INTRODUCTION

Maxwell Rosenlicht




Introduction to Analysis

by

MAXWELL ROSENLICHT
University of California at Berkeley

DOVER PUBLICATIONS, INC.
New York



Copyright © 1968 by Maxwell Rosenlicht
All rights reserved under Pan American and International Copy-
right Conventions.

Published in Canada by General Publishing Company, Ltd., 30
Lesmill Road, Don Mills, Toronto, Ontario.
Ltl;ublished in the United Kingdom by Constable and Company,

This Dover edition, first published in 1986, is an unabridged and
unaltered republication of the work first published by Scott, Fores-
man and Company, Glenview, Illinois, in 1968,

Manufactured in the United States of America
Dover Publications, Inc., 31 East 2nd Street, Mineola, N.Y. 11601

Library of Congress Cataloging-in-Publication Data
Rosenlicht, Maxwell.
Introduction to analysis.

Reprint. Originally published: Glenview, Ill. : Scott, Foresman,
and Co., 1968,

Bibliography: p.
Includes index.
1. Mathematical analysis. 1. Title.
QA300.R63 1986 516 85-25300

ISBN 0-486-65038-3 (pbk.)



Preface

This text is the outgrowth of a course given at Berkeley since 1960.
The object is to redo calculus correctly in a setting of sufficient generality
to provide a reasonable foundation for advanced work in various branches
of analysis. The emphasis is on abstraction, concreteness, and simplicity.
A few abstract ideas are introduced, almost minimal in number. Such
important concepts as metric space, compactness, and uniform convergence
are discussed in such a manner that they will not need to be redone later.
They are given concrete illustration and their worth is demonstrated by
using them to prove the results of calculus, generalized in ways that are
obviously meaningful and practical.

The background recommended is any first course in calculus, through
partial differentiation and multiple integrals (although, as a matter of fact,
nothing is assumed except for the axioms of the real number system). A
person completing most of the material in this book should not only have
a respectable comprehension of basic real analysis but should also be ready
to take serious courses in such subjects as integration theory, complex
variable, differential equations, other topics in analysis, and general
topology. Experience indicates that this material is accessible to a wide
range of students, including many with primary interests outside mathe-
matics, provided there is a stress on the easier problems.

The quest for simplicity has resulted in the elimination of a host of
mathematical synonyms and the omission or relegation to the problem
sets of a number of important ideas. Some problems, easily recognizable,
assume a familiarity with linear algebra that was considered unwise to
presume of all students. Indeed only a few simple facts on determinants
are needed for the chapters on multivariable calculus, but things are so
arranged that the instructor who wishes to avail himself of the conveniences
of linear algebra may easily do so with no break in continuity. Differential
forms were excluded, regrettably, to avoid exorbitant algebraic detours.

This text can be used for courses ranging in length from one to two
quarters. The original semester course at Berkeley covered the first eight
chapters, with theomission of most of the third section of the eighth chapter.
At present Berkeley has a two-quarter sequence with the first quarter,
somewhat sped up, covering the first six chapters and parts of the seventh.

Here are some comments on the individual chapters. Chapter I, which
discusses material on basic set theory that is familiar to many students, can
be covered very rapidly. Chapter II gives a brief account of how all th.e
properties of the real numbers can be deduced from a few axioms. This



material can also be covered rapidly. It should not be bypassed, however,
for contrary to a widespread faith in modern pedagogy, my experience has
been that time spent here is not wasted. Chapters III and IV, on metric
spaces and continuous functions, are the meat of the book. They must be
done with great care. After this, Chapters V, VI, and VII flow along
smoothly, for their substance (elementary calculus) is familiar and the
proofs now make sense. Chapter VIII, which is about existence theorems,
is of a slightly greater order of difficulty. One may save some time by going
very lightly over the implicit function theorem if it is intended to do the
general case later, in the following chapter. The last section of the chapter
treats ordinary differential equations, and the classroom discussion of
these may with relative impunity be restricted to the very first theorem,
Chapters IX and X, on multivariable calculus, conclude the book. They
should cause no difficulty for anyone who has come this far. However,
omitting them entirely would be preferable to an attempt to rush through.

It is impossible to write a text such as this without an obvious indebted-
ness to J. Dieudonné's classic Foundations of Modern Analysis. My gratitude
is also due my colleagues of the curricular reform committee at Berkeley
which instituted the new Mathematics 104 course, to Mrs. Sandra Cleveland
for writing up my original lectures, to Adam Koranyi, whose revised notes
have long been in use, for many conversations, to numerous other col-
leagues and students for their comments, to my family for its patience,
and to Scott, Foresman and Company for its affable efficiency.

Berkeley, California Maxwell Rosenlicht
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CHAPTER I

Notions from Set Theory

Set theory is the language of mathematics. The
most complicated ideas in modern mathematics are
developed in terms of the basic notions of set theory.

'Fortunately the grammar and vocabulary of set theory

are extremely simple, at least in the sense that it is pos-
sible to go very far in mathematics with only a small
amount of set theory. It so happens that the subject of
set theory not only underlies mathematics but has
become itself an extensive branch of study; however we
do not enter deeply into this study because there is no
need to. All we must do here is familiarise ourselves
with some of the basic ideas so that the language may be
used with precision, A first reading of this chapter can
be very rapid since it is mainly a matter of getting used
to a few words. There is occasional verbosity, directed
toward the clarification of certain simple ideas which
are really somewhat more subtle than they appear.



2 1. NOTIONS FROM SET THEORY

§ 1. SETS AND ELEMENTS. SUBSETS.

We do not attempt to define the word set. Intuitively a set is a collec-
tion, or aggregate, or family, or ensemble (all of which words are used synony-
mously with set) of objects which are called the elements, or members of the
set, and the set is completely determined by the knowledge of which objects
are elements of it. We may speak, for example, of the set of students at a
certain university ; the elements of this set are the individual students there.
Similarly we may speak of the set of all real numbers (to be discussed in
some detail in the next chapter), or the set of all straight lines in a given
plane, etc. It should be noted that the elements of a set may themselves be
sets; for example each element of the set of all straight lines in a given plane
is & set of points, and we may also consider such less mathematical examples
as the set of married couples in a given town, or the set of regiments in an

We shall generally use capital letters to denote sets and lower-case
letters to denote their elements. The symbol € is used to denote member-
ship in a set, 50 that

zES

means that z is an element of the set S. The statement ““z is not an element
of S” is abbreviated

z& 8.

Instead of writing a €8, bE S, ¢ € S (the commas having the same
meaning as “‘and”’) we often write a, b, c € 8.

The statement that a set is completely determined by its elements may
be written as follows: If X and Y are sets then X = Y if and only if, for
all z, z € X if and only if z € Y. Equality here and elsewhere in this book
(denoted by =) means identity; X and Y happen to be different symbols,
but they may very well be different names for the same set, in which case
the equation X = Y means that the sets indicated by the symbols X and
Y are the same. X # Y of course means that the sets indicated by the
symbols X and Y are not the same.

Thus we imagine ourselves in a world peopled by certain ‘“‘objects’
(certain of which are called “sets”’), and for some pairs of objects z, X,
where X is a set, we write £ € X, the symbol € having the property that
two sets X and Y are equal if and only if for each object z we have 2 € X
if and only if 2 € Y. The symbol € must also have other properties (which
we don’t specify here) that enable us, given certain sets, to construct others.
The important thing is that everything which follows is expressible in terms
of the fundamental relation z € X.
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Sets are sometimes indicated by listing all their members between
braces. For example, the set
{Jane, Jim}
has Jane and Jim as its members,
1,23, ...}
(with the three dots read ‘‘and so on”) is the set of positive integers, and
{a}

is the set having one element, the object named a. (Note that {a} is not
the same as a. In the same way there is a difference between a university
class congisting of one student and the student himself, or between a com-
mittee consisting of one person and that person.) The above notation how-
ever i8 not always feasible. A more frequently used notation is

{z : (statement involving )},

which means the set of all z for which the statement involving z is true.
Thus

{z : z is & positive integer}
is the set of poeitive integers, and for any set S we have
S=(z:z€8).
Formynts the symbol
[z € S : (statement involving z)}
denotes the same set as
{z : € 8 and (statement involving )},

which is the set of all elements of S for which the statement is true. Thus
if R is the set of real numbers,

zER: ¥ =1} = {1, —1}.

If X and Y are sets and every element of X is also an element of Y,
we say that X is a subset of Y'; this is written

XCY, or YDX.

Thus X C Y is shorthand for the statement “if z € X then z € Y.
X = Y is equivalent to the two statements XC Yand YCX. If XCVY

and Y C Z then clearly X C Z; the two first statements are sometimes
written more succinctly

XCYca.
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For any object z and set X the relation z € X can now be written in
another (less convenient!) way, namely {z} C X. The negationof X C Y
is written

XZY or YDX.

X is called a proper subset of Y if X C Y but X = Y.

The empty sel is the set with no elementa. It is denoted by the symbol
2. A source of confusion to beginners is that although the empty set con-
tains nothing, it itself is something (namely some particular set, the one
characterized by the fact that nothing is in it). The set {2} is a set con-
taining exactly one element, namely the empty set. (In a similar way, when
dealing with numbers, say with ordinary integers, we must be careful not
to regard the number sero as nothing: zero is something, a particular num-
ber, which represents the number of things in ‘‘nothing’”’. Thus sero and &
are quite different, but there is a connection between them in that the set
& has sero elements.) Note that for any set X we have

FCX and XCX.
A special case of both of these statements is the statement

2Ce,

which occasions difficulty if, as is often improperly done, one reads ‘‘is
contained in"” for both of the symbols C and €. The statement & C &
is true because the statement “for each z € & we have z € & is obviously
true, and also because it is “vacuously true”, that is there is no z € &
for which the statement must be verified, just as the statement ‘‘all pigs
with wings speak Chinese” is vacuously true.

§ 2. OPERATIONS ON SETS.

If X and Y are sets, the intersection of X and Y, denoted by XN\ Y, is
defined to be the set of all objects which are both elements of X and ele-
ments of Y. In symbols, '

XNY={z:2€X and zE€Y}.

The union of X and Y, denoted X \U ¥, is the set of all objects which
are elements of at least one of the sets X and Y. That is. X \U Y is the set
of all objects which are either elements of X or elements of Y (or of both),
in symbols

XUY={z:2z€X or z€Y]}.

The word “or” is used here in the manner that is standard in mathematics.
In ordinary language the word “‘or” is often exclusive, that is, if A and B
are statements, then “A or B” is understood to mean “A or B but not
both", whereas in mathematics it always means “‘A or B, or both A and B”.
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If X is a subset of a set S, then the complement of X in 8 is the set of
all elements of S which are not elements of X. If it is explicitly stated, or
clear from the context, exactly what the set 8 is, we often omit the words
“in 8" and use the notation €X for the complement of X. That is

eX={zc8:z¢& X).

These operations are illustrated in Figure 1, where the sets in question
are sets of points in plane regions bounded by curves.

Xxny Xuy
Figuns 1. Intersection, union, and complement.

For another example, let S be the set of real numbers, and let
X=(z€8:z21}, Y={z€8:0<z<1}.
(The symbols > and < will be defined later.) Then

XNY = {1}
XUY={z€8:22>0}
eX={z€8:2<1}.

Certain relations hold among the symbols N, \, €. For example, if
X and Y are subsets of a set S, then

exXNeY =e(XUY).
This is illustrated in Figure 2. A proof of this formula is given below.

7 g | 4
)
%
J13111
ERBUNNRSEUN

yn Y

Fiounz 2. €X is shaded! |11, €Y is shaded =, e(X U ¥) is shaded HFH,
illustrating eX N eY = (X V Y).
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Exzrcise. Provethatif X C S, Y C 8, theneXNeY =e(XUY).

It must be shown that the two sets have the same elements, in other words that each
element of the set on the left is an element of the set on the right and vice versa.
If zEeX NeY, then z € €X and z € €Y. This means that zE 8, z & X,
z€Y.BincezZ X,z &Y, weknow thatz € X U Y. Hencez EC(X U Y).
Conversely, if s E (XU Y), then 2 €S and z & X U Y. Therefore z € X
and 2 € Y. Thus z € €X and z € €Y, so that z € €X N €Y. This completes the
proof.

If X and Y are sets, the notation X — Y is sometimes used for
{zEX:2@Y}. Thus if X and Y are subsets of some set S, then
X-Y=XNeY.

Two sets are said to be digjoint if they have no element in common.
That is, X and Y are disjoint if XN Y = @. A collection of any number
of sets is said to be disjoint if every two of the sets are disjoint.

" 'The intersection and union of more than two sets may be defined in
an obvious manner. For example, if X, Y, Z are sets then

XNYNZ={z:2€X,z2€Y, zEZ},
and
XUYUZ={z:2€X or z€EY or zE€Z}.

Clearly XNYNZ=(XNY)NZ=XN(YNZ), and similarly for
the union of three sets. More generally the intersection and union of
arbitrary families of sets may be defined, and in an obvious way. The only
problem is finding an adequate notation for an arbitrary family of sets,
and this is done as follows. Let I be any set and for each 1 € I let X; be
another set (80 that we may speak of I as being an sndexing family, whose
elements are indices used to specify the sets at which we direct our main
attention). The set of all sets X as ¢ ranges over I is denoted

(Xe: €I} or (Xier

and the tntersection and union of this family of sets, together with their
respective conventional symbols, are defined by

Q'X‘a- [z:foreachi € I,z € X},

‘\EJ'X;s {z:foratleastonei € I,z € X,}.

Exercise. Prove that if / and S are sets and if for each 1€ I we
have X, C 8, then Q(Q‘X() L g’(eX().

It must be shown that each element of the set on the left is an element of the set on the
right, and vice versa.
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Rzee(‘fe\,Xg) thenz €S mdze‘fe\'X¢. Therefore z & X;, for at least one
j €1 Thus z € eX,, o that z € V (€X,).

Conversely, if G‘\EJ’(eXc). then for some j € I we have z € €X,;. Thus z € 8
and z & X;. Since = & X; we have z ﬁQ'X¢. Therefore z € e(Q(X;). This completes
the proof.

If a and b are objects, by the ordered pair (a, b)) we mean the two
objects a and b in & definite order, a first, b second. Thus if a, b, ¢, d are
objects then (a, b) = (¢, d) if and only if @ = c and b = d. Note the distinc-
tion between (a, b) and {a, b} ; the latter is a set with two elements (unless,
of course, a happens to equal b, in which case {a, b} = {a}, & set with one
element), and {a, b} can equally well be written {b, a}, spoiling the order.
We remark that instead of introducing the new concept “ordered pair”
into set theory, we can actually define the ordered pair (a, b) in terms of
the primitive notions about sets that we already have: we set (a,b) =
{{a}, {a, b}}. This definition does precisely what we want: to any two
objects a, b (distinct or not) it assigns an object (a, b), and it does this in
such a fashion that (a, b) = (¢, d) if and only if a = c and b = d.

Given two sets X and Y we define the cartesian product (or product)
of X and Y, denoted X X Y, to be the set of all ordered pairs the first
member of which is in X, the second in Y, that is

XXY= {(zyy) :xGX, er}.

Ordinary rectangular coordinates in the plane give the usual pictorial
representation of the cartesian product: the whole plane can be identified
with the product of the two coordinate axes. In Figure 3 there is & more
complicated picture in which X, Y are subsets of the two coordinate axes
and the cartesian product is a subset of the first quadrant.

(N

Fiqurs 3. Cartesian product.
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§ 3. FUNCTIONS.

If X and Y are sets, by a function from X to Y (or & function from X
into Y, or a function on X with values in Y') is meant a rule which associates
with each element of X a definite element of Y. (The word mapping, or
map, is often used instead of function.) The “rule’” can be given in many
ways, some of which are discussed below, but the essential thing is that
given any element of X there is associated, somehow, some definite element
of Y. Two functions from X to Y are considered equal if and only if both
functions associate with each specific element of X the same element of Y.

Functions are usually denoted by small letters, such as f. The state-
ment “‘f is a function from X to Y is often written

[ XY,

For any z € X, the element of ¥ that the function f associates with x (the
value of f at z) is denoted f(z). Thus if f: X —Y and g: X — Y then
f = g if and only if f(z) = g(z) for all € X. We say that f sends x into
f(z), or that f maps = into f(z), or that z and f(z) correspond under f.

The rule defining a given function f: X — ¥ may be given in various
ways. One way, which is usually not very practical, is to list ali the elements
of X, listing with each one the corresponding one of Y. Or the rule may be
given by a mathematical formula. For example, if X and ¥ are both taken
to be the set R of real numbers, an equation like

f@)=224+3z—-2

definés a real-valued function f on R ; in such a case one often speaks
(imprecisely!) of the function z* + 3z — 2. Again, if X is a subset of R,
a real-valued function on X may be given geometrically by its graph, that
is the set of points {(z, f(z)) : z € X] in the plane; note that this method
may or may not be practical, depending on what f is like, for it may not be
possible to ‘‘draw’’ the graph. In fact any subset of the plane defines a
real-valued function on a subset of the real numbers, provided that any
vertical line (z = constant) intersects the subset of the plane in at most
one point. Finally we remark that the ““rule’ defining a function need not
be practically computable. For example, for z any real number, let f(z)
denote that integer 0, 1, ..., 9 which is in the billionth decimal place of z
(to be precise, since a real number 2 may have more than one decimal
representation, as in 1.0000... = .9999..., we might better take f(z) to
be the smallest possible integer in the billionth decimal place of z); this
rule gives an honest-to-goodness function f: R — R, but who would hazard
a guess as to the value of f(x), or even f({/2)?

Though this is in no way essential for what follows, we remark that
it is easy to define the notion of function in terms of more primitive concepts
of set theory, as follows: If X and Y are sets, a function from X into Y is a
subset of X X Y with the property that for any z € X there is one and
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only one y € Y such that (z, y) is in the subset. If the function is denoted
f: X =Y then the unique y referred to above is, of course, f(z). In analogy
with the case of real-valued functions'on the real numbers, this subset
{(z,f(x)) : T E X} of X X Y is called the graph of the function, so that
we are again saying that the graph determines the function.

Fioure 4. Graph of the function f: R — R given by f(z) = 2* for all z € R.

It is useful to note that the word “function’” alone can be defined in
primitive terms, not only the more complete concept “function from X
into ¥”: a function is an ordered pair whose first member is an ordered
psir of sets, say (X, Y), and whose second member is a function from
X into Y. That is, a function is something of the type ((X, Y), (a certain
kind of subset of X X Y)). This emphasizes that the sets X and Y are to
be considered as essential parts of the function f: X — ¥, For many pur-
poses it is important to bear this fact in mind, but most often we do not
make any explicit mental note of it. For example, if f: X — Y is & function
and Y is a subset of another set ¥’, then we get a function f': X — ¥’ by
setting f'(z) = f(z) for all z € X, that is, giving /' the same graph as f,
which is possible since X X ¥ C X X Y’. Although f and f’ are really
different functions, we usually denote them by the same symbol, even
writing down the technically incorrect expression f: X — Y. In the same
way, given any function f: X — Y and any subset X"’ of X, we can define
a function f/: X' — Y by f"(z) = f(z) for all z € X'’; f”’ is called the
resiriction of f to X"'. Of course, f”’ is not the same as f, though we often
denote them by the same symbol, for example by writing the technically
incorrect expression f: X'’ — Y when there is no danger of confusion. The
graph of the latter function is of course a subset of the graph of the original
function f: X > Y, since X" X YC X X Y.

If f: X— Y and g: Y — Z are functions, one can define the composi-
tion of f and g, or composed function, a function from X into Z, by associating
to each element of X an element of Z in the obvious way: given an element
of X, one first uses f to get an element of Y, then one uses g to get from this
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last element an element of Z. The composed function is usually denoted
ge f, so that we have

gof: X—2,
with (g o f)(z) = g(f(z)) for each z € X.

A function f: X — Y is called one-to-one, or one-one, if different ele-
ments of X correspond under f to different elements of Y, that is if f(z,) =
f(zs) only if 2, = z;. A function f: X — Y is called onto if each element of
Y corresponds under f to some element of X, that is if each y € Y is of the
form y = f(z), for some z € X. If f: X — Y is both one-one and onto
it is called one-one onlo, or a one-one correspondence between X and Y. An
example of a function that is one-one onto is, for any set X, the identity
function ix: X — X, given by 1x(z) = z for all z € X. (Note that what
goes under the name “the function z”’ in elementary calculus is actually
the identity function on the set of real numbers.) If f: X — Y is one-one
onto then each element of Y corresponds under f to one and only one ele-
ment of X, 8o we can define a function f~!: ¥ — X by /~¥y) = zif y = f(z).
-1 is called the tnverse function of f, and is also one-one onto. Clearly
)t =f,and frof=1tx,fo f =1y

If f: X — Y is a function and X’ C X, then the subset of Y given by

JX) = {f@@) : z € X'}
(where the last symbol is shorthand for {y : there exists z € X’ such that
y = f(z)}) is called the image of X’ under f, or simply the tmage of X', if

there is no danger of confusion. The two uses we have made for the symbol
f( ) are related by the equation

J({z)) = {f(z)} for each z € X.
If f: X — Y is a function and Y’ C Y, then the subset of X given by
(YY) ={z€X: f(z) €Y'}
is called the tnverse image of Y’ under f. It consists of those elements of X
which correspond under f to elements of Y’. If f: X — ¥ happens to be
one-one onto we have another use for the symbol f-!, namely the inverse
function f!: Y — X. These two uses of f~! must be carefully distinguished,

though confusion rarely arises. If f: X — Y is one-one onto then the two
uses of f-! are related by {f~'(y)} = f~'({y]) for each y € Y.

§ 4. FINITE AND INFINITE SETS.

We are familiar with the set of posilive integers, or natural numbess
{1,2,3, ...}. This set, together with the various ideas associated with it,
such as its ordering (the fact that its elements can be written down in &
definite order), or such as the fact that two of its elements may be added
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to obtain a third with certain general rules holding for this addition, can
be obtained from the primitive principles of set theory. In this text we shall
instead assume the basic properties of the real number system and from
those derive all the properties of the set {1,2,3, ...}. In this section we
shall for convenience assume a few simple facts about the natural numbers
in order to get as quickly as possible to certain other easy matters of set
theory. However all the facts about the set of natural numbers that are
used here will be proved explicitly in the next chapter. The notions devel-
oped in this section will not be applied until later, so no circular reasoning
occurs,

Let us therefore assume knowledge of the set {1,2,3,...}. Aget X is
called finite if it is empty or there is a positive integer n such that X can
be put into one-one correspondence with the set {1,2,...,n}, that is
there is a one-one function from {1, 2, ..., n} onto X. Thus a set is finite
if we can count its elements and run out of elements after we count a certain
number, say n, of them. The number n depends only on the set X, not on
the order in which its elements are counted off; n is called the number of
elements in X. For ¢ompleteness we say that the number of elements in the
empty set is zero. Any subset of a finite set is itself finite, and if it is a proper
subset it has a smaller number of elements.

A set is infinile if it is not finite. This means that we can pick an
element z; € X, then an element z; from the complement of {z.}, then an
element z; from the complement of {z,, z;}, etc., and we never run out of
elements of X. Thus there exist distinct elements z,, 2, 7a, . . . in X.

1t is easy to show that a set X is infinite if and only if it may be put
into one-one correspondence with a proper subset of itself. To do this, note
first that if X is finite then any proper subset has a smaller number of ele-
ments, whereas two finite sets in one-one correspondence must have the
same number of elements. This proves the “if”’ part. On the other hand,
if X is infinite then there exist distinct elements x;, x, 23, ... in X. The
complement of {zy, Zs, 7s, ...} in X is a subset Y, so that

X ={z,29,7, ...} VY and {23, 23,7, ...} N Y = &.

A one-one correspondence between X and its proper subset {z2,2;, ...} U Y
is given by the function which sends each z, into z.41 and each element of
Y into itself. This proves the “only if”’ part, completing the proof.

The set of natural numbers can be used to give an easy definition of
the notion of sequence. A sequence of n elements in a set X, or an n-tuple of
elements of X, may be defined to be a function from {1,2, ..., n} into X;
if the function is denoted f and we write f(1) = 21, f(2) = z3, ..., f(n) = z.,
then the n-tuple is often written (zi, s, ..., Z»). An infinite sequence of
elements of X (or a sequence of elements of X, if there isn’t any danger of
confusion with finite sequences) is a function from the set of all natural
numbers into X; as above this can be written (z, 3, #s, ...), or, more
conventionally, z,, 2s, 73, . .., or sometimes {Za}am12a....-
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PROBLEMS

1.

Let R be the set of real numbers and let the symbols <, < have their conven-
tional meanings.
(a) Show that
‘ {zER:0<2z<3|N[zER: ~1<z<1l]={z€R: 0Kz < 1}.
(b) List the elements of

(12,3, 4) Vi{zER: 2t —42+3=0))N[zER: -1 L2 < 8}.
(o) Show that

(jrer: -25z$0}\J{zen:2<z<4'l)r\(zel!:05:$8]
={zrER:2<2<3)V{0].

If A is a subset of the set S, show that
(a) e(ed) = A

b) AVUA=ANA=AUgZg=A
© ANg =g

d Axg=g.

Let A, B, C be subsets of a set S. Prove the following statements and illustrate
them with diagrams.

(a) eAUeB=e(ANB)

b) ANBUC)=(ANB)V(ANC)

(©) AVUBNC)=(AUB)N(AVUC).

4. If A, B, C are sets, show that

(@ A=B)NC=(ANC)-B

®) (AVUB)~(ANB)=(A-B)U(B-4)
© A-(B=-C)=(A=B)VU(ANBNCO)
d (A-B)XC=(4AxC) - (BxC).

Let I be a nonempty set and for each ¢ € I let X be a set. Prove that
(a) for any set B we have
BNANUX,= VU (BNX)
ier ier

(b) if each X is a subset of a given set S, then

ef v X‘) =N eX:.
€1 er

. Prove thatif f: X— Y, ¢: Y —Z, and h: Z — W are functions, then

he(gef)=(heg) /.
Let f: X — Y be a function, let A and B be subsets of X, and let C and D be
subseta of Y. Prove that
() f(AUB) =1(4) Uf(B)
() f(ANB)Cf(A)NI(B)
() 1C VD) = -1(C) Uf-YD)
@) 1(C N D) = f(C) NfD)
@ I {(ru4)) o4
o 1©o)cec.



8. Under the assumptions of Problem 7, prove that f is one-one if and only if the
sign O in (e) can be replaced by = for all A C X, and 1 is onto if and only if
the sign C in (f) can be replaced by = foral CC Y.

9. How many subsets are there of the set {1,2,3, ...,n}? How many maps of
this set into itself? How many maps of this set onto itself?

10. (a) How many functions are there from a nonempty set 8 into &7
(b) How many functions are there from & into an srbitrary set 8?

(¢) Show that the notation { X}:e: implicitly involves the notion of funetion.



CHAPTER 11

The Real Number System

The real numbers are basic to analysis, so we must
have a clear idea of what they are. It is possible to con-
struct the real number system in an entirely rigorous
manner, starting from careful statements of a few of
the basic principles of set theory,® but we do not follow
this approach here for two reasons. One is that the
detailed construction of the real numbers, while not
very difficult, is time-consuming and fits more properly
into a course on the foundations of arithmetic, and the
other reason is that we already “know’” the real num-
bers and would like to get down to business. On the
other hand we have to be sure of what we are doing.
Our procedure in this book is therefore to assume cer-
tain basic properties (or axioms) of the real number
system, all of which are in complete agreement with
our intuition and all of which can be proved easily in
the course of any rigorous construction of the system.
We then sketch how most of the familiar properties of
the real numbers are consequences of the basic prop-
erties assumed and how these properties actually com-
pletely determine the real numbers. The rest of the

~ course will be built on this foundation.

* The standard procedure for constructing the real numbers is as

follows: One first uses basie set theory to define the natural num-
bers {1,2,8, ...} (which, to begin with, are merely a set with
an order relation), then one defines the addition and multiplica-
tion of natural numbers and shows that these operations satisfy
the familiar rules of algebra. Using the natural numbers, one then
defines the set of integers (0, =1, +2, ...} and extends the op-
erations of addition and multiplication to all the integers, again
verifying the rules of algebra. From the integers one next obtains
the rational numbers, or fractions. Finally, from the rational
numbers one constructs the real numbers, the basic idea in this
last step being that a real number is something that can be ap-
proximated arbitrarily closely by rational numbers. (The manu-
facture of the real numbers may be witnessed in E. Landau’s
Foundations of Analysis.)
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§1. THE FIELD PROPERTIES.

We define the real number system to be a set R together with an ordered
pair of functions from R X R into R that satisfly the seven properties listed
in this and the succeeding two sections of this chapter. The elements of R
are called real numbers, or just numbers. The two functions are called
addition and multiplication, and they make correspond to an element
(a, b) € R X R gpecific elements of R that are denoted by a +band a -+ b
respectively.

‘We speak of the real number system, rather than a real number system,
because it will be shown at the end of this chapter that the listed properties
completely determine the real numbers, in the sense that if we have two
systems which satisfy our properties then the two underlying sets R can
be put into a unique one-one correspondence in such a way that the func-
tions + and . agree. Thus the basic assumption made in this chapter is
that a system of real numbers exists.

The five properties listed in this section are called the field properties
because of the mathematical convention calling a field any set, together
with two functions + and -, satisfying these properties. They express the
fact that the real numbers are a field.

ProPeERTY * I. (CoMmuTATIVITY). For every a,b € R, we have
a+b=b+aanda-b=0>b-a.

Property II. (Associativity). For every a,b, ¢ € R, we have
(a+b)+c=a+{b+c)and (@-d)-c=a-:(b-c).

ProperTY III. (D1sTriBUTIVITY). For every a,b, ¢ € R, we have
g (b+c)=a-db+a-c

ProrERTY IV. (EXISTENCE OF NEUTRAL ELEMENTS). There are distinct
elemenis 0 and 1 of R such that for all a © R we have
a+0=aanda-1=a.

ProPERTY V. (EXISTENCE OF ADDITIVE AND MULTIPLICATIVE INVERSES).
For any a € R there is an element of R, denoled —a, such
that a + (—a) = 0, and for any noneero a & R there is
an element of R, denoled a™!, such that a - ¢ = 1.

Most of the rules of elementary algebra can be justified by these five
properties of the real number system. The main consequences of the field
properties are given in paragraphs F 1 through F 10 immediately below,
together with brief demonstrations. We shall employ the common nota-
tional conventions of elementary algebra when no confusion is possible.
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For example, we often write ab for a - b. One such convention is already
implicit in the statement of the distributive property (Property I1I above),
where the expression @ + b + a + ¢ is meaningless unless we know the order
in which the various operations are to be performed, that is how parentheses
should be inserted; by a « b + a + ¢ we of course mean (a - b) + (a - ¢).

Fl. In a sum or product of several real numbers parentheses can be
omitted. That is, the way parentheses are inserted is immaterial.
Thus if a, b, ¢, d € R, the expression a + b + ¢ + d may be defined

- to be the common valueof (a + (b +¢)) +d= ((a+b) +¢c) +d=
@+b)+(c+d =a+ (b+(c+d)) = ---; that these expres-
sions with parentheses indeed possess a common value can be shown
by repeated application of the associative property. The general fact
(with perhaps more than four summands or factors) can be proved
by starting with any meaningful expression involving elements of R,
parentheses, and several +'s or several ’s, and repeatedly shoving
as many parentheses as possible all the way to the left, always ending
up with an expression of the type ((a + b) + ¢) + d.

F2. Inasum or product of several real numbers the order of the terms is
immaterial. For example

a-bc=b-acec=cebea=-:.

This is shown by repeated application of the commutative property
(together with F 1).

F3. Forany a,b € R the equation z + a = b has one and only one solu-
tion. For if z€R is such that 2 +a=0>b, then 2=z +4+0 =
z+ (a+(-a) =(z+a)+(—a) =b+(—a), 80 =D+ (—0a)
is the only possible solution; that this is indeed a solution is immedi-
ate. One consequence is that the element 0 of Property 1V is unique;

another is that for any a € R, the element —a of Property V is
unique.

For convenience, instead of b 4 (—a) one usually writes b —a. (Thisis a
definition of the symbol ‘ —’’ between two elements of R.) Thus —a =0 —a.

We take the opportunity to reiterate here the important role of con-
vention. @ + b + ¢ has been defined (and by F 1 there is only one reason-
able way to define it), but we have not yet defined @ — b — ¢. Of course
by the latter expression we understand (a — b) — ¢, but it is important to
realize that this is merely convention, and reading aloud the words ‘e
minus b minus ¢’ with a sufficient pause after the first ““minus” points out
that our convention could equally well have defined a —b —¢ to be
a — (b — ¢). In this connection note the absence of any standard conven-
tion for @ + b + ¢. In a similar connection, note that a* could be taken
to mean (a*)¢ if it were not conventionally taken to mean a™. As stated
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above we use all the ordinary notational conventions when no confusion
can result. For example, without further ado we shall interpret an expres-
gion like log a® to mean log (a*) and not (log a)*, ab—! does not mean (abd)™?,

ete.
F4.

For any a, b € R, with a » 0, the equation za = b has one and only
one solution, In fact from za = b follows z = zaa~! = ba~!, and from
z = ba™! follows za = b. Thus the element 1 of Property 1V is
unique and, given any a € R, a » 0, the element a~* of Property V
is unique.

For a, b €ER, a » 0, we define b/a, in accord with convention, to be

b.at. In particular, a=! = 1/a.

FS.

F6.

F1.

F8.

F9.

For any a € R we have a - 0 = 0. This is true sincea 0 +a -0 =
a:(04+0)=a-0=a-0+0,s0that a - 0 and 0 are both solutions
of the equation z 4 a - 0 = a « 0, hence equal, by F 3. From this it
follows immediately that if a product of several elements of R is 0
then one of the factors must be 0: for if ab = 0 and a » 0 we can

multiply both sides by a~! to get b = 0. Hence the illegitimacy of
division by sero.

=(=a) = g for any a € R. For both —(—a) and a are solutions of
the equation z + (—a) = 0, hence equal, by F 3.

(a™?)~t = a for any monzero a € R. In fact sincea-a-' =1, by F8
we know that a~! » 0, so (a~)~! exists, and F 4 implies that (a—)—*
and a are equal, since both are solutions of the equation z - a1 = 1,

—(a 4 b) = (—a) + (—D) for all a,b € R. For both are solutions
of the equation z + (a 4+ b) = 0.

(ab)~! = a~b~! if a,b are nonsero elements of R. For ab »# 0 by
F 5, so (ab)—! exists, and both (ab)—* and a—'b! are solutions of the
equation z(ab) = 1.
The usual rules for operating with fractions follow easily from F9:
e = (@)(be) = achle = ab~t = £,
= (ab™1)(cd) = ac(bd)~ = 5=,
=52+ 135 = (@) (b + (b)(ba)
= (ad + b)) = 2P
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F10. —a=(—1)+aforallaER. For(—1)-ata=a+((-1)+1) =
a+0 =0, 80 that (—1) - a and —a are both solutions of the equa-
tion £+ a = 0, hence are equal. Two immediate consequences
are g« (—bd)=a-(—~1) b= (—=1)eaeb=(—a) b= —ab and
(—a) - (=b) = —(a: (—b)) = —(—ab) = ab.

Notice that all five field properties of the real numbers, and therefore
all consequences of them, are satisfied by the rational numbers, or by the
complex numbers. That is, the rational numbers and the complex numbers
are also fields. In fact there exist fields with only a finite number of elements,
the simplest one being a field with just the two elements 0 and 1. To describe
the real numbers completely, more properties are needed.

$ 2. ORDER.
The order property of the real number system is the following:

ProPERTY V1. There is a subset R, of R such that
(1) fa,bERy, thena+d,a-bER,
(#) for any a € R, one and only one of the jollowing siale-
menls 18 irue
aER,
a=0

-aER,.

The elements a € R such that a € R, will of course be called positive,
those such that —a € R, negative. From the above property of R, we
shall deduce all the usual rules for working with inequalities.

To be able to express the consequences of Property VI most con-
veniently we introduce the relations “>" and “<”. For @, b € R, either
of the expressions

a>b or b<a

(read respectively as “a is greater than b’ and “b is less than a”) will
mean that ¢ — b € R,. Either of the expressions

a>b or b<a

will mean that a > bora = b.

Clearly a € R, if and only if ¢ > 0. An element a € R is negative if
and only if a < 0.

The following are the consequences of the order property.

0O1. (Trichotomy). If a,b € R then one and only one of the following
statements is true:
a>b
a=b
a<b.
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02,

08.

04.

For if we apply part (2) of the order property to the numbera — b
then exactly one of three possibilities holds,a —bE R,,a — b = 0,
or b — a € R,, which are the three cases of the assertion O 1.

(Transitivity). If a > b and b > ¢ then a > ¢. For we are given
a —bER, and b — ¢ € R,; it therefore follows that
a—c=@—-b0)+Mb—-c)ER, 0a>ec

If a>b and ¢ > d then a+¢> b+ d. In fact, the hypotheses
mean a —bER,, ¢c—dER,U {0}, and as a consequence
(@4+¢c) — (b+d) = (a —b) + (¢ — d) € R,, proving the assertion.

If a > b > 0 (meaning that a > b and b > 0) and ¢ > d > 0, then
ac>bd. Fora—bER, and cERy, 80 ac — bec = (a — b)c ER,,
and similarly ¢ —d € R, U {0} and b € R, together imply that
be — bd € R, U {0}; it necessarily follows that

ac — bd = (ac — be) + (be — bd) € R,, that is ac > bd.

Note that the assumptions that b and d are positive are essential; the

assertion O4 does not hold, for example, with a =1, b= —~1, ¢ = 2,
d= —3.

05.

06.

01.

oa.

The following rules of sign for adding and multiplying real numbers
hold:
(positive number) + (positive number) = (positive number)
{negative number) + (negative number) = (negative number)
(positive number) - (positive number) = (positive number)
(positive number) - (negative number) = (negative number)
(negative number) - (negative number) = (positive number).
These are immediate from F 10 and Property VI.

For any a € R we have a® > 0, with the equality holding only if
a = 0; more generally the sum of the squares of several elements of
R is always greater than or equal to sero, with equality only if all
the elements in question are sero. For by O 5, the statement a » 0
implies a® > 0, and & sum of positive elements is positive. Note the
special consequence 1 = 1* > 0.

If a>0, then 1/ > 0. In fact a- (1/a) = 1 > 0, which would
contradict the rules of sign if we had 1/a < 0.

If a>b>0, then 1/a < 1/b. For ab > 0, hence (ab)* > 0, s0
(ab)~'a > (ab)~'b, which simplifies to 1/b > 1/a.
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09. We now show how the computational rules of elementary arithmetic
work out as consequences of our assumptions. Let us make the defi-
nitions 2=1+41,3=2+1,4 = 3 + 1, etc., and let us define the
natural numbers to be the set {1,2,3, ...}. Since 1 > 0 it follows
that 0 <1 <2 <3 < ::-. The set of natural numbers is ordered
exactly as we would like it to be—in particular, the natural numbers
have the following properties: for any natural numbers a, b, exactly
one of the statements a < b, a = b, b < a holds; if a, b, ¢ are natural
numbers and a < b and b < ¢ then also a < ¢; any natural number
has an immediate successor (& least natural number that is greater
than it); different natural numbers have different immediate suc-
cessors; and there is a natural number 1 with the property that any
set of natural numbers that includes 1 and with each element also
its immediate successor consists of all natural numbers. For any
natural number n,n is the sum of a set of 1’s that is in one-one
correspondence with the elements of the set {1,2,3,...,n}. This
implies that in whatever order we count off the elements of a set of
n objects (that is, a set in one-one correspondence with the set
{1, 2,3, ...,n}) wearrive at the final count n, and if a proper subset
of & set of n objects has m objects, then m < n. The usual rules for
adding natural numbers come from such computations as

24+3=(04+1)+0+14+1)=14+14+14+141=35,

while the rules for multiplication follow from the fact that sums
of equal terms may be written as products; for example, for any
a€ER we have a+a+a=(1+1+4+1)a=3a. Thus 3:-4 =
4+ 44 4 =12, 80 we can verify the entire multiplication table, as
high as we care to go. The integers, that is the subset (0, =1, &2,
+3, ...} of R, are also ordered in the correct way -+ < =2 <
-1<0<1<2< -, It is easy to check that the integers add
according to the ordinary rules; that they multiply in the usual way
is implied by F 10 and the corresponding fact for the natural num-
bers. The rational numbers, that is the elements of R which can be
written a/b, with a, b integers and b » 0, are also ordered in the
usual way; indeed the order relation of two rational numbers can be
determined by writing the two numbers with a positive common
denominator and comparing the numerators. Addition and multi-
plication of rational numbers are also determined by the same opera-
tions for the integers. Thus the rational numbers, a certain subset
of R, have all the arithmetic and order properties with which we are
familiar,

Here is as good a place as any to introduce into our logical discussion
of the real number system the notion of exponentiation with integral
exponents. If a € R and n is some positive integer we define a* to be
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a+a-a---a(n times), and if a » 0 we define a* = 1, a> = 1/a". From
these definitions we immediately derive the usual rules of exponentiation,
in particular
a™ .« g = g™t
(™) = g™
(ab)* = g*b»

The definition of the absolute value of a real number is most con-
veniently introduced at this point: if @ € R, the absolute value of a, denoted
lal, is given by

laj= e if a>0,
laj= 0 if a=0,
|a|= ~a if a<O.

The absolute value has the following properties:
(1) |a|=0foralla ER,and |a|=0if and only ifa = 0
(2) |ab|=|a]-|b| foralla,bER
(3 |a|'=atforallaER
(4) la+b|<|a|+|b| foralla,bER
() la—b|=]|la]—1|b]| forall a,bER.

The first three properties above are trivial consequences of the defini-
tion of |a|. To prove (4) note first that

+a6 <|a|
(meaning that @ <|a| and —a <|al) and
b <3},
%0 adding gives |
x(a +b) <|aj+|dl,
or .
la+bd|<lal+18].
To prove (5), note that {a| = |(a — b) + ] < |a — b| +|b], so that
fa:— bl 2 || - [b].
Interchanging a and b, )
§a — b2 [b] - al,

and the last two inequalities combine into (5).
It is useful to note that repeated application of (4) gives

latae+ - - +aa|<lar| +laa]+ -+ +]aal.
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We also note the trivial but very useful fact that if z, a, ¢ € R, then
lz—al<e
if and only if
a—e<z<a-+te

For |z — a| < ¢ is precisely equivalent to z —a < e and —(z —a) < ¢,
or —e <z —a < ¢ which in turn is equivalent toa ~e <z <a+e

| =g

|
!
. o e+
Figurx 5. The pointa z such that |z — a|< e

]

At the end of the previous section & number of other systems were
given which satisfy the first five properties of the real number system. The
order property excludes two of the systems given there: the field consisting
of just the two elements 0 and 1 (sinece then 1 4 1 = 0, contradicting
1+41>0), and the complex numbers (since any number must have a
nonnegative equare). But the rational numbers satisfy all the properties
given g0 far. Since it is known that there exist real numbers which are not
rational (this will be proved shortly), still more properties are needed to
describe the real numbers completely.

§3. THE LEAST UPPER BOUND PROPERTY.

To introduce the last fundamental property of the real number system
we need the following concepts. If 8§ C R, then an upper bound for the set 8
is a number a € R such that s < a for each s € 8. If the set S has an upper
bound, we say that S is bounded from above. We call a real number y a
least upper bound of the set 8 if

(1) yis an upper bound for S

(2) if a is any upper bound for S, then y < a.

From this definition it follows that two least upper bounds of a set
8 C R must be less than or equal to each other, hence equal. Thus a set
S C R can have at most one least upper bound and we may speak of the
least upper bound of 8 (if one exists). Note also the following important
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fact: if y is the least upper bound of S and z € R, z < y, then there exists
an element s € S such that z < s.

A nonempty finite subset S C R always has a least upper bound; in
this case the least upper bound is simply the greatest element of S. More
generally any subset S C R that has a greatest element (usually denoted
max S) has max S as a least upper bound. But an infinite subset of R need
not have a least upper bound, for example, R itself has no upper bound
at all. Furthermore, if a subset S of R has a least upper bound it does not
necessarily follow that this least upper bound is in S; for example, if S is
the set of all negative numbers then S has no greatest element, but any
a > 0is an upper bound of S and zero (a number not in S) is the least upper
bound of S.

The last axiom for the real number system is the following, which gives
a further condition on the ordering of Property VI. p

Properry VII. (LEAST UPPER BOUND PROPERTY). A nonemply set of
real numbers that is bounded from above has a least upper
bound.

If we look at the real numbers geometrically, imagining them plotted
on a straight line in the usual manner of analytic geometry, Property VII
becomes quite plausible. For if S C R is nonempty and bounded from
above then either S has a greatest element or, if we try to pick a point in S
as far to the right as possible, we can find a point in S such that no point
in 8 is more than a distance of one unit to the right of the chosen point.
Then we can pick a point in S farther to the right than the first chosen
point and such that no point in 8 is more than one-half unit to the right
of this second chosen point, then a point of S still farther to the right
such that no point of S is more than one-third unit to the right of the last
chosen point, ete. It is intuitively clear that the sequence of chosen points
in S must “gang up” toward some point of R, and this last point will be
the least upper bound of S. (See Figure 6.)

Another way to justify Property VII in our minds is to look upon the
real numbers as represented by infinite decimals, i.e., symbols of the form

(integer) + .a10405. . .,

where each of the symbols ay, ay, as, . . . is one of the integers 0, 1,2, ..., 9,
with the symbols <, >, 4, - being interpreted for infinite decimals in the
standard way. (Note that any terminating decimal can be considered an

: 3 1 [ N
v v M v v T 'Ill‘"

Figure 6. A sequence of points in R ganging up toward a least upper bound.
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infinite decimal by adding an infinite string of zeros.) If § is & nonempty
set of infinite decimals that is bounded from above, then we can find an
element of S whose integral part is maximal, then an element of S having
the same integral part and with @, maximal, then an element of S having
the same integral part and same a; with a; maximal, and we can continue
this process indefinitely, ending up with an infinite decimal (which may
or may not be in S) which is clearly a least upper bound of S.*

The least upper bound of a subset S of R will be denoted l.u.b. S;
another common notation is sup S (sup standing for the Latin supremum).
Property VII says that l.u.b. S exists whenever S C R is nonempty and
bounded from above. Conversely, if S C R and l.u.b. S exists, then S must
be nonempty (for any real number is an upper bound for the empty set and
there is no least real number) and bounded from above.

Analogous to the above there are the notions of lower bound and
greatest lower bound: a € R is a lower bound for the subset SC Rifa < s
for each s € S, and a is a greatest lower bound of S if a is a lower bound of S8
and there exists no larger one. S is called bounded from below if it has a
lower bound. It follows from Property VII that every set S of real numbers
that is nonempty and bounded from below has a greatest lower bound:
as a matter of fact, a set S C R is bounded from below if and only if the set
S’ = {r: —x €S} is bounded from above, and if S is nonempty and
bounded from below then —l.u.b. S’ is the greatest lower bound of S. The
greatest lower bound of a subset S of R is denoted g.l.b. S; another nota-
tion is inf 8 (inf abbreviating the Latin infimum). If S has a smallest ele-
ment (for example, if S is finite and nonempty) then g.l.b. S is simply this
smallest element, often denoted min S.

We proceed to draw some consequences of Property VII. Among other
things we shall show that the real numbers are not very far from the
rational numbers, in the sense that any real number may be “‘approximated
as closely as we wish” by rational numbers. The way to view the situation
is that the rational numbers are in many ways very nice, but there are
certain ‘‘gaps’”’ among them that may prevent us from doing all the things
we would like to do with numbers, such as solving equations (e.g., extracting
roots), or measuring geometric objects, and the introduction of the real
numbers that are not rational amounts to closing the gaps.

Here are the consequences of the least upper bound property:

* Let us remark here that once the set of integers is known, together with their addition
and multiplication, it is possible to construet the real number system by defining real
numbers by means of infinite decimals. This is in fact the way real numbers are
introduced in elementary arithmetic, and we know how easy it is to compute with
mals. But there are a few inconveniences in this method stemming from the fact that
some numbers have more than one decimal representation (e.g., .989 ... = 1.000...).
There is also the esthetic inconvenience of giving a preferred status to the number 10—
almost a biological accident. In any case we shall discuss later in this section how the
seven properties of real numbers imply that they can indeed be represented by infinite
decimals, thus completing the circle with elementary arithmetic.
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LUB 1.

LUB 2.

LUB 3.

LUB 4.

LUB 8.

For any real number z, there is an integer n such that n > z.
(In other words, there exist arbitrarily large integers.) To prove
this, assume we have a real number z for which the assertion is
wrong. Then n < z for each integer n, 80 that the set of integers
is bounded from above. Since the set of integers is nonempty
it has a least upper bound, say a. But for any integer n, n + 1
is also an integer, 80 n 4+ 1 < a and thus n < g — 1, showing
that a — 1 is also an upper bound for the set of integers. SBince
a — 1 < a, ais not a least upper bound. This is a contradiction.

For any positive real number ¢ there exists an integer n such
that 1/n < e. (In other words, there are arbitrarily small posi-
tive rational numbers.) For the proof it suffices to choose an
integer n > 1/¢, which is possible by LUB1, then use O8,
which is permiseible since by O 7 we have 1/¢ > 0.

For any z € R there is an integer n such that n <z <n +1.
To prove this, choose an integer N > |z|,s0 that —N <z < N.
The integers from —N to N form the finite set { —N, —N + 1,
0,1, ,lendsﬂweneeddouukenwbethegruteat
ofthaechatulmthsnorequdtoz

For any z € R and positive integer N, there is an integer n
such that
n n+1
-ﬁ53< N

To show this we merely have to apply LUB 3 to the number
Nz, getting an integer n such that n S Nz <n +1.

If 2, e ER, ¢ > 0, then there exists a rational number r such
that |z —r| < e (In other words, a real number may be
approximated as closely as we wish by a rational number.) To
prove this, use LUB2 to find a positive integer N such that
1/N < ¢, then use LUB4 to find an integer n such that
n/N<zx<(n+1)/N. Then 0<z—n/N<1/N<¢ s
|z —n/N|<e

We now discuss the decimal representation of real numbers. First con-
sider finite decimals. If ay is any integer, n any positive integer, and
Gy, Gy, . .., G A0y integers chosen from among 0, 1,2, ..., 9, the symbol

Go.G1 83 ... On

will mean, as usual, the rational number

a+ 10+10'+ +
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If m is a positive integer less than n, then

Ge.01...0m < Go.G1...0n = Qo). . .Om + Guyr » 10~ - .. 4 g, + 10—
<0001, .0n+ 910D .ot 49 .10,

If we add 10— to this last number a lot of cancellation occurs, resulting in
Ge.01. . .0m < G0.01. . .0n < Go.01.. .Gu + 107,

This last inequality is at the base of most rounding-off procedures in
approximate calculations and in addition shows that two numbers in the
above decimal form are equal only if (except for the possible addition of a
number of seros to the right, which doesn’t change the value of the gymbol)
they have the same digits in corresponding places. It also enables us to tell
at a glance which of two numbers in the given form is larger. The ordinary
rales for adding and multiplying numbers in this form are clearly legitimate.
By an infinite decimal we mean a formal expression

Go.GyQxas . . «

(this is just another way of writing a sequence) where ao is an integer and
each of ajaya; ... is one of the integers 0,1,...,9. The set
{ac.a;...as : n = positive integer} is nonempty and bounded from above
(for any integer m > 0, 6o.a1. . .am + 10~ is an upper bound) hence has a
least upper bound. The symbol ac.aia:a:. .. is called a decimal ezpansion for
this least upper bound and we say that the least upper bound is represented
by the infinite decimal. Thus every infinite decimal is & decimal expansion
for a definite real number and we may use the infinite decimal itself as a
symbol for the number. Thus

Go.Gi0a03. . . = Lub. {ao.a...as : n = positive integer},
and for any positive integer n we have the inequality
G001, . .0x S G000, .. < Go.Gr. . .Gy + 107

This enables us to tell immediately which of two infinite decimals repre-
sents the larger real number. Note that two different infinite decimals
may be decimal expansions for the same real number, for example
5.1399099. .. = 5.1400000. . ., but the last inequality shows that different
infinite decimals are decimal expansions for the same real number only in
this case, that is when we can get one infinite decimal from the other by
replacing one of the digits 0, 1, ..., 8 followed by an infinite sequence of
nines by the next higher digit followed by a sequence of seros.

Any real number is represented by at least one infinite decimal. To
see this, apply LUB 4 to the case N = 10™, where m is any positive integer:
we get a finite decimal ao.a. . .a. such that

Go.01. . .0m S T < Go.01. . .Gm + 107™,
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If we try doing this for m + 1 in place of m, then a, and the digits ay, ..., a.
will not change, and we simply get another digit am,1. Letting m get larger
and larger, we get more and more digits of an infinite decimal, and this is
our desired decimal expansion for z. Note that the addition or multiplica-
tion of two infinite decimals goes according to the usual rules: we round off
each decimal and add or multiply the corresponding finite decimals to get
a decimal approximation of the desired sum or product. We obtain as many
digits as we wish of the decimal expansion of the sum or product by rounding
oft the given infinite decimals to a sufficiently large number of places.

Using decimal expansions of real numbers, it is very easy to exhibit
real numbers which are not rational. One such number is

.101001000100001000001. . . .

Multiply this by any positive integer and one gets a number which is not
an integer, so this number cannot be rational.

§ 4. THE EXISTENCE OF SQUARE ROOTS.

It is convenient to prove here a special result, even though this can be
derived as a consequence of a much more general theorem to be proved later.

A square root of a given number is & number whose square is the given
number. Since the square of any nongzero number is positive, only non-
negative numbers can have square roots. The number zero has one square
root, which is sero itself.

Proposition. Every positive number has a unique posilive square root.

If 0 < z) < 2, then z* < 2y That is, bigger positive numbers have
bigger squares. Thus any given real number can have at most one positive
square root. It remains to show that if a € R, a > 0, then a has at least
one positive square root. For this purpose consider the set

S={z€ER:220, 2* < a}.

This set is nonempty, since 0 € S, and bounded from above, since if
z > max {a,1} we have 2* =2:2> 2.1 =z > a. Hence y =lub. §
exists. We proceed to show that y* = a. First, y > 0, for min {1,a} €S,
since (min {1,a})* < min {1,a} + 1 = min {1,a} < a. Next, for any « such
that 0 <e<ywe have 0 <y—e<y<y+e¢ m0

-9<y*<@+9

since bigger positive numbers have bigger aquares. By the definition of y
there are numbers greater than y — ein S, but y + ¢ & S. Again using the
fact that bigger positive numbers have bigger squares, we get

y—e*<a<(y+ et



Hence

- -@+P<y-a<@+P-@y-o,

Iy —al <+ ¢ — v — O = 4ye.

The inequality |y* — a| < 4ye holds for any ¢ such that 0 < ¢ <y, and
by choosing ¢ small enough we can make 4ye less than any preassigned
positive number. Thus |3* — a| is less than any positive number. Since
|y* — a| 2 0, we must have |y* — a| = 0, proving y* = a.

If @ > 0, the unique positive square root of a is denoted /@ ; thus

a 118_3 exactly two square roots, namely /@ and —/a. We also write
=0.

v We now know that the positive real numbers are precisely the squares
of the nonsero real numbers. This shows that the set of positive numbers
R, whose existence is affirmed by Property VI is completely determined
by the multiplication function of R. A priori, it might seem that there
could be several possible subsets R, of R for which Properties VI and VII
hold and that in any discussion of the ordering of R the subset R, would
have to be specified, but we now know this to be unnecessary. The set R,
together with the functions + and -, determine the ordering of R. It there-
fore follows that the decimal expansions of elements of R are completely
determined by the triple {R, +, «}. Since the addition and multiplication
of decimals follow the usual rules of arithmetic, the real number aysfem ¢s
complelely determined by Properties I-VII, in the sense that if we have
another triple {R’, +', +'] satisfying these properties then there will exist
8 unique one-one correspondence between R and R’ preserving sums and
products. Thus we may speak of the real number system. In fact one often
speaks of ‘“the real numbers R”, meaning the real number syaiem; this is
strictly speaking erroneous, since R is merely a set and we also have to
know what the operations + and - on this set are, but when there is no
danger of confusion this is a convenient abbreviation.

PROBLEMS

1. Show that there exists one and (muﬁaﬂy)mlymwﬂthmmu
2. Prove in detail that for any g, b,¢,d €ER '
(a) —(a—b)=b—a
(b) (a8 — b)(c — d) = (ac+ bd) — (ad+ bc).
3. Prove thatifa, b€ Rand a < b <0, then 1/a > 1/b.
4. (a) Is223/71 greater than 22/7?
(b) Is 265/153 greater than 1351/7807
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For which z € R are the following inequalities true?
() 3z+2)<z+56
M) 2*~52—-6>0

(e) 2>z--l

@ 2

>z+3>0

Bhowthtila,b,z,yeRmd¢<z<b,¢<y<b,thm|y-=|<b-a.
Bhow that for any @, b E R,

max (a, b} _¢+b+2|a—b|

min {a,b] = —max (—a, -b;A-ﬁi'-"—‘zzJ_“:_”J.

The complex number system is defined to be the set C = R X R (called the

mpksuumber wgetherwithﬂmtwotunctxomfmmcxclnwc.do-

noted by + and -, that are given by (e,8) + (c,d) = (6 +¢,b+d) and

(a,d) ¢ (¢c,d) = (ac — bd, ad + bc) forall @, b,¢c,d ER.

(s) Show that C, together with the functions + and -, is a field.

) Showthtthamspfrom!linto(‘.whichnndnench¢6ltinw(¢,0)h
one-one and “preserves addition and multiplication” (being careful to
define the meaning of the words in quotes).

(c) Identifying R with a subset of C by meana of part (b) (s0 that we can
oonsider R C C) and setting ¢ = (0, 1), show that ©* = —1 and that each
element of C can be written in a unique way as a + b4, with ¢, b €ER.

. Is the subset & of R bounded from above or below? Does it have an l.u.b. or

aglb?
Find the gl.b. and Lu.b. of the following sets, giving reasons if you can.

w {1381}
® (30
© {v3,var VI Vi Vit va,..}.

Prove that if a € R,a > 1, then the set {a, 4% @ ...} is not bounded from

above. (Hinl: First find a positive integer n such th;ta>l+'—tmdprove
l L}

unw>(1+;) 22)

Let X and Y be nonempty subsets of R whose union is R and such that each

element of X is lees than each element of Y. Prove that there exists a € R
such that X is one of the two sets

{zER:2<a}] or (zER:zx<a}.

13. It 8;, 8, are nonempty subsets of R that are bounded from above, prove that

lub. {z4+y:2E€8,y €Sy} = lub. S+ lub. 8,



reo3iaMs 31

14. Let @, b € R, with a < b. Show that there exists a number z € R such that
a < 2 < b, with z rational or not rational, as we wish.

15. “A real number is rational if and only if it has a periodic decimal expansion.”
Define the present usage of the word pertodic and prove the statement.

16. Decimal (10-nary) expansions of real numbers were defined by special refer-
ence to the number 10. Bhow that real numbers have b-nary expansions with
analogous properties, where b is any integer greater than 1.



CHAPTER 111

Metric Spaces

Most of elementary analysis is concerned with
functions of one or more real variables, that is functions
defined on a subset of the real line, or the plans, or
ordinary 3-space or, more generally, n-dimensional
Euclidean space. The real line, plane, etc. are special
cases of the general concept of “‘metric space” which is
introduced in this chapter. We also introduce a con-
venient geometric language for dealing with so-called
“topological” questions, which are questions associated
with the notion of “points near each ‘other”, a notion
that is & priori rather vague. The ideas we develop ean
be applied to any metric space at all. This not only pro-
vides a great economy of thought, since it will be neces-
sary to introduce a new idea only once instead of having
to define it for each special case that may occur, but
will also lead to productive new ways of looking at
familiar objects. Thus one single proof will cover-all
cases simultaneously and a certain result, applied in a
manner slightly out of the ordinary, may have rather
unexpected and far-reaching consequences, as will be
seen Iater when other examples of metric spaces arise.
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§ 1. DEFINITION OF METRIC SPACE. EXAMPLES.

A metric space is a set together with a rule which associates with each
pair of elements of the set a real number such that certain axioms are satis-
fied. The axioms are chosen in such a manner that it is reasonable to think
of the set as a “‘space” (a word we don’t bother to define in isolation), the
elements of the set as “points”, and the real number associated with two
elements of the set as the ‘‘distance between two points’’. Here is the precise
definition:

Definition. A metric space is a set E, together with a rule which associates
with each pair p, ¢ € E a real number d(p, q) such that

(1) d(p,¢) 20forallp,¢gEE

(2) d(p,g) =Oifandonlyif p= ¢

(3) d(p,q) = d(q, p) forallp,qEE

(4) d(p,r) < d(p, q) + d(q,r) for all p, g, r € E (triangle inequality).

Thus a metric space is an ordered pair (E, d), where E is a set and d
& function d: E X E — R satisfying properties (1)-(4). In dealing with a
metric space (E, d) it is often understood from the context what d is, or
that a certain specific d is to be borne in mind, and then one often speaks
simply of ‘‘the metric space E”; this is logically incorrect but very con-
venient. The elements p, g, r, ... of a metric space E (to be absolutely
correct we should say “the elements of the underlying set E of the metric
space (E, d)”, but let us not be too pedantic) are called the points of E,
and if p, ¢ € E we call d(p, ¢) the distance between p and ¢; d itself is called
the distance function, or meiric.

Here are some examples of metric spaces:

(1) E = R (the set of real numbers), d(p, ¢) = |p — q|.
The first three metric space axioms obviously hold. The fourth follows from
the computation

dp,r)=lp—r|=|p—qQ+@—n|<|p—gql+]g—r|
= d(p, 9) +d(90 r).

(2) For any positive integer n we define a metric space E*, called
n-dimensional Euclidean space, by taking the underlying set of E* to be all
n-tuples of real numbers ((a;, ..., a,) : @y, ..., an € R}, and defining, for
P=(®, ..., Za)y g™ (Y ..., th),

dp,Q = V@ -+ @—p+ -+ @ -y
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We must prove that E* is actually a metric space. The first three
metric space axioms are trivial to verify, so it remains to prove the triangle
inequality. We need two preliminary results.

by, by, .« ., be, we have

{aiby + asbs + +++ + auba|
SV o+ Fad VEHOF+ - b,

Proposition (Schwars inequality). For any real numbersay, ay, . . ., a,,

The proof starts with the remark that for any a, 8 €E R we have

0 < (aay — Bb))* + (aas — Bby)* + « - - + (aaw — fby)*
= o*(a’ + as' + - -+ + au?) — 2af(aib1 + asbs + - -+ + aaby)
+ 802 + b2+ - - - + bad).
Hweseta=Vbr+bl+: - +blandf=xVal+al+ - +ad
the last inequality becomes
0<2(at+ - +al) (b + --- + ba)
F2Var+t - +ad Vir+ o +bd (@br+ o + auda),

or

£Vat+t o +ad Vb4 oo +bd (@bt er +auda)

S(ad+ - + o)+ - + b,
or .
Var+ oo +ad V4o bt |aby+ - + aubal

S@t+ - +at)®+ - +baY).
It Var+ - +a 80d v/ b3+ ... 4 b are both nonzero we can
divide by their product to get the desired inequality. If, on the other hand,
either Vad+---+a2=0 or Vdt+: - +b?=0, then either

Gy = - ‘a.ﬂool'bl’ cee ab.ﬂo,mdthedwimmutymw
to 0<0.

Corollary. For any real numbers ay, as, ..., Ga, by, bs, ..., ba we have

V@ +b)+ (@ + by + - -+ + (an + ba)?
SVatatt o +al+Vr+bhit - +b

To prove this write

@1+ b)* + (3 +5)' + + -+ + (aa + ba)?
= (o' +a + - - + aut) + 2(asbs + asbs + - -+ + aaba)
+ G+ b+ + D).
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By the Schwars inequality the last expression is less than or equal to

(e +ad+ -+ +a)
+2Vadtat+ o +ad Vbt b+ o+ bt
+ O+ b+ -+ b

which equals
(Vartar+  +al+ Vi +bd+ - +b)

Thus

@+ b))+ (@ + b)* + - - - + (an +1a)?
s(Valtol ¥ Fal+ Vi +bi+ - +b),

The desired result comes from this last inequality and the comment that
f0<z<ythen Vz < V7.

Wemmveﬁéythetﬁangleinequﬂityforlﬂ‘.htp = (T1y oo .y Tn),

g= @y ..., ¥s), = (2, ...,2). Then
dp, ) = V@ —2)t+ - + (Tn — 2a)*

=V(@—y)+G—20)+ - + (@ = ya) + (e — 22))*

SV@=p)P+ -+ @)+ Vi -+ + =)
by the Corollary, so that

d(p,r) < d(p, @) +d(q, ).

Thus E* is a metric space. '

We note that E* is a generalization of the first example, since E! in
simply R with d(p, ¢) = |p — g|.

(8) If Eis a metric space and E), is a subset of F then E; can be made
a metric space in an obvious way: the distance between two points of E,
is the same as the distance between them when they are considered points
of E. That E,, together with its metric, satisfies our four axioms is immedi-
ate. Ey, with its metric, is called a subspace of E. Note that by taking subsets
of Euclidean space we get an infinite number of metric spaces, in a tre-
mendous variety of sizses and shapes.

(4) Let E be an arbitrary set and, for p, ¢ € E, define d(p, ¢) = 0 if
p =q,d(p,q) =1 if p€q. This is clearly a metric space. It is a very
special kind of metric space, quite unlike the previous examples, but
illustrates nicely the generality of the concept with which we are dealing.
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In this text we shall for the most part be interested in E* and its sub-
spaces, but other important metric spaces will also appear and indeed will
sometimes be introduced to prove things about E* itself.

Proposition. If py, py, ..., Pa are points of the metric space E, then
d(py, ps) < d(p1, ) + d(Ps, s) + - - + A(Pa-s, Pu)-

This comes from repeated application of the triangle inequality:
d(p, p) < d(pr, p1) + d(ps, pa) < d(p, Ps) + d(ps, p3) + dlpr, p0) S -
<d(py, p) +dpyp) + + -+ + dPacr, Pa
Proposition. If p, q, r are points of the melric space E, then
|d(p, r) — d(g, )| < d(p, ).
This is essentially the well-known fact of elementary geometry that

the difference of two sides of a triangle is less than the third side. To prove
it note that

d(p,7) <d(p,q) +d(g,r) and d(q,7) < d(g, p) + d(p,7),
which can be rewritten

d(p,r) —d(g,r) <d(p,q) and d(g,r) —d(p,r) < dlg,p),
which combine to

|d(p, ) — d(g, )| < d(p, @).

§2. OPEN AND CLOSED SETS.

Definitions. Let E be a metric space, po € E, and r > 0 & real number.
Then the open ball in E of cenler ps and radius r is the subset of E given by

{(PEE :dps,p) <7}
The closed ball in E of center ps and radius r is

{(pEE :d(pyp) STl

If there can be no misunderstanding about what the metric space £ is,
one often speaks of the “open (or closed) ball of center py and radius .
When one speaks of an “open (or closed) ball’’ one means sn open (or
closed) ball of some center p, in the metric space and some radive £ > 0.
By a “ball” is meant an open ball or a closed ball. If our metrioc space B is
ordinary 3-space E? then the preceding terminology- is in acocord with every-
day language: an open ball in E® is the inside of some sphere while a closed
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ball is the inside of some sphere together with the points on the sphere, the
centers and radii of the balls being the centers and radii respectively of the
spheres. In the plane E* an open ball is the inside of some circle while a
closed ball is the inside of a circle together with the points on the circle. In
other metric spaces balls may look even less like an ordinary “ball” (ef.
Fig. 7).

Fiauns 7. A closed ball in the subspace E of the plane B*
given by B = [(z,9) EB':2> 0, y > 0).

v We recall that if a, 5 € R, a < b, then the open interval with extrems-
ties a and b is the set

(c,b)-ls&k:a<z<bl‘ ‘
while the closed interval with exiremities a and b is the set
0,0 = (zER:a<z<D).

The inequalitics
a<z<d
are squivalent to the inequalities
c+b a+bd a+b
R S A 2 <b- 2
or
a—>b a+d b-—a
3 <f-—g—<—5—
or

|- 232 <252,

'Nm&mmmmmmwm 'I‘huymbol(o.b)mmw
l‘l interval in R or an ordered of elements of R (or, which is the same thing,
d Tluwh;bbo to (a, b) should always be clear from the con-
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so that (a, b) is the open ball in the metric space R with center (a + b)/2
and radius (b — a)/2. SBimilarly (a, b} is the closed ball with the same center
and radius. If p € R and r ER, r > 0, then the open (or closed) ball in R
with center p, and radius r is (py — r, po + r) (or [pe — r, po + r]), 80 that
the open (closed) balls in R are just the open (closed) intervals.

Po—T Pe Pe
Fiauze 8. Ball in R with center p, and radius r.

Definition. A subset S of a metric space E is open if, for each p € S,
S contains some open ball of center p.

Intuitively, a subset S of the metric space E is open if S contains
all points of E that are sufficiently near any given point of S, but this
property can be stated precisely only by repeating the definition just given.
Note that it makes no sense to say that a set S is open or not unless S is &
subset of some specific metric space E.

Propasition. For any melric space E,
(1) the subset & is open
(#) the subset E 1s open
(8) the union of any collection of open subsets of E s open
(4) the intersection of a finite number of open subsets of E is open.

The proof of the first item is trivial, though perhaps tricky for
beginners: we have to show that “for any p € & there is an open ball such
that . . .”, a statement that is automatically true since there is no p such
that p € &. The second item is equally trivial; indeed any ball in E is
contained in E. Item (3) is also clear. To prove (4), let S, ..., S. be open
subsets of Eand pE SiN --- N S.. Fori =1, ..., n, each S, is open, 80
there exists a real number r; > 0 such that the open ball of center p and
radius r; is entirely contained in S;. Then the open ball of center p and
radius min {ry, ..., 7.} is contained in each S; and is contained therefore
in an s f\S.. Thul Sxf\ -~-f\S. is open.

The word “open” so far occurs in two contexts: we have open balls

and open sets. That no errors can arise is a consequence of the following
result.
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Proposition. In any meiric space, an open ball is an open set.

For let E be a metric space and consider the open ball S of center p,
and radius r. We have to show that if p € S, then some open ball of center
p is entirely contained in 8. Figure 9 gives the idea of the proof: if p €S
then the open ball of center p and radius r — d(ps, p) is contained in 8. To
fill in the details of the proof, note first that d(ps, p) < r since p € S, 80
that r — d(po, p) > 0 and there actually exists an open ball of center p
and radius r — d(pe, p). If ¢ is in this latter ball then d(p, g) < r — d(ps, p)

and therefore d(ps, 9) < d(ps, p) + d(p, @) < d(ps, p) + (r — d(ps, P)) = r.
Thus ¢ € S and the proof is complete.

. O

Fiounz 9. Ahopenballisanopennt.

As a consequence of the last two propositions we can assert that the
open subeets of E are precisely the unions of open balls of E, that is, any
open subset is such a union (in fact it is the union of all the open balls it
contains) and any such union is an open set.

The difference between (3) and (4) in the first proposition is to be
noted seriously. Item (4) is no longer true if the word “finite’’ is dropped.
For example, consider in E* the open balls with center the origin
(0,0, ...,0) and radii 1, 34, 34, 4, ...; the intersection of these open
balls is just the origin itself, a set which is clearly not open.

Definition. A subset S of a metric space E is closed if its complement
¢S (that is, all points in £ which are not in S) is open.

Fiaure 10. Open and closed sets in E*.
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As before, to avoid trouble we should show that a closed ball is a closed
set. Here are the statement and proof, quite analogous to what was done
above. Figure 11 illustrates the argument.

Proposition. In any melric space, a closed ball is a closed set.

Let S be the closed ball of center py € E and radius r and let p € €8.
Then d(ps, p) > 7, 80 d(ps, p) — r > 0 and we can consider the open ball
of center p and radius d(ps, p) — r. For any point ¢ in the latter open ball
we have d(p, ¢) < d(ps, p) — r, 80 that

d(po, 9) = d(ps, ) + d(g, p) — d(p, q) 2 d(ps, p) —d(p, Q) > r.

Thus the open ball of center p and radius d(ps, p) — r is entirely contained
in €8, so that €S is open. Thus S is closed.

‘% dpup) -

Fiaune 11. A closed ball is a closed set.

Analogous to the first proposition on open sets we have the following
result.

Proposition. For any metric space E,
(1) the subset E is closed
(2) the subset & is closed
(8) the intersection of any collection of closed subsets of E is closed
(4) the union of a finite number of closed subsets of E is closed.

This result follows immediately from the analogous proposition for
open subsets. For E and 2 are the complements of 2f and E
which are open, so that E and 2 are closed. Pm(a)tnd(ﬁndﬂmm
the fact that the complement of an intersection is a union, and vice verss
(bottom Exzrcisz, page 8). For (3), we note that the complement of the
intersection of any collection of closed subsets of E is the union of the
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complements of these closed subsets, that is the union of certain open sets,
which is open. For (4), note that the complement of the union of a finite
number of closed subsets is the intersection of the complements of this
finite number of closed sets, that is the intersection of a finite number of
open sets, which is open.

If p, g are distinet points of the metric space E then there are balls
(either open or closed) containing one point but not the other, for example
any ball (either open or closed) centered at p or ¢ and of radius less than
d(p, ¢). Thus any point is the intersection of all the closed balls containing
it, proving (by (3) above) that a point is a closed set. By (4), any finite
subset of a meiric space ts closed.

The complement of an open ball is a closed set, as is the closed ball of
the same center and radius, 8o again by (3) the intersection of these two
sets is closed. Thus for any py € E and any r > 0, the “sphere of center po
and radius r'’, that is, the set {z € E : d(py, p) = r}, is closed.

It is easy to give examples of subsets of a metric space which are
neither open nor closed. For example, let E = R, let ¢, b E R,a <b, and
consider the “half-open interval”

[6,0) = [stER:a<z<Db}.

Then [a, b) contains the point a but no open ball having center a, 8o {a, b)
is not open. Similarly, €[a, b) contains the point b but no open ball havmg
center b, 90 C{a, b) is not open. Thus [a, b) is neither open nor closed.

For any n = 1,2,3, ... and any a € R, the subset of E* given by

{(Z1, ... Za) EE*: 2, > a}
is open. For let p = (;, 23, . . ., Za) be in this subset and consider the open

ball of center p and radius x;-a Ifq-= (1, ¥, - .., ¥s) i8 in the latter
ball, then

lZi—plSV@E =)+ -+ @ =) =dp, g <z1—a,

0 p=2—(@T—p) 22 —|01—n|>x — (&1 —a) =a, so that the
point g is in the set {(z), ..., Z.) € E* : z: > a}. Hence this latter set is
open. Similarly the set {(zi, ..., z.) € E* : z, < a} is open, and for any
i=1,2, ...,n, the sets

{1, ..., Za) EE*: 24> a} and {(z, ...,2.) €E E*: % < a)}
are open. Consequently their complements

(..., %) EE*:2,<a) and l(zx,.--.z.)eEf:z«Zal
are closed.
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Ifo;.a.,...,a.,b;.b.....,b.élmda;<h,o;<h. .n,q.«(b..
then the set of points

(@ ... 2) EF* :as <z <W; foreach i=1,...,n}
is called an open interval in E* and the set of points
((3;, ..-,S.)GE':G‘S’(SM‘O’M’I‘-I, ovo'“}

is called a closed interval sn E*, (This generalizes the usual notion of open
and closed interval in R = E.) An open (or closed) interval in E* is an open
(or closed, respectively) subsel. For such a set is the intersection of the 2n
subsets given by the separate conditions a; < zy, ..., 0 <z, 14> 7, ...,
D>z (Or i<z, ...,0. S %0y 422y, ...,bs 2 7,) and these latter
subsets are all open (or closed), hence 80 is their intersection.

! |
‘.-.----- )
[ TC XX X ?‘ Lo

1

[ E X
s-.-—

Fiauzs 12. A closed interval in B3,

Definition. A subset S of & metric space E is bounded if it is contained
in some ball.

In this definition the ball in question may be either open or closed, for
any open ball is contained in a closed ball (for example the closed ball of
the same center and radius) and any closed ball is contained in an open
ball (for example the open ball of the same center and any larger radius).
As an example of a bounded set, consider the open and closed intervals in
E* disoussed above; these are all bounded since the set

{(@y...,2) EE*: i St Shiforeachi=1,...,n}

is contained in the closed ball of center (a,, ..., a.) and radius of magni-
tude V(by — @)+ -+ + (b — au).
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I S is a bounded subset of the metric space E then 8 is contained in
some ball (either open or closed) with center po, where p, is any point of E.
For since S is contained in some ball, say the closed ball of center p, and
radius r, then S is also contained in the closed ball of center p, and radius
¢ 4 d(pe, p1). This makes obvious the fact that the union of a finite number
of bounded subsets of E is bounded.
1t is clear from the definition that a subset of R is bounded if and only
if it ig both bounded from above and bounded from below.

Proposition, A nonempty closed subset of R, if it 18 bounded from above,
has a greatest element and if it 52 bounded from below has a least element.

Let S be a nonempty subset of R and suppose, for definiteness, that S
is bounded from above (the proof being almost the same if S is bounded
from below). Let a = L.u.b. S. If a & S, then a € €8S and since €8 is open
there exists & number e > 0 such that the open ball in R of center ¢ and
radius ¢ is contained in ©S. This means that no element of § is greater than
a — ¢. Therefore, a — ¢ is an upper bound for S, contrary to the assumption
a = Lu.b. S. We conclude that a € S, as was to be shown.

$3. CONVERGENT SEQUENCES.

Let py, ps, Py, ... be & sequence of points in the metric space E. It
may happen that as we go out in the sequence the points of the sequence
“‘get arbitrarily close to” some point p of E. This is illustrated in Figure 13,
where the various terms of the sequence at first oscillate irregularly, then
proceed to get cloger and closer to p, in fact “gang up on’” p, or “‘get arbi-
trarily close to” p. The purpose of the following definition is to give some
precise sense to the intuitive words “get arbitrarily close to".

Fraums 13. A convergent sequence of points in E?.
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Definition. Let pi, p2, 73, ... be a sequence of points in the metric
space E. A point p € E is called a limit of the sequence ps, py, Py, . .. if,
given any real number ¢ > 0, there is a positive integer N such that
d(p, pa) < ¢ whenever n > N. If the sequence p, ps, ps, ... has a limit,

we call the sequence convergent, and if p is a limit of the sequence we say
that the sequence converges to p.

Let us make a few observations concerning this definition. The main
one is that given any ¢ > 0 there exists a positive integer N having a certain
property involving e¢. Thus N usually depends on ¢, and it would have been
more precise to write N(¢) instead of N. However the extra precision ob-
tained by writing N(¢) instead of N results in unnecessary notational
confusion, so from now on we just tacitly understand that N depends on ¢
and stick to our shorter notation. Note that we do not even care what
specific N goes with each ¢ > 0, the important thing being that for each
¢ > 0 there exists some N with the desired property; if for some ¢ > 0 we
have a certain N with the desired property, then any larger N would do
equally well for our given e. Thus in deciding whether or not a sequence of
points is convergent, only the terms far out count; that is, if we obtain a
new sequence by lopping off the first few terms of our original sequence, the
two sequences we have are either both convergent (with the same limits)
or both not convergent.

Another observation on the definition of limit and convergence is that
these concepts are always relative to some specific metric space E. Thus
it might happen that for the given sequence of points in E, py, ps, py,. . -,
the condition in the definition of limit holds for a certain point p of E’,
where E’ is some metric space of which E is a subspace; the sequence would
then be convergent in E’, but we could not call it convergent in E unless
we knew that p & E. Thus in using the notion of convergence a specific
metric space must be borne in mind. As an easy example, the sequence
3,3.1, 3.14, 3.141, 3.1415, 3.14159, ... converges in R (to the limit x),
but not in the subspace ¢{r} of R.

In speaking informally of a convergent sequence of points py, ps, Py, - . .
in a metric space E, one often says that ‘‘the points of the sequence get
cloger and closer to the limit”, but this need not be literally true. For
example, as we move along in the sequence the points of the sequence may
at first get nearer and nearer to the limit, then move somewhat away, then
get nearer and nearer again, then move somewhat away, etc. Thus while
the terms of the sequence of points in R

1,184, 4.4, ...

do get closer and closer at each stage to the limit zero, this is not literally
true of the convergent sequence

L3, 1,4, 4,3, ...
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The points of a convergent sequence may also happen to be all equally near
the limit, since for any p € E, the sequence

PP
CORverges to p.

Proposition. A sequence py, Py, Py, . . . of points in a meiric spacs E has
at most one limst.

For suppose that p, ¢ € E are both limits of the sequence. For any
¢ > 0 there are positive integers N, N’ such that d(p, p.) < eif n > N
and d(g, p») < ¢ if n > N’. If we choose an integer n > max {N, N’} we
must have d(p, p.) < ¢, d(g, pa) < ¢, 80 that

d(p,q) £d(p,ps) +d(Pa, q) < €+ € = 2¢.

If d(p, gq) » O we get & contradiction by choosing ¢ < d(p, ¢)/2. Therefore
we must have d(p, g) = 0, 80 that p = ¢.

Thus a convergent sequence has a unique limit, and it makes sense to
speak of the limit of & convergent sequence. A sequence which is not con-
vergent of course has no limit.

The statement that the sequence of points p;, ps, ps, ... (in & metric
space E) converges to the point p (also in E) is written concisely as

li.g_!r--p-

For a nonconvergent sequence py, ps, Py, ... of points in a metric
space E the expression lim p, is meaningless. In this case we also say that

lim p. “does not exist”.
Lo ]

If @), 04,04, ... i8 & sequence (of any kind of objects) and if n;, n,
My, ... i8 a strictly increasing sequence of positive integers (that is,
My, Ny, My, ... &re positive integers and n; < ny <ny < ---) then the
SOQUENCE Guy, Gy, Gy, - - . 8 called & subsequence of the sequence a,, @y,
Goy o oe

Proposition. Any subsequence of a convergent sequence of poinis in a
metric space converges lo the same limsl.

For let lim p, = p and let n;, ns,ny, ... be a strictly increasing
Lo

sequence of positive integers. Given any ¢ > 0 there is a positive integer N
such that d(p, p.) < ¢ whenever n > N. Since n. 2 m for all positive
integers m, we have d(p, pa.) < ¢ whenever m > N. This means that
l.i_::p.. = p, which is what we wanted to show. [Note that m in the last

formuls is just & ““dummy variable”, as was n in the expression im p,.]
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The preceding result generalises the fact that if a finite number of
terms are lopped off the beginning of a convergent sequence, the resulting
sequence converges to the same limit. .

Call a sequence of points p,, ps, Ps, ... in & metric space bounded if
the set of points {py, s, Ps, ...} is bounded. It is easy to show that any
convergent sequence of pointe in & metric space is bounded: If the sequence
P, Py, Py, ... converges to the point p, pick any ¢ > 0 and then find a
positive integer N such that d(p, p.) < ¢ whenever n > N. Then
{ps, s, P, ...} is contained in the closed ball of center p and radius

max (¢, d(p, pv), d(p, py), . . ., d(p, pN)}.

We recall that a closed subset of a metric space was defined as the
complement of an open subset. Thus the knowledge of all the closed subsets
of a metric space is equivalent to the knowledge of all the open subsets. It
is also true that the knowledge of all the open subsets of a metric space
determines which sequences of points are convergent, and to which limits.
For it is immediate from the definitions that the sequence p;, py, ps, - . .
converges to the limit p if and only if, for any open set U that contains the
point p, there exists a positive integer N such that for any integer n > N
we have p, € U. The next result will tell us that knowledge of all the con-
vergent sequences of points in the metric space, together with their limita,
determines the closed subsets of the metric space. Thus any statement
concerning the open subsets of a metric space can be translated into a state-
ment concerning the closed subsets, which itself can be translated into
another statement concerning convergent sequences of points and their
limits. Thus there are three languages capable of making essentially the
same statements: the language of open sets, that of closed sets, and that of
convergent sequences. As one would expect, however, simple statements
in one language may translate into complicated statements in another, We
shall therefore use all three languages simultaneously, or rather a common
language including all three, always striving for simplicity (as opposed
to purityl) of expression.

Theorem. Let S be a subset of the metric space E. Then 8 18 closed if and
only if, whenever py, ps, Py, . . . 18 a sequence of poinis of S that is convergent
in E, we have

lim p, € 8.

There are two parts to the proof. First suppose that S is closed and
that py, ps, s, . .. is & sequence of points of S that converges to a point p
of E. We must show that p € 8. If this is not 80, we have p € €8. Since
@8 is open, there is some ¢ > 0 such that €S contains the entire open ball
of center p and radius e Thus if N is a positive integer such that
d(p, pa) < e whenever n > N, we have p. € €S whenever n > N, a contra-
diction. This shows that p € S and proves the ‘“‘only if”’ part of the theorem.
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To prove the “if” part, suppose S C E is not closed. Then €S is not
open, and there exists a point p € €8 such that any open ball of center p
contains points of S. Hence for each positive integer n we can chooee p, € 8
such that d(p, pa) < 1/n. Then l*i‘rgp, = p, with each p. €S and p & 8.

This shows that if the hypothesis on convergent sequences holds, then S
must be closed, completing the proof of the “if”’ part, and hence of the
whole theorem.

The metric space R has special properties that are not shared by all
metric spaces: its elements can be added and multiplied, and they are
ordered. For want of a better place, we insert here the relevant properties
of sequences of real numbers.

Proposition. If @\, as, a5, ... and by, by, bs, ... are convergent sequences
of real numbers, with limits a and b respectively, then

lim (@ +bs) =a+b
lim (an — b)) =a—b

lim a.ba = ab
A0

and, in case b and each b, are nonzero,

. G a
lim 5~ =3

We prove each part separately. Recall that for z,y ER, d(z,y) =
|2 = y|. For the first part, given ¢ > 0 we also have ¢/2 > 0, so that we
can find a positive integer N; such that |a — a.] < ¢/2 whenever n > N,
and we can also find a positive integer N, such that |b — ba| < ¢/2 when-
ever n > Ns. If we set N = max {N,, N3}, then whenever n > N we have

[(@+b) = (@ + ba)| =|(a — as) + (b — b) |

, Sla—a|+b-bl<g+5=c
This proves the first part.

The second part, about subtraction, can be proved in a similar manner.
As a matter of fact, a few changes of sign in the above proof will prove the
result for subtraction. Here is an alternate proof: By the third part (which
is proved in the next paragraph), observing that the sequence —1, —1,
=1, ... converges to —1, we have lim (—b,) = —b, so by the first part

N0

lim (as — by) = lim (6 + (—ba) = lim a, + lim (~bx)
=g+ (—b) =a—b
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To prove the third part we start with the fact that convergent sequences
are bounded to get a number M € R such that |a.| < M and |bu|< M
for all positive integers n. Clearly M > 0. Since a closed ball is & closed set,
the preceding theorem implies [a|, |b| < M. Given any ¢> 0 we also
have ¢/2M > 0, so there exists a positive integer N such that |6 — a.| <
¢/2M and |b — ba| < ¢/2M whenever n > N. Hence for any integer
n > N we have

|ab — auba| = |ab — ab. + aba — auba| = a6 — b.) + ba(a — a)|
Slal-1b—bul+|bal-la —au| <M - g3+ M- ir =

This proves the third part.
To prove the last part, about division, first consider the special case
where a, = 1 for all n. We want to show that 1/b, converges to 1/b, that is

that
‘_1_ - _Ll -t —b
b b bi.|ba
is small if n is large. The numerator is clearly small if n is large, but we also
need to have the |b.| in the denominator bounded away from sero, or the
total fraction may not be small. The latter objective is easily accomplished

by taking n so large that |b — ba| <|b|/2. The formal details of the proof
that lim 1/b, = 1/b we give as follows:

Given ¢ > 0, choose a positive integer N such that if n > N then
b < min{13L, 180%
1 b.!<mm{2o 3 }

Then if n > N we have

[bul = 16 = & — b3 2 [b] ~ (5 — ba] > [b] — 2L = 121,
so that

b+
This proves that lim 1/6, = 1/5. To complete the proof of the last part

of the proposition we use the third part together with this last result as
follows:

. Og . 1 . .1 1 e
lxm—-—-—-lun(a.--—b-;—)-h.ﬁa.~1£T:-a--b—--6-.

Mb. -t
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Note the special cases of the last proposition when one or the other
of the sequences a,, ay, as, ... Or by, by, by, ... is constant:

lim (as + b) = lim @, + b, lim ab, = a lim b,, ete.

The next very easy result expresses the compatibility of convergence
of sequences of real numbers with order.

Proposition. If ai, a5, a5, ... and by, by, by, ... are convergent sequences
of real numbers, with limits a and b respectively, and if as < ba for all n, then
alb

For b — a = lim b, — lim a. = lim (b, — a.), and since each by — a,

is nonnegative the theorem implies that the limit also is nonnegative, the
set {zER : z > 0} being closed.

Definition. A sequence of real numbers a,, as, a;, ... i8 increasing if
S <ass -, decreasing if a1 2 as 2 a3 2 - - -, and monotonic if it is
either increasing or decreasing.

Proposition. A bounded monolonic sequence of real numbers is convergent.

Suppose first that ay, as, as, ... i8 & bounded increasing sequence of
real numbers. We shall prove that the sequence converges to the limit
a=1lub. (a;, a8 ...}. We have a > a, for all n, by the definition of
upper bound. For any ¢ > 0 we have a — ¢ < g, 80 by the definition of
least upper bound there is a positive integer N such that ay > a — ¢ Since
the sequence is increasing, it follows that if n > N then a, > a — ¢, 90 that

a—¢e¢<a,Sa<at+e O la—an<e

Thus the sequence converges to a. Essentially the same proof shows that
a bounded decreasing sequence of real numbers converges; we have only
to replace Lu.b. by g.l.b. and change the sense of some of the inequalities.
Or we can apply the part already proved to get the convergence of the
increasing sequence —a;, —as, —ay, . .., which implies the convergence of
01,00, 08, 200

Examrre. The last result gives an easy proof thatif s ER, |a| < 1,
then

'li.ga'-o.

First note that |a*| = |a|®, 80 that we may suppose that a > 0. Then
thesequencea, %, a*, @', . . . is decreasing, since a* — a*+! = g*(1 — a) > 0.
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The terms of the sequence are all nonnegative, so the sequencs is bounded,
hence convergent. Let lim a* = z. Then

az-—-—-a‘lima'=lim(a~a')-lima*+‘-lima'=a:.
Since az = z, we have (@ — 1)z = 0, 80 z =.0.

As a consequence of what we have just shown, if a E R, |a| > 1, then

the sequence a, a*, @, @, ... is unbounded. (Another proof of this fact
is indicated in Problem 11, Chapter I1.)

§ 4. COMPLETENESS.

The definition of convergence of a sequence of points in a metric space
enables us to verify the convergence of a given sequence only if the limit is
known. It is desirable to be able to state that a given sequence is convergent
without actually having to find the limit. We can already do this in certain
cases, for the last proposition of the previous section states that a bounded
monotonic sequence of real numbers is always convergent. However we
need a more general “inner” criterion for the convergence of a sequence of
points in & metric space. For this reason we introduce below the concept of
“Cauchy sequence”, a sequence of points in a metric space that satisfies
a certain property depending only on the terms of the sequence. It will turn
out that all convergent sequences are Cauchy sequences and that, at least
for certain important metric spaces, any Cauchy sequence is convergent.
Thus we shall often be able to state that a sequence is convergent without
having to determine the limit. We very often are not at all interested in
computing the limit of a sequence but rather in verifying that the limit
possesses certain properties, and once it is known that the limit exists such
properties can often be inferred directly from the sequence.

Definition. A sequence of points pi, ps, ps, ... in & metric space is a
Cauchy sequence if, given any real number ¢ > 0, there is a positive integer
N such that d(p., p=) < € whenever n,m > N.

The number N in the definition above of course depends on e. The
important point is that given any ¢ > 0 there exists some N with the
desired property.

Proposition. A convergent sequence of poinis in a matrw space 18 a Cauchy
sequence,

For if py, ps, ps, . .. converges to p then for any ¢« > O there is an
integer N such that d(p, ps) < ¢/2 whenever n > N. Hence if n,m > N
we have

d(pw, Pw) < d(p, P) + d(p, Pa) <§+§¢
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However, not every Cauchy sequence is convergent. For example the
sequence 1,%%,%§,%, %6, ... is a Cauchy sequence in the metric
space E = R — [0} (the complement of {0} in R), but it is not convergent
in E. More generally, if we take any sequence of points in a metric space
which converges to a limit which is.not one of the terms of the sequence
and then delete the limit from the metric space, we get a Cauchy sequence
which is not convergent.

The following two easy propositions give known properties of con-
vergent sequences that generalise to Cauchy sequences. The first proposi-
tion is trivial so the proof is omitted.

Proposition. Any subsegquence of a Cauchy sequence is a Cauchy sequence.
Proposition. A Cauchy sequence of poinis in a melric space is bounded.

For if the sequence is py, ps, ps, . .. and ¢ is any positive number and
N an integer such that d(p., p=) < ¢if n, m > N, then for any fixed m > N
the entire sequence is contained in the closed ball of center p. and radius

max {d(pm, P1), A(Pm, P1), . . ., d(Pm, P¥), €}.

Proposition. A Cauchy sequence that has a convergent subsequence is ilself
convergent,

Let py, ps, s, . . . be the Cauchy sequence, p the limit of a convergent
subsequence. For ¢ > 0, let N be such that d(p., p=) < ¢/2 if n,m > N.
Fix an integer m > N so that p, is in the convergent subsequence and so
far out that d(p, ps) < ¢/2. Then for n > N we have

d(PyPa)Sd(P,P-)'*'d(p-,p.) <"%‘+"%" e

Definition. A metric space E is complete if every Cauchy sequence of
points of E converges to a point of E.

It will be proved shortly that E* is complete. Other useful examples of
complete metric spaces will appear later. The following propoeition gives
us infinitely more examples.

Proposition. A closed subset of a complete metric space is a complete meiric
space.

The subset is of course considered to be a subspace, so that a Cauchy
sequence in the subset is a fortiori one in the original metric space. The
result is an immediate consequence of the theorem of the last section.
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Theorem. R ts complete.

Let ay, a5, a;, ... be a Cauchy sequence of real numbers. We must
show that this sequence converges to a real number. Consider the set

S = {z ER : z < a. for an infinite number of positive integers n}.

Since the Cauchy sequence is bounded, S is nonempty and bounded from
above. Therefore a = l.u.b. S exists. We proceed to prove that a;, a,, 6, . . .
converges to a. Given any ¢ > 0 choose & positive integer N such that
|as — 8a]| < €/2 if n,m > N. Since a = Lu.b. S we have a 4 ¢/2 & 8, but
a — ¢/2 € 8. This means that for only a finite number of positive integers
n is it true that a + ¢/2 < a,, but we have a — ¢/2 < a. for an infinite
number of n. Hence we can find a specific integer m > N such that
a4+ ¢/2> an and a — ¢/2 < a., 50 that |G — au| < ¢/2. Therefore if
n > N we have

la —au| =|(a — aw) + (au — Ga)|
Sla—6u|+lon—ta|<z+g=e

This proves that a,, as, as, ... converges to a.
Corollary. For any positive integer n, E* is complete.

For simplicity of notation let n = 3; the proof for any n will be essen-
tially the same. We have to show that a Cauchy sequence py, ps, P, - .-
of points of E® has a limit. Let py= (23, 1, 21), D1 = (23, Y3, %), 4 =
(23, ¥s, 3), etc. Given e > 0 there exists a positive integer N such that
d(Pe, Pm) < €¢if n,m > N. Since

d(Pa; Pn) = V (2n — Zu)* + (Ya — ym)* + (2. — 2a)?
2|20 = Zal, [Ys = Yuls |20 — 2a]

we have |Za — Zu|, [yn — Um|, |2s — 2| < ¢ whenever n,m > N. This
means that each of the sequences 2, 2y, 23, ..., Y1, ¥, V3, - - ., 80 8y, B,
%, ... is & Cauchy sequence in R. By the theorem these sequences are
convergent, and we denote their limits by z, y, £ respectively. We shall
prove that p, ps, P, ... converges to the point p = (z, y, s). To do this,
gvenc>0choooeNmohtlutforunyinfn¢u>NwohonIz-—&l.
|y — yals |8 — 22} < ¢/+/ 5. Then for n > N we have

dp,ps) = V(i ~2)' + (y = )t + (s — 5)*
<NF+5+5-.

This proves that lim p, = p.
Lo ]
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§ 5. COMPACTNESS.

Definition. A subset S of a metric space E is compact if, whenever S is
contained in the union of a collection of open subsets of E, then S is con-
tained in the union of a finite number of these open subsets.

_ Clearly any finite subset of a metric space is compact. Unfortunately
we have to wait before we can give a less trivial example of a compact
subset of a metric space. An example of a noncompact subset of a metric
space is, however, easy to give: the open interval (0, 1) is not a compact
subset of the metric space R, since (0, 1) is contained in the union of all
open subsets of R of the form (1/n, 1), where n is a positive integer, but is
not contained in the union of any finite number of these open subsets. It
will be seen as we go along that compactness is a property related to com-
pleteness, but much stronger.

The definition just given of a compact subset of a metric space can be
applied to E itself: the metric space E is called compact if it is & compact
subeet of itself. This means that whenever E is the union of a collection of
open subsets, it is the union of some finite subcollection of these open
subsets.

Let S be an arbitrary subset of a metric space E. When we consider S
as a subspace of E, an open ball in 8 is simply the set of points in S of an
open ball in E whose center is in S, that is the intersection with S of an
open ball in E whose center is in S. Thus the open subsets of the metric
space S are precisely the intersections with S of the open subsets of E.
Hence S is a compact subset of E if and only if the metric space S is com-

One example of a compact metric space will give us many more, by
means of the following result.

Proposition. Any closed subset of a compact metric space is compact.

For let the closed subset S of the compact metric space E be contained
in the union of a collection of open subsets of £, say S C ‘\‘J’ Ui, where

each U, is an open subset of E, 1 ranging over an indexing family I. Then
EC (}i}: U:) \J e8. Since S is closed, €S is open, 80 by the compactness

of E we can find a finite subset J C I such that E C (‘\GJJUQUGS. Hence
SC :.‘J,U‘.Thklbomthatﬂiacompwt.

Here are some of the basic properties of compact sets.

Proposition. A compact subset of a metric space is bounded. In particular,
a compact metric space is bounded.
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For any metric space is the union of its open balls, and the union of
any finite number of balls is a bounded set.

Proposition (Nested set property). Let S;, 83, Sy, ... be a sequence of
nonemply closed subsels of a compact meiric -space, with the property that
81088 .... Then there is at least one point that belongs to each of
the sets 8,84, 8, ....

If not, we must have M 8, = &, implying that U €8, is
a=l ... a=ldd,...

the entire metric space E. Since E is compact it is the union of a finite
number of the open subsets €8,, ¢8,, €S;, .... Since €8, C €S, C eS8 C
..., we must have £ = €8, for some n, which produces the contradiction
8. =g,

The above pmpodﬁondounotholdiftﬁeword ‘“‘compact” is replaced
by “complete”: for example let E = R, taking S, = {tER : 2z 2 n},
n=123,....

Fiaurz 14. Nested set property. There is a point common to all the squares, each of
which has half the dimensions of its predecessor. (A closed square is com-
pact, by a theorem to be proved shortly.)

For a better insight into the meaning of compactness, we introduce
another definition.

Definition. If E is a metric space, S a subset of E, and p & point of E,
then p is a cluster point of S if any open ball with center p contains an.infinite
number of points of S.
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Theorem. An infinite subset of a compact melric space has al least one
cluster point.

If this were false, then for any given point of a certain compact metric
space E we could find an open ball having the given point as center and
containing only a finite number of points of the infinite subset S of E. E is
the union of all such open balls. Since E is compact, it is the union of a
finite number of such open balls. This implies that S is finite, a contra-
diction.

Corollary 1. Any sequence of poinis in a compact metric space has a con-
vergent subsequence.

Let pi, ps, Py, ... be the sequence, E the metric space. We must
separate cases, according as the set {pi, ps, ps, ...} is infinite or not.

Case 1. The set {py, ps, Ps, ...} i8 infinite. In this case the set
8 = {p1, ps, Dy, ...} has at least one cluster point, say p € E. Pick a posi-
tive integer n; such that p,, is in the open ball of center p and radius 1,
then pick an integer ns > n, such that p,, is in the open ball of center p and
radius 1/2, then pick an integer ns > ns such that ps, is in the open ball of
center p and radius 1/3, etc.; this process can be continued indefinitely
since each open ball of center p contains an infinite number of points of S.
We end up with a subsequence of py, ps, p3, ... whose n'* term has dis-
tance less than 1/n from p, for all n =1,2,3, .... This subsequence
converges to p.

Case 8. The set {py, ps, s, ...} is finite. In this case at least one
point p € {p, Py, s, . . . } occurs an infinite number of times in the sequence
D1, Ps, D, - . .. Thus the convergent sequence p, p, p, ... is a subsequence
of the given sequence.

Corollary 2. A compact melric space 18 complete.

For any Cauchy sequence has a convergent subsequence and therefore
is itself convergent.

Corollary 3. A compact subsel of a metric space is closed.

For any convergent sequence of points in the compact subset must
have its limit in the compact subset, by Corollary 2. Thus the theorem of
§ 3 implies that the subset is closed.

We now know that any compact subset of a metric space is both closed
and bounded. We proceed to prove the fundamental fact that any closed
bounded subset of E* is compact.
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Lemma. Let S be a bounded subsel of E*. Then for any ¢ > 0, S s oon-
tatned in the union of a finite number of closed balls of radius e.

We begin the proof by showing that E* itself is the union of a set of
evenly spaced closed balls of radius ¢, as illustrated in Figure 15.

R S

Fiours 15. E*is the union of evealy spaced small closed balls.

To be concrete, consider the points in E* of the form (a/m, as/m, ...,
a»/m), where ay, a3, . . ., a, are integers and m is & fixed positive integer,

to be determined shortly. For any (23, 23, . . ., 2.) € E* there are integers
@1, Gs, . . ., Qs Buch that

Ueancdtl jan3,.n

(by LUB 4 of Chapter II) and we then have

...z, %,...,.;;))-Ja_ )+; +(,,.._.)

r~ +-;-‘7"
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Now suppose that the fixed integer m had been chosen greater than v/ n /¢,
8o that v/ n/m < e Then (z,, ..., z,) is contained in the closed ball of
radius ¢ and center (ay/m, ..., as/m). In particular E* is the union of all
these balls, for varying integral ay, as, . . ., @s. It remains to show that if
8 C E* is bounded then a finite number of values of a;, s, . . ., as suffice
to give us balls of radius ¢« whose union contains S. To do this note that
since S is bounded it is contained in some ball with center at the origin.
If this ball has radius M, then for each point (21, 2s, . . ., %) € S we have
Vzrtzd+ -+ 2zt <M. Bince |n|< Vazt+azt+ o +za for
t=1,2,...,n we have || < M whenever (21,23, ...,2:) € 8. If, as

above, a, a3, ..., 6. are integers such that a;/m < z < (a; + 1)/m, we
have

ol =+ G - =)l st 35 - a s w2

Hence whenever (21, 2y, ..., 2s) €8 we have |a;| < mM + 1, showing
that there will be only a finite number of possibilities for the integers

Gy, 0y, . . ., @x. Thus S is completely covered by a finite number of our closed
balls of radius e

Theorem. Any closed bounded subset of E* is compact.

Suppose the theorem false and that we have a closed bounded subset
S of E* that is not compact. Then there is a collection of open subsets
{U} = {Ui)ser of E» whose union contains S, but such that the union of
no finite subcollection of {U) contains 8. Bince S is bounded, the lemma
tells us that S is contained in the union of a finite number of closed balls
of radius l/2,uy Bg,Bg, ...,B'.Thlll

8=(8NB)U(ENBYU---U @SN B,).

At least one of the sets SN\ By, SN By, ..., SN B,, say SN B;, is not
contained in the union of any finite subcollection of {U}. SN B; is closed
(being the intersection of closed sets) and if p, ¢ € SN B, then d(p, ¢) <1
(since each of the points p, ¢ has distance at most 1/2 from the center of
the ball B)). Set 8; = SN B;. Then 8, is closed and bounded, not contained
in the union of any finite subcollection of {U}, and if p, g € 8i then
d(p, ¢) £ 1. Now apply the lemma to S, and ¢ = 1/4 to get S) contained
in the union of a finite number of closed balls of radius 1/4 and repeat the
above argument to get a closed subset S, of 8, not contained in the union
of any finite subcollection of { U}, such that if p, ¢ € S, then d(p, ¢) < 1/2.
Repeating the argument with ¢ = 1/6, 1/8, 1/10, ... we obtain a sequence
of closed sets S D 8, D 8: D 8D ---, none of which is contained in the
union of any finite subcollection of {U}, and such that if p, ¢ € Sy then
d(p,q) < 1/N,foreachN =1,2,3,.... No Sy is empty, so let py € Sw,
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N =1,2,3,.... The sequence p), ps, py, ... is & Cauchy sequence, since
if a, B, N are positive integers and a, 8 > N then p., ps € Sn, s0 that
d(Pe, o) < 1/N. Since E* is complete, the sequence pi, ps, Ps, ... con-
verges to a point py of E*. Since each point py, ps, ps, ... is in the closed
set S, we have also p, € S. Hence py is in one of the sets of the collection
{U], say ps € Uy € {U]. Since U, is open there is an open ball of center po
and some radius ¢ > 0 that is entirely contained in U, Pick some N so
large that 1/N < ¢/2 and d(p, p~) < ¢/2. Then for any point p € Sy we
have

1
d(p, p) S d(po, pr) +don, D) <G+ <5+ g5 =«
Thus Sy is contained in the open ball of center po and radius ¢, giving

Sy C Us This contradicts the statement that Sy is not contained in the
union of any finite subcollection of { U}, completing the proof.

$6. CONNECTEDNESS,

The intuitive idea of connectedness is simple enough. It is illustrated
in Figure 16. But of course we need a precise definition.

(4 Uy/

Fiaurs 16. 4, B,C, A\UC,B\JUC, AV B \UC are connected.
A \U B is not.

Definition. A metric space E is connected if the only subsets of E which
are both open and closed are E and 2. A subset S of & metric space is a
connected subset if the subspace S is connected.
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Thus a metric space E that is not connected has & subset 4 » E, 2&f
that is both open and closed. Then also €A » E, ¥ is both open and closed.
Setting B = €A, wehave E = A \U B, where A and B are disjoint nonempty
open subsets of E. Conversely if a metric space E can be written E = A \U B,
where A and B are disjoint nonempty open subsets of E, then E is not con-
nected: for A » & (given), A » E (since A and B are disjoint and B » &)
and A is both open (given) and closed (since its complement B is open).

If @, b, ¢ €ER, we say that c 1 between a and b if eithera <c¢ < b or
b<e<a.

Proposition. Any subset of R which contains two distinct poinis a and b
and does not contain all points between a and b is not connected.

For suppose that a < ¢ < b and that S is a subset of R witha,b € S,
c@&S. Then

S=BN{z€R:z2<c)VBN{zER: 2> ¢})
expresses S as the union of two disjoint nonempty open subsets.

It will be shown shortly that any closed interval in R is connected. In
the next chapter it will be seen how to deduce from this fact that certain
other metric spaces, for example balls in E*, or the subsets A, B, C of Figure
16, are connected. The following is one of the principal arguments one uses
to prove these and other connectedness results for subsets of E*.

Proposition. Let {S:}ict be a colleciion of connected subsels of a metric
space E. Suppose there exists 1o € 1 such that for each i € I the sets S; and
S« have a nonemply sntersection. Tm‘\éll&icmmmd.

Suppose that S = }!}'Sg is the union of two disjoint open subsets A

and B. We must show that either A or B is empty. For any i €I,
8= (ANS)\V (BN S,) expresses the connected set S; as the union of
two disjoint open subsets, so that AN S; and BN 8; are just the sets
8Si, & in some order. Without loss of generality we may assume that
AN S, = 8, Then 4 D S, so that for each i € I we have A N S; » .
Thus ANS;=8;and BN S; = &. Bince BN S;= & for all i€ I we
have B = &, proving the proposition.

Theorem. R, or any open or closed interval in R, is connectled.

A somewhat more general statement is just as easy to prove, namely
that any subset S of R which contains all points between any two of its
points is connected. To prove this, suppose that such a subset S is not con-



nected, 80 that we may write 8 = A \U B, where A and B are disjoint non-
empty open subsets of S. Choose a € 4, b € B and assume, as we may,
that a < b. By assumption [a, b] C 8. Set A, = AN [a, )], B; = BN |a, b).
Then A,, B, are disjoint open subsets of [a, b}, a € A, b € By, and [a, b] =
AU B;. From these facts we derive a contradiction, as follows. Since B,
is an open subset of [a, b], its complement A, is & closed subset of [a, b],
hence a closed subset of R. Since 4, is also nonempty and bounded from
above, the last result of § 2 tells us that there is a greatest element ¢ in 4,.
Since b € B; we must have ¢ < b. But since 4, is an open subset of [a, b}
it must contain the intersection of [a, b] with some open ball in R of center
¢, hence it must contain points greater than ¢. This is a contradiction, and
this proves the theorem.

PROBLEMS

1. Verify that the following are metric spaces:
() all n-tuples of real numben, with

d((&, "'nzl)) (yh ey ")) -g ""‘"'

(b) all bounded infinite sequences z = (z;, 23, 2y, . . .) of elements of R, with
d(z,y) = lubd. { |21 —p|,iz—nlin-nl,...)

(¢) (Ex X Ej, d), where (E;, dy), (Ey, dy) are metric spaces and d is given by
d((z1, 22, G, 1)) = max (di(z:, y1), de(zs, 1)}
2. Show that (R X R, d) is a metric space, where
Wi+lyi+lz—2| lifzms
d y )n( 'y ') -{
(@, @) =y -

Illustrate by diagrams in the plane E* what the open balls of this metrie space
are,

3. What are the open and closed balls in the metric space of example (4), §1?
8how that two balls of different centers and radii may be equal. What are the
open sets in this metric space?

4. Show that the subset of E* given by {(z:, 2:) € E* : 23 > z,} is open.

8. Prove that any bounded open subeet of R is the union of disjoint open inter-
vals.

6. Show that the subset of E* given by {(z1, 22) € B : 5173 = 1, z1 > 0} is closed.

7. Give the details of the proof of the last proposition of §3 for sets bounded
from below.

8. Prove that if the points of & convergent sequence of points in s metric space
are reordered, then the new ssquence converges to the same limit,



10.

11.

12.

13.

14.

15.

16.

17.
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Prove that lﬂiﬂp. = p in a given metric space if and only if the sequence
P, P, Py, P, Py, P, . .. i8 convergent.

Prove that if li‘ixp. =p in a given metric space then the set of points
(P, P Py P, ... ] s closed.

Show that if a,, ay, a4, ... is & sequence of real numbers that converges to a,

=y

Prove that the sequence z;, 23, 73, ... of real numbers given by z, = 1 and
Zups = 2a + - for each n = 1,2,3, ... is unbounded.

Consider the sequence of real numbers

1 1 1

Y ’

Ta+d 3+
2+§

Show that this sequence is convergent and find its limit by first showing that
the two sequences of alternate terms are monotonic and finding their limits.

Prove that any sequence in R has a monotonic subsequence. (Hint: This is
easy if there exists a subsequence with no least term, hence we may suppose
that each subsequence has a least term.) (Note that this result and the theo-
rem on the convergence of bounded monctonic sequences gives another proof
that R is complete.)

Let 8 be a subset of the metric space E. A point p € S is called an interior
point of S if there is an open ball in E of center p which is contained in 8.
Prove that the set of interior points of S is an open subset of E (called the
nterior of S) that contains all other open subsets of E that are contained in S.

Let S be a subset of the metric space E. Define the closure of S, denoted 3, to

be the intersection of all closed subsets of E that contain S. Show that

(®) 83D8,and Sisclosed if and only if § = 8

(b) 3 is the set of all limits of sequences of points of S that converge in E

(¢) apoint p €E is in B if and only if any ball in E of center p contains
points of S, which is true if and only if p is not an interior point of €S
(cf. Prob. 13).

Let S be a subset of the metric space E. The boundary of S is defined to be

8 N €8 (cf. Prob. 16). Show that

(a) E is the disjoint union of the interior of S, the interior of €S, and the
of 8

(b) 8 is closed if and only if S contains its boundary

(c) 8 isopen if and only if S and its boundary are disjoint.



18.

19.

21.

If ai,a4,0, ... is & bounded sequence of mdnumbuu,deﬁnelim’:upu
(alsodenowdﬂ—a.)hbe

lu.b. {z € R : a, > z for an infinite number of integers n}
auddeﬁneliminfa.(&lsodenotedﬁga.)wbe

glb. [z € R : a, < x for an infinite number of integers n}.
Provethsthmmfa.<hmwpa.,mthtlwequhtyholdmgﬁmdonlyxfﬂ\e

sequence converges.

Let a1,ay, 04, ... and by, by, bs, ... be bounded sequences of real numbers.
Show that

limmp (@n + 04) Slimmpa.-i—lim:upb..

with the equality holdmg if one of the original sequences converges (cf. Prob.
18).

TbeoomphxnumbeuC-RxR(cf.Pmb.s.Chap.n)mthoundedymg

set of the metric space E®. The metric in E* therefore makes C itself a

metric space. If £ € C, the absolute value of s, denoted by |z|, is defined by

|s| = d(s, 0). Show that

() |z+iy| =2+ if z,y ER (and therefore |z| agrees with the pre-
viously defined |z| if z € R)

®) |a+al<|al+|n| forall 2, ne€C

(¢) |am]l=|za|: |2l foralls, s EC.

Show that the proposition of page 48 remains true if the word ‘“‘real”’ is re-
placed by “complex” (cf. Prob. 20).

A normed vector space is & vector space V over R, together with a real-valued
function on V, called the norm and indicated by || ||, the value of || || at any
element z € V being indicated {|z}}, having the following properties:

@ lizll 20forallzeV

(i) §zll =Oifand onlyif z =0

(iii) fezl =|c|- lzli foranyz €V andanyc ER

Giii) llz +yll < =l + lyll forany 2,y € V.-

Show that a normed vector space V becomes a metric space if for any
z,y € V we take d(z, y) = ||z — yl|. Recall that the set of all n-tuples of real
numbers is a vector space R* over R if addition and scalar multiplication are
defined by

@y onsZ)+ Wy ) = @0, 2t ),
(@ . ..pZn) = (c21y ..., CZ0).
Show that R~ becomes a normed vector space if ||(z), . .., z.)|| is taken to be
vV Z¥F -« + z.} and that in this case the resulting metric space is just E»;
show that if n = 2 and C is identified with E® as in Prob. 20 then C becomes
a normed vector space with |z|| = |z|. Show that R* becomes another normed
vector apaceif ||(zy, .. ., z.)|| isdefined tobe |z;| + - - - +|za|, and yet another
normed vector space if ||(zy, ..., Za)|| is defined to be max {|z:|, ..., |za|}.
(Note: What we have for brevity called a normed vector space is more prop-
erly called a real normed vector space; there is also the notion of a complez
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8 R

26.
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normed vector space, got by altering the above definition by twice replacing
the symbol R by C.)

. Prove that if V is a normed vector space (cf. Prob. 22) and a;, a3, a5, ... and
By, by, bs, ... are convergent sequences of elements of V with limits ¢ and b

respectively, then

lim(@an+b.) =a+b and lim (g —bs) =a ~b,
and if furthermore ¢y, ¢, &3, . .. is & sequence of real numbers converging to ¢,
then

lim c.an = ca.

Ll ]

. Show that a complete subspace of a metric space is a closed subset.

Write down in all detail the proof that E™ is complete. (Hint: A convenient
notation is p, = (2™, ..., za™).)

Find all cluster points of the subset of R given by
1,1, — positive §
{” + ot n, m = positive m(egers}.

27. Let S be a nonempty subset of R that is bounded from above but has no great-

est element. Prove that Lu.b. S is a cluster point of 8.

Prove that a subset of a metric space is closed if and only if it contains all its
cluster points.

29. Let S be a subset of a metric space E and let p € E. Show that p is a cluster

31.

32.

point of S if and only if p is the limit of a Cauchy sequence of points in
SN eip}.

. Give an example of each of the following:

(a) an infinite subset of R with no cluster point

(b) a complete metric space that is bounded but not compact

(c) a metric space none of whose closed balls is complete.

Let a,b € R,a < b. The following outlines a proof that [, d] is compact.
Rewrite this proof, filling in all details: Let {U:}ier be a collection of open
subsets of R whose union contains [a,b). let S = {x E[a,b]: 2> a and
[a, z} is contained in the union of a finite number of the sets { U:}ies}. Then
Lu.b. S € U; for some ¢ € I. Since U, is open we must have Lu.b. S =) € 8.

Show that the union of a finite number of compact subsets of a metric space
is compact.

. Let E be a compact metric space, { Uilier 8 collection of open subsets of E

whose union is E. Show that there exists a real number ¢ > 0 such that any
closed ball in E of radius e is entirely contained in at least one set U;. (Hint:

If not, take bad balls of radii 1, 34, 14, ... and a cluster point of their cen-
ters.)

. If (@1,...,2s) €EE* and (1, ..., ¥m) EE™, then (z), ..., Za, 9, ..., ¥m) €

E~+=, Therefore if S and T are subsets of E* and E™ respectively, we may
identify 8 X T with a subset of E~+™, Prove that if S and T are nonempty,
then S X T is bounded, or open, or closed, or compact, if and only if both S
and T are bounded, or open, or closed, or compact, respectively.



. Call a metric space sequentially compact if every sequence has & convergent
subsequence. Prove that a metric space is sequentially compact if and only if
every infinite subset has a cluster point.
Call & metric space {olally bounded if, for every ¢ > 0, the metric space is the
union of a finite number of closed balls of radius ¢. Prove that a metric space
is totally bounded if and only if every sequence has a Cauchy subsequence,
. Prove that the following three conditions on a metric space B (cf. Probe. 38,
36) are equivalent:
(i) E is compact
(ii) E is sequentially compact
(ili) F is totally bounded and
(Hint: That (i) implies (ii) occurs in the text. That (ii) implies (iii) is ensy.
That (jii) implies (i) follows from the argument of the last proof of § 5.)
. Prove that an open (closed) subset of a metric space E is connected if and only
if it is not the disjoint union of two nonempty open (closed) subeets of B.



CHAPTER 1V

Continuous Functions

Elementary analysis is largely concerned with real-
valued functions of a real variable. Most first courses
in calculus quote and use, but refrain from proving,
such theorems about continuous real-valued functions
on a closed interval in R as the attaining of & maximum
and the intermediate value theorem. Among other
things the present chapter proves a number of such
fundamental facts on real-valued functions of a real
variable. But it would not be reasonable to restrict our-
selves to such functions alone, for elementary calculus
also involves real-valued functions of more than one
real variable, that is real-valued functions on subsets of
some Euclidean space, and it also involves finite sets of
real-valued functions of one or several variables, as for
example when a curve or surface in some Euclidean
space is given parametrically or when complex-valued
functions are considered. Thus the natural class of
functions to consider would appear to be functions on
one metric space with values in another metric space.
It is for such functions that we define the notion of
continuity, deriving from this generality the usual
advantages of clarity of concept and obligation to do a
thing only once. Our basic theorems will be general
results on continuous functions from one metric space
to another, from which the basic results needed for
elementary calculus can be read off by taking both
metric spaces to be subsets of R. At the same time we
go forward, developing a number of useful concepts
that usually do not appear in elementary courses, such
a8 uniform continuity. A final section on sequences of
functions will illustrate the previous concepts and will
provide us with further examples of metric spaces, use-
ful in the sequel. This last section could more logically
be placed at the beginning of Chapter VII than here,
but its flavor is more like that of the present chapter.
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§ 1. DEFINITION OF CONTINUITY. EXAMPLES.

By a function on a metric space E we of course mean a function on the
set of points of E, and by a function with values in a metric space £’ we
mean a function with values in the set of points of E’. Thus if f is a function
from the metric space E into the metric space E’, written

ffE—EFE,

then to each point p € E is associated a point f(p) € E’. The function
f: E — E’ will be called continuous at a point p, € E if, roughly speaking,
points of E that are near p, are mapped by f into points of E’ that are near
f(po). Here is the precise definition:

Definition. Let E and E’ be metric spaces, with distances denoted d and
d’ respectively, let f: E — E’ be a function, and let ps € E. Then f is said
to be continuous at p, if, given any real number ¢ > 0, there exists a real
number & > 0 such that if p € E and d(p, po) < 3, thend’(f(p),f(ps)) < e

The number & of course depends on ¢, 80 we could more accurately
have written 8(¢) instead of 8. We stick to the notation 8 rather than 3(¢)
for notational simplicity, always bearing in mind that each ¢ must have
its own §.

The definition may be reformulated by saying that f is continuous at
po if, given any open ball in E’ of center f(py), there exists an open ball in E
of center p, whose image under f is contained in the former ball. Another
reformulation is that f is continuous at p, if, given any open subset of E’
that contains f(p,), there exists an open subset of E that contains p, whose
image under f is contained in the former open subset.

If E and E’ are both subsets of R (so that we have a real-valued func-
tion of a real variable) the original definition says that f is continuous at p,
if, given any € > 0, there exists a 8 > 0 such that |f(p) — f(pe)| < € when-
ever p € E and |p — po| < 8. This is illustrated in Figure 17.

Definition. If E, E’ are metric spaces and f: E— E' is a function, then
J i8 said to be continuous on E or, more briefly, continuous, if f is continuous
at all points of E.
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Fioure 17. £ is continuous at ps, not at py.

ExamrLe 1. The function f: R— R given by f(x) = z* for each
z € R is continuous. To prove this we have to show that f is continuous at
each zo € R. We have to show that for any ¢ > 0 we can find a §> 0
such that |z* — z?| < ¢ whenever |z — 2z,| < 8. But since

|28 — 2| = | (2 + 2} (z — 24) |
= | (z — 2o + 220)(z — 24)|
S (Iz =zl + 3| =l) |z — =l
we will have |28 — 29| < ¢ if |2 — 20| <1 and |2 — 20| <¢/ (1 + 3| =]).
Hence we may take § = min {1, ¢/(1 4 2|2])).

ExamrLE 2. Let E be any metric space, ps a fixed point of E. Then
the function f: E — R given by f(p) = d(p, ps) for all p € E is continuous.
To prove this we have to show that f is continuous at any given point p1
of E. But

U(p) "’f(?l)l"ld(ﬁ'w -d@!sﬁ)'sd(’oﬁ)y

so if we have d(p, p1) < ¢ then also |f(p) — f(p1)| < ¢ Thus for any point
P, corresponding to any ¢ > 0 we can choose & = .

The special case E = R, py = 0 shows that the function |z| is con-
tinuous.

ExamrrLE 3. Any constant function is continuous. In this case F
and E' are arbitrary and the point f(p) € E’ is the same forall p € E. Thus
we always have d'(f(p), f(p))) = 0, 80 given any p, € E and any ¢> 0
we can take & to be any positive number.
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ExamrLe 4. The identity function on & metric space is continuous.
Here E is an arbitrary metric space and f: E— E is given by f(p) = p
for all p € E. Hence d(f(p), /(ps)) = d(p, po). Thus for each p, € E, given
¢ > 0 we can choose § = ¢

The special case E = R shows that the function z (the usual way of
writing the identity function on the real line) is continuous.

ExamrLe 5. The “step function” f: R — R given by

0 ifz<0
j@ = {1 ifz>0
is continuous at all nonsero points, since f is constant when z > 0 and also
when £< 0. But f is not continuous at 0. For if we test continuity at the point
Py = 0 with positive ¢ < 1 then we can find no corresponding 8§ > 0, since
forany 8 > Oand any z € (-3, 0) wehave |f(z) — f(0)|=|0 —1|= 1.

ExamprrLe 6. The function f: R — R given by
f(z) = 1 if zisrational
0 if xis not rational
is continuous at no point. For any open ball in R contains both numbers
that are rational and numbers that are not (we already know we can find
a rational number a in the ball, and if b is any fixed irrational number and
N a sufficiently large integer then the irrational number a + b/N will also

be in the ball). Thus for any py € R and any positive ¢ < 1, a corresponding
3 > 0 cannot be found.

ExaurLe 7. If f: E— E’ is continuous and S is a subspace of E,
then the restriction of f to S is continuous on 8. This is clear from the
definitions.

The following criterion for the continuity of a function from one metric
space into another is often useful.

Proposition. Let E, E’ be metric spaces and f: E — E’ a function. Then
1 s continuous if and only if, for every open subset U of E’, the inverse smage

JF(U)={pEE: f(p) E U}
18 an open subset of E.

To prove this, first suppose that f is continuous. We have to show that
if U C E' is open, then also f~(U) is open. Let ps € f~}(U). Then f(po) € U.
Since U is open, it contains the open ball in E’ of center f(p) and some
radius ¢ > 0. Since f is continuous at p there is & 8 > 0 such that if p € E
and d(p, ps) < & then d’(f(p), /() < e This means that if p is contained
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in the open ball in E of center p, and radius 8 then f(p) is contained in the
open ball in E' of center f(ps) and radius ¢, so that f(p) € U. That is,
J~%(U) contains the open ball in E of oenterp.anc\radius 8. Since py was
any point of f-!(U), the set f/-'(U) is open. Conversely, suppose that for
every open U C E', the set f-(U) is an open subeet of E. We must show
that f is continuous at any point py € E. For any ¢ > 0 the set

J~({open ball in E’ of center f(ps) and radius ¢})

is an open subset of E that contains p,, hence contains the open ball in F
of center p, and some radius § > 0. Thus if p € E and d(p, ps) < §, then

d'(f(p), f(») < e. This means that f is continuous at pe, and this com-
pletes the proof.

Corollary. If f is a continuous real-valued function on the metric space E
then for any a ER

[PEE: f(p) >a} and {pEE: f(p) <a}
are open subsels of E.

For the sets (xER: 2 > a} and {x ER : z < a}] are open subsets
of R.

The following result is usually paraphrased ‘‘a continuous function of
a continuous function is a continuous function’.

Proposition. Let E, E', E” be melric spaces, f: E—FE', g: E'— E"
Junctions. Then if f and g are continuous, 8o 18 the funclion g o f: E— E’'.
More precisely, if po € E and f is conlinuous at p, and g is continuous at
J(po) € E', then g o f is continuous at pe. ’

We need only prove the latter, more precise, part. Let d, @', @ denote
the three metrics. Suppose ¢ > 0 is given. Then, since g is continuous at
f(po), there exists § > 0 such that if ¢ € E' and d’'(g, f(ps)) < 8 then
d"(g(9), 9(f (»))) < e. But since f is continuous at p,, corresponding to
this § there exists a number n > 0 such that if p € E and d(p, ps) <1
then d'(f(p),f(ps)) < 8. Therefore if p € E and d(p, ps) <n we have
d" (g (), 9/ (o)) < ¢, proving g o f continuous at pe.

The above argument is illustrated in Figure 18 on the next page.

The weak version of the last proposition, where f: E— E’ and
g: B’ = E” are assumed to be continuous everywhere, can be proved very
simply by means of the previous criterion for continuity, as follows. If U
is any open subset of E’’, the continuity of g implies that g~'(U) is an open
subset of E’, so the continuity of fimplies that f~!(9~*(U)) is an open subset
of U. But for any U C E”, if p € E then p € f~*(g~'(U)) if and only if
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{(p) € g(U), which is trueif and only if g(f(p)) € U. Thus f-*(g~(V)) =
(g ° /)~'(U). We have therefore shown that if U is an open subset of E”,
then (g o f)~'(U) is an open subset of E, which implies that g o f is contin-
uous,

(o-(@ )~

gef

Figure 18. A continuous function of a continuous function is continuous.

§2. CONTINUITY AND LIMITS.

Consider the following question: Let E, E’ be metric spaces, let
po € E, let €{po} be the complement of {p,} in E, and let f: €{ps} - E’
be a function. Is it possible to extend the definition of f to all of E in such
a way as to obtain a function from E into E’ that is continuous at po?

In one case the answer to this question is trivial, and that is the case
where p, is not a cluster point of E. For if p, is not a cluster point of E then
any function from E into E’ is continuous at p,. This is 80 since there exists
a ball in E of center p, that contains only a finite number of points of E,
hence & ball of center p, and smaller radius that contains only the point po.
If & is the radius of the latter ball then the statements that p € E and
d(p, po) < & imply that p = p,. Thus for any f: E—E' and any pE E
such that d(p, o) < & we have d'(f(p), f(ps)) = O.

In the case where p, is a cluster point of E we are led to the following
definition.

Definition. Let E, E’' be metric spaces, let p, be a cluster point of E,
and let f: €{po} — E’ be a function. A point q € E’ is called a limit of f al
o if the function from E into E’ which is the same as f on C{p,} and which
takes on the value g at po is continuous at p,.

It is useful to reword this, without directly using the notion of con-
tinuity.
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Definition’. Let E, E’ be metric spaces, let p, be a cluster point of E, and
let f: €{po} — E’ be a function. A point ¢ € E’ is called a limil of f at p, if,
given any ¢ > 0, there exists a § > 0 such that if p € E, p # p,, and
d(p, po) < 8, then &'(f(p), 9) < e.

Given E, E’, a cluster point p, of E and f: €{p,] — E’, there can exist
at most one limit of f at p,. The argument is the same as that for the
uniqueness of the limit of a convergent sequence: If ¢, ¢' € E’ are two
limits of f at p,, then given any e > 0 there exists a § > 0 such that if
P EE, p # po and d(p, po) < & then d'(f(p),q) < ¢ and &' (f(p), ¢’) < e
Since p, is & cluster point of E, there actually exist points p € E such that
p # po and d(p, p)) < §, so that we can deduce that d’(g, ¢’) < 2¢. Since
this is true for any € > 0 we have d’(g, ¢) = 0, 80 that ¢ = ¢’.

If, under the above conditions, a limit of f at p, exists, then since the
limit is unique we may speak of the limit of f at p, and we denote this

lim 7(p).
n
The statement that lim f(p) exists implies that we have metric spaces
Popy

E and E’ in mind, that p, is a cluster point of E, and that we have a function

J: €{po) — E’ such that for some point ¢ € E’' q is a limit of f at pe. In

discussing lim f(p) we may be explicitly given a function f that happens
)

to be defined at po, but this is immaterial: the limit of f at ps does not
depend on whether or not f is defined at p, nor, if it is, on what its value
at po is, but rather on the values of f(p) for p near, but distinct from, pe.

In the above work we started with a function f which was defined at
all points of a metric space but one, but it is possible to discuss limits of
functions which are defined on relatively small subsets of a metric space.
For example suppose I, E’ are metric spaces and that we have an arbitrary
subset S C E that has at least one cluster point in E, together with a
function f: S— E’. If po € E is a cluster point of S we can consider
lim f(p) relative to the subspace S\ {ps} of E and one then speaks of the
PPy

limit of f(P) as p approaches p, on S. Thus a specific metric space E must be
borne in mind in considering lim f(p), and in the last case the space to be
)

borne in mind is actually not E, but the subspace S\ {po}. The most
frequently arising case is that in which f is defined on a part of E that
includes all points of an open ball in E of center p,, with the possible
exception of po. Here we maintain the same notation

lim £ (p)
»r

without any reference to the fact that f may not be defined far away from
Po; it is enough that f be defined near po, except possibly at pe itself.
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We gave our first definition of the limit of a function in terms of con-
tinuity, but one can equally well define continuity in terms of limits of
functions. If f: E— E’ is a function from one metric space into another
and py € E, then f is continuous at p, if and only if, if p, is a cluster point
of E, then

’li&f(l’) = J(po)-

This fact is clear from the definitions.

In the preceding chapter we discussed the notion of a limit of a sequence
of points in a metric space. This too can easily be defined in terms of the
notion of the limit of a function, as follows: If py, ps, 73, . . . is & sequence
of points in & metric space E and ¢ € E then ’

im = g

if and only if, for the subspace {0,1,%%,34,%4,...] of R and the
function f: (1,24, %4, ...) = E given by f(1/n) =p. for all n =
1,2,3,..., we have

Lim f(p) = q.
0

This statement is easy to verify. As a matter of fact the notion of continuity
(or the equivalent notion of limit of a function) should be regarded as
fundamental, with convergent sequences as useful technical devices, in
spite of their earlier introduction in this text. It would have been more
“natural”, although a bit longer, to first prove theorems about continuity
(or limits of functions) and then the analogous results on limits of sequences.
Of course all of our ideas are logically interdependent, and the following
proposition, which gives a useful criterion of continuity, could also have
been used to give an alternate definition of continuous function (and hence
of the limit of a function) in terms of convergent sequences.

Proposition. Let E, E' be metric spaces. Then a function f: E— E' s
ocontinuous at py € E if and only if, for every sequence of points py, ps, Py, - . .
n E such that

lim p, = py
we Aave

ljgf(?-)-f(po).

Suppoee first that f is continuous at ps and that p), ps, ps, ... is &
sequence of points in E that converges to p,. We have to show that the
sequence f(p1), £(p), f(?s), ... converges to f(ps). Given ¢ > 0, the con-
tinuity of f at p, implies that there is a 8 > 0 such that @’ (f(p), f(ps)) < ¢
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whenever p € E and d(p, py) < 8. Since py, ps, ps, ... converges to pe
there is a positive integer N such that d(pa, ps) < & for all n > N. Hence if
n > N then d'(f(pn), f(Ps)) < ¢, which shows that f(p1), f(ps), f(P)), ..
converges to f(po).

We now prove that, conversely, if it is true that wheneéver a sequence
Py, P, Py, ... of points of E converges to p, then the sequence of points
F (), f(p2), F(Dy), . .. of E' converges to f(p.), then f is continuous at p,.
We do this by supposing the contrary, that is that f is not continuous at
Do, and deriving from this assumption the existence of a sequence of points
Py, Py, Py, ... converging to pe such that f(py), f(ps), f(Ps), ... does not
converge to f(po). So suppose that f is not continuous at ps. Then there
exists some ¢ > 0 such that for no number § > 0 is it true that whenever
p EE and d(p, p) <5 then necessarily d'(f(p),f(pos)) < e. Hence for
any n = 1,23, ... we can find a point p, € E such that d(p., p)) < 1/n
and d'(f(ps), f(Ps)) = e Since d(pa, p)) <1/nforalln=1,23, ..., the
sequence pi, Ps, Ps, ... converges to p,. However f(py),f(p2),f(ps), - ..

does not converge to f(po), since d’(f(ps), f(Po)) 2 ¢ for all n. This com-
pletes the proof.

§3. THE CONTINUITY OF RATIONAL OPERATIONS.
FUNCTIONS WITH VALUES IN E»

Real-valued functions on a metric space E (or indeed on any set) can
be combined in the usual way by the rational operations of addition, sub-
traction, multiplication, and division. Thus if f, g are real-valued functions
on E, we have the real-valued functions f 4 g, f — g, fg and f/g, given by

U+9)@) =1 +90)
U—9)@) =1 — o)
ga)@) s f(gg(p)
( )(p) o)
for any p € E; in the last case f/g is of course not defined at any point p
such that g(p) = 0, so that f/g is a function on {p € E : g(p) = 0}.

Proposition. Let f and g be real-valued funclions on a metric space E. If
f and g are continuous at a point p, € E, then so are the functions f + g,
1 — 9, fo and f/g, the last under the proviso thal g(ps) 7 0 (in which case
9(p) # O for all points p in some open ball of center po).

This can be proved directly, but it is easier to deduce it from work
already done. By the last proposition, to prove that f + g is continuous at
e it suffices to show that if p, ps, s, . . . i8 & sequence of points of E that
converges to po, then the sequence f(py) + g(m1), f(ps) + 9(ps), f(m) +
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g(p), ... converges to f(po) + g(po). But the last proposition implies that
the sequences f(p1), f(ps), f(), - . . and g(p1), g(ps), g(p), . . . converge to
J(po) and g(pe) respectively, so the convergence of f(p1) + g(pv), f(2s) +
g(ps), £(ps) + g(p3), . .. to f(po) + g(po) is & consequence of the proposition
on page 48. Exactly the same argument proves the continuity at p, of the
function f — g, the function fg, and also (once a certain minor detail has
been verified) the function f/g. The minor detail to be verified is the paren-
thetical remark in the proposition to the effect that if g is continuous at p,
and g(po) # 0, then g(p) » 0 for all points p in some open ball of center po.
But since g is continuous at po and g(ps) # 0 then for all points p in some
open ball of center p, we have

lg(@) — 9(po) | <lg(po)|
which clearly implies g(p) » 0.

Corollary. Let p, be a cluster point of the melric space E and let f and g
be realwalued functions on C{p,} such that

lim f(p) and lim g(p)
»opy "R
extst. Then
lim (f(p) + g(p)) = lim f(p) + lim g(p)
P Lot ] Popy
lim (f(p) — g(p)) = lim f(p) — lim g(p)
PRy oy Py
lim f(p)g(p) =lim f(p) - lim g(p)
PRy PPy Py
and, if lim g(p) # 0,
Py
lim f(p)

lim L) _ ™
pory (D) lim g(p)’
oy

The corollary means, first, that the left-hand limits exist and, second,
that they are given by the appropriate formulas. It is an immediate conse-
quence of the proposition and the first definition of limit of a function.

Lemma. For each t =1,2,...,n, the function z;: E* — R defined by
z:((a1, @, ..., @) = a; is continuous.

We have to prove that z; is continuous at any given point p, € E*.
For any p € E* we have p = (zi(p), 7s(p), ..., z(p)). The inequality
|2dp) — zi(po) | < V/(2:(p) — 21i(@0))* + - -+ + (a(p) — 2a(p0))* = d(p, Po)

shows that if d(p, ps) < € then also |z:(p) — z:(po)| < e. Thus z; is con-
tinuous at py. '
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The previous proposition can be combined with the lemma to give
many examples of continuous real-valued functions on E*. If we recall
that any constant function is continuous and apply the proposition re-
peatedly, we see that any polynomial in z,, 2, . .., T« with coefficients in
R is continuous. (For example, z — 23+ /22y — xzs2( i8 & con-
tinuous function on E%) Furthermore any rational function (a rational
function is the quotient of two polynomial functions) is continuous wherever
the denominator is not zero. (For example x:zs/ (2 + z4*) is & continuous
function on E* — {(0,0)}.)

If E is a metric space and f: E — E* a function, then the image in E*
of any point p € E is the point

fp = (xx(f(P)), z’(f(p))’ eeey zﬂ(f(p)))’

Thus f is determined by the n component functions zy o f, 230 f, ..., Zao f.
Conversely, an n-tuple of real-valued functions on a metric space defines
a function from the metric space into E*. The following proposition handles
all relevant continuity questions.

Proposition. Let E be a melric space and'f: E — E* a function. Then f ia
conlinuous al a point po € E if and only if each component funciion 2, o f,
..y Za o [ 18 continuous at pe.

The “only if”’ part of the proposition comes trivially from the lemma,
for if f is continuous at po then 8o is the continuous function of a continuous
function z; o f. To prove the “if"’ part, suppose z; 0 £, . . ., Z+ o f continuous
at po and let ¢> 0. Noting that (z;of)(p) = z:(f(p)), (zs o N(p) =
z:(f(p)), etc., for each i = 1, ..., n we can find a 3; > 0 such that

lz:(f(p)) — z:(/ ()| <

Va

whenever p € E and d(p, po) < §;, d denoting the distance in E. If we set
8 = min {&, ..., 8.}, then if p € E and d(p, po) < & we have

|z:(f(P)) — z:(f(p0)) | <
fort=1,...,n,so that

V@ @) —a(f@)P + - + (@) — 2/ (@)} A ‘
NG+ +HFHF) -

-
n

TR

This proves f continuous at pe.

Note that the lemma becomes a special case of the ‘“only if” part of
the proposition when we apply the latter to the identity function on Er,
which is known to be continuous.



78 1V. CONTINUOUS FUNCTIONS

§ 4. CONTINUOUS FUNCTIONS
ON A COMPACT METRIC SPACE.

Theorem. Let E, E' be metric spaces, f: E— E’ a continuous function.
Then if E is compact, 8o is its image f (E).

‘We must show that if f(E) = [f(p) : p € E} is contained in the union
of a collection of open subsets of E then it is contained in the union of a
finite number of these open subsets. So suppose that {U}:er is a collec-
tion of open subsets of E’ whose union contains f(E). Since f is continuous,
each inverse image f~'(U,) is an open subset of E, by the first proposition
of §1. Also, for any p € E we have f(p) € U; for some ¢ € I, in which
case p € f-1(U,), so that

E= ‘kel'f"(U.-).

Since E is compact there is a finite subset J C I such that
E=\ U,

Therefore f(E) = ,}.—J f-(UY) C‘g U:. Thus f(E) is compact.

This theorem has two extremely important immediate consequences.
To state the first, let us say that a function f: E— E’ from one metric
space into another is bounded if the image f(E) is bounded. In the special
case that f is a real-valued function on E this means simply that there is a
number M € R such that |f(p)| < M forallpE E.

Corollary 1. Let E, E’' be metric spaces, f: E — E’ a conltnuous function.
Then if E 1s compact, f is bounded.

Resason: any compact subset of a metric space is bounded. In particular
the compact subset f(E) of E’ is bounded.

The last result is false if compactness is omitted; for example, consider
the function f(x) = 1/x on the open interval (0, 1).

If f is a real-valued function on a metric space E and py € E we say
that f altains a mazximum at pe if f(ps) > f(p) for all p € E, and we say
that f altains a minimum at po if f(pe) < f(p) for all p E E.

Corollary 2. A continuous real-valued function on a nonemply compact
metric space allaing a marimum al some point, and also atlains a minimum
at some poind.

For let E be a compact metric space, f: £ — R a continuous function.
Then f(E) is a compact subset of R, hence closed and bounded. If £ is
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nonempty then so is f(E), and the last proposition of § 2 of the preceding
chapter tells us that f(E) has a greatest element, and also a least element.

If pe € E is chosen 80 that f(ps) is the greatest (least) element of f(E), then
f attains & maximum (minimum) at pe.

Corollary 2 is false if the compactness condition is omitted, even for
bounded functions; for example, consider the function f(z) = r on the open
interval (0, 1).

minimum value

Fraure 19. A continuous real-valued function on a closed interval
in R attains a maximum and a minimum.

If E, E’ are metric spaces and f: K — E’ is a continuous function then
given any py € E and any ¢ > 0 there exists a real number § > 0 such that
if pEE and d(p, po) < & then &'(f(p),f(»)) < ¢: this is just a literal
restatement of the definition of continuity. If E, B’ and f are fixed it is clear
that 8 will depend on both p, and e. If p, is held fixed and ¢ varies, then the
smaller we take ¢ the smaller 3 will usually be. If on the other hand we take
some fixed ¢ > 0, then 3 will depend on the point p,. As p, varies so in
general will §, and it may or may not be true that we can find a § that
works simultaneously for all pe. If it happens that we can find such a §,
and can do this for each ¢ > 0, the function f will have some especially
nice properties. This leads to the following definition.
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Definition. Let E and E’ be metric spaces, with distances denoted by
d and @’ respectively, and let f: E — E’ be a function. Then f is said to be
uniformly continuous if, given any real number e > 0, there exists a real
number § > 0 such that if p, ¢ € E and d(p, ¢) < & thend’(f(p), f(g)) < e

If it happens that a function f: E — E’ is such that for a certain subset
S of E the restriction of f to S is uniformly continuous, we say that f is
uniformly continuous on S. Thus uniform continuity on E is the same thing
as uniformn continuity.

It is clear that a uniformly continuous function f: E — E’ is continuous:
to check continuity at a point po € E just set ¢ = p, in the definition. The
next theorem will state that conversely if f is continuous then f is actually
uniformly continuous, provided E is compact. If E is not compact then
continuity does not in general imply uniform continuity. Here are two
examples of continuous real-valued functions on the open interval (0, 1)
that are not uniformly continuous:

(1) The function f given by f(z) = 1/z for all z € (0, 1) is continu-
ous but not uniformly continuous. Continuity is known. Uniform con-
tinuity is disproved by showing that for any ¢ > 0 and any 8 > 0 we can
find p,g€ (0,1) such that |p —g| <& and |1/p — 1/g| > e Specific
such p,q can be found, for example, by taking ¢ = p/2 so that the
conditions become p/2 < 8, 1/p > ¢, the pair of which will be satisfied if
0 <p < min {25 1/¢ 1}.

(2) The function f given by f(z) =sin(1/z) for all z€ (0,1) is
continuous but not uniformly continuous. To check this example we assume
that the easier properties of the sine function are known (these will be
rederived anyway in Chapter VII). Then f is continuous, and moreover
gince |sin (1/z)| < 1 for all z € (0, 1) any & at all will work if ¢ > 2. But
if ¢<1, no 8 will work. For suppose that 0 < ¢ <1 and that 0 <.
If we then take n a sufficiently large positive integer and set p = 1/(2xn),
g=1/(2xn + x/2), we get both |p —¢| < 8 and |f(p) —f(g)|=1> e

Theorem. Let E and E' be melric spaces and f: E— E’' a continuous
Sunction. If E is compact, then f is uniformly continuous.

It will be instructive to give two proofs of this theorem. In each proof
we start with a real number ¢ > 0 and try to find a number § > 0 such that
if p, ¢ € E are any points such that d(p, g) < & then d'(f(p), f(¢)) < e.

For the first proof we find, for each p € E, a number 8(p) > 0 such
that if ¢ € E and d(p, g) < 8(p) then d’'(f(p), f(q)) < ¢/2; this is possible
since f is continuous at p. Let B(p) be the open ball in E of center p and
radius 5(p)/2. E is the union of the open sets B(p), with p ranging over all
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the points of E. Since E is compact, it is the union of a finite number of
these open sets. Thus there exist a finite number of points of E, say p, ps,
«++yPny 8uch that E = B(p) UB(p)\J --- U B(p,). Now define § =
min {§(p1)/2, §(p2)/2, ..., 8(pa)/2}. We claim that this § satisfies our
demands. For suppose that p, ¢ € E, with d(p, ¢) < 8. For some i = 1, 2,
...,n we have p € B(p), so that d(p;, p) < &(p:)/2. Also d(ps, q) <
d(ps, p) + d(p, 9) < 8(p)/2 + & < 8(p)). Thus d(p;, p), d(pi, @) < (p).
By the way that 8(p) was chosen we have d'(f(p),f(p)) < ¢/2 and
d'(f(p), (@) < ¢/2. Therefore

@ (/). J@) < d' (). S(p)) + &' (P J@) <G+5 = ¢

and the first proof is complete.

For the second proof we use the indirect method, assuming that for
our given number ¢ > 0 there is no § > 0 such that if p,q € B and
d(p, q) <& then d'(f(p),f(q)) <e¢, and we derive a contradiction. By
assumption, for each n = 1,2,3, ... the number 1/n is not a suitable
candidate for 5, so that there exists & pair of points p., g. € E such that
d(ps, g2) < 1/n and d'(f(p.), f(gs)) = ¢. Thus we have a sequence of
ordered pairs of points (p1, @), (P13, ¢), (P3, @), . . . with the properties that
lim d(pa, g) = 0 and d’'(f(pn), f(gs)) = efor all n. Since E is compact, the

sequence pi, P2, Ps, - .- has a convergent subsequence. Hence we may
replace the sequence (pi, g1), (P13, g2), (ps, @), - . . by a subsequence in such
a manner that we may assume that the sequence p, ps, ps, . . . converges
to a point po € FE, still maintaining the conditions

lim d(pa, ¢2) = 0, d'(f(pa),f(g) 2 e
From the inequalities

0 < d(gn, Po) < d(ga, Px) + d(pa, Po)
and the equations

lim (d(ga, a) + d(pa, po)) = lim d(gu, Pa) + lim d(ps, po) = 0
ig follows that lim d(ga, po) = 0, 80 that the sequence qi, ¢, s, ... &lso
converges to po. "I*‘;:us the continuity of f at p, implies that
lim £ (pa) = lim f(gs) = f(p9).
For n sufficiently large'v: thérefore have

d( @, S) <5, (e, S) <5,
implying that

& (f(a), £(g) S @U@, fP) +d (P, f(@)) <5 +5 =@
contradicting d’ (f(p,), f(gs)) > e This ends the second proof.
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§5. CONTINUOUS FUNCTIONS
ON A CONNECTED METRIC SPACE.

Theorem. Let E, E' be metric spaces, f: E— E' a continuous function.
Then if E is connected, 80 is its image f(E). .

To prove this we may without loss of generality assume that E’ = f(E).
Weshall assume that £’ = f(E) is not connected and derive a contradiction.
Since f(E) is not connected we can write f(E) = A\U B, where A and B
are disjoint nonempty open subsets of f(E). By the first proposition of § 1,
each of the sets f-(A), f/~'(B) is an open subset of E. We therefore have the

expression of E as
E = f-Y(4)\J f-4(B),

the union of two disjoint nonempty open subsets. This contradicts the fact
that E is connected, proving the theorem. '
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Fiouas 20. Intermediate value theorem.

Corollary (Intermediate value theorem). Ifa,bER,a <b, and fts
o conlinuous real-valued function on the closed interval [a, b], then for any real
number vy between f(a) and f(b) there exists at.least one point ¢ € (a, b) such
that f(c) = .

For since [a, D) is connected, so0 is f([a, b]). The (almost trivial) first
proposition of the last section of the preceding chapter states that any
connected subset of R contains all points between any two of its points.
Since y is between the points f(a), f(b) of f(la, b]), we therefore have
v € (s, b]). This proves the corollary.
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Sometimes the name ‘‘intermediate value theorem’ is applied to the
slightly more general statement that if f is a continuous real-valugd function
on a connected metric space E, then any real number that lies between two
points of f(E) is itself in f(E). The proof is of course the same as above. It
is worth remarking that the validity of the intermediate value theorem for
all continuous real-valued functions on a fixed metric space K is equivalent
to E being connected; for if E is not connected we can write E = A\U B,
where A and B are disjoint nonempty open subsets of E, and the theorem
fails for the continuous function on E which is 0 on 4 and 1 on B.

The previous theorem enables us to give many new examples of con-
nected subsets of metric spaces. For example, any continuous image of an
open or closed interval of R in another metric space (a ‘“curve”) is con-
nected. We now apply this idea to show that all (open or closed) balls in
E», and E* itself, are connected: If p = (a;, ..., a.) and ¢ = (by, ..., bs)
are points of E*, define the line segment between p and g to be the set of points

{(@1+ (br = ant, ..., 6. + (b — aa)t) : tE[0, 1]} C E~.

Since the component functions a; + (b — a.)¢ are continuous, the line seg-
ment between p and ¢ is a continuous image of the interval [0, 1], hence is
connected. The distance between the point p and the point (@, + (bx — ay)t,
vev,@n+ (by —au)t) is ¢ times the distance between p and g, for any
t € [0, 1], hence at most the distance between p and g. Thus the entire line
segment, between the center of any ball and any point of the ball lies entirely
within the ball. Any ball in E* is therefore the union of all line segments
between its center and its various points, that is the union of connected
sets that all contain the center of the ball. By the second proposition of the
last section of the preceding chapter, any ball is connected. Since E" is the
union of all line segments between the origin and its various points, the
same reasoning shows that E* is connected.

$6. SEQUENCES OF FUNCTIONS.

Definition. Let E, E' be metric spaces and for n =1,2,3,... let
fa: E — E’ be a function. If p € E, we say that the sequence fy, fo, fs, . ..

converges at p if the sequence of points fi(p), fs(p), /s(p), . .. of £’ converges.
We say that the sequence of functions fy, f3, /s, . .. converges on E, or con-

verges, or 18 convergenl, if the sequence converges at each p € E. If fy, fs,
fs, ... converges and f: E — E’ is the function defined by

1@ = lim 1.(2)

for all p € E, we say that fi, fs, f3, ... converges to f, f is called the limit
function of the sequence, and we write

f=limf,.
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For example, for each n =1,2,3, ... let f.: [0, 1] — R be given by
fa(z) = z — z/n. For each z € [0, 1] we have lim fu(z) = z. Here the limit
N->®

function f is the identity function f(z) = z. This is illustrated in Figure 21.

=

e - e o -

Fiaurz 21. The sequence of functions fu(z) = z — z/n on [0, 1].

For a second example, let f,: [0, 1] — R be given by fa(z) = z*. Since
lima* =0 if |a] <1 (cf. end of §3 of Chapter III), the sequence fi, f,

fs, ... converges to the limit function f given by

0 f0<z<1
f"‘)"{l ifz = 1.

Notice that each f. is continuous, but the limit function is not. This is
illustrated in Figure 22.

If E, E' are metric spaces and the sequence of functions fy, /s, /s, - . .
from E into E’ converges to £, then for any ¢ > 0 and any p € E there is
a positive integer N such that d&'(f(p), fa(p)) < ¢ whenever n > N; this
i8 a slight amplification of the previous definition. In general the integer N
depends on both ¢ and p, and for a fixed ¢ we must take N larger and
larger for different points p if we want the inequality d'(f(p), fa(p)) < €
to hold for all n > N. If it happens that for any ¢ > 0 we can find an
integer N that works simultaneously for all points p € E then, as we shall
see, the convergence of fi, fy, f3, . .. to f is especially nice in the sense that
if each of the functions fy, f3, fs, ... possesses & certain kind of property
(for example, continuity), then so does the limit function f. This motivates
the definition on the next page.
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N Is I

1

Figurz 22. The sequence of functions f.(z) = z* on [0, 1}.

Definition. Let E, E’ be metric spaces, forn = 1,2,3, ... letfu: B F'
be a function, and let f: E— E’ be another funetion. Then the sequence
JuJu s, ... is said to converge uniformly to f if, given any ¢ > 0, there is &
positive mteger N such that @ (f(p), fa(p)) < ¢ whenever n > N, for all
PEE‘

If the sequence fi, f3, fs, ... converges uniformly to f we -omatimu
eay, for emphasis, that fy, f3, 3, . .. converges uniformly to f on E. If the
restrictions of fy, fa, fs, . .. toacertain subset S of E converge uniformly
to some function on S, we say that f;, /5, f, . . . converges uniformly on 8.

7]

Fiours 23. Uniform convergence of & sequence of real-valued fumetions
of & real variable.
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Uniform convergence of a sequence of functions clearly implies con-
vergence.

The first of our examples above, according to which lim (z — z/n) = z

on [0, 1], is an example of uniform convergence. For here d'(f(z), f+(z)) =
|z — (z — 2/n)| = |z|/n < 1/n, and this last quantity can be made less
than any given ¢ > 0 by taking n > N, where N is an integer at least as
large as 1/e¢.

However, in our second example, which is the convergence of the se-
quence of functions z, z%, 2%, ... on [0, 1], we do not have uniform conver-
gence. Oneway toshow thisis to quote the theorem, to be proved shortly, that
the limit of & uniformly convergent sequence of continuous functions is con-
tinuous. Or we can translate uniform convergence in the present case to
mean that for any ¢ > 0 we have z* < ¢ for all z € (0, 1), provided only
that n is sufficiently large, and if it happens that ¢ < 1 this contradicts the
continuity of the function z* at the point 1.

As before with sequences of points, so also with sequences of functions
it is important to have a criterion for convergence that does not involve
foreknowledge of the limit. Here is the relevant Cauchy criterion.

Proposition. Lel E, E' be metric spaces, with E’ complete, and let fo: E — E',
n=1,23,.... Then the sequence of functions f, fs, fs, ... 18 uniformly
convergent if and only if, for any € > O, there is a positive inleger N such that
if n and m are inlegers greater than N then d’ (fu(p), fn(P)) < e for all p € E.

If the sequence fi, f3, fs, ... converges uniformly to f, then for any
€> 0 there exists & positive integer N such that d’'(f(p), fa(p)) < ¢/2
whenever n > N, for all p € E. Hence if n, m > N, for all p € E we have

& (@), fol?)) < @ (a@), SD)) +d (@), fo®)) <5+75 =

This proves the “only if’’ part. We now prove the “if”’ part: Forany p € E,
H(P), (D), /i(p), ... is a Cauchy sequence in E’. Since E' is complete,
this sequence has a limit. Thus the sequence of functions f), fi, fs, ... con-
verges. Let f be the limit function. Given ¢ > 0, choose the integer N so
that we have d'(fa(p), fu(P)) < ¢/2 whenever n,m > N, for all p E E.
Then for any fixed n > N and fixed p € E the sequence of points fi(p),
£i(D), /5(p), . .. is such that all terms after the N* are within distance ¢/2
of f.(p), and are therefore in the closed ball in E’ of center f.(p) and radius
¢/2. Bince closed balls are closed sets, the limit f(p) of the convergent
sequence fi(p), fi(p), i(p), ... is also in this closed ball, so that
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d'(f«(»), /() < ¢/2. Hence if n > N we have d'(fu(p), f(p)) < ¢ for all
p € E, proving uniform convergence.

Theorem. Let E, E' be metric spaces and let fi, fr, fs, . .. be a uniformly
convergent sequence of continuous functions from E into E'. Then lim f, is
conlinuous. e

We must show that f = lim f, is continuous at each point p, € E.

80 let po € E be fixed. Let ¢ > 0 be given. Fix a pogitive integer n such
that d’(f(p), f+(P)) < ¢/3 for all p € E, which is possible by the uniform
convergence. Since f, i8 continuous at pq, there is 2 number § > 0 such that
if pEE and d(p, po) <& then d'(fu(p),fs(po)) < ¢/3. Hence if pEE
and d(p, po) <8 we have

d'(f(), /(p) < & (F(D), (D) + & (fs(D), fo(p0)) + &' (fa(®0), (p0))
< —;— + -g‘ + -;—- =

Thus f is continuous at p,.

The above proof really shows something more general than is stated,
namely that if we have a sequence of functions f;, fy, fs, . . . from E into E’
that converges uniformly on some open ball of E of center p, and if each f,
is continuous at p, then the limit function is also continuous at p,.

If f and g are functions from a metric space E into a metric space E’,
it is natural to try to find some measure of the extent to which f and ¢
differ, that is to find some sort of “distance” between f and g. Fqr any
specific p € E we may say that f and g differ at p by the distance between
their values at p, that is by d'(f(p), g(p)), but we would really like to
measure how much f and g differ over all points of E, not just at p. There
are various ways of doing this, depending on the circumstances and pur-
poses in mind, but the most simple-minded method turns out to be one
of the most useful. It is to take the distance between f and g to be

max {d'(f(p), 9(P)) : p € E}

if this maximum happens to exist. In order to develop this idea we need
to digress for a simple lemma.

Lemma. Let E and E’ be metric spaces, and let f and g be conlinuous func-
tions from E into E'. Then the real-valued function on E whose value at any
point p € E is d'(f(p), 9(p)) is continuous.
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We must show that this function is continuous at any given point

po € E, that is that |d'(f(p), 9(p)) — d'(f(ps), 9(po)) | is less than any
given ¢ > 0 for all p in some open ball in E of center p,. But

|d'{f(p), 9(@)) — &' (F(Po), g(p0)) |
<|d'(f ), 9®) — & ®),9(@)) | +1d'(f(P), 9(p)) — &' (f (Do), 9(po)) |
< d'(g(p), g(po) + d'(f(p), (o)),

_ the last step being a double application of the fact that the difference
between two sides of a triangle is at most the third side. Since f and g are
continuous at po, each of the quantities d'(g(p), g(po)), &' (f(p), f(po)) is
less than ¢/2 for all p in some open ball in E of center p,, proving that for
all p in that open ball

[&'(F(p), g(P)) — d'(f(p), g(P0)) | < ¢,

as desired.

In the case of greatest interest, that where E’ = R, there was actually
no need for a detour to prove the lemma, for here d'(f(p), g(p)) =
(@) — g(p)| and the continuity of this function follows from that of f
and g in two easy steps: the difference of two continuous real-valued func-
tions is continuous, and the absolute value function on R is continuous.

Now consider the set § of all continuous functions from E into E'.
We assume that E is compact. Then it is true that forany f,g EF

max {d'(f(p), g(p)) : p € E}

exists, since any continuous real-valued function on a compact metric
space attains a maximum. Hence we may define, for any f, g € §, the dis-.
tance between f and g to be

D(f, g) = max (d'(f(p), ¢(®)) : p € E}.

We proceed to show that ¥, together with this D, is a metric space.

For all f, g € &, it is clear that D(f, g) > 0 and that D(f, g) = 0 if and
only if f=g. It is also clear that D(f, g) = D(g, f). It remains to prove
the triangle inequality, which states that if f, g, h € § then

D{, k) < D(f, 9) + D(g, h).
To prove this, pick ps € E such that D(f, k) = @'(f(po), k(ps)). Then

D(f, k) = d'(f(po), h(pa)) < d'(f(Po), g(po)) + ' (g(po), h(po))
< mex {d'(f(p), 9(p)) : p € E} + max {d'(9(p), h(p)) : p € E}
= D(f: 9) + D(g, b).

Thus ¥ is indeed & metric space. It is “abstract” in the sense that its
“points” are functions on another metric space.
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A sequence of points in the metric space F is a sequence of functions
JuJu b, ... from E into E'. This sequence will converge to a point fE &
if and only if

lim D(f, fa) = 0,

in other words if and only if for each ¢ > 0 there is & positive integer N such
that for any integer n > N we have

max {d'(f(p), /() : P E E) < ¢,
that is
& (f(p), f(P) < ¢

for all p € E. Thus the sequence of points f;, /s, fs, ... of § converges to
the point f € & if and only if the sequence of functions fi, /5, /s, ... on E
converges uniformly to the function f.

Suppose that a sequence of points fi, fs, fi, . . . of ¥ is & Cauchy sequence
in the metric space §. Then for any ¢ > 0 there is a positive integer N such
that whenever n, m > N we have :

D(fa,fu) < ¢
that is ‘
max (& (fa(p), fa(@)) : PE E} < ¢,
or
d'(fu(p), fa(P)) < ¢

for all p € E. Assume that E’ is complete. Then the proposition of this
section is applicable, and it tells us’that the sequence of functions

9 t
|

max{lf(z) — g(2)| : 3€ la,b]}

R e

Fiaure 24. The distance between two real-valued functions on [e, b}.
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J;,/.,f;, ... converges uniformly on E to some function f: E — E'. The
previous theorem tells us that f is continuous. Thus f € & and

l}&fu"‘f

in the sense of points of the metric space §. Thus the metric space ¥ is
" We have proved the following result.

Theorem. Let E and E’ be metric spaces, with E compact and E’ complete.
Then the set of all conlinuous funciions from E to E', with the distance between
w0 such functions f and g taken to be

| max ((/(8), (7)) : p € E|,
s a complele meiric space. A sequence of points of this melric space converges
f and only 1f it <8 a uniformly convergent sequence of functions on E.

It B’ = R we have the metric space of all continuous real-valued

functions on a compact metric space E, the distance between two such
functions f and g being

max { |/(p) — 9(p)|: p € E}.

This metric space is important enough to be denoted by a standard symbol
C(E).

PROBLEMS ,
1. Discuss the continuity of the function f: R— R if
) 1) 0 ifzx<0 '
w s@ s fz20
zlinl fzw0
®) f(=) = =
0 Hz=0
(assume the general properties of the sine function are known)
© tm={ 1=
: 1 fz=0

0 if z is not rational

@ S =(2 nz-tm.. and g are integers
9 withnoeommondivi-on
other than +1,and ¢ > 0.
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. Let E, E' be metric spaces, f: E— E’ a continuous function. Show that if S
is a closed subset of E’ then f~*(8) is a closed subset of E. Derive from this
the results that if f is a continuous real-valued function on E then the sets
[PEE:f(p) <0}, {PEE:f(p) 20}, {p EE : f(p) = 0} are closed.

. Let E, E’ be metric spaces, f: E — E’ a function, and suppose that Sy, S; are
closed subsets of E such that E = 8, \U 8,. Show that if the restrictions of f to
S, and to 8, are continuous then f is continuous.

. Let U, V be (open or closed) intervals in R, and let f: U — V be a function
which is strictly increasing (i.e., if z,y € U and z <y then f(z) <f()) and
onto. Prove that f and f~! are continuous.

. Let E, E' be metric spaces, f: E — E’ a function, and let p € E. Define the
oscillation of f at p to be

glb. {a € R : there exists an open ball in E of center p such that
for any z, y in this ball we have d'(f(z), f(y)) < a}

if the bracketed set is not empty; if the set in brackets is empty we define the
oscillation of f at p to be the symbol + . Prove that f is continuous at p if
and only if the oscillation of f at p is sero, and that for any real number e the
set of points of E at which the oscillation of f is at least e is closed.

. Let E be a metric space, S a subset of E, and let f: E— R be the function
which takes the value 1 at each point of S and 0 at each point of eS. Prove
that the set of points of E at which f'is not continuous is precisely the boundary
of S (cf. Prob. 17, Chap. III).

. Let U be an open interval in R, let a € U, let E’ be a metric space, and let
J: U = {a} — E’ be a function. Define

31‘3*! (@) = lim f, (z),

where f+ is the restriction of fto UN {z ER : z > a}, and
lim_f(z) = lim f_ (z),

where f_ is the restriction of f to UN{z € R : z < a}, if these limits exist.
Prove that lim f exists if and only if lim f and lim f exist and are equal. *
z-a 2ras E-va—

. Let U= {zER:z>a), for some positive real number a, and let f be a
real-valued function on U. Define

lim f(z) = lim g(y),

z-> 4o y~0

where g: (0, 1/a) = R is given by g(y) = f(1/y), if this latter limit exists.
Prove that lim f(z) exists if and only if, given any ¢ > 0, there exists a,num-
ztm

ber N such that if z,y € R and z,y > N then |f(z) = f(¥)| < e

. (a) Prove that v/ is continuouson {z € R : z > 0].

lim-2=1
(b) Evaluate - Vio1

(c) Evalute lim gﬂ_—l (cf. Prob. 8).
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1V. CONTINUOUS FUNCTIONS

Discuss the continuity of the function f: E* — R if

@) f@y) = {F%}? if (z,v) % (0,0)
0 if (x,4) = (0,0)
®) flz,y) = {F%T’ if (z,y) = (0,0)
0 if(z,y)=(0,0

' .
© f(z,y) = {m’ if (z,y) » (0,0)

0 if(z,y) =(0,0).

Give a proof of the first proposition of § 3 (on the continuity of sums, prod-
ucts, etc. of continuous functions) that is based directly on the definition of
continuity.

Prove the analog of the first proposition of §3 for complex-valued functions
on & metric space (cf. Probs. 20, 21 of Chap. III).

Write down the details of the following alternate proof that a continuous
real-valued function f on a compact metric space E is bounded and attains a
maximum: If f is not bounded, then forn = 1,2, 3, ... there is a point p, € E
such that |f(ps)| > n, and a contradiction arises from the existence of a con-
vergent subsequence of pi, s, Ps, .... Thus f is bounded and we can find a
sequence of points qi, gs, gs, . . . of E such that liﬂf(q..) = Lub. {f(p) :p € E].
Af maximum will be attained by f at the limit of a convergent subsequence
ol q1,qs, Gy - -«
(a) Prove that if S is a nonempty compact subset of a metric space E and
Po € E then min {d(po, p) : p € S} exists (“distance from p, to S”).
(b} Prove that if 8 is & nonempty closed subset of E* and p, € E* then
min {d(py, p) : p € S} exists.
Prove that for any nonempty compact metric space E, max {d(p, ¢) : p, ¢ € E}
exists (‘“‘diameter of E”). (Hini: Start with a sequence of pairs of points
{ (Pn) gn) Inetaa. ... of E such that

lim d(ps, gu) = lu.b. [d(p, 9) : p, 9 € B}
and pass to convergent subsequences.)

Let E, E' be metric spaces, f: E— E’ a continuous function. Prove that if £
is compact and f is one-one onto then f~': E’— E is continuous. (Hint:
J sends closed sets onto closed sets, therefore open sets onto open sets.)

Is the function z? uniformly continuous on R? The function v/]z[? Why?

Prove that for any metric space E, the identity function on E is uniformly
continuous.

Prove that for any metric space E and any p, € E, the real-valued function
sending any p into d(p,, p) is uniformly continuous.

. State precisely and prove: A uniformly continuous function of a uniformly

continuous function is uniformly continfious.
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Let S be a subset of the metric space E with the property that each point of
eS is a cluster point of S (one then calls S dense in E). Let E’ be a complete
metric space and f: S — E’ a uniformly continuous function. Prove that f can
be extended to a continuous function from E into E’ in one and only one way,
and that this extended function is also uniformly continuous.

Let V, V'’ be normed vector spaces (cf. Prob. 22, Chap. III) and f: V=V’ a
linear transformation. Prove the following statements.
(a) If f is continuous at one point it is continuous everywhere, and in fact is
uniformly continuous.
(b) f is continuous if and only if the set {|If()||/lizll :z2 € V,z»0} is
bounded.
(c) fis continuous if V is finite dimensional. (Hint: Use a basis of V.)
(d) The set of all infinite sequences of real numbers with only a finite number
of nonzero terms is a normed vector space if we define
1,223, .. )+ Yy ¥y, - ) =@+, 2ty t s . .0)
c(x1, 23, 73, . ..) = (c21, €29, €2, ...)
@1, 23, 23, .. )| = max { |zl |2s], |2al, ...},
and the map sending (zi, 2s, 73, ...) into (21, 22y, 325, ...) is & one-one
linear transformation of this normed Yector space onto iteelf that is not

continuous. ’
Use Problem 22 to prove that if V is a finite dimensional vector space over R
and || ||s, Il lls are two norm functions on V (i.e., real-valued functions such

that (V, || Il) and (V, || |l) are normed vector spaces), then there exist posi-
tive real numbers m, M such that m < ||zlly/|lzlls < M for all nonsero x € V.
Deduce that any finite dimensional normed vector space is complete (as a
metric space).

Give another proof of the intermediate value theorem by completing the fol-
lowing argument: If f is a continuous real-valued function on the cloeed inter-
val [a, b] in R and f(a) < ¥ < f(}), then

JQub. (zE€la,b]: f@) < 7)) =1.

Give a proof of the intermediate value theorem using uniform continuity.
(Hint: Using the notation of this theorem, uniform continuity implies that,
given any ¢ > 0, if we divide [a, ] into a sufficiently large number of subinter-
vals of equal length then for at least one of the division points p we shall have
|f () — v| < e. Choose a sequence of p’s corresponding to a sequence of ¢'s
approaching zero, then a suitable subsequence.)

Let a,b € R,a < b, and let f be a continuous real-valued function on [a, ).
Prove that if f is one-one then f({a, b)) is [f(a), f(®)] or [f(D), f(a)}), whichever

expression makes sense.

Show that if f: R — R is a polynomial function of odd degree, then f(R) ='R.
Show that any open or closed interval in E* is connected.

A metric space E is said to be arrw.se connected if, given any p, ¢ € E, there
is a continuous function f: [0, 1] = £ such that f(0) = p, f(1) = q. Show that
(a) an arcwise connected metric space is connected

(b) any connected open subset of E* is arcwise connected.
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1V. CONTINUOUS FUNCTIONS

Prove that a continuous mal:{mlued function on a closed interval in E* can-
not be one-one. R |
(A space-filling curve) : '
(a) Show that the subset S of [0, 1] consisting of all numbers having decimal
expansions of the form
aibrci0asbycslashacs . . .

(each au, ba, ca being one of the integers 0, 1, .. ., 9) is closed.
(b) Show that the real-valued functions ¢, ¢, s on S which send
GibieiOagbeciOasbyc0 . . .
into the real numbers with decimal expansions

GGy ..., Dibsba ..., .cicscs...

respectively are continuous. (Note that each number in S has a unique
decimal expansion, 80 that ¢, ¢, ¢, are well-defined.)

(c) Show that there are unique continuous real-valued functions fi, f3, fs on
[0, 1] whosee restrictions to S are ¢y, ¢, ¢ respectively, which equal 0 at
1, and which are linear on each open interval in €S (cf. Prob. 5, Chap.
11I).

(d) Prove that the function f:[0, 1]— E® defined by f(z) = (fi(2), f2(2),
fs(2)) for all €10, 1] is a continuous map of [0, 1] onto the unit cube
((@yz, 7)) EE : 231, 20, n €0, 1]

Show that the sequence of functions

Vi, Vit Vs Y+ Vit vz, ..
on {z ER: z 2 0} is convergent and find the limit function.
(a) Show that the sequence of functions z, 1%, z3, ... converges uniformly
on [0, a] for any a € (0, 1), but not on {0, 1. ]
(b) Show that the sequence of functions z(1 — z),2%(1 — z),2(1 ~2), ...
converges uniformly on [0, 1}.

Is the sequence of functions fi,fs, fi, ... on [0, 1] uniformly convergent if

) = Tt 1@ = Tt MA@ = !
Show that if the function f: R — R is uniformly continuous, then the sequence
of functions f(z + 1), f{z + %), /(z + %), ... i8 uniformly convergent.

Does the sequence of functions z, g, g, g, ... converge uniformly on R?

Let £, /s, /5, ... and gy, 04, 65, . .. be uniformly convergent sequences of real-
valued functions on a metric space E. Show that the sequence f, + g,
fat 93, Js + s, ... is uniformly convergent. How about fi g1, fsgs, fsgs, .. .7

Prove that the limit of a uniformly convergent sequence of bounded functions
(from one metric space into another) is bounded.

Give an example of a convergent sequence of continuous real-valued
functions on [0, 1] whose limit function fails to be continucus at an infinite
number of points.
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. Leta,dER,6<b,andforn=1,2,3,... let fu:[a, )] = R be an increasing

function (i.e., fa(s) < /o) if z < ). Prove that if the sequence fi, /1, /s, .. .
converges to f then f is increasing, and that if f is continuous then the con-
vergence is uniform.

Let £, f1, fa Ji, - . . be continuous real-valued functions on the compact metric
space E, with f= ljﬁf» Prove that if fi(p) < fa(P) S fi@) < ... for all

p € E then the sequence /), /s, fs, . . . converges uniformly.

42. Show that the closed ball in C([0, 1]) of center 0 and radius 1 is not compact.

(Hint: Consider the sequence of functions z, 2%, 23, ... .)

43. If E is a compact metric space and p, € E we get a real-valued function F on

C(E) by setting F (f) = f(po) for all f € C(E). Prove that F is uniformly con-
tinuous.

. Generalise Problem 43 as follows: If E and E’ are compact metric spaces and

¢: E— E' is a continuous function, map C(E’) into C(E) by sending each
fEC(E") into f o ¢ € C(E). Prove that this map is uniformly continuous.

Let E be a compact metric space. Show that C(E) is a complete normed vector
space (cf. Ptob. 22, Chap. III) if we add its elements in the usual way, mul-
tiply them by real numbers in the usual way, and take |iflj = max {|f(p)] :
p € E) for all f € C(E). Show that the map of Problem 44 is a continuous
linear transformation.

. Prove the analog of the last theorem of the chapter when E is not compact

but with a restriction to bounded continuous functions, the distance between
two such functions f and g being taken as

lub. (d'(f(p), 9()) : p E E).

Do the same thing for bounded functions from E to E’ that are not necessarily
continuous. What is the relation between the two metric spaces so obtained?



CHAPTER V

Differentiation

The subject, of this chapter is one-variable differ- -
ential calculus. The essential items, and even their
development, are familiar from elementary ealeulus.
" This ground can be covered with speed and presision
since all the difficult work has been done in the pre-
ceding chapter. '
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$ 1. THE DEFINITION OF DERIVATIVE.

Definition. Let fbe a résl-valued function on an open subset U of R.
Let xo € U. We say that f is differentsable at z, if

lim 1(3) -1(30)

Fony T -2

exists. If it exists, this limit, often denoted f’(x,), is called the derivative of f
at z,. v

We remark to begin with that t|  notion of limit used here is exactly
that of the preceding chapter, since z#is a cluster point of the metric space
U and we are considering a functionifrom the complement €{z;} of |{xo}
in U into the metric space R (namely the function which associates to
each z € €{zo) the element (f(z) — f(x0))/(z — x5) of R). As always, if
the limit exists it is unique. Thus f’(z,), if it exists, is necessarily unique.

A clearly equivalent definition of f/(z,) is given by

1'(z0) = lix‘rox ﬁ&m;" h’)‘ — f(z0) :

Here h is ynderstood to vary in some open ball in R of center 0.
The efuation

. J@) =f=) _ o
- lmee e =@
is equivaljt to the existence, for eacli ¢ > 0, of a number 3 > 0 such that

() —f(@) _ o
P J'@)|<e
whenever z € U, z » z,, and |z —zg < 8. The last inequality is equiva-
lent to T
1£(@) = f(z) = f' ()l — 20)| < €]z — 7],

which also holds if z = z,. Note tst if 3 is taken small enough and
|z — xs] < 8 then it is automatically tgue that z € U, since U is open. Thus
we can say, somewhat more briefly, that the equation

. @) —f@) _ o

mTe, i@

is equivalent to the existence, for each ¢ > 0, of a number § > 0 such that
1) — f(ze) — f'(z)(z — 20) | < €|z — 0]

whenever |z — x| < §.



§ 1. DEFINITION OF DERIVATIVE 99

Recall that a function ¢: R — R is called linear if there exist numbers
¢,k € R such that ¢(z) = cx + k for all & R. We then have ¢(z) =
@(z0) + c(z — x9) for any 2o € R. The real-valued function on R sending
any z into f(ze) + f'(20)(z — zo) is linear. It follows that f is differentiable
at ze tf and only if f can be closely approzimaled near zo by a linear function
in the sense that there exists a linear function that differs from f by a
very small fraction of |z — 2| if z is sufficiently near zo; worded precisely,
this condition is that there exist a linear function ¢ such that for any
€ > 0 there exists a § > 0 such that

v 1f (@) — ¢(2)| < €|z — 24|
whenever |z — zo| < 8.

y = Jf(z)

¥ = f(ze) + f'(ze)(x — 20)

a small fraction of |z — z4,
if |z — zo| is small

-\
Hpm—m—m————

Fiqure 25. Graph of a function that is differentiable at z,. Near z, the graph is very

close to a certain straight line (the ‘‘tangent line at z = z,'’), in the sense
indicated.

Proposition. Let U be an open subset of R, f: U — R. If f is differentiable
at 20 & U then f 18 continuous al x,.
Pick any ¢ > 0 and then a suitable number & > 0 such that
If @) = f(@) — ' (z)(z —20) | < &|2 — 7]
whenever |z — zo| < 8. Then if |z — 1o| < 8 we have
1 @) = f(@za) | S 1f(2) — (@) = f'(2e)(z — 2} | + | (z0) (= — 20) |
: S(o+ |f@)]) |z — 2.

If, for any ¢> 0, we choose & = min {8, ¢/(& + |f'(z0)|)}, we have
|f(x) — f(zo)| < € whenever |z — zo| < 8, proving the proposition.
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Definition. Let f be a real-valued function on an open subset U of R.
If f'(xo) exists for all zo € U then f is called differentiable on U (or just
differentiable). The function f’, often denoted df/dz, is called the derivative
of f.

The notation df/dz (or df(z)/dx) has many obvious defects, but at
least we usually know what is meant.

A differentiable function is necessarily continuous, but a continuous
function is not necessarily differentiable. For example the absolute value
function is continuous on all of R but it is not differentiable at 0, since if
z#0

[x]-—lO[_jgj__{ 1 ifz>0
z—0 z -1 if £<0.

No limit can exist as z approaches 0 since any open ball in R of center 0
contains both numbers greater than zero and numbers less than sero.

§2. RULES OF DIFFERENTIATION.

In very simple cases it is easy to differentiate (that is, compute deriva-
tives) directly from the definition. For example, if f is & constant function,
that is if f(z) = ¢ for all z € R, where ¢ is some fixed real number, then
for any 20 € R we have

e = i J@ —f@) _ . c—¢ _ o o
§'() 4133'. z -2z P}az-—ze 1'320 0.

If g is the identity function, that is if g(x) = z for all £ € R, then for any
Zo € R we have

g(@) —9@0) _ i 2=

’ =h i -],
o' = lim lim - —%, ~imi=1

These results are usually written

de dz
&= &=t

For more complicated functions, differentiation by direct recourse to the
definition is impractical, so special rules are developed. The following
proposition makes the differentiation of rational functions almost mechan-
ical. The formulas for differentiating exponential, logarithmic and trigono-
metric functions will have to wait until the next two chapters, where these
functions are given adequate definitions.



§2. nULES OF DIPFERENTIATION 101

Proposition. Let f and g be real-valued functions on an open subset U of R.
If f and g are differentiable at the point xe € U, then s0 are f + g, f — ¢, 19,
and, if g(ze) ¥ O, f/g. Their derivatives at 2, are given by the formulas

(I + 9)' (o) = 1'(ze) + ¢ (20)
(f — 9)'(za) = f'(zs) — ¢’ (o)
(J0)' (za) = f(ze)g’ (ze) + g(2e)]" (29)
I\ (o 9 (@) — fag(x0
(9)(”’? WGy

The proof, to be given shortly, is by direct computation. The limit

formulas of the corollary on page 76 are used repeatedly. The continuity
of f and g at p, is also used, in the form of the statements

lim f(z) = f(zo), lim g(z) = g(ze).

In the case of the function f/g, the assumption that g(z,) » O insures
g(z) » O for all z in some open ball of center z4 (by the continuity of g at
7o and the result on page 75), so that it is permissible to restrict U to a
smaller open set containing 2z, on which g is nowhere sero, banishing all
concerns about possible zero denominators. Now that we have given all the
reasons for the vilidity of the formal proofs, here are the formal proofs
themselves:

U+0) () = hm {(=) +9(z) f (39) ’(3!1
i S =)y ) = g
s T —2o ey ZT—2
= 1'(za) + ¢’ (20).

The proof for (f — g)'(z0) is the same; just replace each g by —g.
(f0)"(ze) = hm J (3)0(3') bi (zo!(ﬂ

-2
= lim (f(z)—(’)—-'-ﬂ + o(z0) )
= lim (2) .EQL%_:%.E+,(QQ.%&}:§Q
= f(ze)g’ (o) + g(za)f’ (2o).

To find (f/g)’(z0), it is a little easier to first find (1/9)'(z):
a /ﬂ)'(&) - hm (1/ g(z)) (1/ ’(30)) = lim ’( -

T -2 - (z— )
T ZT—% 0'(

0@ Tme@ (e
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Therefore our final step is

U/9Y (z) = (f - (1/9))' (o) = (o) + (1/g)'(z0) + (1/9(zo)) « ' (z0)
_ S (xa)g’(ze) +f'(:co) 9(@)f" (20) — S (2a)g'(z0)

(o)  g(z0) (g(zo))?
Corollary 1. If f is a real-valued function on an open subset of R and
cER, then
gf _
dz dz

This means, of course, that for any 2o € R at which f is differentiable,
(cf)' (zs) exists and equals ¢f*(x,). This follows from the formula for differen-

tiating a product, together with the known result that the-derivative of a
constant function is zero.

Corollary 2. For any integer n, dz*/dz = nz*,

It is understood that if n < 0 then the function z* is defined only on
the nonsero real numbers. The result is known if n = 0 or 1. If n is a positive

integer greater than one we repeatedly apply the formula for differentiating
a product, as follows:

‘ﬁ: dz(z°z) -zrd—z--l-z%-:-uz l14+2=22
%-E—(z. -zg’_.*azi——--zozx-'-z’zw
R Rt
dz

.a_;...;;,.,‘)-,_..;.zc——-z 42 + 2 = 520,

Clearly this process can be continued indefinitely. Each computation works
out as above, giving at each stage the formula dz*/dx = nz*—!. This proves
the result forn > 0. If n < 0, weset n = —m, 8o that m > 0, and complete
the proof with the computation

dl dz™

-] = p—
Ew @) T e e

The next result is the so-called “chain rule,” or rule for differentiating
o function of a function. Informally stated, if « = u(y) and y = y(z), so
that ¥ = u(y(z)), then

du _du dy
dzdydx
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Proposition. Let U and V be open subsets of R, and let f: UV,
9: V=R be functions. Let 2o € U be such that f'(z) and ¢’ (f(zs)) ‘exist.
Then (g © f)'(zs) exists and

@ © 1) (z) = ¢ (f (2))S' (9).
For any fixed yo for which g’(y,) exists, set
A(m«)-{ K tyevymn
Lo if Y=o
Then
o) — g(wo) = Ay, v) (v — vo)
forall y € V. Also

lim A(y, yo) = ¢'(ys) = A(ys, o),
e 4 )

80 that A(y, yo) is continuous at yo. Now set yo = f(2o), ¥ = f(z). Since a
continuous function of a continuous function is continuous,

li'{l.A(f(z),f(zo)) = ¢'(f(zd)).
Hence
of)! - 9U@) ~9(f@)) _ ;. AU, 1(20) (@) — 1 (z)
@' (ea) = i EZE0 =2 55 = fim z—2

. . (z) — " '
= lim AG@), 1Go) - lim LEL=LED. _ (5201 .

$3. THE MEAN VALUE THEOREM.

Proposition. Let f be a real-valued funclion on an open subset U of R that
altains @ mazimum or a minimum al the point xo € U. Then if f 18 differen-
tiable at zo, f'(ze) = 0.

If f'(x5) v 0, there exists a real number § > 0 such that if z # z, and
|z — 24| < & then
that is,
sy - LG S S gy 4 LG
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Since |f’(zo) | equals either f'(zo) or —f'(zo), each of the two extreme terms
of the last inequality is necessarily either f/(z0)/2 or 3f'(x0)/2, both of
which have the same sign as f’(zo). Thus if £ 7 7o and |z — 26| < §, then
(f(x) — f(z))/(x — zo) has a constant sign. But since f attains a maximum
or & minimum at zo, f(z) — f(x,) is always nonpositive or always non-
negative for all 2 € U, hence always negative or always positive if z » 2,
and |z — 20| < 8. On the other hand the denominator z — xz, can be either
positive or negative. Therefore we can find an z > zosuch that |z — 2| < §
and (f(x) — f(x0))/(x — z0) is either positive or negative, whichever we
wish. This contradiction proves that the assumption that f’(zo) # 0 is false.

Lemma (Rolle’s theorem). Leta,bE R, a < b, and let f be a continuous
real-valued function on [a, b] that is differentiable on (a,b) and such that
f(a) = f(b) = 0. Then there exists a number ¢ € (a, b) such that f'(c) = 0.

For since [a, b] is compact, f must attain a maximum at at least one
point of [a, b], and also & minimum. If both maximum and minimum are
attained at the end points a, b then since f(a) = f(b) = 0 we must have
f(x) = 0forall z € [a, b), so that f'(c) = 0 for all ¢ € (a, b). In the contrary
case, f attains & maximum or a minimum at some point ¢ € (a, b), and the
previous result gives f'(c) = 0.

A slight generalization of Rolle’s theorem is the mean value theorem
given below; Rolle’s theorem is the special case where f(a) = f(b) = 0.
The mean value theorem is illustrated in Figure 26.

dope = (8= 1@

s 1®)

S(a)

Fioure 26. The geometric sense of the mean value theorem: the graph of a differentiable
function has at least one tangent parallel to any chord. This is illustrated
for several functions. The bottom curve shows how the theorem fails if
differentiability is missing at one point.
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Theorem (Mean value theorem). Let a,bER, a <b,and let fbe a
conlinuous real-valued function on [a, b) that is differentiable on (a, b). Then
there exists a number ¢ € (a, b) such that

J(®) —f(a) = (b — a)f'(c).

To prove this, define a new function F: {a, b] = R by
F@ = 1@ - @ - 1B =L@ ., _ )

for all z € [a, b]). (Geometrically F(z) is the vertical distance between the
graph of f over [a, b] and the line segment through the end points of this
graph.) Then F is continuous on [a, b}, differentiable on (a, ), and F(a) =
F(b) = 0. By Rolle’s theorem, there exists a ¢ € (a, b) such that F’(c) = 0.

Thus
PO =0 - L8210 L,

proving the result.

Corollary 1. If a real-valued funclion f on an open inlerval in R has
derivative zero at each point, then f is conslant.

We have to show that for any points a, b in the open interval we have
f(a) = f(b). Without loss of generality suppose a < b. For some ¢ € (a, b)
we have f(b) — f(a) = (b — a)f’(c) = 0. Thus indeed f(a) = f(b).

Corollary 2. If f and g are real-valued functions on an open interval in R
which have the same derivative at each point, then f and g differ by a constant.

For (f —g)' = f' — g’ = 0, 80 f — g is constant.

Definition. A real-valued function on a subset U of R is called

increasing J(a) <J(b)
atrictly increasing if, whenevera, b S U f(a) < f(b)
decreasing 5 and a < b, we have f(a) > 1(b)
strictly decreasing _ 1(a) > 1 (b).

Corollary 3. If { is a real-valued function on an open inlerval in R that Aas
a posilive (negative) derivative al each. point, then f is siriclly increasing
(strictly decreasing).

Forif a < b, then f(b) — f(a) = (b — a)f’(c) has the same sign as f'(¢).
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§4. TAYLOR'S THEOREM.

Let U be an open subset of R, f: U — R a differentiable function. If
the function f’: U — R is differentiable, we say that f is twice differentiable
and call (')’ the second derivative of f, writing (f)’ a8 f’ or f@. If f® is
differentiable, we say that f is three times differentiable and call (f®)’
the third derivative of f, writing (f®)’ as '’ or f®. Similarly for functions
that are 4,5,6, ... times differentiable. For any integer n > 1 and any
2o € U we say that f is n times differentiable at z, if the restriction of f to
some open ball of center zo is (n — 1) times differentiable and (f*—)’(zo)
exists; we then write (f*)’(z,) = f®(zo). Thus f is n times differentiable,
for a given positive integer n, if and only if it is n times differentiable
at each point of U. The n* derivative f™ of fis often denoted

SR
IO -
In the rest of this section n will be one of the nonnegative integers

0,1,3, .... For convenience the sero® derivative of a function f is defined
to be /® = f. Recall that

nl=1.2:.3...n
ifn=1,23,...,80 that
(D= (n+1)-nl.
In order that the last equation also hold if n = 0, we define 0! = 1.

Lemma. Let U be an open snterval in R and let the function f: U — R bde
(n 4 1) times differentiable. If for any a, b € U we dafine R.(b,a) ER by
the equation
I'@@®—a) , ()b —a)
10) =g + L@Q0=0)  T@O—a) 4 ..

+L£2@0 a4 kg,

d I (a+1) (z) (b - z)lt
f"‘z“Rn(bp z) = nl .

For any z € U we have

10 =16 +r @GR 4 @y

+10) 8= 4 g, 2.
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For fixed b, each term in this equation is the value at = of a real-valued
function on U. Each of these functions except the last is differentiable,
hence also the last. Differentiating both sides of the equation we obtain

0= j’(z) +(f'(z) d (b !z) +f”( \ (b z)) ,

+ (oL + @5 + -

+ (@5 g oo

3) 2 =F 4 gy =2 b= z) )+ —Ra(b, 2)
= f'(z) + (—f’(z) ff"(x)QT.,-z-)-)

+(-rol52+ f'"(z)-‘l—‘—,i’l'-) + o

+(~10@G=AT + e 82 4

- o =D 4 5,2,

d
dz Rl (b' x)

Theorem (Taylor’s theorem). Let U be an open interval in R and let the
SJunction f: U—R be (n + 1) times differentiable. Then for any a,b € U
we have

10 = 1@ + L0 0 + L& oy 4 ..

19G) , oy SO0
Ry B i g e 1Y
where ¢ 18 some number between a and b (or, if a and b are equal, ¢ = a).

(b -— a)u-ﬂ

This is trivial if @ = b, so assume that a » b. We need to show that

Ru(bv d) - a)”

JeH(e)
(n+ 1!
for some ¢ between a and b. Since a # b there is & unique real number K
such that
(b -— a)ﬂ‘l“
R.(b, a) = K—————-———-—(n T
The function ¢: U — R defined by
- (b — z)ﬁ-l
o(z) Rn(b) z) - K o+ D!

for allz € U is differentiable. Furthermore ¢(a) = ¢(b) = 0. Thus the
restriction of ¢ to the interval [a, b] (or to the interval [b, a] if a > b) satis-
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fies the conditions of Rolle's theorem. Hence ¢'(c) = 0 for some ¢ between
a and b. Since

P@) = =g (@B b2
we hav; K = f+0(c), Thus
R6,0 = L7506 - o,
as was to be proved.

Note that the case n = 0 of this theorem is essentially the mean value
theorem. There is a little more generality here in that it is not assumed that
a < b, but the assumption that f is differentiable on an open interval con-
taining a and b is considerably more stringent than the analogous condition
in the mean value theorem, where f was assumed differentiable only beiween
a and b. However it is not difficult to get a somewhat more long-winded
statement of Taylor's theorem which is an authentic generalization of the
mean value theorem (see subsequent Problem 15).

The term “Taylor’s theorem” we have attached to the above result
is a convenient misnomer. Taylor's original statement was much weaker.

PROBLEMS

1. Discuss the differentiabiliiy of the function f: R— R if
zenl ifzm0
(8) f(z) = z
0 ifz=0
(assume the general properties of the sine function are known)
2einl ifzmo
b) f(2) = z ’
0 ifz=0
(© f@@) = VTa[.
2. Let the real-valued function f on the open subset U of R be differentiable at
the point z, € U.
(8) Prove that f'(ze) = ‘:?:!(30 +4h) ;hf(z. "h).

(M) fa,BER, wmputel“ig;!(z""“h) ;j(;g'.g.ph).
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3. Here is & “proof” of the chain rule:

of) - lj MD - BT
@) (@ = lim BE2—E “"‘( I )-!(&) z=2
- lim 2U@) =0(f(20) | i £62) = f20)
LA [y A R apeys
= g'(f (ze)) f'(20).

(a) What is wrong with this “proof”?
(b) Alter this slightly into a correct proof.

. Prove that if f is a differentiable real-valued function on an open interval in
R then [ is increasing (decreasing) if and only if f’ is nonnegative (nonpositive)
at each point of the interval.

. Assuming the elementary properties of the trigonometric functions, show that

tan z — z is strictly increasing on (0, x/2), while the function — sin £ is strictly
decreasing.

. Prove that a differentiable real-valued funoction on R with bounded derivative
is uniformly continuous.

. Let a,b ER,a < b, and let f be a differentiable real-valued function on an
open subset of R that contains [a, ). Show that if v is any real number be-
tween f'(a) and f'(b) then there exists a number ¢ € (a, ) such that y =
J'(c). (Hint: Combine the mean value theorem with the intermediate value

theorem for the function (f(z)) — f(21))/(z: — 22) on the set {(z, z:) € B*:
a<u<n<b))

. Let a,b ER,a < b, and let f, g be continuous real-valued functions on [a, b}
that are differentiable on (a, b). Prove that there exists a number ¢ € (s, b)
such that

1'©)(g®) = 9(a)) = g’ (S ®) - f(a)).
(Hint: Consider the function

F@) = (f@) — (@) (g(d) — g(a)) — (g(z) — g(a)) (f(®) = f(a)).)

. Use Problem 8 (Cauchy mean value theorem) to prove the following versions
of L'Hospital’s rule:
(8) Let U be an open interval in R and let £ and g be differentiable real-valued
functions on U, with g and g’ nowhere sero on U. Let a be an extremity of
U. Suppose that lim f(z) = lim g(z) = 0. Then

[@) _ i £62)
lim @ " R Y@

if the right-hand limit exista.
(b) Bame as (a), except that it is mumd that

lim - =lim—— =0.

ree J(2)  1ee c(x)

(c) Same as (a), except that U= {zER: 2> a} forsome a ER-and a is
replaced by the symbol + « (cf. Prob. 8, Chap. IV).
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(d) Same as (c), except that it is assumed that
. 1 .1
lim —— = lim —
se1af@)  aesmg@
10. Btate precisely and prove: An n times differentiable function of an n times
differentiable function is n times differentiable.

11. Let f be a real-valued function on an open subset U of R that is twice differ-
entiable at 2o € U. Show that if f’(ze) = 0 and () <0 (f"'(x5) > 0) then
the restriction of f to some open ball of center z, attains a maximum (minimum)
at zo.

12, A real-valued function on an open interval in R is called convez if no point on
the line segment between any two points of its graph lies below the graph. If
the function is differentiable, this condition is known to be equivalent to the
condition that no point of the graph lie below any point of any tangent to the
graph. If the function is twice differentiable the condition is known to be
equivalent to the second derivative of the function being nonnegative at all
points. State these conditions in precise analytic terms and prove them.

Use Problem 9(a) to show that if f is a real-valued function on an open subset
U of R that is n times differentiable at the point z, € U then

JCa+B) = @) — [z B = e B~ — gy A
im 1 21 -1l

[ h*

18

- t(‘)!z’,!.

n!

14. Use Taylor's theorem to prove the ‘‘binomial theorem” for positive integral
exponent n:

@+2)" -¢u+Mn-nz+ﬂ"_2:_12¢n-aza+ﬂl‘_2‘%%_:.?)au-:za+ R
15. Show that Taylor's theorem may be strengthened as follows: Let f be a con-
tinuous real-valued function on the closed interval in R of extremities a and

b that is (n + 1) times differentiable on the open interval with these same ex-
tremities and suppose that lim f’(z), lim f"’(z), ..., lim f®™(z) exist and that

44", ..., J™ are bounded. Then
1® = 1@ + (tim ) )52 4 4 (limf<"(z))L——Lb —ar

for some ¢ between a and b.



CHAPTER VI

Riemann Integration

We discuss in this chapter the definition and basic
properties of the Riemann integral for real-valued func-
tions of one real variable. The integration of functions
of several real variables will be discussed in the last
chapter, together with some finer points of the one-
variable case. Here we are concerned only with the
simpleat results, up to the integrability of a continuous
function and the fundamental theorem of calculus. The
details of the proofs will be the only essentially new
material for most students. In the last section we apply
our results by giving a rigorous treatment of the
logarithmic and exponential functions.
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§ 1. DEFINITIONS AND EXAMPLES.

Definition. Let a,bE R,a <b. By a partition of the closed interval
[a, b] is meant a finite sequence of numbers =z, x;, ...,y such that
a=12y <z < - <zy = b. The width of this partition is defined to be

max {z; —ziq:t=1,2,...,N}.

If f is & real-valued function on [a, b], by & Riemann sum for f corresponding
to the given partilion is meant a sum

' $ @) @ — 200
(28§

where 2,y <z’ < ziforeachi=1,2,...,N.

Thus, given any function f: [a, b} = R and a partition 2o, 21, ..., T¥
of {a, b], there are lots of Riemann sums for f corresponding to this partition,
depending on the choice of =)/, zy, ..., 25’. In the special case where
f(z) 2 0 for each z € [a, b], each Riemann sum can be considered an
approximation for the “area under the curve y = f(z) between a and 4",
that is, the “area bounded by the z-axis, the graph of f, and the lines
z = a and x = b”, as illustrated in Figure 27. However this geometric in-
terpretation must not be overworked for at least two reasons. First of all
we do not want to restrict ourselves to functions that are positive. Second,
our arguments must have validity independent of geometric intuition.

But the geometric mterpretatxon does make the following definition
reasonable.

Definition. Let a,b € R,a < b, and let f be a real-valued function on
[a, b]. We say that f is Riemann integrable on (a, b] if there exists a number
A € R such that, for any e > 0, there exists a § > 0 such that |[S — A| < e
whenever S is a Riemann sum for f corresponding to any partition of
[a, b] of width less than 8. In this case A is called the Riemann integral of

1 between a and b and it is denoted L * f(@)dz.

It makes sense to speak of the Riemann integral of f between a and b
since A is unique, by the usual argument: If A, A’ are Riemann integrals
of f between a and b then given any e > 0 there exists a § > 0 such that
|S — 4], |8 — A’| < e whenever S is a Riemann sum for f corresponding
to any partition of [a, b] of width less than 8. There are partitions of [a, b}
of width less than any prescribed positive number since, for example, the
partition by N equal subdivisions (with z; = a 4+ ¢(b — a)/N for i =0,
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Figune 27. Area under a curve approximated by a Riemann sum. The indicated choice
of )/, z', ..., 2 gives a certain Riemann sum corresponding to the par-
tition 2, 7y, ... ., 73, and thia sum can be considered an approximation of
the area under the curve. The maximum (minimum) value of the Riemann
sume for f corresponding to the given partition is given by the sum of the
areas of the tallest (shortest) rectangles in the figure of bases [z, 3],
[21, 23}, ..., [Ze, 2s), and the ‘‘true” ‘‘area under the curve” must lie be-
tween these latter extremes, as does our original Riemann sum. Thus the
error in making our original approximation to the area under the curve is
at most the total of the differences in area between the tallest and the
shortest rectangles. It seems reasonable that if we divide [a, b] into more
and more pieces of widths approaching zero, then all our Riemann sums
will approach a certain definite limit, the true ‘‘area under the curve”. (Of
course the only way to make this rigorous is to use this or another procedure
to define the notion ‘‘aren under a curve’. For a specific curve the latter
notion need not exist, just as limita do not always exist.)

1, ..., N) has width (b — a)/N, which is small if N is large. Hence we can
actually find a Riemann sum 8 for f corresponding to a partition of [a, b]
of width less than 8, so that the two inequalities |8 — 4| < ¢, |8 — 4’| < ¢
hold. Hence |A — A’| < 2e. Since ¢ was an arbitrary positive number we
must have |[A — A’|=0,0or A = A’,

Note the use of z in : J(z)dz as & ‘“dummy variable”; we could

equally well have written [ 7(dt, or ['7(u)du.
We follow the usual convention of saying that f i:, or is not, Riemann
integrable on [a, b}, and in the former case writing ]. J(z)dz, evenif fis a

function defined on a larger set than [a, b}, by implicitly replacing f by its
restriction to [a, b].
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ExamrLE 1. f(z) = ¢, a constant, for all x € [a, b]. Here we have
any Riemann sum

ﬁf(z«')(ﬂ —-Zg) = i (@i = i) = can — zo) = c(b — a).
pect

Sl

Since all Riet.nann sums equal c¢(b — a) we have f Riemann integrable on
(s, 8], with ['f@)dz = e(b ~ a).

One of the principal results of this chapter will be that if f is con-
tinuous on (a, b] then ]: .j(z)da: exists, that is f is Riemann integrable on
{a, b}; this is trivially illustrated in Example 1. But if f is not continuous
then | f(z)dz may or may not exist, as is shown by the following examples.

ExamriLe 2. Let £ be a fixed point of [a, b], let ¢ € R, and set
1) _{o if 208§

c if zm=§.
For any Riemann sum 8 corresponding to a partition of {a, b] of width less
than § we have |S| < 2|¢|d (the coefficient 2 appearing since ¢ may be
one of the partition points z; and we may in this case have both z;’ and x:;,’

equal to ¢.) So clearly [ * 1ez)dz = 0.

e —— —

)

P

| I |

:I
N
—

Frouns 28. Graph of the function of Example 3.

ExaurLe 3. Leta, 8 € [a, b] witha < 8. Let f: (a, b] — R be defined
by

1 isz(a:ﬂ)
J(z) = {o if € [q,d),z & (a, B).
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Let 2o, 21, . .., 2y be a partition of [a, b] of width less than § and consider
a Riemann sum for f corresponding to this partition, say

S = ﬁf (@) (2 — xi-1),
-t

where 2.y € 2/ < axfori=1,2, ..., N. Since f(z/) is 1 or 0 according as
the point 2, is in the open interval (a, 8) or not, we have

8= 2" (2 — zica),

the asterisk indicating that we include in the sum only those ¢ for which
z{ € (a, B). Now choose p, ¢ from among 1,2, ..., N such that

Tpal a<x, Ta<pLa,

Then z/ €E (a,B) if p+ 1 <i<g—land /& (a,B)if i<pori>gq.

Therefore
Y @-za) <8< Y (@— ).
»1<iSe-1 P<isq
By the choice of p and ¢, B — a < 7, — 2,1 < (g — p + 1)8, 80 that if &
is sufficiently small we must have p 4+ 1 < ¢ — 1, in which case the last
inequality simplifies to

T =2, S <2y — Zp
Therefore

@1 =B - @ —a) <8 - (B-a) L(z,—B) — (21— a).

Since the partition has width less than 8, each of the quantities z,, — 8,
ZTp — a, T — B, Tp-1 — a i of absolute value less than 5. Therefore

IS— (B —a)| <28
Since & wasan arbitrarily small positive number we conclude that f is
Riemann integrable on [a, b] and that /. * f@dr =8 —a.

ExampLE 4. Define f: [a, b] = R by setting f(z) = 1 if z is rational,
otherwise f(x) = 0. (This is the restriction to [a, b] of Example 6, page
70.) Any interval in R is known to contain both points that are rational
and points that are not. Hence for any partition xo, £, ..., zx of {a, b}
we can choose the z/’s to be either all rational, or all not, in which case
the Riemann sums are respectively b —a and 0. That is, b —a and 0
are Riemann sums for f corresponding to any partition of [a, b], no matter
what the width. It is clear that f is not Riemann integrable on [a, b].

In the future, for brevity, we shall say that a function is integrable
on a closed interval, rather than Riemann integrable, and speak of its
integral instead of its Riemann inlegral. It should be borne in mind however
that there are other integration processes than that of Riemann, and for
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these other integration processes our results may or may not be true. For
example the most commonly used integral after that of Riemann is that
of Lebesgue. A given real-valued function on [a, b] may or may not be
Lebesgue integrable. If it is then its Lebesgue integral is a certain real
number. If a function is Riemann integrable then it is also Lebesgue
integrable and the two integrals are the same (hence can be denoted by
the same symbol L ’ f(z)dz). But many functions that are not Riemann
integrable are Lebesgue integrable, so the Lebesgue integral can be of
greater use. For example, the function of Example 4 above is Lebesgue
integrable; as a matter of fact its Lebesgue integral is zero, in line with the
fact that in some sense the points of the interval [a, b} that are rational are
relatively few in comparison with those that are not. We repeat for emphasis
that from now on integrable means Riemann integrable, integral means
Riemann integral.

§ 2. LINEARITY AND ORDER PROPERTIES OF THE INTEGRAL.

Proposition. Riemann integration has the following properties:
(1) If f and g are integrable real-valued functions on the interval (a, b}
then f + g 4s integrable on [a, b] and

f (f @) + g(2))dz = f * f(x)dz + ] * 9(z)dz.

(2) If f i3 an integrable real-valued function on the tnierval [a, b} and
¢ € R then cf 1s inlegrable on [a, b] and

L " of (x)dz = ¢ ] ' 1(z)dz.
These facts are easily proved by looking at the various Riemann
sums, as follows. Given any e > 0 there are numbers 8, 8 > 0 such that

if 8y, S are any Riemann sums for f, g respectively corresponding to parti-
tions of [a, b] of widths less than &), 8; respectively, then

|8 = [1@az| <5, |8 - [ o@da| < 5.
Hence if zo, %1, ...,2x is any partition of [a,b] of width less than

min {8, 8;} and if z/,...,2y' are such that 2.y <2/ €z for s = 1,
.«., N, then

| £ 060 + o) @ - ~ ([ 1@dn + [ otaras)|
- |( L1~ 2 = [ s205)
+( g 0@z — ) = [ o(x)dz)l
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<| E1e06 -0 - [ 10|
el ¢ ¥

+ | 2 oG ~5) — [ o@ds
L)

€, ¢
< 3 + g=e
This proves part (1). For part (2), given any ¢ > 0 there is a number § > 0
such that for any Riemann sum S for f corresponding to any partition of
. N . . *
[a, b} of width less than § we have ls - ]: f(z)dzl < ¢/|e| (it is permis-
sible to restrict our attention to the case ¢ »£ 0 if we note that the case

¢ = 0is a triviality). Then if o, z,, .. ., z» is any partition of {a, b] of width
less than & and z € [ziy, 2] for ¢ =1, ..., N we have

! i of (z) (2 — ziy) — cf:,f(x)dz’
Sl ‘
gf(z«')(z« —a) - f(z)dg‘ <lel-g=e

-|c|-

finishing the proof.

An immediate consequence of the proposition is that (under the
hypotheses of part (1))

[} 0@ —o@)dz = [ fa)dz ~ [ gta)as.

This comes from applying part (1) to the functions f and —~g, the latter
being integrable by part (2), with ¢ = —1.

Proposition. If { is an integrable real-valued function on the snierval [a, b}
and f(x) > 0 for all x € [a, b}, then

[:f(z)dzzo.

For if we are given any ¢ > 0 we may find & Riemann sum 8 for f on
fa,b) such that |8 — [ f(z)dz| < & Then [ f(2)dz2 8 - e Clearly
820,50 that [ f(z)dz 2 —« This being true for all ¢> 0, we have
[ 1@z 2 0. |

Corollary 1. If f and g are integrable realvalued funciions on the interval
[a, b] and f(z) < g(z) for all 2 € [a, ), then

[1e@as< [[ots
For [[o@)dz — [*1@z = [ (o) — /@)= 2 0.
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Corollary 2. If f is an tntegrable real-valued function on the interval {a, b}
and m, M € R are such that m < f(z) < M for all z € |a, b), then

m(b —a) < j *f(z)dz < M(b — a).

For f mdzr < f f(z)dz < / Mdz, and we know that for any con-
stant ¢ we have ] cdz = ¢(b ~ a).

$3. EXISTENCE OF THE INTEGRAL.

Lemma 1. A real-valued function f on the inlerval (a, b] is inlegrable on
[a, b] if and only if, given any e > 0, there exists a number § > O such that
|8y — 83| < e whenever S, and S; are Riemann sums for f corresponding to
partitions of [a, b] of width less than 3.

First suppose f integrable on {a, b]. Then given any ¢ > 0 there is a
8 > 0 such that ‘S - l. ’ f (z)dz‘ < ¢/2 whenever 8 is a Riemann sum for f

corresponding to a partition of [a, b] of width less than §. If S; and S; are
two such Riemann sums then

181 = Sl = | (81 = [ 1@z) = (82 = [' 1)) |
<|& = ['r@ds|+ |8 = ['r@dz| <5 + 5=

This proves the “only if” part of the lemma.

Conversely, assume the hypothesis of the “if"’ part of the lemma. For
n=1,2 3, ... choose any partition of {a, b} of width less than 1/n and a
Riemann sum S™ for f corresponding to this partition. Then S®, S®,
8®, ... is & Cauchy sequence of real numbers. (For, by assumption, for
every ¢ > 0 there exists & § > 0 such that |8, — S;| < ¢ whenever S; and
8, are Riemann sums for f corresponding to partitions of [a, b] of width
less than J, so if we choose an integer N such that 1/N < § then we have
|8®™ — S™| < ¢ whenever n, m > N.) Since R is complete, the sequence
Sm S® §® .. converges. Let its limit be A. Given any ¢ > 0 now
choose & > 0 such that |S: — Si| < ¢/2 whenever 8, and S; are Riemann
sums for f corresponding to partitions of [a, b] of width less than §, and
choose an integer N such that |S™ — 4| < ¢/2 and 1/N < . Then for

any Riemann sum 8 for f corresponding to a partitiou of [a, b] of wxdth
less than 3 we have

IS8 —A|=|(8 = 8M™) 4 (8™ — A)|<|S — 8™ |4 |8™ — 4|
€ €
<gtg=e
Thus £ is integrable on {q, b].
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At this point it would be easy to use Lemma 1 to give a direct proof
of the main result of this section, the integrability of continuous functions.
However we postpone this result because it is natural to wonder what
integrable functions are like in general, and the next lemma and proposition
will give us a better intuitive understanding of the situation.

Definition. A real-valued function f on the interval [a, b] is called a
step function if there exists a partition z,, 21, .. ., zx of [a, b] such that fis
constant on each open subinterval (zo, 21), (21, 23), . . ., (ZT¥-1, T¥).

For example the functions of Examples 1, 2, and 3 of § 1 are step func-
tions. A step function of more general appearance is indicated in Figure 29.

1
]
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Fiqure 29. Graph of a step function on [a, b].

Lemma 2. A step function is integrable. In particular, ¢f zo, %y, ..., Tn
18 a partilion of the inlerval la,b), if ), ...,cNnER and ¢f f: [a,b] = R 13
such that f(z) =¢; f ria <z <z for i =1,..., N, then

[ 1@z = g iz — 2is).

Note that the values of f(z¢), f(21), ..., f(zx) have no effect on the
integral. It is convenient to place this lemma here, but its proof could have
been given much earlier, immediately after the definition of integral in
§ 1. However it is most simple to base the proof on Examples 2 and 3 of
§1 and the first proposition of §2, as follows:
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Fori= 1,2, ..., N define ¢:: [a, 5] = R by

1 if z € (ziy, 20)
i(z) = {0 if zG[a:-b‘L ;Q (@, 29).

Then f — ﬁ cup: is & function on [a, b] that takes on the value zero at all
& .

points except poesibly the points 2y, 2y, ..., zv; hence it is the sum of a
finite number of functions of the type of Example 2 of § 1. By Example
2, together with the linearity of the integral, we have

[ (s - ):_: w2 Jdz = 0.

But each ¢ is a function of the type of Example 3 of §1, hence is inte-
grable, with L * @i = %; — i1 Again using the linearity of the integral we

setf=(f—gcm)+ gc«p« integrable and
1

[1@z = [*(s@ - g i) )iz + g‘:c‘ [ eia)ds

= ﬁ ez — 241).
Sl

For an illustration of the situation of the following proposition, where a
function is sandwiched between two step functions, see Figure 27 (page 113).

Proposition. The real-valued funciion f on the interval [a, b} is integrable
on [a, b] if and only if, for each € > O, there exist step functions fy, fs on [a, b]
such that

() < f(x) < fax) for each z € [a, b)

and

[} (W) — f)dz < e

We first prove that if the given condition holds then f is integrable.
We use the criterion of Lemma 1. Given ¢ > 0 we have to producea 3 > 0
such that if Sy, S; are Riemann sums for f corresponding to partitions of
[a, b] of width less than & then |S; — §s| < e. Use the hypothesis to find
step functions f,, /s on [a, b] such that

Nx) < f(2) £ fi(x) for all z € [a, b]

and

[ 0@ — fi@)dz < -
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Since fy, /3 are integrable on [a, b] we can find a § > 0 such that any Rie-
mann sum for f; (or fs) corresponding to any partition of (‘c, b] of width less
than 8 differs in absolute value from ]. * fi(x)dz (or ]. f.(z)dz) by less
than ¢/3. Now let S be any Riemann sum for f corresponding to a partition
of [a, b] of width less than 3; say that z,, zy, ..., zy is this partition and
that S = gf(z")(z; — &), where 2.3 Sz’ Sz foreachi=1,...,N.
Then since

£(@) < J) S /@) forz s, b]

we have
$ 1@ @ - 2 < 8 < 3 AN @ — 70,
[ [}

By our choice of 8§ we have

| £ see =20 - [ nedas| < 5
el
and ~

| £ sterie = 20 = [ pioras| < 5,
implying

[ 5 - & <8 < [ fadds + 4.
Thus S belongs to a fixed open interval
([ ntadz — 5, [*htadz +5)
of length
-;7-!- L’ (fi(z) -f:(z))dz+§—<§—-+-§—+-§-- .

If 8y, S; are two Riemann sums for f corresponding to partitions of (s, d)
of width less than 8, then each S,, S; will belong to the above interval, so
that | S, — 8,] < e This is what we wished to show, so half the proposition
is proved.

To prove the remaining half of the proposition, we start with an inte-
grable function f: [a, )] — R and a fixed ¢ > 0 and we have to produce
step functions f}, f; with the desired properties. Using Lemma 1, we can
find a partition zo, 2, ..., ¥ of [a, b] such that any two Riemann sums
for f correaponding to this partition differ in absolute value by less than ¢,
where ¢ is some arbitrary fixed positive number less than ¢. That is, for
arbitrary 2/, 2" € [xey, 2], = 1, ..., N, we have

| g () — 1@ - 2| < e.
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1f we apply this inequality to the special case where, for some fixed index
j=1,...,N, wehave z/ = z if ¢ » j and z;/’ = x;, we get

| (F @) = 1(2)) (2 — z0) | < ¢,
implying

/)] < =7 +|1(=z)|.

This last inequality holds for all z/ € (25, 2. Thus f is bounded on
(241, 2;). Therefore f is bounded on all of [a,d). Thus fori=1,..., N we
can define

m; = glb. {f(2/) : 2/ € [ziey, 2}
and

M =1lub. {f(z/) : 2/ € [£izy, 2}
and we can define step functions f3, f; on [a, b] by

- im fz 1 <z<2,¢=1,...,N
fi@) {min(m;,...,nm} ifz-z‘,i-o,l,...',N’
f(x)-{M‘ fra<z<zi=1,..., N
b max {My, ..., My} ifzw=z,i=0,1,...,N.

Clearly fi(z) < f(z) < fi(z) fo.r all z € (a, b), and the proof will be com-
plete if we can show that ]. (fx(z) — fi(z))dz < ¢. To do this, for any
real number 5 > 0 find specific z/, 2/’ € [zi-1, 2], 1 =1, ..., N, s0 that

J@) <mi+n, fz')>Mi—n
Then

i (@) = 1)) (2 = 21) > f‘, (M — my — 2n)(2: — 24-1)
[ vl
= [} (ha) = @)z — 20(b — a).

Since

' g‘: (=) = 1@ @ - zm)l <¢
we have

[} (@ - fi@)dz — 200 - a) < ¢,
or

[ 0o = £i@)dz < ¢ + 200 - o).
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Since # was any positive number, we have
[} (h) —fi@)dz < ¢ < o
and the proof is complete.

The following result, which occurred in the course of the proof of the
proposition, is a trivial consequence of the proposition itself.

Corollary. If the real-valued function f on [a,b] 18 integrable on |a,b),
then it 18 bounded on [a, b).

Theorem. If f 18 a continuous real-valued function on the interval (a, b)
then. [ (z)dz exista.

We shall prove this theorem by showing that the criterion of the
preceding proposition obtains. Since f is uniformly continuous on [a, b},
given any ¢ > 0 we can find & & > 0 such that whenever z’, '’ € [a, b]
and |z’ — 2’| < & then |f(z') — f(z')]| < ¢/(b — a). Choose any partition
Zo, Ty, -« ., Zn Of [a, b] of width less than . For each ¢ =1, ..., N choose
z{, 2{' € [z, 2] such that the restriction of f to [x._y, z;] attains a mini-
mum at z/ and a maximum at z;”’. Define step functions fy, f. on (a, b} by

@) frza<z<zi=1,...,N

$i@) {f(z) fzmzim01,... N,
@ itza<z<z,i=1,.. N

@) {/(z) fzmzim01,...,N.

Then fi(z) < f(z) < fai(z) for all z € [a, b). Furthermore for each i =1,
..., N we have [z/ — 2| L& —xi21 < §, 80 that |f(z/) —f@&")]| <
¢/(b — a) and therefore fi(r) — fi(z) < ¢/(b — a) for all z E [a, b}. There-
fore
[} (@) = 1))z < max (e) = i@) : 2 € [a, bl} - b~ a)
€

. b—a
Thus the criterion of the last proposition is satisfied.

<

+(b—a)==¢c

§ 4. THE FUNDAMENTAL THEOREM OF CALCULUS.

Proposition. Leta,b,c € R,a <b <c, and let f be a real-valued function
on [a, c]. Then f is integrable on (a, c] if and only if it is integrable on both
{a, b] and [b, c], tn which case

[1@d+ [ r@az = [ 1@ds.
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Tt is convenient to use the proposition of the preceding section. If f is
integrable on both [a, b] and [b, ¢], then for any ¢ > 0 we can find step
functions A, and hs on [a, b} and k, and ks on [b, c] such that

M) < f(2) < h(z) for each z € [a, b]
ky(z) < f(z) < ks(z) for each z € [b, c]
with L. (ha(2) = ho(2))dz, f: (ks(z) — ky(z))dz each less than /2.
Define functions f, f; on [a, c]. by

Mz fa<z<b
@) = {k:(z) ifb<z<e

h(z) fa<z<b
f'(”)"{k.(x) fb<z<e

Then f,, /s are step functions,

i) < f(z) < fa(z) forall z € [a,d],
and

[l 0@ - 5@z < 5, [ () — fi@))az < 5

Now f; — f, is & step function on [a, ¢] and the proposition is clearly true
for step functions, so that

[ () = @iz = [* (ta) — fi@))dz + [ (e) — fla))d.
Therefore '
[ @ - f@)ds <5+ 5 =

This shows that f is integrable on [a, ¢]. Conversely, if f is integrable on
[a, c] then for any ¢ > 0 there are step functions f,, fs on [a, ¢] such that

(@) < f(z) < fa(z) for all z € [a, c]

and
[} (he) — @) < .
Since
[} 6@ - a@)dz 20, [ (hta) - fila))dz 2 0
and

[ Ue) = 5@z = [* (h@) — $i@))dz + [ (=) — file))de
we have

[ 0@ 1@z < o, [ (hte) ~ fa))dz < .
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Thus, again by the proposition of the last section, f is integrable on both
la, b] and [b,e]. To complete the proof, suppose f integrable on [a, b},
Ib, ¢} and [a, c]). Given ¢ > 0 we can find & > 0 such that any Riemann
sum for f corresponding to partitions of [a, b], [b, c] and [a, ¢] of width less
than 3 differ in absolute value from [ f(2)dz, [ f(z)dz and [’ f(e)as

respectively by less than ¢/3. Take partitions of [a, b] and of [b, ¢] of width
less than & and Riemann sums S,, S, for f corresponding to these partitiona.
Then 8, + S, is & Riemann sum for f corresponding to a partition of [a, c]
of width less than 8, and we have

|8 - ['r@az| <5, | 8- [ f@z| < 5,

|8+ 8 - ['1@)z] < 5-
Therefore
| [[1@dz + [[ 1@z ~ [ 1@ds]
<| [ 1) — 1| +| [ @)z - &4
+Ho+ 8- @] <E+ 5+ E
Since ¢ was any positive number, we have

[ 1@z + [ 1@)az = [ 1(2)ds.

Definition. If f is an integrable real-valued function on the interval
[a, b], we set

[f@dz = - ] ' 1(2)dz
and, for any ¢ € [a, b},
]. *f(z)dz = 0.

Corollary. ijﬁand«ludlmcﬁmmar%ul?nﬁu?um’n
the points a, b, ¢ and if two of the quantities [ 1)z, [['1(a)ds, [ s(e)ds
ezisi, then the third exisis and

[l1@dz+ [ @)tz = [ 1G)ds.

The special cases a = b, b = ¢, and a = ¢ are all trivial to verify, so
we may assume the three numbers g, b, ¢ distinct. The points a, b, ¢ deter-
mine a certain closed interval in R that is expressed as the union of two
closed subintervals, namely the interval [min {a, b, ¢}, max {a, b, c}] and
the two subintervals determined by that. point among a,b, ¢ which is
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between the other two. The existence of any of [ f(2)dz, [ f(x)dz,
] f(z)dz is equivalent to the existence of the corresponding ] J(z)dz,

f J(z)dz, I f(z)dz, so the proposition tells us immediately that the

existence of two of the integrals in question implies that of the third. Thus
we may assume that all the integrals in question exist and it remains to
prove the equality, which we may take to be in the equivalent but more
symmetric form

[1@z+ [ 1@z + [ 1)z = 0.

To prove this last equality, we note that it does not alter its sense under
the cyclic permutations of a, b, ¢ which send a, b, ¢ into b, ¢, a respectively,
or into ¢, a, b respectively. Hence we may assume without loss of generality
that b is between a and c. Thus we are reduced to the two special cases
¢<b<csnda>b>c.'l‘hetruthoftheeqmbtymtheﬁrstmefoﬂows
directly from the proposition, while the second case is the same a8 the first,

but with a change of signs.

A further consequence of the proposition is that if a real-valued function
J is integrable on a closed interval in R then ]:f(z)dz exists for all a, b

in this closed interval. We remark that if |f(z)| < M for all z in the closed
interval then for any a, b in the interval

|L'f(z)dzl$M|b—a|.

This is trivial if a = b, a consequence of the fact that ~M < f(z) < M
for all z in the interval and the last corollary of §2 if a < b, and a conse-
quence of the last case and symmetry of sign if a > b.

Theorem (Fundamental theorem of calculus). Let f be a continuous
real-valued function on an open interval U in R and let a & U. Let the funciion
F on U be defined by F(z) = L'f(t)dtforallze U. Then F is differentiable
and F' = {. .

Since / is continuous, F(z) = [ *{(0)dt is defined for all z € U. We
have to show that for any fixed ., € U

m =T L gy,

."ﬁ z —
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For any z € U, z 9 z,, we have
[ r@a— [*f@a

F(tl::.(-'te) _!(z')l_’ _
Jrox _ [ieoa __l [: 0O - s@a)a I

z — % z -z z -2

Bince f is continuous at zo, given any ¢ > 0 we can find a § > 0 such that
/@) ~f(x) | <eif zE UV and |t —2| <8 Thusif s E U, |z — 2| < 8
and z » z, then for any ¢ in the closed interval of extremities zo and z we
have |f(t) — f(zo)| < ¢, 50 that

[ 0O —rE)d| < elz —zl.

(We have used the remark immediately preceding the statement of the
theorem.) Therefore if £ € U, |z — zo| < § and z » z, we have

[t s < g2zl -

T—

= J (=)

This proves the desired limit statement.

Corollcry‘l. If f 18 a continuous real-valued function on an open inlerval
tn R, then there exists a real-valued function F on the same interval whose
derivative is f.

For if a is any fixed point in the interval, F(z) = ["f()dt will do.

We recall that if F/ = f then F is called an antiderivative or primitive
of /. Corollary 1 says that any continuous real-valued function on an open
interval has an antiderivative. If F is an antiderivative of f on an open
interval, 80 is F + ¢ for any constant ¢ € R. Furthermore, any antideriva-
tive of f must have the form F + ¢:for if @ is another antiderivative of f,

then (@ — F)) = @' — F' = 0, 830 G — F must be constant, by Corollary 1
of the mean value theorem. :

Corollary 3. If the real-valued function F on an open interval U in R has
the continuous derivative f and a, b € U, then

L *f()dt = F(b) — F(a).

Bince {; ( L “SOdt - F(z)) = 1) = f@) =0, [ jdt — F(z) is
constant. Thus [ f()dt = F(z) + ¢, for some cE€R. In particular
0= [ fl)dt = F(@) +¢, 8o that ¢= —F(a). Therefore [ f()at =
F(z) — F(a). Hence [ f(9)dt = F(b) — F(a).
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This corollary is a powerful tool for the computation of integrals. For
example, if n is & positive integer then the function z**'/(n + 1) has the
continuous derivative z", so that

]. dondr = (O™ — a™*)/(n + 1).

Corollary 3 (Change of variable theorem). Let U, V be open inlervals
in R, ¢: U—V a differentiable function with continuous derivative, and
f: V=R a continuous function. Then for any a, b E U

[ 16dn = [*S(oto))o’ e

Let F: V— R be the function defined by F(y) = f:( o/ ®)dv for all
yE V. Then F is differentiable and F’' = f The function G: U —R
defined by G(z) = [ f(s)ds is the composite G = F o p of two differen-
tiable functions, hence is itself differentiable. By the chain rule we have
G"(z) = F'(o(z))¢'(z) = f(e(z))¢'(x) for al zE U. Hence G(z) =
L J(e(u))¢'(w)du + ¢, for some constant ¢ € R. Setting z = a we get
¢ =0, so that G(z) = L * J(¢(u))¢'(u)du. This last equation holds for all
z € U. Setting z = b gives us Corollary 3.

§ 5. THE LOGARITHMIC AND EXPONENTIAL FUNCTIONS.

In this section we develop in a rigorous fashion the familiar properties
of some of the functions which are dealt with in elementary calculus.

beﬁnition. IfzER, z>0, then logr = [:%t_

Proposition. The function log: {tER : 2> 0} >R 1is differentiable
wilth dlog z/dx = 1/x, it is sirictly increasing, assumes all values in R, and
salisfies the rules

logzy = logz +logy ifz,y>0

log% =logz —logy ifz,y>0

logaz" = nlogx ¢ z > 0, n an inleger.

The differentiability of log, together with the equation dlogz/dz =
1/z, comes from the fundamental theorem of calculus. Since 1/z > 0 if
z > 0, the derivative of log is always positive, so log is a strictly increasing
function. If a is some fixed positive number and y = az, the chain rule gives

4 ldy 11
dz g Y = a

y dr az z’
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so that dlogaz/dz = dlogz/dx and hence logax = logz + ¢, for some
¢ € R. Setting z = 1 gives ¢ = log a, so that logazr = loga + logz. After
changing notation we have
logzy = logz +logy ifz,y>0.
In the special case £ = 1/y this yields log1/y = —logy, so that
log% =logz ;Hog-’ll— =logz —logy ifz,y>0.

Clearly if z > 0 then

logz’ =logl =0=0-logz

logz! =logz =1-logz

logz® = logz + logz = 2logz

log 2* = log (2* - z) = logz* 4+ logz = 3logz
ete.

so that
logz"=nlogz ifn=01,23,...

If n=0,1,2,3,..., then logz™ = log1/z* = —logz* = (—n)logz, 80
that

logz* = nlogz if z > 0, n any integer.

Since 2 > 1 we have log2 > log1 = 0. Since log2* = nlog 3, oven any
v € R we can find integers ny, ny such that

log2™ < vy < log2™

(simply by taking n; < y/log 2 < n,). By the intermediate value theorem
there is some ¢ between 2% and 2™ such that logc = . That is, the log
function takes on all values. Everything desired has been proved.

Definition. exp is the inverse function of log, that is
exp(z) =y means z =logy.
This makes sense since the log function is one-one (being strictly

increasing). We avoid the notation ¢* for the moment to avoid confusion
with our existing notation for powers.

Proposition. The function exp: R— (s E R : 2 > 0] s differentiable,
with dexp (z)/dz = exp (z). It is strictly increasing, assumes all poesitive
values, and satisfies the rules

exp(z) -exp(y) =exp(z+y) ¥ z,yER

%g-((%-exp(z-v) dzyER

exp (nz) = (exp (z))* f z ER, n an inloger.
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To prove this, forget about differentiability for a moment. Then
everything else follows immediately from the corresponding properties of
the log function. (The easiest way to prove the equations is to check each
to see if it gives a correct statement when log is applied to both sides. Every-
thing works out, using the identity log (exp (z)) = z and the corresponding
formulas for log.) As for differentiability, we first prove that exp is con-
tinuous. We must show that for any z, € R and any ¢ > 0 there exists a
3 > 0 such that |exp (z) — exp (xo) | < e if |z — z0] < 8. We may assume
that e < exp(x)). Since exp is strictly increasing, if z is between
log (exp (zo) — ¢) and log (exp (zo) + ¢) then exp (z) will be between
exp (zo) — ¢ and exp (zs) + ¢. Hence we insure that |exp (z) — exp (zo)| < ¢
whenever |z — 20| < & by choosing

8 = min {2, — log (exp (ze) — ¢), log (exp (z0) + €) — zo}.

Thus exp is continuous. To prove exp differentiable and find its derivative,
let z, € R be fixed and write exp (zo) = yo, exp (z) = y. Then li‘.y = Yy

and -
lim exp (z) - exp (30) = lim Y — Yo = 1
22, z — 1z ru logy —log ye lim log y — log %o
h V=1
1

1
== = Vo = exp (20).

= dlogy
dy o) Yo

This ends the proof.

The symbol z* has so far been defined only for integral values of n. In
this case, if z > 0, we have logz" = nlogz, so that z* = exp (nlog z).
Hence the following definition is consistent with our existing notation.

Definition. 1f z,n € R,z > 0, then z* = exp (nlog z).

Proposition. For z,y,n,m €ER, z,y > 0, we have

Z g™ = ghim
L R—
z.
(2')" = g™
(zy)* = z*p»
d

= ng*1
—&-z-z'nz".

The four algebraic identities follow immediately from the definition
and previous results of this section. For example,
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z~ » 2= = exp (nlog z) - exp (mlog z) = exp (nlogz + mlogz)
= exp ((n + m) logz) = z*+=.

The proof of the last formula is an exercise in the chain rule:

——z-'i = {x—exp (nlog z) = exp (nlog z){;(n log z) = z* - % =z,

The rules for fractional exponents are of course contained in the last
proposition. For example z'/? = 4/, since (z/3)? = 2! = x.

It is convenient to extend the definition of z» slightly by setting
0* =0 if n > 0, so that for any fixed positive n the function z* is con-
tinuous for z > 0.

Definition. e = exp (1).

We immediately recover the standard notation for the exponential
function: if z € R then ¢* = exp (zloge) = exp (z), since loge = 1. Thus
we may write the formulas of the proposition before last in their more
convenient forms

e = e, -diz-e'=e‘, etc.
A rough approximation of ¢ may be obtained by noting that for
2
1<z<2wehavel/2 <1/z < 1,80 that 1/2 < ]‘ dz/z = log2 < 1. As
a matter of fact, we can get the slightly stronger relation

-!-<log2<l

by remarking that it is easy to find a larger step function than the constant
1/2 that is less than or equal to 1/z for 1 < z < 2, and a smaller one than
the constant 1 that is greater than or equal to 1 /x for 1 <z <2 From
1/2 <log2 < 1 follows 1 < log2* < 2. Hence log2 <1 <log4, so

2<e<4.

It should be remarked that of course we could have obtained all the
results of this section differently, starting with the exponential function.
The argument (in outline) is as follows: For any fixed positive integer n
the function z* is continuous and strictly increasing for z > 0, assuming
arbitrarily large values. Therefore by the intermediate value theorem any
positive number has a unique positive n** root. We define rational powers
of a number z > 0 by setting

z™/» = (positive n* root of z)™

if m and n are integers with no common factor other than =1 and n > 0.
We then prove the various rules of cxponents, for rational exponents. 1f
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z > 0 and n € R is not rational, we can find a sequence n,, ny, 73, ... of
rational numbers that converges to n; we then define z* to be the limit of
the sequence z™, z™, z™, ..., first showing that this limit exists and is
independent of the choice of the sequence n;, 73, 73, .... We then verify
all the rules of exponents for arbitrary real exponents. Next we look at the
function a*, for some fixed a > 0, show by a suitable trick that it is differen-
tiable, and show also that for a very special choice of base a, a choice
denoted e, we get the magic formula de*/dx = ¢*. Finally we do the log
function, which at this point is easy. Thus we end up with a more natural,
but considerably longer, derivation of exactly the same results as before.

PROBLEMS

1. Compute ]; ! 2dz directly from the definition of the integral, assuming only
that this integral exists.

2. Prove that ]:j(x)d.z =0if f(1/n) =1forn=1,2,3,... and f(x) = 0 for
all other z.

3. Does ]: f(z)dz exist if f is the function of Problem 1(d), Chap. IV?
4. Let f:[a, 5]— R and let ¢ € R. Prove that if ] * #(z)dz exists then so does

f::f(z — ¢)dz and these two integrals are equal.

5. Prove that a continuous real-valued function on a closed interval in R is
integrable, using only Lemma 1 of § 3 and uniform continuity.

6. Let [a, b] be a closed interval in R and let V be a complete normed vector
space (cf. Prob. 22, Chap. III).

(a) Show that the definition of ] ‘f (z)dz for real-valued functions f on [a, b]

generalizes to functions f: [a,b] > V.
(b) Prove the analog of the criterion for integrability of Lemma 1 of §3
for V-valued functions on [a, b).

(¢) Using (b), prove that if f: [, b) — V is continuous then ] * f(x)dz exista.
(d) Prove that if f: [a, b] — V is continuous then
| [ sz < [ nscarnae.
(e) Prove that if V is finite-dimensional with basis vy, ..., vs, and if fi, ..., fa
are real-valued functions on [a, b], then f: (i@ + -+ + fa(z)va)dz

exists if and only if ] ' f(@)de, ..., ] * f.()dz exist, in which case

[} Gom+ - + ez = ([ )+ - + ([ fu2)iz)o.
(For part (e) you will need the result of Prob. 23, Chap. IV.)



Prove that if the real-valued function f on the interval [a, 8} is bounded and
is continuous except at a finite number of points, then f J(z)dz exists.

Prove that if f: [a, b] — R is increasing (or decreasing) then [f(z)ds exists.

Prove that if the real-valued function f on the interval [a, b] is integrable on
fo, b} then o0 is |1, sad | [ s(alaz| < [* 17a)1de.
Prove that if the real-valued function f on the interval [a, ] is integrable on

{a, b] then 80 is f*. Using the identity (f + g)* = f* + 2fg + ¢*, prove that the
product of two integrable functions is integrable.

Prove that if f is a continuous real-valued function on the interval (g, b] such

that f(z) >0 for all z€[e,b] and f(z) > 0 for some z E[a,b], then
1]

]. f(z)dz > 0.

Show that if f is a continuous real-valued function on the interval {a, b} then
/ :l (z)dz = f(£)(b — a) for some { € [a,b] (mean value theorem for inte-
grals).

Show that if f is a continuous real-valued function on the interval {a, b} and
f(z) 2 0 for all z € [a, b}, then

tim ([ (f(2))dz) ™ = max {1(2) : 2 € o, B

Show that if f is a continuous real-valued function on (ZER : z 2 0} nd
llmf () = ¢ (cf. Prob. 8, Chap. 1V), then

tim 1 j: 1Odt =c.

Fotm

Let [a, b] and [c, d] be closed intervals in R and let f be a continuous real-
valued function on {(z,y) EE*: z E[a, b], y E lc, d]}. Show that the func-

tion g: [¢, d] — R defined by g(y) = ]’ 1(z, y)dz for all y € [¢, d} is continuous.

Prove that the real-valued function on C(la, b]) which sends any f into
I: f(z)dz is uniformly continuous.

Prove that if u and v are real-valued functions on an open subeet of R
ocontaining the interval {a, b] and if u and » have continuous dedutivu. then
(integration by parts)

[ v @)z = u@In®) - wla)nia) = [ b o(z)w'(2)ds.
Prove that

VTR e du
l’ i=p hitw forallz€ER.
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19. Show that if U is an open interval in R and the function f: U — R has a con-

tinuous (n + 1)* derivative on U, then for any a,b € U we have
- [@b—a) , f"@b—aP  _  [*E)b—a)r
J@®) = f(a) + I + a1 + -+ al

I s
+4 :

n!

20. A curve in @ metric space E is a continuous function f from an interval [a, b}

31.

in R into E; ita length is _
Lub. {2 d(f(5), 1 2) : T, 21, ..., 2n is & partition of [a, b]},

if this Lu.b. exists. Prove that if E = E* and f(z) = (fi(2), ..., fa(z)), where
Jiy « ooy Jat(a, 8] — R are continuous functions which have ¢ontinuous deriva-
tives on (a, b) that extend to continuous functions on [a, b}, then the curve has
length and this length is

[vVEar+ T Gy

Compute

»
® hmjﬂm—ii where kER, k> 0

(b) lim »+l+u+2+ "‘z.)

Show that for n = 1,2, 3, ..., the number
145 +3+ -+ logn
is positive, that it decreases as n increases, and hence that the sequence of

these numbers converges to a limit between 0 and 1 (Euler’s constant).
Prove that the only function f: R — R such that /* = f and f(0) = 1 is given
by f(z) = e,

Prove that

(8) log (1 +2) < zfor all z> —1, with equality if and only if z = 0

(b) e* > 1+ zfor all z, with equality if and only if 2 = 0

© B0t

@ lm (1 +ho) = lim (14+5) =

(e) ﬁ:a(x""—l)-logz ifx>0.

Show that for z > ¢ the function !253 is striotly decreasing and that it gets
arbitrarily close to sero, hence that

@t EEoo  a>o
®) E zelogz=0 fa>0

z®
(©) ;“2-7'-0 for any n ER.
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26. Define /: R— R by

el ifz>0
!(z)"{

0 ifz<0.
Prove that f has derivatives of all orders, with f® (0) = 0 for all n.,

27. fa,bER,a<b,and f: {zER:a <2< b} — R is a continuous function,
define the improper inlegral I.:j(z)dzwbelimm[f(z)ds,ifthhlimitm
Show that if g is another continuous real-valued function on the set
{zE R :a <z < b} such that |f(2)]| < g(z) for all z in this set and f;g(z)dt
exists, then [ f(z)dz exists. Hence show that [| f(z)ds exists if there
exists an a < 1 such that (z — o)</ is bounded on (a, ).

28. If aER and f:{zER:z2>a] =R is a continuous function, define the
improper integral f"f(z)azmbe lim [\ 1@)ds, it this it exista (ef. Prob.
8, Chap. 1V). Show that if g is another continuous real-valued function on
[zER:z2a), il [f@)] < g(z) for all z> a, and if [‘f,(z)azeﬁm,then

[ 1063z exista. Hence show that [ /(s)dz exista if there exista an > 1
such that x<f (z) is bounded.



CHAPTER VI1I

Interchange of Limit Operations

The various kinds of limiting processes we have
‘studied (limit of a sequence of points in a metric space,
limit of & function, differentiation, integration) do not
always occur singly. In a given problem we may be
called upon to take one kind of limit, then another kind.
In such problems the order in which the operations are

. performed is naturally of importance. We have already
treated such a problem in applying the two operations
lim and lim to a sequence of functions fi, /3, /s, ...
ne »ro

from one metric space into another, p, being a point
of the first metric space. If lim f.(p) exists for each
t ad ]

n=1, 2, 3, ... we get a sequence of points ix’_.r:ﬁ(p),
lim f3(p), lim fi(p), ... in the second metric space, and
i ad . ] " pe

we may be able to take lim of this sequence of points,
On the other hand the limit function lim f. may exist
and if it does we may be able to apply lim to the limit

t ad

function, again getting & point in the second metric
space. However it may happen that all of these opera-
tions can be performed and we arrive at différent
answers in the two cases. In one extremely important
case this cannot happen, for we have proved that if

Jufu Jo, - .. is & uniformly convergent sequence of con-
tinuous functions then lim £, is also continuous, so that

lim (Qim £2) () = @im £2) (%)
= lim £,(p) = lim (tim £.(3))-
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In this chapter we prove a number of similar results for
other pairs of limiting processes. No attempt will be
made to be systematic; we only intend to provide some
especially useful results. At the same time we take the
opportunity to discuss the meanings of these results for
infinite series, which is how infinite sequences usually
arise in practice, developing the theory of infinite series
sufficiently for the purposes of calculus. An exposition
of the trigonometric functions is given as an easy
application.

§1. INTEGRATION AND DIFFERENTIATION OF
SEQUENCES OF FUNCTIONS.,

If fi, /s, /5, ... is & sequence of Riemann integrable real-valued func-
tions on a closed interval [a,d] in R and fi, /i, /s, ... converges to the
function f on [a, b], can we assert that

[:f(z)dz = lim f:l.(z)dz?

The following example shows that in general we cannot, not even if
fufufr, .. are all continuous.

Exaurrs. Forn=1,23,... let f.: [0,1] =R be defined by Fig-
ure 30 (f. can be defined analytically by setting f.(z) = 4n%z for 0 < 2z <
1/2n, fa(z) = 4n — 4n’z for 1/2n <z < 1/n, fu(z) =0 for 1/n <z < 1).

For each n, . is continuous and j: ' fu(z)dz = 1, 80 that lim L ' fu(@)dz = 1.
On the other hand, f = lim f, = 0. (For clearly f(0) = 0 and if z » 0 then

Ju(z) = 0if n > 1/2) Hence [ f(z)dz = 0 lim [ fu(2)dz.
If, however, fi, fs, /s, ... converges uniformly, there is no trouble:

Theorem. Let a,bER, a<b, and let fi,fs,f,... be a uniformly
convergen! sequence of continuous real-valued functions on [a, b). Then

[ (m fu@)dz = lim [ fu(e)ds.
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L)

= 3

?‘_..-----_ ——

3=

Fiaurk 30. Graph of the function f. of the example on p. 138,

Let f = li.f,‘,f"‘ Since each f. is continuous and the convergence is

uniform, f is continuous. In particular f is integrable on [a, b]. By the defini-
tion of uniform convergence, for any ¢ > 0 there exists a positive integer N
such that if n > N then |f(z) — fa(2)]| < ¢/(b — a) for all z € [a, b}. We
then have the inequalities

1@ —f@) S5

b-—a
for all z € [a, b}, which imply

—e< [ 0@ ~f@)dz< e
or

| f:j(:c)dz - ]:f.(x)dzl <e
This last inequality holds for all n > N, and therefore
lim [*fu@dz = [*f@ds.

REMARK. The same theorem holds if we do not assume that each f,
is continuous, but merely Riemann integrable on {a, b]. Indeed the same
proof will hold once it is shown that f = li_.xg fa i8 integrable. This can be

done easily using the criterion of the proposition of §3 of the last chapter,
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as follows. Given any ¢ > 0, by uniform convergence we can find an integer
n such that |f(z) — fu(2)| < e/3(b —a) for all z € [a, b], 80 that

fu(z) 3(b a) <flx) < fn(x) + s 3(b a)

for all z € [a, b). Since f. is integrable on [a, b] there exist step functions
g, 0 on [a,b] such that gi(z) < fu(z) < gs(x) for all 2 E [a,b] and
[. .(g.(z) - gi(z))dz < ¢/3. Then g, — ¢/3(b — a) and gs + ¢/3(b — a) are
step functions on (a, b) such that

o(z) — ( —a S <f(z) < gu(z) + T—)-
for all z € [a, b]) and

f: ((g.(z) + 30 e_ a)) - (g.(x) ~ 30 ¢— a) ))dz <e
By the proposition quoted, f is integrable on [a, b].
To prove an analogous result for the differentiation of the limit of a

sequence of differentiable functions one has to make slightly stronger
assumptions.

Theorem. Letfy, fy, s, ... be a sequence of real-valued functions on an open
interval U in R, each having a continuous derivative. Suppose that the sequence
01, ... converges uniformly on U and that for some a € U the sequence
fia), fs(a), fi(a), . .. converges. Then lim f. exists, is differeniiable, and

(!jg L) = §3 .
By the fundamental théorem of calculus we have
[} 1 0dt = fu(z) = fu(a)
foranyz€ Uandanyn =1,2,3,.... Let ii:zf.’ = g. By the previous

theorem li_E: (fu(x) — fu(a))- exists for any z € U and equals f g(Odt.
Since lim fa(a) exists, so does lim fu(z). Setting lim fa(z) = f(z) we have

1) = f@) = [ g(0at

for each z € U. A second use of the fundamental theorem of calculus gives
J' = g, which is what was to be proved.
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§ 2. INFINITE SERIES.

If a1, as, a5, ... i8 & sequence of real numbers, by the infinite series
atoatat-.,

fa,

we mean the sequence a,, a1 + 61, 61 + a3 + as, . . .. The terms of the latter
sequence are called the partial sums of the series. If A € R, we say that the

infinite series converges to A if the sequence of partial sums converges to A,
that is if

also denoted

§3m+m+~-+m-4.

If the series converges to A it is customary to call A the sum of the series
(although this is not a sum at all, but a limit of sums) and it is customary
to write

aitatat - =A
or

J. 0. = A.

A=)

(This somewhat awkward convention, whereby we use the symbol a; +
as+ ay + - -+ to denote both the series and its sum, if the latter exists,
rarely causes confusion, since it is usually clear from the context whether
the series or its sum is meant.) If a series converges to some real number,
the series is said to converge, or to be convergent; in the contrary case the
series diverges, or is divergend. .

Similarly, if fi, fo, /s, ... i8 & sequence of real-valued functions on &
metric space E, by the infinite series

h+h+fi+ -

we mean the sequence of functions fi, i+ s, i+fa+fs, .... We say
that the series converges at p, for a certain p € E, if the series fi(p) +
Jip) + fi(p) + - -- converges; otherwise the series fi+fi+fi+ - - is
said to diverge at p. The series is said to converge on E (or, more simply,
to converge) if it converges at each point of E; in this case there is a real-
valued function f on E such that f(p) is the sum of the series fi(p) +
fo(p) + fs(p) + - -+ for each p € E, and we of course write

hthth+- =4

Finally, we say that fi +fs+ fs+ + <+ converges uniformly on E if the

sequence of partial sums fi, i+ fs, i+ fa+ s, ... converges uniformly
on E.
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ExamrLe. If a ER, |a| <1, then the “geometric” series ga" =
1+ a+a®+ --- converges. In fact, since
1l-a(l+a+a+---+a)=1-a"

we have

l14a+at+ - 4am=m ll:?;

so that

& . 1l=a* 1
* == i - .
ga "o l1—-a 1—-a

(We have here used the fact that lim a* = 0 if |a| < 1. This was proved
nom

at the end of §3 of Chapter III. Another proof is obtained by noting that
log |a|* = nlog |a] is negative and gets arbitrarily large in absolute value
as n increases.) Letting z denote the identity function on R, as usual, we

get the analogous statement for the series of functions on the metric space
(-1,1): ‘

1
1-2°

l14z4+24+2 4 =

The elementary facts about infinite sequences of real numbers can be
translated immediately into facts about infinite series of real numbers. For
example, since an infinite sequence can have at most one limit, an infinite
series can have at most one sum. As another example, since a sequence of
real numbers converges if and only if it is a Cauchy sequence, a series of
real numbers converges if and only if its sequence of partial sums is & Cauchy
sequence. Since for n > m the difference between the m* and n* partial

sums of the series a, + a6y + ag + -+ * i8 Qi1 + Guss + - + Ga, we have
the following result.

Proposition. The series of real numbers ay + as + a; + - - - converges if
and only if, given any € > 0, there is a posilive inleger N such thatif n > m 2>
N then

|@mit 4 Gmpa + -+ +aa]| < e
The following two corollaries are immediate.

Covollary 1. If the series of real numbers ay + ay + as + - - - converges,
then lim a, = 0,
L g ]
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Corollary 2. 1f 3 au nd 3 bu are infinite series o real numbers such
that a, = b, whenever n is sufficiently large, then if one series converges so
does the other.
Exaurin 1. The geometric series ga' does not converge if |a| > 1
by the first corollary.
a1

ExampLE 2. The “harmonic” series —';-l+%+%+...

diverges. For whenever n = 2m we have

1 1 1
GutrFOmiat o F =t om b+

1,1 1 -1 1
Z;+;+"'+‘;-m.;‘--§-’
contrary to the condition of the proposition.
Proposition. The following rules hold:
(§)) Ifi‘a.audgb.mmmmmmofwalnumben,mm
mg(a.-l-b.)icahomcrgmm
i(a.+b.)-=f:uu+f:b..
[T el el
® I7 2c,z’aamcrmmofrwlnumbacmdce&lhm
gca.icmwmand
$ ot mo S an
nal el
The proposition is immediate from the third proposition of §3 of
Chapter III (page 48).
Proposition. If ay, ay, as, . . . are nonnegative real numbers, then either the
m-iccz.:a.mvemecorithaaarbimtylarg&pmialmm.
A=l

For the sequence of partial sums is increasing, hence convergent in
case it is bounded from above.
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Nl

Proposition (Comparison test). If Y a.and Y, b, are infinile series
Al
of real numbers such that |a.| < ba forn =1,2,3, ... and 3 ba converges,
Rl
then Y a. converges.
nel

' For let ¢ be any real number greater than zero. By the first proposition

of this section there is a positive integer N such that if n > m > N then
|bvn+l+ bm+‘l+ e + bnl <e

Thus if n > m > N then

|Omir + Qmps + -+ +an|.<_|0m+l|+|¢»+:|+ v 4 aa)
Lttt bmpz+ - + by <e.

1

Thus, by the proposition just quoted, Y. a. is convergent.

A
Corollary. Under the conditions of the proposition,

imSim

Nl nwl

Each partialsuma; +a: 4 - -+ +asissuch that jay +as+ - - + a4 <
lag] +aa]+ - - +]an| < b+ ba+ -+ + by £ 3 ba, and since the closed

A=l

interval ——i bny, 3, b.] contains each partial sum a; + a2 + -+ - + aa it

] nel

also contains the limit Y, a, of these partial sums.

Rl

Definition. If a;, az, as, . .. are real numbers, the series ) a. is said to
nel

be absolutely comvergent, or converge absolutely, if the series Y, |a.| is
-]
convergent. "’

According to the proposition before last, a series of real numbers
Y a. is absolutely convergent if and only if the set of partial sums of the

Al

series ), |a.| is bounded. By the comparison test an absolutely convergent

A=l

series is convergent. The comparison test is actually a test for absolute
convergence, and the following “ratio test is essentially a special case of it.
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Proposition (Ratio test). If D a. is an infinile series of nonsero real

feal
numbers and if there ezisls a number p < 1 such thal |Gus1/Ga] < p for all
sufficiently large n, then the series converges absolutely. If |any1/0a| 21 for
all sufficiently large n, the series diverges.

For the proof we may replace the phrases ““for all sufficiently large n”
by “for all n”, since lopping off the first few terms of the series does not
affect its convergence. Then if |@.41/aa| £ p < 1 we have

|ans1] £ plas| < PPlana| £ -+ S ptlai],

8o the absolute convergence of ) a. follows from comparison with the

-]l
geometric series |ay| + p|ay| + p*[as] + - - . On the other hand, from the
statement |as41/a.| > 1 comes the fact

|ans1| 2 |0n| 2 |Bas| 2 -+ 2],
so the sequence ay, ay, as, . . . does not have sero as its limit, proving that
the series diverges.

Corollary. If the series of real numbers 3. an is such that lim | anss/au|

n=l Laad
exists and 18 less than (greater than) one then the series converges absolutely
(diverges).

For if the limit is less than 1 we may take the p of the proposition to
be any number between this limit and 1, while if the limit is greater than
one the proposition is directly applicable.

The series
1 1 1
l-g+3-3+
is an example of a series of real numbers that is convergent without being
absolutely convergent. The series is not absolutely convergent since the
corresponding series of absolute values is Y 1/n, the harmonio series,
awi

which is known to be divergent; the convergence of the geries is a result of
the following more general statement on “alternating’ series.

Proposition. Lel a), as, Gy, . . . be a decreasing sequence of positive numbers
converging to zero. Then the series '

(-t =t —ata—at
[T |

converges to some posilive number less than a;.
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Any partial sum of the above series can be written
_ . Gn1 — Gn if nis even
(at a‘) + (a. a‘) + + {(a._' - a‘_‘) +a‘ if n -“ odd,

which is & sum of nonnegative numbers, hence nonnegative, and this partial
sum can also be written

_(a'._ —-a‘) if » is odd
o = (a3 — @) — (a4 — a)) — "’+{-_(a._:-—a..x)-c. if » is even,

which is at most a;. That is, each partial sum is located in [0, a;). If we
delete the first few terms of an alternating series we are left with plus or
minus another alternating series, so for any positive integers n > m we have

= |Gutt = Gmps + Cugs — *** £ 8| < Cupr

Since l.i.laa. = 0, the series f_; (—1)ta, converges. Each partial sum

lies in the closed interval [0, a,]. The sum of the series is not sero since
the partial sums (a, — as) + (@ — @) + -+ + (Gsa—1 — 01a) 8re increas-
ing and positive for large n, and the sum is less than g, since it equals
6~ (e —as+ae—as+ ) <a Thus

3 (~1)e, € 0, a1).
Pt _

Note that this result implies the seemingly stronger result that the
difference between the sum of the series '

G—ata—at -

and its n®* partial sum is less than a,,; in absolute value, since this difference
is again an alternating series.

The main properties of absolutely convergent series, proved in the
next two propoeitions, are that their terms may be rearranged in any order
or regrouped in any way without affecting the convergence or the sums of
the series. This makes it possible to perform many kinds of manipulations
with these series without concern about convergence problems, a fact that
does not hold for series that are convergent but not absolutely convergent
(cf. Problem 14).

Proposition. Let f: {1,2,3,...] = {1,2,3,...} be a function that is
one-one and onto. Then if 3 a. is an absolutely convergent series of real
[T §

numbers, the series ) ay() 18 also absolutely convergent and
[T

g Gf(n) ™= f: Gn.

ne=l



§2. INFINITE SERIES 147

For any positive integer n, the numbers f(1),f(2), ...,f(n) are a
subset of 1,2, ..., N, for some N. Thus any partial sum of the series

3" |ase | is less than or equal to a partial sum of the series 3, |a.|. Since

fml nel

the latter series converges its partial sums are bounded, hence also the
partial sums of the series ), |as)| are bounded. Thus the series Y a/c)
E T ] Al
is absolutely convergent. We know that
Y am = an= 3 (arm) — aa)
Rl Rum] Rl

and we shall complete the proof by showing that the latter sum is zero.
For any ¢ > 0 choose a positive integer N such that whenevern > m 2 N
we have |Gni1] +|ans2| + -+ +|aa] < & Then choose N’ such that all
the numbers 1, 2, ..., N are included among f(1), f(2), ..., f(N’). Clearly
N'>2N. If n> N’ we have

E (@1 — ai) = 'Eg‘a“ -3 a;

i€Sy
where S, consists of those integers (1), f(2), ..., f(n) which do not occur
among 1,2, ..., n, while S; consists of those integers 1,2, ..., n which

do not occur among f(1), £(2), ..., f(n). Clearly 8, and S; have no element
in common and neither includes any of the numbers 1,2, ..., N, so that
SVSC{N+1,N+2,...,M) for some M. Thus for n > N’ we have

'i(‘h«) -'as)l < ep la| € lavaa| +lansa| + - +|an| < e
= SESUS .

This proves that i (asm) —ax) =0

A=l

If Sis a set and ¢: S— R a function then the expression %;p(s)
&

is well-defined in case S is finite. This expression can sometimes be given a

meaning, independent of any ordering of 8, if S is infinite. In fact if S can

be put in one-one correspondence with the natural numbers and if in so

doing we obtain an absolutely convergent series then we can define g o(8)
8

to be the sum of that series. More precisely, if f: {1,2,3,...} —+Sisa
function that is one-one onto and if Z ¢ (f(n)) is absolutely convergent,

then we define }; ¢(8) to be Z o (n)) (which by the last proposition is
independent of the choice of f)
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Special cases of infinite sets S which can be put in one-one corre-
spondence with {1,2,3, ...} are

(1) any infinite subset of the natural numbers (for the elements of such a
set can be written down in their natural order)

(2) the set of all ordered pairs {(n,m) :n,m =1,2,3,...} of natural
numbers (which can be written down in the order

L,1,1,2),21,1,3),22),61),1,49, 23), @2, 41),...)

(3) any infinite set of disjoint nonempty subsets of the natural numbers
(which can be written down in the order of their smallest elements).

The following result says that the terms of an absolutely convergent
series may be regrouped in any fashion without altering the absolute con-
vergence or the sum.

Proposition. Let Y a, be an absolulely convergent series of real numbers

Re=l
and let Sy, Sy, Sy, ... be a sequence (finile or infinite) of disjoint nonemply
sets of natural numbers whose union S;\J S3\U S;\U - - 18 the entire set of
natural numbers {1,2,3, ...}. Then for each i such thal S; i3 infinite the
sertes é a, 18 absolulely convergent, if the number of sets Sy, S, Sy, ... 18

infinsle then the series Z ( %“‘) 18 absolutely convergent, and in any case

(BB

For any infinite subset S of {1,2,3, ...}, ordered in a sequence in
any fashion, each partial sum of the series g |aa]| is less than or equal to
some partial sum of the series E |aa|. Since the partial sums of the latter
series are bounded, so are the partlal sums of “‘; |aa|. Thus .‘gaa. is abso-
lutely convergent. Thus 'éa.. makes sense for any subset S C {1,2,3,...}.
We claim that

Toa=Yat 2, O

ne=l nESy nESUSIU. ..

This is clear if eitlier S; or S;\U S;\U - - - is a finite set. On the other hand
if both 8; and Ss\J S;\J - -- are infinite then we can order them into
sequences and then use part (1) of the second proposition of this section
to get the same result. Thus, by repeated application of this idea,
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.;2..:; &= gxan + nESYUSH... == '§‘an + é’ﬂn + QGSQ\ZJ&U...G.

. ='§la.+‘§'a.+ +‘§'a.+ ‘m&“”ﬁ

in case there happen to be at least » sets Sy, Sy, S, . . .. We are done, except
in the case where the number of sets Sy, 8y, 8y, ... is infinite, where it

remains to show that the series f:( g‘a.) is absolutely convergent

and that its sum is Z a.. To prove that it converges to the sum ia.
sl

it suffices to show that

2 B =0

To do this, for any e > 0 choose a positive integer N such that if n >
m 2 N then |@Gui1| +|@miz] + + -+ +]an| <eand then choose N’ such that
1,2, ..., N} C 8 U8V .- USy'. If now » > N’ then the absolute
va.lue of any partial sum of the infinite :enes a. (taking the

terms of this series to be in any fixed order at a.ll) w at ‘most &la.l.

where S’ is some finite subset of (N +1,N 4+2,N +3, ...}, hence it is
at most |any1|+|ansa| + - - - +]an| for some M > N, henceisleutlun

¢. Thus the above limit is indeed zero and 3 ( Q“‘) indeed converges
fml \ W

to Z a.. Applying this to the absolutely convergent series z |as], we

see thatz( § Ia.l) is convergent. Since g‘a.| < ala.t for all

t=1,28, ..., the comparison test shows that Z( g‘a.) is abeolutely
fml \ W
convergent. This completes the proof.

For infinite series of real-valued functions on a metric space we have

the following results, all immediate consequences of the definitions and
results of preceding sections.

Proposition. The infinite series Y, fu of real-valued functions on a metric
Al

space E converges uniformly if and only <f, given any «> 0, there ezisis
an integer N such that if n > m > N then

[fot1(P) + fmra®@) + -+ +Jalp)| <€
forallp S E.
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The infinite series g fa of real-valued functions on a metric space E
issaid to converge absolutely if the series i:f..(p) is absolutely convergent
for each p € E. =
Corollary. Ifg fo i8 an infinite series of real-valued functions on a metric
space E and'ga. a convergent series of real numbers such that |fua(p)| <aa

for all p € E and all n, then 3. f» converges absolutely and uniformly.
[T

Proposition. If Y f. is a uniformly convergent series of continuous real-
L2

valued functions on a meiric space E then ils sum is a conlinuous function
on E.

Proposition. If a,bER, a <b, and ifu 18 a uniformly convergent
[T
series of continuous real-valued functions on [a, b} then

[(Zr)y@dz= £ [ ftarde.

Proposition. Let fy, fs, Js, ... be a sequence of real-valued functions on an
open inlerval U in R, each having a continuous derivalive. Suppose that the

infinile series if.' converges uniformly on U and that for some a € U the
[T}

series i fa(a) converges. Then the series i,f. converges lo a differentiable
LT w=l
Junction on U and

( gf. - gf

$3. POWER SERIES.

Let a, ¢y, €3, €3, . . . be real numbers. The series of real-valued functions
on R

T a@ —a) = co+ iz —a) +cxle — @) 4 -
nel

is called a power series (in powers of z — a).
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To avoid messy circumlocutions, one also calls the above expression
a power series when z is not the identity function on R but rather some
specific element of R.

The first question about power series is for which z € R the series
converges. Here are three examples, all verified by the ratio test; the
immediately following theorem asserts that these examples are typical.

Exampiz 1. 2, :" converges for all z € R.
L

ExampLe 2. ) z* convergesif |z| < 1, divergesif |z|> 1.
Nl

Examriz 3. ), nlz* converges if 2 = 0, diverges for all other z.
L

Theorem. For a given power series 3 ca(z — a)* one of the following is
Nal

true:
(1) The series converges absolutely for all z € R.
() There exists a real number r > O such that the series converges abso-
lutely for all £ €E R such that |z — a| < r and diverges for all z such that
|z —a|>r.

(8) The series converges only if z = a.
Furthermore, for any r1 < r in case (2), or for an arbitrary r, € R in case (1),
the convergence is uniform for all z such that |z — a| < n.

For suppose that the series converges for z = £, for some £ # a,

and let 0 <b <|t—a|. We shall show that Y c.(z — a)* converges
n=d

abeolutely and uniformly for all z such that |z — a| < b. To do this, note

that since Z ¢a(t — a)* converges we have lim c (¢ — @)* = 0, so that

there exists a number M such that |c.(f — a)*| < M foralin. If [z —a| < b
then

b
t—a

But iMI b/(¢ — a)| " is & geometric series with ratio |b/(¢ — a)| < 1,80
[T ]

[ea(® — @)*| = |eulE — a)*| - l%-'_'—:r <M |

by comparison with this series 2 ca(z — @) converges absolutely and
nb
uniformly for all z such that |z — a| < b. Now consider the set S of all
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£ € R such that the series Z ca(t — a)* converges. It may happen that

= {a}, which is possnbn]:ty (3) above. It may happen that the set S is
unbounded in which case for every r1 € R there exists a £ € S such that
r1 <|£ — a| and what we have already shown proves that we are in case
(1) above. The last possibility is that S is bounded, S » {a}. Here we set
r=Llub. {|£ —a|: £ € S). Then r > 0, the series diverges if |z —a|> r,
and for any ry <r there is a £ € S such that r, <|¢ — a|, so that the
series converges absolutely and uniformly for all z such that |z —a| < n.
Since 7, was any number less than r this proves that case (2) obtains,

The number r of case (2) is called the radius of convergence of the given
power series, the interval (a — r, a + r) the interval of convergence. In cases
(1), (3) we also use the expression “radius of convergence’”’, meaning by
this the symbol = or the number zero respectively.

If a power series has radius of convergence r » 0,», it may or may

not converge at the extremities a — r,a + r of the mterval of convergence;
for example the power series

z*
~FHE-T
2 2 2
—gty Tt
and _
, z+at+2+ -

all have interval of convergence (—1, 1) and the first converges at both
extremities, the second at one but not the other, and the third at neither
extremity.

Lemma. Let Y ca(z — a)* bea power series with radius of convergence
A=l
r (possibly r = 0 or r = o). Then the series

i nea(z — a)*!
n=ld)

f: n+1(x_.a)u+l

also have radius of convergence r.

We shall first show that if the series ic.(z — a)* converges for
ne0

z = £ 7 a, then the other two series converge for all z such that [z — a| <
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|€ — a|. As in the proof of the last theorem, since f: ca(§ — a)~ converges
LT ]
the terms of this series approach zero, hence are bounded, so there exists
a number M such that |c.(¢§ — a)*| < M for all n. Thus
nlea(f—a)| |z —a |
I

=1
|nes(z — a)*!| = t—al - lf"‘l‘ d‘

and similarly

" Mlt—a||z—a|**
(z—a)+‘l< n+1 E-—al )

To show that the series Z nea(z — a)** and Z n + T (& —a)** con-
[T ]

‘n-&-l

verge if |z —a| <|¢ —al it therefore suffices to show that the series
z—a I"“

T':TtTlt-a

and

"MIE—a‘I z—a|*H
E n+1 E-ol

converge, which is easily accomplished using the ratio test.
Thus if ) ca(z — @)* has radius of convergence r, then either of the two
Rl

series obtained from this one by ‘‘differentiating term by term’’ or “inte-
grating term by term” has radius of convergence at least r. But the original

geries 3, ca(z — a)" can be obtained from the series 3 ne.(z — a)*! by
N nwd
integrating term by term (except for the term for n = 0) and from the

series Z 1 (z — a)**' by differentiating term by term, so the previous

argument. apphes in reverse, showing that the radius of convergence of the
original series is at least that of either of the two others. Thus all three
series have the same radius of convergence r.

Theorem. If the power am’af:c.(z — a)* has radius of comvergence
Nl

r > 0 (possibly r = ) then the function f on (a —r,a + 1) (or on R, if
r = o) given by

1@ = T enz ~a)
nu

18 differeniiable. Furthermore foranyz € (@ —r,a+ 1) (or 2 ER, {fr = »)
we have

’ 3 n— d == '_2.'.._. - )™
f(z)=§nc,(z-—a) 1 and ]:j(t)dz Eﬁ_l(z a)™+.
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By the lemma the three series involved have the same radius of con-
vergence r. Pick any positive number r, < r. Then each series converges
uniformly on [a — ry, @ + r1] by the last theorem. By the last proposition
of the last section we have

(Lak-a7) = T (az—0)) = T nealz — oy
[~ ] nal Nl

on (@ — r;, @ 4 ry). Similarly the result on term-by-term integration for
z € [@ — 1, a + ry) follows from the immediate predecessor of the quoted
proposition. Since r, was any positive number less than 7, these same results
are trueon (a —r,a +r).

Let a, co, €1, €3, . . . be real numbers. We say that a real-valued function
fon an open subset of R has the power series expansion f:c.(z — a)* there if

Y]
J@) =3 cu(z —a)*
e

for all z in the open subset. In this case f’ exists on the open subset and has
& power series expansion there, and similarly for £, 1", etc. In fact, from

J@) =tz —a)+e(z—a) +alz—a)P+clz—a)+ .-
follows
1) = 1+ 20z — a) + Bax(z —a) + 4 ez —a) + - -+,
1"@) =2 +2-3a(z—a)+3-4c(z—a)+ -,
fM@)=2:36+2-3-4c(z—a)+ -,

J®(x) =nlea+ - -.

For z = a (assuming this point to be in the open set on which f is defined)
we get f(a) =cq, f'(a) = 1, f"'(a) = 2¢3, f"""(@) = 2 - Bcy, ...,f™(a) = nlca.
We restate these results as follows.

Corollary. Ijthamndmtmthepmmmapamimzzc.(z—a)'

on an open subset of R that conlasns a, then f has continuous dersvatives of all
orders on this open subset and ¢, = f™(a)/n! for all n. In particular, if f has
@ power series expansion in powers of £ — a then this power series is unique.
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For any resl-valued function f defined on an open subset of R that
contains @ and possessing derivatives of all orders at a, the power series

3 .)G
S
is called the Taylor series of f at the point a.

Examrre. If |z|<1thenl/(1 +2) =1 — 2+ 23 — 23+ - - -. There-
fore

log(1+2)= ]:Td-{i-—t;z“%*'%'%*“” if |z < 1.

Is this power series representation of log (1 + z) valid for other values of
z? Certainly not for |z| > 1, for then the series diverges (and furthermore
log (1 + z) is not defined for z < —1). Certainly not if z = —1, for the
same reasons. But if z = 1 the series converges. Does it converge to log 2?
The answer is yes, that is, it is true that

1 1 1
log2=1-5+5—-—7+",

but this statement needs proof. Since a uniformly convergent series of con-
tinuous functions has a continuous sum and the function log (1 + z) is

continuous at z = 1, it suffices to show that the series Y (—1)*'z"/n is
LT

uniformly convergent for z € [0, 1}. This is true since the sum of any
number of consecutive terms starting with the n** has absolute value at
most z°/n < 1/n, since for 0 < z < 1 we have an alternating series.

Suppose now that f is a real-valued function on an open interval in R
containing a and that f has derivatives of all orders. When does f have a
power series expansion in powers of z — a? That is, when is it true that

f(@) = X f™(a)(z — a)*/n!? Reverting to a previous notation (end of
Aad

Chapter V),
@) =)+ LOE=9) o LE@EA g0,

we see that we have f(z) = Y f™(a)(z — a)*/n! for any particular z
n=l
if and only if lim R.(z, @) = 0. This can be a useful criterion, since Taylor’s

theorem gives us some practical information on R,.(z, a).
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ExampLe. The Taylor series of e* at the point 0 is 3 z*/nl. This

L
series converges for all z € R. By Taylor's theorem we can write R.(z, 0) =
etz*t/(n + 1)1, where £ is some number between 0 and z. Since ¢* is an
increasing function we have

elsl | p|nht
|Ra(z,0)| < Tn—l-{:ll-)'!—
Since g z*/n! converges, lim z**'/(n + 1)! = 0. Thus lim R.(z,0) = 0

and therefore

e*-’f!—

it

forallz €ER.

§4. THE TRIGONOMETRIC FUNCTIONS.

We want to define the trigonometric functions and derive their stand-
ard properties in a rigorous manner. The usual geometric way of doing
this, using angles and arc length, relies on intuition, but it is possible to
make this method entirely logical. However it is much simpler to use an
alternate approach. We shall confine the discussion to the sine and cosine
functions, since all the other trigonometric functions, as well as their
inverses, may be got from these,

We look for real-valued functions on R that are everywhere twice
differentiable and satisfy the differential equation

fl' = _f‘
If such a function f exists, from the equation f’’ = —f we deduce
f""" = —f’, 80 that f is three times differentiable, then we get f® = —f'" =
J, so that f is four times differentiable. From f® = f we get f® = f’,

JO=f"= —f fO = —f f®& = _f" = f etc. Thus f has derivatives of
all orders and its Taylor series at the point 0 is

10 + 50z = Lot - L0 | SO
For any particular z » 0, Taylor’s theorem gives us the estimate
Jen(E)
R"(zy 0) 2L_pntl

4+

for some £ between 0 and z. Letting M be an upper bound for |f(£)],

1f/(§)| for ¢ ranging over the closed interval with extremities 0 and z,
we have

Mlzlwﬂ

IR‘(x! 0)' S (" + l)! .
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Thus lim R.(z, 0) = 0. As a consequence, if & function f with the desired
properties exists, it is equal to its Taylor series for all x € R.
For any ¢, ¢ € R the series

_a o cw‘

converges for all z € R, as will be seen by eomparioon with the series

(la] +el) Z |z|"/n!. Taking c; = 0,¢c; =1 we are led to define the
sine functxon sin by

2,2 2
smz-z-—z,’-’+' 7!-{»---

and taking ¢; = 1, ¢; = 0 we define the cosine function cos by

2 P
ata—eit

The functions sin and cos are defined on all of R. Differentiating their
series term by term gives
d . d

——siny =Cco8T, —COBT = —ginzg. :
dz ' dz

Thus sin and cos both satisfy the equation f/ = —f and any function
f: R—R that satisfies this equation must be of the form

f(z) = cyc08z + es8inz

for certain constants ¢,, c € R.
It follows immediately from the series expansions that

cosr =1 —

8in0 = 0, cos0 =1
gin (—x) = —sinz, cos(—z) = cosz.
Also

7‘%-.(:sin’:a:+oos’:l:) - 2sinz£.ainz+2emz% cosz = 0,
80 that sin®*z + cos®z is constant. Since ain*0 + cos*( = 1 we get

sintz + cos?z = 1.

To derive the familiar addition formulas, fix some @ € R. Then -

d - d -
jg'“‘(“"'“) oos(z+a)-a-z—(z+a) oos (z + a)

and

d - —p d - —gi
2;-008(3-!-01) Nn(x-l-a)z.z..(x-{-a) sin (z + a),
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8o that

FenGE+a) - _ginz+a).

Hence we can write
sin(z + a) = c,co8 z + cs8inzx
for certain ¢, & € R. Differentiating gives
cos (z 4+ a) = —¢;8inz + ¢y 008 2.
Setting = = 0 in the last two equations giv;s ¢ = sin @, ¢s = cos a, 80 that
8in (z + ) = ginz cosa + coszsina
cos(z+ a) = €08 Z cO8 @ — gin z sin a.

To derive the periodicity properties ‘of sin and cos reason as follows:
sinz > 0 if z € (0, 2), since then all the expressions

_2 & 2 2 v
A TR TR TR TR YV

are positive. Since dcos z/dz = —sginz, cos z is a decreasing function on
(0, 2). Now

cosl =1—+4

40 >0,

9|
2
2|

while

28 2¢ 2¢ 28 2¢

cos2 =1 ——2T+—4—r-("6'!—--§r - <1 —-2"’-+'2T<0.
It follows that cosz is sero at some unique point of the interval (1, 2).
This unique point we denote /2 (this is a definition of »; note that at the
moment we have only the rough approximation 2 < r < 4). We deduce
that on the interval [0, /2] cos z decreases from 1 to 0. Since the deriva-
tive of sinz is cos z, which is positive if z € (0, x/2), sinz increases on
this interval. Using the facts that sin0 = 0 and sin*z + cos*z = 1, we see
that sin z increases from 0 to 1 on the interval {0, r/2]. The addition
formulas then give

sin (z+%) =cosz, cos (z +—2'—) = —ginz.

Repeated application of these give sin (z + #) = sin((z + x/2) + #/2) =
cos (z + x/2)= —sinz, sin (z + 2x)=sin ((r+ x) + )= —sin(z + x) =
sin 2. Similarly, or by differentiating the last formula, we get cos (z + 27) =
oos 2. In other words, sin and cos have period 2x.
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§ 5. DIFFERENTIATION UNDER THE INTEGRAL SIGN.

The result we give here is only the simplest of & number of similar
results, but it is also the most useful and its proof is illustrative of the
others. The notion of partial derivative enters, but only for convenience of
notation. None of the properties of partial differentiation to be developed
in Chapter IX will be used here, only the definition, which is essentially a
one-variable matter.

Let U be a subset of E* with the property that for each z € R the
subset of R given by {y ER : (z,9) € U} is open. That is, U is the
union of open subsets of vertical lines in the plane E*. Then if f is & real-
valued function on U and (z, y0) € U, by

of

3 (2o, Yo
we denote the derivative at y, of the function sending y into f(z, ),
provided this derivative exists; that is

9, s J(xo, y) — I (o, yo)
L o vy = i LD L0 v

if this limit exists. If % (20, yo) exists for all (o, o) € U we have a real-

valued function on U whose value at each (zs, yo) € U is .gyL (0, ¥0), and
we of course denote this function by 365-
Theorem. Leta,b,c,dCR,a <b,c <d, and lelf be a continuous real-
valued function on the subset of E® given by
{z,ERP:a<z<bc<y<dl

Suppwthat%niauandiaminuomonthism. Then the function
F: (¢, d) — R defined by

FG) = ['1G v
is differentiable and A

L

FG) = [0 5@ vz

Jor all y € (c, d).

For a fixed y € (c, d), both f and af/dy are continuous functions of z
for z € [a, b}, so both integrals in question exist. We have to show that
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F'(yo) exists and is as indicated for each y, € (c, d). So let yo € (¢, d) be
fixed. Choose numbers ¢’, d’ such that ¢ < ¢’ < yo <d’ < d. Then the set

8= {1 ERF:zE b,y EI, I}

is compact, so that the continuous function 3f/3y is uniformly continuous
on 8. Given any ¢ > 0 choose § > 0 such that if (z,y) €S, (2, 1) €S

and V(z —z)*+ (¥ — y)* < & then

l—-—(z. y) — ay(”" m)‘ <i— b —t

Wemay assume that 8 < min {yo —¢’,d’ — y). Then if yER and
|y — 4| <8 we have (z,y) €ES for any z E[a,b). If in addition to
1y — vo| <8 we have y » y, then

F@y) — F(yo) _]:' af(z,y)dz'

Y=Y
I, y) —f(z,y) _ of
V= 2 —W(z,vo))dtl

= [} (Gtem =Tt Y

where # (which depends on both z and y) is alwdys between y and ys. (We
have used the mean value theorem.) But V(z —z)* + (n — yo)* =
In =yl <|y — 5| <8, so that

‘ I aym) — Sy | <

b~a’

Thus

F(y) —F(ys) _ (v of

= f. ay(z,yo)dz‘Sc
if |y — yo| < 8, ¥ ¥ yo. Therefore

= lim £ = FG)
P = lim T =500 ey,

as was to be shown.
PROBLEMS

1. Find a sequence of continuous functions f,: R — R such that l’i:.n' lim fa(z)
N>w

and lim lim f.(z) exist and are unequal.
Lo X o )
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11.

12.
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If f: E*— {(0,0)} — R, three limita we can consider are 1'13'1 li.g.\j(:, ),

ll:.nl'l‘l‘:l f(z, v, and( lim J(z, ). Compute these limits, if they exist,
for f(z,y) = z'+y’ and forj(z, y) = ;,—_—'_—5

Find a sequence of continuous functions f,: [0, 1] = R that converges to the
sero function and such that the sequence f: fi(z)dz, [.I Si(z)dz, [: Si(x)dz, ...
increases without bound.

Find a uniformly convergent sequence of differentiable functions fa: (0,1) = R
such that the sequence f\’, fs', fy’, . . . does not converge.

. Construct a convergent sequence of Riemann integrable real-valued functions

on [0, 1] whose limit function is not Riemann integrable.

. Prove the following fact, implicitly used several times in the text: For any

positive integer m, a series of real numbers f_‘,a.isoonvermtifmdonlyif
nel
3. Gumsn is convergent, and in that case

LI}
Ge =@t ot o+ On 33 Gt

Show that if 6,4+ a3+ as + - - is & convergent series of real numbers and
», %, ¥, ... is & subsequence of the sequence 1,2,3, ..., then

@40+ ) + Orgr+ oo+ ) + @+ ) + oo
-g.,.

Let a1, 6, @, . . . be a decreasing sequence of positive numbers. Show that
(@) fai+a+a+ - convergesthenli-ﬂm.-o

(b) a1+ a3+ ay+ -+ converges if and only if a + 2a; + 4a,+8as + ---
converges.

(Integral test). Let f:{z€ER: 2> ll—»lt'be s decreasing positive-valued

function. Prove that gj(n) converges if and only if lim [ *{(z)dz exists.
[3 e Ji

(Hint: Draw a diagram.)

Use the preceding problem to tell for which p > 0 the following series con-
verge:

1 1 1
g;;’ gn(logn)" g‘sloga (log log n)*’
Show the convergence of the series

g n n+z)

of real-valued functionson R — { -1, —2, -3, ...}.

Show that if @i+ a6+ as+ -+ is an absolutely convergent series of real
numbers, then a;* + a* + a5* + - - - converges.
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13.

14.

15.

16.

17,

18.

19.

(Root test). hti;a.beamiesolrednumbeu. Show that if there exists a

numberp<lmehtlnt€/| I Spforallsuﬁclentlylarge n, then the series
is absolutely convergent.

Prove that a series of real numbers which is convergent but not absolutely
convergent can have its terms rearranged in such a way that the new series
oonverges {0 any preassigned real number, or such that the partial sums of
the new series become arbitrarily large, or become arbitrarily small.

Prove that if .i_‘{ ay and i_“ b, are absolutely convergent series of real numbers
then the series .2_‘ a.ba is also absolutely convergent, and

Eeb-(E)(E)

Let a1, s, a4, . .. be a sequence of nonnegative real numbers, let S, 8,, Sy, .. .
be a sequence (finite or infinite) of disjoint nonempty sets of natural numbers
whoee union is {1, 2, 3, ...}, and suppose that for each ¢ such that S; is infinite
the series a, converges and that if the number of sets 8, S;, Ss, ... is

i;iniv::g;h':n the series g (é‘ a.) converges. Prove that the series g} a

Let V be a complete normed vector space (Prob. 22, Chap. III). The defini-
tions of an infinite series of real numbers and the convergence and sum of
such a series generalise immediately to series of elements of V.

(s) Verify the analog for series of elements of V of the convergence cri-
terion of the first proposition of § 2.

(b) Define the notion of absolute convergence for series of elements of V
and verify the rearranging and regrouping properties of absolutely con-
vergent series of elements of V.

(¢) Define the notion of uniform convergence for a series of V-valued func-
tions on a metric space and prove that the sum of a uniformly convergent
series of continuous V-valued functions is continuous.

Let ¢, ¢1,03, ... €ER. Prove that if lim [ca/cas1] exists, it is equal to the

radius of convergence of the power series 2“ Ca Z*.
Ll

Let ¢y, €1, 63, ... € R. Prove that the radius of convergence of the power series

Z3¢az" is 1/lim sup YTea]. (CF. Prob. 18, Chap. III for the definition of
» L g J

lim sup; the quoted expression is to be interpreted as 0 if the lim sup does
not exist and as  if the lim sup is 0.)

Find the radii of convergence of the following power series:
(») é} n(log n) z*
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(®) 3 Gogwylee |

@ 3 C j’l‘)
o 5

8howthatnpoweraeties2}c.z'hntheumendiusofoonvergmoeu
z_;cmz', for any positive integer m.

Let a, ¢y, €3, €3, . . . € R, with at least one of ¢, ¢y, ¢35, .. . nonsero, and let the
power series i_; ca(z — a)* have positive radius of convergence r. Show that
»

there exists a positive number 3 < r such that the sum of the series is nonsero
for every real number z such that 0 < |z — a| < 6.

. Let a,cy, 01,6, ... €R and let the power series Z“c.(z—-a)" have radius of

convergence r > 0 and converge to f(z) if |z — a| < r.8how that if b € R and
b — a] <r, then there exists a power series in powers of z — b which con-
verges to f (z) whenever |z — b <r — |b — q|.

(Hmmxp.ndout;_‘_“c,((z ~ ) + (b — @))* by the binomial theorem. )

. leta €ER,a0,1,2, ... .8Show that the “binomial series”

1+az+ ( l)z.+a(a-l)(a Dy

huudiusofconvergenee l.htf(z)betbemmofﬂnueriesoniuintervdol
convergence. Show that (1 + z) f(z) = af(z), and hence that f(z) = (1 4 z)*
for |7 <1. v

Show that 1'.hesex'mas“f“_:_:‘,'l (n+m)l

Use Problem 15 and the binomial theorem to show that

EnNED -5

for all z, y € R. Hence give an alternate development of the theory of the
exponential function e*.

Find a real-valued function on R possessing derivatives of all orders whose
Taylor series at a certain point converges to the function only at that point.
(Hint: Start with Prob. 26, Chap. V1.)

Define the functions tan, cot, sec, cac in terms of sin and cos and compute
their derivatives.

is absolutely convergent and find its sum.
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29. Show that the functions sin and tan (cf. Prob. 28) are each increasing on
(—=/2, x/2). Hence define the functions sin™* and tan™! (on (—1,1) and R
respectively), prove them differentiable, and compute their derivatives.

30. Starting with the formula for d tan™ z/dz (cf. Prob. 29), give the reasons
justifying the argument that for |2| < 1 we have

s dt b 2 2 '
tan™lz = °m-]; (l—t'+l‘—-~)dt-z——3-+-5—----,

and therefore
r 1

1 1
i-l-gtggto
81. Starting with the formula for d sin~'z/dz (cf. Prob. 29), make use of the bi-
nomial series (cf. Prob. 24) to find the Taylor series for sin~! at the point 0.

82. The definitions of an infinite series of real numbers and the convergence and
sum of such a series extend verbatim to series of complex numbers (¢f. Prob.
20, Chap. IIT). Verify that the convergence criterion of the first proposition
of §2, the notion of absolute convergence, and the rearranging and regroup-
ing properties of absolutely convergent series hold for series of complex num-
bers, and that the notion of uniform convergence extends to series of complex-
valued functions on a metric space, as well as the theorem that the sum of a
uniformly convergent series of continuous functions is continuous. (There is
no need to prove any of this if you have done Problem 17.) The notion of real
power series extends to power series with complex coefficients in powers of a
complex variable. Verify that the first theorem of § 3 generalises almost ver-
batim to such complex power series.

33. (a) Verify that the complex power series
e 2 2
1+ 1 + 2 + 3 + -
! 2 2 A
1-— *2-7 + Z-! -— a + eve
L
z - ﬁ + a - an
converge for all ¢ € C (of. Prob. 33).
(b) Denoting the sums of the series of part (a) by e*, cos 2, and sin s respec-
tively (which agrees with our previous conventions if £ € R), prove that
eN « e% = gfitn

for all z,, 2 € C (cf. Prob. 26) and that
€ = cos ¢+ isin s

forallzs € C.
(c) Verify that
mz_c"-l;e‘*
. _c"-r"
sin z %

cos*z +sin?z =1
forall z € C, and that the usual equations hold for cos (z + z) and
sin (21 + 2).
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(d) Prove that any complex number z » 0 can be written z = & for some
fec.

(e) Prove that for any z € C and any positive integer n we can write 3 = u*
for some w € C.

The “fundamental theorem of algebra” states that for any positive integer n
and any a;,as, ..., 6. € C there exists at least one { € C such that
Ptat'+al*+ - +a.=0
Expand the following outline into & proof of this theorem.
(a) Let f: C— C be defined by f(z) = 2* + ai*! + -+ + as. Then |f(2)|
is large if |z| is large (cf. Prob. 20, Chap. III).
(b) Since the function |f(z)| is continuous (cf. Prob. 13, Chap. IV), it there-
fore attains a minimum at some point { € C.
(c) We can write
1@ = 1@) +als = (1 + (2 = Do(s))
where m is a positive integer, a € C, a » 0, and g(s) is & polynomial in s,
(d) Choose a € C such that o™ = —f(t)/a (cf. Problem 33(e)). Then i
J(&) » 0 we have |f (T + ta)| < |f(})| for any sufficiently small positive
real number ¢, which is-a contradiction. Thus f({) = 0.
Let [a, b] and [c, d] be closed intervals in R and let f be a continuous real-
valued function on {(z,y) E E*: z € [a, b}, y € [c, d]}. By Prob. 15, Chap.

VI, j:.j (2, y)dz is continuous in y and f! (z, y)dy is continuous in z, so that

[ [ 1 ie)ay woa ['( [ 16 m10)as
exist. Prove that these integrals are equal by computing d/dt of

JI([ s vrac)ay ana [ [ 1 rav)a
for ¢t € (a, b).
Let f be a real-valued function on am open subset of E*. Prove that if
% (-gi) and g.y (6%{ exist and are continuous then they are equal, (8/dy
has been defined in the text; the definition of 3/ is analogous). (Hint: Use

Problem 35 to show that if the net {(z,y) EE*: z € [a,b],¥ E lc, d]] is en-
tirely contained in the set on which f is defined, then

[ (L 5 Ean)ee = L ([ 55 an)ee

. Leta,b,c € R,b < ¢, and let f be a continuous real-valued function on the set

() ER:22a,yE[bc]l}. Let F:[b,c] =R be another function. We
say that L”f(x, y) dz converges untformly to F(y) on [b, ¢] if, for each ¢ > 0,
there exists & number N € R such that | [ 1(z,4) ds = FG)| < ¢ for al
t>N and all y€[b,c] (so that for each y € (b, c] the improper integral
]:“'f(z, y)dz exists and equals F(y) (cf. Prob. 28, Chap. VI)). Prove that if

]; * f(z, y)dz converges uniformly to F(y) on (b, c], then F is continuous.
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88. Compute

41.

lim 2"+ birs 4 c"")"
e 3

ifa,b,c>0.

) Foru-o,l,z....letl.-].mnin':dz.Showthat
® & (conzainta) = (n - 1) sintz — wain s

2l . #n22
_1-3-5--- @Grn—1~r
© Im 3:4:06..- Om) 3
. 2:4:6-..
M TF 67 @n41)
(d) Io Iy Iy, ... is & decreasing sequence having the limit sero and
ave Iy

2:2:4:4:6:6---(2n) - (20) - .,
© “.21n3-3-5-5.7...(z,,_‘).(z,,.’.l)"z' (Wallis’ product).

®) I =

forn=1,238,...

(s) Show that if f:{z € R : x > 1} — R is continuous, then

216 = [ 1@i+ 00 - [T 16a).

) sunn.zucnmme-]“"‘m:aam«.rm = 1/2i by less
than 1/68%. (Hint: Work out the integral using the Taylor series for
log (1 4 z) at the point 0.)

(c) Use part (a) with f = log, part (b), and Prob. 23, Chap. VI to prove that
lim (og ! — (s +3) log n + »)
exists.
(d) Use part (o) of the preceding problem to compute the above limit, thus
obtaining

]i.:l.-n—.—‘_—:“l—- !"‘__ -] (Sﬁl'lill"l formuh).

For £€ER, let ¢(z) = min {|z —5| :$ =0, x1,£2,...} (which is the
distance from = to the nearest integer). Show that

() there is a continuous function f: R — R given by
1) = 33 w(10°)/10°

=z and y are real numbers which have decimal expansions which are
equal except in their i decimal places, for some ¢ > 0, their &4 digits
differing by 1 and being distinet from the pair {4, 5}, then

o) — o(2) = £10~

=

®)
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(c) if z and y are as in (b) and » is one of the integers 0,1, ..., — 1 then
#(10%) — ¢(10°2) = 210+,
while if 2> § then ¢(10%) = ¢(10°2)
(d) if x and y are as in (b), then

16) = 1(6) = Sy 10,
10 that (1) = 1))/(p = #) s itege, odd or sven ocordiog us ¢

or even
(e) the continuous function f: B-onhnowhgediﬁmﬁsbh.



CHAPTER VIII

The Method of Successive
Approximations

In this chapter a number of important existence
theorems are proved by a successive approximation
method. By way of introduction to successive approxi-
mations, consider Newton’s method of solving an equa-
tion f(z) = 0:Suppose that fis a continuous real-valued
function on an open interval U in R and that f attains
the value zero at some point of U. We wish to find this

" point. Assume that f is differentiable on U and that f’
is continuous and nowhere zero on U (s0 that f has the
value zero at only one point of U). Let 24 € U be some
first approxination to the root of f(z) = 0. Then
f(ze+ h) = 0, for some small A. Since f(zo+A) is
“approximately” f(zo) + Af’(ze), by setting the latter
expression equal to sero we have A “approximately”
— f(ze)/f'(zs). Hence we get the next approximation
to the root of f(z) = 0 to be 2y = 2o — f(z)/f'(za).
(Geometrically, 2, is the point of intersection of the
z-axis with the tangent to the curve y = f(z) at the point
(20, (xo)).) I 23 € U we can try to get a better approxi-
mation to the root by setting 2, = 7, —-J(zg)/f'(:m)
If 2 € U we can similarly define 2;. Thus,
we never leave the interval U, we get a sequence of
points z, 21, 23, ... of U such that

zm-z.—l}fa, n=0,13,....

If this sequence converges to a point ¢ € U, thenby
continuity we haye

=t -58

80 that f(£) = 0 and ¢ is our desired root. It goes with-
out saying that this procedure does not always work.
Several possibilities are illustrated in the figure on the
next page and only in case (a) do we arrive at a root.
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sd P = e

g-

n T /

(») (b)

Fiourz 31. Various cases of Newton's method.

§1. THE FIXED POINT THEOREM.

The following theorem says that a certain rather general problem can
always be solved by means of the most simple-minded kind of successive
approximation. In the remainder of this chapter and in the next chapter we
shall see how this easy result can be applied to a variety of special problems
of considerable moment.

Theorem. Let E be a nonemply complete melric space, F: E — E a func-
tion, Supposs there exisis a real number k less than one such that for all
9,2 € E we have

d(F(p), F(g)) < kd(p, ¢).
Then there exists a unique point P € E such that F(P) = P. Furthermore if
Pe i8 any point of E and pr = F(ps), ps = F(p1), pr = F(ps), etc., then
lim p, = P.
K->®
If we apply the given inequality to distinct points p, g of E we get
k 2 0. If E does not contain distinct points, that is if £ consists of a single
point, the inequality holds for k = 0. Thus we may assume it given that
0<k<l
Lat us start with the last part of the theorem, letting p, be an arbitrary
point of E and letting p,, ps, ps, - . . be given by
pa=F(p), n=0,12,....
For any integer n > 0 we have

d(Pn, Pasr) = d(’(pn-l), F(Pt)) < kd(pa-y, Pa).
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Repeated application of this gives
d(Pa, Pas1) < kd(Pa-s, Pa) < K d(Pa-s, Pa1) < K d(Pasy Pas) < -+
so that
d(Pn, Pas1) < k*d(po, p1)-
It follows that for any integers n > m > 0 we have

Ad(Du, Pa) £ d(Puy Prs) + A(Paity Pms2) + - -+ + d(Pu-y, P)
< kﬂd(p"’ Pl) + k*“d(po, p‘) + -+ k'-ld(po, Px)
< d(po, ;) (k™ + k=t - kmt2 4 .. )

_ 4o, pk

1-k
the last step using the equation for the sum of a geometric series. Since
lim k= = 0, the sequence py, p1, Ps, - .. i8 & Cauchy sequence. E is com-
L g

plete, so this sequence converges to a limit, say P. That is
P = lim p,.
R-*0

The inequality d(F(p), F(¢)) < d(p, g) shows that F is uniformly con-
tinuous, hence continuous. Thus

F(P) = lim F(p,) = lim ppy1 = P.

To show that P is the only point with the property that F(P) = P, suppose
that Q € E, F(Q) = Q. Then

d(P, Q) = d(F(P), FQ)) < kd(P, Q).
Since k < 1 this implies that d(P, Q) = 0, so that P = Q.

A map F of a metric space E into itself is called a contraction map if
there exists a real number k < 1 such that d(F(p), F(q)) < kd(p, @) for
all p, ¢ € E. A fized point for F is a point P € E such that F(P) = P. The
theorem says, in brief, that a contraction map of a nonempty complete
metric space has a fixed point. The theorem also asserts that this fixed
point is unique and it gives a simple successive approximation procedure
for finding the fixed point. If we check the details of the proof we see that
we can even estimate the accuracy of any approximation of the fixed point,
for one direct consequence of the inequality

d(ps, p)k=
d(?m pﬂ) S ‘—T‘_'_:&k_'

d(pw, P) < LB PORT
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Thus for any po € E we have
o Py s Lo Ep).

Proposition. Let a,b € R,a <b, and let F: [a, b] — [a, b] be a continu-
ous function. Suppose that F is differentiable on (a, b) and that there exisis
a real number k < 1 such that |F'(z)| < k for all z € (a,d). Then F is a
coniracltion map, so that the fized point theorem is applicable to [a, b]) and F.

The proof of this consists in showing that for all p, ¢ € [a, b] we have
|F(p) — F(q)| < k|p — q|. This is clear if p = g, whereas if p » q the
mean value theorem gives us the existence of some { between p and ¢
such that

F(p) — F(g) = F'(§)(p — 9),
so that

IF(p) — F(@|=|F®llp —al<klp —ql.

B S

[
[ ]
[
[ ]
—d

L T e

N g
[ Y NN

IR
(c)

Fraure 32. The fixed point theorem for contraction maps of a closed interval in R.
In each diagram the curved line is the graph of the function.
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The important point about the proposition is that it provides a specific
procedure for finding the point P € [a, b] such that F(P) = P, not that
it tells us that such a P exists. The mere existence of a fixed point P for
any continuous map F': [a, b] — [a, b] can be deduced from the intermediate
value theorem by noting that the real-valued function on [a, b} whose
value at any z is F(z) — z is continuous, nonnegative at @, and nonpositive
at b, so that it equals zero somewhere on [a, b].

The proposition can be used to solve equations of the form f(z) = 0.
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Suppose in fact that a, b € R, a < b, and that f: [a, b] — R is a continuous
function that changes sign on [a, b]. Suppose further that f is differentiable
on (a, b) and that there exist K;, K3 € R such that 0 < K; < f'(z) < K»
for all z € (a, b). (Thus f is an increasing function on [a, b]; changing f to
—f would enable us to handle decreasing functions that happen to satisfly
analogous conditions.) Then we can show that the proposition, and hence
the fixed point theorem, are applicable to [a,b] and the function F(z) =
z — ¢f(z), where ¢ is any constant such that 0 < ¢ < 1/K,. To do this note
first that F is continuous and that for any z € (a, b) the number F'(z) =
1 — ¢f’(x) is at least 1 — cK, and at most 1 — cK,, hence is nonnegative
and less than some number less than one. In particular F is an increasing
function. Since f also increases on [a, b}, f(a) <0 < f(b) and for any
z € [a, b]

a<a—cf(a) = F(a) < F(x) <F®) =b—cf(b) <},

so that F actually maps [a, b} into itself. Thus the conditions of the proposi-
tion are indeed satisfied. The fixed point ¢ € [a, b] is such that § = F(§) =
£ — c¢f(b), that is f(£) = 0, as desired. We remark finally that if we choose
¢ = 1/f'(z,) for some fixed zo € [a, b}, set F(z) = z — ¢f(z), and then try
to define 71, 23, 73, . .. by the recursion relation z.41 = F(x,) forn = 0,1,
2, ..., we obtain a well-known simplification of Newton’s method which,
however, does not always work.

§2. THE SIMPLEST CASE OF
THE IMPLICIT FUNCTION THEOREM.

It often happens that for a given function f of two real variables we
want to solve the equation f(z, y) = O for y in terms of z. That is, for a
given real-valued function f on a subset of E* we want to find a real-valued
function ¢ on a subset of R such that for all z in the latter subset we have
f(z, ¢(x)) = 0. The problem as thus posed is unwieldy. Among other diffi-
culties, for a given real value of z there may not exist any y € R such that
f(z, y) = 0, or there may exist many such numbers y, the number of them
possibly depending on x. Even if there exists such a function ¢(z) there is
no reason to expect that it can be given “explicitly,” that is by means of
some sort of formula, so that actually “solving” for y in terms of z, or
“finding” ¢, is literally out of the question. The most that we can hope to
do, and this would be of some moment, is to show that under certain general
conditions there exists some function ¢ satisfying the equation f(z, ¢(r)) = 0
and possessing other desirable qualities, such as being defined on a fairly
large subset of R, being continuous, or being unique. To be somewhat more
specific as well as more practical, we reformulate our problem as follows:
We assume that a real-vilued function f is defined and continuous on a
given open subset of 15 and we ask whether there exists a continuous real-
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valued function ¢ on some nonempty open subset of R such that for all z
in the latter subset the point (z, ¢(z)) lies in the given open subset of E?
and f(z, ¢(z)) = 0. These conditions are not enough to assure the existence
of a solution; for example if f is always positive then ¢(z) cannot be defined
for any z € R. We therefore suppose we are given a point (a, b) in the
given open subset of E*such that f(a, b) = 0 and we insist that the function
¢ be defined on some open interval containing a and that ¢(a) = b. But
even this is not enough. For example, if f(z, y) = 2! + y* and (a, b) = (0, 0)
then ¢ cannot be defined for any real number z » 0. The trouble in this
last example seems to be that for any given z near a the function f has an
extreme value at y = b. Thus we need some condition guaranteeing that
for any given z near a the function f actually goes both up and down as y
varies near b, and the obvious way to do this is to suppose that af/dy
exists near (a, b) and is continuous and different from zero. As a matter of
fact this condition is sufficient for the solvability of our problem, as the
following implicit function theorem shows.

Theorem. Let f be a conlinuous real-valued function on an open subset of K*
that conlains the point (a, b), with f(a, b) = 0. Suppose that 3f/3y exists and

i3 continuous on the given open subset andthat_g-;_(a,b)#o. Then there
exist open intervals U, VC R, with a € U and b € V, such that there exists

a untque function ¢: U — V such that f(z, ¢(z)) = 0 for all z € U, and such
that this function ¢ i8 continuous.

We begin by defining another real-valued function F on the same
open subset of £* on which f is defined by
f@y)
Loy
This F has as basic properties that F and aF/dy are continuous, F(a, b) = b,

F(z,y) =y —

1;_? (a,d) = 0, and for any (z,y) the equation f(z,y) =0 holds if and

only if F(z, y) = y. The last property indicates the main idea of the proof,
which is a judicious application of the fixed point theorem. For this, we
choose some r > 0 such that the open ball in E? of center (a, b) and radius r
is entirely contained in the open set on which f is defined. Since dF/dy is

continuous and %(a, b) = 0 we may assume r taken so small that

|8F/ay| < 1/2 at each point of the ball. Choose k such that 0 <k <n
then choose h such that 0 < h < V/r* — k* and such that |F(z,b) = b|
< k/2 whenever |z — a| < h, this last demand being justifiable by the
continuity of F. We shall prove the theorem with U = (a — k, a 4 &) and
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V = (b — k, b + k). Consider any fixed z € U. For any y € R such that
ly — b| < k we have

d(@y), @0) =VE—ar T G- <VETR<r,

so that (z, y) is in our open ball of radius r. If also ' ER, |y —b| <k,
then by the mean value theorem we have

Fz,y) — Fz,y) = %;;; @y -

for some '’ between y and y' (or, if y = 3/, for y’' = y = y’). The point
(z, ') is also in our ball of radius r, 80 we deduce

|F(z,y) — F(z,y)| < -;—lv -yl

|F(z,y) —b| <|F(z,y) — F(z,b)|+|F(z,b) —b|
<ply-bl+E<Eita

Thus the fixed point theorem is applicable to the closed interval [b — k,
b+ k] and the function that sends each y into F(z, y), a function that
maps this interval into itself. (Recall that x is fixed.) This gives us the
existence of a unique § such that |§ —b| <k and F(z,§) = g, that is
f(z, §) = 0. Notice that in fact |§ — b| < k by the last displayed inequality;
that is, § € V. Since this is valid for each z € U our desired function ¢ is
defined by ¢(z) = 7 and to complete the proof of the theorem it remains
only to prove that ¢ is continuous. But the continuity of ¢ can easily be
deduced from what has been proved already. Note first that af/dy is not
zero at any point of the open ball with center (a, b) and radius r, since
|8F/8y| < 1/2 there. To prove ¢ continuous at some a’ € U, for any
¢« > 0 consider the same problem as in the statement of the theorem, with
(a, b) replaced by (a’, b’), where b’ = qo(a'), and f replaced by its restric-
tion to the open subset of E? given by

{mER:z€U,yEV,|y—b|< ¢

The procedure used to obtain U, V, ¢ gives us, analogously, U’, V', ¢’,
the latter being a function ¢’: U’ — V' such that f(z, ¢'(z)) = 0 for all
z € U'. (In the present context the prime ’ does not indicate differentia-
tion.) But we are dealing here with the restriction of f to a smaller open
subset of E* than given originally, so that U’ C U, V' C V, and so that
|y —b’| < ¢ for all y € V’. The uniqueness property of ¢ implies that
¢'(z) = ¢(x) for all € U’, so that |o(r) — ¢(a’)| < ¢ for all z € U'.
Thus |¢(z) — ¢(a’)| < ¢ whenever z is in some open ball in R of center a’.
Hence ¢ is continuous at ¢'. Since a’ was an arbitrary point of U, the func-
tion ¢ is continuous.
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Corollary (Inverse function theorem). Lel g be a real-valued function
on an open subset of R that contains the point b and suppose that g’ exists and
18 continuous on this open subset, with g’(b) # 0. Then there exist open inler-
vals U, V in R, with b € V, such that g i3 defined at each point of V and the
restriction of g to V is a one-one map of V onto U whose inverse function
g: U—V is differentiable.

On the open subset of E? consisting of all (z, y) € E* such that y is
in the open subset of R on which g is defined .we define a function f by
f(z,y) = z — g(y). Set a = g(b). We may apply the theorem to this f and
the point (a, b) to obtain open intervals Uy, Vi CR, with a € U, and
bE V,, and a unique and continuous function ¢: Uy— V; such that
z = g(o(z)) for all £ € U,. The map ¢ is one-one from U, onto ¢(Uy) =
g(Uy) N V. By the first proposition of Chapter IV the set g=!(U)) is an
open subset of the set on which g is defined, hence an open subset of R.
Therefore ¢(Us) = g~ %(Uy) N\ V, is an open subset of R. ¢(U)) is also
copnected, since it is a continuous image of a connected set. As a nonempty
connected open subset of an open interval in R, ¢(U)) is itself an open
interval (in fact it is the open interval (g.l.b. ¢(U3), Lu.b. @(Uh))). If we
set U = U,, V = ¢o(Uy), then the restriction of g to V is & one-one map
onto U whose inverse map is ¢ and the whole of the corollary is proved
except for the differentiability of ¢. [It is only fair to remark that there are
much more elementary proofs. For example, g’ maintains the same sign
on some open interval in R that contains b, so that we can assume that g
is either strictly increasing or strictly decreasing. We can also assume that
g is bounded. Using the intermediate value theorem we deduce that g is
one-one from any open subinterval of the open set on which it is defined
onto an open interval in R. This enables us to define the inverse function
¢! and to prove that g—! is continuous.] To prove ¢ differentiable we may
suppose V chosen so that ¢’(y) # 0 if y € V; indeed this is true for the V
we have constructed, and we could in any case guarantee this by replacing
U and V by suitable open subintervals. Then for z, 1 € U, z # x,, we have

z — 11 = g(e(z)) — glo(z) = (o(z) — (z1))g’ (),

for some @ between ¢(z) and ¢(zy). Since @8 € V we have ¢’(6) » 0 and we
may write

o) —p(z) 1

zT—x g0

Since ¢ is continuous we have lim 8 = ¢(z,), 8o since ¢’ is continuous we
S‘.l‘

have lim ¢'(0) = ¢'(¢(z1)). Hence
C'.”

lim o) —o@) 1 .
“n z-z 7' (¢(z1))
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Thus ¢ is differentiable at each 2, € U, as was to be shown.

In the course of the above proof the equation

(@) = =
7' (o)

was obtained. This equation can itself be considered an immediate conse-
quence of the corollary, since once it is known that ¢ is differentiable,
the application of the chain rule to the equation x = g(e(z)) gives
1 = ¢'(¢(2))¢'(2).

The above implicit function theorem and inverse function theorem
generalize to functions of more than one variable.. Their generalisations

will be proved in the next chapter, after the necessary preliminaries on
partial differentiation.

$ 3. EXISTENCE AND UNIQUENESS THEOREMS
FOR ORDINARY DIFFERENTIAL EQUATIONS,

Suppose that f is a continuous.real-valued function on a certain open

subset of E? and let (a,b) be a point of this open subset. To solve the
differential equation

B o)

with the initial condition y(a) = b means to find a differentiable real-valued
function ¢ on some open interval in R containing a such that for all z in
this interval we have ¢’(z) = f(z, ¢(z)) (this implies that the point
(z, ¢(z)) must lie in the given open subset of E*) and in addition ¢(a) = b.
We note first that the interval in R on which a solution ¢ can be defined
may be rather small, even if the function f is defined on the whole of E*
and is very nicely behaved. For example, for any solution ¢ of the differ-
ential equation

dy
3 =1+

we have

80 that tan—!¢(z) — z is constant on any open interval on which ¢ is
defined; if we impose the initial condition ¢(0) = 0, then the only solution
on an open interval in R containing 0 is given by ¢(z) = tan x, thus restrict-
ing us to |z] < x/2. Therefore if we are interested in solving the above




178 VI, SUCOBSSIVE APPROXIMATIONS

differential equation with initial condition, all we can hope for in general
is that & solution exist on some open interval containing a. This is indeed
the case, with no further conditions, although we shall not prove this fact
in this text. However if we want the solution to be unique, which is highly
desirable in many cases, some further conditions are necessary. For example,
if f(=, y) = 8|y|*® and (a, b) = (0, 0), we have the two solutions ¢(z) = 0
and gx(z) = z*. Hence some condition must be imposed on f if we wish to
guarantes a unique solution.

The condition we shall impose on f is the following so-called Lipschits
condition: there exists M € R such that whenever (z, y) and (z, £) are in
the open subset of E® on which f is defined we have

1/, ¥) —f(z,0)| S M|y —s|.

This condition is automatically satisfied if 3f/dy exists and is bounded in
the given open subset of E* and if a vertical line segment lies entirely
within this open set whenever its extremities do, for in this case the mean
value theorem enables us to write

1) 1z, =@ - s)ng(z. ”,

for some 1y between y and £ (if y = s, we take y = y = £), 50 M may be
taken to be any upper bound for |a8f/ay|.

Theorem. Let f be a continuous realvalued function on an open subset of
E? that contasns the point (a, b). Suppose there exists M € R such that

If(z, V) =Sz )| S My —s|

W(z,u)md(z,i)mivﬂhogivmopmw. Then there exists A E R,
A > 0, such that there exisis one and only one realwalued function ¢ on
(a — R, a 4+ R) such Bhat ¢’'(z) = f(z, ¢(z)) on this snterval and ¢(a) = b.

For a continuous real-valued function ¢ on an open interval in R that
contains a, the equations ¢'(z) = f(z, ¢(z)) and ¢(a) = b hold if and only
if p(s) = [ £(t, p(0))dt + b, as follows from the fundamental theorem of
calculus. Thus solving the given differential equation with initial condition
is equivalent to solving the “integral equation”

v = [7 10, e(0)dt +b.

_ If to a function ¥ we associate another function F(y) whose value at any z
is (FW)(@ = [, ¥()dt + b, we see that solving the integral equa-
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tion is the same as finding a function ¢ such that F(¢) = ¢, that is, solving
a kind of fixed point problem; this is the basic idea of the proof, which we
now proceed to work out in detail. We begin by choosing some N € R
" such that N > [f(a, b)|, then some r E R, r > 0, such that the open ball
in E? of center (a, b) and radius r is entirely contained in the open set on
which f is defined and such that |f(z,y)| <N whenever (z,y) is in the

ball. Then choose A E R, h > 0, 80 that k <r/2, h <r/2N, and hM < 1.
The rectangle

‘(x’y)em: lx“‘“lsh, ‘y-bISNh}

is then entirely contained in the open set on which f is defined and for each
(z, y) in this rectangle we have |f(z, )| < N. We are going to prove that
there exists one and only one continuous function ¢ on the closed interval
[a — A, a + A) such that

o@) = [ 16 eO)dt +b

for all z € [a — h, a + h). To do this, consider the complete metric space
C(la — h, a + h]) of all continuous real-valued functions on the compact
metric space (@ — h, a + &), as at the end of Chapter IV. Let B be the
closed ball in C([a — k, a + h]) of radius Nk whose center is the constant
function b, that is B is the set of all continuous functions

v:la —h,a+ hl—[b — Nk b+ Nk

Since B is a closed subset of a complete metric space, B is itself a complete
metric space. We claim that any solution of the above integral equation
must lie in B, that in fact if ¢ is as above then |¢(z) — b| < Nk for all
2 € [a — h,a + h]. For if there exist points z € [a — h, a + A} such that
je(x) — b| 2 Nh, let v be the greatest lower bound of |z — a| for all such
points. Since ¢ is continuous and ¢(a) = b, it follows that ¥ > 0 and
|¢(a £ ) — b| = Nh for at least one choice of the gign . Thus Nh =
|ela £ v) — ¢(a)| = |v¢'(a)|, for some a between a and a == v, by the
mean value theorem, and the latter expression equals |yf(«, ¢(a))| <
4N < kN, which is a contradiction. Thus any solution ¢ of the integral
equation is in B. Now for any ¥ € B define a new function

F):la —h,a+hl—R
by
(@)@ = [ 10 ¥t +b.

Since y € B, for any ¢t € [a — h, a + h] we have |¢(t) — b| < Nh, so that
f(t, ¥(0)) is defined, is continuous as a function of ¢, and |f(¢, ¥(2))| < N.
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Hence for z € [a — h, a + h], (F())(z) is defined and | (F(y))(z) — b| =
| [ re ¥()dt| < N|z — a| < AN. Since F(y) is clearly continuous we

have F(y) €EB. Thus F:B—B. If ¥, w € B then for any element
zE[a — h,a 4+ h] we have

| (F@))(2) — (F@)) ()|

= | [ (e v =516, wie)at|

< |z — almax {|f(t, ¥()) — £, ()| : 1€ [a — b, & + A])
S|z —a|Mmax {|¢(t) —w(t)| : tE[a — h,a+ A}
<hMdW, ),

where d denotes the metric in B. Thus
d(F(¥), F(w)) < h M d(Y, w).

But AM < 1, so that F is a contraction map. The fixed point theorem thus
assures us of the existence of a unique ¢ € B such that ¢ = F(¢p), that is
such that

o(@) = [*1(t, e(O)dt +b

for all zE€[a—h,a+h). For 2E (a —h,a+h) we clearly have
¢'(z) = f(z, ¢(z)) and ¢(a) = b. Thus the existence part of the proof is
complete. However it is not immediately obvious that the restriction of
¢ to (@ — h, a + h) is the only solution on (a — A, a + A) of our differential
equation with initial condition. To see this, note that the above proof would
have gone through with A replaced by any A € R such that 0 <Ay <A,
Any solution on (a — A, a + A) of the differential equation with initial
ocondition gives a solution of the integral equation on [a — Ay, 6 + A)). But
we know that the integral equation has a unique solution on [a — Ay, a + Ay}
Thus any two solutions on (s — A, a4+ h) have equal restrictions to
[a — hy, @ + A4). Since this is true for all A, such that 0 < A, < A, there is
at most one solution on (a — A, a 4 &) and our proof is now complete.

The preceding theorem can be generalized to systems of first order
differential equations of the form

dy;
dz

-%1;—’ = f3(Z, Y1, - - +» Un)

= fi(z, ¥y, . -‘° y Yn)

%ﬁ_ =f.(x, Yty ooy Ilu)

with initial conditions y(a) = b, 1 = 1,2, ..., n. Here functions fy, fs, .. .,
fa of n + 1 variables are given, together with real numbers a, by, ..., bs,
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and the problem is to find functions g, ..., ys of = satisfying the given
equations. Except for notational complications, the generalisation of the
preceding theorem is straightforward. However we are also interested in
getting sharper results than have so far been obtained for n = 1, so we
begin with a rather specific lemma that isolates the technical details relating
to the fixed point theorem.

Lemma. Let fi, ...,fs be continuous real-valued functions on open
subset U of E~+! that contains the point (a, by, ..., D). Supposs thers exist
N,MER such that for each t = 1, ..., n

[z, 9 .- 90) I <N
whenever (2,41, ...,¥s) €E U and
iz vy - ve) =Sz, oy ) | S M(Gh — 80 + -+ + (e — 2))
whenever (Z, 41, ..., ¥n), (2,8, ..., 28) EU. Lt AE R, A > 0, be such that

{(z, 1, --o.v-)EE""“tlz—GISh,
IVI"bIlSNA, coey ly.-b-ISNh‘CU.

Then if AM+/n <1 there exisis one and only one n-tuple (p1, ..., ¥a) of
real-valued functions on the interval (a — A, a + A) such that for each ¢ =
1, ...,n, ¢/(z) =z, (), ..., Pu(z)) on this interval and pa) = b

We want to find functions ¢, . .., ¢a satisfying the system of integral
equations

oi@) = [ 1, 00, . n @+ By im 1,

Analogously to what was done in the proof of the preceding theorem, we
consider the compact metric space [ — A, a + A] and the complete metric
space § of all continuous functions from [a — A, a + A) into E*, as at the
end of Chapter IV. We indicate a function into E* by its n-tuple of com-
ponent functions, so that an element ¥ of & is an n-tuple (¥4, ..., ¥a),
where each ¥ is & continuous real-valued function on [a — A, a + A} and
for any z € [a — A, a + A} we have ¥(z) = (y1(2), ..., ¥a(2)). Consider the
subset B of & consisting of all ¢ = (yy, .. ., ¥a) such that [§«(z) — b < NA
for all zEja —h,a+ Al and all i=1,...,n In the present case B
is not a ball in §, as it was in the preceding proof, but it is still a closed
subset of §: for if y2, y3, ¥4, ... is & sequence of elements of B that ocon-
verges o the element § of § then for each z € [a — A, a + A] we have

lim y/(z) = y¥(z),
joon
80 that
l’i_r‘n%(z) =y2), t=1,...,m,
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and from the inequalities |¢/(z) — b;| < NA for all ; we can therefore
deduce |¢Yi(z) — b:] < NA, so that ¢ € B, thus verifying the criterion for
closure of the theorem of § 3 of Chapter III. Since B is a closed subset of
s complete metric space, B is itself a complete metric space. We claim that
if @ = (¢, ..., vs) EF satisfies the above system of integral equations
then ¢ € B, and in fact |piz) — b;| < Nh for all z € [a — h,a + A} and
all =1, ...,n For if there exist points z € [¢ — A, a + h] such that
|edz) — bi| = Nh for some 1, let v be the greatest lower bound of |z — a|
for all such points z. Since each ¢; is continuous and ¢;(a) = b; we have
¥>0and |e(aty) —b;|=NAforsomes=1,...,nand at least one
of the two choices of sign . Thus NA = |gla £ v) — ¢a)| = |ve/(a)],
for some « between a and a =+ v, by the mean value theorem, and the
Iatter expression equals |y, ¢i(a), ..., pu(a))| < YN < AN, a contra-
diction. Thus any solution ¢ of the system of integral equations on [a — A,
a+ k] is in B. Now for any Yy € B define another n-tuple of functions
F(y) = (F\(¥), ..., Fa(¥)) from [a — b, a + M) into R by

(F#)@ = [ 6,90, .., aO)t + b

Since Yy € B, for any t€[a —h,a+h] and any i =1, ...,n we have
|W6) — bs| < Nh, so that f(¢, ¥1(t), . . ., ¥a(t)) is defined, is continuous as
s function of ¢, and |fi(t, ¥1(f), ..., ¥a(1))| < N. Hence for z € [a — A,
a + A}, (Fi(¥))(z) is defined and

|(F@)@) = bl =| [ 56, 1, ..., va)it]| < Wb,

Since each Fi(y) is clearly continuous, we have F(y) € B. That is,
F: B—» B. We now show that F is a contraction map, Let ¥, w € B. For
anyxEla—Aa+Alandi=1,...,n,

|(Pe#) (@) = (Pd)) (@]
=| [ 0 10, - ) = £ 0, ..., on )]

< lz —olmax ”I‘(‘v "l(t)v veey %(l))

=Jt, n(t), ..., ()| : ¢t Ela — K, a+h]}
S|z — a| M max (d(¥(), () : ¢ E la — A, a + h]}
SMM d(¥, w).

(We have here used the same letter d to denote the metrics in E* and in B.)
Thus

AEDE, F@)@) = (£ (F@)@ = (F)@))"
ShMVndW, w),

d(F(¥), F(w)) S hM +/nd¥, w).
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Since we have assumed that AM+/n < 1, F is indeed a contraction map.
Thus by the fixed point theorem there is & unique ¢ = (¢, ..., ¢s) E B
such that ¢ = F(p), that is, such that

w@ =[50 e®, ..., )+ b

forallzE[a—h,a+hlandalle=1,...,n ForzE (e — h,a + k) we
clearly have ¢/ (z) = fi(z, ¢i(z), .. ., @a(z)) and pi(a) = b;, so the existence
part of the proof is finished. To prove that the restrictions of ¢, ..., ¢
to (@ — A, a + A) are the only functions with the desired properties, note
that the above proof would have gone through with A replaced by any
h: € R such that 0 < h, < A. Any solution on (a — h, a + h) of the system
of differential equations with initial conditions gives a solution of the system
of integral equations on [a — k,, a + k). But we know that the system of
integral equations has a unique solution on (@ — h;, @ + k). Thus any two
solutions on (@ — h,a + k) of the system of differential equations with
initial conditions have equal restrictions to [@ — hy, @ + hj). Since this is
true for all A, siich that 0 < A; < h there is at most one solution on (a — A,
a + h) and our proof is complete.

Generalizing our previous definition, we say that a real-valued function
J on an open subset of E~+! gatisfies a Lipschitz condition if there exists a
number M € R such that whenever (z, %, ..., y.) and (z, 21, ..., 2.) are
in the open set on which f is defined we have

@y oo ¥a) —F @21y ooy 2) | S M((h — 20+ o + (ya — 22)0)'2

This condition can be given in another way, for since

ln=al+ o +lys =22 (=20 + -+ + (gu —2))2
2max{|y—2al,..., |ys —2zl}

Z—,l;(lux-nl-k oo |ye —al),

we see that f satisfies a Lipschits condition if and only if there exists
M’ € R such that whenever fis defined at (z, 91, ..., y») and (z, 21, .. ., 22)
we have

f@, ... 08) = [z, 2, ---.S-)ISM'(Iy: —a|+ - +|¥n —z).

As a consequence it is possible to state that a rather large class of functions
satisfy Lipschitz conditions: a real-valued function f on an open subset of
E*+! gatisfies & Lipschitz condition if 8f/dy, ..., 9f/dy. exist and are
bounded on the open set and if whenever (z, 1, ..., ya) and (z, 21, ..., 22)
are in the open set 80 is the entire line segment between these two points.
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For

If@ py . ym) — S22 ol
L@y, -y =@ 208 oy 08|
+lf(xlzl!y” “’»yﬂ) —f(x, 2,20, 1y, ---,ﬂ.)|+ cte
+|f(x) 2y coeyOayy y') —f(-‘l»',ll, ..-,l.)l

'I(ﬂl-ﬂ)‘-ggr(zn"hyh '°':”ﬂ)'+ e

+l(yo - 2) aa",f (z,21, ..., 20, ’,ﬂ)l’
where for ¢ = 1, ..., n, 7 is between y; and 2 (or equal to them if these
latter are equal), so that if M’ is an upper bound for {8f/dys], ..., | 8f/3ya|
we have

Lf(xy Yy °"vyn) _f(xrzh "')zﬂ)lsM"('y‘ —7'1[+ tee +Iyﬂ —zﬂl)'

Theorem. Let fy, ..., Js be conlinuous real-valued functions on an open
subset of E**! that conlains the point (a, by, . .., ba). Suppose that fy, ..., fs
satisfy Lipschitz conditions, that is there exists M € R such that

‘f"(x; Yy -y ll-) "f"(zizh "-:z!l)ls M((yl —21), + -+ (yﬂ —z“)’)‘"

fori=1, ..., nwhenever (x, 1, ..., Ys) and (z, 21, ..., 22) are in the given
open set. Then there exists h € R, h > 0, such that there exists one and only
one n-tuple of real-valued functions (¢, ..., ¢s) on (@ — h, a + R) such that
Jori=1,...,n we have ¢/(x) = fi(z, ps(x), ..., ¢n(x)) on this interval and
¢i(a) = b

To prove this choose some N € R such that

N > max {|fi(a, by, ..., ba) ]y - -+, Uu(a: by, -“’bﬂ)“s

then some r € R, r > 0, such that the open ball in E** of center (a, by,
.. ., ba) and radius r is entirely contained in the open set on which fy, ..., /s
are defined and such that |fi(z, 1, ...,¥s)| <N for each t=1,...,n
whenever (z, 41, ..., ys) is in the ball. If A ER, h > 0, any point (z, ¥,
ceoyYn) €E E*Hguchthat |z —a| < h, [y1 — 01| S Nh, ..., |lys = bs| < Nk
will automatically be in our open ball if A* + nN*h? < r%. Hence the theorem
results directly from the lemma if we take the U of the lemma to be our
open ball, take the same fi, ..., fa, @, by, ..., bay, N, M, and choose h € R,
h > 0, such that h < r/(1 + nN?)'1 and hM+/n < 1.

Corollary 1. Let f,, ..., fa be continuous real-valued functions on an open
subset of E**! that contains the point (a, by, ..., b.). Suppose that fr, ..., fa
satisfy Lipschitz conditions. Then if S is any open interval in R that contains
the point a there is at most one n-tuple of real-valued functions (¢, ..., @a)
on S such that for each ¢ = 1, ..., n we have ¢/ (z) = fi(z, A1(z), - . ., ¢a(2))
on S and ¢i(a) = b;.
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For suppose that (¢, ..., ¢a) and (Y, ..., ¥a) are two n-tuples of
functions each of which satisfies the given conditions. We must show that
e1=¥1, ..., ¢» = ¥a. This can be accomplished by a very simple argu-
ment as follows: We begin by noting that by the uniqueness part of the
theorem the subset of S given by

{a€ 8 : ¢ia) = Yila), t=1,...,n)

is open. By the continuity of ¢y, ..., @s, ¥1, . . ., ¥a, this subset is closed.
Since S is connected this subset must be S itself or the empty set. Since
the subset includes the point a, we are forced to the conclusion that it
must be S itself.

Corollary 2. Lel fy, ..., fx be continuous real-valued functions on an open
subset U of E~*! that contains the point (a, by, . . ., bs). Suppose that fy, ..., fa
satisfy Lipschitz conditions. Let Ny, ..., No» € R be such that

lf‘(z’ Yy ..oy y‘)'SNi

forall i=1,...,n and all (z,y, -..,ys) EU. Let SCR be an open
tnterval containing the point a such thal

{(x’yll "'!yﬂ)eE“+!:zes! |yi-b{'$N£!3*a',£-1, uj’n,n}ch

Then there exial unique functions ¢1:S— R, ..., ¢a: S— R such that for
eachi =1, ...,nwehave ¢/(z) = fi(z, er(), . . ., Pn(Z)) on 8 and p{a) = b;.

If there exist functions ¢y, . . ., ¢ with the stated properties then they
must be unique, by Corollary 1. Also the equations

w(x)=]:'fe(x.wx(z).---,m(x))dx+b¢, €S, i=1,...,n

imply |ei(z) — b| < Ni|z —al, so that for all 2ES we will have
(z, o1(7), ..., ¢a(z)) € Q, where Q is the set defined by

Q= {(3,3/!, ~-'5yﬂ) € Exn :zES, |U¢ —b“SN‘lx "0',1“' 1’ ""”}'

(See Figure 33, which illustrates the case n = 1). One consequence of this
is that ¢, ..., @ do not depend at all on the values of f;, ..., fs outside
the set Q. That is, if we consider a similar problem, with all the same data
as at present except that the values of fy, . . ., fa are altered on U — Q, then
the same functions ¢, . . ., ¢s will solve both problems. But to go through
with the proof we must take into account the behavior of fy, .. ., f» outside
Q, so we go to the trouble of modifying fy, . . ., fa outside Q in such & way
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Fiounn 83. The set Q= ((z, ) EB: 2 €S, |y — b|< N|z — a|} for the case
n = 1 of Corollary 2 is indicated by shading.

that our proof will work. As auxiliaries, we define functions u;: £*— R,
t=1 ...,n by

N;l’.t-a!-{-b‘ if y—b > Nijz-—a
w(z,y) = if ly—u|< Ni|z—a|
—N«lz-al-l-be if y—b <—Niz—al.

These functions z,, ..., s are continuous and for any z€ S and y,, ..
¥» ER we have (z, s1(%, 1), - - ., (2, ¥a)) € Q. Betting

0@, Y1y -« oy W) = Jz, 1a(Z, 1), - . ., (2, ¥a))

forz€S8, ¥, ..., 1nERand ¢ =1,...,n, we get each g; continuous,
0@ s - -+  ¥a) | S Ny, and gz, 1, . .., ¥a) = fi(Z, 4, .. ., y») Whenever
@ ¥ .- Ys) €EQ. Now let M € R be such that

ez oo oin) =Sz 8n, - 8) [ S M(Gh = 20" + - + (Yo — &)?)'

for all (z,81, ooy ¥n), (.21, ...,8) EVU and i=1,...,n It is & fact
that for each (z,y),(z,s) EE*and each i = 1, ...,n we have

|uz, ¥) — iz, )| S|y —2|;

to prove this it suffices to suppose y 2 ¢, iz, y) » uiz,s), so that
v 2 w2, 9) 2 plz,2) 2 2.

Thusforany x €8, 4, ..., ¥y 21, ..., 2 ERand i =1, ..., 0, we have

lodz, 1, .., v8) — iz, 210, .. ., 20)|
- ‘f‘(z) “l(zv yl)’ ceey “ﬁ(z» ll-)) - f‘(x» “‘(x) zl), eeey l“u(zn ‘O)T'
< M((ua(z, 1) — ma(z, 20)* + -+ + (a(2, Yn) — pa(z, 22))1)1
SM(y—2)'+ - + (s — z)?)',
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80 that g, ..., ga also satisfy Lipschitz conditions, with the same 3. Since
Ji and g; have the same restrictions to Q we may, if necessary, replace each
Ji by gi 80 as to be able to assume that the open set U in the statement of
the corollary is {(z, 3, ..., ys) € E*H : 2 € S}. Making this assumption,
choose h € R, A > 0, such that S contains the closed interval [a — A, a + h]
and such that h M+/n < 1, M being the constant of the Lipschitz condi-
tions. Then the lemma tells us that given any open subinterval of S of
length 2k whose extremities are in S there exists a unique solution of the
system of differential equations ¥ = fu(z, y1, ..., ¥s), ¢ =1, ..., n on the
subinterval with arbitrarily prescribed values of y, ..., ys 8t the center
of the subinterval. Suppose now that (¢, ..., @) is & solution of the
system of differential equations on an open subinterval S’ of § such that
a € S and ¢i(a) = b, 1 = 1, ..., n. (For example, one possible such §’ is
(@ —h,a+4).) For any a € 8’ such that [@ —h, a+ h]CS we can
find a solution (Y1, ..., ¥,) of the system of differential equations on
(@ — h,a+ h) such that yY(a) = ¢i(a), ¢ =1,...,n. By uniqueness
(Corollary 1), ¥i(x) = ¢i(z) for all &€ S'MN (¢ — h, @ + h), s0 that we
can put the ¢'s and y¥i's together to get a solution on the open interval
S’ \U (a — h, a + k). Choosing « close to the extremities of S’, we see that
we can extend (¢4, .. ., @) to a solution of the system of differential equa-
tions on the open interval got by lengthening S’ by a distance & at either
extremity, provided we still remain in the given interval S; otherwige we
can lengthen 8’ up to an extremity of S. Repeating this procedure will give
us a unique solution on all of S.

Corollary 3. Let S C R be an open interval containing a and let fy, . . ., fa
be continuous real-valued functions on {(z, 1y, ..., ya) € E* : 2 € S} that
satisfy Lipschitz conditions. Then for any by, ..., bs € R there exist unique
Sfunctions o1: S—R, ..., 0a: S—>R such that for each i=1,...,n we
have ¢/(z) = fi(z, ¢1(z), . .., ¢a(z)) on S and pi(a) = bs.

First suppose that this has been proved in the special case that f,
..+, J» are bounded on the subset of E**+! given by {(z, by, ..., bs) : z € S}.
Then for any a;, a: € S such that a, < a < as, the functions f,, ..., f. are
bounded on the compact subset of E"+!' given by {(z,b), ...,ba):
z € [ay, @3]}, so that there is a solution of the given system of differential
equations with initial conditions on the subinterval (ai, as) of S. By Corol-
lary 1, if we choose different a,, as the solutions we get will be the same on
the intersection of the two intervals (a,, a;). Since any point of S is con-
tained in some subinterval (a,, as) of S, we thus get a unique solution on
all of S. Hence we may suppose to begin with that fy, ..., fa are bounded
on {(z,b,...,b) :z2E S}. Let M ER besuch thatif x €8, y, ..., Yn,
2,..,2aERand ¢ =1, ...,n we have

1fiz, vy - ) —Jimy2s, ooy 2) | S M (g — 2002+ o+ + (Yn — 2a))M2
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Let R € R, h > 0, be such that S contains the open interval (@ — h, a + k)
and AM+/7n < 1. We shall show that given any open subinterval of S of
length 2h there exists a unique solution of the system of differential equa-
tions y = fi(z, ¥, ..., ¥n), t =1, ..., n, on the subinterval having arbi-
trarily prescribed values of i, ...,y at the center of the subinterval.
Granting this and reasoning as at the end of the proof of the preceding
corollary, given any solution of the system of differential equations with
initial conditions on an open subinterval §’ of S such that a € $’ and given
any a € S’ we can get a solution on the interval 8'\U (o — &, a + A),
provided this latter interval is contained in 8. We can repeat this procedure
to get a unique solution on all of S. Thus we are reduced to proving the
corollary in the special case where S = (a — h,a + h), M is as above,
hM+/n < 1, and there is a number A € R such that |fi(x, by, ..., b)) | <4
forallz€ (@ — h,a+ h) and ¢ = 1, ..., n. For some positive real number
N to be determined later define

U={(z, 91, ..., 0 EEN: |z —a|<h, ;s —b;i| <Nh,i=1, ..., n}.
Then if (z, 9, ..., ) EUVandi=1, ..., n we have
|[fiz, s -y yn) — Sz, by, ..., Ba) |
<M( T - b0 < MWD = AUNV 7,
(25}
implying
Lfi'(x)yl’ "°)yi)|<hMN‘\/-’—'+A°

We can now try to apply Corollary 2 to the present S, fi, ..., fs, @, by,
«e.yba and U, taking Ny = --- = N, = N. All that is wanting for Corol-
lary 2 to go through, thereby completing the proof of Corollary 3, is that
the inequalities
lfilz, y1, ..., )| < N
hold for all (z, 4, ...,y») €E Uandalli =1, ..., n. But these are valid if
AMMN+/n+ A <N,
Since AM+4/n <1 the last inequality will be guaranteed by taking
N2> A/(1 —hM+/n), 8o we are done.

An almost immediate consequence of the last result is the following
main theorem on systems of first order ordinary linear differential equations

-%%‘- =ua@n+ - +ua(@ys to(z), i=1,...,n
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Corollary 4. Let S C R be an open interval containing the point a and for
each i,j =1, ...,n let u; and v; be conlinuous real-valued functions on S.
Then for any by, ..., b, E R there exist unique funciions ¢1: S—R, ...,
@n: 8 — R such that for each ¢ = 1, ...,n we have

@ @) = 3 uyl2)es(z) + vi(z)
o1
on S and ¢i(a) = b

If all of the functions u; are bounded on 8, say |uy(z)| < M for all

zE€Sandalld,j=1,...,nthenifzESand gy, ..., 4,8, ..., 8 ER
we have

I( ,};‘ wiy(z)ys + v;(z)) - ( g uy(z)zy + m(z))|

SM(n-al+: - +ly—mn)),
our desired Lipschitz condition, so this corollary comes directly from the.
preceding one. If the uy's are not bounded on S they are nevertheless
bounded on the interval (a;, as) whenever a,,a; € 8 and a; < a < a, (for
each u;; is bounded on [a,, as]), 50 we have a unique solution on (a,, a3).
We therefore have a unique solution on the umon of all such open intervals
(a1, as), which is 8.

Higher order differential equations are equivalent to systems of first
order differential equations. For exa.mple, setting

dy.
n=y YYr=-5- yl‘"‘-"o‘ o Yn ™=
the n* order differential equation

£ r(en )

is equivalent to the system of first order differential equations

dyn
=P W),

Thus the next two corollaries are immediate consequences of the theorem
and the last corollary respectively.
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Corollary 5. Let { be a continuous real-valued function on an open subset
of E**! that contains the point (a, o, . . ., Ca-1). Suppose that [ salisfies a
Lipechilz condition, that 1s there exists M € R such that

1 ¥ty s ) = 1@, 21, ey 2| S M (G — 20+ -+ + (ya — 20?18

whenever (2,41, ..., ¥a) and (2,21, ..., 22) are in the given open set. Then
there exists h € R, h > 0, such that there exists one and only one function
¢: (@ — h,a + k) — R such that

dre(a) _ 1 do(z) *lo(z) \
dx*

z, ¢(z), dx ' de )

Jorall z € (a — h,a + k) and ¢(a) = co, ¢’(@) = ¢y, ..., " V(@) = Cp1.

Corollary 6. Let S C R be an open tnlerval conlaining the point a and let
U, Usy ..., Un, U De conlinuous real-valued functions on S. Then for any
Co, + .+ Cam1 E R there exists a unique function ¢: S — R such that

e F UV 4 o Fuap Fupp=v

and ¢(a) = co, ¢'(a) = c1, ..., ¢*V(a) = caes.

This last result is of course the main theorem on ordinary linear
differential equations. We had previously considered two notable special

cases, namely the differential equations
¢ = f(z) (in Chapter VI, §4)
and

V' +y =0 (in Chapter VII, §4).

PROBLEMS

1. (s) Draw diagrams to verify that Newton’s method of solving an equation
J(2) = 0 works if f is a twice differentiable real-valued function on an
open interval U in R that changes sign, whose derivative is nowhere
sero, and whose second derivative does not change sign, provided that
the point xy € U is 80 chosen that also z; € U; indeed under these cir-
cumstances the sequence z,, 2,, Zs, . . . i8 monotonic.

(b) Use Problem 12, Chapter V to prove these facts.

2. Leta € R, a > 0. Bhow that applying Newton's method to the function 2* — a
gives the formuls z.,1 = %(z. + ;':) Prove that Newton’s method works
for any zo > 0 by showing that then z, > v/a and the map sending z into
%(z-!-g) is & contraction map of {z ER : z > v/ a}. (This method of find-
ing square roots occurs in ancient Babylonian manuscripts.)
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10.

11.
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Prove that the equation cos £ — z — § = 0 has a unique real solution. Show
that the fixed point theorem is applicable to the function P(z) = cosz — §
and the interval {0, x/4] and thereby find this solution to three decimal places.

Find the “maximal” U, ¢ of the implicit function theorem if f(z,y) =
2+ — 1 and (a, b) = (0, 1).

Generalisze the proof of the implicit function theorem to get the following re-
sult: Let f be a continuous real-valued function on an open subset of E*+! that
contains the point (a, ..., asb), with f(a,, ..., as, b) = 0. Suppose that
9f/dy exists and is continuous on the given open subset and that

%(ag, ...,a.,b)#o.'

Then there exist positive real numbers A and k such that there exists a unique
function
e {(@y ..., Z) EE*: (m—a)+ -+ + (Ta — an)? < AP}
~{yER: [y=bl <k

such that f(zi, ..., Zs, ¢(21, ..., Zs)) = 0 for all (z,, . ., Z.) in question.

Expand the following argument into a proof of the implicit function theorem
that avoids the use of the fixed point theorem: Take r > 0 such that f is de-
fined on the entire open ball in E*® of center (a, b) and radius r and such that
0f/dy is never szero on this ball. Choose k such that 0 < k < r, then choose 4
such that 0 <h < v/ — k* and f is nowhere sero on the set

() EE: |z —a <h ly—b =k

Then f is sero at precisely one point of each vertical section of the rectangle
@) ER: lz—a <h, ly—Y <kl

Find all solutions on R of the differential equation y’ = 3|y|?s.

Solve the system y’ = 2 v/Jyl, y(0) = 0. (There is an infinity of answers,
with essentially four different ones near x = 0.)

Apply the method of proof of the first theorem of §3 to solve the system
vy’ =y, y(0) = 1, starting the successive approximations with ¥, = 0, ob-
taining thereby a power series expansion of the solution.

Modify the proof of the first theorem of §3 to show that we may take for A
any positive real number less than 1/M such that the open subset of E? on
which f is defined contains {(z,y) EE*:|z —a| <,y ER] by showing
that for such an A the given formula for F defines a contraction map on all of
C(la — h, a + k]), not just on a ball B.

Suppose that the conditions of the first theorem of §3 obtain and that ¢ is s
real-valued function on some open interval of R one of whose extremities is a,
¥ having the properties that ¥'(z) = f(z, ¢(2)) and lim y¥(z) = b. Prove that
¥(z) = ¢(z) whenever both expressions are defined. *™*

Show that Corollaries 3, 4 and 6 of the last theorem remain valid if, instead
of being an open interval, S is R itself.
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13. Prove that if uy, us, ..., ua, v arereal-valued functions on R that are m times

14,

differentiable, then any solution of the differential equation
VO + w(@y + -+ va(@y = v(z)

‘is (n 4 m) times differentiable.

Let [a, b] be a closed interval in R and let A and K be continuous real-valued
functions on [a, b] and {(z, y) € E*: 2, y € [a, b]} respectively. If ¢ € C({a, ]),
define F(y) € C((a, b]) by

C F@ =A@ + [ K v dy

(the continuity of F(Y) following from Prob. 15, Chap. VI). S8how that if
|(b—a) K(z,y)| <1 for all 2,y € [a, ] then F is a contraction map, and
therefore there is a unique ¢ € C({a, b]) such that

o@) =A@ + [ Ke,1) o) dy
for all x € [a, b}.

. Let [a, b] be a closed interval in R and let A and K be continuous real-valued

functions on {4, b] and {(z,y) € E* : a < y < 7 < b} respectively. Prove that
there is a unique ¢ € C({a, b]) such that

0@ = A@ + [ K(z,9) o) dy

for all z € [a, b]. (Hint; Imitate the procedure of the preceding problem if
|(6—a) K(z,y)| <1 whenever ¢ <y <2 <b. To do the general case, note
that for any a, € (a, b), the problem reduces to proving the existence of a
unique ¢ € C([a, a3]) such that

a@) = 4@ + [ K 9) o) dy
for all z € [a, @) and the existence of a unique s € C({ay, b]) such that

a@) = 4@ + [ Ke ) oW dy + [ K0 o) dy
for all z € [a), B].)



CHAPTER 1X

Partial Differentiation

This chapter is concerned with extending the meth-
ods of one-variable differential calculus to functions of
more than one variable. There are few difficulties, once
one has the correct definition of differentiability for
functions of several variables. )
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§$ 1. DEFINITIONS AND BASIC PROPERTIES.

Partial derivatives are themselves a matter of one-variable differential
calculus. As such they have already made their appearance in this text in
our discussions of differentiation under the integnl sign and the implicit
function theorem. They were also alluded to in our discussion of differential
equations, in connection with Lipschitz conditions. Let us recall their defi-
nition, restricting ourselves for convenience to functions on open subsets
of E~.

For any positive integer n, any open subset U of E*, any real-valued
function f on U, any point a = (a;, ...,a,) €E U and any 1 =1,
the ¢ partial derivative of f at a is deﬁned to be the derivative at GsOf the
real-valued function which sends z; into f(ay, ..., i1, %i, Gisy, - - ., Ga), if
this derivative exists. (The expression f(ay, ..., @i, i, Gy, -+« a.) is of
course to be understood as f(z), ay, ..., as) if £ =1 and in like manner
a8 fay, ..., Gs, Tx) if 1 = n. Note that the function sending z; into f(as,
v ooy @ity Tiy Big, ++ ., @s) i8 defined on an open subset of R that con-
tains a,, 80 that it makes sense to speak of the derivative, if it exists.) The

 partial derivative of f at a is often denoted f/(a) or -{’é—(a). Thus we
can write '
L g e f(@ ey G, T Gy ey Oa) =SB, e, G)
fi@) =~ (@) = lim P .
If f{(a) exists for each a € U we get a real-valued function f{ on U (also

denoted 3f/az;) whose value at any a € U is f{(a); this is the * partial
derivative of f.
We remark that there are many other notations for partial derivatives,

none of which shall be used in this text. Alternate notations for fi = af/ax,
include

f‘h fm md Ddt
the analogous notations for f; (a) = -gz‘f— (a) being
1:(a), fx(a), and (D) (a).

These are often expanded to f{(ay, .. ., @s), %(a;, ..., 0Gs), etc., and one
even finds

= .a:‘; = (alp -.-’al)! 3&‘-"_6_;&;-2&(“’ ...,0.), ete.
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There are clearly many possibilities for confusion and more will appear
later. No systematic notation is perfect, although some are better than
others. The only essential is that we know exactly what is meant in any
given instance.

How should the notion of differentiability be defined for functions of
several variables? The original definition by means of difference quotients
(f(z) — f(z0))/(z — z0) does not generalize immediately. A definition of
differentiability for functions of more than one variable rmust be given
which does more than refer to partial derivatives, for all the partial deriva-
tives of a function may exist at a point without the function being well-
behaved there. For example, the function on E* which has value zero at
the origin (0,0) and the value zy/(z* + y*) at any other point (z,y) is

such that _g_(o, 0) and g_f_(o, 0) exist (and equal zero), but f is not even
Y
continuous at (0, 0). It turns out that the property of being closely approxi-

mable by linear functions can be generalized and this will give us the desired
definition, as follows.

Definition. Let f be a real-valued function on an open subset U of E*.
Let a= (a1, ...,a,) € U. Then f is differentiable at a if there exist
¢, ..., x € R such that

@) = (@ el —a) ot )] _,
zve d(z, a)

The z), ...,z in this definition are the coordinates of z, so that
2= (zy, ...,%s). The d denotes the metric in E», that is d(z,a) =
(@ —a)+ -+ + (za — an)?)2. '

The limit condition in the above definition is sometimes more con-
veniently stated as follows: given any ¢ > 0, there exists a § > 0 such that
if ze U and d(z, a) < § then

1f@) — (f(@) + cx(@ — @) + - - + ca(zn — aw)) | < ed(z, a).

The symbol < is used here rather than < in order to include the case
z = a.

If forany i=1,...,n we set z = (ay, ..., Gicy, T, Big1, - .+, Bn) ID
the above definition, we get
lim ]j(al: ooy Qi1 Ty Bityy --',an) "'f(a) —- C.'(I" - at)l =0
28 |-’l7.' - a;( ’
or
lim f(ah o ooy Binly Tiy Bigly - ";aa) —f(a) —c|=0
Zj-e0; X —a; !
so that f/(a) exists, and indeed f!/(a) = c¢i;. Thus if f is differentiable at a
then the coefficients ¢, ..., c» are unique and equal to fi(a), ..., fa(a)

respectively.
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The following technical lemma will prove useful on several occasions.

Lemma. Let f be a real-valued function on an open subset U of E* and let
a E U. Then f is differentiable at a if and only if there exist realvalued
Junctions A,, ..., A, on U, continuous at a, such that

J(@) — f(a) = Ay(z)(z1 — @) + Ax(z)(zs — as) + - - - + Au(2) (20 — a4)
for all x € U. In this case, for each i = 1, ..., n we have f{(a) = A«a).

' If f is differentiable at @ we have

i @ = (@ + @@ —a) + -+ + @@ —a)| _,
Lol d(z, a)

Since
d(z,a) = ((z1 —a)* + - + @ — @) S |2y — |+ -+ + |20 —aal,
if we define the function e¢: U — R by

() = L= U@ +]i@)(@ —a) + - +fr(a)(z — )
[za = |+ -+ +]2za —aal
for 2 v a and e(a) = 0 we have lim ¢(x) = 0 and

J(z) = f(a) + fi(@) (22 — ar) + - - + fi(a)(za ~ an)

+ @) (|2 —ar|+ -+ + |20 —aal)
for all x € U. Setting

Adz) = fi(a) = «(z)

fori=1,...,n, with the plus sign being chosen if z; — a; > 0, otherwise
the minus sign, we get

f@) = f(@) = Axz)(m1 — @) + - - - + Au(2) (20 — aa)
and lim A«(z) = f{(a) = A(a), which proves half of the lemma. For the
converse, if Ay, ..., Aa: U— R are functions continuous at a such that

J@) —f(a) = Axz)(zs — @) + - - + Au(2)(zn — an)
then for 2 € U, z »* a, we have

[f(2) = (f(a) + Ax(a)(z1 — a1) + - - + An(a)(za — a2))|
d(z, a)

_ [(Ax(2) — 4u@)) (@1 — @) + -+ + (Ax(2) — 42(0)) (22 — a)|
d(z, a)

< 14@ - a@E=2l 4 4 - a0 1
S141@) — A(a)|+ -+ +|Ax(2) — Aa(a)].

dza
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By the continuity of A,, ..., A. at a, the last expression approaches the
limit szero as z approaches a, proving that f is differentiable at a and also
that fi(a) = Aa) fori=1,...,n

Note that if n > 1, the functions A,, ..., A. appearing in the lemma
are certainly not unique.

Proposition. Let U be an open subsel of E®, f: U— R. If f is differentiable
al a € U, then f 18 continuous at a.
For if A,, ..., As are as in the lemma, then
lim f(z) = lim (/(6) + Ax(@)(@: — @) + -+ + Au@)(22 — &)
= f(a) + Ay(a) <0 + -+ + Au(a) - 0 = f(a),
so f is continuous at a.
It would obviously be of great value to have some practical eriterion

for the differentiability of a function at a point. Such a criterion is afforded
by the following result.

Theorem. Let U be an open subset of E», {: U — R & funciion whose par-
tial derivatives f}, ..., Ju exist on U and are coniinuous at the point a € U.
Then f is differentiable at a.

Without loss of generality we may assums that U is an open ball in B»
of center a. Then for any z = (z, ..., z.) € U, all of the paints
(xlv '-'1&), (alv T, “')z.)f (ahahaf ...,S‘),
ey (ab . ga.—lgsﬁ)) (‘i‘ ‘Q)

are in U and so are all points of all line segments between my consecutive
two of these points. Writing

1@ —f@) = (f@, ..., 2a) —f(@n, 23, ..., 2))
+ (fa, 28 .. Ze) —f(Or 00,28, .oy 20))
+ o4 (@ ooy Gaosy 22 = SO, ..., 00))
and applying the mean value theorem to write

J@sy oy Za) —f@1 2y, ..oy 20) = Sy 2y ..o, T} ?cx)
J(ay 2, ..., Za) = flar, 80, s, ..., Za) = f3(as, &3, 2s, ---,zu)(aw-q:)

j(al, ---,aw—l,zu) "',(al, O'Oyal) ‘fn'(al’ "‘)“—" &)(’. "“)’
where each £; is between a; and z; (or §; = a; = z; if a; = %), we obtain

J@) —f(a) = fiky, 23, ..., 2a) (@1 — &1) + fi(or, §0, 7, . . ., Za) (22 — O0)
+ o+ fila, ..., Gey, £a)(Za — a4).
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Suppose that for each z € U a specific choice of &, .. ., £, is made. Since
fi, - .+, fi are continuous at a we have

l’i.n.x Jitky, 2y, ..., 7)) = fi(a)

]‘i:? f‘(al, f:. Z3) ..oy xﬁ) = f;(a)

l.i_{.nf‘(ab s ooy Onoyy ) = fi(a).

Hence the differentiability of f at a follows from the lemma to the pre-
ceding proposition, taking

Al(z) - f‘(&, Ty ooy 3.),
A’(z) = f;(ah E‘n T3y ..oy zl)’

Au(x) - fl:(alr veoy Bty E')‘

A real-valued function f on an open subset U of E* is called differen-
tiable on U (or just differentiable) if it is differentiable at each point of U.
A necessary condition for this is that fi, ..., fi exist on U. f is called con-
tinuously differentiable on U (or just continuously differentiable) if fi, ..., fx
exist and are continuous on U; this terminology is reasonable because the
theorem implies that such a function is necessarily differentiable. It is easy
to give many examples of continuously differentiable functions. For
instance, any polynomial in the coordinate functions zy, ..., z, on E* is
continuously differentiable on E*.

Recall that a map f of any set U into E~ is determined by its m com-
ponent functions f;, ..., fu: U— R and we often write f=(fi, ..., fu),
this meaning that f(p) = (i(p), ..., f=(p)) for any p € U. If U is an open
subset of E» and a € U we know that f is continuous at a if and only if
S, ..., fm are continuous at a. It is therefore reasonable to define f to be
differentiable at a if f,, . . ., f= are differentiable at a. Similarly, f is said to be
differentiable if f,, . . ., fw are differentiable. f is called continuously differen-
tiable if fy, ..., fu are continuously differentiable.

Exactly as in one-variable calculus, a differentiable function of a
differentiable function is differentiable. More precisely, we have the follow-
ing “chain rule”.

Theorem. Let U, V be open subsets of E*, E= respectively and let f: U — V,
9: V=R be functions. Let a € U be such that f is differentiable at a and g
s differentiable at f(a). Then g o f i3 differentiable at a and for j =1, ...,n

@oNila) = 3 4T @)UN}a).

LE )
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Since g is differentiable at f(a) = (fi(a), . . ., fu(a)), the lemma proved

earlier implies the existence of functions 4,, ..., Au: V— R, each con-
tinuous at f(a), such that

9@) =9 (@) = ) (n — /1(@)) + - -+ + Aa(Y) (yu — fa(a))

forall y € V. Similarly foreach s = 1, ..., m the function f;is differentiable
at a, so there exist functions By, ..., Bu: U— R, each continuous at a,
such that

142) — (@) = Ba(z)(z: — 6)) + + - + Bu(®)(za — @)
for all z € U. Therefore

9/ @) — 9(f(a)) = iAsU(z))(ﬁ(z) - §da))

= EA&I(z)) ZBv(z)(zs a;)

Jm1
= (2 4UE)B@ e - o)
i ey _

for all z € U. Since each By; is continuous at a, since f is continuous at a,
and since each 4; is continuous at f(a), we deduce that each function

3 (Ao f) - By: U=R
2 /

is continuous at a. By the lemma, g o f is differentiable at a. Moreover,
again by the lemma, each gi(f(a)) = A(f(a)) and each (f)j(a) =Bq(a),
80 that foreachj =1, .

@ Nila) = gAeU(a))B«(c) - §¢a<a)>ua«a).

If the f and g of the theorem are differentiable functions the con-
clusion can be written in the slightly simpler form

@oNi=3 @ NU.
fam}

The chain rule is the occasion for much imprecision in notation. For
example, the equation of the theorem is often written in the form

- E % L
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This is not literally correct since, among other faults, g is not a function of
2 = (21, ..., Zs). A correct version of this formula using the 8 notation is
the cumbersome

a’(fl(zh e )y oo Iy oo oy Tw))

o0z;

I
Sl .

The kind of oversimplification appearing in the first formula often results
in confusion in practice. Here is a typical example: Suppose that z = 2z + u
and that 4 = x + y, so that z = 3z 4 y. Regarding z as a function of z
and u we have 32/0z = 2, but regarding z as a function of z and y we have
dz/3z = 3. The explanation of this anomaly is that the single symbol z is
used here to represent two distinct functions. In fact let f: E*— E?® be
given by f(z,¥) = (z,z + y) and let g: E*— R be given by g(z,y) =
2z'+ y. Then the symbol z stands for both g(z, w) (i.e., the function g)
and g(f(z, ¥)) (i.e., the function g o f), so that the two uses of dz/3z above
really represent the distinct functions g{ and (g o f)i.

The following paragraph, which will not be required in what follows,
is intended for students adept in linear algebra. We consider E* a vector
space over R, defining addition and scalar multiplication by the formulas

@, ..o, z) + @y .oy yn) =@ +y, ...y Za +ya)
Xy ..., %) = (€24, ..., CTn).

If U is an open subset of E* and f: U — E™ is differentiable at the point
a € U, define a linear transformation f'(a): E* — E~ by means of the
m X n matrix

(U91@)) 4mn,...migeto..m ( s (“))

(called the jacobian matriz of f). That is, if (zy, ..., zs) € E* we set

S@ (@, ...,z) = (0, ..., ym) EE™, with %, ...,ym defined by the
matrix product

£ %
((f ‘);(a)) . - . ’
Zn Ym

so that for each ¢ = 1, ..., m we have y; = 3 (f)j (a)z;. Then the differ-
ol
entiability of f at a implies that

tim d(f(z),f(a) + f'(a)(z — a))
s d(z, a)

= (.
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(Note that in the top line of the formula d refers to distance in E®, while
in the bottom line it refers to distance in E».) Conversely if U is an open
subset of E*, f: U — E™ a map, and if we have a point ¢ € U and a linear
transformation 7': E» — E™ such that

. d(f(z),f(a) + T(z — a))
ll*": d(z, a)

then we verify immediately by looking at the coordinates of f(z) that f is
differentiable at a and that T = f’(a). (Thus the differentiability of f at a
and the linear transformation f’(a) could have been defined without resort
to component functions.) Our statement of the chain rule translates to the
statement that the 1 XX n matrix for (g o f)’(a) is the product of the 1 X m,
matrix for ¢g’(f(a)) by the m X n matrix for f'(a); in other words we have
the equality of linear transformations

(@ °f)(a) = g'(f(a)) - f'(a).

This last statement his an immediate generalization to the following neat
version of the chain rule, which is exactly analogous to the corresponding
one-variable result (cf. last proposition of §2, Chapter V): If U, V are
open subsets of E*, E™ respectively and f: U— V, g: V— E” are func-
tions, with f differentiable at the point @ € U and g differentiable at f(a),
then g o f is differentiable at a and

@ °f)' (@) =g'(f(a)) - f'(a).

o,

$2. HIGHER DERIVATIVES.

Higher order partial derivatives are defined similarly to higher order
ordinary derivatives. Let U be an open subset of E*, f: U — R a function,
and 1,j integers among 1,2, ..., n. If f! exists on U we may be able to
define the i5* second order partial derivalive of f at a (f{){(a) for some point
a € U. If (f))}(a) exists for all a € U we get a new function (f;); on U.
If (f7); exists and k = 1, ..., n, we may be able to define the ijk* third
order partial derivative of f al a ((f)})i(a), and if this exists for all a € U
we have a function ((f7)/){. And so on for still higher order derivatives.

(f9} can also be written .a%.(.a%.), which is usually abbreviated
s

to aa:g . Other notations for this, which we shall refrain from using,
T;0%;

include D;D:f, D; i, ftix;, and f;z;, When still higher order derivatives are
in question certain obvious abbreviations are used. For example

S "o (5 ()
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The large number of possible higher order partial derivatives of a
function of several variables is much reduced by the circumstance that the
order of performing the partial differentiations is usually irrelevant. The
simplest case of this is the equation

. B
dzdy  odyox’
repeated application of which yields

d __ o

ozdyds  0z0yox
and all similar results. Of course some mild conditions must be satisfied to
guarantee this irrelevance of order. The conditions in the following theorem
are not the weakest known but are sufficient for all practical purposes. We
note that slightly weaker conditions have already appeared in one of the
exercises (Chapter VII, Problem 36).

Theorem. Let f be a real-valued function on an open subsel of E* thal con-
tains the point a and let ¢, j be among 1, .. ., n. If (f{); and (f})} exist on our
open subset and are continuous at a then (f))j(a) = (f)i(a).

There is nothing to prove if ¢ = j, s0 we may suppose ¢ » j. Also all
variables but z; and z; are held fixed in the various limit processes by which
we arrive at (f7)j(a) and (f)){(a), so we are reduced to the case n = 2.
Therefore we may suppose that f is defined on & certain open ball in E?
of center a = (a,, as) and that (f}); and (/)] exist on this ball and are con-
tinuous at a and we must prove they are equal at a. We introduce the
function A, given by

Alz) = J(zy, 20) — f(z1,80) — f(as, 20) + f(as, as)
(@ —a) (@ —a)
deﬁned at all points z = (), zs) of our ball of center a for which z, » a,,

Z; v as. In the rest of the proof we restrict ourselves to such points z. If
we set

o(z1, 22) = f(21, 22) — f(21, 02)
we have

- 2z 7)) — elan, )
AD) = G = —an
Now the entire line segment in E* between (1), z2) and (ay, 2,) is in our
open ball, 80 the mean value theorem enables us to write
e(z, 7) — o(ay, 2) = (71 — a)ei (& 1:)

for some £, between a; and z;. Therefore

Az) = eiky, 7)) _ fi(k, ) — filk, o a)

Z: — Q2 T3 — G2
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Sinoe the entire line segment in E?® between (£, z2) and (£, as) is in our
open ball and since by assumption (f}); exists in our ball, another applica-
tion of the mean value theorem gives

A(z) = ()56, &) _ '
for some £; between a; and z;. That is

Az) = (Dt &)

for some £; between a, and z, and some §; between a; and z,. Since (f});
is assumed continuous at a we deduce

lim A=) = (UD3(0)

But by the symmetry of A this limit is independent of the order of the two
differentiations. (This can also be proved explicitly by going through the
same argument as above with ¢(z,, z2) replaced by Y (z1, 22) = f(z1, 2s) —
f(as, 24).) That is, we also have

lim A(z) = (f)i(a).
Thus (f)(a) = (f);(a).

In the following theorem, which is a version of Taylor’s theorem for
functions of several variables, we shall find it convenient to use a “differ-
ential operator’”’ of the type

a 9 9
01-5;‘-4'0:—5;;'* "'4"%35:-

Here ¢y, ..., ¢x € R and for any real-valued function f on an open subset
of E= on which all the first partial derivatives fi, ..., fi of f exist, we set

(cl___a:‘.’.....‘.c‘—a%: -:c‘-—-a—'-f— cee 4 %GCJ{*‘""{"CJL:

oz

another function on the same open subset of E=. Similarly if all the second
partial derivatives (f7); exist on this open set we can define

("":T; +--+ c.—a%)’f

2 2 2 2
-(&Tz"-‘!' +¢-5x'—-X cr*aT‘-'I- +¢-—a—z:)]).
Similarly for higher iterates of 01—5-:;- oot c..;g-—. One verifies
immediately the explicit relation

(oot Hemge )=, B cuca o _

o0 e Cyy it .
hyeeny toeml,..., m ’ 6.1:‘.0.5.3 e aol:o'
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Theorem. Let U be an open subset of E™ and let f: U— R be a function
all of whose partial derivatives of order n + 1 exist and are continuous on U.
Then ¢f a=(ay, ...,am), b= (b, ...,bn), and the enlire line segment
between a and b are in U there exists a point ¢ on this line segment such that

1® = 1@ + (1 — a0 + -+ + G = 85 ) )@
+ '21—,( (b — m);‘}; oo (bn— a,,.).é%:)’f)(a) +

F (om0
+ (n-:- l)l(((bx - “‘)'51_{ +oo ‘“""&..L “‘I ©.
Define a map h: R — E» by

k() = (al + (b —a)t,. .., an+ (bu — a..)t),

so that A is differentiable, A(0) = a, h(1) = b, and A maps [0, 1] onto the
line segment between a and b. Since U is open and contains this line seg-
ment, the composite function f o h is defined on some open interval in R
containing [0, 1]. The function f is differentiable since it has continuous
first partial derivatives. By the chain rule, f o A is differentiable and we have

T ®) = 3 £GO) b — ad

fml .
= (B = o)+ - + (bn — a5 ) @)

or
goy’ = (@1 — a0+ -+ + G — a5 ) o
Repeating this, forv =1,...,n 4+ 1 we get

fom® = (B = o) + -+ + Bn = a5 ) 1) b
By Taylor’s theorem

Goh®) = on© +LNO , (D70 ...

(JoR)™(0) |, (foh)(])
t—ar tT e+l

for some { between 0 and 1. Hence the present theorem, with ¢ = A(f).

The special case » = 0 is of particular importance and is often called
the ““‘mean value theorem for functions of several variables”. It states that
there exists & point ¢ on the line segment between a and b such that
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J® = 1@ = G =)L (e) + -+ + Ga - sk /(o).

If we wish to prove only thns speclal case the proof is especmlly easy: we
just apply the ordinary mean value theorem to the function f(k(¢)). This
proof shows that in the present special case the hypotheses may be weak-
ened somewhat, for all we need is that f be continuously differentiable on
some open subset of E™ that contains all points of the line segment between

a and b, except possibly a and b themselves, and continuous on a larger
set containing a and b.

ReMARK. In applications of Taylor's theorem the set U is often &
ball, 80 that it is useful to know that the enlire line segment between two
poinls of E™ is conlained in a given ball (open or closed) if its extremilies are
in the ball. Yor if the points are the distinct points (ay, ..., as) and
(by, ..., bw) and the center of the ball is (¢, ..., cw) then for any t E R

(d«a\ + (bl - al)ty coeyOm + (bﬂ - au)‘)t (clv eeey cl‘))).
- }:‘, (s + (b — adt =€)t
[

which can be written a(t — 8)? + v for certain o, 8,y ER, a > 0, and
this clearly attains its maximum on any closed interval of R at one of the
extremities.

§3. THE IMPLICIT FUNCTION THEOREM.

To simplify the following exposition, if z = (z;, ..., zZ=) € E® and
¥ =(yy,...,¥) € E* we denote by (z,y) the point (zy, ..., Zm, Y15 <+, ¥n)
E Emtn,

Theorem. Lel m,nbepocttwemwgera,aEE" bEE andleth,...,[a
be continuous real-valued funclions on an open subset of E~+* that conlasns
the point (a,b), with fi(a,b) = -+ - = fu(a, b) = 0. Suppose that jor each
Gi=1...,n

iz, . -*::;;m’ <oy Yn) - 0“):.“

ezidsandiawntinuousmthegivcﬁopmwmdlhdﬂwu X n determinant
of
det (3¢ @5)

18 not zero. Then there exist open subsets U C E™, V C E*, with a € U and
bE V, such that there erisls a unique function @: U—V suck that
Jiz, o(x)) =0 for eackh i =1, ...,n and each z € U, and such that this
Junction ¢ is conlinuous.
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The proof is a straightforward generalization of that previously given
for the special case m = n = 1. We begin by defining real-valued functions
Fy, ..., Fy on the same open subset of E~+* on which f), ..., f. are defined
by

Fiz,y) = yi — X cufdz, ¥),

Jml

wh&e {eis} i.pm.....n BFe certain real numbers to be determined in such a
manner that Fy, ..., F, satisfy the following basic properties:

(1) each F; and each '-g—:-} is continuous
(2) foreachi=1,...,n, Fi(a,b) = b
(8) foreacht,j=1,...,n wehave -%%(a, b)=0

(4) for any z,y we have f(z,y) =0 for i =1, ...,n if and only
if Fdz,y) mysfori=1,...,n.

Note that properties (1) and (2) hold for any choice of the ¢ii's. For
property (3) to hold we need

J 9,
Zcﬁ"a‘ﬁ‘(a)b) =0 tk=1,...,n
=t

where 8, is the Kronecker delta, equal to 1 if ¢ = k, 0 if ¢ » k. Those who
know linear algebra will see in the last equations the statement that the

n X n matrix (c;) times the n X n matrix (—%—(q,b)) is the n X n

identity matrix, so that (c,;) is to be taken to be the inverse of the second
matrix, which indeed has an inverse since its determinant is not sero. But
the ¢i/’s may also be found in a more “‘elementary’” way by noting that for
any fixed ¢ we get n linear equations in the unknowns ¢y, ¢a, . . ., ¢ia and
we can solve these equations for ¢q, Ca, . . ., ¢ia provided the determinant
of the coefficients is not zero. But this determinant is that obtained from

“the square array _(%“.(a, b)) by first interchanging rows and columns,

and we know that this new determinant has the same value as the original
one, which was given to be nonzero. Thus c,;’s may be found such that (3)
holds. As for (4), it is clear that if fi(z,y) =0 for =1, ...,n then
Fi(z,y) = yifori=1,...,n To prove the converse we must show that

if D cifiz,y) =0 for i=1,...,n, then fi(z,y) = - = fu(z,y) = 0.
Jaul

For those familiar with linear algebra, this is an immediate consequencé of
the nonsingularity of the matrix (c.;). Those who prefer to reason otherwise
may note that we can find u,, ..., s € R such that
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> Y (@ b = fi(z,9), §=1,.
. kel
for this involves solving a system of n linear equations in » unknowns,
which is possible since the system of equations has nonzero determinant

det( (a, b)) this enables us to compute

0= 3 cufiz ) = 3 co i (a, bus = E Baws = u;,
j=1 k=l OYs
which in turn implies that each f;(z, y) = 0. This completes the argument
that ci/'s can be found as desired, so that we may take for granted in the
rest of the proof that F;, ..., F, have properties (1)-(4).

Choose some r > 0 such that the open ball in E™** of center (a, b)
and radius r is entirely contained in the open set on which f;, ..., f, are

defined. 8ince each 9F/dy; is continuous and %%(a, b) =0 we may

assume r taken so small that foreachs,j = 1, ..., n we have |< o

_ at each point of the ball. We further assume r is 80 small that the con-

tinuous function det .-a‘%‘— is nowhere zero on the ball, this being possible
3

since this determinant is not zero at (a, b). Choose k such that 0 <k <r

is true and then choose A such that 0 <h < V' r* — k* and such that
d((Fi(z,b), ..., Fa(z, b)), b) < k/2 whenever z € E™ and d(z, a) < h, this
last demand being justifiable by the continuity of Fy, ..., Fs. We shall
prove the theorem with U the open ball in E~ of center a and radius A,
and V the open ball in E* of center b and radius k.

Consider any fixed z € U. If y € E* and d(y, b) < k we have

d((z) v), (a, b)) = ((31 —a) 4+ - 4 (Tm — ) + (3 — )
+ e +(yu —b“)’)ll’
= ((d(x, a))* + (d(y, b)):)m <+ <r,

80 that (z,y) is in our ball of radius r. If also y' € E* and d(y’, b) <k,
then by the remark at the end of the last section the entire line segment in
E* between y and ¥’ is in the closed ball of center b and radius k. For our
fixed z, each F; is a differentiable function of the last n variables on an
open subset of E* containing the latter closed ball. Thus foreachi=1,...,n,
the several-variable version of the mean value theorem (which immediately
follows the preceding theorem) implies the existence of a point ¥’ on the
line segment between y and y’ such that

Fio) = Fia, ) = Gh = VOSe @y + - + o = ¥ 501,
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Thus

|Fdz,y) — Fd=, )| r oF
<ln —y’xl-l—a—‘—(z, |+ e = vl | S|

2‘”’ ('yl yl""’ e +“’n_'y’l‘)
sﬁmax[hh—y'xl, Hnlyﬂ -V'I”
< 5l ).

Therefore

d((Fl(z) y)) .. F (3!, !I)), (Fl(x) !/'), . F (xy y')))
= ((F 1z, y) — Filz, ) + « + (Fu(z, y) = Fulz, yN)'"

< (n- (2" < Lag, .
Also

d((Fl(zr ¥) ...y Fa(, 9)), b)
< d((Fl(z) ¥) ..., Fu(z, 9), (Fu(z, b), ..., Fa(z, b)))
+ d((Fy(z,b), ..., Fa(z, b)), b)

1 ’ k _k  k
<zl +5S5+z=*F

Thus the fixed point theorem is applicable to the closed ball in E* of
center b and radius k and the map which sends any y in ‘this ball into
(Fi(z, y), ..., Fa(z, y)). (Recall that z is fixed.) This gives us the existence
of a unique § € E" such that d(j,b) < kand F(z,§) =i fori=1,...,n,
that is f(z, §) =0 for ¢ = 1, ..., n. (Notice in fact that d(g, b) < k by
the last inequality. That is, § € V.) Since this is valid for each z € U
we can define our function ¢: U— V by ¢(x) = §, and to complete the
proof it remains only to prove that ¢ is continuous.

The continuity of ¢ can be deduced from what has already been proved.
To prove ¢ continuous at some a’ € U, for any ¢ > 0 consider the same
problem as in the statement of the theorem of this section, with (a, b)

replaced by (a’, b’), where b’ = ¢(a’), and each f; replaced by its restriction
to the open subset of E™*+" given by

(@) EE*:z2€ U,y EV,dy, V) <¢.

Note that our choice of r above guarantees that det —"-—(a b’)) # 0,
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so all the analogs of the original hypotheses hold. Analogous to U, V, ¢
we obtain U’, V', ¢’, where U’ and V' are open subsets of U and V respec-
tively and ¢’ is a function ¢’: U’ — V' such that for each z € U’ we have
Nz, ¢'(2)) = -+ = fulz, ¢'(2)) = 0 and d(¢'(z), b') < e By the unique-
ness property of ¢ we get that ¢(z) = ¢'(z) for all x € U’. Therefore
d(p(z), p(a’)) < eif £ € U’. Hence ¢ is continuous at a’. Since a’ was an
arbitrary point of U, the function ¢ is continuous.

Corollary 1. If the hypotheses of the theorem are strengthened by the assump-
tion that fy, ..., fa are continuously differentiable on the given open subset of
E™t», then U, V may be chosen so that ¢ is continuously differentiable.

We first show that if U and V are chosen suitably then ¢ is differen-
tiable. First choose U and V as in the conclusion of the theorem. Then the

continuous function on U whose value at z is det (-j%{:—(z, qo(z))) is not

zero at a, therefore nowhere zero in some open ball in E™ of center a. It
_therefore suffices to prove that ¢ is differentiable at any point x € U at
which this determinant is not zero. Hence it suffices to prove ¢ differen-
tiable at a, under no further conditions than those given in the theorem
and corollary. Now each point of E*™+* may be considered an n-tuple of
points of E=+*, the coordinates of the first point of E™** being the first
(m <+ n) coordinates of the point of E*=+%  the coordinates of the second
point of Em*" being the second (m + n) coordinates of the point of Ertm+»,
etc. Consider the subset of E*»+% consisting of all points (2!, ..., 2*) such
that each z¢ is a point of the open subset of E~** on which f;, ..., f. are
defined. We have a continuous function on this subset of E*+% whose

value at (2!, ...,2") is det —gﬁj-(z‘)) and this function is not gero at

((a, b), (a, b), ..., (a, b)), hence not zero if 2!, ...,2" are all sufficiently
near (a, b). Thus by restricting the set on which f), ..., fs are defined we

9,
may assume that for any 2!, ..., 2" in this set we have det —51{_:—(“)) 0.

Let U, V be as in the conclusion of the theorem. Without loss of generality
we may assume that U, V are open balls in E®, E® respectively, with centers
a, b respectively, for otherwise V may be replaced by an open ball of center b
that is entirely contained in V and U replaced by any open ball of center a
of sufficiently small radius. The set of points {(z,y) E E~*:z € U,
y € V} has the property that it contains the entire line segment between
any of its points and (a, b). Write ¢ = (¢4, ..., ¥a) Where each ¢, is a
real-valued function on U, so that for any z € U we have ¢(z) = (¢1(z),
..., ¢n(z)). Foreachi =1, ...,n and any z € U we have fi(z, ¢(z)) = 0,
8o by the several-variable version of the mean value theorem
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0 = fi(z, ¢(2)) — fa, ¢(a)) .
=Ly —a) + - + L) om — aa)

+ S (le) = 1)+ + - (nte) — B
for some & on the line segment between (z, ¢(x)) and (a, b). For each
z € U we choose specific s, .. ., s* Simdet(%(ﬂ‘)) » 0, the system
of n equations
S )+ + -,‘?,f—:-(:o(w.(z) ~5.)

- "'gzéf(t‘)(xn ~a) oo =2 2z, #)(@n — an)

can be solved for ¢i(z) — by, . .., @a(z) — ba. Weget,formht,- 1,...,n,
9i(z) — bi = Aa@)(z1 — a)) + Aa(2)(@s — @) + -+ + Aw(z)(2 — 62),
where each A(z) is the quotient by det(—":—fv;-(:‘i) of & specific poly-

nomial expression in the various partial derivatives of f;, . . ., f« evaluated
at various points 2, . . . , s~ Sinoelims‘ (a,b) fori=1,...,nandthe

partial derivatives of f;, ..., . were anumed continuous, the various
Aq’ameonﬁnuomatc.'l’he!emmof §1 implies that ¢y, ..., ¢u are
differentiable at a. Thus ¢ is differentiable at a, and we have completed
the proof that ¢ is differentiable for suitably chosen U, V.

‘Having proved ¢ differentiable, it is easy to see how to compute the

various partial derivatives %;" We apply the chain rule to the equations

T2y, o ooy Zmy 1(2), ..., 00(2)) = O
to get

e o) + e, WD+ - + P, pla) S = 0
(equivalently, for anyone likely to be confused by the 9 notation,
(952, #(2)) + Jdaa(z, @(@))(1)i(2) + - - - + Fatn(=, #(2))(@0)i(2) = 0).
For any fixed j and varying 1 we get a system of n linear equations in the
nunknom% ...i."’.e. the determinant of this system being

( (z, p(z))) » 0. Thus we can solve explicitly for the various ‘%’

Indoing this we get the desired information that under the conditions of
the corollary each 3¢./9z; is continuous on U, and this epmpleee- the proof.
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Corollary 2 (Inverse function theorem). Letg = (g, ...,g.) bea con-
tinuously differentiable function from an open subset of E* which contains the
point b into E*, each g; being a real-valued function on this open subset, and
suppose

det ((g)}(b)) » 0

(that ts, det( (b)) # 0). Then there exist open subsets U, V of E®, with

bev, mhthatata deﬁnedateachpmntofl’andﬂwreatrwtwnofgtoV
18 @ one-one map of V onto U whose inverse function g=*: U — V 3 conlinu-
ously differentiable.

On the open subset of E* consisting of all points (z, y) such that
z € E* and y is in the open subset of E* on which g is defined, we define
functions fy, ..., fs by

Ji(z, v) = i — gi(y).

Set a = g(b). Applying Corollary 1 to f,, ..., f» and the point (a, b), we
get open subsets Uy, V) of E*, with a € U; and b € V), such that there
exists a unique function ¢: Uy — V, such that z = g(p(z)) for all z € Uy
and ¢ is continuously differentiable. The map ¢ is one-one from U, onto
@(Uh) = g=(Uy) N\ V1. By the first propoeition of Chapter IV, g~(U,) is
an open subeet of the set on which g is defined, hence an open subset of E».
Therefore ¢(U,) is an open subset of E* If we set U = U,, V = ¢(U;),
then the restriction of g to V is one-one onto U; furthermore the inverse
function g—: U — V is just ¢, which is continuously differentiable.

The determinant det ((g))}) = det (—gg—) is called the jacobian deter-
minant (or jacobian) of g. It is frequently denoted

a(gl; RS 0»)

a(yh LY} y‘) or J..

The inverse function theorem implies that, if g is & continuously
differentiable function from a connected open subset W of E* into E* and
the jacobian of g is nowhere zero, then g(W) is a connected open subset of
E* and g is one-one on some open ball centered at any given point of W.
However, g need not be one-one on all of W. If n = 1, g is indeed one-one
on all of W, for then the jacobian g’ is either positive or negative on all of
W, 80 that g is either strictly increasing or strictly decreasing. But if n = 2
the “polar coordinate map,” which sends any (r, 6) € E* such that r > 0
into the point (r cos , rsin 6), is not one-one, although it is one-one if # is
restricted to any open interval in R of length 2.
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PROBLEMS
1. Show that the function f: E* — R given by

Y .
v = {le_M if (z,9) » (0,0)
0 if(zy)=(0,0
is continuous. Where is it differentiable?

For which real numbers a > 0 is the function f: E*— R that is given by
J(z, y) = (z* + y)= differentiable?

. Show that if f is a real-valued function on a connected open subset of E» and

Ji = fim ..o = fi = 0 then f is constant.

Let f be a differentiable real-valued function on the open ball in E™ of center
(a1, - . ., 6s) and radius r and suppose that f; = 3f/0z. = 0. Prove that there
is a unique real-valued function g on the open ball in E*! of center
(@1, « - ., @a) and radius r such that f(z;, ..., z.) = g(zy, ..., Za-1), and this
g is differentiable.

. Let f be a real-valued function on an open subset U of E*. Prove that f is

continuously differentiable if and only if there exist continuous real-valued
functions A,, ..., A, on the set

{@y oo Zm ¥y oy Y) EE™: (11, ..., Z8), (1) ..., ¥a) E U}
such that
J@) = @) = A=z, )z = ) + - + Au(z, 1) (20 — )
forallz,y € U. '

. Let U be an open subset of R, let a, 8: U — R be differentiable functions, let

V be an open subset of E* that for each y € U contains the entire line segment
between the points (a(y), y) and (8(y), ¥), and let f: V — R be a continuous
function such that df/dy exists and is continuous. Prove that if F: U— R is
defined by

Fo) = [0 1@ v s,

then
8¢

F@) = [o0 L (z,4) dz + 1(80,3) BG) - S(at), ) ).

. Let V, W be normed vector spaces (Prob. 22, Chap. III), let U be an open

subset of V, and let a € U. Call a function f: U — W differentiable a! a if there
exists & continuous linear transformation (Prob. 22, Chap. IV) T:V W
such that
. f(z) = f(a) — T(z —a)]|
tim lz =l
() Prove that if f is differentiable at a, then T is unique (so that we may
write T = f'(a), generalising what was done in the last paragraph of § 1).

= 0.
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(b) Prove that if f is differentiable at a then f is continuousat a.

(c) Prove that if W = E» then f is differentiable at a if and only if the com+
ponent functions of f are differentiable at a.

(d) Prove the following generalization of the chain rule: If V, W, Z are
normed vector spaces, if U and U’ are open subeets of V and W respec-
tively, and if f: U — U’ is differentiable at the pointa € Uand g: U'— 2
is differentiable at f(a), then g o f is differentiable at a and (go f)’ =
9'(f(@)) f'(a).

Verify that if ¢, ¥: R— R are twice differentiable functions, if a € R, and if
J(z,9) = ¢z — ay) + ¥(z + ay) for all (z,y) € B*, then

97 d
S ot
X:rify that the function u(z,y) = e~***%/ /y satisfies the differential equa-
n
Pu _ ou
ot oy

Do the same for the function ] * f(Oe-t-oriwy-11 dt, where [a, b] is & closed
interval in R and f: [a, b] — R is continuous.

Show that if f is a continuously differentiable real-valued function on an open
interval in E* and 9Y/9z0y = 0, then there are continuously differentiable
real-valued functions f;, fs on open intervals in R such that

1@, ) = 5(®) + S,

Prove that if U is an open ball in E* and f;, ... fu: U — R are continuously
differentiable functions such that

o _ 9

dr; On
for all 1,5 =1,...,n, then there exists a function F: U— R such that

fi = 0F/0z; for i = 1, ..., n. (Hint: If (ay, ..., a.) is the center of the ball,
try defining F' by

Fzy, ... 1) = ]:f,(t, o, ..., a0 di + ]:j,(:.,l,a., ) dt
+ [Pt et e+ [Ty s g )
Show that the function f: E* — R given by
2y 0
fopy = {,.H. it (2,9) % 0,0

0 if(zy =00

is continuously differentiable and has all its second order partial derivatives,
but that

RPN '
M(O.O)#m(o.o).
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13.

14.

18.

16.

17.

18.

19.

Let f be a real-valued function on an open subset of E* containing the point
(a1, as, as). Suppose that f possesses all its third order partial derivatives and
that these are continuous. Compute

m (@ — @)@ — a) (2 — )~ H(f (2, 23, 72)
(5),93,53)~"(s},03.03)

= f(a, 23, 22) = J (21, Oy 73) — [ (%1, 23, W)
+ (21, 09, a0) + f (a1, 73, @) + S (a1, 03, 7a)
- f(a, 63, a0)).
(s) Using the notation of the theorem giving the chain rule and assuming
that £, ...,f= and g have continuous second order partial derivatives,
work out the expression for ((g o f)});.

(b) Use part (a) to express the laplacian %_‘_%‘ in polar coordinates.

(Here u = go f, where f(z,y) = (r,0) = (V2 + 1/}, tan™! y/z), and the
Laplaciau is to be expressed in terms of the partial derivatives of g with
respect to r and 0.)
Write down explicitly all terms of the multivariable Taylor formula if m = 3
and n = 2, collecting terms together wherever possible.

Let U be an open subset of E*, f: U— R a differentiable function. Prove that
if f attains & maximum or a minimum at the point a € U, then fi(a) = - -+ =
Ji(a) = 0. Prove conversely that if f has all its second order partial derivatives
continuous at @ and fi(a) = - -- = fi(a) = 0, then the restriction of f to some
open ball of center g attains a maximum at a if the n X n symmetric matrix
((f9i(a)) is negative definite and attains & minimum at @ if this matrix is
positive definite, while f does not attain either a maximum or & minimum at
a if this matrix is neither positive nor negative semidefinite.

Prove that if the functions fy, ..., fs in the statement of the implicit function
theorem are assumed to be k times continuously differentiable (i.e., all partial

derivatives of order k exist and are continuous), then the same is true of the
component functions ¢y, ..., ¢ of ¢.
(a) Compute 9(z, y)/3(r,0) if z = rcos 0,y = rain .
(b) Compute d(z,y,2)/9(r,08,¢) if z=rcosfsin¢g, y=rsinlsin ¢, and
£ =rcose.
“If f(z,y,2) = 0, then
o 3y o _ .,
dy oz 9z :
Make sense out of this nonsense and prove.

. Let S be a closed subset of E* which contains the entire line segment between

any two of its points and let f be a continuously differentiable map from an
open subset of E~ containing S into E*. Suppose that f(S) C S and that there
is a real number k < 1 such that

g:; (i) <k
for all z € 8. Prove that the restriction of f to S is a contraction map, so that

the fixed point theorem is applicable. (Hint: You may want to use Prob. 20,
Chap. V1)



CHAPTER X

Multiple Integrals

In our treatment of one-variable integration we
were primarily concerned with continuous functions...
Step functions appeared in the proofs, but their use -
was an easily avoidable technical device. In multi-
variable integration we are of course still primarily
interested in continuous functions, but the necessity
for integrating over figures with curved boundaries
forces us to consider fairly general noncontinuous func-
tions. In this chapter we start with a straightforward
mimicking of what was previously done for one variable.
At a certain point the need for generality entails some
special consideration of sets of volume zero, but this
hurdle is quickly passed. We end up with stronger
results than before for the one-variable case, in addition
to all the essential specifically multidimensional state-
ments.
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$ 1. RIEMANN INTEGRATION ON A CLOSED INTERVAL IN E~.
EXAMPLES AND BASIC PROPERTIES.

Recall that a closed interval in E* is a subset of E* of the form
(@1, ..., 2a) EE* :as < 2y S bsforeachi =1, ...,n},

where ay, ..., @, by, ..., ba are fixed real numbers such that a; < b,
«e1y On < ba; we call this closed interval the closed tnterval determined by
@1, ...y 0ny by, ..., by and we note that the numbers ay, ..., an, by, ..., bs
are themselves determined by the closed interval. The notion of an
open interval in E* is obtained in a similar manner by replacing each
symbol < by the symbol <.

Definitions. Let a1, ...,a4, b1, ..., 0. ER, with a1 < by, ..., an < ba.
By a partition of the closed interval I C E* determined by ay, ..., a,
by, ..., ba we mean an n-tuple of partitions of the closed intervals [a,, b1,
. ++y [@n, ba] in R, that is, an ordered set of n finite sequences of real numbers

(zloy 31" zl” ey z‘"‘)’ (xio, 2:', 3!’1 seey z"’)s seey (zﬁ” 3.‘, 2", ey 3,”")

(where the superscripts are indices, not exponents) such that for each
1=1,...,n we have

=2, <2 <2< - <zMNimby
The width of this partition is defined to be

max {zf—z#t:¢=1...,,nand j=1,..., Ny

If f is & real-valued function on I, by a Riemann sum for f corresponding to
the given partition we mean a sum

Jnfrtny ooy yaltr®) (2 — 2077) - - (2ade — 2007,
J1o 1o Niieneifn= e, No
where each yfih € [z/7), 25]. We say that f is Riemann inlegrable on 1
if there exists a number A € R such that, given any ¢ > 0, there exists a
8 > 0 such that |S — 4| < e whenever S .is any Riemann sum for f cor-
responding to any partition of I of width less than §; in this case 4 is called

the Riemann tntegral of f on I (or over I), and is denoted f,f.

Note that if n =1 we have exactly what we had in Chapter VI,
except for a slight change of notation. For n > 1 we have an immediate
generalization of what was done earlier. The above partition of the closed
interval I in E* subdivides I into N,N; - N, closed subintervals no two
of which overlap, except possibly at extremities, that is points (zy, ..., z.)
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FIGURE 34. A partition of a closed interval in E% induces a subdivision into closed
subintervals no two of which overlap, except possibly at extremitics.

such that z; = z/for some 1, 7, as is illustrated in Figure 34. For a Riemann
sum corresponding to a specific partition, the various points (yyfr-4, ...,
ya'+-#) are obtained by choosing one point from each of the closed sub-
intervals. The expression (zyt — 2,/171) -« - (zo» — 245~5) represents the
“volume” of a subinterval. (Cf. Figure 35.) :

The Riemann integral of f on I, if it exists, is unique: If 4, A’ are
Riemann integrals of f on I, then for each ¢ > 0 there exists A number
8 > 0 such that if S is any Riemann sum for f corresponding to a partition
of I of width less than § (such partitions exist!) then we have |S — 4|,
|8 — A’| < ¢, a8 a consequence of which |4 — A’| < 2¢, and since this is
true for each ¢ > 0 we must have A = A’.
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There are numerous alternate notations for [‘ J. In the case n =1,

we have already denoted L o by ]. .f(:c) dz. Forn > 1, ]: f is sometimes
written

[isdz, or [ 1@d@), or [ iz da.

Sometimes n integral signs are used, as in

I],f(zw)dzdy or ”,f(z,y,z)dxdydz.

As in the case n = 1, we shall abbreviate the expressions “Riemann
integrable” and ‘“Riemann integral” to “integrable” and “integral”
respectively. The comments made at the end of §1 of Chapter VI are
apropos here. In particular, since there are other methods of integration
than that of Riemann, care must be exercised in collating the results of
this chapter with results in other texts,

Frauns 35. Examples of Riemann sums. If the function f on the given cloesed interval I
in B has the value 1 at each point on or within the indicated oval and the
value sero at all other points of 7 then any Riemann sum for f correaponding
to the indicated partition of / is the sum of the areas of certain of the
rectangles into which I is subdivided. Which rectangles are to be included
in the sum depends on how the points (1,717, yy'1/s) are choeen. For differenit
choioes of these points the unshaded rectangles are never included, the
lightly shaded rectangles may or may not be included, and the darkly
shaded rectangies are always included.
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Exampre 1. If I is as above and f(zy, ..., z») = ¢, & constant, for
all (21, ..., 7,) € I, then for any partition of I, say the partition in the
above definition, we have

Al N 2.;. L g S, R @ — 2 (zuh — 257N
fm] ., Nijeiitn=l, o Na

= > c(zyr — 21 <+ - (Zun — ZahoY)
J1=1ye, Nijoidn= 1,0, Na

=ch—a) - (ba —an).

Since all Riemann sums equal ¢(by — a)) - -+ (ba — aa), we have a function
that is integrable on I and

fre=ctor—a - b =),

ExampLE 2. Let I be as above, let & € [ay, by, and let f: I — R be
a bounded function such that f(zy, ...,2.) =0 if =z # & - Suppose
|f(zy, oo ., 2a)| £ M for all (24, ..., xs) € I. Consider the partition of I
appearing in the definition, supposed to be of width less than §, and the
Riemann sum in the definition. We have f(yyi1+, ..., yaft:/) = 0 unless
yir-s = & which can be true for at most two distinct jy's, so that

‘ Jlyvring o ooy yattd) (@ift = 27Y) oo (Tale — 20hY)
fr=l Niiijne,..,Na

< > 2 M d(zdhr — 2rY) - - (zuh — a0

_:'a-l.....Nn;...;:'.-l.....N.

N3 Ng
= 2M3( 3 (ot = 27)) o+ (35 o — 2
=2M 5(bs —as) - - - (ba — an). :

Clearly [,f=0. More generally, [,f=0 for any bounded function

J: I >R for which there exists some i =1, ..., n and some §; € [a;, b]]
such that f(zy, ..., z.) =0 if x; # .

ExampLE 3. Let I be as above, and let a4, ..., an, By, ..., B« ER,
withai s <Bi<bifori=1,...,n Define f: >R by

1 ifz; € (s, B:) foreachi=1,...,n

J@y o 0@) =90 it (ny, ..., z2) €T and z: & (as B)
for some 1 =1,...,n.
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Consider the partition (z, zt, ..., z™M), ..., (Z0, Za!, ..., ZaPs) of I,
supposed of width less than 3, and a corresponding Riemann sum
- i L yahek) (@gh — 1) -
8 ;.-x.....m:?;;.-x.....zv.f(y‘ ene URR) (Bh = 2
(25 — zot"1),
where yii-+ € [z, 24 for all 4,53, ..., ja. Since f(ydrh, ..., yadrh)
is 1 or 0, according as the point (yfi+s, ..., yaf™) is or is not in the
open subinterval of I determined by ay, ..., ax, By, . . ., B, Wwe have

S = . Z:; (2 — 2/ -+ - (zh — z407Y),
yees .
the asterisk indicating that we include only those j;, ...,ja for which

YWih € (s, B1), .o .y Yalth € (an, Pa). For i=1,...,n, choose pi, g«
from among 1,2, ..., N¢so that

2Pt S oy <2, T < B < T

Then yi-»€ (o, ) if pe+1<ji<q—1 and ysr5 & (a;, B) if
Jis < ps or §; 3 qi. Therefore

(rh —ziT) - (zahs —2Wm) < S
M+l <hsn ~1iipat]l i Sm—1

(o — ™) - .- (z‘.i.. — i)
PSSP Sh<o

or
a-1 -1
(ix-zu a ) (;.-zn:n(x".‘ -] <8

<( 5‘: (@h —zp1)) -« ( 2'5 (zu3 — zu51) ).
from fompe

By the choice of p; and ¢; we have 8; — a; < z% — 21 < (g — pi + 1)8,
so that wemust haveq; — 1 2> p; + lfori = 1, ..., nif 8isless than each
(8¢ — ai)/2, in which case the last inequalities become

@O — ™) - (@ —za) S S < (@0 = oY) -e (za =z,
Bince our partition has width less than 3, for each ¢ -.1, «+1y 1 wWe have
a—8<zp ! <z <ay+dand fi—d <zl <zM<Bi+d.

Therefore
Bri—y—28) - (Ba—an—28) S < (Br—ar+28) -+« (Bu — aa +28).

Since the real-valued function on R which sends any point ¢t € R into
(Br—a1+2t) -+ (B — an + 2t) is continuous at 0, given any e¢> 0
we can find a & > 0 such that for the above Riemann sum § we have
I8 —(B1—a) «+* (Ba — an)| < . Thus f is integrable on I and

JirrGi—a) - B —aw.
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ExamrLe 4. If I is as above and f: I — R is defined by

2 §1 if =, ..., z. are rational
f (z;, P z.) {0 otherwise

then any open subinterval of I contains points at which f takes on the value
1 and also points at which f takes on the value 0 (this is a simple conse-
quence of the corresponding fact for n = 1), Therefore both (b, —ay) * - -

(b — a,) and zero are Riemann sums corresponding to any partition of I.
It follows that f is not integrable.

Proposition. Riemann integration has the following properises:
(1) 1f f and g are integrable real-valued functions on the closed interval
I of E~ then f + g is integrable on I and

fo+a= [+ [0

() If f i3 an inlegrable real-valued function on the closed inlerval I of
E* and ¢ € R then cf is integrable on I and

el s

Given any partition of I, a Riemann sum for f 4 g corresponding to
this partition is the sum of a Riemann sum for f corresponding to this
partition plus a Riemann sum for g corresponding to this partition, and
similarly a Riemann sum for ¢f corresponding to this partition is ¢ times a
Riemann sum for f corresponding to this partition. Hence the proposition
is quite trivial. (Those wishing to write down a proof in all detail may do so
by effecting suitable minor changes in the proof of the corresponding result
of Chapter V1.)

An immediate consequence of the proposition is that if f and g are

integrable on I, then
fiu=0=f1- [0

Proposition. If { is an integrable real-valued function on the closed inierval
I of E» and f(z) > 0 for all z € I, then ],/zo.

For if 8 is any Riemann sum for f corresponding to any partition of J
then 8 > 0.

As in Chapter VI, there are two immediate corollaries.

Corollary 1. If f and g are inlegrable real-valued functions on the closed
interval I of E* and f(2) < g(2) for all = € 1, then ],fsj,g.
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Corollary 2. If f is an integrable real-valued function on the closed interval
I of E* that 18 determined by ay, ..., a0, b0, ..., by and m < f(z) < M for
al z € I, then

mb—a) - =) < [[S< MG —a) - (o — ).

§2. EXISTENCE OF THE INTEGRAL. INTEGRATION ON
ARBITRARY SUBSETS OF E*. VOLUME.

Lemma 1. A realvalued function f on a closed interval I of E» is tntegrable
on I if and only if, given any ¢ > 0, there exists a number 8 > 0 such that
|81 = 83| < ¢ whenever S, and S, are Riemann sums for f corresponding lo
partitions of I of width less than 8.

The proof of Lemma 1 of §3, Chapter VI applies verbatim in the
present case, if we change the symbol [a, b], wherever it occurs, to I, and

the symbol [ f(2)dz to [ .

Definition. A real-valued function f on a closed interval I of E* is called
8 slep function if there exists a partition (z,% zy!, ..., ;iM), ..., (Za%, Za},
«vey ZaMs) of I such that for any (zy, ..., Zs), (Y1, ..., ¥») €E I we have
J(@sy oo, 2a) M f(y ..., ¢a) only if for some ¢ =1,...,n such that
%; v y;, the closed interval in R whose extremities are z; and y; contains
at least one of the points z8, z, ..., 2.

In other words, f is constant on any subset of I consisting of points
(21, ..., z») in which each z; is restricted to one of the subsets (z8, z'),
(zd,28), ..., (¥, 29, (28], {2}, ..., (z#¢). In particular, f takes
on only a finite number of distinct values. The functions of Examples 1
and 3 of §1 are step functions.

Lemma 2. A step function on a closed' interval I in E® is integrable. In
particular, if (28, 2!, ..., 2aM), ..., (za% za!, ..., Za¥+) 18 @ partilion of 1,
U {6h..ilpiet, Missim,.... Na C R, and if the step function f: I — R is such
that forany jr=1,...,Ny; ...;jn=1,...,N, we have f(z), ...,z.) =
Chowif2F VL y<zF foreach t =1, ...,n, then

i = 211) <o (Tadn = ZaP),
[' ! -IA-l.....llu?;i.-!.....ﬂ-c" "(zl ) ¢ 21

For if we define ¢;,.... (21, ..., Z») to be 1 if 24! < 2 < z for each
i=1,...,n and zero otherwise, then s = Z&c,-...,;. @i....in 18 & function

onlthsthuthevdueaeroateachpomt(x;,: ., Z») of I for which all the
inequalities x; # 2/ hold, for i=1,...,2 and j=0,...,N,; By the



§2. EXISTENCE OF THE INTEGRAL 223

additivity of the integral and Example 2 of the previous section, we have
f, ¢ ~ Zj‘%...f. @ir...ss) = 0. By Example 3 of 5t.he previous section, for
Beees, .

all ji, ..., ja we have [ .5, = (@ — zh) -+ (uh — 24, Thus

the given expression for ft J results from the linearity of the integral, that
is, the first proposition of the last section.

Proposition. The real-valued funclion f on the closed interval I of E* is
tntegrable on I if and only if, for each ¢ > 0, there exist step functions fy, fa on
I such that _

(@) < f(z) < fix) for each zE 1
and

[I (fi-fi) <e

The proof of this is exactly the same as that of the analogous proposi-
tion in § 3 of Chapter VI if we make a few appropriate changes in notation.
Since we shall refrain from making the precise transcription, the reader
should carefully check this statement.

Corollary 1. If the real-valued function f on the closed interval I of E* is
tntegrable on I, then it is bounded on 1.

The following simple result cohld have been proved much earlier, but
it is especially easy to prove at this point.

Corollary 2. If I C J are closed intervals in E* and f: J — R 13 such that
f(@) =0 forallz €J — I, then the integral of f on J exists if and only if the
inlegral of the restriction of f to I on I exists, in which case they are equal.

Denoting the restriction of f to I by the same letter f when no confusion
is possible, this corollary states siviply that [, /= [,fif J DI and fis
gero outside I. To prove this, first note that Lemma 2 implies the truth of
Corollary 2 if f is a step function. Next suppose that /1 S exists. Then for
any e > 0 there exist step functions fy, fs on I such that fi(z) < f(z) < fa(z)
for each z € I and such that | (fs — i) < ¢ Lixtend f), fy to functiox;s on
J by setting fi(z) = fs(z) = 0 if z € J — I. Then /), f are step functions
on J, fiz) < f(2) < o) forall s €4, and [, a~f) = [ i —f) <&

Thus [,f exists. Since f,f:S[,fS[,f: and f,f.: f:f‘—<- /st
Lﬁzj;f”wehave|[rf"];flﬁf,ft—f,fn=f,(f:—f;) < e Since
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the last inequality is true for each ¢ > 0, we have Lf = ], J. Finally
suppose that L f exists. Then for any e > 0 there exist step functions g,,

g2 on J such that gi(z) < f(z) < g2(z) for each z € J and L (g — @) < e
The restrictions of g1, g: to I are step functions on I. By Lemma 2,
/;(9: -g) < L (92 — gv), so that j; (g2 — ¢1) < e. Hence ],fexists, and
this completes the proof.

It is now convenient to extend the notion of integral. First let
f: E*— R be a function which is zero outside some bounded subset of E*.
We can then find a closed interval I of E» such that f(z) = 0 for all

z € el. We call f integrable on E* and define /‘.f = [, J if the latter
integral exists. This makes sense, for suppose I' C E* is another closed
interval such that f(z) = 0 for all z € €I'. Let J be still another closed
interval of E*, such that J D I\UI’. By the last corollary, f,)’ exists if

and only if L J exists, in which case these are equal, and similarly /' )
exists if and only if Lf exists, in which case they are equal. Therefore ]; f

exists if and only if ];,f exists, in which case they are equal.

Now consider an arbitrary subset A C E» and an arbitrary real-valued
funetion f on some subset of E* that contains A. Definef: E* — R by setting
J@=7f@)ifz€ A, ] () =0if £ & A. We say that f is integrable on A
and define L ftobe j;.. 7 if the latter integral exists. This agrees with the

previous definition if A is a closed interval of E*. For any A and f, L S

can exist only if the set of points of A at which f is not zero is bounded and
if f is bounded on A ; this follows from the present definition.

For an arbitrary subset A C E", we say that A has volume, and define
the volume of A to be

vol (4) = Ll,

if this integral exists. A necessary condition that vol (4) exist is that A
be bounded. If I is the open or closed interval in E* determined by ay, .. .,
an, by, ..., ba, then vol (I) = (by — @) -+« (ba — as). An oxample of a
bounded subset of E* having no volume is the set of all points of a given
closed interval I of E* all of whose coordinates are rational numbers
(cf. Example 4 of §1). The word volume, as used here, is often replaced by
n-dimensional volume, or Jordan measure. If n = 1, one often uses the
word length instead, and if n = 2 the word area.

The two propositions of § 1 possess the following immediate generaliza-
tions.
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Proposition. Integration has the following linearily properiies:
(1) If AC E» and f and g are integrable real-valued functions on A,
then f + g is inlegrable on A and

LU+0)- L!+Lo.

(#) If A C E~, f is an inlegrable real-valued function on A and c € R,
then cf 18 tntegrable on A and

. ch-c[‘f.

As usual, it follows that if f and g are integrable on A then

f.U—v)-Lf—Lv-

Proposition. If f is an integrable real-valued function on the subset A of
B~ and §(z) > 0 for allzGA,lhau[fzo.

Corollary 1. Iff,ammmbkmmMMmmﬁcWAd
B and {(z) < g(2) Jor all s € A, then [, 15 [, 0.

Corollary 2. Let f be an integrable real-valued funciion on the subset A of
E~. Suppose that m < f(z) < M for all x € A and that A has volume. Then

mvol (4) < Ljsuvd(A).

Subsets of E* of volume sero are especially important. We list together
some of their properties.

Proposition. The following statements hold:

(1) A subset A of E* has volume zero if and only if, given any ¢ > 0,
there exisis a finile number of closed (or open) intervals in E* whose union
conlains A and the sum of whose volumes is less than ¢

(2) Any subset of a subset of E* of volume gero s of volume sero.

(8) The union of a finite number of subsets of E* of volums zero s of
volume sero.

“4) IfACE‘M:MmcmMWMBCE‘&nMM
vol (B\J A) = vol (B — A) = vol (B).

(85) If A C E" has volume sero and f: A — R 13 a bounded function,
then [, = 0.

(6) If S C E~! is compact and f: S — R s continuous, then the graph
of f in E*, i.c., the set

{(@y ..., 2) EE*: (31, ..., 201) €S, f(m, vory Baad) =z},
has volume zero.
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To prove (1) we may suppose A C I, for some closed interval I of E.,,
since only bounded sets have volume. Let f: I — R be defined by setting

J@) =1ifz€ A,f(z) =0if z €I — A, so that vol (4) = ];,f. If vol (4)

= 0 then for any ¢ > 0 there is a partition of I such that any Riemann
sum for f corresponding to this partition has absolute value less than e
But one such Riemann sum for f corresponding to this partition is the
sum of the volumes of those closed subintervals of I (for the subdivision
of I corresponding to the given partition) which contain points of A. Hence
A is contained in the union of a finite number of closed intervals the sum
of whose volumes is less than e. Conversely, suppose that for each ¢ > 0
we can write A C IV - - \U Iy, where each I, is a closed interval in E*

N
and Y vol (I) <e Forj=1,...,N we define f;: I =R by f;(z) = 1 if
J=d

N
z€INI;and f(z) = 0if 2 € I — I, s0 that J_ f; is & step function on
i
N N N .
1,0 <j(x) < 3 fz) for all z € I, and [,(}:f, —o) =Y vol INT)
¥ Jui Jmi Jml
< Y vol (I)) < e Since for each ¢> 0 f is sandwiched between the
)
N
two step functions 0 and Y, f;, we know that [,f exists. Since ],0 <
Jeui

N .
],/sj,éf,«formhoo, we have [,/ =0, that is vol (4) = 0.

This proves the part of (1) dealing with closed intervals. As for open inter-
vals, the result for closed intervals plus the rerharks that any open interval
in E* is contained in & closed interval of the same volume and that any
closed interval in E* is contained in an open interval of twice the volume
(namely the open interval having the same center as the closed interval,
with dimensions those of the closed interval times 2'/*) prove (1) for open
intervals. Thus the proof of (1) is complete. Parts (2) and (3) follow
immediately from (1). To prove (4), first note that we have vol (4 — B) =

vol (AN B) =0, by (2). Define functions fi, fs, fi: E*—R by setting

1 fzEB
f‘(")"{o 2@ B

ifzr€A-B
ifz& A - B

[

Siz) = {

ifz€ANB

5o =Y itz€AnB.

O -
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Then [pufi= [,1=vol(B), [(ufi= [, ,1=vol(4~B)=0, and
Jers = [inp1 =vol (4 N\ B) = 0. Wehave fi(z) + fu(x) = 1ifz EBUA
and fi(z) + fa(z) = 0if 2 & B\U 4, s0 that vol (B\J Ay = | .(fi +fs) =
e fi+ [pn fs = vol (B). Also fi(x) — fs(#) = 1if 2 € B — A and fi(e) —
filz) =0 if &€ B — A, so that vol (B — A) = = f) = |puh —

[4» i = vol (B), which completes the proof of (4). For (5), suppose that
A is contained in the closed interval I of E» and suppose that |f(z)| < M
for each z € A. Define f: E* — R by setting f(z) = f(z) ifzE A,J(z) =0
if z € A. For any ¢ > 0, part (1) tells us that there exists a step function
g:I—R such that g(z) 20 for all zE€ 1, g(z) 21 for tE A4, and
[10 < & Then — My(z) <J(x) < My() forallz € I [, @atg — (=Mg))=
2M f,g < 2Me follows. This being true for each ¢> 0, ];]' exista.
Since [,(—Mg) < f,fS [,Mg, we have U;fl < MI:” < Me, and
since this is true for all « > 0 we have |, f=0. But L f is by definition

L ], 50 L f = 0, finishing (5). To prove (6), we may suppose that S C I,
where I is some closed interval in E~-1. Given any ¢ > 0, by uniform con-
tinuity we can find a number & > 0 such that |f(p) — f(g)| < € whenever
P, ¢ € S are such that d(p, g) < 8. Choose & partition of I of width less
than 8/V n — 1. Let this partition of I subdivide I into the closed sub-
intervals I, ..., Iy, so that I,, ..., Iy are closed subintervals of I whose
sides are all less than 8/ Vn—1, I=5LVU..--Uly, and vol (I) =

N
Evol I). If p,gEI;N\S then d(p, q) <, so that |f(p) — f(g)| < e
Hence if I;N 8 is nonempty, the graph of the restriction of fto I, S,
that is, ‘

{@y....z) EE*: (2, ...,2a) EI,NS, f(zy, ..., ZTaz1) = Ta}

is contained in the set
t(xl, ---;33) cE: (xh e Za) €15, mj S 20 S Mi,'

where m; and M, are respectively the minimum and the maximum values
attained by f on I;\ S, and the latter set is a closed interval in k* of
volume (M; — mj)vol (1;) < evol (I;). Hence the graph of f is contained
in the union of a finite number of closed intervals in E* the sum of whose

N
volumes is at most 2 evol (I,) = evol (I). Since ¢ is an arbitrary positive
ey

number, (6) is implied by (1).
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Proposition. If A, B are subsets of E* such that vol (AN B) =0 and
f: AU B — R is integrable on A and on B, then

fun? =[5+ o1

To prove this, define fi, /3, fs: E*— R by

&) itz€ 4
f"”)"{o ifz@A

@) itz€B
f’(’)"{ 0 ifz&B

f@) fz€ANB
f"”)'{ 0 ifz&€ANB.

Then [,.f; - Lf and f'qu o= ],f. The existence of the last two inte-
grals implies that f is bounded, so by (5) of the previous proposition we
have [y fi= [,n,/ = 0. Since /i(z) + filz) — fila) = f(2) 2 E AUB
and fi(z) + fa(x) — filz) =0 if z & A\J B, we can therefore compute

Jund = Jotht =10 = [orit [ohi= [ = [1+ [o1

In the special case f = 1, the proposition says that if A and B are
subsets of E* with volumelwhose intersection has volume sero, then

vol (A \J B) = vol (4) + vol (B).

We now have the main existence theorem.

Theorem. Let A CE" be a set with volume and let f: A—R be a
bounded function that is continuous excepl on a subsel of A of volume zero.

Then Lfemts

Let us first prove this in the special case where A is a closed interval I
and f is continuous on I. Here the proof is an easy modification of the
earlier proof for n = 1. Let M € R be such that |f(z)| < M forall zE I.
Given ¢ > 0, the uniform continuity of f on I gives us a § > 0 such that
|f(x) — f(y)| < ¢ whenever z,y € I and d(z, y) < 3. Choose a partition
of I of width less than §/+/n. Suppose this partition subdivides I into
the closed subintervals Iy, ..., Iy, so that I = I,\U .- - \U Iy and no two
of the I/’s overlap except possibly at extremities. Thus vol (I; \I,) =
0ifj,k=1,...,Nand j» k. If z,y € I; then d(z, y) < 3, s0o we have
|f@) — F(y)| < e. We define fy, fs: I — R by setting
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filz) = min {f(y) :yEIL;} if zEI;,z & I, for any k » j
! -M if z is in at least two of thesets I}, ..., Iy
f(3)={max'{f(y):yeI,~) if € 1;,z& I, for any k » j
* if z is in at least two of thesets I, ..., In.
Then fi, f are step functions on I fi(z) £ f(z) € fi(z) for each z € I and

[i-n= 2 [, - < Z evol (I;) = evol (I). Since such £, fi

exist for ea.ch e > 0, our cnterlon for integrability on a closed interval
implies the existence of ] J. This proves the special case.

Now consider the general case of the theorem, with A C E* a set mt.h
volume and f a bounded real-valued function on A that is continuous
except on a subset of volume zero. If § C A is the subset where f is not
continuous, then A — S has volume (by part (4) of the proposition on sets

of volume zero) and f,/ = 0 (by part (5) of the same proposition). If we
can prove that f f exists, the preceding proposition will imply that

[or=]. ,f+]f [ _ /. We may therefore replace A by A — 8,
if necessary, to obtain the simplifying assumption that fis continuous on 4.
Fix a closed interval I C E* such that A C I. Extend the definition of f
to I, redefining f on I — A if necessary, o that f(z) =0 if s €I — A.
We then have to show that f,f exists. Suppose that |f(z)| < M for all
zE 1. Letg: I - Rbedefined by g(z) = 1ifz € A4, g(z) = 0ifx E I — A.
Then f,g exists, this being just vol (4). Suppose ¢ > 0 is given. We can
then find a partition of 7 such that any two Riemann sums for g correspond-
ing to this partition differ by less than ¢. Suppose that this partition sub-
divides I into the closed subintervals I, ..., Iy,sothat I = ;U . .- U Iy
and no two of the subintervals I, overlap, except possibly at extremities.
The points of I that are contained in more than one I; are a set of volume
zero. Let P be the number of subintervals I, ..., Ix that are entirely
contained in A, and let Q be the number of these subintervals that have
points in common with A. We may suppoee I, ..., Ix 80 numbered that
I;C Aif1 <j < P, that I; contains both points of A and pointsof I — A
ifP<j<Qandthat I;CI — Aif Q <j < N. Then two Riemann sums
r

for g corresponding to the given partition of 7 are Y, vol (I,) and
s

Q Q
3" vol (I,). Therefore Y vol (I;) < e. The restriction of f to each closed

et jmP41
subinterval I, ..., Ir is continuous, so that [n fexistsforj=1,..., P.

Therefore for each j =1, ..., P there are step functions fy, fy: I;— R
such that fi(z) < f(z) < f¥(z) for all z € I; and f,’ Y - fiY) < ¢/N.
Now define a pair of functions f, fa: I =R in the following fashion:
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If 2 € I; for some unique j =1, ..., N we set

fi) = fif(x) and filz) = fif(x) ifj=1,...,P
filz) = —-M and fi(z) =M fj=P+1,...,Q
i(z) = fo(z) = 0 ifj=Q+1,...,N.

If zE€ I, for more thanone j = 1, ..., N we set
fi(z) = ~M and fi(z) = M.

Then A, /s are step functions on I and fi(z) < f(z) < folz) forall zE 1.
Furthermore, making a repeated application of the preceding proposition,

N
fe-n=-% [, 0-»
4 Q N
=X G-+ X [Lh-n+ X [ -5
Jom JumP41 J=Q+1
.4 Q N
-2 [ w-m+ 2 [ M+ 2

’N'+2M 2 vol (1)) S ¢+ 2Me = (1 + 2M).

Since ¢ was an arbitrary pomwe number, our criterion for integrability
on & cloeed interval again implies that ],f exists. The proof is now com-
plete.

So far the only subsets of E* that are known to have volume are closed
intervals, sets of volume zero, and sets that may be obtained from these by
part (4) of the proposition on sets of volume sero (page 225). The theorem
enables us to give other examples of sets with volume.

ExampLE. Let I be a closed interval in E*! and let ¢4, @2 be continu-
ous real-valued functions on I such that ¢1(z) < ¢a(z) for all z € I. Then

the set
{(Z1) c0y Za) E E*: (21, o0y Tar) € I, o121, ..., Tar) < 2a < (T, oovy Tu) )
has volume. For if M € R is such that |¢i(z)], |es(z)| S M forallz € 1
and J C E* is the closed interval

[, .., Z) EB*: (24, ..., 2u1) EI,za € [-M, M]},

then the function f: J — R which has the value one at each point of the
set in question and value sero at all other points of J is not continuous
only at points of the form (z;, o0y Tpaty ¢1($g, veey ZTn-1)) OF (€ 7. z‘ax,
#i(2y, . . ., Ta1)). Since these latter are a set of volume zero, Lf exists.
This is illustrated in Figure 36.
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Figurz 36. The unit ball in E* has volume. Except for sets of volume sero it is sand-
wiched between the graphs of the ocontinuous real-valued functions
kB R, where o(z, 2) = vVI—20—20 if 2+ 2°< 1 and
oz, 2) =0 if 204 2> 1.

§8. ITERATED INTEGRALS.

When the integral of a continuous function of one variable actually
has to be computed one usually uses antiderivatives. The main method for
computing integrals of functions of several variables is reduction to the
one-variable case by means of iterated integrals.

In the following, for any sets A C E* and B C E™ we identify A X B
with a subset of E~+= in the obvious way:

AXB = {(Z1 ... Ta, Y1y ooy UYm) € B*= 2 (24, ..., 22) € 4, (1, ..., yw) € B}.
Theorem. Let AC E*BC E™ and let f: A X B—R. Suppose anf
exists and that for each x € A the function f.,: B— R given by fi(y) =

f(z, y) 18 integrable on B. Then if the function on A whose value at each z is
Jo fur i denoted by |, 1 we have

Lxl,- [4(/.[)-
(This equation is often written in the slightly more transparent form
anf" L(/:f(@, v)dy) dz.)

If we extend f to a function on E*+» by defining it to be zero outside
A X B, the theorem becomes equivalent to the analogous statement for
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the special case A = E», B = E™. In this special case, the integrability
of f on E~= implies that f must be zero outside some bounded subset of
E+», therefore outside some closed interval I X J of E*~=, I and J being
closed intervals in E* and E™ respectively. It follows that the theorem is
equivalent to the analogous statement for the restriction of f to I X J.
Thus without any loss of generality we may assume that 4, B are closed
intervals in E*, E™ respectively. We make this assumption, and first prove
the theorem when f is a step function on A X B. In this case, for any

z € A the function f(,, is a step function on B, so that [ p Ji) exists without
any further assumption. If f, fy, ..., J, are step functions on 4 X B and

the theorem holds for each f;, then the theorem holds for Y, f;, for
=1

Jou 557 E L= £ LU = [(E 9 = (L,

But any step function on A X B is the sum of a finite number of step
functions on 4 X B each of which is of the following simple type: there
are subsets Sy, ..., S.ym of R, each S; being either a single point or an
open interval, such that

> 5).

J=t

‘(21, ceoy Tngm) € Entm xxESx, ..-,z-nesml

is a subset of A X B and the step function has a constant value ¢ € R on
this subset of A X B and the value zero on the complement of this subset.
For a step function on A X B of the above simple type the theorem can
be verified directly, each side of the equality in question reducing immedi-
ately to ¢ times the product of the lengths of the sets Sy, ..., Saym. Hence
the theorem holds whenever f is a step function on A X'B. Suppose,
finally, that f is any function satisfying the hypotheses of the theorem. For
any e > 0 there are step functions f, fy on A X B such that fi(s) < f(2) <

fi(2) for all zE A X B and Lxﬂ (i —fi) < e. We then have an hs
] txa S Juxsfr Furthermore, for each z& A we have @) <
fw® < UDw) for each y € B, so that [, (D < [,fi0 < [, oo

But fB S1 and L J2 are step functions on A and

[(fn= )= [([a-m)=[ = <e

Since such fj, f2 can be found for any € > 0, it follows that L ( L j) exists.
We can therefore write

INVEOEIAVRESAVED
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or

oa?S L[S L
Combining this with | i< |  f< [, ,fr weget

! = LU [, 0 -P<e

The theorem follows from the fact that the last inaquality‘holdl for any
e>0.

We clearly have the symmetric result that if f is integrableon A X B
then [, 7= [, (f,s), provided that [, s(z, y)dz exists for each y € B.

Corollary 1. Let f be an integrable real-valued function on the subset A of
E~, let B be a closed interval in E», and lel x4: A X B — A be the projection
on the first factor, that is, xa(z,y) = 2 f 2 € A, y € B. Then

Ax’fo‘lm - (Lf) vol (B).
(Un another notation, [, 1(2) dzdy = ( [, f=)az)( [ dr))

For zE A and y € B we have (f o x4)w(y) = (f o ®4)(z, ¥) = f(2)
s that [, (foxaw = [, /(z) = 1(z) vol (B). If £ x. is integrable on
AXBweget [, fora= [, (fvol(®) = (f,1) vol (B). Hence we
need only show that [, /o x4 exists. To do this, we first reduce to the
case A = E* by cxtending f to a function on E* that has valus sero at
each point of E* — A. If we then choose a closed interval I C E» such that
f is gero at each point of E» — I, we reduce to the case A = I, That is, we
may assume that A is a closed interval in E*. This being s0, the existence of

LI implies that, given any ¢ > 0, we can find step functions fi, /s on 4
such that fi(z) < f(z) < fu(z) for each 2 € A and [, (s —f) < e Then
Ji 0 74, /1 0 x4 are step functions on A X B such that foreachs € 4 X B
wehave (o 7)) S (o 7)) S (howa))and [, Ghoma—fiowa) =

o G =10 o 74 = ([, G = 1) vol (B) < evol (B). Henoe [, s

exists, as was to be shown.

If we apply Corollary 1 to the case f = 1, we get the following simple
result: if A C E~ has volume and BC E™ is a closed interval, then
vol (4 X B) = vol (A) vol (B). In particular, if A has sero volume 8o has
A XB.
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It is worth remarking at this point that the theorem remains true if we
replace the assumption that f,, is integrable on B for all z € A by the
assumption that f,,) is integrable on B for all € 4 — S, where S is a subset

of A of volume zero, if we then understand [‘f(.;' to be an arbitrary ele-

ment of some bounded subset of R whenever 2 € S. To see this, note first
that B may be assumed bounded, so that vol (S X B) = 0. Therefore

axat =0 If we define g: A X B— R by g(£) = f(2) if 2 € S X B, other-
wise g(s) =0, then [, g =0. Therefore [, (/~¢) = [,/ But
(f —9): A X B— R has the same restriction as f to (A — S) X B and is

sero on S X B, so that l;‘_‘)x’fexists and equals /Axﬁ(f-v) = ]4"'!‘
Thus

oa? ™ Juma? = s (L) = [ (L) + [ (L)
- L4y

Corollary 2. Let the set A C E*! be compact and have volume and let
@1, #1: A — R be continuous funclions such that o1(z) < ¢s(x) forallz € A.
Then if [ is a continuous real-valued function on the set
S= (21 ..,Z) EE*: (3, ..., Za-1) € 4,
ATy, oy ) ST S alm, .., Ta-)))y

mthf-L([':'f) wmf'famwmm:ztmmmaz

any (zy, ..., Zau) 8 :'(::’ """"j(xx, e ooy Tn)dZs.

Let B be a closed interval in R containing ¢1(A) U ¢(4), 80 that
S8 C A XB. Extend f to a function on A X B by setting f(s) = 0 if
s€E A X B —8. Then f is bounded and is continuous at any point of
A X B that is not of the form

(3b voey Taly ?l(zl’ ey zﬂ—l)) or (zls voeyTn-yy W(xly LERY) 3;-1)).
These later points form a set of volume sero, by part (6) of the proposition
on sets of volume sero. Since A X B has volume (by the comment following
Coroliary 1), [,f= [, 7 exists. Also for each (zi, ..., 2.) € 4,

L fomonas) = L F@, ..., za)dze =[O o -.-’c.)dz..i,

P, (B0 Bn—t)

Hence the theorem is applicable to the present A, B and f, giving us the
desired result.
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In favorable circumstances Corollary 2 may be applied repeatedly to
express an integral over a subset of E* as an n-fold iterated integral.

If we apply Corollary 2 to the case wheren = 2, f = 1 and 4 = [a, b]
(for some a, b € R, a < b) we obtain the well-known fact that the area of
the plane set bounded by the lines z = a and z = b and the curves y = ¢(x)

and y = y(z) is /: * (¢x(x) — e1(z))dz. However we have sctually proved
something nontrivial because this is now a theorem, not a definition. Simi-

larly, if n = 3 and f = 1, for any compact subset A of the plane that has
area, the volume of the subset of E? lying over A and between z = ¢y(z, y)

and z = ¢4z, y) is L(w(z. ) — ex(z, y))dz dy.

§ 4. CHANGE OF VARIABLE.

Lemma. Let D be a compact subset of the open subset U of E*. Then there
exist subsets D', V of U, with D' compact and V open, such that

DCVCDCU.

Each point of D is contained in an open ball of E* such that the closed
ball with the same center and radius is entirely contained in U. Since D
is compact, we may find a finite set of such open balls whose union contains
D. We may then take V to be the union of this finite set of open balls, D’
the union of the corresponding closed balls.

Proposition (“Partition of Unity’’). Let D be a compact subset of E*
and let {U,}.cs be a collection of open subsets of E* whose union contains D.
Then there is a finite sel of continuous functions , ..., ¥n: E*— [0, 1] such
that

V@) + - +yn) =1

Jor each x € D and each Y 13 zero outside a compact subset of one of the sets
{UJ'ES-

Start with any continuous function A: R — R such that k(z) = 0 if
z <0, while A(z) > 0 if z > 0; for example, we may take A(z) = z for
z > 0. Then the function g: R— R given by g(x) = A(1 — z?) has the
properties that g(z) = 0 if |z|> 1 while g(z) > 0 if |z| < 1. Hence if
» > 0, then g(vz) is zero for |z| > 1/» and positive for |z| < 1/v. For each
point p € D choose », > 0 such that the closed ball in E» of center p and
radius 1/», is entirely contained in one of the sets {U,}.cs. Let B, be the
open ball in E= of center p and radius 1/»,. Since D is compact there is
a finite subset py, ..., py of D such that DC U = B, U ---\UB,,.
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Set
o) = _NL(!uﬂEn.ﬁlL
2 g (vy,d(z, 2y))
jul
forr€Ueandim=l,..., N. Then each ¢ is a continuous function on the

open set U D D with values in [0, 1] and ¢y(z) + -+« + ¢n(z) = 1 for all
z € U. In addition, for each ¢ = 1, ..., N, the points where ¢; is not gero
are contained in & compact subset of one of the sets {U,},es. Now use the
lemma to obtain subsets D’ and V of E*, respectively compact and open,
such that

DCVCDCU.

Apply what has been proved above to the compact set D' and the collection
of open sets {V, U — D} (whose union contains D’). We get functions
analogous to the above ¢.’s and these we group into two batches, according
to whether or not the set of points at which the function is not zero is con-
tained in a compact subset of V, then we add the separate batches. We get
continuous functions 6,, 6, on an open set U’ D D’ with valyes in [0, 1]
such that 0,(z) + 6x(z) = 1 for each x € U’ while 8, is zero at each point of
U’ outside & compact subset of V and 0, is zero at each point of U’ outside
a compact subset of U — D. Since 6,(z) = 0 for each 2E U’ — V and
since V C D', we have 0,(z) = 0 if z € U’ — D'. Also 0x(z) = 0 if z € D,
so that 0i(z) =1 if zED. For i=1,...,N we define y;: E*—R by
Vi(@) = od2)0i(z) if z E UN U’ and Yi(x) = 0if € E» — UN U’. Since
¥: is continuous on the open sets UM U’ and E* — D’ (it is sero on the
latter), it is continuous on their union, which is E*. The other desired prop-
erties of ¥, . .., ¥~ follow immediately from their construction.

Corollary. Let D be a compact subset of the open subset U of E*. Then
there i8 a conlinuous function ¥: E*— [0, 1] sulh that Y(z) = 1 for each
z & D and ¥(z) = 0 for each x outside some compact subset of U.

This has essentially appeared in the proof above, but it also follows
easily from the statement of the proposition. Let D’ and V be subsets of
E®, respectively compact and open, such that

DCVCDCU.

Since D’ C V\U (U — D), we can apply the proposition to the compact
set D’ and the collection of open sets {V, U — D} to get continuous func-
tions ¥, Ya: E~— [0, 1] such that ¥1(z) + ¥a(z) = 1 for each z € D’ and
V1 and ¥, are zero outside compact subsets of V and U — D respectwely
Since ¥, is 1 on D and sero outside D’, we may take y = .
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We remark that the functions ¥, ..., ¥x of the proposition and also
the function ¢ of the corollary may be chosen so as to possess all partial
derivatives of order m, for any given positive integer m, by starting with
h(z) = z=*! for z > 0. In fact it can be shown that ¥, ..., ¥~, ¥ possess
all partial derivatives of all orders if we take A(z) = e~V for z > 0 (of.
Problem 28, Chapter VI).

Lemma. The real-valued function f on the closed interval I of E* 1s integrable
on I if and only if, for each € > 0, there exist continuous real-valued functions
f1, fa on I such that

N(z) < f(z) < fu(z) foreachzET
and

fi-n<e

The proof makes repeated use of the first proposition of §2. First
suppose that f satisfies the given condition. Then given ¢ > 0 there are
continuous functions fy, f: I = R such that fi(z) < f(z) < fi(z) for each

z€I and ], (s = /1) < ¢/3. Bince fi and f; are integrable on I there are
step functions fy’, i, /i, /i’ on I such that fi'(z) < fi(z) < £i"(z) and
() < falz) < fr”’(z) are true for each €I and L(j;" - ') < ¢/3,
[,(f," —f/) < ¢/3. The step functions fy, fy”’ are such that fi'(z) <
f@) < fi''(z) for each z € I and

]I(I’" =)= ];(fz" -+ f,(fa -+ f,(f; -fi)
<[ -+ -+ [G-m<g+rgtg=e

Thus f is integrable on I. To prove the converse, suppose first that any
step function on I satisfies the given condition. We reason in the same way
as above. If f is integrable on I then for any ¢ > 0 there are step functions

£, 2 on I such that fi(r) < f(z) < fi(z) for each x € I and l,(f. -y <
¢/3. Since step functions are assumed to satisfy the given condition, there
are continuous functions fy, fi’’, fs', fi’’: I = R such that we will have
(@) Sfilx) S/H"(x) and f'(x) S fi(z) SH'(z) for all zEI and
f,(f:" - 1) < ¢/3, ],(f," —fy) < ¢/3. Thus the continuous functions
1v', £’ are such that fi'(z) < f(z) < fa"(z) for all z € I and

fiwr == [ =+ [ G-+ [ti-m
<=+ [[G-p+ [0 -fr<gtgtg=e
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80 that f satisfies the given condition. Therefore it remains only to show
that for any step function f on I and any e > 0 there exist continuous
functions f;,fs on I such that fi(z) < f(z) < fi(z) for all zE€ I and

L (fa = /i) < e But any step function on [ is the sum of a finite number of

step functions on I each of which is of the following simple type: there are
subeets 8, ..., 8. C R, each S, being either a single point or an open
interval, such that the set {(z), ..., 2.) EE*: 2, €Sy, ..., 2. ESa) is a
subset of I and the step function has a constant value ¢ € R on this subset
and the value 0 on the complement of this subset. Therefore we need only
prove that a step function on I of the above simple type satisfies the indi-
cated condition. That is, if for ¢ = 1, ..., n the subset S; C R is a single
point or an open interval such that {(z;,...,z.) €EE*: 5, €S, ...,
z, € 8.} is a subset of I and if f: I — R has the constant value ¢ € R on
this subset and the value zero on its complement, we must show that for
any ¢ > 0 there are continuous functions fj, fy: I — R such that fi(z) <

J(z) < fi(z) for all zE I and /, (fs = /i) < e It clearly suffices to prove

this for ¢ = 1. Assume that I happens to be the closed interval in E* deter-
mined by ay, ..., @4, by, ..., ba. First suppose that some S; is a single
point, say S; = a3 € [ay, by). For any & > 0 choose a continuous function
¢: R—[0, 1] such that ¢(a1) = 1 and ¢(z;) = 0 if |71 — au| > §. Define

v:E*—[0,1] by ¥(z1,...,2a) = @(z1). Then 0 < f(z) < ¢¥(z) for all
2E€1I and

¥ —0) <256 —00) -+ (b = a0,

which can be made less than ¢ by taking 8 small enough. It remains to con-
sider the case where each S; = (ay, Bi), where a; < a; < 8; < bi. For any
8 > 0 such that 26 < 1 — ay, ..., Ba — aa, choose a continuous function
fi: E~—[0, 1] such that f; is 1 on the closed interval determined by
a1 +38,...,as+8,p1—38,...,8. — 3 and 0 outside the open interval
determined by ay, ..., aa, By, ..., Ba, and choose a continuous function
Ja: E»— [0, 1] that is 1 on the closed interval determined by ay, ..., as,
Sy, ..., B+ and O outside the open interval determined by ay — 3§, ...,
an=8,1+4+38,...,8.+ 9. Then fi(z) < f(z) < fa(z) for all zE I and

[G-p< [oti-1
S(ﬁl_al"'za) "'(ﬁn_au+2a) _(Bl—al—26) et (ﬂ.—a..—?&).

Since polynomial functions are continuous, this latter expression can be
made less than ¢ by taking & sufficiently near zero, and this completes the
proof.
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Theorem. Let A be an open subset of E*, ¢: A — E* a one-one continu-
ously differentiable map whose jacobian J, 18 nowhere zero on A. Suppose
that the function f: p(A) — R 18 zero oulside a compact subset of ¢(A) and
that [, 1 exists. Then

vid)
me" L Fow)ld,l.

Since the proof is quite complicated it will be given in & number of
steps. We first make a few preliminary remarks to be borne in mind below.
The inverse function theorem implies that ¢(4) is an open subset of E* and
that the map ¢—*: p(4) — A is also continuously differentiable. Any com-
pact subset of A (or ¢(4)) is ma.pped by ¢ (or ¢™) onto a compact subset
of ¢(A) (or A), since the image of a compact, set under a continuous map
is compact. Similarly, since the inverse image of an open set under a con-
tinuous map is open (by the first proposition of Chapter IV), ¢ induces a
one-one correspondence between the open subsets of A and those of ¢(4).

If f is continuous the assumption that L w' exists is superfluous, for this

fact follows automatically from the assumption that f is zero outside a
compact subset of the open set ¢(A). The reason f is assumed to be zero
outside a compact subset of ¢(A) is that one must allow for the eventuahty
of A, ¢(A) or J, being unbounded. As usual, the component functions of
¢ will be denoted by ¢, ..., ¢a, 80 that ¢(z) = (¢1(2), ..., ¢a(z)) for all

sEAandJ, = det(—g—g—).

(1) The theorem is true if ¢i(z1, ..., Zs), ..., @a(T1, ..., T4) Bre 8
permutation of zy, ..., z.. For if ¢1(z), ..., oa(z) are just z,, ..., z., but
possibly in a different order, then J, is the determinant of an n X n square
array that has precisely one 1 in each row and each column, with all the
other elements zero, so that J, = 1. Thus the statement is a direct conse-
quence of the definition of the integral, which does not depend on the order
in which the coordinates are taken.

(2) We may assume that the theorem is true for n — 1 in place of =,
if n > 1. For suppose we prove the theorem under this assumption. Then
if we prove the theorem for n = 1 it will be true for n = 2, since true for
n = 2 it will be true for n = 3, since true for n = 3 it will be true forn = 4,
etc., 8o the theorem will hold for all n.

(3) It is sufficient to prove the theorem when f is continuous. For
suppose it i8 known in this special case. Then given an arbitrary f: ¢(4) = R
which is zero outside a compact subset of ¢(4) and integrable on ¢(4) we

must show that ]4 (fop)|J,| exists and is equal to me' Let D C ¢(4)
be a compact set such that f is zero outside D. Apply the previous corollary

to D and ¢(4) to get a continuous function y: E»— [0, 1] that is 1 on D
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and 0 outside a compact subset D’ of ¢(A). Let I be a closed interval in E*
that contains the compact set D'\J ¢~'(D’). For convenience, if F is any
function on a subset of E* we shall denote by F the function on E* which
?leeo with F where the latter is defined and is sero elsewhere. Thus
f
w(4)

- .[: J. Now suppose we are given some ¢ > 0. Since ];] exists,
the lemma enables us to find continuous functions gy, gs: 7 — R such that

01(z) <7 () < ga(s) for each z € T and [, (92 — g) < e Then Y(2gr(z) <
J (@) < ¥(@)gr(z) for each zE€T and ]; (Vg — ¥g) = [,w(a, -0 <

Ji @ — g0 < & 1 we let £, £ be the restrictions to ¢(4) of ¥gs, ¥4 respec-
tively, then f, fs are continuous real-valued functions on ¢(A) which are
sero outside DY, fi(z) < f(2) < fia) for each z € p(d), snd [, (fs = )
< e. Now consider the real-valued functions on A given by (fio ¢)|J,|,

(frce)|J,| and (fo)|J,|; the first two are continuous, they are all zero
outside ¢~}(D’), and they satisfy

((he o)) @) < ((f°¢)l*’v‘.)(x) < ((ho o) | /,]) (@)
for all z € A. Thus (fio)|J,| and (fz0¢)|J/,| are continuous on E* and
(109)|Jo|(2) < (Fo @) | 4| (2) < (a0 ) |Jy|(2)
for all x € I. By assumption our theorem holds for f; and f;, so that
_[,((fa°¢)|-’o| = (hoo)|J,]) = [A (o @) |Jy| = (1o ) |T4l)
= oy i—h) <e

Since ¢ was an arbitrary positive number, the lemma implies that (fo ¢) |J,|

is integrable on I. Thus (fo ¢)|J,| is integrable on A. Furthermore, from
the inequalities

wfi= [ o< [[Ue@III< [, ool = [ 5

and

m)f‘ < mes v(A) r
we deduce that

| [, ool = [0 5] < frw =10 <
This being true for all ¢ > 0, we have
[iGe el = [0

proving the contention of this section of the proof. Therefore from now
on we may assume f to be continuous.
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(4) If {A.}.es is a collection of open subsets of E* such that A =
.\e)' A, and for each s € S the theorem is truc for 4, and the restriction

of ¢ to A,, then the theorem is true for A and ¢. For let f: ¢(4) — R be
a continuous function that is zero outside the compact subset D of ¢(A).
{e(A.))sas is a collection of open subsets of ¢(A4) whose union is ¢(4).
By the proposition continuous functions ¥, ..., ¥x: E*— [0, 1] may be
found such that ¥4(z) + -+ 4 ¢¥x(z) = 1 for each 2 € D and each ¥ is

zero outside & compact subset of ¢(4.()), for some s(t) € S. For each
t=1,...,N we have

o W= far W= [ (WD 0l = [ (@) 0 0) 1ol

Since f = f ¥:J, we deduce
J=1
N N N
L? = L ZW =2 [ W= X [, @nee)lll

.4
-/ 2 (WD)l = [ e,

which was to be shown.

(6) The theorem is true for n = 1. To prove this we may suppose A
to be an open interval, by (4). Let f be a continuous real-valued function
on ¢(A) that is zero outside some compact subset of ¢(A4). The function
fo ¢ is gero outside some compact subset of A, so we can find a,b € A4,
@ < b, such that fop is zero on A — [a,b}. Then f is sero on ¢(4) —
¢([a, b]). In the present case J, = ¢’, and since this is nowhere sero ¢ must
be either an increasing function on A or a decreasing function. In either
case we go back to the change of variable theorem for one variable (Corol-
lary 3 of the fundamental theorem of calculus). If ¢ is increasing, then

me- Iv«-.m!- - [,.U“’)'" - L(ﬁv)l«’c‘o

v(e)
If ¢ is decreasing the computation is

]’“)ju .a..mf = [:.:)f = [ Uow)e' = [ (o )(—9)
- LU°¢)'J.‘.

This proves the theorem for # = 1. Therefore from now on we may assume
that n > 1.

(6) The theorem is true if for certain ¢,j=1,...,n we have
@ix1, ..., Zs) = 25 By virtue of (1), it suffices to prove this in the special
case where ¢ = j = 1, that is

(X1, ooy Za) = (T2, @2(T1y o« 0y Tw)y oo oy PalZyy o o oy Ta)).



A is a union of open intervals of E*, for any point of A is the center of an
open ball that is entirely contained in 4, and an open ball of radius r con-
tains the open interval having the same center and sides 2r/4/n. Thus
by (4) we may assume that A is itself an open interval. Identifying E®
with R X E~, we have A = B X C, where B and C are open intervals in
R and E*! respectively. Let f: ¢(4) — R be.a continuous function that
is sero outside a compact subset of ¢(A) C B X E~*. The funotion
J: B X B~'— R which agrees with f on ¢(4) and otherwise is sero is
continuous. For each z € B, the function f,): E~! — R given by Jiu(y) =
] (=, y) is continuous and is sero outside a compact subset of E*~}, hence
integrable on E*1, 80 we have

]«A)f = Jaoann] = fa (fr-‘f)'
where [, ] denotes the function on B whose value at z is [, , Ju
For any z € B consider the function ¢(,): C — E*! which is defined by
Pzy, .oy 20) = (@a(Z, 21 ...y Za), o0y 0(Z, Ty -y 7))

for all (zy, ...,2.) EC. ¢ is & one-one continuously differentiable map
whose jacobian J,,,, is (J,),, that is for each (2s, ..., Zs) € C we have
Jo(Z2) <+ oy Zu) = J (2, 23, . . ., Za). Bince our theorem holds for n — 1
(by (2)), we can compute

f..-n]«)- ]muc)f“’- L (fmww)llml - [c (o @) | Tol s
s0 that

ol = [,qealanl.

L(A)f- fn (fa U°¢)|Jp|).

Now (fo¢)|J,| is a continuous real-valued function on B X C that is
sero outside a compact subset of B X C, hence integrable on B X C; also,
for each z € B the function ((fo¢)|J/,|)w is a continuous real-valued
function on C that is sero outside & compact subset of C, hence integrable

on C. Therefore the last iterated integral equals [, , (fo)|J,|. Thus we
indeed have

Therefore

[t = [ Gearld,l

in our special case. .
(7) We now prove the theorem. For any point a € A we have

J,(c)#(),nthtt%-(a) » 0 for at least one ¢ = 1, ..., n. For given ¢,
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the subset of A where 3¢./9z; is not zero is open and the union of these n
subsets is A4, so by (4) it suffices to prove the theorem for each one of these
subsets. Therefore we may assume that d¢./3z; is never zero on A. By (1),
we may assume that ¢ = n, that is d¢p./9z, i8 never zero on A. Now con-
sider the map o: A — E* defined by

a(Z1, ...y ) = (21, ..y Zaot, OalT1, - . .y Za)).

The jacobian of ¢ is 3¢./3x., which is never zero, so by the inverse function
theorem each point a &€ A is contained in an open subset 4, of 4 such that
the restriction of ¢ to A. is & one-one map from A, onto an open subset
o(A,) of E* and such that the map o—*: 0(4,) — A. i8 also continuously
differentiable. Again by (4), it suffices to prove the theorem for each A..
Thus we may assume that the map ¢: A — E* is a one-one map from 4
onto the open subset d(A4) of E* and that ¢—*;: ¢(A) — A is also continu-
ously differentiable. The map 7 = poo™ is therefore & one-one con-
tinuously differentiable map from o(4) onto ¢(A), and ¢ = 700. The
maps ¢ and r are such that if z = (z), ..., z.) € A4, then ¢(z) = (z4, ...,
Za-1, %(Z)) and 1'(2‘1, cooy Bayy ‘Pu(z)) = (‘Pl(z), ooy ¢.(Z)). By (6)’ the
theorem holds for the map o of A, provided J, is nowhere zero on A, and
also for the map 7 of o(A), provided J, is nowhere zero on ¢(4). Therefore
for any continuous function f: ¢(4) — E* that is zero outside a compact
subset of ¢(A) we have, provided J, and J, are nowhere zero,

Jew? = feant = fw TenIel = [ (((Fen 1) 0 )10l
= [LUe@Uroa.l.
The theorem will therefore be proved if we can show that
Jg = (J,0a)],

at each point of A. For those who know linear algebra this equality is an
immediate consequence of the last paragraph of the first section of Chapter
IX (since the determinant of the product of two linear transformations is
the product of the determinants), but it is possible to give a more ‘“ele-

mentary” proof, as follows. Since ¢ = 700, for any 7,j=1,...,n the
chain rule gives

(@) = ((ro0))i = (o) = 3= ((rdio o) (an)]

kel
(rdjoa+ ((rdaoa)(ew)i ifj<n
((r)d 0 @) (ew)s if j = n.
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Thus the n X n square array ((¢:);) is obtained from the n X n square
array ((r:)j o) as follows: if j < n then each element of the j* column of
the former equals the corresponding element of the ;4 column of the latter
plus (g,); times the corresponding element of the n* column of the latter,
while each element of the n®* column of the former equals (¢.)+ times the
corresponding element of the n* column of the latter. By the elementary
properties of determinants we have
det ((¢9)}) = det ((r9j0 ) - (¢n)a,

that is,
Jo = (J,00)],,
which is precisely what remained to be shown.

PROBLEMS

1. Let I, ..., I~ be disjoint open intervals in E*. Show that if Jy, ..., Jx are
open intervals in E* such that

L. UIyChVU- - UJx
then
vol (I) + «+« + vol (In) < vol (V1) + * -« + vol (Ju).
2. Can you give a less computational argument for Example 3 of § 17

3. Prove that a continuous real-valued function on a closed interval in E» is
integrable, using only Lemma 1 of §2 and uniform continuity.

4. Do the n-dimensional generalisation of Problem 6, Chapter VI, with [a, ]
replaced by a closed interval I of E* and L ' f(z)dz by j' 1

5. Write down in all detail the proof of the first proposition of § 2.

6. Let f be a real-valued function on a subset A of E~. Show that if /‘f exists,
thensodoesL ||, and ' L!l <L |f]. (Hint: First assume that A is a closed
interval) .

7. (a) Let f be a real-valued function on a closed interval I of E* Show that if
f i8 integrable on I then so is .

(b) Let f, g be real-valued functions on a closed interval I of E*. Show that if
f and g are integrable on I then so is fg.

(c¢) Let f, g be real-valued functions on a subset A of E*. Show that if Lf
and [, g exist, then |, fp exists.

(d) Let f be a real-valued function on a subset A of E* and let B C A. Show
that if [, exista and B has volume, then [, f exista.



10.

11

12.

13.

14.

15.

16.

17.
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(e) Show that if the subsets A and B of E» have volume, then so do the sets
ANB,AUBand A - B.

Show that if a subset A C E™ has volume, then the interior of 4 (cf. Prob. 185,
Chap. 11I) has the same volume.

Show that a bounded subset A of E* has volume if and only if the boundary
of A (cf. Prob. 17, Chap. IIT) has volume gero.

Let f be a bounded real-valued function on a closed interval 7 of E*. Prove
that f is integrable on I if and only if, for any ¢, 8 > 0, I is the union of a
finite set of closed subintervals such that the sum of the volumes of those
subintervals on which f varies by at least ¢ is less than .

Let f be a bounded real-valued function on a closed interval I of E*. Prove
that f is integrable on I if and only if, for each € > 0, the set of points of I at
which the oscillation of f (¢f. Prob. §, Chap. IV) is at least ¢ has volume sero.

Use the preceding problem to show that a bounded real-valued function f on
a closed interval I of E* is integrable on I if and only if the set of points of J

at which f ir not continuous is the union of a sequence of subsets of I of volume
zero.

Show that the nonempty subset of [0, 1] consisting of those numbers which
have decimal expansions none of whose digits is 5 is the set of its own cluster
points. 8how that this set is of volume sero.

For each integer n > 1 let S, be the union of the open balls in R of centers
1/n,2/n, ..., (n — 1)/n and radii 1/n2~+\, Prove that '\,{' S. is an open
L1 oane

subset of [0, 1] without volume. (Hint: If this set had volume, the volume
would be 1. But the union of any finite number of S.'s has volume less
than 1/2.)

Let A C E" and let f: A — E™. Consider the condition that there exist some

M € R such that d(f(z), f(y)) < Md(z,y) for all z,y € A.

(r) Show that the condition is satisfied if f is the restriction to A of some
differentiable map into E™ of some open subset of E* containing A, if the
partial derivatives of the component functions of f are bounded on 4 and
A contains the entire line segment between any two of its points.

(b) Show that if the condition is satisfied, if m = n, and vol (4) = 0, then
vol (f(A)) = 0. (Hint: A is contained in the union of & finite number of
cubes of total volume less than any prescribed positive number.)

(c) Show that if the condition is satisfied, if m > n, and A is bounded then
vol (f(4)) = 0. (Contrast with Prob. 31, Chap. IV.)

Prove that if A C E» has positive volume and f is & positive-valued function
on A such that Lf exists, then L § > 0. (Hint: Reduce to the case where 4 is
a closed interval and for any positive ¢ we have vol ((z €A : f(z) 2 ¢]) = 0,
then try to use compactness.)

Let A C E be a set with volume and f: A = R a continuous function. Show
that if the set [z € A : f(z) = 0} has volume zero, then the set {z€ A :
J(z) > 0} has volume.
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18.

19.

21.

Let A be a bounded subset of E* and fi, f3, fi, ... & sequence of real-valued
functions on A that converges uniformly to the limit function f. Show that if

‘j.. exists for all m, then [ f exists, and [ f =lim ] Jw. 18 this true if A
4 a moe JA
is not bounded? .

Let A C E* be compact and have volume, let U C R be open, and let f be a
continuous real-valued function on the set

{ (21, e Zny) EEM (310 wat) €EA,yeU).
Prove that if 8f/y exists and is continuous on the latter set, then

& ieva= [Leya.

Let V C E* be compact and have volume and let A and K be continuous real-
valued functions on V and V X V respectively. S8how that if

Ivol (V) K(z,y)| <1

for all z, y € V then there is & unique continuous real-valued function ¢ on V
such that

0@ =A@ + [, Kz, 1) o) dy
forallze V.

Let F:[0,1]} X [0, 1] = R be defined by f(z,¥) = 0 if x and y are not both
rational, while f(z, y) = 1/q if z and y are rational and ¢ is the smallest posi-
tive integer such that gz is an integer. Show that

[u-nxm f&y)dzdy =0 but [ .,.,( ],,,,, @) dy) dz
is not defined. What about ]D-ll ( [M‘ [z, 9 dz) dy?
Compute

]| S———t I
Change the order of integration in

[-l (.L(H‘W( [.“PWM! @2 dz) dy) dz

(five answers).

Show that if [a, D] is a closed interval in R and f: (a, b] X [a, 8] — R is contin-
uous, then

[([reva)a=[ ([ 1cna)a
Compute

vol ({(21, ..., 20) EE*:0< 2, ..., za0nd 2,4 -+ + 2. < 1)),

. Let V. be the volume of the closed unit ball in E*, that is, the set

{(@,...,.2) EE*: 22+ - + 22 < 1}.
Show that if n > 1 then Ve = 2 Va_, ]o ' (1 — 8)*-ba g1, and hence (applying
Prob. 39, Chap. VII) that V. = (25/n)Vasif n > 2.



31.

32.
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. Let A C E*, B C E™, let f and g be integrable real-valued functions on 4 and

B respectively, and let x4 and x5 be the projections of 4 X B onto its factors,
that is wa(z,y) = z and 7s(z,y) = y if £ € A and y € B. Show that

[ow Gera@orn = ([.)([,0)

(Hint: Problem 7 can simplify the proof.)

Let A C E* and B C E™. 8how that
(a) if A and B have volume, then (by Problem 27)

vol (A X B) = vol (4) vol (B)

(b) if vol (A X B) exists and is nonsero, then A and B have volume
() if vol (A X B) = 0 then A or B has volume gero.

Prove that under the conditions of the change of variable theorem, ¢ maps
any subset of A that is contained in a compact subset of 4 and has volume
onto a subset of ¢(4) that has volume.

Prove that if f is a real-valued function on E® such that [ 2/ exists, then
f,ﬂf(z, Vdady = ]Kmsm'f(r cos 8, r sin 0) r dr do.

(Hwnt: First prove this if f is zero on some open subset of E® containing the
positive z-axis. Problem 7(d) can help in passing to the general case.)

(a) Use Problem 30 to show that for any k > 0 we have

[.éé:ne"‘rdrda

L J
= —z3—-y3 2, ~z3—y3 .
] . dr dy < [ o € e dy

—z3-y3 == —rs
" € dz dy hr<ivi e rdrdo.
yyIcus 0<I<es

(b) Deduce that
‘E(l — ™) <(]:e"" dx)’ < g(l - e"”").
(¢) Prove that ]° " e dr = ‘-’{—' (cf. Prob. 28, Chap. VI).

Let A be an open subset of E* and f a real-valued function on A. Let D be the
set of compact subsets of A that have volume. Cull f absolutely integrable on

Aif ]Dfexista for each D € D and there is a number L € R such that for any
¢ > 0 there exists some D € D such that if D’ € D and D’ O D then

'[o,f—Ll<e.

(a) Show that if L exists, it is unique. (Hence we may write
abs
L= [

(b) Show that if L f exists, then L "= L J. (Hint: Problem 7(d) implies
that [Df exists for all D € 9.)
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(d)
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®
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Show that if ]Df exists for all D € D, then f is abeolutely integrable on
A if and only if for any ¢ > 0 there exists some D € D such that if D' €D
and D' C A~ D then | [,.f|< ¢ which is true if and only if the set
{ [,1: D € D} in bounded, and this in turn is true if and only if the set

{ f,,1#1 : D € } is bounded. (Note that [, 17| exista for all D € 9, by
Problem 6.)

Show that if f is continuous and f and A are bounded then [ ™ / exists.
Let (a, b) be an open interval in R and let f be & continuous real-valued
function on (zER:a<z<b]. Show that if ]"‘ f exists then

(ad)

o 1= ].: f(z) dz (cf. Prob. 27, Chap. VI), and that if f takes on only

nonnegative values and [.: f(z) dz exists then ‘:!exists.
Letaen,An(zeR:z>a},sndlet[be;continuousml-v‘:lued
function on [z ER :z 2 a). Show that ifL J exists then L f=

L“f(z) dz (cf. Prob. 28, Chap. VI), and that if f takes on only non-
negative values and [*” 7(z) dz exists then L"'j exiats.

(&) Show that [ 22 4 existe, but [:%fdzdoesnoc.
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Absolute value, 22, 63
Abesolutely convergent series, 144
Absolutely integrable, 247
Addition, 16

Additive inverse, 16

Aggregate, 2

Algebra, fundamental theorem of, 165
Alternating series, 145

Antiderivative, 127

Arcwise connected, 93

Area, 112, 113, 224

Associativity, 16

function, 78
sequence, 47
set, 43
totally, 65

Caleculus, fundamental theorem of, 126
Cartesian product, 7

Cauchy mean value theorem, 108
Cauchy sequencs, 51

Center, 37

Chain rule, 102-103, 198, 201

('nt:‘fe of variable in integration, 128, 239
Ck

ball, 37

Collection,
Commutativity, 16

Compact
metric space, 54
sequentially, 65

set, 54
Comparison test, 144
Complement, 5
Complete metric space, 52
Complex

normed vector space, 63-64

numbers, 30

number system, 30
Component function, 77
Compoeed function, 9
Compogition of functions, 9
Connected

metric space, 89
59

set,
Constant function, 69
Continuous
function, 68
uniformly, 80
Conﬁnuomly dnﬂerenm.ble, 108
Contraction map, 171
Converge, 45, 83, 141
absolutely, 144, 150
at & point, 141
uniformly, 85, 141
Convergence
interval of, 152
radius of, 153
Convergent
sequence, 45
sequence of functions, 83
weries, 141
Convex function, 110
Correspond, 8
Correspondence, one-one, 10
Cosecant, 163
Cosine, 157
Cotangent, 163
Curve, 83, 134
Ion;t.h of a, 134
space-filling, 94

expansion, 27
finite, 26
infinite, 27
penodwzl
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Decreasing
function, 108
sequence, 50
Dense, 93
Derivative, 98, 100
partial, 159, 194
second, third, 106
second, thlrd order partial, 201
Diameter, 92
antiable, 08, 193, 212
at s point, 98, 195
continuously, 198
n times, 106
on a set, 100
Differential equation, 177 .
Differential operator, 203
Differentiation, 98
under the integral sign, 159, 246
Disjoint sets, 6
Distance, 34

]
between functions, 87-90, 95
from a point to a set, 92
Distributivity, 16
Diverge, 141
Divergent series, 141
Dummy variable, 48, 113

Element, 2
neutral, 16

Empty eet, 4

Ensemble, 2

Euclidean space, 34

Euler constant, 134

Exponent, tial, 21-22

Exponential function, 129

complex 164

Extremities of an interval, 38, 216-217

Family, 2
Field, 18
Finite
decimal, 26
set, 11

differentiable, 98, 100, 195
exponential, 129

identity, 10, 70

implicit, 174, 2056

Function (cont.)
increasing, 105
integrable, 112, 216
inverse, 10, 176, 211
limi

lourithmic 128

nowhere differentiable, 166-167

one-one, one-to-one, 10

onto, 10

step, 70, 119, 222

strictly decreasing, 105

strictly increasing, 105

trigonometric, 157, 163, 164

uniformly continuous, 80
Fundamental theorem

of algebra, 165

of calculus, 126

Geometric series, 142
Graph, 8, 9

Greater than, 19
Greatest lower bound, 25

Harmonic series, 143

Identity function, 10, 70

Image, 10

Implicit function theorem, 174, 205
Improper integral, 135, 185, 248
Increasing

function, 105
sequence, 50

Indexing fumly,
Indices, 6
Infimum, 28
Infinite

decimal, 27

sequence, 11

series, 141

11

set,
Integer, 21
positive, 10
Integrable, 112, 216, 224
absolutely, 247
Lebesgue, 116
Riemann, 112, 216
Integral, 112, 216
improper, 135, 165, 248
iterated, 231
Lebesgue, 116
Riemann, 112, 216 :
Integral equation, 178, 181, 192
Integral test, 161
Interior, 62
point, 62,



Intermediate value theorem, 82, 83
Internection, 4, 6
Interval

closed, 38, 43

half-open, 42

of convergenoe, 152

open, 38, 43

verse
additive, 16
function, 10, 176, 211

Jacobian, 211
determinant, 211
matrix, 200

Jordan measure, 224

Kronecker delta, 206

Least upper bound, 23

e

integrable, 116

intecnl 116
Length, 224

ofa etm'a, 134
Less than, 1
L’Hocpiul’n rule, 109-110
Limit

funeﬁou, 83

inferior, 63

of af function, 72-73

of a'sequence, 45

superior, 63

Line segment between two points, 83

Linear
differential equation, 189, 100
fun ]
transformation, 93
Lipechits condition, 178, 183
Logarithmic function, 128
Lower bound, 25

Map, 8
contraction, 171
Mupp;:g. 8

max,
Maximum, 78

for several variables, 204-205
Member, 2
Metric, 34

iNpex 258

Natural number, 10, 31
n-dimensional Euclidean space, 34
n-dimensional volume, 224
Negative, 19

Neasted set ptoperty,
Neutral elements,

Newton's method, 109

Norm, 63

Normed vector cm

Nowhere differen function, 166- 167,

n-tuple, 11
Number, 16

complex, 30
natural, xo, 2

negative, 10
of eloments in a set, 11
positive, 19

real, 16

derivative, 150, 104
sum, 141

of a closed interval, 112, 216
of unity, 235
Periodic decimal, 31



integrable, 112, 216
integral, 112, 216

112, 216
Mbmam, 104

Root teet, 162

Space-filling

Square root, 28

Stiing’s foreale, 166
do::lhg. 105

Bublatecval, 0517
besquence, 46
Waoo 4
Successive approximation, 169, 170

Sum of a series, 141
Supremum, 25

Tangent, 99, 163

Taylor series, 188

Taylor’s theorem, 107, 204

Totally bounded, 65

Transitivity;20

Triangle inequality, 34

Trichotomy, 19

Trigonometric functions, 157, 163, 164

Value of a function, 8
Volume, 224
n-dimensional, 224

Wallis’ product, 166
Width, 112, 216

Zero, 16
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QUANTUM THEORY, David Bohm. This advanced undergraduate-level text
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Index. 655pp. 5% x 8%. 65969-0 Pa. $13.95

ATOMIC PHYSICS (8th edition), Max Born. Nobel laureate's lucid treatment of
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5% x 8%. 65984-4 Pa. $12.95

ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: The
Physics of the Chemical Bond, Walter A. Harrison. Innovative text offers basic
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6% x 9%, 66021-4 Pa. $15.95

BOUNDARY VALUE PROBLEMS OF HEAT CONDUCTION, M. Necati
Orisik. Systematic, comprehensive treatment of modern mathematical methods of
solving problems in heat conduction and diffusion. Numerous examples and
problems. Selected references. Appendices. 505pp. 5% x 8%, 65990-9 Pa. $12.95

A SHORT HISTORY OF CHEMISTRY (3rd edition), J.R. Partington. Classic
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428pp. 5% x 84. (Available in U.S. only) 65977-1 Pa. $10.95

A HISTORY OF ASTRONOMY, A. Pannckoek. Well-balanced, carefully rea-
soned study covers such topics as Prolemaic theory, work of Copernicus, Kepler,
Newton, Eddington’s work on stars, much more. Illustrated. References. 521pp.
5% x 8%, 65994-1 Pa. $12.95

PRINCIPLES OF METEOROLOGICAL ANALYSIS, Walter J. Saucier. Highly
respected, abundantly illustrated classic reviews atmospheric variables, hydro-
statics, static stability, various analyses (scalar, cross-section, isobaric, isentropic,
more). For intermediate meteorology students. 454pp. 6% x 9%4. 65979-8 Pa. $14.95
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RELATIVITY, THERMODYNAMICS AND COSMOLOGY, Richard C. Tol-
man. Landmark study extends thermodynamics (o special, general relativity; also
applications of relativistic mechanics, thermodynamics (o cosgological models.
501pp. 5% x 8%. 65383-8 Pa. $12.95

APPLIED ANAL.YSIS, Cornelius Lanczos. Classic work on analysis and design of
finite processes for approximating solution of analytical problems. Algebraic
equations, matrices, harmonic analysis, quadrature methods, much more. 559pp.
5% x 8. 65656-X Pa. $13.95

SPECIAL RELATIVITY FOR PHYSICISTS, G. Stephenson and C.W. Kilmister.
Concise elegant account for nonspecialists. Lorentz transformation, optical and
dynamical applications, more. Bibliography. 108pp. 5% x 8%.  65519-9 Pa. $4.95

INTRODUCTION TO ANALYSIS, Maxwell Rosenlicht. Unusually clear, acces-
sible coverage of set theory, real number system, metric spaces, continuous
functions, Riemann integration, multiple integrals, more. Wide range of problems.
Undergraduate level. Bibliography. 254pp. 5% x 8%. 65038-3 Pa. $7.95

INTRODUCTION TO QUANTUM MECHANICS With Applications to Chem-
istry, Linus Pauling & E. Bright Wilson, Jr. Classic undergraduate text by Nobel
Prize winner applies quantum mechanics to chemical and physical problems.
Numerous tables and figures enhance the text. Chapcer bibliographies. Appen-
dices. Index. 468pp. 5% x 8%. 64871-0 Pa. $11.95

ASYMPTOTIC EXPANSIONS OF INTEGRALS, Norman Bleistein & Richard A.
Handelsman. Best introduction to important field with applications in a variety of
scientific disciplines. New preface. Problems. Diagrams. Tables. Bibliography.
Index. 448pp. 5% x 8%. 65082-0 Pa. $12.95

MATHEMATICS APPLIED TO CONTINUUM MECHANICS, Lee A. Segel.
Analyzes models of fluid flow and solid deformation. For upper-level math, science
and enginecering students. 608pp. 5% x 8%. 65369-2 Pa. $13.95

ELEMENTS OF REAL ANALYSIS, David A. Sprecher. Classic text covers
fundamental concepts, real number system, point sets, functions of a real variable,
Fourier series, much more. Over 500 exercises. 352pp. 5% x 8%. 65385-4 Pa. $10.95

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg.
Ndbel Laureate discusses quantuin theory, uncertainty, wave mechanics, work of
Dirac, Schroedinger, Compton, Wilson, Einstein, etc. 184pp. 5% x 84.

60113-7 Pa. $5.95

INTRODUCTORY REAL ANALYSIS, A.N. Kolmogorov, S.V. Fomin. Trans-
lated by Richard A. Silverman. Self-contained, evenly paced introduction to real
and functional analysis. Some 350 problems. 403pp. 5% x 8%.  61226-0 Pa. $9.95

PROBLEMS AND SOLUTIONSIN QUANTUM CHEMISTRY AND PHYSICS,
Charles S. Johnson, Jr. and Lee G. Pedersen. Unusually varied problems, detailed
solutions in coverage of quantum mechanics, wave mechanics, angular momen-
tum, molecular spectroscopy, scattering theory, more. 280 problems plus 139
supplementary exercises. 430pp. 6% x 9%. 65236-X Pa. $12.95
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ASYMPTOTIC METHODS IN ANALYSIS, N.G. de Bruijn. An inexpensive,
comprehensive guide to asymptotic methods—the pioneering work that teaches by
explaining worked examples in detail. Index. 224pp. 5% x 8%.  64221-6 Pa. $6.95

OPTICAL RESONANCE AND TWO-LEVEL ATOMS, L. Allen and J.H. Eberly.
Clear, comprehensive introduction to basic principles behind all quantum optical
resonance phenomena. 53 illustrations. Preface. Index. 256pp. 5% x 84.

65533-4 Pa. $7.95

COMPLEX VARIABLES, Francis J. Flanigan. Unusual approach, delaying
complex algebra till harmonic functions have been analyzed from real variable
viewpoint. Includes problems with answers. 364pp. 5% x 8%. 61388-7 Pa. $8.95

ATOMIC SPECTRA AND ATOMIC STRUCTURE, Gerhard Herzberg. One of
best introductions; especially for specialist in other fields. Treatment is physical
rather than mathematical. 80 illustrations. 257pp. 5% x 8%. 60115-3 Pa. $6.95

APPLIED COMPLEX VARIABLES, John W. Dettman. Step-by-step coverage of
fundamentals of analytic function theory—plus lucid exposition of five important
applications: Potential Theory; Ordinary Differential Equations; Fourier Trans-
forms; Laplace Transforms; Asymptotic Expansions. 66 figures. Exercises at
chapter ends. 512pp. 5% x 8%. 64670-X Pa. $11.95

ULTRASONIC ABSORPTION: An Introduction to the Theory of Sound Absorp-
tion and Dispersion in Gases, Liquids and Solids, A.B. Bhatia. Standard reference
in the field provides a clear, systematically organized introductory review of
fundamental concepts for advanced graduate students, research workers. Numerous
diagrams. Bibliography. 440pp. 5% x 8%. 64917-2 Pa. $11.95

UNBOUNDED LINEAR OPERATORS: Theory and Applications, Seymour
Goldberg. Classic presents systematic treatment of the theory of unbounded linear
operators in normed linear spaces with applications to differential equations.
Bibliography. 199pp. 5% x 84, 64830-3 Pa. $7.95

LIGHT SCATTERING BY SMALL PARTICLES, H.C. van de Hulst. Compre-
hensive treatment including full range of useful approximation methods for
researchers in chemistry, meteorology and astronomy. 44 illustrations. 470pp.
5% x 8%. 64228-3 Pa. $11.95

CONFORMAL MAPPING ON RIEMANN SURFACES, Harvey Cohn. Lucid,
insightful book presents ideal coverage of subject. 334 exercises make book perfect
for self-study. 55 figures. 352pp. 5% x 8%. 64025-6 Pa. $9.95

OPTICKS, Sir Isaac Newton. Newton's own experiments with spectroscopy,
colors, lenses, reflection, refraction, etc., in language the layman can follow.
Foreword by Albert Einstein. 532pp. 5% x 8%. 60205-2 Pa. $9.95

GENERALIZED INTEGRAL TRANSFORMATIONS, A .H. Zemanian. Gradu-
ate-level study of recent generalizations of the Laplace, Mellin, Hankel, K.
Weierstrass, convdlution and other simple transformations. Bibliography. 320pp.
5% x 8% 65375-7 Pa. $8.95
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THE ELECTROMAGNETIC FIELD, Albert Shadowitz. Comprehensive under-
graduate text covers basics of electric and magnetic fields, builds up to elecromag-
netic theory. Also related topics, including relativity. Over 900 problems. 768pp.
5% x 8%. 65660-8 Pa. $18.95

FOURIER SERIES, Georgi P. Tolstov. Translated by Richard A. Silverman. A
valuable addition to the literature on the subject, moving clearly from subject to
subject and theorem to theorem. 107 problems, answers. 336pp. 5% x 84.

63317-9 Pa. $8.95

THEORY OF ELECTROMAGNETIC WAVE PROPAGATION, Charles Her-
ach Papas. Graduate-level study discusses the Maxwell field equations, radiation
from wire antennas, the Doppler effect and more. xiii + 244pp. 5% x 8%

65678-0 Pa. $6.95

DISTRIBUTION THEORY AND TRANSFORM ANALYSIS: An Introduction
to Generalized Functions, with Applications, A.H. Zemaniah. Provides basics of
distribution theory, describes generalized Fourier and Laplace transformations.
Numerous problems. 384pp. 5% x 8%. 65479-6 Pa. $9.95

THE PHYSICS OF WAVES, William C. Elmore and Mark A. Heald. Unique
overview of classical wave theory. Acoustics, optics, electromagnetic radiation,
more. Ideal as classroom text or for self-study. Problems. 477pp. 5% x 84.

64926-1 Pa. $12.95

CALCULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing.
Applications-oriented introduction to variational theory develops insight and
promotes understanding of specialized books, research papers. Suitable for
advanced undergraduate/graduate students as primary, supplementary text. 352pp.
5% x 8%, 64856-7 Pa. $8.95

A TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell.
Important foundation work of modern physics. Brings to final form Maxwell's
theory of electromagnetism and rigorously derives his general equations of field
theory. 1,084pp. 5% x 8%. 60636-8, 60637-6 Pa., Two-vol. set $21.90

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox.

Graduate-level text covers variations of an integral, isoperimetrical problems, least

action, special relativity, approximations, more. References. 279pp. 5% x 8%.
65499-0 Pa. $7.95

HYDRODYNAMICAND HYDROMAGNETICSTABILITY, S. Chandrasekhar.
Lucid examination of the Rayleigh-Benard problem; clear coverage of the theory of
instabilities causing convection. 704pp. 5% x 8. 64071-X Pa. §14.95

CALCULUS OF VARIATIONS, Robert Weinstock. Basic introduction covering
isoperimetric problems, theory of elasticity, quantum mechanics, electrostatics, etc.
Exercises throughout. 326pp. 5% x 8%. 63069-2 Pa. $8.95

DYNAMICS OF FLUIDS IN POROUS MEDIA, Jacob Bear. For advanced
students of ground water hydrology, soil mechanics and physics, drainage and
irrigation engineering and more. 335 illustrations. Exercises, with answers. 784pp.
6% x 9%. 65675-6 Pa. $19.95
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NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard
Hamming. Classic text stresses frequency approach in coverage of algorithms,
polynomial approximation, Fourier approximation, exponential approxima-
tion, other topics. Revised and enlarged 2nd edition. 721 pp. 5% x 8%.

65241-6 Pa. $14.95

THEORETICAL SOLID STATE PHYSICS, Vol. I: Perfect Lattices in Equilib-
rium; Vol. II: Non-Equilibrium and Disorder, William Jones and Norman H.
March. Monumental reference work covers fundamental theory of equilibrium
properties of perfect crystalline solids, non-equilibrium properties, defects and
disordered systems. Appendices. Problems. Preface. Diagrams. Index. Bibliog-
raphy. Total of 1,301pp. 5% x 8% Two volumes. Vol. 1 65015-4 Pa. $14.95

Vol. 11 65016-2 Pa. $14.95

OPTIMIZATION THEORY WITH APPLICATIONS, Donald A. Pierre. Broad-
spectrum approach to important topic. Classical theory of minima and maxima,
calculus of variations, simplex technique and linear programming, more. Many
problems, examples. 640pp. 5% x 8%. 65205-X Pa. $14.95

THE CONTINUUM: A Critical Examination of the Foundation of Analysis,
Hermann Weyl. Classic of 20th-century foundational research deals with the
conceptual problem posed by the continuum. 156pp. 5% x 8%.  67982-9 Pa. $5.95

ESSAYS ON THE THEORY OF NUMBERS, Richard Dedekind. Two classic
essays by great German mathematician: on the theory of irrational numbers; and on
wransfinite numbers and properties of natural numbers. 115pp. 5% x 8%,

21010-3 Pa. $4.95

THE FUNCTIONS OF MATHEMATICAL PHYSICS, Harry Hochstadt. Com-
prehensive treatment of orthogonal polynomials, hypergeometric functions, Hill's
equation, much more. Bibliography. Index. 322pp. 5% x 8%. 65214-9 Pa. $9.95

NUMBER THEORY AND ITS HISTORY, Oystein Ore. Unusually clear,
accessible introduction covers counting, properties of numbers, prime numbers,
much more. Bibliography. 380pp. 5% x 8%. 65620-9 Pa. $9.95

THE VARIATIONAL PRINCIPLES OF MECHANICS, Comnelius Lanczos.
Graduate level coverage of calculus of variations, equations of motion, relativistic
mechanics, more. First inexpensive paperbound edition of classic treatise. Index.
Bibliography. 418pp. 5% x 8%. 65067-7 Pa. $11.95

MATHEMATICAL TABLES AND FORMULAS, Robert D. Carmichael and
Edwin R. Smith. Logarithms, sines, tangents, trig functions, powers, roots,
reciprocals, exponential and hyperbolic functions, formulas and theorems. 269pp.
5% x 84%. 60111-0 Pa. $6.95

THEORETICAL PHYSICS, Georg Joos, with Ira M. Freeman. Classic overview
covers essential math, mechanics, electromagnetic theory, thermodynamics, quan-
tum mechanics, nuclear physics, other topics. First paperback edition. xxiii +
885pp. 5% x 8%. 65227-0 Pa. $19.95
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HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS,
GRAPHS, AND MATHEMATICAL TABLES, edited by Milton Abramowiuz and
Irene A. Stegun. Vast compendium: 29 sets of tables, some t0 as high as 20 places.
1,046pp. 8 x 10%. 61272-4 Pa. $24.95

MATHEMATICAL METHODS IN PHYSICS AND ENGINEERING, John W.
Dettman. Algebraically based approach to vectors, mapping, diffraction, other
topics in applied math. Also generalized functions, analytic function theory, more.
Exercises. 448pp. 5% x 8%. 65649-7 Pa. $9.95

A SURVEY OF NUMERICAL MATHEMATICS, David M. Young and Robert
Todd Gregory. Broad self-contained coverage of computer-oriented numerical
algorithms for solving various types of mathematical problems in linear algebra,
ordinary and partial, differential equations, much more. Exercises. Total of
1,248pp. 5% x 8%. Two volumes. Vol. 165691-8 Pa. $14.95

Vol. 11 65692-6 Pa. $14.95

TENSOR ANALYSIS FOR PHYSICISTS, J.A. Schouten. Concise exposition of
the mathematical basis of tensor analysis, integrated with well-chosen physical
examples of the theory. Exercises. Index. Bibliography. 289pp. 5% x 8%.

65582-2 Pa. $8.95

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F.B. Hilde-
brand. Classic, fundamental wreatment covers computation, approximation, inter-
polation, numerical differentiation and integration, other topics. 150 new prob-
lems. 669pp. 5% x 8%4. 65363-3 Pa. $15.95

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT,
Albert Einstein. Five papers (1905-8) investigating dynamics of Brownian motion
and evolving elementary theory. Notes by R. Fiirth. 122pp. 5% x 8%.

60304-0 Pa. $4.95

CATASTROPHE THEORY FOR SCIENTISTS AND ENGINEERS, Robert
Gilmore. Advanced-level treatment describes mathematics of theory grounded in
the work of Poincaré, R. Thom, other mathematicians. Also important applications
to problems in mathematics, physics, chemistry and engineering. 1981 edition.
References. 28 tables. 397 black-and-white illustrations. xvii + 666pp. 6% x 9%.
67539-4 Pa. $16.95

AN INTRODUCTION TO STATISTICAL THERMODYNAMICS, Terrell L.
Hill. Excellent basic text offers wide-ranging coverage of quantum statistical
mechanics, systemns of interacting molecules, quantum statistics, more. 523pp.
5% x 8%. 65242-4 Pa. $12.95

ELEMENTARY DIFFERENTIAL EQUATIONS, William Ted Martin and Eric
Reissner. Exceptionally clear, comprehensive introduction at undergraduate level.
Nature and origin of differential equations, differential equations of first, second
and higher orders. Picard's Theorem, much more. Problems with solutions. 331pp.
5% x 8%. 65024-3 Pa. $8.95

STATISTICAL PHYSICS, Gregory H. Wannier. Classic text combines thermo-
dynamics, statistical mechanics and kinetic theory in one unified presentation of
thermal physics. Problems with solutions. Bibliography. 532pp. 5% x 84.

65401-X Pa. $12.95
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ORDINARY DIFFERENTIAL EQUATIONS, Morris Tenenbaum and Harry
Pollard. Exhaustive survey of ordinary differential equations for undergraduates in
mathematics, engineering, science. Thorough analysis of theorems. Diagrams.
Bibliography. Index. 818pp. 5% x 8%4. 64940-7 Pa. $16.95

STATISTICAL MECHANICS: Principles and Applications, Terrell L. Hill.

Standard text covers fundamentals of statistical mechanics, applications to

fluctuation theory, imperfect gases, distribution functions, more. 448pp. 5% x 84.
65390-0 Pa. $11.95

ORDINARY DIFFERENTIAL EQUATIONS AND STABILITY THEORY: An
Introduction, David A. Sinchez. Brief, modern treatment. Linear equation,
stability theory for autonomous and nonautonomous systems, etc. 164pp. 5% x 8%.

63828-6 Pa. $5.95

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory,
George Gamow. Lucid, accessible introduction to influential theory of energy and
matter. Careful explanations of Dirac's anti-particles, Bohr's model of the atom,
much more. 12 plates. Numerous drawings. 240pp. 5% x 8%. 24895-X Pa. $6.95

THEORY OF MATRICES, Sam Perlis. Outstanding text covering rank, non-
singularity and inverses in connection with the development of canonical matrices
under the relation of equivalence, and without the intervention of determinants.
Includes exercises. 237pp. 5% x 8%. 66810-X Pa. $7.95

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Galileo to
Einstein, edited by Morris H. Shamos. 25 crucial discoveries: Newton's laws of
motion, Chadwick’s study of the neutron, Hertz on electromagnetic waves, more.
Original accounts clearly annotated. 370pp. 5% x 8%. 25346-5 Pa. $10.95

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH AP-
PLICATIONS, E.C. Zachmanoglou and Dale W. Thoe. Essentials of partial
differential equations applied to common problems in engineering and the
physical sciences. Problems and answers. 416pp. 5% x 8%4. 65251-3 Pa. $10.95

BURNHAM'S CELESTIAL HANDBOOK, Robert Burnham, Jr. Thorough guide
to the stars beyond our solar system. Exhaustive treatment. Alphabetical by
constellation: Andromeda to Cetus in Vol. 1; Chamaeleon to Orion in Vol. 2; and
Pavo to Vulpecula in Vol. 3. Hundreds of illustrations. Index in Vol. 3. 2,000pp.
6% % 9Y. 23567-X, 23568-8, 23673-0 Pa., Three-vol. set $41.85

CHEMICAL MAGIC, Leonard A, Ford. Second Edition, Revised by E. Winston
Grundmeier. Over 100 unusual stunts demonstrating cold fire, dust explosions,
much more. Text explains scientific principles and stresses safety precautions.
128pp. 5% x 8%. 67628-5 Pa. $5.95

AMATEUR ASTRONOMER'S HANDBOOK, ].B. Sidgwick. Timeless, compre-
hensive coverage of telescopes, mirrors, lenses, mountings, telescope drives,
micrometers, spectroscopes, more. 189 illustrations. 576pp. 5% x 8%. (Available in
U1.S. only) 24034-7 Pa. $9.95
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SPECIAL FUNCTIONS, N.N. Lebedev. Translated by Richard Silverman. Fa-

mous Russian work treating more important special functions, with applications

to specific problems of physics and engineering. 38 figures. 308pp. 5% x 8%
60624-4 Pa. $8.95

OBSERVATIONAL ASTRONOMY FOR AMATEURS, ].B. Sidgwick. Mine of
useful data for observation of sun, moon, planets, asteroids, aurorae, meteors,
comets, variables, binaries, etc. 39 illustrations. 384pp. 5% x 8«. (Available in U.S.
only) 24083-9 Pa. $8.95

INTEGRAL EQUATIONS, F.G. Tricomi. Authoritative, well-written treatment
of extremely useful mathematical tool with wide applications. Volterra Equations,
Fredholm Equations, much more. Advanced undergraduate to graduate level.
Exercises. Bibliography. 238pp. 5% x 84. 64828-1 Pa. $7.95

POPULAR LECTURES ON MATHEMATICAL. LOGIC, Hao Wang. Noted
logician's lucid treatment of historical developments, set theory, model theory,
recursion theory and constructivism, proof theory, more. 3 appendixes. Bibli-
ography. 1981 edition. ix + 283pp. 5% x 8%. 67632-3 Pa. $8.95

MODERN NONLINEAR EQUATIONS, Thomas L. Saaty. Emphasizes practical
solution of problems; covers seven types of equations. *'. . . a welcome contribution
to the existing literature. . . .”—Math Reviews. 490pp. 5% x 8%. 64232-1 Pa. $11.95

FUNDAMENTALS OF ASTRODYNAMICS, Roger Bate et al. Modern approach
developed by U.S. Air Force Academy. Designed as a first course. Problems,
exercises. Numerous illustrations. 455pp. 5% x 8%. 60061-0 Pa. $9.95

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA-
TIONS, John W. Dettman. Excellent text covers complex numbers, determinants,
orthonormal bases, Laplace transforms, much more. Exercises with solutions.
Undergraduate level. 416pp. 5% x 8%. 65191-6 Pa. $10.95

INCOMPRESSIBLE AERODYNAMICS, edited by Bryan Thwaites. Covers theo-
retical and experimental treatment of the uniform flow of air and viscous fluids past
two-dimensional aerofoils and three-dimensional wings; many other topics. 654pp.
5% x 8%, 65465-6 Pa. $16.95

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Excep-
tionally clear exposition of important discipline with applications to sociology,
psychology, economics. Many illustrative examples; over 250 problems. 260pp.
5% x 8%, 65084-7 Pa. $7.95

LAMINAR BOUNDARY LAYERS, edited by L. Rosenhead. Engineering classic

covers steady boundary layers in two- and three-dimensional flow, unsteady

boundary layers, stability, observational techniques, much more. 708pp. 5% x 84.
65646-2 Pa. $18.95

LECTURES ON CLASSICAL DIFFERENTIAL GEOMETRY, Second Edition,
Dirk J. Suuik. Excellent brief introduction covers curves, theory of surfaces,
fundamental equations, geometry on a surface, conformal mapping, other topics.
Problems. 240pp. 5% x 8%. 65609-8 Pa. $8.95
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ROTARY-WING AERODYNAMICS, W.Z. Stepniewski. Clear, concise text covers

aerodynamic phenomena of the rotor and offers guidelines for helicopter per-

formance evaluation. Originally prepared for NASA. 537 figures. 640pp. 6% x 9%.
64647-5 Pa. $15.95

DIFFERENTIAL GEOMETRY, Heinrich W. Guggenheimer. Local differential

geometry as an application of advanced calculus and linear algebra. Curvature,

wransformation groups, surfaces, more. Exercises. 62 figures. 378pp. 5% x 84.
634338-7 Pa. $8.95

INTRODUCTION TO SPACE DYNAMICS, William Tyrrell Thomson. Com-
prehensive, classic introduction to space-flight engineering for advanced under-
graduate and graduate students. Includes vector algebra, kinematics, transforma-
tion of coordinates. Bibliography. Index. 352pp. 5% x 84. 65113-4 Pa. $8.95

‘A SURVEY OF MINIMAL SURFACES, Robert Osserman. Up-to-date, in-depth
discussion of the field for advanced students. Corrected and enlarged edition covers
new developments. Includes numerous problems. 192pp. 5% x 8%,

64998-9 Pa. $8.95

ANALYTICAL MECHANICS OF GEARS, Earle Buckingham. Indispensable
reference for modern gear manufacture covers conjugate gear-tooth action, gear-
tooth profiles of various gears, many other topics. 263 figures. 102 tables. 546pp.
5% x 8%. 65712-4 Pa. $14.95

SET THEORY AND LOGIC, Robert R. Stoll. Lucid introduction to unified
theory of mathematical concepts. Set theory and logic seen as tools for conceptual
understanding of real number system. 496pp. 5% x 8%. 63829-4 Pa. $12.95

A HISTORY OF MECHANICS, René Dugas. Monumental study of mechanical
principles from antiquity to quantum mechanics. Contributions of ancient Greeks,
Galileo, Leonardo, Kepler, Lagrange, many others. 671pp. 5% x 8%.

65632-2 Pa. $14.95

FAMOUS PROBLEMS OF GEOMETRY AND HOW TO SOLVE THEM,
Benjamin Bold. Squaring the circle, trisecting the angle, duplicating the cube:
learn their history, why they are impossible to solve, then solve them yourself.
128pp. 5% x 8%. 24297-8 Pa. $4.95

MECHANICAL VIBRATIONS, J.P. Den Hastog. Classic textbook offers lucid
explanations and illustrative models, applying theories of vibrations 1o a variety of
practical industrial engineering problems. Numerous figures. 233 problems,
solutions. Appendix. Index. Preface. 436pp. 5% x 8%. 64785-4 Pa. $10.95

CURVATURE AND HOMOLOGY, Samuel 1. Goldberg. Thorough treatment of
specialized branch of differential geometry. Covers Riemannian manifolds, topol-
ogy of differentiable manifolds, compact Lie groups, other topics. Exercises. 315pp.
5% x 8%. 64314-X Pa. $9.95

HISTORY OF STRENGTH OF MATERIALS, Stephen P. Timoshenko. Excel-
lent historical survey of the strength of materials with many references to the
theories of elasticity and structure. 245 figures. 452pp. 5% x 8%. 61187-6 Pa. $11.95
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GEOMETRY OF COMPLEX NUMBERS, Hans Schwerdtfeger. Illuminating,
widely praised book on analytic geometry of circles, the Moebius transformation,
and two-dimensional non-Euclidean geometries. 200pp. 5% x 84,

63830-8 Pa. $8'95

MECHANICS, J.P. Den Hartog. A classic inuoductory text or refresher. Hundreds
of applications and design problems illuminate fundamentals of trusses, loaded
beams and cables, etc. 334 answered problems. 462pp. 5% x 8%.  60754-2 Pa. $9.95

TOPOLOGY, John G. Hocking and Gail S. Young. Superb one-year course in
classical topology. Topological spaces and functions, point-set topology, much
more. Examples and problems. Bibliography. Index. 384pp. 5% x 8%.

65676-4 Pa. $9.95

STRENGTH OF MATERIALS, J.P. Den Hartog. Full, clear treatment of basic
material (tension, torsion, bending, etc.) plus advanced material on engincering
methods, applications. 350 answered problems. 323pp. 5% x 8%. 60755-0 Pa. $8.95

ELEMENTARY CONCEPTS OF TOPOLOGY, Paul Alexandroff. Elegant,

intuitive approach to topology from set-theoretic topology to Betti groups; how

concepts of topology are useful in math and physics. 25 ligures. 57pp. 5% x 84.
60747-X Pa. $3.50

ADVANCED STRENGTH OF MATERIALS, J.P. Den Hartog. Superbly written
advanced text covers torsion, rotating disks, membrane stresses in shells, much
more. Many problems and answers. 388pp. 5% x 8%. 65407-9 Pa. $9.95

COMPUTABILITY AND UNSOLVABILITY, Martin Davis. Classic graduate-
level introduction to theory of computability, usually referred to as theory of
recurrent functions. New preface and appendix. 288pp. 5% x 8%. 61471-9 Pa. $7.95

GENERAL CHEMISTRY, Linus Pauling. Revised 3rd edition of classic first-year
text by Nobel laureate. Atomic and molecular structure, quantum mechanics,
statistical mechanics, thermodynamics correlated with descriptive chemistry.
Problems, 992pp. 5% x 8%. 65622-5 Pa. $19.95

AN INTRODUCTION TO MATRICES, SETS AND GROUPS FOR SCIENCE
STUDENTS, G. Stephenson. Concise, readable text inuroduces sets, groups, and
most importantly, matrices to undergraduate students of physics, chemistry, and
engineering. Problems. 164pp. 5% x 8%. 65077-4 Pa. $6.95

THE HISTORICAL BACKGROUND OF CHEMISTRY, Henry M. Leicester.
Evolution of ideas, not individual biography, Concentrates on formulation of a
coherent set of chemical laws. 260pp. 5% x 8%. 61053-5 Pa. $6.95

THE PHILOSOPHY OF MATHEMATICS: An Introductory Essay, Stephan
Kérner. Surveys the views of Plato, Aristotle, Leibniz & Kant concerning proposi-
tions and theories of applied and pure mathematics. Introduction. Two appen-
dices. Index. 198pp. 5% x 8%. 25048-2 Pa. $7.95

THE DEVELOPMENT OF MODERN CHEMISTRY, Aaron J. Thde. Authorita-
tive history of chemistry from ancient Greek theory to 20th-century innovation.
Covers major chemists and their discoveries. 209 illustrations. 14 tables. Bibliog-
raphies. Indices. Appendices. 851pp. 5% x 8%. 64235-6 Pa. $18.95
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DE RE METALLICA, Georgius Agricola. The famous Hoover translation of
greatest treatise on technological chemistry, engineering, geology, mining of early
modern times (1556). All 289 original woodcuts. 638pp. 6% x 11

60006-8 Pa. $18.95

SOME THEORY OF SAMPLING, William Edwards Deming. Analysis of the
problems, theory and design of sampling techniques for social scientists, industrial
managers and others who find statistics increasingly important in their work. 6]
tables. 90 figures. xvii + 602pp. 5% x 8%. 64684-X Pa. $15.95

THE VARIOUS ANDINGENIOUS MACHINES OF AGOSTINORAMELLI: A
Classic Sixteenth-Century Illustrated Treatise on Technology, Agostino Ramelli.
One of the most widely known and copied works on machinery in the 16th century.
194 detailed plates of water pumps, grain mills, cranes, more. 608pp. 9 % 12,

28180-9 Pa. $24.95

LINEAR PROGRAMMING AND ECONOMIC ANALYSIS, Robert Dorfman,
Pau] A. Samuelson and Robert M. Solow. First comprehensive treatment of linear
programming in standard economic analysis. Game theory, modern welfare
economics, Leontief input-output, more. 525pp. 5% x 84. 65491-5 Pa. $14.95

ELEMENTARY DECISION THEORY, Herman Chernoff and Lincoln E. Moses.
Clear introduction to statistics and statistical theory covers data processing,
probability and random variables, testing hypotheses, much more. Exercises.
364pp. 5% x 8%. 65218-1 Pa. $9.95

THE COMPLEAT STRATEGYST: Being a Primer on the Theory of Games of
Strategy, J.D. Williams. Highly entertaining classic describes, with many illus-
trated examples, how to select best strategies in conflict situations. Prefaces.
Appendices. 268pp. 5% x 84. 25101-2 Pa. $7.95

MATHEMATICAL METHODS OF OPERATIONS RESEARCH, Thomas L.
Saaty. Classic graduate-level text covers historical background, classical methods of
forming models, optimization, game theory, probability, queueing theory, much
more. Exercises. Bibliography. 448pp. 5% x 8%. 65703-5 Pa. $12.95

CONSTRUCTIONS AND COMBINATORIAL PROBLEMS IN DESIGN OF
EXPERIMENTS, Damaraju Raghavarao. In-depth reference work examines
orthogonal Latin squares, incomplete block designs, tactical configuration, partial
geometry, much more. Abundant explanations, examples. 416pp. 5% x 8%.
65685-3 Pa. $10.95

THE ABSOLUTE DIFFERENTIAL CALCULUS (CALCULUS OF TENSORS),
Tullio Levi-Civita. Great 20th-century mathematician's classic work on material
necessary for mathematical grasp of theory of relativity. 452pp. 5% x 84%.

63401-9 Pa. $9.95

VECTOR AND TENSOR ANALYSIS WITH APPLICATIONS, A.L Borisenko
and LE. Tarapov. Concise introduction. Worked-out problems, solutions, exer-
cises. 257pp. 5% x 8. 63833-2 Pa. $7.95
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THE FOUR-COLOR PROBLEM: Assaults and Conquest, Thomas L. Saaty and
Paul G. Kainen. Engrossing, comprehensive account of the century-old combina-
torial topological problem, its history and solution. Bibliographies. Index. 110
figures. 228pp. 5% x 8Y%. 65092-8 Pa. $6.95

CATALYSIS IN CHEMISTRY AND ENZYMOLOGY, William P. Jencks.
Exceptionally clear coverage of mechanisms for catalysis, forces in aqueous
solution, carbonyl- and acyl-group reactions, practical kinetics, more. 864,

5% x B4, 65460-5 Pa. $19.95

PROBABILITY: An Introduction, Samuel Goldberg. Excellent basic text covers set
theory, probability theory for finite sample spaces, binomial theorem, much more.
360 problems. Bibliographies. 322pp. 5% x 8%. 65252-1 Pa. $8.95

LIGHTNING, Martin A. Uman. Revised, updated edition of classic work on the
physics of lightning. Phenomena, terminology, measurement, photography,
spectroscopy, thunder, more. Reviews recent research. Bibliography. Indices.
320pp. 5% x 84. 64575-4 Pa. $8.95

PROBABILITY THEORY: A Concise Course, Y.A. Rozanov. Highly readable,
self-contained introduction covers combination of events, dependent events,
Bernoulli trials, etc. Translation by Richard Silverman. 148pp. 5% x 8.

63544-9 Pa. $5.95

AN INTRODUCTION TO HAMILTONIAN OPTICS, H. A. Buchdahl. Detailed
account of the Hamiltonian wreatment of aberration theory in geometrical optics.
Many classes of optical systems defined in terms of the symmetries they possess.
Problems with detailed solutions. 1970 edition. xv + 360pp. 5% x 8%.

67597-1 Pa. $10.95

STATISTICS MANUAL, Edwin L. Crow, et al. Comprehensive, practical
collection of classical and modern methods prepared by U.S. Naval Ordnance Test
Station. Stress on use. Basics of statistics assumed. 288pp. 5% x 84.

60599-X Pa. $6.95
DICTIONARY/OQOUTLINE OF BASIC STATISTICS, john E. Freund and Frank
J. Williams. A clear concise dictionary qf over 1,000 statistical terms and an outline
of statistical formulas covering probability, nonparametric tests, much more.
208pp. 5% x 8% 66796-0 Pa. $6.95

STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CON-
TROL, Walter A. Shewhart. Important text explains regulation of variables, uses
of statistical control to achieve quality control in industry, agriculture, other areas.
192pp. 5% x 8%. 65232-7 Pa. $7.95

THE INTERPRETATION OF GEOLOGICAL PHASE DIAGRAMS, Emest G.
Ehlers. Clear, concise text emphasizes diagrams of systems under fluid or
containing pressure; also coverage of complex binary systems, hydrothermal
melting, more. 288pp. 6% x 9%. 65389-7 Pa. $10.95

STATISTICAL ADJUSTMENT OF DATA, W. Edwards Deming. Introduction to
basic concepts of statistics, curve fitting, least squares solution, conditions without
parameter, conditions containing parameters. 26 exercises worked out. 271pp.
5% x 8%. 64685-8 Pa. $8.95
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TENSOR CALCULLUS, J.L. Synge and A. Schild. Widely used introductory text
covers spaces and tensors, basic operations in Riemannian space, non-Riemannian
spaces, etc. 324pp. 5% x 8%, 63612-7 Pa. $8.95

A CONCISE HISTORY OF MATHEMATICS, Dirk J. Struik. The best brief
history of mathematics. Stresses origins and covers every major figure from ancient
Near East to 19th century. 41 illustrations. 195pp. 5% x 8%. . 60255-9 Pa. $7.95

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W.W. Rouse
Ball. One of clearest, most authoritative surveys from the Egyptians and Phoeni-
cians through 19th-century figures such as Grassman, Galois, Riemann. Fourth
edition. 522pp. 5% x 8%. 20630-0 Pa. $10.95

HISTORY OF MATHEMATICS, David E. Smith. Nontechnical survey from
ancient Greece and Orient to late 19th century; evolution of arithmetic, geometry,
trigonometry, calculating devices, algebra, the calculus. 362 illustrations. 1,355pp.
5% x 8%, 20429-4, 20430-8 Pa., Two-vol. set $23.90

THE GEOMETRY OF RENE DESCARTES, René Descartes. The great work
founded analytical geometry. Original French text, Descartes’ own diagrams,
together with definitive Smith-Latham translation. 244pp. 5% x 8%.

60068-8 Pa. $7.95

THE ORIGINS OF THE INFINITESIMAL CALCULUS, Margaret E. Baron.
Only fully detailed and documented account of crucial discipline: origins;
development by Galileo, Kepler, Cavalieri; contributions of Newton, Leibniz,
more. 304pp. 5% x 8%. (Available in U.S. and Canada only) 65371-4 Pa. $9.95

THE HISTORY OF THE CALCULUS AND ITS CONCEPTUAL DEVELOP-

MENT, Carl B. Boyer. Origins in antiquity, medieval contributions, work of

Newton, Leibniz, rigorous formulation. Treatment is verbal. 346pp. 5% x 84.
60509-4 Pa. $8.95

THE THIRTEEN BOOKS OF EUCLID'S ELEMENTS, translated with introduc-
tion and commentary by Sir Thomas L. Heath. Definitive edition. Textual and
linguistic notes, mathematical analysis. 2,500 years of critical commentary. Not
abridged. 1,414pp. 5% x 8% 60088-2, 60089-0, 60090-4 Pa., Three-vol. set $29.85

GAMES AND DECISIONS: Inuwroduction and Critical Survey, R. Duncan Luce
and Howard Raiffa. Superb nontechnical introduction to game theory, primarily
applied to social sciences. Utility theory, zero-sum games, n-person games,
decision-making, much more. Bibliography. 509pp. 5% x 8%.  65943-7 Pa. $12.95

THE HISTORICAL ROOTS OF ELEMENTARY MATHEMATICS, Lucas
N.H. Bunt, Phillip S. Jones, and Jack D. Bedient. Fundamental underpinnings of
modern arithmetic, algebra, geometry and number systems derived from ancient
civilizations. 320pp. 5% x 8%. 25563-8 Pa. $8.95

CALCULUS REFRESHER FOR TECHNICAL PEOPLE, A. Albert Klaf. Covers
important aspects of integral and differential calculus via 756 questions. 566
problems, most answered. 431pp. 5% x 8%. 20370-0 Pa. $8.95
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CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY

SOLUTIONS, A.M. Yaglom and 1. M. Yaglom. Over 170 challenging problemson

probability theory, combinatorial analysis, points and lines, topology, convex
polygons, many other topics. Solutions. Total of 445pp. 5% x 8% Two-vol. set.

Vol. 1 65536-9 Pa. $7.95

Vol. 11 65537-7 Pa. $6.95

FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLU-
TIONS, Frederick Mosteller. Remarkable puzzlers, graded in difficulty, illustrate
elementary and advanced aspects of probability. Detailed solutions. 88pp. 5% x 8%.

65355-2 Pa. $4.95

EXPERIMENTS IN TOPOLOGY, Stephen Barr. Classic, lively explanation of
one of the byways of mathematics. Klein bottles, Moebius strips, projective planes,
map coloring, problem of the Koenigsberg bridges, much more, described with
clarity and wit. 43 figures. 210pp. 5% x 8%. 25938-1 Pa. $5.95

RELATIVITY IN ILLUSTRATIONS, Jacob T. Schwartz. Clear nontechnical
treatment makes relativity more accessible than ever before. Over 60 drawings
illustrate concepts more clearly than text alone. Only high school geometry needed.
Bibliography. 128pp. 6% x 9%. 25965-X Pa. $6.95

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, Earl
A. Coddington. A thorough and systematic first course in elementary differential
equations for undergraduates in mathematics and science, with many exercises and
problems (with answers). Index. 304pp. 5% x 8%. 65942-9 Pa. $8.95

FOURIER SERIES AND ORTHOGONAL FUNCTIONS, Harry F. Davis. An
incisive text combining theory and practical example to introduce Fourier series,
orthogonal functions and applications of the Fourier method 1o boundary-value
problems. 570 exercises. Answers and notes. 416pp. 5% x 8%. 65973-9 Pa. $9.95

THE THEORY OF BRANCHING PROCESSES, Theodore E. Harris. First
systematic, comprehensive treatment of branching (i.e. multiplicative) processes
and their applications. Galton-Watson nodel, Markov branching processes,
¢lectron-photon cascade, many other topics. Rigorous proofs. Bibliography.
240pp. 5% x 8%. 65952-6 Pa. $6.95

AN INTRODUCTION TO ALGEBRAIC STRUCTURES, Joseph Landin.
Superb self-contained text covers “abstract algebia®: sets and numbers, theory of
groups, theory of rings, much more. Numerous well-chosen examples, exercises.

247pp. 5% x 8%. 65940-2 Pa. $7.95

Prices subject to change without noti
Available at your book dealer or write for free Mathematics and Science Catalog to Dept. Gl,
Dover Publications, Inc., 31 East 2nd St., Mineola, N.Y. 11501. Dover publishes more than 175
books each year on science, elementary and advanced mathematics, biology, music, art,
literature, history, social sciences and other areas.
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