Let the probability space (Q,;j/t, gJ» be given. @il (00, +(0) the (finite) 
real line, 2l?* = [-00, +00] the extended real line, qjI = the Euclidean Borel 
field on 911, JI3* = the extended Borel field. A set in 9(3* IS just a set in 0:'3 
possibly enlarged by one or both points ±oo 

DEFINITION OF A RANDOM VARIABLE. A real, extended-valued random varI
able is a function X whose domain is a set ~ in dr and whose range is 
contained in ?J?* = [-00, +00] such that for each B in a'3*, we have 

(1) {w:X(w) E B} E ~ n~r 

where ~ n .1fr is the trace of ;y, on ~. A complex-valued random variable is 
a function on a set ~ in ;:'r to the complex plane whose real and imaginary 
parts are both real, finite-valued random variables. 

This definition in its generality is necessary for logical reasons in many 
applications, but for a discussion of basic properties we may suppose ~ = Q 
and that X is real andfinite-valued with probability one. This restricted meaning 
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of a "random variable", abbreviated as "r.v.", will be understood in the book 
unless otherwise specified. The general case may be reduced to this one by 
considering the trace of (Q,;jh ,q:» on ~, or on the "domain of finiteness" 
~o = {w: IX(w)1 < oo}, and taking real and imaginary parts. 

Consider the "inverse mapping" X-I from gel to Q, defined (as usual) 
as follows: 

VA C ~I:X-I(A) = {w:X(w) E A}. 

Condition (1) then states that X-I carries members of qjl onto members of ::7: 

(2) 

or in the briefest notation: 

Such a function is said to be measurable (with respect to ~). Thus, an r.v. is 
just a measurable function from Q to gel (or ge*). 

The next proposition, a standard exercise on inverse mapping, is essential. 

Theorem 3.1.1. For any functIOn X from n to 0'(1 (or 0'(*), not necessanly 
an r.v., the inverse mapping X-I has the following properties: 

X-I(A C
) - (X-I (A)t. 

X 1 (YAa) -Ux 1 (Aa), 

a 

Xl (0 Aa) -AX 1 (Aa). 
a 

where a ranges over an arbitrary index set, not necessarily countable. 

Theorem 3.1.2. X is an r v if and only if for each real number x, or each 
real number x in a dense subset of qzl, we have 

{w: X(w) ::s x} E ~f . 

PROOF. The preceding condition may be written as 

(3 ) 'Ix: X-I (( -00, x]) E ;j. 

Consider the collection ,(;j of all subsets 5 of 321 for which X-I (5) E :¥". From 
Theorem 3.1.1 and the defining properties of the Borel field ,J/ , it follows that 
if 5 E ,\1, then 
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Thus SC E sf and U j S j E LQ/ and consequently LQ/ is a B.F. This B.F. contains 

all intervals of the fonn (-00, x], which generate.':131 even if x is restricted to 
a dense set, hence ,e/ ::) aJI , which means that X-I (B) E ':!f for each B E ,-?J I . 

Thus X is an r.v. by definition. This proves the "if' part of the theorem; the 
"only if' part is trivial. 

Since .:?P(.) is defined on ~:fr, the probability of the set in (1) is defined 
and will be written as 

2P{X(w) E B} or ,c(){X E B}. 

The next theorem relates the p.m. qp to a p.m. on (~I, ~I) as discussed 
in Sec. 2.2. 

Theorem 3.1.3. Each r.v. on the probability space (Q,;!ft, go) induces a 
probability space (22[1,2(31,1-') by means of the following correspondence: 

(4) VB E Jljl: f.1;(B) .9'{X-1 (B» 9'{X E B). 

PROOF. Clearly fl(E) > O. If the En's are disjoint sets in 273 1, then the 
X-I (Bn)'s are disjoint by Theorem 3.1.1. Hence 

n n 

Finally X 1 (?J?l) = n, hence p,(fJ}?I) = 1. Thus p, IS a p.m. 

The collection of sets {X 1 (5), 5 c .1?1} is a B.P. for any function X. If 
X is a r.v. then the collection {X-I (B), B E ~~I} is called the B.F. generated 
by X. It is the smallest Borel subfield of !f which contains all sets of the form 
{w: X(w) :s x}, where x E ::wI. Thus (4) is a convenient way of representing 
the measure ?/J when it is restricted to this subfield; symbolically we may 
write it as follows: 

p, = :?/> 0 X- I . 

This p, is called the "probability distribution measure" or p.m. of X, and its 
associated d.f. F according to Theorem 2.2.4 will be called the d.f. of X. 
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Specifically, F is given by 

F(x) = p,(( -00, x]) = 2P{X :::s x}. 

While the r.v. X determines p, and therefore F, the converse is obviously 
false. A family of r.v.'s having the same distribution is said to be "identically 
distributed" . 

Example 1. Let (Q,./) be a discrete sample space (see Example I of Sec. 2.2). 
Every numerically valued function is an r. v. 

Example 2. (W, gJ, m). 

In this case an r. v. is by definition just a Borel measurable function. According to 
the usual definition, 1 on W is Borel measurable iff 1-1 (qJJI) C qJJ. In particular, the 
function 1 given by 1 (())) = ()) is an r. v. The two r. v. 's ()) and 1 - ()) are not identical 
but are identically distributed; in fact their common distribution is the underlying 
measure m. 

Example 3. (91I , gl, JL). 

The definition of a Borel measurable function is not affected, since no measure 
is involved; so any such function is an r.v., whatever the given p.m. JL may be. As 
in Example 2, there exi~t~ an r.v. with the underlying Il a~ it~ p.m.; ~ee Exerci~e 3 
below. 

We proceed to produce new r.v.'s from given ones. 

Theorem 3.1.4. If X is an r.v., f a Borel measurable function [on (:n1, @1 )], 

then f(X) is an r.v. 

PROOF. The quickest proof is as follows. Regarding the function f (X) of 
w as the "composIte mappmg": 

foX: w ---+ f(X(w», 

we have (f 0 X)-I = X-I 0 f- 1 and consequently 

The reader who is not familiar with operations of this kind is advised to spell 
out the proof above in the old-fashioned manner, which takes only a little 
longer. 

We must now discuss the notion of a random vector. This is just a vector 
each of whose components is an r. v. It is sufficient to consider the case of two 
dimensions, since there is no essential difference in higher dimensions apart 
from complication in notation. 
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We recall first that in the 2-dimensional Euclidean space ~??2, or the plane, 
the Euclidean Borel field dP is generated by rectangles of the fonn 

{(x, y): a < x :::s b, c < y :::s d}. 

A fortiori, it is also generated by product sets of the fonn 

BI X B2 = {(x, y):x E B I , Y E B2}, 

where BI and B2 belong to ~I. The collection of sets, each of which is a finite 
union of disjoint product sets, fonns a field 9(35. A function from :?lG2 into :?lG I 

is called a Borel measurable function (of two variables) iff f- I (~I) C :!l32• 

Written out, this says that for each I-dimensional Borel set B, viz., a member 
of .061, the set 

{(x, y): f(x, y) E B} 

is a 2 dimensional Borel set, viz. a member of 962 . 

Now let X and Y be two r.v.'s on (Q, df, 9). The random vector (X, Y) 
induces a probability v on 9(32 as follows: 

(5) VA E gj2: v(A) = 9{(X, Y) E A}, 

the right side being an abbreviation of .c?>({w: (X(w), Yew»~ E AD. This v 
is called the (2-dimensional, probability) distl ibutioll or simply the p.m. of 
(X, Y). 

Let us also define, in imitation of X I, the inverse mapping (X, Y) I by 
the following fonnula' 

VA E ]i: (X, y)-I(A) {tV: (X, Y) E A}. 

This mapping has pIOperties analogous to those of X I gl vell in 
Theorem 3.1.1, since the latter is actually true for a mapping of any two 
abstract spaces. We can now easily generalize Theorem 3.1.4. 

Theorem 3.1.5. If X and Y are r.v.'s and f is a Borel measurable function 
of two varIables, then j (X, Y) IS an r.v. 

PROOF. 

The last inclusion says the inverse mapping (X, y)-I carries each 2-
dimensional Borel set into a set in ;~. This is proved as follows. If A = 
BI X B2, where BI E; .1'3 1, B2 E ,1(31, then it is clear that 
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by (2). Now the collection of sets A in ?J?2 for which (X, y)-I (A) E ::":f fonns 
a B.F. by the analogue of Theorem 3.1.1. It follows from what has just been 
shown that this B.F. contains :Y36 hence it must also contain q-P. Hence each 
set in !)32 belongs to the collection, as was to be proved. 

Here are some important special cases of Theorems 3.1.4 and 3.1.5. 
Throughout the book we shall use the notation for numbers as well as func
tions: 

(6) x V Y = max(x, y), x /\ y = min(x, y). 

Corollary. If X is an r.v. and f is a continuous function on 9'(1, then f(X) 
is an r.v.; in particular xr for positive integer r, IXl r for positive real r, e-AX , 

eitX for real A and t, are all r.v.'s (the last being complex-valued). If X and Y 
are r.v.'s, then 

X v y, X /\ y, X + y, X - y, X· Y, XjY 

are r. v.' s, the last provided Y does not vanish. 

Generalization to a finite number of r.v.'s is immediate. Passing to an 
infinite sequence, let us state the following theorem, although its analogue in 
real functIOn theory should be well known to the reader. 

Theorem 3.1.6. If {X j, j > I} is a sequence of r. v.' s, then 

liminfXj, lim SUpXj 
J J J J 

are l.v.'s, not necessarily finite-valued with pwbability one though evelywhele 
defined, and 

.lim Xj 
J-+OO 

is an r.v. on the set .6. on which there is either convergence or divergence to 
±oo. 

PROOF. To see, for example, that SUPjXj is an r.v., we need only observe 
the relation 

"Ix E g(1: {supXj :s x} = n{Xj :s x} 
j j 

and use Theorem 3.1.2. Since 

limsupXj = inf(supX j ), 
j n j~n 
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and lim j--+ 00 X j exists [and is finite] on the set where lim sup j X j = lim infj X j 
[and is finite], which belongs to ~ , the rest follows. 

Here already we see the necessity of the general definition of an r.v. 
given at the beginning of this section. 

DEFINITION. An r.v. X is called discrete (or countably valued) iff there 
is a countable set B C 3(1 such that :?J>(X E B) = 1. 

It is easy to see that X is discrete if and only if its dJ. is. Perhaps it is 
worthwhile to point out that a discrete r.v. need not have a range that is discrete 
in the sense of Euclidean topology, even apart from a set of probability zero. 
Consider, for example, an r.v. with the dJ. in Example 2 of Sec. 1.1. 

The following terminology and notation will be used throughout the book 
for an arbitrary set n, not necessarily the sample space. 

DEFINITION. For each ;6. C Q, the functIon I D. (.) defined as follows: 

If W E LS, 
if W E n\~, 

is called the indicator (function) of ~. 

Clearly 1 D. is an f. v. if and only if ~ E ;? . 

A countable partition of Q is a countable family of disjoint sets {A;}, 
wi th A j E;-'ir for each j and such that Q = U j A j. We have then 

j 

More generally, let b j be arbitrary real numbers, then the functIOn cp defined 
below: 

j 

is a discrete r.v. Vole shall call ((J the r.v. belonging to the weighted partition 
{Aj;b j }. Each discrete r.v. X belongs to a certain partition. For let {b j } be 
the countable set in the definition of X and let A j = {w: X (w) = b j}, then X 
belongs to the weighted partition {Aj;b j }. If j ranges over a finite index set, 
the partition is called finite and the r. v. belonging to it simple. 

EXERCISES 

1. Prove Theorem 3.1.1. For the "direct mapping" X, which of these 
properties of X-I holds? 
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2. If two r.v.'s are equal a.e., then they have the same p.m. 

*3. Given any p.m. fJ., on C::f?I, ::i'3 I), define an r.v. whose p.m. is fJ.,. Can 
this be done in an arbitrary probability space? 

*4. Let e be uniformly distributed on [0,1]. For each dJ. F, define G(y) = 
sup{x: F(x) :s y}. Then G(e) has the dJ. F. 

*5. Suppose X has the continuous dJ. F, then F(X) has the uniform 
distribution on [0,1]. What if F is not continuous? 

6. Is the range of an r.v. necessarily Borel or Lebesgue measurable? 

7. The sum, difference, product, or quotient (denominator nonvanishing) 
of the two discrete r. v.' s is discrete. 

8. If Q is discrete (countable), then every r.v. is discrete. Conversely, 
every r.v. in a probability space is discrete if and only if the p.m. is atomic. 
[HINT: Use Exercise 23 of Sec. 2.2.] 

9. If f is Borel measurable, and X and Y are identically distributed, then 
so are f(X) and fEY). 

lim sup An, lim inf An in terms of those of A I, A 2 , or An. [For the definitions 
of the limits see Sec. 4.2.] 

*11. Let ':!ft {X} be the minimal B.F. with respect to which X is measurable. 
Show that A E ~ {X} if and only if A = X I (B) for some B E qjl. Is this B 
unique? Can there be a set A rt. /231 such that A - X-I (A)? 

12. Generalize the assertion in Exercise 11 to a finite set of r.v.'s. [It is 
possible to generalize even to an arbitrary set of r.v.'s.] 

3.2 Properties of mathematical expectation 

The concept of "(mathematical) expectation" is the same as that of integration 
in tbe probability space witb respect to tbe measure .CJ)? Tbe reader is supposed 
to have some acquaintance with this, at least in the particular case (11, 9'3, m) 
or (Ml, :f51 , m). [In the latter case, the measure not being finite, the theOIY 
of integration is slightly more complicated.] The general theory is not much 
different and will be briefly reviewed. The r.v.'s below will be tacitly assumed 
to be finite everyvv/zere to avoid trivial complications. 

For each positive discrete r.v. X belonging to the weighted partition 
{A j; b j}, we define its expectation to be 

(1) leX) = L b//;0{A j }. 

j 

This is either a positive finite number or +00. It is trivial that if X belongs 
to different partitions, the corresponding values given by (1) agree. Now let 
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X be an arbitrary positive r.v. For any two positive integers m and n, the set 

{ n n+l} Amn = w: - < X(w) < --
2m - 2m 

belongs to ;'J. For each m, let Xm denote the r.v. belonging to the weighted 
partition {Amn; n 12m}; thus X m = n 12m if and only if n 12m :s X < (n + 
l)/2m . It is easy to see that we have for each m: 

1 
Vw: Xm(w) :s Xm+l (w); O:s X(w) - Xm(w) < 2m' 

Consequently there is monotone convergence: 

Vw: lim Xm(w) = X(w). 
m...-+oo 

The expectation Xm has just been defined; it is 

n n n + 1 
00 { } 

If for one value of m we have <8'eXm ) - +00, then we define $(X) - +00; 
otherwise we define 

"EX) 
m--+oo 

the limit existing, finite or mfimte, smce (g!(Xm) IS an mcreasmg sequence of 
real numbers It should be shown that when X is discrete, this new definition 
agrees with the previous one. 

For an arbitrary X, put as usual 

(2) X X+ X where X+ X v 0, X ( X) v O. 

Both X+ and X are positive I.v.'s, and so their expectations are defined. 
Unless both r(x+) and cf(X-) are +00, we define 

(3) cf(X) = J(X+) - (r(X-) 

with the usual convention regarding 00. We say X has a finite or infinite 
expectation (or expected value) according as e:'(X) is a finite number or ±oo. 
In the expected case we shall say that the expectation of X does not exist The 
expectation, when it exists, is also denoted by 

in X(w)//J(dw). 

More generally, for each A in .-1t, we define 

(4) 1 X(w)/fJ(dw) = J(X· 11\) 
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and call it "the integral of X (with respect to ~) over the set A". We shall 
say that X is integrable with respect to ~J> over A iff the integral above exists 
and is finite. 

In the case of (321,2(51, fJ.,), if we write X = f, w = x, the integral 

I X(w)9(dw) = I f(x)fJ.,(dx) 

is just the ordinary Lebesgue-StieJtjes integral of f with respect to fJ.,. If F 
is the dJ. of fJ., and A = (a, b], this is also written as 

r f (x) dF(x). 
J(a,b] 

This classical notation is really an anachronism, originated in the days when a 
point function was more popular than a set function. The notation above must 
then amend to 

Ja+O Ja 0 Ja+O Ja 0 

to distinguish clearly between the four kinds of intervals Ea, b], [a, b], (a, b), 
[a, b). 

In the case of (11, m, m ), the integral reduces to the ordinary Lebesgue 
integral 

[b {(x)m(dx) _ [b ((x) dx 

Here m is atomless, so the notatIOn IS adequate and there IS no need to dIstin
guish between the different kinds of intervals. 

The general integral has the familiar properties of the Lebesgue integral 
on [0, 1]. 'Ne list a fe w below for I eady I efeI ence, some being easy conse-
quences of others. As a general notation, the left member of (4) will be 
abbreviated to J~ X d;Y>. In the following, X, Y are r.v.'s; a, b are constants; 
A is a set in q; 

(i) Absolute mtegrabIluy. fAx dPfJIS fimte If and only If 

J~ IXI d!P < 00. 

(ii) Linearity. 

1 (aX + bY)dUJ? = a 1 X dPJ> + b I Y d.:J/J 

provided that the right side is meaningful, namely not +00 - 00 or -00 + 00. 
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(iii) Additivity over sets. If the An's are disjoint, then 

(iv) Positivity. If X ~ 0 a.e. on A, then 

£ Xdg:>~ O. 

(v) Monotonicity. If X I :s X :s X 2 a.e. on A, then 

£ Xl dg:>:s £ X dg:>:s £ X2dg:>. 

(vi) Mean value theorem. If a :s X :s b a.e. on A, then 

a9(A) < £ Xd9 < b9(A). 

(vii) Modulus inequality. 

(viii) Dominated convergence theorem. If limn -HXJ Xn X a.e. or merely 
in measure on A and "In: IXn I :s Y a.e. on A, with fA Y dg:> < 00, then 

(5) lim J Xn d9 ( X d9 J lim Xn d9. 
A n-+oo 

(ix) Bounded convergence theorem. If limn-+ oo Xn = X a.e. or merely 
in measure on A and there exists a constant M such that 'in: IXII I < M a.e. 
on A, then (5) is true. 

ex) Monotone convergence theorem. If Xn > 0 and Xn t X a.e. on A, 
then (5) is again true provided that +00 is allowed as a value for either 
member. The condition "Xn ~ 0" may be weakened to: "0"(X'l) > -00 for 
some n". 

(xi) Integration term by term. If 

then Ln IXn I < 00 a.e. on A so that Ln Xn converges a.e. on A and 
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(xii) Fatou's lemma. If Xn ~ 0 a.e. on A, then 

r ( lim Xn) dg'J ~ lim r XII d'!? 
} II. n--+oo 11--+00 } II. 

Let us prove the following useful theorem as an instructive example. 

Theorem 3.2.1. We have 
00 00 

(6) 
11=1 11=1 

so that {(IXI) < 00 if and only if the series above converges. 

PROOF. By the additivity property (iii), if All = {n ~ IXI < n + I}, 

$(IXI) = tL IXldiJ'. 
n=O n 

Hence by the mean value theorem (vi) applied to each set An: 

00 00 00 

It I emains to show 
00 00 

(8) L nfYJ(An) = L 2P(IXI ~ n), 
n-O n-O 

finite or infinite. N0'.V the partial sums of the series on the left may be rear 
ranged (Abel's method of partial summation!) to yield, for N ~ 1, 

N 

(9) L n {9(IXI ~ n) :?>(IXI ~ n + l)} 
n=O 

N 

L{n (n 1 )}£;y')(IXI ~ n) N.o/l(IXI ~ N + 1) 
11=1 

N 

= L?(IXI ~ n) - N9(IXI ~ N + 1). 
n=1 

Thus we have 

N N N 

(10) Lnf10(AIl ) ~ L!J?(IXI ~ n) ~ Lng>(An) +N:J0(IXI ~ N + 1). 
n=1 11=1 n=1 
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Another application of the mean value theorem gives 

N3'(IXI :::: N + 1) :s 1 IXI dPf>. 
(IXI~N+l) 

Hence if cf(IXI) < 00, then the last term in (10) converges to zero as N -+ 00 

and (8) follows with both sides finite. On the other hand, if cf(IXI) = 00, then 
the second term in (10) diverges with the first as N -+ 00, so that (8) is also 
true with both sides infinite. 

Corollary. If X takes only positive integer values, then 

00 

[(X) = L9(X:::: n). 
n=1 

EXERCISES 

1. If X:::: 0 a.e. on A and JA X dPJ5 = 0, then X = a a.e. on A. 

*2. If {(IXI) < 00 and limn...-+ oo 9(An) 0, then limn ...-+ oo fAX d9 O. 
n 

In particular 

lim [ X d9= O. 

3. Let X:::: 0 and JnX d9 = A, 0 < A < 00. Then the set function v 
defined on:if as follows: 

1 r 
v(A) = - J X d?7J, 

A A 

is a probability measure on 4 

4. Let c be a fixed constant, c > O. Then c&'(IXI) < 00 if and only if 

L~(IXI :::: cn) < 00. 

11-1 

In particular, if the last series converges for one value of c, it converges for 
all values of c. 

5. For any r> 0, J'(IXI') < 00 if and only if 

00 

L n,-l ~(IXI :::: n) < 00. 

n=l 
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* 6. Suppose that supn IXIl I :s Y on A with fA Y d:~ < 00. Deduce from 
Fatou's lemma: 

j (lim X,Jd~ ~ lim r Xn d?J1. 
A 11-+00 11-+00 J A 

Show this is false if the condition involving Y is omitted. 

*7. Given the r.v. X with finite {(X), and E > 0, there exists a simple r.v. 
X E (see the end of Sec. 3.1) such that 

cF (IX - X E I) < E. 

Hence there exists a sequence of simple r. v.' s X m such that 

lim cf(IX - Xml) = O. 
m-+OO 

We can choose {Xm} so that IXml :s IXI for all m. 

*8. For any two sets Al and A2 in qT, define 

then p is a pseudo-metric in the space of sets in :F; call the resulting metric 
space M(0T, g"». PIOve that fOl each integrable r .v. X the mapping of MC~ , go) 
to ll?l given by A -+ .~ X dq? is continuous. Similarly, the mappmgs on 
M(::f , ;:7J1) x M(~ , q?) to M(~ , ,9?) given by 

are all continuous. If (see Sec. 4.2 below) 

lim sup A'l - lIm mf A'l 
II n 

modulo a null set, we denote the common equivalence class of these two sets 
by limll All' Prove that in this case {All} converges to limll All in the metric 
p. Deduce Exercise 2 above as a special case. 

There is a basic relation between the abstract integral with respect to 
,JfJ over sets in ;0 on the one hand, and the Lebesgue Stieltjes integral with 
respect to g over sets in :131 on the other, induced by each r.v. We give the 
version in one dimension first. 

Theorem 3.2.2. Let X on (Q, ,/f ,Y» induce the probability space 
(.-171, .131, f.1) according to Theorem 3.1.3 and let f be Borel measurable. Then 
we have 

(11) 

provided that either side exists. 
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PROOF. Let B E .131, and f = I B, then the left side in (11) is ,J/J(X E B) 
and the right side is J.l(B). They are equal by the definition of J.l in (4) of 
Sec. 3.1. Now by the linearity of both integrals in (11), it will also hold if 

(12) f = Lb j lBj' 
j 

namely the r.v. on (?J?I, ,~1, J.l) belonging to an arbitrary weighted partition 
{B j ; bj }. For an arbitrary positive Borel measurable function f we can define, 
as in the discussion of the abstract integral given above, a sequence {fm, m ~ 
I} of the form (12) such that fm t f everywhere. For each of them we have 

(13) r fm(X)d9= r fmdJ.l; In J~I 
hence, letting m ---+ 00 and using the monotone convergence theorem, we 
obtain (11) whether the limits are finite or not. This proves the theorem for 
( > 0, and the general case follows in the usual way. 

We shall need the generalization of the preceding theorem in several 
dimensions. No change is necessary except for notation, which we will give 
in two dimensions. Instead of the v in (5) of Sec. 3.1, let us write the "mass 
element" as J.l2(dx, dy) so that 

v(A) - [[ 1/
2 (dx dy) ] J' , 

A 

Theorem 3.2.3. Let (X, Y) on (n,::'f, 9) induce the probability space 
(?J?2, 1;2, J.l2) and let f be a Borel measurable function of two variables. 
Then \ve have 

(14) 
r r r In j (X(w), Y(w)YP(dw) - J J j (x, Y)J.l2(dx, dy). 

~4r:2 

Note that ((X, Y) is an r.v. by Theorem 3.1.5. 

As a consequence of Theorem 3.2.2, \ve have: if J.ix and Fx denote, 
respectively, the p.m. and d.f. induced by X, then we have 

/ (X) = j xJ.lx(dx) = 100 

x dF x(X); 
/11 -00 

and more generally 

(15) /(f(X)) = ill I f(x)J.lx(dx) = 1: f(x)dFx(x) 

with the usual proviso regarding existence and finiteness. 
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Another important application is as follows: let j.l2 be as in Theorem 3.2.3 
and take f (x, y) to be x + y there. We obtain 

(16) {(X + Y) = J J (x + Y)j.l2(dx, dy) 

21(2 

= J J xj.l2(dx, dy) + J J yj.l2(dx, dy). 

21(2 ~2 

On the other hand, if we take f(x, y) to be x or y, respectively, we obtain 

t(X) = J J xj.l2(dx, dy), ct(Y) = J J yj.l2(dx, dy) 

and consequently 

(17) t(X + Y) = cfeX) + @"eY). 

This result is a case of the linearity of rt given but not proved here; the proof 
above reduces this property in the general case of (n, ~ , ~) to the corre
sponding one in the special case (~2, W2, j.l2 ). Such a reduction is frequently 
useful when there are technical difficulties in the abstract treatment. 

We end this section with a discussion of "moments". 
Let a be real, r positive, then {(IX an is called the absolute moment 

of X of order r, about a. It may be +00; otherwise, and if r is an integer, 
{((X - aY) is the corresponding moment. If j.l and F are, respectively, the 
pm and d f of X, then we have by Theorem 3 2 2· 

d (IX - air) - J Ix - ai' j.l(dx) - ] Ix - air dF(x), 
21(1 -00 

([ ((X - at) = r ex - at g(dx) = roo (x - a)' dF(x). 

For r - 1, a - 0, this reduces to leX), which is also called the mean of x. 
The moments about the mean are called central moments. That of order 2 is 
particularly important and is called the variance, var (X); its positive square 
root the standard deviation. o-(X): 

var (X) = o-2(X) = / {(X - {(X))2} = e?(X2) - {cf (X)}2. 

Vie note the inequality o-2(X):::: {(X2), which will be used a good deal 
in Chapter 5. For any positive number p, X is said to belong to LP = 
LP(n, .Y, :P) iff ([ (IXIP) < 00. 
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The well-known inequalities of Holder and Minkowski (see, e.g., 
Natanson [3]) may be written as follows. Let X and Y be r.v.'s, 1 < p < 00 

and 1/ p + l/q = 1, then 

(18) 

(19) 

I cf(XY)1 :s cf(IXYI) :s ct'(IXIP)I/p 0'(IYI Q)I/q, 

{{(IX + YIP)}I/p :s cf(IXIP)I/p + (t(IYIP)I/p. 

If Y = 1 in (18), we obtain 

(20) 

for p = 2, (18) is called the Cauchy-Schwarz inequality. Replacing IXI by 
IXl r

, where 0 < r < p, and writing r' = pr in (20) we obtain 

(21) 

The last will be referred to as the Liapounov inequality. It is a special case of 
the next inequality, of which we will sketch a proof. 

Jensen's inequality. If cP is a convex function on 0'l1, and X and cp(X) are 
integrable r.v.'s, then 

(22) cp(0U (X)) :s &'(cp(X)). 

PROOF. Convexity means: for every pOSItive )'-1, ... ,An wIth sum I we 
have 

(23) 

This is known to imply the continuity of cp, so that cp(X) is an LV. \Ve shall 
prove (22) for a simple r.v. and refer the general case to Theorem 9.1.4. Let 
then X take the value Yj with probability A j, 1 :s j :s n. Then we have by 
definition (1 ). 

n n 

leX) = L)'jYj, cf(cp(X)) = LAjCP(Yj). 
j 1 j 1 

Thus (22) follows from (23). 

Finally, we prove a famous inequality that is almost trivial but very 
useful. 

Chebyshev inequality. If cp is a strictly positive and increasing function 
on (0, (0), cp(u) = cp(-u), and X is an r.v. such that cg'{cp(X)} < 00, then for 
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each u > 0: 

PROOF. We have by the mean value theorem: 

cf{cp(X)} = r cp(X)d9 2: r cp(X)d92: cp(u)qp{IXI 2: u} 
} r2 J{\XI~UJ 

from which the inequality follows. 

The most familiar application is when cp(u) = lul P for 0 < p < 00, so 
that the inequality yields an upper bound for the "tail" probability in terms of 
an absolute moment. 

EXERCISES 

9. Another proof of (14): verify it first for simple r.v.'s and then use 
Exercise 7 of Sec. 3.2. 

10. Prove that If 0 :s r < rl and &'(IXI") < 00, then cf(IXl r
) < 00. Also 

that {(IXl r ) < 00 if and only if cS,(IX - air) < 00 for every a. 

for a :s x :s I. 
*12. If X> 0 and Y> 0, p > 0, then rS'{(X + y)P} < 2P{t(X P) + 

e(yP)}. If p > 1, the factor 2P may be replaced by 2P -
1

. If 0 :::: p :::: 1, it 
may be replaced by I. 

* 13. If Xj > 0, then 

n 

or > L cff(Xj) 
j=l 

according as p :::: 1 or p 2: 1. 

*14. If p > 1, we have 

and so 

P 
1 n 1 n 

- "'X· :s - "'IX·I P 
n 0 } n 0 } 

j=l j=l 
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we have also 

Compare the inequalities. 

15. If p > 0, e'(IXIP) < 00, then xP~{IXI > x} = 0(1) as x --+ 00. 

Conversely, if xP3l{IXI > x} = 0(1), then (f'(IXIP-E) < 00 for 0 < E < p. 

* 16. For any dJ. and any a ~ 0, we have 

I: [F(x + a) - F(x)] dx = a. 

17. If F is a dJ. such that F(O-) = 0, then 

roo [1 F(x)} dx 
10 }~oo xdF(x) .s: +00. 

Thus if X is a positive r.v., then we have 

!'(X) = [00 .?>{X > x}dx = [00 .?>{X > x}dx. 
)0 Jo 

18. Prove that J~oo Ixl dF(x) < 00 if and only if 

[0 F(x) dx < 00 and [00 [1 _ F(x)] dx < 00. 
Jo 

*19. If {XII} is a sequence of identically distributed r.v.'s with finite mean, 
then 

1 
lim -t'{ max IX il} = O. 

n 11 IS}SII 

[HINT: Use Exercise 17 to express the mean of the maxImum.] 
20. For r > ], we have 

roo 1 r I 

[HINT: By Exercise 17, 

u
r r 

I(X!\ ur
) = 10 ./I(X > x)dx = }o0"(X I

/
r > v)rvr

-
1 dv, 

substitute and invert the order of the repeated integrations.] 
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3.3 Independence 

We shall now introduce a fundamental new concept peculiar to the theory of 
probability, that of "(stochastic) independence". 

DEFINITION OF INDEPENDENCE. The r. v.' s {X j' 1 :::: j :::: n} are said to be 
(totally) independent iff for any linear Borel sets {B j, 1 :::: j :::: n} we have 

(1) q> {O(Xj E Bj )} = tko/'(Xj E Bj ). 

The r.v.'s of an infinite family are said to be independent iff those in every 
finite subfamily are. They are said to be painvise independent iff every two 
of them are independent. 

Note that (1) implies that the r.v.' s in every subset of {Xj, 1 < j < n} 
are also independent, since we may take some of the B/s as ~I. On the other 
hand, (1) IS ImplIed by the apparently weaker hypothesIs: for every set of real 
numbers {Xj, 1 < j < n}· 

(2) 

J-I J-I 

The proof of the equivalence of (1) and (2) is left as an exercise. In terms 
of the p.m. J.ln induced by the random vector (X I, ... ,XII) on (3(n, YJII), and 
the p.m.' s {J.l j, 1 :::: j :::: n} induced by each X j on (?)[I, ::"731), the relation (1) 
may be written as 

(3) 

where X~=IBj is the product set BI x ... x Bn discussed in Sec. 3.1. Finally, 
we may introduce the n-dimensional distribution (unction corresponding to 
J.l n, which is defined by the left side of (2) or in alternative notation: 

then (2) may be written as 

II 

F(XI, ... , xn) = II Fj(xj). 
j=1 
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From now on when the probability space is fixed, a set in ;:':f will also be 
called an event. The events {E j, 1 :::: j :::: n} are said to be independent iff their 
indicators are independent; this is equivalent to: for any subset {h, ... h} of 
{I, ... , 11}, we have 

(4) 

Theorem 3.3.1. If {X j , 1 :::: j:::: n} are independent r.v.'s and {!j, 1 :::: j:::: 
n} are Borel measurable functions, then {! j(X j), 1 :::: j :::: n} are independent 
r.v.'s. 

PROOF. Let A j E 9(31, then ! j 1 (A j) E 931 by the definition of a Borel 
measurable function. By Theorem 3.1.1, we have 

n 

j=1 

Hence we have 

.o/J 

n 

j=1 

II 

= II :-?;0{!j(X j ) E Aj }. 
j 1 

This being true for e very choice of the A j' s, the f} (X})' s are independent 
by definition. 

The proof of the next theorem is similar and is left as an exercise. 

Theorem 3.3.2. Let 1 < nl < n2 < ... < nk - n; II a Borel measurable 
function of 111 variables, ! 2 one of n2 - n 1 variables, ... , ! k one of n k - n k-l 

variables. If {X j, I :::: ] :::: n} are mdependent r.v.'s then the k r.v.'s 

are independent. 

Theorem 3.3.3. If X and Yare independent and both have finite expecta
tions, then 

(5) / (XY) = / (X)(f(Y). 
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PROOF. We give two proofs in detail of this important result to illustrate 
the methods. Cf. the two proofs of (14) in Sec. 3.2, one indicated there, and 
one in Exercise 9 of Sec. 3.2. 

First proof. Suppose first that the two r.v.'s X and Y are both discrete 
belonging respectively to the weighted partitions {A j ; Cj} and {Mk ; dd such 
that Aj = {X = Cj}, Mk = {Y = dd. Thus 

reX) = LCFP(A j ), (P(Y) = Ldk~'p(Mk). 
j k 

Now we have 

and 

Hence the r.v. XY is discrete and belongs to the superposed partitions 
{A jMk; cjdd with both the j and the k varying independently of each other. 
Since X and Y are independent, we have for every j and k: 

Pl'(X dd .1>(/\.} ).7>(Md; 

and consequently by definition (1) of Sec. 3.2: 

= cf (X)(,c' (Y). 

Thus (5) is true in this case. 
Now let X and Y be arbitrary positive r.v.'s with finite expectations. Then, 

according to the discussion at the beginning of Sec. 3.2, there are discrete 
r.v.'s XIll and YIIl such that {(Xm ) t c/'(X) and {(Y m ) t ley). Furthermore, 
for each m, XIII and Y", are independent Note that for the independence of 
discrete r.v.'s it is sufficient to verify the relation (1) when the B/s are their 
possible values and "E" is replaced by "=" (why?). Here we have 

,~ X = _. Y = - = ~jjJ - < X < --; - < Y < --. { n n' } . {n n + 1 n' n' + 1 } 
m 2m' III 2m 2m - 2m 2m - 2m 

= :--i) {_n < X < _n _+_1 } ?f> {_n' < y < _n'_+_1 } 
2111 - 2111 2m - 2m 
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The independence of Xm and Y m is also a consequence of Theorem 3.3.1, 
since Xm = [2I11X]j2"\ where [X] denotes the greatest integer in X. Finally, it 
is clear that X I1l Ym is increasing with m and 

Hence, by the monotone convergence theorem, we conclude that 

r(xY) = lim cf(XmY m) = lim 0"(Xm)0'(Y m) 
m-+oo m-+oo 

= lim @(Xm) lim 0"(Y m) = 0"(X)0"(Y). 
m-+oo m-+oo 

Thus (5) is true also in this case. For the general case, we use (2) and (3) of 
Sec. 3.2 and observe that the independence of X and Y implies that of X+ and 
y+, X and Y ,and so OIl. This again can be seen directly 01 as a consequence 
of Theorem 3.3.1. Hence we have, under our finiteness hypothesis: 

The first proof is completed. 

Second proof. Consider the random vector (X, Y) and let the p.m. 
indueed by it be J.t2(dx, dy). Then we have by TheOlem 3.2.3. 

J(XY) = L XY d~ = Jf xy J.l
2

(dx, dy) 

By (3), the last integral is equal to 

xy III (dX)J.l2(dy) = X J.lI (dx) 
~I 0\'1 

finishing the proof! Observe that we are using here a very simple form of 
Fubini's theorem (see below). Indeed, the second proof appears to be so much 
shorter only because we are relying on the theory of "product measure" J.l2 = 
J.lI X J.l2 on (.-722

, ,Jjp). This is another illustration of the method of reduction 
mentioned in connection with the proof of (17) in Sec. 3.2. 



3.3 INDEPENDENCE I 57 

Corollary. If {X j, 1 :s j :s 11} are independent r.v.'s with finite expectations, 
then 

(6) £ (IT X j) = IT (F(X j). 
j=l j=l 

This follows at once by induction from (5), provided we observe that the 
two r.v.'s 

n 

are independent for each k, 1 :s k :s n - 1. A rigorous proof of this fact may 
be supplied by Theorem 3.3.2. 

Do independent random variables exist? Here we can take the cue from 
the intuitive background of probability theory which not only has given rise 
historically to this branch of mathematical discipline, but remains a source of 
inspiration, inculcating a way of thinking peculiar to the discipline It may 
be said that no one could have learned the subject properly without acquiring 
some feeling for the intuitive content of the concept of stochastic indepen
dence, and through it, certain degrees of dependence. Briefly then: events are 
detennined by the outcomes of random trials. If an unbiased coin is tossed 
and the two possible outeomes are recorded as 0 and 1, this is an r.v., and it 
takes these two values with roughly the probabilities ~ each. Repeated tossing 
will produce a sequence of outcomes. If now a die is cast, the outcome may 
be similarly represented by an r.v. taking the six values 1 to 6; again this 
may be repeated to produce a sequence. Next we may draw a card from a 
pack or a ball from an urn, or take a measurement of a phYSIcal quantity 
sampled from a given population, or make an observation of some fortuitous 
natural phenomenon, the outcomes in the last two cases being r. v. ' staking 
some rational values in terms of certain units, and so on. Now it is very 
easy to conceive of undertaking these various trials under conditions such 
that their respective outcomes do not appreciably affect each other; indeed it 
would take more imagination to conceive the opposite! In this circumstance, 
idealized, the trials are carried out "independently of one another" and the 
corresponding r.v.'s are "independent" according to definition. We have thus 
"constructed" sets of independent r. v.' s in varied contexts and with various 
distributions (although they are always discrete on realistic grounds), and the 
whole process can be continued indefinitely. 

Can such a construction be made rigorous? We begin by an easy special 
case. 
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Example 1. Let n :::: 2 and (Q j, Jj, ??j) be n discrete probability spaces. We define 
the product space 

to be the space of all ordered n -tuples wn = (WI, ... , wn ), where each W j E Q j. The 
product B.F. j'n is simply the collection of all subsets of Qn, just as Jj is that for Q j. 
Recall that (Example 1 of Sec. 2.2) the p.m. ??j is determined by its value for each 
point of Q j. Since Qn is also a countable set, we may define a p.m. ??n on./n by the 
following assignment: 

(7) 
n 

~ ({wn
}) = II ??j({Wj}), 

j=1 

namely, to the n-tuple (WI, ... , wn ) the probability to be assigned is the product of the 
probabilities originally assigned to each component W j by ?7j. This p.m. will be called 
the product measure derived from the p.m.'s {??j, 1 ~ j ~ n} and denoted by X J=I??j. 
It is trivial to verify that this is indeed a p.m. Furthermore, it has the following product 
property, extendmg Its defimtIOn (7): If 5 j E Jj, 1 ~ } ~ n, then 

(8) 

To see this, we observe that the left side is, by definition, equal to 

n 

L ... L g>"({WI, ... ,Wn })= L ... L II??j({Wj}) 

the second equation being a matter of simple algebra. 
Now let Xj be an r.v. (namely an arbitrary function) on Q j ; Bj be an arbitrary 

Borel set; and S j = Xj I (B j), namely: 

so that Sj E Jj, We have then by (8): 

(9) 

To each function X j on Q j let correspond the function X j on Qn defined below, in 
which W = (WI, ... , wn ) and each "coordinate" W j is regarded as a function of the 
point w: 
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Then we have 
" " 

j=l j=l 

since 

It follows from (9) that 

Therefore the r. v.' s {X j, 1 ~ j ~ n} are independent. 

Example 2. Let ull" be the n -dimensional cube (immaterial whether it is closed or 
not): 

'f/" = {(Xl, ... , X,,) : 0 < X i < 1; 1 < j < n}. 

The trace on q"" of (g<?" , gi,3" , m" ), where qIl" is the n -dimensional Euclidean space, 
JI3" and m" the usual Borel field and measure, is a probability space. The p.m. m" on 
:;;;n is a product measure having the property analogous to (8). Let [f J' 1 < j < n) 
be n Borel measurable functions of one variable, and 

Then {Xj, I ~ j ~ n} are independent r.v.'s. In particular if fj(xj) =Xj, we obtain 
the n coordinate variables in the cube. The reader may recall the term "independent 
variables" used in calculus, particularly for integration in several variables. The two 
usages have some accidental rapport. 

Example 3. The point of Example 2 is that there is a ready-made product measure 
there. Now on (0i'n, 28/1) It IS possIble to construct such a one based on gIven p.m.' s 
on (Ji?I,.J,I3I). Let these be {/-I j, 1 < j < n}; we define /-In for product sets, in analogy 
with (8), as follows: 

It remains to extend this definition to all of 9.3n
, or, more logically speaking, to prove 

that there exists a p.m. /-Ill on .'Ell that has the above "product property". The situation 
is somewhat more complicated than in Example 1, just as Example 3 in Sec. 2.2 is 
more complicated than Example 1 there. Indeed, the required construction is exactly 
that of the corresponding Lebesgue-Stieltjes measure in n dimensions. ThiE will be 
subsumed in the next theorem. Assuming that it has been accomplished, then sets of 
n independent r. v. 's can be defined just as in Example 2. 
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Example 4. Can we construct r. v.' s on the probability space ('1/, :3'3, m) itself, without 
going to a product space? Indeed we can, but only by imbedding a product structure 
in 9/. The simplest case will now be described and we shall return to it in the next 
chapter. 

For each real number in (0,1], consider its binary digital expansion 

oc 

(10) L En 
X = ·EIE..,··· E ... = -

- n 2n ' 
11=1 

each En = 0 or 1. 

This expansion is unique except when x is of the form mj2n; the set of such x is 
countable and so of probability zero, hence whatever we decide to do with them will 
be immaterial for our purposes. For the sake of definiteness, let us agree that only 
expansions with infinitely many digits "1" are used. Now each digit E j of x is a 
function of x taking the values 0 and 1 on two Borel sets. Hence they are r. v.' s. Let 
{ej, j ::: I} be a given sequence of O's and 1 'so Then the set 

n 

{x· Ej (x) - Cj, 1 < j < n} - n {x· Ej (x) - Cj} 

j=1 

is the set of numbers x whose first n digits are the given e/s, thus 

with the digits from the (n + 1 )st on completely arbitrary. It is clear that this set is 
just an interv al of length 1/211, hence of probability 1 /2n. On the other hand for each 
j, the set {x: Ej(X) = ej} has probability ~ for a similar reason. We have therefore 

1 n 

H9{Ej tj}. 

j=1 

This being true for every choice of the e/s, the r.v.'s {fj, j ::: I} are independent. Let 
{J j, } ::: 1} be arbitrary functions wIth domain the two pomts {a, 1}, then {fj(Ej), } ~ 
I} are also independent r.v.'s. 

This example seems extremely special, but easy extensions are at hand (see 
Exercises 13, 14, and 15 below) 

We are now ready to state and plOve the fundamental existence themem 
of product measures. 

Theorem 3.3.4. Let a finite or infinite sequence of p.m.'s {Jl j} on (~l, .}'31), 

or equivalently their dJ.'s, be given. There exists a probability space 
(Q, .v'f, 9') and a sequence of independent r.v.' s {X j} defined on it such that 
for each j, Jl j is the p.m. of X j. 

PROOF. Without loss of generality we may suppose that the given 
sequence is infinite. (Why?) For each n, let (Qn, :3,;, ;-Pn) be a probability space 
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in which there exists an r.v. XII with Jlll as its p.m. Indeed this is possible if we 
take (QIl, ~fll' .:f;l) to be C1?I, ,~I, Jlll) and XII to be the identical function of 
the sample point x in ;-j2I, now to be written as WIl (cf. Exercise 3 of Sec. 3.1). 

Now define the infinite product space 

00 

11=1 

on the collection of all "points" W = {WI, W2, ... , WIl , .•. }, where for each n, 
WIl is a point of QIl' A subset E of Q will be called a "finite-product set" iff 
it is of the form 

00 

(11) 
11=1 

where each FIl C &/1 and all but a finite number of these F /1 's are equal to the 
corresponding Q/1' s. Thus weE if and only if W/1 c F /1, n > 1, but this is 
actually a restriction only for a finite number of values of n. Let the collectlon 
of subsets of Q, each of which is the union of a finite number of disjoint finite-
product sets, be .:00. It is easy to see that the collection ~ is closed with respect 
to complementation and pairwise intersection, hence it is a field. We shall take 
the df in the theorem to be the B.F. generated by .:00. This;if is called the 
product B. F. of the sequence {;if/1, n > 1} and denoted by X: 1:::0/1 . 

Vie define a set function ~/jJ on :-Jb as follows. First, for each finite product 
set such as the E given in (11) we set 

00 

(12) :?P(E) - H .6j')/1 (F II ), 
/1=1 

where all but a finite number of the factors on the right side are equal to one. 
Next, if E c .~ and 

/1 

E = U E(k), 

k I 

where the E(k),s are disjoint finite product sets, we put 

II 

(13 ) :~(E) = L p/>(E(k»). 

k=1 

If a given set E in .-111) has two representations of the form above, then it is 
not difficult to see though it is tedious to explain (try drawing some pictures!) 
that the two definitions of :Jj>(E) agree. Hence the set function /j> is uniquely 
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defined on .--'/n; it is clearly positive with .-Y>(Q) = 1, and it is finitely additive 
on :-'10 by definition. In order to verify countable additivity it is sufficient to 
verify the axiom of continuity, by the remark after Theorem 2.2.1. Proceeding 
by contraposition, suppose that there exist a 0 > 0 and a sequence of sets 
{Cn, n 2': I} in :"1-0 such that for each n, we have Cn ~ C n+1 and .--?P(Cn) > 
o > 0; we shall prove that n~1 Cn i= 0. Note that each set E in :"/-0, as well 
as each finite-product set, is "determined" by a finite number of coordinates 
in the sense that there exists a finite integer k, depending only on E, such that 
if W = (WI, Wz, ... ) and Wi = (w;, w;, ... ) are two points of Q with Wj = wj 

for 1 :::: j :::: k, then either both wand Wi belong to E or neither of them does. 
To simplify the notation and with no real loss of generality (why?) we may 
suppose that for each n, the set C n is detennined by the first n coordinates. 
Given w~, for any subset E of Q let us write (E I w~) for Q I X E I, where E I is 
the set of points (W2, W3, ... ) in X :2Qn such that (w~, W2, W3, ... ) E E. If w~ 
does not appear as first coordinate of any point in E, then (E I w~) = 0. Note 
that if E E /"'0, then (E I w~) E ~ for each w~. We claim that there exists an 
w~ such that for every n, we have 9« C n I w~)) 2': 0/2. To see this we begin 
with the equatIOn 

(14) 

This is trivial if C Il is a finite-product set by definition (12), and follows by 
addition for any Cn in d1:J. Now put Bn = {WI: 9«Cn I wd) > 0/2}, a subset 
of Q I, then it follow s that 

and so ./j)(BIl ) > 0/2 for every n > 1. Since B'l is decreasing with C Il , we have 

'PI (n~= I BIl ) 2': 0/2. Choose any w~ in n~= I BIl • Then :g'J( (C n I w~)) 2': 0/2. 
Repeating the argument for the set (ell I w~), we see that there exists an w~ 
such that for every 11, .-r«(CIl I w~, w~)) > 0/4, where (CII I w~, w~) = ((C n I 
w~) I w~) is of the form Q I x Q2 X E3 and E3 is the set (W3, W4, ... ) in 
X~=3QIl such that (w~, w~, W3, W4, .. . ) E en, and so fOlth by induction. Thus 

for each k > 1, there exists wf such that 

o 
Vn: .-?f!«Cn I w~, ... , w~))::::. 2

k
' 

Consider the point wO = (w~, w~, ... , w~, .. . ). Since (Ck I w~, ... , w~) i= 0, 

there is a point in Ck whose first k coordinates are the same as those of wO; 
since C k is determined by the first k coordinates, it follows that wO E Ck • This 
is true for all k, hence wO E n~1 Ck, as was to be shown. 
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We have thus proved that 2P as defined on .""10 is a p.m. The next theorem, 
which is a generalization of the extension theorem discussed in Theorem 2.2.2 
and whose proof can be found in Halmos [4], ensures that it can be extended 
to;jr as desired. This extension is called the product measure of the sequence 
k?n, n > I} and denoted by X~=1g')n with domain the product field X~=1:.:0n' 

Theorem 3.3.5. Let ."":fo be a field of subsets of an abstract space Q, and f!lJ 
a p.m. on .""fo. There exists a unique p.m. on the B.F. generated by ;!fo that 
agrees with qp on dID. 

The uniqueness is proved in Theorem 2.2.3. 
Returning to Theorem 3.3.4, it remains to show that the r.v.'s {Wj} are 

independent. For each k > 2, the independence of {w j, 1 < j < k} is a conse
quence of the definition in (12); this being so for every k, the independence 
of the infinite sequence follows by definition. 

\Ve now give a statement of Fubini's theorem for product measllfes, 
which has already been used above in special cases. It is sufficient to consider 
the case n - 2. Let Q - Q 1 X Q2, g - g1 X B72 and f71-!?71 x ~ be the 
product space, B F , and measure respectively. 

Let (j61, f!lJ1), (S;, 01) and (9] x S;,.91 x 01) be the completions 
of (;:0], qP1 ), (312, ~), and (:¥] x 02, 01 x .01), respectively, according to 

Theorem 2.2.5. 

Fabini's them'em. Suppose that f is measurable with respect to :.::'~ x 362 
and integrable with respect to .9i x 01. Then 

(i) for each W1 E &1 1 \NJ where N] E:#] and (1) (Nd 0, f(rll] , .) is 
measurable with respect to .'-"12 and integrable with respect to 01; 

(ii) the integral 

f f ( " (2):?fiJ. (dW2 ) 
Q2 

r -

is measurable with respect to !ft1 and integrable with respect to 901; 

(iii) The following equation between a double and a repeated mtegral 

holds: 

(15) J J f (W1' W,).P1 x f'7'z(dw) = l, [l, f(W1, w,).'1',(dW,) 1 :?7Hdw1)' 

Q] xQ2 

Furthermore, suppose f is positive and measurable with respect to 
--=----,-
.-5k1 x ;:Y''2,; then if either member of (15) exists finite or infinite, so does the 
other also and the equation holds. 
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Finally if we remove all the completion signs "-" in the hypotheses 
as well as the conclusions above, the resulting statement is true with the 
exceptional set N I in (i) empty, provided the word "integrable" in (i) be 
replaced by "has an integral." 

The theorem remains true if the p.m.'s are replaced by a-finite measures; 
see, e.g., Royden [5]. 

The reader should readily recognize the particular cases of the theorem 
with one or both of the factor measures discrete, so that the corresponding 
integral reduces to a sum. Thus it includes the familiar theorem on evaluating 
a double series by repeated summation. 

We close this section by stating a generalization of Theorem 3.3.4 to the 
case where the finite-dimensional joint distributions of the sequence {X j} are 
arbitrarily given, subject only to mutual consistency. This result is a particular 
case of Kolmogorov's extension theorem, which is valid for an arbitrary family 
of r.v.'s. 

I,et m and n be integers· 1 < m < n, and define Jrmn to be the "projection 
map" of d]m onto 9']n given by 

Theorem 3.3.6. For each n > 1, let lin be a p.m. on (gJln, 2(3n) such that 

(16) 

Then there exists a probability space (Q, ,c/;; , g7» and a sequence of r. v.' s {X j} 
on it sllch that for each n, ,ul! is the n-dimensional pm of the vector 

Indeed, the Q and ~;, may be taken exactly as in Theorem 3.3.4 to be the 
product spaee 

X ~;;i, 
j j 

where (Q j, ,Jftj) = (111, .djl ) for each j; only :?l' is now more general. In terms 
of dJ.' s, the consistency condition (16) may be stated as follows. For each 
m 2': 1 and (XI, ... , xm) E ,)'?nl, we have if n > m: 

For a proof of this first fundamental theorem in the theory of stochastic 
processes, see Kolrnogorov [8]. 
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EXERCISES 

1. Show that two r.v.'s on (Q, ~;,) may be independent according to one 
p.m. jjJ but not according to another! 

*2. If XI and X2 are independent r.v.'s each assuming the values +1 
and -1 with probability ~, then the three r.v.'s {X I ,X2,XIX2 } are pairwise 
independent but not totally independent. Find an example of n r.v.'s such that 
every n - 1 of them are independent but not all of them. Find an example 
where the events A I and A2 are independent, A I and A3 are independent, but 
A I and A2 U A3 are not independent. 

*3. If the events {EO', ex E A} are independent, then so are the events 
{F a, ex E A}, where each Fa may be EO' or E~; also if {Ali, f3 E B}, where 
B is an arbitrary index set, is a collection of disjoint countable subsets of A, 
then the events 

are independent. 

4. Fields or B F 's .vfa(C .C0 ) of any family are said to be independent iff 
any collection of events, one from each g;, forms a set of independent events. 
Let :¥aD be a field generating :¥a. Prove that if the fields ~ are independent, 
then so are the B.F.'s ;:-'#0" Is the same conclusion true if the fields are replaced 
by arbitrary generating sets? Prove, however, that the conditions (1) and (2) 
are equivalent. [HINT: Use Theorem 2.1.2.] 

5. If {Xa} is a family of independent r.v.'s, then the B.F.'s generated 
by disjoint subfamilies are independent. [Theorem 3.3.2 is a corollary to this 
proposition. ] 

6. The r.v. X is independent of itself if and only if it is constant with 
probability one. Can X and f (X) be independent where f E 2(31? 

7. If {EJ , 1 < j < oo} are independent events then 

)=1 )=1 

where the infinite product is defined to be the obvious limit; similarly 

8. Let {X), 1 :'S j :'S n} be independent with d.f.' s {F), 1 :'S j :'S n}. Find 
the dJ. of max) X) and min) X). 
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*9. If X and Y are independent and £'(X) exists, then for any Borel set 
B, we have 

I x d?JJ = I (X).O/(Y E B). 
{YEB} 

*10. If X and Y are independent and for some P > 0: ~(IX + YIP) < 00, 

then (,l,'(IXIP) < 00 and cf(IYIP) < 00. 

11. If X and Y are independent, (f,( IX I P) < 00 for some P > I, and 
cf(Y) = 0, then I(IX + YIP) > g(IXIP). [This is a case of Theorem 9.3.2; 
but try a direct proof!] 

12. The r. v.' s {E j} in Example 4 are related to the "Rademacher func-
tions": 

What is the precise relation? 

13. Gener alize Example 4 by considering any s-ary expansion where s > 
2 is an integer: 

x 
11=1 

where En 
Sl! ' 

0, 1, ... , s 1. 

* 14. Modify Example 4 so that to each x in [0, I] there corresponds a 
sequence of independent and identically distributed r.v.'s {En, n > I}, each 
taking the values 1 and 0 with probabilities p and 1 p, respectively, where ° < P < 1. Such a sequence will be referred to as a "coin-tossing game (with 
probabIlIty P for heads)"; when P - ! It IS Said to be "fair". 

15. Modify Example 4 further so as to allow En to take the values 1 and ° with probabilities PI! and I - PI1' where ° < Pn < I, but Pn depends on n. 

16. Generalize (14) to 

.Jl(C) = :-P«C I WI, ... , wdY11 (dwI)" . .Yk(dwd 
e(1 k) 

J~ .l>((C I tv), ... , tvd);-Y>(dtv), 

where C (1, ... , k) is the set of (WI, ... , Wk) which appears as the first k 
coordinates of at least one point in C and in the second equation WI, ... , Wk 

are regarded as functions of w. 

*17. For arbitrary events {E j , I :::::: j :::::: n}, we have 

11 

:::: L?~(Ej) - L ~:Jj)(EjEk)' 
j=1 I~j<k~n 
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If Vn: {Ejn), I <j < n} are independent events, and 

fYJ (0 Ejn») -+ 0 as n -+ 00, 

J=1 

then 

18. Prove that ill x ill =1= ill x ill, where ~ is the completion of g] with 
respect to the Lebesgue measure; similarly ill x .cJ3. 

19. If J E .':01 X ~ and 

r r J J IJld(fYJ1 X ~) < 00, 

Q}xQ2 

then 

20. A typical application of Fubini' s theorem is as follows. If J is a 
Lebesgue measmable function of (x, y) such that f(x, y) 0 fOl each x E ~l 
and y rJ. Nx , where m(Nx ) = 0 for each x, then we have also J(x, y) = 0 for 
each y rJ. N and x EN;, where m(N) = 0 and meN;) = 0 for each y rJ. N. 



4 Convergence concepts 

4.1 Various modes of convergence 

As numerical-valued functions, the convergence of a sequence of r.v. 's 
{Xn, n ~ I}, to be denoted simply by {Xn} below, is a well-defined concept. 
Here and hereafter the tenn "convergence" will be used to mean convergence 
to a finite limit. Thus it makes sense to say: for every W E.6., where 
n: E ;-1;, the sequence {Xn (w)} converges. The limit is then a finite-valued 
r.v. (see Theorem 3.1.6), say X(w), defined on .6.. If Q = .6., then we have 
"convergence every-where", but a more useful concept is the following one. 

DEFINITION OF CONVERGENCE "ALMOST EVERYWHERE" (a.e.). The sequence of 
r.v. {Xn} is said to converge almost everywhere [to the r.v. X] iff there exists 
a null set N such that 

(1) Vw E Q\N: lim Xn(w) = X(w) finite. 
n-+oo 

Recall that our convention stated at the beginning of Sec. 3.1 allows 
each r.v. a null set on which it may be ±oo. The union of all these sets being 
still a null set, it may be included in the set N in (1) without modifying the 
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conclusion. This type of trivial consideration makes it possible, when dealing 
with a countable set of r.v.'s that are finite a.e., to regard them as finite 
everywhere. 

The reader should learn at an early stage to reason with a single sample 
point Wa and the corresponding sample sequence {Xn (wa), n > l} as a numer
ical sequence, and translate the inferences on the latter into probability state
ments about sets of w. The following characterization of convergence a.e. is 
a good illustration of this method. 

Theorem 4.1.1. The sequence {Xn} converges a.e. to X if and only if for 
every E > 0 we have 

(2) lim 9{IXn - XI ::::; E for all n :::: m} = 1; 
m--+oo 

or equivalently 

(2') lim 9{IXn - XI > E for some n 2: m} = O. 
m--+oo 

PROOF. Suppose there is convergence a.e. and let no = n\N where N is 
as in (1 ). For m :::: 1 let US denote by Am (E) the event exhibited in (2), namely. 

00 

(3) 
n=m 

Then Am(E) is increasing with m. For each wa, the convergence of {Xn (wa)} 
to X(wo) implies that given any E > 0, there exists m(wa, E) such that 

(4) 

Hence each such tva belongs to some Am(E) and so no c U~-I Am(E). 
It follows from the monotone convergence property of a measure that 
limm--+oo 9(Am(E)) = 1, which is eqUIvalent to (2). 

Conversely, suppose (2) holds, then we see above that the set A(E) -

U::=I Am(E) has probability equal to one. For any Wa E A(E), (4) is true for 
the given E. Let E run through a sequence of values decreasing to zero, fOl 

instance { 1 / n }. Then the set 

still has probability one since 
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If Wo belongs to A, then (4) is true for all E = lin, hence for all E > 0 (why?). 
This means {Xn (wo)} converges to X(wo) for all Wo in a set of probability one. 

A weaker concept of convergence is of basic importance in probability 
theory. 

DEFINITION OF CONVERGENCE "IN PROBABILITY" (in pr.). The sequence {Xn} 
is said to converge in probability to X iff for every E > 0 we have 

(5) lim 9'>{IXn - XI > E} = O. 
n-+oo 

Strictly speaking, the definition applies when all Xn and X are finite
valued. But we may extend it to r.v.'s that are finite a.e. either by agreeing 
to ignore a null set or by the logical convention that a formula must first be 
defined in order to be valid or invalid. Thus, for example, if Xn (w) = +00 
and X(w) +00 for some w, then Xn (w) X(w) is not defined and thelefOIe 
such an w cannot belong to the set {IXn - XI > E} figuring in (5). 

Since (2') clearly implies (5), we have the immediate consequence below. 

Theorem 4.1.2. Convergence a.e. [to X] implies convergence in pr. [to X]. 

Sometimes we have to deal with questions of convergence when no limit 
is in evidence. For convergence a.e. this is immediately reducible to the numer-
ical case where the Cauchy criterion is applicable. Specifically, {Xn} converges 
a.e. iff there exists a null set N such that for every W E Q\N and every € > 0, 
there exists mew, E) such that 

n' > n > mew, E) =} IXn(w) -Xn,(w)1 < E. 

The following analogue of Theorem 4.1.1 is left to the reader. 

Theorem 4.1.3. The sequence {Xn} converges a.e. If and only If for every E 

we have 

(6) Xn I > E for some I'l' > 11 > m} o. 

For convergence in pr., the obvious analogue of (6) is 

(7) lim .-P{IXn -Xn,1 > E} = O. 
!/--"X, 

n'-+-x: 

It can be shown (Exercise 6 of Sec. 4.2) that this implies the existence of a 
finite r.v. X such that X/l ---+ X in pr. 
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DEFINITION OF CONVERGENCE IN LP, 0 < p < 00. The sequence {X n} is said 
to converge in LP to X iff Xn E LP, X E LP and 

(8) lim 6'(IXn - XI P) = O. 
n-+oo 

In all these definitions above, Xn converges to X if and only if XII - X 
converges to O. Hence there is no loss of generality if we put X = 0 in the 
discussion, provided that any hypothesis involved can be similarly reduced 
to this case. We say that X is dominated by Y if IXI ::::; Y a.e., and that the 
sequence {Xn} is dominated by Y iff this is true for each Xn with the same 
Y. We say that X or {XII} is unifonnly bounded iff the Y above may be taken 
to be a constant. 

Theorem 4.1.4. If Xn converges to 0 in LP, then it converges to 0 in pr. 
The converse is true provided that {X n} is dominated by some Y that belongs 
to LP. 

Remark. If Xn ---+ X in LP, and {Xn} is dominated by Y, then {Xn - X} 
is dominated by Y + IX I, which is in LP. Hence there is no loss of generality 
to assume X - O. 

PROOF. By Chebyshev inequality with cp(x) - Ix I P, we have 

(9) 

Lettmg n ---+ 00, the nght member ---+ a by hypotheSIS, hence so does the left, 
which is equivalent to (5) with X - O. This proves the first assertion. If now 
IXnl ::::; Y a.e. with E(YP) < 00, then we have 

yP d?/'. 

Since J0{IX~ I > E} ---+ 0, the last-written integral ---+ 0 by Exercise 2 in 
Sec. 3.2. Letting first n ---+ 00 and then E ---+ 0, we obtain cf(IXn IP) ---+ 0; hence 
XII converges to 0 in v n

. 

As a corollary, for a uniformly bounded sequence {X,,} convergence in 
pr. and in LP are equivalent. The general result is as follows. 

Theorem 4.1.5. X/l ---+ 0 in pr. if and only if 

(10) cf ( IXnl ) ---+ O. 
1 + IXnl 

Furthermore, the functional p(., .) given by 

X Y - (1 - I 
( 

Ix yl ) 
p( , ) - (r 1 + IX _ YI 
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is a metric in the space of r. v.' s, provided that we identify r. v. 's that are 
equal a.e. 

PROOF. If p(X, Y) = 0, then e:(IX - YI) = 0, hence X = Y a.e. by 
Exercise 1 of Sec. 3.2. To show that p(., .) is metric it is sufficient to show that 

<> ( IX - Y I ) < g ( IX I ) 6 ( IY I ) 
. 1 + IX - YI - 1 + IXI + 1 + IYI . 

For this we need only verify that for every real x and y: 

(1) Ix+ yl 

1 + Ix + yl 
< Ixl + Iyl 

1 + Ixl 1 + Iyl 
By symmetry we may suppose that Iyl ::::; Ixl; then 

(2) 
Ix+ yl 

1 + Ix + yl 
Ixl Ix + yl - Ixl 

] + Ixl (l + Ix + yl)(1 + Ixl) 
Ilx + yl-Ixll Iyl 

< < 
1 + Ixl - 1 + Iyl 

For any X the r. v. IX I I 0 + IX I) is bounded by 1, hence by the second 
part of Theorem 4.1.4 the first assertion of the theorem will follow if we show 
that IXnl -+ 0 in pro if and only if IXnl/O + IXnl) -+ 0 in pro But Ixl < f is 
equivalent to Ix1/0 + Ixl)::::; flO + f); hence the proof is complete. 

Example 1. Convergence in pro does not imply convergence in LP, and the latter 
does not Imply convergence a.e. 

Take the probability space (Q, ;77, ~) to be ('7/, g{3, m) as in Example 2 of 
Sec. 2.2. Let CPf.:.j be the indicator of the interval 

k>l,l<j<k 

Order these functions lexicographically first according to k increasing, and then for 
each k according to j increasing, into one sequence {XII} so that if Xn - C(2l:nJn' then 
kl! ---+ 00 as n ---+ 00. Thus for each p > 0: 

and so XI! ---+ 0 in LP. But for each wand every k, there exists a j such that CPkj(W) = 1; 
hence there exist infinitely many values of n such that X n (w) = 1. Similarly there exist 
infinitely many values of n such thatXn(w) = O. It follows that the sequence {Xn(w)} 
of O's and 1 's cannot converge for any W. In other words, the set on which {Xn } 

converges is empty. 
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Now if we replace CPkj by k1/pcpkj, where p> 0, then ?7'{Xn > O} = llkn ---+ ° so that Xn ---+ ° in pr., but for each n, we have f(XnP) = 1. Consequently 
limn---+x {(IXn - OIP) = 1 and Xn does not ---+ ° in LP. 

Example 2. Convergence a.e. does not imply convergence in LP. 
In (11. ,~, m) define 

if WE (0, ~) ; 
otherwise. 

Then f(IXnIP) = 211P In ---+ +00 for each p > 0, but XII ---+ ° everywhere. 

The reader should not be misled by these somewhat "artificial" examples 
to think that such counterexamples are rare or abnormal. Natural examples 
abound in more advanced theory, such as that of stochastic processes, but 
they are not as simple as those discussed above. Here are some culled from 
later chapters, tersely stated. In the symmetrical Bernoullian random walk 
{S,n n > I}, let ?'l - 1 (Sn OJ. Then limn=+oo I(?:) - 0 for every p > 0, but 
3'{limn--+oo Sn exists} = 0 because of intermittent return of Sn to the origin (see 
Sec. 8.3). ThIS kind of example can be formulated for any recurrent process 
such as a Brownian motion. On the other hand, if {t'l' n > I} denotes the 
random walk above stopped at 1, then 0'((;n) = 0 for all n but 9{limn--+oo (;n = 
1} 1. The same holds fOl the martingale that consists in tossing a fail 
coin and doubling the stakes until the first head (see Sec. 9.4). Another 
striking example is furnished by the simple Poisson process {N(t), t ~ O} (see 
Sect. 5.5). If ~(t) N(t)/t, then l (~(t)) ).. for all t > 0; but @{liffitto ~(t) 
O} = I because for almost every w, N(t, w) = 0 for all sufficiently small values 
of t. The continuous parameter may be replaced by a sequence tn {. O. 

Finally, we mention another kind of convergence which is basic in flJnc-
tional analysis, but confine ourselves to L 1. The sequence of r. v. 's {X n} in L 1 

IS said to converge weakly m Ll to X iff for each bounded r.v. Y we have 

lim {(Xn Y) = (S(XY), finite. 
11--+ 00 

It is easy to see that X EL I and is unique up to equivalence by taking 
Y = l{x:;ix'} if X' is another candidate. Clearly convergence in Ll defined 
above implies weak convergence; hence the former is sometimes referred to 
as "strong". On the other hand, Example 2 above shows that convergence 
a.e. does not imply weak convergence; whereas Exercises 19 and 20 below 
show that weak convergence does not imply convergence in pr. (nor even in 
distribution; see Sec. 4.4). 
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EXERCISES 

1. Xn -+ +00 a.e. if and only if \1M > 0: 2P{Xn < M i.o.} = O. 

2. If 0 :::; Xn, Xn :::; X ELI and Xn -+ X in pr., then Xn -+ X in LI. 

3. If Xn -+ X, Y n -+ Y both in pr., then Xn ± Yn -+ X ± Y, XnYn -+ 

XY, all in pro 

* 4. Let I be a bounded uniformly continuous function in 0'(1. Then Xn -+ 

o in pr. implies <> {I (Xn )} -+ I (0). [Example: 

as in Theorem 4.1.5.] 

IXI 
I(x) = 1 + IXI 

5. Convergence in LP implies that in LT for r < p. 

6. If Xn ----+ X, Yn ----+ Y, both in LP, then Xn ± Yn ---+ X ± Y in LfJ. If 
Xn -+ X in LP and Yn -+ Y in Lq, where p > 1 and l/p + l/q = 1, then 

7. If Xn -+ X in pr. and Xn -+ Y in pr., then X - Y a.e. 

8. If Xn -+ X a e and Jin and ,II are the pm's of XI! and X, it does not 
follow that /J-n (P) -+ /J-(P) even for all intervals P. 

9. Give an example in which cff(Xn) -+ 0 but there does not exist any 
subsequence {nk} -----+ 00 such that X ilk ----+ 0 in pr. 

*10. Let I be a continuous function on 0'(1. If Xn -+ X in pr., then 
I (X n) -+ I (X) in pr. The result is false if I is merely Borel measurable. 
[HINT: Truncate f at ±A for large A.] 

11. The extended-valued r.V. X is said to be bounded in pro iff for each 
E > 0, there exists a finite M(E) such that 9{IXI :::; M(E)} :::: 1 - E. Prove that 
X is bounded in pro if and only if it is finite a.e. 

12. The sequence of extended-valued r.v. {Xn} is said to be bounded in 
pr. iff sUPn IXn I is bounded in pr.; {Xn} is said to diverge to +00 in pro iff for 
each lv! > 0 and E > 0 there exists a finite noCM, E) such that if n > no, then 
·~{IXnl > M} > 1 - E. Prove that if {Xn} diverges to +00 in pr. and {Yn} is 
bounded in pr., then {Xn + Yn} diverges to +00 in pr. 

13. If sUPn Xn = +00 a.e., there need exist no subsequence {Xnk } that 
di verges to +00 in pr. 

14. It is possible that for each w, limnXn (w) = +00, but there does 
not exist a subsequence {nk} and a set .6. of positive probability such that 
limk X nk (w) = +00 on .6.. [HINT: On (1/, :13) define Xn (w) according to the 
nth digit of w.] 
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*15. Instead of the P in Theorem 4.1.5 one may define other metrics as 
follows. Let PI (X, Y) be the infimum of all E > 0 such that 

,~(IX - YI > E) ::::; E. 

Let P2(X, Y) be the infimum of ~{IX - YI > E} + E over all E > O. Prove 
that these are metrics and that convergence in pro is equivalent to convergence 
according to either metric. 

*16. Convergence in pro for arbitrary r.v.'s may be reduced to that of 
bounded r. v.' s by the transformation 

X' = arctan X. 

In a space of uniformly bounded r.v.'s, convergence in pr. is equivalent to 
that in the metric Po(X, Y) = cf(IX - YI); this reduces to the definition given 
in Exercise 8 of Sec. 3.2 when X and Y are indicators. 

17. Unlike convergence in pr., convergence a.e. is not expressible 
by means of metric. [HINT: Metric convergence has the property that if 
p(Xn , x) -1+ 0, then there eXIst E > 0 and {n k} such that p(xnk , x) ~ E for 
every k.] 

18. If Xn"!'-X a.s., each Xn is integrable and infn J(Xn) > -00, then 
Xn ---+ X In L1. 

19. Let !1l(x) 1 + cos 21Tnx, f(x) 1 in [0, 1]. Then for each g E £1 

[0, 1] we have 

Z' fngdx --> l' fgdx, 

but ill does not converge to f in measure. [HINT: This is just the 
Riemann - Lebesgue lemma in Fourier series, but we have made f n ~ 0 to 
stress a POInt.] 

20. Let {XIl } be a sequence of independent r.v.' s with zero mean and 
unit variance. Prove that for any bounded r.V. Y we have limn-+oo <%(XnY) = O. 
[HINT: Consider f{[Y - 2:~=1 {(XkY )Xd2 } to get Bessel's InequalIty {(f2) ~ 
2:~ 1 cf(Xky)2. The stated result extends to case where the X/,/ 's are assumed 
only to be uniformly integrable (see Sec. 4.5) but now we must approximate 
Y by a function of (XI, ... ,Xm ), cf. Theorem 8.1.1.] 

4.2 Almost sure convergence; Borel-Cantelli lemma 

An important concept in set theory is that of the "lim sup" and "lim inf" of 
a sequence of sets. These notions can be defined for subsets of an arbitrary 
space Q. 
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DEFINITION. Let En be any sequence of subsets of Q; we define 

ex; 00 00 00 

limsupEn = n U En, 
n 

liminfEn = U n En. 
m=!n=m n 

m=! n=m 

Let us observe at once that 

(1) lim inf En = (lim sup E~ )C, 
n n 

so that in a sense one of the two notions suffices, but it is convenient to 
employ both. The main properties of these sets will be given in the following 
two propositions. 

(i) A point belongs to lim sUPn En if and only if it belongs to infinitely 
many terms of the sequence {En, n 2: I}. A point belongs to liminfn En if 
and only if it belongs to all terms of the sequence from a certain term on. 
It follows in particular that both sets are independent of the enumeration of 
the Ell's 

PROOF. We shall prove the first assertion Since a point belongs to 
infinitely many of the En's if and only if it does not belong to all E~ from 
a certain value of non, the second assertion will follow from (1). Now if w 
belongs to infinitely many of the En's, then it belongs to 

00 

for every m; 
n=m 

hence it belongs to 
00 n F m = limsupEn. 

m=! 
n 

Conversely, if w belongs to n::=! F m, then w E F m for every m. Were w to 
belong to only a finite number of the En's there would be an m such that 
w fj En for n 2: m, so that 

00 

wfj.UEn Fm. 
n=m 

This contradiction proves that w must belong to an infinite number of the En's. 

In more intuitive language: the event limsuPn En occurs ifand only if the 
events E,1 occur infinitely often. Thus we may write 

;/,(limsupEn) = .J?(En i.o.) 
n 
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where the abbreviation "i.o." stands for "infinitely often". The advantage of 
such a notation is better shown if we consider, for example, the events "IXn I .:::: 
E" and the probability 2P{IXn I .:::: E i.o.}; see Theorem 4.2.3 below. 

(li) If each En E !:f , then we have 

(2) 2P(lim sup En) = lim gp (U En) ; 
n m-+oo n=m 

(3) 2P(lim inf En) = lim 2P (n En) . 
n m-+oo n=m 

PROOF. Using the notation in the preceding proof, it is clear that F m 

decreases as m increases. Hence by the monotone property of p.m.'s: 

which is (2); (3) is proved similarly or via (1). 

Theorem 4.2.1. We have for arbitrary events {En}: 

(4) 
Ii 

PROOF. By Boole's inequality for p.m.'s, we have 

00 

'1 m 

Hence the hypothesis in (4) implies that ?7>(F m) ---+ 0, and the conclusion in 
(4) now follows by (2). 

As an illustration of the convenience of the new notions, we may restate 
Theorem 4.1.1 as follows. The intuitive content of condition (5) below is the 
point being stressed here. 

Theorem 4.2.2. XII o.::::± 0 a e if and only if 

(5) 'iE > 0: ~{IXnl > E i.o.} = O. 

PROOF. Using the notation Am = n~=m { IX n I :::; E} as in (3) of Sec. 4.1 
(with X = 0), we have 

00 00 00 

{IXnl > E i.o.} = n u {IXnl > E} = n A~. 
m=! n=m m=! 
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According to Theorem 4.1.1, X n ---+ 0 a.e. if and only if for each E > 0, 
9(A~) ---+ 0 as m ---+ 00; since A~ decreases as m increases, this is equivalent 
to (5) as asserted. 

Theorem 4.2.3. If Xn ---+ X in pr., then there exists a sequence {nk} ofinte
gers increasing to infinity such that X nk ---+ X a.e. Briefly stated: convergence 
in pr. implies convergence a.e. along a subsequence. 

PROOF. We may suppose X = 0 as explained before. Then the hypothesis 
may be written as 

Vk> 0: lim 9 (IXnl > ~k) = O. 
n--+oo 2 

It follows that for each k we can find n k such that 

and consequently 

Having so chosen {nk}, we let Ek be the event "IXnk I > 1/2k". Then we have 
by (4): 

[Note: Here the mdex mvolved in "i.o." is k; such ambiguity being harmless 
and expedient.] This implies Xnk ---+ 0 a e. (why?) finishing the proof 

EXERCISES 

1. Prove that 

9(hmsupEn) ~ hm;o/>(E ll ), 

n n 

n Il 

2. Let {Bn} be a countable collection of Borel sets in 'fl. If there exists 
a 8 > 0 such that m(Bn) ~ 8 for every n, then there is at least one point in .J1l 
that belongs to infinitely many Bn's. 

3. If {Xn} converges to a finite limit a.e., then for any E there exists 
M(E) < 00 such that !J'{sup IXn I ::::; M(E)} ~ 1 - E. 
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* 4. For any sequence of r. v.' s {X n} there exists a sequence of constants 
{An} such that X n IAn ---+ 0 a.e. 

*5. If {Xn} converges on the set C, then for any f > 0, there exists 
Co C C with 9(C\Co) < f such that Xn converges uniformly in Co. [This 
is Egorov's theorem. We may suppose C = n and the limit to be zero. Let 
Fmk = n~=dw: I Xn(w):::; 11m}; then \1m, 3k(m) such that 

P?(F m.k(m)) > 1 - f/2m. 

Take Co = n::=1 F m,k(m)'] 

6. Cauchy convergence of {X n} in pro (or in LP) implies the existence of 
an X (finite a,e,), such that Xn converges to X in pr. (or in LP). [HINT: Choose 
nk so that 

cf, Theorem 4.2.3.] 

*7. {Xn} converges in pr. to X if and only if every subsequence 
{Xnk } contains a further subsequence that converges a.e. to X. [HINT: Use 
Theorem 4.1.5.] 

8. Let {Xn, n ~ 1} be any sequence of functions on n to 2/{1 and let 
C denote the set of 'v for which the numerical sequence {XI! ('0), n > 1} 
converges. Show that 

00 00 00 

c A U A A(m,n,n') 
m=ln=1 n'=1l+1 

where 

/\(m, n, n') = w: max IXj(w) - Xk(w)1 :::; -
n< '<k<n' m 

Hence if the XI! 's are r.v.' s, we have 

lim lim lim:fJ (f\(m, 1l, 1l')) . 
m-+oo /1-+00 /1'-+00 

9. As in Exercise 8 show that 

00 00 oo{ 1} 
{w: lim Xn(w) = O} = nun IXnl:::; - . 

n-+oo m 
m=1 k=ln=k 

10. Suppose that for a < b, we have 

/J>{Xn < a i.o. and X/1 > b i.o.} = 0; 
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then limll ...... oc XIl exists a.e. but it may be infinite. [HINT: Consider all pairs of 
rational numbers (a. b) and take a union over them.] 

Under the assumption of independence, Theorem 4.2.1 has a striking 
complement. 

Theorem 4.2.4. If the events {En} are independent, then 

n 

PROOF. By (3) we have 

(7) ~{liminfE~} = lim 9 (n E~) . 
n m-..oo 

n=m 

The events {E~} are independent as well as {En}, by Exercise 3 of 
Sec. 3.3; hence we have if m' > m: c ) m' m' 

?!J rl E~ = IT go(E~) = IT (1 - go(En )). 
n=m n=m n=m 

Now for any x > 0, we have 1 - x < e-x ; it follows that the last term above 
does not exceed 

Il=m n=m 

Letting m' ---+ 00, the right member above ---+ 0, since the series in the 
exponent""""""+ +00 by hypothesis. It follows by monotone property that 

Thus the nght member III (7) IS equal to 0, and consequently so IS the left 
member in (7). This is equivalent to :.J?(E Il i.o.) = 1 by (1). 

Theorems 4.2.1 and 4.2.4 together will be referred to as the 
Borel-Cantelli lemma, the former the "convergence part" and the latter "the 
divergence part". The first is more useful since the events there may be 
completely arbitrary. The second has an extension to pairwise independent 
r. v.' s; although the result is of some interest, it is the method of proof to be 
given below that is more important. It is a useful technique in probability 
theory. 
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Theorem 4.2.5. The implication (6) remains true if the events {Ell} are pair
wise independent. 

PROOF. Let III denote the indicator of Ell, so that our present hypothesis 
becomes 

(8) Vm-:j:.n: 

Consider the series of r.v.'s: :L~=! In (w). It diverges to +00 if and only if 
an infinite number of its terms are equal to one, namely if w belongs to an 
infinite number of the En's. Hence the conclusion in (6) is equivalent to 

(9) 9 {fIn = +oo} = l. 
n=! 

What has been said so far is true for arbitrary En's. Now the hypothesis in 
(6) may be written as 

00 

I: g(1n) = +00. 
n=! 

Consider the partial sum J k = :L~=! In. Using Chebyshev's inequality, we 
have for every A > O. 

(10) 

where a 2(]) denotes the variance of J. Writing 

Pn (iCE' ) 

we may calculate 0 2 (J\) by using (8), as follows: 

/ 1. \ 

k 

k k 

= I: J'(11l)2 + 2 I: 0(1m){(1Il) + I:{t(1n) - t(1Il)2} 

n=! !:;::m<ll:;::k n=! 

( 

k ) 2 k 

~Pll + ~(PIl - p~), 
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llence 

k 

a2(lk) = cf(l~) - f(ld2 = I:(Pn - p~) 
n:::::l 

This calculation will tum out to be a particular case of a simple basic formula; 
see (6) of Sec. 5.1. Since 2::~:::::1 Pn = t(l d -+ 00, it follows that 

a(lk) :::; g"(Jk)1/2 = o(cff(Jd) 

in the classical "0, 0" notation of analysis. Hence if k > ko(A), (10) implies 

9{lk > ~g(ld} ~ 1- ~2 
(where ~ may be replaced by any constant < 1). Since h increases with k 
the inequality above holds a fortiori when the first 1 k there is replaced by 
limk-+ 00 h; after that we can let k -+ 00 in (8',(h) to obtain 

. 1 
9{ hm 1 k = +oo} ~ 1 - -2' 

k-+OQ A 

Since the left member does not depend on A, and A is arbitrary, this implies 
that limk-+oo 1 k = +00 a.e., namely (9). 

Corollary. If the events {En} are pairwise independent, then 

0"(lim sup En) = 0 or 1 
n 

according as Ell ,~(EIl) < 00 or 00. 

ThIS IS an example of a "zero-or-one" law to be dIscussed III Chapter 8, 
though it is not included in any of the general results there. 

EXERCISES 

Below Xn, Yll are r.v.'s, En events. 

11. Give a trivial example of dependent {E~} satisfying the hypothesis 
but not the conclusion of (6); give a less trivial example satisfying the hypoth
esis but with 2P(lim sUPn En) = O. [HINT: Let En be the event that a real number 
in [0, 1] has its n-ary expansion begin with 0.] 

* 12. Prove that the probability of convergence of a sequence of indepen
dent r. v.' s is equal to zero or one. 

13. If {Xn} is a sequence of independent and identically distributed r.v.'s 
not constant a.e., then go{XIl converges} = O. 
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*14. If {Xn} is a sequence of independent r.v.'s with d.f.'s {Fn}, then 
:--':P{limn X/l = O} = 1 if and only if'iE > 0: 2::n {l - F n (E) + F/l (-E)} < 00. 

15. If 2::n ~(IXn I > n) < 00, then 

. IXnl 
hm sup -- ::::; 1 a.e. 

n n 

*16. Strengthen Theorem 4.2.4 by proving that 

. In 
hm = 1 a.e. 

n-+oo g(l n) 

[HINT: Take a subsequence {kn} such that g(lnk) '" k 2
; prove the result first 

for this subsequence by estimating 9{lh - cff(lk) I > 8cf(ld}; the general 

case follows because if n k ::::; n < n k+! , 

17. If $(Xn) I and g(X~) is bounded in n, then 

9{ lim Xn ~ I} > O. 
n-+oo 

[This is due to Kochen and Stone. Truncate Xn at A to Y n with A so large 
that f(Y n ) > 1 E for all n; then apply Exercise 6 of Sec. 3.2.] 

*18. Let {En} be events and {Ill} their indicators Prove the inequality 

Deduce from this that if (i) 2::n 9(En) = 00 and (ii) there exists c > 0 such 

that we have 

then 
9{limsupEn} > O. 

11 

19. If 2::n q!J(En) = 00 and 

lim {tt~(EjEk)} / {t qp(Ek)}2 = 1, 
/l j=! k=! k=! 

then ?fi{limsuPnEn} = 1. [HINT: Use (11) above.] 
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20. Let {En} be arbitrary events satisfying 

(i) lim jI)(EIl ) = 0, 
Il 

n 

then 9{limsuPIl Ell} = O. [This is due to Barndorff-Nielsen.] 

4.3 Vague convergence 

If a sequence of r. v.' s {X n} tends to a limit, the corresponding sequence of 
p.m.' s {Jl,n} ought to tend to a limit in some sense. Is it true that limn J.1,1l (A) 
exists for all A E 0'31 or at least for all intervals A? The answer is no from 
trivial examples. 

Example 1. Let Xn = Cn where the Cn 's are constants tending to zero. Then Xn ~ 0 
detenninistically. For any interval I such that 0 ¢ 1, where I is the closure of I, we 
have limn /1-n (I) = 0 = /1-(1); for any interval such that 0 E r, where r is the interior 
of I, we have limn J-Cz (I) = 1 = g(l). But if {en} oscillates between strictly positive 
and strictly negative values, and I = (a, 0) or (0, b), where a < 0 < b, then /1-n (I) 
oscillates between 0 and 1, while /4(1) - O. On the other hand, if I - (a, 0] or [0, b), 
then /1-n (I) oscillates as before but /1-(l) = 1. Observe that {OJ is the sole atom of /1-
and it is the root of the trouble. 

Instead of the point masses concentrated at Cn, we may consider, e.g., r.v.'s {Xn} 
having uniform distributions over intervals (cn, c~) where Cn < 0 < c~ and Cn ~ 0, 
< ~ O. Then again Xn ~ 0 a.e. but gn «a, 0)) may not converge at all, or converge 
to any number between 0 and 1. 

Next, even if {Mil} doe:;; converge in :;;ome weaker :;;en:;;e, is the limit necessarily 
a p.m.? The answer is again no. 

Example 2. Let Xn = Cil where Cn ~ +00. Then Xn ~ +00 detenninistically. 
Accordmg to our defirutlOn of a r.v., the constant +00 mdeed qualIfies. But for 
any finite interval (a, b) we have limn g/l«a, b)) = 0, so any limiting measure must 
also be identically zero. This example can be easily ramified; e.g. let an ~ -00, 

b/l =7 +00 and 

Then Xn ~ X where 

{

+oo 
X= 0 

-00 

with probability Ct, 

with probability 1 - Ct - {3, 
with probability {3. 

For any finite interval (a, b) containing 0 we have 

lim/1-/I«a, b)) = lim/1-/I({O}) = 1 - Ct - {3. 
n n 
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In this situation it is said that masses of amount Cl and f3 "have wandered off to +00 
and -00 respectively." The remedy here is obvious: we should consider measures on 
the extended line ql?* = [-00, +00], with possible atoms at {+oo} and {-oo}. We 
leave this to the reader but proceed to give the appropriate definitions which take into 
account the two kinds of troubles discussed above. 

DEFINITION. A measure /J- on (9Z1, ggl) with /J-(pJ(l) < 1 will be called a 
subprobability measure (s.p.m.). 

DEFINITION OF VAGUE CONVERGENCE. A sequence {/J-n, n > I} of s. p.m.' s is 
said to converge vaguely to an s.p.m. /J- iff there exists a dense subset D of 
gzl such that 

(1) 'Va ED, bED, a < b: /J-n((a, b]) -+ /J-((a, b]). 

This will be denoted by 

(2) /J-n v /J-

and /J- is called the vague limit of {/J-n}. We shall see that it is unique below. 
For brevity's sake, we will write /l((a, b]) as Il(a, h] below, and similarly 

for other kinds of intervals. An interval (a, b) is called a continuity interval 
of f-l Iff neIther a nor b IS an atom of /J-; in other words iff /J-(a, b) M[a, b]. 
As a notational convention, g(a, b) - 0 when a > b. 

Theorem 4.3.1. Let (ttn) and tt be s.p.m.'s. The following propositions are 
equivalent. 

(i) For every finite interval (a, b) and E > 0, there exists an no(a, b, E) 

such that if n > no, then 

(3) ,u(a+E,h E) E < jLIl(a, b) <u(a E,b±E)±E. 

Here and hereafter the first tenn is interpreted as 0 if a ± E > b E. 

(ii) For every continuity interval (a, b] of /J-, we have 

/J-n (a, b] -+ /J-(a, b]. 

(iii) /J-n ~ /J-. 
PROOF. To prove that (i) => (ii), let (a, b) be a continuity interval of /J-. 

It follows from the monotone property of a measure that 

Letting n -+ 00, then E -!, 0 in (3), we have 

/J-(a, b) < lim/J-n(a, b) < lim/J-n[a, b] < /J-[a, b] = /J-(a, b), 
n n 
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which proves (ii); indeed (a, b] may be replaced by (a, b) or [a, b) or [a, b] 
there. Next, since the set of atoms of /-L is countable, the complementary set 
D is certainly dense in .. jfl. If a ED, bED, then (a, b) is a continuity interval 
of /-L. This proves (ii) =>- (iii). Finally, suppose (iii) is true so that (1) holds. 
Gi ven any (a, b) and E > 0, there exist a I, a2, b I, b2 all in D satisfying 

a - E < al < a < a2 < a + E, b - E < b l < b < b2 < b + E. 

By (1), there exists 110 such that if n > no, then 

I/-Ln(ai, bj ] - /-L(ai, bj]1 < E 

for i = 1,2 and j = 1,2. It follows that 

/-L(a + E, b - E) - E < /-L(a2, bIl - E < /-Ln (a2, bIl < /-Ln (a, b) < /-Ln (aI, b2] 

< /-L(al, b2] + E < /-L(a - E, b + E) + E. 

Thus (iii) => (i). The theorem is proved. 

As an immediate consequence, the vague limit is unique. More precisely, 
if besides (1) we have also 

'Va ED', bED', a < b: /-Ln(a, b] ---+ /-L'(a, b], 

then /-L = /-L'. For let A be the set of atoms of /-L and of /-L'; then if a E A c, 

bE A C
, we have by Theorem 4.3.1, (ii): 

/-L(a, b] ~ /-Ln(a, b] ---+ /-L'(a, b] 

so that /-L(a, b] = /-L'(a, b]. Now A C is dense in ~I, hence the two measures /-L 
and tt' coincide on a set of intervals that is dense in .1't1 and must therefore 
be identical (see Corollary to Theorem 2.2.3). 

Another consequence is: if /-Ln ~ /-L and (a, b) is a continuity interval 
of /-L, then /-Ln (1) ---+ /-L(1), where I is any of the four kinds of intervals with 
endpoints a, b. For it is clear that we may replace I/'II (a, b) by 1111 [a, b] in (3) 
In particular, we have /-Ln ({a}) ---+ 0, /-Ln ({b}) ---+ O. 

The case of strict probability measures will now be treated. 

Theorem 4.3.2. Let {/-LIl} and /-L be p.m.'s. Then (i), (ii), and (iii) in the 
preceding theorem are equivalent to the following "uniform" strengthening 
of (i). 

(i') For any 8 > 0 and E > 0, there exists no(8, E) such that if n > no 
then we have for eve1}' interval (a, b), possibly infinite: 

(4) /-L(a + 8, b - 8) - E < /-Ln(a, b) < /-L(a - 8, b + 8) + E. 
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PROOF. The employment of two numbers 8 and E instead of one E as in (3) 
is an apparent extension only (why?). Since (i') => (i), the preceding theorem 
yields at once (if) => (ii) ~ (iii). It remains to prove (ii) => (if) when the /1-11 's 
and /1- are p.m.' s. Let A denote the set of atoms of /1-. Then there exist an 
integer .e and a j E A c, 1 < j < .e, satisfying: 

and 

(5) 

1 < j < .e - 1; 

C E 
/1-((al,ae)) <-. 

4 

By (ii), there exist no depending on E and .e (and so on E and 8) such that if 
n > 110 then 

(6) 

It follows by additivity that 

and consequently by (5): 

(7) 
r r 2 

From (5) and (7) we see that by ignoring the part of (a, b) outside (aI, ae), we 
commit at most an error <E/2 in either one of the inequalities in (4). Thus it 
is sufficient to prove (4) with 8 and E/2, assuming that (a, b) c (aI, ae). Let 
then aJ < a < aJ+l and ak < b < ak+l, where 0 < j < k < .e 1. The desired 
inequalities follow from (6), since when n 2: no we have 

E E 
ull(a + 8, b - 8) - - < LL.1(a;+1. al.) - - < u(a;+l, av) < u(a, b) .r 4 .' J .. 4 . J • 

E 

The set of all s.p.m.' s on 0'/2 1 bears close analogy to the set of all 
real numbers in [0, 1]. Recall that the latter is sequentially compact, which 
means: Given any sequence of numbers in the set, there is a subsequence 
which converges, and the limit is also a number in the set. This is the 
fundamental Bolzano-Weierstrass theorem. We have the following analogue 
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which states: The set of all s.p.m.'s is sequentially compact with respect to 
vague convergence. It is often referred to as "Helly's extraction (or selection) 
principle". 

Theorem 4.3.3. Given any sequence of s.p.m.'s, there is a subsequence that 
converges vaguely to an s.p.m. 

PROOF. Here it is convenient to consider the subdistribution function 
(s.dJ.) Fn defined as follows: 

Vx:Fn(x) = /tn(-oo, x]. 

If /tn is a p.m., then F n is just its dJ. (see Sec. 2.2)~ in general F n is increasing, 
right continuous with F n ( -(0) = 0 and F n (+00) = /tn (.0/(1) < 1. 

Let D be a countable dense set of .0/(1, and let {rb k > I} be an 
enumeration of it. The sequence of numbers {Fn(rt}, n > I} is bounded, hence 
by the Bolzano-Weierstrass theorem there is a subsequence {F lk, k > I} of 
the given sequence such that the limit 

lim Plk(rl) - il 
k--+oo 

exists; clearly 0 < .e1 < 1. Next, the sequence of numbers {F lk (r2), k > I} is 
bounded, hence there is a subsequence {E2k. k > 1} of {Elk, k > 1} such that 

where 0 < £2 < 1. Since {F2d is a subsequence of {F Ik }, it converges also at 
rl to .e 1 . Continuing, we obtain 

F u , F 12 , ... , F lk , .. . 

P 21 , P 22 , ... , P 2b .. . 
converging at rl; 
converging at Tt, r2, 

Now consider the diagonal sequence {F kk , k > I}. We assert that it converges 
at every rj' j > 1. To see this let rj be given. Apart from the first i-I terms, 
the sequence {F kk, k > I} is a subsequence of {Fjb k > l}, which converges 
at rj and hence limk---..oo Fkk(rj) = .ej, as desired. 

We have thus proved the existence of an infinite subsequence {nd and a 
function G defined and increasing on D such that 

Vr ED: lim F nk (r) = G(r). 
k--+oo 

From G we define a function F on ~1Z1 as follows: 

Vx E ::HI: F (x) = inf G(r). 
x<rED 
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By Sec. 1.1, (vii), F is increasing and right continuous. Let C denote the set 
of its points of continuity; C is dense in 911 and we show that 

(8) Vx E C: lim Fnk(x) = F(x). 
k--+oo 

For, let x E C and E > 0 be given, there exist r, r', and r" in D such that 
r < r' < x < r" and F(r") - F(r) < E. Then we have 

F(r) < G(r') < F(x) < G(r") < F(r") < F(r) + E; 

and r r 

From these (8) follows, since E is arbitrary. 
To F corresponds a (unique) s.p.m. f..L such that 

F(x) - F( -00) = f..L( -00, xl 

as in Theorem 2.2.2. Now the relation (8) yields, upon taking differences: 

Va E C, b E C, a < b: lim f"Lrlk (a, b] = /L(a, b]. 
k--+oo 

Thus f..Lnk ~ f..L, and the theorem is proved. 

We say that F n converges vaguely to F and write F n ~ F for f..Ln ~ f..L 
where fJ.;n and fJ.; are the s.p.m.'s corresponding to the s.d.f.'s Fn and F. 

The reader should be able to confirm the truth of the following proposition 
about real numbers. Let {xn } be a sequence of real numbers such that every 
subsequence that tends to a limit (+00 allowed) has the same value for the 
limit; then the whole sequence tends to this limit. In particular a bounded 
sequence such that every convergent subsequence has the same limit is 
convergent to this limit. 

The next theorem generalizes this result to vague convergence of s.p.m.' s. 
It is not contained in the preceding proposition but can be reduced to it if we 
use the properties of vague convergence; see also Exercise 9 below. 

Theorem 4.3.4. If every vaguely convergent subsequence of the sequence 
v 

of s.p.m.'s {f..Ln} converges to the same f..L, then f..Ln ---+ f..L. 

PROOF. To prove the theorem by contraposition, suppose f..Ln does not 
converge vaguely to f..L. Then by Theorem .1·.3.1, (ii), there exists a continuity 
interval (a, b) of f..L such that f..Ln (a, b) does not converge to f..L(a, b). By 
the Bolzano-Weierstrass theorem there exists a subsequence {nd tending to 
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infinity such that the numbers f..Lnl. (a, b) converge to a limit, say L #- f..L(a, b). 
By Theorem 4.3.3, the sequence {f..Lnk' k > I} contains a subsequence, say 
{f..Ln' , k > I}, which converges vaguely, hence to f..L by hypothesis of the 

k 

theorem. Hence again by Theorem 4.3.1, (ii), we have 

f..L n' (a, b) ---+ f..L(a, b). 
k 

But the left side also ---+ L, which is a contradiction. 

EXERCISES 

1. Perhaps the most logical approach to vague convergence is as follows. 
The sequence {f..Ln, n > I} of s.p.m.' s is said to converge vaguely iff there 
exists a dense subset D of gel such that for every a ED, bED, a < b, the 
sequence {f..Ln (a, b), n > I} converges. The definition given before implies this, 
of course, but prove the converse. 

2. Prove that if (1) is true, then there exists a dense set D', such that 
f..Ln (I) ---+ f..L(I) where I may be any of the four intervals (a, b), (a, b], [a, b), 
[a, b] with a ED', bED'. 

3. Can a sequence of absolutely continuous p.m.' s converge vaguely to 
a discrete p.m.? Can a sequence of discrete p.m. 's converge vaguely to an 
absolutely continuous p.m.? 

4. If a sequence of p.m.'s converges vaguely to an atomless p.m., then 
the convergence is uniform for all inter vals, finite or infinite. (This is due to 
P6Iya.) 

5. Let {f n} be a sequence of functions increasing in .0/(1 and uniformly 
bounded there. sUPn.x If n (X)I < lvf < 00. Prove that there exists an increasing 
function [ on 9'21 and a subsequence {nd such that [n. (x) ---+ [(x) for every 
x. (This is a form of Theorem 4.3.3 frequently given; the insistence on "every 
x" requires an additional argument.) 

6. Let {tin} be a sequence of finite measures on gJl. It is said to converge 
vaguely to a measure f..L iff (1) holds. The limit f..L is not necessarily a finite 
measure. But if f.1n (9[1) is bounded in 11, then f..t is finite. 

7. If g>n is a sequence of p.m. 's on (n, sr) such that gPn (E) converges 
for every E E :!ft, then the limit is a p.m. gPo Furthermore, if f is bounded 
and sr-measurable, then 

(The first assertion is the Vitali-Hahn-Saks theorem and rather deep, but it 
can be proved by reducing it to a problem of summability; see A. Renyi, [24]. 
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8. If!-Ln and f.l are p.m.'s and !-Ln(E) ---+ !-L(E) for every open set E, then 
this is also true for every Borel set. [HINT: Use (7) of Sec. 2.2.] 

9. Prove a convergence theorem in metric space that will include both 
Theorem 4.3.3 for p.m.'s and the analogue for real numbers given before the 
theorem. [HINT: Use Exercise 9 of Sec. 4.4.] 

4.4 Continuation 

We proceed to discuss another kind of criterion, which is becoming ever more 
popular in measure theory as well as functional analysis. This has to do with 
classes of continuous functions on .0/(1. 

C K = the class of continuous functions I each vanishing outside a 
compact set K (I); 

CO - the class of continuous functions f such that 

limlxl )00 !(x) - 0; 

CB - the class of bounded continuous functions: 
C = the class of continuous functions. 

We have CK C Co C CB C C. It is well known that Co is the closure of CK 

with respect to uniform convergence. 
An arbitrary function f defined on an arbitrary space is said to have 

support in a subset S of the space iff it vanishes outside S. Thus if I E CK , 

then It has support In a certain compact set, hence also in a certain compact 
interval. A step function on a finite or infinite interval (a, b) is one with support 
in it such that I(x) = Cj for x E (aj' aj+!) for 1 < j < .e, where .e is finite, 
a al < ... < ae b, and the c/s are arbitrary real numbers. It will be 
called D-valued iff all the a / sand C / s belong to a given set D. When the 
interval (a, b) is .~1, I is called just a step function. Note that the values of 
f at the points aj are left unspecified to allow for flexibility; frequently they 
are defined by right or left continuity. The following lemma is basic. 

Approximation Lemma. Suppose that I E C K has support in the compact 
interval [a, b]. Given any dense subset A of ?Ji?l and E > 0, there eXIsts an 
A-valued step function IE on (a, b) such that 

(1) sup II(x) - I E(x)1 < E. 
XE.~I 

If I E Co, the same is true if (a, b) is replaced by 0'(1. 

This lemma becomes obvious as soon as its geometric meaning is grasped. 
In fact, for any I in C K, one may even require that either IE < I or IE > I· 
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The problem is then that of the approximation of the graph of a plane curve 
by inscribed or circumscribed polygons, as treated in elementary calculus. But 
let us remark that the lemma is also a particular case of the Stone-Weierstrass 
theorem (see, e.g., Rudin [2]) and should be so verified by the reader. Such 
a sledgehammer approach has its merit, as other kinds of approximation 
soon to be needed can also be subsumed under the same theorem. Indeed, 
the discussion in this section is meant in part to introduce some modem 
terminology to the relevant applications in probability theory. We can now 
state the following alternative criterion for vague convergence. 

Theorem 4.4.1. Let {ltn} and It be s.p.m.'s. Then Itn ~ It if and only if 

(2) Vf E CK[or Co]: r f(x)ltn (dx) ---+ r f(x)1t (dx). 
J?lt1 Jg1l1 

PROOF. Suppose Itn ~ It; (2) is true by definition when f is the indicator 
of (a, b] for a ED, bED, where D is the set in (1) of Sec. 4.3. IIence by the 
linearity of integrals it is also true when f is any D-valued step function. Now 
let j E Co and E > 0; by the approximation lemma there exists aD-valued 
step function if satisfying (1) We have 

mlrCd Ldltl<lf(, ")d 1~lr"d [ I 

By the modulus inequality and mean value theorem for integrals (see Sec. 3.2), 
the first term on the right side above is bounded by 

J J 

similarly for the third tenn. The second term converges to zero as n ) 00 

because f f is a D-valued step function. Hence the left side of (3) is bounded 
by 2E as n ---+ 00, and so converges to zero SInce E IS arbItrary. 

Conversely, suppose (2) is true for f E CT(. Let A be the set of atoms 
of It as in the proof of Theorem 4.3.2; we shall show that vague convergence 
holds with D AC

• Let g 1 (a,b] be the indicator of (a, b] where a ED, 
bED. Then, given E > 0, there exists 8(E) > 0 such that a + 8 < b - 8, and 
such that f.l(U) < E where 

V = (a - 8, a + 8) U (b - 8, b + 8). 

Now define g] to be the function that coincides with g on (-00, a] U [a + 
8, b - 8] U [b, (0) and that is linear in (a, a + 8) and in (b - 8, b); g2 to be 
the function that coincides with g on (-00, a - 8] U [a, b] U [b + 8, (0) and 
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that is linear in (a - 8, a) and (b, b + 8). It is clear that gl < g < g2 < gl + 1 
and consequently 

(4) J gl dfLn < J gdfLn < J g2 d fLn, 

t t 

(5) J gl dfL < J gdfL < J g2 d fL. 

Since gl E C K, g2 E C K, it follows from (2) that the extreme terms in (4) 
converge to the corresponding terms in (5). Since 

J g2 dfL - J gl dfL < luI dfL = fL(u) < E, 

and E is arbitrary, it follows that the middle term in (4) also converges to that 
in (5), proving the assertion. 

Corollary. If {fLn} is a sequence of s.p.m.'s such that for every f E CK , 

lim [ f (x)fLn (dx) 
II J(JJl! 

exists, then {till} converges vagueJy 

For by Theorem 4.3.3 a subsequence converges vaguely, say to /L. By 
Theorem 4.4.1, the limit above is equal to [gEl! f(x)fL (dx). This must then 
be the same for every vaguely convergent subsequence, according to the 
hypothesis of the corollary. The vague limit of every such sequence is 
therefore uniquely determined (why?) to be fL, and the corollary follows from 
Theorem 4.3.4. 

Theorem 4.4.2. Let {fLn} and fL be p.m.'s. Then fLn ~ fL if and only if 

(6) Vf E C B : r f(X)fLn (dx) ---+ r f(x)fL (dx). 

PROOF. Suppose /.tn -4 /.t. Given E > 0, there exist a and b in D such that 

(7) t-t((a, b]C) 1 t-t((a, b]) < E. 

It follows from vague convergence that there exists 110(E) such that if 
n > no(E), then 

(8) 

Let f E CB be given and suppose that If I < M < 00. Consider the function 
fE' which is equal to f on [a, b], to zero on (-00, a-I) U (b + 1, (0), 
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and which is linear in [a - 1, a) and in (b, b + 1]. Then fE E CK and 
If - fEI < 2M. We have by Theorem 4.4.1 

(9) 1111 f I' dfLn ---+ kl f I' dfL· 

On the other hand, we have 

(10) r If - fEI dfLn < r 2M dfLn < 2ME 
l?l!1 l(a,bY 

by (8). A similar estimate holds with fL replacing fLn above, by (7). Now the 
argument leading from (3) to (2) finishes the proof of (6) in the same way. 

This proves that fLn ~ fL implies (6); the converse has already been proved 
in Theorem 4.4.1. 

Theorems 4.3.3 and 4.3.4 deal with s.p.m.'s. Even if the given sequence 
{fLn} consists only of strict p.m.'s, the sequential vague limit may not be so. 
This is the sense of Example 2 in Sec. 4.3. It is sometimes demanded that 
such a limit be a p.m. The following criterion is not deep, but applicable. 

Theorem 4.4.3. Let a family of p.m.'s {Mu, ex E A} be given on an arbitrary 
index set A. In order that every sequence of them contains a subsequence 
which converges vaguely to a p.m., It IS necessary and sufficient that the 
following condition be satisfied: for any E > 0, there exists a finite interval I 
such that 

(11) inf fLu (I) > 1 - E. 
UEA 

PROOF. Suppose (11) holds. For any sequence {fLn} from the family, there 

exists a subsequence {fL;l} such that fL~ ---+ fL. We show that fL is a p.m. Let J 
be a continuity interval of M which contains the I in (11). Then 

II n 

Since E is arbitrary, J1 (g?l ) - 1. Conversely, suppose the condition involving 
(11) is not satisfied, then there exists E > 0, a sequence of finite intervals In 
increasing to c1?l, and a sequence {fLn} from the family such that 

'in: fL/I(I/I) < 1 - E. 

Let {fL~} and fL be as before and J any continuity interval of fL. Then J C In 
for all sufficiently large 11, so that 

., lim , 
fL(}) = hm fLn (J) ::s -fLn (In) < 1 - E. 

n n 

Thus fL(.-.i/;I) ::s 1 - E and fL is not a p.m. The theorem is proved. 
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A family of p.m.' s satisfying the condition above involving (11) is said to 
be tight. The preceding theorem can be stated as follows: a family of p.m.' s is 
relatively compact if and only if it is tight. The word "relatively" purports that 
the limit need not belong to the family; the word "compact" is an abbreviation 
of "sequentially vaguely convergent to a strict p.m." Extension of the result 
to p.m.'s in more general topological spaces is straight-forward but plays an 
important role in the convergence of stochastic processes. 

The new definition of vague convergence in Theorem 4.4.1 has the 
advantage over the older ones in that it can be at once carried over to measures 
in more general topological spaces. There is no substitute for "intervals" in 
such a space but the classes C K, Co and C B are readily available. We will 
illustrate the general approach by indicating one more result in this direction. 

(12) 

Recall the notion of a lower semicontinuous function on ~1 defined by: 

Vx E ~1: f(x) < limf(y). 
y->x 
y#x 

There are several equivalent definitions (see, e.g., Royden [5]) but 
the following characterization is most useful: f is bounded and lower 
semicontinuous if and only if there exists a sequence of functions fk E CB 

which increases to f everywhere, and we call f upper semicontinuous iff - f 
IS lower semlcontmuous. Usually j IS allowed to be extended-valued; but to 
avoid complications we will deal with bounded functions only and denote 
by L and V respectively the classes of bounded lower semicontinuous and 
bounded upper semicontinuous functions. 

Theorem 4.4.4. If {/tn} and /t are p.m.'s, then /tn ~ /t if and only if one 
of the two conditions below is satisfied. 

(13) Vf E L: lim f(x)/tn (dx) ~ f(x)/t (dx) 
n 

Vg E V : li,~ Jf g(x)JLn (dx) < J g(x)f.L (dx). 

PKOUJ:-. We begin by observing that the two conditions above are equiv-

alent by putting f = -g. Now suppose gil ~ g and let fk E CE, fk t f. 
Then we have 

(14) li~ J f(x)/tn (dx) > li,~ J f k(X)/tn (dx) = J f k(X)/t (dx) 

by Theorem 4.4.2. Letting k ---+ 00 the last integral above converges to 
J f(x)/t(dx) by monotone convergence. This gives the first inequality in (13). 
Conversely, suppose the latter is satisfied and let cP E C B, then cp belongs to 

-----_._-----------------_._----_.-
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both L and V, so that 

J cp(x)J1. (dx) ::s li~ J cp(x)fLn (dx) ::s li,?1 J cp(x)fLn (dx) < J cp(x)J1. (dx) 

which proves 

li,?1 J cp(x)fLn (dx) = J CP(x)fL (dx). 

Hence fLn ~ J1. by Theorem 4.4.2. 

Remark. (13) remains true if, e.g., f is lower semicontinuous, with +00 
as a possible value but bounded below. 

Corollary. The conditions in (13) may be replaced by the following: 

for every open 0: limfLn(O) > fL(O); 
n 

for every closed C:limfLn(C) < fL(C). 
II 

We leave this as an exercise 
Finally, we return to the connection between the convergence of r.v.'s 

and that of their distributions. 

DEFINITION OF CONVERGENCE "IN DISTRIBUTION" (in dist.). A sequence of 
r.v.' s {Xn} is said to converge in distribution to F iff the sequence {F n} 
of corresponding dJ.' s converges vaguely to the d.f. F. 

If X is an r.v. that has the dJ. F, then by an abuse of language we shall 
also say that {Xn} converges in dist. to X. 

Theorem 4.4.5. Let {Fn}, F be the dJ.'s of the r.v.'s {Xn}, X. If Xn ---+ X in 
pr., then F n ~ F. More briefly stated, convergence in pr. implies convergence 
in dist. 

PROOF If Xn ---+ X in pr , then for each f E CK , we have f(Xn) ---+ f(X) 
in pr. as easily seen from the uniform continuity of f (actually this is true 
for any continuous f, see Exercise 10 of Sec. 4.1). Since f is bounded the 
convergence holds also in L 1 by Theorem 4.1.4. It follows that 

which is just the relation (2) in another guise, hence fLn ~ fL· 

Convergence of r.v.'s in dist. is merely a convenient tum of speech; it 
does not have the usual properties associated with convergence. For instance, 
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if Xn --+ X in dist. and Y n --+ Y in dist., it does not follow by any means 
that X n + Y n will converge in dist. to X + Y. This is in contrast to the true 
convergence concepts discussed before; cf. Exercises 3 and 6 of Sec. 4.1. But 
if Xn and Y n are independent, then the preceding assertion is indeed true as a 
property of the convergence of convolutions of distributions (see Chapter 6). 
However, in the simple situation of the next theorem no independence assump
tion is needed. The result is useful in dealing with limit distributions in the 
presence of nuisance terms. 

Theorem 4.4.6. If Xn --+ X in dist, and Y n --+ 0 in dist., then 

(a) Xn + Y n --+ X in dist. 
(b) XnYn --+ 0 in dist. 

PROOF. We begin with the remark that for any constant c, Y n --+ c in dist. 
is equivalent to Y n --+ c in pr. (Exercise 4 below). To prove (a), let f E CK , 

I f I ::: M. Since f is uniformly continuous, given E > 0 there exists 8 such 
that Ix - yl < (5 ImplIes If (x) - f (y)1 ::: E. Hence we have 

::: E + 2MEP{IY nl > oj. 

The last-written probability tends to zero as n --+ 00; it follows that 

lim {{ f (X n + Y n )} = lim g {f (X n )} = e {f (X)} 
n--+oo n--+oo 

by Theorem 4.4.1, and (a) follows by the same theorem. 
To prove (b), for given E > 0 we choose Ao so that both ±Ao are points 

of continuity of the d.f. of X, and so large that 

lim .00{IXnl > Ao} ~{IXI > Ao} < E. 
n--+oo 

This means .~{IXnl > Ao} < E for n > no(E). Furthermore we choose A ~ Ao 
so that the same inequality holds also for n < no(E). Now it is clear that 

The last-written probability tends to zero as n --+ 00, and (b) follows. 

Corollary. If Xn --+ X, an --+ a, fJn --+ h, all in dist. where a and h are 
constants, then anXn + fJn --+ aX + h in dist. 
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EXERCISES 

*1. Let f..Ln and f..L be p.m.'s such that f..Ln ~ f..L. Show that the conclusion 
in (2) need not hold if (a) f is bounded and Borel measurable and all f..Ln 
and f..L are absolutely continuous, or (b) f is continuous except at one point 
and every f..Ln is absolutely continuous. (To find even sharper counterexamples 
would not be too easy, in view of Exercise 10 of Sec. 4.5.) 

2. Let f..Ln ~ f..L when the f..Ln'S are s.p.m.'s. Then for each f E C and 
each finite continuity interval I we have h f df..Ln ---+ .0 f df..L. 

*3. Let f..Ln and f..L be as in Exercise 1. If the f n's are bounded continuous 
functions converging uniformly to f, then J f n df..Ln ---+ J f df..L. 

* 4. Give an example to show that convergence in dist. does not imply that 
in pr. However, show that convergence to the unit mass oa does imply that in 
pr. to the constant a. 

5. A set {gal of p.m.'s is tight if and only if the corresponding dJ.'s 
{F a} converge uniformly in ex as x ---+ -00 and as x ---+ +00. 

6. Let the r.v.'s {Xa} have the p.m.'s {f..La}. If for some real r> 0, 
eb { IX a I r} is bounded in ex , then {ga} is tight. 

7. Prove the Corollary to Theorem 4.4.4. 

8. If the r. v.' s X and Y satisfy 

for some €O, then their dJ.'s F and G satisfying the inequalities: 

(15) 'fix E ;)71 : F(x - E) - €O ::s G(x) ::s F(x + E) + €o. 

Derive another proof of Theorem 4.4.5 from this. 

*9. The Levy distance of two s.d.f.'s F and G is defined to be the infimum 
of all €O > 0 satisfying the inequalities in (15). Prove that this is indeed a metric 
in the space of s.dJ. 's, and that F n converges to F in this metric if and only 
.~ D V D -'I roc d roo d l~ ?n ---+ ? anu Y_ocp-n ---+ J_oo F . 

10. Find two sequences of p.m.' s {f..Ln} and {vn} such that 

J 1 ) J ) or , 

but for no finite (a, b) is it true that 

f..Ln (a, b) - Vn (a, b) ---+ O. 

[HINT: Let f..Ln = orn , VII = OSn and choose {rn}, {sn} suitably.] 

11. Let {f..Ln} be a sequence of p.m.'s such that for each f E CB , the 

sequence f31l f dll n converges; then f..Ln ~ f..L, where f..L is a p.m. [HINT: If the 
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hypothesis is strengthened to include every f in C, and convergence of real 
numbers is interpreted as usual as convergence to a finite limit, the result is 
easy by taking an f going to 00. In general one may proceed by contradiction 
using an f that oscillates at infinity.] 

*12. Let Fn and F be dJ.'s such that Fn ~ F. Define Gn(e) and G(e) 
as in Exercise 4 of Sec. 3.1. Then Gn (e) ---+ G(e) in a.e. [HINT: Do this first 
when F nand F are continuous and strictly increasing. The general case is 
obtained by smoothing F nand F by convoluting with a uniform distribution 
in [-8, +8] and letting 8 ,j,. 0; see the end of Sec. 6.1 below.] 

4.5 Uniform integrability; convergence of moments 

The function Ixl r, r> 0, is in C but not in CB , hence Theorem 4.4.2 does 
not apply to it. Indeed, we have seen in Example 2 of Sec. 4.1 that even 
convergence a.e. does not imply convergence of any moment of Older r> O. 
For, given r, a slight modification of that example will yield Xn ---+ X a.e., 
cf(IXn Ir) = 1 but {(IXl r ) = O. 

It is useful to have conditions to ensure the convergence of moments 
when Xn converges a.e. We begin with a standard theorem in this direction 
from classical analysis. 

Theorem 4.5.1. If Xn ---+ X a.e., then for every r> 0: 

(1) cf(IXl r ) S lim cf(IXn Ir). 
n--+oo 

If Xn ---+ X in Lr, and X E Lr, then l(IXn Ir) ---+ 0'(IXl r ). 

PROOF. (1) is just a case of Fatou's lemma (see Sec. 3.2): 

IXl r d.:lF = lim IXn Ir d9 < lim 
n 

where +00 is allowed as a value for each member with the usual convention. 
In case of convergence in L r , r> 1, we have by Minkowski's inequality 
(Sec. 3.2), since X - XII + (X XII) - XII (XII X): 

cf'(IXII nl
/
r {(IXII Xlr)ljr:::: 0'(IXl r )I/,. :::: ([(IXn Ir)I/" + ({(IX

II 
XI,)lj'·. 

Letting n ---+ 00 we obtain the second assertion of the theorem. For 0 < r S 1, 
the inequality Ix + ylr s Ixl r + Iylr implies that 

rf (IXn n - ! (IX - Xlllr) S (f(IXl r ) S 0'(IXn n + rf (IX - Xn n, 
whence the same conclusion. 

The next result should be compared with Theorem 4.1.4. 
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Theorem 4.5.2. If {Xn} converges in dist. to X, and for some p > 0, 
sUPn J'{IXn IP} = M < 00, then for each r < p: 

(2) lim J(IXn Ir) = (t(IXl r ) < 00. 
n--+oo 

If r is a positive integer, then we may replace IXn I
r and IXl r above by X,/ 

and xr. 
PROOF. We prove the second assertion since the first is similar. Let F n, F 

be the d.f.' s of Xn , X; then F n ~ F. For A > 0 define fA on g;>l as follows: 

(3) 
if Ixl ::s A; 
if x> A; 
if x < -A. 

Then fA E eB, hence by Theorem 4.4.4 the "truncated moments" converge: 

roo fA(x)dFn(x) ---+ [00 L(x)dF(x) T-oo J • r ] -00 J Ji 

Next we have 

xrldFn(x)::s f Ixl ' dFn(x) -1 IXnl' d9 
Ixl>A IX" I>A 

r r 

follows that as A ---+ 00, Joooo fA dF n converges uniformly in n to .£00
00 

xr dF. 
Hence by a standard theorem on the inversion of repeated limits, we have 

(4) xr dF = lim 
A--+oo 

nnnn J TAn 
n--+ooA--+oo -00 

1m ] x n . 
n--+oo -00 

We now introduce the concept of uniform integrability, which is of basic 
importance in this connection. It is also an essential hypothesis in certain 
convergence questions arising in the theory of martingales (to be treated in 
Chapter 9). 

DEFINITION OF UNIFORM INTEGRABILITY. A family of r.v.'s {Xt}, t E T, 
where T is an arbitrary index set, is said to be uniformly integrable iff 

(5) lim r IXt I d:JJ> = 0 
A--+oo JIXrl>A 

uniformly in t E T. 
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Theorem 4.5.3. The family {Xt} is unifonnly integrable if and only if the 
following two conditions are satisfied: 

(a) e(IXt I) is bounded in t E T; 
(b) For every E > 0, there exists O(E) > ° such that for any E E d': 

2P(E) < O(E):::} llXt I d9 < E for every t E T. 

PROOF. Clearly (5) implies (a). Next, let E E ~p and write E t for the set 
{w : IXt(w)1 > A}. We have by the mean value theorem 

r IXtl d9 = (r + r ) IXtl d9>::s r IXtl d9 + A9(E). 
JE JEnEt JE\Et JEt 

Given E > 0, there exists A = A(E) such that the last-written integral is less 
than E/2 for every t, by (5). Hence (b) will follow if we set 0 = E/2A. Thus 
(5) implies (b). 

Conversely, suppose that (a) and (b) are true. Then by the Cheby shev 
inequality we have for every t, 

£?2[IX I> A} < 0"(IXt l) < M 

where M is the bound indicated in (a). Hence if A > Mlo, then 9(E t ) < 0 
and we have by (b)' 

[ IX,I d9 < E. 

Thus (5) is true. 

Theorem 4.5.4. Let ° < r < 00, Xn E Lr , and Xn ---+ X In pr. Then the 
following three propositions are equivalent. 

(i) {IXn I'} is unifonnly integrable; 
(ii) Xil ---+ X in L'; 

(iii) <f(IXn n ---+ e(IXl r ) < 00. 

PROOF. Suppose (i) is true; since Xn ---+ X in pro by Theorem 4.2.3, there 
exists a subsequence {nd such that X nk ---+ X a.e. By Theorem 4.5.1 and (a) 
above, X E U. The easy inequality 

IXn - Xl r < 2' {IXlll r + IXlr}, 

valid for all r> 0, together with Theorem 4.5.3 then implies that the sequence 
{IXn - XI'} is also unifonnly integrable. For each E > 0, we have 
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Since ,~{IXn - XI > E} ---+ 0 as n ---+ 00 by hypothesis, it follows from (b) 
above that the last written integral in (6) also tends to zero. This being true 
for every E > 0, (ii) follows. 

Suppose (ii) is true, then we have (iii) by the second assertion of 
Theorem 4.5.1. 

Finally suppose (iii) is true. To prove (i), let A > 0 and consider a function 
f A in C K satisfying the following conditions: 

for Ixl r < A; 
fA (x) for A < Ix I r < A + 1; 

cf. the proof of Theorem 4.4. I for the constructIOn of such a functIOn. Hence 
we have 

where the inequalities follow from the shape of fA, while the limit relation 
m the mIddle as m the proof of Theorem 4.4.5. Subtractmg from the hmit 
relation in (iii), we obtain 

hm ] IXn I' d:Y s ] IXI'dg;. 
n--.oo IXnlr>A+1 IXlr>A 

- r r 

The last integral does not depend on n and converges to zero as A ---+ 00. This 
means: for any E > 0, there exists Ao = Ao(E) and no = no(Ao(E)) such that 
we have 

sup r IXn Ir d?J> < E 
n>no JlX"lr>A+1 

provided that A > Ao. Since each IXn Ir is integrable, there exists Al = Al (E) 
such that the supremum above may be taken over all n > 1 provided that 
A > Ao V AI. This establishes (i), and completes the proof of the theorem. 

In the remainder of this section the term "moment" will be restricted to a 
moment of positive integral order. It is well known (sec Exercise 5 of Sec. 6.6) 
that on (11,~) any p.m. or equivalently its dJ. is uniquely determined by 
its moments of all orders. Precisely, if FI and F2 are two dJ.'s such that 
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Fi(O) = 0, FiCO = 1 for i = 1, 2; and 

Vn 2: 1: 10
1 

x" dF 1(x) = 10
1 

x" dF,(x), 

then F 1 = F 2. The corresponding result is false in (9'[1,331) and a further 
condition on the moments is required to ensure uniqueness. The sufficient 
condition due to Carleman is as follows: 

00"", 1 L172r = +00, 
r=1 m2r 

where mr denotes the moment of order r. When a given sequence of numbers 
{mr, r > I} uniquely determines adJ. F such that 

(7) mr = ('X) xr dF(x), 

we say that "the moment problem is detenninate" for the sequence Of conr~e 
an arbitrary sequence of numbers need not be the sequence of moments for 
any d.f.; a necessary but far from sufficient condition, for example, is that 
the Liapounov inequality (Sec. 3.2) be satisfied. We shall not go into these 
questions here but shall content ourselves with the useful result below, which 
is often referred to as the "method of moments"; see also Theorem 6.4.5. 

Theorem 4.5.5. Suppose there IS a umque d.f. F WIth the moments {m(I), r > 
I}, all finite. Suppose that {F n} is a sequence of dJ.' s, each of which has all 
its moments finite: 

m,~) = ] x'dFn . 
-00 

Finally, suppose that for every r > 1: 

(8) lim m~) = m(r) . 
/1 ...... 00 

Then FIl ~ F. 

PROOF. Let Mil be the p.m. corresponding to Ell' By Theorem 4.3.3 there 
exists a subsequence of {1L1l} that converges vaguely. Let {lLnk} be any sub
sequence converging vaguely to some IL. We shall show that IL is indeed a 
p.m. with the dJ. F. By the Chebyshev inequality, we have for each A > 0: 

( A A) 1 A -2 (2) 
ILllk - ,+ > - mnk . 

Since m(2) --+ m(2) < 00, it follows that as A --+ 00, the left side converges nk 
uniformly in k to one. Letting A --+ 00 along a sequence of points such that 
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both ±A belong to the dense set D involved in the definition of vague conver
gence, we obtain as in (4) above: 

J1.(?l/l) = lim ltC-A, +A) = lim lim /tnk(-A, +A) 
A--+oo A--+oo k--+oo 

= lim lim /tnk (-A, +A) = lim /tnk (0'[1) = 1. 
k--+ 00 A--+oo k--+oo 

Now for each r, let p be the next larger even integer. We have 

100 xP d 11 = m(p) ---+ m(p) 
t"'nk nk ' 

-00 

hence m~~) is bounded in k. It follows from Theorem 4.5.2 that 

1: xr d/tnk ---+ 1: xr d/t. 

But the left sIde also converges to m(l) by (8). Hence by the umqueness 
hypothesis g is the p.m. determined by F. We have therefore proved that every 
vaguely convergent subsequence of {/tn}, or equivalently {F n}, has the same 
limit It, or equivalently F. Hence the theorem follows from Theorem 4.3.4. 

EXERCISES 

1. If supn IXn I E LP and Xn ---+ X a.e., then X E LP and Xn ---+ X in LP. 
2. If {X II} is dominated by some Y in LP, and converges in dist. to X, 

3. If XII ---+ X in dist., and fEe, then f (Xn ) ---+ f (X) in dist. 

*4. Exercise 3 may be reduced to Exercise 10 of Sec. 4.1 as follows. Let 

F 11' 1 < n < 00, be dJ.' s such that F 11 ~ F. Let 8 be uniformly distributed on 
[0, 1] and put Xn = F-;;l (8), 1 ::s n < 00, where F-;;l (y) = sup{x: F n(x) < y} 
(cL Exercise 4 of Sec. 3.1). Then Xn has dJ. F n and Xn ----+ Xoo in pI. 

5. Find the moments of the normal dJ. <1> and the positive normal dJ. 
<1>+ below: 

if x > o· 

if x < O. 

Show that in either case the moments satisfy Carleman's condition. 

6. If {Xt} and {Yt} are uniformly integrable, then so is {Xt+Yd and 
{Xt+Yt}. 

7. If {X n} is dominated by some Y in L 1 or if it is identically distributed 
with finite mean, then it is uniformly integrable. 
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*8. If sUPn {(IXn IP) < 00 for some p > 1, then {Xn} is uniformly inte
grable. 

9. If {Xn} is uniformly integrable, then the sequence 

is uniformly integrable. 

*10. Suppose the distributions of {Xn, 1 <n < oo} are absolutely contin
uous with densities {gn} such that gn ---+ goo in Lebesgue measure. Then 
gn ---+ goo in L 1 (-00,00), and consequently for every bounded Borel measur
able function! we have cf{!(X/l)} ---+ 0"{!(Xoo )}' [HINT: J(goo - gn)+ dx = 
J (goo - gn r dx and (goo - gn)+ ::: goo~ use dominated convergence.] 



5 

5.1 

Law of large numbers. 
Random series 

Simple limit theorems 

The various concepts of Chapter 4 will be applied to the so-called "law of 
large numbers" - a famous name in the theory of probability. This has to do 
with partial sums 

11 

)=1 

of a sequence of r.v.'s. In the most classical formulation, the "weak" or the 
"strong" law of large numbers is said to hold for the sequence according as 

(1) 
Sn - l(Sn) 
---- ---+ 0 

n 

in pr. or a.e. This, of course, presupposes the finiteness of 0 (Sn). A natural 
generalization is as follows: 

where {an} is a sequence of real numbers and {bn } a sequence of positive 
numbers tending to infinity. We shall present several stages of the development, 
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even though they overlap each other to some extent, for it is just as important 
to learn the basic techniques as the results themselves. 

The simplest cases follow from Theorems 4.1.4 and 4.2.3, according to 
which if Zn is any sequence of LV.'S, then 0'{Z~) ---+ 0 implies that Zn ---+ 0 
in pL and Znk ---+ 0 a.e. for a subsequence {nd. Applied to Z/l = S/l In, the 
first assertion becomes 

(2) 
2 2 Sn . 

l(Sn) = o(n ) => - ---+ 0 In pL 
n 

Now we can calculate cS(S~) more explicitly as follows: 

/l 
- L (f'(X]) + 2 L $(X jX k ). 

;=1 l<;<k<n 

Observe that there are n 2 terms above so that even if all of them are bounded , 
by a fixed constant, only 0{S~) = O(n 2) will result, which falls critically short 
of the hypothesis in (2). The idea then is to introduce certain assumptions to 
cause enough cancellation among the "mixed terms" in (3). A salient feature 
of probability theory and its applications is that such assumptions are not only 
permissible but realistic. 'Ne begin with the simplest of its kind. 

DEFINITION. Two LV.' S X and Y are said to be uncorrelated iff both have 
finite second moments and 

(4) 

They are said to be orthogonal iff (4) is replaced by 

(5) ([(X}') o. 

The LV.'S of any family are said to be uncorrelated [orthogonal] iff every two 
of them are. 

Note that (4) is equivalent to 

{{(X - t(X))(Y - e(Y))} = 0, 

which reduces to (5) when cf (X) = feY) = O. The requirement of finite 
second moments seems unnecessary, but it does ensure the finiteness of 
l(XY) (Cauchy-Schwarz inequality!) as well as that of l (X) and! (Y), and 
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without it the definitions are hardly useful. Finally, it is obvious that pairwise 
independence implies uncorrelatedness, provided second moments are finite. 

If {Xn} is a sequence of uncorrelated r.v.'s, then the sequence {XII -
t (XII)} is orthogonal, and for the latter (3) reduces to the fundamental relation 
below: 

(6) 
n 

(J'2(Sn)- = L(J'2(Xj ), 

j=! 

which may be called the "additivity of the variance". Conversely, the validity 
of (6) for n = 2 implies that X! and X2 are uncorrelated. There are only n 
terms on the right side of (6), hence if these are bounded by a fixed constant 
we have now (J'2(Sn) = O(n) = o(n2). Thus (2) becomes applicable, and we 
have proved the following result. 

Theorem 5.1.1. If the Xj's are uncorrelated and their second moments have 
a common bound, then (1) IS true In £2 and hence also In pr. 

This simple theorem is actually due to Chebyshev, who invented his 
famous inequalities for its proof. The next result, due to Rajchman (1932), 
strengthens the conclusion by proving convergence a.e. This result is inter-
esting by virtue of its simplicity, and serves well to introduce an important 
method, that of taking subsequences 

Theorem 5.1.2. Under the same hypotheses as in Theorem 5.1.1, (1) holds 
also a.e. 

PROOF. Without loss of generality we may suppose that I (X j) = 0 for 
each j, so that the X/s are orthogonal. We have by (6): 

<:'(S2) < M « n _ n, 

where M is a bound for the second moments. It follows by Chebyshev's 
inequality that for each E > 0 we have 

If we sum thIS over n, the resultIng senes on the nght dIverges. However, If 
we confine ourselves to the subsequence {n 2 }, then 

_ M 
L~{lSn21 > n

2
E} = L 22" < 00. 

n E 
n n 

Hence by Theorem 4.2.1 (Borel-Cantelli) we have 

(7) 
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and consequently by Theorem 4.2.2 

(8) 

We have thus proved the desired result for a subsequence; and the "method 
of subsequences" aims in general at extending to the whole sequence a result 
proved (relatively easily) for a subsequence. In the present case we must show 
that Sk does not differ enough from the nearest Sn2 to make any real difference. 

Put for each 11 :::: 1: 

Dn = max ISk - Sn21. 
n2:sk«n+1)2 

Then we have 

(11+1 )2 

cff(D~) :::: 211 t(IS(n+1)2 - Sn212) - 211 L 0-
2 (X j) :::: 4112M 

and consequently by Chebyshev'S inequality 

It follows as before that 

(9) 

.9'{Dn > 11 E} :::: 2"2"' 
E n 

Dn 
----+0 ae 

Now It IS clear that (8) and (9) together Imply (1), SInce 

for n 2 SO k < (n + 1 )2. The theorem is proved. 

The hypotheses of Theorems 5.1.1 and 5.1.2 are certainly satisfied for a 
sequence of independent r.v.'s that are uniformly bounded or that are identi
cally distributed with a finite second moment. The most celebrated, as well as 
the very first case of the strong law of large numbers, due to Borel (1909), is 
formulated in terms of the so-called "normal numbers." Let each real number 
in [0, 1] be expanded in the usual decimal system: 

(10) 

Except for the countable set of terminating decimals, for which there are two 
distinct expansions, this representation is unique. Fix a k: 0 :::: k :::: 9, and let 
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vin)(w) denote the number of digits among the first n digits of w that are 

equal to k. Then vY)(w)/n is the relative frequency of the digit k in the first 
n places, and the limit, if existing: 

(11) 
v(n)(w) 

lim k = ((Jk(W), 
Il-HX) n 

may be called the frequency of k in w. The number w is called simply normal 
(to the scale 10) iff this limit exists for each k and is equal to 1110. Intuitively 
all ten possibilities should be equally likely for each digit of a number picked 
"at random". On the other hand, one can write down "at random" any number 
of numbers that are "abnormal" according to the definition given, such as 
·1111 ... , while it is a relatively difficult matter to name even one normal 
number in the sense of Exercise 5 below. It turns out that the number 

·12345678910111213 ... , 

whIch IS obtamed by wntmg down m succeSSIOn all the natural numbers m 
the decimal system, is a normal number to the scale 10 even in the strin-
gent definition of Exercise 5 below, but the proof is not so easy. As for 
determining whether certain well-known numbers such as e 2 or JT 3 are 
normal, the problem seems beyond the reach of our present capability for 
mathematics. In spite of these difficulties, Borel's theorem below asserts that 
in a perfectly precise sense almost every number is nonnal. Furthennore, this 
striking proposition is merely a very particular case of Theorem 5.1.2 above. 

Theorem 5.1.3. Except for a Borel set of measure zero, every number in 
[0, 1] is simply normal. 

PROOF. Consider the probability space ('fl, ill, m) in Example 2 of 
Sec. 2.2. Let Z be the subset of the fomi milO'! for integers n ::: 1, m ::: 1, 
then mCZ) = 0. If w E 1I\Z, then it has a unique decimal expansion; if w E Z, 
it has two such expansions, but we agree to use the "terminating" one for the 
sake of definiteness. Thus we have 

W ~1~2 ... ~11 ••• , 

where for each n .::: 1, ~n C·) is a Borel measurable function of w. Just as in 
Example 4 of Sec. 3.3, the sequence {~n, n .::: I} is a sequence of independent 
r.v.'s with 

k = 0,1, ... ,9. 

Indeed according to Theorem 5.1.2 we need only verify that the ~ n 's are 
uncorrelated, which is a very simple matter. For a fixed k we define the 
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r.v. Xn to be the indicator of the set {w: ~n (w) = k}, then / (XII) = 1/10, 
{(XII2) = 1/10, and 

1 n 
- ~X'(w) n ~ ] 

j=! 

is the relative frequency of the digit k in the first n places of the decimal for 
w. According to Theorem 5.1.2, we have then 

Sn 1 
- -+ - a.e. 
n 10 

Hence in the notation of (11), we have .o/>{cpk = 1/10} = 1 for each k and 
consequently also 

which means that the set of nonnal numbers has Borel measure one. 
Theorem 5.1.3 is proved. 

The preceding theorem makes a deep impression (at least on the older 
generation!) because it interprets a general proposition in probability theory 
at a most classical and fundamental level. If we use the intuitive language of 
probabIlIty such as com-tossmg, the result sounds almost tnte. For It merely 
says that if an unbiased coin is tossed indefinitely, the limiting frequency of 
"heads" will be equal to ~ - that is, its a priori probability. A mathematician 
who is unacquainted with and therefore skeptical of probability theory tends 
to regard the last statement as either "obvious" or "unprovable", but he can 
scarcely question the authenticity of Borel's theorem about ordinary decimals. 
As a matter of fact, the proof given above, essentially Borel's own, is a 
lot easier than a straightforward measure-theoretic version, deprived of the 
mtUItIve content [see, e.g., Hardy and Wnght, An introductIOn to the theory oj 
numbers, 3rd. ed .. Oxford University Press, Inc., New York, 1954]. 

EXERCISES 

1. FOI any sequence of I. v.' s {XII}, if (r(X~) ----+ 0, then (l) is tlUe in pI. 
but not necessarily a.e. 

*2. Theorem 5.1.2 may be sharpened as follows: under the same hypo
theses we have SII /n a -+ ° a.e. for any a > ~. 

3. Theorem 5.1.2 remains true if the hypothesis of bounded second mo
ments is weakened to: 0'2(Xn) = 0(n 8

) where ° ::s e < k. Various combina
tions of Exercises 2 and 3 are possible. 

* 4. If {XII} are independent r. v.' s such that the fourth moments (r (X~ ) 
have a common bound, then (1) is true a.e. [This is Cantelli's strong law of 
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large numbers. Without using Theorem 5.1.2 we may operate with f (S~ I n4 ) 

as we did with /(S~/n2). Note that the full strength of independence is not 
needed.] 

5. We may strengthen the definition of a normal number by considering 
blocks of digits. Let r ::::. 1, and consider the successive overlapping blocks of 
r consecutive digits in a decimal; there are n - r + 1 such blocks in the first 
11 places. Let V(II)(W) denote the number of such blocks that are identical with 
a given one; for example, if r = 5, the given block may be "21212". Prove 
that for a.e. w, we have for every r: 

. V(II)(W) 1 
hm =-

n ---+ 00 n lor 

[HINT: Reduce the problem to disjoint blocks, which are independent.] 

* 6. The above definition may be further strengthened if we consider diffe
rent scales of expansion. A real number in [0, 1] is said to be complezely 
nonnal iff the relative frequency of each block of length r in the scale s tends 
to the limit I/sr for every sand r. Prove that almost every number in [0, 1] 
is completely normal. 

7. Let a be completely normal. Show that by looking at the expansion 
of a in some scale we can rediscover the complete works of Shakespeare 
from end to end without a single misprint or interruption. [This is Borel's 
paradox.] 

*8. Let X be an arbitrary r.v. with an absolutely continuous distribution. 
Prove that with probability one the fractional part of X is a normal number. 
[HINT: Let N be the set of normal numbers and consider g'){X - [X] EN}.] 

9. Prove that the set of real numbers in [0, 1] whose decimal expansions 
do not contain the digit 2 is of measure zero. Deduce from this the existence 
of two sets A and B both of measure zero such that every real number is 
representable as a sum a + b with a E A, b E B. 

*10. Is the sum of two normal numbers, modulo 1, normal? Is the product? 
[HINT: Consider the differences between a fixed abnormal number and all 
normal numbers: this is a set of probability one.] 

5.2 Weak law of large numbers 

The law of large numbers in the form (1) of Sec. 5.1 involves only the first 
moment, but so far we have operated with the second. In order to drop any 
assumption on the second moment, we need a new device, that of "equivalent 
sequences", due to Khintchine (1894-1959). 
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DEFINITION. Two sequences ofr.v.'s {Xn} and {Yn} are said to be equiv
alent iff 

n 

In practice, an equivalent sequence is obtained by "truncating" in various 
ways, as we shall see presently. 

Theorem 5.2.1. If {X n} and {Y n} are equivalent, then 

L (Xn - Y n) converges a.e. 
n 

Furthermore if an t 00, then 

(2) 

PROOF. By the Borel-CantellI lemma, (1) ImplIes that 

2P{Xn =J. Y n i.o.} = O. 

This means that there exists a null set N with the following property: if 
()) E Q\N, then there exists llo(w) such that 

n :::: no(w) =} Xn (w) - Y n (w). 

Thus for such an w, the two numerical sequences {Xn(w)} and {Yn(w)} differ 
only in a finite number of tenns (how many depending on w) In other words, 
the series 

:L(Xn (w) Y n (w)) 
n 

consists of zeros from a certain point on. Both assertions of the theorem are 
trivial consequences of this fact. 

Corollary. With probability one, the expression 

LXII 
n 

converges, diverges to +00 or -00, or fluctuates in the same way as 

11 

1 n 

or -LYj' 
an . 1 

J= 
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respectively. In particular, if 

converges to X in pr., then so does 

To prove the last assertion of the corollary, observe that by Theorem 4.1.2 
the relation (2) holds also in pr. Hence if 

1 n -;; L:Xj -+ X III pr., 
n j=l 

then we have 

(see Exercise 3 of Sec. 4.1). 

The next law of large numbers is due to Khintchine. Under the stronger 
hypothesis of total independence, it will be proved again by an entirely 
different method in Chapter 6. 

Theorem 5.2.2. Let {Xu} be pairwise independent and identically distributed 
r.v.'s with finite mean m. Then we have 

Sn 
- -+ m ID pr (3) 
n 

PROOF Let the common d f. be F so that 

m J xdF(x), 
-08 

] Ix I dF(x) < 00. 
-00 

By Theorem 3.2.1 the finiteness of 6U(IXll) is equivalent to 

L:q>(IX11 > n) < 00. 

11 

Hence we have, since the Xn' s have the same distribution: 

(4) 
n 
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We introduce a sequence of r. v.' s {Y n} by "truncating at n": 

if IXn(w)1 ::s n; 
if IXn(w)1 > n. 

This is equivalent to {Xn} by (4), since ,0')(IXnl > n) = ,0')(Xn =J. Yn). Let 

n 

By the corollary above, (3) will follow if (and only if) we can prove Tn/n ---+ 
m in pr. Now the Y n 's are also pairwise independent by Theorem 3.3.1 
(applied to each pair), hence they are uncorrelated, since each, being bounded, 
has a finite second moment. Let us calculate (J2(T n); we have by (6) of 
Sec. 5.1, 

n n n r 

The crudest estimate of the last term yields 

Ixl dF(x) ::s --- Ixl dF(x), 

which is O(n 2), but not o(n2) as required by (2) of Sec. 5.1. To improve 
on it, let {all} be a sequence of integers such that 0 < an < 1l, an ---+ 00 but 
all = o(n). We have 

n 

E ( x2 dF(x) E+E 
j~an all<j~n 

+ L n r IxldF(x) 
a <j'<n Jan<ixi~n II _ 

::s nan 100 

Ixl dF(x) + n21 Ixl dF(x). 
-00 ixi>an 

The first term is O(nan) = o(n2); and the second is n2o(l) = o(n2), since 
the set {x: Ixl > all} decreases to the empty set and so the last-written inte
gral above converges to zero. We have thus proved that (J2(Tn) = o(n2) and 
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consequently, by (2) of Sec. 5.1, 

T - cY(T) 1 n 
11 . n = _ ~{Y. _ ct(Y .)} -+ 0 n n L.....t ] ] In pr. 

j=1 

Now it is clear that as n -+ 00, 6'(Y n) -+ e?(X) = m; hence also 

It follows that 
Tn 1 n 
- = - ~ Y . -+ m In pr., 
n nL.....t ] 

j=1 

as was to be proved. 

For totally independent r v's, necessary and sufficient conditions for 
the weak law of large numbers in the most general formulation, due to 
Kolmogorov and Feller, are known. The sufficiency of the following crite
rion is easily proved, but we omit the proof of its necessity ( cf. Gnedenko and 
Kolmogorov [12]). 

Theorem 5.2.3. Let {Xn} be a sequence of independent r.v.'s with d.f.'s 
{F Il}; and SII - 2:j=1 X j. Let {b n } be a gIven sequence of real numbers Increa
sing to +00. 

Suppose that we have 

b2 ] .rot _ n J 

n 

then if we put 

(5) an = t [ xdF;(x), 

we have 

(6) 

N ext suppose that the F n ' s have the property that there exists a A > 0 
such that 

(7) 'v'l1:Fn(O)~A, 1-Fn(O-)~A. 
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Then if (6) holds for the given {bn} and any sequence of real numbers {an}, 
the conditions (i) and (ii) must hold. 

Remark. Condition (7) may be written as 

g'){Xn :s O} ~ A, 2P{Xn ~ O} ~ A; 

when A = ~ this means that 0 is a median for each XII; see Exercise 9 below. 
In general it ensures that none of the distribution is too far off center, and it 
is certainly satisfied if all F n are the same; see also Exercise 11 below. 

It is possible to replace the an in (5) by 

tll$bjXdFM 
and maintain (6); see Exercise 8 below. 

PROOF OF SUFFICIENCY. Define for each n > 1 and 1 < j < n: 

and write 
n 

1 n - L Y n,j. 
;-1 

Then condition (i) may be written as 

n 

I:>?>{Yn,j # X j } = 0(1); 
j 1 

and it follows from Baale's inequality that 

( " '\" 

lj=1 J j=1 

Next, condItIOn (11) may be wntten as 

from which it follows, since {Yn,j, 1 :s j :s n} are independent LV.'S: 
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Hence as in (2) of Sec. 5.1, 

(9) 
Tn - t(Tn) 
----- ~ 0 In pr. 

bn 

It is clear (why?) that (8) and (9) together imply 

Since 

(6) is proved. 

As an application of Theorem 5.2.3 we give an example where the weak 
but not the strong law of large numbers holds. 

Example. Let {Xn} be independent r.v.'s with a common dJ. F such that 

n} n} 
c 

n 3,4, ... , 

where c is the constant 
1 ( 00 1 j -I 
2~ n 2 logn ) 

We have then, for large values of n, 

L "c c n dF(x) = 11 L '" --, 
iJ 1>11 k>/l Plogk logn 

-:;- . n . i x dF(x) = - z= 2 '" -. 
n~ Ixl</l n k 3 k logk logn 

1 c 2 1 /l ck2 C 

Thus conditions (i) and (ii) are satisfied with b/l = n; and we have all = 0 by (5). 
Hence SI1/n -+ 0 in pro in spite of the fact that t(IX11) = +00. On the other hand, 
we have 

so that, since X 1 and X/l have the same dJ., 

11 11 

Hence by Theorem 4.2.4 (Borel-Cantelli), 

~P{ IXI1 I > n i.o.} = 1. 
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But IS" -S,,-ll = IX"I > n implies IS"I > n/2 or IS,,-ll > n/2; it follows that 

9{IS"I> i i.o.} = 1, 

and so it is certainly false that S,,/n --+ 0 a.e. However, we can prove more. For any 
A > 0, the same argument as before yields 

9{IX,,1 > An i.o.} = 1 

and consequently 

9 {IS" I > A
2
n i.O.} = l. 

This means that for each A there is a null set Z(A) such that if W E Q\Z(A), then 

-1. S,,(w) A 
(10) 1m -- > -. 

"--+00 n - 2 

Let Z = U::'=l Z(m); then Z is still a null set, and if W E Q\Z, (10) is true for every 
A, and therefore the upper limit is +00. Since X is "symmetric" in the obvious sense, 
it follows that 

00, +00 a.e. 
"--+00 n ,,--+00 n 

EXERCISES 

n 

j=1 

1. For any sequence of r.v.'s {Xn}, and any p 2: 1: 

Sn 
Xn ~ 0 a.e. =} - ~ 0 a.e., 

n 

X n ~ 0 in L P :::::} Sn ~ 0 in L P • 
n 

The second result is false for p < 1. 

2. Even for a sequence of independent r.v.'s {Xn}, 

X O· ~~ O· n ~ III pr. -r-r - ~ III pro 
n 

[HINT: Let Xn take the values 211 and 0 with probabilities n- I and 1 - 11-
1

.] 

3. For any sequence {Xn}: 

Sn 0 . XII 0 . 
- ~ In pr. =} - ~ In pro 
n n 

More generally, thh is true if n is replaced by bn, where bn+l/bll ~ 1. 
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* 4. For any 0 > 0, we have 

uniformly in p: 0 < p < l. 

*5. Let .:'7>(Xl = 2n) = 1j2n, n :::: 1; and let {Xn, n :::: I} be independent 
and identically distributed. Show that the weak law of large numbers does not 
hold for b ll = 11; namely, with this choice of bn no sequence {an} exists for 
which (6) is true. [This is the St. Petersburg paradox, in which you win 2n if 
it takes 11 tosses of a coin to obtain a head. What would you consider as a 
fair entry fee? and what is your mathematical expectation?] 

* 6. Show on the contrary that a weak law of large numbers does hold for 
bn = n log 11 and find the corresponding an. [HINT: Apply Theorem 5.2.3.] 

7. Conditions (i) and (ii) in Theorem 5.2.3 imply that for any 0 > 0, 

and that all = o (.j1ib ll ). 

8. They also imply that 

[HINT: Use the first part of Exercise 7 and divide the interval of integration 
hJ < Ixl ~ hn into parts of the form )..k < Ixl ~ )..k+l with).. > 1.] 

9. A median of the r.v. X is any number a such that 

?{ X < ex} > 1 9{ X > ex} > 1 2' 2 

Show that such a number always exists but need not be unique. 

*10. I,et {Xn, 1 < n < oo} be arbitrary r v's and for each n let mn be a 
median of Xn . Prove that if X/J ---+ Xoo in pro and moo is unique, then mn ---+ 
moo. Furthermore, if there exists any sequence of real numbers {en} such that 
Xn - en ---+ 0 in pr., then Xn - mil ---+ 0 in pr. 

11. Derive the following form of the weak law of large numbers from 
Theorem 5.2.3. Let {b ll } be as in Theorem 5.2.3 and put Xn = 2bn for n :::: l. 
Then there exists {an} for which (6) holds but condition (i) does not. 
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12. Theorem 5.2.2 may be slightly generalized as follows. Let {Xn} be 
pairwise independent with a common d.f. F such that 

(i) 1 x dF(x) = 0(1), 
Ixl:511 

(ii) n 1 dF(x) = 0(1); 
Ixl>n 

then SI1 111 ---+ 0 in pr. 
13. Let {Xn} be a sequence of identically distributed strictly positive 

random variables. For any cp such that cp(n )/n ---+ 0 as n ---+ 00, show that 
JO{SII > cp(n) i.o.} = 1, and so Sn ---+ 00 a.e. [HINT: Let N n denote the number 
of k ~ 11 such that X k ~ cp(n)ln. Use Chebyshev'S inequality to estimate 
9{Nn > n12} and so conclude 9{Sn > cp(n)/2} ~ 1 - 2F(cp(n)ln). This pro
blem was proposed as a teaser and the rather unexpected solution was given 
by Kesten.] 

14. Let {bn} be as in Theorem 5.2.3. and put Xn = 2bll for n ~ 1. Then 
there exists {all} for which (6) holds, but condition (i) does not hold Thus 
condition (7) cannot be omitted. 

5.3 Convergence of series 

If the terms of an infinite series are independent r.v.'s, then it will be shown 
III Sec. 8. I that the probabIlIty of Its convergence IS eIther zero or one. Here 
we shall establish a concrete criterion for the latter alternative. Not only is 
the result a complete answer to the question of convergence of independent 
I.\'.'s, but it yields also a satisfactOIY fOIm of the strong law of large numbers. 
This theorem is due to Kolmogorov (1929). We begin with his two remarkable 
inequalities. The first is also very useful elsewhere; the second may be circum
vented (see Exercises 3 to 5 below), but it is given here in Kolmogorov' s 
original form as an example of true virtuosity. 

Theorem 5.3.1. Let {Xn} be independent r.v.'s such that 

Then we have for every E > 0: 

(1) 

Remark. If we replace the maxl:5i:511 ISil in the formula by ISI1I, this 
becomes a simple case of Chebyshev's inequality, of which it is thus an 
essential improvement. 
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PROOF. Fix E > O. For any w in the set 

let us define 
v(w) = min{j: 1 :::: j :::: n, ISj(w)1 > E}. 

Clearly v is an r.v. with domain A. Put 

where for k = 1, max!:'5j:'50 ISj(w)1 is taken to be zero. Thus v is the "first 
time" that the indicated maximum exceeds E, and Ak is the event that this 
occurs "for the first time at the kth step". The Ak' s are disjoint and we have 

It follows that 

(2) 

n r 2 - E
J 

[Sk + 2Sk(S" Sk) + (S" 

Let ({Jk denote the indicator of Ak, then the two r.v.'s ({JkSk and Sn - Sk are 
independent by Theorem 3.3.2, and consequently (see Exercise 9 of Sec. 3.3) 

] Sk(Sn SkY d'Y' - J (({JkSkJ(Sn - SkY af!P 
Ak n 

[ [ 

In In 
since the last written integral is 

n 

ct(Sn - Sd = L g(Xj ) = o. 
j k+! 

Using this in (2), we obtain 

0'2(Sn) = r S~ d9 ~ r S~ d9 > t 1 si d9 
in iA k=! Ak 

n 

~ E2 L q;(Ak ) = E2q;(A), 
k=! 
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where the last inequality is by the mean value theorem, since ISk I > Eon Ak by 
definition. The theorem now follows upon dividing the inequality above by E2. 

Theorem 5.3.2. Let {Xn} be independent r.v.'s with finite means and sup
pose that there exists an A such that 

(3) 

Then for every E > ° we have 

(2A + 4E)2 
(4) EP{ max ISjl :s E} :s ---:----

!~j~n ~2(Sn) 

PROOF. Let Mo = n, and for 1 :s k :s n: 

Mk = {w: max ISjl :s E}, 
l~j~k 

11k = M k- 1 - Mk· 

We may suppose that 9(Mn) > 0, for otherwise (4) is trivial. Furthermore, 
let So = a and for k ::::: 1, 

k 

j=! 

Define numbers ak, 0 :s k :s n, as follows: 

1 r 

so that 

(5) 

Now we write 

(6) J (S~+! 

and denote the two integrals on the right by I! and h, respectively. Using the 
definition of Mk and (3), we have 

IS~ - akl = ISk - J.'(Sd - 1 r [Sk - e:U(Sk)] df/pi 
9(Mk ) iMk 

= ISk - 1 r Sk d91 :s ISkl + E; 
.o/>(Md iMk 



124 I LAW OF LARGE NUMBERS. RANDOM SERIES 

lak-ak+ II =/ 1 r Skdr!J?- 1 r Sk dZfJ 9(M~:) JM/. g")(Mk+l ) JMk+l 
(7) 

- U. 1 r X~+I d9/ ::::: 2E +A. 
3'?(Mk+d JMk+

1 

It follows that, since ISk I ::::: E on .6.k+I, 

12 ::::: r (ISkl +E+2E+A+A)2dr!J?::::: (4E+2A)29(.6.k+d. Jt:. k+ 1 

On the other hand, we have 

II = r {(S~-ak)2+(ak-ak+I)2+X~~1 +2(S~-ak)(ak-ak+l) JMk 

The integrals of the last three terms all vanish by (5) and independence, hence 

T ;> [ fS' 2 r '2 

Substituting into (6), and using Mk :> Mn, we obtain for 0 < k < n 1 : 

Summing over k and using (7) again for k n: 

hence 

which is (4). 

n 

> 9P(Mn) L (J'2(X j) (4E + 2A)29(Q\Mn), 
j=1 

n 

(2A + 4E)2 ::::: 9(Mn) L (J'2(X j), 

j=1 
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We can now prove the "three series theorem" of Kolmogorov (1929). 

Theorem 5.3.3. Let {X/l} be independent r.v.'s and define for a fixed con-
stant A > 0: 

if IXn (w)1 :s A; 
if IXn (w)1 > A. 

Then the series 2:n Xn converges a.e. if and only if the following three series 
all converge: 

(i) 2:11 9{IXnl > A} = 2:n 9{Xn =I- Yn}, 

(I· i) '" (D( Y ) 011 ei 11, 

(iii) 2:n a-2(y n). 

PROOF. Suppose that the three series converge. Applying Theorem 5.3.1 
to the sequence {Y n - <f(Y n )}, we have for every m :::: 1: 

( k 1 1 11' 

9 max ,2..)Y j - £'(Y j )} <- :::: 1 - mL. L a-L.(Yj). I n:5:k:5:n' - m I 
'-:n '-:n , / 

If we denote the probability on the left by £?l>(m, n, n'), it follows from the 
convergence of (iii) that for each m: 

lim lim 9(m, n, n') = l. 
11--+00 n'--+oo 

This means that the tail of bIZ {Y n - d"(YIl )} converges to zero a.e., so that the 
series converges a.e. Since (ii) converges, so does 2:n Y n' Since (i) converges, 
{XI1 } and {Y n} are equivalent sequences, hence 2:n XI1 also converges a.e. by 
Theorem 5.2.1. We have therefore proved the "if' part of the theorem. 

Conversely, suppose that 2:n Xn converges a.e. Then for each A > 0: 

~(IXI1I > A i.o.) = O. 

It follows from the Borel-Cantelli lemma that the series (i) must converge. 
lIenee as before LI1 Y/l also converges a.e. But since IYn t(Yn)1 < 2A, we 
have by Theorem 5.3.2 

{ 

k 

,'JjJ max L Y j 
n<k<n' 

- - j=11 

< I} < (~A + 4 )2 
11 

La-2(y j) 
j=n 

Were the series (iii) to diverge, the probability above would tend to zero as 
n' -7 00 for each n, hence the tail of 2:n Y/l almost surely would not be 
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bounded by I, so the series could not converge. This contradiction proves that 
(iii) must converge. Finally, consider the series Ln{Yn - /(Yn)} and apply 
the proven part of the theorem to it. We have 9il{IYn - J'(Yn)1 > 2A} = 0 and 
e(Yn - !(Y II )) = 0 so that the two series corresponding to (i) and (ii) with 
2A for A vanish identically, while (iii) has just been shown to converge. It 
follows from the sufficiency of the criterion that Ln{Yn - t'(Y II )} converges 
a.e., and so by equivalence the same is true of Ln {Xn - cf(Y n )}. Since LIJ Xn 
also converges a.e. by hypothesis, we conclude by subtraction that the series 
(ii) converges. This completes the proof of the theorem. 

The convergence of a series of r.v.'s is, of course, by definition the same 
as its partial sums, in any sense of convergence discussed in Chapter 4. For 
series of independent terms we have, however, the following theorem due to 
Paul Levy. 

Theorem 5.3.4. If {X n} is a sequence of independent r. v.' s, then the conver
gence of the series LIJ Xn in pr. is equivalent to its convergence a.e. 

PROOF. By Theorem 4.1.2, it is sufficient to prove that convergence of 
LII Xn in pr. implies its convergence a.e. Suppose the former; then, given 
E: a < E < I, there eXIsts rna such that If n > rn > rna, we have 

(8) ,o/J{ISm,nl > E} < E, 

where 
n 

j=m+! 

It is obvious that for rn < k < n we have 
11 

(9) m<j<k-!' , , , 
k=m+! -
U { max ISm]1 <2e;ISmkl > 2e;ISknl <e} C {ISmnl >e} 

where the sets in the union are disjoint. Going to probabilities and using 
independence, we obtain 

11 

k=m+! ' 

If we suppress the factors ,7>{ISk,nl < E}, then the sum is equal to 

,o/{ max ISm,jl > 2E} 
m<]"SIJ 

(cf. the beginning of the proof of Theorem 5.3.1). It follows that 

Y{ m~x ISIIl,jl > 2E} min ,:j'?{ISk,IJ I < E} < q;{ISIIl,n I > E}. 
m<]"Sn m<k"Sn 
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This inequality is due to Ottaviani. By (8), the second factor on the left exceeds 
1 - E, hence if m > mo, 

(10) 
1 E 

9{ m~x ISm,jl > 2E} < --9'{ISm,n I > E} < --. 
m<J~n 1 - E 1 - E 

Letting 11 ---+ 00, then m ---+ 00, and finally E ---+ 0 through a sequence of 
values, we see that the triple limit of the first probability in (10) is equal 
to zero. This proves the convergence a.e. of Ln Xn by Exercise 8 of Sec. 4.2. 

It is worthwhile to observe the underlying similarity between the inequal
ities (10) and (1). Both give a "probability upper bound" for the maximum of 
a number of summands in terms of the last summand as in (10), or its variance 
as in (1). The same principle will be used again later. 

Let us remark also that even the convergence of Sn in dist. is equivalent 
to that in pr. or a.e. as just proved; see Theorem 9.5.5. 

We gIve some examples of convergence of series. 

Example. 2.:n ±l/n. 
This is meant to be the "harmonic series" with a random choice of signs in each 

term, the choices being totally independent and equally likely to be + or - in each 
case. More precisely, it is the series 

n 
n 

where {X n, n 2: I} is a sequence of independent, identically distributed r. v.' staking 
the values ± 1 with probability ~ each. 

We may take A = 1 in Theorem 5.3.3 so that the two series (i) and (ii) vanish iden-
tlcaIIy. Smce (j2(Xn) - (j2(y n) - 1/n2, the senes (m) converges. Hence, 2.:" ±l/n 
converges a.e. by the criterion above. The same conclusion applies to 2.:n ±l/nli if 
~ < e ::: 1. Clearly there is no absolute convergence. For 0 ::: e ::: ~, the probability 
of convergence ill zero by the llame criterion and by Theorem 8.1.2 below. 

EXERCISES 

1. Theorem S.3.l has the following "one-sided" analogue. Under the 
same hypotheses, we have 

[This is due to A. W. Marshall.] 
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*2. Let {Xn } be independent and identically distributed with mean 0 and 
variance I. Then we have for every x: 

[HINT: Let 

:J'>{ max S j 2: x} :s 2g7>{S n 2: x - J2,;}. 
lS;.jS;.n 

Ak = {max Sj < x; Sk > x} 
lS;.j<k 

then L~=l ?{Ak; Sn - Sk ~ -J2,;} :s .9'{Sn ~ x - J2,;}.] 
3. Theorem 5.3.2 has the following companion, which is easier to prove. 

Under the joint hypotheses in Theorems 5.3.1 and 5.3.2, we have 

(A + E)2 
.9'{ max IS'I < E} < ---

J - - (J2 (Sn) . lS;.jS;.n 

4. Let {XI!, X~ , n > I} be independent r v ' s sJ]ch that Xn and X~ have 
the same distribution. Suppose further that all these r.v.'s are bounded by the 
same constant A. Then 

n 

converges a.e. if and only if 

n 

lIse Exercise 3 to prove this without recourse to Theorem 5.3 3, and so finish 
the converse part of Theorem 5.3.3. 

*5. But neIther Theorem 5.3.2 nor the alternatIve indIcated In the prece
ding exercise is necessary; what we need is merely the following result, which 
is an easy consequence of a general theorem in Chapter 7. Let {X n} be a 
sequence of independent and uniformly bounded I. v.' s with 0 2 (8 n) =f +00. 
Then for every A > 0 we have 

lim g7>{ISn I :s A} = O. 
1l-400 

Show that this is sufficient to finish the proof of Theorem 5 3 3 

* 6. The following analogue of the inequalities of Kolmogorov and Otta
viani is due to P. Levy. Let Sn be the sum of n independent r.v.'s and 
S~ = Sn - mo(Sn), where mo(Sn) is a median of Sn' Then we have 

2p{m~x ISJI > E}:S 3gp{IS~1 > ~}. 
lS;.JS;.n 2 

[HINT: Try "4" in place of "3" on the right.] 
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7. For arbitrary {Xn}, if 

L cf(IXn I) < 00, 

n 

then LII Xn converges absolutely a.e. 

8. Let {Xn}, where n = 0, ±1, ±2, ... , be independent and identically 
distributed according to the normal distribution <P (see Exercise 5 of Sec. 4.5). 
Then the series of complex-valued r.v.'s 

00 inxX 00 -inxX 
~e n ~e -n 

xXo+ 6 . + 6 . , 
n=1 In n=1 -111 

where i = .J=T and x is real, converges a.e. and uniformly in x. (This is 
Wiener's representation of the Brownian motion process.) 

*9. Let {X n} be independent and identically distributed, taking the values 
o and 2 with probability ~ each; then 

converges a.e. Prove that the limit has the Cantor d.t. discussed In Sec. 1.3. 
Do Exercise 11 in that section again; it is easier now. 

*10. If Ln ±Xn converges a.e. for all choices of ±1, where the Xn's are 
arbitrary r.v.'s, then Ln Xn 2 converges a.e. [HINT: Consider Ln rn (t)Xn (w) 
where the r,1 's are coin-tossing r v's and apply Fubinj's theorem to the space 
of (t, w).] 

5.4 Strong law of large numbers 

To return to the strong law of large numbers, the link is furnished by the 
following lemma on "summability". 

Kronecker's lemma. Let {Xk} be a sequence of real numbers, {ak} a 
seqJ]ence of nJ]mbers >0 and t 00 Then 

~Xn 1 ~ 
6 - < converges =} - 6 x) ~ O. 

all an . 1 n J= 

PROOF. For 1 :s n :s 00 let 
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If we also write ao = 0, bo = 0, we have 

and 

(Abel's method of partial summation). Since aj+l - aj ~ 0, 

and bn ~ boo, we have 

The lemma is proved. 

Now let <p be a positive, even, and continuous function on ~1 such that 
as Ixl increases, 

(1) 
<p(x) <p(x) 

-2 t· x 

Theorem 5.4.1. Let {Xn} be a sequence of independent r v 's with #(Xn) -° for every n; and ° < an t 00. If <p satisfies the conditions above and 

(2) 

then 

(3) 

(4) 

PROOF. Denote the d.f. of Xn by Fn. Define for each n: 

if IXn (w)1 ::s an, 
if IXn (w)1 > an. 

Then 
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By the second hypothesis in 0), we have 

x2 <p(x) 
- < -- for Ixl :::: an. 
a~ - <p(an) 

It follows that 

L 0'2 (Y n) :::: L cf ( Y;) :::: L r <p(x) d F n (x) 
n an n an n }lxl9n <p(an) 

'" cff(<p(Xn)) 
< 6 < 00. 
- n <p(an) 

Thus, for the r.v.'s {Yn - cff(Yn)}!an, the series (iii) in Theorem 5.3.3 con
verges, while the two other series vanish for A = 2, since I Y n - cf(Yn) I :::: 2an; 
hence 

(5) L -{Yn - g(yn)} converges a.e. 
an 

/'l 

1 

Next we have 

< L r ~dFn(x), 

where the second equation follows from J~oo x dF n (x) = O. By the first hypo
thesis in (1), we have 

Ixl p(x) 

It follows that 

Icf(Yn)1 
---< ---- < 00. 

n n 

This and (5) imply that Ln(Yn!an) converges a.e. Finally, since <p t, we have 

L:-P{Xn # Yn} = L r dFn(x):::: L r <P(X)) dFn(x) 
n n }Ixl>a/J n }Ixl>a/J <p(an 

'" (t'( <p(X,J) 
< 6 < 00. 
- II <p(an ) 

Thus, {Xn} and {Yn} are equivalent sequences and (3) follows. 
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Applying Kronecker's lemma to (3) for each (J) in a set of probability 
one, we obtain the next result. 

Corollary. Under the hypotheses of the theorem, we have 

1 n 

(6) - LX) ~ 0 a.e. 
an . 1 

(7) 

J= 

Particular cases. (i) Let <p(x) = IxI P, 1 :::: p :::: 2; an = n. Then we have 

lIn 
'" -0'CIXn I P

) < 00 =? - '" Xj ~ 0 a.e. 6 n P n 6 
n )=1 

For p = 2, this is due to Kolmogorov; for 1:::: p < 2, it is due to 
Marcinkiewicz and Zygmund. 

(in Suppose for some 8, a < 8 :::: 1 and M < 00 we have 

Then the hypothesis in (7) is clearly satisfied with p = 1 + o. This case is 
due to Mmkov. Cantelli's theorem under total independence (Exercise 4 of 
Sec. 5.1) is a special case. 

(iii) By proper choice of {an}, we can considerably sharpen the conclu-
sion (6). Suppose 

n 

'rfn:a2 (Xn) = a; < 00, a2 (Sn) = s; = La; ~ 00. 

)=1 

Choose <p(x) = x2 and an = sn(logsn)(l/2)+E, E > 0, in the corollary to 
Theorem 5.4.1. Then 

by Bini' s theorem, and consequently 

Sn 
(1/2 

~ 0 a.e. 
sn (log sn) )+1' 

In case all a~ = 1 so that s~ = n, the above ratio has a denominator that is 
close to n 1/2. Later we shall see that n 1/2 is a critical order of magnitude 
for Sn. 
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We now come to the strong version of Theorem 5.2.2 in the totally inde
pendent case. This result is also due to Kolmogorov. 

Theorem 5.4.2. Let {Xn} be a sequence of independent and identically distri
buted r.v.'s. Then we have 

(8) 

(9) (O(IX I) -1' ISn I 
(r; 1 = 00 =} 1m - = +00 a.e. 

n~oo n 

PROOF. To prove (8) define {Yn } as in (4) with an = n. Since 

n n n 

by Theorem 3.2.1, {Xn} and {Y n} are equivalent sequences. Let us apply (7) 
to {Y n - ct(Y n )}, with p(x) = x2 . We have 

(10) 

We are obliged to estimate the last written second moment in terms of the first 
moment, since this is the only one assumed in the hypothesis. The standard 
technique is to split the interval of integration and then invert the repeated 
summation, as follows: 

00 1 n r L 2: L x
2

dE(x) 

00 r 00 1 
-L x2 dE(x)L-

, 1 Jj'-I<lxl<j' , n 2 
j= - n=j 

00 r c 00 r 
< L j Ixl dE(x) . -:- < C L' Ixl dE(x) 

In the above we have used the elementary estimate L~= j n -2 :::s C j-I for 
some constant C and all j ~ 1. Thus the first sum in (10) converges, and we 
conclude by (7) that 
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Clearly cf(Y n) ~ J (Xl) as n ~ 00; hence also 
1 n - L J:(Y j ) ~ l(XI), 

and consequently 

n . 
J=l 

1 n - LY j ~ 0'(XI) a.e. 
n . 

J=l 

By Theorem 5.2.1, the left side above may be replaced by (lIn) 2:J=1 Xj, 
proving (8). 

To prove (9), we note that 0'(IXI I) = 00 implies 0'(IXIIIA) = 00 for each 
A > 0 and hence, by Theorem 3.2.1, 

L .0?>(IXI I > An) = +00. 

n 

Since the r. v.' s are identically distributed, it follows that 

L.0?>(IXnl > An) = +00. 

n 

Now the argument in the example at the end of Sec 5 2 may be repeated 
without any change to establish the conclusion of (9). 

Let us remark that the first part of the preceding theorem is a special case 
of G. D. Birkhoff's ergodic theorem, but it was discovered a little earlier and 
the proof is substantially simpler. 

N. Etemadi proved an unexpected generruizatIon of Theorem 5.4.2: (8) 
is true when the (total) independence of {Xn} is weakened to pairwise 
independence (An elementary proof of the strong law of large numbers, 
Z. Wahrscheinlichkeitstheorie 55 (1981), 119 122). 

Here is an interesting extension of the law of large numbers when the 
mean is infinite, due to Feller (l946). 

Theorem 5.4.3. Let {X n} be as in Theorem 5.4.2 with g(IX 11) = 00. Let 
{an} be a sequence of positive numbers satisfying the condition an In t. Then 
we have 

(11) -1' ISnl 0 1m - = a.e., or = 00 a.e. 
n all 

according as 

(l2) L:J?{IXnl ~ an} = L 1 dF(x) < 00, or = 00. 
n n Ixl2:an 

PROOF. Writing 
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substituting into (12) and rearranging the double series, we see that the series 
in (12) converges if and only if 

(13) ~k L_'~'xI<Q' dF(x) < 00, 

Assuming, this is the case, we put 

f.Ln = r xdF(x); 
J1xl<an 

Thus 0'(Y n) = O. We have by (12), 

(14) 
n 

Next, with ao = 0: 

Since an In :::: adk for n :::: k, we have 

and so 

if IXn I < an, 
if IXn I ~ an· 

by (13). Hence L:Y n/an converges (absolutely) a.e. by Theorem 5.4.1, and 
so by Kronecker's lemma: 

(15) 
1 n _. L Y k ~ 0 a.e. 

an k=l 
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We now estimate the quantity 

(16) 
1 n 1 n 

- Lf-lk = - "'1 xdF(x) a a L 
n k=I n k=I Ixl<ak 

as n ~ 00. Clearly for any N < n, it is bounded in absolute value by 

(17) 

Since et(IXII) = 00, the series in (12) cannot converge if an In remains boun
ded (see Exercise 4 of Sec. 3.2). Hence for fixed N the term (n I an )aN in (17) 
tends to 0 as n ~ 00. The rest is bounded by 

(18) 
n n 

!!.- b aj [ dE(x) < I; j [ dE(x) 

because n a j I an ::::: j for j ::::: n. We may now as well replace the n in the 
right-hand member above by 00; as N ~ 00, If tends to 0 as the remamder of 
the convergent series in (13). Thus the quantity in (16) tends to 0 as n ~ 00; 

combine this with (14) and (15), we obtain the first alternative in (11). 
The seeond alternative is proved in much the same way as in Theorem 5.4.2 

and is left as an exercise. Note that when an = n it reduces to (9) above. 

Corollary. TInder the conditions of the theorem, we have 

(19) 

This follows because the second probability above is equal to 0 or 1 
according as the series in (12) converges or diverges, by the Borel-Cantelli 
lemma. The result is remarkable in suggesting that the nth partial sum and 
the nth individual tenn of the sequence {X,,} have comparable growth in a 
certain sense. This is in contrast to the situation when 0"(IX 11) < 00 and (19) 
is false for an = n (see ExerCIse 12 below). 

EXERCISES 

The X,/s are independent throughout; in Exercises 1,6,8,9, and 12 they are 
also identically distributed; S/l = 2:)=1 X j . 

*1. If £(Xi) = +00, leX}) < 00, then Snln ~ +00 a.e. 

*2. There is a complement to Theorem 5.4.1 as follows. Let {an} and <p 
be as there except that the conditions in (1) are replaced by the condition that 
<p(x) t and <p(x)/lxl t. Then again (2) implies (3). 
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3. Let {Xn } be independent and identically distributed r.v.'s such that 
!(IXIIP) < 00 for some p:O < p < 2; in case p> 1, we assume also that 
/ (X I ) = O. Then S n n -(1/ P )-E ~ 0 a.e. For p = 1 the result is weaker than 
Theorem 5.4.2. 

4. Both Theorem 5.4.1 and its complement in Exercise 2 above are "best 
possible" in the following sense. Let {all} and <p be as before and suppose that 
bll > 0, 

Then there exists a sequence of independent and identically distributed r.v.'s 
{Xn} such that [(Xn) = 0, $(<p(Xn)) = bn, and 

[HINT: Make Ln gP{IXnl > an} = 00 by letting each Xn take two or three 
values only according as bnl <p(an) :::: 1 or > 1.] 

5. Let Xn take the values ±n8 with probability ~ eaeh. If 0 .::::: 0 < 

1, then SIl/n ~ 0 a.e. What if 0 > ~? [HINT: To answer the question, use 
theorem 5.2.3 or Exercise 12 of Sec. 5.2; an alternative method is to consider 
the characteristic function of S,dn (see Chapter 6).] 

6. Let 0'(X 1 ) - 0 and {ell} be a bounded sequence of real numbers. Then 

1 n 

[HINT: Truncate XII at n and proceed as in Theorem 5.4.2.] 

7. We have SII/n ~ 0 a.e. if and only if the following two conditions 

are satisfied: 

(i) Sn/n ~ a in pr., 

(ii) S 2" 12n ~ 0 a.e.; 

an alternative set of conditions is (i) and 

(iii) 'VE > 0: LII ?J>(IS2"+' - S2"! > 2
1l

E) < 00. 

{S I } . . fonnly integrable and 
*8. If (rCIXII) < 00, then the sequence II n IS um 

S nl n ~ (; (X I) in L I as well as a.e. 
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9. Construct an example where I(X+) = "'(X-)-
+00 [ L 1 (r 1 - +00 and S In ~ 

a.e. Hll\7: e6 0 < a < fJ < 1 and take adJ. F such that 1 _ F (X;I,......, x-a 
as x ~ 00, and J-oo Ixltl dF(x) < 00. Show that 

L jj){ m~x X-!- ::::: n Ila'} < 00 
n I::::J::::n J 

for every a' > a and use Exercise 3 for ~n X- Th' 1 . d D . L..,j=I j' IS examp e IS ue to 
erman a~d Robbms. Necessary and sufficient condition for Sllln ~ +00 

has been gIven recently by K. B. Erickson. 

10. Suppose there exist an a, 0 < a < 2, a =1= 1, and two constants A 
and A2 such that 1 

'rIn, 'rIx > 0: 
Al A2 
- ::::: 0O{IXnl > x} < -. 
xa - xa 

If a > 1 , suppose also that f (Xn ) o for each n Then for any sequence {an} 
increasing to infinity, we have 

[ThI~ ~esult, due to P. Levy and MarcmkiewIcz, was stated WIth a superfluous 
CO~dItIOn on {all}' Proceed as in Theorem 5.3.3 but truncate XrJ at arJ ; direct 
estImates are easy.] 

11. Prove the second alternatIve m Theorem 5.4.3. 

12. If [(Kd =1= 0, then max} <k</l I Kk IIISIlI =* ° a e [HINT I Killin =* 
o a.e.] 

13. Under the assumptions in Theorem 5.4.2, if Sn/n converges a.e. then 
/ (IXII) < 00. [Hint: Xnln converges to ° a.e , hence s:P{ I Kill> 11 i a } 0; 
use Theorem 4.2.4 to get Ln :-1'{ IX 11 > n} < 00.] 

5.5 Applications 

The law of large numbers has numerous applIcatIons m all parts of proba
bility theory and in other related fields such as combinatorial analysis and 
statistics. We shall illustrate this by two examples involving certain important 

new concepts. 
The first deals with so-called "empiric distributions" in sampling theory. 

Let {X n, n ::: I} be a sequence of independent, identically distributed r. v.' s 
with the common d.f. F. This is sometimes referred to as the "underlying" 
or "theoretical distribution" and is regarded as "unknown" in statistical lingo. 
For each w, the values Xn(w) are called "samples" or "observed values", and 
the idea is to get some information on F by looking at the samples. For each 
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n, and each W E Q, let the n real numbers {X '(w) 1 < J' < n} be arr d . • • J ' - _ ange m 
Increasmg order as 

(1) 

Now define a discrete d.f. F n (', w) as follows: 

Fn (x, w) = 0, if x < Yn1 (w), 

k 
Fn(x,w) =;;' if Ynk(w)::::: x < Yn,k+l(W), 1 ::::: k::::: n -1, 

F n (x, w) = 1, if x ::: Y nn (w). 

In othe.r words, for each x, nF n (x, w) is the number of values of j, 1 ::::: j ::::: n, 
for WhICh X j(w) :;:: x; or again F n (x, w) is the observed frequency of sample 
values not exceedmg x. The function F n (., w) is called the empiric distribution 
function based on n samples from F. 

For each x, F n (x, .) is an r.v., as we can easily check. Let us introduce 
also the indicator l.V.'s {gj(x), j ~ I} as follows. 

We have then 
1 n 

Fn (x, w) - L ~j(x, w). 
n . 

J=l 

For each x, the sequence {~j(x)} is totally independent since {Xj} is, by 
Theorem 3.3.1. Furthermore they have the common "Bemoullian distribution", 
taking the values 1 and ° with probabilities p and q - 1 - p, where 

p - F(r), q -] F(x); 

thus ({(~/x)) F(x). The strong law of large numbers In the fonu 
Theorem 5.1.2 or 5.4.2 applies, and we conclude that 

(2) F/l(x,w)~F(x) a.e. 

Matters end here if we are interested only in a particular value of x, or a finite 
number of values, but since both members in (2) contain the parameter x, 
which ranges over the whole real line, how much better it would be to make 
a global statement about the functions F n (., w) and F (.). We shall do this in 
the theorem below. Observe first the precise meaning of (2): for each x, there 
exists a null set N(x) such that (2) holds for W E Q\N(x). It follows that (2) 
also holds simultaneously for all x in any given countable set Q, such as the 
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set of rational numbers, for w E Q\N, where 

N = UN(x) 
XEQ 

is again a null set. Hence by the definition of vague convergence in Sec. 4.4, 
we can already assert that 

v 
Fn(·,w)~F(·) for a.e. w. 

This will be further strengthened in two ways: convergence for all x and 
unifonnity. The result is due to Glivenko and Cantelli. 

Theorem 5.5.1. We have as n ~ 00 

sup IFn(x,w)-F(x)I~O a.e. 
-oo<X<oo 

PROOF. I,et.l be the countable set of jJ]mps of F For each x E J, define 

Then for x E J: 

1 n 

Fn(x+, w) - Fn(x-, w) = - L rJj(x, w), 

and it follows as before that there exists a null set N(x) such that if w E 

Q\N(x), then 

(3) FIl (x+, w) F" (x ,w) =* F(x+) - F(x-) 

Nmv let Nl - UXEQUJ N(x), then Nl is a nJ]ll set, and if (0 E Q\Nl, then (3) 
holds for every x E J and we have also 

(4) Fn(x,w) ~ F(x) 

for every x E Q. Hence the theorem will follow from the following analytical 

result. 

Lemma. Let F nand F be (right continuous) dJ.'s, Q and J as before. 
Suppose that we have 

Vx E Q: F n(x) ~ F(x); 

VXEJ:Fn(x)-Fn(x-)~ F(x)-F(x-). 

Then F n converges uniformly to F in gzl. 
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PROOF. Suppose the contrary, then there exist E > 0, a sequence {nd of 
integers tending to infinity, and a sequence {xd in gjll such that for all k: 

(5) 

This is clearly impossible if Xk ~ +00 or Xk ~ -00. Excluding these cases, 
we may suppose by taking a subsequence that Xk ~ ~ E J'j>l. Now consider 
four possible cases and the respective inequalities below, valid for all suffi
ciently large k, where rl E Q, r2 E Q, rl < ~ < r2· 

Case 1. Xk t ~,Xk < ~ : 

E::::: Fllk(Xk) - F(Xk)::::: Fllk(~-) - F(rl) 

::::: F Ilk (~-) - F Ilk (~) + F Ilk (r2) - F(r2) + F(r2) - F(rl). 

Case 2. Xk t ~,Xk < ~ : 

E :::: F(Xk) Fllk (xd :::: F(~ ) Fnk (rd 

< F(r2) - F(r]) + F(rl) - F Ilk (rl) + Fnl (~-) - Fill (~). 

In each case let first k ~ 00, then rl t ~, r2 ,!, ~; then the last member of 
each chain of inequalities does not exceed a quantity which tends to ° and a 
contradiction is obtained. 

Remark. The reader will do well to observe the way the proof above 
is arranged. Having chosen a set of (J) with probability one, for each fixed 
(J) in this set we reason with the corresponding sample functions Fn (-, (J)) 

and F( ,tv) \vithout further intervention of probability. Such a procedure is 
standard in the theory of stochastic processes. 

Our next application is to renewal theory. Let {Xn , 11 ::: I} again be a 
sequence of independent and identically distributed r. v.' s. We shall further 
assume that they are positive, although this hypothesis can be dropped, and 
that they are not identically zero a.e. It follows that the common mean is 
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strictly positive but may be +00. Now the successive r.v.'s are interpreted as 
"lifespans" of certain objects undergoing a process of renewal, or the "return 
periods" of certain recurrent phenomena. Typical examples are the ages of a 
succession of living beings and the durations of a sequence of services. This 
raises theoretical as well as practical questions such as: given an epoch in 
time, how many renewals have there been before it? how long ago was the 
last renewal? how soon will the next be? 

Let us consider the first question. Given the epoch t ::: 0, let N(t, w) 
be the number of renewals up to and including the time t. It is clear that 
we have 

(6) {w:N(t, w) = n} = {w: Sn(w) ::::: t < Sn+l (w)}, 

valid for n ::: 0, provided So = 0. Summing over n ::::: m - 1, we obtain 

(7) {w: N(t, w) < m} = {w: Sm(w) > t}. 

This shows in particular that for each t > 0, N(t) = N(t, .) is a discrete r.v. 
whose range is the set of all natmal nJ]mbers The family of r v 's {N(t)} 
indexed by t E [0,(0) may be called a renewal process. If the common distri
bution F of the Xn ' s is the exponential F(x) - 1 e Ax, X > 0; where A > 0, 
then {N(t), t > O} is just the simple Poisson process with parameter A. 

Let us prove first that 

(8) lim N(t) = +00 a.e., 
(->-00 

namely that the total number of renewals becomes infinite with time. This is 
almost obvious, but the proof follows. Since N (t, w) increases with t, the limit 
in (8) certainly exists for every w. Were it finite on a set of strictly positive 
probability, there would exist an integer M such that 

?J>{ sup N(t, w) < M} > 0. 
0:9<00 

This implies by (7) that 

which is impossible. (Only because we have laId down the conventIOn long 
ago that an r.v. such as Xl should be finite-valued unless otherwise specified.) 

Next let us write 

(9) ° < m = t(XI) ::::: +00, 

and suppose for the moment that m < +00. Then, according to the strong law 
of large numbers (Theorem 5.4.2), Sn/n ~ m a.e. Specifically, there exists a 
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null set 21 such that 

\J ("") \2 l' Xl (W) + ... + X n (W ) 
v wE.:..:; 1 : 1m = m. 

n~oo n 

We have just proved that there exists a null set 22 such that 

Vw E Q\22: lim N(t, w) = +00. 
t~oo 

Now for each fixed wo, if the numerical sequence {an (wo), n ::: I} converges 
to a finite (or infinite) limit m and at the same time the numerical function 
{N (t, wo), 0 :::: t < oo} tends to +00 as t ~ +00, then the very definition of a 
limit implies that the numerical function {aN(t,wo) (wo), 0:::: t < oo} converges 
to the limit mas t ~ +00. Applying this trivial but fundamental observation to 

for each w in Q\(ZI U Z2), we conclude that 

(10) lim SN(t,w) ((tl
) = m a.e. 

t~oo N(t,w) 

By the definition of N(t, w), the numerator on the left side should be close to 
t; this will be confirmed and strengthened m the followmg theorem. 

Theorem 5.5.2. We have 

(11 ) lim N(t) = ~ a.e. 
I~OO t m 

and 
cf.{N(t)} 1 

lim ---
t~oo t m 

both being true even if m I 00, provided 'J.'e take 11m to be 0 in that case. 

PROOF. It follows from (6) that for every (V' 

and consequently, as soon as t is large enough to make N(t, w) > 0, 

SN(t,w)(w) < t 

N(t, w) - N(t, w) 

SN(t,w)+l (w) N(t, w) + 1 
< 

N(t, w) + 1 N(t, w) 

Letting t ~ 00 and using (8) and (10) (together with Exercise 1 of Sec. 5.4 
in case m = +(0), we conclude that (11) is true. 
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The deduction of (12) from (11) is more tricky than might have been 
thought. Since X/l is not zero a.e., there exists 8 > 0 such that 

Define 

Vn:9{X/l ~ 8} = p > O. 

X~ (w) = { ~', if Xn(w) ~ 8; 
if Xn(w) < 8; 

and let S;l and N' (t) be the corresponding quantities for the sequence {X~, n ~ 
l}. It is obvious that S~ :::::: Sn and N'(t) ~ N(t) for each t. Since the r.v.'s 
{X~ /8} are independent with a Bernoullian distribution, elementary computa
tions (see Exercise 7 below) show that 

${N' (t)') = 0 e:) as t -+ 00. 

Hence we have, 8 being fixed, 

Since (11) implies the convergence of N(t)/t in distribution to 811m , an appli
cation of Theorem 4.5.2 with X n N En ) In and p 2 yields (12) with t 

replaced by n in (12), from which (12) itself follows at once. 

Corollary. For each t, 0'{N(t)} < 00. 

An interesting relation suggested by (10) is that g{SlV(I)} should be close 
to ml{N(t)} when t is large. The precise result is as follows: 

J{XI + ... +XN(t)+d = 0'{Xde:{N(t) + I}. 

This is a striking generalization of the additivity of expectations when the 
number of terms as well as the summands is "random." This follows from the 
following more general result, known as "Wald's equation". 

Theorem 5.5.3. Let {Xn , n > I} be a sequence of independent and identi-
cally distributed r.v.'s with finite mean. For k ~ 1 let ~, 1 :::::: k < 00, be the 
Borel field generated by {X j, I :::: J :::::: k}. Suppose that N is an r.v. taking 
positive integer values such that 

(13) Vk ~ 1: {N :::::: k} E .J~, 

and leN) < 00. Then we have 

t (SN) = /j'(X I )l~(N). 
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PROOF. Since So = 0 as usual, we have 

Now the set {N :::: j - l} and the r.v. Xj are independent, hence the last written 
integral is equal to @(Xj )9{N :::: j - l}. Substituting this into the above, we 
obtain 

00 00 

j-I i-I 
J 

the last equation by the corollary to Theorem 3.2.1. 

It remains to justify the interchange of summations in (14), which is 
essential here. This is done by replacing X j with IX jl and obtaining as before 
that the repeated sum is equal to cf'(IX11 )cf'(N) < 00. 

We leave it to the reader to verify condition (13) for the r.v. N(t) + 1 
above. Such an r.v. will be called "optional" in Chapter 8 and WIll play an 
important role there 

Our last example is a noted triumph of the ideas of probability theory 
applied to classical analysis. It is S. Bernstein's proof of Weierstrass' theorem 
on the approximation of continuous functions by polynomials. 

Theorem 5.5.4. Let f be a continuous function on [0, 1], and define the 
Bernstein polynomials {PI!} as follows: 

(15) 

Then PI! converges uniformly to f in [0, 1]. 

PROOF. For each x, consider a sequence of independent Bernoullian r. v.' s 
{XI!, n :::: I} with success probability x, namely: 

with probability x, 
with probability 1 - x; 
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and let Sn = LZ=l Xk as usual. We know from elementary probability theory 
that 

SO that 

We know from the law of large numbers that S nl n ~ x with probability one, 
but it is sufficient to have convergence in probability, which is Bernoulli's 
weak law of large numbers. Since I is uniformly continuous in [0, 1], it 
follows as in the proof of Theorem 4.4.5 that 

ct{1 (S:)} ~ ct{l(x)} = I(x). 

\Ve have therefore proved the eonvergence of Pn (x) to f (x) for each x. It 
remains to check the unifonnity. Now we have for any 8 > 0: 

where we have written t{Y; A} for fA Y d?P. Given E > 0, there exists 8(E) 
such that 

Ix - yl < 8 => I/(x) - l(y)1 < E/2. 

With this choice of 8 the last tenn in (16) is bOJ]nded by EP The preceding 
term is clearly bounded by 

Now we have by Chebyshev's inequality, since rff(Sn) = nx, o-2(Sn) = nx(l -

x), and x(l - x) ::s ~ for ° :s x ::s 1: 

9' {IS: -xl> 8} S ;2(12 (~) = nX~!n~X) S 48~n· 
This is nothing but Chebyshev's proof of Bernoulli's theorem. Hence if n ~ 
11f1l/82E, we get IPn(x) - l(x)1 ::s E in (16). This proves the uniformity. 
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One should remark not only on the lucidity of the above derivation but 
also the meaningful construction of the approximating polynomials. Similar 
methods can be used to establish a number of well-known analytical results 
with relative ease; see Exercise 11 below for another example. 

EXERCISES 

{XI!} is a sequence of independent and identically distributed r.v. 's; 

I! 

Sn = LXj. 
j=i 

1. Show that equality can hold somewhere in (1) with strictly positive 
probability if and only if the discrete part of F does not vanish. 

*2. Let F n and F be as in Theorem 5.5.1; then the distribution of 

sup IF n (x, (0) F(x)1 
-oo<x<oo 

is the same for all continuous F. [HINT: Consider F(X), where X has the 
dJ. F.] 

3. Find the distribution of Yllk , ] < k < n, in (1) [These r v.'s are called 
order statistics.] 

*4. Let Sn and N(t) be as m Theorem 5.5.2. Show that 

00 

e?{N(t)} = Lq>{Sn ~ t}. 
n=l 

'IliiS remams true If X 1 takes both pOSItIve and negatIve values. 

5. If {,(Xl) > 0, then 

,l,i':'oo PI> {Q [Sn :5 III = o. 

*6. POI each t > 0, define 

o(t,(O) min{n.ISn(w)1 > t} 

if such an n exists, or +00 if not. If gp(X 1 =1= 0) > 0, then for every t > 0 and 
r> 0 we have .:.?-'{ vet) > n} ~ An for some A < 1 and all large n; consequently 
cf {v(tY} < 00. This implies the corollary of Theorem 5.5.2 without recourse 
to the law of large numbers. [This is Charles Stein's theorem.] 

*7. Consider the special case of renewal where the r.v.'s are Bernoullian 
taking the values 1 and 0 with probabilities p and 1 - p, where 0 < p < 1. 
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Find explicitly the dJ. of v(o) as defined in Exercise 6, and hence of vet) 
for every t> 0. Find {{vet)} and {{v(t)2}. Relate v(t,w) to the N(t,w) in 
Theorem 5.5.2 and so calculate g{N(t)} and J'{N(t)2}. 

8. Theorem 5.5.3 remains true if J(X1 ) is defined, possibly +00 or -00. 

*9. In Exercise 7, find the dJ. of XIJ(t) for a given t. (g'{Xv(t)} is the mean 
lifespan of the object living at the epoch t; should it not be the same as t {X 1}, 
the mean lifespan of the given species? [This is one of the best examples of 
the use or misuse of intuition in probability theory.] 

10. Let r be a positive integer-valued r. v. that is independent of the Xn 's. 
Suppose that both r and X 1 have finite second moments, then 

a-2 (Sr) = e''(r)a-2 (XJ) + a-2(r)(ct(X1))2. 

* 11. Let 1 be continuous and belong to L r (0, (0) for some r > 1, and 

g()..) = [00 e-At 1(t) dt. 
Jo 

Then 

f(x) 
n-->oo (n - 1)! 

( _1)n-1 
lim (:)ng(n_l)(:) , 

where gCn-l) is the (n - l)st derivative of g, unifonnly in every finite interval. 
[HINT: Let ), > 0, JP{X 1 (,l .. ) < t} - 1 e-At . Then 

and S,zEn/x) ~ x in pr. This is a somewhat easier version of Widder's inver-
sion formula for Laplace transforms.] 

12. Let 9O{X1 = k} = Pb 1 < k < .e, L~=1 Pk = 1. Let N(n, w) be the 
number of values of j, 1 < j < n, for which X} k and 

Prove that 

lI--+OC n 

1 
lim -log IICn , w) exists a.e. 

and find the limit. [This is from information theory.] 

Bibliographical Note 

Borel's theorem on normal numbers, as well as the Borel-Cantelli lemma III 

Sees. 4.2-4.3, is contained in 
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Emile Borel, Sur les probabilites denombrables et leurs applications arithmetiques, 
Rend. Circ. Mat. Palermo 26 (1909), 247-271. 

This pioneering paper, despite some serious gaps (see Frechet [9] for comments), 
is well worth reading for its historical interest. In Borel's Jubile Selecta (Gauthier
Villars, 1940), it is followed by a commentary by Paul Levy with a bibliography on 
later developments. 

Every serious student of probability theory should read: 

A. N. Kolmogoroff, Uber die Summen durch den Zufall bestimmten unabhiingiger 
Grossen, Math. Annalen 99 (1928), 309-319; Bermerkungen, 102 (1929), 
484-488. 

This contains Theorems 5.3.1 to 5.3.3 as well as the original version of Theorem 5.2.3. 
For all convergence questions regarding sums of independent r.v.'s, the deepest 

study is given in Chapter 6 of Levy's book [11]. After three decades, this book remains 
a source of inspiration. 

Theorem 5.5.2 is taken from 

J. L. Doob, Renewal theory from the point of view oj probabllity, Trans. Am. Math. 
Soc. 63 (1942), 422-438. 

Feller's book [13], both volumes, contains an introduction to renewal theory as well 
as some of Its latest developments. 



6 Characteristic function 

6.1 General properties; convolutions 

An important tool in the study of f.v.'s and their p.m.'s Of dJ.'s is the char-
acteristic function (chJ.). For any r.v. X with the p.m. jL and dJ. F, this is 
defined to be the function f on :~1 as follows, Vt E ff21 : 

The equality of the third and fourth terms above is a consequence of 
Theorem 3 32 2, while the rest is by definition and notation We remind the 
reader that the last term in (1) is defined to be the one preceding it, where the 
one-to-one correspondence between jL and F is discussed in Sec. 2.2. We shall 
use both of them below. Let us also point out, since our general discussion 
of integrals has been confined to the real domain, that f is a complex-valued 
function of the real variable t, whose real and imaginary parts are given 
respectively by 

Rf (t) = J cosxtjL(dx), If (t) = J sinxtjL(dx). 
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Here and hereafter, integrals without an indicated domain of integration are 
taken over ~:J?1 . 

Clearly, the ch.f. is a creature associated with f.L or F, not with X, but 
the first equation in (1) will prove very convenient for us, see e.g. (iii) and (v) 
below. In analysis, the ch.f. is known as the Fourier-Stieltjes transform of f.L 
or F. It can also be defined over a wider class of f.L or F and, furthermore, 
be considered as a function of a complex variable t, under certain conditions 
that ensure the existence of the integrals in (1). This extension is important in 
some applications, but we will not need it here except in Theorem 6.6.5. As 
specified above, it is always well defined (for all real t) and has the following 
simple properties. 

(i) Vt E ~1?1 : 

If(t)1 < 1 = f(O); f(-t) = f(t), 

where z denotes the conjugate complex of z. 

(ii) f is uniformly continuous in .0/[1. 

To see this, we write for real t and h: 

The last integrand is bounded by 2 and tends to ° as h -+ 0, for each x. Hence, 
the integral converges to ° by bounded convergence. Since it does not involve 
t, the convergence is surely uniform with respect to t. 

(iii) If we write Ix for the ch.f. of X, then for any real numbers a and 
b, we have 

f -x(t) = f x(t). 

This is easily seen from the first equation in (1), for 

C( it(aX+b)) _ (C(ei(ta)X e itb ) _ f'(ei(ta)X)e itb ere -(r • -([' • 

(iv) If {fn, n > I} are ch.f.'s, An > 0, L~=l A/I = 1, then 

00 

is a ch.f. Briefly: a convex combination of ch.f.' s is a ch.f. 
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For if {JL/I' n > I} are the corresponding p.m.' s, then 2::::~=1 A/I JL/I is a p.m. 
whose ch.f. is L~=l A/I f /I' 

(v) If {fj, 1 <j < n} are ch.f.'s, then 

/I 

is a ch.f. 

By Theorem 3.3.4, there exist independent r.v.'s {X j , 1 < j < n} with 
probability distributions {JLj, 1 <j < n}, where f.Lj is as in (iv). Letting 

/I 

we have by the corollary to Theorem 3 3 3' 

I n \ n n 

j-l 

or in the notation of (iii): 

n 

(2) 
j-l 

(For an extension to an infinite number of f /s see Exercise 4 below.) 
The ch.f. of S/I being so neatly expressed in terms of the ch.f.'s of the 

summands, we may wonder about the d.f. of S/I' We need the following 
definitions. 

DEFINITION. The convolutIOn of two d.f.' s F I and F 2 IS defined to be the 
d. f. F such that 

(3) 
[00 l; 

¥x E ~3It1: FEx) } -.. I Ex y) dF2 (y), 
-00 

and written as 

It is easy to verify that F is indeed a d.f. The other basic properties of 
convolution are consequences of the following theorem. 

Theorem 6.1.1. Let Xl and X 2 be independent r.v.'s with d.f.'s FI and F 2, 

respectively. Then Xl + X 2 has the d.f. FI * F2. 
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PROOF. We wish to show that 

(4) 

For this purpose we define a function f of (Xl, X2) as follows, for fixed x: 

if Xl + X2 < X; 
otherwise. 

f is a Borel measurable function of two variables. By Theorem 3.3.3 and 
using the notation of the second proof of Theorem 3.3.3, we have 

I f (X I ,X2)d9= J J f(XI,X2)f.L\dx I, dx2) 

9'i'2 

[ [ 
} J.;t2(dx2) } f.i;l (dxd 

J 00 

This reduces to (4). The second equation above, evaluating the double integral 
by an iterated one, is an application of Fubini's theorem (see Sec. 3.3). 

Corollary. The binary operation of convolution * is commutative and asso-
ciative. 

For the corresponding binary operation of addition of independent I. v . ' s 
has these two properties. 

DERNITION. The convolution of two probability density functions PI and 
P2 is defined to be the probability density function P such that 

(5) 
rOO 

'ifx E 2i£1: p(x) J PI Ex y)p2Ey) dy, 
-00 

and written as 

P = PI * P2· 

We leave it to the reader to verify that P is indeed a density, but we will 
spell out the following connection. 

Theorem 6.1.2. The convolution of two absolutely continuous dJ.' s with 
densities PI and P2 is absolutely continuous with density PI * P2· 
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PROOF. We have by Fubini's theorem: 

1:00 p(u) du = IXoo du I: PI (u - V)P2(V) dv 

= I: [IXoo Pl(U - V)dU] P2(v)dv 

= I: Fl(x - v)p2(v)dv 

= I: Fl(x - v)dF2(v) = (Fl * F2)(X). 

This shows that P is a density of F 1 * F 2. 

What is the p.m., to be denoted by ILl * IL2, that corresponds to F 1 * F 2? 
For arbitrary subsets A and B of 9'(1 , we denote their vector sum and difference 
by A + B and A B, respectively. 

(6) A ± B - {x ± y. x E A, Y E B}, 

and write x ± B for {x} ± B, B for 0 B. There should be no danger of 
confusing A - B with A \B. 

Theorem 6.1.3. For each B E :2?3, we have 

(7) 

For each Borel measurable function g that is integrable with respect to ILl * IL2, 
we have 

(8) g(U)(ILl * IL2)(du) = 
g;>1 

PROOF It is easy to verify that the set function (/£1 * Il2)(') defined by 
(7) is a p.m. To show that its dJ. is F 1 * F 2, we need only verify that its value 
for B - ( 00, x] is given by the F(x) defined in (3). This is obvious, since 
the right side of (7) then becomes 

kl Fl(X - Y)IL2(dy) = I: Fl(X - y)dF2(y)· 

Now let g be the indicator of the set B, then for each y, the function gy defined 
by gy(x) = g(x + y) is the indicator of the set B - y. Hence 

LI g(x + y)ILl (dx) = ILl (B - y) 
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and, substituting into the right side of (8), we see that it reduces to (7) in this 
case. The general case is proved in the usual way by first considering simple 
functions g and then passing to the limit for integrable functions. 

As an instructive example, let us calculate the ch.f. of the convolution 
ILl * /.12· We have by (8) 

J eitU(ILl * IL2)(du) = J J eitYeitx ILl (dx)IL2(dy) 

= J eitxILl(dx) J eitYIL2(dy). 

This is as it should be by (v), since the first term above is the ch.f. of X + Y, 
where X and Y are independent with ILl and f..L2 as p.m.' s. Let us restate the 
results, after an obvious induction, as follows. 

Theorem 6.1.4. Addition of (a finite number of) independent r.v.'s corre
sponds to convolution of their d.f.'s and multiplication of their ch.f.'s. 

Corollary. If 1 is a ch.f., then so is 1112. 

To prove the corollary, let X have the ch.f. 1. Then there exists on some 
Q (why?) an I. v. Y independent of X and having the same dJ., and so also 
the same ch.f. 1. The ch.f. of X - Y is 

The technique of considering X - Y and I f 12 instead of X and f will 
be used below and referred to as "symmetrization" (see the end of Sec. 6.2). 
This is often expedient, since a real and particularly a positive-valued ch.f. 
such as 1112 is easier to handle than a general one. 

Let us list a few well-known ch.f.'s together with their d.f.'s or p.d.'s 
(probability densities), the last being given in the interval outside of which 
they vanish. 

(1) Point mass at a: 
d.f. 8a ; ch.f. eiat

. 

(2) Symmetric Bernoullian distribution with mass ~ each at + 1 and -1: 

d.f. ~ (81 + 8_1); ch.f. cos t. 

(3) Bernoullian distribution with "success probability" p, and q = 1 - p: 

d.f. q80 + p8 l ; ch.f. q + peit = 1 + p(eit - 1). 
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(4) Binomial distribution for n trials with success probability p: 

d.f. t (~ ) pkqn-k8k; ch.f. (q + pe',)n. 
k=O 

(5) Geometric distribution with success probability p: 
00 

d.f. I: qn POn; ch.f. p(1 - qeit )-l. 
n=O 

(6) Poisson distribution with (mean) parameter A: 

00 An 
d f '""'" -).. r ch.f. e)..(eil-l). " L e -Un; 

n=O n! 

(7) Exponential distribution with mean A-I: 

p.d. Ae-Ax in [0,(0); ch.f. (1 - A-I it)-l. 

(8) Uniform distribution in [-a, +a]: 

1 sinat 
p.d. - in [-a, a]; ch.f. -- (= 1 for t = 0). 

2a at 
(9) Triangular distribution in [-a, a]: 

a-Ixl 
p.d. 2 in [-a, a]; 

2(1 - cos at) 
ch.f. ---2 -2-

a t a 

(10) Reciprocal of (9): 

1 ~sax. p.d. rr 2 In (-00, (0); 

(11) Normal distribution N (m, 0-
2 ) with mean m and variance 0-

2 : 

1 t (x - m)2j . p.d . ...,J2ii(; exp 2 III ( 00, (0); 

Unit normal distribution N (0, 1) = <I> with mean ° and variance 1: 

1 -x2/2' . -t2/2 p.d. ~e In (-00, (0), ch.f. e . 
'\I2rr 

(12) Cauchy distribution with parameter a > 0: 

d a . ( ) ch.f. e-a1tl . p.. 2 2 In -00, 00 ; 
rr(a + x ) 
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Convolution is a smoothing operation widely used in mathematical anal
ysis, for instance in the proof of Theorem 6.5.2 below. Convolution with the 
normal kernel is particularly effective, as illustrated below. 

Let n8 be the density of the normal distribution N(O, 82 ), namely 

1 (X2 ) n8(x) = -- exp --vTii8 282 ' 
-00 < x < 00. 

For any bounded measurable function f on ~l, put 

(9) f8(X) = (f * n8)(x) = I: f (x - y)n8(y) dy = I: n8(X - y)f (y) dy. 

It will be seen below that the integrals above converge. Let CB denote the 
class of functions on ~l which have bounded derivatives of all orders; Cu 
the class of bounded and uniformly continuous functions on ~l. 

Theorem 6.] .5. For each 0 > 0, we have 18 E C7f Furthennore if f E Cu , 
then f8 -+ f uniformly in ~l. 

PROOF. It is easily verified that n8 E CB' Moreover its kth derivative nt) 
IS dominated by Ck,8n28 where Ck,8 IS a constant dependmg only on k and (5 so 
that 

y)dy - Ck,81Ifll. 

Thus the first assertion follows by differentiation under the integral of the last 
term in (9), which is justified by elementary rules of calculus. The second 
assertion is proved by standard estimation as follows, for any rJ > 0: 

If(x) f8(X)1 < 100 

If(x) f(x y)l n8(y)dy 
-00 

< sup If(x) - f(x - y)1 + 211fll n8(y)dy. 

Here IS the probabIlIty Idea mvolved. If j IS mtegrable over 011
, we may 

think of f as the density of a LV. X, and n8 as that of an independent normal 
r.v. Y8. Then f8 is the density of X + Y8 by Theorem 6.1.2. As 8 ~ 0, Y8 
converges to ° in probability and so X + Y 8 converges to X likewise, hence 
also in distribution by Theorem 4.4.5. This makes it plausible that the densities 
will also converge under certain analytical conditions. 

As a corollary, we have shown that the class Ca is dense in the class Cu 
with respect to the uniform topology on ~1?1. This is a basic result in the theory 
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of "generalized functions" or "Schwartz distributions". By way of application, 
we state the following strengthening of Theorem 4.4.1. 

Theorem 6.1.6. If {JLn} and JL are s.p.m.'s such that 

Vf E C~: £1 f(x)JLn(dx) -+ £1 f(x)JL(dx), 

t' 

then JLn-+ JL. 

This is an immediate consequence of Theorem 4.4.1, and Theorem 6.1.5, 
if we observe that Co C Cu. The reduction of the class of "test functions" 
from Co to C"B is often expedient, as in Lindeberg' s method for proving central 
limit theorems; see Sec. 7.1 below. 

EXERCISES 

1 .. If f is a ch.f., and G a dJ. with G(O-) - 0, then the following 
functions are all ch.f.' s: 

t f(ut) du, 
Jo 

[00 f(ut)e-U du, 
Jo 

rOO 
10 f (ut) dG(u). 

*2. Let feu, t) be a function on ( 00, (0) x ( 00, (0) such that for each 
u, f (u, .) is a ch.f. and for each t, f (-, t) is a continuous function; then 

[00 
.J -00 feu, t) dG(u) 

is a ch.f. for any d.f. G. In particular, if f is a ch.f. such that limt~oo f(t) 
exists and G a d.f. with G(O) 0, then 

~OO (tl .r f; dG(u) is a ch.f. 

3. Find the d.f. with the following ch.f.'s (a > 0, {3 > 0): 

a2 1 1 

a 2 + t 2 ' (l - ait)f3' (l + a{3 - a{3eit )l/f3' 

[HINT: The second and third steps correspond respectively to the gamma and 
P6lya distributions.] 



6.1 GENERAL PROPERTIES; CONVOLUTIONS I 159 

4. Let Sn be as in (v) and suppose that Sn -+ Soo in pro Prove that 
00 

converges in the sense of infinite product for each t and is the chJ. of Soo. 
5. If F 1 and F 2 are d.f.' s such that 

Fl = ~bl)aj 
j 

and F 2 has density p, show that F 1 * F 2 has a density and find it. 

* 6. Prove that the convolution of two discrete dJ.' s is discrete; that of a 
continuous dJ. with any dJ. is continuous; that of an absolutely continuous 
d.f. with any dJ. is absolutely continuous. 

7. The convolution of two discrete distributions with exactly m and n 
atoms, respectIvely, has at least m + n - 1 and at most mn atoms. 

8. Show that the family of normal (Cauchy, Poisson) distributions is 
closed with respect to convolution in the sense that the convolution of any 
two in the family with arbitrary parameters is another in the farruly with some 
parameter(s ). 

9. Find the nth iterated convolution of an exponential distribution. 

*10. Let {X j , j > I} be a sequence of independent r.v.'s having the 
common exponential distribution with mean 1 lA, A > 0 For given x > 0 let 

v be the maximum of n such that Sn < x, where So = 0, Sn = 2:J=l Xj as 
usual. Prove that the r.V. v has the Poisson distribution with mean AX. See 
Sec. 5.5 for an interpretation by renewal theory. 

11. Let X have the normal distribution <1>. Find the d.f., p.d., and ch.f. 
OfX2. 

12. Let {X j , 1 < j < n} be independent r.v.'s each having the dJ. <1>. 
Find the chJ. of 

n 

20: X] 
j 1 

and show that the conesponding p.d. is 2-n/2P(n/2)-lx(n/2 l-1 e-x/2 in (0, (0). 

This is called in statistics the "X2 distribution with n degrees of freedom". 

13. For any chJ. f we have for every t: 

R[l - f(t)] > ~R[l - f(2t)]. 

14. Find an example of two r.v.'s X and Y with the same p.m. f.L that are 
not independent but such that X + Y has the p.m. f.L * f.L. [HINT: Take X = Y 
and use chJ.] 
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*15. For a d.f. F and h > 0, define 

QF(h) = sup[F(x + h) - F(x-)]; 
x 

QF is called the Levy concentration function of F. Prove that the sup above 
is attained, and if G is also a d.f., we have 

16. If ° < h)" < 2n, then there is an absolute constant A such that 

A (' 
QF(h) < ).. io If (t)1 dt, 

where f is the ch.f. of F. [HINT: Use Exercise 2 of Sec. 6.2 below.] 

17. Let F be a symmetric d.f., with ch.f. f > ° then 

,00 ,2 ~oc 
((JF(h) = J 00 h2 ~ x 2 dF(x) = h .[ e-

ht f (t) dt 

is a sort of average concentration function. Prove that if G is also a d f with 
ch.f. g > 0, then we have Vh > 0: 

1 - ({JPG(h) < [1 - ({JF(h)] + [1 - ({JG(h)]. 

*18. Let the support of the p.m. f.L on gel be denoted by supp f.L. Prove 
that 

supp (IL * LJ) c10sme of sopp J.L + sopp v, 

supp EM! * M2 * ) closure of (supp f.i;l + supp f.i;2 + ... ) 

where "+" denotes vector sum. 

6.2 Uniqueness and inversion 

To study the deeper propertIes of Founer-StIeItJes transforms, we shall need 
certain "Dirichlet integrals". We begin with three basic formulas, where "sgn 
a" denotes 1, ° or -1, according as a > 0, = 0, or < 0. 

lo
y sin ax Iorr sinx 

Vy > 0:0 < (sgn a) --dx < --dx. 
o x 0 x 

(1) 

(2) 10
00 sinax n 
-- dx = - sgn a. 

o x 2 
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(3 ) 100 1 - cos ax _ JT 
----::2:--- dx - I a I· 

o x 2 

The substitution ax = u shows at once that it is sufficient to prove all three 
formulas for a = 1. The inequality (1) is proved by partitioning the interval 
[0, (0) with positive mUltiples of JT so as to convert the integral into a series 
of alternating signs and decreasing moduli. The integral in (2) is a standard 
exercise in contour integration, as is also that in (3). However, we shall indicate 
the following neat heuristic calculations, leaving the justifications, which are 
not difficult, as exercises. 

100 

Si:X dx = 100 

sinx [100 

e-XU 
du 1 dx = 100 [100 

e-XU 
sinx dx 1 du 

= 100 

1 :uu2 ;, 

sinudu dx = du 

rOO sin U 7T 

= 70 -u- du = 2' 

We are ready to answer the question: given a ch.f. f, how can we find 
the corresponding d.f. F or p.m. f.L? The formula for doing this, called the 
jnvenjon fonnula, is of theoretical importance, since it will establish a one-
to-one correspondence between the class of d.f.' s or p.m.' s and the class of 
ch.f.' s (see, however, Exercise 12 below). It is somewhat complicated in its 
most general form, but special cases or variants of it can actually be employed 
to derive certain properties of a d.f. or p.m. from its ch.f.; see, e.g., (14) and 
(15) of Sec. 6.4. 

Theorem 6.2.1. If Xl < X2, then we have 

1 [T e-itxj _ e-itx2 

= lim - . f (t) dt 
T~oo 2n J -T it 

(the integrand being defined by continuity at t = 0). 

PROOF. Observe first that the integrand above is bounded by IXI - x21 
everywhere and is O(ltl- l ) as It I -+ 00; yet we cannot assert that the "infinite 
integral" J~oo exists (in the Lebesgue sense). Indeed, it does not in general 
(see Exercise 9 below). The fact that the indicated limit, the so-called Cauchy 
limit, does exist is part of the assertion. 
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We shall prove (4) by actually substituting the definition of f into (4) 
and carrying out the integrations. We have 

(5) _1 lT e-

itxj 

~ e-

itX2 [100 

e itx f.L(dX)] dt 
2n -T It -00 

100 [IT eit(X-Xj) - e it (X-X2) ] 
= . dt f.L(dx). 

-00 -T 2mt 

Leaving aside for the moment the justification of the interchange of the iterated 
integral, let us denote the quantity in square brackets above by I(T, X, Xl, X2). 
Trivial simplification yields 

_ 1 iT sin t(x - Xl) 1 iT sin t(x - X2) 
I(T, x, Xl, X2) - - dt - - dt. 

no t no t 

It follows from (2) that 

for X < Xl, 

for X = Xl, 

or Xl < X < X2, 

for X = X 

for x> X2. 

Furthermore, I is bounded in T by (1). Hence we may let T -+ 00 under the 
Integral SIgn In the nght member of (5) by bounded convergence, SInce 

by (1) The result is 

f[ { 1 { { 1 { } 
j 0 + J - + j 1 + J + J 0 f.L (dx) 

(-oo.Xj) {xd 2 (Xj,X2) (X2} 2 (X2,00) 

This proves the theorem. For the justification mentioned above, we invoke 
Fubini's theorem and observe that 

where the integral is taken along the real axis, and 

ij I: IXI -x2Idtf.L(dx) < 2TlxI -x21 < 00, 
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SO that the integrand on the right of (5) is dominated by a finitely integrable 
function with respect to the finite product measure dt· f1(dx) on [-T, +T] x 
fil. This suffices. 

Remark. If Xl and X2 are points of continuity of F, the left side of (4) 
is F(X2) - F(XI). 

The following result is often referred to as the "uniqueness theorem" for 
the "determining" f-L or F (see also Exercise 12 below). 

Theorem 6.2.2. If two p.m.' s or dJ.' s have the same ch.f., then they are the 
same. 

PROOF. If neither Xl nor X2 is an atom of f-L, the inversion formula (4) 
shows that the value of f-L on the interval (Xl, X2) is determined by its ch.f. It 
follows that two p.m.' s having the same ch.f. agree on each interval whose 
endpoints are not atoms for either measure. Since each p.m. has only a count
able set of atoms, points of gel that are not atoms for either measure form a 
dense set. Thus the two p.m.' s agree on a dense set of intervals, and therefore 
they are identical by the corollary to Theorem 2.2.3. 

We gIve next an Important partIcular case of Theorem 6.2.1. 

Theorem 6.2.3. If f ELI (-00, +(0), then F is continuously differentiable, 
and we have 

(6) F'(X) = - ] e lxtf(t)dt. 
2rr -00 

PROOF. Applying (4) for X2 = x and Xl = X - h with h > 0 and using F 
instead of f-L, we have 

F(x) + F(x-) _ F(x - 71) + F(x - h-) = k I: _eit_h._l . e-ztx f (t) dt. 
22 :L ~ It 

Here the infinite integral exists by the hypothesis on j, since the integrand 
above is dominated by Ihf(t)l. Hence we may let h -+ 0 under the integral 
sign by dominated convergence and conclude that the left side is O. Thus, F 
is left continuous and so continuous in ;.}?! . Now we can write 

F(x) - F(x - h) 1 100 eith - 1 . 
------ = - e-ltXf(t)dt. 

h 2rr -00 ith 

The same argument as before shows that the limit exists as h -+ O. Hence 
F has a left-hand derivative at X equal to the right member of (6), the latter 
being clearly continuous [cf. Proposition (ii) of Sec. 6.1]. Similarly, F has a 
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right-hand derivative given by the same formula. Actually it is known for a 
continuous function that, if one of the four "derivates" exists and is continuous 
at a point, then the function is continuously differentiable there (see, e.g., 
Titchmarsh, The theory ojjullctiollS, 2nd ed., Oxford Univ. Press, New York, 
1939, p. 355). 

The derivative F' being continuous, we have (why?) 

'Vx: F(x) = lXoo F'(u) duo 

Thus F' is a probability density function. We may now state Theorem 6.2.3 
in a more symmetric form familiar in the theory of Fourier integrals. 

Corollary. If JELl, then P ELI, where 

1 roo 
p(x) - J e ixtj (t) dt, 

2rr -00 

and 

The next two theorems yield information on the atoms of f.L by means of 
j and are given here as illustrations of the method of "harmonic analysis". 

Theorem 6.2.4. For each xo, we have 

1 rT 
. 

(7) lim e -ltXo F (t) dt f1({xo}). 
T~002TJ_T J 

PROOF. Proceedmg as m the proof of Theorem 6.2.1, we obtam for the 
integral average on the left side of (7): 

(8) 

The integrand of the first integral above is bounded by 1 and tends to 0 as 
T -7 00 everywhere in the domam of mtegratIOn; hence the mtegral converges 
to 0 by bounded convergence. The second term is simply the right member 
of (7). 

Theorem 6.2.5. We have 

(9) 
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PROOF. Since the set of atoms is countable, all but a countable number 
of tenns in the sum above vanish, making the sum meaningful with a value 
bounded by 1. Fonnula (9) can be established directly in the manner of (5) 
and (7), but the following proof is more illuminating. As noted in the proof 
of the corollary to Theorem 6.1.4, 1f12 is the ch.f. of the r.v. X - Y there, 
whose distribution is f.L * f.L', where f.L' (B) = f.L (-B) for each B E 93. Applying 
Theorem 6.2.4 with Xo = 0, we see that the left member of (9) is equal to 

(f.L * f.L') ({O D· 

By (7) of Sec. 6.1, the latter may be evaluated as 

since the integrand above is zero unless - y is an atom of g/, which is the 
case if and only if y is an atom of f.L. This gives the right member of (9). The 
reader may prefer to carry out the argument above using the r. v.' s X and Y 
in the proof of the Corollary to Theorem 6.1.4. 

Corollary. .u is atomless (F is continllollS) if and only if the limit in the left 
member of (9) is zero. 

This criterion is occasionally practicable. 

DEFINITION. The r.v. X is called symmetric iff X and X have the same 
distribution. 

For such an r.v., the distribution U has the following property: 

VB E 5i3. 1£ (B) - 1£ ( -B) 

Such a p.m. may be called symmetric; an equivalent condition on its dJ. F is 
as follows: 

Vx E qcl: F(x) = I - F(-x-), 

(the awkwardness of using d.f. being obvious here). 

Theorem 6.2.6. X or f.L is symmetric if and only if its ch.f. is real-valued 
(for all t). 

PROOF. If X and -X have the same distribution, they must "detennine" 
the same ch.f. Hence, by (iii) of Sec. 6.1, we have 

f(t)=f(t) 
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and so f is real-valued. Conversely, if f is real-valued, the same argument 
shows that X and -X must have the same ch.f. Hence, they have the same 
distribution by the uniqueness theorem (Theorem 6.2.2). 

EXERCISES 

f is the ch.f. of F below. 

1. Show that 

100 (SinX) 2 _ JT 
-- dx--. 

o x 2 

*2. Show that for each T > 0: 

1 100 (1 - cos Tx) cos tx 0 
- 2 dx = (T - I t I) v . 
JT -00 X 

Deduce from this that fOI each T > 0, the function of t given by 

is a ch.f. Next, show that as a particular case of Theorem 6.2.3, 

1 - cos Tx 

J (1' Itl)eitJ: dt. 
2 -T 

Finally, derive the following particularly useful relation (a case of Parseval's 
relatIOn III Founer analysIs ), for arbItrary a and T > 0: 

l: I - cos 1'(x ~ a) dF(x) = ~ ~2 r: (T - Itl)e- ita f(t) dt. 
OJ [T(xa)] J 

*3. Prove that fOI each ex > o. 

I [F(x + u) - F(x - u)] du = - j --t-
2 
-e ltx f(t)dt. 

Jo JT -00 

ra 1 rOO 1 cos at 

As a sort of reciprocal, we have 

l1a l u 100 

1 - cos ax - du f (t) dt = 2 dF(x). 
2 0 -u -00 X 

4. If f (t)/t ELI (-00,00), then for each a > 0 such that ±a are points 
of continuity of F, we have 

1 100 
sinat F(a) - F(-a) = - --f(t)dt. 

JT -00 t 
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5. What is the special case of the inversion fonnula when f = I? Deduce 
also the following special cases, where a > 0: 

1 100 sin at sin t 
- 2 dt = a /\ 1, 
n -x t 

1 100 sin arCsin t)2 a 2 
- 3 dt = a - - for a < 2; 1 for a > 2. 
n -00 t 4 

6. For each 11 > 0, we have 

1 100 

(Sint)n+2 121u 

- - dt = ((In (t) dt du, 
n -00 too 

where ((Jl = ~ 1 [-1.1] and ((In = ((In -1 * ((Jl for n > 2. 

*7. If F is absolutely continuous, then limltl_oo f (t) = O. Hence, if the 
absolutely continuous part of F does not vanish, then liml~CXJ If (t) I < 1. If 
F is purely discontinuous, then limt_ oo f (t) = 1. [The first assertion is the 
Riemann-Lebesgue lemma; prove It first when F has a denSIty that IS a 
simple function, then approximate. The third assertion is an easy part of the 
observation that such an f is "almost periodic".] 

8. Prove that for 0 < r < 2 we have 

where 

~r J-cosu f 
C(r) = I 1,+1 du 

J-oo u 

thus C (1) = lin. [HINT: 

r(r + 1) . rn 
--n-- sm -2 ' 

l: I - cosxt Ixl r = C(r) +1 dt.] 
OJ It I r 

*9. Give a trivial example where the right member of (4) cannot be 
replaced by the Lebesgue integral 

1 100 e- itX1 
_ e- itX2 

- R . f(t)dt. 
2n -00 If 

But it can always be replaced by the improper Riemann integral: 
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10. Prove the following form of the inversion formula (due to Gil
Palaez): 

1 1 iT eitx f (-t) - e-itx f (t) 
-{F(x+) + F(x-)} = - + lim . dt. 
2 2 6,,0 0 2mt 

Ttoo 

[HINT: Use the method of proof of Theorem 6.2.1 rather than the result.] 

11. Theorem 6.2.3 has an analogue in L2. If the ch.f. f of F belongs 
to L2, then F is absolutely continuous. [HINT: By Plancherel's theorem, there 
exists cp E L 2 such that 

r cp(u) du = ~ ['JO e-
itX

._ 1 f (t) dt. 
Jo v 2rr Jo -It 

Now use the inversion formula to show that 

1 (X 
F(x) - F(D) = ~ sp(u) du.] 

,..; rr )0 

* 12. Prove Theorem 6.2.2 by the Stone-Weierstrass theorem. [HINT: Cf. 
Theorem 6.6.2 below, but beware of the differences Approximate uniformly 
gl and g2 in the proof of Theorem 4.4.3 by a periodic function with "arbitrarily 
large" period.] 

13. The uniqueness theorem holds as well for signed measures [or fUDc-
tions of bounded variations]. Precisely, if each J-Li, i = 1, 2, is the difference 
of two finite measures such that 

then f.-Ll = f.-L2· 

14. There is a deeper supplement to the inversion formula (4) or 
Exercise] 0 above, due to B Rosen TInder the condition 

J (1 + log Ixl)dF(x) < 00, 
-00 

the improper Riemann integral in Exercise 1 D may be replaced by a Lebesgue 
integral. [HINT. It is a matter of proving the existence of the latter. Since 

100 rN I sin(x - y)t I 100 

-00 dF(y) Jo t dt < -00 dF(y){1 + logO + Nix - yl)} < 00, 

we have 

100 iN sin(x - y)t iN dt 100 

dF(y) dt = - sin(x - y)t dF(y). 
-00 0 tot-oo 
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For fixed x, we have 

1. dF(y) 1100 
sin(x - y)t dtl < cll, dF(y) 

Y,,"X N t Ix-YI::::1/N Nix - )'1 

+ C2 r dF(y), 
}O<lx-YI<l/N 

both integrals on the right converging to ° as N -+ 00.] 

6.3 Convergence theorems 

For purposes of probability theory the most fundamental property of the ch.f. 
is given in the two propositions below, which will be referred to jointly as the 
convergence theorem, due to P. Levy and H. Cramer. Many applications will 
be given in this and the following chapter. We begin with the easier half. 

Theorem 6.3.1. Let Lun , 1 < n < oo} be p.m.'s on qJ(1 with ch f 's {fn, 1 < 

n < 00}.1f f.-Ln converges vaguely to f.-Loo, then In converges to 100 uniformly 
in every finIte interval. We shall wnte thIS symbolically as 

(1) 
t! It 

Furthermore, the family {In} is equicontinuous on 0'21. 

PROOF. Since e!1X is a bounded continuous function on 3{1, although 
complex-valued, Theorem 442 applies to its real and imaginary parts and 
yields (1) at once, apart from the asserted uniformity. Now for every t and h, 
we have, as in (ii) of Sec. 6.1: 

lin (t + h) - In (t)1 < le ihx 
- llf.-Ln (dx) < Ihxlf.-Ln (dx) 

Ixl<A 

Ixl>A 
2 f J1(dx) I E 

Ixl>A 

for any E > 0, suitable A and n > no(A, E). The equicontinuity of {Ill} follows. 

This and the pointwise can vergence f n ---+ f 00 imply f n 4. f 00 by a simple 
compactness argument (the "3E argument") left to the reader. 

Theorem 6.3.2. Let {f.-Ln, 1 < n < oo} be p.m. 's on !AI with ch.f. 's {In, 1 < 
n < oo}. Suppose that 

(a) In converges everywhere in :121 and defines the limit function 100; 
(b) 100 is continuous at t = 0. 
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Then we have 

t' . 
(a) Jin---+ Jix. where Jix IS a p.m.; 
(fJ) 100 is the ch.f. of Jioo· 

PROOF. Let us first relax the conditions (a) and (b) to require only conver
gence of In in a neighborhood (-80,80) of t = ° and the continuity of the 
limit function I (defined only in this neighborhood) at t = 0. We shall prove 
that any vaguely convergent subsequence of {Jill} converges to a p.m. Ji. For 
this we use the following lemma, which illustrates a useful technique for 
obtaining estimates on a p.m. from its ch.f. 

Lemma. For each A > 0, we have 

(2) 

(3) 

PROOF OF THE LEMMA. By (8) of Sec. 6.2, we have 

] j(t)dt 
2T -T 

J Ji(dx). 
-00 Tx 

roo sin Tx 

Since the integrand on the right side is bounded by 1 for all x (it is defined to be 
I at x - 0), and by 11 xl 1 < (21 A) 1 for Ixl > 2A, the mtegralis bounded by 

1 
Ji([ -2A, 2A]) + 2TA {I - Ji([ -2A, 2A])} 

Putting T = A-I in (3), we obtain 

IA rA
-' I I I 

which reduces to (2). The lemma is proved. 
Now for each 8, ° < 8 < 8o, we have 

(4 ) i ~ 10 IIl(t)dti > i~ /0 I(t)dti- ~ /0 I/n(t) - 1(t)1 dt. 28 -0 28 -0 28 -0 
The first term on the right side tends to 1 as 8 .J.- 0, since 1(0) = 1 and I 
is continuous at 0; for fixed 8 the second term tends to ° as n ---+ 00, by 
bounded convergence since lin - II < 2. It follows that for any given E > 0, 
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there exist 8 = 8(E) < 80 and no = no(E) such that if n > no, then the left 
member of (4) has a value not less than 1 - E. Hence by (2) 

(5) 

Let {JLnk} be a vaguely convergent subsequence of {JLn}, which always 
exists by Theorem 4.3.3; and let the vague limit be JL, which is always an 
s.p.m. For each 8 satisfying the conditions above, and such that neither -28-1 

nor 28-1 is an atom of JL, we have by the property of vague convergence 
and (5): 

JL(qrl) > JL([ -28-1,28-1]) 

= lim JLn ([ -28-1,28- 1]) > 1 - 2E. 
n--+oo 

Since E is arbitrary, we conclude that JL is a p.m., as was to be shown. 
Let [ be the ch.f. of g. Then, by the preceding theorem, [nk -+ [every-

where; hence under the original hypothesis (a) we have f = f 00. Thus every 
vague limit tt considered above has the same ch.f. and therefore by the unique-
ness theorem is the same p.m. Rename it JLoo so that JLoo is the p.m. having 
the ch.f. f 00· Then by Theorem 4.3.4 we have JLn~JLoo. Both assertions (a) 
and (fJ) are proved. 

As a particular case of the ahove theorem· if {P'll ] < n < Do} and 
{f n, 1 < n < oo} are corresponding p.m. 's and ch.f. 's, then the converse of 
(1) is also true, namely: 

(6) 
t' II 

This is an elegant statement, but It lacks the full strength of 'Iheorem 6.3.2, 
which lies in concluding that foo is a ch.f. from more easily verifiable condi-
tions, rather than assuming it. We shall see presently how important this is. 

Let us examine some cases of inapplicability of TIl em ems 6.3.1 and 6.3.2. 

Example 1. Let /-l" have mass ~ at 0 and mass ~ at n. Then /-l" ~ /-lx, where /-loo 

hall mallll ~ at 0 and ill not a p m We have 

J 11 2 2 ' 

which does not converge as n ~ 00, except when t is equal to a multiple of 2n. 

Example 2. Let /-l" be the uniform distribution [-n, n]. Then /-l" ~ /-lx, where /-loo 

is identically zero. We have 

{

sin nt 

f" (t) = --,;t' 
1, 

if t =J 0; 

if t = 0; 
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and 

!1I(t) ~ !(t) = {~: 

Thus, condition (a) is satisfied but (b) is not. 

if t # 0; 
if t = O. 

Later we shall see that (a) cannot be relaxed to read: fll (t) converges in 
It I < T for some fixed T (Exercise 9 of Sec. 6.5). 

The convergence theorem above settles the question of vague conver
gence of p.m.' s to a p.m. What about just vague convergence without restric
tion on the limit? Recalling Theorem 4.4.3, this suggests first that we replace 
the integrand e ifX in the ch.f. f by a function in Co. Secondly, going over the 
last part of the proof of Theorem 6.3.2, we see that the choice should be made 
so as to determine uniquely an s.p.m. (see Sec. 4.3). Now the Fourier-Stieltjes 
transform of an s.p.m. is well defined and the inversion formula remains valid, 
so that there is unique correspondence just as in the case of a p.rn Thus a 
natural choice of g is given by an "indefinite integral" of a ch.f., as follows: 

(7) g(u) 
10 J3?! 

r eiux 
- 1 

] . M(dx). 
g;>! IX 

Let us call g the integrated characteristic function of the s.p.m. J-L. We are 
thus led to the following companion of (6), the details of the proof being left 
as an exercise. 

Theorem 6.3.3. A sequence of s pm's {Jill' 1 < n < oo} converges (to Mod 
if and only if the corresponding sequence of integrated ch.f.' s {gil} converges 
(to the integrated ch.f. of 1100). 

Another question concerning (6) arises naturally. We know that vague 
convergence fm p.IIl.'S is metric (Exercise 9 of Sec. 4.4); let the metnc be 
denoted by (., .) I. Uniform convergence on compacts (viz., in finite intervals) 
for uniformly bounded subsets of CBWi?I) is also metric, with the metric 
denoted by (, ) 2, defined as follows: 

(f ) 
- Ij(t) g(t)1 

,g 2 - sup 2 
fE/it>! 1 + t 

It is easy to verify that this is a metric on C B and that convergence in this metric 
is equivalent to uniform convergence on compacts; clearly the denominator 
1 + t 2 may be replaced by any function continuous on J!71, bounded below 
by a strictly pos·itive constant, and tending to +00 as It I -+ 00. Since there is 
a one-to-one correspondence between ch.f.' s and p.m.' s, we may transfer the 
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metric (-, . h to the latter by setting 

({L, vh = (f /1' f vh 

in obvious notation. Now the relation (6) may be restated as follows. 

Theorem 6.3.4. The topologies induced by the two metrics ( )! and ( h on 
the space of p.m. 's on g;;>! are equivalent. 

This me~ns that for each {L and given E > 0, there exists 8({L, E) such that: 

({L, v)! < 8({L, E) ::::} ({L, vh < E, 

({L, vh < 8({L, E) ::::} ({L, v)! < E. 

Theorem 6.3.4 needs no new proof, since it is merely a paraphrasing of (6) in 
new words. However, it is important to notice the dependence of 8 on {L (as 
well as E) above. The sharper statement without this dependence, which would 
mean the equivalence of the uni/ann slructures induced by the two metrics, 
is false with a vengeance; see Exercises 10 and 11 below (Exercises 3 and 4 
are also relevant). 

EXERCISES 

1. Prove the uniform convergence of f n in Theorem 6.3.1 by an inte-
gratIOn by parts of J eitx dF n (x). 

*2. Instead of using the Lemma in the second part of Theorem 6.3.2, 
prove that {L is a p.m. by integrating the inversion formula, as in Exercise 3 
of Sec. 6.2. (IntegratIon IS a smoothmg operatIOn and a standard techmque m 
taming improper integrals: cf. the proof of the second part of Theorem 6.5.2 
below.) 

3. Let F be a gIven absolutely contmuous dJ. and let FIl be a sequence 
of step functions with equally spaced steps that converge to F uniformly in 
2/?!. Show that for the corresponding ch.f.' s we have 

\In: sup If(t) - fll(t)1 = 1. 
tEJ/?1 

4. Let F~, G'l be d.f.'s with ch.f.'s tn and gil' If tn - gil ---+ 0 a.e., 
then for each f E CK we have J f dFn - J f dGn ---+ 0 (see Exercise 10 
of Sec. 4.4). This does not imply the Levy distance (F n, Gn )! ---+ 0; find 
a counterexample. [HINT: Use Exercise 3 of Sec. 6.2 and proceed as in 
Theorem 4.3.4.] 

5. Let F be a discrete d.f. with points of jump {a j, j > I} and sizes of 
jump {b j, j 2: I}. Consider the approximating s.d.f.' s F n with the same jumps 

v 
but restricted to j < n. Show that F n ---+ F. 
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* 6. If the sequence of ch.f. 's {In} converges unifonnly in a neighborhood 
of the origin, then {In} is equicontinuous, and there exists a subsequence that 
converges to a ch.f. [HINT: Use Ascoli-Arzela's theorem.] 

v v v 
7. If Fn---+ F and Gn ---+ G, then Fn * Gn ---+ F * G. [A proof of this simple 

result without the use of ch.f.'s would be tedious.] 

*8. Interpret the remarkable trigonometric identity 

. 00 

Sillt = Ilcos ~ 
t 2n 

n=l 

in tenns of ch.f.'s, and hence by addition of independent r.v.'s. (This is an 
example of Exercise 4 of Sec. 6.1.) 

9. Rewrite the preceding fonnula as 

sint C t) C t ~ -t - =II cos 22k III cos 22k 
k=l k=l 

Prove that either factor on the right is the ch.f. of a singular distribution. Thus 
the convolution of two such may be absolutely continuous. [HINI. Use the 
same r.v.'s as for the Cantor distribution in Exercise 9 of Sec. 5.3.] 

10. Using the strong law of large numbers, prove that the convolution of 
two Cantor dJ.' s is still singular. [Hll\1'f: Inspect the frequency of the digits in 
the sum of the corresponding random series; see Exercise 9 of Sec. 5.3.] 

*11. Let F n, Gn be the d.f.'s of /-Ln, Vn, and In, gn their ch.f.'s. Even if 
SUPXEg;>J IFn(x) Gn(x)I----+ 0, it does not follow that (fn,gnb ---+ 0; indeed 
it may happen that (In, gn h = 1 for every n. [HINT: Take two step functions 
"out of phase".] 

12. In the notation of Exercise 11, even if SUPtE~J I in (t) gn (t)1 ) 0, 
it does not follow that (Fn, Gn) ---+ 0; indeed it may ---+ 1. [HINT: Let I be any 
ch.f. vanishing outside (-1,1), Ij(t) = e !/ljt I(mjt), gj(t) = einjt I(mjt), and 
F j , G j be the corresponding dJ.'s. Note that if mjn7l ---+ 0, then Fj(x) ---+ 1, 

G ; (x) ---+ 0 for every x, and that I ; - g; vanishes outside (-mil, mil) and 

unifonnly bounded in t: for nk~l < t < n k 1 consider j > k, j = k, j < k sepa
rately. Let 

/l 

I~ = n-
l ~/j, 

j=l 

then sup I/~ - g~ I = O(n- l
) while F~ - G~ ---+ O. This example is due to 

Katznelson, rivaling an older one due to Dyson, which is as follows. For 



b > a > 0, let 
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(
X2 + b2

) 
1 log x2 + a 2 

F(x) = 2 (b) 
alog -

a 

for x < 0 and = 1 for x> 0; G(x) = 1 - F(-x). Then, 

. t [e-aiti - e-biti ] 
f(t) - get) = -m t (b)' 

I I log-
a 

If a is large, then (F, G) is near 1. If b / a is large, then (f, g) is near 0.] 

6.4 Simple applications 

A common type of application of Theorem 6.3.2 depends on power-series 
expansIOns of the ch.f., for which we need ItS derivatives. 

Theorem 6.4.1. If the d.f. has a finite absolute moment of positive integral 
order k, then its ch.f. has a bounded continuous derivative of order k given by 

(1) 

Conversely, if f has a finite derivative of even order k at t 0, then F has 
a finite moment of order k. 

PROOF. For k = 1, the first assertion follows from the formula: 

h 

['JO ei(t+h)x _ eitx 

} dF(x). 
-00 h 

f(t + h) - f(t) 

An elementary inequality already used in the proof of Theorem 6.2.1 shows 
that the integrand above is dominated by Ixl. Hence if J Ixl dF(x) < 00, we 
may let h -+ 0 under the integral sign and obtain (1). Uniform continuity of 
the integral as a function of t is proved as in (ii) of Sec. 6.1. The case of a 
general k follows easily by induction. 

To prove the second assertion, let k = 2 and suppose that f" (0) exists 
and is finite. We have 

f"(O) = lim f(h) - 2f(0) + fe-h) 
h-+O h2 
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J eihx - 2 + e-ihx 

= lim 2 dF(x) 
11-+0 h 

(2) . J 1 - coshx = -211m 2 dF(x). 
11-+0 h 

As h ---+ 0, we have by Fatou' s lemma, 

J ') J 1 - cos hx J 1 - cos hx 
x~ dF(x) = 2 lim 2 dF(x) < lim 2 2 dF(x) 

h-+O h h-+O h 

= - f"(O). 

Thus F has a finite second moment, and the validity of (1) for k = 2 now 
follows from the first assertion of the theorem. 

The general case can again be reduced to this by induction, as follows. 
Suppose the second assertion of the theorem is true for 2k - 2, and that 
[(2k) (0) is finite. Then [(2k-2) (t) exists and is continuous in the neighborhood 
of t = 0, and by the induction hypothesis we have in particular 

Put C(x) - .r ex; lk-2 dF(y) for every x, then C(· )/C(oo) is a dJ. with the 
ch.f. 

Hence 1Jr" exists, and by the case k = 2 proved above, we have 

1 r x2 dC(x) 
G(oo) J 

1 [x2k dF(x) 
G(oo) J 

Upon cancelling 6(00), we obtain 

r 
(_1)k f(2k)(0) - J x 2k dF(x), 

which proves the finiteness of the 2kth moment. The argument above fails 
if 0(00) 0, but then we have (why?) F 60, f 1, and the theorem is 
trivial. 

Although the next theorem is an immediate corollary to the precedmg 
one, it is so important as to deserve prominent mention. 

Theorem 6.4.2. If F has a finite absolute moment of order k, k an integer 
> 1, then f has the following expansion in the neighborhood of t = 0: 

k .j 

(3) f(t) . I:: ~m(j)tj + o(ltlk
), 

. 0 J. 
J= 
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(3') 

where m(j) is the moment of order j, {L (k) is the absolute moment of order k, 
and 18kl < 1. 

PROOF. According to a theorem in calculus (see, e.g., Hardy [1], p. 290]), 
if f has a finite kth derivative at the point t = 0, then the Taylor expansion 
below is valid: 

(4) 

~ ., k" 
. 0 J. . 
J= 

Since the absolute moment of order j is finite for 1 < j < k, and 

](j)(0) - ljm(j), I] (k)(8t)1 < {L(k) 

from (1), we obtain (3) from (4), and (3') from (4'). 

It should be remarked that the form of Taylor expansion given in (4) 
is not always given in textbooks as cited above, but rather under stronger 
~ssumptions, such as "j has a finite kth derivative m the neIghborhood of 
0" [For even k this stronger condition is actually implied by the weaker one 
stated in the proof above, owing to Theorem 6.4.1.] The reader is advised 
to learn the sharper result in calculus, which incidentally also yields a quick 
proof of the first equation in (2). Observe that (3) implies (3') if the last term 
in (3') is replaced by the more ambiguous O(ltl k

), but not as it stands, since 
the constant in "0" may depend on the function f and not just on M (k). 

By way of illustrating the power of the method of ch.f.'s without the 
encumbrance of technicalitIes, although antICIpatmg more elaborate develop
ments in the next chapter, we shall apply at once the results above to prove two 
classical limit theorems: the weak law of large numbers (cf. Theorem 5.2.2), 
and the central limit theorem in the identically distributed and finite variance 
case. We begin with an elementary lemma from calculus, stated here for the 
sake of clarity. 

Lemma. If the complex numbers Cll have the limit c, then 

(5) ( cn)n lim 1 + - = eC
• 

n-~oo n 

(For real cn' s this remains valid for c = +00.) 
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Now let {Xn , n > I} be a sequence of independent r.v.'s with the common 
d.f. F, and Sn = LJ=l X j , as in Chapter 5. 

Theorem 6.4.3. If F has a finite mean m, then 

Sn . 
- ---+ m In pr. 
n 

PROOF. Since convergence to the constant m is equivalent to that in dist. 
to Om (Exercise 4 of Sec. 4.4), it is sufficient by Theorem 6.3.2 to prove that 
the ch.f. of Sn/n converges to e imt (which is continuous). Now, by (2) of 
Sec. 6.1 we have 

E(eit(Sn/n» = E(ei(t/n)Sn) = [I (~) 1 n 

By Theorem 6.4.2, the last term above may be written as 

for fixed t and n ---+ 00. It fo11o\l/s from (5) that this converges to gimt as 
desired. 

Theorem 6.4.4. If F has mean m and finite variance (J2 > 0, then 

S -mn 
n ---+ <I> in dist. 

where <I> is the normal distribution with mean ° and variance 1. 

PROOF. We may suppose m = ° by considering the r.v.'s Xj - m, whose 
second moment is (J2. As in the preceding proof, we have 

= { 1 - ~> 0 ( ~) r ~ e-" /2 

The limit being the ch.f. of <1>, the proof is ended. 

The convergence theorem for ch.f.' s may be used to complete the method 
of moments in Theorem 4.5.5, yielding a result not very far from what ensues 
from that theorem coupled with Carleman's condition mentioned there. 
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Theorem 6.4.5. In the notation of Theorem 4.5.5, if (8) there holds together 
with the following condition: 

(6) 

v 
then F n ---+ F. 

PROOF. Let f n be the ch.f. of F n' For fixed t and an odd k we have by 
the Taylor expansion for eitx with a remainder term: 

f net) = eitx dFn(x) = ,,-- + 8 dFn(x) J J { k (itx)j litxlk+1 
} 

f:o' j! (k + 1)! 

k (it)j. m(k+l)l+1 
- " --me}) + 8 --,-,-n __ _ 
- ~ j! n (k + 1)! ' 

J 

where f} denotes a "generic" complex number of modulus < 1, not necessarily 
the same in different appearances. (The use of such a symbol, to be further 
indulged in the next chapter, avoids the necessity of transposing tenIlS and 
taking moduli of long expressions. It is extremely convenient, but one must 
occasionally watch the dependence of 8 on various quantities involved.) It 
fo11ov/s that 

(7) 
n } -0 j! n (k + I)! n 

Given E > 0, by condition (6) there exists an odd k k(f) such that for the 
fixed t we have 

(8) 
(2m(k+I) + l)l+1 E 

< . 
(k+1)! 2 

Since we have fixed k, there exists no = no(E) such that if n > no, then 

m(k+l) < m(k+I) + 1 
n - , 

and moreover, 

Then the right side of (7) will not exceed in modulus: 

k Itlj E tHI (2m(HI) + 1) 
,,_ -Itl_ + < E 
~ j!e 2 (k+1)! _. 
}=o 
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Hence fn(t) ---+ f(t) for each t, and since f is a ch.f., the hypotheses of 
Theorem 6.3.2 are satisfied and so F 11 ~ F. 

As another kind of application of the convergence theorem in which a 
limiting process is implicit rather than explicit, let us prove the following 
characterization of the normal distribution. 

Theorem 6.4.6. Let X and Y be independent, identically distributed r.v.'s 
with mean 0 and variance 1. If X + Y and X - Y are independent then the 
common distribution of X and Y is <t>. 

PROOF. Let f be the ch.f., then by (1), f' (0) = 0, f" (0) = -1. The ch.f. 
of X + Y is f(t)2 and that of X - Y is f(t)f(-t). Since these two r.v.'s are 
independent, the ch.f. f (2t) of their sum 2X must satisfy the following relation: 

(9) f(2t) = f(t)3 fe-t)o 

It follows from (9) that the function f never vanishes. For if it did at to, then 
it would also at to/2, and so by induction at to/211 for every n > 1. This is 
impossible, since limn'"""foo f(to/211) - f(O) - 1. Setting for every t: 

pet) 
f(t) 

f (-t)' 
we obtain 

(l0) p(2t) _ p(t)2. 

Hence we have by iteration, for each t: 

by Theorem 6.4.2 and the previous lemma. Thus pet) = 1, f(t) = f(-t), and 
(9) becomes 

(11 ) f(2t) - f(t)4. 

Repeating the argument above with (11), we have 

This proves the theorem without the use of "logarithms" (see Sec. 7.6). 

EXERCISES 

*1. If f is the ch.f. of X, and 

. f (t) - 1 - 2:2 

11m = -- > -00, 
t~O t 2 2 
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then cf(X) = ° and e(X2) = (J2. In particular, if f(t) = 1 + 0(t2) as t -+ 0, 
then f = 1. 

*2. Let {Xn } be independent, identically distributed with mean ° and vari
ance (J2, ° < (J2 < 00. Prove that 

1· {U (ISn I) 2 l' @ ( S: ) ~ 1m (c r::: = 1m (0 r::: = -(J 
11--+00 V n n--+oo V n 7f 

[If we assume only q7>{X 1 #- o} > 0, £'( IX 11) < 00 and £'(X 1) = 0, then we 
have t(IS n I) > C.fii for some constant C and all n; this is known as 
Hornich's inequality.] [HINT: In case (J2 = 00, if limn 0'(1 Sn/.fii) < 00, then 
there exists {nd such that Sn/ ~ converges in distribution; use an extension 
of Exercise 1 to show If(t/ .fii)12n -+ 0. This is due to P. Matthews.] 

3. Let q7>{X = k} = Pb 1 < k < .e < 00, 2:i=1 Pk = 1. The sum Sn of 
n independent r.v.' s having the same distribution as K is said to have a 
multinomial distribution. Define it explicitly. Prove that [Sn - g(Sn )]/(J(Sn) 
converges to <P In dlstnbutlOn as n -+ 00, provIded that (JeX) > o. 

* 4. Let Xn have the binomial distribution with parameter en, PI!), and 
suppose that n Pn -+ J.... > 0. Prove that Xn converges in dist. to the Poisson d.f. 
WIth parameter X. (In the old days thIS was called the law of small numbers.) 

5. Let X k have the Poisson distribution with parameter 2 Prove that 
[X).. - J....]/J.... 1/2 converges in dist. to <t> as J.... -+ 00. 

*6. Prove that in Theorem 6.4.4, Sn/(JJ1i does not converge in proba

bility. [HINT: Consider Sn/CJ..,fii and S2n/CJ.j2n.] 

7. Let f be the ch.f. of the dJ. F. Suppose that as t -+ 0, 

where a < a < 2, then as A -+ 00, 

[HINT: Integrate ~xl>A (l cos tx) dFex) < ct* over t in (0, A).] 

8. IfO < a < 1 and J Ixla dF(x) < 00, then f(t) - 1 = o(ltla
) as t -+ 0. 

For 1 < a < 2 the same result is true under the additional assumption that 
J x dF(x) = 0. [HINT: The case 1 < a < 2 is harder. Consider the real and 
imaginary parts of f (t) - 1 separately and write the latter as 

1 sintxdF(x) + 1 sintxdF(x). 
Ixl:::f/t Ixl>f/ltl 
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The second is bounded by (Itl/E)a ~Xl>f/ltllxla dF(x) = o(ltla) for fixed E. In 

the first integral use sin tx = tx + O(ltxI3), 

1 fXdF(X)=tl xdF(x), 
Ixl:::f/ltl Ixl>f/ltl 

1 Itxl3 dF(x) < E3
-

a 100 

Itxla dF(x).] 
Ixl:::f/ltl -00 

9. Suppose that e-cltla, where c > 0,0 < a < 2, is a chJ. (Theorem 6.5.4 
below). Let {X j, j > I} be independent and identically distributed r. v.' s with 
a common chJ. of the form 

as t ---+ O. Determine the constants band () so that the ch.f. of S n / bn e converges 
to g_ltla. 

10. Suppose F satisfies the condition that for every 1] > 0 such that as 
A ---+ 00, 

] dF(x) _ a(e 71,1). 
Ixl>A 

r 

Then all moments of F are finite, and condition (6) in Theorem 6.4.5 is satisfied. 

11. Let X and Y be independent with the common dJ. F of mean 0 and 
variance 1. Suppose that eX + Y)/~ also has the dJ. F. Then F - <1>. [HINT: 
Imitate Theorem 6.4.5.] 

*12. Let {X j ' j > I} be independent, identically distributed r.v.'s with 
mean 0 and variance 1 Prove that both 

11 

;=1 
and 

;=1 

converge in dist. to <D [Hint· Use the law of large numbers.] 

13. The converse part of Theorem 6.4.1 is false for an odd k. Example. 
F is a discrete symmetric dJ. with mass C /n2log n for integers n > 3, where 
o is the appropriate constant, and k = 1. [HINT: It is well known that the series 

I:: sin nt 
n log n 

11 

converges uniformly in t.] 
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We end this section with a discussion of a special class of distributions 
and their chJ.' s that is of both theoretical and practical importance. 

A distribution or p.m. on ;:7t>1 is said to be of the lattice type iff its 
support is in an arithmetical progression - that is, it is completely atomic 
(i.e., discrete) with all the atoms located at points of the form {a + jd}, where 
a is real, d > 0, and j ranges over a certain nonempty set of integers. The 
corresponding lattice d.! is of form: 

00 
F(x) = L PjOa+jd(X), 

j=-oo 

where P j > 0 and 2:1=-00 P j = 1. Its ch.f. is 

(12) 
00 

f (t) = e
ait I: P je

jdit
, 

j=-oo 

which is an absolutely convergent Fourier series. Note that the degenerate dJ. 
Oa with ch.f. e

ait is a particular case. We have the following characterization. 

Theorem 6.4.7. A ch.f. is that of a lattice distribution if and only if there 
eXIsts a to #- 0 such that If (to)1 = 1. 

PROOF. The "only if" part is trivial, since it is obvious from (12) that I f I 
is periodic of period 2rr/d. To prove the "if" part, let f (to) - e iBo , where Ao 
is real; then we have 

and consequently, taking real parts and transposing: 

(13) 0= r [1 - cos(tox - 80 )]JL(dx). 
v 

The integrand is positive everywhere and vanishes if and only if for some 
integer j, 

80 (2rr) 
x = to + j to . 

It follows that the support of JL must be contained in the set of x of this form 
in order that equation (13) may hold, for the integral of a strictly positive 
function over a set of strictly positive measure is strictly positive. The theorem 
is therefore proved, with a = 80lto and d = 2rr Ito in the definition of a lattice 
distribution. 
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It should be observed that neither "a" nor "d" is uniquely determined 
above; for if we take, e.g., a' = a + d' and d' a divisor of d, then the support 
of f.-L is also contained in the arithmetical progression {a' + jd'}. However, 
unless J1 is degenerate, there is a unique maximum d, which is called the 
"span" of the lattice distribution. The following corollary is easy. 

Corollary. Unless III = 1, there is a smallest to > 0 such that I(to) = 1. 
The span is then 27[/to. 

Of particular interest is the "integer lattice" when a = 0, d = 1; that is, 
when the support of f.-L is a set of integers at least two of which differ by 1. We 
have seen many examples of these. The ch.f. I of such an r.v. X has period 
27[, and the following simple inversion formula holds, for each integer j: 

(14) 1 jlf " ?}J(X = j) = P j = - I (t)e- JIt dt, 
27[ -If 

where the range of integration may be replaced by any interval of length 
2n. This, of course, is nothing but the well-known formula for the "Fourier 
coefficients" of I. If {Xd is a sequence of independent, identically distributed 
r.v.'s with the ch.f. j, then Sn - 2:11 Xk has the ch.f. (j yz, and the InVerSIOn 
formula above yields: 

(15) 
27[ J-lf 

This may be used to advantage to obtain estimates for Sn (see Exercises 24 
to 26 below). 

EXERCISES 

I or In IS a ch.f. below. 

14. If 11 (t) I 1, 11 (t') I - 1 and tit' is an irrational number, then f is 
degenerate. If for a sequence {tkJ of nonvanishing constants tending to 0 we 
have If (tdl = I, then f IS degenerate. 

*IS.1f 1111(1)1----+ 1 for every t as n----+ 00, and F" is the dJ. corre-
sponding to In, then there exist constants an such that F n (x + an )480. [HINT: 
Symmetrize and take all to be a median of F n.J 

*16. Suppose bn > 0 and I/(bnt)1 converges everywhere to a ch.f. that 
is not identically 1, then bn converges to a finite and strictly positive limit. 
[HINT: Show that it is impossible that a subsequence of bn converges to 0 or 
to +00, or that two subsequences converge to different finite limits.] 

*17. Suppose Cn is real and that eCnit converges to a limit for every t 

in a set of strictly positive Lebesgue measure. Then Cn converges to a finite 
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limit. [HINT: Proceed as in Exercise 16, and integrate over t. Beware of any 
argument using "logarithms", as given in some textbooks, but see Exercise 12 
of Sec. 7.6 later.] 

*18. Let f and g be two nondegenerate chJ.'s. Suppose that there exist 
real constants all and bn > 0 such that for every t: 

Then an ~ a, bll ~ b, where a is finite, 0 < b < 00, and g(t) = eita/ b f(t/b). 
[HINT: Use Exercises 16 and 17.] 

*19. Reformulate Exercise 18 in terms of dJ.'s and deduce the following 
consequence. Let F n be a sequence of dJ.' s an, a~ real constants, bn > 0, 
b;! > O. If 

where F is a nondegenerate dJ., then 

and ~o. 

[Two dJ.'s F and G such that G(x) = F(bx + a) for every x, where b > 0 
and a IS real, are saId to be of the same "type". The two preceding exercises 
deal with the convergence of types.] 

20. Show by using (14) that I cos tl is not a ch.f. Thus the modulus of a 
ch.f. need not be a ch.f., although the squared modulus always IS. 

21. The span of an integer lattice distribution is the greatest common 
divisor of the set of all differences between points of jump. 

22. Let f(s, t) be the ch.f. of a 2-dimensional p.m. v. If If(so, to)1 = 1 
for some (s-o, to) #- (0,0), what can one say about the support of v? 

*23. If {Xn} is a sequence of independent and identically distributed r.v.'s, 
then there does not exist a sequence of constants {en} such that Ln (Xn - en) 
converaes a e lInless the common d f is degenerate b , 

In Exercises 24 to 26, let Sn = LJ-l Xj, where the Xjs are independent r.v.'s 
with a common dJ. F of the integer lattice type with span 1, and taking both 
>0 and <0 values. 

*24. If J x dF(x) = 0, J x 2 dF(x) = (J2, then for each integer j: 

1 
n 1/2~}J{SIl = j} ~ -Jfii' 

(J 2Jr 

[HINT: Proceed as in Theorem 6.4.4, but use (15).] 
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25. If F #- 8o, then there exists a constant A such that for every j: 

:?>{Sn = j} :s An -1/2. 

[HINT: Use a special case of Exercise 27 below.] 

26. If F is symmetric and J Ixl dF(x) < 00, then 

n.9>{Sn = j} ~ 00. 

[HINT: 1 - l(t) = o(ltl) as t ~ 0.] 

27. If I is any nondegenerate ch. I, then there exist constants A > ° 
and 8 > ° such that 

II (t)1 :s 1 - At2 for It I :s 8. 

[HINT: Reduce to the case where the d.f. has zero mean and finite variance by 
translating and truncating.] 

28. Let Qn be the concentration function of S n = 2:J= 1 X j, where the 
x /s are independent r.v.'s having a common nondegenerate dJ. F. Then for 
every h > 0, 

[HINT: Use Exercise 27 above and Exercise 16 of Sec. 6.1. This result is due 
to Levy and Doeblin, but the proof is due to Rosen.] 

In Exercises 29 to 35, Il or Ilk is a pm on q; - (0, 1] 

29. Define for each n: 

f (n \ = [ e27rinx u(dx\ 
~t( ) Jw ""') 

Prove by WeIerstrass ' s approxImatIOn theorem (by tngonometncal polyno
mials) that if 11*, (n) = 11*2 (n) for every n > 1 , then J.-L 1 = U2. The conclusion 
becomes false if 11 is replaced by [0, 1]. 

30. EstablIsh the InVerSIOn formula expressIng f.-L In terms of the f p.(n)'s. 
Deduce again the uniqueness result in Exercise 29. [HINT: Find the Fourier 
series of the indicator function of an interval contained in 0t/.] 

31. Prove that If p.(n )1 - I If and only If fJ, has its support in the set 
{8o + jn- 1

, ° :s j :s n - I} for some 80 in (0, n- I
]. 

*32. f.-L is equidistributed on the set {jn- I , ° :s j :s n - I} if and only if 
I p.(j) = ° or 1 according to j f n or j In. 

*33. f.-Lk~f.-L if and only if I!.ik(·) ~ I p.(.) everywhere. 

34. Suppose that the space V is replaced by its closure [0, 1] and the 
two points ° and 1 are identified; in other words, suppose '1/ is regarded as the 
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circumference ® of a circle; then we can improve the result in Exercise 33 
as follows. If there exists a function g on the integers such that f fJ.-k (.) ~ g(.) 

eve~here, then there exists a p.m. f.-L on ® such that g = f fJ.- and f.-Lk~ f.-L 
on~. 

35. Random variables defined on ® are also referred to as defined 
"modulo I". The theory of addition of independent r.v.'s on ® is somewhat 
simpler than on ,921, as exemplified by the following theorem. Let {X j, j ~ I} 

be independent and identically distributed r. v.' s on ® and let S k = L~= 1 X j. 
Then there are only two possibilities for the asymptotic distributions of Sk. 
Either there exist a constant c and an integer n > 1 such that Sk - kc converges 
in dist. to the equidistribution on {jn- I , 0 :s j :s n - I}; or Sk converges in 
dist. to the uniform distribution on @. [HINT: Consider the possible limits of 
(f fJ.-(n»k as k ~ 00, for each n.] 

6.5 Representation theorems 

A ch.f. is defined to be the Fourier- Stieltjes transform of a p.m. Can it be char-
acterized by some other properties? ThIS questIon arIses because frequently 
such a function presents itself in a natural fashion while the underlying measure 
is hidden and has to be recognized. Several answers are known, but the 
following characterization, due to Bochner and Herglotz, is most useful. It 
plays a basic role in harmonic analysis and in the theory of second-order 
stationary processes. 

A complex-valued function f defined on fRI is called positive definite iff 
for any finite set of real numbers tj and complex numbers Zj (with conjugate 
complex Zj), 1 :s j :s n, we have 

n n 

(1) 

j=1 k=1 

Let us deduce at once some elementary propertIes of such a function. 

Theorem 6.5.1. If f is positive definite, then for each t E ,921 : 

f (-t) = f (t), If (t)1 < f (0). 

If f is continuous at t = 0, then it is uniformly continuous in gttl. In 
this case, we have for every continuous complex-valued function t; on ,:ft1 and 
every T > 0: 

(2) 1T 1T f(s - t)1;(s)W)dsdt:>: O. 
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PROOF. Taking n = 1, tl = 0, Zl = 1 in (1), we see that 

f (0) ?:. O. 

Taking 11 = 2, tl = 0, t2 = t, Zl = Z2 = 1, we have 

2f(0) + f(t) + f( -t) 2: 0; 

changing Z2 to i, we have 

f(O) + f(t)i - f(-t)i + f(O) 2: O. 

Hence f (t) + f (-t) is real and f (t) - f (-t) is pure imaginary, which imply 
that f(t) = fe-t)o Changing Zl to f(t) and Z2 to -If(t)l, we obtain 

2f(0)lf(t)12 - 2If(t)13 2: O. 

Hence f(O) ?:. If(t)l, whether If(t)1 = 0 or ?:. O. Now, if f(O) = 0, then 
f(·) - 0; othenvise '),Ie may suppose that f(O) 1. If we then take n 3, 
tl = 0, t2 = t, t3 = t + h, a well-known result in positive definite quadratic 
forms ImplIes that the determmant below must have a posItIve value: 

I frO) 
f(t) 

f(t + h) 

Ie t) 
f(O) 
f(h) 

= 1 - If(t)1 2 
- If(t + h)1 2 

- If(h)1 2 + 2R{f(t)f(h)f(t + h)} ?:. O. 

It follows that 

If(t) - f(t + h)1 2 = If(t)1 2 + If(t + h)1 2 
- 2R{f(t)f(t + h)} 

:s 1 - I] (h)1 2 + 2R{j (t)] (t + h)[] (h) - I]} 

:s I - 11 (h)1 2 + 21 I - 1 (h)1 :s 41 I - j(h)l· 

Thus the "modulus of contInUIty" at each t IS bounded by tWIce the square 
root of that at 0; and so continuity at 0 implies uniform continuity every-
where. Finally, the integrand of the double integral in (2) being continuous, 
the integral is the limit of Riemann sums, hence it is positive because these 
sums are by (1). 

Theorem 6.5.2. f is a ch.f. if and only if it is positive definite and continuous 
at 0 with f(O) = 1. 

Remark. It follows trivially that f is the Fourier-Stieltjes transform 

r eitxv(dx) 
}:?/i 
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of a finite measure v if and only if it is positive definite and finite continuous 
at 0: then V(.q;>l) = f (0). 

PROOF. If f is the ch.f. of the p.m. fJ." then we need only verify that it is 
positive definite. This is immediate, since the left member of (1) is then 

2 

J t teit)Zjeit;ZkfJ.,(dx) = J teit)Zj fJ.,(dx) 2: O. 
j=l k=l j=l 

Conversely, if f is positive definite and continuous at 0, then by 
Theorem 6.5.1, (2) holds for s(t) = e-itx . Thus 

(3) _1_ rT rT 
f(s _ t)e-i(s-t)x dsdt 2: O. 

2nT Jo Jo 

Denote the left member by PT(X); by a change of variable and partial integra
tion, we have 

(4) 1 jr T ( I t I) f i tx PT(X) = 2n T 1 - T (t)e- dt. 

Now observe that for a > 0, 

-1 d f3 ] e ax dx = - 1 'd f3 = 
a 0 -fJ a 0 t at2 

1 r a rfJ. 1 r a 2 sin Bt 2 (1 - cos at) 

(where at t = 0 the limit value is meant, similarly later); it follows that 

1 df3 ] PT(X) dx 
a 0 -fJ 

where 

(5) 

T at 

n J- oo v at 

1 [00 1 - cos at d 
fTCt) 2 t 

if It I :s T; 

if It I > T. 

Note that this is the product of f by a ch.f. (see Exercise 2 of Sec. 6.2) 
and corresponds to the smoothing of the would-be density which does not 
necessarily exist. 
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Since IIT(t)1 :s I/(t)1 :s 1 by Theorem 6.5.1, and (1 - cost)/t2 belongs to 
L 1 ( - 00, (0), we have by dominated convergence: 

(6) lim ~ ra 

dfJ1fJ PT(x)dx = ~ 100 

lim IT (~) _1_-_c:-o_s_t dt 
a~oc a io -fJ n -00 a~oo a t 2 

1 100 
1 - cos t 

= - dt = l. 
n -00 t 2 

Here the second equation follows from the continuity of I T at ° with 
I T(O) = 1, and the third equation from fonnula (3) of Sec. 6.2. Since PT ~ 0, 
the integral J!fJ PT(x)dx is increasing in fJ, hence the existence of the limit of 
its "integral average" in (6) implies that of the plain limit as fJ ~ 00, namely: 

(7) 100 PT(X) dx = lim 1fJ PT(X) dx = 1. 
-00 fJ~oo -fJ 

Therefore PT is a probability density function. Returning to (3) and observing 
that for real r: 

jrfJ ltx 2 sin (JeT t) 

we obtain, similarly to (4): 

] J 7'i 
n -00 

Note that the last two integrals are in reality over finite intervals. Letting 
a ~ 00, we obtain by bounded convergence as before: 

(8) 
Too 

the integral on the left existing by (7). Since equation (8) is valid [01 each r, 
we have proved that IT is the ch.f. of the density function PT. Finally, since 
I T(r) ~ I(r) as T ~ 00 for every r, and I is by hypothesis continuous at 
r = 0, Theorem 6.3.2 yields the desired conclusion that I is a ch.f. 

As a typical application of the preceding theorem, consider a family of 
(real-valued) r.v.'s {XI, t E ~j2+}, where ~+ = [0, (0), satisfying the following 
conditions, for every sand t in :~+: 
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(i) (f'(X;) = 1; 
(ii) there exists a function r(·) on 9't1 such that {'(XsXt) = res - t); 

(iii) limt,),o J((Xo -Xt )2) = O. 

A family satisfying (i) and (ii) is called a second-order stationary process or 
stationary process in the wide sense; and condition (iii) means that the process 
is continuous in L2(n, g;, 9). 

For every finite set of tj and Zj as in the definitions of positive definite
ness, we have 

Thus r is a positive definite function. Next, we have 

rCO) - r(t) = g(Xo(Xo - XC», 

hence by the Cauchy-Schwarz inequality, 

It follows that r is continuous at 0, with reO) = 1. Hence, by Theorem 6.5.2, 
r is the ch.f. of a uniquely detennined p.m. R: 

r 
r(t) = 1 e

ltX 
R(dx). 

~I 

This R is called the spectral distribution of the process and is essential in its 
further analysis. 

Theorem 6 5 2 is not practical in recognizing special ch f 's or in 
constructing them. In contrast, there is a sufficient condition due to P61ya 
that is very easy to apply. 

Theorem 6.5.3. Let I on 9't1 satisfy the following conditions, for each t: 

(9) 1(0)=1, 1(t)?:.0, I(t) = I(-t), 

I is decreasing and continuous convex in 9't+ = [0, (0). Then I is a ch.f. 

PROOF. Without loss of generality we may suppose that 

1(00) = lim l(t) = 0; 
t-+oo 

otherwise we consider [/(t) - 1(00)]/[/(0) - 1(00)] unless 1(00) = 1, in 
which case I = 1. It is well known that a convex function I has right-hand 
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and left-hand derivatives everywhere that are equal except on a countable set, 
that I is the integral of either one of them, say the right-hand one, which will 
be denoted simply by 1', and that I' is increasing. Under the conditions of 
the theorem it is also clear that I is decreasing and I' is negative in 0't+. 
Now consider the IT as defined in (5) above, and observe that 

_ I~(t) = { - ( 1 - ~ ) f'(t) + ~/(t), 
0, 

if 0 < t < T; 

if t 2: T. 

Thus - I~ is positive and decreasing in ~+. We have for each x =I 0: 

100 . 100 2100 

e-ltXIT(t)dt = 2 costxIT(t)dt = - sintx(- I~(t))dt 
-00 0 x 0 

2 00 l(k+l)Jr/x 
= - L sintx(- I~(t))dt. 

x k=O kJr/x 

The tenns of the series alternate in sign, beginning with a positive one, and 
decrease in magnitude, hence the sum 2: O. [This is the argument indicated 
for fonnula (1) of Sec. 6.2.] For x 0, it is trivial that 

We have therefore proved that the PT defined in (4) is positive everywhere, 
and the proof there shows that I is a ch.f. (cf. Exercise 1 below). 

Next we will establIsh an interesting class of ch.f.' s whIch are natural 
extensions of the ch f 's corresponding to the nonna] and the Cauchy distri-
butions. 

Theorem 6.5.4. For each a in the range (0, 2], 

is a ch.f. 

PROOF For 0 < a < 1, this is a quick consequence of P6]ya's theorem 
above. Other conditions there being obviously satisfied, we need only check 
that I ex is convex in [0, 00). This is true because its second derivative is 
equal to 

for the range of a in question. No such luck for 1 < a < 2, and there are 
several different proofs in this case. Here is the one given by Levy which 
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works for ° < a < 2. Consider the density function 

p(x) = {~1xI"+1 if Ixl > 1, 

if Ixl :s 1; 

and compute its ch.f. f as follows, using symmetry: 

1 - f(t) = (1 - eltX)p(x)dx = a dx 100. 100 1 - costx 

-00 1 xa+1 

- a t du - du _ I la {lOO 

1 - cos U it 1 - cos u } 
o ua+1 0 ua+1 ' 

after the change of variables tx = u. Since 1 - cos U "'-J !u2 near u = 0, the first 
integral in the last member above is finite while the second is asymptotically 
equivalent to 

~ fo' u' I =- ~ ua+1 du = 2(2 

as t ..j. 0 Therefore we obtain 

where Ca is a positive constant depending on u. 
It now follows that 

caltl
a ~ t' )}" +0 

is also a ch.f. (What is the probabilistic meaning in terms of r.v.'s?) For each 
t, as 11 ~ 00, the limit is equal to e CaW' (the lemma in Sec. 6.4 again!). This, 
being continuous at t = 0, is also a ch.f. by the basic Theorem 6.3.2, and the 
constant Ca may be absorbed by a change of scale. Finally, for a = 2, fa is 
the ch.f. of a nonnal distribution. This completes the proof of the theorem. 

Actually Levy, who discovered these chf's around ]923, proved also 
that there are complex constants Ya such that e-Y"iti" is a ch.f., and determined 
the exact form of these constants (see Gnedenko and Kolmogorov [12]). The 
corresponding d.f.' s are called stable distributions, and those with real posi
tive Ya the symmetric stable ones. The parameter a is called the exponent. 
These distributions are part of a much larger class called the infinitely divisible 
distributions to be discussed in Chapter 7. 

Using the Cauchy ch.f. e- iti we can settle a question of historical interest. 
Draw the graph of this function, choose an arbitrary T > 0, and draw the 
tangents at ±T meeting the abscissa axis at ±T', where T' > T. Now define 
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the function IT to be I in [-T, T], linear in [_T', -T] and in [T, T' ], and 
zero in (-00, - T') and (T' , (0). Clearly IT also satisfies the conditions of 
Theorem 6.5.3 and so is a ch.f. Furthermore, I = IT in [-T, T]. We have 
thus established the following theorem and shown indeed how abundant the 
desired examples are. 

Theorem 6.5.5. There exist two distinct ch.f.' s that coincide in an interval 
containing the origin. 

That the interval of coincidence can be "arbitrarily large" is, of course, 
trivial, for if 11 = 12 in [-0,0], then gl = g2 in [-no, no], where 

gl (t) = 11 (~), g2 (t) = 12 (~) . 

Corollary. There exist three ch.f.'s, 11, 12, 13, such that 11 13 = 1213 but 

To see this, take 11 and 12 as in the theorem, and take 13 to be any 
ch.f. vanishing outside their interval of coincidence, such as the one described 
above for a sufficiently small value of T. This result shows that in the algebra 
of ch.f.' s, the cancellation law does not hold. 

V·le end this seetion by another special but useful way of constructing 
ch.f.'s. 

Theorem 6.5.6. If f is a ch f, then so is eA(f-l) for each A> 0 

PROOF. For each A > 0, as soon as the integer n > A, the function 

n n n 

is a ch.f., hence so is its nth power~ see propositions (iv) and (v) of Sec. 6.1. 
As n ) 00, 

and the limit is clearly contmuous. Hence It IS a ch.f. by Theorem 6.3.2. 
Later we shall see that this class of ch.f.' s is also part of the infinitely 

divisible family. For f (t) = eit
, the corresponding 

is the ch.f. of the Poisson distribution which should be familiar to the reader. 
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EXERCISES 

1. If f is continuous in ~1 and satisfies (3) for each x E .~1 and each 
T > 0, then f is positive definite. 

2. Show that the following functions are ch.f.' s: 

1 

1 + It I ' 
f(t) = { 1 - Itl

a
, 

0, 

{

I -Itl, 
f(t) = _1 

41tl' 

if It I :s 1; 
if It I :::: 1; 

if 0< It I :s!; 
if It I ~ !. 

0< a :s 1, 

3. If {X n} are independent r. v.' s with the same stable distribution of 
exponent a, then I:Z=l Xdn Ija has the same distribution. [This is the origin 
of the name "stable".] 

4. If F is a symmetric stable distribution of exponent a, 0 < a < 2, then 
J~oo Ixlr dF(x) < 00 for r < a and = 00 for r :::: a. [HINT: Use Exercises 7 
and 8 of Sec. 6.4.] 

*5. Another proof of Theorem 6.5.3 is as follows. ShO'.v that 

70 tdj'(t) = 1 

and define the d.f. G on .0'C+ by 

G(u) - r t df' (t) 

N ext show that 

Hence if we set 

rill) f (u, t) = 1 - -;; V 0 

(see Exercise 2 of Sec 6 2), then 

f(t) = r feu, t)dG(u). 
J[O,OO) 

Now apply Exercise 2 of Sec. 6.1. 
6. Show that there is a ch.f. that has period 2m, m an integer ~ 1, and 

that is equal to 1 - It I in [-1, +1]. [HINT: Compute the Fourier series of such 
a function to show that the coefficients are positive.] 
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7. Construct a ch.f. that vanishes in [-b, -a] and [a, b], where 0 < a < 
b, but nowhere else. [HINT: Let 1m be the ch.f. in Exercise 6 and consider 

L Pml m, where Pm :::: 0, L Pm = 1, 
m m 

and the Pm's are strategically chosen.] 

8. Suppose I(t, u) is a function on gr2 such that for each u, 1(·, u) is a 
ch.f.~ and for each t, I(t,·) is continuous. Then for any d.f. G, 

exp {I: [/(t, u) - l]dG(U)} 

is a ch.f. 

9. Show that in Theorem 6.3.2, the hypothesis (a) cannot be relaxed to 
require convergence of {In} only in a finite interval It I :::; T. 

6.6 Multidimensional case; Laplace transforms 

We will discuss very briefly the ch.f. of a p.m. in Euclidean space of more than 
one dimension, which we will take to be two since all extensions are straight
forward. The ch.f. of the random vector (X, Y) or of its 2-dimensional p.m. 
fJ., is defined to be the function 1(·, .) on 9(2: 

(1) f(s, t) f(x.Y)(s, t) ct(eiCsX±tYl) J J eiCsx±tvlp;(dx, dy). 

Propositions (i) to (v) of Sec. 6.1 have their obvious analogues. The inversion 
formula may be formulated as follows. Call an "interval" (rectangle) 

an interval oj continuity Iff the fJ.,-measure of Its boundary (the set of points 
on its four sides) is zero. For such an interval I, we have 

fJ., (I) lim 2 J J . . f(s, t)dsdt. 
T~oc (2n) -T -T IS If 

The proof is entirely similar to that in one dimension. It follows, as there, that 
I uniquely determines fJ.,. Only the following result is noteworthy. 

Theorem 6.6.1. Two r.v.'s X and Yare independent if and only if 

(2) Vs, Vt: I (X,y) (s, t) = I x(s)1 y (t), 

where I x and I yare the ch.f.'s of X and Y, respectively. 
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The condition (2) is to be contrasted with the following identify in one 
variable: 

Vt: !X+y(t) = !X(t)!y(t), 

where! x+y is the ch.f. of X + Y. This holds if X and Yare independent, but 
the converse is false (see Exercise 14 of Sec. 6.1). 

PROOF OF THEOREM 6.6.1. If X and Y are independent, then so are e isX and 
e itY for every sand t, hence 

l!'(ei(sx+tY») (iJ(e isX e itY ) F(eisX ) (iJ(e itY ) (i; = ([) . = (0 (i;' , 

which is (2). Conversely, consider the 2-dimensional product measure 111 x 112, 
where 111 and 112 are the I-dimensional p.m.'s of X and Y, respectively, and 
the product is defined in Sec. 3.3. Its ch.f. is given by definition as 

J J ei(sx+ty) (111 x 112)(dx, dy) = J J e isx 
• e

ity 111 (dx)112 (dy) 

;7\'2 £?i?2 

r· r· 

(Fubini's theorem!). If (2) is true, then this is the same as !(X,y)(s, t), so that 
~ll x ~l2 has the same ch f as ~l, the p m of eX, Y) Hence, by the uniqueness 
theorem mentioned above, we have 111 x 112 = 11. This is equivalent to the 
independence of X and Y. 

The multidimensional analogues of the convergence theorem, and some 
of its applications such as the weak law of large numbers and central limit 
theorem, are all valid without new difficulties. Even the characterization of 
Bochner has an easy extension However, these topics are better plIfsued with 
certain objectives in view, such as mathematical statistics, Gaussian processes, 
and spectral analysis, that are beyond the scope of this book, and so we shall 
not enter into them. 

We shall, however, give a short introduction to an allied notion, that of 
the Laplace transfonn, which is sometimes more expedient or appropriate than 
the ch.f., and is a basic tool in the theory of Markov processes. 

Let X be a posItlve (::::0) r.v. havmg the d.f. F so that F has support m 
[0, (0), namely F(O-) - O. The Laplace transform of X or F is the function 

F on ~-1?+ = [0, (0) given by 

(3) F() .. ) = gee-AX) = r e-Ax dF(x). 
J[O,oo) 

It is obvious (why?) that 

F(O) = limF(}I.) = 1, F(oo) = lim F(A) = F(O). 
A~O A--+oo 
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More generally, we can define the Laplace transfonn of an s.dJ. or a function 
G of bounded variation satisfying certain "growth condition" at infinity. In 
particular, if F is an s.dJ., the Laplace transfonn of its indefinite integral 

G(x) = fox F(u)du 

is finite for A > 0 and given by 

G(A) = r e-Ax F(x) dx = r e-Ax dx r fJ.(dy) 
J[O, (0) J[O, (0) J[O,x] 

= fJ.(dy) e-Ax dx = - e-AYfJ.(dy) = -F(A), 1 100 11 lA 
[0,(0) Y A [0,(0) A 

where fJ. is the s.p.m. of F. The calculation above, based on Fubini's theorem, 
replaces a familiar "integration by parts". However, the reader should beware 
of the latter operation For instance, according to the usual definition, as 
given in Rudin [1] (and several other standard textbooks!), the value of the 
Riemann-Stieltjes integral 

is 0 rather than 1, but 

1o eOA 

is correct only if the left member is taken in the Lebesgue-Stieltjes sense, as 
is always done in this book. 

There are obvious analogues of propositions (i) to (v) of Sec 6.]. 

However, the inversion fonnula requiring complex integration will be omitted 
and the uniqueness theorem, due to Lerch, will be proved by a different method 
(cf. Exercise 12 of Sec. 6.2). 

Theorem 6.6.2. Let ~fr } be the Laplace transform of the dJ. F j with support 

PROOF. We shall apply the Stone-Weierstrass theorem to the algebra 
generated by the family of functions fe-Ax, A ~ O}, defined on the closed 
positive real line: 3£+ = [0,00], namely the one-point compactification of 
2IZ+ = [0, 00). A continuous function of x on q];+ is one that is continuous 
in 2IZ+ and has a finite limit as x -.~ 00. This family separates points on gz+ 
and vanishes at no point of 21+ (at the point +00, the member e-ox = 1 of the 
family does not vanish!). Hence the set of polynomials in the members of the 
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family, namely the algebra generated by it, is dense in the uniform topology, 
in the space CB(~+) of bounded continuous functions on !i?+. That is to say, 
given any g E CB(:ft+), and E > 0, there exists a polynomial of the form 

n 

gE(X) = L cje-Ajx, 

j=l 

where C j are real and A j ~ 0, such that 

sup Ig(x) - gE(x)1 < E. 

XE~+ 

Consequently, we have 

J Ig(x) - gE(x)1 dFj(x) :s; E, j = 1,2. 

By hypothesis, we have for each A ~ 0: 

f e-h dF 1 Ex) f e-h dF2 (x), 

and consequently, 

r r 

It now follows, as in the proof of Theorem 4.4.1, first that 
r r J g(x)dF1(x) = ] g(x)dF2 (x) 

for each g E C B (?i?+); second, that this also holds for each g that is the 
indicator of an interval in ~+ (even one of the form (a, 00]); third, that 
the two p.m.' s induced by F 1 and F 2 are identical, and finally that F I = F 2 

as asserted. 

Remark. Although it is not necessary here, we may also extend the 
domam of defimtIOn of a d.t. F to .0/[+; thus F(oo) - I, but wIth the new 
meaning that F(oo) is actually the value of F at the point 00, rather than 
a notation for limx--+ooF(x) as previously defined. F is thus continuous at 
00. In terms of the p.llI. p:, this means we extend its domain to 0'e+ but set 
fJ.( {oo}) = O. On other occasions it may be useful to assign a strictly positive 
value to fJ.( {oo D. 

Passing to the convergence theorem, we shall prove it in a form closest 
to Theorem 6.3.2 and refer to Exercise 4 below for improvements. 

Theorem 6.6.3. Let {F n, 1 :s; n < oo} be a sequence of s.dJ.' s with supports 
in ?A+ and {Fn} the corresponding Laplace transforms. Then Fn~F 00, where 
F 00 is a dJ., if and only if: 
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(a) limll~oc FII (A) exists for every A > 0; 
(b) the limit function has the limit 1 as A .J,. O. 

Remark. The limit in (a) exists at A = 0 and equals 1 if the F II'S are 
dJ.' s, but even so (b) is not guaranteed, as the example F II = Oil shows. 

PROOF. The "only if" part follows at once from Theorem 4.4.1 and the 
remark that the Laplace transform of an s.dJ. is a continuous function in gt+. 

Conversely, suppose lim FII (A) = G(A), A > 0; extended G to gt+ by setting 
G(O) = 1 so that G is continuous in 92+ by hypothesis (b). As in the proof 
of Theorem 6.3.2, consider any vaguely convergent subsequence F Ilk with the 
vague limit F 00, necessarily an s.d.f. (see Sec. 4.3). Since for each A > 0, 

e-"Ax E Co, Theorem 4.4.1 applies to yield F Ilk (A) ~ F 00 (A) for A > 0, where 

F 00 is the Laplace transform of F 00. Thus F oo(A) = G(A) for A > 0, and 

consequently for 2 > 0 by continuity of Foo and G at 2 - 0 Hence every 
vague limit has the same Laplace transform, and therefore is the same F 00 by 

Theorem 6.6.2. It follows by Theorem 4.3.4 that F II ~ F 00. Fmally, we have 
£00 (00) - Foo (0) - G (0) - 1, proving that £00 is a d f 

There is a useful characterization, due to S. Bernstein, of Laplace trans-
fonns of measures on 92+. A function is called completely monotonic in an 
interval (finite or infinite, of any kind) iff it has derivatives of all orders there 
satisfying the condition: 

(4) 

for each n > 0 and each 2 in the domain of definition 

Theorem 6.6.4. A function f on (0, (0) is the Laplace transfonn of adJ. F: 

(5) I(A) =[ e-"Ax dF(x), 
"~I 

if and only if it is completely monotonic in (0, (0) with 1(0+) = ]. 

Remark. We then extend f to :?n+ by setting f (0) - 1, and (5) will 
hold for A ~ O. 

PROOF. The "only if" part is immediate, since 

Turning to the "if" part, let us first prove that I IS quasi-analytic in (0, (0), 
namely it has a convergent Taylor series there. Let 0 < AO < A < fJ." then, by 
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Taylor's theorem, with the remainder term in the integral form, we have 

(6) f (A) = I: f(j~;fJ.) (A - fJ.)j 
j=O J. 

+ (A - fJ.i t (l _ t)k-l f(k)(fJ. + (A - fJ.)t) dt. 
(k - 1)! Jo 

Because of (4), the last term in (6) is positive and does not exceed 

(A - fJ.)k t (l _ t)k-l f(k)(fJ. + (AO - fJ.)t)dt. 
(k - 1)! Jo 

For if k is even, then f (k) .J,. and (A - fJ.)k 2: 0, while if k is odd then f (k) t 
and (A - fJ.)k :::; O. Now, by (6) with A replaced by AO, the last expression is 
equal to 

j=O J. 

where the inequality is trivial, since each term in the sum on the left is positive 
by (4). Therefore, as k ~ 00, the remainder term in (6) tends to zero and the 
Taylor series for f (A) converges. 

Now for each n 2: 1, define the discrete s.dJ. F n by the formula: 

(7) 

This is indeed an s.d.f., since for each E > 0 and k ~ 1 we have from (6): 

1 
k-J f(j\ ) 

f(O+) > f(E) > E ., n (E n)j. 
j=O J. 

Letting E .J,. 0 and then k t 00, we see that Fn (00) :::; 1. The Laplace transform 
of Fn is plainly, for A > O. 

the last equation from the Taylor series. Letting n ~ 00, we obtain for the 
limit of the last term f (A), since f is continuous at each A. It follows from 
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Theorem 6.6.3 that {Fn} converges vaguely, say to F, and that the Laplace 
transform of F is f. Hence F (00) = f (0) = 1, and F is a d.f. The theorem 
is proved. 

EXERCISES 

1. If X and Yare independent r. v.' s with normal d.f.' s of the same 
variance, then X + Y and X - Y are independent. 

* 2. Two uncorrelated r. v.' s with a joint normal d.f. of arbitrary parameters 
are independent. Extend this to any finite number of r.v.'s. 

*3. Let F and G be s.d.f.'s. If AO > 0 and F(A) = G(A) for all A ~ AO, then 
F = G. More generally, if F(nAo) = G(nAo) for integer n ~ 1, then F = G. 
[HINT: In order to apply the Stone-Weierstrass theorem as cited, adjoin the 
constant 1 to the family {e-A.x, A ~ AO}; show that a function in Co can actually 
be uniformly approximated without a constant.] 

*4. Let {FIl } be s.d.f.'s. If AO > 0 and limn~ooFn (A) exists for all A 2: AO, 
then {Ell} converges vaguely to an s d f 

5. Use Exercise 3 to prove that for any d.f. whose support is in a finite 
interval, the moment problem is determinate. 

6. Let F be an s.dJ. with support in f?I4. Define Go F, 

for 11 2: 1. Find Gil (A) in terms of F(A). 

7. Let leA) = Jooo e-A.x f(x)dx where fELl (0, (0). Suppose that f has 
a finite right-hand derivative l' (0) at the origin, then 

A 

fCO) lim kfCk), 

f'(O) = lim A[Af(A) - f(O)]. 
).,--+00 

*8. In the notation of Exercise 7, prove that for every A, fJ. E .~+: 

A A 

!C).) !CM)· 

9. Given a function CJ on !Ji>+ that is finite, continuous, and decreasing 
to zero at infinity, find a CJ-finite measure fJ. on :~+ such that 

Vt > 0: r CJ(t - s)fJ.(ds) = 1. 
J[O.t] 

[HINT: Assume CJ(O) = 1 and consider the dJ. 1 - CJ.] 
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*10. If I > 0 on (0,00) and has a derivative I' that is completely mono
tonic there, then 1/1 is also completely monotonic. 

11. If I is completely monotonic in (0, 00) with 1(0+) = +00, then I 
is the Laplace transform of an infinite measure fJ., on .9i\: 

I(A) = r e-AxfJ.,(dx). 
}[JI{+ 

[HINT: Show that F n (x) :s e2x81(8) for each 8 > 0 and all large n, where Fn 
is defined in (7). Alternatively, apply Theorem 6.6.4 to I(A + n-1)/ l(n- 1) 

for A ~ 0 and use Exercise 3.] 

12. Let {gn, 1 :s n :s oo} on ::12+ satisfy the conditions: (i) for each 
n, gn (.) IS positive and decreasing; (ii) goo (x) is continuous; (iii) for each 
A> 0, 

Then 
lim gn (x) = goo (x) for every x E ::12+. 

[HINI. POI E > 0 consider the sequence Jooo 
e Hgn ex) dx and show that 

and so on.] 

Formally, the Fourier transform I and the Laplace transform F of a p.m. 
with support in gIf+ can be obtained from each other by the substitution t - z')' 
or A = -it in (1) of Sec. 6.1 or (3) of Sec. 6.6. In practice, a certain expression 
may be denved for one of these transforms that IS valId only for the pertment 
range, and the question arises as to its validity for the other range. Interesting 
cases of this will be encountered in Secs. 8.4 and 8.5. The following theorem 
is generally adequate for the situation. 

Theorem 6.6.5. The function h of the complex variable z given by 

h(z) = 1 elX dF(x) 
.JJ?+ 

is analytic in Rz < 0 and continuous in Rz :s o. Suppose that g is another 
function of z that is analytic in Rz < 0 and continuous in Rz :s 0 such that 

Vt E :1»1: h(it) = gUt). 



204 I CHARACTERISTIC FUNCTION 

Then h(z) = g(z) in Rz :s 0; in particular 

VA E ~+: h( -A) = g( -A). 

PROOF. For each integer m :::. 1, the function hm defined by 

is clearly an entire function of z. We have 

1 elX dF(x) :s 1 dF(x) 
(m,oo) (m,oo) 

in Rz:s 0; hence the sequence hm converges uniformly there to h, and h 

is continuous in Rz :s O. It follows from a basic proposition in the theory of 
analytic functions that h is analytic in the interior Rz < O. Next, the difference 
h - g is analytic in Rz < 0, continuous is Rz :s 0, and equal to zero on the 
line Rz 0 by hypothesis. Hence, by Schwarz's reflection principle, it can be 
analytically continued across the line and over the whole complex plane. The 
resulting entire functions, being zero on a line, must be identically zero in the 
plane In particular h - g = 0 in Rz < 0, proving the theorem 
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661 674. 



7 

7.1 

Central limit theorem and 
its ramifications 

Liapounov's theorem 

The name "central limit theorem" refers to a result that asserts the convergence 
in dist. of a "nonned" sum of r.v.'s, (Sn - an)/bn, to the unit nonnal dJ. <1>. 
We have already proved a neat, though special, version in Theorem 6.4.4. 
Here we begin by generalizing the set-up If we write 

(1) 

we see that we are really dealing with a double array, as follows. For each 
n > ] let there be kn r v's {XIl), ] < j < kn}, where kn ~ 00 as n ~ 00: 

X ll ,X12 , ... ,X1k1 ; 

(2) X 21 , X 22, ... , X 2k2 ; 
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The r.v.'s with n as first subscript will be referred to as being in the nth row. 
Let Fnj be the d.f., f nj the ch.f. of X nj ; and put 

kn 

Sn = Sn.kn = 2:::: X nj. 

j=l 

The particular case kn = n for each n yields a triangular array, and if, further
more, X nj = Xj for every n, then it reduces to the initial sections of a single 
sequence {X j , j 2: I}. 

We shall assume from now on that the r. v. 's in each row in (2) are 
independent, but those in different rows may be arbitrarily dependent as in 
the case just mentioned - indeed they may be defined on different probability 
spaces without any relation to one another. Furthennore, let us introduce the 
following notation for moments, whenever they are defined, finite or infinite: 

(3) 

or r J 

kn kn 

I(Sn) Lan] cr2
(Sn) L cr;j 

j=l j=l 
kn 

r~ = 2: Ynj. 
j=l 

In the special case of (l), we have 

X· X .--] 
n] - b

n
' 

(f2(X ) 
2(X .) - j (f n]-

b2 
n 

If we take bn Sn, then 

j=l 

By consideIing X nj iXnj instead of X nj , we may suppose 

(5) "In, "Ij.iXn j - 0 

whenever the means exist. The reduction (sometimes called "nanning") 
leading to (4) and (5) is always available if each Xnj has a finite second 
moment, and we shall assume this in the following. 

In dealing with the double array (2), it is essential to impose a hypothesis 
that individual terms in the sum 

kn 

Sn = 2:::: X nj 

j=l 
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are "negligible" in comparison with the sum itself. Historically, this arose 
from the assumption that "small errors" accumulate to cause probabilistically 
predictable random mass phenomena. We shall see later that such a hypothesis 
is indeed necessary in a reasonable criterion for the central limit theorem such 
as Theorem 7.2.l. 

In order to clarify the intuitive notion of the negligibility, let us consider 
the following hierarchy of conditions, each to be satisfied for every E > 0: 

(a) 

(b) 

(c) 

Cd) 

Vj: lim 0">{IXllj l > E} = 0; 
11--+ 00 

lim max q?{IXlljl > E} = 0; 
11--+00 l~j~kn 

It is clear that (d) ==> (c) ==> (b) ==> (a); see Exercise 1 below. It turns out that 
(b) is the appropliate condition, which will be given a name. 

DEFINITION. The double array (2) is said to be holospoudic* iff (b) holds. 

Theorem 7.1.1. A necessary and sufficient condition for (2) to be 
holospoudic is: 

(6) Vt E ~1?1: lim max If IIj(t) - 11 = o. 
11--+ 00 1 ~j~kn 

PROOF. Assuming that (b) is true, we have 

I flli(t) - 11 < r leitx 
- 11 dFlli(x) = r + r 

:s 1 2 dF IIj(x) + Itll Ixi dFllj(x) 
Ixl>E Ixl<E 

and consequently 

m~x Ifnj(t) - 11 :::s 2m~x:1P{IXnjl > E} + Eltl. 
} } 

* I am indebted to Professor M. Wigodsky for suggesting this word, the only new term coined 
in this book. 
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Letting n -+ 00, then E -+ 0, we obtain (6). Conversely, we have by the 
inequality (2) of Sec. 6.3, 

r dFIl/x) :s 2 -I ~ 1 !nj(t)dtl :s -2
E 1 11 - !nj(t)1 dt; 

J1XI>E l'I::::2/E l'I::::2/E 

and consequently 

m':!x9'J{IXnj l > E} :s ~ 1 m':!x 11 - !nj(t)1 dt. 
J 2 l'I::::2/E J 

Letting 11 -+ 00, the right-hand side tends to 0 by (6) and bounded conver
gence; hence (b) follows. Note that the basic independence assumption is not 
needed in this theorem. 

We shall first give Liapounov's form of the central limit theorem 
involving the third moment by a typical use of the ch.f. From this we deduce 
a special case concerning bounded r.v.' s. From this, we deduce the sufficiency 
of Lindeberg's condition by direct arguments. Finally we give Feller's proof 
of the necessIty of that condItion by a novel applIcation of the ch.f. 

In order to bring out the almost mechanical nature of Liapounov' s result 
we state and prove a lemma in calculus. 

Lemma. Let {enj , 1 :s j :s kn, 1 :s n} be a double array of complex numbers 
satisfying the following conditions as n -+ 00: 

(ii) L~:'l lenjl :s M < 00, where M does not depend on n; 

(iii) L~'~l enj -+ e, where e is a (finite) complex number. 

Then we have 

k" 

(7) nO + enj ) -4 ee. 
j=l 

PROOF. By (i), there exists no such that if n > no, then lenjl :s ~ for all 
j, so that 1 + enj =1= O. We shall consider only such large values of n below, 
and we shall denote by log (1 + enj ) the determination of logarithm with an 
angle in (-Jr, JrJ. Thus 

(8) 

where A is a complex number depending on various variables but bounded 
by some absolute constant not depending on anything, and is not necessarily 
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the same in each appearance. In the present case we have in fact 

00 (_l)m-l m 00 lenjlm 
Ilog(1 + enj ) - enjl = L enj :s L--

m m m=2 m=2 

< ~ ~ - = Ie '1 2 < 1 
Ie 12 00 (1) m-2 

- 2 L 2 n} - , 

m=2 

so that the absolute constant mentioned above may be taken to be 1. (The 
reader will supply such a computation next time.) Hence 

kn kn kn 

L log(1 + enj) = L enj + A L lenj l
2

. 
j=l j=l j=l 

(This A is not the same as before, but bounded by the same 1 !). It follows 
from (ii) and (i) that 

kn kn 

(9) E lenj l2 
< m.ax len}1 E len}1 ~ AI m.ax len}1 ' 0; 

and consequently we have by (iii), 

kn 

E log(l + enj ) --+ e. 
j=l 

This is equivalent to (7). 

Theorem 7.1.2. Assume that (4) and (5) hold for the double array (2) and 
that Yn j is finite for every nand j. If 

(10) 

as n --+ 00, then S n con verges in dist. to CP. 

PROOF. For each n, the range of } below will be from 1 to kn • It follows 
from the assumption (10) and Liapounov's inequality that 

(11 ) 
} } 

By (3') of Theorem 6.4.2, we have 

!nj(t) = 1 - ~(J~/2 + AnjYnj It1 3
, 

where IAn j I :s ~. We apply the lemma above, for a fixed t, to 

1 2 2 A I 13 
enj = - i(Jn/ + njynj t . 
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Condition (i) is satisfied since 

by (11). Condition (ii) is satisfied since 

t 2 

L lenjl :s "2 + Altl 3rn 
j 

is bounded by (11); similarly condition (iii) is satisfied since 

It follows that 

[2 t2 
~e . = -- + Altl 3r -+ --. ~ II) 2 n 2 

) 

IT f nj(t) -+ e-t2J2
• 

j 1 

This establishes the theorem by the convergence theorem of Sec. 6.3, since 
the left member is the ch.f. of Sn. 

Corollary. Without supposing that cff(X 11 i) = 0, suppose that for each nand 
J 

j there is a finite constant M nj such that IXnj I :s M nj a.e., and that 

(12) max Mnj -+ O. 
I <j<kn 

Then Sn - {(SF!) converges in dist. to CPo 

This follows at once by the trivial inequality 

- 2 max M nj . 
l~j~kn 

The usual formulation of Theorem 7.1.2 for a single sequence of inde
pendent r.v.'s {X j } with {(X j ) = 0, a2(Xj) = a; < 00, ct(IXjI3) = Yj < 00, 

n n 

(13) Sn = LX j , s~ = La;, 
j=1 j=l 

is as follows . 

n 

r ll = LYj, 
j=l 

. ~~~-----------------------.------------
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If 

(14) 

then Sn/sn converges in dist. to CPo 
This is obtained by settingXnj = Xj/sn.ltshould be noticed thatthedouble 

scheme gets rid of cumbersome fractions in proofs as well as in statements. 
We proceed to another proof of Liapounov's theorem for a single 

sequence by the method of Lindeberg, who actually used it to prove his 
version of the central limit theorem, see Theorem 7.2.1 below. In recent times 
this method has been developed into a general tool by Trotter and Feller. 

The idea of Lindeberg is to approximate the sum X I + ... + X n in (13) 
successively by replacing one X at a time with a comparable normal (Gaussian) 
r.V. Y, as follows. Let {Y j , j 2: I} be r.v.'s having the normal distribution 
N (0, 0"]); thus Y j has the same mean and variance as the corresponding X j 
above; let all the X's and Y's be totally independent. Now put 

with the obvious convention that 

To compare the distribution of (Xj + Zj)/sn with that of (Yj + Zj)/sn, we 
use Theorem 6.1.6 by comparing the expectations of test functions. Namely, 
we estimate the difference below for a suitable class of functions f: 

J-I 

This equation follows by telescoping since Y J j Z J X J+ I + Z J+ I. Vie take 
f in C1, the class of bounded continuous functions with three bounded contin-
uous derivatives. By Taylor's theorem, we have for every x and y: 

f(x + y) -f(x) + f'(x)y + -;-l :s -;-I l Ttl j I M~IJ 
where M = sup '7.'1 If(3)(x)l. Hence if ~ and YJ are independent r.v.'s such that XE. , 

ct{IYJI3} < 00, we have by substitution followed by integration: 

1 
I(t{f(~ + YJ)} - t{f(~)} - 0'{f'(~)}g{YJ} - 2t{f"(~)}t{YJ2}1 

M 
(16) :s 6 cf {IYJI 3}. 
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Note that the r.v.'s f(~), f'(~), and f"(~) are bounded hence integrable. If S
is another r.v. independent of ~ and having the same mean and variance as YJ, 

and {{1s-1 3 } < 00, we obtain by replacing YJ with S- in (16) and then taking the 
difference: 

(17) 

This key formula is applied to each term on the right side of (15), with 
~ = Zj/sll' YJ =Xj/sn, S- = Yj/sn. The bounds on the right-hand side of (17) 
then add up to 

(18) M Ln 

{Yj ca}} - -+-6 3 3 
j=l Sn Sn 

where c = -J8 / Tr since the absolute third moment of N (0, ( 2 ) is equal to caJ. 
By Liapounov's inequality (Sec. 3.2) aJ :s Yj, so that the quantity in (18) is 

O(rn/s~), Let us introduce a unit normal r.v. IV for convenience of notation, 
so that (Yl + ... + Yn)/sn may be replaced by N so far as its distribution is 
concerned. We have thus obtained the following estimate: 

Consequently, under the condition (14), this converges to zero as n -+ 00. It 
follows by the general criterion for vague convergence in Theorem 6.1.6 that 
8 I • d' 'b' I' I 'PI' . t' 'D f 

idea yields a by-product, due to Pinsky, which will be proved under the same 
assumptions as in Liapounov' s theorem above. 

Theorem 7.1.3. Let {xn } be a sequence of real numbers increasing to +00 
but subject to the growth condition: for some E > 0, 

rn x 2 

(20) log s3 + ; (l + E) -4 00 
n 

as n -+ 00. Then for this E, there exists N such that for all n 2: N we have 

(21) exp - x; (1 + E) :s gP{Sn 2: XIlSn} :s exp - X; (1 - E) . 

PROOF. This is derived by choosing particular test functions in (19). Let 
f E C3 be such that 

f(x) = 0 for x < _1. 
- 2' o :s f (x) :s I 

f(x) = I for x > 1. 
- 2' 

for -~ < x < ~; 
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and put for all x: 

fn(x) = f(x -Xn - ~), gn(X) = f(x -Xn + ~). 

Thus we have, denoting by I B the indicator function of B C g;>l: 

It follows that 

whereas 

(23) :!J>{N 2: Xn + I} :s 0'{fn(N)} :s g{gn(N)} :s :!J>{N 2: Xn - I}. 

Using (19) for f = f nand f = gn, and combining the results with (22) and 
(23), we obtain 

(24) 

Now an elementary estimate yields for x -+ +00: 

(see Exercise 4 of Sec. 7.4), and a quick computation shows further that 

9'{N > x ± 1} = exp [ - ~ (1 + 0(1 n], x -+ +00. 

Thus (24) may be written as 

Suppose n is so large that the o( 1) above is strictly less than E in absolute 
value; in order to conclude (23) it is sufficient to have 

~f = 0 (exp [-~ (1 + E)l), n -+ 00. 

This is the sense of the condition (20), and the theorem is proved. 
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Recalling that S Il is the standard deviation of S n, we call the probability 
in (21) that of a "large deviation". Observe that the two estimates of this 
probability given there have a ratio equal to eEX n 2 which is large for each E, 

as Xn -+ +00. Nonetheless, it is small relative to the principal factor e-Xn2
/
2 

on the logarithmic scale, which is just to say that EX~ is small in absolute 
value compared with -x~/2. Thus the estimates in (21) is useful on such a 
scale, and may be applied in the proof of the law of the iterated logarithm in 
Sec. 7.5. 

EXERCISES 

*1. Prove that for arbitrary r.v.'s {Xnj} in the array (2), the implications 
(d) => (c) => (b) => (a) are all strict. On the other hand, if the X n / s are 
independent in each row, then (d) = (c). 

2. For any sequence of r.v.'s {Yn}, if Yn/bn converges in dist. for an 
increasing sequence of constants { bn }, then Y n I b~ converges in pr. to 0 if 
bn = o(b~). In particular, make precise the following statement: "The central 
limit theorem implies the weak law of large numbers." 

3. For the double array (2), it is possible that Sn/bn converges in dist. 
for a sequence of strictly positive constants bn tending to a finite limit. Is it 
still possible if bn oscillates between finite limits? 

4. Let {X;} be independent r. v.' s such that maxI < j <n IX j 1/ bn -+ 0 in 
pr. and (Sn - all )/bll converges to a nondegenerate d.f. Then bn -+ 00, 

bn+ 1 Ibn ~ 1, and (a ll +l all )Ibn ~ O. 

*5. In Theorem 7.1.2 let the d.f. of Sn be Fn. Prove that given any E > 0, 
there exists a 8(E) such that rn :s8(E)=>L(Fn ,c:I»:SE, where L is Levy 
distance. Strengthen the conclusion to read: 

sup IFn(x) cf>(X) I < €. 

*6. Prove the assertion made in Exercise 5 of Sec. 5.3 using the methods 
of thIS sectIOn. [HINT: use Exercise 4 of Sec. 4.3.] 

7.2 Lindeberg Feller theorem 

We can now state the Lindeberg-Feller theorem for the double array (2) of 
Sec. 7.1 (with independence in each row). 

Theorem 7.2.1. Assume 0-2 . < 00 for each nand j and the reduction 
n) 

hypotheses (4) and (5) of Sec. 7.1. In order that as n -+ 00 the two conclusions 
below both hold: 
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(i) S n converges in dist. to CP, 
(ii) the double array (2) of Sec. 7.1 is holospoudic; 

it is necessary and sufficient that for each YJ > 0, we have 

(1) 

The condition (1) IS called Lindeberg's condition; it IS manifestly 
equivalent to 

(1') 

PROOF. Sufficiency. By the argument that leads to Chebyshev's inequality, 
we have 

(2) 1 r 2 ~{IXnjl > YJ} < 2 x dFnj(x). 

Hence (11) follows from (1); mdeed even the stronger form of neglIgIbIlIty (d) 
in Sec. 7.1 follows. Now for a fixed n, ° < n < 1, we truncate X n i as follows: 

(3) 
if IXnj ~ < Y); 

otherwise. 

{(X;,) = 1 xdFnj(x) = -1 xdFn/x). 
Ixl<1) Ixl>1) 

r r 

Hence 

and so by (1), 

Next we have by the Cauchy-Schwarz inequality 
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and consequently 

a
2
(X;,) = ] x2 dF nj(x) - g(X~j)2 2: {] -] } x2 dF nj(x), 

Ixl:::1J Ixl:::1J Ixl>1J 

It follows by (1 ') that 

Thus as n -+ 00, we have 

s~ -+ 1 and i'(S~) -+ O. 

Since 
Sf = {S~ - g(S~) g(S~ ) } Sf 

n Sf + Sf n 
n n 

we conclude (see Theorem 4.4.6, but the situation is even simpler here) that 
if [S~ @,(S~)] I /s~ converges in dist., so will S~/s~ to the same d.f. 

Now we try to apply the corollary to Theorem 7.1.2 to the double array 
{X;lj}' We have IX~) :s Y), so that the left member m (12) of Sec. 7. I corre
sponding to this array is bounded by n. But although n is at our disposal and 
may be taken as small as we please, it is fixed with respect to n in the above. 
lIenee we cannot yet make use of the cited corollary. Vihat is needed is the 
following lemma, which is useful in similar circumstances. 

Lemma 1 Le t u(m, n) be a function of positive integers m and n sl]ch that 

'rim: lim u(m, n) - O. 
n--+oo 

Then there exists a sequence {mn } increasmg to 00 such that 

hm u(mn, n) = O. 
n--+oo 

PROOF. It is the statement of the lemma and its necessity in our appli
cation that requires a certain amount of sophistication; the proof is easy For 
each m, there is an nm such that n 2: nm => u(m, n) :s 11m. We may choose 
{11m' m 2: 1} mductively so that nm increases strictly with m. Now define 
(110 = 1) 

Then 
1 

u(mn , n) :s - fOf nm :s n < llm+l, 
m 

and consequently the lemma is proved. 
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We apply the lemma to (l) as follows. For each m ~ 1, we have 

It follows that there exists a sequence {YJn} decreasing to 0 such that 

Now we can go back and modify the definition in (3) by replacing YJ with 
YJn. As indicated above, the cited corollary becomes applicable and yields the 
convergence of [S~ - g(S~)]/s~ in dist. to ct>, hence also that of S~/s~ as 
remarked. 

Finally we must go from S~ to Sn. The idea is similar to Theorem 5.2.1 
but simpler. Observe that, for the modified Xnj in (3) with YJ replaced by YJn, 
we have 

J .• 

the last inequality from (2). As n ~ 00, the last term tends to 0 by the above, 
hence Sn must have the same limit distribution as S~ (why?) and the sufficiency 
of Lindeberg' s condition is proved. Although this method of proof is somewhat 
longer than a straightforward approach by means of ch.f.' s (Exercise 4 below), 
it involves several good ideas that can be used on other occasions. Indeed the 
suffiCIency part of the most general fonn of the central lImIt theorem (see 
below) can be proved in the same way. 

Necessity. Here we must resort entirely to manipulations with ch.f.'s. By 
the convergence theorem of Sec. 6.3 and TheOlem 7.1.1, the conditions (i) 
and (ii) are equivalent to: 

k" 

(4) . l' IT f () - -t
2
/2. 'it. 1m nj t - e , 

n--+oo 
j=l 

(5) 'it: lim max If n/t) - 11 = o. 
n--+oo l~j~k" 

By Theorem 6.3.1, the convergence in (4) is unifonn in It I ::::: T for each finite 
T : similarly for (5) by Theorem 7.1.1. Hence for each T there exists no(T) 
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such that if n ~ no(T), then 

max max If ·(t) - 11 < !. 
Itl:sT l:sj:skn nj - 2 

We shall consider only such values of n below. We may take the distinguished 
logarithms (see Theorems 7.6.2 and 7.6.3 below) to conclude that 

(6) 
kn 2 

lim L log f n ·(t) = -:..-. n--+oo j 2 
j=1 

By (8) and (9) of Sec. 7.1, we have 

(7) logfnj(t) = fnj(t) - 1 + Alfn/t) - 112; 

kn kn 

(8) ""' If n/t ) - 112 ~ m.ax If n/t ) - 11""' If n/t) - 11· 6 l<j<k 6 '1 __ n '1 
j= j= 

Now the last-written sum is, with some e, lei ~ 1: 

(9) 
. )-00 . )-00 2 

j j 

2 . )-00 2 
j 

Hence it follows from (5) and (9) that the left member of (8) tends to 0 as 
n =* 00 From this, (7), and (6) we obtain 

lim L{fn ·(t) - I} = --. 
n-+oc j 2 

j 

Taking real parts, we have 

n--+oo . -00 
j 

Hence for each YJ > 0, if we split the integral into two parts and transpose one 
of them, we obtain 

lim t
2 

- L r (l - costx)dFnj(x) 
n-+oc 2 j J1xl:Sry 

lim 
n--+ oc 

I L r (l - cos tx) dF nj(X)! 
j J1xl>ry 
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-.- La-nl 2 <11m2 --=-
- n--+oo . YJ2 YJ2 ' 

) 

the last inequality above by Chebyshev's inequality. Since 0 ::::: 1 - cos e ::::: 
e2/2 for every real e, this implies 

2" 2: lim - - L - x dFn)(x) 2: 0, 2 - {[2 [21 2 } 
yJ n--+oo 2 . 2 Ixl<n 

) -

the quantity in braces being clearly positive. Thus 

[ being arbitrarily large while YJ is fixed; this implies Lindeberg's condition 
(1'). Theorem 7.2.1 is completely proved. 

Lindeberg's theorem contams both the IdentIcally dIstnbuted case 
(Theorem 6.4.4) and Liapounov's theorem. Let us derive the latter, which 
assets that, under (4) and (5) of Sec. 7.1, the condition below for anyone 
value of 8 > 0 is a sufficient condition for S n to converge in dist. to ct>. 

(10) 
)=1 J 00 

For () - 1 this condition is just (l0) of Sec. 7.1. In the general case the asser
tion follows at once from the following inequalities: 

[ 2, [ Ix 12+8 , L J x aFn;(x) S L J 8 aFn)(x) 
) Ixl>1) ) Ixl>1) YJ 

showing that (10) implies (1). 

- 8 J .. n) , 
YJ . -00 

) 

The essence of Theorem 7.2.1 is the assumption of the finiteness of the 
second moments together with the "classical" norming factor Sn, which is the 
standard deviation of the sum S n; see Exercise 10 below for an interesting 
possibility. In the most general case where "nothing is assumed," we have the 
following criterion, due to Feller and in a somewhat different form to Levy. 
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Theorem 7.2.2. For the double array (2) of Sec. 7.1 (with independence in 
each row), in order that there exists a sequence of constants {all} such that 

(i) 'L~"=l Xnj - Gil converges in dist. to ct>, and (ii) the array is holospoudic, 
it is necessary and sufficient that the following two conditions hold for every 
YJ > 0: 

(a) 'L~:'l ~XI>ry dFnj(x) -+ 0; 

(b) 'L~"=d~x':::ry x2 dF nj(x) - (~xl:::ry x dF n/x»2} -+ 1. 

We refer to the monograph by Gnedenko and Kolmogorov [12] for this 
result and its variants, as well as the following criterion for a single sequence 
of independent, identically distributed r. v.' s due to Levy. 

Theorem 7.2.3. Let {X j, j > I} be independent r.v.'s having the common 
dJ. F; and Sn = 'LJ=1 X j. In order that there exist constants an and bn > 0 
(necessarily hn -+ +(0) such that (Sn an )/bn converges in dist. to $, it is 
necessary and sufficient that we have, as y -+ +00: 

(11 ) y2 [ dF(x) 

The central limit theorem, applied to concrete cases, leads to asymptotic 
formulas. The best-known one is perhaps the following, for 0 < P < 1, P + 
q = 1, and Xl < X2, as n -+ 00: 

(12) 

This formula, due to DeMoivre, can be derived from Stirling's formula for 
factorials in a rather messy way. But it is just an application of Theorem 6.4.4 
(or 7.1.2), where each Xj has the Bemoullian dJ. POI + qoo. 

More interesting and less expected applications to combinatorial analysi s 
will be illustrated by the following example, which incidentally demonstrates 
the logIcal necessity of a double array even in simple situations. 

Consider all n! distinct permutations (aI, a2, ... , an) of the n integers 
(1, 2, ... , n). The sample space Q = Q n consists of these n! points, and g> 

assigns probability 1/ n! to each of the points. For each j, 1 :s j :s n, and 
each w = (aI, a2, ... , all) let X nj be the number of "inversions" caused by 
; in w; namely Xllj(w) = m if and only if j precedes exactly m of the inte
gers 1, ... , j - 1 in the permutation w. The basic structure of the sequence 
{Xnj , I :s j :s n} is contained in the lemma below. 
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Lemma 2. For each n, the r.v.'s {Xnj , 1 :s } :s n} are independent with the 
following distributions: 

_ 1 
,~{Xnj = m} = --:- for 0 < m :s } - 1. 

J 

The lemma is a striking example that stochastic independence need not 
be an obvious phenomenon even in the simplest problems and may require 
verification as well as discovery. It is often disposed of perfunctorily but a 
formal proof is lengthier than one might think. Observe first that the values of 
X nl , ... ,Xnj are determined as soon as the positions of the integers {l, ... , }} 
are known, irrespective of those of the rest. Given} arbitrary positions among 
n ordered slots, the number of w's in which {I, ... ,}} occupy these positions in 
some order is }!(n - i)!. Among these the number of w's in which} occupies 
the (j - m )th place, where 0 :s m :s ) - 1, (in order from left to right) of the 
given positions is () - I)! (n - i)!. This position being fixed for }, the integers 
{I, ... , } - I} may occupy the remaining given positions in (j - I)! distinct 
ways, each corresponding uniquely to a possible value of the random vector 

That this correspondence is 1 is easily seen if we note that the total 
number of possible values of this vector is precisely 1· 2 ... (j - 1) = 
(j I)!. It follows that for any such value (el, ... , C j_ d the number of 
w's in which, first, {l, ... ,)} occupy the given positions and, second, 
Xnl(w) = CI, ... ,Xn,j-I(W) = Cj-I,Xn/W) = m, is equal to (n - i)!. Hence 
the number of w' s satisfying the second condition alone is equal to C) (n 

j)! = n! / }!. Summing over m from 0 to } - 1, we obtain the number of 
w's in whichXnl(w) = CI, ... ,Xn,j-I(W) = Cj-l to be }n!/}! = n!/(j - I)!. 
Therefore we have 

gt'l{Xnl = CI, ... , Xn,j-l = Cj-l, X nj = m} 

.o/'{Xnl - CI, ... , Xn,j-l - cj-d 

n! ., 
J. 
n! 

(j - 1 )! 

1 

J 

This, as we know, establishes the lemma. The reader is urged to see for himself 
whether he can shorten this argument while remaining scrupulous. 

The rest is simple algebra. We find 

j - 1 
/(Xnj ) = -2-' 

'2 1 2 J-
O"nj = 12 ' 

For each YJ > 0, and sufficiently large n, we have 

IXnj I :s j - 1 :s n - 1 < YJSn· 
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Hence Lindeberg's condition is satisfied for the double array 

{ Xnj ; 1 :s j :s n, 1 :s n} 
SII 

(in fact the Corollary to Theorem 7.1.2 is also applicable) and we obtain the 
central limit theorem: 

! n2 ) S--
• II 4 

11m ?P 3/2:S x = c:p(x). 
n--+oo 11 

6 

Here for each permutation w, Sn(w) = 2:)=1 Xllj(w) is the total number of 
inversions in w; and the result above asserts that among the n! permutations 
on {l, ... , n}, the number of those in which there are :sn2/4 +X(113/2)/6 
inversions has a proportion <l>(x), as n =+ 00. In particular, for example, the 
number of those with :sn2/4 inversions has an asymptotic proportion of ~. 

EXERCISES 

1. Restate Theorem 7.1.2 in tenns of nonned sums of a single sequence. 

2. Prove that Lindeberg's condition (1) implies that 

max ani -+ O. 

*3. Prove that in Theorem 7.2.1, (i) does not imply (1). 
r. v. 's with nonnal distributions.] 

*4. Prove the sufficiency part of Theorem 7.2.1 
Theorem 7.1.2, but by elaborating the proof of the latter. 
expanSIOn 

and 

irx e 
. (tx)2 

1 j ltx+e 2 for Ixl > 17 

e = I + ltx - -- + e - for Ix I :s Y}. 
2 6 

ax . (txf , Itxl 3 

[HINT: Consider 

without using 
[HINT: Use the 

As a matter of fact, Lindeberg's original proof does not even use ch.f. 's; see 
Feller [13, vol. 2].] 

5. Derive Theorem 6.4.4 from Theorem 7.2.1. 

6. Prove that if 8 <::: 8', then the condition (l0) implies the similar one 
when 8 is replaced by 8'. 
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*7. Find an example where Lindeberg's condition is satisfied but 
Liapounov's is not for any 8 > 0. 

In Exercises 8 to 10 below {X j , j 2: I} is a sequence of independent r.v.'s. 

8. For each j let X j have the uniform distribution in [- j, j]. Show that 
Lindeberg's condition is satisfied and state the resulting central limit theorem. 

9. Let X j be defined as follows for some Ot > 1: 

(

± 'a J , 
Xj = 

0, 

1 
with probability 6 '2(a 1) each; 

J -
1 

with probability 1 - 3 '2(a 1) 
J -

Prove that Lindeberg's condition is satisfied if and only if Ot < 3/2. 

*10. It is important to realize that the failure of Lindeberg's condition 
means only the failure of either (i) or (ii) in Theorem 7.2.1 with the specified 
constants Sn. A central limit theorem may well hold with a different sequence 
of constants I,et 

.') 

IJ , 

XJ' = ±J' , 

0, 

1 
wim prooaoiliry 12 '2 eacn; 

1 J 

with probability 1'<2 each; 

with probability 1 - ~ - h \ . 
'J 

Prove that Lindeberg's condition is not satisfied. Nonetheless if we take b~ 
11

3/18, then Sn/bn converges in dist. to CPo The point is that abnormally large 
values may not count! [HINT: Truncate out the abnormal value.] 

11. Prove that J~oo x2 dF(x) < 00 implies the condition (11), but not 
vice versa. 

*12. The following combinatorial problem is similar to that of the number 
of inversions. Let Q and 9 be as in the example in the text. It is standard 
knowledge that each permutation 

2 

can be uniquely decomposed into the product of cycles, as follows. Consider 
the permutation as a mapping n from the set (l, ... , n) onto itself such 
that n(j) = aj. Beginning with 1 and applying the mapping successively, 
1 -+ n(l) -+ n 2 (l) -+ ... , until the first k such that n k (1) = 1. Thus 

(1, n(1), n 2(1), ... , n k
-

1(1» 
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is the first cycle of the decomposition. Next, begin with the least integer, 
say b, not in the first cycle and apply n to it successively; and so on. We 
say 1 -+ n(l) is the first step, ... , n k - 1 (l) -+ 1 the kth step, b -+ n(b) the 
(k + 1 )st step of the decomposition, and so on. Now define Xnj(w) to be equal 
to 1 if in the decomposition of w, a cycle is completed at the jth step; otherwise 
to be O. Prove that for each n, {X nj, 1 :s j :s n} is a set of independent r. v.' s 
with the following distributions: 

~ 1 
9{Xn j = I} = . , 

n-.l+l 

1 
9{Xnj = O} = 1 - . 

n-}+l 

Deduce the central limit theorem for the number of cycles of a permutation. 

7.3 Ramifications of the central limit theorem 

As an illustration of a general method of extending the central limit theorem 
to certam classes of dependent r.v.'s, we prove the followmg result. Further 
elaboration along the same lines is possible, but the basic idea, attributed to 
S. Bernstein, consists always in separating into blocks and neglecting small ones. 

Let {X n, Il ~ I} be a sequence of r. v.' s; let §if; be the B ore! field generated 
by {Xb 1 :s k :s n}, and ;!fn' that by {Xb n < k < oo}. The sequence is called 
m-dependent iff there exists an integer m 2: 0 such that for every n the fields 
::'fll and 4n'+m are independent When m - 0, this reduces to independence 

Theorem 7.3.1. Suppose that {Xn } is a sequence of m-dependent, uniformly 
bounded r.v.'s such that 

as n -+ 00. Then [Sn - J"(Sn )]/a(Sn) converges in dist. to CPo 

PROOF. Let the uniform bound be M. Without loss of generality we may 
suppose that {(Xn) = 0 for each n. For an integer k 2: 1 let nj = [jnjk], 
o < j < k, and put for large values of n: 

We have then 
k-l k-l 

5n = :L Y j + :LZj = S~ + S~, say. 
j=O j=O 
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It follows from the hypothesis of m-dependence and Theorem 3.3.2 that the 
Y / s are independent; so are the Z / s, provided n j+ 1 - m + 1 - n j > m, 
which is the case if n / k is large enough. Although S~ and S~ are not 
independent of each other, we shall show that the latter is comparatively 
negligible so that Sn behaves like S~. Observe that each term Xr in S~ 
is independent of every term Xs in S~ except at most m terms, and that 
cf(XrXs) = 0 when they are independent, while I cF(XrXs) I :s M2 otherwise. 
Since there are km terms in S~, it follows that 

We have also 

I cf(S~S~)1 :s km . m . M2 = k(mM)2. 

k-I 

cF(SI/~) = L cF(Z]) :s k(mM)2. 
j=O 

From these inequalities and the identity 

<ff(S2) - f!(S,2) + 2cff(S' SI/) + /;(SI/2) 
11 11 Ii Ii Ii 

we obtain 

2/3 d . 2 (iJ(s2) 2(S) ,2 Now we choose k = kn = [n ] an wnte sn = 0 n = 0- n, S n = 
cf (S'!) = 0-

2 (S~). Then we have, as n --+ 00. 

(1) 
S' 
-...!!... --+ 1, 

and 

(2) 

Hence, first, S~ Is n --+ 0 in pro (Theorem 4.1.4) and, second, since 

S' S' S" 
II II + II 

S n / Sn will converge in dist. to c:P if S~ / s~ does. 
Since kn is a function of n, in the notation above Y j should be replaced 

by Ynj to form the double array {Ynj , O:s j :s kn - 1, 1 :s n}, which retains 
independence in each row. We have, since each Y nj is the sum of no more 
than [n/kn] + 1 of the Xn 's, 

( 11) 1/3 , IYnjl:S k
n 

+ 1 M = O(n ) = o(sn) = o(sn)' 
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the last relation from (1) and the one preceding it from a hypothesis of the 
theorem. Thus for each YJ > 0, we have for all sufficiently large n: 

1 x2dFnj(X) = 0, O:s j:s kn - 1, 
Ixl>l)s~ 

where Fnj is the d.f. of Ynj . Hence Lindeberg's condition is satisfied for the 
double array {Y nj / s~}, and we conclude that S~ / s~ converges in dist. to ct>. 
This establishes the theorem as remarked above. 

The next extension of the central limit theorem is to the case of a random 
number of terms (cf. the second part of Sec. 5.5). That is, we shall deal with 
the r.v. SVn whose value at W is given by Svn(w)(w), where 

n 

Sn(W) = LXj(w) 
j=! 

as before, and {vn ((0), n > ]} is a sequence of r v 's The simplest case, 
but not a very useful one, is when all the r.v.'s in the "double family" 
{Xn, Vn, n ~ I} are independent. The result below is more interesting and is 
distinguished by the simple nature of its hypothesis. The proof relies essentially 
on Kolmogorov's inequality given in Theorem 5.3.1. 

Theorem 7.3.2. Let {X j, j ~ I} be a sequence of independent, identically 
distributed r.v.'s with mean 0 and variance 1. Let {vn, n :::: l} be a sequence 
of r.v.'s taking only strictly positive integer values such that 

(3) in pr, 
n 

where c is a constant: 0 < c < 00. Then Svnl;jVii converges in dist. to $. 

PROOF. We knO'.v from Theorem 6.4.4 that SIl /...(ii converges in dist. to 
ct>, so that our conclusion means that we can substitute Vn for n there. The 
remarkable thmg IS that no kind of mdependence is assumed, but only the limit 
property in (3). First of all, we observe that in the result of Theorem 6.4.4 we 
may substitute [en] (= integer part of en) for n to conclude the convergence 
in dist. of S[cn]/:JrCi11 to $ (why?). Next we write 

The second factor on the right converges to 1 in pr., by (3). Hence a simple 
argument used before (Theorem 4.4.6) shows that the theorem will be proved 
if we show that 

(4) m pr. 
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Let E be given, 0 < E < 1; put 

By (3), there exists no(E) such that if n ~ no(E), then the set 

A = {w:an :s vn(w) < bn} 

has probability ~1 - E. If w is in this set, then Svn(w)(w) is one of the sums 
Sj with an :s j :s bn. For [en] < j :s bn, we have 

Sj - S[cn] = X[cn]+! + X[cn]+2 + ... + X j; 

hence by Kolmogorov's inequality 

A similar inequality holds for all < j < [en]; combining the two, we obtain 

Now we have, if n ~ no(E): 

= ~P? r Vn = j; IS"~nll > <} 

< 

:s 2E + 1 - :~{A} :s 3E. 

Since E is arbitrary, this proves (4) and consequently the theorem. 

As a third, somewhat deeper application of the central limit theorem, we 
give an instance of another limiting distribution inherently tied up with the 
normal. In this application the role of the central limit theorem, indeed in 
high dimensions, is that of an underlying source giving rise to multifarious 
manifestations. The topic really belongs to the theory of Brownian motion 
process, to which one must tum for a true understanding. 
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Let {X j, j :::. 1} be a sequence of independent and identically distributed 
r.v.'s with mean 0 and variance 1; and 

n 

It will become evident that these assumptions may be considerably weakened, 
and the basic hypothesis is that the central limit theorem should be applicable. 
Consider now the infinite sequence of successive sums {Sn, n :::. I}. This is 
the kind of stochastic process to which an entire chapter will be devoted later 
(Chapter 8). The classical limit theorems we have so far discussed deal with 
the individual terms of the sequence {S n} itself, but there are various other 
sequences derived from it that are no less interesting and useful. To give a 
few examples: 

n n 

m=! m=! 

ISml 
max ,Jrn' 
!~m~n m 

where yea, b) - I If ab < a and a otherwIse. 'Ihus the last two examples 
represent. respectively, the "number of sums> a" and the "number of changes 
of sign". Now the central idea, originating with Erdos and Kac, is that the 
asymptotic behavior of these fUllctionals of S n should be the same regardless of 
the special properties of {X j}, so long as the central limit theorem applies to it 
(at least when certain regularity conditions are satisfied, such as the finiteness 
of a higher moment). Thus, in order to obtain the asymptotic distribution of 
one of these functionals one may calculate it in a very particular case where 
the calculatIons are feasIble. We shall Illustrate thIS method, whIch has been 
called an "invariance principle", by carrying it out in the case of max Sm; for 
other cases see Exercises 6 and 7 below. 

Let us therefore put, for a given x. 

Pn (x) = :~ f max Sm :s x-Jii} . 
l!<m<n _ 

For an integer k :::. 1 let n j = [jn/k], 0 :s j :s k, and define 

Rnk(X) = :~ { max Sn :s x-Jii} . 
!~j~k J 

Let also 
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and for each j, define e(j) by 

nl(j)-! < j :s nl(j)· 

Now we write, for 0 < E < x: 

n 

+ 2:£?>{Ej ; JSnlU) - SjJ > EJn} = 2: + L, 
j=! ! 2 

say. Since E j is independent of {JSnlU) - SjJ > EJn} and a 2(SnlU) - Sj) :s 
n/k, we have by Chebyshev's inequality: 

n 

2 j=! 

On the other hand, since Sj > x.Jli and JSnlU) - SjJ :s EJn imply Snl(j) > 
(x E):Jii, we have 

It follows that 

(5) 

Sinee it is trivial that Pn Ex) ::: RnkEx), we obtain from (5) the following 
inequalities: 

(6) 

We shall show that for fixed x and k, limn-+oo Rnk(X) exists. Since 

it is sufficient to show that the sequence of k-dimensional random vectors 
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converges in distribution as n -+ 00. Now its ch.f. f (tl, ... , tk) is given by 

g{exp(i~(tlSIlI + ... + tkSn,»} = £'{exp(i~[(tl + ... + tk)Snl 

+ (t2 + ... + tk)(Sn2 - Snl) 

+ ... + tk(Snk - Snk_1 )])}, 

which converges to 

(7) exp [-~(tl + '" + tk)2] exp [-~(t2 + ... + td2] '" exp (-~ti) , 

since the ch.f.' s of 

all converge to e- t2
/
2 by the central limit theorem (Theorem 6.4.4), n j+l -

n j being asymptotically equal to n /k for each j. It is well known that the 
ch.f. given in (7) is that of the k-dimensional normal distribution, but for our 
purpose it is sufficient to know that the convergence theorem for ch.f.' s holds 
in any dimension, and so Rnk converges vaguely to Rook, where Rook is some 
fixed k-dimensional distribution. 

Now suppose for a specIal sequence {X j} satIsfymg the same condItIOns 
a£ {X j }, the corre£ponding Pil can be £hown to converge ("pointwi£e" in fact, 
but "vaguely" if need be): 

(8) 'v'x: lim Pn(x) = G(x). 
n .00 

Then, applying (6) vlith P n replaced by P n and letting n -+ 00, we obtain, 
since Rook is a fixed distribution: 

1 
G(x) < Rook (x) < G(x + E) + -

E2k 

Substituting back into the original (6) and taking upper and lower limits, 
we have 

11-
G(x - E) - - < Rook(x - E) - - < lim Pn(x) 

1 
:s Rook(x) :s G(x + E) + E2k' 

Letting k -+ 00, we conclude that P n converges vaguely to G, since E is 
arbi trary . . , 

It remains to prove (8) for a special cli"oice of {X)} and determine G. This 
can be done most expeditiously by taking the common d.f. of the X/s to be 
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the symmetric Bemoullian ~(O! + o-d. In this case we can indeed compute 
the more specific probability 

(9) Y':P { max S m < x; S n = Y} , 
!:::;m:::;n 

where x and y are two integers such that x> 0, x > y. If we observe that 
in our particular case max!:::;m:::;n Sm ::: x if and only if Sj = x for some j, 
1 ::: ) ::: n, the probability in (9) is seen to be equal to 

Y':P{Sn = y} - q> { max Sm ::: x;Sn = y} 
!:::;m:::;n 

n 

= q>{Sn = y} - Lq>{Sm < x, 1 ::: m < j;Sj = x;Sn = y} 
j=! 

n 

= g'l{Sn = y} - I:9'{Sm < x, 1 < m < j;S; =x;Sn -S; = y -x} 
j=! 

n 

= q>{Sn = y} - I:g'>{Sm < x, 1 < m < );S; = x}q>{Sn - Sj = Y - x}, 
j=! 

where the last step is by mdependence. Now, the r.v. 
n 

m-J+! 

being symmetric, we have 0?{Sn - Sj - Y - x} = P{Sn - Sj = x - y}. 
Substituting this and reversing the steps, we obtain 

n 

~{Sn = y} - b:P{Sm < x, 1 < m < j;S; = x}q>{Sn - Sj = x - y} 

j=! 
n 

= 9{Sn = y} - I:q>{Sm < x, 1 < m < );S; =x;Sn -Sj =X - y} 
j=! 

n 

= :P{Sn = y} - I:q>{Sm < x, 1 ::: m < );Sj = x;Sn = 2x - y} 

j=! 

= :J'>{Sn = y} - 9' { max Sm ::: x;Sn = 2x - y} . 
!:::;m:::;n 

Since 2x - y > x, Sn = 2x - y implies max!:::;m:::;n Sm ::: x, hence the last line 
reduces to 

(10) :~{Sn = y} - 9{Sn = 2x - y}, 
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and we have proved that the value of the probability in (9) is given by 
(10). The trick used above, which consists in changing the sign of every Xj 
after the first time when Sn reaches the value x, or, geometrically speaking, 
reflecting the path {(j, S j ), j ~ I} about the line S j = x upon first reaching it, 
is called the "reflection principle". It is often attributed to Desire Andre in its 
combinatorial formulation of the so-called "ballot problem" (see Exercise 5 
below). 

The value of (10) is, of course, well known in the Bernoullian case, and 
summing over y we obtain, if n is even: 

qr t~~, Sm <X } = ~ ;, { ( n : y ) - ( n - ~ + y ) } 

= ~ ;, { ( n : y ) - ( n + ~ - y ) } 

where G) = 0 if UI > n or if j is not an integer. Replacing x by x,jii (or 

[xTnJ If one IS pedantIc) m the last expressIOn, and usmg the central lImIt 
theorem for the Bernoullian case in the form of (12) of Sec. 7.2 with p = q = 
~, we see that the preceding probability tends to the limit 

- J e Y T dy = V - I e Y T dy .J2ii -x Jr 0 

as n -+ 00. It should be obvious, even without a similar calculation, that the 
same limit obtains for odd values of n. Finally, since this limit as a function 
of x is adJ. with support in (0, (0), the corresponding limit for x ~ 0 must 
be O. We state the final result below. 

Theorem 7.3.3. Let {X j , j ~ O} be independent and identically distributed 
r.v.'s with mean 0 and variance 1, then (maxl~m~n Sm)/.Jli converges in dist. 
to the "positive normal d.f." G, where 

'v'x: G(x) = (2<I>(x) - 1) V O. 
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EXERCISES 

1. Let {X), j ~ I} be a sequence of independent r. v.' s, and j a Borel 
measurable function of m variables. Then if ~k = j(Xk+I, ... ,Xk+m ), the 
sequence {~b k ~ 1} is (m - I)-dependent. 

* 2. Let {X), j ~ I} be a sequence of independent r. v.' s having the 
Bemoullian d.f. POI + (1 - P )00,0 < P < 1. An r-run of successes in the 
sample sequence {X)(w), j ~ I} is defined to be a sequence of r consecutive 
"ones" preceded and followed by "zeros". Let N n be the number of r-runs in 
the first n terms of the sample sequence. Prove a central limit theorem for N n' 

3. Let {X), v), j ~ I} be independent r. v.' s such that the v / s are integer
valued, v) -+ 00 a.e., and the central limit theorem applies to (Sn - an)lbn, 
where Sn = l:J=1 X), an, bl1 are real constants, bn -+ 00. Then it also applies 
to (Svn - aVn )Ibv/l' 

* 4. Give an example of a sequence of independent and identically 
distributed r. v.' s [X n) with mean 0 and variance 1 and a sequence of positive 
integer-valued r.v.'s Vn tending to 00 a.e. such that Svjsvn does not converge 
in distribution. [HINT: The easiest way is to use Theorem 8.3.3 below.] 

* 5. There are a ballots marked A and b ballots marked B. Suppose that 
these a + b ballots are counted in random order. What is the probability that 
the number of ballots for A always leads in the countmg? 

6. If {Xn} are independent, identically distributed symmetric r.v.' s, then 
for every x ~ 0, 

7. Deduce from Exercise 6 that for a symmetric stable LV. X with 
exponent a, 0 < a < 2 (see Sec. 6.5), there exists a constant c > 0 such that 
,:7>{IXI > nl/a} ~ cln. [This is due to Feller; use Exercise 3 of Sec. 6.5.] 

8. Under the same hypothesis as III Theorem 7.3.3, prove that 
maxI<m<n ISml/# converges in dist. to the d.f. H, where H(x) = 0 for 
x S 0 and 

H(x) 
4 00 (-I)' exp [ (2k + 1)2".,] 
JT L 2k + 1 8x2 

for x> O. 

[HINT: There is no difficulty in proving that the limiting distribution is the 
same for any sequence satisfying the hypothesis. To find it for the symmetric 
Bemoullian case, show that for 0 < z < x we have 

,/) {-z < min Sill S max Sill < x - z; Sn = Y - z} 
1:::;IIl:::;n 1:::;111:::;11 
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= ;11 f {( n + 2kx

n
+ y - z ) - (n + 2kx

n 
- y - z ) } . 

k=-oo 2 2 

This can be done by starting the sample path at z and reflecting at both barriers 
o and x (Kelvin's method of images). Next, show that 

lim ,~{ -z.Ji1 < Sm < (x - z).Ji1 for 1 :s m :s n} 
n-+oo 

1 00 {1(2k+I)X-Z j2kx-Z } ~ v2/2 = -- D - e' dy 
..ffii k=-oo 2kx-z (2k-l)x-z . 

Finally, use the Fourier series for the function h of period 2x: 

{
-I 

hey) = ' 
+1, 

if - x - Z < Y < -z; 
if - z < y < x - z; 

to convert the above limit to 

4 E 1 . (2k + 1 )".z [ (2k + 1)2 ".2] 

This gives the asymptotic joint distribution of 

of whIch that of maxI <m<n ISm I IS a partIcular case. 
9. Let {Xl > I} be independent r.v.' s with the symmetric Bemoullian 

distribution. Let N n (w) be the number of zeros in the first n terms of the 
sample sequence {S/w),} ::: 1}. Prove that NI1/:Jn converges III dISt. to the 
same G as in Theorem 7.3.3. (HINT: Use the method of moments. Show that 
for each integer r ::: 1: 

cf (N~) '"'-' r! 

where 

P2j = .-;Il{S2j = O} = ! 2" "'-' r;:;:;' (2') 1 1 
} 21 ,..;Jr} 

as j -+ 00. To evaluate the multiple sum, say l:(r), use induction on r as 
follows. If 

(
n ) r/2 

L(r) "'-' cr '2 
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as 11 ~ 00, then 

'" C 11 (11) (r+1)/2 L(r + 1) "'-' _r Z-I/2(1 - zy/2dz -
~ 0 2 

Thus 

Finally 

This result remains valtd if the common d.f. F of X j IS of the mteger lattIce 
type with mean 0 and variance 1. If F is not of the lattice type, no S /J need 
ever be zero - but the "next nearest thing", to wit the number of changes of 
sign of Sn, is asymptotically distributed as G, at least under the additional 
assumption of a finite third absolute moment.] 

7.4 Error estimation 

Questions of convergence lead inevitably to the question of the "speed" of 
convergence - in other words, to an investigation of the difference between 
the approximating expression and its limit. Specifically, if a sequence of dJ.' s 
Fn converge to the unit normal d.f. <1>, as in the central limit theorem, what 
can one say about the "remainder term" FIl (x) - <1>(x)? An adequate estimate 
of this term is necessarj in many mathematical applications, as well as for. 
numerical computation. Under Liapounov's condition there is a neat "order 
bound" due to Berry and Esseen, who improved upon Liapounov's older result, 
as follows 

Theorem 7.4.1. Under the hypotheses of Theorem 7.1.2, there is a universal 
constant Ao such that 

(1) sup IFI1 (x) - <P(x)1 ::s: Ao! n 
x 

where F 11 is the dJ. of SIl' 
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In the case of a single sequence of independent and identically distributed 
r. v.' s {X j, j 2: 1} with mean 0, variance 0-2 , and third absolute moment y < 00, 

the right side of (1) reduces to 

ny AoY 1 
Ao ---

(n0-2)3/2 0-3 n 1/2 ' 

H. Cramer and P. L. Hsu have shown that under somewhat stronger condi
tions, one may even obtain an asymptotic expansion of the form: 

where the H's are explicit functions involving the Hermite polynomials. We 
shall not go into this, as the basic method of obtaining such an expansion is 
similar to the proof of the preceding theorem, although considerable technical 
complications arise. For this and other variants of the problem see Cramer 
[10], Gnedenko and Kolmogorov [12], and Hsu's paper cited at the end of 
this ehapter. 

We shall give the proof of Theorem 7.4.1 in a series of lemmas, in which 
the machinery of operating with ch.f.' s is further exploited and found to be 
efficient 

Lemma 1. Let F be a d.f., G a real-valued function satisfying the condi
tions below: 

(i) lirnx-+ 00 G(x) 0, lirnx-++oo G(x) 1; 
(ii) G has a derivative that is bounded everywhere: supx IG'(x)1 ::: M. 

Set 

1 
(2) ts. - sup IF(x) G(x)l. 

2M x 

Then there exists a real number a such that we have for every T > 0: 

(3) 
{ t~ 1 - cosx 

2MTA3 Jo x2 dx 

11
00 

1 - cos Tx 1 
::: -00 x2 {F(x + a) - G(x + a)} dx . 

PROOF. Clearly the A in (2) is finite, since G is everywhere bounded by 
(i) and (ii). We may suppose that the left member of (3) is strictly positive, for 
otherwise there is nothing to prove; hence A > O. Since F - G vanishes at 
±oo by (i), there exists a sequence of numbers {XII} converging to a finite limit 
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b such that F(xl1 ) - G(xl1 ) converges to 2M I:!. or -2M I:!.. Hence either F(b) -
G (b) = 2M I:!. or F (b - ) - G (b) = -2M I:!.. The two cases being similar, we 
shall treat the second one. Put a = b - I:!.; then if Ix I < I:!., we have by (ii) 
and the mean value theorem of differential calculus: 

G(x + a) ::: G(b) + (x - I:!.)M 

and consequently 

F(x + a) - G(x + a) :s F(b-) - [G(b) + (x - I:!.)M] = -M(x + I:!.). 
It follows that 

Jll 1 - cosTx Jll 1 - cosTx 
2 {F(x + a) - G(x + a)} dx :s -M x2 (x + I:!.) dx 

-ll x -ll 

i ll 1 - cosTx 
= -2M I:!. dx· 

o x2 ' 

G(x + a)} dxl 

Adding these inequalities, we obtain 

J 2 {F(x + a) 
-00 x 

roo 1 - cos Tx 

1 - cosTx 
dx 2M I:!. { 

10 10 x 

This reduces to (3), since 

roo 1 cos Tx 7fT 
10 x2 dx = 2 

by (3) of Sec. 6.2, provided that T is so large that the left member of (3) is 
pOSItIve; otherwIse (3) IS tnvIal. 

Lemma 2. In addition to the assumptions of Lemma 1, we assume that 

Let 

(iii) G is of bounded variation in (-00, (0); 
(iv) J~oo IF(x) - G(x)1 dx < 00. 

J(t) = f: eitx dF(x), get) = f: eitxdG(x). 
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Then we have 

1 iT I/(t) - g(t)1 12 
,0,. < - dt+-. 

- JrM 0 t JrT 
(4) 

PROOF. That the integral on the right side of (4) is finite will soon be 
apparent, and as a Lebesgue integral the value of the integrand at t = 0 may 
be overlooked. We have, by a partial integration, which is permissible on 
account of condition (iii): 

(5) I (t) - get) = -it 1: {F(x) - G(x)}eitx dx; 

and consequently 

I (t) ~ get) e-ita = 100 

{F(x + a) _ G(x + a)}eitx dx. 
-It -00 

In particular, the left member above is bounded for all t =I 0 by condition (iv). 
Multiplying by T III and integrating, we obtain 

(6) J J. e /taCT It I) dt 
T It 

It I ) dx dt. 

We may mvert the repeated integral by Fubini's theorem and condition (iv), 
and obtain (cf. Exercise 2 of Sec. 6.2): 

F(x + a) - G(x + a)}--_ dx < T (t) - g(t)1 

In conjunction with (3), this yields 

(7) ~ldts. 3 I 2 dx, - Jr :s I J 

Jo x Jo t 
gEt)1 dt. 

The quantity in braces in (7) is not less than 

100 1 - cos x 100 2 Jr 6 
3 dx - 3 - dx - Jr = ___ . 

o x
2 

T!:l x 2 2 T ,0,. 

Using this in (7), we obtain (4). 

Lemma 2 bounds the maximum difference between two d.f.' s satisfying 
certain regularity conditions by means of a certain average difference between 
their ch.f.' s (It is stated for a function of bounded variation, since this is needed 
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for the asymptotic expansion mentioned above). This should be compared with 
the general discussion around Theorem 6.304. We shall now apply the lemma 
to the specific case of Fn and <I> in Theorem 704.1. Let the ch.f. of Fn be In, 
so that 

kn 

In (t) = II I nj(t). 
j=! 

Lemma 3. For It I < 1/(2r,~/3), we have 

(8) 

PROOF. We shall denote by e below a "generic" complex number with 
lei:::: 1, otherwise unspecified and not necessarily the same at each appearance. 
By Taylor's expansion: 

2 

I nj(t) = 1 - anj 
t 2 + e )'nj t 3 . 

2 6 

For the range of t given in the lemma, we have by Liapounov's inequality: 

(9) 

so that 

I a~j 2 8ynj(31 I I I --t + < - + - < -. 
6 8 48 4 

Usmg (8) of Sec. 7. I wIth A - &/2, we may WrIte 

log !nj(t) 
2 6 2 2 6 

The absolute value of the last term above is less than 

by (9), hence 

Summing over j, we have 
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or explicitly: 

Since leu - 11 :::: luleiui for all u, it follows that 

If,(t)e"/2 - 11 ~ r,~tl3 exp [r,~tI3l. 

Since fnltl3/2 :::: 1/16 and e1/16 :::: 2, this implies (8). 

Lemma 4. For It I < 1/(4fn ), we have 

(10) lin(t)l:::: e-t2j3
• 

PROOF. We symmetrize (see end of Sec. 6.2) to facilitate the estimation. 
We have 

)-00 )-00 ~-

since If nj 12 is real. Using the elementary inequalities 

we see that the double integral above does not exceed 

2 2 4 3 ~ 2 2 4 3~ = 1 - an;t + -)In ;itl < exp -a.l;f + -)6, iltl . 
j 3 J 'J 3 J 

Multiplying over j, we obtain 

for the range of t specified in the lemma, proving (10). 

Note that Lemma 4 is weaker than Lemma 3 but valid in a wider range. 
We now combine them. 

Lemma 5. For It I < 1/(4fn ), we have 

(11) 
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PROOF. If It I < 1/(2fn
1
/
3

), this is implied by (8). If 1/(2fn
1/ 3 ):::: It I < 

1/(4fn), then 1 :::: 8fnltl\ and so by (10): 

Ifn(t) - e-t2 /2 1 :::: Ifn(t)1 + e-t2 /2 :::: 2e-t2 /3 :::: 16fnltI3e-t2j3. 

PROOF OF THEOREM 7.4.1. Apply Lemma 2 with F = Fn and G = <P. The 
M in condition (ii) of Lemma 1 may be taken to be ~Jr, since both F nand <P 
have mean 0 and variance 1, it follows from Chebyshev's inequality that 

1 
F(x) v G(x) :s 2' 

x 
1 

(1 - F(x» v (1 - G(x» :s 2' 
x 

and consequently 
1 

'v'x: IF(x) - G(x)1 < 2' 
x 

if x < 0, 

if x> 0; 

Thus condition (iv) of Lemma 2 is satisfied. In (4) we take T = 1/(4fn); we 
have then from (4) and (11): 

x n Jo I V Jr 

32F rl/(4r") 2 96 

This establishes (1) with a numerical value for Ao (which may be somewhat 
improved). 

Although Theorem 7.4.1 gives the best possible uniform estimate of the 
remainder F n (x) - <P (x), namely one that does not depend on x, it becomes 
less useful if x = XIl increases with n even at a moderate speed. For mstance, 
we have 

_ _ 1 (00 -i/2 O(f ) 1-FIl(xll)-~ e dy+ n' 

where the first "principal" term on the right is asymptotically equal to 

1 2/2 ___ e-xn 

~Xll . 

Hence already when Xn = ,J210g(1 /f n) this will be o(f n) for f n ~ 0 and 
absorbed by the remainder. For such "large deviations", what is of interest is 



242 I CENTRAL LIMIT THEOREM AND ITS RAMIFICATIONS 

an asymptotic evaluation of 

as .tn ~ 00 more rapidly than indicated above. This requires a different type 
of approximation by means of "bilateral Laplace transforms", which will not 
be discussed here. 

EXERCISES 

1. If F and G are d.f.' s with finite first moments, then 

I: IF(x) - G(x)1 dx < 00. 

[HINT: Use Exercise 18 of Sec. 3.2.] 
2. If J and g are ch.f.'s such that J(t) = get) for It I < T, then 

J \F(x) 
-00 

G(x)1 ax ~ T' 
, Jr 

This is due to Esseen (Acta Math, 77(1944». 
*3 'fl . . .lete eXIsts a uIllvetsal constant Al > 0 such that for any sequence 

of independent, identically distributed integer-valued r. v.' s {X;} with mean 0 
and variance 1, we have 

Al 
sup IF n (x) - <I> (x)1 :::: 1'2 ' 

x n I 

where Fn is the d.f. of (2:.1=1 X j )/:j1i. [HINT: Use Exercise 24 of Sec. 6.4.] 
4. Prove that for every x > 0: 

7.5 Law of the iterated logarithm 

The law of the iterated logarithm is a crowning achievement in classical proba
bility theory. It had its origin in attempts to perfect Borel's theorem on normal 
numbers (Theorem 5.1.3). In its simplest but basic form, this asserts: if Nn(w) 
denotes the number of occurrences of the digit 1 in the first n places of the 
binary (dyadic) expansion of the real number w in [0, 1], then N n (w) ""-' n 12 
for almost every w in Borel measure. What can one say about the devia
tion Nn(w) - n12? The order bounds O(n(l/2)+€), E > 0; O((n log n)I/2) (cf. 
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Theorem 5.4.1); and O((n loglogn)I/2) were obtained successively by Haus
dorff (1913), Hardy and Littlewood (1914), and Khintchine (1922); but in 
1924 Khintchine gave the definitive answer: 

lim =1 
n-H)O 1 

"in log log n 

for almost every w. This sharp result with such a fine order of infinity as "log 
log" earned its celebrated name. No less celebrated is the following extension 
given by Kolmogorov (1929). Let {Xn , n 2: I} be a sequence of independent 
r.v.'s, Sn = ~'j=1 Xj; suppose that 0"(Xn) = 0 for each nand 

(1) sup IXn (w)1 = 0 (Jl s~ ) , 
w og og Sn 

where s; = a 2(S,J, then we have for almost every w: 

(2) 
n-'>oo J2s~ log log Sn 

S/'l (w) 
hm 1. 

The condition (1) was shown by Marcinkiewicz and Zygmund to be of the 
best possible kind, but an interesting complement was added by Hartman and 
Wintner that (2) also holds if the X,,' s are identically distributed with a finite 
second moment. Finally, further sharpening of (2) was given by Kolmogorov 
and by Erdos In the Bernoulhan case, and in the general case under exact 
conditions by Feller; the "last word" being as follows: for any increasing 
sequence CPn, we have 

according as the series 

11-1 -

We shall prove the result (2) under a condition different from (1) and 
apparently overlapping it. This makes it possible to avoid an intricate estimate 
concerning "large deviations" in the central limit theorem and to replace it by 
an immediate consequence of Theorem 7.4.1.* It will become evident that the 

* An alternative which bypasses Sec. 7.4 is to use Theorem 7.1.3; the details are left as an 
exerCIse. 
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proof of such a "strong limit theorem" (bounds with probability one) as the 
law of the iterated logarithm depends essentially on the corresponding "weak 
limit theorem" (convergence of distributions) with a sufficiently good estimate 
of the remainder term. 

The vital link just mentioned will be given below as Lemma 1. In the 
ftlSt -of this ~ection "A" will denote a generic strictly positive constant, not 
necessarily the same at each appearance, and A will denote a constant such 
that IA I ~ A. We shall also use the notation in the preceding statement of 
Kolmogorov's theorem, and 

n 

Yn = e(IXnI3 ), fn = LYj 
j=l 

as in Sec. 7.4, but for a single sequence of r. v.' s. Let us set also 

<p(A,x) / V 2Ax21og logx, A > 0, x > O. 

Lemma 1. Suppose that for some E, 0 < E < 1, we have 

(3) 

Then for each 8, 0 < 8 < E, we have 

(4 ) 

A 
(5) 0, sn)} :::: (1 )1-(8/2)' ogsn 

PROOF. By Theorem 7.4.1, we have for each x: 

(6) 

We have as x -+ 00: 

(7) 

(See Exercise 4 of Sec. 7.4). Substituting x = J2(l ± 8) log log Sn, the first 
term on the right side of (6) is, by (7), asymptotically equal to 

1 1 



7.5 LAW OF THE ITERATED LOGARITHM I 245 

This dominates the second (remainder) term on the right side of (6), by (3) 
since 0 < 8 < E. Hence (4) and (5) follow as rather weak consequences. 

To establish (2), let us write for each fixed 8, 0 < 8 < E: 

En + = {w:Sn(w) > cp(l + 8, Sn)}, 

En- = {w:Sn(w) > cp(1-8,sn)}, 

and proceed by steps. 
10. We prove first that 

(8) gp{En + i.o.} = 0 

in the notation introduced in Sec. 4.2, by using the convergence part of 
the Borel-Cantelli lemma there. But it is evident from (4) that the series 
I:n gp(En +) is far from convergent, since Sn is expected to be of the order 
of fo. The main trick is to apply the lemma to a crucial subsequence {nd 
(see Theorem 5.1.2 for a crude form of the trick) chosen to have two prop
erties: first, Ek 9(Enk +) converges, and second, "En + i.o." already implies 
"Enk + i.o." nearly, namely if the given 8 is slightly decreased. This modified 
implication is a consequence of a simple but essential probabilistic argument 
spelled out in Lemma 2 below 

Given c> 1, let nk be the largest value of n satisfying Sn :::: ck, so that 

(9) 

as k -+ 00. Now for each k, consider the range of j below: 

(10) 

and put 

(11) 

By Chebyshev's inequality, we have 

hence f?J>(F j) ~ A > 0 for all sufficiently large k. 

Lemma 2. Let {E j } and {F j }, 1 :::: j :::: n < 00, be two sequences of events. 
Suppose that for each j, the event F j is independent of E~ ... E)_IE j, and 
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that there exists a constant A > 0 such that q>(Fj ) ~ A for every j. Then 
we have 

(12) j/J (U EjF j ) ~ AJ-> (U E j ) . 
J=I J=I 

PROOF. The left member in (12) is equal to 

~}J (U[(EIFdC'" (Ej-IFj-Ir(EjFj )]) 
J=I 

n 

> E __ ;'(Ec .• ·Ec E·)· 4 • 1 J 1 J ~, 

j=1 

which is equal to the right member in (12). 

Applying Lemma 2 to E j + and the F j in (11), we obtain 

(13) 

It is clear that the event E j + n F j implies 

which is, by (9) and (10), asymptotically greater than 

Choose c so close to 1 that (1 + 3/48)/c2 > 1 + (812) and put 

note that Gk is just Ellhl + with 8 replaced by 8/2. The above implication may 
be written as 

E·+F· C Gk J J 

for sufficiently large k and all j in the range given in (10); hence we have 

Ilk+l- I 

(14) U EjFj C Gk · 

J=llk 
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It follows from (4) that 

A 1 
'" ::?P(Gd < '" < A '" < 00 7 -7 (log snk)1+(8/2) - 7 (k log c) 1+(8/2) . 

In conjunction with (13) and (14) we conclude that 

and consequently by the Borel-Cantelli lemma that 

This is equivalent (why?) to the desired result (8). 
2°. Next we prove that with the same subsequence Ink} but an arbitrary 

'f 2 2 2 d c, 1 we put tk = Sn - Sn ' an 
k+! k 

then we have 

(15) 9'(Dk i.o.) 1. 

Since the differences S n k+! S n k' k 2: 1, are independent r. v .' s, the di vergence 
part of the Borel-Cantelli lemma is applicable to them. To estimate ?7>(Dk)' 
we may apply Lemma 1 to the sequence {Xnk+j , j ~ I}. We have 

and consequently by (3): 

Hence by (5), 
A A 

9(Dk)~ > -----
(log tk)I-(8/4) - k 1-(8/4) 

and so Lk '!J?(Dk) = 00 and (15) follows. 
3°. We shall use (8) and (15) together to prove 

(16) ,peEn - i.o.) = 1. 
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This requires just a rough estimate entailing a suitable choice of c. By (8) 
applied to {-Xn} and (15), for almost every w the following two assertions 
are true: 

(i) SlIk+JW) - SlIk(W) > cp(1 - (8/2), td for infinitely many k; 
(ii) SlIk(W) > -cp(2, snk) for all sufficiently large k. 

For such an w, we have then 

(17) for infinitely many k. 

Using (9) and log log t~ ""' log log S~k+I' we see that the expression in the right 
side of (17) is asymptotically greater than 

provided that c is chosen sufficiently large. Doing this, we have therefore 
proved that 

(18) 27>(Enk+ 1 i.o.) = 1, 

which certainly implies (16). 
4°. The truth of (8) and (16), for each fixed 8, 0 < 8 <E, means exactly 

the conclusion (2), by an argument that should by now be familiar to the 
reader. 

Theorem 7.5.1. Under the condition (3), the lim sup and lim inf, as n -+ 00, 

of SII/ \/2s~ log log 51: are respectively + I and - I, wIth probabIlIty one. 

The assertion about lim inf follows, of course, from (2) if we apply it 
to { X j' j > I}. ReI-all that (3) is lIlOle than sufficient to enSUle the validity 
of the central limit theorem, namely that Sn / Sn converges in dist. to <P. Thus 
the law of the iterated logarithm complements the central limit theorem by 
circumscribing the extraordinary fluctuations of the sequence {Sn, n > I}. An 
immediate consequen;:e is that for almost every w, the sample sequence S n (w ) 
changes sign infinitely often. For much more precise results in this direction 
see Chapter 8. 

In view of the discussion preceding Theorem 7.3.3, one may wonder 
about the almost eve::-where bounds for 

m2..\ Sm, 
l~7".~n 

and so on. 
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It is interesting to observe that as far as the lim supn is concerned, these two 
functionals behave exactly like Sn itself (Exercise 2 below). However, the 
question of liminfn is quite different. In the case of maxl::;m::;n ISml, another 
law of the (inverted) iterated logarithm holds as follows. For almost every w, 
we have 

1
. maXl<m<n ISm(w)1 
1m - - = 1; 

n-+oo 7[2 Sn 2 

8 log log Sn 

under a condition analogous to but stronger than (3). Finally, one may wonder 
about an asymptotic lower bound for ISn I. It is rather trivial to see that this 
is always o(sn) when the central limit theorem is applicable; but actually it is 
even O(S;; 1) in some general cases. Indeed in the integer lattice case, under 
the conditions of Exercise 9 of 7.3, we have "Sn = 0 i.o. a.e." This kind of 
phenomenon belongs really to the recurrence properties of the sequence {Sn}, 
to be discussed in Chapter 8. 

EXERCISES 

1. Show that condition (3) is fulfilled if the X/s have a common d.f. 
with a finite third moment. 

*2. Prove that whenever (2) holds, then the analogous relations with Sn 
replaced by maxl::;m::;n Sm or maxl::;m::;n ISml also hold. 

*3. Let {X j, j > I} be a sequence of independent, identically distributed 
r.v.'s with mean 0 and variance 1, and Sn = 2:j-l Xj. Then 

1. 

[HTh'T: Consider Snk+1 - Snk with nk ""' kk. A quick proof follows from 
Theorem 8.3.3 below.] 

4. Prove that in Exercise 9 of Sec. 7.3 we have .9>{Sn 0 i.o.} 1. 

* 5. The law of the iterated logarithm may be used to supply certain coun-
terexamples. For instance, if the Xn 's are independent and Xn = ±n liZ/log log 
1l with probability ~ each, then Sn/n ) 0 a.e., but Kolmogorov's sufficient 

conditi on (see case (i) after Theorem 5.4.1) 2: n t (X ~ ) / n 2 < 00 fails. 
6. Prove that .q'){ISn I > cp(l - 8, sn)i.o.} = 1, without use of (8), as 

follows. Let 

ek = {w: ISnk (w)1 < cpO - 8, snk )}; 

h = {W:Sn .. , (w) - Sn,(w) > I' (1 - ~,Sn'+') }. 
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Show that for sufficiently large k the event ek n f k implies the complement 
of ek+ 1; hence deduce 

and show that the product -+ 0 as k -+ 00. 

7.6 Infinite divisibility 

The weak law of large numbers and the central limit theorem are concerned, 
respectively, with the conyergence in dist. of sums of independent r.v.'s to a 
degenerate and a normal dJ. It may seem strange that we should be so much 
occupied with these two apparently unrelated distributions. Let us point out, 
however, that in terms of ch.f.'s these two may be denoted, respectively, by 
e ait and eait-b2t2 - exponentials of polynomials of the first and second degree 
in (it). This explains the considerable similarity between the two cases, as 
evidenced particularly in Theorems 6.4 .3 and 6.4.4. 

Now the question arises: what other limiting d.f.' s are there when small 
mdependent r.v.'s are added? SpecIfically, consIder the double array (2) m 
Sec. 7.1, in which independence in each row and holospoudicity are assumed. 
Suppose that for some sequence of constants an, 

kn 

Sn an EXnJ an 
)=1 

converges in dist. to F. \Vhat is the class of such F's, and when does 
such a convergence take place? For a single sequence of independent r.v.'s 
{X}, j > I}, similar questions may be posed for the "normed sums" (Sn -
an )/bn . 

These questions have been answered completely by the work of Levy, Khint-
chine, Kolmogorov, and OL'1erS; for a comprehensive treatment we refer to the 
book by Gnedenko and Kolmogorov [12]. Here we must content ourselves 
with a modest introduction to this important and beautiful subject 

We begin by recalling other cases of the above-mentioned limiting distri
butions, conveniently disp~::.yed by their ch.f.' s: 

e)·(e"-1) , i. > 0; e-c1tl" , 0< a < 2, c > O. 

The former is the Poisso:: distribution; the latter is called the symmetric 
stable distribution of expor.ent a (see the discussion in Sec. 6.5), including 
the Cauchy distribution fc~ a = 1. We may include the normal distribution 
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among the latter for a = 2. All these are exponentials and have the further 
property that their "nth roots": 

eait/ n , e(1/ n )(ait-b2 (2) , e-(c/n)ltl" , 

are also ch.f.' s. It is remarkable that this simple property already characterizes 
the class of distributions we are looking for (although we shall prove only 
part of this fact here). 

DEFINITION OF INFINITE DIVISIBILITY. A ch.f. f is called infinitely divisible iff 
for each integer n > I, there exists a ch.f. f n such that 

(1) 

In terms of d.f.' s, this becomes in obvious notation: 

F = F~* = F n * F n * ... * F n . 
, v ~ 

(n factors) 

In terms of r. v.' s this means, for each n > I, in a suitable probability space 
(why "suitable"?): there exist r.v.'s X and Xnj, I < j < n, the latter being 
independent among themselves, sllch that X has ch f i, Xnj has ch f in, and 

(2) 
n 

X = L Xnj . 
j 1 

X is thus "divisible" into n independent and identically distributed parts. for 
each n. That such an X, and only such a one, can be the "limit" of sums of 
small independent terIIls as described above seems at least plausible. 

A vital, though not characteristic, property of an infinitely divisible ch.f. 
will be given first. 

Theorem 7.6.1. An infinitely divisible ch.f. never vanishes (for real f). 

PROOF. We shall see presently that a complex-valued ch.f. is trouble-some 
when its "1lth root" is to be extracted. So let us avoid this by going to the real, 
using the Corollary to Theorem 6.1.4. Let f and f n be as in (1) and write 

For each f E 0£1, get) being real and positive, though conceivably vanishing, 
its real positive nfh roof is uniquely defined; let us denote it by [g(t)]l/n. Since 
by (1) we have 

get) = [gn (t)r , 

and gn (t) > 0, it follows that 

(3) Vt:gn(t) = [g(t)]l/n. 
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But 0 < get) < 1. hence liml1 --+ oo [g(t)]l/n is 0 or I according as get) = 0 or 
get) =1= O. Thus limll -+ oo gn (t) exists for every t, and the limit function, say 
h(t), can take at most the two possible values 0 and I. Furthermore, since g is 
continuous at t = 0 with g(O) = 1, there exists a to > 0 such that get) =1= 0 for 
It I < to. It follows that h(t) = I for It I < to. Therefore the sequence of ch.f.'s 
gn converges to the function h, which has just been shown to be continuous 
at the origin. By the convergence theorem of Sec. 6.3, h must be a ch.f. and 
so continuous everywhere. Hence h is identically equal to I, and so by the 
remark after (3) we have 

Vt: If (t)12 = get) =1= o. 

The theorem is proyed. 

Theorem 7.6.1 immediately shows that the uniform distribution on [-I, I] 
is not infinitely di\isible, since its ch.f. is sin tit, which vanishes for some t, 
although In a htecil sense It has Infimtely many divisors! (See Exercise 8 of 
Sec. 6.3.) On the other hand, the ch.f. 

2 + cos t 

3 

never vanishes, bm for it (1) fails even when n = 2; when n > 3, the failure 
of (1) for this ch.f. is an immediate consequence of Exercise 7 of Sec. 6.1, If 
we notice that the -:-orresponding p.m. consists of exactly 3 atoms. 

Now that we have proved Theorem 7.6.1, it seems natural to go back to 
an arbitrary infinit.:ly divisible ch.f. and establish the generalization of (3). 

j n (t) _ [j (t)]1/n 

for some "determir..::.:ion" of the multiple-valued nth root on the right side. This 
can be done by a f::nple process of "continuous continuation" of a complex-
valued function of ::. real variable. Although merely an elementary exercise in 
"complex vanabIe~ . It has been treated In the eXIstIng hterature In a cavalIer 
fashion and then :::isused or abused. For this reason the main propositions 
will be spelled ou: :':''1 meticulous detail here. 

Theorem 7.6.2. =-ct a complex-valued function f of the real variable t be 
given. Suppose th.::.: f (0) = I and that for some T > 0, f is continuous in 
[ - T, T] and does :-..:t vanish in the interval. Then there exists a unique (single
valued) function )~ :f t in [-T, T] with ),,(0) = 0 that is continuous there and 
satisfies 

(4) -T<t<T. 
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The corresponding statement when [-T, T] is replaced by (-00, (0) is 
also true. 

PROOF. Consider the range of J (1), t E [-T, T]; this is a closed set of 
points in the complex plane. Since it does not contain the origin, we have 

inf IJ(t) - 01 = PT > O. 
-T~t~J 

Next, since J is uniformly continuous in [-T, T], there exists a 6T, 0 < 6T < 
PT, such that if t and t' both belong to [-T, T] and It - til < 6T, then IJ(t)
J(f')1 < PT/2 < ~. Now divide [-T, T] into equal parts of length less than 
6T, say: 

- T = t _/ < . . . < f -1 < to = 0 < t 1 < ... < t e = T. 

For f -1 < t < f1, we define A as follows: 

00 ( l)j L -. {JCt) (5) k(t) 
. 1 } 

J= 

This is a continuous function of t in [t -1, tJl, representing that determination 
of log J(t) whIch equals 0 for t - O. Suppose that X has already been defined 
in [t -b td; then we define A in [tk, tk+J1 as follows: 

(6) 

similarly in [t-k-1, Lk] by replacing tk with Lk everywhere on the right side 
above. Since we have, for tk < t < tH 1, 

Pr 
1 

2' 

the power series in (6) converges uniformly in [tk, tHd and represents a 
continuous function there equal to that determination of the logarithm of the 
function J(t)/ J(tk) - 1 which is 0 for t = fk. Specifically, for the "schlicht 
neighborhood" Iz 11 < ~, let 

(7) L(z) = L . (z - l)J 
. 1 ) 

J= 

be the unique determination of log z vanishing at z = 1. Then (5) and (6) 
become, respectively: 

A(t) = L(J(t)), 

( 
J(t) ) 

A(t) = A(tk) + L J(tk) , 
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with a similar expression for Lk-1 < t < Lk. Thus (4) is satisfied in [t-1, td, 
and if it is satisfied for t = tk, then it is satisfied in [tk, tHd, since 

el.(r) = eJ·(fd+L(f(f)/fCtd) = f(t ) f(t) = f(t). 
k f(tk) 

Thus (4) is satisfied in [-T, T] by induction, and the theorem is proved for 
such an interval. To prove it for (-00, (0) let us observe that, having defined 
A in [-11, n], we can extend it to [-n - 1, n + 1] with the previous method, 
by dividing [n, 11 + 1], for example, into small equal parts whose length must 
be chosen dependent on n at each stage (why?). The continuity of A is clear 
from the construction. 

To prove the uniqueness of A, suppose that A' has the same properties as 
A. Since both satisfy equation (4), it follows that for each t, there exists an 
integer met) such that 

A(t) - A' (t) = 2:rri met). 

The left sIde bemg contmuous m t, m(·) must be a constant (why'!), whIch 
must be equal to m(O) = O. Thus A(t) = A' (t). 

Remark. It may not be amiss to point out that A (t) is a single-valued 
function of t but not of f (t); see Exercise 7 below. 

Theorem 7.6.3. For a fixed T, let each k f. k > 1, as well as f satisfy the 
conditions for f in Theorem 7.6.2, and denote the corresponding A by kA. 
S appose that k f con \ erges uniformly to f in [ T, T], then k A converges 
uniformly to A in [-T. T]. 

PROOF. Let L be as in (7), then there exists a 8, 0 < 8 < ~, such that 

IL(z)1 < 1, if Iz - 11 < 8. 

By the hypothesis of uniformity, there exists k1 (T) such that if k > k1 (T), 
then we have 

(8) 

and consequently 

(9) sup IL (kf(t)) I < 1. 
ItisT f(t) -

Since for each t, the e~::ponentials of kA(t) - A(t) and L(kf(t)/ f(t)) are equal, 
there exists an intege:--valued function km(t), It I < T, such that 

(10) 
(

k f : i) L -'-, _- =k AU) - A(t) + 2:rri km(t), 
f'·1 

It I < T. 
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Since L is continuous in Iz - 11 < 8, it follows that km(-) is continuous in 
It I < T. Since it is integer-valued and equals 0 at t = 0, it is identically zero. 
Thus (10) reduces to 

(11 ) kA(t) - A(t) = L ( k;(~}) , It I < T. 

The function L being continuous at z = 1, the uniform convergence of k f / f 
to 1 in [-T, T] implies that of kA - A to 0, as asserted by the theorem. 

Thanks to Theorem 7.6.1, Theorem 7.6.2 is applicable to each infinitely 
divisible ch.f. f in (-00, (0). Henceforth we shall call the corresponding A 
the distinguished logarithm, and eA(t)/n the distinguished nth root of f. We 
can now extract the correct nth root in (1) above. 

Theorem 7.6.4. For each n, the f n in (1) is just the distinguished nth root 
of f. 

PROOF. It follows from Theorem 7.6.1 and (1) that the ch.f. f n never 
vanishes in (-00, (0), hence its distinguished logarithm An is defined. Taking 
multiple-valued logarithms in (1), we obtain as in (10): 

Vt: A(t) nAn (t) 2Jfimn (t), 

where 11ln (-) takes only integer values. V,,"'e, conclude as before that mne-) 0, 
and consequently 

(12) 

as asserted. 

Corollary. If j is a positive infinitely divisible ch.f., then for every t the 
fn(t) in (1) is just the real positive nth root of f(t). 

PROOF. Elementary analysis shows that the real-valued logarithm of a 
real number x m (0, (0) IS a contmuous functIOn of x. It follows that thIS IS 
a continuous solution of equation (4) in (-00, 00 ). The uniqueness assertion 
in Theorem 7.6.2 then identifies it with the distinguished logarithm of f, and 
the corollary follows, since the real positive nth root is the exponential of I/n 

times the real logarithm. 

As an immediate consequence of (12), we have 

Vt: lim fn(t) = 1. 
n--+oo 

Thus by Theorem 7.1.1 the double array {Xnj' 1 < j < n, 1 < n} giving rise 
to (2) is holospoudic. We have therefore proved that each infinitely divisible 
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distribution can be obtained as the limiting distribution of Sn = 2:J=l X nj in 
such an array. 

It is trivial that the product of two infinitely divisible ch.f.' s is again such 
a one, for we have in obvious notation: 

The next proposition lies deeper. 

Theorem 7.6.5. Let {kl, k > I} be a sequence of infinitely divisible ch.f.'s 
converging everywhere to the ch.f. I. Then I is infinitely divisible. 

PROOF. The difficulty is to prove first that I never vanishes. Consider, as 
in the proof of Theorem 7.6.1: g = 1112,k g = Ik11 2. For each n > 1, let xl/n 

denote the real positive nth root of a real positive x. Then we have, by the 
hypothesis of convergence and the continuity of xl/n as a function of x, 

(13) 

By the Corollary to Theorem 7.6.4, the left member m (13) IS a ch.f. The nght 
member is continuous everywhere. It follows from the convergence theorem 
for ch.f.' s that [g(-)] 1 /n is a ch.f. Since g is its nth power, and this is true for 
each 11 > 1, we have proved that g is infinitely divisible and so never vanishes. 
Hence I never vanishes and has a distinguished logarithm A defined every-
where. Let that of kl be kA. Since the convergence of kl to I is necessarily 
uniform in each finite interval (see Sec 6 3), it follows from Theorem 7 6 3 
that kA -+ A everywhere, and consequently 

(14) eXPuA(t)/n) -+ exp(A(t)/n) 

for every t. The left member in (14) is a ch.f. by Theorem 7.6.4, and the right 
member IS contmuous by the defimhon of X. Hence It follows as before that 
e)~(t)//1 is a ch.f. and f is infinitely divisible. 

The following alternative proof is interesting. There exists a 8 > 0 such 
that f does not vanish for It I < 8, hence k is defined in this interval. For 
each n, (14) holds unifonnly in this interval by Theorem 7.6.3. By Exercise 6 
of Sec. 6.3, this is sufficient to ensure the existence of a subsequence from 
{exp0)c(t)/n ), k > I} converging everywhere to some ch.f. qJrz- The nth power 
of this subsequence then converges to (CPn)'2, but being a subsequence of {kl} 
it also converges to I. Hence I = (CPn)", and we conclude again that I is 
infinitely divisible. 

Using the preceding theorem, we can construct a wide class of ch.f.'s 
that are infinitely divisible. For each a and real u, the function 

(15) ( lUll) 
!.p(t; a, u) = ea e -
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is an infinitely divisible ch.f., since it is obtained from the Poisson ch.f. with 
parameter a by substituting ut for t. We shall call such a ch.f. a generalized 
Poisson ch.f A finite product of these: 

(16) f1: 13(t;aj, Uj) = exp [taj(eitUj - I)] 
is then also infinitely divisible. Now if G is any bounded increasing function, 
the integral J~ocJeitu - 1 )dG(u) may be approximated by sums of the kind 

appearing as exponent in the right member of (16), for all t in 91'1 and indeed 
uniformly so in every finite interval (why?). It follows that for each such G, 
the function 

(17) f (t) = exp [1: (eitu 
- 1) dG(U)] 

is an infinitely divisible ch.f. Now it turns out that although this falls some-
what short of being the most general form of an infinitely divisible ch.f., 
we have nevertheless the following qualititive result, which is a complete 
generalization of (16) 

Theorem 7.6.6. For each infinitely divisible ch.f. f, there exists a double 
array of pairs of real constants (an), Un)), 1 < j < kn, 1 < n, where a) > 0, 
such that 

(18) 
)=1 

The converse IS also true. Thus the class of infimtely divisible d.f.'s cOIncIdes 
with the closure, with respect to vague convergence, of convolutions of a finite 
number of generalized Poisson d.f.' s. 

PROOF. Let f and f t1 be as in (1) and let A be the distinguished logarithm 
of I, Ell the d f corresponding to III We have for each t, as n -+ 00· 

n [in (t) - 1] - n [eA(t)/n - l] -+ 1(t) 

and consequently 

(19) 

Actually the first member in (19) is a ch.f. by Theorem 6.5.6, so that the 
convergence is uniform in each finite interval, but this fact alone is neither 
necessary nor sufficient for what follows. We have 

11[f net) - 1] = i: (eitu - 1)n dF/l(u). 
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For each n, n F n is a bounded increasing function, hence there exists 

where -00 < Un1 < Un2 < ... < Unkn < 00 and an) = n [F n (Un,) - Fn (Un ,)-1)], 
such that 

k
n 

. 100 
. 1 (20) sup I)e,tunj - l)an) - (e 1tu - l)n dFn(u) <-. 

Itl:511 )=1 -00 n 

(Which theorem in Chapter 6 implies this?) Taking exponentials and using 
the elementary inequality lez - eZ'1 < leZI(e1z-z'l - 1), we conclude that as 
n -+ 00, 

(21 ) sup en [fn(f)-1]_ 

This and (19) imply (18). The converse is proved at once by Theorem 7.6.5. 

We are now in a position to state the fundamental theorem on infinitely 
divisible ch.f.'s, due to P. Levy and Khintchine. 

Theorem 7.6.7. Every infinitely divisible ch.f. f has the following canonical 
representation: 

where a is a real constant, G is a bounded increasing function in (-00, (0), 
and the integrand is defined by continuity to be -t2/2 at U = O. Furthermore, 
the class of infinitely divisible ch.f.' s coincides with the class of limiting ch.f.' s 

of L~" 1 X nj - all in a holospoudic double array 

fX . 1 < i < k 1 < I'l} 

where kn =+ 00 and for each 1l, the r. v.' s {X 11 j, 1 < j < kn } are independent. 

Note that we have proved above that every infinitely divisible ch.f. is in 
the class of limiting ch.f.' s described here, although we did not establish the 
canonical representation. Note also that if the hypothesis of "holospoudicity" 
is omitted, then every ch.f. is such a limit, trivially (why?). For a comp~ete 
proof of the theorem, various special cases, and further developments, see the 
book by Gnedenko and Kolmogorov [12]. 
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Let us end this section with an interesting example. Put s = u + it, U > 1 
and t real; consider the Riemann zeta function: 

00 1 (1 )-1 
~(s) = L n S = IT 1 - -s ' 

n=1 p p 

where p ranges over all prime numbers. Fix U > 1 and define 

f t = ~(u + it) 
( ) ~(u)· 

We assert that f is an infinitely divisible ch.f. For each p and every real t, 
the complex number 1 - p-a-it lies within the circle {z : Iz - 11 < ~}. Let 
log z denote that determination of the logarithm with an angle in (-1[, 1[]. By 
looking at the angles, we see that 

1 _ p-a 
log 1 -a-it 10g(1 p U) log(l p U it) 

-p 

Since 

00 1 - L __ (e-(mlogp)it - ]) 
mpma 

m=1 

00 

= bloglJ3er;m-l p-ma, -mlogp). 
m=1 

f(t) - lim H Q3(t; m-1 p-ma, m log p), 
n--+oo 

p~n 

it follows that f is an infinitely divisible ch.f. 
So far as known, this famous relationship between two "big names" has 

produced no important issue. 

EXERCISES 

1. Is the convex combination of infinitely divisible ch.f.' s also infinitely 
divisible? 

2. If j IS an mfimtely dIvISIble ch.f. and X ItS dlstmgUIshed loganthm, 
r > 0, then the rth power of f is defined to be erA(t). Prove that for each r > ° 
it is an infinitely divisible ch.f. 

* 3. Let f be a ch.f. such that there exists a sequence of positive integers 
nk going to infinity and a sequence of ch.f.'s CfJk satisfying f = (CfJk)lI k

; then 
f is infinitely divisible. 

4. Give another proof that the right member of (17) is an infinitely divis
ible ch.f. by using Theorem 6.5.6. 
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5. Show that f (t) = (1 - b) / (1 - beit
), ° < b < 1, is an infinitely divis

ible ch.f. [HI1\'T: Use canonical fonn.] 
6. Show that the d.f. with density fiCtf(ex)-l x Ct

-
1e- f3x, ex > 0, fi > 0, in 

(0, (0), and ° otherwise, is infinitely divisible. 
7. Carry out the proof of Theorem 7.6.2 specifically for the "trivial" but 

instructive case f (t) = eait
, where a is a fixed real number. 

*8. Give an example to show that in Theorem 7.6.3, if the unifonnity of 
convergence of kf to f is omitted, then kA need not converge to A. [HINT: 
kf (t) = exp{27Ti( -1 )kkt(1 + kt)-l }.] 

9. Let f(t) = 1 - t, fk(t) = 1 - t+ (-llitk- 1, ° <t< 2, k > 1. Then 
f k never vanishes and converges unifonnly to f in [0, 2]. Let ,JTk denote the 
distinguished square root of f k in [0, 2]. Show that ,JTk does not converge 
in any neighborhood of t = 1. Why is Theorem 7.6.3 not applicable? [This 
example is supplied by E. Reich]. 

*10. Some writers have given the proof of Theorem 7.6.6 by apparently 
considering each fixed t and using an analogue of (21) WIthout the "sUPltl:51l " 
there. Criticize this "quick proof'. [HINT: Show that the two relations 

'v't and 'v'm: lim Umn (t) = U /1 (t), 
m--+oo 

Yt· lim l(1l (t) - u(t), 
n--+oo 

do not imply the existence of a sequence { mn } such that 

'v't: lim umnn (t) = u(t). 
n--+oo 

Indeed, they do not even imply the existence of two subsequences {mv} and 
{nv} such that 

'v't: lim um"n" (t) = u(t). 
v--+ 00 

Thus the extension of Lemma I in Sec. 7.2 is false.] 
The three "counterexamples" in Exercises 7 to 9 go to show that the 
cavalierism alluded to above is not to be shrugged off easily. 

11. Strengthening Theorem 65 5, show that two infinitely divisible 
ch.f.' s may coincide in a neighborhood of ° without being identical. 

*12. ReconSIder ExerCIse 17 of Sec. 6.4 and try to apply Theorem 7.6.3. 
[HINT: The latter is not immediately applicable, owing to the lack of unifonn 
convergence. However, show first that if eenit converges for tEA, where 
meA) > 0, then it converges for all t. This follows from a result due to Stein
haus, asserting that the difference set A - A contains a neighborhood of ° (see, 
e.g., Halrnos [4, p. 68]), and from the equation e Cnit ec"i( = eCni(t+t'). Let {bn }, 

{b;l} be any two subsequences of Cn , then e(b,,-b;,)it -+ 1 for all t. Since 1 is a 
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ch.f., the convergence is unifonn in every finite interval by the convergence 
theorem for ch.f.' s. Alternatively, if 

cp(t) = lim eCnit 

n-+oo 

then cp satisfies Cauchy's functional equation and must be of the fonn eCit , 

which is a ch.f. These approaches are fancier than the simple one indicated 
in the hint for the said exercise, but they are interesting. There is no known 
quick proof by "taking logarithms", as some authors have done.] 
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8 Random walk 

8.1 Zero-or-one laws 

In this chapter we adopt the notation IV for the set of strictly positive integers, 
and NO for the set of positive integers; used as an index set, each is endowed 
wIth the natural ordenng and mterpreted as a dIscrete tIme parameter. SImI
larly, for each n E N, N '1 denotes the ordered set of integers from 1 to n (both 
inclusive); N~ that of integers from 0 to n (both inclusive); and N~ that of 
integers beginning with n + 1. 

On the probability triple (Q, ;if , .9», a sequence {Xn , n EN} where each 
Xn is an r.v. (defined on Q and finite a.e.), will be called a (discrete parameter) 
stochastic process. Various Borel fields connected with such a process will now 
be introduced. For any sub-B.F. {l of ::;k , we shall write 

(1) X E y~ 

and use the expression "X belongs to {/''' or "§ contains X" to mean that 
X-I (33) c § (see Sec. 3.1 for notation): in the customary language X is said 
to be "measurable with respect to (/"'. For each n EN, we define two B.F.'s 
as follows: 
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;-"ftn = the augmented B.P. generated by the family of r.v. 's {Xb kEN n}; 
that is, ~ is the smallest B.P.§, containing all Xkin the family 
and all null sets; 

'-"eft' , n = the augmented B.P. generated by the family of r.v.'s {Xb k E N~}. 

Recall that the union U~l g;; is a field but not necessarily a B.P. The 
smallest B.P. containing it, or equivalently containing every g,;, n EN, is 
denoted by 

00 

EK -Va. 00 - J'n, 

n=l 

it is the B.P. generated by the stochastic process {Xn , n EN}. On the other 
hand, the intersection n~l ;f:ftn' is a B.P. denoted also by /\r:=l ~'. It will be 
called the remote field of the stochastic process and a member of it a remote 
ew.:nt. 

Smce ~oo C ?7, gfJ IS defined on SToo . For the study of the process {X n, n E 
N} alone, it is sufficient to consider the reduced triple (n,~, OJ? 1:7

00
) The 

following approximation theorem is fundamental. 

Theorem 8.1.1. Given E > 0 and A E q-oo, there exists A€ E U~-l ::1'n 
such that 

PROOF. Let §' be the collection of sets A for which the assertion of the 
theorem is true. Suppose Ak E § for each k E 1"1 and Ak t A or Ak t A. Then 
A also belongs to Y, as we can easily see by first taking k large and then 
applying the asserted property to A k . Thus §' is a monotone class. Since it is 
tri\'ial that -fl contains the field U~ 1 ~ that generates ufoo, § mllst contain 
.~~-..: by the Corollary to Theorem 2.1.2, proving the theorem. 

Without using Theorem 2.1.2, one can verify that g is closed with respect 
to complementation (trivial), finite union (by Exercise 1 of Sec. 2.1), and 
countable union (as increasing limit of finite unions). Hence §' is a B.P. that 
must contain d oo . 

It vAll be convenient to use a particular type of sample space Q. In the 
no:ation of Sec. 3.4, let 

00 

n=l 

w~ere each Q n is a "copy" of the realllne 9(1 . Thus Q is just the space of all 
injnite sequences of real numbers. A point w will be written as {wn, n EN}, 
anj Wn as a function of W will be called the nth coordinate (junction) of w. 



8.1 ZERO-OR-ONE LAWS I 265 

Each Q n is endowed with the Euclidean B.P. .cBI , and the product Borel field 
/f (= ,./foo in the notation above) on Q is defined to be the B.P. generated by 
the finite-product sets of the fonn 

(3) 
k 

n{w: wn) E Bn) 
j=I 

where (n 1, ... , n d is an arbitrary finite subset of N and where each B n j E :131. 

In contrast to the case discussed in Sec. 3.3, however, no restriction is made on 
the p.m. ;:,,7> on ,J):. We shall not enter here into the matter of a general construc
tion of ,-/}J. The Kolmogorov extension theorem (Theorem 3.3.6) asserts that 
on the concrete space-field (Q, ;if ) just specified, there exists a p.m. (!/J whose 
projection on each finite-dimensional subspace may be arbitrarily preassigned, 
subject only to consistency (where one such subspace contains the other). 
Theorem 3.3.4 is a particular case of this theorem. 

In this chapter we shall use the concrete probability space above, of the 
so-called "function space type", to simplify the exposition, but all the results 
below remain valid without this specification. This follows from a measure
preserving homomorphism between an abstract probability space and one of 
the function-space type; see Doob [17, chap. 2]. 

'Ibe chIef advantage of thIS concrete representatIOn of n IS that It enables 
us to define an important mapping on the space. 

DEFINITION OF THE SHIFf. The shift r is a mapping of Q such that 

r:w (wn' n EN) ) TIt) {Wn+l' n E ,IV}; 

in other words, the image of a point has as its nth coordinate the (n + 1 )£t 
coordinate of the original point. 

Clearly r is an oo-to-l mapping and it is from Q onto Q. Its iterates 
are defined as usual by composition: rO = identity, rk = r 0 r k- I for k > 1. It 
induces a direct set mapping r and an inverse set mapping r- I according to 
the usual definitions. Thus 

r- I A = {w: rw E A} 

and r-n is the nth iterate of r- I . If A is the set in (3), then 

(4) 

k 

r- I A = n{w: Wnj+I E BII )}. 

j=I 

It follows from this that r- I maps //r into ;:--'Ji; more precisely, 

VA E ;-0: r-n A E .v~/, n EN, 
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where /ft,/ is the Borel field generated by {Wk, k > n}. This is obvious by (4) 
if A is of the fonn above, and since the class of A for which the assertion 
holds is a B.P., the result is true in general. 

DEFINITION. A set in ,f is called invariant (under the shift) iff A = r- I A. 
An r.v. Y on Q is invariant iff Yew) = Y(rw) for every w E Q. 

Observe the following general relation, valid for each point mapping r 
and the associated inverse set mapping r- I , each function Y on Q and each 
subset A of ;"/(1 : 

(5) r-I{w: Yew) E A} = {w: Y(rw) E A}. 

This follows from r- I 
0 y- I = (Y 0 r)-I. 

We shall need another kind of mapping of Q. A permutation on N n is a 
I-to-l mapping of Nil to itself, denoted as usual by 

2, ... , 
0-2, ... , 

The collection of such mappings fonns a group with respect to composition. 
A finite pennlltation on N is by definition a pennutation on a certain "initial 
segment" X n of N. Given such a pennutation as show n above, we define ow 
to be the point in Q whose coordinates are obtained from those of w by the 
corresponding pennutation, namely 

if j E N n ; 

'f' .,..,' IJElrn · 

As usual. (J mduces a dIrect set mappmg 0- and an mverse set mappmg 0- 1, 

the latter being also the direct set mapping induced by the "group inverse" 
0-- 1 of 0-. In analogy with the preceding definition we have the following. 

DEFThTI10~. A set in .J/t is called pennutable iff A = o-A for every finite 
pennutation (J on N. A function Y on Q is pennutable iff Yew) = Y(o-w) for. 
every finite pen nutation (J and every w E Q. 

It is fairly obvious that an invariant set is remote and a remote set is 
permutable: also that each of the collections: all invariant events, all remote 
events, all pennutable events, fonns a sub-B.P. of //t . If each of these B.P. 's 
is augmented (see Exercise 20 of Sec 2.2), the resulting augmented B.P.'s 
will be called "almost invariant", "almost remote", and "almost pennutable", 
respectively. Finally, the collection of all sets in ;J7 of probability either 0 or 
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I clearly fonus a B.P., which may be called the "all-or-nothing" field. This 
B.P. will also be referred to as "almost trivial". 

Now that we have defined all these concepts for the general stochastic 
process, it must be admitted that they are not very useful without further 
specifications of the process. We proceed at once to the particular case below. 

DEFINITION. A sequence of independent r.v.'s will be called an indepen
dent process; it is called a stationary independent process iff the r.v.'s have a 
common distribution. 

Aspects of this type of process have been our main object of study, 
usually under additional assumptions on the distributions. Having christened 
it, we shall henceforth focus our attention on "the evolution of the process 
as a whole" - whatever this phrase may mean. For this type of process, the 
specific probability triple described above has been constructed in Sec. 3.3. 
Indeed, ~ = ~oo, and the sequence of independent r.v.'s is just that of the 
successive coordinate functions [wn, 11 E }V), which, however, will also be 
interchangeably denoted by {Xn, n EN}. If cp is any Borel measurable func-
tion, then {cp(Xn), n E N} is another such process. 

The fo]]owing result is ca]]ed Kolmogorov's "zero-Of-one law" 

Theorem 8.1.2. For an independent process, each remote event has proba
bility zero Of one 

PROOF. Let A E n~ I :1&,: and suppose that ;?2?(A) > 0; we are going to 
prove that ,00(A) = 1. Since ~I and ~: are independent fields (see Exercise 5 
of Sec. 3.3), A IS mdependent of every set m ~I for each n E N; namely, If 
M E u;:: 1 ~'I , then 

(6) 

If we set 

(?OA(M) 
;?l(A n M) 

;:';])(A) 

for M E ,.y, , then ,-PA (.) is clearly a p.m. (the conditional probability relative to 
A; see Chapter 9). By (6) it coincides with ,U/J on U~=l '~I and consequently 
also on ,J? by Theorem 2.2.3. Hence we may take M to be A in (6) to conclude 
that ~(A) = 90CA)2 or :-?\A) = 1. 

The usefulness of the notions of shift and permutation in a stationary 
independent process is based on the next result, which says that both r- l and 
u are "measure-preserving". 
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Theorem 8.1.3. For a stationary independent process, if A E .J;; and (7 is 
any finite permutation, we have 

(7) 

(8) 

dP(r- 1 A) = 9>(A); 

9'((7A) = 0'l(A). 

PROOF. Define a set function? on:if as follows: 

~(A) = 0'l(r-1 A). 

Since r- 1 maps disjoint sets into disjoint sets, it is clear that {Jp is a p.m. For 
a finite-product set A, such as the one in (3), it follows from (4) that 

k 

{Jp(A) = II Jl(Bn ) = q>(A). 
j=l 

Hence :!P and 9 coincide also on each set that is the union of a finite number 
of sl)ch disjoint sets, and so on the B F q generated by them, according to 
Theorem 2.2.3. This proves (7); (8) is proved similarly. 

The following companion to Theorem 8.1.2, due to Hewitt and Savage, 
is \ elY useful. 

Theorem 8.1.4. For a stationary independent process, each permutable event 
has probability zero or one. 

PROOF Let A be a pennutable event Gjven E > 0, we may choose Ek > 0 
so that 

00 

k 1 

By Theorem 8.1.1, there exists Ak E '~lk such that @2(l'~ f1 Ad .::: Eb and we 
may suppose that nk t 00. Let 

t I, ... , n k, n k + I, ... , 2n k j 
and ~1k = (7Ak' Then clearly Mk E dl<. It follows from (8) that 

.:YJ(A ~ Md :s Ek· 

For any sequence of sets {Ed in .f, we have 
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Applying this to Ek = A .6. M k , and observing the simple identity 

lim sup(A.6. Md = (A \ liminfMd U (lim SUpMk \A), 

we deduce that 

Since U~m Mk E Yn~' the set lim sup Mk belongs to n~m :!f"/k' which is seen 
to coincide with the remote field. Thus lim sup Mk has probability zero or one 
by Theorem 8.1.2, and the same must be true of A, since E is arbitrary in the 
inequality above. 

Here is a more transparent proof of the theorem based on the metric on 
the measure space (Q, 97, :?P) given in Exercise 8 of Sec. 3.2. Since Ak and 
Mk are independent, we have 

Now Ak ~ A and Mk ~ A in the metric just mentioned, hence also 

in the same sense. Since convergence of events in this metric implies conver
gence of their probabilities, it follows that f2( A. n A) - QP( A. );:;0 (A ), and the 
theorem is proved. 

Corollary. For a stationary independent process, the B.F.' s of almost 
permutable or almost remote or almost invariant sets all coincide with the 
all-or -nothing fi eld. 

EXERCISES 

Q and:!f' are the infinite product space and field specified above. 

1. Find an example of a remote field that is not the trivial one; to make 
It mteresting, insist that the r. v.' s are not identical. 

2. An r v belongs to the all-or-nothing field if and only if it is constant 
a.e. 

3. If A is invariant then A = rA; the converse is false. 

4. An r. v. is in variant [permutable] if and only if it belongs to the 
invariant [permutable] field. 

5. The set of convergence of an arbitrary sequence of r.v.'s {Yn , n EN} 
or of the sequence of their partial sums ~'j= 1 Y j are both permutable. Their 
limits are permutable r.v.'s with domain the set of convergence. 
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* 6. If all > 0, limn--+oo all exists > ° finite or infinite, and limn--+oo (an+ 1/ an) 
= 1, then the set of convergence of {an -1 2:j=l Y j } is invariant. If an ~ +00, 

the upper and lower limits of this sequence are invariant r.v.'s. 

*7. The set {Y 21l E A i.o.}, where A E qj1, is remote but not necessarily 
invariant; the set {2:j=l Y j A i.o.} is permutable but not necessarily remote. 
Find some other essentially different examples of these two kinds. 

8. Find trivial examples of independent processes where the three 
numbers ?(r-1 A), ?P(A), ?P(rA) take the values 1,0, 1; or 0, ~, 1. 

9. Prove that an invariant event is remote and a remote event is 
permutable. 

*10. Consider the hi-infinite product space of all bi-infinite sequences of 
real numbers {WIl' n E N}, where N is the set of all integers in its natural 
(algebraic) ordering. Define the shift as in the text with N replacing N, and 
show that it is I-to-l on this space. Prove the analogue of (7). 

11. Show that the conclusion of TheOlem 8.1.4 holds tIUe for a sequence 
of independent r.v.' s, not necessarily stationary, but satisfying the following 
condition: for every j there exists a k > j such that X k has the same distribu
tion as X j . [This remark is due to Susan Hom.] 

12. Let {Xn, n ::::. I} be independent r.v.'s with 9{Xn = 4-n} = g'){Xn = 
_4-1l} = ~. Then the remote field of {Sn, n ::::. I}, where Sn = 2:j=l X j , is not 
triviaL 

8.2 Basic notions 

From now on we consider only a stationary independent plUcess {X n, n E 

N} on the concrete probability triple specified in the preceding section. The 
common distribution of Xn will be denoted by J.L (p.m.) or F (dJ.); when only 
this is involved, we shall 'NAte X for a representative X n , thus l'(X) for g (Xn ). 

Our interest in such a process derives mainly from the fact that it under-
lies another process of richer content. This is obtamed by formmg the succes
sive partial slims as follows' 

(1) 

n 

Sn = LXj, n EN. 
j=l 

An initial r.v. So = ° is adjoined whenever this serves notational convenience, 
as in Xn = Sn - Sn-l for n EN. The sequence {Sn' n EN} is then a very 
familiar object in this book, but now we wish to find a proper name for it. An 
officially correct one would be "stochastic process with stationary independent 
differences"; the name "homogeneous additive process" can also be used. We 
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have, however, decided to call it a "random walk (process)", although the use 
of this term is frequently restricted to the case when J.L is of the integer lattice 
type or even more narrowly a Bernoullian distribution. 

DEffi.oTIION OF RANDOM WALK. A random walk is the process {SIl' n E N} 
defined in (1) where {X n' n E N} is a stationary independent process. By 
convention we set also So = O. 

A similar definition applies in a Euclidean space of any dimension, but 
we shall be concerned only with gel except in some exercises later. 

Let us observe that even for an independent process {X n, n E N}, its 
remote field is in general different from the remote field of {SIl' n E N}, where 
SIl = 2:j=l Xj. They are almost the same, being both almost trivial, for a 
stationary independent process by virtue of Theorem 8.1.4, since the remote 
field of the random walk is clearly contained in the permutable field of the 
corresponding stationary independent process. 

We add that, while the notion of remoteness applies to any process, 
"(shift)-invariant" and "permutable" will be used here only for the underlying 
"coordinate process" {wn, n EN} or {Xn, n E IV}. 

The following relation will be much used below, for m < n: 

n-m n-m 

j=l j=l 

It follows from Theorem 8.1.3 that Sn-m and Sn - Sm have the same distri
butIOn. This is obvious directly, since it is just J.L En m).". 

As an application of the results of Sec. 8.1 to a random walk, we state 
the following consequence of Theorem 8.1.4. 

Theorem 8.2.1. Let BIl E d']1 for each n EN. Then 

~{Sn E Bn i.o.} 

is equal to zero or one. 

PROOF. If u is a permutation on N m, then SIl (uw) = SIl (w) for n :::: m, 
hence the set 

00 

Am - U {SIl E B Il } 
n=m 

is unchanged under u- 1 or u. Since Am decreases as m increases, it 
follows that 

00 

is permutable, and the theorem is proved. 
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Even for a fixed B = Bn the result is significant, since it is by no means 
evident that the set {Sn > 0 i.o.}, for instance, is even vaguely invariant 
or remote with respect to {Xn , n EN} (cf. Exercise 7 of Sec. 8.1). Yet the 
preceding theorem implies that it is in fact almost invariant. This is the strength 
of the notion of permutability as against invariance or remoteness. 

For any serious study of the random walk process, it is imperative to 
introduce the concept of an "optional r.v." This notion has already been used 
more than once in the book (where?) but has not yet been named. Since the 
basic inferences are very simple and are supposed to be intuitively obvious, 
it has been the custom in the literature until recently not to make the formal 
introduction at all. However, the reader will profit by meeting these funda
mental ideas for the theory of stochastic processes at the earliest possible time. 
They will be needed in the next chapter, too. 

DEFINITION OF OPTIONAL r.v. An r.v. a is called optional relative to the 
arbitrary stochastic process {Z/'j' n E N} iff it takes strictly positive integer 
values or +00 and satisfies the following condition: 

(2) "In EN U fool: {ev: a(ev) = n} E ~n, 

where ~l is the B.F. generated by {Zb k E Nn}. 

Similarly if the pIOcess is indexed by NO (as in Chapter 9), then the range 
of a will be NO. Thus if the index n is regarded as the time parameter, then 
a effects a choice of time (an "option") for each sample point ev. One may 
think of this choice as a time to "stop", whence the popular alias "stopping 
time", but this is usually rather a momentary pause after which the process 
proceeds agam: tIme marches on! 

Associated with each optional r. v. a there are two or three important 
objects. First, the pre-a field ;:".Jo' is the collection of all sets in ~oo of the form 

(3) U [{a = n} nAn], 

where An E ;-?'ill fOl each fl EN U fool. This collection is easily verified to be 
a B.F. (how?). If A E ~o" then we have clearly A n {a = n} E ~n, for every 
n. This property also characterizes the members of ::JiO' (see Exercise 1 below). 
Next, the post ex process is the process I {Zu+n, n E N} defined on the trace 
of the original probability triple on the set {a < oo}, where 

(4) "In E N:ZO'+n(ev) = ZO'(w)+ll(ev). 

Each ZO'+n is seen to be an r.v. with domain {a < oo}; indeed it is finite a.e. 
there provided the original Z n ' s are finite a.e. It is easy to see that ZO' E ;:";;0" 

The post-afield §; is the B.F. generated by the post-a process: it is a sub-B.F. 
of {a < oo} n §oo. 
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Instead of requiring a to be defined on all Q but possibly taking the value 
00, we may suppose it to be defined on a set !:1 in Y;;oo. Note that a strictly 
positive integer n is an optional r.v. The concepts of pre-a and post-a fields 
reduce in this case to the previous yfn and ~n'. 

A vital example of optional r.v. is that of the first entrance time into a 
given Borel set A: 

(5) 
{ 

min{n EN: Zn (w) E A} 
aA(w) = 

+00 

00 

on U {w: Zn (w) E A}; 
n=1 

elsewhere. 

To see that this is optional, we need only observe that for each n E N: 

{w:aA(w) = n} = {w:Zj(w) E AC, I <j:::: n - I;Zn(w) E A} 

which clearly belongs to g,;; similarly for n = 00. 

Concepts connected with optionality have everyday counterparts, implicit 
In phiases such as "wIthIn thirty days of the accIdent (should It occur)". Histor
ically, they arose from "gambling systems", in which the gambler chooses 
opportune times to enter his bets according to previous observations, experi
ments, or whatnot. In this interpretation, a + 1 is the time chosen to gamble 
and is determined by events strictly prior to it. Note that, along with a, a + I 
is also an optional r. v., but the converse is false. 

So far the notions are valid for an arbitrary process on an arbitrary triple. 
We now return to a stationary independent process on the specified triple and 
extend the notIOn of "ShIft" to an "a-shift" as follows: TO' IS a mappIng on 
{a < oo} such that 

(6) 

Thus the post -a process is just the process {X n (TO' W ), n E N}. Recalling that 
Xn is a mapping on Q, we may also write 

(7) 

and regard Xn 0 TO', n E N, as the r.v.'s of the new process. The inverse set 
mapping (rO') -1, to be written more simply as r-O', is defined as usual: 

-0' A {. 0' A 1 T .u -(j). T (j) E ... q. 

Let us now prove the fundamental theorem about "stopping" a stationary 
independent process. 

Theorem 8.2.2. For a stationary independent process and an almost every
where finite optional r.v. a relative to it, the pre-a and post-a fields are inde
pendent. Furthermore the post -a process is a stationary independent process 
with the same common distribution as the original one. 
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PROOF. Both assertions are summarized in the formula below. For any 
A E ~'~, kEN, B j E 331, 1 :::: j :::: k, we have 

(8) 
k 

9{A;Xa+j E Bj , 1 :::: j :::: k} = 0'l{A} II Jl(Bj). 
j=l 

To prove (8), we observe that it follows from the definition of a and ;:0a that 

(9) A n {a = n} = An n {a = n} E ~n' 

where An E ;:0n for each n EN. Consequently we have 

0'l{A:a = n;Xa+j E Bj , 1 :::: j :::: k} = 0'l{An;a = n;Xn+j E Bj , 1 :::: j :::: k} 

= 0'l{A;a = n}0'l{Xn+j E B j , 1 :::: j :::: k} 

k 

- E?J'l{A;a - n} TIJl(B j ), 

j=l 

where the second equation is a consequence of (9) and the independence of 
;:0n and !Pn'. Summing over n EN, we obtain (8). 

An immediate corollary is the extension of (7) of Sec. 8.1 to an a-shift. 

Corollary. For each A E ~oo we have 

(10) 9(r-a A) = 0'l(A). 

Just as we iterate the shift r, we can iterate ra. Put a l = a, and define 
ak inductively by 

Each ci is finite a.e. if ex is. Next, define f30 0, and 

k 

j-l 

\\'e are now in a position to state the following result, which will be 
needed later. 

Theorem 8.2.3. Let a be an a.e. finite optional r.v. relative to a stationary 
independent process. Then the random vectors {V k, kEN}, where 

Vk(W) = (ak(w), Xtlk-l+ l (w), ... , Xtlk (w», 

are injependent and identically distributed. 
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PROOF. The independence follows from Theorem 8.2.2 by our showing 
that VI,"" Vk-I belong to the pre-fh-I field, while Vk belongs to the post
f3k-I field. The details are left to the reader; cf. Exercise 6 below. 

To prove that V k and V HI have the same distribution, we may suppose 
that k = 1. Then for each n EN, and each n -dimensional Borel set A, we have 

{w: a2 (w) = n; (Xal+I (w), ... , Xal+a2(W» E A} 

= {w: a l (raw) = n; (Xl (raw), ... , Xal (raw) E A}, 

sInce 

Xal (raw) = Xal(T"w)(raw) = Xa 2 (w) (raw) 

= Xal(w)+a2(w)(w) = Xa l+a2 (W) 

by the quirk of notation that denotes by X 0' (.) the function whose value at 
w is given by Xa(w)(w) and by (7) with n = a 2 (w). By (5) of Sec. 8.1, the 
preceding set is the T a-image (inverse image under TO') of the set 

{tv: a l (tv) 11; (Xl (ev), ... , Xa1 (w)) E A}, 

and so by (10) has the same probability as the latter. This proves our assertion. 

Corollary. The r.v.'s {Y k, k E N}, where 

and cp is a Borel measurable function, are independent and IdenttcaIly 
distributed. 

For cp 1, i\ I ed aces La Uk. FOI cP ex) x, Y k S ~k Slh_I' The reader 
is advised to get a clear picture of the quantities ak, 13k, and Y k before 
proceeding further, perhaps by considering a special case such as (5). 

"¥le shall now apply these considerations to obtain results on the "global 
behavior" of the random walk. These will be broad qualitative statements 
distinguished by their generaIity wIthout any addItIOnal assumptIOns. 

The optional r v to be considered is the first entrance time into the strictly 
positive half of the real line, namely A = (0, (0) in (5) above. Similar results 
hold for [0, (0); and then by taking the negative of each XI!, we may deduce 
the corresponding result for (-00, 0] or ( -00, 0). Results obtained in this way 
will be labeled as "dual" below. Thus, omitting A from the notation: 

(11) 
{

min {n EN: S n > O} 
a(w) = 

+00 

00 

on U{w:Sn(w»O}; 
n=I 

elsewhere; 
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and 
"In EN: {a = n} = {S j :::; 0 for 1 :::; j :::; n - 1; Sn > O}. 

Define also the r.v. M n as follows: 

(12) 

The inclusion of So above in the maximum may seem artificial, but it does 
not affect the next theorem and will be essential in later developments in the 
next section. Since each Xn is assumed to be finite a.e., so is each Sn and M n' 
Since M n increases with n, it tends to a limit, finite or positive infinite, to be 
denoted by 

(13) M(w) = lim Mn(w) = sup S/w). 
n--+oo O~j<oo 

Theorem 8.2.4. The statements (a), (b), and (c) below are equivalent; the 
statements (a' ), (5'), and (c' ) are eqUIvalent. 

Ca) 9{a < +oo} - I; Cal) 9{a < +oo} < I; 

Cb) 9{ lim Sn - +oo} - 1; Cb ') E?J'l{ lim Sn - +oo} - 0; 
n--+oo n--+oo 

(c) 9{M = +oo} = 1; (c /) 0'l{M = +oo} = O. 

PROOF. If Ca) is true, we may suppose a < 00 everywhere. Consider the 
r.v. Sa: it is strictly positive by definition and so 0 < ct(Sa) < +00. By the 
Corollary to Theorem 8.2.3, {Stlk+l - Stlk' k :::: I} is a sequence of indepen
dent and identically distributed r. v.' s. lIenee the strong law of large numbers 
(Theorem 5.4.2 supplemented by Exercise 1 of Sec. 5.4) asserts that, if aO = 0 
and S~ = 0: 

n n k=O 

This implies (b). Since limn--+oo Sn :::; M, (b) implies (c). It is trivial that (c) 
implies (a). We have thus plOved the equivalence of (a), (b), and (c). If (a/) 
is true, then (a) is false, hence (b) is false. But the set 

{ lim Sn = +oo} 
n--+OO 

is clearly permutable (it is even invariant, but this requires a little more reflec
tion), hence (b/) is true by Theorem 8.1.4. Now any numerical sequence with 
finite upper limit is bounded above, hence (b/) implies (c /). Finally, if (c /) is 
true then (c) is false, hence (a) is false, and (a/) is true. Thus (a/), (b/), and 
(c /) are also equivalent. 
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Theorem 8.2.5. For the general random walk, there are four mutually exclu
sive possibilities, each taking place a.e.: 

(i) "In E N:Sn = 0; 

(1'1') S n ~ -00; 

(iii) Sn ~ +00; 

(iv) -00 = limn--+oo Sn < 1imn--+oo Sn = +00. 

PROOF. If X = 0 a.e., then (i) happens. Excluding this, let C{JI = limn Sn. 
Then C{JI is a permutable r.v., hence a constant c, possibly ±oo, a.e. by 
Theorem 8.1.4. Since 

lim Sn = Xl + lim(Sn - Xl), 
n n 

we have C{JI = Xl + C{J2, where C{J2(W) = C{JI (Yw) = c a.e. Since Xl :f= 0, it 
follows that c = +00 or -00. This means that 

either limSn = +00 or limSn = -00. 
n n 

By symmetry we have also 

either lim S n 00 or limSn 100. 
n n 

These double alternatives yield the new possibilities (ii), (iii), or (iv), other 
combinations being impossible. 

This last possibility will be elaborated upon in the next section. 

EXERCISES 

In Exercises] -6, the stochastic process is arbitrary 

* 1. a is optional if and only if 'in EN' {a < n} E4n 

*2. For each optional a we have a E ~a and Xa E ~. If a and 13 are both 
optional and a ::; 13, then ~a C 'Jl{J. 

3. If CYI and CYz are both optional, then so is CYI A CY2, CYI V CY2, CYI -t CY2. If 
a is optional and !:1 E ~a, then a,6. defined below is also optional: 

a,6. = {a 
+00 

on !:1 
on Q\!:1. 

* 4. If a is optional and 13 is optional relative to the post-a process, then 
a + 13 is optional (relative to the original process). 

5. Vk EN: a l + ... + ak is optional. [For the a in (11), this has been 
called the kth ladder variable.] 
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*6. Prove the following relations: 

cl = a 0 r~"-I ; r~"-I 0 ret = r~",' X 0 ret X 
~k-I+j = ~k+j· 

7. If a and f3 are any two optional r.v.'s, then 

X f3+/r
et

w) = Xet(W)+~(T"W)+/W); 

(r f3 0 ret)(w) = r~(T"w)+et(w)(w) #- r~+et(w) in general. 

*8. Find an example of two optional r.v.'s a and f3 such that a .:::: f3 but 
::!/r; jJ ;/// However, if y is optional relative to the post-a process and f3 = 
a + y, then indeed ~; :J ~fJ. As a particular case, 97ifk is decreasing (while 
;/jt~k is increasing) as k increases. 

9. Find an example of two optional r.v.'s a and f3 such that a < f3 but 
f3 - a is not optional. 

10. Generalize Theorem 8.2.2 to the case where the domain of definition 
and finiteness of a is ~ with ° < g>(~) < 1. [This leads to a useful extension 
of the notion of independence. For a given A in '?7 with gz>(A) > 0, two 
events A and M, where M C b.., are said to be independent relative to b.. iff 
9{A n ~ n M} = .u7>{A n ~}.o,7J~ {M}.] 

*11. Let {Xn , 11 E }V} be a stationary' independent proeess and {ak' kEN} 
a sequence of strictly increasing finite optional r.v.'s. Then {Xetk+1, kEN} is 
a stationary independent process with the same common distribution as the 
original process [Tbis is the gambling-system theorem first given by Doob in 
1936.] 

12. Prove the Corollary to Theorem 8.2.2. 

13. State and prove the analogue of Theorem 8.2.4 with a replaced by 
a[O,oo)' [The inclusion of ° in the set of entrance causes a small difference.] 

14. In an independent process where all Xn have a common bound, 
{{ex} < 00 implie£ l{Su} < 00 for each optional ex [cf. Theorem 5.5.3]. 

8.3 Recurrence 

A basic question about the random walk is the range of the whole process: 
U~=l Sn(w) for a.e. w; or, "where does it ever go?" Theorem 8.2.5 tells us 
that, ignoring the trivial case where it stays put at 0, it either goes off to -00 
or +00, or fluctuates between them. But how does it fluctuate? Exercise 9 
below will show that the random walk can take large leaps from one end to 
the other without stopping in any middle range more than a finite number of 
times. On the other hand, it may revisit every neighborhood of every point an 
infinite number of times. The latter circumstance calls for a definition. 
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DEFINITION. The number x E pJll is called a recurrent value of the random 
walk {S/l' n E N}, iff for every E > 0 we have 

(1) g7>{ ISn - xl < E i.o.} = 1. 

The set of all recurrent values will be denoted by m. 

Taking a sequence of E decreasing to zero, we see that (1) implies the 
apparently stronger statement that the random walk is in each neighborhood 
of x i.o. a.e. 

Let us also call the number x a possible value of the random walk iff 
for every E > 0, there exists n E N such that 0'>{ISn - xl < E} > O. Clearly a 
recurrent value is a possible value of the random walk (see Exercise 2 below). 

Theorem 8.3.1. The set m is either empty or a closed additive group of real 
numbers. In the latter case it reduces to the singleton {O} if and only if X = 0 
a.e.; otherwise m is either the whole ~1 or the infinite cyclic group generated 
by a nonzero number c, namely {±nc: n E NO}. 

PROOF Suppose ffi '# ¢ throughout the proof To prove that m is a group, 
let us show that if x is a possible value and y E m, then y - x E m. Suppose 
not; then there is a strictly positive probability that from a eel lain value of n 
on, Sn will not be in a certain neighborhood of y - x. Let us put for z E ~l: 

(2) PE,m(Z) = gP{ISn - zi > E for all n > m}; 

so that P2"m(Y - x) > 0 for some E > 0 and mEN Since x is a possible 
value, for the same E we have a k such that ,q'){ISk - xl < E} > O. Now the 
two independent events 15k xl < E and IS" Sk (y x)1 2: 2E together 
imply that ISn - yl > E; hence 

(3) PE Hm(Y) = q>{ISn - yl > E for alln > k + m} 

> 2Il{ISk - xl < E},ujl{ISn - Sk - (y - x)1 > 2E for all n > k + m}. 

The last-written probability is equal to P2E !/l(Y - x), since S" - Sk has the 
same distribution as SIl-k. It follows that the first term in (3) is strictly positive, 

d" I . I ffi nT h h d h ff" contnrlctmg lIe assumptIOn t lat y E~. vveave t us prove t at d IS an 
additive subgroup of ;j?l . It is trivial that m as a subset of ,~l is closed in the 
Euclidean topology. A well-known proposition (proof?) asserts that the only 
closed additive subgroups of c1?l are those mentioned in the second sentence 
of the theorem. Unless X = 0 a.e., it has at least one possible value x =f. 0, 
and the argument above shows that -x = 0 - x E m and consequently also 
x = 0 - (-x) E m. Suppose ~n is not empty, then 0 E ~n. Hence m is not a 
singleton. The theorem is completely proved. 
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It is clear from the preceding theorem that the key to recurrence is the 
value 0, for which we have the criterion below. 

Theorem 8.3.2. If for some E > 0 we have 

(4 ) 
n 

then 

(5) ~7>{ISnl < E i.o.} = 0 

(for the same E) so that 0 f/. ffi. If for every E > 0 we have 

(6) 
n 

then 

(7) '-1'>{ ISn I < E j a } - 1 

for every E > 0 and so 0 E ffi. 

Remark. Actually if (4) or (6) holds for any E > 0, then It holds for 
every E > 0; this fact follows from Lemma 1 below but is not needed here. 

PROOF. The first assertion follows at once from the convergence part of 
the Borel-Cantelli lemma (Theorem 4.2.1). To prove the second part consider 

F = liminf{ISn I 2: E}; 
n 

namely F is the event that ISn I < E for only a finite number of values of n. 
For each won F, there is an mew) such that ISn (w)1 2: E for all n 2: mew); it 
follows that if we consider "the last time that ISn I < E", we have 

00 

m 0 

Since the two independent events ISm I < E and 18n 8m I > 2E together imply 
that ISn I 2: E, we have 

oc 

1 2: 9(F) 2: L.?>{ISml < E}g'l{IS'1 - Sml 2: 2E for all n 2: m + I} 
m=] 

oc 

= L2f'J{ISml < E} P2E, 1 (0) 
m=] 
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by the previous notation (2), since Sn - Sm has the same distribution as Sn-m. 
Consequently (6) cannot be true unless P2E,1 (0) = O. We proceed to extend 
this to show that P2E,k = 0 for every kEN. To this aim we fix k and consider 
the event 

Am = {I S m I < E, IS n I ~ E for all n ~ m + k}; 

then Am and Am' are disjoint whenever m' ~ m + k and consequently (why?) 

The argument above for the case k = 1 can now be repeated to yield 

00 

k ~ L.9>{ISml < E}P2E,k(0), 
m=l 

and so P2E,k(O) 0 for every E > O. Thus 

?J'i(F) - lim PE,k(O) - 0, 
k--+oo 

which is equivalent to (7). 
A simple sufficient condition for 0 E ffi, or equivalently for ffi #- C/>, will 

now be given. 

Theorem 8.3.3. If the weak law of large numbers holds for the random walk 
{Sn, n E N} in the form that Sn/n ~ 0 in pr., then ffi #- 4>. 

PROOF. We need two lemmas, the first of which is also useful elsewhere. 

Lemma 1. For any E > 0 and mEN we have 

00 00 

(8) L0"{ISnl < mE} S 2mL9{ISnl < f}. 
n=O n=O 

PROOF OF LEMMA 1. It is sufficient to prove that if the right member of (8) 
is finite, then so is the left member and (8) is true. Put 

I - ( E, E), J - [jE, (j + 1)E), 

for a fixed j EN; and denote by CPI, CPJ the respective indicator functions. 
Denote also by ex the first entrance time into J, as defined in (5) of Sec. 8.2 
with ZIl replaced by Sn and A by J. We have 

(9) 
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The typical integral on the right side is by definition of ex equal to 

la~k} { I + n~l 'fil(Sn) } do/':" la~kl { I + n~l 'fi1(Sn - S.) } do/', 

since {ex = k} C {Sk E J} and {Sk E J} n {Sn E J} C {Sn - Sk E n. Now {ex = 
k} and Sn - Sk are independent, hence the last-written integral is equal to 

since C{J/(So) = 1. Summing over k and observing that C{JJ(O) = 1 only if j = 0, 
in which case J C I and the inequality below is trivial, we obtain for each j: 

Now if we write J j for J and sum over j from -m to m - 1, the inequality 
(8) ensues III dIsgUIsed form. 

This lemma is often demonstrated by a geometrical type of argument. 
We have written out the preceding proof in some detail as an example of the 
maxim: whatever can be shown by drawing pictures can also be set down in 
symbols! 

Lemma 2. Let the posItIve numbers {un (m)}, where n E Nand m IS a rem 
number> 1, satisfy the following conditions: 

Ei) Vn: Un Em) is increasing in m and tends to 1 as m ) 00; 

Oi) 3c > Q. b~ 0 llll(m) < em b~ 0 un(I) for all m > I 

(iii) V8 > 0: limll --+ oo Un (8 n ) .- 1. 

Then vie have 
00 

(10) LUn (l) = 00. 

R 0 

Remark. If (ii) is true for all integer m ~ 1, then it is true for all real 
m ~ 1, with e doubled. 

PROOF OF LEMMA 2. Suppose not; then for every A > 0: 

00 1 00 1 ~~ 
00 > LUn(1) ~ - Lun(m) ~ - Lun(m) 

em em n=O n=O n=O 
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Letting m ---+ 00 and applying (iii) with 8 = A-I, we obtain 

since A is arbitrary, this is a contradiction, which proves the lemma 

To return to the proof of Theorem 8.3.3, we apply Lemma 2 with 

Then condition (i) is obviously satisfied and condition (ii) with c = 2 follows 
from Lemma 1. The hypothesis that Snln ---+ 0 in pr. may be written as 

for every 8 > 0 as n ---+ 00, hence condition (iii) is also satisfied. Thus Lemma 2 
yields 

00 

I:.9J{ISnl < I} = +00. 

n 0 

Applying this to the "magnified" random walk with each Xn replaced by Xrl/E, 
which does not disturb the hypothesis of the theorem, we obtain (6) for every 
E > 0, and so the theorem is proved. 

In practice, the following criterion is more expedient (Chung and Fuchs, 
1951). 

Theorem 8.3.4. Suppose that at least one of $(X+) and 0(X-) is finite. The 
m #- ¢ if and only if g(X) = 0; otherwise case (ii) or (iii) of Theorem 8.2.5 
happens according as C(X) < 0 or > O. 

PROOF. If 00 < £,(X) < 0 or 0 < <f(X') < +00, then by the strong law 
of large numbers (as amended by Exercise 1 of Sec. 5.4), we have 

Sn (G - ---+ (0 (X) a.e., 
n 

so that either (ii) or (iii) happens as asserted. If g(X) = 0, then the same law 
or its weaker form Theorem 5.2.2 applies; hence Theorem 8.3.3 yields the 

conclusion. 
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DEFINITION OF RECURRENT RANDOM WALK. A random walk will be called 
recurrent iff ~ #- 0; it is degenerate iff m = {O}; and it is of the lattice type 
iff m is generated by a nonzero element. 

The most exact kind of recurrence happens when the X n 's have a common 
distribution which is concentrated on the integers, such that every integer is 
a possible value (for some Sn), and which has mean zero. In this case for 
each integer c we have ::?P{Sn = c i.o.} = 1. For the symmetrical Bemoullian 
random walk this was first proved by P6lya in 1921. 

We shall give another proof of the recurrence part of Theorem 8.3.4, 
namely that cf(X) = 0 is a sufficient condition for the random walk to be recur
rent as just defined. This method is applicable in cases not covered by the two 
preceding theorems (see Exercises 6-9 below), and the analytic machinery 
of ch.f.· s which it employs opens the way to the considerations in the next 
section. 

The starting point is the integrated form of the inversion formula in 
Exercise 3 of Sec. 6.2. Talking x = 0, U = E, and F to be the d.f. of Sn, we 
have 

(II) ;,P(ISn I < E) :::: ] .9'(ISn I < u) du - f 2 f(tt dt. 
E 0 nE -00 t 

1 flO 1 (00 1 - cos Et 

Thus the series in (6) may be bounded below by summing the last expres
sion in (11). The latter does not sum well as it stands, and it is natural to resort 
to a summability method. The Abelian method suits it well and leads to, for 
o < I' < 1: 

(12) 
n=O nE or 00 I 

where R and I later denote the real and Imagmary parts or a complex quan
tity. Since 

(13) 
1 1 - I' 

R > > 0 
1 - rf(t) - 11 - rf(t)12 

and (l - cos Et)/t2 
:::: eE2 for IEtl < 1 and some constant e, it follows that 

fOl 'I < 1 \E the right member of (12) is not less than 

(14) - R dt. eE 111 1 
rr -11 l-rf(t) 

Now the existence of £(IXI) implies by Theorem 6.4.2 that 1 - f(t) = oCt) 
as t -+ O. Hence for any given 8 > 0 we may choose the f) above so that 

11 - rf(t)12 :::: (l - I' + 1'[1 - Rf(t)])2 + (rlf(t»2 
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The integral in (14) is then not less than 

111 (1 - r) dt 1 111 (1-r)_1 ds 
2 2 2 2 dt ~ - 2 2' 

-11 2(1 - r) + 3r 8 t 3 -11(1-r)-1 1 + 8 s 

As r t 1, the right member above tends to ][\38; since 8 is arbitrary, we have 
proved that the right member of (12) tends to +00 as r t 1. Since the series 
in (6) dominates that on the left member of (12) for every r, it follows that 
(6) is true and so 0 E ffi by Theorem 8.3.2. 

EXERCISES 

f is the ch.f. of f.L. 

1. Generalize Theorems 8.3.1 and 8.3.2 to r!Ad
. (For d ~ 3 the general

ization is illusory; see Exercise 12 belo..,,,.) 

*2. If a random walk in ql(;J is recurrent, then every possible value is a 
recurrent value. 

3. Prove the Remark after TheOIem 8.3.2. 

* 4. Assume that 9{X 1 = O} < 1. Prove that x is a recurrent value of the 
random walk if and only if 

00 

E 9i'){I Sn xl < E} 00 for every E > O. 
1l=1 

5. For a recurrent random walk that is neither degenerate nor of the 
lattice type, the countable set of points {Sn (w), n E N} is everywhere dense in 
,1£1 for a.e.w. Hence prove the following result in Diophantine approximation: 
if y is irrational, then given any real x and E > 0 there exist integers m and n 
such that Imy + n - xl < E. 

* 6. If there exists a 8 > 0 such that (the integral below being real valued) 

lim) = 00, 
rt1 -0 1 - rf(t) 

then the random walk is recurrent. 

*7. If there exists a 8 > 0 such that 

1
0 dt 

sup < 00, 
O<r<l -0 1 -rf(t) 
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then the random walk is not recurrent. [HINT: Use Exercise 3 of Sec. 6.2 to 
show that there exists a constant C(E) such that 

1 1 - cos E-IX C(E) lIfE jU 
.'/)(ISIlI < E) :::: C(E) 2 f.Ln (dx) :::: -- du Jut dt, 

:,7i'i x 2 0 -u 

where f.L1l is the distribution of Sn, and use (13). [Exercises 6 and 7 give, 
respectively, a necessary and a sufficient condition for recurrence. If f.L is of 
the integer lattice type with span one, then 

j7T 1 
---dt=oo 

-7T 1 - J(t) 

is such a condition according to Kesten and Spitzer.] 

*8. Prove that the random walk with J(t) = e- 1tl (Cauchy distribution) is 
recurrent. 

*9. Prove that the random walk with J(t)=e- 1t1a , O<a< 1, (Stable 
trw) is not IeCUIlent, but (iv) of Theorem 8.2.5 holds. 

10. Generalize Exercises 6 and 7 above to :!J?;J. 
*11. Prove that in :!J?2 if the common distribution of the random vector 

(.\, Y) has mean zero and finite second moment, namely: 

leX) = 0, <fey) = 0, ° < cff(X2 + y2) < 00, 

then the random walk is recurrent. This implies by Exercise 5 above that 
almost every Browman motIon path IS everywhere dense III 21/2. [Hll,rr: Use 
the generalization of Exercise 6 and show that 

1 c 

for sufficiently small It1 I + If? I. One can also make a direct estimate: 

c' 
,'j)(ISn I < E) :::: -.] 

n 

*12. Prove that no truly 3-dimensional random walk, namely one whose 
.:-ommon distribution does not have its support in a plane, is recurrent. [HINT: 

There exists A > ° such that 

A (3 )2 1 11 ~tiXi Il(dx) 



is a strictly positive quadratic fonn Q in (tI, f2, (3)' If 

3 

L Itil < A-I, 
i=I 

then 
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13 .. Generalize Lemma 1 in the proof of Theorem 8.3.3 to gzd. For d = 2 
the constant 2m in the right member of (8) is to be replaced by 4m2

, and 
"Sn < E" means Sn is in the open square with center at the origin and side 
length 2E. 

14. Extend Lemma 2 in the proof of Theorem 8.3.3 as follows. Keep 
condition (i) but replace (ii) and (iii) by 

(iii) l:~-o Un (m) < cm2l:~_o Un (1); 

There exists d > 0 such that for every b > 1 and m > m(b): 

n 

Then (10) is true. * 
15. Generalize Theorem 8.3.3 to (!Il2 as follows. If the central limit 

theorem applies in the fonn that Sn I .Jli converges in dist. to the unit 
nonnal, then the random walk is recurrent. [HINT: Use ExercIses I3 and 14 and 
Exercise 4 of § 4 3 This is sharper than Exercise 11 No proof of Exercise 12 
using a similar method is known.] 

16. Suppose @v(X) - 0, ° < cS'(X2) < 00, and f.L IS of the mteger lattIce 
type, then 

.9>{Sn2 = 0 i.o.} = 1. 

17. The basic argument in the proof of Theorem 8.3.2 was the "last time 
in (-E, E)". A harder but instructive argument usmg the "first time" may be 
given as follows 

Show that for 1 :s m < M: 

M M M 

L gn(E) :s L f~m) Lgn(2E). 
Il=m n=m 

¥ This fonn of condition (iii') is due to Hsu Pei; see also Chung and Lindvall, Proc. Amer. Math. 
Soc. Vol. 78 (1980), p. 285. 
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It follows by a form of Lemma 1 in this section that 

now use Theorem 8.1.4. 

x 1 
lim '" f(m) > _. 
m-+x~ n - 4' 

n=m 

18. For an arbitrary random walk, if :?>{Vn EN: Sn > O} > 0, then 

L :?>{Sn :s 0, Sn+l > O} < 00. 

n 

Hence if in addition :?>{Vn EN: Sn :s O} > 0, then 

L 1:?>{Sn > O} - :?>{Sn+l > O}I < 00; 

n 

and consequently 

L q>{Sn > O} < 00. 
n 

n 

(-It 

[HINT: For the first series, consider the last time that Sn < 0; for the third series, 
apply Du Bois-Reymond's test. Cf. Theorem 8.4.4 below; this exercise will 
be completed in Exercise 15 of Sec. 8.5.] 

8.4 Fine structure 

In this section we embark on a probing in depth of the LV. a defined in (11) 
of Sec. 8.2 and some related r.v.'s. 

The r.v. ex being optional, the key to its introduction is to break up the 
time sequence into a pre-a and a post-a era, as already anticipated in the 
terminology employed with a general optional r.v. We do this with a sort of 
charactenstlc functIOnal of the process whIch has already made Its appearance 
in the last section: 

(1) 
00 

L rllj (t)" 
1 

n=O 
I-rf(t)' 

where ° < r < 1, t is real, and f is the ch.f. of X. Applying the principle just 
enunciated, we break this up into two parts: 
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with the understanding that on the set {ex = oo}, the first sum above is E~=o 
while the second is empty and hence equal to zero. Now the second part may 
be written as 

It follows from (7) of Sec. 8.2 that 

has the same distribution as S n, and by Theorem 8.2.2 that for each n It IS 
independent of Sa. [Note that the same fact has been used more than once 
before, but for a constant ex.] Hence the right member of (2) is equal to 

where raelfSa is taken to be 0 for ex = 00. Substituting this mto (1), we obtam 

(3) 
I - rj (t) 

We have 

(4) 
n=l Ta-nJ 

and 
k 1 

(5) 
n=O k=l k} n=O 

by an inter change of summation. Let us record the two power series appearing 
in (4) and (5) as 

00 

per, t) = 1 - cff{raeitSa} = L rn Pn(t); 

n=O 
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where 

poet) = 1, Pn(t) = - r eitSn d;?/J = - r eitxUn(dx); 
}{a=n} }PAI 

Now Un(·) = .o/l{a = n;Sn E .} is a finite measure with support in (0, (0), 
while VI/(') = ?{a > n;Sn E .} is a finite measure with support in (-00, 0]. 
Thus each Pn is the Fourier transform of a finite measure in (0, (0), while 
each qn is the Fourier transform of a finite measure in (-00, 0]. Returning to 
(3), we may now write it as 

(6) 
1 

---Per, t) = Q(r, t). 
I-rf(t) 

The next step IS to observe the famIlIar Taylor senes: 

--=exPb~' 1 r n} Ixl < 1. 

Thus we have 

1 
(7) exp {f ~ f(t)" } 

n=1 
1- rj(t) 

= ex 

= f +(r, t)-1 f _(r, t), 

where 

f +(r, t) - exp { :£ r" J .;IXlln(dXl} , 
11=1 n (0,00) 

f _(r, t) = exp {+ f= rn 1 eitx!J,n (dX)} , 
n=1 n (-00,0] 

and fJ,n (.) = 9{Sn E .} is the distribution of Sn. Since the convolution of 
two measures both with support in (0, (0) has support in (0, (0), and the 
convolution of two measures both with support in (-00, 0] has support in 
(-00, 0], it follows by expansion of the exponential functions above and 
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rearrangements of the resulting double series that 

00 00 

f +(r, t) = 1 + L rnCPn (t), f _(r, t) = 1 + L rnl/fn (t), 
n=1 11=1 

where each CPn is the Fourier transform of a measure in (0, (0), while each 
l/fn is the Fourier transform of a measure in (-00, 0]. Substituting (7) into (6) 
and multiplying through by f + (r, t), we obtain 

(8) per, t)f _ (r, t) = Q(r, t)f + (r, t). 

The next theorem below supplies the basic analytic technique for this devel
opment, known as the Wiener-Hopf technique. 

Theorem 8.4.1. Let 
00 00 

per, t) = L rn Pn (t), Q(r, t) = L rn q/l (t), 
It 0 n 0 

00 00 

P* (r, t) = L rn p~ (t), Q* (r, t) = L rn q~ (t), 
11 0 n 0 

where Po (t) - qo (t) - Po (t) - qo (t) - 1; and for n > 1, Pn and P~ as func-
tions of t are Fourier transforms of measures with support in (0, (0); q/l and 
q~ as functions of t are Fourier transforlIls of measures in ( 00, 0]. Suppose 
that for some ro > 0 the four power series converge for r in (0, ro) and all 
real t, and the identity 

(9) per, t)Q* (r, t) = p* (r, t )Q(r, t) 

holds there. Then 
P - P*, Q - Q*. 

The theorem is also true if (0, (0) and (-00, 0] are replaced by [0, (0) and 
( 00, 0), respectively 

PROOF. It follows from (9) and the identity theorem for power series that 
for every n ~ 0: 

n n 

(10) L Pk(t)q~_k(t) = L pZ(t)q/l-k(t). 
k=O k=O 

Then for n = 1 equation (10) reduces to the following: 
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By hypothesis, the left member above is the Fourier transform of a finite signed 
measure VI with support in (0, (0), while the right member is the Fourier 
transform of a finite signed measure with support in (-00, 0]. It follows from 
the uniqueness theorem for such transforms (Exercise 13 of Sec. 6.2) that 
we must have VI = V2, and so both must be identically zero since they have 
disjoint supports. Thus PI = pr and qI = qr. To proceed by induction on n, 
suppose that we have proved that P j = pj and qj = qj for 0 :s j :s n - 1. 
Then it follows from (10) that 

Pn (t) + q~ (t) = p~ (t) + qn (t). 

Exactly the same argument as before yields that Pn = p~ and qn = q~. Hence 
the induction is complete and the first assertion of the theorem is proved; the 
second is proved in the same way. 

Applying the preceding theorem to (8), we obtain the next theorem in 
the case A = (0, (0); the rest is proved in exactly the same way. 

Theorem 8.4.2. If a = aA is the first entrance time into A, where A is one 
of the four sets: (0, (0), [0, (0), (-00, 0), (-00, 0], then we have 

(11) 

(12) 

From this result we shall deduce certain analytic expressions involving 
the r.v. a. Before we do that, let us list a number of classical Abelian and 
Tauberian theorems below for ready reference. 

00 00 

limLcn rn = LCn 
rfl 

11=0 n=O 

finite or infinite. 
(B) If Cn are complex numbers and 2.::::=0 cnrn converges for 0 :s r :s 1, 

then (*) is true. 
(C) If Cn are complex numbers such that Cn = o(n- I

) [or just O(n -1)] 
as n ~ 00, and the limit in the left member of (*) exists and is finite, then 
(*) is true. 
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(D) If C~i) ~ 0, E~=o c~)rn converges for ° :s r < 1 and diverges for 
r = 1, i = 1, 2; and 

n n 

L Ck (1) '" K L c~2) 
k=O k=O 

[or more particularly c~l) '" K c~2)J as n ~ 00, where ° :s K :s +00, then 

00 00 

L c~l)rn '" K L c~2)rn 
n=O n=O 

as r t 1. 
(E) If Cn ~ ° and 

as r t 1, then 

00 1 
Lcnr

n 
"'-

I - r 
n=O 

n 1 

Observe that (C) is a partial converse of (B), and (E) is a partial converse 
of (D) There is also an analogue of (D), which is actually a consequence of 
(B): if Cn are complex numbers converging to a finite limit c, then as r t 1, 

n=O 
1 - r 

Proposition (A) is trivial. Proposition (B) is Abel's theorem, and proposi-
tion (C) is Tauber's theorem in the "little 0" version and Littlewood's theorem 
in the "big 0" version; only the fonner will be needed below Proposition (D) 
is an Abelian theorem, and proposition (E) a Tauberian theorem, the latter 
being sometimes referred to as that of Hardy-Littlewood-Karamata. All four 
can be found in the admirable book by Titchmarsh, The theory of functions 
(2nd ed., Oxford University Press, Inc., New York, 1939, pp. 9-10, 224 ff.). 

Theorem 8.4.3. The generating function of ex in Theorem 8.4.2 is given by 

(13) ([{ra} = 1 - exp {- f : f7J[Sn E AJ} 
n=l 

= 1 - (1 - r)exp {E: 0"[Sn E A']} . 
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We have 

(14) :?>{a < oo} = 1 if and only if f ~g>[Sn E A] = 00; 
n n=l 

in which case 

(15) .t{u} = exp {~ ~o/'[Sn E A']} . 

PROOF. Setting t = 0 in (11), we obtain the first equation in (13), from 
which the second follows at once through 

1 {OO n} {OO nOOn } 
1 _ r = exp ~: = exp ~: :?>[Sn E A] + ~ : :?>[Sn E A

C

] • 

Since 
00 00 

lim E gz>{a n } rn 
rt1 

n=l 
Ef7J{a n} f7J{a < oo} 
n=l 

by proposition (A), the middle term in (13) tends to a finite limit, hence also 
the power series in r there (why?). By proposition (A), the said limit may be 
obtained by setting r = 1 in the series. This establishes (14). Finally, setting 
t - 0 in (12), we obtain 

(16) 
n=O 11=1 

Rewntmg the left member m (16) as m (5) and lettmg r t I, we obtain 

00 00 

(17) 

by plOposition (A). The right member of (16) tends to the right member of 
(15) by the same token, proving (15). 

When is [{a} in (15) finite? This is answered by the next theorem.* 

Theorem 8.4.4. Suppose that X ¢ 0 and at least one of 6'(X+) and f(X-) 
is finite; then 

(18) 

(19) 

[(X) > 0 :::} 0'{a(o,oo)} < 00; 

e (X) :s 0 :::} J;!{a[o,oo)} = 00. 

* It can be shown that Sn ---+ +00 a.e. if and only if t'{a(o,ooJl < 00; see A. 1. Lemoine, Annals 
of Probability 2(1974). 
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PROOF. If {(X) > 0, then ;:?l{Sn ~ +oo} = 1 by the strong law of large 
numbers. Hence ,../Jl{limn-+oo Sn = -oo} = 0, and this implies by the dual 
of Theorem 8.2.4 that 9{a(_oo,o) < oo} < 1. Let us sharpen this slightly to 
;?J>{a(-oo.o] < oo} < 1. To see this, write a' = a(-oo,O] and consider Sf3~ as 
in the proof of Theorem 8.2.4. Clearly S f3~ :s 0, and so if 9{ a' < oo} = 1, 
one would have ~7'{Sn :s 0 i.o.} = 1, which is impossible. Now apply (14) to 
a(-oo,O] and (15) to a(o,oo) to infer 

.f{aco,co)l = exp {~ ~0"[Sn < O]} < 00, 

proving (18). Next if 0"(X) = 0, then :?>{a(-oo,o) < oo} = 1 by Theorem 8.3.4. 
Hence, applying (14) to a(-oo,O) and (15) to a[O,oo), we infer 

f{aro,co)l = exp {f: ~0"[Sn < O]} = 00. 

Fmally, If 0"(X) < 0, then !7l{a[o,oo) - oo} > a by an argument dual to that 
given above for a( 00,0]- and so 0"{a[o,oo)} = 00 trivially. 

Incidentally we have shown that the two r.v.'s a(O,oo) and a[O,oo) have 
both finite or both infinite expectations. Comparing this remark with (15), we 
derive an analytic by product as follows. 

Corollary. We have 

(20) 

ThIs can also be shown, purely analytically, by means of Exercise 25 of 
Sec. 6.4. 

The astonishing part of Theorem 8.4.4 is the case when the random walk 
is recurrent, which is the case if t(X) = 0 by Theorem 8.3.4. Then the set 
[0, (0), which is more than half of the whole range, is revisited an infinite 
number of times. Nevertheless (19) says that the expected time for even one 
visit is infinite! This phenomenon becomes more paradoxical if one reflects 
that the same is true for the other half (-00,0], and yet in a single step one 
of the two halves will certainly be visited. Thus we have: 

a(-oc,O] /\ a[O,oo) = 1, 6){a(-oo,o]} = (S){a[o,OO)} = 00. 

Another curious by-product concerning the strong law of large numbers 
is obtained by combining Theorem 8.4.3 with Theorem 8.2.4. 
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Theorem 8.4.5. Sn/n ~ m a.e. for a finite constant m if and only if for 
every E > 0 we have 

(21) 

PROOF. Without loss of generality we may suppose m = O. We know from 
Theorem 5.4.2 that Sn/n ~ 0 a.e. if and only if 0'(IXI) < 00 and leX) = O. 
If this is so, consider the stationary independent process {X~, n E N}, where 
X~ = Xn - E, E > 0; and let S~ and a' = a(O,OO) be the corresponding r.v.'s 
for this modified process. Since 0"(X') = -E, it follows from the strong law 
of large numbers that S~ ~ -00 a.e., and consequently by Theorem 8.2.4 we 
have :?>{a' < oo} < 1. Hence we have by (14) applied to a': 

(22) 
00 1 L -:?>[Sn - nE > 0] < 00. 

n 
n-l 

By considering Xn + E instead of Xn E, we obtain a similar result with 
"Sn - nE > 0" in (22) replaced by "Sn + nE < 0". Combining the two, we 
obtain (21) when m = O. 

Conversely, if (21) is true with m 0, then the argument above yields 
:?>{a' < oo} < 1, and so by Theorem 8.2.4, :?>{limn-+ooS~ = +oo} = O. A 
fortiori we have 

\IE > 0 : :?>{S~ > nE i.o.} = :?>{Sn > 2nE i.o.} = O. 

Similarly we obtain \IE > 0 : :?>{Sn < -2nE i.o.} = 0, and the last two rela
tions together mean exactly Sn In ~ 0 a.e. Eef. Theorem 4.2.2). 

Having investigated the stopping time a, we proceed to investigate the 
stopping place Sa, where a < 00. The crucial case will be handled first. 

Theorem 8.4.6. If <f(X) = 0 and 0 < 0'(X2) = (J2 < 00, then 

PROOF. Observe that leX) = 0 implies each of the four r.v.'s a is finite 
a.e. by Theorem 8.3.4. We now switch from Fourier transform to Laplace 
transform in (11), and suppose for the sake of definiteness that A = (0, (0). 
It is readily verified that Theorem 6.6.5 is applicable, which yields 

(24) 1 - e'{rae-).sa} = exp {- f rn 1 e-).Sn d:?>} 
n=l n {Sn>O} 
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for 0 :s r < 1, 0 :s A < 00. Letting r t 1 in (24), we obtain an expression for 
the Laplace transform of Sa' but we must go further by differentiating (24) 
with respect to A to obtain 

(25) e{rae-ASuSa} 

the justification for termwise differentiation being easy, since £{ ISIII} :s n e{ IX I}. 
If we now set A = 0 in (25), the result is 

By Exercise 2 of Sec. 6.4, we have as n ~ 00, 

so that the coefficients in the first power series in (26) are asymptotically equal 
to o/V2 times those of 

sInce 
1 t 2n 1 1 

It follows from proposition (D) above that 

11=1 
n 2 

Substituting into (26), and observing that as r t 1, the left member of (26) 
tends to {{Sa} S 00 by the monotone convergence theorem, we obtain 

(27) (J { 00 rll [1 1 } t{Sa} = ~limexp L - - - ,O/J(Sn > 0) . 
2 rtl n 2 

11=1 

It remains to prove that the limit above is finite, for then the limit of the 
power series is also finite (why? it is precisely here that the Laplace transform 
saves the day for us), and since the coefficients are o( 1 / n) by the central 
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limit theorem, and certainly O(l/n) in any event, proposition (C) above will 
identify it as the right member of (23) with A = (0, (0). 

Now by analogy with (27), replacing (0, (0) by (-00,0] and writing 
a(-oo.Oj as fJ, we have 

(28) cf {S,B} = ~ limexp {f rn [~- 9(Sn :s O)]} . 
v 2 rtl 11 2 

n=l 

Clearly the product of the two exponentials in (27) and (28) is just exp 0 = 1, 
hence if the limit in (27) were +00, that in (28) would have to be O. But 
since (f (X) = 0 and e (X2) > 0, we have 2/>(X < 0) > 0, which implies at 
once ?/!(S,B < 0) > 0 and consequently cf'{S,B} < O. This contradiction proves 
that the limits in (27) and (28) must both be finite, and the theorem is proved. 

Theorem 8.4.7. Suppose that X¢'O and at least one of (8"(X+) and cf'(X-) 
is finite; and let a = a(O,oo), fJ = a(-oo,Oj. 

(i) If t(X) > 0 but may be +00, then (8"(S«) - 0(a)0(X). 
(ii) If ct(X) = 0, then ct(Sa) and 0'(S,B) are both finite if and only if 

@{:X"2J 

PROOF. The assertion (i) is a consequence of (18) and 'ilald'g equation 
(Theorem 5.5.3 and Exercise 8 of Sec. 5.5). The "if' part of assertion (ii) 
has been proved m the precedmg theorem; indeed we have even "evaluated" 
{(Sa)· To prove the "only if' part, we apply (1]) to both ex and fi in the 
preceding proof and multiply the results together to obtain the remarkable 
equation. 

\. n=l ) 

Setting r 1, we obtain for t =1= 0: 

1 J(t) 

-it +it 

Letting t t 0, the right member above tends to ct{Sa}(~'{ -S,B} by Theorem 6.4.2. 
Hence the left member has a real and timte lImIt. ThIS ImplIes e'(X2) < 00 by 
Exercise 1 of Sec. 6.4. 

8.5 Continuation 

Our next study concerns the r.v.'s Mn and M defined in (12) and (13) of 
Sec. 8.2. It is convenient to introduce a new r. v. Ln , which is the first time 
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(necessarily belonging to N~) that M n is attained: 

(1) \/n E NO: Ln(w) = min{k E N~ : SkeW) = Mn(w)}; 

note that La = O. We shall also use the abbreviation 

(2) a = a(O,oo), fJ = a(-oo,O] 

as in Theorems 8.4.6 and 8.4.7. 
For each n consider the special permutation below: 

(3) (
1, 

Pn = n, 
2, 

n - 1, 
... , 
... , 

which amounts to a "reversal" of the ordered set of indices in N n' Recalling 
that fJ 0 Pn is the r.v. whose value at W is fJ(Pnw), and Sk 0 Pn = SII - Sn-k 
for 1 :s k :s n, we have 

n 

LB 0 Pn > n} = n {S k 0 Pn > O} 
k=l 

n n-1 

= n{Sn > Sn d = n{Sn > Skl = {Ln = nl. 
k=l k=O 

It follows from (8) of Sec. 8.1 that 

(4) 

Applying (5) and (12) of Sec 84 to fJ and substituting (4), we obtain 

(5) 

~v '- n'l " 

applying (5) and (12) of Sec 8 4 to a and substituting the obvious relation 
{a > 11} = {LII = O}, we obtain 

(6) 

We are ready for the main results for Mil and M, known as Spitzer's identity: 

Theorem 8.5.1. We have for 0 < r < 1: 

(7) frllcf'{e itMII
} = exp {f :1 cff(eitS

:)}. 

11=0 11=1 
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M is finite a.e. if and only if 

(8) 
00 1 L -g;{Sn > O} < 00, 

n 
n=l 

in which case we have 

(9) "{eitM} = exp {~ ~[.c(eiIS') - 1] } . 

PROOF. Observe the basic equation that follows at once from the meaning 
of Ln: 

(10) {Ln = k} = {Lk = k} n {Ln- k 0 rk = O}, 

where rk is the kth iterate of the shift. Since the two events on the right side 
of (10) are independent, we obtain for each n E NO, and real t and u: 

It follows that 
00 

(12) L r"@'{eitMneiu(Sn Mn)} 

n ° 
00 r 00 r 

Setting u = 0 in (12) and using (5) as it stands and (6) with t = 0, we obtain 

f; I n ,c{eitM. } exp {f; rn [/ .iIS. liP + / Id"1 1 ' 
which reduces to (7). 

Next, by Theorem 8.2.4, M < 00 a.e. if and only if g;{a < oo} < 1 or 
equivalently by (14) of Sec. 8.4 if and only if (8) holds. In this case the 
convergence theorem for ch.f.' s asserts that 

ct{eitM
} = lim 0"{eitMn }, 

n-+oo 
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and consequently 

= limexp {- f rn } exp {f rn e(eitS:)} 
rtl n n 

n=l n=l 

= lim exp {f rn [e: (e itS:) - I]} , 
rtl n 

n=l 

where the first equation is by proposition (B) in Sec. 8.4. Since 
00 1 00 2 L _10"(eitS~) - 11 :s L -.9>[Sn > 0] < 00 

n n 
n=l n=l 

by (8), the last-written limit above is equal to the right member of (9), by 
proposition (B). Theorem 8.5.1. is completely proved. 

By switching to Laplace transforms in (7) as done in the proof of 
Theorem 8.4.6 and using proposition (E) in Sec. 8.4, it is possible to give 
an "analytIc" derivatIOn of the second assertion of Theorem 8.5.1 without 
recourse to the "probabilistic" result in Theorem 8.2.4. This kind of mathemat-
ical gambit should appeal to the curious as well as the obstinate; see Exercise 9 
below. Another interesting exercise is to establish the following result: 

(13) g(Mn) - L k 0L(St) 
k-l 

n 1 

by differentiating (7) with respect to t. But a neat little formula such as (13) 
deserves a simpler proof, so here it is. 

Writing 

n 

Mil = V Sj = 
J-V 

and dropping "d'J)'J" in the integrals below: 
n 

[ \ IS 
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Call the last three integrals 11,12' and 13. We have on grounds of symmetry 

1 11 = - Sn 
1 n {Sn>O} 

Apply the cyclical permutation 

(
1,2, ... , n) 
2,3, ... ,1 

to 12 to obtain 

r = r M n - 1• 
J2 J{Sn>O} 

Obviously, we have 

r = r M n - 1 = r M n - 1• 
J3 J{Mn-1 >O;Sn'::;O} J{S,,'::;O} 

Gathering these, we obtain 

and (13) follows by recursion. 

Another interesting quantity in the development was the "number of 
strictly positive terms" in the random walk. We shall treat this by combinatorial 
methods as an antidote to the analytic skulduggery above. Let us define 

Vn (w) = the number of k in N n such that SkeW) > 0; 

V~(W) = the number of kin N n such that Sk(W):S O. 

For easy reference let us repeat two previous definitions together with two 
new ones below, for n E NO: 

Since the reversal given in (3) is a I-to-l measure preserving mapping 
that leaves Sn unchanged, it is clear that for each A E ~oo, the measures on 
~1 below are equal: 

(14 ) 
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Lemma. For each n E NO, the two random vectors 

have the same distribution. 

PROOF. This will follow from (14) if we show that 

(15) Vk E N~: p;;1 {Ln = k} = {L~ = n - k}. 

N ow for P/I W the first n + 1 partial sums S j (Pn W), j E N~, are 

0, Wn, Wn + W/I-l, ... , Wn + ... + Wn-j+l, ... , Wn + ... + WI, 

which is the same as 

from which (15) follows by inspection. 

Theorem 8.5.2. For each 11 E NO, the random vectors 

(16) 

have the same distribution; and the random vectors 

(16') 

have the same distribution. 

PROOF. For 11 0 there is nothing to prove; for n 1, the assertion about 
(16) is trivially true since {Ll = O} = {SI :s O} = {VI = OJ; similarly for (16'). 
We shall prove the general case by simultaneous induction, supposing that both 
assertions have been proved when n is replaced by n 1 For each k E N?z 1 

and y E dt l , let us put 

G(y) = 9{L/I-l = k; S/I-l :s y}, H (y) = g7>{ V/I-l = k; Sn-l :s y}. 

Then the induction hypothesis implies that G = H. Since Xn is independent 
of /fn-l and so of the vector (L/I-l, S/I-d, we have for each x E 9'(1: 

(17) ,:;!>{L/I-l = k; S/I :s x} = 1: F(x - y) dG(y) 

= 1: F(x - y)dH(y) 

= ,o/l{Vn-l = k; Sn :s x}, 
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where F is the common d.f. of each X n . Now observe that on the set {Sn :s O} 
we have Ln = Ln- 1 by definition, hence if x :s 0: 

(18) {w: Ln(w) = k;Sn(w):s x} = {w: Ln- 1 (w) = k;Sn(w):s x}. 

On the other hand, on the set {Sn :s O} we have Vn-l = Vn, so that if x :s 0, 

(19) {w: VI/(w) = k;Sn(w) < x} = {w: Vn-l(W) = k;Sn(w) < x}. 

Combining (17) with (19), we obtain 

(20) VkEN~,x<O:Y>{Ln =k;Sn <x}=~{vn =k;Sn <x}. 

Next if k E N~, and x ~ 0, then by similar arguments: 

{w: L~(w) = n - k;Sn(w) > x} = {w: L~_l(w) = n - k;Sn(w) > x}, 

{w: v:(w) = n - k;Sn(w) > xl = {w: v~ lew) - n - k;Sn(W) > xl. 

Using (16') when n is replaced by n ], we obtain the analogue of (20)' 

(21) Yk E N~, x > 0 : .?J>{L~ n k; Sn > xl gP{~~ n k; Sn > x}. 

The left members in (21) and (22) below are equal by the lemma above, while 
the right members are trivially equal since Vn + v~ = n: 

(22) Vk E N~,x > 0: .J'l{Ln - k;Sn > xl - ~{vn - k;Sn > xl. 

Combining (20) and (22) for x 0, we have 

(23) 'e} k}; 

subtracting (22) from (23), we obtain the equation in (20) [01 x ~ 0, hence it 
is true for every x, proving the assertion about (16). Similarly for (16'), and 
the induction is complete. 

As an ImmedIate consequence of Theorem 8.5.2, the obvious relation 
(10) is translated into the by-no-means obvious relation (24) below· 

Theorem 8.5.3. We have for k E IV~: 

If the common distribution of each Xn is symmetric with no atom at zero, 
then 

(25) Yk E N~: :J'{v, = k} = (-I)' (-}) C-1k)' 
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PROOF. Let us denote the number on right side of (25), which is equal to 

_1 (2k) (2n - 2k) 
22n k n - k ' 

by all(k). Then for each n EN, {an (k), k E N~} is a well-known probability 
distribution. For n = 1 we have 

so that (25) holds trivially. Suppose now that it holds when n is replaced by 
n - 1; then for k E N n - 1 we have by (24): 

It follows that 

n-l 

9{vn = O} + g;{vn = n} = 1 - 2:g;{vn = k} 
k 1 

n-l 

= 1 - Lan(k) = an(O) + an(n). 
k 1 

Under the hypotheses of the theorem, it is clear by considering the dual random 
walk that the two terms in the first member above are equal; since the two 
terms in the last member are obviously equal, they are all equal and the 

theorem is proved. 
Stirling's formula and elementary calculus now lead to the famous "arcsin 

law", first discovered by Paul Levy (1939) for Browman motIon. 

Theorem 8.5.4. If the common distribution of a stationary independent 

process is symmetric, then we have 

\Ix E [0, 1]: lim qp {Vn :s x} = 2 arc sin JX = ~ r --;::=d=u=:::;: 
n-+OO n 7r 7r Jo Ju(1 - u) 

This limit theorem also holds for an independent, not necessarily stationary 
process, in which each Xn has mean 0 and variance 1 and such that the 
classical central limit theorem is applicable. This can be proved by the same 
method (invariance principle) as Theorem 7.3.3. 
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EXERCISES 

1. Derive (3) of Sec. 8.4 by considering 

${raeitSa} = f rn [ r eitSndqp - r eitSn dqpj. 
n=l J{a>n-l} J{a>n} 

*2. Under the conditions of Theorem 8.4.6, show that 

[{Sa} = - lim r Sn dqp. 
n-+oo J{a>n} 

3. Find an expression for the Laplace transform of Sa. Is the corre
sponding formula for the Fourier transform valid? 

*4. Prove (13) of Sec. 8.5 by differentiating (7) there; justify the steps. 

5. Prove that 

n=O n=l 

and deduce that 

9'[M - OJ- exp { - i'= ~ 9'[5. > OJ}. 
n=l 

6. If M < 00 a.e., then it has an infinitely divisible distribution. 

7. Prove that 

{ 

00 1 
0; Sn O} exp E n f?>[Sn 

n=l 

[HINT: One way to deduce this is to switch to Laplace transforms in (6) of 
Sec. 8.5 and let A ---+ 00.] 

8. Prove that the left member of the equation in Exercise 7 is equal to 

[1 - I=9'(a' = n;S. = 01]-1 . 
n=l 

where a' = a[O,oo); hence prove its convergence. 

*9. Prove that 
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implies :?P(M < (0) = 1 as follows. From the Laplace transform version of 
(7) of Sec. 8.5, show that for A > 0, 

exists and is finite, say = X(A). Now use proposition (E) in Sec. 8.4 and apply 
the convergence theorem for Laplace transforms (Theorem 6.6.3). 

*10. Define a sequence of r.v.'s {Y n, n E NO} as follows: 

Yo = 0, Yn+1 = (Yn +Xn+d+, n E NO, 

where {Xn, n E N} is a stationary independent sequence. Prove that for each 
n, Y nand M n have the same distribution. [This approach is useful in queuing 
theory.] 

11. If -00 < g(X) < 0, then 

g(X) = £'(-V-), where V = sup Sj. 

[HINT: If V n max 1 '5.} '5.n S}, then 

1 

let n --+ 00, then t t: O. For the case ct(X) 
to S. Port.] 

l<j<oo 

. v+ 
$(elf 

n I )f(t); 

00, truncate. This result is due 

*12. If g'>{a(o, oo) < oo} < 1, then Vn --+ v, Ln --+ L, both limits being finite 
a.e. and having the generating functions. 

[HINT: ConsIder limm-+ oo L~=o g'J{vm - n}rn and use (24) of Sec. 8.5.] 

13. If t(X) - 0, $(X2) - a 2, 0 < a 2 < 00, then as n --+ 00 we have 

where 
00 l{l } 

C = L;; "2 - fJP[Sn > 0] . 
n=l 

[HINT: Consider 
00 

lim(l - r)1/2 L rllg'>[vn = 0] 
rtI 11=0 
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as in the proof of Theorem 8.4.6, and use the following lemma: if Pn is a 
decreasing sequence of positive numbers such that 

then Pn '" n- I / 2.] 

*14. Prove Theorem 8.5.4. 

15. For an arbitrary random walk, we have 

( -1)n L ql>{Sn > O} < 00. 
n 

n 

[HINT: Half of the result is given in Exercise 18 of Sec. 8.3. For the remaining 
case, apply proposition (C) in the O-form to equation (5) of Sec. 8.5 with LIZ 
replaced by Vn and t - O. This result IS due to D. L. Hanson and M. Katz.] 
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9.1 

Conditioning. Markov 
property. Martingale 

Basic properties of conditional expectation 

If A IS any set in 5r with ?(A»O, we define PJiA (.) on ~ as follows: 

(1) 
~ p)'J(A n E) 

,-?f?A (E) = --
,o/'l(A) 

Clearly §f9A is a p.m. on .4 ; it is called the "conditional probability relative to 
A". The integral with respect to this p.m. is called the "conditional expectation 
relative to A": 

(2) Y (w )PJi(dw). 

If ,'-')'leA) = 0, we decree that .:10A (E) = 0 for every E E ~ . This convention is 
expedient as in (3) and (4) below. 

Let now {A,z, Il :::: I} be a countable measurable partition of Q, namely: 

00 

if m =I n. 



9.1 BASIC PROPERTIES OF CONDITIONAL EXPECTATION I 311 

Then we have 
00 00 

(3) !/i(E) = L .J/i(An n E) = L :-P(An )'~1\n (E); 
n=! n=! 

(4) 
00 00 

cf(Y) = L 1 Y(wy1J(dw) = L q>(An )/1\n (Y), 
n=! 1\n n=! 

provided that t (Y) is defined. We have already used such decompositions 
before, for example in the proof of Kolmogorov's inequality (Theorem 5.3.1): 

j S~ d9 = t::P(Ak)0Ak(S~). 
1\ k=! 

Another example is in the proof of Wald's equation (Theorem 5.5.3), where 

00 

E'?>(M 

Thus the notion of conditioning gives rise to a decomposition when a given 
event OI I. v. is consider ed on various par ts of the sample space, on each of 
which some particular information may be obtained. 

Let us, however, reflect for a few moments on the even more elementary 
example below. From a pack of 52 playing cards one card is drawn and seen 
to be a spade. What is the probability that a second card drawn from the 
remammg deck wIll also be a spade? Smce there are 51 cards left, among 
which are 12 spades, it is clear that the required probability is 12/51. But is 
this the conditional probability ::;;>1\ (E) defined above, where A = "first card 
is a spade" and E "second card is a spade"? According to the definition, 

;J~(A n E) 

;J?(A) 

13 12 

52.51 
13 

52 

12 

51 ' 

where the denominator and numerator have been separately evaluated by 
elementary combinatorial formulas. Hence the answer to the question above is 
indeed "yes"; but this verification vlould be futile if we did not have another 
way to evaluate ,'/j)1\ (E) as first indicated. Indeed, conditional probability is 
often used to evaluate a joint probability by turning the formula (l) around as 
follows: 

13 12 
:1/J(A n E) = ;7fJ(A)?J>1\ (E) = 52 . 51' 

In general, it is used to reduce the calculation of a probability or expectation 
to a modified one which can be handled more easily. . 
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Let .r; be the Borel field generated by a countable partition {An}, for 
example that by a discrete r.v. X, where An = {X = an}. Given an integrable 
r.v. Y, we define the function e;9(Y) on Q by: 

(5) 
n 

Thus 0v (Y) is a discrete r.v. that assumes that value @A
n 
(Y) on the set An, 

for each n. Now we can rewrite (4) as follows: 

cr(Y) = L 1 0"§(Y) d9 = r ct'§(Y) d9. 
n An in 

Furthermore, for any A E §, A is the union of a subcollection of the An's 
(see Exercise 9 of Sec. 2.1), and the same manipulation yields 

(6) i $§(Y)d9. 

In particular, this shows that @§(Y) is integrable. Formula (6) equates two 
integrals over the same set with an essential differenee: while the integrand 
Y on the left belongs to q;, the integrand @§(Y) on the right belongs to the 
subfield §. [The fact that @§(Y) is discrete is incidental to the nature of §.] 
It holds for every A in the sllbfield -§', but not necessarily for a set in CiT\-§' 
Now suppose that there are two functions CPI and CP2, both belonging to §, 

such that 

Let A = {w : CPI (w) > CP2(W)}, then A E § and so 

Hence 9(A) 0, interchanging <PI and <P2 above we conclude that 9'1 9'2 
a.e. We have therefore proved that the 0"§(Y) in (6) is unique up to an equiv-
alence. Let us agree to use t;9(Y) or 0"(Y I §) to denote the corresponding 
equivalence class, and let us call any particular member of the class a "version" 
of the conditional expectation. 

The results above are valid for an arbitrary Borel subfield § and will be 
stated in the theorem below. 

Theorem 9.1.1. If e(1 Y I) < 00 and § is a Borel subfield of q;, then there 
exists a unique equivalence class of integrable r.v.'s 0"(Y I 9') belonging to § 

such that (6) holds. 
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PROOF. Consider the set function v on !I: 

VA E §: v(A) = 1 Yd:?/!. 

It is finite-valued and countably additive, hence a "signed measure" on ,t;. 
If ?7>(A) = O. then v(A) = 0; hence it is absolutely continuous with respect 
to ?P : v « 2P. The theorem then follows from the Radon - Nikodym theorem 
(see, e.g., Royden [5] or Halmos [4]), the resulting "derivative" dvj dq; being 
what we have denoted by £(Y I !I'), 

Having established the existence and uniqueness, we may repeat the defi
nition as follows. 

DEFINITION OF CONDITIONAL EXPECTATION. Given an integrable r.v. Y and a 
Borel subfield §, the conditional expectation c&'(Y I §) of Y relative to § is 
anyone of the equivalence class of r.v.'s on Q satisfying the two properties: 

(a) it belongs to §: 

(b) it has the same integral as Y over any set in 9. 

We shall refer to (b), or equivalently formula (6) above, as the "defining 
relation" of the conditional expectation. In practice as well as in theory, the 
identification of conditional expectations or relations between them is estab-
lished by verifying the two properties listed above. When Y = 1 t:" where 
ZS E :!7, we write 

and call it the "conditional probability of ~ relative to !I". Specifically, q>(~ I 
/;) is anyone of the equivalence class of r.v.'s belonging to !I and satisfying 
the condition 

r 
(7) 

It follows from the definition that for an integrable r.v. Y and a Borel 
subfieId /1, we have t [Y (i~(y I .<7)] d,c#2 0, 

for every A E .t;, and consequently also 

cf:{[Y - 0(Y I ,tf)]Z} = 0 

for every bounded Z E .tf (why?). This implies the decomposition: 

Y = y' + y" where y' = (fCY I .9) and y" 1- ,t;, 
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where "Y" 1- {/" means that $"(Y"Z) = 0 for every bounded Z E §. In the 
language of Banach space, Y' is the "projection" of Y on § and y" its "orthog
onal complement". 

For the Borel field g-{X} generated by the r.v. X, we write also ct(Y I X) 
for ct(Y I ~ {X}); similarly for @(Y I XI, ... , Xn). The next theorem clarifies 
certain useful connections. 

Theorem 9.1.2. One version of the conditional expectation 0"(Y I X) is given 
by cp(X), where cP is a Borel measurable function on ;:nl. Furthermore, if we 
define the signed measure A on ill1 by 

'v'B E £131: A(B) = 1 Y d9, 
X-I (B) 

and the p.m. of X by f..L, then cP is one version of the Radon-Nikodym deriva
tive dA/df..L. 

PROOF. The first assertion of the theorem is a particular case of the 
following lemma. 

Lemma. If Z E 94{X}, then Z = cp(X) for some extended-valued Borel 
measurable function cp. 

PROOF OF THE LEMMA. It is sufficient to prove this for a bounded positive Z 
(why?). Then there exists a sequence of simple functions Zm which increases 
to Z everywhere, and each Zm is of the form 

j=1 

where A j E ~ {X}. Hence A j = X 1 (B j) for some B j E 031 (see ExerCIse I I 
of Sec. 3 1). Thus if we take 

;=1 

we have Zm = CPm(X), Since CPm(X) -+ Z, it follows that CPm converges on the 
range of X. But thIS range need not be Borel or even Lebesgue measurable 
(Exercise 6 of Sec. 3.1). To overcome this nuisance, we put, 

'v'x E ~1: cp(x) = lim CPm(x). 
m-+oo 

Then Z = limm CPm(X) = cp(X), and cP is Borel measurable, proving the lemma. 
To prove the second assertion: given any B E ill1, let A = X-I (B), then 

by Theorem 3.2.2 we have 

r ct(Y I X) d9 = r IB(X)cp(X) d9 = r I B(x)cp(x) df..L = r cp(x) df..L. JA In J~l JB 
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Hence by (6), 

A(B) = 1 Y d9 = ~ cp(x) d/l-. 

This being true for every Bin illl , it follows that cp is a version of the derivative 
dAjd/l-. Theorem 9.1.2 is proved. 

As a consequence of the theorem, the function @(Y I X) of w is constant 
a.e. on each set on which X(w) is constant. By an abuse of notation, the cp(x) 
above is sometimes written as $(Y I X = x). We may then write, for example, 
for each real c: 

1 Y d9 = r @(Y I X = x) d9{X :::: x}. 
{X:;:c} J<-oo,c] 

Generalization to a finite number of X's is straightforward. Thus one 
version of $(Y I Xl, ... ,Xn ) is CP(XI, ... ,Xn ), where cp is an n-dimensional 
Borel measurable function, and by $(Y I X I - Xl, .•• , X n xn) is meant 

It is worthwhile to point out the extreme cases of @(Y I g): 

cf(Y If) = $(Y), c8'(Y I gT) = Y; a.e. 

where f is the trivial field {0, Q}. If § is the field generated by one set 
A : {0, A, A C

, U}, then cheer I fl) IS equal to @er I A) on A and $(r lAC) 
on A c. All these equations, as hereafter, are between equivalent classes of 
r.v.'s. 

Vie shall suppose the pair (gr, 9) to be complete and each Borel subfie1d 
§ of !It to be augmented (see Exercise 20 of Sec. 2.2). But even if § is 
not augmented and § is its augmentation, it follows from the definition that 
d'(Y I §) - $(Y I §), since an r.v. belonging to § is equal to one belonging 
to § almost everywhere (why?). Finally, if §Q is a field generating 9, or just 
a collectIOn of sets whose fimte dIsJomt umons form such a field, then the 
validity of (6) for each A in §Q is sufficient for (6) as it stands. This follows 
easily from Theorem 2.2.3. 

The next result is basic. 

Theorem 9.1.3. Let Y and YZ be integrable r.v.'s and Z E §; then we have 

(8) $(YZ I 9') = Z c8'(Y I 9') a.e. 

[Here "a.e." is necessary, since we have not stipulated to regard Z as an 
equivalence class of r.v.'s, although conditional expectations are so regarded 
by definition. Nevertheless we shall sometimes omit such obvious "a.e.' s" 
from now on.] 
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PROOF. As usual we may suppose Y :::: 0, Z :::: 0 (see property (ii) below). 
The proof consists in observing that the right member of (8) belongs to !I and 
satisfies the defining relation for the left member, namely: 

(9) VA E §: 1 Z(,f(Y I §)d[ll> = 1 ZY d[ll>. 

For (9) is true if Z = It:" where ~ E 9, hence it is true if Z is a simple 
r.v. belonging to § and consequently also for each Z in -fJ by monotone 
convergence, whether the limits are finite or positive infinite. Note that the 
integrability of Z c&'(Y I {/) is part of the assertion of the theorem. 

Recall that when 9 is generated by a partition {An}, we have exhibited a 
specific version (5) of cff(Y I 9). Now consider the corresponding [ll>(M I 9) 
as a function of the pair (M, w): 

n 

For each fixed M, as a function of w this is a specific version of 9(M I -fJ). 
For each fixed CVe, as a function of M this is a pm on q; given by 0?{. I Am} 
for Wo E Am. Let us denote for a moment the family of p.m.' s arising in this 
manner by C(wo, . ). We have then for each integrable r.v. Y and each Wo in Q: 

(10) YC(wo, dw). 
n 

Thus the specific version of gC}' I §) may be evaluated, at each Wo E fl, by 
integrating Y with respect to the p.m. C (wo, .). In this case the conditional 
expectation £( I 11') as a functional on integrable r. v.' s is an integral in the 
literal sense. But in general such a representation is impossible (see Doob 
[16, Sec. 1.9]) and we must fall back on the defining relations to deduce its 
properties, usually from the uncondItIonal analogues. Below are some of the 
simplest examples, in which X and Xn are integrable r.v.'s. 

(I) If X E §, then ({ex I §) - X a.e.; this is true in particular if X is a 
constant a.e. 

(ii) ct(Xl + X2 I !/) = cf(X 1 I §) + (A(X2 I v). 

(iii) If Xl':::: X 2, then cf(X 1 I §') .:::: i"(X2 I ,i/). 

(iv) IcS(X I §,)I .:::: d'(IXI I §). 

(v) If Xn t X, then l(Xn I Sf') t {'(X I Lif'). 

(vi) If Xn ~ X, then (t(Xn I !/) ~ ($'(X I fI), 
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(vii) If IXn I ::::: Y where leY) < 00 and Xn -+ X, then / (Xn I fI) -+ 
/(X I If). 

To illustrate, (iii) is proved by observing that for each A E {/: 

1 {(Xl I (/) d?? = 1 Xl d9J::::: 1 X2 d.O? = 1 e(X2 I ;<i~) d,Jj). 

Hence if A = {I(X I I §) > £(X2 I §)}, we have 9(A) = O. The inequality 
(iv) may be proved by (ii), (iii), and the equation X = X+ - X-. To prove 
(v), let the limit of t(Xn I 9') be Z, which exists a.e. by (iii). Then for each 
A E 9, we have by the monotone convergence theorem: 

r Z d9 = lim r cff(Xn I 9')dq}' = lim r Xn d:?P = r X dq}'. iA n iA n iA iA 
Thus Z satisfies the defining relation for Jf(X I 9'), and it belongs to § with 
the cF(Xn I 9'),s, hence Z 0"(X I §). 

To appreciate the caution that is necessary in handling conditional expec-
tations, let us consider the Cauchy-Schwarz inequality: 

If we try to extend one of the usual proofs based on the positiveness of the 
quadratic fmlll in k . ct((X + ky)2 I §), the question arises that fm each k 
the quantity is defined only up to a null set N).., and the union of these over 
all A cannot be ignored without comment. The reader is advised to think this 
difficulty through to its logical end, and then get out of it by restricting the 
A'S to the rationals. Here is another way out: start from the following trivial 
mequahty: 

where a = cf(X2 I {/)1/2, f3 = Jf(y2 I §)1/2, and af3>O; apply the operation 
I {- I §} using (ii) and (iii) above to obtain 

Now use Theorem 9.1.3 to infer that this can be reduced to 

1 Ii . 1 a2 1 f32 
-(c·{IXYII f/} < -- + -- = 1 
a f3 - 2 a2 2 f32 ' 

the desired inequality. 
The following theorem is a generalization of Jensen's inequality in Sec. 3.2. 
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Theorem 9.1.4. If cp is a convex function on ;?I?1 and X and cp(X) are inte
grable r. v.' s, then for each /;: 

(11 ) cp(C£(X I ~)) ~ ct(cp(X) I !/). 

PROOF. If X is a simple r.v. taking the values {Yj} on the sets {A j}, 1 ~ 
j ~ n, which forms a partition of Q, we have 

n 

e(X I §) = LYjP?(Aj I y), 
j=1 

n 

l(cp(X) I f/) = LCP(Yj)9(A j I i7), 
j=1 

where L:)=1 f/?(A j I §) = 1 a.e. Hence (11) is true in this case by the property 
of convexity. In general let {Xm } be a sequence of simple r.v.'s converging to 
X a.e. and satisfying IXm I ~ IXI for all m (see Exercise 7 of Sec. 3.2). If we 
let m ----?- 00 belO'tv: 

(12) 

the left-hand member converges to the left-hand member of (11) by the contI
nuity of cp, but we need dominated convergence on the right-hand side. To get 
this we first consider CPn which is obtained from cp by replacing the graph of 
<p outside ( fl, fl) with tangential lines. Thus fO! each fl ther e is a constant 
en such that 

Consequently, we have 

and the last term is integrable by hypothesis. It now follows from property 
(vii) of conditional expectations that 

This establishes (11) when cp is replaced by CPn. Letting n ----?- 00 we have 
CPIl t cP and cp,zCX) is integrable; hence (11) follows for a general convex cP, 
by monotone convergence (v). 

Here is an alternative proof, slightly more elegant and more delicate. We 
have for any x and y: 

cp(x) - cp(y) :::: cp' (y)(x - y) 
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where cp' is the right-hand derivative of cpo Hence 

cp(X)-cp(t(X 1 f/)) 2: cp'(t'(X 1 §))[X- {'(X 1.<1)]· 

The right member may not be integrable; but let A = {w : 1 {(X 1 .<1)1 .:::: A} 
for A>O. Replace X by Xli\ in the above, take expectations of both sides, and 
let A t 00. Observe that 

We now come to the most important property of conditional expectation 
relating to changing fields. Note that when A = Q, the defining relation (6) 

may be written as 

This has an immediate generalization. 

Theorem 9.1.5. If Y is integrable and g?} C 815, then 

(13) if and only if '8Gs (Y) EVIl; 

and 

(14) 

PROOF. Since Y satisfies trivially the defining relation for ley 1 #1 ), it 
will be equal to the latter if and only if Y E ~1' Now if we replace our basic 
:3P by 3'2 and Y by 6~ (Y), the assertion (13) ensues. Next, smce 

~"fj(Y) E ~1 C~, 

the second equation in (14) follows from the same observation. It remains 
to prove the first equation in (14). Let A E ::¥], then l'l.. E ~; applying the 
defining relation twice, we obtain 

Hence e3j ((~~ eY)) satisfies the defining relation for 0~ (Y); since it belongs 
to dfl, it is equal to the latter. 

As a particular case, we note, for example, 

To understand the meaning of this formula, we may think of X 1 and X 2 as 
discrete, each producing a countable partition. The superimposition of both 
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partitions yields sets of the form {A j n Mk }. The "inner" expectation on the 
left of (15) is the result of replacing Y by its "average" over each A j n Mk . 

Now if we replace this average r.v. again by its average over each A j, then 
the result is the same as if we had simply replaced Y by its average over each 
A j. The second equation has a similar interpretation. 

Another kind of simple situation is afforded by the probability triple 
(lIn

, d31l
, mil) discussed in Example 2 of Sec. 3.3. Let Xl, ... ,Xn be the coor

dinate r.v.'s ••• = I(XI, ... ,xn ), where I is (Borel) measurable and inte
grable. It is easy to see that for 1 :::: k :::: n - 1, 

f(y I XI, ... , x,) = 11 ... 11 
f(XI, ... , Xn )dXk+1 ... dxn, 

while for k = n, the left side is just y (a.e.). Thus, taking conditional expec
tation with respect to certain coordinate r. v.' s here amounts to integrating out 
the other r.v. 'so The first equation in (15) in this case merely asserts the possi
bility of iterated integration, while the second reduces to a hanality, which we 
leave to the reader to write out. 

EXERCISES 

1. Prove Lemma 2 in Sec. 7.2 by using conditional probabilities. 

2. Let {An} be a countable measurable partition of Q, and E E 3'r with 
g'l(E»O; then we have for each m: 

n 

[This is Bayes' rule.] 

*3. If X is an integrable r.v., Y a bounded r.v., and § a Borel sub field, 
then we have 

E{ct(X I §)Y} (t'{xt(y I §')}. 

4. Prove Fatou's lemma and Lebesgue's dommated convergence theorem 
for conditional expectations. 

*5. Give an example where 0'( i(Y I X d I X 2 ) i= g( cf(Y I X2 ) IX d· 
[HINT: It IS suffiCient to gIve an example where (rex I Y) ¥- ef{ lex I Y) I X}; 
consider an Q with three points.] 

*6. Prove that 0-2(cft/ (Y)) :::: 0-2(y), where 0-2 is the variance. 

7. If the random vector has the probability density function p(', .) and 
X is integrable, then one version of 0'(X I X + Y = z) is given by 

J xp(x, z - x)dx/ J p(x, z - x)dx. 
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*8. In the case above, there exists an integrable function cp(., .) with the 
property that for each B E qjl, 

is cp(x, y) dy 

is a version of 2P{Y E B I X = x}. [This is called a "conditional density func
tion in the wide sense" and 

<l>(x, TJ) = 1~ cp(x, y) dy 

is the corresponding conditional distribution in the wide sense: 

<l>(x, TJ) = gt>{Y < TJ I X = x}. 

The term "wide sense" refers to the fact that these are functions on .9lI rather 
than on Q; see Doob [1, Sec. I.9].] 

9. Let the p(., .) above be the 2-dimensional normal density: 

2pxy l)} + 2 ' 
0"10"2 0"2 

where 0"1 >0, 0"2>0, 0 < p < 1. Find the cp mentioned in Exercise 8 and 

J YifJEx, y) dy. 
-00 

The latter should be a version of 6"(Y I X = x); verify it. 
10. Let § be a B.F., X and Y two r.v.) s such that 

0"(Y I §) = X. 

Then Y = X a.e. 
11. As in ExerCIse 1 a but suppose now for any f E C K; 

[{X2 I I(X)} = 0"{y2 I I(X)}; 0"{X I I (X)} = 0"{Y I j (X)}. 

Then Y = X a.e. [HINT: By a monotone class theorem the equations hold for 
I = I B, B E g{)1; now apply Exercise 10 with § = ST{X}.] 

12. Recall that Xn in L 1 converges weakly in LIto X iff 6"(Xn Y) ~ 
<f(XY) for every bounded r.v. Y. Prove that this implies 0'(Xn I 5) converges 
weakly in LIto /!(X I 9') for any Borel subfield § of ST. 

*13. Let S be an r.v. such that gt>{S > t} = e-t
, t>O. Compute 6"{S I SAt} 

and (nS I S v t} for each t > O. 
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9.2 Conditional independence; Markov property 

In this section we shall first apply the concept of conditioning to independent 
r. v.' s and to random walks, the two basic types of stochastic processes that 
have been extensively studied in this book; then we shall generalize to a 
Markov process. Another important generalization, the martingale theory, will 
be taken up in the next three sections. 

All the B.F.'s (Borel fields) below will be sub fields of '.?7. The B.F.'s 
{:::0a , a E A}, where A is an arbitrary index set, are said to be conditionally inde
pendent relative to the B.F. i/, iff for any finite collection of sets A j, ••• , An 
such that A j E :::0a j and the a / s are distinct indices from A, we have 

When § is the trivial B.F., this reduces to unconditional independence. 

Theorem 9.2.1. For each a E A let qr(a) denote the smallest B.P. containing 
all '.?7f" f3 E A - {a}. Then the :::0a 's are conditionally independent relative to 
{j' if and only if for each a and Aa E ~ we have 

9(Aa I :::0 (a) V 9') = 9(Aa I 5), 

where :::0 (a) V § denotes the smallest B.F. containing :::0 (a) and 5. 

PROOF. It is sufficient to prove this for two B.F.' s ~j and ~, since the 
general result follows by induction (how?). Suppose then that for each A E ~ 

we have 

(1) q.>(/\ I J~ v §) - 9(/\ I §) 

Let M E 6'z, then 

g'l(AM I §) (f{;o/J(AM I :-1''2 v 9') I ,i/'} ct'{,0?>(A I ~ v §)lM I §} 

where the first equation follows from Theorem 9.1.5, the second and fourth 
from Theorem 9.1.3, and the third from (1). Thus 2'ofj and 92 are conditionally 
independent relative to fl. Conversely, suppose the latter assertion is true, then 

ct{:?J(A I fI)lM I /;} = /f1(A I §):?J(M I i/') 

= /f1(AM I .1/) = (t{P.P(A I :'J2 V !I)lM I §}, 
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where the first equation follows from Theorem 9.1.3, the second by hypothesis, 
and the third as shown above. Hence for every 11 E f/, we have 

r ,O/>(A I ~4) dP? = r PJ>(A I ,JiL v f/) d?7> = ,Jj)(AMI1) 
JM~ JM~ 

It follows from Theorem 2.1.2 (take ?)() to be finite disjoint unions of sets like 
M 11) or more quickly from Exercise 10 of Sec. 2.1 that this remains true if 
MI1 is replaced by any set in ~ v f/. The resulting equation implies (1), and 
the theorem is proved. 

When § is trivial and each ;::fia is generated by a single r.v., we have the 
following corollary. 

Corollary. Let {Xa , a E A} be an arbitrary set of r.v.'s. For each a let gr(a) 

denote the Borel field generated by all the r. v.' s in the set except X a' Then 
the Xa ' s are independent if and only if: for each a and each B E ~j, we have 

9{Xa E B I g4(a)} = .o/l{Xa E B} a.e. 

An equivalent form of the corollary is as follows: for each integrable r.v. 
Y belonging to the Borel field generated by Xa , we have 

(2) Jil{y I :-1' (a)} ef{Y}. 

This is left as an exercise. 
Roughly speaking, independence among r.v.'s is equivalent to the lack 

of effect by conditioning relative to one another. However, such intuitive 
statements must be treated with caution, as shown by the following example 
which will be needed later. 

If .:-'7j, .3;, and ;~ are three Borel fields such that ::tj v ,"02 is independent 
of 26, then for each integrable X E '~l, we have 

(3) /{X I :--'h v ,JI3} = l {X I :--'~}. 

Instead of a direct verification, which is left to the reader, it is interesting 
to deduce this from Theorem 9.2.1 by proving the following proposition. 

If ,;'61 v ,-;"2 is independent of ;;'/3, then !q and Jf03 are conditionally inde-
pendent relative to :/'2. 

To see thIS, let A j E ,JA, A3 E ,~. Smce 

.~(AjA2A3) = ,r(A j A2)?)J(A3) = r ,J)J(A j I ,~).?>(A3)d?)J 
JA2 

for every A2 E .~, we have 

,1fi(AjA3 1//2) = :-i'(Aj I ;//2):f'>(A3) = ;f'(Aj 1·~):-?I'(A3 1,-l2), 

which proves the proposition. 
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Next we ask: if X I and X2 are independent, what is the effect of condi
tioning X I + X 2 by X I? 

Theorem 9.2.2. Let XI and X2 be independent r.v.'s with p.m.'s ILl and IL2; 
then for each B E d3 1: 

(4) 

More generally, if {X'I> n ::: I} is a sequence of independent r.v.'s with p.m.'s 
{ILn, n ::: I}, and Sn = L:J=I X j, then for each B E gel: 

(5) .cP{Sn E B lSI, ... , Sn-d = ILn (B - Sn-d = 9P{Sn E B I Sn-d a.e. 

PROOF. To prove (4), since its right member belongs to '!:f {X I}, it 
is sufficient to verify that it satisfies the defining relation for its left 
member. Let A E ~ {XI}, then A = XII (A) for some A E gel. It follows from 
Theorem 3.2.2 that 

Writing IL = ILl X IL2 and applying Fubini's theorem to the right side above, 
then using Theorem 3.2.3, we obtain 

r r r r 

This establishes (4). 
To prove (5), we begin by observing that the second equation has just been 

proved. Next we observe that smce {X I, ... , X n} and {S I, ... , S n} ObVIOusly 
generate the same Borel field, the left member of (5) is just 

Now it is trivial that as a function of (X I, ... ,Xn-d, Sn "depends on them 
only through theIr sum S n-I ". It thus appears ObVIOUS that the first term m (5) 
should depend only on Sill, namely belong to :-0 {Sri d (rather than the larger 
/1 {SI,"" Sn-d). Hence the equality of the first and third terms in (5) should 
be a consequence of the assertion (13) in Theorem 9.1.5. This argument, 
however, is not rigorous, and requires the following formal substantiation. 

Let IL(n) = ILl X ... x ILn = IL(n-l) x ILn and 

n-I 

A = n Sjl (Bj ), 

j=1 
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where B n = B. Sets of the form of A generate the Borel field :1f {S I, ... , S n - d . 
It is therefore sufficient to verify that for each such A, we have 

1 f.1.n (Bn - Sn-d d.9-> = .9->{A; Sn E Bn}. 

If we proceed as before and write Sn = L:J=I Xj, the left side above is equal to 

J ... J f.1.n(Bn - Sn_df.1.(n-I)(dxI, ... , dxn-d 

SjEBj,I:::J::::n-1 

as was to be shown. In the first equation above, we have made use of the fact 
that the set of (XI, ... ,xn) in gcn for which Xn E Bn - Sn-I is exactly the set 
for which Sn E Bn, which is the formal counterpart of the heuristic argument 
above. The theorem is proved. 

The fact of the equality of the two extreme terms in (5) is a fundamental 
property of the sequence {Sn}. We have indeed made frequent use of this 
in the study of sums of independent I. v .' s, par ticala! ly for a I andont walk 
(Chapter 8), although no explicit mention has been made of it. It would be 
instructive for the reader to review the material there and locate some instances 
of its application. As an example, we prove the following proposition, where 
the intuitive picture of conditioning is particularly clear. 

Theorem 9.2.3. Let {Xn' n > I} be an independent (but not necessarily 
stationary) process such that for A>O there exists 0>0 satisfying 

inf .9->{Xn ::: A} > O. 
n 

Then we have 

'v'n > 1: 9{Sj E (0, A] for 1 < j < n} < (1 - ot . 

Furthermore, given any finite interval I, there exists an f>O such that 

9{Sj E I, for 1 :s j:S n} < (1- ft. 
PROOF. We write An for the event that Sj E (0, A] for 1 :s j :s n; then 

9{An} = .9->{An- l ; 0 < Sn :s A}. 

By the definition of conditional probability and (5), the last-written probability 
is equal to 
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r ,Jj){O < Sn :::: A lSI,"" Sn-dd:-J"l 
} 1\,,_1 

= r [Fn(A - Sn-d - Fn(O - Sn-d] d.9', 
} 1\,,_1 

where F n is the dJ. of ILn. [A quirk of notation forbids us to write the 
integrand on the right as 9{ -Sn-I < Xn :::: A - Sn-d!] Now for each Wo in 
An-I, Sn-I (wo»O, hence 

Fn(A - Sn-I(WO)):::: ,qP{Xn < A} :::: 1 - 8 

by hypothesis. It follows that 

.9'{An} :::: 1,,-1 (l - 8) d9 = (l - 8).9'{An-d, 

and the first assertion of the theorem follows by iteration. The second is proved 
similarly by observing that g'l{Xn + ... + X n+m- I > mAl > 8m and choosing 
m so that rnA exceeds the length of I. The details are left to the reader. 

Let NO = {O} UN denote the set of positive integers. For a given sequence 
ofr.v.'s {Xn , n E NO} let us denote bY;#1 the Borel field generated by {X n , n E 

J}, where J is a subset of NO, sllch as [0, n], Cn, (0), or {n}. Thus ~{/l},;j?[O,!ll' 
and ;:'If(n,oo) have been denoted earlier by gT{Xn}, g,;, and ~ft' n, respectively. 

DEFINITION OF MARKOV PROCESS. The sequence of r.v.'s {Xn, n E NO} is 
said to be a Markov process or to possess the "Markov property" iff for 
every 12 E NO and every B E ggl, we have 

(6) 

This property may be verbally announced as: the condItIonal dIstnbutlOn 
(in the wide sense ') of each r v relative to all the preceding ones is the same 
as that relative to the last preceding one. Thus if {X n} is an independent 
process as defined in Chapter 8, then both the process itself and the pIOcess 
of the successive partial sums { S n} are Markov processes by Theorems 9.2.l 
and 9.2.2. The latter category includes random walk as a particular case; note 
that in this case our notation Xn rather than Sn differs from that employed in 
Chapter 8. 

Equation (6) is equivalent to the apparently stronger proposition: for 
every integrable Y E :'f{n+l), we have 

(6') 

It is clear that (6') implies (6). To see the converse, let Y m be a sequence of 
simple r.v.'s belonging to ;-0{n+I} and increasing to Y. By (6) and property (ii) 
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of conditional expectation in Sec. 9.1, (6') is true when Y is replaced by Y m; 
hence by property (v) there, it is also true for Y. 

The following remark will be repeatedly used. If Y and Z are integrable, 
Z E ,Jfl , and 

1 Y dY = 1 Z dq/J 

for each A of the form n XiI (B j ), 

jE10 

where lois an arbitrary finite subset of I and each B j is an arbitrary Borel set, 
then Z = ct(Y I .::'1'1)' This follows from the uniqueness of conditional expec
tation and a previous remark given before Theorem 9.1.3, since finite disjoint 
unions of sets of this form generate a field that generates :-!fl· 

If the index n is regarded as a discrete time parameter, as is usual in 
the theory of stochastic processes, then ~O,n] is the field of "the past and the 
present", while d'(n 00) is that of "the future"; whether the present is adjoined 
to the past or the future is often a matter of convenience. The Markov property 
just defined may be further charaeterized as follows. 

Theorem 9.2.4. The Markov property is equivalent to eIther one of the two 
propositions below' 

(7) 

(8) 

These conclusions remain tOle if J41l,oo) is replaced by ,Jf[n,oo). 

PROOF To prove (7) implies (8), let Yi - 1Mi' i-I, 2. We then have 

U.'{y I"(Y I ,J£ ) I X } = 0 I (f;' 2 J'[O,n] n 

= J"{J'(YIY21 dI'[O,n]) I Xn} 

= (r~'{y I Y 2 I Xn} = 0D{MIM2 I Xn}, 

where the second and fourth equations follow from Theorems 9.1.3, the third 
from assumption (7), and the fifth from Theorem 9.1.5. 

Conversely, to prove that (8) implies (7), let A E :-1h{n}, MI E ,Jf[O,n), M2 E 

/f(n,oc). By the second equation in (9) applied to the fourth equation below, 
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we have 

r ?P(M2 I Xn)d9 = r <f(Y2 I Xn)d:?P = r YU8"(Y2 I Xn)d:?P 
JAM! JAM! JA 

= 10"{y l g(Y2 I Xn) I Xn}d:?P 

= I g(Y I I Xn)g(Y2 I Xn)d:?P 

= I :?P(MI I Xn ):?P(M2 I Xn) d:?P 

= I :?P(MIM2 I Xn) d:?P = :?P(AMIM2)' 

Since disjoint unions of sets of the form AMI as specified above generate the 
Borel field ~[O,n], the uruqueness of .o/-'(M2 I S?[O,n]) shows that It IS equal to 
:?P(M2 I X n), proving (7). 

Finally, we prove the equivalence of the Markov property and the propo
sition (7). Clearly the funner is implied by the latter, to prove the converse 
we shall operate with conditional expectations instead of probabilities and use 
induction. Suppose that it has been shown that for every n EN, and every 
bounded f belonging to f?,6[n+l,n+kj, we have 

(10) g(! I ~O,n]) - 0'(1 I §(n})' 

This is true for k = 1 by (6'). Let g be bounded, g E S?[n+l,n+k+l]; we are going 
to show that (10) remains true v/hen f is replaced by g. For this purpose it 
is sufficient to consider a g of the form glg2, where gl E S?[n+l,n+k], g2 E 

S?{n+k+l}, both bounded. The successive steps, in slow motIon fashIOn, are as 
follows' 

It is left to the reader to scrutinize each equation carefully for explanation, 
except that the fifth one is an immediate consequence of the Markov property 
(g'{g2 I '~n+kd = £{g2 I S?[O,n+k]} and (13) of Sec. 9.1. This establishes (7) for 
M E U~l gl(n,n+k), which is a field generating gl(n,oo)' Hence (7) is true (why?). 
The last assertion of the theorem is left as an exercise. 
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The property embodied in (8) may be announced as follows: "The past 
and the future are conditionally independent given the present". In this form 
there is a symmetry that is not apparent in the other equivalent forms. 

The Markov property has an extension known as the "strong Markov 
property". In the case discussed here, where the time index is NO, it is an 
automatic consequence of the ordinary Markov property, but it is of great 
conceptual importance in applications. We recall the notions of an optional 
LV. a, the LV. Xa, and the fields :"fa and :"f 'a, which are defined for a general 
sequence of LV.'S in Sec. 8.2. Note that here a may take the value 0, which 
is included in NO. We shall give the extension in the form (7). 

Theorem 9.2.5. Let {Xn, n E NO} be a Markov process and a a finite 
optional LV. relative to it. Then for each M E ;!f' a we have 

(11) 

PROOF Since a E .JIG' and KG' E :/4 (Exercise 2 of Sec. 8.2), the right 
member above belongs to .'::0a . To prove (11) it is then sufficient to verify 
that the right member satisfies the defining relation fOI tire left, when M is of 
the form 

£ 

R{Ko +j E Bj }, B j E c?(31, 1 < j < £;] < £ < 00 

j=l 

Put for each n, 

Mil = n{Xn+j E Bj } E ~(n,oo)· 
j 1 

Now the crucial step is to show that 
00 

(12) L,P[MIl I Xn }1{a-ll) £?t2[M I EX, Xa }. 

1l=0 

By the lemma in the proof of Theorem 9.1.2, there exists a Borel measurable 
function rfJn such that :/p{MIl I KIl } - rfJll e)(II), from which it fo]]ows that the 
left member of (12) belongs to the Borel field generated by the tWO·LV.'S a 
and Xa. Hence we shall prove (12) by verifying that its left member satisfies 
the defining relation for its right member, as follows. For each mEN and 
BE d3 1

, we have 

r. I>;Jl{MIl I Xn} l{a=n} d:~ = r _ . :~{Mm I Xm} d!J> 
J{a=m.XcxEB} n=O J{a-m.XmEB} 

= r ~~{Mm I :1W,m]} d~J> = o/l{a = m;Xm E B; Mm} 
J{a=m:XmEB} 

= /i>{a = m;Xa E B; M}, 
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where the second equation follows from an application of (7), and the third 
from the optionality of a, namely 

{a = m} E ;:-,JTO,m] 

This establishes (12). 
Now let A E /;;0" then [ef. (3) of Sec. 8.2] we have 

00 

where All E .J10.1l]' It follows that 
00 00 

9{AM} = L /J>{a = n; An; Mn} = L 1- PJ>{Mn I ;:-'f[O,n]} d:?> 
n=O n=O (O'-n)nAn 

where the third equation is by an application of (7) while the fourth is by (12). 
This being true for each A, we obtam (11). The theorem is proved. 

When a is a constant n, it may be omitted from the right member of 
(11), and so (11) includes (7) as a particular case. It may be omitted also in 
the homogeneous case discussed below (because then the f/Jn above may be 
chosen to be independent of n). 

There is a very general method of constructing a Markov process with 
given "transItIOn probabIlIty functIOns", as follows. Let poC·) be an arbitrary 
pm. on (.~1 , jlJl ). For each n > 1 let P Il (-, .) be a function of the pair (x, B) 
where x E .JJ11 and B E ~!31, having the measurability properties below: 

(a) for each x, PIl (x, .) is a p.m. on .~1; 
(b) for each B, P Il (-, B) E ~:f31 . 

It is a consequence of Kolmogorov's extension theorem (see Sec. 3.3) that 
there exists a seqnence of r v 's {Xn , n E NO} on some probability space 
with the. following "finite-dimensional joint distributions": for each 0 .:s 1 < 

00, B j E Y3 1
, 0 S j S n: 

(13) 

11 

.~jJ n[X j E Bj ] 

j=o 

There is no difficulty in verifying that (13) yields an (n + 1 )-dimensional p.m. 
on (.?I21l+1, .f3n+1) and so also on each subspace by setting some of the B/s 
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above to be:1(l, and that the resulting collection of p.m.'s are mutually consis
tent in the obvious sense [see (16) of Sec. 3.3]. But the actual construction of 
the process {Xn, n E NO} with these given "marginal distributions" is omitted 
here, the procedure being similar to but somewhat more sophisticated than that 
given in Theorem 3.3.4, which is a particular case. Assuming the existence, 
we will now show that it has the Markov property by verifying (6) briefly. 
By Theorem 9.1.5, it will be sufficient to show that one version of the left 
member of (6) is given by Pn+l (Xn, B), which belongs to ;!!1{nj by condition 
(b) above. Let then 

n 

A=n[XjEBj ] 
j=O 

and Jl(n+l) be the (n + I)-dimensional p.m. of the random vector 
(Xo, ... ,Xn ). It follows from Theorem 3.2.3 and (13) used twice that 

r -g"J r r )11 (/1+1) 
jAPn+1(Xn,B)d-j'''j Pn+l(xn,B Jl 

Bo)( )(Bn 

= J ... J n+I 

Box···xBn xB j 1 

9D(A;Xn+I E B). 

This is what was to be shown. 
We call Po(-) the initial distribution of the Markov process and P n (-, .) 

Its "nth-stage transItIOn probabIlIty functIOn". The case where the latter is the 
same for all n > I is particularly important, and the corresponding Markov 
process is said to be "(temporally) homogeneous" or "with stationary transition 
probabilities". In this case we write, with x Xo. 

• 11-1 

(14) P(Il)(x, B) -- I I II P( d ) .. . Xj, Xj+l, 

and call It the "n-step transition probability function"; when n - 1, the qual
ifier "I-step" is usually dropped. We also put p(O) (x, B) = IB(x), It is easy to 
see that 

(15) 

so that all p(n) are just the iterates of pO). 

It follows from Theorem 9.2.2 that for the Markov process {Sn, n E N} 
there, we have 

Pn(X, B) = Jln(B - x). 
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In particular, a random walk is a homogeneous Markov process with the I-step 
transition probability function 

p(1)(x, B) = fl(B - x). 

In the homogeneous case Theorem 9.2.4 may be sharpened to read like 
Theorem 8.2.2, which becomes then a particular case. The proof is left as an 
exercise. 

Theorem 9.2.6. For a homogeneous Markov process and a finite r.v. ex which 
is optional relative to the process, the pre-a and post-a fields are conditionally 
independent relative to Xa , namely: 

Furthermore, the post-a process {Xa+n , n E N} is a homogeneous Markov 
process with the same transition probability function as the original one. 

Given a Markov process {Xn' n E NO}, the distribution of Xo is a p.m. 
and for each B E ,9cjI, there is according to Theorem 9.1.2 a Borel measurable 
function <Pn (-, B) such that 

9"{Xn+! E B I Xn x} f/Jn (x, B). 

It seems plausible that the function f/Jn (-, .) would eorrespond to the n stage 
transition probability function just discussed. The trouble is that while condi-
tion (b) above may be satisfied for each B by a particular choice of f/Jn (., B), It 
is by no means clear why the resulting collection for varying B would satisfy 
condition (a). Although it is possible to ensure this by means of conditional 
dIstnbutlOns III the WIde sense alluded to in Exercise 8 of Sec. 9.1, we shall 
not discuss it here (see Doob [16, chap. 2]). 

The theory of Markov processes is the most highly developed branch 
of stochastic processes. Special cases such as Markov chains, diffusion, and 
processes with independent increments have been treated in many mono-
graphs, a few of which are listed in the Bibliography at the end of the book. 

EXERCISES 

*1. Prove that the Markov property is also equivalent to the following 
proposition: if tl < ... < tn < tn+l are indices in NO and B j , 1 :s j :s n + 1, 
are Borel sets, then 

9'{Xtn+1 E Bn+l I X t1 , ... , Xtn} = 9'{Xtn+1 E Bn+! I X tn }· 

In this form we can define a Markov process {X t } with a continuous parameter 
t ranging in [0, (0). 
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2. Does the Markov property imply the following (notation as in 
Exercise 1): 

3. Unlike independence, the Markov property is not necessarily preserved 
by a "functional": {f(Xn ), n E NO}. Give an example of this, but show that it 
is preserved by each one-to-one Borel measurable mapping f. 

*4. Prove the strong Markov property in the form of (8). 

5. Prove Theorem 9.2.6. 
*6. For the p(n) defined in (14), prove the "Chapman-Kolmogorov 

equations": 

"1m EN, n EN: p(m+n) (x, B) = r p(m) (x, dy)p(n\y, B). 
}(J7/1 

7. Generalize the Chapman-Kolmogorov equation in the nonhomo
geneous case. 

*8. For the homogeneous Markov process constructed in the text, show 
that for each f 2: 0 we have 

*9. Let B be a Borel set, f 1 (x, B) - P(x, B), and define f n for n 2: 2 
inductively by 

f n (x, B) = [ P(x, dy)f n-1 (y, B); 

put f(x, B) - 2::::0=1 f n(X, B). Prove that f(Xn, B) is a version of the 
conditional probability 9ft Jj n+1 [Xi E Bl I Xn} for the homogeneous Markov 
process with transition probability function Pc., .). 

*10. Usmg the j defined m Exercise 9, put 

00 

g(x, B) = f(x, B) - L 1 p(n) (x, dy)[1- fey, B)]. 
n=l 

Prove that g(Xn , B) is a version of the conditional probability 

g"{lim SUp[X j E B] I X n }. 
j 

*11. Suppose that for a homogeneous Markov process the initial distri
bution has support in NO as a subset of ::JJ?1, and that for each i E NO, the 
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transition probability function P(i, .), also has support in NO. Thus 

is an infinite matrix called the "transition matrix". Show that p(n) as a matrix 
is just the nth power of p(1). Express the probability 9'{X tk = ik, 1 .:s k .:s n} 
in terms of the elements of these matrices. [This is the case of homogeneous 
Markov chains.] 

12. A process {Xn , n E NO} is said to possess the "rth-order Markov 
property", where r 2: 1, iff (6) is replaced by 

2P{Xn+l E B I Xo, ... , Xn} = 9'{Xn+l E B I Xn, ... , Xn-r+d 

for n 2: r - 1. Show that if r < s, then the rth-order Markov property implies 
the sth. The ordinary Markov property is the case r = 1. 

13. I,et Yn be the random vector (Xn' Xn I 1 , , Xn I r 1) Then the 
vector process {Yn , n E NO} has the ordinary Markov property (trivially 
generalized to vectors) if and only if {X n, n E lV'o} has the rth-order Markov 
property. 

14. Let {Xn, n E NO} be an independent process. Let 

n 
s(r+l) 

n 
j=O 

for r > 1. Then {S~), n E NO} has the rth-order Markov property. For r = 2, 
give an example to show that it need not be a Markov process. 

15. If {S n, n E N} IS a random walk such that .o/'{S 1 #= O} > 0, then for 
any finite interval [a, b] there exists an E < 1 such that 

::IP{Sj E [a, b], 1 < j < n} < Ell 

This is just Exercise 6 of Sec. 5.5 again.] 

16. The same conclusion is true if the random walk above is replaced 
by a homogeneous Markov process for which, e.g., there exist 0>0 and 17>0 
such that P(x, a l (x 8, x + 8)) ~ 'I for every x. 

9.3 Basic properties of smartingales 

The sequence of sums of independent r.v.'s has motivated the generalization 
to a Markov process in the preceding section; in another direction it will now 
motivate a martingale. Changing our previous notation to conform with later 



9.3 BASIC PROPERTIES OF SMARTINGAlES I 335 

usage, let {Xn, n EN} denote independent r.v.'s with mean zero and write 
Xn = 2:J=l Xj for the partial sum. Then we have 

l(Xn+l 1 Xl,··· ,Xn) = f,(Xn +Xn+l 1 Xl,··· ,Xn) 

= Xn + J'(Xn+l 1 Xl,"" Xn) = Xn + l(Xn+l) = X n. 

Note that the conditioning with respect to Xl, ... , Xn may be replaced by 
conditioning with respect to Xl, ... ,Xn (why?). Historically, the equation 
above led to the consideration of dependent r.v.'s {xn} satisfying the condition 

(1) 

It is astonishing that this simple property should delineate such a useful class 
of stochastic processes which will now be introduced. In what follows, where 
the index set for n is not specified, it is understood to be either N or some 
initial segment N m of N. 

DEFINITION OF MARTINGALE. The sequence of r. v.' sand B.F.' s {Xn, ~n} is 
called a martzngale Iff we have for each n: 

(a) ~l C ~n+l and Xn E g;;; 
(b) cf(IXn I) < 00; 
(c) Xn = {(Xn+l 1 :'fn), a.e. 

It is called a supermartingale iff the "-" in (c) above is replaced by">", and 
a submartingale iff it is replaced by"::::". For abbreviation we shall use the 
term smartingaie to cover all three varieties. hI case '~l 31l,n] as defined in 
Sec. 9.2, we shall omit :'In and write simply {Xn}; more frequently however 
we shall consider {'~l} as given in advance and omitted from the notation. 

Condition (a) is nowadays referred to as: {Xn} is adapted to {.<tln }. Condi-
tion (b) says that all the r.v.'s are integrable; we shall have to impose stronger 
condItIOns to obtam most of our results. A partIcularly Important one IS the 
uniform integrability of the sequence {X'I}, which is discussed in Sec. 4.5. A 
weaker condition is given by 

(2) sup /(IXnl) < 00; 

when this is satisfied we shall say that {Xn} is L I-bounded. Condition (c) leads 
at once to the more general relation: 

(3 ) n < m ::::} Xn = J(XIIl 1 ;/IJI ). 

This follows from Theorem 9.1.5 by induction since 

<"(X 1 c/L ) <"( ('(X 1 c/f. ) 1 Jf. ) <"(X (r m '/'n = ((. (r In '/~n-l ,/'n = ((, In-I 1 ~n)' 
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An equivalent form of (3) is as follows: for each A E ;:-'~l and n .:::: m, we have 

(4) I Xn d,J)? = I Xm dg;. 

It is often safer to use the explicit formula (4) rather than (3), because condi
tional expectations can be slippery things to handle. We shall refer to (3) or 
(4) as the defining relation of a martingale; similarly for the "super" and "sub" 
varieties. 

Let us observe that in the form (3) or (4), the definition of a smartingale 
is meaningful if the index set N is replaced by any linearly ordered set, with 
"<" as the strict order. For instance, it may be an interval or the set of 
rational numbers in the interval. But even if we confine ourselves to a discrete 
parameter (as we shall do) there are other index sets to be considered below. 

It is scarcely worth mentioning that {Xn} is a supermartingale if and 
onl y if {-X n} is a sub martingale, and that a martingale is both. However the 
extension of results from a martingale to a smartingale is not always trivial, nor 
is it done for the sheer pleasure of generalization. For it is clear that martingales 
are harder to come by than the other varieties. As between the super and sub 
cases, though we can pass from one to the other by simply changing signs, 
our force of habit may influence the choice. The next proposition is a case in 
point. 

Theorem 9.3.1. Let {Xn' .-:Jin} be a submartingale and let cp be an increasing 
convex function defined on ;jItl. If CP(Xn) is integrable for every n, then 
{cp(Xn), ~l} is also a submartingale. 

PROOF. Since cp is increasing, and 

we have 

(5) cp(XIl ) < cp( ['{Xn±l I ::"fn})' 

By Jensen's inequality (Sec. 9.1), the right member above does not exceed 
J{CP(XIl±l) I.J~l}; this proves the theorem. As forewarned in 9.1, we have left 
out some "a.e." abo ve and shall continue to do so. 

Corollary 1. If {X Il , ,-0Il } is a submartingale, then so is {X~, '~l}' Thus {(X~) 
as well as J (X 11) is increasing with n. 

Corollary 2. If {XIl' ,fll } is a martingale, then {IXn I, :1in} is a submartingale; 
and {IX niP, .-0n}, 1 < p < 00, is a submartingale provided that every X II E LP; 
similarly for {IXn Ilog± IXn I, .-'lin} where log± x = (log x) V 0 for x 2: O. 
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PROOF. For a martingale we have equality in (5) for any convex cp, hence 
we may take cp(x) = lxi, Ixl P or Ixllog+ Ixl in the proof above. 

Thus for a martingale {Xn}, all three transmutations: {X~}, {X;;-} and 
{IXnl} are submartingales. For a submartingale {Xn}, nothing is said about the 
last two. 

Corollary 3. If {Xn, .:::'}n} is a supermartingale, then so is {XII /\ A, '~n} where 
A is any constant. 

PROOF. We leave it to the reader to deduce this from the theorem, but 
here is a quick direct proof: 

Xn /\ A 2: £'(Xn+1 I ::";;n) /\ g(A. I ~l) > cf(Xn+1 /\ A I .:::';;11)' 

It is possible to represent any smartingale as a martingale plus or minus 
something special. Let us call a sequence of LV.' S {Zn, n E N} an increasing 
process iff it satisfies the conditions: 

( i) Z1 - 0; Zn < Zn+1 for n > 1; 
( ii) cff(Zn) < 00 for each n. 

It follows that ZXJ = limll - HXl t Zn exists but may take the value +00; ZOO 
IS mtegrable If and only if {Zn} is L1-bounded as defined above, which 
means here limll--+?O t ({'(ZM) < 00. This is also equivalent to the uniform 
integrability of {Zn} because of (i). We can now state the result as follows. 

Theorem 9.3.2. Any subrnartingale {Xn, ::-f#n} can be written as 

(6) Xn=Yn+Zn , 

where {Y n , ,fn} is a martingale, and {Zn} is an increasing process. 

PROOF. From {Xn } we define its difference sequence as follows: 

(7) 

so that Xn = ~~= 1 X j, n 2: 1 (cf. the notation in the first paragraph of this 
sectIOn). The defining relation for a subrnartingale then becomes 

with equality for a martingale. Furthennore, we put 

Yn = Xn - d {xn I '-"~l-l}, 

21 = 0, 

n 

Yn = LYj; 
j=1 

n 

Zn = L2j. 
j=1 
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Then clearly Xn = Yn + Zn and (6) follows by addition. To show that {Y n, ;:-'!1n } 

is a martingale, we may verify that tf{Yn I ~n-d = 0 as indicated a moment 
ago, and this is trivial by Theorem 9.1.5. Since each Zn :::: 0, it is equally 
obvious that {Zn} is an increasing process. The theorem is proved. 

Observe that Zn E ~n-l for each n, by definition. This has important 
consequences; see Exercise 9 below. The decomposition (6) will be called 
Doob's decomposition. For a supermartingale we need only change the "+" 
there into "-", since {-Y n, ~n} is a martingale. The following complement 
is useful. 

Corollary. If {Xn} is Ll-bounded [or uniformly integrable], then both {Yn} 
and {Zn} are L I-bounded [or uniformly integrable]. 

PROOF. We have from (6): 

since g(y II) = g(y 1 ). Since ZII > 0 this shows that if {Xn} is L I-bounded, 
then so is {Z n}; and {Y n} is too because 

Next if {Xn} is uniformly integrable, then it is Ll-bounded by Theorem 4.5.3, 
hence {Zn} IS Ll-bounded and therefore umformly Integrable as remarked 
before. The uniform integrability of {Yn } then follows from the last-written 
inequality. 

We corne now to the fundamental notion of optional sampling of a 
smartingale. This eonsists in substituting eertain random variables for the orig-
inal index n regarded as the time parameter of the process. Although this kind 
of thing has been done in Chapter 8, we will reintroduce it here in a slightly 
different way for the convenience of the reader To begin with we adjoin a last 
index 00 to the set N and call it N 00 = {I, 2, ... , oo}. This is an example of 
a linearly ordered set mentioned above. Next, adjoin gf"oo - V':=l oJ?;; to {oJ?;;}. 

A r.v. a taking values in N 00 is called optional (relative to {S?;;, n EN ooD 

iff for every n E N 00 we have 

(8) 

Since 0/,; increases with n, the condition in (8) is unchanged if {a :s n} is 
replaced by {a = n}. Next, for an optional a, the pre-a field ~ is defined 
to be the class of all subsets A of ::?Too satisfying the following condition: for 
each n E N 00 we have 

(9) 
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where again {a :s n} may be replaced by {a = n}. Writing then 

(10) An=An{a=n}, 

we have An E g,; and 

n n 

where the index n ranges over N 00' This is (3) of Sec. 8.2. The reader should 
now do Exercises 1-4 in Sec. 8.2 to get acquainted with the simplest proper
ties of optionality. Here are some of them which will be needed soon: ~ is 
a B.P. and a E ~a; if a is optional then so is aAn for each n EN; if a :s fJ 
where fJ is also optional then ~ C 9i; in particular ~i\n C ~a n g,; and in 
fact this inclusion is an equation. 

Next we assume Xoo has been defined and Xoo E 9?""00. We then define Xa 
as follows: 

(11) 

in other word s , 

Xa(W) - Xn(w) on {a - n}, n E N oo . 

This definition makes sense for any ex taking values in 1"100 , but for an optional 
a we can assert moreover that 

(12) 

This is an exercise the reader should not miss; observe that it is a natural 
but nontrivial extension of the assumption XI! E ::0n for every n. Indeed, all 
the general propositions concerning optional sampling aim at the same thing, 
namely to make optional times behave like constant times, or again to enable 
us to substitute optional r. v.' s for constants. For thIS purpose conditIOns must 
sometimes be imposed either on a or on the smartingale {Xn }. Let us however 
begin with a perfect case which turns out to be also very important. 

We introduce a class of martingales as follows. POI any integrable r. v. Y 
we put 

(13) Xn = @(Y 1::17,;), n E N oo · 

By Theorem 9.1.5, if n :s m: 

(14) 

which shows {Xn, .fn} is a martingale, not only on N but also on N 00' The 
following properties extend both (13) and (14) to optional times. 
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Theorem 9.3.3. For any optional a, we have 

(15) Xa=I(YI.4a). 

If a :s fJ where fJ is also optional, then {Xa, :!fta;XfJ , ;JPfJ} forms a two-term 
martingale. 

PROOF. Let us first show that Xa is integrable. It follows from (13) and 
Jensen's inequality that 

Since {a = 11} E ~l' we may apply this to get 

r IXald?P = 2:1 IXnldP?:s 2:1 IYld9 = r IYld9 < 00. JQ n {a=n} n {a=n} JQ 
Next if A E ;jfa, we have, using the notation in (10): 

where the second equation holds by (13) because An E ~n' This establishes 
(15). Now if ex ~ fj, then ~a C ~ and consequently by Theorem 9.1.5. 

which proves the second assertion of the theorem. 

As an immediate corollary, if {an} is a sequence of optional r.v.'s such 
that 

(16) 

then {Xan ' .Jftall } is a martingale. This new martingale is obtained by sampling 
the original one at the optional times {aj}. We now proceed to extend the 
second part of Theorem 9.3.3 to a supermartingale. There are two important 
cases whIch wIll be dIscussed separately. 

Theorem 9.3.4. Let a and fJ be two bounded optional r.v.'s such that 
a :s fJ. Then for any [super]martingale {Xn}, {Xa, ;Jfa; XfJ'~} forms a 
[super ]martingale. 

PROOF. Let A E .-;fa; using (10) again we have for each k ::::. j: 

A j n {fJ > k} E :~ 
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because Aj E ;Y-j C .~, whereas {,8 > k} = {,8 .:s k}C E .--'k. It follows from the 
defining relation of a superrnartingale that 

r Xk d9 ~ r Xk+l d . ./? 
} Ajn{fJ>k} } Ajn{fJ>k} 

and consequently 

r Xk d9 ~ r Xk do/> + r Xk+l d?P 
} Ajn{fJ?:.k} } Ajn{fJ=k} } Ajn{fJ>k} 

Rewriting this as 

r Xk dqIJ - r Xk+l d?P ~ r XfJ d~?; 
} Ajn{fJ?:.k} } Ajn{fJ?:.k+l} } Ajn{fJ=k} 

summing over k from j to m, where m is an upper bound for ,8; and then 
replacing X j by Xa on A j, we obtain 

r r 

Another summation over j from 1 to m yields the desired result. In the case 
of a martingale the inequalities above become equations. 

A particular case of a bounded optional r v is an - a /I, n where a is 
an arbitrary optional r.v. and n is a positive integer. Applying the preceding 
theorem to the sequence {an} as under Theorem 9.3.3, we have the following 
corollary. 

Corollary. If [Xn , ~l} is a [super]martingale and a is an arbitrary optional 
r.v., then {XaAn~aAn} is a [super]martingale. 

In the next basic theorem we shall assume that the [super]martingale 
is given on the index set N 00' This is necessary when the optional r.v. 
can take the value +00, as required in many applications; see the typical 
example in (5) of Sec. 8.2. It turns out that if {Xn } is originally given only 
for n EN, we may take Xoo = limn~oo XIl to extend it to N 00 under certain 
conditions, see Theorems 9.4.5 and 9.4.6 and Exercise 6 of Sec. 9.4. A trivial 
case occurs when {Xn , :-'fn; n E N} is a positive superrnartingale; we may then 
take Xoo = o. 

Theorem 9.3.5. Let a and,8 be two arbitrary optional r.v.'s such that a .:s ,8. 
Then the conclusion of Theorem 9.3.4 holds true for any superrnartingale 
{Xn ,·1ftn ;n ENcx;}. 



342 I CONDITIONING. MARKOV PROPERTY. MARTINGALE 

Remark. For a martingale {X n, :,In ; n E N oo} this theorem is contained 
in Theorem 9.3.3 since we may take the Y in (13) to be Xoo here. 

PROOF. (a) Suppose first that the supermartingale is positive with Xoo = 0 
a.e. The inequality (17) is true for every mEN, but now the second integral 
there is positive so that we have 

Since the integrands are positive, the integrals exist and we may let m -+ 00 

and then sum over j EN. The result is 

which falls short of the goal. But we can add the inequality 

} An{a=oo} JAn{a=oo} JAn{f3=oo} JAn{f3=oo} 

which IS trivuil because Xoo = 0 a.e. ThIs YIelds the desIred 

(18) 

Let us show that Xft and XfJ are in fact integrable. Since Xn > Xoo we have 
Xa :s limn~ooXaAn so that by Fatou's lemma, 

(19) l(Xa):S lim 0'(XaAn ). 
n ) 00 

S i nee 1 and a J\ 11 are two bounded optional r v 's sati sfying ] < al\. n; the 
right-hand side of (19) does not exceed t(X I ) by Theorem 9.3.4. This shows 
Xa is integrable since it is positive. 

(b) In the general case we put 

Then {X;z, .Jln; 11 EN ool is a martingale of the kind introduced in (13), and 
Xn 2: X~ by the defining property of supermartingale applied to Xn and Xoo· 
Hence the difference {X;;, '~z; n EN} is a positive supermartingale with X~ = 
o a.e. By Theorem 9.3.3, {X~, '~a; X~, '~f3} forms a martingale; by case (a), 
{X~, ,/fa; X~, ,./ftd forms a supermartingale. Hence the conclusion of the theorem 
follows simply by addition. 

The two preceding theorems are the basic cases of Doob' s optional 
sampling theorem. They do not cover all cases of optional sampling (see e.g. 
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Exercise 11 of Sec. 8.2 and Exercise 11 below), but are adequate for many 
applications, some of which will be given later. 

Martingale theory has its intuitive background in gambling. If X/l is inter
preted as the gambler's capital at time n, then the defining property postulates 
that his expected capital after one more game, played with the knowledge of 
the entire past and present, is exactly equal to his current capital. In other 
words, his expected gain is zero, and in this sense the game is said to be 
"fair". Similarly a smartingale is a game consistently biased in one direc
tion. Now the gambler may opt to play the game only at certain preferred 
times, chosen with the benefit of past experience and present observation, 
but without clairvoyance into the future. [The inclusion of the present status 
in his knowledge seems to violate raw intuition, but examine the example 
below and Exercise 13.] He hopes of course to gain advantage by devising 
such a "system" but Doob's theorem forestalls him, at least mathematically. 
We have already mentioned such an interpretation in Sec. 8.2 (see in partic
ular Exercise 11 of Sec. 8.2; note that ex + 1 rather than ex is the optional 
time there.) The present generalization consists in replacing a stationary inde-
pendent process by a smartmgale. The classical problem of "gambler's ruin" 
illustrates very well the ideas involved, as follows. 

Let {S n, n E NO} be a random walk in the notation of Chapter 8, and let S 1 

have the Bemoullian distribution ~ 01 + ~ 0 1. It follows from Theorem 8.3.4, 
or the more elementary Exercise 15 of Sec. 9.2, that the walk will almost 
certainly leave the interval [-a, b], where a and b are strictly positive integers; 
and since it can move only one unit a time, it must reach either a or b This 
means that if we set 

(20) ex = min{n::: I:S/l = -a}, fJ = min{n::: I:S/l = b}, 

then y = exAfJ is a finite optional r.v. It follows from the Corollary to 
Theorem 9.3.4 that {SyAIl} IS a martmgale. Now 

(21 ) 11m SyAn - Sy a.e. 
n~oo 

and clearly Sy takes only the values -a and b. The question is: with what 
probabilities? In the gambling interpretation: if two gamblers play a fair coin 
tossing game and possess, respectively, a and b units of the constant stake as 
initial capitals, what is the probabIlIty of rum for each? 

The answer is immediate ("without any computation"!) if we show first 
that the two r. v. 's {S 1, S y} form a martingale, for then 

(22) 

which is to say that 

-a;4J{Sy = -a} + b;,~{Sy = b} = 0, 
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so that the probability of ruin is inversely proportional to the initial capital of 
the gambler, a most sensible solution. 

To show that the pair {S1, Sy} forms a martingale we use Theorem 9.3.5 
since {SyAn, 11 EN rxJ is a bounded martingale. The more elementary 
Theorem 9.3.4 is inapplicable, since y is not bounded. However, there is 
a simpler way out in this case: (21) and the boundedness just mentioned 
imply that 

and since /(SyA1) = /(S1), (22) follows directly. 
The ruin problem belonged to the ancient history of probability theory, 

and can be solved by elementary methods based on difference equations (see, 
e.g., Uspensky, Introduction to mathematical probability, McGraw-Hill, New 
York, 1937). The approach sketched above, however, has all the main ingredi
ents of an elaborate modem theory. The little equation (22) is the prototype of 
a "harmonic equation", and the problem itself is a "boundary-value problem". 
The steps used in the solution - to wit: the introduction of a martingale, 
its optional stopping, its convergence to a limit, and the extension of the 
martingale property to include the limit with the consequent convergence of 
expectations - are all part of a standard procedure now ensconced in the 
general theory of Markov processes and the allied potential theory 

EXERCISES 

1. The defining relation for a martingale may be generalized as follows. 
For each optional LV. ex < 11, we have ${Xn I ~} = Xa' Similarly for a 
smartingale. 

*2. If X is an integrable r.v., then the collection of (equivalence classes 
of) LV.'S l(X I §) with r; ranging over all Borel subfields of g;, is uniformly 
integrable. 

3. S oppose {X~l'), '~l}, k - 1, 2, are two [soperJmartingales, ex is a finite 

that {X/1' .:1'n} is a [super]martingale. [HINT: Verify the defining relation in (4) 
for m 11 + 1.] 

4. Suppose each Xn is integrable and 

J{Xn+1 I XI," .,Xn} = n-I(X I + ... +Xn) 

then {(n -I )(X I + ... + Xn), n E N} is a martingale. 

S. Every sequence of integrable LV.'S is the sum of a supermartingale 
and a submartingale. 

6. If {X/1, .-0/1} and {X~, .-'l'n} are martingales, then so is {Xn + X~, ~}. 
But it may happen that {X /1} and {X~} are martingales while {X n + X~} is not. 
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[HINT: Let XI and xi be independent Bemoullian r.v.'s; and X2 = x; = +1 or 
-1 according as XI + xi = 0 or =f. 0; notation as in (7).] 

7. Find an example of a positive martingale which is not uniformly inte
grable. [HINT: You win 2n if it's heads n times in a row, and you lose everything 
as soon as it's tails.] 

8. Find an example of a martingale {Xn} such that Xn -+ -00 a.e. This 
implies that even in a "fair" game one player may be bound to lose an 
arbitrarily large amount if he plays long enough (and no limit is set to the 
liability of the other player). [HINT: Try sums of independent but not identically 
distributed r.v.'s with mean 0.] 

*9. Prove that if {Y n, ,'j6n} is a martingale such that Y n E ,'j6n-l, then for 
every n, Y n = Y 1 a.e. Deduce from this result that Doob's decomposition (6) 
is unique (up to equivalent r.v.'s) under the condition that Zn E 0?;;-1 for every 
n ::::: 2. If this condition is not imposed, find two different decompositions. 

10. If {Xn} is a uniformly integrable submartingale, then for any optional 
r.v. a we have 

(i) {Xai\n} is a uniformly integrable submartingale; 

(ii) 0'(X 1) ::: 0'(Xa) ::: SUpn 0'(Xn). 

*11. Let {Xn , 9?;;; n E N} be a [super]martingale satisfying the following 
condition. there exists a constant lv! such that for every n ::: 1: 

0"{lXn - X n- l ll:16n- l } ::: Ma.e. 

where Xo = 0 and .% is trivial. Then for any two optional r.v.'s a and fJ 
such that ex ::: fJ and cSU(fJ) < 00, {Xa, :7fa, X{J, .~{J} is a [supeI]martingale. This 
is another case of optional sampling given by Doob, which includes Wald's 
equation (Theorem 5.5.3) as a special case. [HINT: Dominate the integrand in 
the :;;econd integral in (17) by YfJ where Xo 0 and Ym - £:-1 IXn XIl II· 
We have 

12. Apply Exercise 11 to the gambler's ruin problem discussed in the 
text and conclude that for the a in (20) we must have J'(a) = +00. Verify 
this by elementary computation. 

* 13. In the gambler's ruin problem take b = 1 in (20). Compute i (S {J/\Jl ) 

for a fixed n and show that {So, S {J/\n} forms a martingale. Observe that {So, S {J} 
does not form a martingale and explain in gambling terms the effect of stopping 
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fJ at n. This example shows why in optional sampling the option may be taken 
even with the knowledge of the present moment under certain conditions. In 
the case here the present (namely fJ /\ n) may leave one no choice! 

14. In the gambler's ruin problem, suppose that S I has the distribution 

POI + (1 - P)O-l' P =1= ~; 

and let d = 2p - 1. Show that 0'(Sy) = dg(y). Compute the probabilities of 
ruin by using difference equations to deduce 0'(y), and vice versa. 

15. Prove that for any L I-bounded smartingale {Xn , g;;;, n E N oo}, and 
any optional ex, we have 6(IXa I) < 00. [HINT: Prove the result first for a 
martingale, then use Doob's decomposition.] 

*16. Let {Xn,S?;;} be a martingale: Xl = Xl, Xn = Xn - Xn-l for n :::. 2; 
let Vn E 3?;;-1 for n :::. 1 where.% = .9l; now put 

j=l 

Show that {Tn, g;;} is a martingale provided that Tn is integrable for every n. 
The martingale may be replaced by a smartingale if Vn > 0 for every n. As 
a particular case take Vn 1 {nsa} where a is an optional r.v. relative to {¥n}. 
What then is Tn? Hence deduce the Corollary to Theorem 9.3.4. 

17. As in the preceding exercise, deduce a new proof of Theorem 9.3.4 
by taking Vn - 1 {a<n:::t!}. 

9.4 Inequalities and convergence 

We begin with two inequalities, the first of which IS a generalization of 
Kolmogorov's inequality (Theorem 5.3.1). 

Theorem 9.4.1. If {K j , Pj, j E Nil} is a sJ]bmartinga1e, then for each real ), 
we have 

(1) 

:s 0"(X:) - 0"(X I)' 

PROOF. Let ex be the first j such that X j :::. A if there is such a j in N n, 

otherwise let ex = n (optional stopping at n). It is clear that ex is optional; 
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since it takes only a finite number of values, Theorem 9.3.4 shows that the 
pair {Xa, Xn} forms a submartingale. If we write 

M = { max X j > A}, 
lc:;jc:;n 

then M E ~ (why?) and Xa ::::. A on M, hence the first inequality follows 
from 

the second is just a cruder consequence. 
Similarly let fJ be the first j such that X j :s -A if there is such a j in 

N n, otherwise let fJ = n. Put also 

Then {Xl, Xt!} is a submartingale by Theorem 9.3.4, and so 

r r r 

which reduces to (2). 

Corollary 1. If {Xn} is a martingale, then for each A>O: 

(3) 

If in addition @(X~) < 00 for each n, then we have also 

(4) 

These are obtamed by applymg the theorem to the submartingales {IXn I} 
and {X~}. In case XrJ is the SrJ in Theorem 5.3.1, (4) is precisely the Kolmo-
gorov inequality there. 

Corollary 2. Let 1 :s m :s n, Am E ~ and M = {maxmc:;jc:;n X j ::::. A}, then 

This is proved just as (1) and will be needed later. 
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We now come to a new kind of inequality, which will be the tool for 
proving the main convergence theorem below. Given any sequence of r.v.'s 
{X j}, for each sample point w, the convergence properties of the numerical 
sequence {X/w)} hinge on the oscillation of the finite segments {X/w), j E 

Nil} as 11 ~ 00. In particular the sequence will have a limit, finite or infinite, if 
and only if the number of its oscillations between any two [rational] numbers a 
and b is finite (depending on a, band w). This is a standard type of argument 
used in measure and integration theory (cf. Exercise 10 of Sec. 4.2). The 
interesting thing is that for a smartingale, a sharp estimate of the expected 
number of oscillations is obtainable. 

Let a < b. The number v of "upcrossings" of the interval [a, b] by a 
numerical sequence {Xl, ... , xn} is defined as follows. Set 

al = min{j: 1 :s j :s n, Xj < a}, 

a2 = min{j: al < j :s n, Xj ::: b}; 

if either al or a2 is not defined because no such j exists, we define v = O. In 
general, for k ::: 2 we set 

a2k-1 - mm{j: a2k-2 < } :s n, Xj :s aJ, 

a2k - min{}. a2k-1 < j :s n, Xj ::: b}; 

If anyone of these IS undefined, then all the subsequent ones wIll be undefined. 
Let ae be the last defined one, with f = 0 if al is undefined, then v is defined 
to be [f/2]. Thus v is the actual number of successive times that the sequence 
clOsses tlOm :s a to ~ b. Although the exact number is not essential, since a 
couple of crossings more or less would make no difference, we must adhere 
to a rigid way of counting in order to be accurate below. 

Theorem 9.4.2. Let {Xj, ./ftj, j E Nil} be a submartingale and -00 < a < 

b < 00. Let V~~.)bl(w) denote the number of upcrossings of [a, b] by the sample 
sequence {Xi (w); j E Nil}' We have then 

(5) C{ (Il) } < _<' ___ Il _________ < n 
(r v[a.bl - b _ a b - a 

CCf(X a)+} J'{(XI a)+} tf{X+} + lal 

PROOF. Consider first the case where Xj ::: 0 for every j and 0 = a < b, 

so that V~;.)bl(w) becomes v~~.~l(w), and Xaj(w) = 0 if j is odd, where aj = 
a/w) is defined as above with Xj =Xj(w). For each w, the sequence aj(w) 
is defined only up to f(w), where 0 :s f(w) :s n. But now we modify the 
definition so that aj(w) is defined for 1 :s j :s n by setting it to be equal to n 
wherever it was previously undefined. Since for some w, a previously defined 
a /w) may also be equal to n, this apparent confusion will actually simplify 
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the fonnulas below. In the same vein we set ao = 1. Observe that an = n in 
any case, so that 

n-l 

Xn - Xl = Xan - Xao = L(Xaj+1 - Xa) = L + L . 
)=0 ) even ) odd 

If j is odd and j + 1 :s few), then 

Xaj+l (W) ::: b>O = Xaj (w); 

If j is odd and j = few), then 

Xaj+l (w) = Xn(w) ::: 0 = Xa/w); 

if j is odd and few) < j, then 

Xaj+l (w) = Xn (w) = Xaj (w). 

Hence in all cases we have 

j odd j eGG 
j+l:sf(w) 

Next, observe that {a j, 0 < j < n} as modified above is in general of the fonn 
1 = ao :s al < a2 < ... < ae :s ae+l = ... = an = n, and since constants 
are optional, this is an increasing sequence of optional r. v. ' s. Hence by 
Theorem 9.3.4, {X a j' 0 :s j :s n} is a submartingale so that for each j, 0 :s 
j :s 11 - 1, we have 0{Xaj+1 - Xa) ::: 0 and consequently 

Adding to this the expectations of the extreme tenns in (6), we obtain 

(7) 

which is the particular case of (5) under consideration. 
In the general case we apply the case just proved to {(X) - a)+, j E N n }, 

which is a submartingale by Corollary 1 to Theorem 9.3.1. It is clear that 
the number of upcrossings of [a, b] by the given submartingale is exactly 
that of [0, b - a] by the modified one. The inequality (7) becomes the first 
inequality in (5) after the substitutions, and the second one follows since 
(Xn - a)+ :s X~ + JaJ. Theorem 9.4.2 is proved. 
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The corresponding result for a supennartingale will be given below; but 
after such a painstaking definition of upcrossing, we may leave the dual defi
nition of down crossing to the reader. 

Theorem 9.4.3. Let {X j , :'fj;} E N n } be a supennartingale and let -00 < 

ab < 00. Let v~~.~] be the number of downcrossings of [a, b] by the sample 
sequence {Xj(w),} E N n }. We have then 

(8) 
( -(n)} t{Xl 1\ b} - e:{Xn 1\ b} 

c{v[a.b] .::::: b-a 

{ X . N}' b . I d -(II) . (n) f tho 
PROOF. - j, } E n IS a su martmga e an V[a,b] IS V[-b,-a] or IS 

submartingale. Hence the fir.st part of (5) becomes 

-en) (n(-Xn +b)+ - (-Xl +b)+} c9{(b -Xn)+ - (b -Xd+} 
(D{v } < -----------

([' [a.b] - -a - (-b) b - a 

Since (b - x)+ = b - (b 1\ x) this is the same as in (8). 

Corollary. For a positive supennartingale we have for 0 .::::: a < b < 00 

. b a 

G. Letta proved the sharper "dual": 

, b-a 

(Martingales et integration stochastique, Quademi, Pisa, 1984, 48-49.) 
The basic convergence theorem is an immediate consequence of the 

upcrossing inequality. 

Theorem 9.4.4. If {Xn ,;9'n,11 Ei'V} is an Ll-bounded submartingale, then 
{Xn } converges a.e. to a finite limit. 

Remark. Since 

the condition of L l-boundedness is equivalent to the apparently weaker one 
below: 

(9) 
. + sup 0 (X n ) < 00. 

n 

PROOF. Let V[a.b] = limn Vi;,)b]' Our hypothesis implies that the last tenn 
in (5) is bounded in n; letting n ~ 00, we obtain 0 {V[a.b]} < 00 for every a 
and b, and consequently v[a,b] is finite with probability one. Hence, for each 
pair of rational numbers a < b, the set 

A[a,h] = {limXn < a < b < limXn} 
n n 
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is a null set; and so is the union over all such pairs. Since this union contains 
the set where lim'l X n < limn X n, the limit exists a.e. It must be finite a.e. by 
Fatou's lemma applied to the sequence IX n I. 

Corollary. Every uniformly bounded smartingale converges a.e. Every posi
tive supermartingale and every negative submartingale converge a.e. 

It may be instructive to sketch a direct proof of Theorem 9.4.4 which is 
done "by hand", so to speak. This is the original proof given by Doob (1940) 
for a martingale. 

Suppose that the set A[a,b] above has probability> 'l}>0. For each w in 
A[a,b], the sequence {Xn (w), n EN} takes an infinite number of values < a 
and an infinite number of values > b. Let 1 = no < n I < ... and put 

A2j-1 = { m.in Xi < a}, A2j = { ma.x Xi > b}. 
n2j-2:S:l:s:n2j-1 n2j-1 <l:S:n2j 

Then for each k it is possible to choose the ni 's successively so that the differ
ences tli 7li-1 for 1 ~ i ~ 2k are so large that "most" of A[a,b] is co~tained 

;=1 i=1 

;-1 i-I 

where the equalities follow from the martingale property. Upon subtraction 
we obtain 

and consequently, upon summing over 1 :s j :s k: 

k(b - a)'l} - lal :s 0"(IXn I). 

This is impossible if k is large enough, since {X n} is L I-bounded. 
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Once Theorem 9.4.4 has been proved for a martingale, we can extend it 
easily to a positive or uniformly integrable supermartingale by using Doob's 
decomposition. Suppose {Xn} is a positive supermartingale and Xn = Y n - Zn 
as in Theorem 9.3.2. Then 0 :s Zn :s Y n and consequently 

('(Z) 1· ("(Z) 0(y). 
(r 00 = 1m (r; n :s (r; I, 

n~oo 

next we have 

cf(Yn ) = ct(Xn ) + g(Zn):S 0(X I ) + cf(Zoo)· 

Hence {Y n } is an Ll-bounded martingale and so converges to a finite limit 
as n ~ 00. Since Zn t Zoo < 00 a.e., the convergence of {Xn} follows. The 
case of a uniformly integrable supermartingale is just as easy by the corollary 
to Theorem 9.3.2. 

It is trivial that a positive submartingale need not converge, since the 
sequence {n} is such a one. The classical random walk {Sn} (coin-tossing 
game) is an example of a martingale that does not converge (why?). An 
interesting and not so trivial consequence is that both 0"(S~) and 0"(ISn I) must 
diverge to +oo! (ef. Exercise 2 of Sec. 6.4.) Further examples are furnished 
by "stopped random walk". For the sake of concreteness, let us stay with the 
classical case and define y to be the first time the walk reaches + 1. As in our 
previous discussion of the gambler's-ruin problem, the modified random walk 
- -

{Sn}, where SIl - SpAll' is still a martingale, hence in particular we have for 
each n: 

- -
[(Sn) = l(S I) = 

As ill (21) of Sec. 9.3 we have, writing 8 00 8 y 1, 

IimSn - Soo a.e., 
n 

since y < 00 a.e., but this convergence now also follows from Theorem 9.4.4, 
since st < 1 Observe, however, that 

Next, we change the definition of y to be the first time (> ]) the walk "retllrns" 

to 0, as usual supposing So = O. Then 500 = 0 and we have indeed [(5n ) = 
! (500 ). But for each n, 

1_ 5n dG;>O = 1_ 500 dPlJ, 
{S" >o} (S" >0) 

so that the "extended sequence" {51, ... , 5n , ... , 500 } is no longer a martin
gale. These diverse circumstances will be dealt with below. 
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Theorem 9.4.5. The three propositions below are equivalent for a sub
martingale {Xn , ~ftn; n E N}: 

(a) it is a uniformly integrable sequence; 
(b) it converges in L I; 
(c) it converges a.e. to an integrable Xoo such that {XIl' ::"ftn; n EN oo} is 

a submartingale and l(Xn) converges to C£:(Xoo). 

PROOF. (a) =} (b): under (a) the condition in Theorem 9.4.4 is satisfied so 
that X Il ~ Xoo a.e. This together with uniform integrability implies Xn ~ Xoo 
in L I by Theorem 4.5.4 with r = 1. 

(b) =} (c): under (b) let Xn ~ Xoo in LI, then cf(IXn I) ~ 0"(IXoo l) < 
00 and so Xn ~ Xoo a.e. by Theorem 9.4.4. For each A E ~ and n < n', 
we have 

by the defining relation. The right member converges to fAXoo d@J by L I 
convergence and the resulting inequality shows that {Xn, .':0n; n EN oo} is a 
submartmgale. Smce LI-convergence also implies convergence of expecta
tions, all three conditions in (c) are proved 

(c) =} (a); under (c), {X:' g,;; n EN oo} is a submartingale; hence we 
have for every A>O. 

(10) 

which shows that {X:' n E N] is uniformly integrable. Since X: ~ X~ a.e., 
this implies l(X:)~ cf(X~). Since by hypothesis e~(XIl)~ cr(Xoo), it follows 
that (f(Xn) ~ (§(Xoo )' This and Xn ~ Xoo a.e. Imply that {Xn } IS umformly 
integrable by Theorem 4 5 4 for r -] Hence so is {Xn }. 

Theorem 9.4.6. In the case of a martmgale, propOSItIOns (a) and (b) above 
are equivalent to (c') or (d) below: 

(c') it converges a.e. to an integrable Xoo such that {Xn,::"ftn;n E Nool is 
a martingal e; 

(d) there exists an integrable r.v. Y such that Xn = ley 1·-"1,1) for each 
n EN. 

PROOF. (b) :::::} (c') as before; (c'):::::} (a) as before if we observe that 
l(Xn) = cf(Xoc) for every n in the present case, or more rapidly by consid
ering IXnl instead of X: as below. (c'):::::} (d) is trivial, since we may take 
the Y in (d) to be the X 00 in (c'). To prove (d) :::::} (a), let n < n', then by 
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Theorem 9.1.5: 

hence {Xn, ;j6n, n EN; Y,::j6} is a martingale by definition. Consequently 
{IXIl I, .':"ft,/, n EN; IYi,::j6 } is a submartingale, and we have for each A>O: 

r IXn I d9J S r IYI d9J, 
J{IXn I>)..) J{IXn I>)..) 

1 1 
9J{IX nl > A} S ~ct(IXnl) S ~g(IYI), 

which together imply (a). 

Corollary. Under (d), {Xn' :!ftn, n E N;Xoo , SToo ; Y, ST} is a martingale, where 
Xoo is given in (c'). 

Recall that we have introduced martingales of the form in Cd) earlier in 
(13) in Sec. 9.3. Now we know this class coincides with the class of uniformly 
integr able martingales. 

We have already observed that the defining relation for a smartingale 
is meaningful on any linearly ordered (or even partially ordered) index set. 
The idea of extending the latter to a limit index is useful in applications to 
continuous-time stochastic processes, where, for example, a martingale may 
be defined on a dense set of real numbers m (tI, t2) and extended to t2. 
This corresponds to the case of extension from N to N oo . The dual extension 
corresponding to that to tl will now be considered. Let -N denote the set of 
strictly negative integers in their natUlal Older, let 00 precede every element 
in -N, and denote by -N 00 the set {-oo} U (-N) in the prescribed order. 
If {:!ftn , n E -N} is a decreasing (with decreasing n) sequence of Borel fields, 
their intersection AIlE-N .':"ftn will be denoted by q: 00. 

The convergence results for a submartingale on -N are simpler because 
the nght sIde of the upcrossmg mequahty (5) mvolves the expectatIon of the 
r v. with the largest index, which in this case is the fixed -] rather than the 
previous varying n. Hence for mere convergence there is no need for an extra 
condition such as (9). 

Theorem 9.4.7. Let {XIl , n E -N} be a submartingale. Then 

(11) lim Xn = X -00, where -00 S X -00 < 00 a.e. 
n-'>--oo 

The following conditions are equivalent, and they are automatically satisfied 
in case of a martingale with "submartingale" replaced by "martingale" in (c): 
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(a) {Xn} is unifonnly integrable; 
(b) X n ~ X-ex:: in L 1 ; 

(c) {Xn' n E -N DO} is a submartingale; 
(d) limn~_oc t f(X n ) > -00. 

PROOF. Let vi~.~] be the number of upcrossings of [a, b] by the sequence 
{X-n .... ,L 1 }. We have from Theorem 9.4.2: 

(Z (n) (t(X~I) + lal 
(c {v[ b]} :s --=---

a, b - a 

Letting n ~ 00 and arguing as the proof of Theorem 9.4.4, we conclude (11) 
by observing that 

C'(X+ ) 1'@(X+)(;)(X+) 
(c -00:S 1m (r; -n :s (0 -I < 00. 

n 

The proofs of (a) ::::::} (b) ::::::} (c) are entirely similar to those in Theorem 9.4.5. 
(c) =? (d) is trivial, since 00 < J'(X 00) < GS'(X n) for each n. It remains 
to prove (d) ::::::} (a). Letting C denote the limit in (d), we have for each A>O: 

It follows that ;o/>{ IX"I > A} converges to zero unifonnly in n as A ~ 00. Since 

r r 

this implies that {xt} is unifonnly integrable. Next if n < m, then 

J{XI/<-i.) 
} n . 

(XI/::::-A) 

[ X d'iJ2 

J XI/:::: XJ 

r 
= J'(Xn - Xm) + cf(Xm) - J Xm d;-?> 

(XI/::::-A) 

= l(Xn - Xm) + j Xm d:;/jJ. 
(XI/<-A) 

By (d), we may choose -m so large that ([:(Xn - Xm) > -E for any given E>O 
and for every n < m. Having fixed such an m, we may choose A so large that 

sup J IXml d:Jj"J < E 
n (XI/<-A) 
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by the remark after (12). It follows that {X;;-} is also uniformly integrable, and 
therefore (a) is proved. 

The next result will be stated for the index set N of all integers in their 
natural order: 

N = { ... , -n, ... , -2, -1,0,1,2, ... , n, .. . }. 

Let kpn} be increasing B.F.'s on N, namely: Yn c ~m if n .::::: m. We may 
"close" them at both ends by adjoining the B.F.' s below: 

~-00=1\~, ::0oo=V~· 
n n 

Let {Y n} be r.v.'s indexed by N. If the B.F.'s and r.v.'s are only given on N 
or -N, they can be trivially extended to N by putting ~ = .::0], Y n = Y] for 
all n < 0, or u4z - 4 I, Yll - Y I for all n > 0. The following convergence 
theorem is very useful. 

Theorem 9.4.8. Suppose that the Y II 's are dominated by an integrable r.v.Z: 

(13) sup IYn I s Z; 
n 

and limn Y n = Y 00 or Y -00 as n ~ 00 or -00. Then we have 

(14a) 

(14b) I · (C{y I u£ } - (C{y I U£ } 1m ([ n v'n - <0 -00 J'-oo' 
n~-oo 

In particular for a fixed integrable r. v. Y , we have 

(l5a) lim cf {Y I u4z} - [{ Y I '-'foe}; 
n~oo 

(l5b) lim l(Y I :~l} /(Y l;!ft Do)' 
n~-oo 

where the convergence holds also in L I in both cases. 

PROOF. We prove (15) first. Let X,l = t{Y l.u/n}. For n EN, {X'll'uPn } 
is a martingale already introduced in (13) of Sec. 9.3; the same is true for 
n E -N. To prove (1Sa), we apply Theorem 9.4.6 to deduce (c') there. It 
remains to identify the limit Xoo with the right member of (1Sa). For each 
A E ~n, we have 
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Hence the equations hold also for A E g?""oo (why?), and this shows that X 00 

has the defining property of <fey I .:000 , since Xoo E .:000 • Similarly, the limit 
X-oo in (I5b) exists by Theorem 9.4.7; to identify it, we have by (c) there, 
for each A E ::0-00 : 

i X-oo d9 = i Xn d9 = i Y d9. 

This shows that X-oo is equal to the right member of (I5b). 
We can now prove (I4a). Put for mEN: 

Wm = sup IY n - Y 001; 
n2:.m 

then IW ml :s 2Z and limm~oo W m = 0 a.e. Applying (15a) to W m we obtain 

lim 0'{lYn - Y ooll~} :s lim 0"{Wm I g,;} = 0'{Wm 1.:000 }. 
n~oo n~OO 

As m ~ 00, the last term above converges to zero by dominated convergence 
(see (vii) of Sec. 9.1). Hence the first term must be zero and this clearly 
implies (I4a). The proof of (I4b) is completely similar. 

i\lthough the corollary below is a very special case we give it for his tor 
ical interest. It is called Paul Levy's zero-or-one law (I935) and includes 
Theorem 8. I. I as a particular case. 

Corollary. If A E .::000 , then 

(I6) lim 9(A I .t:0n ) = 1 A a.e. 
n~oo 

The reader is urged to ponder over the intuitive meaning of this result and 
judge for himself whether it is "obvious" or "incredible". 

EXERCISES 

*1. Prove that for any smartingale, we have for each ),>0: 

n n 

For a martingale or a positive or negative smartingale the constant 3 may be 
replaced by 1. 

2. Let {X n} be a positive supermartingale. Then for almost every w, 
Xk(W) = 0 implies Xn (w) = 0 for all n::: k. [This is the analogue of a 
minimum principle in potential theory.] 

3. Generalize the upcrossing inequality for a submartingale {Xn, 2l,;} as 
follows: 
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Similarly. generalize the downcrossing inequality for a positive supermartin
gale {Xn, <J~} as follows: 

(-(n)- Xl 1\ b 
cr {v[a b] I :"Id :s ---

. b-a 

*4. As a sharpening of Theorems 9.4.2 and 9.4.3 we have, for a positive 
supermartingale {XIl' ,~IIl' n EN}: 

,J7J{v(n) > k} < cf(Xl 1\ a) (~)k-l 
[a.b] - - b b ' 

- {-(Il) k} r(Xl 1\ b) (a)k-l -f>v > < -
, [a.b] - - b b 

These inequalities are due to Dubins. Derive Theorems 9.3.6 and 9.3.7 from 
them. [HI1·n: 

r r 
b:"J"1{ex2j < n) :s 1 X a2j dPF :s 1 X a2j dPF 

{a2j<n} {a2j-J <Il} 

{a2j-1 <n} 

since {ex2j-l < n} E .-1+a2j_ I .] 

*5. Every L I-bounded martmgale is the difference of two positive L 1_ 

bounded martingales This is due to Krickeberg [HINT' Take one of them to 

*6. A smartingale {Xn, ~In; n EN} is said to be closable [on the right] 
iff there exists a r v Xoe such that {XI1' Jin ; n E N oe } is a smartingale of the 
same kind. Prove that if so then we can always take X 00 = Iimn~oo X I1 • This 
supplies a missing link in the literature. [HINT: For a supermartingale consider 
X 11 = l (X ex; I ,-:'111 ) + Y 11' then {Y 11 , ·-1+n } is a positive supermartingale so we 
may apply the convergence theorems to both terms of the decomposition.] 

7. Pwve a result fOI cIosabiIity [on the left] which is similar to Exercise 6 
but for the index set -N. Give an example to show that in case of N we may 
have limll~ex; I(X Il ) =1= / (Xoo ), whereas in case of -N closability implies 
Iimn~ ex; {(X,z) - {EX cd· 

8. Let {XIl , .~, n EN} be a submartingale and let ex be a finite optional 
r.v. satisfying the conditions: (a) / (IXal) < 00, and (b) 

lim r IXI1 I d./j) = O. 
'1~00 J{a>n} 

Then {X aM, '~/\Il; 11 E N ex;} is a submartingale. [HINT: for A E '-~An bound 
fA (Xu - Xa l\ll) d.~ below by interposing XaA11l where n < m.] 
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9. Let {X n ,,/fr/1;n EN} be a supennartingale satisfying the condition 
limn-->x /' (XI1 ) > -00. Then we have the representation X I1 = X;I + X;; where 
{X;I' ;'frl1 } is a martingale and {X;;, /In} is a positive supennartingale such that 
liml1~xX;; = 0 in LI as well as a.e. This is the analogue of F. Riesz's 
decomposition of a superhannonic function, X~ being the harmonic part and 
X;; the potential part. [HINT: Use Doob's decomposition Xn = Y n - ZI1 and 
put X;; = Yn - t(Zx 1·-0'/)'] 

10. Let {Xn , ;:"/n} be a potential; namely a positive supennartingale such 
that limn~oo {(X,I) = 0; and let Xn = Y,z - Zn be the Doob decomposition 
[cf. (6) of Sec. 9.3]. Show that 

*11. If {Xn } is a martingale or positive submartingale such that 
sUPn "(X~) < 00, then {Xn} converges in L 2 as "vell as a.e. 

12. Let {~n, n E N} be a sequence of independent and identically 
distributed r.v.'s with zero mean and unit variance; and Sn = '2:'j=1 ~j. 
Then for any optional LV. a relative to {~n} such that rF(fo) < 00, we 
have {(ISa!) < ,j2cf(J(X) and J(Sa) = O. This is an extension of Wald's 
equation due to Louis Gordon. [HINT: Truncate a and put rJk = (S~ljk) -
(SLl/~)' then 

00 00 

l{S;lh} = b ( md :7Y < b·0?{a > k}/Jk < 2cf (h); 

now use Schwarz's inequality followed by Fatou's lemma.] 

The next two problems are meant to give an idea of the passage from 
discrete parameter martingale theory to the continuous parameter theory. 

13. Let {X" ~7;; t E [0, I]} be a continuous parameter supennartingale. 
For each t E [0, 1] and sequence {t11} decreasing to t, {X,,,} converges a.e. and 
in Ll. For each t E [0, 1] and sequence {t11} increasing to t, {X," } converges a.e. 
but not necessarily in L I. [HINT: In the second case consider X'" - / {X, I .Jf;,,,}.] 

*14. In Exercise 13 let Q be the set of rational numbers in [0, 1]. For 
each t E (0, 1) both limits below exist a.e.: 

limXs , 
.Itt 
I(:Q 

[HINT: Let {Qn, n .:::: I} be finite subsets of Q such that Qn t Q; and apply the 
upcrossing inequality to {Xs, S E Qn}, then let n -+ 00.] 
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9.5 Applications 

Although some of the major successes of martingale theory lie in the field of 
continuous-parameter stochastic processes, which cannot be discussed here, it 
has also made various important contributions within the scope of this work. 
We shall illustrate these below with a few that are related to our previous 
topics, and indicate some others among the exercises. 

(J) The notions of "at least once" and "infinitely often" 

These have been a recurring theme in Chapters 4, 5, 8, and 9 and play impor
tant roles in the theory of random walk and its generalization to Markov 
processes. Let {Xu, n E NO} be an arbitrary stochastic process; the notation 
for fields in Sec. 9.2 will be used. For each n consider the events: 

00 

An - UfXj E Bj }, 

j=n 

00 

M - A An - {Xj E Bj i.a.}, 
n=l 

where Bn are arbitrary Borel sets. 

Theorem 9.5.1. We have 

(1) lim q>{An+1 I gJ[O,nj} = 1M a.e., 
n ..... HX) 

where :5+[O,nJ may be replaced by ~{nl or Xn if the process is Markovian. 

PROOF. By Theorem 9.4.8, (14a), the limit is 

The next result is a "principle of recurrence" which is useful in Markov 
processes; it IS an extension of the idea in Theorem 9.2.3 (see also ExerCIses 15 
and ]6 of Sec 92) 

Theorem 9.5.2. Let {Xn,fl eND} be a Markov process and An, Bn Borel 
sets. Suppose that there exists 0>0 such that for every n, 

00 

(2) g/?{ U [Xj E Bj ] I Xn} 2: 0 a.e. on the set {Xn E An}; 
j=n+l 

then we have 

(3) 0"{[Xj E Aj i.o,]\[Xj E Bj i.o.]} = O. 
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PROOF. Let ~ = {Xj E Aj i.o.} and use the notation An and M above. 
We may ignore the null sets in (1) and (2). Then if w E ~, our hypothesis 
implies that 

~{An+l I Xn}(w) 2: 8 i.o. 

In view of (1) this is possible only if W E M. Thus ~ C M, which implies (3). 

The intuitive meaning of the preceding theorem has been given by 
Doeblin as follows: if the chance of a pedestrian's getting run over is greater 
than 8 > 0 each time he crosses a certain street, then he will not be crossing 
it indefinitely (since he will be killed first)! Here {Xn E A,l} is the event of 
the nth crossing, {Xn E Bn} that of being run over at the nth crossing. 

(/I) Harmonic and superharmonic functions for a Markov process 

Let {X'I' n E NO} be a homogeneous Markov process as discussed in Sec. 9.2 
with the transition probability function PC .). An extended-valued function 
f on jltl is said to be hannonic (with respect to P) iff it is integrable with 
respect to the measure P(x, .) for each x and satisfies the following "harmonic 
equation"; 

(4) \Ix E glll: f(x) = L, P(x, dy)f(y)· 

It is superhannonic (with respect to P) iff the "=" in (4) is replaced by">"; 
in this case f may take the value +00. 

Lemma. If f is [super]harmonic, then {f (Xn ), n E NO}, where Xo = Xo for 
some given Xo in .-1'?I, is a [super]martingale. 

PROOF. We have, recallmg (14) of Sec. 9.2, 

as is easily seen by iterating (4) and applying an extended form of Fubini's 
theorem (see, e.g., Neveu [6]). Next we have, upon substituting Xn for x in (4): 

f(X l1 ) = 11?1 P(X l1 ,dy)f(y) = (f{f(Xn+1 ) I Xn} = t{f(Xn+1) I ~[O,1l1}, 

where the second equation follows by Exercise 8 of Sec. 9.2 and the third by 
Markov property. This proves the lemma in the harmonic case; the other case 
is similar. (Why not also the "sub" case?) 

The most important example of a harmonic function is the g(., B) of 
Exercise 10 of Sec. 9.2 for a given B; that of a superharmonic function is the 
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f(', B) of Exercise 9 there. These assertions follow easily from their proba
bilistic meanings given in the cited exercises, but purely analytic verifications 
are also simple and instructive. Finally, if for some B we have 

00 

n(x) = L,p(n)(x, B) < 00 

n==O 

for every x, then n(·) is superharmonic and is called the "potential" of the 
set B. 

Theorem 9.5.3. Suppose that the remote field of {X n, n E NO} is trivial. 
Then each bounded harmonic function is a constant a.e. with respect to each 
f.1.n, where f.1.n is the p.m. of Xn. 

PROOF. By Theorem 9.4.5, f(Xn) converges a.e. to Z such that 

{ £ (V \ v~ . '7 C!I } 
J V~n j, =iO,nj, b, '-'1:0,00) 

is a martingale Clearly Z belongs to the remote field and so is a constant c 
a.e. Since 

each f (X n) IS the same constant c a.e. Mapped mto g?I, the last assertIOn 
becomes the conclusion of the theorem. 

(III) The supremum of a submartingale 

The first inequality in (1) of Sec. 9.4 is of a type familiar in ergodic theory 
and leads to the I esult below, which has been called the "dominated eI godic 
theorem" by Wiener. In the case where Xn is the sum of independent r.v.'s 
with mean 0, it is due to Marcinkiewicz and Zygmund. We write IIXli p for 
the LP norm of X: IIXII~ {~IXIP~. 

Theorem 9.5.4. Let 1< p < 00 and l/p + l/q = 1. Suppose that {Xn, n E 

N} is a positive submartingale satisfying the condition 

(5) sup {{Xfz} < 00. 
n 

Then sUPnEN Xn E LP and 

(6) II sup X n II p S q sup IIX n II p. 
n n 

PROOF. The condition (5) implies that {Xu} is uniformly integrable 
(Exercise 8 of Sec. 4.5), hence by Theorem 9.4.5, Xn -+ Xoo a.e. and {Xn, n E 

N oo} is a submartingale. Writing Y for sup Xn , we have by an obvious 
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extension of the first equation in (1) of Sec. 9.4: 

(7) VA>O: A9{Y ~ A} :s 1 Xoo d9. 
{Y;::J..) 

Now it turns out that such an inequality for any two r.v.'s Y and Xoo implies 
the inequality IIYll p :s qllXooll p , from which (6) follows by Fatou's lemma. 
This is shown by the calculation below, where G(A) = 9{Y ~ A}. 

J(YP) = -100 

AP dG(A) :s 100 

pAP-1G(A)dA 

:s roo PA P- 1 [~l Xoo d9] dA Jo A {Y;::J..) 

Since we do not yet know 0'(YP) < 00, it is necessary to replace Y first 
with Y 1\ m, where m is a constant, and verify the truth of (7) after this 
replacement, before dividing through in the obvious way. We then let m t 00 

and conclude (6). 

The result above is false for P = 1 and is replaced by a more complicated 
one (Exercise 7 below). 

(IV) Convergence of Slims of independent r v 's 

We return to Theorem 5.3.4 and complete the discussion there by showing 
that the convergence in distribution of the series 'l.:n Xn already implies its 
convergence a.e. 'IhiS can also be proved by an analytIc method based on 
estimation of ch.f.' s, but the martingale approach is more illuminating. 

Theorem 9.5.5. If {Xn, n EN} is a sequence of independent r.v.'s such that 
Sn = 'l.:'J=1 Xj converges in distribution as n -+ 00, then Sn converges a.e. 

PROOF. Let Ii be the ch.f. of X j , so that 

n 
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is the ch.f. of Sn. By the convergence theorem of Sec. 6.3, CPn converges 
everywhere to cP, the ch.f. of the limit distribution of Sn. We shall need only 
this fact for It I :::: to, where to is so small that cp(t) i= 0 for It I :::: to; then this 
is also true of CPn for all sufficiently large n. For such values of n and a fixed 
t with It I :::: to, we define the complex-valued r.v. Zn as follows: 

(8) 

Then each Zn is integrable; indeed the sequence {Zn} is uniformly bounded. 
We have for each n, if ~n denotes the Borel field generated by S I , ... , S n : 

where the second equation follows from Theorem 9.1.3 and the third from 
independence. Thus {Z /l, ;J41} is a martingale, in the sense that its real and 
imaginary parts are both martingales. Since it is uniformly bounded, it follows 
flOm TheOIem 9.4.4 that 2n converges a.e. This means, for each t with It I :s to, 
there is a set Qt with .9>(Qt) = 1 such that if W E Qt, then the sequence of 
complex numbers eitSn(w)/CPn(t) converges and so also does eitSn(w). But how 
does one deduce from this the convergence of Sn (w)? The argument below 
may seem unnecessarily tedious, but it is of a familiar and indispensable kind 
In certain parts of stochastic processes. 

Consider eitSn(w) as a function of (t, (0) in the product space T x Q, where 
T = [-to, to], with the product measure m x Y, where m is the Lebesgue 
measure on T. Since this function is measurable in (t, w) for each 11, the 
set C of (t, w) for which limn~oo eitS" (W) exists is measurable with respect to 
m x q/J. Each section of C by a fixed t has full measure gn(Qt) = 1 as just 
shown, hence Fubini's theorem asserts that almost every section of C by a 
fixed w must also have full measure meT) = 2to. This means that there exists 

- - -
an Q with ,:?l(Q) = 1, and for each WE Q there is a subset Tw of T with 
m(T{J)) - meT), such that if t E T w , then limll_oo eitSn(w) exists Now we are 
in a position to apply Exercise 17 of Sec. 6.4 to conclude the convergence of 
S n (w) for w E Q, thus finishing the proof of the theorem. 

According to the preceding proof, due to Doob, the hypothesis of 
Theorem 9.5.5 may be further weakened to that the sequence of ch.f.'s of 
Sn converges on a set of t of strictly positive Lebesgue measure. In particular, 
if an infinite product fIn f n of ch.f.' s converges on such a set, then it converges 
everywhere. 
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(V) The strong law of large numbers 

Our next example is a new proof of the classical strong law of large numbers 
in the form of Theorem 5.4.2, (8). This basically different approach, which 
has more a measure-theoretic than an analytic flavor, is one of the striking 
successes of martingale theory. It was given by Doob (1949). 

Theorem 9.5.6. Let {Sn, n EN} be a random walk (in the sense of 
Chapter 8) with I{ISI!} < 00. Then we have 

S 
lim ~ = er{SI} a.e. 

n-'>-oo n 

PROOF. Recall that Sn = 2:j=1 Xj and consider for 1 :::: k :::: n: 

(9) 

where §n is the Borel field generated by {Sj, j ~ n}. Thus 

/\ fln 
nEN 

as n increases. By Theorem 9.4.8, (I5b), the right side of (9) converges to 
e{Xk I 9}. Now 9,1 IS also generated by Sn and {Xj, j ~ n + l}, hence it 
follows from the independence of the latter from the pair (Xb S17) and (3) of 
Sec. 9.2 that we have 

the second equation by reason of symmetry (proof?). Summing over k from 
1 to n and taking the average, we infer that 

SI! _ CC{X I (;} 
- - (I) I I n 
n 

so that if Y -n S I f AT fY e n/llor n e IV ,n, 17 N} is a martingale. In particular, 

lim Stl = lim e~{XI I ;tIn} = ([,,{XI I [i}, 
11-'>-00 n n-~oo 

where the second equation follows from the argument above. On the other 
hand, the first limit is a remote (even invariant) r.v. in the sense of Sec. 8.1, 
since for every m ~ 1 we have 

lim Sn(w) = lim 2:'J=m X / w); 
n-'>- 00 n n-'>- 00 n 
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hence it must be a constant a.e. by Theorem 8.1.2. [Alternatively we may use 
Theorem 8.1.4, the limit above being even more obviously a permutable r.v.] 
This constant must be c£'{<f{X] I §}} = v{Xd, proving the theorem. 

(VI) Exchangeable events 

The method used in the preceding example can also be applied to the theory 
of exchangeable events. The events {En, n E N} are said to be exchangeable 
iff for every k ~ 1, the probability of the joint occurrence of any k of them is 
the same for every choice of k members from the sequence, namely we have 

(11 ) 

for any subset {n], ... , nk} of N. Let us denote the indicator of En by en, 
and put 

Il 

j=] 

then N n is the number of occurrences among the first n events of the sequence. 
Denote by §,1 the B F generated by {Nj, j > n}, and 

nEN 

Then the definition of exchangeability implies that if n j :::: n for 1 :::: j :::: 
k, then 

(12) 

and that this conditional expectation is the same for any subset (n], ... , nk) 
of (l, ... , n ). Put then f nO - 1 and 

k 

Ink = L II enj , 1:::: k :::: n, 

where the sum is extended over all C) choices; this is the "elementary 
symmetric function" of degree k formed bye], ... , en. Introducing an inde
terminate z we have the formal identity in z: 

n n 

~ I njZ
j = II (1 + ejZ)' 

j=O j=] 
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But it is trivial that 1 + ejZ = (1 + z)ej since ej takes only the values 0 and 
1, hence t 

n n 

L fnjZ
j = II (1 + z)ej = (1 + Z)N 71

• 

j=O j=] 

From this we obtain by comparing the coefficients: 

(13) 

It follows that the right member of (12) is equal to 

Letting n -+ 00 and using Theorem 9.4.8 (1Sb) in the left member of (12), 
we conclude that 

(14) 

This is the key to the theory. It shows first that the limit below exists almost 
surely: 

11m -' = rJ, 
n-'>-oo n 

and clearly rJ is a r.v. satisfying 0 :s rJ :s 1. Going back to (14) we have 
established the formula 

and taking expectations we have identified the Wk in (11): 

0( k) Wk = (r rJ . 

Thus {Wk, kEN} is the sequence of moments of the distribution of rJ. This is 
de Finetti's theorem, as proved by D G Kendall We leave some easy conse-
quences as exercises below. An interesting classical example of exchangeable 
events is P61ya's urn scheme, see Renyi [24], and Chung [25]. 

(VII) Squared variation 

Here is a small sample of the latest developments in martingale theory. Let 
X = {Xn, .~n} be a martingale; using the notation in (7) of Sec. 9.3, we put 

11 

Q~ = Q~(X) = LX]. 
j=] 

+ lowe this derivation to David Klamer. 
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The sequence {Q~(X), n EN} associated with X is called its squared varia
tion process and is useful in many applications. We begin with the algebraic 
identity: 

(15) 

If Xn E L 2 for every n, then all terms above are integrable, and we have for 
each j: 

(16) 

It follows that 
n 

0(X~) = L ct(X]) = 0(Q~). 
j=1 

When Xn is the nth partial sum of a sequence of independent r.v.'s with zero 
mean and finite variance, the preceding formula reduces to the additivity of 
variances; see (6) of Sec. 5.1. 

Now suppose that {Xn} is a positive bounded supermartingale such that 
o :::: Xn :::: A for all n, where A is a constant. Then the quantity of (16) is 
negati ve and bounded below by 

In this case we obtain from (15): 

n 

Ac7(Xn) ~ d'(X~) ~ J(Q~) + 2A L d'(Xj) = d'(Q~) + 2A[J'(Xn) = leX})]; 
j 2 

so that 

(17) 

If X is a positive I1Iar tingale, then XAk is a superIIlar tingale of the kind 
just considered so that (17) is applicable to it. Letting X* = sUPI<n<ooXn , 

:-f'l{Qn(X) ~ A} :::: 9"{X* > A} + ~r{X* :::: A; Qn(XAA) ~ A}. 

By Theorem 9.4.1, the first term on the right is bounded by A -I e (X}). The 
second term may be estimated by Chebyshev's inequality followed by (17) 
applied to XA),: 
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We have therefore established the inequality: 

(18) 

for any positive martingale. Letting n ~ 00 and then A ~ 00, we obtain 

00 

LX] = lim Q~ (X) < 00 a.e. 
n-+oo 

j=I 

Using Krickeberg's decomposition (Exercise 5 of Sec. 9.4) the last result 
extends at once to any L I-bounded martingale. This was first proved by D. G. 
Austin. Similarly, the inequality (18) extends to any L I-bounded martingale 
as follows: 

(19) 

The details are left as an exercise. This result is due to D. Burkholder. The 
simplified proofs given above are due to A. Garsia. 

(VIII) Derivation 

Our final example is a feedback to the beginning of this chapter, namely to 
use martingale theory to obtain a Radon-Nikodym derivative. Let Y be an 
integrable r.v. and consider, as in the proof of Theorem 9.1.1, the countably 
additive set function v below: 

(20) 

For any countable measurable partition {~)1), j E N} of n, let :Jftn be the Borel 
field generated by It. Define the approximatmg functIOn XII as follows: 

(21) 

where the fraction is taken to be zero if the denominator vanishes. According 
to the discussion of Sec. 9.1, we have 

X n = (g {Y I .~;;;}. 

Now suppose that the partitions become finer as n increases so that V7,;, n E N} 
is an increasing sequence of Borel fields. Then we obtain by Theorem 9.4.8: 

lim Xn = (~{Y I ;-5h00}· 
11-+00 
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In particular if Y E .:::"~oo we have obtained the Radon-Nikodym derivative 
Y = dvjd?/J as the almost everywhere limit of "increment ratios" over a "net": 

(~(n) ) 

Yew) = lim v jew) 
n-+oo qP(~ (.n) )' 

J(W) 

where j (w) is the unique j such that w E ~ jn) . 
If (n,:!ft, g'» is (0;£,28, m) as in Example 2 of Sec. 3.1, and v is an 

arbitrary measure which is absolutely continuous with respect to the Lebesgue 
measure m, we may take the nth partition to be 0 = ~6n) < ... < ~~n) = 1 
such that 

(
c(n) c(n» 0 max 5k+l - 5k ~ . 

O~k~n-l 

For in this case ::5+00 will contain each open interval and so also Y.3. If v is not 
absolutely continuous, the procedure above will lead to the derivative of its 
absolutely continuous part (see Exercise 14 below). In particular, if F is the 
d.f. associated with the p.m. lJ, and we put 

k k+l 

where k ranges over all integers, then we have 

lim in (x) = F' (x) 
n-+oo 

for almost all x with respect to m; and p' is the density of the absolutely 
continuous part of F; see Theorem 1.3.1. So we have come around to the 
beginning of this course, and the book is hereby ended. 

EXERCISES 

*1. Suppose that {Xn, n EN} is a sequence of integer-valued r.v.'s having 
the following property. For each n, there exists a function Pn of n integers 
such that for every k € .V, ',lie have 

Define for a fixed Xo: 

if the denorhinator >0; otherwise Zn = O. Then {Zn, n EN} is a martingale 
that converges a.e. and in Ll. [This is from information theory.] 
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2. Suppose that for each n, {X j, 1 :s j < n} and {Xi, 1 :s j :s n} have 
respectively the n-dimensional probability density functions Pn and qn' Define 

qn(X1, ••• ,Xn) 
yn=------

Pn(X1,.·., Xn) 

if the denominator > 0 and = 0 otherwise. Then {Y n, n E N} is a super
martingale that converges a.e. [This is from statistics.] 

3. Let {Zn, 11 E NO} be positive integer-valued r.v.'s such that Zo = 1 
and for each n ~ 1, the conditional distribution of Zn given Zo, ... ,Zn-1 is 
that of Zn-1 independent r.v.'s with the common distribution {Pk. kENo}, 
where PI < 1 and 

00 

o <m= Lkpk < 00. 

k=O 

Then {W n, n E NO}, where W n = Z n 7 mil, IS a martmgale that con verges, the 
limit being zero if m < 1. [This is from branching process.] 

4. Let {Xn, n EN} be an arbitrary stochastic process and let~' be as in 
Sec. 8.1. Prove that the remote field IS almost trIvIal If and only If for each 
A E ::000 we have 

lim sup IP(AM) - P(A)9(M)1 = o. 
n-+ooME~' 

[HINT: Consider f!l>(A I ~n') and apply 9.4.8. This is due to Blackwell and 
Freedman.] 

*5. In the notation of Theorem 9.6.2, suppose that there exists 0>0 such 
that 

then we have 

2P{X j E A j 1.0. and X j E B j 1.o.} - U. 

6. Let f be a real bounded continuous function on :li1 and J-t a p.m. on 
}')l1 such that 

V'x E gel: f(x) = r f(x + y)J-t(dy). )9{1 

Then f (x + s) = f (x) for each s in the support of J-t. In particular, if J-t is not of 
the lattice type, then f is constant everywhere. [This is due to G. A. Hunt, who 
used it to prove renewal limit theorems. The approach was later rediscovered 
by other authors, and the above result in somewhat more general context is 
now referred to as Choquet-Deny's theorem.] 
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*7. The analogue of Theorem 9.5.4 for p = 1 is as follows: if Xn ~ 0 for 
all n, then 

e 
/{supXn} S --[1 + supJ'{Xn 10g+Xn}], 

n e - 1 n 

where log + x = log x if x ~ 1 and 0 if x S l. 

*8. As an example of a more sophisticated application of the martingale 
convergence theorem, consider the following result due to Paul Levy. Let 
{Xn, 11 E NO} be a sequence of unifonnly bounded r.v.'s, then the two series 

n n 

converge or diverge together. [HINT: Let 

n 

Yn Xn t[Xn I Xl, ... , Xn d and Zn E Y J • 

j=l 

Define a to be the first time that Zn > A and show that 0"(Z:"\I1) is bounded 
in n. Apply Theorem 9.4.4 to {ZaAn} for each A to show that Z n converges on 
the set where limn Zn < 00, similarly also on the set where liIlln Zn > 00. 

The situation is reminiscent of Theorem 8.2.5.] 

9. Let {Y k' 1 S k S n} be independent r. v. 's with mean zero and finite 
. 2 varIances CJ k; 

k k 

Sk = LYj, S~ = LCJ;>O, Zk = S~ - s~ 
j=l j=l 

Prove that {Zk. 1 S k S n} is a martingale. Suppose now all Y k are bounded 
by a constant A, and define a and M as in the proof of Theorem 9.4.1, with 
the Xk there replaced by the Sk here. Prove that 

Thus we obtain 

an improvement on Exercise 3 of Sec. 5.3. [This is communicated by Doob.] 

10. Let {Xn, n E N} be a sequence of independent, identically distributed 
r.v.'s with {(IXI /) < 00; and Sn = 2:j=1 X j . Define a = inf{n ~ 1: IXnl > 

n}. Prove that if J((ISal/a)l(a<oo) < 00, then J'(IXlllog+ IX I /) < 00. This 



is due to McCabe and Shepp. [HINT: 

n 

Cn = IT 9J{IXj l ::s j} ~ C>O; 
j=1 

00 11 L - ISn-ll dgP < 00.] 
11=1 n (a=n) 
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11. Deduce from Exercise 10 that g(suPn ISn lin) < 00 if and only 
if #(IX11Iog+IXI!) <00. [HINT: Apply Exercise7 to the martingale 
{ ... , SlIln, ... , S2/2, Sd in Example (V).] 

12. In Example (VI) show that (i) f} is generated by 1]; (ii) the events 
{En, n EN} are conditionally independent given 1]; (iii) for any l events E nj , 
1 :::. j :::. l and any k :::. l we have 

0'l{EIII n ... n Ellk n Enc n ... n Enc } = 
k+1 I 

where G is the distributions of rJ. 

13. Prove the inequality (19). 

*14. Prove that if J) is a measure on ::--'ftoo that is singular with respect to 
?J?, then the Xn 's in (21) converge a.e. to zero. [HINT: ShO'.v that 

and apply Fatou's lemma. {Xn} is a supermartingale, not necessarily a martin-
gale!] 

15. In the case of (fl, 9'3, 111), suppose that J) 61 and the nth partition 
is obtained by dividing '1/ into 2n equal parts: what are the XII'S in (21)? Use 
this to "explain away" the St. Peterburg paradox (see Exercise 5 of Sec. 5.2). 

Bibliographical Note 
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Supplement: Measure and 
Integral 

For basic mathematical vocabulary and notation the reader is referred to § 1.1 
and §2.1 of the main text. 

1 Construction of Ineasure 

Let Q be an abstract space and j its total Borel field, then A E j means 
A C Q. 

DEFINITION 1. A function f.-t* with domain J and range in [0,00] is an 
outer measure iff the following properties hold: 

(a) f.-t*(1)) =0; 
(b) (monotonieity) if Al C A2, then P;*(AI) S p;*(A2); 

(c) (subadditivity) if {A j } is a countable sequence of sets in J, then 

DEFINITION 2. Let .-1''0 be a field in Q. A function f.-t with domain ;J}o and 
range in [0,00] is a measure on :-"/'0 iff (a) and the following property hold: 
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(d) (additivity) if {Bj } is a countable sequence of disjoint sets in ~1tJ and 
U j B j E .-ft), then 

(1) 

Let us show that the properties (b) and (c) for outer measure hold for a measure 
J-t, provided all the sets involved belong to ;:1to. 

If AJ E :~, A2 E .:::'fto, and AJ C A2, then A~A2 E SiD because ;:1to is a field; 
A2 = AJ U A~A2 and so by (d): 

Next, if each Aj E dtJ, and furthermore if UjAj E 9'ii (this must be assumed 
for a countably infinite union because it is not implied by the definition of a 
field!), then 

and so by (d) since each member of the disjoint union above belongs to JItJ· 

by property (b) Just proved. 
The symbol N denotes the sequence of natural numbers (strictly positive 

integers); when used as index set, it will frequently be omitted as understood. 
For instance, the index j used above ranges over lv' or a finite segment of j'l. 

Now let us suppose that the field ~ is a Borel field to be denoted by ;}ft 

and that J-t is a measure on it. Then if An E :--0 for each n EN, the countable 
union Un An and countable intersection An An both belong to #. In this case 
we have the following fundamental properties. 

(e) (increasmg lImit) If An C An+J for all n and An t A - Un An, then 

(f) (decreasing limit) if An :J An+1 for all n, An .J,- A = nn An, and for 
some n we have J-t(An) < 00, then 
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The additional assumption in (f) is essential. For a counterexample let 
An = (n, (0) in R, then An ~ 1> the empty set, but the measure (length!) of An 
is +00 for all n, while 1> surely must have measure O. See §3 for formalities 
of this trivial example. It can even be made discrete if we use the counting 
measure # of natural numbers: let An = {n, n + 1, n + 2, ... } so that #(An) = 
+00, #(nn An) = O. 

Beginning with a measure f.-t on a field ~, not a Borel field, we proceed 
to construct a measure on the Borel field::0 generated by ::"1iJ, namely the 
minimal Borel field containing ::?U (see §2.1). This is called an extension of 
f.-t from ~ to :::'r, when the notation f.-t is maintained. Curiously, we do this 
by first constructing an outer measure f.-t * on the total Borel field J and then 
showing that f.-t* is in truth a measure on a certain Borel field to be denoted 
by ;!ft * that contains ~. Then of course ';!f- * must contain the minimal ~ , and 
so f.-t * restricted to q; is an extension of the original f.-t from ::"1:> to ;!f- . But we 
have obtained a further extension to 2'7* that is in general "larger" than g; and 
possesses a further desirable property to be discussed. 

DEFINITION 3. GIven a measure f.-t on a field ~ m Sl, we define f.-t* on 
J as follows, for any A E J: 

( J 

~J J) 

A countable (possIbly fimte) collectIOn of sets {B j} satIsfymg the condItions 
indicated in (2) will be referred to below as a "covering" of A. The infimum 
taken over all such coverings exists because the single set n constitutes a 
covering of A, so that 

o ~ p;* (A) ~ p;* (Q) .s +00. 

It is not trivial that p;*(A) p;(A) if A E <51J, which is part of the next theorem. 

Theorem 1. We have f.-t * = f.-t on ::1b; f.-t * on J IS an outer measure. 

PROOF. Let A E %, then the single set A ser ves as a cover ing of A, hence 
g*(A) < f.-t(A). For any covering {B ;} of A, we have ABj E .::'1:> and 

UABj =A E~; 
j 

hence by property (c) of f.-t on ::--'/i) followed by property (b): 

f.-t(A) = f.-t (UABj ) :s ~f.-t(ABj):S ~f.-t(Bj). 
} } } 
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It follows from (2) that J1,(A) ::s J1,*(A). Thus J1,* = J1, on st. 

To prove J1,* is an outer measure, the properties (a) and (b) are trivial. 
To prove (c), let E > O. For each j, by the definition of J1, * (A j), there exists a 
covering {B jk} of A j such that 

The double sequence {Bjd is a covering of UjAj such that 

L L J1,(Bjk ) ::s L J1,*(A j) + E. 

j k j 

Hence for any E > 0: 

that establishes (c) for J-t*, since E is arbitrarily small. 
With the outer measure f.-t*, a class of sets gT* is associated as follows. 

DEFINITION 4 A set A C Q belongs to ~ft * iff for every Z C Q we have 

(3) 

If in (3) we change "-" into "S", the resulting inequality holds by (c); hence 
(3) is equivalent to the reverse inequality when "=" is changed into ">". 

Theorem 2. ~ * is a Borel field and contains ~. On ~ *, p;* is a measure. 

PROOF. Let A E JIii. For any Z C Q and any E > 0, there exists a covering 
{B j} of Z such that 

(4) 
j 

Since AB j E dtJ, {AB j} is a covering of AZ; {A C B j} is a covering of A C Z; hence 

j j 

Since f.-t is a measure on ::-'Jb, we have for each j: 

• (6) 
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It follows from (4), (5), and (6) that 

j,L*(AZ) + j,L*(ACZ) s j,L*(Z) + E. 

Letting E ~ 0 establishes the criterion (3) in its "~" form. Thus A E ;J;f *, and 
we have proved that .% c .q7*. 

To prove that ?7* is a Borel field, it is trivial that it is closed under 
complementation because the criterion (3) is unaltered when A is changed 
into A c. Next, to show that?7* is closed under union, let A E g;* and B E ?7*. 
Then for any Zen, we have by (3) with A replaced by B and Z replaced by 
ZA or ZA c : 

j,L*(ZA) = j,L*(ZAB) + j,L*(ZABC); 

j,L*(ZAC) = j,L*(ZACB) + j,L*(ZACBC). 

Hence by (3) again as written: 

Applying (3) with Z replaced by Z(A U B), we have 

Comparing the two preceding equations, we see that 

j,L*(Z) = j,L*(Z(A U B)) + j,L*(Z(A U Bl). 

Hence A U B E .-if *, and we have proved that ?7* is a field. 
Now let {A j} be an infinite sequence of sets in ;j+ *; put 

B· } C1 

) 
AAWA for j > 2. 

1=1 

Then {B j} is a sequence of disjoint sets in g7* (because;37* is a field) and has 
the same union as {A j}. For any Zen, we have for each 7l ::: 1. 
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because B/1 E .J;' *. It follows by induction on n that 

(7) 

Since Uj=1 Bj E .J;' *, we have by (7) and the monotonicity of f.-t*: 

Letting n t 00 and using property (c) of f.-t *, we obtain 

that establishes U~1 B j E ;jk *. Thus ;jk * is a Borel field. 
Finally, let {B j} be a sequence of disjoint sets in gf*. By the property (b) 

of f.-t * and (7) with Z = n, we have 

00 

~ lim sup f.-t 
/1 

Combined with the property (c) of g* , we obtain the countable additivity of 
f.-t * on ;!/r *, namely the property (d) for a measure: 

j=1 

The proof of Theorem 2 is complete. 

2 Characterization of extensions 

We have proved that 

where some of the "::J" may tum out to be "=". Since we have extended the 
measure f.-t from ~ to ;J;' * in Theorem 2, what for /0 ? The answer will appear 
in the sequel. 
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The triple (n,;:ft, J-t) where;:0 is a Borel field of subsets of n, and J-t is a 
measure on ~p , will be called a measure space. It is qualified by the adjective 
"finite" when J-t(n) < 00, and by the noun "probability" when J-t(n) = 1. 

A more general case is defined below. 

DEFINITION 5. A measure J-t on a field :Jib (not necessarily Borel field) is 
said to be a-finite iff there exists a sequence of sets {nn, n E N} in ,Jib such 
that J-t(n ll ) < 00 for each n, and Ull nn = n. In this case the measure space 
(n, ,J';' , J-t), where ,Jp is the minimal Borel field containing ~, is said to be 
"a-finite on ,40", 

Theorem 3. Let .::'Ib be a field and;!p the Borel field generated by .::'Ib. Let J-tl 
and J-t2 be two measures on q; that agree on ~. If one of them, hence both 
are a-finite on ~tD, then they agree on ~ . 

PROOF. Let {nil} be as in Definition 5 Define a class {f of subsets of £2 

as follows: 

Since nil E ~, for any A E ~ we have nnA E 3t for all n; hence (f:J ~. 

Suppose Ak E fl, Ak C Ak+l for all kEN and Ak t A. Then by property (e) 
of 1'1 and tl2 as measures on <7, we have for each n' 

k k 

Thus A E ([?'. Similarly by property (f), and the hypothesis J-tl (nn) = 
1'2(£2/1) < DO, if Ak E fZ and Ak I A, then A E (f Therefore .(Z is closed under 
both increasing and decreasing limits; hence (f :J ;-!f by Theorem 2.1.2 of the 
main text. This implies for any A E .::'/r : 

by property (e) once again. Thus J-tl and J-t2 agree on ,J;; • 

It follows fwm Theorem 3 that under the 0 -finite assumption there, the 
outer measure J-t * in Theorem 2 restricted to the minimal Borel field ~p 

containing ,-ttJ is the unique extension of J-t from ;"fto to Y. What about the 
more extensive extension to ~/r *? We are going to prove that it is also unique 
when a further property is imposed on the extension. We' begin by defining 
two classes of special sets in ,4 . 

D'EFINITION 6. Given the field ;:'l'tJ of sets in n, let JtJao be the collection 
of all sets of the form n::=t U~=l Bmll where each Bmll E :'fto, and ,--'/tJoa be the 
collection of all sets of the form U::=1 n~=l Bmll where each Bmn E ,./7ij. 
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Both these collections belong to :-"P because the Borel field is closed under 
countable union and intersection, and these operations may be iterated, here 
twice only, for each collection. If B E ;1D, then B belongs to both :-"/'Oao and 
3tJoa because we can take Bmn = B. Finally, A E ?kiao if and only if AC E ~oa 
because 

Theorem 4. Let A E :-"r *. There exists B E ::1Dao such that 

A C B; j,L*(A) = j,L*(B). 

If j,L is a-finite on ~, then there exists C E diloa such that 

C c A; j,L*(C) = j,L*(A). 

PROOF. For each m, there exists {Bmn} in q; such that 

A C UBmn; 
II n 

Put 

n In 

then A C Band B E 61Jao. V4e have 

Letting m t 00 we see that I{*(B) < ,u*(A); hence J,t*(B) - J,t*(A) The first 
assertion of the theorem is proved. 

To prove the second assertion, let Q n be as in Definition 5. Applying the 
first assertion to QnAc, we have Bn E ::?bao such that 

Hence we have 

Taking complements with respect to Qn, we have since j,L*(Qn) < 00: 

QnA :J QnB~; 

j,L*(QnA) = j,L*(Qn) - j,L*(QnAC ) = j,L*(Qn) - j,L*(QnBn) = j,L*(QnB~). 



2 CHARACTERIZATION OF EXTENSIONS I 383 

Since nn E Yu and B~ E :1boa, it is easy to verify that nllB~ E .fuoa by the 
distributive law for the intersection with a union. Put 

It is trivial that C E ::fItJoa and 

n 

Consequently, we have 

j,L*(A) ~ j,L*(C) ~ liminfj,L*(nnB~) 
n 

= liminf j,L*(nnA) = j,L*(A), 
n 

the last equation owing to property (e) of the measure j,L*. Thus j,L*(A) = 
j,L * (C), and the assertIOn IS proved. 

The measure u * on q;* is constructed from the measure LL on the field 
• 1 

~. The restriction of j,L * to the minimal Borel field :?7 containing :1t will 
henceforth be denoted by JL instead of JL*. 

In a general measure space (n, §, v), let us denote by ~11(§, v) the class 
of all sets A in § with v(A) = O. They are called the null sets when § and 
v are understood, or l' null sets ',vhen § is understood. Beware that if A c B 
and B is a null set, it does not follow that A is a null set because A may not 
be m !/! ThIS remark mtroduces the followmg defimtlon. 

DEFINITION 7. The measure .!>pace (n, §, v) is called complete iff any 
subset of a null set IS a null set. 

Theorem 5. The following three collections of subsets of n are idential: 

(i) A c Q and the outer measure tl * (A) - 0; 

(1·1·) A -* d *(A) 0 
nn E /f an /-' -; 

(iii) A c B where B E::Jr and j,L(B) = O. 

It is the collection ~;fi~(!;; *, j,L*). 

PROOF. If j,L*(A) = 0, we will prove A E q;* by verifying the criterion 
(3). For any Zen, we have by properties (a) and (b) of j,L*: 
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and consequently by property (c): 

Thus (3) is satisfied and we have proved that (i) and (ii) are equivalent. 

Next, let A E .:-'/1 * and J-L*(A) = O. Then we have by the first assertion in 
Theorem 4 that there exists B E?7 such that A C B and J-L*(A) = J-L(B). Thus 
A satisfies (iii). Conversely, if A satisfies (iii), then by property (b) of outer 
measure: J-L*(A) ::::: J-L*(B) = J-L(B) = 0, and so (i) is true. 

As consequence, any subset of a (y *, J-L*)-null set is a (96*, J-L*)-null set. 
This is the first assertion in the next theorem. 

Theorem 6. The measure space (n,!:ft *, J-L*) is complete. Let (n, 9, v) be a 
complete measure space; 9 :J ~ and v = J-L on ~. If J-L is a-finite on ::¥o then 

if ::;) ;;li * and v J-t * on :77* 

PROOF Let A E ,11 * , then by Theorem 4 there exists B E q; and CEq; 
such that 

(8) C cAe B; J-L(C) = J-L*(A) = J-L(B). 

Since v = J-L on ;'/to, we have by Theorem 3, v = J-L on ?7. Hence by (8) we 
have vCB C) O. Since ACe B C and BeE 9, and (n, §, v) is 
complete, we have A - C E § and so A - C U (A - C) E 9. 

Moreover, since C, A, and B belong to 9, it follows from (8) that 

J-L(C) = v(C) ::::: v(A) ::::: v(E) = J-L(B) 

and consequently by (8) again v(A) = J-L(A). The theorem is proved. 

To summarize the gist of Theorems 4 and 6, if the measure J-L on the field 
.5*0 is 0 - finite on . ~, then (:¥, IX) is its unique extension to &- , and (3l"*, f.;t *) 
is its minimal complete extension. Here one is tempted to change the notation 
J-L to J-Lo on .:!Iv! 

We will complete the picture by showing how to obtain ('-'f *, I' *) from 
(3"", J-L), reversing the order of previous construction. Given the measure space 
(n, .Jp , J-L), let us denote by (;; the collection of subsets of n as follows: A E if 
iff there exists BE. (-(::,,/t, J-L) such that A C B. Clearly {i:c has the "hereditary" 
property: if A belongs to (f;, then all subsets of A belong to 4'; (f; is also closed 
under countable union. Next, we define the collection 

(9) .!/t = {A C n I A = B - C where B E q;, C E <if}. 

where the symbol "-" denotes strict difference of sets, namely B - C = BCe 

where C C B. Finally we define a function J-L on ,~ as follows, for the A 
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shown in (9): 

(10) IleA) = /l(B). 

We will legitimize this definition and with the same stroke prove the mono
tonicity of /l. Suppose then 

Let C I C D E L1"(.-:ff, /l). Then BI C B2 U D and so /l(BI ) ::::: /l(B2 U D) = 
/l(B2). When the C in (11) is "=", we can interchange BI and B2 to conclude 
that /l(BI) = /l(B2), so that the definition (10) is legitimate. 

Theorem 7. ::0 is a Borel field and /l is a measure on y; . 

PROOF. Let An E Y; , n E N; so that An = Bn C~ as in (9). We have then 

n=I n=I n=I 

Since the classff is closed under countable union, this shows that q;; is closed 
under countable intersection. Next let C C D, D E Jli(Y; ,/l); then 

= (BC U BD) - B(D - C). 

Since B(D - C) c D, we have B(D - C) E {i'; hence the above shows that:?7 
is also closed under complementation and therefore is a Borel field. Clearly 
:':f ::;) 'iT because Vie may take C - ¢ in (9). 

To prove /l is countably additive on &, let {An} be disjoint sets in 
'1ft . Then 

There exists D in . V(~, /L) containing U~=I en. Then {Bn D} are 
disjoint and 

00 00 00 

U (Bn - D) C U An C U Bn· 
n=I n=I 

All these sets belong to '!/t and so by the monotonicity of /l: 
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Since f.J., = f.J., on ~:ft, the first and third members above are equal to, respec
tively: 

f.J., (U(Bn -D)) = Lf.J.,(Bn -D) = Lf.J.,(Bn) = Lf.J.,(An); 
n n n n 

Therefore we have 

Since f.J.,(¢) = f.J.,(¢ - ¢) = f.J.,(¢) = 0, f.J., is a measure on '$. 

Corollary. In tmtb' ~f - 4 * and 1-' - 1-'* 

PROOF. For any A E :?7* , by the first part of Theorem 4, there exists B E 

:?7 such that 
A II (ll A), JL*(ll A) O. 

Hence by Theorem 5, B A E {if and so A E '!¥ by (9). Thus gT* c ;j't . Since 
;77 C '!:f * and ([ E ;77* by Theorem 6, we have Y c:?7* by (9). Hence :?7 = 
Y*. It follows from the above that f.J.,*(A) = f.J.,(B) = f.J.,(A). Hence f.J.,* = f.J., on 

The question arises naturally whether we can extend I' from ~ to ?7 
directly without the intervention of ~ *. This is indeed possible by a method of 
transfinite induction originally conceived by Borel; see an article by LeBlanc 
and G.E. Fox: "On the extension of measure by the method of Borel", Cana-
dian Journal of Mathematics, 1956, pp. 516-523. It is technically lengthier 
than the method of outer measure expounded here. 

Although the case of a countable space Q can be treated in an obvious 
way, it is instructive to apply the general theory to see what happens. 

Let Q - N LJ (0; 3ii is the minimal field (not Borel field) containing each 
singleton n in N, but not w. Let Nf denote the collection of all finite subsets 
of Iv; then ?il consists of Nf and the complements of members of lvj (with 
respect to Q), the latter all containing w. Let 0 < f.J.,(n) < 00 for all n E N; a 
measure f.J., is defined on ~ as follows: 

f.J.,(A) = L f.J.,(n) if A E Nf; f.J.,(A C
) = f.J.,(Q) - f.J.,(A). 

nEA 

We must still define f.J.,(Q). Observe that by the properties of a measure, we 
have f.J.,(Q) ~ LnEN !.l(n) = s, say. 
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Now we use Definition 3 to determine the outer measure f.-t *. It is easy 
to see that for any A eN, we have 

In particular f.-t*(N) = s. Next we have 

f.-t*(W) = inf f.-t(A C
) = f.-t(r?) - sup f.-t(A) = f.-t(r?) - s 

AENf AENf 

provided s < 00; otherwise the inf above is 00. Thus we have 

f.-t * (w) = f.-t (r?) - s if f.-t (r?) < 00; f.-t * (w) = 00 if f.-t (r?) = 00. 

It follows that for any A C r?: 

nEA 

where J-t * (n) - J-t (n) for n E N. Thus J,t * is a measure on /, namely, :# * - ./. 
But it is obvious that g;; = j since q; contains N as countable union and 

so contains W as complement. Hence ':"7 - 8ft* - J. 
If g(r?) = 00 and s = 00, the extension g * of g to j is not unique, 

because we can define f.-t(w) to be any positive number and get an exten
sion. Thus p; is not a-finite on cfij, by Theorem 3. But we can verify this 
directly when f.-t(r?) = 00, whether s = 00 or s < 00. Thus in the latter case, 
f.-t(w) = 00 is also the unique extension of f.-t from ~ to j. This means that 
the condition of a-finiteness on % is only a sufficient and not a necessary 
condition for the unique extension. 

As a ramification of the example above, let n - N U WI U W2, with two 
extra points adjoined to N, but keep ,:"/n as before. Then ~r (=,:";6 *) is strictly 
smaller than J because neither WI nor W2 belongs to it. From Definition 3 we 
obtain 

Thus f.-t * is not even two-by-two additive on j unless the three quantities 
above are zero. The two points WI and W2 form an inseparable couple. We 
leave it to the curious reader to '),Ionder about other possibilities 

3 ~easuresin R 

Let R = (-00, +(0) be the set of real members, alias the real line, with its 
Euclidean topology. For -00 .:::: a < b .:::: +00, 

(12) (a, b] = {x E R: a < x .:::: b} 

~ .. ------.----.---------------------------. 
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is an inTerval of a particular shape, namely open at left end and closed at right 
end. For b = +00, (a, +00] = (a, +(0) because +00 is not in R. By choice 
of the particular shape, the complement of such an interval is the union of 
two intervals of the same shape: 

(a, b]C = (-00, a] U (b, 00]. 

When a = b, of course (a, a] = ¢ is the empty set. A finite or countably 
infinite number of such intervals may merge end to end into a single one as 
illustrated below: 

(13) (0,2] = (0,1] U (1, 2]; 00 (1 1] (0, 1] = U -, - . 
n=l n + 1 n 

Apart from this possibility, the representation of (a, b] is unique. 
The minimal Borel field containing all (a, b] will be denoted by q(J and 

called the Bore! field of R. Since a bounded open interval is the countable 
union of intervals like (a, b], and any open set in R is the countable union 
of (dlS]Ount) bounded open mtervals, the Borel field W contams all open 
sets; hence by complementation it contains all closed sets, in particular all 
compact sets. Starting from one of these collections, forming countable union 
and countable inter section s uccessi vely, a countable number of times, one can 
build up <~ through a transfinite induction. 

Now suppose a measure m has been defined on g(3, subject to the sole 
assumption that its value for a finite (alias bounded) interval be finite, namely 
if -00 < a < b < +00, then 

(14) ° < m((a, b]) < 00. 

We associate a point function F on R with the set function m on 273, as follows: 

(15) F(O) = 0; F(x) = m((O, x]) for x > 0; F(x) = -m((x, 0]) for x < 0. 

This function may be called the "generalized distribution" for m. We see that 
F is finite everywhere owing to (14), and 

(16) m((a, b]) = F(b) - F(a). 

F is increasing (viz. nondecreasing) in R and so the limits 

F( +(0) = lim F(x):s +00, F( -00) = lim F(x) > -00 
X~+OO x~-oo 

both exist. We shall write 00 for +00 sometimes. Next, F has unilateral limits 
everywhere, and is right-continuous: 

F(x-) < F(x) = F(x+). 

-------------------------------------
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The right-continuity follows from the monotone limit properties (e) and (f) 
of m and the primary assumption (14). The measure of a single point x is 
given by 

m(x) = F(x) - F(x-). 

We shall denote a point and the set consisting of it (singleton) by the same 
symbol. 

The simplest example of F is given by F(x) = x. In this case F is continu
ous everywhere and (14) becomes 

m((a, b]) = b - a. 

We can replace (a, b] above by (a, b), [a, b) or [a, b] because m(x) = 0 for 
each x. This measure is the length of the line-segment from a to b. It was 
in this classic case that the following extension was first conceived by Emile 
Borel (1871-1956). 

We shall follow the methods in §§1-2, due to H. Lebesgue and 
C. Caratheodory. Given F as specified above, Vie are going to construct a 
measure m on 9c3 and a larger Borel field 9c3* that fulfills the prescription (16). 

The first step IS to determme the mmimal field q]o contammg all (a, b]. 
Since a field is closed under finite union, it must contain all sets of the form 

n 

(17) B=Ulj, Ij=(aj, bj ], l<j<.Sn; nEN. 
i-J 

J 

Without loss of generality, we may suppose the intervals lj to be disjoint, by 
merging intersections as illustiated by 

(1, 3] U (2, 4] = (l, 4]. 

Then it is clear that the complement Be is of the same form. The union of 
two sets like B is also of the same form. Thus the collection of all sets like 
B already fODDS a field and so it must be.03o Of course it contains (includes) 
the empty set ¢ = (a, a] and R. However, it does not contain any (a, b) except 
R, [a, b), [a, b], or any single point! 

Next we define a measure m on 9.30 satisfying (16). Since the condition 
(d) in Definition 2 requires it to be finitely additive, there is only one way: 
for the generic B in (17) with disjoint I j we must put 

n n 

(18) m(B) = Lm(Ij) = L(F(bj ) - F(aj)). 
j=1 j=1 

Having so defined m on 9.30, we must now prove that it satisfies the condi
tion (d) in toto, in order to proclaim it to be a measure on 030 . Namely, if 
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{Bb 1 < k ::: I ::: oo} is a finite or countable sequence of disjoint sets in ,-130, 

we must prove 

(19) 

whenever I is finite, and moreover when I = 00 and the union U~l Bk happens 
to be in .'130 , 

The case for a finite I is really clear. If each Bk is represented as in 
(17), then the disjoint union of a finite number of them is represented in a 
similar manner by pooling together all the disjoint l/s from the Bk's. Then the 
equation (19) just means that a finite double array of numbers can be summed 
in two orders. 

If that is so easy, what is the difficulty when I = oo? It turns out, as 
Borel saw clearly, that the crux of the matter lies in the following fabulous 
"banality. " 

Borel's lemma. If -00 < a < b ::: +00 and 

00 

(20) (a, b] - U (aj, bj ], 

j=l 

where a j < b j for each j, and the intervals (a j, b j] are disjoint, then we have 

00 

(21) 

j=l 

PROOF. We will first give a transfinite argument that requires knowledge 
of ordmal numbers. But It IS so mtUItIvely clear that It can be appreciated 
without that prerequisite. Looking at (20) we see there is a unique index 
j such that b j = b; name that index k and rename ak as Cl. By removing 
(Ub bd (q, b) flOm both sides of (20) we obtain 

00 

(22) 
/=1 
i# 

This small but giant step shortens the original (a, b] to (a, cd. Obviously we 
can repeat the process and shorten it to (a, C2] where a ::: C2 < Cl = b, and so 
by mathematical induction we obtain a sequence a ::: CII < ... < C2 < Cl = b. 

Needless to say, if for some n we have Cn = a, then we have accom
plished our purpose, but this cannot happen under our specific assumptions 
because we have not used up all the infinite number of intervals in the union. 
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Therefore the process must go on ad infinitum. Suppose then Cn > Cn +l for 
all 11 EN, so that Cw = limn"\' C 'I exists, then Cw ~ a. If Cw = a (which can 
easily happen, see (13)), then we are done and (21) follows, although the terms 
in the series have been gathered step by step in a (possibly) different order. 
What if Cw > a? In this case there is a unique j such that b) = Cw ; rename 
the corresponding a) as Cw l. We have now 

00 

(23) (a, cw ] = U (aj, bj], 
)=1 

where the (aj, bj]'s are the leftovers from the original collection in (20) after 
an infinite number of them have been removed in the process. The interval 
(Cw l, cw ] is contained in the reduced new collection and we can begin a new 
process by first removing it from both sides of (23), then the next, to be 
denoted by [cw2, cw }], and so on. If for some n we have CWI! a, then (21) 
is proved because at each step a term in the sum is gathered. Otherwise there 
exists the limit lim.,\, CWI! = Cww ~ a. If Cww = a, then (21) follows in the limit. 

n 
OtherwIse cww must be equal to some b) (why?), and the mductIon goes on. 
Let us spare ourselves of the cumbersome notation for the successive well-
ordered ordinal numbers. But will this process stop after a countable number 
of steps, namely, does there exist an ordinal number a of countable cardinality 
such that Ca = a? The answer is "yes" because there are only countably many 
intervals in the union (20). 

The preceding proof (which may be made logically fOnTIal) reveals the 
possibly complex structure hidden in the "order-blind" union in (20). Borel in 
his These (1894) adopted a similar argument to prove a more general result 
that became knovm as his Covering Theorem (see belm\'). /1 .. proof of the latter 
can be found in any text on real analysis, without the use of ordinal numbers. 
We will use the covering theorem to give another proof of Borel's lemma, for 
the 5ake of comparison (and learning) 

This second proof establishes the equation (21) by two inequalities in 
OpposIte dIrectIOn. The first mequalIty IS easy by considering the first n terms 
in the disjoint union (20): 

II 

F(b) - F(a) ~ l:)F(b)) - F(a))). 
)=1 

As n goes to infinity we obtain (21) with the "=" replaced by "~". 
The other half is more subtle: the reader should pause and think why? 

The previous argument with ordinal numbers tells the story. 
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Borel's covering theorem. Let [a, b] be a compact interval, and (aj' bj ), 
j EN, be bounded open intervals, which may intersect arbitrarily, such that 

(24) 
00 

[a,b] c U(aj,bj ). 
j=l 

Then there exists a finite integer I such that when I is substituted for 00 in 
the above, the inclusion remains valid. 

In other words, a finite subset of the original infinite set of open inter
vals suffices to do the covering. This theorem is also called the Heine-Borel 
Theorem; see Hardy [1] (in the general Bibliography) for two proofs by Besi
covitch. 

To apply (24) to (20), we must alter the shape of the intervals (a j, b j] to 
fit the picture in (24). 

Let -00 < a < b < 00; and E > O. Choose a' in (a, b), and for each j 
choose bj > b j such that 

(25) 
, E 

F(a ) - F(a) < -; 
2 

These choices are possible because F is right continuous; and now we have 

00 

j-l 

as reqUIred III (24). Hence by Borel's theorem, there exists a finite I such that 

I 

(26) [a', b] c U (aj, b~). 
j=l 

From this it follows "easily" that 

(27) F(b) - F(a') ::: L(F(b') - F(aj)). 
j=l 

We will spell out the proof by induction on I. When I = 1 it is obvious. 
Suppose the assertion has been proved for I - 1, I :::: 2. From (26) as written, 
there is k, 1 ::: k ::: I, such that ak < a' < ble and so 

(28) 
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If we intersect both sides of (26) with the complement of (ak, b~), we obtain 

I 

[b~, b] c U(aj' bj). 
j=i 
j# 

Here the number of intervals on the right side is I - 1; hence by the induction 
hypothesis we have 

I 

F(b) - F(b~) ::: L(F(bj) - F(aj)). 
j=l 
j# 

Adding this to (28) we obtain (27), and the induction is complete. It follows 
from (27) and (25) that 

I 

PCb) PCa):::: LCPCbj ) PCaj)) + E. 

j=l 

Beware that the I above depends on E. However, if we change I to 00 (back to 
infinity!) then the infinite series of course does not depend on E. Therefore we 
can let E =+ 0 to obtain (21) when the "-" there is changed to " <", namely 
the other half of Borel's lemma, for finite a and b. 

It remains to treat the case a - 00 and/or b - +00. Let 
00 

j=l 

Then fO! any a in ( 00, b), (21) holds with" " replaced by ":S". Letting 
a -+ -00 we obtain the desired result. The case b = +00 is similar. Q.E.D. 

In the following, all I with subscripts denote intervals of the shape (a, b]; 
L denotes umon of dIsJomt sets. Let B E roo; B j E .'110, ) E N. Thus 

/I il J 

B=L1i; B;=~J;k' 
i=l k=l 

Suppose 
00 

so that 
II 00 IIj 

(29) L1i = L L1jk. 
i=l j=l k=l 
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We will prove 

II 00 /I J 

(30) Lm(Ii) = L Lm(Ijk). 
i=l j=l k=l 

For n = 1, (29) is of the fonn (20) since a countable set of sets can be 
ordered as a sequence. Hence (30) follows by Borel's lemma. In general, 
simple geometry shows that each Ii in (29) is the union of a subcollection of 
the Ijk's. This is easier to see if we order the I/s in algebraic order and, after 
merging where possible, separate them at nonzero distances. Therefore (30) 
follows by adding n equations, each of which results from Borel's lemma. 

This completes the proof of the countable additivity of m on illo, namely 
(19) is true as stipulated there for I = 00 as well as I < 00. 

The general method developed in §1 can now be applied to (R, 2730 , m). 
Substituting 2730 for ~, m for J.L in Definition 3, we obtain the outer measure 
m*. It is remarkable that the countable additivity of m on WO, for which two 
painstaking proofs were given above, is l)sed exactly in one place, at the begin-
ning of Theorem 1, to prove that m* = m on wo. Next, we define the Borel 
field gJ* as in Definition 4. By Theorem 6, CR, :?e*, m*) IS a complete measure 
space. By Definition 5, m is a-finite on 2?3o because (-n, n] t (-00, (0) as 
n t 00 and m((-n, 11]) is finite by our primary assumption (14). Hence by 
Theorem 3, the restriction of m* to :~ is the unique extension of m flOm 930 
to 273. 

In the most important case where F(x) = x, the measure m on 2730 is the 
length' mCCa, b]) b a It was Borel who, around the tum of the t'Nentieth 
century, first conceived of the notion of a countably additive "length" on an 
extensive class of sets, now named after film: the BoreLfieLd ill. A member of 
this class is called a Borel set. The larger Borel field Ji3* was first constructed 
by Lebesgue from an outer and an inner measure (see pp. 28-29 of main 
text). The latter was later bypassed by Car atheodory , whose method is adopted 
here. A member of d3* is usually called Lebesgue-measurable. The intimate 
relationship between .173 and dI3* is best seen from Theorem 7. 

The generalization to a generalized distribution function F is sometimes 
referred to as Borel-Lebesgue-Stieltjes. See §2.2 of the main text for the 
speCIal case of a probabIlIty dlstnbutIOn. 

The generalization to a Euclidean space of higher dimension presents no 
new difficulty and is encumbered with tedious geometrical "baggage". 

It can be proved that the cardinal number of all Borel sets is that of the 
real numbers (viz. all points in R), commonly denoted by c (the continuum). 
On the other hand, if Z is a Borel set of cardinal c with m(Z) = 0, such 
as the Cantor ternary set (p. 13 of main text), then by the remark preceding 
Theorem 6, all subsets of Z are Lebesgue-measurable and hence their totality 
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has cardinal 2c which is strictly greater than c (see e.g. [3]). It follows that 
there are incomparably more Lebesgue-measurable sets than Borel sets. 

It is however not easy to exhibit a set in :J(3* but not in :13; see Exercise 
No. 15 on p. 15 of the main text for a clue, but that example uses a non
Lebesgue-measurable set to begin with. 

Are there non-Lebesgue-measurable sets? Using the Axiom of Choice, 
we can "define" such a set rather easily; see example [3] or [5]. However, Paul 
Cohen has proved that the axiom is independent of the other logical axioms 
known as Zermelo-Fraenkel system commonly adopted in mathematics; and 
Robert Solovay has proved that in a certain model without the axiom of 
choice, all sets of real numbers are Lebesgue-measurable. In the notation of 
Definition 1 in § 1 in this case, :13* = ./' and the outer measure m* is a measure 
on./'. 

N.B. Although no explicit invocation is made of the axiom of choice in 
the main text of this book, a weaker version of it under the prefix "countable" 
must have been casually employed on the q.t. Without the latter, allegedly it is 
impossible to show that the union of a countable collection of countable sets 
is countable. This kind of logical finesse is beyond the scope of this book. 

4 Integral 

The measure space (n,;fo, J-L) is fixed. A function f with domain nand 
range m R* - [ -00, +00] IS called ;j6 -measurable Iff for each real number c 
we have 

{f ::: c} = {w E n: few) ::: c} E :Y. 

We write f E ~ in this case. It follows that for each set A E 93, namely a 
Borel set, we have 

{f E A} E ~:f; 

and both {f = +oo} and { f = -(X)} also belong to ;j6 . Properties of measur-
able functions are given in Chapter 3, although the measure there is a proba
bility measure. 

A function f E yft with range a countable set in [0,00] will be called 
a basic function. Let {a j} be its range (which may mclude "00"), and A j = 
{f = a j}. Then the A j' s are disjoint sets with union nand 

(31) 

where the sum is over a countable set of j. 
We proceed to define an integral for functions in !/t, in three stages, 

beginning with basic functions. 
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DEFINITION 8(a). For the basic function f in (31), its integral is defined 
to be 

(32) E(f) = LQjJl(A j ) 
j 

and is also denoted by 

J fdJl = k f(w)Jl(dw). 

If a term in (32) is 0.00 or 00.0, it is taken to be O. In particular if f = 0, then 
E(O) = 0 even if Jl(n) = 00. If A E ;?7 and Jl(A) = 0, then the basic function 

oo.lA + O.lAc 

has integral equal to 

We list some of the properties of the integral. 
(i) Let {B j} be a countable set of disjoint sets in q-, with union 0. and {b j} 

arbItrary positive numbers or 00, not necessarily distinct. Then the function 

(33) 

is basic, and its integral is equal to 

j 

PROOF. Collect all equal b j' s into Q j and the corresponding B j' s into A j 
as in (31). The result follows from the theorem on double senes of posItIve 
terms that it may be summed in any order to yield a unique sum, possibly +00. 

(ii) If f and g are basic and f < g, then 

E(f) < E(g). 

In particular if E(f) = +00, then E(g) = +00. 

PROOF. Let f be as in (31) and g as in (33). The doubly indexed set 
{A j n Bd are disjoint and their union is n. We have using (i): 

E(f) = L LQjJl(A j n Bk ); 
j k 

E(g) = L L bkJl(Aj n Bk). 
k j 
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The order of summation in the second double series may be reversed, and the 
result follows by the countable additivity of J1. 

(iii) If f and g are basic functions, a and b positive numbers, then af + 
bg is basic and 

E(af + bg) = aE(f) + bE(g). 

PROOF. It is trivial that af is basic and 

E(af) = aE(f)· 

Hence it is sufficient to prove the result for a = b = 1. Using the double 
decomposition in (ii), we have 

E(f + g) = L L(aj + bk )J1(A j n Bk). 
j k 

Splitting the double series in two and then summing in two orders, we obtain 
the result. 

It is good time to state a general result that contains the double series 
theorem used above and some other version of it that will be used below. 

Double Limit Lemma. Let {C jk; } E N, k E N} be a doubly mdexed array 
of real numbers with the following properties: 

(a) for each fixed j, the sequence {C jb kEN} is increasing in k, 
(b) for each fixed k, the sequence {Cjk; j EN} is increasing in j. 

Then we have 

lim t lim t Gjt( lim t lim t Gjk < +00. 
j k k j 

The proof is surprisingly simple. Both repeated limits exist by funda
mental analysis. Suppose first that one of these is the finite number C. Then 
for any E > 0, there exist jo and ko such that C joko > C - E. This implies 
that the other limit > C - E. Since E is arbitrary and the two indices are 
interchangeable, the t')/o limits must be equal. Next if the C above is +00, 
then changing C - E into E-1 finishes the same argument. 

As an easy exercise, the reader should derive the cited theorem on double 
series from the Lemma. 

Let A E ;~ and f be a basic function. Then the product lAf is a basic 
function and its integral will be denoted by 

(34) E(A; f) = 1 f(w)J1(dw) = 1 fdJ1. 
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(35) 

(iv) Let An E ,-<T, An C An+l for all n and A = UnAn. Then we have 

limE(An; f) = E(A; f)· 
n 

PROOF. Denote f by (33), so that lAf = LjbjlABj' By (i), 

E(A; f) = L bjJL(ABj ) 
j 

with a similar equation where A is replaced by All' Since JL(AnBj) t fJ.(AB j ) 
as n t 00, and LJ=1 t L~1 as m t 00, (35) follows by the double limit 
theorem. 

Consider now an increasing sequence {f n} of basic functions, namely, 
f n < f n+l for all n. Then f = limn t f n exists and f E ~, but of course f 
need not be basic; and its integral has yet to be defined. By property (ii), the 
numerical sequence E(f n) is increasing and so limn t E(f n) exists, possibly 
equal to +00. It is tempting to define E(f) to be that limit, but we need the 
following result to legitimize the idea. 

Theorem 8. Let {f n} and {gn} be two increasing sequences of basic func
tions such that 

(36) lim t tn = lim t gn 
/I n 

(everywhere in &"2). Then we have 

(37) 
Il n 

PROOF. Denote the common limit function in (36) by f and put 

A - {WE n: f (W) > O}, 

then A E ~. Smce 0 ::: gn ::: j, we have IAcgn - 0 IdentIcally; hence by prop
erty (iii): 

(38) E(g/!) - E(A;gll) + E(AC;gll) - E(A;gll) 

Fix an n and put for each kEN' 

{ 
n - 1 } Ak = wE Q: fk(W) > -n-g,Jw) . 

Since f k ::: f k+l, we have Ak C Ak+l for all k. We are going to prove that 

00 

(39) 
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If W E Ab then few) :::: f k(W) > [(n - l)/n]gn (w) :::: 0; hence W EA. On the 
other hand, if W E A then 

and f (w) > 0; hence there exists an index k such that 

and so wEAk. Thus (39) is proved. By property (ii), since 

we have 
n 1 

Letting k t 00, we obtain by property (iv): 

k n k 

n-I n-I 
= --E(A;gn) = --E(gll) 

n n 

where the last eql)ation is dl)e to (38) Now let n t 00 to obtain 

lim t E(fd :::. lim t E(gn ). 
k n 

Since {fll} and {gn} are interchangeable, (37) is proved. 

Corollary. Let fn and f be basic functions such that fll t f, then E(f n) t 
E(f)· 

PROOF. Take gn = f for all n in the theorem. 
The class of positive :-7f -measurable functions will be denoted by ,~+. 

Such a function can be approximated in various ways by basic functions. It is 
nice to do so by an increasing sequence, and of course we should approximate 
all functions in .11'+ in the same way. We choose a particular mode as follows. 

Define a function on [0, 00] by the (uncommon) symbol) ]: 

)0] = 0; )00] = 00; 

)x] = n - 1 for x E (n - 1, n], n EN. 
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Thus )7T] = 3, )4] = 3. Next we define for any f E ;--'p+ the approximating 
sequence {f(III)}, 111 EN, by 

(40) 

Each pm) is a basic function with range in the set of dyadic (binary) numbers: 
{k/2m} where k is a nonnegative integer or 00. We have f(m) :s f(m+l) for 
all m, by the magic property of bisection. Finally f(m) t f owing to the 
left -continuity of the function x -+ )x]. 

DEFINITION 8(b). For f E .v'ft+, its integral is defined to be 

(41) Eel) = lim t £(f(m»). 
m 

When f is basic, Definition 8(b) is consistent with 8(a), by Corollary to 
Theorem 8. The extension of property (ii) of integrals to 9?t is trivIal, because 
f < g implies f(m) < gem) On the contrary, (f + g)(m) is not f(m) + g(m), but 
since f(lII) + gem) t (f + g), it follows from Theorem 8 that 

lim t £(f(m) + gem») = lim t £((f + g)(m») 
III III 

that yields property (iii) for t;'6+, together with E(af(m») t aE(f), for a > O. 

Property (iv) for .v'ft+ wiII be given in an equivalent form as follows. 
(iv) For f E ,Jft+, the function of sets defined on ,~ by 

A -+ E(A; f) 

IS a measUle. 

PROOF. 'vVe need only prove that if A U~=IAn where the An '5 are 
disjoint sets in .'1r , then 

00 

E(A; j) = LE(An; j ), 
n=1 

For a basic f, this follows from properties (iii) and (iv), The extension to :Jft+ 

can be done by the double limit theorem and is left as an exercise. 

There are three fundamental theorems relating the convergence of func
tions with the convergence of their integrals. We begin with Beppo Levi's 
theorem on Monotone Convergence (1906), which is the extension of Corol
lary to Theorem 8 to ,vft + . 
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Theorem 9. Let {f n} be an increasing sequence of functions in :::0+ with 
limit f: f n t f. Then we have 

lim t E(f n) = E(f) < +00. 
n 

PROOF. We have f E ~; hence by Definition 8(b), (41) holds. For each 
f n, we have, using analogous notation: 

(42) lim t E(f~m») = E(f n). 
m 

Since fn t f, the numbers )2mfn(w)] t)2mf(w)] as n too, owing to the 
left continuity of x -+ )x]. Hence by Corollary to Theorem 8, 

(43) 

It follows that 

lim i lim i E(f~m») lim i E(f(m») £(f)· 
m n m 

On the other hand, it follows from (42) that 

lim t lim t E(j ~m») = lim t E(fn ). 
n m n 

Therefore the theorem is proved by the double limit lemma. 

From Theorem 9 we derive Lebesgue's theorem in its pnstme positive 
gJlise 

TI 16:t t r % • T S leorelll.e ] n E ,"+, n E IV. uppose 

(a) limn f n = 0; 
(b) E(suPn fll) < 00. 

Then we have 

(44) limE(f n) O. 
n 

PROOF. Put for 11 E N: 

(45) 

Then gn E !P+, and as n t 00, gn {, lim SUPII f n = 0 by (a); and gl = sUPn fll 
so that E(gl) < 00 by (b). 

Now consider the sequence {gl - gn}, n EN. This is increasing with limit 
gl. Hence by Theorem 9, we have 



402 I SUPPLEMENT: MEASURE AND INTEGRAL 

By property (iii) for F +, 

Substituting into the preceding relation and cancelling the finite E(g!), we 
obtain E(gn) to. Since 0 < f n ::: gn, so that 0::: E(f n) ::: E(gn) by property 
(ii) for F +, (44) follows. 

The next result is known as Fatou's lemma, of the same vintage 1906 
as Beppo Levi's. It has the virtue of "no assumptions" with the consequent 
one-sided conclusion, which is however often useful. 

Theorem 11. Let {f nl be an arbitrary sequence of functions in f +. Then 
we have 

(46) E(lim inf f n) ::: lim inf E(f n). 
n n 

PROOF. Put for n EN: 

then 
lim inf fll - lim t gil 

n n 

Hence by Theorem 9, 

(47) E(lim inf f n) = lim t E(gn). 
n n 

lim inf E(gn) < lim inf E( tn). 
n n 

The left member above is in truth the right member of (47), therefore (46) 
follows as a milder but neater conclusion. 

We have derived Theorem 11 from Theorem 9. Conversely, it is easy to 
go the other way. For if fll t f, then (46) yields E(f) ::: limn t E(f n). Since 
f > ff!' E(f) > lim" t E(f,,); hence there is equality 

We can also derive Theorem 10 directly from Theorem 11. Using the 
notation in (45), we have 0 ::: g! - f n ::: g!. Hence by condition (a) and (46), 

E(gd = E(lim inf(g! - f n)) ::: lim inf(E(gd - E(f n)) 
n n 

= E(gd - lim sup E(f n) 
n 

that yields (44). 
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The three theorems 9, 10, and 11 are intimately woven. 
We proceed to the final stage of the integral. For any f E ~ with range 

in [-00, +00], put 

on 
on 

{f ~ OJ, 
{f < OJ; 

Then f+ E ~+, f- E ~, and 

By Definition 8(b) and property (iii): 

(48) E(lfl) = E(f+) + E(f-)· 

on 
on 

DEFINITION 8(c). For f E 87, its integral is defined to be 

(49) 

{f :s OJ, 
{f > OJ. 

provided the right side above is defined, namely not 00 00. Vie say f is 
integrable, or fELl, iff both E(f+) and E(f-) are finite; in this case E(f) 
is a finite number. When E(f) exists but f is not integrable, then it must be 
equal to +00 or -00, by (49) 

A set A in n is called a null set iff A E gT and Jl(A) = O. A mathematical 
proposition is said to hold almost everywhere, or a.e. iff there is a null set A 
such that it holds outside A, namely in AC

• 

A number of important observations are collected below. 

Theorem 12. (i) The function f in q; is integrable if and only if If I IS 

mtegrable; we have 

(50) IE(j )1 :s E(ll I)· 

(n) For any 1 E ~ and any null set A, we have 

(iii) If fELl, then the set {w E n: If(w)1 = oo} is a null set. 
(iv) If fELl, g E ~, and Igl :s If I a.e., then g ELl. 
(v) If f E gT, g E gT, and g = f a.e., then E(g) exists if and only if E(f) 

exists, and then E(g) = E(f). 
(vi) If Jl(n) < 00, then any a.e. bounded 87-measurable function is inte

grable. 

PROOF. (i) is trivial from (48) and (49); (ii) follows from 

1Alfl :s 1A·00 
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so that 
o :s E(1A If I ) :s E(1A.oo) = /l(A).oo = O. 

This implies (51). 
To prove (iii), let 

A(n) = {If I ~ n}. 

Then A(n) E ~ and 

n/l(A(n)) = E(A(n); n) :s E(A(n); If I) :s E(lfl). 

Hence 

(52) 
1 

/l(A(n)) :s -E(lfl)· 
n 

Letting n t 00, so that A(n) {, {If I = oo}; since /l(A(1)) :s E(lfl) < 00, we 
have by property (f) of the measure JL: 

,LL({lfl - oo}) - lim ,1, ,u(A(n)) - 0 
n 

To prove (iv), let Igl ::: If I on AC, where /leA) O. Then 

and consequently 

E(lgl) ~ /l(A).oo + E(AC, I!I) ~ 0.00 + E(I!I) - E(I!I)· 

The proof of (v) is similar to that of (iv) and is left as an exercise. The 
assertion (vi) is a special case of (iv) since a constant is integrable when 
J;t(n) < 00. 

Remark. A case of (52) IS kriown as Chebyshev'S inequalIty; see p. 48 
of the main text. Indeed, it can be strengthened as follows: 

(53) lim n,u(A(n)) < lim E(A(n); If I) - 0 
n n 

This follows from property (f) of the measure 

A -+ E(A; Ifl); 

see property (iv) of the integral for :1ft+. 

There is also a strengthening of (ii), as follows. 
If Bk E ~ and /l(Bk) -+ 0 as k -+ 00, then 

limE(Bk ; f) = o. 
k 

------------------------------------
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To prove this we may suppose, without loss of generality, that f E ;-"1'+. We 
have then 

Hence 

E(Bk:f) = E(Bk nA(n);f) +E(Bk nA(n)C;f) 

:s E(A(n); f) + E(Bk)n. 

lim sup E(Bk; f) :s E(A(n); f) 
k 

and the result follows by letting n -+ 00 and using (53). 
It is convenient to define, for any f in ~, a class of functions denoted 

by e(f), as follows: g E e(f) iff g = f a.e. When (n, ~f, JL) is a complete 
measure space, such a g is automatically in ~ . To see this, let B = {g =1= fl. 
Our definition of "a.e." means only that B is a subset of a null set A; in plain 
English this does not say whether g is equal to f or not anywhere in A-B. 
However if the measure is complete, then any subset of a null set is also a 
null set, so that not only the set B but all its subsets are null, hence in ~ . 
Hence for any real number c, 

{g :s c} = {g = f; g :s c} U {g =1= f; g :s c} 

belongs to .-Yr, and so g E ~ . 

A member of C(f) may be called a version of f, and may be substituted 
for f wherever a null set "does not count". This is the point of (iv) and (v) in 
Theorem 12. Note that when the measure space IS complete, the assumptIon 
"g E ~" there may be omitted. A particularly simple version of f is the 
following finite version: 

on 
on 

{If I < oo}, 
{If I oo}, 

where 0 may be replaced by some other number, e.g., by 1 in E(log f). 

In functional analysis, it is the class e(f) rather than an individual f 
that is a member of L I. 

As examples of the preceding remarks, let us prove properties (ii) and 
(iii) for integrable functions. 

(11) If j E £1, g E £1, and j :s g a.e., then 

E(f) :s E(g). 

PROOF. We have, except on a null set: 

f+ - f- :s g+ - g-

but we cannot transpose terms that may be +oo! Now substitute finite versions 
of f and g in the above (without changing their notation) and then transpose 
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as follows: 

Applying properties (ii) and (iii) for ::-'f+, we obtain 

By the assumptions of L 1, all the four quantities above are finite numbers. 
Transposing back we obtain the desired conclusion. 

(iii) if f EL I
, gEL 1, then f + gEL 1, and 

E(f + g) = E(f) + E(g). 

Let us leave this as an exercise. If we assume only that both E(f) and 
E(g) exist and that the right member in the equation above is defined, namely 
not (+00) + ( (0) or ( (0) + (+00), does E(f + g) then exist and equal 
to the sum? We leave this as a good exercise for the curious, and return to 
Theorem 10 III Its prachcaI form. 

Theorem lOt.. Let in E SIr; suppose 
(a) limll f II = f a.e.; 
(b) ther e exists cp ELI 

S Deh that fO! all fl. 

If III ::: cp a.e. 

Then we have 
(c) lim" E(lf" - fl) - 0 

PROOF observe first that 

Ilimflll < sup Ifill; 
II II 

Ifn fl::: Ifill + If I ::: 2 sup Ifill; 
II 

provided the left members are defined. Since the union of a countable collec-
hon of null sets IS a null set, under the hypotheses (a) and (b) there is a null set 
A such that on Q - A, we have SUPII I {II I < cp hence by Theorem 12 (iv), all 
Ifill, If I, If II - fl are integrable, and therefore we can substitute their finite 
versions without affecting their integrals, and moreover limn If II - fl = 0 on 
Q - A. (Remember that fll - f need not be defined before the substitutions!). 
By using Theorem 12 (ii) once more if need be, we obtain the conclusion (c) 
from the positive version of Theorem 10. 

This theorem is known as Lebesgue's dominated convergence theorem, 
vintage 1908. When J.L(Q) < 00, any constant C is integrable and may be used 
for cp; hence in this case the result is called bounded convergence theorem. 
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Curiously, the best known part of the theorem is the corollary below with a 
fixed B. 

Corollary. We have 

lim r In dJL = r I dJL 
n iB iB 

uniformly in B E ;-/ft • 

This is trivial from (c), because, in alternative notation: 

IE(B;ln) - E(B;I)I ~ E(B; lin - II) ~ E(lln - II)· 

In the particular case where B = n, the Corollary contains a number of useful 
results such as the integration term by term of power series or Fourier series. 
A glimpse of this is given below. 

5 Applications 

The general theory of integration applied to a probability space is summarized 
in §§3.1 3.2 of the main text. The specialization to R expounded in §3 above 
will now be described and illustrated. 

A function I defined on R with range in [-00, +00] is called a Borel 
function iff f E 9<3; it is called a Lebesgue measurable function iff f E ;]5*. 

The domain of definition I may be an arbitrary Borel set or Lebesgue-
measurable set D. This case is reduced to that for D = R by extending the 
definition of f to be zero outside D The integral of f E J73* corresponding 
to the measure m* constructed from F is denoted by 

E( f) = [00 ((x) dF(x). 
J-oo 

In case F(x) - x, this is called the Lebesgue integ7a[ of f; in this case the 
usual notation is, for A E .J13*: 

1 f(r)d r - R(A; f) 

Below are some examples of the application of preceding theorems to classic 
analysis. 

Example 1. Let I be a bounded interval in R; {ud a sequence of functions on I; and 
for x E I: 

II 

SII(X) = LUk(X), n EN. 
k=! 
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Suppose the infinite series Lk Uk (X) converges I; then in the usual notation: 

Jl X 

lim L Uk (X) = '" Uk (X) = sex) 
/1---+00 L 

k=] k=] 

exists and is finite. Now suppose each Uk is Lebesgue-integrable, then so is each Sn, 
by property (iii) of the integral; and 

j
Sn(X)dX = tjUk(X)dX. 

I k=] I 

Question: does the numerical series above converge? and if so is the sum of integrals 
equal to the integral of the sum: 

~ 1, u,(x)dx = 1, ~U'(X)dX = 1, s(x)dx? 

This is the problem of integration term by term. 
A very special but important case is when the interval I = [a, b] is compact 

and the functions Uk are all continuous in I. If we assume that the series :E~] Uk (X) 
converges unifonnly in I, then it follows from elementary analysis that the sequence 
of partial sums {s n (x)} is totally bounded, that is, 

sup sup 'sn(x)' = sup sup 'sn(x)' < 00. 
n x x n 

Since m(l) < 00, the bounded convergence theorem applies to yield 

lim / 5 n (x) dx JliIll 5n (x) dx. 
I n 

The Taylor series of an analytic function always converges uniformly and abso
lutely in any compact subinterval of its interval of convergence. Thus the result above 
is fruitful. 

Another example of term-by-term mtegration goes back to Theorem 8. 

Example 2. Let Uk ::: 0, Uk E L] , then 

(54) 

Let in = L:=I Uk. then in ELI, ill t i = L~] Uk· Hence by monotone conver
gence 

E(f) = limE(fn) 
n 

that is (54). 
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When Uk is general the preceding result may be applied to IUk I to obtain 

If this is finite, then the same is true when IUk I is replaced by ut and uk' It then 
follows by subtraction that (54) is also true. This result of term-by-term integration 
may be regarded as a special case of the Fubini-Tonelli theorem (pp. 63-64), where 
one of the measures is the counting measure on N. 

For another perspective, we will apply the Borel-Lebesgue theory of integral to 
the older Riemann context. 

Example 3. Let (I, g'J*, m) be as in the preceding example, but let I = [a, b] be 
compact. Let f be a continuous function on I. Denote by P a partition of I as follows: 

a = Xo < Xl < X2 < ... < Xn = b; 

and put 
8(P) - max (Xk Xk-l ). 

l=:,k=:,n 

For each k, choose a point ~k in [Xk-l, xd, and define a function f P as follows: 

feex) = { ~l' for X E [Xo, Xl], 

for X E (Xk-l, xd, 2 s k s n. 

PartIcular chOIces of gk are: gk - j (Xk-l ); gk - j (Xk ); 

(55) ~k = mm f(x); ~k = max f(x). 
Xk-J =:'X=:OXk Xk_1 =:OX=:'Xk 

The f p is called a step function; it is an approximant of f. It is not basic by Defini-
tion 8(a) but It and I pare. Hence by DefimtIOns 8(a) and 8(c), we have 

n 

k=l 

The sum above is caIIed a Riemann sum; when the gk are chosen as III (55), they are 
called lower and upper sums, respectively. 

Now let {Pen), n EN} be a sequence of partitions such that 8(P(n)) -+ 0 as 
n -+ 00. Since f is continuous on a compact set, it is bounded. It follows that there 
is a constant C such that 

sup sup If P(n)(x)1 < C. 
nEN xEI 

Since I is bounded, we can apply the bounded convergence theorem to conclude that 

limE(f P(JI») = E(f). 
n 
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The finite existence of the limit above signifies the Riemann-integrability of f, and the 
limit is then its Riemann-integral J: f(x)dx. Thus we have proved that a continuous 
function on a compact interval is Riemann-integrable, and its Riemann-integral is equal 
to the Lebesgue integral. Let us recall that in the new theory, any bounded measurable 
function is integrable over any bounded measurable set. For example, the function 

. 1 
sm -, x E (0,1] 

x 

being bounded by 1 is integrable. But from the strict Riemannian point of view it 
has only an "improper" integral because (0, 1] is not closed and the function is not 
continuous on [0, 1], indeed it is not definable there. Yet the limit 

. jl . 1 hm sm -dx 
dO E x 

exists and can be defined to be Jd sinO/x) dx, As a matter of fact, the Riemann sums 
do converge despite the unceasing oscillation of [ between ° and 1 as x J, 0. 

Example 4. The Riemann integral of a function on (0, (0) is called an "infinite 
integral" and is definable as follows: 

(:>a [(x) dx = lim In [(x) dx 
Jo n-+oo Jo 

when the limit exists and is finite. A famous example is 

(56) 
sinx 

f(x) = -, x E (0,00). 
x 

This function is bounded by 1 and is continuous. It can be extended to [0, 00) by 
defining f (0) 1 by continuity. A cute calculation (see §6.2 of main text) yields the 
result (useful in Optics): 

hm --dx =-. . 1" situ n 
n 0 X 2 

By contrast, the function If I is not Lebesgue-integrable. To show this, we use 
trigonometry: 

( sin x ) + 1 1 ( n 3n ) -- ::: Ji = Cn for x E2nn + -, 2nn + - = In. 
X "" (2n + l)zr 4 4 

Thus for x > 0: 

The right member above is a basic function, with its integral: 

n L Cnm(ln) = L .,fi = +00. 
Jl n 2(2n + 1)2 
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It follows that E(f+) = +00. Similarly E(f-) = +00; therefore by Definition 8(c) 
E(f) does not exist! This example is a splendid illustration of the following 
Non-Theorem. 

Let f E:?l3 and f n = f l(O,n), n EN. Then f n E:?l3 and f n --+ f as n --+ 00. 
Even when the f~s are "totally bounded", it does not follow that 

(57) limE(fn) = E(f); 
n 

indeed E (f) may not exist. 
On the other hand, if we assume, in addition, either (a) f ::: 0; or (b) E(f) 

exists, in particular f ELI; then the limit relation will hold, by Theorems 9 and 10, 
respectively. The next example falls in both categories. 

Example 5. The square of the function f in (56): 

2 smx ( . )2 
f(x) = -:;- , xER 

is integrable in the Lebesgue sense, and is also improperly integrable in the Riemann 
sense. 

We have 

f(x) :::: 1(-1.+1) + 1 (-oo,-I)U(+I.+oo)2" 
x 

and the function on the right side is integrable, hence so is f2. 
IncredIbly, we have 

where we have inserted an "RI" to warn against taking the second integral as a 
Lebesgue integral. See §6.2 for the calculation. So far as I know, nobody has explained 
the equality of these two integrals 

Example 6. The most notOIious example of a simple function that is not Riemann-
integrable and that baffled a generation of mathematicians is the function 1Q, where Q 
IS the set of ratIOnal numbers. Its Riemann sums can be made to equal any real number 
between 0 and 1, when we confine Q to the unit interval (0, 1). The function is so 
totally discontinuous that the Riemannian way of approximating it, horizontally so to 
speak, fails utterly. But of course it is ludicrous even to consider this indicator function 
rather than the set Q itself. There was a historical reason for this folly: integration was 
regarded as the inverse operation to differentiation, so that to integrate was meant to 
"find the primitive" whose derivative is to be the integrand, for example, 

J~ xdx = ~;, d ~2 
d~ 2" =~; 

J
~ 1 
~ dx = log~, 

d 1 
d~ log~ = ~. 
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A primitive is called "indefinite integral", and JI\l/x) dx e.g. is called a "definite 

integral." Thus the unsolvable problem was to find J; lQ(x) dx, 0 < ~ < 1. 
The notion of measure as length, area, and volume is much more ancient than 

Newton's fluxion (derivative), not to mention the primitive measure of counting with 
fingers (and toes). The notion of "countable additivity" of a measure, although seem
ingly natural and facile, somehow did not take hold until Borel saw that 

m(Q) = Lm(q) = LO = O. 
qEQ qEQ 

There can be no question that the "length" of a single point q is zero. Euclid gave it 
"zero dimension". 

This is the beginning of MEASURE. An INTEGRAL is a weighted measure, 
as is obvious from Definition 8(a). The rest is approximation, vertically as in Defini
tion 8(b), and convergence, as in all analysis. 

As for the connexion with differentiation, Lebesgue made it, and a clue is given 
in § 1 3 of the main text 
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