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Preface 

This text is the outgrowth of a course given at Berkeley since 1960. 
The object is to redo calculus correctly in a setting of sufficient generality 
to provide a reasonable foundation for advanced work in various branches 
of analysis. The emphasis is on abstraction, concreteness, and simplicity. 
A few abstract ideas u.re introduced, almost minimal in number. Such 
important concepts as metric space, compactness, and uniform convergence 
are discussed in such a manner that they will not need to be redone later. 
They are given concrete illustration and their worth is demoIlstrated by 
using them to prove the results of calculus, generalized in ways that are 
obviously meaningful and practical. 

The background recommended is any first course in calculus, through 
partial differentiation and multiple integrals (although, as a matter of fact, 
nothing is a88umed except for the axioms of the real number system). A 
person completing most of the material in this book should not only have 
a respectable compreheD8ion of basic real analysis but should also be ready 
to take serious COUl'8ell in such subjects as integration theory, complex 
variable, differential equatioD8, other topics in analysis, and general 
topology. Experience indicates that this material is acC688ible to a wide 
range of students, including many with primary interests outside mathe­
matics, provided there is a stre88 on the easier problems. 

The quest for simplicity has resulted in the elimination of a host of 
mathematical synonyms and the omi88ion or relegation to the problem 
sets of a number of important ideas. Some problems, easily recognizable, 
&88ume a familiarity with linear algebra that was considered unwise to 
presume of all students. Indeed only a few simple facts on determinant. 
are needed for the chapters on multivariable calculus, but things are Il1O 

arranged that the instructor who wishes to avail himself of the conveniencee 
of linear algebra may easily do 80 with no break in continuity. Differential 
forms were excluded, regrettably, to avoid exorbitant algebraic detours. 

This text can be used for courses ranging in length from one to t.wo 
quarters. The original semester course at Berkeley coveled the first eight 
chapters, with the omission of most of the third section of the eiPth chapter. 
At present Berkeley has a two-quarter sequence with the first quarter, 
IIIOmewhat sped up, covering the first six chapters and parts of the seventh. 

Here are 80me comments on the individual chapters. Chapter I, which 
discusses material on basic set theory thu.t is familiar to many students, can 
be covered very rapidly. Chapter II gives a brief account of how all the 
properties of the real numbers can be deduced from a few axioms. This 



material can all10 be covered rapidly. It should not be bypassed, however, 
for contrary to a widespread faith in modern pedagogy, my experience has 
been that time spent here is not wasted. Chapters III and IV, on metric 
spaces and continuous functions, are the meat of the book. They must be 
done with great care. After this, Chapters V, VI, and VII flow along 
smoothly, for their substance (elementary calculus) is familiar and the 
proofs now make sense. Chapter VIII, which is about existence theorems, 
is of a slightly greater order of difficulty. One may save some time by going 
very lightly over the implicit function theorem if it is intended to do the 
general case later, in the following chapter. The last section of the chapter 
treats ordinary differential equations, and the classroom discussion of 
these may with relative impunity be restricted to the very first theorem. 
Chapters IX and X, on multivariable calculus, conclude the book. They 
should cause no difficulty for anyone who has come this far. However, 
omitting them entirely would be preferable to an attempt to rush through. 

It is impossible to write a text such as this without an obvious indebted­
ness to J. Dieudonn6's classic Poundationa oj M adem Anal".,. My gratitude 
is also due my colleagues of the curricular reform committee at Berkeley 
which instituted the new Mathematics 104 course, to Mrs. Sandra Cleveland 
for writing up my original lectures, to Adam Koranyi, whose revised notes 
have long been in use, for many conversations, to numerous other col­
leagues and students for their comments, to my family for its patience, 
and to Scott, Foresman and Company for its affable efficiency. 

Berkeley, California Maxwell Rosenlicht 



Contents 

CHAPTER I. NOTIONS FROM SET THEORY I 

II. Sets and elements. Subsets J 
12. Operations on Beta 40 
13. Functions • 
14. Finite and infinite sets 10 

Problema 11 

CHAPTER II. TIlE REAL NUMBER SYSTDI II 

11. The fteJd propertiea 16 
12. Order 19 
13. The Ieut upper bound property • 
• 4. The exilltence of square roots 18 

Pro~~ • 

CHAPTER III. METRIC SPACES as 
11. Definition of metric apace. Examples It 
12. Open and closed seta 11 
13. Converpnt aequencea " 

.. 14. CompJetenelll 11 
• 5. Compactnell " 
16. Connectednell It 

Problema 6J. 

CIIAPTER IV. CONTINUOUS Ft1NCTIONS " 

11. Definition of continuity. Examp1et .. 
12. Continuity and limits 71 
13. The continuity of rational operationl. PuacIioDI 

with valuea in • 'II 
14. CoDtinUOUI functions on a compact met.ric .... .,. 
15. CoDtinuoua functions on a 00DIleCted .......... • 
16. 8equeneea of functions • 

Problems .. 

CHAPTER V. DIFFEIIENTJATION ' " 

11. The defiDitiOD of derivative • 
12. Ru1et of dilerentiation _ 
ta. The,IIlMIl value &Iaeore _ 
14. TayIor'. ~ .. 

Problema 1. 



CIUPTER VI. RIEMANN INTEGRATION 111 

II. Definitiou and examples 111 
12. Linearity and order properties of the integral 116 
13. Existence of the integral 118 
14. The fundamental theorem of ealcuIua lIS 
15. The logarithmic and exponential functions III 

Problems 131 

aIAPI'EIl VII. INTERCHANGE OF UMIT OPERATIONS 117 

II. Integration and ditterentiation of aequences 
of functions lSI 

12. Infinite aeries 1'1 
13. Power I8ries ISO 
14. The tripnometric functioaa 156 
16. OOfereatiation under the intecral lip 119 
~ 1~ 

CILU'TBR VID. TIlE MBTIIOD OF StJa:ESS1VE APPROXIMATIONS 169 

11. The fixed point theorem 170 
U. TIle aim.pleat cue of the implicit function theorem I71 
I a. Exiet.ence and UIliquena tbeoremI for ordinary 

dilerential equatioIIB 177 
Problema 190 

CIIAPI'BR IX. PARTIAL DIFFERENTIATION 19S 

11. DefiDitiona and bailie propertiee 1M 
12. JDcher derivatives .1 
13. The implieit function theonm _ 

Problema IU 

CILU'TBR X. MULTIPLE INTEGRALS III 

11. BiImun intep.tion OD ..... interval in ... 
_plea and bailie propertiea 116 ,2. ErIeteece of the in"",. lD .... tion OD 

arbitrary .. baeta of ... Volume III 
13. Iterated intepaJa .1 ,f. 0IIup of variable ISS 

Problema Mt 

8VCGBITION8 lOR FURTHER RUDING U9 

INDEX lSI 



Introduction to Analysis 





CHAPTER 1 

Notions from' Set Theory 

Bet theory is the languap of mMhematicl. Tbe 
mOlt complicated ideas in modern mathematies are 
developed in terma of the basic nodo. of let theory • 

. Fortunately the grammar.and vocabuluy of ... theory 
are extremely simple, at least in the .... that it. poe­
aible to 10 very far in mathematiClil with 001,. a ema11 
amount of set theory. It so happens that the subject 01 
let theory not only underlies mathernatiee but baa 
become itlelf an extensive braneh of atudy; however we 
do not enter deeply into this Itudy beeauae there it DO 

need to. All we mUlt do here it familiarise ouneIv. 
with some of the baaie ideas 10 that the lan&uace ...., be 
11Ied with precision. A fint readilll of tbiI chapter can 
be very rapid ainee it i. mainly a matter of pttinc WIld 
to a few worda. There i. oocuional verboeity t directed 
toward the clarification of certain simple ideas which 
are really somewhat more subtle than they &ppeU'. 



I I. NOTIONS no .. IIIIT THlIOaT 

fl. SETS AND ELEMENTS. SUBSETS. 

We do not attempt to define the word.,. Intuitively a set is a collec­
tion, or ",gregale, or famil'll, or en.semble (all of which words are used synony­
mously with set) of objects which are called the elementa, or member. of the 
set, and the set is completely determined by the knowledge of which objects 
are elements of it. We may speak, for example, of the set of students at a 
certain. univenity; the elements of thie set are the individual students there. 
Similarly we may lpeak of the set of all real numbel'l (to be diacuased in 
eome detail in the next chapter), or the set of aliitraight lines in a given 
plane, etc. It Ihould be noted that the elements of a set may themselves be 
sets; for example each element of the set of allitraight lines in a given plane 
ia a set of points, and we may alao consider such 1881 mathematical examples 
.. the set of married couples in a given town, or the set of regiments in an 
army. 

We ehalI generally use capital lettel'l to denote sets and lower-cue 
letters to denote their elementa. The Iymbol E is used to denote member­
ehip in a set, 10 that 

zES 
means that z is an element of the set S. The ltatement "z ia not an element 
of S" is abbreviated 

zf!S. 

Inatead of writing a E S, b E S, c E S (the commu having the arne 
meaning .. "and") we often write a, b, c E s. 

The atatement that a set is completely determined by ita elements may 
be written .. followa: If X and Yare sets then X .. Y if and only if, for 
all z, z E X if and only if z E Y. Equality here and elsewhere in thia book 
(denoted by -) means identity; X and Y happen to be different Iymbola, 
but they may very well be different names for the same set, in which case 
the equation X - Y means that the sets indicated by the symbols X aad 
Y are the same. X" Y of COUJ'le means that the sets indicated by the 
aymbola X and Y are not the same. 

ThUi we imagine oUJ'lelves in a world peopled by certain "objects" 
(certain of which are called "sets"), and for some pail'l of objects z, X, 
wh .. X is a set, we write:e E X, the symbol E having the property that 
lwo ... X and Y are equal if and only if for each object z we have z E X 
if and only if :Ie E Y. The symbol E mUit alao bave other properties (which 
we dan't specify here) that enable UB, given certain sets, to construct otheJ'l. 
The important tbina is tbat everything which followa is expreBlible in terms 
01 the fundamental relation z E X. 



tl._AllD ......... II 

Seta are IOmetinuw iDdieated by Iiaciq III their members between 
br&cell. For example, the _ 

IJaoe, Jim} 

baa Jane and .nm .. ita memben, 

(1, 2,3, ••. ) 

(with the three dote I'e8d Uaod 10 on") ie the _ of poeitive inteprB. and 

f-t . 
ia the _ having one element. the object named _. (Note that f G J ie not 
the aame .... In the aame way theN ia a ditferenee between a university 
cluB coDIIiatiDg of one atudent aod the atudent hilDll8lf, or between a com­
mittee 00DIIiat.i1ll of one peraon and that peraon.) The above notation how­
ever is not always feuible. A more frequendy used notation is 

Iz : (statement involving s)J, 

which meaoa the aet of all z for which the statement involving z ia true. 
Thus 

(s : z ie a poeitive integerJ 

ia the aet of positive intepra, and for any aet 8 we have 

8 - fz: zE8). 

For any aet 8, the aymboI 

fs E 8 : (atatement involviDg z») 

deDotea the -.me set .. 

(z : :i E 8 and (statement involving z) J , 

which ia the let of all elements of 8 for which the atatement ia true. Thus 
if R is the .. of real numbers, 

Iz E R : :r:I- l' - (1, -I). 

If X and Y are aeta and every element of X is al80 an element of Y. 
we a.y that X is a ...., of Y; this is written 

XC Y, or Y:JX. 

Thus XC Y ie ahorthand for the atatement "if z E X then s E Y". 
X - Y is equivalent to the two atatements X C Y and Y C X. If X C Y 
aod Y C Z then clearly X C z; the two &nst atatements are IOmetimea 
written more aucoinotly . 

XcYCZ. 



, I. NO'l'IONa noll 811T TRIIORT 

For auy object z and set X the relation z E X can now be written in 
another (1_ convenient I) way, namely (zl eX. The negation of X C Y 
• written 

Xtl, Y or Y~X. 

X. called a JWOPII' eubuI 0/ Y if XC Y but X,. Y. 
The em", .., • the set with no elements. It is denoted by the symbol 

91. A IOUI'Ce of confusion to beKinnel'l • that although t.he empty let oon­
taint noCIam" it i .... f is lOfMIAing (namely lOme particular let, the one 
characterised by the fact. that. nothing is in it.). The set. (911 • a let. con­
tainilll exactly one element, namely the empty set. (In a similar way, when 
dea1in1 with numbers, lay wit.h ordinary intepl'l, we mUit. be careful not 
to reprd the number aero 81 nothing: 181'0 is something, a part.icular num­
ber, which repreeents the number of thinp in "nothing". Thus 181'0 and 91 
are quite different, but there is a connection between them in that the set 
91 hu IeIO elements.) Note that for any set X we have 

III C X and XC X. 

A epecial cue of both of these statements is the statement 

III C Ill, 
which occuiont diJlloulty iI, u is often improperly done, one ...... 'Ije 
oontailled in" for both of the symbole C and E. The statement III C III 
ia tNe becalMe the statement "for each z E III we have z E Ill" is obviouely 
true, and allO because it is "vacuously true", that is there is DO z E III 
for which the statement must be verified, just. u the statement "all pip 
with winp apeak Chineee" is vacuously true. 

I Z. OPERATIONS ON SETS. 

If X and Yare aete, the inter.edion 0/ X and Y, denoted by X ("\ Y, is 
defined to be the set of all objects which are both elements of X and ele­
ments of Y. In eymbole, 

X ("\ Y .... (z : z E X and z E YI. 

The union oJ X and Y, denoted XU Y, is the Bet of all objects which 
are elements of at leut one of the Bets X and Y. That i8. XU Y is the set 
of all objects which are either elemente of X or elements of Y (or of both), 
ineymboll 

XUY- (z:zEX or zEYJ. 

The word "or" is ueed here in the manner that is standard in mathematica. 
In ordinary language the word "or" is often exclusive, that is, if A and B 
are statements, then II A or B" is underetood to mean "A or B but not 
both", whereu in mathematice it altDtJlI' meane" A or B, or both A and B". 



,2. 0 ....... 0 ... 011 ..... I 

If X ia a aubaet of a .. 8, then the ~ oJ X .. 8 ia the .. 01 
all e1ementa of 8 which ..... not elementa of X. If it ia expIieltly Itated, or 
clear from the context, euctly what the set 8 is. we often omit the wordI 
"in 8" and 11M the notation ex for the complement of X. TbU is 

ex - fsEB: sf! XI. 
Th .. operations ..... illustrated in Fipre 1, where the leta in queetioD 

are seta of pointa in plane repone bounded by curves. 

xny XUy ex 
FrOUD 1. Intenect.ion, union, and oompIemenL 

For another example, let 8 be the set of real numbenl, aDd let 
X - (s E 8: s ~ 11, Y - (s E 8: 0 ~ s S 11. 

(The symbols ~ and S will be defined later.) Then 

X/,,\Y- III 
XVY- (sE8:s~OI 

eX-lzE8:s<-1I. 

Certain relationa hold among the symbols A, V, e. For example, if 
X and Yare aubeeta of & set 8, then 

eX A eY - e(X V V). 

This is illustrated in Figure 2. A proof of tbia fonnula ia civen below. 

FJOUIIII 2. eX ilshaded 1111, eY ilshaded = , e(X v Y) illhadecl HH. 
iDuIf.ratIIIr ex f'\ eY - e(X v y). 



• •• NOTIONS nIOll SlIT TllIIOBY 

ExncIsB. Prove that if xes, Yes, then eX ("\ e Y = e(x v Y). 
It mlllt he ahown that the two seta have the _me elementa, in other worda that each 
element of the set on the left ill an element of the set on the ript and vice vera. 

If z E ex f"I eY, then z E eX and z E eY. Tbia means that z E 8, z e: X, 
z E Y. Since z e: X, z e: Y, we know that. z e:X V Y. Hence z E e(X V Y). 

Conversely, if z E e(X V Y), then z E 8 and z e: X V Y. Therefore z e: X 
and z e: Y. ThIl8 z E eX and z E eY, 10 that z E eX f"I eY. Thill completee the 
proal. 

If X and Y are seta, the notation X - Y is BOmetimes used for 
(s EX: x f1. YI. Thus if X and Y are 8Ubseta of BOme set S, then 
X - Y - X("\eY. 

Two seta are said to be diajoinl if they have no element in common. 
That is, X and Y are disjoint if X ("\ Y = flJ. A collection of any number 
of. leta is aid to be disjoint if every two of the sets are disjoint. 

. The intersection and union of more than two seta may be defined in 
an obvious manner. For example, if X, Y, Z ar.e seta then 

X ("\ Y ("\ Z - Ix : % E X, x E Y, x E ZI, 

and 

XVYVZ- (x:sEX or xEY or xEZI. 

Clearly X ("\ Y ("\ Z ... (X ("\ Y) ("\ Z == X ("\ (Y ("\ Z), and similarly for 
the union of three seta. More generally the intersection and union of 
arbitrary families of seta may be defined, and in an obvious way. The only 
problem is finding an adequate notation for an arbitrary family of seta, 
and tbia is done .. folloW1l. Let 1 be any set and for each i E 1 let Xi be 
another set (80 that we may .peak of 1 as being an induing /4miI7l, whoee 
elementa are irtdit:u used to specify the seta at which we direct our main 
attention). The set of all seta Xi" i ranges over 1 is denoted 

(X, : i Ell or (X,I., 
and the interaedion and union of tbia family of seta, together with their 
respective conventional symbols, are defined by 

("\ X, - (x: for each i E 1, x E X,I, .• , 
V Xi'" (x : for at least one i E I, z E X.I. 
ie, 

EXBRCIBB. Prove that if 1 and S are seta and if for each i E 1 we 
have X, C S, then e«("\ X,) - V (eX,). 

iEl iE' 

It. __ he Ibowa t.ba\ eacb element of the let OD the left ill an element of the let on the .................. 



• 2. OP:lJU.TlOJlB ON UTI 7 

H z E e( "X,) then z E 8 and z E "X,. Therefore z E X" fOl' at least one 
fEI .EI 

; E 1. Thus z E eX" 10 that z E U (ex,). 
IEr 

Converaely, if z E U (eX.), then fOl' lOme; E 1 we have z E ex" Thus z E 8 
'el 

and z E X,. Since z E X, we have z E " X,. Therefore z E e(" X,). This comp\eta 
lei lei 

the proof. 

If G and b are objects, by the ordered ptJir (G, b) we mean the two 
objects G and b in a definite order, G first, b second. Thus if G, b, e, d are 
objects then (G, b) == (e, d) if and only if G = e and b - d. Note the distinc­
tion between (G, b) and (G, bl i the latter is a set with two elements (unlefl8, 
of COU1'8e, G happens to equal li, in which case (G, b J - (a I, a set with one 
element), and la, hI can equally well be written (b, aI, spoiling the order. 
We remark that instead of introducing the new concept "ordered pair" 
into set theory, we can actually define the ordered pair (a, b) in terms of 
the primitive notions about sets that we already have: we set (a, b) ... 
I(al, (G, bll. This definition does precisely what we want: to any two 
objects a, b (distinct or not) it auigns an object (a, b), and it does this in 
such a faeruon that (a, b) - (e, d) if and only if a ... e and b =- d. 

Given two sets X and Y we define the cartuian prod4ld (or prodtACl) 
oj X and Y, denoted X X Y, to be the set of all ordered pairs the fint 
member of which is in X, the second in Y, that is 

X X Y = (x, y) : x E X, y E YI. 

Ordinary rectangular coordinates in the plane give the uaual pictorial 
representation of the cartesian product: the whole plane can be identified 
with the product of the two coordinate axes. In Figure 3 there is a niore 
complicated picture in which X, Y are subsets of the two coordinate axes 
and the cartesian product is a ~baet of the first quadrant. 

• • 

I I 

FioUBII 3. Cartesian product. 



8 I. NOTIONS FROM SilT THEORY 

13. FUNCI'IONS. 

If X and Yare sets, by a function from X to Y (or a Junction Jrom X 
into Y, or a function on X with value8 in Y) is meant a rule which associates 
with each element of X a definite element of Y. (The word mapping, or 
map, is often used instead of function.) The "rule" can he given in many 
ways, some of which are discussed below, but the essential thing is that 
given any element of X there is associated, somehow, some definite element 
of Y. Two functions from X to Y are considered equal if and only if both 
functions associate with each specific element of X the same element of Y. 

Functions are usually denoted by small letters, such as J. The state­
ment "J is a function from X to Y" is often written 

J:X-Y. 

For any a: E X, the element of Y that the function J associates with z (the 
value 01 J at :r) is denoted I(a:). Thus if J: X - Y and g: X - Y then 
1- g if and only if I(z) - g(a:) for all a: E X. W~ say that J smds a: into 
I(z), or that I map8 a: into I (a:) , or that :r and I(z) correspond under J. 

The rule defining a given function I: X - Y may be given in various 
ways. One way, which is usually not very practir.al, is to list all the elements 
of X, listing with each one the corresponding one of Y. Or the rule may be 
given by a mathematical formula. For example, if X and Y are both taken 
to be the set H of real numbers, an equation like 

fez) = Zl + 3z - 2 

defines a real-valued function J on H i in such a case one often speaks 
(imprecisely I) of the function :r' + ax - 2. Again, if X is a subset of H, 
a real-valued function on X may be given geometrically by its graph, that 
is the set of points I (a:, I(z» : z E XI in the plane; note that this method 
mayor may not be practical, depending on what f is like, for it may not be 
possible to "draw" the Rl'aph. In fact any subset of the plane defines a 
real-valued function on a subset of the real numbers, provided that any 
vertical line (z - constant) intersects the lubset of the plane in at most 
one point. Finally we remark that the "rule" defining a function need not 
be practically computable. For example, for z any real number, let I(a:) 
denote that integer 0, 1, ... , 9 which is in the billionth decimal place of :r 
(to be precile, since a real number a: may have more than one decimal 
representation, 88 in 1.0000 ... = .9999 ... , we might better take J(a:) to 
he the smallest possible integer in the billionth decimal place of :r); this 
rule gives an honest-to-goodness function I: H - H, but who would hazard 
a guess 88 to the value of 1(11'), or even 1(...;7J.)1 

Though this is in no way essential for what follows, we remark that 
it is easy to define the notion of function in terms of more primitive concepts 
of set theory, 88 follows: If X and Yare sets, a function from X into Y is a 
subset of X X Y with the property that for any x E X there is one and 
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only one 1/ E Y such that (z, 1/) is in the subset. If the function is denoted 
J: X - Y then the unique 1/ referred to above is, of COUl'lle, J(:e). In analOl)' 
with the case of real-valued functiona' on the real numbers, this lubeet 
I (z, J(z» : z E X I of X X Y is called the graph of the function, 10 that 
we are again saying that the graph detennines the function. 

1 

FrOUD 4. Graph of the function I: R -+ R liven by I(~) - Zl far aU s E •. 

It is useful to note that the word "function" alone can be defined in 
primitive terms, not only the more complete concept "function flOm X 
into Y": a function is an ordered pair whose first member ill an ordered 
pair of sets, say (X, V), and whose second member is a function flOm 
X into Y. That is, a function is IOmething of the type «X, y), (a certain 
kind of subset of X X y». This emphasizes that the I8tI X and Y are to 
be conaidered &8 easential parts of the function J:X - Y. For many pur­
poI8I it is important to bear this fact in mind, but molt often we do not 
make any explicit mental note of it. For example, if I: X - Y is a fUllCUon 
and Y is a subset of another set Y', then we set a function I': X - Y' by 
setting J'(z) - J(z) for all :e E X, that is, living I' the same II'&Ph "I, 
which il pouible since X X Y C X X V'. Although I and I' &1'8 really 
different functions, we uaually denote them by the same Iymbol, even 
writing down the technically incorrect expl'ellion J: X - V'. In the same 
way, liven any function I: X - Yand any subset X" of X, we can de&ne 
a function 1": X" - Y by I"(z) -/(z) for all z E X"; I" is called the 
rearictioR 011 to X". Of course, I" is not the same &8 I, though we olten 
denote them by the same .ymhol, for example by writing the technically 
incorrect expl'ellion J: X" - Y when there is no danger of confUlion, The 
graph of the latter function is of COUl'lle a subeet of the graph of the oriPnai 
function!: X - Y, since X" X Y C X X Y. 

If !: X - Y and,: Y - Z are functiona, one can define the ctnrapoft­
lion 01 J and" or compoaedJunctioR, a function flOm X into Z, by &8IOCiating 
to each element of X an element of Z in the obvious way: given an element 
of X, one fint uses J to get an element of Y, then one U8eI , to get flOm this 
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last element an element of Z. The composed function is usually denoted 
go 1,80 that we have 

go/: X-Z, 

with (g 0 I) (x) = g(J(x» for each x E X. 

A function I: X - Y is called one-to-one, or one-one, if different ele­
mente of X correspond under I to different elements of Y, that is if l(xl) -
I(~oi) only if ~l - 2: •• A function I: X - Y is called onto if each element of 
Y corresponds under 1 to .orne element of X, that is if each y E Y is of the 
form 11 -/(x), for lOme x E X. If /: X - Y is both one-one and onto 
it is called one-one onto, or a one-one correapoodence between X and Y. An 
example of a function that is one-one onto is, for any set X, the identity 
lunction ix: X -X, given by ix(x) = 2: for all x E X. (Note that what 
goes under the name "the function x" in elementary calculus is actually 
the identity function on the set of real numbers.) If I: X - Y is one-one 
onto then each element of Y corresponds under I to one and only one ele­
ment of X, 80 we can define a function I-I: Y - X by!-I(y) = 2: if y = I (x). 
!-I it called the ,,,,,erae Junction oj J, and is 0.180 one-one onto. Clearly 
(Jl)-I .. J, and!-I 0 I = ix, lol""l = iy. 

If J: X - Y is a function and X' C X, then the subset of Y given by 

J(X/) = 1/(2:) : 2: E X'} 

(where the last symbol is shorthand for Iy : there exists x E X' such that 
y - I(x)!) is called the 'mtJ{/e 01 X' under I, or simply the imtJ{/e 01 X', if 
there is no danger of confusion. The two UBeI we have made for the symbol 
1 ( ) are related by the equation 

I«~J) - II(~)J for each 2: E X. 

If I: X - Y is a function and Y' C Y, then the subset of X given by 

I-I(Y,) - Ix EX: I(x) E yl} 

is called the ,,,,,erae imOfe 01 Y' under I. It consists of those elemente of X 
which correspond under I to elements of Y'. If I: X - Y happens to be 
one-one onto we have another use for the symbol I-I, namely the inverse 
function!-I: Y - X. These two uses of I-I must be carefully distinguished, 
though confusion rarely arises. If I: X - Y is Olle-Olle onto then the two 
uses of !-I are related by fJ-l(y)! -= I-I({y\) for e&<~h y E Y. 

,4. FINITE AND INFINITE SETS. 

We are familiar with the set of positive integers, or natural numbJa 
11, 2, 3, •.. }. This set, together with the various ideas associated with it, 
INCh as ite ordering (the fact that its elements can be written down in a 
de8Dlte order), or wch as the fact that two of ita elements may be added 
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to obtain a third with certain general rules holding for this addition, can 
be obtained from the primitive principles of set theory. In this text we shall 
instead &8Bume the buic properties of the real number system and from 
those derive all the properties of the set 11,2,3, ... 1. In this section we 
Bhall for convenience 8BBume a few simple facts about the natural numbe ... 
in order to get u quickly u possible to certain other eBBy matte... of set 
theory. However all the facts about the set of natural numbe ... that are 
uaed here will be proved explicitly in the next chapter. The notions devel­
oped in this section will not be applied until later, so no circular reuoning 
OCCUl'l. 

Let us therefore &8Bume knowledge of the set 11,2,3, ... 1. A set X is 
called finite if it is empty or there is a positive integer n such that X can 
be put into one-one correspondence with the set 11,2 •... , nl, that is 
there is a one-one function from /1,2 •...• nlonto X. Thus a set is finite 
if we can count its elements and run out of elements after we count a certain 
number, say n, of them. The number n depends only on the set X, not on 
the order in which its elements are counted off j n is called the number 0/ 
elementB in X. For oompleteness we say that the number of elements in the 
empty set is zero. Any subset of a finite set is itBelf finite, and if it is a proper 
subset it hu a smaller number of elements. 

A set is infinite if it is not finite. This means that we can pick an 
element ZI EX. then an element ZI from the complement of I ZI), then an 
element z. from the complement of IZI. ZI). etc .• and we never run out of 
elements of X. Thus there exist distinct elements SI, Sa. S ••••• in X. 

It is eBBy to show that a set X is infinite if and only if it may be put 
into one-one correspondence with a proper subset of itself. To do this, note 
first that if X is finite then any proper subset hu a smaller number of ele­
ments. whereas two finite sets in one-one correspondence must have the 
same number of elements. This proves the "if" part. On the other hand, 
if X is infinite then there exist distinct elements ZI, ZI. Sa •••• in X. The 
complement of IZI. ZI, ZI, ••• 1 in X is a subset Y. so that 

X = IZI. ZI. ZI, ••• 1 U Y and IZI. Sa. Z" ••• 1 r'\ Y = flJ. 
A one-one correspondence between X and its proper subset I ZI. ZI, ••• 1 U Y 
is given by the function which sends each z. into Z.+l and each element of 
Y into itself. This proves the "only if" part. completing the proof. 

The set of natural numben can be used to give an eBBy definition of 
the notion of sequence. A 8equence 0/ n element8 in a 8et X, or an n-'up16 0/ 
elementB 0/ X. may be defined to be a function from 11, 2. : ..• n 1 into Xi 
ifthefunctionisdenoted/andwewrite/(l) = zl,/(2) - Sa, •• •• /(n) - z., 
then the n-tuple is often written (ZI, ZI •••• , z.). An infinite 8equmc:e 0/ 
elements 0/ X (or a 86qumc:6 0/ elements 0/ X, if there isn't any danger of 
confusion with finite sequences) is a function from the set of all natural 
numben into Xi u above this can be written (ZI. Sa. ZI •••• ). or. more 
conventionally. ZI. Sa, ZI •••• , or sometimes Iz"I_.I •••.•.• 
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PROBLEMS 

1. Let R be the eat or real numbera and let the symbols <, :S have their CODV8Il­

tlonal JllMlMp 
(a) Show that 

. Iz e R : 0 :S z :S 31 " I z e R : -1 < z < 11 - Iz e R : 0 :S z < 11.' 
(b) Lilt the elementll or 

(11,3, 'I V (~E R : zI- 4z + 3 - OJ) ,,(z E R : -1 :S. < 31. 

(0) Show that 

<t. E R : -I:S z:S 01 V (z e R : I <. < '\)" I~ e R: O:S.:S 3) 
- (s E R : I < z:S 81 VIOl. 

2. U A is a aubeet or the eat 8, ehow that 
(a) e(eA) - A 
(b) A V A - A "A - A V flJ - A 
(0) A "flJ - flJ 
(d) A X flJ - flJ. 

a. Let A, B, 0 be IIlbeetll or a eat 8. Prove the foUowinl etatementll and illustrate 
them with diatrama. 
<a) eA V eB - e(A "B) 
(b) A n(BVO) - (A "B) V(A "0) 
(c) A V (B "0) - (A VB)" (.4. V 0). 

'- U A, B, 0 are I8te, show that 
(a) (A - B) ,,0 - (A "0) - B 
(b) (A VB) - (A "B) - (A - B) V (B - A) 
(c) A - (B - 0) - (A :.. B) V (A "B "0) 
(d) (A - B) X 0 - (A X 0) - (B X 0). 

5. Let 1 be a nonempty eat and for each i e 1 let Xc be a set. Prove that 
(a) for any eat B we have . 

B" V XI - V (B "X.) 
'er 'er 

(b) if each X. is a aubeet or a given eat 8, then 

e( V XI) - " eX,. feller 

6 .. Prove that if f: X .... Y, ,: Y .... Z, and 1a: z .... W are functions, then 

" • CtJ • n - (Ia • ,> ·f· 
7. Letf:X .... Y be a function, let A and B be IIlbeetll or X, and let 0 and D be 

.. baete or Y. Prove that 
(a> I(A VB) -/(A) V/(B) 
(b) I(A "B) C/(A) "/(B) 
(0) t-I(O V D) - 1-'(0) V t-I(D) 
(d) 1-'(0" D> - r(O) "t-I(D) 
(e) ,-a(f(A»:> A 
(f) /(f't(0» c O. 



....... u . 
8. Under the ..umpticma of Problem 7, prove that I II oae-oae If ud CJD1)o If the 

lip :> in (e) CUI be repIaoed by - for all A C X, aDd I II onto If ud ..., If 
the tip C ill (f) ... be replaced by - for all C C r. 

I. How IIIaDT aubeete are there of the eat (1,2, a, ... , til' How IIIADJ .... of 
tbia eat into itlelf' How muymapl of &hie .. onto illelft 

10. (a) How muy IUDOtioDII are there flOlll a IlOIlfIIIlpty .. B iDto 111' 
(b) How lUIly fuaotioDII are th .. fIOIIll11 into aD arbitrary '" B? 
(0) 8how that the notab I XII,., implieitl7law1vt1 tIat .,... aU ...... 



CHAPTER II 

The Real Number System 

The real numbel'a are basic to analysis, 10 we muat 
have a clear idea of what they are. It is pouible to con­
struct the real number ayatem in an entirely rigoroua 
manner, startinl from careful atatementa of a few of 
the buic principlea of let theory, • but we do not follow 
this approach here for two reuone. One is that the 
detailed construction of the real number8, while not 
very difficult, is time-consuming and fite more properly 
into a courae on the foundations of arithmetic, and the 
other reason is that we already "know" the real num­
ben and would like to get down to buaill8ll8. On the 
other hand we have to be lure of what we are doing. 
Our procedure i.n this book is therefore to ClHUmI cer­
tain basio properties (or axioms) of the real number 
.ystem, all of which are in complete agreement with 
our intuition and all of which can be proved easily in 
the COUl'l8 of any rigoroua construction of the .ystem. 
We then sketch how moat 01 the falniliar properties of 
the real numbers are consequences of the baeic prop­
erties &8IUDl8d and how theBe propertiee actually com­
pletely detmnine the real numbera. The rest of the 
coune will be built on this foundation. 

• The ... dartS prooedure far OOIII~Uq the nal DWIlben II u 
folio .. : ODe Int .. buIe .. theory to de8De the llatural DUID­
ben t1, 2, I, ••• , (wblob, to be&iD with, are mantly a .. witb 
AD order relation), thea ODe de8Dea the additloA ADd multlpllca­
tloA of _ural DWIlben &Del abow. that &heM operatloAa aatiIIy 
the famWar rulea of aIpbra. UIi .. the naturaillWllben, one thea 
de8n8II the .. , of iDt.epn to, :1::1, :1::2, ••• , &Del exteDcia tbe op­
eratloAa 01 addition ADd multiplication to all the int.epra, apia 
verifyiq the rulea 01 alpbra. From the intepn ODe next obtailll 
the ratioD&l Dumben, or fractioAl. FiDalIy, from the raticmal 
Ilwnben 0118 ooutrllcta the realilumben, the buic idea in tbIa 
Iut; atep bein, that a realilumber II aomethiq that C&Il be ap­
proximated arbitrarily cIoaeIy by ratlonailluJDben. (The maau­
facture of the real Ililmbera may be witDeal8d in E. Landall'. 
FtlUr&d4IitnM of AftGlrN.) 



16 II. TRIl RJlAL NUMBER BYBTJIJI 

, ]. THE FIELD PROPERTIES. 

We define the real number .y.fem to be a Bet R together with an ordered 
pair of functions from R X R into R that lIatillfy the eeven propertiee lilted 
in thill and the lIuccecding two eections of thill chapter. The elementll of R 
are called real number., or jUllt number.. The two functions are called 
addition and multiplication, and they make correepond to an element 
(a, b) E R X R specific element! of R that are denoted by a + b and a • b 
rt!llJpectively. 

We IIpeak of tAe real number llyetem, rather than a real number eyetem, 
because it will be shown at the end of thill chapter that the lilted propertit!IIJ 
completely determine the real numbers, in the eenee that if we have two 
eyetems which satisfy our propertiee then the two underlying eete R can 
be put into a unique one-one correspondenoe in such a way that the func­
tions + and • agree. Thus the basic assumption made in this chapter is 
that a system of real numbers exist!. 

The five properties listed in this section are called the JW,d properties 
becauee of the mathematical convention calling a field any set, together 
with two functions + and " satisfying these propertiee. They expresa the 
fact that the real numbers are a field. 

PROPERTY' I. (COMMUTATIVITY). For every a, b E R, V16 have 
a+b=b+a and a·b ... b·o. 

PROPERTY II. (AasOCIATIVITY). For every G, b, c E R, tile have 

(a + b) + c ... a + (b + c) and (G' b) • c - a • (h • c). 

PROPERTY III. (DISTRIBUTIVITY). For every a, h, c E R, tDf) have 
a • (b + c) - a • b + a • c. 

PROPERTY IV. (EXISTENCE or NEUTRAL ELEMENTS). There are diatind 
elementa 0 and t 0/ R IUCA that lor all a E R tile 1aaH 
a+O-acmda·t ... a. 

PROPERTY V. (EXISTENCE or ADDITIVE AND MULTIPLICATIVE IHYEa_). 

For any a E R there i. an element 0/ R, denoI«I -a, IUCA 
that 0 + (-0) .... 0, and /or any non.nro a E R tI&er. iI 
an element 0/ R, denoted a-I, IUCA that a • cr1 - 1. 

Moat of the rulee of elementary algebra can be justified by these five 
propertiee of the real number system. The main coneequencee of the field 
propertiee are given in paragraphs F 1 through FlO immediately below, 
together with brief demonstrations. We shall employ the common nota­
tional conventions of elementary algebra when no confusion ill possible. 
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For example, we often write ab for a • b. One auch convention is already 
implicit in the atatement of the diatributive property (Property III above), 
where the expJ'el!8ion a • b + a • c ia meaninglet!8 unlet!8 we know the order 
in which the various operations are to be perionned, that is how parenth_ 
ahould be inserted; by a • b + a • c we of course mean (a • b) + (0 • c). 

F 1. In a aum or product of several real numberl parentheaea can be 
omitted. That ia, the way parentheaea are inserted is immaterial. 
Thus if a, b, c, dEB, the expreBBion a + b + c + d may be defined 
to be the common value of (0 +-(b + c» +d - «0 + b) + c) +cI­
(a + b) + (c + d) - a + (b + (c + d» - "'; bt these expres­
aions with parentheaea indeed po88e8II a common value can be .hOWD 
by repeated application of the aaaociative property. The pneral fact. 
(with perhap8 more than four .ummanda or factol'l) can be proved 
by atarting with any meaningful expreBBion involving element. of B, 
parentheaea, and several +'a or several ·'a, and repeatedly.hoving 
as many parentheaea as poesible all the way to the left, always ending 
up with an expJ'el!8ion of the type «a + b) + c) + d. 

F 2. In a aum or product of several real numbe1'8 the order of the tenna is 
immaterial. For example 

a·b·c-b·a·c-c·b·a=- •.•• 

Thia ia shown by repeated application of the commutative property 
(together with F 1). 

F 3. For any a, b E B the equation z + a ... b has one and only one 801u­
tion. For if z E B ia such that z + a - b, then z - z + 0 -
z + (a + (-a» lOS (z + a) + (-0) .. b + (-a), 80 z - b + (-0) 
ia the only poaaible 8Olution; that thia ia indeed a 8Olution is immedi­
ate. One consequence is that the element 0 of Property IV is unique; 
another is that for any a E B, the element -a of Property V is 
unique. 

For convenience, instead of b + ( -a) one usually writes b - Go (This is a 
definition of the aymbol" -" between two element. of B.) Thus -0 - 0 - Go 

We take the opportunity to reiterate here the important role 01 con­
vention. a + b + c has been defined (and by F 1 there iI only one I'8IIIOn­
able way to define it), but we have not yet defined a - b - c. 01 course 
by the latter expreaaion we und8l'8tand (a - b) - c, but it iI important to 
realiae that thia ia merely convention, and reading aloud the worda "0 

minus b minus c" with a aufficient pa.uae alter the fi1'8t "minus" point. out 
that our convention could equally well have defined 0 - b - c to be 
0- (b - c). In this connection note the absence of any standard conven­
tion for a + b + c. In a similar connection, note that' could be taken 
to mean (at)· if it were not conventionally taken to mean 0(11'). As atated 



II D. TIIII u.u. IfVlllll •• 8Y8!'1111 

above we UI8 aU the ordinary notational conventiOll8 when no confusion 
can reeult. For example, without further ado we shall interpret an expres­
lion like log 01 to mean log (01) and not (1oe 1.1)6, cab-I doee not mean (cab )-1, 
etc. 

I' 4. For all)' a, II E R, with a ,. 0, the equation _ - b baa one and only 
one lOIution. In fACIt from .. - II foiloWi Z - :IGCI""' - bcrl, and from 
Z - fHrl followt _ - b. ThUi the element 1 of Propert, IV II 
unique and, liven any a E ., a ,. 0, the element er' of Property V 
is unique. 

For 0, be R, a ,. 0, we de&ne b/a, in accord with convention, to be 
". cr. In particular, erl - 1/ea. 

F S. For any 0 E R we have 0 • 0 - O. ThiI is true linee 0 • 0 + a • 0 -
a • (0 + 0) - a • 0 - 0 • 0 + 0, 10 that 0 • 0 and 0 are both toIutiona 
of the equation Z + 0 • 0 - 0 • 0, hence equal, by F 3. From thiI it 
folloWi immediately that if a product of aevera! elementa of R is 0 
then one of the lacton must be 0: for if cab - 0 and a ,. 0 we can 
multiply both lid. by erl to I~ II - O. Hence the illegitimacy of 
diviaion by aero. 

1'6. -(-0) - 0 lor any 0 E R. For both -(-o)-and 0 anlOlutiona 01 
the equation s + (-0) - 0, hence equal, by F 3. 

PT. (cr-')-I - 0 for an111OftIel'O 0 E R. In fact Binee 0 • 0-1 - I, by F 6 
we know that cr-' ,. 0, 10 (cr-')-I .... , and F 4 impli. that (crl)-I 
and 0 an equal, IIinoe both are aoIutiODl 01 the' equation a: • crt - 1. 

Fa. -(0 + II) - (-0) + (-b) for aU 0, II E R. For both are aoIutions 
01 the equation a: + (0 + II) - o. 

1". (cab)-' - er'b-I if 0," an IlOIlIel'O elements of R. For cab,. 0 by 
F 5.10 (.)-1 eData, and both (cab)-' and cr'b-I are 101utions of the 
equation z(cab) - 1. 

The UIual rul. for operatiq with fractions followeuily from F9: 

ae a -;;c - (ae)(be)-I - aeb-'c-' - cab-I - b' 
o c ae T· '7 - (ab-I)(cd-I ) - ac(btl)-, -liif' 

..!. +.!. _ ad + l!.. _ (ad)(bd)-I + (bc){bd)-' 

" " btl btl 
_ (ad + be)(btl)-, _ atJ,:!; be • 
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FlO. -G - (-1). GforallGER. For (-1). G+. - G' «-1) + 1) -

G • 0 - 0, 80 that (-1) •• and -G are both aolutiona of tbe equa­
tion Z + II - 0, hence are equal. Two immediate conaequeD0e8 
are o· (-b) - II' (-1) • b - (-1) • G' b - (-0) • b - -ab and 
(-0)' (-b) - -(0' (-b» - -(-ab) - abo 

Notice that all five field properties of the real numbera, and therefore 
all CODIIeQU8llC8 of them, are aatiafied by the rational numbera, or by the 
complex numberB. That is, the rational numbers and the complex numbers 
are alao fields. In fact there exist fields with only a finite number of elements, 
the simplest one being a field with just the two elements 0 and 1. To describe 
the real numbers completely, more properties are needed. 

12. ORDER. 

The order pl'Operty of the real number 8y8tem is the following: 

PaoPIlRTY VI. TAtn ia II au'-' ~ 01 R aucIa Ih.at 
(1) if 0, b E ~, tIun a + 1>, a • b E ~ 
(') lor CIA, a E H, one and onl, one 01 1M 10Uot.oing elate­

menta if ",.. 
aEa. .-0 

-oEa.. 

The elementa a E R IUOh that a E a. will 01 coune be called poritiH, 
tboee IUch tbat -0 E ~ negoliH. From the above property of R+ we 
ebaIl deduce all the usual rules for worldng with inequalities. 

To be able to expre88 the consequences of Property VI moat con­
veniently we intmduce the relationa ">" and "<". For a, b E R, either 
of the expreesiona 

a>b or b<1I 

(read respectively &8 "a is greater than 1>" and "I> iii Jell than a") will 
mean that a - I> E ~. Either of the expre88iona , 

a~b or bSa 

will mean that 0 > I> or 0 - b. 
Clearly a E a. if and only if a > O. An element 0 E R is negative if 

and only if a < O. 
The following are the consequences of the order property. 

01. (TrIoIaotomy). II a, b E R then one and only one of the following 
ltatementa is true: 

0>1> 
a-I> 
o<b. 
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For if we apply part (2) of the order property to the number (I - b 
then exactly one of three poeaibilities holda, (I - b E R+. (I - Ii - 0, 
or b - (I E R+, which are the three caBe8 of the 811ertion 0 1. 

02. (Transitivity). If (I > band b > c then (I > c. For we are given 
(I - b E ~ and b - c E ~ j it therefore follows that 
(I - C - (0 - b) + (b - c) E R+, 110 (I > c. 

03. If (I > band c ~ d then a + c > b + d. In fact, the hypotheses 
mean a-bER+, c-dE~VIO), and &II a consequence 
«(I + c) - (b + d) - (0 - b) + (c - d) E ~, proving the ueertion. 

04. If a> b > 0 (meaning that a> band b > 0) and c ~ tl > 0, then 
GC > bd. For a - b E R+ and c E ~, 110 GC - be - «(I - b)c E ~, 
and similarly c - d E ~ V 10) and b E ~ together imply that 
be - bd E ~ V 10) j it neceaearily follows that 
GC - bd - (GC - be) + (be - bd) E~, that i8 GC > bd. 

Note that the 888Umptiona that b and d are positive are e88eDtial j the 
uaertion 04 does not hold, for example, with 0 - 1, b - -1, c - 2, 
tl- -3. 

o S. The following rules of sign for adding and multiplying real numbers 
hold: 

(positive number) + (positive number) - (positive number) 
(negative number) + (negative number) - (negative number) 
(positive number) • (positive number) - (positive number) 
(positive number) • (negative number) - (negative number) 
(negative number) • (negative number) - (positive number). 

These are immediate from F 10 and Property VI. 

06. For any (I E R we have ,.. ~ 0, with the equality holding only if 
a .. 0; more general1y the IJUJIl of the squares of eevera1 element. of 
R is always greater than or equal to 181'0, with equality only if all 
the element. in question are 181'0. For by 0 0, the statement 0 .. 0 
implies al > 0, and a IJUJIl of positive elements is positive. Note the 
apecial consequence 1 - 11> O. 

07. If 0> 0, then l/a > O. In fact o' (1/0) - 1 > 0, which would 
contradict the rules of sign if we had 1/(1 SO. 

08. If a> b> 0, then l/a < l/b. For Gb > 0, hence (tJb)-l > 0, 110 

(ab)-Ia > (Gb)-Ib, which simplifies to l/b> l/a. 
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09. We now show how the computational rules of elementary arithmetic 
work out aa consequences of our Ulumptiona. Let UI make the defi­
nitions 2 .. 1 + 1, 3 - 2 + 1, 4 - 3 + 1, etc., and let UI define the 
natural number. to be the Bet 11,2,3, ... J. Since 1 > 0 it follow 
that 0 < 1 < 2 < 3 < .. '. The let of natural numbera ie ordered 
exactly aa we would like it to be-in particular, the natural numbera 
have the following properties: for any natural numben 0, b. exactly 
one of the statements a < b, 0 - b, b < 0 hoIdl; if a, ", c are natural 
numbers and a <" and b < c then aIao 0 < C; any natural number 
baa an immediate lucceeeor (i. leut natural number that II .,.ter 
than it); different natural numben have different immediate 100-
ceeeors; and there i. a natural number 1 with the property that any 
Bet of natural numbers that includes 1 and with each element aIao 
its immediate succeeeor coDliste of all natural numbers. For any 
natural number n, n il the sum of a set of 1'1 that ie in one-one 
correspondence with the elements of the set (1, 2, 3, •.• , ",. This 
implies that in whatever order we count off the elements of a let of 
n objects (that ii, a set in one-one correspondence with the set 
(1,2,3, ... , n I) we arrive at the final count n, and if a proper subeet 
of a Bet of n objects haa 11& objects, then 11& < n. The uaua1 rules for 
addilll natural numbera come from luch computationa aa 

2 + 3 - (1 + 1) + (1 + 1 + 1) - 1 + 1 + 1 + 1 + 1 - 6, 

while the rules for multiplication follow from the fact that lums 
of equal terma may be written aa products; for example, for any 
a E R we have a + a + a - (1 + 1 + 1) • a - Sa. ThUi 3· 4 -
4 + 4 + 4 - 12, 10 we can verify the entire multiplication table, .. 
high .. we care to go. The .nteg •• , that ie tbe IUbIet (0, =':1, =':2, 
=3, .. '. J of H, are also ordered in the correct way •.• < -2 < 
-1 < 0 < 1 < 2 < .... It il easy to cheek that the intepnl add 
according to the ordinary rules; that they multiply in the uauaI way 
i. implied by FlO and the corresponding fact for the natural num­
bers. The raltonal number., that ie the elements of H whicb can be 
written alb, with 0, b integers and b.,. 0, are aIao ordered in the 
usual way; indeed the order relation of two rational numbera can be 
determined by writing the two numbers with a positive common 
denominator and comparing the numerators. Addition and multi­
plication of rational numbers are aIao determined by the IUD8 opera­
tiona for the integers. ThUi the rational numbers, a oertain IUbiet 
of H, have all the arithmetic and order properties with wblcb we are 
familiar. 

Here is aa good a place aa any to introduce into our 10Iical ~on 
of the real number system the notion of exponentiation with intepal 
exponents. If a E Hand n is some positive integer we define 0- to be 
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a • a • a ... a (n timel), and if a ,. 0 we define .. - I, a- - 1/.-. From 
theBe definitions we immediately derive the uaual rules of exponentiation, 
in particular ...... -..... 

( ... )a_.-
(.).- .... 

The de&nltloa of the abIoIute value or a ... number is lnOIIt con­
veniently introduced at tbia point.: if a E R, the eNol.." lHIluc of a, denoted 
101, is aiven by 

101- - if _ > 0, 
t-I- 0 if _ - 0, 
t-t- -- if 0<0. 

The abaolute value baa the followiq properties: 
(1) tal ~ 0 for alia E R, and tat - 0 if and only if _ - 0 
(2) tabl-Iat .'lI' for all a, 6 E R 
(3) I_I' - .. for all CI E R 
(4) ICI + 61s lal + 161 for alia, 6 E R 
(6) ICI- 61~ 1101-1611 for aIlo,6ER. 

The lilt three properties above ..... trivial COD88qU8llC8l of the defini­
tion at I-I. To prove (4) note tint. that 

:1:_ SI-I 
(mMninl that _ S I_I and -CI S ,at) and 

:1:6 S ,.,. 

or 

lci+&lst-I+llIl. 
To plOve (6), note t.bat.1al-l(a - 6) + 61 s ,_ - III +161,10 that 

ta.'- 61 ~ 1_1-161· 
Inteft:han&iDI _ and b, .,i, 

l~ - III ~ 161-1_1. 
and the Jut two inequalities combine into (5). 

It It ueful to note that repeated application of (4) gives 

1-+-+ .. · +ca.ISla.I+I .. I+ .. · +1a..1. 
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We alao note the trivial but very ueful fact that if z, 0, e E R, then 

I:.: -01 < e 

if and only if 

0-.<:':<0+ •. 
For I:.: - 01 < e Ie precieely equivalent to :.: - G < • and -(:.: - G) < I, 

or -. < :.: - G < " which in turn i. equivalent to G - e < :.: < G + e . 

..... ---1---.... 1 .. ' --- • ---"'1 
I I I 
I I I 
I I I 

l'Iouu I. Tbe poIDtullllGh that ,_ - _, < e. 

At the end of the previous aection a number of other BYStem. were 
liven which .tiafy the first five properties of the real number ay.tem. The 
order property exeludes two of the systems given there: the field coDllisting 
of just the two elementa 0 and 1 (since then 1 + 1 - 0, contradicting 
1 + 1 > 0), and the complex numbers (since any number must have a 
nonneptive equare). But the rational numbers .tiafy all the properties 
&iven 10 far. Sinoe it Ie known that there aiat real numbera which are not 
rational (tbia wiD be proved ehortly), .till more properties are needed to 
d.mbe the real numbers completely. 

,So TIlE LEAST UPPER BOUND PROPERTY. 

To introduce the lut fundamental property of the real number system 
we need the fonowina: concepti. If 8 C R, then em UPfl'l' bound/or at. ,., 8 
Ie a number a E R IUch that. ~ a lor each • E 8. If the aet 8 baa &11 upper 
bound, we.y that 8 Ie bourwIetl/rom GboH. We call a real number 11 a 
,." UPfI'I' bound 0/ at. .., 8 if 

(1) "it &11 upper bound for 8 
and 

(2) if G Ie any upper bound for 8, then 11 ~ G. 

From this definition it follows that two least upper bounds of a set 
8 C R muat be I .. than or equal to each other, hence equal. Thus a set 
8 C R can have at most one leut upper bound and we may apeak of at. 
leut upper bound of 8 (if one exiata). Note alao the following important 
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fact: if 1/ls the least upper bound of 8 and z E R, z < 1/, then there ate 
an element. E 8 lOch that z < •. 

A nonempty finite subset 8 C R always haa a least upper bound j in 
thl. cue the least upper bound is simply the greatest element of 8. More 
generally any IUbset 8 C R that haa a greatest element (usually denoted 
max 8) haa max 8 aa a least upper bound. But an infinite IUbset of R need 
not have a least upper bound, for example, R iteelf baa no upper bound 
at all. Furthermore, if a subset 8 of R haa a least upper bound it dOM not 
necesaarily follow that this least upper bound is in 8 j for example, if 8 is 
the set of all negative numbers then 8 haa no greatest element, but any 
a ~ 0 is an upper bound of 8 and zero (a number noe in 8) is the least upper 
bound of 8. 

The laat axiom for the real number ayetem il the following, which gives 
a further condition on the ordering of Property VI. 

PaOPDTY VII. (LJlA8T UPPER BOUND PROPBRTY). A raonemply "' 0/ 

real number. tIuJl i. botmckd /rom aboH 1&tJI a l«ut upper 
bound. 

If we look at the real numbers geometrically, imagining them plotted 
on a straight line in the usual manner of analytic geometry, Property VII 
becomes quite plausible. For if 8 C R is nonempty and bounded from 
above then either 8 baa a greatest element or, if we try to pick a point in 8 
aa far to the rilht aa poeeible, we can find a point in 8 luch that no point 
in 8 il more than a diltance of one unit to the right of the choeen point. 
Then we can pick a point in 8 farther to the right than the first choeen 
point and lOch that no point in 8 il more than one-half unit to the right 
of this second chosen point, then a point of 8 ltill farther to the rilht 
lOch that no point of 8 is more than one-third unit to the right of the lut 
choeen point, etc. It is intuitively clear that the sequence of choeen pointe 
in 8 must "gang up" toward some point of R, and this last point will be 
the least upper bound of 8. (See Figure 6.) 

Another way to justify Property VII in our minds is to look upon the 
real numbem u represented by infinite decimals, i.e., symboll of the form 

(inteRer) + .fIttJIfII ••• , 

where each of the symbols aI, «It, fit, ••• is one of the integers 0, 1,2, ... ,9, 
with the symbols <. >. +. . being interpreted for infinite decimals in the 
standard way. (Note that any terminatinl decimal can be coneidered an 

, , I" II 
-1 o 2 a 

FrQ1J1UI 8. A aequence 01 pointe in R pngiq up toward, a Ieut upper bound. 
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infinite decimal by adding an infinite string of zeros.) If 8 is a nonempty 
set of infinite decimals that is bounded from above, then we can find an 
element of 8 whose integral part is maximal, then an element of 8 having 
the same integral part and with al maximal, then an element of 8 having 
the same integral part and same al with CIt maximal, and we can continue 
this proCeBIJ indefinitely, ending up with an infinite decimal (which may 
or may not be in 8) which is clearly a leut upper bound of 8.· 

The least upper bound of a subset 8 of R will be denoted l.u.b. 8; 
another common notation is sup 8 (sup standing for the Latin IUprlm"m). 
Property VII says that l.u.b. 8 exists whenever 8 C R is nonempty and 
bounded from above. ConveJ'8ely, if 8 C R and l.u.b. 8 exists, then 8 must 
be nonempty (for any real number is an upper bound for the empty I18t and 
there is no least real number) and bounded from above. 

Analogous to the above there are the notioll8 of lower bound and 
greatest lower bound: a E R is a lo1Der bound for the subset 8 C R if CI S , 
for each, E 8, and a is a greate8llower bound of 8 if a is a lower bound of 8 
and there exists no larger one. 8 is called bounded from bek>w if it has a 
lower bound. It follows from Property VII that every set 8 of real numben 
that is nonempty and bounded from below has a greatest lower bound: 
as a matter of fact, a set 8 C R is bounded from below if and only if the set 
8' = Ix: -x E 81 is bounded from above, and if 8 is nonempty and 
bounded from below then -l.u.b. 8' is the greatest lower bound of 8. The 
greatest lower bound of a subset 8 of R is denoted g.1.b. 8; another nota­
tion is inf 8 (inf abbreviating the Latin infimum). If S has a smallest ele­
ment (for example, if S is finite and nonempty) then g.l.b. S is simply this 
smallest element, often denoted min S. 

We proceed to draw some consequences of Property VII. Among other 
things we shall show that the real numben are not very far from the 
rational numbers, in the IJenlJe that any real number may be "approximated 
as closely as we wish" by rational numben. The way to view the situation 
is that the rational numben are in many ways very nice, but there are 
certain "gaps" among them that may prevent us from doing all the thinp 
we would like to do with numben, such as eolving equatioDl (e.g., extracting 
roots), or measuring geometric objects, and the introduction of the real 
numbeJ'8 that are not rational amounts to closing the gape. 

Here are the coll8equences of the least upper bound property: 

• Let UI remark here that once the .... of Intepnll known, topther with their addldoD 
and multiplication, It II pouible to oonltruct the real number eyatem by de8DIna real 
numbel"l by mean. of In&nlte deelmall. TbIa II in fact the way real numberl .. uaua1Iy 
introduced in elementary arithmetic, and we bow how euy It. II to oompute with deci­
mal •. But there are a few inconveniencee in thll method atemmlnl from the fact. that. 
lOme number8 have more than one decimal reprNeDtation (e.g., .9119 ••• - 1.000 ••• ). 
There II allO the esthetic inconvenience of IiYinI a preferred .tatUi to the number 10-
almOllt a biololical accident. In any caee we ehan dilCUil later in thia _tion how the 
leven properties of real numben imply that they can indeed be repreeented by in&Dite 
decimal., thull completinl the circle with elementary arithmetic. 
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LUB 1. For any real number s, there is an integer" such tha\ R > s. 
(In other words, there exist arbitrarily large integers.) To prove 
this, &Illume we have a real number s for which the &ll8ertion is 
wronc. Then R :s; s lor each intepr R, 10 that \he let of intepra 
iI bounded from above. Sinee the set of integen is nonemp\y 
it hal A 1 .. upper bound, ... y .. But for any inte&er R, R + 1 
fa alIO an intepr, 10 R + 1 S • and thUi R :s; • - 1, ahowinl 
that. - 1 Ia Il1o aD upper bound for the set 01 inteprl. Bince 
CI - 1 < ., • ia not Aleut upper bound. This ia A conU8diction. 

LUB 2. For aDy positive real number • there exists an integer Rauch 
that l/R < .. (In other words, there are arbitrarily ama1l posi­
tive rational numben.) For the proof it auflicee \0 choose an 
integer" > II., which is poeaible by LUB 1, then use 08, 
which iI peranilaible linee by 07 we have 11. > o. 

LUB 3. For any s E R there is aD intepr " luch that R :s; s < " + 1. 
To prove this, choose an intepr N > I s I , 80 that -N < a: < N. 
The intepn from -N \0 N form the finite let (-N, -N + 1, 
... ,0,1, ... , Nt aDd all we need do is take" \0 be the greatest 
of these that is 1_ than or equal \0 s. 

LUB 4. For any a: E R and positive integer N, there Ia aD intepr " 
lUeh that 

!!.. .... < R+l 
N;;::s N' 

To show thia we merely have \0 apply LUB 3 \0 the number 
Ns, pttilllaD integer,. lUeh that" :s; Ns <" + 1. 

LUB So If s, • E R, • > 0, then there exist. A rational number, aueh 
that Is - '1 <.. (In other worda, A real number may be 
approximated M elolely .. we wiIh by a rational number.) To 
prove this, 11M LUB 2 to find a positive inteler N IUch that 
liN <., then use LUB .. to find an integer " lUeh that 
"IN :s; a: < (,. + 1)/N. Then O:S; a: - nlN < liN <" so 
Is -RINI < •. 

w. now diacUil the decimal NpNleDt.ation of real numbers. Firat oon­
aid .. &nite decimala. If ... Ia any intepr, " any positive integer, and 
Cla,", ••• , ... aDy intepra choeeo from amonl 0, 1,2, ... ,9, the Iymbol .............. 
win mean," usual, the rational number 

CI. CIt CIa 
"'+10+ 10' + ... + 10-' 
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If m is a positive integer leu than n, then 

(Io.al· •• a. ~ (10.41 ••• a. == (Io.al • •• a. + CIwo+l • 10-<00+1) + . .. + a. • Ur 
~ (Io.al" .0. + 9 • 10-<00+1) + ... + 9· l(r. 

If we add 10 ...... to this last number a lot of cancellation OCCUl'I, resulting in 

(10.41 •• • 0. ~ (Io.al • • • a. < (10.41 •• • 0. + 10'-. 

Thia laat inequality is at the bue of moet rounding-otr procedures in 
approximate calculations and in addition &bow8 that two numbera in the 
above decimal form are equal only if (except for the poBBible addition of a 
number of seroe to the right, which doesn't change the value of the 8ymbol) 
they have the eame digits in corresponding places. It aI80 enables us to tell 
at a glance which of two numbers in the given form is larger. The ordinary 
lilIes for adding and multiplying numbera in thi8 form are clearly legitimate. 

By an inftnm tkcimal we mean a formal expression 

(Io.a.asaa ••• 

(this is just another way of writing a sequence) where Go is an integer and 
each of ai, tit, III, ••• is one of the integers 0, I, ... ,9. The let 
((Io.al ••• a. : n - positive integert is nonempty and bounded from above 
(for any integer m > 0, Clg.al ••• a. + 10- is an upper bound) hence baa a 
leut upper bound. The 8ymbol (Io.GllJa1i1. •• is called a dBc1mal "pamion for 
thilleut upper bound and we eay that the least upper bound is ,qreunted 
br the infinite decimal. Thus every infinite decimal is a decimal expansion 
for a definite real number and we may use the infinite decima.l it.lelf aa a 
symbol for the number. Thus 

Qo,a.asaa ••• - l.u.b. ((Io.al."a. : n - positive inteprt, 

and for any positive integer n we have the inequality 

(Io.al • • • a. ~ ao.allJalil •.• ~ Go.al •• • a. + 10-. 

This enables us to tell immediately which of two infinite decimals repre­
sents the larger real number. Note that two different infinite decimala 
may be decimal expansions for the eame real number, for example 
5.1399999 ... - 5.1400000 ... , but the last inequality 8hows that different 
infinite decimale are decimal expansions for the earne real number only in 
this cue, that is when we can get one infinite decima.l from the other by 
replacing one of the digits 0, I, ... ,8 followed by an infinite sequence of 
nines by the next higher digit followed by a sequence of leros. 

Any real number is represented by at leut one infinite decima.l. To 
8ee this, apply LUB 4 to the cue N ... 10"', where m is any positive integer: 
we get a finite decima.l ao.Ol •• • 0. luch that 

(Io.al ••• a. S z < ao.al ••• a. + 10-. 
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If we try doing this for m + 1 in place of m, then ao and the digits ai, ... , a". 
will not change, and we simply get another digit Il00+1. Letting m get larger 
and larger, we get more and more digits of an infinite decimal, and this is 
our desired decimal expansion for~. Note that the addition or multiplica­
tion of two infinite decimals goes according to the usual rules: we round off 
each decimal and add or multiply the corresponding finite decimals to get 
a decimal approximation of the desired sum or product. We obtain u many 
digiti u we wiah of the decimal expansion of the sum or product by rounding 
01 the given infinite decimals to a sufficiently large number of places. 

Using decimal expansions of real numbers, it is very easy to exhibit 
real numbers which are not rational. One such number i • 

• 101001000100001000001. .. . 

Multiply this by any positive integer and one gets a number which is not 
an integer, 80 this number cannot be rational. 

f 4. THE EXISTENCE OF SQUARE ROOTS. 

It is convenient to prove here a special result, even though this can be 
derived &8 a consequence of a much more general theorem to be proved later. 

A square root of a given number is a number whose square is the given 
number. Since the square of any nonzero number is positive, only non­
negative numbers can have square roots. The number zero bu one square 
root, which i. lero iteelf. 

If 0 < XI < z. then ZI' < ~. That is, bigger positive numbers have 
bigger squares. ThUl any given real number can have at most one poeitive 
square root. It remains to show that if a E R, a > 0, then a hu at least 
one positive square root. For this purpose consider the set 

B - {~E R : ~ ~ 0, ~ Sal. 
Thia set is nonempty, since.O E B, and bounded from above, since if 
X > max /a, I} we have ~ - Z • Z > x • I == x > a. Hence y ... l.u.b. B 
exist.. We proceed to show that" - a. First, y > 0, for min {I, al E B, 
since (min (1,0»' S min {l,a} ·1 - min /1,a} S a, Next, for any. such 
that 0 < • < y we have 0 < y - • < y < y + e, 110 

(y - e)' < 11' < (y + e)', 

since bigger positive numbers have bigger squares. By the definition of y 
there are numbers greater than y - • in B, but y + • E B. Again using the 
fact that bigger positive numbers have bigger squares, we get 

(y - e>' < a < (y + e)l. 



Hence 

I,. - cal < (y + e)' - <r - e)' - 4, .. 

The inequality I,. - cal < 4y. holds for any • auch that 0 <. <" and 
by chOOling e IImall enough we can make 4,. 1_ than any pree iped 
positive number. ThUll I,. - cal ill 1_ than any poaitive number. Since 
1111 - 01 ~ 0, we must have 111' - 01 - 0, proving 11' - a. 

If a > 0, the unique positive IIquare root of • ill denoted ..,;a; thua 
CI hu exactly two lIquare roots, namely va and -V-. W. &leo wriM 
V1f -0. 

We now know that the positive real numbera are precilely the aquaNI 
of the nonsero real numbers. Thill ,how that the .. t of politi .. n ...... 
R+ whose exilltence ill affirmed by Property VI ill completely determined 
by the multiplication function of R. A priori, it mipt IMID tha. there 
could be several pcaible IUbsets R+ of R for which Properti .. VI aDd VII 
hold and that in any dilleUllllion of the ordering of R the .......... .,... 
have to be specified, but we now know this to be unneeeaaary. The .. B, 
together with the functioDII + and " determine the oreleriDi of B. It taa.. 
fore follow that the decimal expanaiODll of element. of B are comple&e17 
determined by the triple (B, +, .,. Sine. the addition and multiplieatlon 
of decimale follow the usual rul .. of arithmetic, 1M real " ...... .,.,. iI 
compleUly tlUrmined by ProptJr'iu I-VII, in the IeDII8 that if we bave 
another triple (B', +', ." IIotillfying theee properti .. then there wiD 8IdIR 
a unique on~ne correspondence between B and B' ...-villi IUIDI and 
product.. ThUll we may speak of tAe real number 1)'Stem. In fact one ofteo 
llpeaks of "the real numbers R", meaning the real number .,aleMj this ill 
IItrictly speaking erroneoUII, aince B ill merely a .. and we allO bave to 
know what the operatiollll + and • on thiII set are, but when there llno 
danger of confusion thill ill a convenient abbreviation. 

PROBUNS 

1. Show that there exIatI em. and ( ... tIalI)') oaI)' cmelleld with three ...... 
2. Prove in detail that for any ca, 6, e, • e R 

(a) - (G - 6) - 6 - G 

(b) (G - b)(e - II) - (ae + lid) - <M + be). 

3. Prove that if G, 6 E R and G < 6 < 0, thea 1/. > 1/6. 

4. (a) 11223/71 greater than 22/71 
(b) Ie 285/163 peater thaD 1361/7801 
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I. For which s E R are the foUowiDc iDequalities true? 
(a) 3(s+2)<s+6 
(b) s' - &:e - 6 ~ 0 

(0) ! > s-1 
e 

(d) -L.3 >S+8>O. s-

a. Show lbat If a, 6, ., r e R aad ° < • < 6, • < r < 6, then Ir - _I < 6 - a. 

7. Show that for IUIY 0, 6 e R, 

max 10,61 _ a + 6 +21a - 61 

min 10,61- _mul_a,_61._a+6-2Ia-bl. 

8. The..apla II .......... II de&Ded to be the .t C - R X B (caDed the 
...". ........ ) topther with the two fUDOtioDa from C X C into C, de-
DO&ecl by + aDd " tllat are amm by (0, 6) + (e, 4) - (a + e, 6 + cI) aDd 
(0, ') • (e, cI) - (e - W, GIl + Ie) for aU ., t, c, " e .. 
(a) Show that C, toptt. with the fuDctioaI + aDd " II a field. 
(b) Sbow that the map from. B into C which .. -.ch a E B into (0, 0) II 
~ UId .~ nI IIddit.IoD aad IIlIIltipUaatioD" (beiq eanflll to 
debe the IDIUIiJIi ar the worda ia quotea). 

(0) I_til,.. B with a ..... ar C by __ ar part (b) (10 that we oaa 
ooIIIkler • C C) aad ..... ~ - (0, 1), Ihow that 11- -1 aad dlat-.ch 
element ar C oaa be writ_ iD a uaique way .. ° + W, with a,6 e B. 

I. Ja the IUbiat liS ar • bouaded from above or below? no. it have lUI I.u.b. or 
a,.I.b.? 

10. I'IDd tbe ,J.b. aDd La.b. ar tbe lolIcnrbaa ... alvill, reuoua If you CUI. 

(a) {I,I,l,i, ... } 
(b) {l,~,~,~, ... } 
(0) {VI,v'2+J1, "2+v'2+v'I, ... }. 

n. Prove that If a E B, 0> 1, thea the -' la,",", ... 1 II not bounded from 
above. (BiN: lint &ad a poeitive intepr " IUch lbat G > 1 + ~ and prove 

that .. > (1 +~r ~ 2.) 
12. 1M X aad Y be DODfIIIlP'Y 1Ubeet. ar R whole wdon II R and IIIlCb tllat -.ch 

...... t aI X II ... thaa each element aI Y. Prove that there exiata a E • 

... that X II ODe aI the two .. 

I. e B : • S 01 or ,. e B : • < al. 

IL D", S. are _pty IUbeete of R lbat are bo1lllded from above, prove that 
La·b.I. + r :. e 8" r e Btl -l.u.b. 8, + I.u.b. Bt. 
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Ij. Let CI, • E B, with CI < •. Show that. there exiata Ii IlWDber II E B aueh that. 
• < II < " with s rat.ioDal or DOt ratioDal, .. we 1riIh. 

16. "A real Dumber is rational if and only if it baa a periodic decimal exp&IIIIion." 
Define the p ..... nt ueaae of the word periodic and prove the 8tatement. 

18. Deolma1 (1G-Dary) eapIoIIIiona 01 real Dumbers were deftoed b), apeolal refer­
eace to the Dumber 10. Show that real Dumbers bave b-rwy expanaioDl with 
IoD&lopua propenieI, w .... " ia an)' iIltepr"poeatar than 1. 



CHAPTER III 

Metric Spaces 

Moat. of elementary anaIyaia iI concemecl with 
funetione of one or more real variablee, that. functions 
defined on a subeet of the real Une, 01' the plaae, or 
ordinary 3-epaee or, more pneraJly, tHtimeneioul 
Euclidean space. The real Une, plane, etc. are ..,... 
c ... of the po"'" concept of "meVic tpaCe" which iI 
introduced in tm. chapter. W. alto introduce. con­
venient pometric laquap for d-.1iDl with ...ned 
"topolocical" queationa, which are queetiona .... &ed 
with the notion of "pointe DIU' eaoh I~', • DOt1on 
that ia a priori rather vape. The ideu we cleYelop ean 
be applied to any metric apaee at aD. This _ oob' pIO­
videa a great economy of thought, IIince it will be ..... 
I&l'Y to introduce a new idea only once inItead of-viOl 
to define it for each lpeCial cue tbat IDA1 0CCUl', "'" 
will &lao lead to productive new 'Wa7I of looIdas at 
familiar objecte. ThUl one lingle proof wiD eonr·aIl 
C8lellimuitaneously and a certain ..-1\ .... III • 
manner aliptly out of the ordiDu7, mat ..... ..... 
unapec$ed and far...reachina ~ u will be 
eeen later when other eumpa. of metric ......... 
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11. DEFINmON OF METRIC SPACE. EXAMPLES. 

A metric apace ia a let topther with a rule which UIOClatei with each 
pair 01 elemente 01 the let a .... number IUOh that certain axiom. are_tII­
fleel. The axiom. are chc.eD in auch a manner that it la nuooabl. to think 
01 the .. t .. a "apace" (a word w. cIon't bother to define in iIolation), the 
elamente of the aet .. "pointe", and the real nUmber UIOCiated wiUa two 
elements of the set .. the "diat&nce between two pointe". Here is the preciae 
definition: 

~don.. A metric Ipaee is a _ B, together with a rule which UIOCiatea 
with each pair p, I E B a real number d(p, f) luch that 

(1) d(p, ,) ~ 0 for all p, IE B 
(2) d(p, f) - 0 if and only if p - I 
(3) d(p, f) - d(f, p) lor all p, , E B 
(4) d(p, r) S d(p, f) + d(f, r) for all p, f. rEB (triangle inequality). 

Thua a metric apace is an ordered pair (B, 11), where B ia a let and d 
a function d: B X B .... B l&tiIfyiq properti. (1)-(4). In dealiq with a 
metric apace (8, II) it II olten undentood lrom tbe context what d la, or 
that a certain apeeiflc d II to be borne in mind, and then one often apeab 
limply of "the mekic apace B"; thia II IoPcallY incorrect but Vert con .. 
venien'- The elamente p, I, r, 0'0 of a metric IPM8 B (to be ahlolutelJ 
co~ welhould BAY "the elements. of the underlyiq Bet 8 of the metric 
apace (8,4)", but let 111 not be too pedantic) are called the pointe 01 B, 
and if p, fEB w. call d(p, f) the diaItJnce lHrCtDem p _ fj d itaell is called 
the tlitIGrtce /vrtI:litm, or tIIAIIric. 

Here are lOme exampl. of metric ap&ceI: 

(1) B -. (the let of reU numben), d(p, f) -I, - fl. 
The 8mt three metric apace axiom. obviously hold. The fourth foUowa from 
the computation 

d(p, r) -I p - rl -I (p - ,) + (, - r) I Sip - 91 + 1 I - rl 
- d(p, f) + d(" r). 

(2) For &Il1 pci.ttive integer " we define a metric apace B·, called 
Hi~ Bucli4eaft apace, by takiq the underlyiq let of B" to be all ,....plea of real numbera (Ga, ••• , cr.) : Ga, ••• , cr. E B I, and definiDl, !or 
, .. <-I, 0.0' .. ), I - (f" 0 o. ,.,.), 

d(p, f} _ Vr.(a:-I---.,-:.):-=-I-:-+-:(a:.~_-"':-::I-:+-•• -, -::+-=(;-.. -_-.,'7:.)1, 
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We DUId pI'Oft tbM .. II '''''IT .. metric apace. The flrIt three 
metric apace uiomI U'8 t.riYill to ftrify. 10 it remainII to prove the trian&le 
inequality. We need two preliminary neultl. 

Propoatdoa (SeA ...... ........,.".). 'ar _, ,.., ""'" CIt, a., ...• a.., 
"., lit. ......... Ac. 

-IGtbt + Ga6.+ • ",-+~""'~I~_~ 
:S ..; Cltl + 01 + ... + .. 1 ..; btl + bI + ... + bal. 

The proof ItartI with the remark that for any a, fJ E R we have 

o :S (CICIi - fJb,.)1 + (ClOt - fJb,)1 + ... + (aa. - fJb.)1 
- «'(Gal + 01 + ' .. + .. 1) - ~(Gaba + Ot/Ja + ..• + .... ) 

+ lJI(btl + bI + ... + b.'). 

Ifw ... ta- ";bal +bI + .oo +bal andfJ - z"; CIt' +oI+·oo +a..', 
thelut inequality becoJnel 

o :S 2(CltI + ... + .. I)(bal + ... + ,I) 
=F 2"; Gal + ... + Gal ";~b-=--1-:-+-'-'-' ~+-:~-=-I (Gtbt + oo. + a.b.), 

or 

z"; CIt'+ ... + .. 1 ..; ba' + ... + b.' (Gaba + ... + .... ) 
:S (8-1 + ... + .. I)(btl + , .. + ,I). 

or 

..; 81+ .. · + .. ' ";bll+ ... +b.'IGabJ+"· + .... 1 
:S (G,I + .oo + .. I)(btl + ... + 6.1). 

If ..; Gal + .,' + Gr.1 and ..; bal + . , . + bal are both nOlllero we can 
divide by their plOduct to I8t the cleBired inequality. If, on the other band, 
either ..; Gal + ... + .. 1 - 0 or ..; btl + ... + " -= 0, then either 
Ga - ••• - a.. - 0 or bt - •• , -, - 0, and the cleBired inequality reducee 
to O:S o. 

t 

Corollary. Par -II ,.., II~' Ga, a., "., a., ba, ba, , •• , ba we have 

..; (CIt + ba)1 + Co. + bs)1 + .,' + (a. + ba)1 
:S ..; Gal + 01 + oo. + Gal + v'r-::~-=-I-:-+-:bI~+'---· ,-, -+-:~:-,- . 

To prove thII write 

(Ga + bs)' + (ae + bs)1 + .,. + (Ga + b.)' 
- (8-1 + 01 + ... + 0.1) + 2(aa6a + a.bt + ... + .... ) 

+ (bal + bI + . , . + 11.1). 
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By the Schwarz inequality the laat expreeeion is 1888 than (\\' equal to 

(til' + CIt' + ... +~IJ,.::...:I):..-.:---c-_---,---= 
+ 2V til' + CIt' + ... + IJ,.' V bt' + bi + ... + b .. ' 

+ (bl ' + bi + ... + b .. ,) 

which equale 

( V til' + CIt' + ... + IJ,.' + V ba' + bi + ••• + b .. ·)'. 

Thus 

(/It + ba)' + (tit + ba)' + ... + (IJ,. + b,.)' 
S (V til' + CIt' + ... + IJ,.' + V ba' + bi + ... + b .. ')·. 

The desired reeult comes from this lut inequality and the comment that 
ifOSsS,thenv'i S Vi, 

We can now verify the triangle inequality for J!lra. Let P - (Zit ••• , z..), 
q - (fIl, ••• t 11 .. ), r .. ('1, ... , ... ). Then 

d(p, r) ..V (211 - ,tl' + . . . + (z.. - ... )' 
.. V«SI- fls) + <111- ,S», + ... + «z.. ~ fI .. ) + (fl .. - ... », 
s V (211 - fit)' + ... + (z.. - , .. )' + V (fit - ,s), + ... + (U .. - ... )' 

by the CoroUary, 10 that 

d(p, r} S d(p, q) + d(q, r). 

Thus J!lra it a metric ep&Ce. 

We note that J!lra is a generalization of the first example, since ga is 
simply R with d(p, q) == Ip - ql. 

(3) If 1£ is a metric apace and 1£1 it a subset of B then HI can be made 
a metric apace in an obvious way: the diatance between two pointa of Bl 
it the .me as the diatance between them when they are considered pointa 
of B. That Bl , together with ita metric, aatiafies our four axioms it immedi­
ate. El , with its metric, it called a ~ of B. Note that by taking aubaeta 
of Euclidean ,pace we get an infinite number of metric Space8, in a tre­
mendous variety of ail8ll and shapes. 

(4) Let E be an arbitrary let and, for p, q E H, define d(p, q) - 0 if 
p - q, d(p, q) - 1 if p pi q. This it clearly a metric ep&Ce. It is a very 
special kind of metric space, quite unlike the previous examples, hut 
illustrates nicely the generality of the concept with which we are dealing. 
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In this text we shall for the moat part be interested in g. and ita aub­
spaces, ,but other important metric IIpaceI will allO appear and inde.l will 
IOmetim. be introduced to prove Wop about .. itaelf. 

"ropoalelon. 1/ PI, PI, •.. , p. en poW. 0/ Ute meIric .. H, .. 

d(P .. p.) S d(Pl, Ptl + d(p., pal + ... + d<p-., N. 

This com. from repeated application of the trianPe inequality: 

d(PI, p.) S d(p,., PI) + d(p., p.) S d(pa, Ptl + d(pa, PI> + d(p., p.) S ... 
S d(PI, PI) + d(p., PI> + ... + d<P-a, p.). 

"ropoalelon. 1/ p, f, r are poi"" of 1M metric .,.. H, IIaen 

I d(p, r) - d(f, r) I S d(p, f). 

This i. 8III8Iltially the well-known fact of elementary geometry that 
the difference of two aides of a triancle is I .. ~ the third aide. To prove 
it note that 

d(p, r) S d(p, f) + d(f, r) and d(f, r) S de"~ p) + d(p, r), 

which can be rewritten 

d(p, r) - d(f, r) S d(p, ,) and d(f, r) - d(p, r) S d(f, p), 

which combine to 

I d(p, r) - d(f, r) I S d(p, f). 

12. OPEN AND CLOSED SETS. 

DeJinieioru. Let E be a metric apace, PI E B, and r > 0 a realnUlllber. 
Then the opm ball in E 0/ center PI _ radiUl r is the aubeet of B pftll by 

(p E H : dc,., p) < rl. 

The cloMl ball in E 0/ center PI ,.,." ""'"" r is 

(p E B : dc,., p) Sri. 

II there can. be no milundent.uadiDI about what the me&rio...,. ... 
ODe often apeak' of the "open (or oIoIed) ball of OID_ " ucI1'1diU r". 
When one epeakI of an "open (or oIoHd) ball" one II\I&Da .... os-a ('" 
clOIed) baD of lOme center" in the metric .... and IIOIlle radiuI , > 0. 
Bya "baD" is meant an opeD' ball or ..... bIIJ. If our ............ fa 
ordinary 3-epaee B' then the precedinl terrninololrit in MCOId with..,..,... 
day Jancuace: an open baD in B' it the inaide of IIOID8 ephere while. ca.I 



• m ...... o .. ~ 

ball It the iDIlde 01.,.. ..... t.opther wRb the point. on the ...... the 
.... aDd rIdii 01 the baDe .,.. the eeaten aDd radii reepectinl7 01 the 
..... In the pIaae .. AD opeD ball • the iDIicIe of lOme circle while a 
.... ball. the iDIide 01 a ciNle topther witll the point. on the cln1 .. In 
... meUio .... baIIa ...., look eve ... like an ordinary uball" (of. 
J'Ia. 7). 

.....,. A .................. flI.pIaDe. 
aiwa ... -I6I.,)e.:->o.,>ol. 

w. nca1l ... , if ." e a, a <', .. tIae ~ ................ 
"a.'lIthe_ 

(a, ') - 'a e a : a < • < 'I' 
wbDe the.."........, ........ a"'" II the.-

r-.'l-Iae.:a~a~'l .. 

a<a<' 
aN equl __ , to the Iaequalllitl 

or 

a- a+' <a- a+r. <._ a+' 
222 

I a+'I<"-a . a-,-- -,-, ' . 
......................... ....... 1ImIhed ..... TIle aymbol ( ... ) .......... . 
.... ........ ... _ ....... pUr vi ...... iii R (_, wbich.dIe ... Wq, 
.,.." ..,. Tbe .... to be .... to (G, ') IIIauId alwaJII be .. fl'Olll .. COD-... . . 
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10 that. (a. b) is the opeD. ball in the meVio apace R with center (a + b)/2 
and radiUl (6 - a)/2. Similarly [a. b) is the cloeed ball with the aame cen_ 
and radiua. II PI E R and r E R, r > 0, then the open (or cloaed) ball in B 
with center PI and radiua r is <PI - r, PI + r) (or lPt - r, PI + rD. 10 that 
the open (cloeed) billa in B are Juat the open (cloaed) intervall. 

"'1---- r --_'~"_-- r -----tal 
I I I 
1 I 1 

p.-r PI p.+r 

l'Iova 8. Ball iD • wlda aeatel' PI and radiUl r. 

n.Jlraidora. A aubaet 8 of a metric apace E is opeA if. for each p E 8, 
8 contaiua lOme open ball of center p. 

Int.uitively. a aubaet. 8 of the metric apace B is open if 8 containa 
all pointe of E that are aufficiently near any liven point of 8, but t.hia 
property can be .. ted preoiaely only by repeatiOl the definition Juat liven. 
Note that it. makea no IIeDIe to I&y that a aet 8 is open or not unleal 8 is a 
IUbiet of lOme apecific metric apace B. 

Propodcfora. 'or .. , metric Ipace B, 
(1) '" __ /IJ .. ... 
(I) "' __ B .. ... 
(3) '" union 0/ .. , collIJction 0/ OJNR ...,.,. 0/ B .. OJNR 
(4) the itaWlICCion 0/ a ftAtu AVtRlHw 0/ OJNR ...,.,. 0/ E ia opeA. 

The proof of the fint item is trivial, t.bouah perbapa trioky for 
beginuen: we bave to ahow that "for any p E /IJ there is an open ball wch 
t.hat. • . • ... a atatement that is automatically true ainee there is AD P wch 
that p E flJ. The aecond item is equally trivial; indeed any ball in B is 
contain8d in B. Item (3) is al80 clear. To prove (4), let 8., ..•• 8. be open 
aubaete of E and p E 8. f"\ •.. f"\ 8 •. For i .... 1, ... , A. each 8, is open, 10 

there exiate a real number re > 0 auch that the open ball of center p and 
ndiua re ia entirely contained in 8" Then the open ball of center 'p and 
radiua minlr., ••. , r.1 ia contained in each 8 e and is contained therefore 
in 8. f"\ ... "8 •. ThUl 8." ... "8. ia open. 

The word "open" eo far occura in two contexte: we have open balla 
and open leta. That no errore can ariae is a conaequenee of the followina 
~~ . 
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Propoeition. 1n Gntl metric apace, _ open bt.all ta _ open •• 

For let E be a metric space and comrider the open ball 8 of center ". 
and radius r. We have to show that if p E 8, then BOme open ball of center 
p ill entirely contained in 8. Figure 9 gives the idea of the proof: if p E 8 
then the open ball of center p and radius r - dCPt, p) ill contained in 8. To 
fill in the detai1l of the proof, note fim that d(po, p) < r einee p E 8, BO 
that r - d(pe, p) > 0 and there actually exiItI an open ball of center p 
and radius r - d(po, pl. If f ill in thilllatter ball then d(p, f) < r - d("., p) 
and therefore d(p., f) ~ d(p., p) + d(p, f) < d(po, p) + (r - d(p., p» - r. 
Thus f E 8 and the proof is complete. 

r - "(P •• ,,)_~.(/ 

Plovo 9. All opeD ball ill all opeD lit. 

A. a collleqUenC8 of the lut two pt'Opoaitiona we can ueert that the 
open subeeta of E are preci8e1y the uniona of open balls of E, that ill, any 
epen subeet ill such a union fm fact it ill the union of aU the open bal. it 
contains) and any such union ill an open set. 

The difference between (3) and (4) in the fi.I'It propoeition is to be 
noted seriously. Item (4) ill no longer true if the word "finite" ill dropped. 
For example, CODIider in r the open ball, with center the origin 
(0,0, ... ,0) and radii 1, ~, U, 34, ... ; the intenection of theee open 
bal. ill just the origin itaelf, a let which ill cleariy not open. 

Dtr/in.tfon. A subeet 8 of a metric apace E il clotetl il ite complement 
eB (that ii, all pointe in E which are not in 8) iI open. 

Ploua 10. ()peD Uld cIoIed llta in P. 
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As before, to avoid trouble we should ahow that a cloeed ball is a clClIed 
set. Here are the statement and proof, quite analOlOUB to what was done 
above. Figure 11 illUlltrateB the ar;ument. 

Propoaltfoft, I,. Oftll mdric .,ace, G cloaed ball it G ...., .... 

Let 8 be the closed ball of center PI E B and radius r aDd let p E e8. 
Then d("., p) > r, eo d("." p) - r > 0 and we can CODIider the opea ball 
of center p and radiUII d("., p) - r. For any point f in the latter opeD ball 
we have d(p, q) < d(p., p) - r, eo that 

d(Po, q) - d{J1o, q) + d(q, p) - d(p, f) ~ d(p., p) - d(p, t> > r. 
ThUll the open ball of center p and radius d(p., p) - r i. entirel1 eontalned 
in es, eo that es is open. Tbus 8 ill cloeed. 

i(Jle,,,) - r 

FJGtlUI n. A cto.d ball ill a cloled lilt. 

Analogous to the first proposition on open .. we have the followiDc 
result. . 

Propoatfoft. For Oftll metric Ipoce H, 
(1) Ute aubld E ia cloI«I 
(I) Ute IUbaet Il1 ia cloaed 
(8) Ute i"""aecMn 01 emil coll«:tiorI 0/"'" ...... 0111 it ... 
(of) Ute Uftion 01 G ft,f.- "",..".,. oJ ..., ...",. oJ Bit ..... 

TbiI NIUlt fo1lcnn bnmediately from the analopat propoIitioD for 
open eubaetB. For B and Il1 are the complement. of f4 and 11 reapeotiYeIy, 
which are open, eo that 11 and Il1 are cloIed. P ..... (3) and (4) ,...... fl'Olll 
the fact that the eomplemeot of an intenectlon is • UDion, and ...... 
(bottom EuitcI8., pap 8). For (3), we note that the complemeDt of the 
intenection of any collection of cloIed au'" of E is the union of the 



compIementa of these clOled au ..... , that is the union of certain open leta, 
which is open. For (4), note that the complement of the union of a finite 
number of cloeed subeeta is the interaection of the complements of this 
finite number of clOled seta, that is the intersection of a finite number of 
open leta, which is open. 

II p, t are dlatinot point. 01 the metric apace B then there are balla 
(elther open or clOHCl) contalnlnlone point but not the other, for example 
any ball (either open or ciOled) centered at p or q and of radius I .. than 
cI{p, q). Tbus any point is the intenection 01 all the closed ball. containinl 
it, provilll (by (3) above) that a point is a clOled set. By (4), any finite 
__ oJ a tndric IJHIC' iI cloa«I. 

The complement of an open ball is a closed set, &8 i8 the closed ball of 
the .me center and radius, 80 again by (3) the intel'8eCtion of these two 
seta is clOled. Thus for any PI E E and any r > 0, the "8phere of center Po 
and radius r", that is, the set (s E E : d(p., p) ... r}, is closed. 

It is easy to live examples of subsets of a metric space which are 
neither open nor closed. For example, let E = ft, let a, b E ft, a < b, and 
oonaider the "balf-open interval" 

[o,b)- (zER:aSs<b). 

Then (a, b) containa the point a but no open ball having center a, 80 (a, b) 
is not open. Similarly, e[a, b) containa the point b but no open ball havinl 
oenter b, 10 e(a, b) is not open. Tbus [a, b) is neither open nor clOlled. 

For any" - 1,2,3, ... and any 0 E R, the aubset of E- liven by 

l(sl, ... ,:c.) E E- : Sl> ot 

ill open. For let p - (:ct,:ct, .•• ,:c.) be in this lubset and consider the open 
ball of center p and radius SI - O. II q - (YI, Y" ..• ,Y .. ) is in the latter 
ball, then 

lSI - YII S V(:l:l - Yu' + ... + (:c,. - tI .. )'''' d(p, q) <:I:I - a, 

80 til - :l:a - (:l:a - Ya) ~ :l:a -lSI - YII > :1:1 - (XI - a) ... a, 80 that the 
point q is in the set (:l:a, .•• ,:c,.) Eli:": :1:1 > a}. Hence this latter set is 
open. Similarly the set (:l:a, •• • ,:c,.) E E- : :1:1 < a} i. open, and for any 
• - 1,2, ... , '" the leta 

«ZI, •. . ,:c,.) E E- : Zf> 01 and «Za, ... , z .. ) Eli:": Zf < al 

are open. Consequently their complement. 

«:ct, ••• , z..) Eli:": s. S CIt and ((Zl, ••• , s .. ) E E" : Zf ~ a} 

areao.ad. 



., ........... . 
u ......................... e ..... < ..... .:: ......... < ... 

then dae .. of polafll -

« • ., 0 .. , .., e .. : ~ <., < II. for each i-I, .. 0, til 
ia ca1led &0. ... ..,.., ita II- aad the .. of poin. 

1< • ., ... , -.> ell-: ~:s; .. :s; .. for eaoh i-I, .. 0, til 
ia ca1lecl a ... ..,.,.,., ita "0 (Thia poeraIlHa the UIUAl notion of opea 
and cloeed interval in R - ,810) Atl ... (or doted) i,.",.,., in B- ia CIA open 
(or"', ,...,."...,.,,,) __ For IUOh a let it the latenectioD of the 2ft 
IUbeete PVeD by the aeparate eoaditiODl 8, < .1, 0 0 0, • < .. , ". > .1, 0 0 0, 

b. >.. (or 8,:s; • ., 0 0 0 , • :S; .. , ". ~ • ., 0 0 0, .. ~ .. ) ADd theee latter 
1UtJeet. are aU opeD (or cloeed), heace 10 is their latenection. 

.. --

.. --
.. .. 

l'Iauu 11. A. obecIlDt.erYal1D ... 

lhtIbdefoA. A IUbM S of a metric apace E is bou,."., if it it contaiaecl 
in lOme ball. 

In this definition the ballla question may be either open or cloeed, for 
any open ball it contained in a cloeed baH (for example the cloeed ball of 
the IAIDe center aad radiua) and any clOl8Cl ball is contained in &0. open 
ball (for example the open ball of the eame center and &0.1 Jarpi' radiua). 
Aa &0. example of a boUDded let, coD8ider the open and cloeed intervale in 
.. cliaoUlled above; tbeIe are aU boUDded IIinoe the let 

«.., .. 0, .. ) ell- : ~:s; .. :s; II. for each i -1, "0, til 
is contaiaecl in the cloeed ball of center (a., 0 . 0,.) ADd radius of magni­
tude V' (fI, - -.)1 + 0 0 0 + (b. - c.)'o 
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If 8 is a bounded subset of the metric space E then 8 is contained in 
some ball (either open or closed) with center Po, where Po is «my point of E. 
For since 8 is contained in IIOme ball, say the closed ball of center PI and 
radiua r, then 8 is also contained in the closed hall of center Po and radiue 

. , + d<Po, pt}. This makes obvioua the fact that the union of a finite number 
of bounded subsetAI of E is bounded. 

It is clear from the definition that a subset of R ie bounded if and only 
if it is both bounded from above and bounded from below. . . 
Prop03Ltfon. A nonmtpty cloaed BUb_ of R, if it ia bounded from above, 
Ma a ".eateat element and if it ia bounded from below Ma a leaat element. 

Let 8 be a nonempty subset of R and suppose, for definitenell, that 8 
ie bounded from above (the proof being almost the same if 8 is bounded 
from below). Let a -= I.u.h. 8. If a e 8, then a E e8 and since e8 i8 open 
there exiets a number E > 0 such that the open ball in R of center a and 
radius E is contained in e8. This means that no element of 8 ie greater than 
a-E. Therefore, a - E i8 an upper bound for 8, contrary to the 888Umption 
a -l.u.b. 8. We conclude that a E 8, as was to be shown. 

f S. CONVERGENT SEQUENCES. 

Let Pt, Pt, PI, ... be a sequence of poiute in the metric space E. It 
may happen that as we go out in the sequence the points of the sequence 
"get arbitrarily close to" IIOme point p of E. This i8 illuatrated in Figure 13, 
where the various terms of the sequence. at first oscillate irregularly, then 
proceed to get closer and closer to p, in fact "gang up on" p, or "get arbi­
trarily close to" p. The purpose of the following definition is to give some 
precise Bellle to the intuitive words "get arbitrarily eloee to". 

. 
"1 . 

PI 

• . PI 
PI . ". 

FJoUlUl 13. A eODvergent eequenee of points in 8'. 
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Dejinition. Let Ph Pt, PI, . .. be a sequence of pointe in the metric 
space E. A point pEE is called a limit of the sequence Pl, PI, PI, ••. if, 
liven any real number e > 0, there is a positive integer N such that 
d(p, p,,) < • whenever n > N. II the sequence PI, PI, PI, ••• baa a limit., 
we call the sequence conHrgent, and if p is a limit of the sequence we I&)' 

that tAe aequenu contJerfe. 10 p. 

Let us make a few observations concerning this definition. The main 
one is that liven any e > 0 there existe a positive integer N having a certain 
property involving e. Thus N uaually depends on e, and it. would have been 
more precise to write N(e) instead of N. However the extra precision ob­
tained by writing N(e) in.te&d of N I't'Jlulte in unnec888&l'y not.&ticmal 
confusion, 80 from now on we just tacitly und8l'lltand that N depends on e 
and stick to our shorter notation. Note that we do not even care wbat. 
specific N goes with each e > 0, the important thing being that for each 
e > 0 there existe 30mB N with the desired property; if for lOIIle e > 0 we 
have a certain N with the desired property, then any larpr N would do 
equally well for our liven •. Thus in deciding whether or not a sequence of 
points is convergent, only the terms far out count; that is, if we obtain a 
new sequence by lopping off the fil'llt few terms of our original sequence, the 
two sequences we have are either both convergent (with the _me limits) 
or both not converpnt. 

Another observation on the definition of limit and convergence it that 
these concepts are always relative to some specific metric space E. ThUl 
it might happen that for the liven sequence of pointe in B, Pt, PI, PI, •.. , 
the condition in the definition of limit holds for a certain point p of B', 
where E' i. some metric apace of which B it a aubepace; the sequence would 
then be convergent in E', but we could not call it convergent in B unleaa 
we knew that p E B. Thus in using the notion of convergence a epecific 
metric space must be borne in mind. A. an easy example, the sequence 
3,3.1,3.14,3.141,3.1415,3.14159, •.. converges in R (to the limit 1f), 
but not in the subspace e 11f} of R. 

In speaking' informally of a convergent sequence of points Pl, PI, PI, •.. 
in a metric space E, one often says that uthe points of the sequence set 
clOier and cloeer to the limit", but thie need not be literally tNe. For 
example, u we move along in the sequence the pointe of the sequence may 
at fil'llt set nearer and nearer to the limit, then move somewhat away, then 
get nearer and nearer again, then move eomewbat away, etc. Thua while 
the terms of the sequence of points in R 

1, ~, )i, J.(, U, ... 

do get closer and r.1oser at each .tage to the limit sero, this is not litenlly 
true of the convergent sequence 

I, ~, ~,U,~, M, J1I, .... 
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'l1le pointa of & converpnt IeqU811C8 may &leo happen to be all equaU, near 
the limit, since for any pEE, the lequence 

p,p,p, ... 
coaverpa to p. 

PrGIJOfJtlon. A ....... "" PIt PI, ••• oJ pH"" in G mtCric .,.,. II AaI 
., ,...., .... limiL 

For IUppoll8 that p, fEB are both limita of the eequence. For any 
e > 0 there are positive inteprl N, N' auch that d(p, Pa) < • if n > N 
and d(" Pa) < e if n > N'. If we chooee an integer n > max IN, N'l we 
mUlt bave d(p, p.) < .. d(f, p.) < e, 10 that 

d(p, f) S d(p, p.) + d(p., ,) < e + • - 2 .. 

If tl(p, f) ,. 0 we _ & contradiction by chooeing • S d(p, ,)/2. Therefore 
we mUlt have tl(p, f) - 0, 10 tbat p - f. 

Tbua & converpnt lequeDOfl hu & unique limit, and it makelMD18 to 
Ipeak of 1M limit of & converpnt lequence. A lequeBCe which ie not con­
v.pot of COWIe hu no limit. 

'l1le ltatement tbat the IeqUeIlC8 of pointa Pat "., PI, .•• (in & metric 
Ipue B) converpa to the point p (&110 in B) II written concilely .. 

lim". - p. -For & ftODCOnverpnt IIqUeDOe Pa, PI, PI, . •• of point. in & metric 
IpMe B the exp...wn 11m p. .. meaninl1-. In this cue we &110 .,. that -lim p. "do. not exiIt". - If Ga, a., CII, ••• ie & lequeDOe (01 any kind of object8) and if na. tit, 
lie, ••• it & atrictly increuina lequence of poIitive intege ... (that ie, 
"" "" na, .•. are positive inteprl and na < na < lit < ... ) &hen the 
IeClU8llC8 "-t, ..... a"., ••• ie called & ~ of the leClueDCe Ga,", ....... 
.......... elon. An, ~ oJ G co,.".,.,.,., aequence oJ poiftII in G 

tnIfric IJNIC4I c:tmM'fa 10 1M .... limit. 

For let lim p. - p and let na. tit, na, . .. be & strictly increuinl .-
IeClU8llC8 of positive inteprl. Given any e > 0 there is a positive intepr N 
lUCIa that c1(p,,,.) < e whenever n > N. Since "- t! m for all positive 
In ..... WI, we have c1(p, p..) < • whenever m > N. TbII meana -*,t. 
lim ,.. - p, wblob II wbat we wanted to sbow. [Note that m in the 1Ut -fGImuIa • Juat & "dWD1D7 variable", .. wu n in the expNMion lim p..] -
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The PrecediDl reault pnerali .. the fact that if a finite number of 
tenns are lopped off the beginning of a COIlv8l'lent eequence, the ..... ting 
sequence conv8l'les to the aame limit. 

Call a eequence of pointe PI, PI, PIt • •• in a metric apace botmdefl if 
the set of pointe (PI, PI, PI, ... J Ie bounded. It it euy to ahow that any 
convel'l811t 88qU8llCe of pointe in a metric apace Ie bounded: If the lIq\lellce 
PI, PI, PI, .•• converpl to the point P, plok any • > 0 and then find a 
poeitive integer N luch that tl(p, p.) <. whenever ,,> N. Then 
(PI, Pt, PI, ... , ie contained in the closed ball of center P and radiue 

max (I, tl(p, P.)', tl(P, PI>, ... , tl(P, PH)J. 

We recall that a closed lubset of a metric space was defined as the 
complement of an open lubset. Thue the knowledge of all the closed subaete 
of a metric space Ie equiValent to the knowledge of aU the open subsets. It 
ie also true that the knowledge of aU the open subsets of a metric space 
determines which eeqU811Cell of pointe are converg811t, and to which limits. 
For it ie immediate from the definitions that the sequence PI, PI, PI, ... 
conveJ'1e8 to the limit' P if and only if, for any open set U that contains the 
point p, there exiata a positive integer N such that for any integer" > N 
we have p. E U. The next result will tell ue that knowledge of all the con­
vel'lent sequencea of points in the metric space, together with their limits, 
determines the closed subaeta of the metric lpace. Thue any ltatement 
concerning the open IUbeets of a metric apace can be tranel&ted into a ltate­
ment concerniDl the cloeed subeeta, which itaelf can be tr&nsl&ted into 
another ltatement concernin& converpnt eeqU8llCeII of pointe and their 
limite. Thua there are three languages capable of making eIII8lltially the 
eame ltatemente: the languap of open sets, that of closed sets, and that of 
convergent sequencea. AJJ one would expect, however, limple statemente 
in one language may translate into complicated statemente in another. We 
eha11 therefore UI8 all three languages elmultaneouely, or rather a common 
language including all three, always striving for simplicity (as opposed 
to purity I) of expreaaion. 

Theorem. La 8 be a ""'Nt oJ 1M metric IpGCe E. T"'" 8 if cloNtl if aM 
only i/, ~ PI, Pt, PI, ... if a uquenee 01 poi"" oj 8 t4at if COfWergen.t 
mE, tIHJ 1uwe 

lim p.E8. -
There are two parts to the proof. First suppose that 8 is closed and 

that Plo Pt, PI, . •• ie a sequence of points of 8 that convel'lee to a point p 
of E. We muat show that P E 8. If thie is not 10, we have p E e8. Since 
e8 Ie OP811, there Ie lOme I > 0 such that e8 contains the entire open ball 
of center p and radiua I. Thua if N ie & poeitive integer such that 
tl(p, p.) < e whenever" > N, we have p. E e8 whenever" > N, & contra­
diction. Thie aWl that p E 8 and provea the "only if" part of the theorem. 
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To prove the "if" part, suppose 8 C E is not closed. Then e8 is not 
open, and there exists a point 'P E e8 such that any open ball of center 'P 
contains points of 8. Hence for each positive integer n we ean choose 'P .. E 8 
such that d(p, 'P .. ) < l/n. Then lim 'P .. .. 'P, with each p. E 8 and 'P C! 8. -This shoWl that if the hypothesis on convergent sequences holds, then 8 
must be closed, completing the proof of the "if" part, and hence of the 
whole theorem. 

The metric space R has special properties that are not shared by all 
metric spaces: its elements can be added and multiplied, and they are 
ordered. For want of a better place, we insert here the relevant properties 
of sequences of real numbers. 

PropotJidon. 1/ aI, CIt, /Ja, • •• and bl, ba, ba, ••• o.re convergent aequence. 
0/ rBCJlnumber8, tlJ'WI. limits a tmd b respectively, Uatm 

lim (a" + b,,) .... a + b -lim (a" - b .. ) = a - b -lim a"b,. .... lib -
., in CfJ86 b tmd eoc1a b.. are 1'IOI'IIe1'0, 

lim a" 0 
..-b,;'"- l)' 

We prove each part separately. Recall that for z, '1/ E ft, d(z,7I) -
Iz - 711. For the first part, given I> 0 we al80 have 1/2> 0,80 that we 
ean find a positive integer N I such that I a - a" I < ./2 whenever n > N 1 

and we can also find a positive integer N, such that Ib - b .. 1 < 1/2 when­
ever n > N I • If we set N = max (NI' N.}, then whenever n > N we have 

I (a + b) - (a" + b,,) 1 ... 1 (0 - a,,) + (b - b,,) I 
I! 1 

~ la - a,,1+lb - b,.1 <'2+'2 - f. 

This proves the tint part. 
The second part, about subtraction, can be proved in a similar manner. 

M a matter of fact, a few changes of sign in the above proof win prove the 
result lor subtraction. Here i. an alternate proof: By the third part (which 
is proved in the next parapaph), obeemnl that the sequence -I, -1, 
. -1, ... convergee to -1, we have lim (-b,,) - -b, 10 by the fil'lt part -

lim (0,. - b .. ) = lim (0,. + (-b,.» -lim 0,. + lim (-b .. ) 
....... ...-.co ..... ... 
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To prove the third paR we Itart with the fact that converpDtlM!Cl'llDeel 
are bound8!i to 1ft a number AI E R lOCh that 1 .. 1 < AI and I'" < AI 
for all poeitive inteprl n. Clearly M > O. Since a clOl8d baU it a clOled lit, 
the pncediDi theorem impli. 101, 161 S M. Given aD7 • > 0 we ... 
have ./2M > 0, 10 there exietI a poeitive intepl' N such that 10 - .. I < 
./2M and 16 - 6.1 <.I2M whenever ft > N. Hence for aDY intepr 
ft >Nwehave 

lab - ,.. ... I-IGb - cab. + cab. - ,..6.I-lo(b - b.) + 6.(0 - ,..), 
Slol·lb-""+I"'I·lo- .. I<AI'~ +AI·W-" 

This provel the third part. 
To prove the laat paR, about division, &rat coDlider the apeoial .. 

where .. - 1 for all ft. We want to show that 1/'" converpa to l/b, that is 
tbat 

11 1 I '~I~I T--;;;;-- b· 

is tunall if n is larp. The numerator is clear1ylllll8ll if ft is larp, but we allO 
need to bave the 1"'1 in the denominator bounded away from aero, or the 
total fraction may not be amaIl. The latter objective is euily accompliIhed 
by taking n 10 large that 16 - 6.1 < ''''/2. The formal detaila of the proof 
that lim 1/'" - lib we give .. folio ... : -Given. > 0, chooee a positive intepl' N lOch that if ft > N then 

Ib- ... ,<min{¥, Ib! .. }. 

Then if ft > N we have 

1"'1-1" - (b -"')1 ~ Ibl-'" -"I >Ibl-l&l-l&l. 
10 that 

lilt II?II.~ If'llt 
T --;;;;- - · .. < ,.,. (111) - .. 

ThtI prov. that lim 1/'" - l/b; To com.,.. the proof of the ... part 
. -

01 the propoeition we UI8 the third pan topther with this Jut .-It • 
fol1owa: 
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Note the apecial CMeI of the lut propoeition when one or the other 
of the Bequencee 01, CIt, CIt, ••• or bl , bt, bt, . .. is constant: 

lim (a. + b) - lim a. + b, lim ab. ... a lim b .. , etc . .. - - .. -
The next very eMf...wt exp ..... the compatibility of converpnce 

of MqUeDCeI of real numben with order. 

Propoaldoft, 1/ ai, CIt, CIa, ••• c&nd ha, bt, ha, ••• are converpn' ~ 
0/ real number., vitA _ii, fI c&nd b ,..".aiNly, ond if a. ~ b., /01' aU n. U&eR 
fI S b. 

For b - a - lim b,. - lim a. - lim (b,. - a.). and since each b .. - a. .. - .. - .. -
ia nonneptive the theorem implies that the limit also is nonneptive. the 
let (z E B : z ~ 0) heiDi clo.ed. 

DttfbUtloft, A MqueDOe of reU numbenl ai, CIt. CIa. ••• is ifu:r...m, if 
.. S CIt ~ CIa S ...• ~ if CIt ~ CIt ~ CIa ~ ••• , and monoConic if it. is 
aU. inCl'8Uiq or decreuiq. 

Suppoee flrat that fll, 0.. CIa. ••• ia • bounded increaeiDg Mquence of 
reU numben. We IhaIl prove that the sequence converges to the limit 
fI - l.u.b. loa, fIt, ...... ). We have fI ~ a. for all n. by the definition of 
upper bound. For any e > 0 we have fI - e < 0, 80 by the definition of 
leut upper bound then ia • poeitive intepr N lOch t.hat ON > 0 - .. Since 
the Mquence ia increuin&, it. foUowa that. if n > N then a. > fI - e, 80 t.hat. 

fI-e<o.SfI<fI+e, or 10-0.1< •. 
Thua the eequence converps to fJ. F.entially the 8Iol1le proof abowa that 
a bounded decreuiDi sequence of real numbers converges; we have only 
to replace I.u.b. by ,.I.b. and change the sense of lOme of the inequalities. 
Or we can apply the part already proved to let the convergence of the 
increuinl sequence -01. -CIt, -CIa •••• , which implies the convergence of ............. 

ExAM.".. The lut reaul$ Ilv. an easy proof that if 0 E B.lol < 1. 
then 

lim fI" - O. -
Pint note that 1"1-1 fI I". 80 that we may BUppoee that a ~ O. Then 

tile IeqU8DCe fl ...... ,... • •• ia decreuiDi. since a" - 0,,+1 - a"(l - a) ~ O. 
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The terms of the lequence are all nollll8Ptive, 10 the aequence is bounded, 
hence converpnt. Let lim a" ... :1:. Then -

a:J: = a lim art == lim (a • art) - lim a,,+l - lim a" .... :1:. ........ ..... .... 
Since a:J: - ., we have (a - l)z - 0, 10 • -. O. 

AJj a CODlequence of what we have Juat shown, if G E a,lGI > 1, then 
the sequence G, GI, ai, at, ... is unbounded. (Another proof of thia fact 
is indicated in Problem 11, Chapter II.) 

I'. COMPLETENESS. 

The definition of convergence of a sequence of pointe in a metric apace 
enables ua to verify the convergence of a liven sequence only if the limit is 
known. It is desirable to be able to state that a liven sequence is convergent 
without actually having to find the limit. We can already do this in certain 
eaaeB, for the last proposition of the previous section state. bt a bounded 
monotonic sequence of real numbers is alwayB converpnt. However we 
need a more pneral "inner" criterion for the convergence of a sequence of 
pointe in a metric apace. For this reason we introduce below the concept of 
"Cauohy sequence", a sequence of pointe in a metrio apace that .tiBies 
a certain property depending only on the terms of the sequence. It will tum 
out that all convergent sequenoea are Cauchy aequenoea and that, at least 
for certain important metric spaces, any Cauchy sequence is convergent. 
Thus we ahall often be able to state that a sequence is convergent without 
having to determine the limit. We very often are not at all interested in 
computing the limit of a sequence but rather in verifying that the limit 
po88l!11es certain properties, and once it is known that the limit existe auch 
properties can often be inferred directly from the sequence. 

D~,,'dcm. A Hquence of pointe PI, Pt, Pa, ... in a metrio apace is a 
Ca.y aequerw if, liven any real number. > 0, there is a positive integer 
N such that d(p,., p..) < • whenever n, tn > N. 

The number N in the definition above of course depends on •. The 
important point is that liven CJRy t > 0 there exiBte aotM N with the 
desired property. 

Pro""..don. A ~ ~ oJ poi"" in G metric apcace ia G CcaucI&1I 
aequerw. 

For if PI, Pt,,., ... conv_ to P then for any • > 0 th.-e II an 
integer N such that d(p, p,,) < ./2 whenever R > N. Hence if R, tn > N 
we have 

d(p,., p.) S d(p", p) + d(p, Pa) < i + i == e. 
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However, not every Cauchy sequence is convergent. For example the 
sequence 1,~,~, U, U, ... is a Cauchy sequence in the metric 
apace E = R - (01 (the complement of (01 in R), but it is not convergent 
in B. More generally, if we take .ny sequence of points in • metric apace 
which converges to a limit which is.not one of the terms of the sequence 
and tben delete the limit from the metric apace, we get a Cauchy sequence 
which is not convergent. 

The following two easy propositions give known properties of con­
vergent sequences that generalise to Cauchy sequences. The tint proposi­
tion is trivial 80 the proof is omitted. 

For if the sequence Ie Pl, PI, PI, ••• and I i. any positive number and 
N an intepr IUOh that tI(p., P.) < I if fa, '" > N. theD for any fixed '" > N 
the entire seqUeDce Ie contained in the closed ball of center p. and radius 

max (tI(p.. N. tI(p.. pi) ••••• tI(p.. pII), .1. 

Pro".,..tlon. A Cauchyaequmce Uaat Jug CI ~, ~ if itnlf 
~. 

Let Pl, PI, PI, ••• be the Cauchy sequence, p the limit of a convergent 
aubaequence. For • > 0, let N be nch that tI(p., p.) < ./2 if ft, '" > N. 
Fix an integer m > N 80 that p. is in the convergent nbaequence and 80 

far out that tI(P, p.) < ./2. Then for" > N we have 

• • tI(P, p.) S tI(P. P.) + tI(p., p.) < 2' + 2' - .. 

D.n'tlon. A metric apace E is comp" if every Cauchy sequence of 
points of B converges to a point of B. 

It will be proved.hortly that B- Ie complete. Other usefulexampl. of 
complete metric apaceII will appear later. The lollowina propolition gives 
us infinitely more examples. 

P.."".ttlon. A cloaetIlUbteC 01 CI complete metric .. if II COMplete meCrie 
8pGCe. 

The nbeet is of COWBe considered to be a nbapace, 80 that a Cauchy 
sequence in the nbeet is a fortiori one in the ori&inal metrie apace. The 
result is an immediate consequence of the theorem of the Jut aection. 
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Let a" fII, .... .... be a Cauchy eequence of ... Dum"'. W. __ 

thow that ~ leqUence con'N'PI to a ... Dumber. CoaIld. the.-

8 - Is E R : :r: ~ a. for an iDfinite Dumber of poIitive in ...... J. 
Since the Cauchy eequence is bounded, 8 it nonempty and bounded fIOIIl 
above. Therefore a - 1.u.b. 8 exists. We proceed to prove that ........... . 
converpe to a. Given any • > 0 choose a poIitive in .... N such ~ 
Ia. - ... 1 < ./2 if ", m > N. Since a -I.u.b. 8 we have _ +./2 E 8, but 
a - ./2 E 8. ThiB means that for only a finite Dumber of poIitive in ..... 
• is it true that a + ./2 ~ a.., but we have a - ./2 ~ .. for an inllnite 
number of •• Hence we can find a apecifio intepr ttl > N IUoh th&t 
a + ./2 > ... and a - ./2 ~ ... , so that I_ - ... 1 ~ 1/2. Thftore if 
,,> N we have 

I- - .. 1-1 (a - a..) + ( .. - 0.)1 
• • ~I- - ... 1+1 ... -a.1<2+2-" 

This provea that ai, CIt, ....... conv_ to Go 

For simplicity of notation let " - 3 j the proof for any • will be _­
tially the ame. We have to show that a Cauchy MqUfll108 PI,'" Pat ••• 
of pointa of Ii- has a limit. Let PI - (SI, WI, IJ), PI - <-.,., -.), ,,­
(:r:a, Ya, .. ), etc. Given • > 0 there exiata a poeitive in .... N lUCIa that 
d(p., p.) < • if., '" > N. Since 

d(,., Pa) - V (s. - :r:.)' + (r. - ,..). + ( .. - ...,. 
~ Is. - :r:.1, I,. - .. I, I~ - .. , 

we have 1s.-:r:..I, 1,.-,.1,1 .. - .. 1<' whenever .,.>N. ThiI 
meaaw that each of the sequence. Sa, -. -. ••• , 'It fI, fa. ••• , .......... 
.. , • .. it a Cauchy IIqU8IlC8 in R. B7 the theoNIn .... I8qUtIIOII Ale 
converpnt, and we ,a.ote their Umita hT s, ,,' NlJ*livel7. We ... 
pIOYe lIIat PI, ,.,,., • •• convera- to the poiDt , - (s, " .). Te cia ..., 
pven • > Q choose N auch that for any intcw .. > N we haft Is - Sel, 
I. - ,.1, I. - .. I < ./'\IT. Then for .. > N we bave 

d(p, ,.) - v'(s - .. 51 + (J - ,.5' + (. - .,. -,.. ~ ~ 
<-VT+T+T-" 

'11lia proves that lim ,. - p. -
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,5. COMPACTNESS. 

Definition. A subset 8 of a metric space E is compact if, whenever 8 is 
contained in the union of a collection of open subsets of E, then 8 is con­
tained in the union of a finite number of these open subsets. 

. Clearly any finite IUb8et of a metric apace is compact. Unfortunately 
we have to wait before we can give a I .. trivial example of a compact 
IUbaet of a metric space. An example of a noncompact subset of a metric 
lpace ii, however, easy to give: the open interval (0,1) is not a compact 
IUbeet of the metric space R, lince (0, 1) iI contained in the union of all 
open lubsete of R of the form (1/", I), where" is a positive integer, but iI 
not contained in the union of any finite number of these open IUbeete. It 
will be seen 88 we go along that compactn .. is a property related to com­
pleten .. , but much stronger. 

The definition just given of a compact subset of a metric space can be 
applied to E itself: the metric apace E is called compact if it is a compact 
lubeet of itself. This means that whenever E is the union of a collection of 
open subsets, it is the union of lOme finite subcollection of these open 
subeete. 

Let 8 be an arbitrary subset of a metric space E. When we consider 8 
88 a IUbspace of E, an open ball in 8 is simply the set of pointe in 8 of an 
open ball in E whose center is in S, that is the intersection with S of an 
open ball in E whose center is in S. Thus the open subsets of the metric 
space S are preciaely the intersections with 8 of the open subseta of E. 
Hence S iI a compact subset of E if and only if the metric space 8 is com­
pact. 

One example of a compact metric space will give us many more, by 
me&nl of the following reault. 

ProJHMition. A"y cloted ..w.t 0/ CI compact metric .pace it compact. 

For let the closed lubset S of the compact metric space E be contained 
in the union of a collection of open lubseta of E, say 8 C U U" where 

iEI 
each U, is an open subaet of E, ,ranging over an indexing family 1. Then 
E C (U U,) U e8. Since S is closed, e8 is open, 80 by the compactn .. . , 
of E we can find a finite subset J C 1 luch that E C (U U,) U e8. Hence 

lEI 

8 C U U,. This Ihowa that 8 is compact . 
• 1 

Here an lOme of the hulc properti_ of compact seta. 

~. A compact ..w.t 0/ CI metric .,ace it bounded. In particular, 
• ..,_ NCrio ".. it bounded. 



For any metric tpaCe is the union of ita open balla, and the union of 
any finite number of balls is a bounded set. 

Propoa'tfo" (N .. ,., •• t property). 1M 81, 8., 8., . •. be CI aequenu oj 
ftOMmptr cloIetI aubaett oj G compact meCric 'lPG", tIIitA 1M proptJrly that 
81 :::> 8. :::> 8.:;) ..•• TAfn tAm ia at ,." OM point that fIeltmtI. to eGOI& 0/ 

1M .". 8" Sa, Sa, •••• 

If not, we mUlt hAve f"\ 8 .... {lJ, implying thAt V es. is 
.-1,1,1.... ...,1 ...... 

the entire metric apace B. Since B is compact it is the union of a finite 
number of the open aubeetl e81, es., e8., ••.. Bince e81 C es. C es. C 
..• , we mUlt hAve B - e8. for lOme n, whioh produo. the contradiotion 
S. - {lJ. 

The above propotition doeI not hold if the word "compact" ia replaced 
by "complete": for example let B - R, takilll S. - 1* E R : * ~ n I, 
n -1,2,3, .... 

~ '--

FJQVJUI 1" N.ted .. propeR1. TheN II a point 00IIIID0Il W all the aquaree, each 01 
wbieb)au ball ,the dJIDIDIIoM 01 itAI pndeoeMor. (A oIOIId Iquare" c0m­

pact, b7 • t.beonm w be proved Ihortly.) 

For & better inaipt into the meanina of compactnelll, we introduce 
another definition. 

~"'do". If E is a metric space, 8 a subset of E, and p a point of E, 
then p is a cl,..,. point 0/8 if any open ball with center p contains an.infinite 
number of points of 8. 
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Theorem. An infinm tub,et oj II compllC' metric epGU 1Iaa lit klllt one 
clu,ter point. 

If this were false, then for any given point of a certain compact metric 
space E we could find an open ball having the given point as center and 
containing only a finite number of points of the infinite subset S of E. E is 
the union of all such open balls. Since E is compact, it is the union of a 
finite number of such open balls. This implies that S is finite, a contra­
diction. 

Corollary 1. Any ,equence oj points in a compact metric apace hili II c0n­

vergent aub,equence. 

Let PI, Pt, 1'" ••• be the sequence, E the metric space. We must 
separate cases, according as the set 11'1, Pt, pa, .•• \ is infinite or not. 

CII8e 1. The set 1 PI, Pt, pa, .•• \ is infinite. In this case the set 
8 - 1 PI, Pt, pa, •.• } bas at least one cluster point, say l' E E. Pick a posi­
tive integer nl such that 1'", is in the open ball of center l' and radius 1, 
then pick an integer tit > nl such that 1' .. is in the open ball of center l' and 
radius 1/2, then pick an integer tit > tit euah that 1' .. is in the open ball of 
center l' and radius 1/3, etc. j this process can be cOntinued indefinitely 
since each open ball of center l' contains an infinite number of points of 8. 
We end up with a subsequence of Pt, Pt, pa, ... whose n'" term has dis­
tance less than l/n from 1', for all n - 1,2,3, .... This subsequence 
converges to p. 

Cllle I. The set 1 Pt, Pt, Pa, .•. , is finite. In this case at least one 
point l' E 1 pa, Pt, pa, ••. \ occurs an infinite number of times in the sequence 
PI, Pt, pa, •••• Thus the convergent sequence 1', 1', 1', ••• is a subsequence 
o( the given sequence. 

Corollary J. A compllC' metric 8fXJC6 ia complete. 

For any Cauchy sequence has a convergent subsequence and therefore 
is itself convergent. 

Corollary!. A compad tubeet oj II metric epGU ia cloHd. 

For any convergent sequenae of points in the compact eubset must 
have its limit in the compact subset, by Corollary 2. Thus the theorem of 
§3 impliEll that the subset is clOl8d. 

We now know that any compact subset of a metrio space is both closed 
and bounded. We proceed to prove the fundamental (act that any closed 
bounded subset of 1P is compact. 



Lemma. Ld S k 0 bounded aubM 0/ B-. TAM/or .. f > 0, 8 " ..... 
lea .. ia CAe ""iota 0/0 ftail,e aUMbtr 0/ eIoNtl NUt 0/ ...... 

We belin the proof by shoWinl that B- itaell it the union 01 a '" of 
evenly spaced c10aed balla of radius I, .. illustrated in Fipn 15 . 

V I?"'.. ....... 

/ / [\ r\ 
I........, .7"""'.. r--.... 

k ~ A "-...... ~ ~ 
K 

....... ~ '\.1/ 
1: ~ [I [) 1/' ......... 

K r-.... ~ ~I....o' 

II 
~ ~ 

\ , j , 
~ 1-......... 

To be concrete, coDllider the pointe in E" of the form (0./"', Gt/., . ~ ., 
a./"')' where Oa, lit, ••• , a.. are integen and '" is a fixed poeitive in .... , 
to be determined Ihortly. For any (Za, St, •.• , s.) E E" there are in .... 
CIt, fit, ••• , a.. luch that 

01 01+1. - S ~ < -, 1- 1, J, ••• , a 
'" '" 

(by LUB. of Chapter In and we theIl baft 

---------------------a(SI' ... , s.),(::, ... , :: )) - ~(Sl-';-)' + ... +(s. - :Y 
< _I..!.. + ... +..!.. _ "'" . 

'I",. m' '" 
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Now IUppoee that the fixed intepr '" bad been choeen greater than Vfi I t, 
10 that Vfi I"" < t. Then (Zl, • 0 " Zoo) iI contained in the cloeed ball of 
ndiua t and center (a,J"'" 0 0 ., a./",,). In particular g. iI the union of .u 
theM balla, for varyiDl intepoal -it CIt, o. 0, ca.. It remaina to ahow that if 
8 C B" ia bounded then a &nite number of valu. of Gl, CIt, •• " ca. IUfBoe 
to pve ua balla of ndiua t w'" union oontaina 8. To do thia note that 
Iince 8 ia bounded it II contained in lOme ball with center at the oriJin. 
If thiI ball baa ndiua JI, then for each point (Zl, *S, •• 0, z.) E 8 we have 
v' Z11 +., + ... + Zool S JI. Since ,S., S v'ZiI + z.I + ... + z.1 for 
i-l,2, .. 0, n, we have 1z,1 S JI whenever (Zl, *s, 00', Zoo) E 8. If, .. 
above, Gl, CIt, o •• , ca. are intepn IUCb that oJ"" S Z, < ('" + 1)/"", we 
have 

I: I-Iz,+(: -z,)ISIz,I+I: -z,ISM+!. 
Hence whenever (Zl, *t, ... , z.) E 8 we have 1 ",I S mAl + 1, awiDl 
that there will be only a &nite number of poIIibilitiee for the intepn -it'" .. 0, ca.. Thua 8 ia completely covered by a &nite number of our clOled 
.... ofndiua .. 

na.or.m. An, clotetI bouftcIetI aubM 01 g. if compact 

8uppoee the ~rem ,aile and that we have a clOled bounded IUbeet 
8 of II- that ia not. COIDput.. TbeD t.bere ia a collection of open IUbeete 
lUI - I U,J., of II- w'" union oonWM 8, but IUch that the union of 
no &nite IUbcoUection of lUI oonWM 8. Since 8 ia bounded, the lemma 
..... ua that. 8 ia contained in the union of a &nite number of cloeed bal .. 
of ndiua 1/2, say Bit B., ••• , &. Thua , 

8 - (8(,,\B~V(8(,,\BIJV .. · V (8("\ Br). 

At leut one of the I8tI 8 ("\ Bit 8 ("\ B., • 0 0, 8 ("\ Br, .Y 8 ("\ BI, is not. 
contained in the union of any &nite IUbcoUection of lUI. 8 ("\ BI iI clOled 
(heiDI t.he intellection of clOIed leta) and if 71, , E 8 ("\ BI then d(p. ,) S 1 
(linea each of the pointe 71, , baa diatance at moet 1/2 from the center of 
t.he ball B/). Set 81 - 8 ("\ B,. Then 81 ia clOled and bounded, not. contained 
in the union of any 8nite lUboolIection of t U I, and if 71,' E 81 then 
d(p, ,) S 1. Now apply the1emma to 8 1 and t - 1/4 to pt 8 1 contained 
in the union of a &nite number of clOIed balls of ndiua 1/4 and repeat the 
above aJ'IUDl8I1t to pt a cloeed IUbeet 8i of 81, not contained in the union 
of any &nite IUbcoUection of I U J , lOch that if 71, , E 8 1 then d(p, ,) S 1/2. 
RepeatiDl the arpment with II - 1/6, 1/8, 1/10, 0 0 • we obtain a aequeoce 
of clOlled eetI 8 :::> 81 :::> 8. :::> 8.:::> • 0 0, none of which is contained in the 
union of any &nite IUboollection of lUI, and .uch that if 71, , E 8" then 
d(p, ,) S lIN, for each N - 1,2,3, .... No 8" ia empty, 10 let 71" E 8", 



N - 1,2, a, .... The eequence ".,,.,,., ••• ia. CauchJ 1IqUIDCe, IiDce 
if a, fJ. N are PQIIitive intepra aad ., fJ > N the ,., ~ E BII, 10 that 
"(P., piJ ~ lIN. 8io.ce B" ia oomplete, the IIqUIIIOe "., PI. Pa, ••• eo. 
YeI'I- to • point PI of B". Since each polnt "., PIt ", ••• ia in the cloIecl 
.. 8, we have aIIo PI E 8. Bence PI II in ODe of the ... of the ooUection 
( UI, lAY "E u. E (U). Since U. ia open there Ie aD open ball of eenter PI 
and lOme radlua • > 0 that ia entirely contained in U .. PioklOme N 80 

larp that lIN < ./2 and tI(po, PH) < ./2. Then for aDy point I' E 811 we 
have 

• 1 • • 
tI(po, 1') ~ tI(pa, PH) + d(PH, 1') < "2 + N < "2 +"2 - .. 

Thua BII ia eontained in the open ball of center PI and ndiua I, living 
BH C U .. Tbia contradicts the statement that BH ia DOt. contained in the 
union of any &nita aubcollection of {UI, oompletilll the proof. 

16. CONNECnDNESS. 

The intuitive idea of oonneotecme. ia Iimple 1IIOuP. It ia W'fIt.n.ted 
in Fiaure 16. But of coune we need • precise definition. 

Flau .. 11. A, B, C, A V C, B V C, A V B V C are eoDIIeOtAld. 
AVBiaDOt. 

~don. A metric apace B ia ~ if the onlysubeeta of B which 
are both open and clOlled are B and fd. A subset B of a metric apace is • 
conMClMl aubaet if the subspace B is connected. 
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ThUll a metric apace E that is not connected hal a aubeet A,. S, IlJ 
that is both open and c1oeed. Then aIIO SA ,. S, IlJ is both open and clo.ed. 
Setting B - eA, we have E -.A U B, where A and B are disjoint nonempiy 
open aubaete of E. Conversely if a metric spaceE can be written E - AU B, 
where A and B are disjoint nonempty open aubaete of E, then E is not con­
nected: for A ,. IlJ (given), A ,. E (ain!ltl A and B are disjoint and B ,. 1lJ) 
and A is both open (given) and c10eed (aince ite complement B is open). 

If a,",eER, we.y that e ia ....... a GrId" if either a < c <" or 
6<e< .. 

Propoftdon. Any """" 0/ R tllAic1& conlainl two ditUrtd pointe a GrId 6 
,.." «loa flOC eonIain all pointe between a GrId II ia flOC connecIed. 

For auppoee that a < c < 6 and that 8 is a aubeet of R with a, 6 E 8, 
cE8. Then 

8 - (8r'! (s E R: s < cJ) U (8r'! (s E R : s > cJ) 

expl'ell88ll 8 88 the union of two disjoint DOnempty open aubaete. 

It wi1I be .hown .hortly tbat any c10eed interval in R i. connected. In 
the next chapter it wiU be aeen how to deduce from this fact that certain 
other metric sp&ceI, for example balla in ga, or the aubaete A, B, C of Figure 
16, are connected. The followinl is one of the principalal'lUmente one UII8I 

to prove theBe and other connectedn_ reaulte for aubaete of ga. 

Pro,...dora. Lt1C (8.1., ". a collet:Iion 0/ conneIlCetI ,.",.,. 0/ a tneCric 
.,.. B. ~ lAIN .." it E 1 .- IIuJt fur eaeA i E 1 "., .", 8. GrId 
&, late a nonempe,..,.,--. TAM V 8. ia ~ ., 

Suppoee that 8 - U 8. is the union of two disjoint open aubeetl A ., . 

and B. We mUllt .how that either A or B is empty. For any i E 1, 
B. - (A r'! 8,) U (B r'! B.) exp .... the connected I8t B. 88 the union of 
two disjoint open aubHte, 10 that A r'! 8. and B r'! 8, are jUllt the IIetI 
8., IlJ in lOme order. Without Ie. of pnerality we may 88Iume tbat 
A r'! B .. - B ... Then A :> 8 .. , 10 that for each i E 1 we have A r'! 8. ,. 1lJ. 
ThUll A r'! 8, - 8. and B r'!8. - SlJ. Since B r'! 8, - SlJ for all i E 1 we 
have B .. SlJ, proving the proposition. 

Theorem. R, or tiny open or cloHd interval in R, ia etmnet:Ced. 

A IOmewhat more leneralltatament is just 88 easy to prove, namely 
that any aublet 8 of R which contains aU pointe between any two of ita 
points is connected. To prove this, auppoee that lOch alUblet B is om con-



nected, 10 that we may write 8 - A U B, when A .. B an cIIIJoIat __ 
empty opeillUbeeti 01 8. ChooM _ e A, be B aacl ......, - we 1Ila7. 
that _ < b. By ueumption (_, b) C 8. Set A& - A" (., b). B. - B" I., b). 
Then A., B. are disjoint open IUbeete of (_. bJ, _ EA ••• E Bit and (., .1 -
A. U B •. From theM facta we derive. contndiction, _1aUCnrI. 8IDee B. 
ia an open IUbeet of (_, b), ita complement A& iI ......... 01 (G. .1. 
hence • clOI8d aubeet 01 R. Since A& Ie aIIO """8"\P*)' ... bouacIed 110m 
above, the lut nault of 12 tella u. that theN .............. t cia A .. 
Since b E B. we must have c < b. But Iince A. Ie an .". 10" 01 (., .1 
it must contain the intenlection of [., b) with lOme OJMD ball in R 01 ... 
c. hence it mu.t contain point. peater than c. Tbilil • 00Idndictl0D., ... 
thie proves the theorem. 

PROBLEMS 

1. Verily that the.follcnriq .... metric epuII: 

(.) all II-tupl. 01 real Dum~ with 

II«ZI, .". z..}. (,s, "., rJ) - ~ Iz. -.,.1 

(b) aD bounded iDbite lIqUtIDOIIa - (Sa, ......... ) 01 ...... 01 a, db 
II(a,r) - I.u.b.' ISa - .. I.IZI- .. I,I .. - .. I, ... 1 

(e) (B. X Bs, 11). where (Bb cit), (Bs, cit) .... me&ric ..,..,. ... I II alWD bJ' 
II«Ift.~, (,s.r.» - max ,cIt(Ift,N,clhs.r.lJ. 

2. Show that (R X R. II) •• metric ..... when 

{ Irl + 1 .. 1 + la - rl 'ih'" r 
II«z. V), (z', r'» -

Iv-v'l Ha-r. 
IDUltrate by diapama in the plane If' what the opeD balII 01 tIdI ......... ..... 

3. What .... the open and cloIed baDa in the metric .... 01 ..... (t), t l? 
Show that two balJa 01 dilereat ceaWn aDd ndii may be ....... What ..... 
open leta in this metric apace? 

4. Show that the IIlba of If' PYfID by I (Sa. z.) e 81 : Sa > ZlJ II a,.. 
5. Prove that afty bounclecI opeD IIlben 01 • ill the UDioa 01 cIiriIaIat ......... 

vale. 

8. Show that the IIlbiet of If' PYfID by '(Sa, 1ft) e 81 : .... - 1, .. > 01 II ..... 
7. Give the details of the proof of the ... pnpoIltiaa 0111 ............. 

fl'Olll below. 
8. PIoYe that H the pointe 01. _ ............. 01 paildlia ........ 

.... reardend. tIIIn the ..., .... _ -ftIIIII tit .... _ .... 
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9. Prove that lim,. -, in a given metric apace if and only if the aequeac:e -
Pt, " PI, " PI,', •.. is convergent. 

10. Prove that if lim,. -, in a given metric space then the Bet of pointe -I", "., PI, PI, ••• I is c1oeed. 

11. Bhow that if ., ., Ge, ••• is a aequence of real numbers that converges to ., 
thea 

12. Prove that the aequence Z., z.. Zt, • •• of real numbers given by z ... 1 and 

Zo.+. - z. + ~ for each" - 1,2,3, ... is unbounded. z. 

18. CoDIider the aequence of real numbers 

1 1 1 
j' --I' 1 , .... 

2+- 2+­
:I 2+! 

2 

Show tII&t this lICpIeDce is converpDt and find ite limit by fint IIhowiq that 
the two lIqueoeea at alterDate terma are monotonic and findinc their limite. 

1'- Prove tUt &D7 IIqUeDCI8 in R baa a monotoDic IUbeequence. (Hine: Tbia is 
.., if there elIiIta a 1Ut.equence with no least term, hence we may BUppoee 
&11M eICb IIlbeequeDce has a leut term.) (Note that this result and the theo­
laD OD the converpDC8 of boUDded monOtOnic leQuences gives another proof 
tII&t • II comp ...... ) 

11.1MB be a 1Ut.t of the metric Ip&Ce B. A point , E B is called an ir&lerior 
,... of B if there is an opeD baD in B of center , which is contained in B. 
Prove that the -' of interior pointe of 8 is an open BUbeet of B (called the 
iMriIr of 8) that contains all other open subeete of B that are contained in 8. 

18. Let 8 be a 1Ubeet. of the metric epaoe B. Define the cloauu of', denoted;9, to 
be the intenection of all ebed IUbeete of B that. contain ,. Show that 
(a) J::> 8, and 8 Ia ebed if and oaly if J - 8 
(b) J is the -' of all limit. of eequeoees of pointe of , that. converp in B 
(0) a point , E B is in J if and oraly if any ball in E of center , contains 

pointe of " which is true if and only if, ill not an interior point. of e8 
(ar. Prob. 11). 

17. 1M' be a BUbeet of the metric apace B. The bouradcarr of , is defined to be 
J "iI (of. Prob. 18). Show that 
(a) B II the disjoint union of the interior of " the interior of e8, and the 

bouDdary of , 
(b) B Ia c&o.cl if and only if , contains ita boundary 
(0) B is opeD if and only if , and its boundary are disjoint.. 



18. If G •• Ge.... ... ill a bouaded ........ 01 real DUIIlhIra, cIefiDe Iim .. P" ..-
(also denoted IIiii a.) to be --

l.u.b. (~ e • : .. > ~ for an iDfiDitAlllUlDber of intepn "I 
and defioe lim inf .. (also denoted Jim a.) fA) be - -g.l.b. I~ e. : .. <:r; for an infiDite DUmber 01 intepn "I. . 
Prove that lim inf .. S lim &Up ... with the equality holding if and ooIy if the - --aeqUeoC8 CODVerpa. 

19. Let AI. Ge.... . .. and 6. .... ba. ••• be bounded aequeocea of real numbers. 
Show that 

lim &Up ( .. + ba) S lim IUP" + lim IUp ba • . ~ ........ 
with the equality holding if one of the oricinal aeqU8DC88 CODVerae8 (el. Prob. 
18). 

10. The oompIu DQlDben C - • x. (el. Prob. 8, Chap. II) are the UIIIlerlyins 
.. 01 the metrio ....... The IIMItric in .. therefore makee C iteelf • 
metrie ..... If _ e c, the ",.,.." raI. 01 _, cIeaoted by I_I. is defined by 
1_1- d(_. 0). Show that 
(a) I~ + 'wi -~ if :r;, We. (and therefore I_I agrees with the pre­

vioully de6aed I_I if _ e .) 
(b) I" + .. 1 SI-.I+I .. I for all ", .. e C 
(c) IUtI- 1111' 1 .. 1 for all II ... e c. 

21. Show that the propoaition of pap 48 remains Vue if the word "real" is re­
placed by "complex" (of. Prob. 20). 

22. A ftCIrInICI ...... ."... is a veofA)r epaoe V over •• fA)pther with a real-valued 
function on V, called the IICIf'If& and indicated by A H. the value 01 • H u AllY 
element ~ e V beinc iDdicated 8:r;H. having the following propertiea: 

(i) HeA ~ 0 fCit all ~ e V 
('ai) n~D - 0 if and ooIy if ~ - 0 
(iii) Res. -lei' R~ for any e e V and AllY e e. 
(iiii) II~ + W. S lsi + nrll for any ~. W e V." 

Show that • DOl'IDed vecfA)r epaoe V beoomeII a metric apaoe if for AllY 
~. W e V we take d(~. W) - De - ,I. Beua1l that the Bet 01 all n-tuplea 01 real 
numbers is a vector apace .- over • if .ddition and acaIar multiplication are 
de6aed by 

(~., .... eJ + (r., .... N - (z. + WIt .... :r:. + rJ, 
e(~I •••. , ~ - (esl •••.• ~. 

Show that .- becomes • IlOrmed vecfA)r apace if II(~I ••.•• :r:.)U is taken fA) be 
v' ~.i + ... +:r:.' and that in this cue the reaultiog metric apace is jlllt 8-; 

ahow that if " - 2 and C is identified with .... in Prob. 20 then C becomes 
• normed 7ecfA)r apace with n,n -I_I. Show that .- becomes another DOrmed 
vector apace if H(e •••..• ~ n is defined to be I ~II + •.• + I :r:.I, and yet another 
Dormed vector apace if II (~ ••...• :r:.)11 is defined to be max II ~.I ..... 1:r:.11 . 
(Note: What we have for brevity called. DOrmed vector apace is more prop­
erly called • real ftCIrInICI NCIor apace; tben is also the notion of a complu 
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normetI tJeCfDr tpaa, got by altering the above definition by twice replacing 
the symbol R by C.) 

23. Prove that if V is a nonned vector space (el. Prob. 22) and 0., lit, CIt, • •• and 
la, bt, bt, .•• are convergent l8qUences of elements of V with limits 0 and " 
napective1y, then 

lim (Iloo + b.) - a + b and lim (a. - ".) - 0 - b, ..... ,,-. 
and if furt.hermore rio el, el, ••• is a I'ICquenee of real numbers convergiq to c, 
then 

lim c.a. - ro . . ~. 
24. Show that a complete subspace of a metric space is a closed subeet. 

25. Write down in all detail the proof that E· is complete. (H,"': A convenient 
notation is p. - (s,(·', ... , s.(·').} 

26. Find all cluster points of the subset of R given by 

{~ + ~ : "', m ... positive integers}-

?:T. Let 8 be a nonempty subset of R that is bounded from above but has no great­
est element. Prove that l.u.b. 8 is a cluster point of 8. 

28. Prove that a subeet of a metric space is closed if and only if it contalna all its 
cluster pointe. 

29. Let 8 be a subset of a metric space E and let" E E. Bhow that p is a cluster 
point of 8 if and only if p is the limit of a Cauchy sequence of points in 
8"elpl. 

30. Give an example of each of the following: 
(a> an infinite subeet of R with no cluster point 
(b) a complete metric space that is bounded but not compact 
(c) a metric space none of whose closed balls is complete. 

31. Let 0," E R, 0 < b. The following outlines a proof that (a, b) is compact. 
Rewrite thill proof, filling in all details: Let I U,I,el be a collection of open 
subl!ets of R whose union contains [a, b). Let S - 1% E (a, b) : s > 0 and 
[a, s) is contained in t·be u.nlon of a finite number of the sets I U,l,el I. Then 
l.u.b. S E U, for some i E 1. Since U, is open we must have l.u.b. 8 - b E 8. 

32. Show that the union of a finite number of compact subsets of a metric space 
is compact. 

33. Let E be a compact metric space, 1 U,I,el a collection of open subsets of E 
whose union is E. Show that there exists a real number f > 0 such that any 
closed ball in E of radius. is entirely contained in at least one set U,. (H,"': 
If not, take bad balls of radii I, 3-i, U, ... and a cluster point of their cen­
ters.) 

M. If (s., ... , z.) E E- and W" ••. , r.) E B-, then (S., •.• , s., '" ... , ,.) E 
E-..... Therefore if 8 and T are lllbaets of E- and E- respectively, we may 
identify 8 X T with a subset fi E-+-. Prove that if 8 and Tare nonempty, 
then 8 X T is bounded, or open, or closed, or compact, if and only if both 8 
and T are bounded, or open, or closed, or compact, reepective1y. 



35. Call. metric apace ......,.ei.", .,...,.. H ..,., ... _ ......... _ 
_ ......... Pro .. daM • metrio apace illICpItIdIaIlJ .............. . 
....,. bdbdt.e _baa ......... paint. 

38. Call. metrie apace ,.", ........ H, for ..,., • > 0, tbe ......... II .. 
uaioa of • _t.e number of ...... of ndiae .. Flowe ........ ..... 
.. t.otall7 bouDded Hand 0Dl7 H..,.,......,. .... 0aueItr .1."_, 

111. Pro .. that the followiq three oonditioae OD ........... (cf ..... II, 
.) .... equlvaleat: 

0) B is compact 
(ti) B is eequentially compact 

(Iii) B is totally bounded and complet.e 
(Hiwl: That (i) impliel (6) occun in tbe text. 'I'Mt (Ii) impIfII (II) II ..,. 
That (iii) impliee (i) foBo ... from tbe ........ of tile ... pIOCIf of 11.) 

38. Prove that an opeD (cIoeed) IUbaa of • metric ..... B II eoDII88tecl.ud 0Dl7 
if it ill not the diajoint wUoa of two DOII8IDpty opal (eIoIed) ...... of •• 



CHAPTER IV 

Continuous Functions 

Elementary analysis is largely concerned with real­
valued functions of a real variable. Moet fil'8t COUl'8es 
in calculus quote and use, but refrain from proving, 
such theorems about continuous real-valued functions 
on a closed interval in R as the attaining of a maximum 
and the intermediate value theorem. Among other 
things the present chapter proves a number of such 
fundamental facts on real-valued functions of a real 
variable. But it would not be reasonable to restrict our­
Belves to luch functions alone, for elementary calculus 
&leo involves real-valued functions of more than one 
real variable, that is real-valued functions on subsets of 
lOme Euclidean space, and it aleo involves finite sets of 
real-valued functions 01 one or several variables, as for 
example when a curve or surface in lOme Euclidean 
apace is given parametrically or when complex-valued 
functions are considered. Thus the natural claee of 
functions to consider would appear to be functions on 
one metric space with values in another metric space. 
It is for lIuch functions that we define the notion of 
continuity, deriving from this generality the usual 
advantages of clarity of concept and obligation to do a 
thing only once. Our basic theorems will be general 
results on continuous fUllctions from one metric space 
to another, from which the basic results needed for 
elementary calculus can be read otT by taking both 
metric spaces to be subsets of R. At the same time we 
go forward, developing a number of useful concepts 
that ueually do not appear in elementary COUl'8e8, such 
as uniform continuity. A final section on sequences of 
functioDi will ilIuatrate the previous concepta and will 
provide us with further examples of metric spaces, use­
ful in the sequel. This last section could more logically 
be placed at the beginning of Chapter VII than here, 
but ita flavor is more like that of the present chapter. 
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II. DEFINITION OF CONTINUITY. EXAMPLES. 

By a function on a metric apace B we of COUI'8e mean a function on the 
let of pointe of B, and by a function with values in a metric apace 1£' we 
mean & function with values in the set of pointe of 1£'. Thus if IiI a function 
from the metric lpace B into the metric apace 1£', written 

I: B-B', 

then to each point l' E B il 8IIOCiated a point 1(1') E1£'. The function 
I: B - 1£' will be called continuous at a point Po E E if, roughly speaking, 
pointe of B that are near Po are mapped by I into pointe of E' that are near 
1(".). Here il the precise definition: 

Dfdin.ition. Let E and B' be metric spaces, with distances denoted d and 
d' respectively, let I: B - 1£' be a function, and let Po E E. Then I is said 
to be contiftUOUB at ". if, given any real number I > 0, there exiIta & real 
number I > Osuch thatif1'E Band d(p, 'Po) < a, thend'(j(p},/CPo» < e. 

The number I of COUl'8e depends on I, 10 we could more accurately 
have written 1(.) instead of I. We Rick to the notation a rather than 1(.) 
for notational simplicity, always bearing in mind that each ( must have 
ite own I. 

The definition may be reformulated by saying tbat I is continuous at 
'Po if, given any open ball in E' of center 1(".), there exilte an open ball in E 
of center ". whose image under I is contained in the former ball. Another 
reformulation il that I is continuous at ". if, given any open subset of E' 
that contains/{fJe), there existe an open subset of B tbat contains 'Po whose 
image under I is contained in the former open subset. 

If Band 1£' are both subaete of R (80 that we have & real-valued func­
tion of a real variable) the original definition sa1l that I is continuous at 'Po 
if, given any I> 0, there existe a I > 0 such that 1/(1'} -/(",) I < • when­
ever l' E E and 11' - ".1 < I. This is illustrated in Figure 17. 

Definition. If E, E' are metric spaces and I: E - B' is a function, then 
J is said to be contiftuOUl 01& B or, more briefly, continUOUB, if I is continuous 
at all pointe of E. 
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, -/(;I) 

• ----- ---------------• 

p. 

ExAMPL. 1. The function I: R-R Biven by I(e) - .. lor .. 
s E R is continuous. To prove this we have to Ibow tbM 1 II OOIlti_ M 
each Zo E R. We have to Ihow tba~ for .., • > 0 we can &nd • I > 0 
IUch tha~ I" -:ell < • whaJ.ever Ie - _I < I. But. __ 

I" - :el1-I(e + are)(e - are) I 
-I (e - _ + "'(aI - are) 1 
S (Ie - _I + 11_1)1- - _I. 

we will have I" -:ell < • if Ie - _I < 1 and Ie - _I <1/ (1 + II_I)· 
Hence we may take' - min 11, f/(1 + 21_1>1. 

EXAMPL. 2. Let Ebe any metric apace, ,. • Sud point. of B. TIleD 
the function I: E - R given by 1(P) - "(p, JIt) lor all p E II II COIl"'" 
To prove this we have to Ihow that 1 is contiDUOUB at .., p .. paiat " 
of B. But 

I/(P) -/<PI) I -I "(p, JIt) - "(pa, JIt) I s cI(p, H, 
10 if we have "(p, 711) < • then also II(P) -/(pa) I < .. TIl. for MrI JMIiD' 
Pto correeponding to any e > 0 we ean chcae • - .. 

The epecial cue E - R, ,. - 0 Mon that the fane&ion lei II ~ 
tinuoua. 

EXAMPLB 3. Any eonatant function is coatift'" In ...... 
and E' are arbitrary andt.hepoint/(p) e B' • the ......... , es ....... 
we .... ,. have t1(jCp),/(JIt) - 0,10 Biven any ,.e Bud.., • > 0 
we can take a to be a, poaitive DU1ftber. 
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Elwm.B <l. The identity function on a met.ric space ia continuoua. 
Hen II ia an arbitrary meVie .... and I: B - B ia pven by IC,) - , 
for all , E B. Hence tI(Jc,), I(p.) - tic" p.). Thus for each PI E B, pven 
.>Owecanchooee.- .. 

'!'be IpICial ... B - R Ihowt tUt. the function s (the U8Ual way of 
writiq the identity function on the nil nne) ia continuoua. 

EuIm.II s. The "step function" I: R - R liven by 

{o ifs<O 
I(s) - 1 ·f > ° 1 s_ 

ia continuoua at all nonsero pointe, .nee I ia coaatant when s > ° and ..., 
wIleD s< 0. But/ia tIOC oontinUOUIat 0. For if we test continuity at the point 
,. - 0 with positive lSI &hen we can lind no corresponding , > 0, since 
for&nJ' , > OandanysE (-',0) we have I/(z) -/(0)1-10 -11- 1. 

Ex.w .... 6. The function I: R - R liven by 

Jl if s ia rational 
I(s) - '0 if s ia not rational 

ia continuous at. no point. For &nJ' open ball in R containa both numberl 
that. are rational and numben that are not. (we already know we can find 
a rational number. in the baD, and if" ia &oJ' fixed irrational number and 
N a IUtlicientlyiarp intepr &hen the irrational number. + "IN will _ 
be in the ball). ThUl for &oJ''' E R and any positive « S 1, a corresponding 
, > ° cannot. be found. 

Eu ...... 7. If I: B-B' ia continUOUl and 8 ia a aubepace of B, 
then the Nlt.l'iction of I to 8 ia continuoua on 8. Thia ia clear from the 
definitioaa. 

The followinl criterion for the continuit.y of a function from one metric 
apace into another ia often uaefuI. 

rro,...cdon. 1M B, B' be mtIric .,... _I: E - E' a furu:Wm. TAen 
lie ..,.,. .... iJ anti """ iJ, lor ..,., Of"" ""*' U 01 E', 1M irwer" i"..,. 

t-I(U) - I, e B : 1(P) e UI 
ie _ .,. ""*' 01 B. 

To prove thie, lirat. SUpp088 that I ia continuous. We have to show that. 
if U C B' _open, then -f"I(U) ia open. Let.,. et-I( U). Then/<Pt> e U. 
Since U _ open, it contailll the open ball in B' of center I(Pt) and lOme 

..u .. I > 0. Since I- continuoua a& ,. there _ a .. > ° such that. if , e 11 _"(P, p.) < ,then tI'(J(,),/(p.) < .. Thia meana thatif, ia contained 
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in the open ball in B of eenter Po and 1'Idi1ll • then I(p) is contained in the 
open ball in ll' of eenter I(pi) and ndi1ll .. 10 that 1(1) E u. That is, 
J-I( U) containa the open ball in B of center Po &ne\ radiua I. Since Po "11 
any point of t-I(U), the .. t-.(U) is open. Conveftle17, auppoee that for 
fN8l1 open U C B', the .. t-I(U) is an open aulat of B. We muat Ihow 
that I is continuoua at any point Po E B. For any e > 0 the I8t 

f"'(lopen ball in B' of center 1(,,) and radiua eJ) 

is an open IUbeet of B that contaiDl '" hence containB the open ball in B 
of center Po and lOme ndiua • > O. Thua if P E B and d(p, JIt} < ',then 
tf(j(P),/(") < eo This meana that I is continuoua at '" and thia com­
pletes the proof. 

Corollary. 111 gO c:onJinUOUl real-fHllU«l/lmdion on 1M metric apace B 
""" lor _II II E R 

Ip E 8: 1(P) > at tmd Ip E 8 : ICp) < at 
care open ..",." 01 8. 

For the Beta Iz E R : z> lit and Iz E R : z < lit are open lubeeta 
ofR. 

The following rault is uaually parap1uued "a continuoua function of 
a continuoua function is a continuoua function". 

Propoaldora. Let 8, 1£', E" be metric apacea, I: 8-8', ,: E' -E" 
Jun.cliqu. TAm if I tmd , care c:ontinuoua, 10 g 1M /unt:lior& , 0 I: E - E". 
More ~, if Po E E tmd I g continuoua at Po tmd , g eonCinuoua at 
l(pe) E E', """ , 0 I g c:onlinuoua at p.. . 

We need only prove the latter, more preciae, part. Let d, tf, tf' denote 
the three metrica. Suppose e > 0 i. given. Then, linee , iB continuOUl at 
l(pe), there exiata • > 0 luch that if q E ll' and d'(q,/<Po» <. then 
tf'(,(q),,(/(JJ.») < e. But linee I ia continuoua at Po. corresponding to 
thia • there exiate a number " > 0 auch that if P E B and d(p, JIt} < " 
then tf(jCp),/(pe» < •. Therefore if pEE and d(p, Po) <" we have 
tf'(,(/(P», ,(/(p.») < e, proving, 0 I continuoua at ,.. 

The above arpment iB illuatrated in Figure 18 on the next pap. 
The weak verBion of the lut propoeition, where I: B - B' and 

,: E' - ll" are &IIUIIUId to be continuoua everywhere, can be proved very 
limply by meana of the previoua criterion for continuity, as followa. U U 
is any open IUt.et of ll", the continuity of, impliea that rl(U) iB an open 
IUbaet of B', 10 the continuity of limpliea thatt-I(,-I(U» iB an open wt.et 
of U. But for any U C 1£", if p E B then p E t-I(r'( U» if and only if 
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/(p) E g-I(U), which is tmeif and only if g(J(p» E U. Thusf"I(g-I(U» .. 
(g 0 f)-I(U). We have thereCore shown that if U is an open subset of E", 
then (g 0 n-I( U) is an open subset oC E, which implies that g 0/ is contin­
uous. 

B 

--------------------~ ,-I 
FlG11IIII 18. A continuoUi function of a eontinuoUi function is continuolIL 

12. CONTINUITY AND LIMITS. 

Consider the following question: Let E, E' be metric spaces, let 
p. E H, let elp.1 be the complement of 'p.1 in E, and let /: elp.l- E' 
be a function. Is it poasible to extend the definition of / to all of E in such 
a way as to obtain a function from E into E' that is continuous at p.? 

In one case the answer to this question is trivial, and that is the case 
where p. is not a cluster point of E. For if p. is not a cluster point of E then 
_II function from E into E' is continuous at p.. This is 10 since there exists 
a ball in E of center p. that contains only a finite number of points of H, 
hence a ball of center p. and smaller radius that contains only the point flo. 
If a is the radius 01 the latter ball then the statements that pEE and 
d(p, p.) < a imply that p - ".. Thus for any /: B - B' and any p E B 
such that d(p, Po> < a we have d'U(P),/(Po» - O. 

In the cue where p. is a cluster point of B we are led to the foDowllll 
definition. 

D"Ifinltiora. Let E, E' be metric spaces, let Po be a cluster point of E, 
and let/: e(p.l- E' be a function. A point q E E' is called a limit oj / til 
Po if the function from Einto E' which is the same as/on elPoI and which 
takes on the value q at Po is continuous at Po. 

n is useful to reword this, without directly using the notion of con­
tinuity. 
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Definition'. Let E, E' be metric spaces, let Po be a cluster point of E, and 
let I: e 1 Pol - E' be a function. A point q E E' is called a limit 01 I at ". if, 
given any E > 0, there exists a 15 > 0 such that .if pEE, P""" and 
d(p, Po) < 15, then d'(j(p), q) < f. 

Given E, E', a cluster point Po of E and I: eIPoI-E', there can aiR 
at most one limit of I at Po- The argument iB the &arne aa that for the 
uniqueneaa of the limit of a convergent sequence: If q, q' E E' are two 
limits of I at po, then given any f > 0 there exists a IJ > 0 Buch that if 
pEE, p ,. po and d(p, Pe) < 15 then tl(j(p), q) < • and l(j(p), q') < .. 
Since Po is a cluster point of E, there actually exist points pEE such that 
P ;po! Po and d(p, Po) < 15, 80 that we can deduce that tl'(q, q') < 2 •. Since 
this is true for any f > 0 we have tl'(q, q') - 0, 80 that q - q'. 

If, under the above conditions, a limit of I at ". exists, then since the 
limit is unique we may speak of the limit of I at ". and we denote this 

Iim/(p) . 
.... " 

The statement that Iim/(p) exists implies that we have metric spaces 
.... " 

E and E' in mind, that Po is a cluster point of E, and that we have a function 
I: e 1 Po) - E' such that for lOme point q E E' q is a limit of I at ".. In 
discu88ing lim/(p) we may be explicitly given a function I that happens 

.... I'e 

to be defined at Po, but this is immaterial: the limit of I at ". doee not 
depend on whether or not I is defined at Po nor, if it is, on what its value 
at Po is, but rather on the values of I(p) for p near, but distinct from, ".. 

In the above work we started with a function I which waa de6ned at 
all points of a metric space but one, but it is poasible to diacuu limits of 
functions whi(~h are defined on relatively small subsets of a metric IJ)&C8. 

For example suppose E, E' are metric spaces and that we have an arbitrary 
subset SeE that haa at leaat one cluster point in B, topther with a 
function /: a ...... E'. If p. E E i. a cluster point of a we can conaider 
Iim/(p) rfliatilJfllo Ihfl BUbapact au IPoI 01 E and one then speab of the 
.... I'e 

limit oll(p) aa P approachu Po on a. Thus a specific metric space E m1llt be 
bome in mind in considering lim I(p), and in the lut cue the space to be 

.... " 
bome in mind is actually not E, but the subspace 8U 1".1. The moat 
frequently arising case iB that in which I is defined on a part of B that 
includes all points of an open ball in E of center "., with the possible 
exception of Po- Here we maintain the same notation 

liml(p) 
.... I'e 

without any reference to the fact that I may not be defined far away from 
Po: it is enough that I be defined near Po, except poesibly at ". itself. 



w. pn our &nt. definition of the Iimi~ of & function in terma of coo­
tinuity, but one can equally well de&ne continuity in terma of limite of 
functioaI. If I: B - II' _ & function hom one metric IpIee into another 
aDd PI E E, then I_ continU0U8 &~ " if and only if, if " _ & cluater point 
of B, tbeD 

lim/(P) -/<Po)· ... ,.. 
Tbia fact iI 01 ... from the definitiona. 

III the preoediDi chapter we c:IiIoUIIId the notion 01 & limi~ of & lequence 
of paiDta In & metric ..... ThiI too can eulI7 be de8ned In terIII8 of the 
DOt.IaD. of the limi~ of a function, .. follows: If,.,,., Pa, ••• _ & eequ.ae 
of pointa In & metric ..,..,. Band, E B then . 

limp. - 9 -
if and only if, for the IUbapace 10. 1, ~. U.).( • ... J of R and the 
function I: 11, ~, U, ... J - E liven by l(l/ft) - p. for aU ft-

1,2, a, ... , we have 

lim/(P) - 9 . ..... 
Tbia ~~ _ euy to verify. AI& & matter of fact the notion of continuity 
(or the equivaleD~ notion of limit of & function) ahould be reprded .. 
fundamental, with converpnt IIeqUeDCeI .. uaeful technical devicel. in 
lpite of their earIi .. introduction in thia ted. It would have been mon 
·lnaturll". althoqh & bi~ loDpr. to fiIR prove theorema about continuity 
(or limita 01 fuDctioDI) and then the ~ a.ulteon limite of lequencel. 
Of ..... aU of our ideu .... IoIPcalI7 inteldepeadeDt. aDd the followiDa 
propoIltlon, wbleh .... a UIIful oriterioD 01 continuity, could ...., han 
bem .... to lin &D alterDate cIeftDitioD of continUOUI function (and beaee 
of the 6mi~ oIa fUDCtlon) in terme of coovera-~ IeqUeDCeL 

rr.p....... lAC E, B' .. tJUIric .".... TAcrn • fwt,ditm I: B-II' .. 
.......... ., PI E B iI • .." iI,for..." ~ OJ poi"" , •• ,., Pa •••• 
"'B .. 1Aae 

limp. - PI -
lim I(p.) -/(p.). -

8appOIe &nt that I _ continUOUI &~ PI and that , •• ,.. Pa •••• iI a 
1IIlU- of paintilin E that conv_ to ,.. We have to abow that the 
.... -/~,/(H./(p.) • ... conv.p8 to I(p.). Oiveo • > 0, the con­
.....,. 011_ PlhnpIlt. that tb.-e iI &. > 0 Rch that "(j(P),/(p.) < • 
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whenever pEE and d(p, PI) < a. Since Pl, PI, PI, . .. converps to PI 
there ia a positive integer N wch that d(p., PI) < a for all 1& > N. Hence if 
1& > N then d'U(p.),'j(p.» < I, which abOWB that 1(pi),/c'w,/<Pa), ..• 
converges to l(po). 

We now prove that, conversely, if it ia true that whenever a sequence 
PI, 'Pt, Pa, ••. of points of E convergeB to PI then the sequence of points 
I (ps) , I C,W, I(p,), ... of E' converges to I(p.), then I is continuous at JIo. 
We do thia by supposing the contrary, that ia that I ia not continuous at 
PI, and deriving from this 888umption the existence of a sequence of points 
PIt 'PIt PI, ••. convcqing to PI wch that 1(p1),/c,t),/<Pa), ••• doee not 
converge to l(po). 80 auppoee that I is not continuous at JIo. Then there 
exiata lOme I > 0 such that for no number a > 0 ia it true that whenever 
pEE and d(p, Po) < a then nece88&rily d'U(P)'/(po» < t. Hence for 
any n = 1,2,3, .•. we can find a point p. E E such that d(p., Po) < lIn 
and d'U{fJ.),/(po» ~ I. Since d(p., Po) < lIn for all n - 1,2,3, ... , the 
sequence PI, PI, PI, ..• converges to JIo. However ICPl), ICPt>, 1<Pa), ... 
doee not converge to I (pO) , since d'U(P.),/(po» ~ e for all n. This com­
pletes the proof. 

,3. THE CONTINUITY OF RATIONAL OPERATIONS. 
FUNCflONS WITH V ALVES IN 1:-. 

Real-valued functiona on a metric space E (or indeed on any set) can 
be combined in the usual way by the rational operationa of addition, 8Ub­

traction, multiplication, and division. ThUB if I, g are real-valued functioDB 
on E, we have the real-valued functiona I + g, I - g, Ig and Ilg, given by 

(J + g)(P) - 1(P) + g(p) 
(f - g)(P) - 1(P) - g(p) 

(fg)(p) - 1(P),Cp) 

(~)(p) =- ~~~ 
for any p E Ej in the lut cue II, ia of course not defined at any point p 
such that ,Cp) so 0, 80 thatllg is a function on (p E E: ,(P) 7' O). 

PropoaitiDn. Lee I and g be real-tH&lucd /UftdUrn.. on G metric IJHIU E. 11 
I and , are c:ontmuoua at a poi'" PI E E, tIaen 10 are the ItmCtion. 1+ " 
I-"Ig and Ilg, the laat under the proviao tAat ,(p.) .. 0 (in tllAim CCI8e 

g(p) pi 0 lor aU poiftta p in aome open ball 01 center Po}. 

Thia can be proved directly, but it is easier to deduce it from work 
already done. By the lut proposition, to prove that I + , is continuous at 
PI it .ufIicee to show that if PI, PI, PI, . .. is a sequence of points of E that 
conVel'leB to Per then the sequence 1(Ps) + ,(Ps), I CPt> + ,(pi),J<Pa) + 



76 IV. OON'l'lN1701Jll ruNCTIONII 

,(pa) •.•• converges to I(Po) + ,<Po). But the last proposition implieB that 
the aequencea 1(p1). I(p,). l(pa). . .. and ,(P.). ,(,,), ,(pa), . •• converge to 
I(po) and ,(pa) respectively, 110 the convergence of I(pi) + ,(p1)./<Pt> + 
,(,,)./(pa) + ,(pa), •.. to I (Po) + ,<Po) is a consequence of the proposition 
on page 48. Exactly the same argument provea the continuity at Po of the 
function I - ,. the function I,. and also (once a certain minor detail baa 
been verified) the function 1/,. The minor detail to be verified is the paren­
thetical remark in the proposition to the effect that if , is continuous at Po 
and ,<Po) pol 0. then ,(p) po! 0 for all points p in IIOme open ball of center flo. 
But since, is continuous at Po and ,(Po) pol 0 then for all points p in some 
open ball of center po we have 

I,(P) - ,(Po) 1 < 1 ,(Po) I 
which clearly implieB ,(P) pol o. 

Coroll4wry. 1M Po be a cluater poW 01 1M metrU: apac:e B cmtl let I cmtl , 
be reakcIlued/tIttdWM on e(PoJ IUCA UltJf 

lim/(p) cmtl Jim ,(P) ...... ... ... 
lim (f(p) + ,(P» - lim/(p) + lim ,(P) ...... ............ 
lim (f(p) - ,(P» - lim I(p) - lim ,(p) ...... ......... ... 
Iim/(p),(p) - lim 1(P) • lim ,(P) ...... 

and, i/lim ,(p) po! 0, ...... 
lim I(p) .. 
~ ..... ,(p) 

...... ... ... 

lim/(p) ... ... 
lim ,(p)" ...... 

The coro1lary means. fil'Bt, that the left-hand limite exist and, second. 
that they are pven by the appropriate formulu. It is an immediate COllIe­

quence of the proposition and the fintt definition of limit of a function. 

Lemma. For eac.\ i ... 1.2, ...• ". 1M fundion :1:0: E" - R dejinetl by 
:I:o( (tilt CIt. • •• , a..» - CIi " continuoua. 

We have to prove that :.:, is continuous at any given point Po E E-. 
For any pEE- we have p = (:':I(P), s,(P), ...• :.:.(P». The inequality 

1:I:o(P) -~) 1 ~ V (:':I(P) - :':I(Po»' + ... + (z .. (p) - :.: .. (".» .... dept P.) 
shows that if d(P. Po) < t! then also 1:I:o(P) - z,(Po) 1 < t!. Thus :.:, is con-
tinuous at flo. . 
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The previous proposition can be combined with the lemma to live 
many examples of continuous real-valued functions on Ea. If .e recall 
that any constant funetion is continuous and apply the propoeition re­
peatedly, we see that any polynomial in ZI, Zt, ••• , z .. with ooefticienta in 
R is continuous. (For example, ZI' - Za + ~ Zt - n-. ia .. c0n­

tinuous function on E'.) Furthermore any rational funetion ( .. ratioD&l 
function is the quotient of two polynomial functions) ia continuoua whenv .. 
the denominator is not zero. (For example ZaZt/(ZI' + zI) ia .. continUGUa 
function on E' - / (0, 0) I.) 

If E is a metric space and f: E - E" .. function, then the imap in lI­
of any point I' E E is the point 

f(p) = (ZI(f(p», Zt(f(P», ... , z.(f(P»). 

Thus I is determined by the n componen.l ~ z. 0 I, Zt 0/, ..• , z. 0 I. 
Convenely, an n-tuple of real-valued functions on a metrie 8p6C8 defines 
a funetion from the metric space into Ea. The foUowinc propoeition IumdleI 
all relevant continuity questions. 

Proposition.. L« E be tJ metric IfNI" t.IftIl'/: E - Ea tJ ~ 1'_/ .. 
continuoua tJt tJ point Po E E il mad only if eacA cmnpcmene /f,mI:JiIM .. 0 It 
... , z .. 0 I iI continuou. tJt p.. 

The "only if" part of the proposition comes trivially from the lemma, 
for if' is continuous at Po then 80 is the continuous function of .. conti .... 
function Zi 0 ,. To prove the "if" part, suppoee Z. 0 I, ... , z. 0/ eontinuoua 
at Po and let e> O. Noting that (z. oJ)(p) - ZIC/(P», e,..oJ)CIJ) -
%t(J(P», etc., for each i = 1, ... , n we can find a a. > 0 lUCIa IbM 

!%i(J{p» - %tC/(Po»! < In 
whenever I' E E and d(p, Po) < 8;, d denotinc the diatanee in B. If we .­
a = min /a., ... , a"l, then if I' E E and tl(p, PI) < • we have 

!Zi(J(p» - Zi(J(p.}) I < In 
for i-I, ... , n, 80 that 

v(Z.(f(p» - ZI(J(Po»'1 + ... + (z.(f(P» - z .. (j(po»'1 

< .J(JnY + ... +(J-;ar-~ 
This proves I continuous at p.. 

Note that the lemma becomes a special case of the "only if" put of 
the proposition when we apply the latter to the identity function on Ea, 
which is known to be continuous. 



14. CONTINUOUS nJNCTIONS 
ON A COMPACT METRIC SPACE. 

TIaeorem. 1Al B, B' be metric 1fItJCU, I: B-B' G etmlinuoua ,"MUm. 
TAM il B;, cmnpact, eo;' ita ;:",age/(8). 

We muat show that if 1(8) 0:: (f(P) : l' E BI is contained in the union 
of a collection of open subsets of B' then it is contained in the union of a 
finite number of these open suheete. 80 8Uppose that (U,I'EI is a collec­
tion of open 8Ub8ete of B' whOle union containe/(8). Since I is continuoua, 
eMIl inverse imapt-I(U,) is an open subset of B, by the first proposition 
of ,1. AIIo, for any l' E B we have I<P) E Ui for lOme i E 1, in which 
cue l' Et-1(U,), 80 that 

Since B is compact there is a finite subset J C 1 8uch that 

B .... V t-l(U;). 
iEJ 

Therefore I(B) - V 1(j-l(U;» C V U;. Thus/(B) is compact. 
iEJ fEJ 

This theorem baa two extremely important immediate consequences. 
To atate the fint, let ua eay that a function I: B - B' from one metric 
apace into another ie bountUd if the image I(B) is bounded. In the special 
cue that 1 ill a real-valued function on B this meane simply that there is a 
number MER such that I/(P) I :S M for all l' E B. 

Corollary I. 1Al B, B' be metric 1fItJCU, I: B - B' a etmlinuoua/unclUm. 
TAM il B ;, compact, I;' 6ot.mtW. 

Reuon: any compact subset of a metric apace is bounded. In particular 
the compact auheet I(B) of B' ill bounded. 

The lut reeult is falee if compactne88 is omittedj for example, coneider 
the function I(z) - l/z on the open interval (0, 1). 

If 1 is a real-valued function on a metric apace E and Po E E we say 
that I attaim a mazimum at Po if I(Po) ~ 1(1') for all l' E E, and we eay 
that I oUGin.a a minimum at Po if I(Po) S /(1') for all l' E E. 

Corollary J. A etmlmuoua real«llued lunction Oft a nonempt1l compact 
metric aptM:e oUGi", a mazimum al eome point, and also altaina a minimum 
al aome point. 

For let B be a compact metric apace, /: E -+ R a continuous function. 
'l1len I(B) is a compact aubset of R, hence closed and bounded. If E ia 



nonempty then 10 ill 1(8), and the 1ut pIOpOIition of ,2 of the preceding 
chapter teUa us that I(E) has a greateat element, and &leo a least element. 
If Po E E ill choeen 10 that ICPt) ill the greatest (least) element of I(E), then 
I attaina a maximum (minimum) at ,.. 

Corollary 2 is falae if the compactneIB condition is omitted, eyen for 
bounded functiona; for example, conaider the function I(~) .. ~ on the open 
interval (0, 1). 

FloUD 19. A contiDuoU8 nal-valuecllunctioD OIl a cIoeed interval 
in R attainI a maximum and a minimum. 

If E, E' are metric IIp&eeI and I: E - E' is a continuous function then 
liven any Po E E and any e > 0 there existll a real number 3 > 0 such that 
if pEE and d(p, pO) < 3 then d'(j(P),/<Po» < e: this is just a literal 
restatement of the definition of continuity. If E, E' and I are fixed it is clear 
that a will depend on both Po and e. If Po is held fixed and « varies, then the 
amaller we take « the amaller a will uaually be. If on the other hand we take 
lOme fixed «> 0, then a will depend on the point Po. As Po variee 10 in 
general will a, and it mayor may not be true that we can find a a that 
works simultaneously for all ,.. If it happena that we can find such a a, 
and can do this for each e > 0, the function I will have some especially 
nice properties. This leads to the following definition. 
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Df'jinitilJn. Let E and E' he metric spal'CS, with distances denoted by 
d and d' respectively, and let I: E -+ E' be a function. Then I is said to be 
unilormly continuous if, given any real number f > 0, there exists a real 
number a> 0 such that if p, q E E and d(p, q) < a then d'(j{P),/(q» < f. 

If it happens that a function I: E -+ E' is such that for a certain subset 
S of E the restriction of I to S is uniformly continuous, we say that J is 
unilormly continuous on S. Thus uniform continuity on E is the same thing 
as unifonn continuity. 

It is clear that a uniformly continuous function I: E -+ E' is continuous: 
to check continuity at a point Po E E just set q = Po in the definition. The 
next theorem will state that conversely if f is continuous then J is actually 
uniformly continuous, provided E is compact. If E is not compact then 
continuity does not in general imply uniform continuity. Here are two 
examples of continuous real-valued functions on the open interval (0, 1) 
that are not uniformly continuous: 

(1) The function I given by J(x) = l/x for all x E (0, 1) is continu­
ous but not uniformly continuous. Continuity is known. Uniform con­
tinuity is disproved by showing that for any f > 0 and any a > 0 we can 
find p, q E (0, 1) such that I p - ql < a and 11/p - l/ql > E. Specific 
such p, q can be found, for example, by taking q = p/2 so that the 
eonditions become p/2 < a, l/p > E, the pair of which will be satisfied if 
0< p < min (26, l/f, 11. . 

(2) The function I given by I(x) = sin (l/x) for all x E (0, 1) is 
cont.inuous but not uniformly continuous. To check this example we assume 
that the easier properties of the sine function are known (these will be 
rederived anyway in Chapter VII). Then I is continuous, and moreover 
since Isin (l/x) I::::; 1 for all x E (0, 1) any 6 at all will work if f > 2. But 
if f < I, no a will work. For suppose that 0 < f < 1 and that 0 < a. 
If we then take n a sufficiently large positive integer and set p = 1/(2111&), 
q .. 1/(2rn + r/2), we get both I p - ql < 6 and IJ{P) - I(q) 1- 1 > f. 

Theorem. Let E and E' be metric apace' and J: E -+ E' a continuoua 
Junction. 11 E ill compact, then J ill uniJormly continuous. 

It will be instr1lctive to give two proofs of this theorem. In e8.(~h proof 
we start with a real number f > 0 and try to find a number a > 0 such that 
if p, q E E are any points such that d(p, q) < a then d'(j(p),J(q» < E. 

For the first proof we find, for each pEE, a number a(p) > 0 such 
that if q E E and d(p, q) < a(p) then d'(j(p),/(q» < f/2; this is possible 
since f is ('ontinuous at p. Let B(p) be the open ball in E of center p and 
radius 6(p)/2. E is the union of the open sets 8(p), with p ranging over all 
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the pointe of B. Since E is compact, it is the union of a finite number of 
these open sets. Thus there exist a finite number of points of E, I&J PI, PIt 
.•. , p .. , such that E ... B(PI) V B(Pt) V ... V B(p.). Now define .-
min (6(pM2, 6(Pt)/2, ... , a(p.)/2). We claim that this a I&tiefieI our 
demands. For suppose that p, q E E, with d(p, q) < •. For lOme i-I, 2, 
... , n we have p E B(p.), 80 that d(p" p) < '(p,)/2. Alto d(p" ,) ~ 
d(p" p) + d(p, q) < 6(p,)/2 + a :s a(p;). Thus d(p" p), d<'Pl, I) < '(p,). 
By the way that 6(p,) W88 c~h08Cn we have tl(J(p,),/<p» <./2 IIlCl 
d'{j(p.),!('l» < .. /2. Therefore 

d'(J(p),!('l» :S d'{j(p).!(p,» + tl(J(p,),/(,J» < i + i - . 
and the fint proof is complete. 

For the second proof we use tho indirect method, _mini t.hM for 
our given number f. > 0 there is no • > 0 IUch that if ,. I e B and 
d(p, 'l) < 6 then d'(/(p),/('l» < t, and we derive a contndiction. 87 
&88umption, for each n - 1,2,3, ... the number lIn is not a auit.able 
candidate for a, 80 that there exists a pair of points , •• fa E B auch that 
d(p .. , 'l .. ) < lin and d'(J(p,,),/(q .. » ~ t. Thus we have a aequence of 
ordered pail'8 of points (PI, 'll), (PI, /]1), (Pt, /]1), ••• wit.h the propertieI t.hM 
Jim d(p .. , q.) ... 0 and d'{j(p..).!(q .. » ~ f. for all n. Since E is compact, the .. ~ ... 
sequence p., '/h, pa, . .. h88 a convergent subsequence. Henee we may 
rcphu'c the seqUCl\('C (Pit 'l.), (Pt. /]1), (Pt, 91), .•. by a subeequenee balDCh 
a manner that we may &88umc that the acquence PI, 'PI, Pa, ••• eonverp. 
to a point Po E B, still maintaining the conditions 

lim d(p". q,,) ... 0, d' (J(P.).!(,.» ~ e. 

From the inequalities 

o :S d(q., Po) :S d(,., P.) + d(p., 'PI) 
and the equations 

lim (d(q., p.) + d(p., 'Pe» - lim d(I., p..) + lim d(p., Jtt) - 0 -- --
it follows that lim d(q., 'Po) - 0, 80 that the aequenee ft. fit fI, • •• aIeo .-
converges to 'Po- Thus the continuity of / at 'PI implies that 

lim/(p.) .. lim/(I.) == /(p.). --- ..... 
For n sufficiently large we therefore have 

d'(j(P.),/(Po» < ;, tl(J(q.),/CPo» < ;, 
implying that 

d'{j(P.).!(q .. » :S d'{j(P.).!C'Pt» +d'(J(Pa),/(q.» < ; + ; - to 

contradicting d'(J(p.),!(q.» ~ ·f. This ends ~ second proof. 
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I So CONTINUOUS nJNCI'IONS 
ON A CONNECI'ED METRIC SPACE. 

Tlaearem. 1M E, II' lie meCric .,.,., I: B - II' a continuoua lunction. 
T_ if B if connedtd, ao if ill imtJ(Ie I(E). 

To plOve ihie we may without 1081 of generalityaaaume that E' -/(B). 
W. aba11aaauIDe that E' -/(E) is not connected and derive a contradiction. 
Since I(B) is not connected we can write I(E) ... A V B, where A and B 
an diajoint oonempty open subeeta of I(E). By the firat proposition of t I, 
each of theaet.a/""I(A),JI(B) ill an open subset of E. We therefore have the 
expl...wn of E as 

E - /""I(A) V /""I(B) , 

the union of two disjoint nonempty open subseta. This contradicta the fact 
that B ill connected, proviDe the theorem. . 

• t t t 

I , 
-1---

I 
I 
I , 
I , , 
I , 

Corollary (In,.,,mecflae. ...... t1aeoNm). 11 a, b E R, a < b, And I it 
• eonIifttIouI ....... ,.,., /tIttt:Wm em lite clotetl ifttmtGl [a, b), then lor anti real 
...... " ""'/(a) _/(b) t1we __ CIt.least one point c E (a, b) I'IIda 
IAaC I(c) - ". 

For since 10, b) is connected, eo is I([a, b». The (almost trivial) firat 
pmpoeition of the Jut, aeetion of the preceding chapter .tate. that ..,.. 
00DneCted sublet of R containa all pointe between any two of ita pointe. 
8inoe " is between the pointe I(a), I(b) of I([a, b)), we therefore have 
., E laa, b». Thia proves the corollary. 
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Sometimes the name "intermediate value theorem" is applied to the 
slightly more general statement that if I is a continuoU8 rea.l-vallJ4l(i function 
on a connected metric space E, then any real number that lies bet.ween two 
points of I(E) is itself in I(E). The proof is of course the same as a.bove. It. 
is worth remarking that the validity of the intermediate value theorem for 
all continuoU8 real-valued functioll8 on a fixed metric space E is equivalent 
to E being connected; for if E is not connected we can write E = A VB, 
where A and B are disjoint nonempty open subsets of E, and the theorem 
fails for the continuous function on E which is 0 on A and 1 on B. 

The previoU8 theorem enables U8 to give many new examples of con­
nected subsets of metric spaces. I<'or example, any continuoU8 image of an 
open or closed interval of R in another metric space (a "curve") is con­
nected. We now apply this idea to show that all (open or closed) balls in 
E"', and E" itself, are connected: If p .. (ai, ... , a,,) and q = (b1, ••• , bit) 
are points of E", define the line legment betuIeen p and q to be the set of points 

I (aa + {ba - a.)t, ••• , a" + (b. - a.)t) : t E [0,1)) C E". 

Since the component functioll8 '" + {b, - ",)t are continuous, the line seg­
ment between p and q is a continuous image of the interval [0, 1], h~ce is 
connected. The distance between the point p and the point (aa + (ba - a.)t, 
.• " a. + (b,. - a.)t) is t times the distance between p and q, for any 
t E [0, 1], hence at most the distance between p and q. ThU8 the entire line 
segment between the center of any ball and any point of the ball lies entirely 
within the ball. Any ball in A'" is therefore the union of all line segments 
between its center and its varioU8 points, that is the union of connected 
sets that all contain the center of the ball. By the second proposition of the 
last section of the prec«ting chapter, any ball is connected, Since E" is the 
union of all line segments between the origin and its VariOU8 points, the 
same reasoning shows that E· is connected. 

16. SEQUENCES OF FUNCTIONS. 

Definition. Let E, E' be metric spaces and for n = 1,2,3, ... let 
I.: E - E' be a function. If pEE, we say that the sequence /I, I., fa, ••• 
conuergu at p if the sequence of points 11(P), 1.{p),I,(P), ... of E' converges. 
We say that the sequence of functiona la'/.,/" ... corwergu on E, or con­
"",U, or ia corwergent, if the sequence converges at each pEE. If la, I" 
I., ... converges and f: E - E' is the function defined by 

I(p) = lim/.{p) -
for all pEE, we say that /I, I" la, . .. corwerge. to I, I is called the limit 
lunction of the sequence, and we write 

f = lim/.· ....... 
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For example, for each n - I, 2, 3, . .. let I.: [0, 1) -+ R be given by 
I.(z) - z - I:/n. For each :e E [0, 1) we have lim 1.(1:) - z. Here the limit .-
function I is the identity function 1(1:) - 1:. This i. iIlUitrated in Fipre 21. 

I 

FJoUJlll21. The l8Cluenae of functioai/,,(z) - 11& - 11&/,. OD (0, II. 

For a second example, let I.: [0, 1) -+ R be given by 1,,(1:) .. 1:". Since 
lim o· ... 0 if Jol < 1 (cf. end of 13 of Chapter III). the sequence /1'/ •• . -
I.. . .. converges to the limit function I given by 

I(z) _ {O ~f 0 S I: < 1 
1 If z - 1. 

Notice that each -I. it continuoUi. but the limit function it not. Thi. it 
illustrated in Figure 22. 

If 8. E' are metric 8p&ceII and \he sequence of functions II. I •• I.. . .. 
from 8 into B' converpl to I. \hen for any E > 0 and any , E E there it 
a poeitive integer N such that tf(J(P)./.(,» < e whenever n > Ni thie 
it a alight amplification of the previOUI definition. In general the integer N 
depends on both e and ,. and for a fixed E we mUit take N larger and 
larger for dift'erent points, if we want the inequality tf(J(P)./.(P» < E 

to hold for all n > N. If it happens that for any E > 0 we can find an 
integer N that works simultaneoUily for all points, E 8 then. as we ahall 
Bee, the convergence of /1. / •• /.. . .. to I is especially nice in the aenae that 
if each pf the functions II. / •• I.. . .. POBBeBBe8 a certain kind of property 
(for example, continuity). then 80 does the limit function I. This motivates 
the definition on the next pap. 



I 

D4r1i.uticm. Let E, B' be metric..,..., lortl - 1, 2, a~ ... WI.: ..... B' 
be a function, and let I: B - B' be anotber fuDe&ion. 'l.'heIa tile ....... 
II, I., I., ... is eaid to c:onHrfC """...." 10 lif, atv- any • > 0, ..... a 
poeitive intepr N IUch that tl(J(P),I.(P» < ........... > N, lor aU 
pEE. . 

If the sequence II, I., I., ... con ..... uniformly to J we ........ 
III.Y, for emphaais, that 11,1 .. 1., •.• con .... wniforntly to/_ .. If the 
restrictions of II, I., I .. ... to a certIiD ...... 8 01 • GOIIftIII uaifonqiy 
to lOme function on 8, we.y that 1,,/., I .. ......... ~ _ B. 

J'lova 23. Unif_ 0IIII.,..... fIl ....... fIl ............... 
fl • net ftIWIIIt. 
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Unifonn convergence of a sequence of functions clearly implies con­
vergence. 

The firat of our examples above, according to which lim (~ - ~/n) .. ~ .-
on (0, 1), is an example of unifonn convergence. For here d'(j(~),I.(~» -
I~ - (~ - ~/n) I-I~I/n ~ 1/11., and this Jut quantity can be made lellS 
than any given. > 0 by taking 11. > H, where N is an integer at least as 
larpas1/e. 

However, in our eecond example, which is the convergence of the lie­

quence of functions z, zI, z:I, ••• on (0, 11, we do not have unifonn conver­
gence. One way toahowthisis to quote the theorem, to be proved shortly, that 
the limit of a unifonnly convergent sequence of continuous functions il con­
tinuoua. Or we can translate unifonn convergence in the present cue to 
mean that for any I> 0 we have:e" < • for all ~ E (0, 1), provided only 
that 11. il lufficiently large, and if it happens that • < 1 thil contradicta the 
continuity of the function :e" at the point 1. 

A. before with sequences of pointa, 10 alao with 8e(luences of functions 
it is important to have a criterion for convergence that does not involve 
foreknowledge of the limit. Here is the relevant Cauchy criterion. 

I 

Propoe.tloft. Let E, E' be melric~, tDitI& E' com",., tmd lell.: E - E', 
, ,,- 1, 2, 3, ...• Then 1M aequence 01 junctiom II, I., I., . .. it tmilorml1l 
~ if and cmlll if, lor Oftll • > 0, II&ere it a poaWe inUger H eucA tAcat 
if n CIftd m care i,.,.,. ".".,. tIacan N II&ea d' (j.(P) , I.(P» < • lor aU pEE. 

If the sequence I" I., I., ... converpa unifonnly to I, then for any 
I> 0 there exila a poaitive integer N IUah that d'(j(p),/.(p» < ./2 
whenever n > N, for all pEE. Hence if 11., m > H, for all pEE we have 

d'(j.(p),I.(P» ~ d'(j.(P),/(P» + d'(j(p),I.(P» < ~ + ~ == •• 

This proves the "only ir' part. We now prove the "ir' part: For any pEE, 
II(P),I.(P),I.(P), ... is a Cauchy sequence in bi'. Since E' is complete, 
thia sequence baa a limit. Thus the sequence of functions/a./I, fl' . .. con­
verpa. Let / be the limit fUllction. Given • > 0, choose the integer N 80 

that we have tf(j.(P),I_(P» < 1/2 whenever n. m > N, for all pEE. 
Then for any fixed 11. > H and fixed pEE the sequence of pointa I,(P), 
1s(p),I.(P), ..• ia auch that all terms after the NtA are within diatance 1/2 
oIl.(P), and are therefore in the clOBed ball in E' of center /.(p) and radius 
1/2. Bince clOBed balla are clOBed Beta, the limit /(p) of the convel'lent 
8eQWIDCe /1(P),I.(P),/I(P),... is aIao in this closed ball, 80 that 
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I(J.(P),I(P» S t/2. Hence if " > N we ~ve I(J.(P),/(P» < Ii for an 
pEE, proving unifonn convergence. 

Theorem. Let E, E' be meb'ic.,.. _ let 11, It, I., ... be II uni/orml, 
~ aequence 01 COfttiftuoua /undiou from E i1&lo E'. Thtm limJ .. it 
continuoua. ..-

We muat ahow that I - lim I. ia continuoua at each point po E E . . -
80 let PI E B be fixed. Let • > 0 be given. Fix a positive integer n such 
that I(J(P),J .. (P» < ./3 for all pEE, which is poaible by the uniform 
convergence. Since I .. is continuoua at 'Pe, there is a number a > 0 such that 
if P E B and d(p, PI) < a then d'(J.(P),I.<Po» < ./3. Hence if pEE 
and d(p, pi) < a we bave 

d'(J(p),/(pi» S I(J(p),/.(p» + d'(J.(P),I.<Po» + I(J.<Po),/(Po» 
e e e 

<3+3"+3"-" 
Thua I is continuous at 'Po-

The above proof really ahowa IOmethiDl more pneral than is stated, 
D&lDeIy that if we bave a sequence of fUncUODII/l, It, I., . .. from 8 into E' 
that. converges uniformly on lOme open ball of 8 or center 'PI and if each I. 
is continuous at Po then the limit function is allO continuoua at Pe-

If J and , are functioDII from a metric apace 8 into a metric space E', 
it is natural to try. to find lOme measure of the extent to which J and , 
diller, that is to find lOme lOR of IIdistance" between I and ,. Fqr any 
specific p E B we may 8&y that I and, differ at p by the distance between 
their values at p, that is by d'(J(P), g(P», but we would really like to 
meuure how much I and, differ over aU points of 8, not just at p. There 
are various ways of doing this, depending on the circumstances and pur­
poeee in mind, but the most simple-minded method turns out to be one 
of the most uaeful. It is to take the distance between / and 9 to be 

max (d'(J(P), ,(P» : p E 81 

if t.hia maximum happens to exist. In order to develop this idea we need 
to digreu for a simple lemma. 

Lemma. Let E cand E' be metric: qacea, and let I and , be continuoua fuM­
tiona from E into 8'. TAm u.. real-tH.dued fundion on 8 whote IICIlue at on, 
poi'" pEE it I (J(p), g(P» it contiftuoua. 
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We must show that this function is continuous at any given point 
Po E E, that is that I d' (f (1'), g(p» - d' (f (Po) , g{flo) ) I is less than any 
given e > 0 for all l' in some open ball in E of center flo. But 

Id'{f(p), g(p» - d'(f(Po), g(Po» I 
s Id'(f(p), g(1'» - d'(f(p), g(po» I + Id'(f(p), g(po» - d'(f(PO), g(po» I 

S d'(g(p), g(po» + d'(f(p),/(po», 

. the last step being a double application of the fact that the difference 
between two sides of a triangle is at most the third side. Since I and 9 are 
continuous at Po, each of the quantities d'(g(p), g(po», d'(f(p),/(1'o» is 
less t.han E/2 for all l' in some open ball ill E of cellter po, proving that for 
all p in that open ball 

Id'(f(p), g(p» - d'(j(po), g(po» 1< E, 

as desired. 

In the case of greatest interest, that where E' = H, there was actually 
no need for a detour to prove the lemma, for here d'(f(p), g(p» == 
1/(1') - g(p) I and the continuity of this function follows from that of I 
and 9 in two easy steps: the difference of two continuous real-valued func­
tions is continuous, and the absolute value function on H is continuous. 

Now consider the set tf of all continuous functions from E into E'. 
We 88Bume that E is compact. Then it is true that for any I, 9 E tf 

max {d'(j(p), g(p» : pEEl 

exists, since any continuous real-valued function on a compact metric 
space attains a maximum. Hence we may define, for any I, g E tf, the dis-. 
tance between I and 9 to be 

D(f, g) = max (d'(f(1'), g(p» : pEEl. 

We proceed to show that tf, together with this D, is a metric space. 
For all I, 9 E tf, it is clear that D(f, g) ~ 0 and that D(f, g) = 0 if and 

only if I = g. It is also clear that D(f, g) = D(g,j). It remains to prove 
the triangle inequality, which states that if I, g, h E tf then 

D(f, h) S D(f, g) + D(g, h). 

To prove this, pick Po E E such that D(J, h) = d'(f(Po), h(po». Then 

D(f, h) = d'(f(Po), hWo» S d'(f{flo), g(Po» + d'(g(po), h(Po» 
::::; max (d'(f(P), g(P» : l' E EI + max {d'(g(P), h(p» : l' EEl 
= D(J, g) + D(g, h). , 

Thus tf is indeed a metric apace. It is "abstract" in the senee that ita 
"points" are functions on another metric space. 



A sequence of points in the metric epace • is a eequence of functioDi 
11'/1'/1, ... from E into E'. This sequence will converge to a point / E. 
if and only if 

lim D(J, I.) - 0, .-
in other words if and only if for each • > 0 there is a poaitive latepi' N IUCh 
that for any integer ft > N we have 

max 1d'(J(P),I.(P» : p E Ht < I, 

that i8 

d'(J(p),I.<P» < • 
for all pEE. ThU8 the sequence of points 1.,1., I., . .. of. CODverpi to 
the point I E If if and only if the aequeoce of functions II, It. I., ... on B 
converges uniformly to the function I. 

Suppose that a sequence of points /.,1., /., ..• of. is a Ceueh, aequeaee 
in the metric apace •• Then for an, • > 0 there Ie a poaitive in ..... N IUOb. 
that whenever ft, 7ft > N we ba~ 

D(J.,/') <" 
that i8 

max (d'(J.(P),I.(P» : p E Bt <" 
or 

d'(J.(P),/.(P» < • 
for all pEE. Aaaume that E' is complete. Then the pIOpoIition of tbiI 
aeetion is applicable, and it te1la us'tbat the eequence of fUDdioal 

• • 



11,1 .. 1., ... converpa uniformly OIl B to 8Om8 function I:B-B'. The 
.,..mou. theorem teUe UI that I iI continuoua. ThUll E If and 

8m/. -I -
in the __ of pointe of the metric apace If. ThUi the metric space If iI 
complete. 

. W. have proved the foIlowiDa .... t. 

n........ Lee B .. B' .......... , teiIA B com,., ..... B' coapWe. 
n. "'., 0/ all ~/wtt:IioMfroa B to B', teiIA IAe tliaIortt:e ...... 
_'-~/_,"'to" 

max (I(/(P), f(p» : "E BI, 
u • ..". .... .,... A ..... 0/,.,. 0/ IAU tMric.,...,..,.,.,.. 
if.."..." if" u. ~ CIG....,.., ........ 0/ fwdiou ... B. 

U II' - R we haft the IDtRio .... GI all continuoua ...... ftlued 
fuDot.IoDII OR a comPM' metric .... B, the diMaDce between two IUCh 
fUDCtloDlI and , beiDa 

max ( I/(P) - ,(P) I : , e BJ. 
ThiI metric apace iI impoa1aDt eIlOUIh to be cIeDoted by a atandard I)'IIlbol 
C(B) • 

........... 
1~ n-.. the 00Iltiaui\J f1l the fuDetioD I: • - • if 

JO if s<O . 
(a) 1(8) - l. if. ~ 0 

{ •• ! if .. ·O 
(b) 1(8) - s 

o 1.-0 
( ....... the ..... propIItIeI f1l the IiDe luactioo .... kDowa) 

1 ... ifs .. O 
(0) IC/I)-

1 Is-O 

~ 
lis luohatloa" 

(cI) IC/I) - _,1 Is _ r, ....... , .... , .... ia ___ 
, with DO COIIUDOIl divllon 

ott. tbua *1, .... ,> O. 
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2. Let E, E' be metric spaces, 1: E -+ E' a continuous function. Show that if 8 
is a closed subset of E' then J-1(8) is a closed subset of E. Derive from this 
the results that if 1 is a continuous real-valued function on E then the sets 
(p E E: I(P) ~ 01, (p E E :I(P) ~ 01, tp E E: I(P) - 01 are closed. 

3. Let E, E' be metric spaces, 1: E -+ E' a function, and suppose that 8,,8t are 
closed subaets of E auch that E - 8. V S. Show that if the restrictions of 1 to 
81 and to 8. are continuous then / is continuous. 

f. Let U, V be (open or closed) intervals in R, and let 1: U -+ V be a function 
which is strictly increasing (i.e., if X,1I E U and x < 11 then I(x) < I(Y» and 
onto. Prove that 1 and 1"1 are continuous. 

5. Let E, E' be metric spaces, 1: E -+ E' a function, and let 'P E E. Define the 
oacillation 011 at p to be 

g.l.b. (a E R : there exists an open ball in E of center p such that 
for allY X, y ill thill ban we have d'(j(x).!(y» ~ al 

if the bracketed set is not empty; if the set in brackets is empty we define the 
oscillation of / at 'P to be the symbol + 10. Prove that 1 is continuous at p if 
and only if the oscillation of 1 at p is aero, and that for any real number II the 
set of points of E at which the oscillation of 1 is at least II is closed. 

8. Let E be a metric space, 8 a aubaet of E, and let /: E-+ R be the function 
which takes the value 1 at each point of 8 and 0 at each point of e8. Prove 
that the set of points of E at which lis not continuous is precisely the boundary 
of 8 (of. Prob. 17, Chap. III). 

7. Let U be an open interval in R,let a E U, let E' be & metric space, and let 
1: U - lal- E' be & functlon. Define 

limI(x) - limI+ (x), 
-+ --

where 1+ is the restriction of 1 to U ("\ (x E R : x ~ aI, and 

limI(x) - limI_ (x), 
~ ... - .... 

where 1- is the rel!triction of 1 to U ("\ (x E R : z ~ a 1 I if these limits exist. 
Prove that lim 1 exists if and only if lim 1 and lim 1 exist and are equal. • 

~ ..... + .... -

8. Let U - Ix E R : x > aJ, for some positive real number a, and let I be a 
real-valued function on U. Define 

limI(x) = lim g(y), .-+- ..... 
where g: (0, l/a) -+ R is given by g(1I) ... I(l/y), if this latter limit exists. 
Prove that lim/ex) exists if and only if, given any f > 0, there exists a,num­

-+<0 

ber N such that if :t,1I E R and X,1I > N then II(x) - I(y) 1 < f. 
9. (a) Prove that v"i is continuous on I z E R : z 2: 0 I. 

(b) Evaluate lim :t - 1 . 
... 1 V"i-l 

(c) Evaluate !!'!!. 2.zI ~ 1 (cf. Prob. 8). 
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10. Di!l('uM t.he continuity of the function !: E' ...... R if 

{
_1_ if (x, 1/) '" (0, 0) 

(a) !(x,1/) = x' +0 1/' 
if (x, 1/) - (0, 0) 

{
-EL if (x, 1/) '" (0, 0) 

(b) !(x, 1/) - ~ +011' 
if (x, 1/) - (0,0) 

. {x1J' if (x, 1/) '" (0,0) 
(c) !(x,1/)'" ~ +0 11' 

if (x, 1/) - (0,0). 

11. Give a proof of the first proposition of ,3 (on the continuity of sums, prod­
ucts, etc. of continuous functions) that i8 balled directly on the definition of 
continuity. 

12. Prove the analog of the first proposition of ,3 for complex-valued functions 
on a metric space (cf. Probs. 20, 21 of Chap. III). 

13. Write down the details of the following alternate proof that a continuous 
real-valued function! on a compact metric space H is bounded and attains a 
maximum: If! is not bounded, then for" - 1, 2, 3, ... there is a point p. E H 
such that If (P .. )I > ", and a contradiction ariaes from the existence of a con­
vergent subsequence of PI, Pt, PI, .... Thus! is bounded and we can find a 
sequence of points ql, q" q., ... of H such that lim!(q .. ) -l.u.b.(f(p) :p EEl . .. -
A maximum will be attained by! at the limit of a convergent subsequence 
of q., q" qa, •••• 

14. (a) Prove that if 8 is a nonempty compact subset of a metric space H and 
'Po E E then min Id(p., p) : p E 81 exists ("distance from 'Po to 8"). 

(b)o Prove that if 8 is a nonempty closed subset of E- and 'Po E E- then 
min Id(p., p) : p E 81 exists. 

16. Prove that for any nonempty compact metric space H, max I d(p, q) : P, q E HI 
exists ("diameter of g,,). (Hw: Start with a sequence of paira of pointe 
I (P .. , q .. ) \ .. -1 ........ of g such that 

11m d(p., q.) - 1.u.b. Id(p, q) : P, q E H\ ,,-
and pass to convergent subsequences.) 

16. Let H, E' be metric spaces,!: H - E' a continuous function. Prove that if H 
is compact and! is one-one onto then !-I: E' - E is continuous. (Hint: 
J sends closed sets onto closed sets, therefore open sets onto open sets.) 

17. Is the function ~ uniformly continuous on R? The function VTiT? Why? 

18. Prove that for any metric space E, the identity function on E is uniformly 
continuous. 

19. Prove that for any metric space E and any Po E E, the real-valued function 
sending any pinto d{7Jo, p) is. uniformly continuous. 

20. State precisely and prove: A uniformly continuous function of a uniformly 
continuous function is uniformly contin'ous. 
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2I. Let S be a subset of the met.ric space E with the property that each point of 
eS is a cluster point of S (one then callI S denIe in E). Let E' be a complete 
metric space and I: S -+ E' a uniformly continuous function. Prove that. 1 can 
be extended to a continuous function from E into E' in one and only one way, 
and that this extended function is alao uniformly continUOUl. 

22. Let V, V' be normed vector spaces (d. Prob. 22, Chap. III) and I: V - V' a 
linear transformation. Prove the following statements. 
(a) If 1 is continuous at one point it is continuoul everywhere, and in fact is 

uniformly continuous. 
(b) 1 is continuous if and only if the set 1 III (z)II/l1zll : z E V, z .. 0, is 

bounded. 
(c) 1 is continuous if V is finite dimensional. (Hinl: Use a buiB 01 V.) 
(d) The set of all infinite sequences of real numbers with only a finite number 

of nonzero terms is a normed vector space if we define 
(ZI, Z., Z" ..• ) + (III, II" 1/., ... ) - (Zl + III, Zt + 1ft, Zt + II., ••• ) 

C(ZI, Zt, :ra, ... ) - (c.zl, CZt, c.za, ••. ) 
II (ZI, Zt, ZI, ... )11 - max { Izal, Iz.l, IZtI, ... 1, 

and the map sending (ZI, %t, ZI, ••• ) into (ZI, 2%t, 3%t, ••• ) Is a 0De-0De 
linear transformation of this normed ~tor apace onto itllelf that. Is not. 
continuous. ,. 

23. Use Problem 22 to prove that if V is a finite dimensional vector space over II 
and 11111, 1111. are two norm functions 01\ V (i.e., real-valued functions IUch 
that (V, IIlh) and (V, 1111') are normed Vector apa.cea), then there exist pcMi­
tive real numbers m, M such that. m S IIzIlJllzU. S M for all DOnsero a E V. 
Deduce that any finite dimensional normed vector apace is complete (u a 
metric space). 

24. Give another proof of the intermediate value theorem by completing the fol­
lowing argument: If 1 is a continuous real-valued function on the cloeed inter­
val (II, bl in R and 1(11) < 'Y < I(b), then 

l(l·u.b. {z E (II, hI: fez) S 'YI) - 'Y. 

25. Give a proof of the intermediate value theorem uaiDi uniform oontiDuit),. 
(Hint: URing the notation of this theorem, uniform aont.inuity implitl that, 
given any e > 0, if we divide [a, 6) into .. auftloiently larp number of .. bbater­
Viols of equal length then for at least one 01 the division points, we IhaIl have 
1/<1') - 'YI < e. Choose a sequence of ,'s corresponding to .. sequence 01 ,_ 
approaching zero, then a suitable subsequence.) 

26. Let II, hER, II < b, and let I be .. continuous rea.l-valued function on lo, hI. 
Prove that if 1 il onlH)ne then I«(a, 6) is (J(a),I(i)) or (J(b),I(a)}, wbiebever 
expreaaion makes sense. 

27. Show that if I: R -+ R is a polynomial function of odd degree, thenl(R) ··R. 

28. Show that any open or closed interval in E" is connected. 

29. A metrie space E is said to be 1IT1'tIr188 emmect«f if, given any" 9 E If, there 
is a continuous function I: (0, 1) - E such that 1(0) - ,,1(1) - f. Show that 
(a) an arcwise connected metric space is connected 
(b) any connected open subset of Eta is arcwiae connected. 
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30. Prove that a continuous ~\.aiued function on a cloaed interval in gt can-
DOt be ODe-ODe. ,1 

31. (A apace-filling curve) t' ' 
(a> Show tha~ the IUbeet 8 01 (0, I) consiatinl of all numbers having decimal 

expanaiona of the form 

.tJ.btca~.J) ••• 

(each Ga, 6", c. bein& one of the inteprs 0, 1, ., ., 9) is dOled. 
(b) Show that the real-valued functions f'a, IPa, IPa on 8 which send 

•• a~ ••• 

into the real numbers with decimal expanaions 

• tJafIttJI ••• , .6ababa ... , • CaClC. .. • 

respectively are continuous. (Note that each number in 8 has a unique 
decimal expaDlion, 10 that fPI, f'I, 'PI, are well-defined.) 

(0) Show that there are unique continuous rea.l-valued functions la,I • .!. on 
(0, 1) whose restrictions to 8 are f'a, IPa, IPa respectively, which equal ° at 
1, and whieh are linear on each open interval in e8 (cf. Prob. 5, Chap. 
III). 

(d) Prove that the function /: (0,1) - BI defined by I(z) - (fa(z),I.(z), 
1.(%» for all z E (0,11 ill a continUOUIl map of (0,11 onto the unit cube 
I (Za, %a, z.) E E' : Za, %a, :&a E (0, 1) I. 

32. Show that the sequence of functions 

Vi, vi z + Vi, ..;rz-+-"-'=z=+=Vi==z, ... 
011 Iz E R : z ~ 01 is converpnt and find the limit function. 

33. (a> Show that the sequence of functions z, z', zI, ..• converges uniformly 
on (0, tJ) for any tJ E (0, 1), but not on (0, 1). 

(b) Show that the sequence of lunctiona z(1 - z), zI(1 - z), zI(1 - z), ... 
convel'l811 uniformly on (0, 1). 

M. Is the Bequence of functions la,I • .!., .,. on (0, 11 uniformly convcrj(Cnt if 
z ' u u 

I.(z) - 1 + n,zt? If I.(z) - 1 + ,.it? If J.(z) - i + "lzlT 

36. Show that if the function I: R --. R is uniformly continuou8, then the sequence 

of functiona/(z + 1),/(z + O,/(z + ~), ... is uniformly convergent. 

36. Does the Bequence of functions z, ~, i, i, ... converge uniformly on R? 

37 • Let /a, /1, I., ... and la, It, It, ... be uniformly convercent sequences of real­
valued functions on a metric space E. Show that the sequence la + la, 
/. + It, /. + It, ... is uniformly converpnt. How about la II, II 'I, I. It, ... T 

38. Prove that the limit of • uniformly convercent aequence of bounded functions 
(from one metric apace into another) is bounded. 

at. Give an example of a converpnt sequence of continuous real-valued 
fUDGtiona 011 (0, 1) whoee limit function faila to be continuous at an infbIite 
awnber 01 pointe. 



40. W.,ie .,.<i, aDd for. -1,.,1, ... WI.: (.,i)-. beuiDcnuiq 
fuacb (I.e., I.C.) S I.C.) if :I S ,). PIoft tbM If .. eequeaoe 11,/ .. 1., ••. 
COIlftrlll to I ta-I is ~, aDd tIIat if I is COIltiaUOlll then the COIl­
....... UDifona. 

'1. w 1'/1,/ .. 1., ••• be COIltiauoaa real-vaIued functions on the compact metric 
apace B, with 1- tim I.. Prove that if 11CP) S I.CP) S I.(P) 5: ... for all -, E B then the aequence 11,/.,/., ... COOverpll uniformly. 

a. Show that the cIoeed ball in CnO, 1]) of center 0 and mdiUl 1 is not compact. 
(H"": CoMicl. the aequeoce or fUllCtions #e, zI, zI, •.•• ) 

a. H B is " compact metric apace aod ,. e B we pt " real-valued fUllCtion F on 
C(8) by I18ttiDa F(f) -I{JI.) for aliI E C(8). Prove that F is uniformly con­
tiaUOUL 

... GeDeraliae Problem a u folio .. : H B aod B' are compact metric ap&ceI and 
,,: B - B' .. " COOtiauOUl function, map C(B') into C(8) by I8Ddiq each 
IE C(B,) iat.o I 0 " E C(8). Prove that this map is uniformly continuous • 

.u. IAt B be " compact metric apace. Show that C(8) is a complete normed vector 
apace (cr. Ptob.22, Chap. III) if we add it. element. in the usual way, mul­
tip1, them by ..... aumbens'in the UIU&l wal, aDd take HJU - max IIICP) I : 
, E &'1 for aliI e C(8). Show that the map of Problem .. is " cootinuous 
liaear tnuaIIormatioo. 

4.&. Prove the ualog of the Jut tbeonm of the ohapW wbeD B is DOt compact 
but with a ..wict.ioa to bounded COIltiauOUl functions, the cliataDce between 
two BUell fuDctioD8l and f beiDc taken u . 

1.u.b.(cI'(j'CP),fCP» : p eBI. 
Do the aame tbiD& for bounded functions from &' to B' that are not DeCeIIIaI'ily 
continuoua. What is the relation bet.ween the two metric ap&cell1O obtained? 



CHAPTER V 

Differentiation 

The IUbject, of tbia chapter is one-variable M. 
ential ealeub.. The eIIeIltial items, and ..,. tMlr 
development, are familiar from elemet.t • ., caIeu1ua. 
This IfOUnd can ~ oovered with tpeed and pnaIeion 
sinee all the difiicult work hM been doae in tile ..... 
cedins chapter. 
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II. THE DEFINITION OF DERIVATIVE. 

lhdiftltlorl. Let I be a real-valued function on an open aubset U of R. 
Let %I E U. We.y tbat I is dil~ at z, if 

lim I(s) -/(~ 
.... S-%I 

exista. If it exiBta, this limit, often denoted I'(~, is called the tIeritHJliH 011 
at %to 

We remark to begin with that t;1 notion of limit used here is exactly 
u..t of the preceding chapter, since' a cluster point of the metric apace 
U and we are conaidering a function:ll'Om the complement el%ll of 1%11 
in U into the metric apace R (~y the function which UIOCiatea to 
each 21 E el%ll the element (f(z) - /(z~)/(z - z.) of R). AIJ alwaYB, if 
the limit exista it is unique. Thus I'(~, if it exiata, is neceasarily unique. 

A clearly equivalent definition of I'(~ is liven by 

J'(~ _ lim Jl%t'+ A) - /(~ • - ~, " 
Here " is tn"entood to vary in 10m. Open ball in R of center O. 

The"tion ' 

lim I(z) .... /(~ _I'(~ 
..... z-:-. 

is equiv4t to the existence, for ea4 I > 0, of a number 3 > 0 luch that 

I/(Z) -/(~ 'J'(~I S I 
Z -z, • 

whenever 21 E U, z ,. So, and 121 ~zj < 3. The last inequality is equiva-
lent to . 

lI(z) -/(~ -1'(Se* - %I) I S 'Iz - Sel , 
which alao holds if z - %to No. ·.t if • is taken amall enouah and 
121 - %II < • then it is automatically" that 21 E U, Bince U is open. Thus 
we can .. y. somewhat more briefly, tbat the equation 

lim /(21) -/(z.) -1'(%1) 
.... s-z, 

ill equivalent to the existence, for each I > 0, of a number 3 > 0 Buch tbat 

I/(s) -/(~ -I'(~(z - ~ I S 1121 - %II 
whenever Iz - Sel < •. 
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Recall that & function .,: R - B ia called linear if there exist numbers 
c, A: E R such that .,(s) - es + A: for all s e R. We then have .,(z) -
.,(z.) + c(z - z.) for any :re E R •• real-vaIued function on R sending 
any z into I(z.) + I'(z.)(z - z.) is linear. It foll01fl that I it dil"'~ 
at :re if and 0IIlJ ill ca IN t:loMlI ~ ,..,. :re br G liMClr /tmctior& 
in the __ that then exists & linear function tha~ ditlera from I by & 

very am .. l fraction of Iz -:reI if z is sufficiently near:rei worded preciaely, 
this condition is that there exist & linear function I{J 8uch that for any 
e > 0 there exists a 3 > 0 such that 

I/(z) - .,(z) I ~ tlz - z,1 

whenever Iz -:reI < a. 

, -/(z) 

VlQu •• 25. Graph 01 • fUDetion that is differentiable at z.. Near z. the graph ia very 
cIoIIe to • eertaiD straight line (the "tanpnt line at z .. z."). in the IIeIlBe 

indicated. 

Pro"""ora. Let U IN CUI open aubtet 01 R, I: U - R. III it diJfere,&tiable 
at :re E U then I it continuous at z .. 

Pick any ft > 0 and then a 8uitable number Ie > 0 8uch that 

I/(z) -/(z.) - f'(z.)(z --z,) I S tvl z - z.1 

whenever Iz - z,1 < a.. Then if Iz - %01 < Ie we have 

I/(z) -/(z.) I ~ I/(z) - I(z.) -I'(z.)(z - z.) 1+ I/'(Zo)(s - %0) I 
~ (tv + If'(z.) f) Is - :reI· 

If, for any e > 0, we choose a - min (a., e/(ft + 11'(z.) f)1, we have 
I/(z) -/(z.) 1< e whenever Iz - z,1 < a, pro~nl the propoeitioll. 
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lhrIbddoll. Let / be & .... -vaIued function on an open aubeet U of R. 
If /'(s.) exiata for &11 a:. E U then / is called diI .... diable "" U (or Jun 
dillIrfIftliablt). The function/', olten denoted tl//tk, is called the tleriwtiH 
all. 

The notation d//tk (or tl/(s)/tk) baa many obvious defects, but at 
least we usually know what is meant. 

A differentiable lunction is nectlllll&l'ily continuoue, but a oontinuoue 
function is not neceaaarily differentiable. For example the abeolute value 
function is continuous on all 01 R but it is not differentiable at 0, ainee if 
s"O 

Isl-IOI .l!l { 1 if s > 0 
s - 0 - s - -1 if s < O. 

No limit can exist as s approachea 0 since any Op8n b&1I in R of center 0 
contains both numbera INAter than aero and numbera _ than MI'O. 

II. R1JLES OF DIFFERENTIATION. 

In very simple C88e8 it is easy to differentiate (tbat is, compute denva­
tivea)' directly from the definition. For example, if J is a conatant function, 
that is il J(z) - c for all s E R, where c is lOme fixed real number, then 
for any a:. E R we have 

J'(a:.) - lim J(s) - J(sO) _ lim ~ - lim 0 - O • 
.... :r:-a:. .... :r:-:r:e ..... 

If II is the identity function, that is if II(S) - :r: for &11 :r: E R, then for any 
zaER we have 

1I'(a:.) -lim lI(s) -1I(a:.) _ lim :r: -:r:e _ lim 1 _ 1. 
- .. :r:-So ...... :r:-:r:e - .. 

These reaulta are uaually written 

de tk .-0, .-1. 
For more complicated functiona, differentiation by direct 1'8COUI'I8 to the 
definition is impractical, 10 special rulea are developed. The followina 
proposition makes the differentiation of rational functiona almoet mechan­
ical. The fonnulas lor differentiating exponential, loprithmic and tripo­
metric functiona will have to wait until the next two chaptel'8, where theBe 
functions are given adequate definitions. 
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PropoRtion.. 1M I cmtl , be ~ ItIfIdiau em _",. ...,., U 0/" 
111 cmtl , care di6ereMabit ,., 1M poiftC Z. E U, lAM • ... 1 + " 1- 't If, 
cmtl, il '(%0) .,. 0, 1/,. TAN tlerivativel ,., %0 are giNn '" 1M I~ 

(f+ ')'(%0) -'/'(%0) + (~ 
(f - ,)'(Zo) -1'(%0) - (~ 

(f,)'(~ -/(%o)(z.) + ,(z.)/'(z.) 

(L)' (%0) _ '(%0)/'(%0) -/(~(z.) • 
, (,(~)t 

The proof, to be given shortly, is by direct com~OD. The Omit 
formulu of the corollary on page 76 are wsed repeatedl)'. The eont.iDai\y 
of 1 and , at fit is also used, in the form 01 the .tatementl 

lim I(z) -/(%0), lim ,(z) - ,(z.). - -In the ease of the function 1/" the 888Umption that ,(z.) ,. 0 inIIuN 
,(z) ,. 0 for all z in lOme open ball 01 center z. (by the eontinui\y of , at 
z. and the reeult on pap 75),10 that it is permieeible to I'eItrid U to a 
8Ill&Iler open set containing %0 on which , is nowhere 1Iel'O, baniBhiDl all 
concerns about poBBible aero denormnatora. Now that we have given all the 
I'eaaons for the v&iidity of the formal proo", here are the formal plOOfa 
themselvel : 

(f + ,)'(z.) _ lim I(z) + ,(z) -/(~ - r<z.) 
..... z-z. 

_ lim I(z) - 1(%0) + lim ,(z) - ,(!!) 
..... Z-%o ..... z-z. 

-/'(%0) + ,'(%0). 

The proof for (f - ')'(%0) is the same; jUit replace each , by -,. 

(/,)'(z.) _ lim I(z),(z) - I(z.),(!!) 
-.. Z-%o 

_ lim (/(Z) ,(z) - ,(!!) + ,(z.) I(z) - I(N) 
..... z-z. Z-Zt 

_ lim I(z) • lim ,(z) - ,(%0) + ,(z.) • Hm I(!) -/(N 
..... --. Z-Zt --. z-,Zt 

-/(%0)(%0) + ,(z.)/'(z.). 

To find (//')'(%0), it is a little easier to 8rat find (l/,)'(z.): 

(1/')'(%0) - lim (1/,(z» - (1/f(z.» _ lim f(~ 
..... z-Zt - .. (z- ) 

lim ,(z) - ,(z.) 
..... z-z. __ (a-.) . 
,(~ lim ,(z) ('(z.»' ..... --



Therefore our final step is 

U/,Y(z.) - (J. (l/,»'(Zo) -/(Zo) • (l/,)'(Zo) + (l/g(Zo» '1'(Zo) 

__ 1(%o)g'(Zo) + I'(xo) = g(Zo)/'(Zo) -/(Zo),'(%o) 

(g(Zo»1 '(%0) (g(Zo»1 

CoroUary 1. II I ill G retJH1Glued junction on • open aubaBe 01 R mad 
cER, tAm 

This means, of coune, that for any Zo E R at which I is differentiable, 
(cf)'(Zo) exista and equate cf'(Zo). This followa from the formula for differen­
tiating a product, together with the known result that the-derivative of a 
coDltant function is 1eI'O. 

CoroUary J. For.y integer ft, dZ'/dz "'" nz--1• 

It is undeJ'Btood that if ft ~ 0 then the function Z" is defined only on 
the DODJI8I'O real numbeJ'B. The result is known if ft - 0 or 1. If ft is a positive 
intepr greater than one we repeatedly apply the formula for differentiating 
a product, as followa: 

dzI tI dz dz 
• - .(z • z) - ~ + ~ - Z • 1 + z = 2z 

dzI tI dzI ; dz 
• - .(21 • zI) - Z dz -t 7 - 21 • 2z + sS - 3sI 

iJst tI dzI, a 
• - a (21 • zI) - ~ +,7 - z • 3sI + sS - 4s' 

dzI tI dz" a 
di'" - di'"(s .' sI) - ~ + ~ - z • 4s' + :r:t .. 5:r:t. 

Clearly this ptocela can be continued indefinitely. Each computation worka 
out as above, giving at each stage the formula dZ' /a = nZ"-I. This proves 
the result for ft ~ O. If ft < 0, we set ft = -m, eo that m > 0, and complete 
the proof with the computation 

til tlZ'" 
.,. ~ 1 ) s-. a - 1 • di' -mr-I 

". - C&\z;i' - (s-)' == sS. - -mz-o-1 - nz-l. 

The next result is the ao-called "chain rule," or rule for differentiating 
a function of a function. Informally stated, if " - ,,(y) and y - I/(z), eo 
that" - "(,(21», then 
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" .......... LeI U _ v ". .". ...".." 01 R, _ ", I: U- V, 
,: V-R'" fwtdtou. Let %IE U". .. IIuat I'(~ - I'(J(~) 'aUt. 
T_ (g 0 I"(~ .. _ 

(g 0 n'(~ - "(J(~)/'(~. 

for all J/ E V. Also 

lim A(y, y.) ... ,'~ - A(YI, y.), .--
80 that A{JI, y.) is continuous at ,.. Now let II. "'/(~,Y -/(z). Since a 
oontinuoua function of a continuous function is continuous, 

lim A (J(z),/(Zt» - I' (J(~). -.. . 
Hence 

(g .f)'~ _ lim ,U(z» - ,(j(-» _ lim A{j(z),/(~){j(z) -/(tt» 
.... z-_ .... z-Zt 

- lim AU(z),/(~) • lim I(z) -/(~ - I'U(z.»/'~ •. .... .... z-_ 

II. TIlE MEAN V ALtJE THEOREM. 

",...,.... LeI I be " reakGl_ fwu:tiIm Oft Gft. OJHIA ""*' U 01 R IIuat 
CIUaUIa • ~ or " m ___ cIllhe poitit _ E U. Then if 1 ia diDmn-
liable at Zt, I'(Zt) - o. 

If I'(~ "0, there exiata a real number a > 0 BUch that if z,. Zt and 
Iz - Ztl < a then 

I/(Z) - I(z.) -I'(~ I < II'(~ I 11-_ . 2 ' 

that is, 

1'(-) - I['(s.) I < fez) - I(~ < I'(~ + II'(~ I . 
2 11-_ 2 
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Since II'(Zo) I equals either /'(Zo) or -/'(Zo), each of the two extreme terms 
of the lut inequality is neceBllarily either l'(z0)/2 or 3/'{Zo)/2, both of 
which have the same sign ul'{Zo). Thus if z '" Zo and Ix - z.1 < a, then 
(J(x) - I (zo) ) I(z - xo) hu a constant sign. But since I attains a maximum 
or a minimum at Zo, I(z) - I(z.) is always nonpositive or always non­
negative for all z E U, henrp, always negative or always positive if s ,. z. 
and l:t - rol < 15. On the other hand the denominator z - Zo can be either 
positive or negative. Therefore we can find an x)l Zosuch that Ix - z.1 < a 
and (f(z) - I (ro) ) I(x - :to) is either positive or negative, whichever we 
wish. This contradiction proves that the 888umption that/'(Zo) ,. 0 is false. 

Lemma (Rolle'. theorem). Let a, b E H, a < b, and lell be CI continUDUa 
rt.al-t'alued lunction on (a, bl that i. differentiable Oft (a, b) and IUCA tAm 
I(a) = I(b) = O. Then there erial. a number c E (a, b) IUCA tAm /'(c) - O. 

For since (a, bl is compact, 1 must attain a maximum at at leut one 
point of (a, bl, and also a minimum. If both maximum and minimum are 
attained at the end points a, b then since I(a) .. I(b) .. 0 we must have 
I(x) == 0 for all:t E (a, b), sO that/,(c) = 0 for all 0 E (a, b). In the contrary 
case, I attains a maximum or a minimum at some point c E (a, b), and the 
previous result gives /,(0) = O. 

A slight generalization of Rolle's theorem is the mean value theorem 
given below; Rolle's theorem is the special cue where I(a) - feb) .. O. 
The mean value theorem is illustrated in Figure 26. 

FlOUR. 26. The geometric ICnN! of the mean value theorem: the P'&Pb of a dift'erenUabIe 
function has at Ieaat one tangent parallel to any chord. Thie ie iUuatrat.ed 
for ICveraJ function •. The bottom curve ahoWl how the theorem falle K 
dift'l'rentiability ia milling at one point. 



Theorem (M4NUI _ue eIaeorem). Let a, " E R. a < ". _ ,., [ ". a 
continuoua real-t1alved jufld.ion 011 [a, b] III4t ;. tli6~ 011 (a, .). 2'AM 
IAere ui'" a number e E (a,") IUCI\ III4t 

[(") -[(a) - (b - a)f(e). 

To prove this, define a new function 11': [a,,,) - R by 

F(z) - I(z) - I(a) - 1(11) -/(a) • (:I: _ .) "-a 
for all z E [a, b). (Geometrically F(z) is the vertical diatance ...... the 
If&ph of lover [a, b) and the line lIeIIllent tbrouah theead poiat.l 01 thiI 
IJ'&Ph.) Then II' is continuous on [a, b), differentiable on (., b), and rc..) -
11'(") - O. By Rolle's theorem, there axist.l ace (a, b) such that 1"(0) - o. 
Thus 

F'(e) - I'(e) - 1(") -/(.) - 0 
b -a ' 

provinl the result. 

Corollary 1. II a retJkaluetl Itmdion [ 011 em .. w.nal i1I R Au 
_ivaliN "'0 at each point, tIum I ia COMIaftt. 

We have to show that for any points a, b in the open interval we have 
I(a} - I("}. Without lea of generality suppose • < b. For lOme e E (a, 6) 
we have I(b) - I(a) ... (b - a)l'(e) - O. Thus indeed I(a) -/(b). 

Corollary J. 1/ I anti fI are real-t1aluetl jufld.iDM 011 an .. iIWncIl i1I R 
tDAicI& Mve lite .. me _illative at eaM point, tIum /_ fI tli6er 6rI a COftIIanl. 

For (J - fI)' - J' - fI' - 0, 10 I - fI is COIlItant. 

DftIift.doft. A real-valued function 011 a sublet. U of R is called 

ir&cretuinrI) { I(a) S/(b) 
*idly iftereai,., ~ if, whenever a," E U I(a) </(6) 
~ (and a < b, we have I(a) ~ 1(") 
*idlfI tltft:retui,., J I(a) > [("). 

CoroUary I. 11 I;' a ~juftJ:tion .. _.,. ..,.,.., i1I R lAst lot 
a poeitiN (....,.) ~ at .... poW, .. I ;. ",..., __ • .., 
(atrldlr ~). 

For if a < ", then/(b) -lea) - (b - a)f'(e) baa thuamuip _/'(0). 



U. TAYWRtS THEOREM. 

Let U ~ an open BUbaet of R, I: U - R a differentiable function. If 
the function I': U - R ill differentiable, we lay that I is ttDice ditferentiabk 
and call (f)' the teeond derWaliH 01 I, writinl (j/)' 88 /" or 1(2l. If /(1) ill 
differentiable, we lay that I ill til,... lima ditferenliabk and call (j(I», 
the IAinI tlilrVatitle 01 I, wriuns (j(l)' .. 1111 or I"l. Similarly for functioJl8 
that are " 5, 8, • .• times differentiable. For any integer n > 1 and any 
St E U we.y that I ill " lima ditferenliable at Zo if the restriction of I to 
IOIIl8 open ball 01 center Zo ia (" - 1) times differentiable and (j(II-l)'(St) 
eDt.; we then write (j(-l)'(s.) - 1(·)(St). ThUB I is " times differentiable, 
lor a given poeitive integer fa, il and only if it is " times differentiable 
at each point of U. The ,," derivatiye 1(11) of I is often denoted 

If., _~ 
r ... 

In the NIIt of tbia l8Ction " will be one of the nonneptive intesera 
0, 1, 2, .... For convenience the Nf'O'A deriIH:IliN 01 G /fmt:lirm I is defined 
to be IWI - f. Recall that 

"I - 1 • 2 • 3 ... " 

if" - 1,2,3, ..• ,10 that 

(" + 1)1- (" + 1) • "I. 

In order that the laat equation aIao hold if" - 0, we define 01 - 1. 

Lemma. lAC U be CJft open sf&tervGl i" R and kI 1M IUftClift/: U - R be 
(" + 1) lima ditferentiabk. II lor CJftti G, b E U _ ~1UJ R .. (b, G) E R b" 
1M .,.,t'on 

1(6) _ I(G) + r(G)(b - G) + /"(G)(b - G)I + ... 
11 21 

+ I'II)(G)~ - .)" + R.(b, G), 

For &Il7 ~ E U we have 

1(6) _/(~) + r(~) (b - z) + /"(:&) (b - Z)I + ... 
11 21 

+ P")(Z) (b :t)1I + R.(b, ~). 
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For fixed b, each term in tbia equation is the value at s of a real-valued 
function on U. Each of theee functions except the laat is diIIerentiable, 
hence alao the last. Differentiating both aidea of the equation we obtain 

o _ I'(s) + (I'(s) tl (b - s) + I"(s) (b - s) ) 
tk 11 11 

+ (r(s) tI (b - S)I + /'''(s) (b - s)· ) + ... 
tk 21 21 

+ (tAl(S)! (b ~t)· + p·+I)(s) (b :Is).) + ! R.(b, s) 

_ I'(s) + (-I'(s) + r(s) (b - s») 
. 11 

+ (-r(s) (b - s) + I"'(s) (b - S)I) + ... 
11 21 

+ (_p.l(s) (b - s)-, + Ic .... "(s) (b - s).) + .!!.B.(b s) 
(ft - 1)1 ftl tk' 

_/c .... l)(s) (b :t)· + ! R.(b, s). 

Theorem (Taylor'. theorem). 1M U be "" open inlerval in R anti let the 
/tIfu:litm I: U - R be (ft + 1) lima tlifferentiabk. Then lor ""11 a, b E U 

we"'" 
I(b) -/(G) + .lJ!l.(b - G) + [j&(b - G)I + ... 11 21 

+ IC·)(G) (b _ G). + c .... I'(e) (b - G).+I 
ftl . ft+l)1 ' 

Were e ia tome ftumber between G a.ntl b (or, if a anti b are equal, c = a). 

This is trivial if G - b, 80 881ume that G" b. We need to show that 

Ic .... l)(e) 
R.(b, G) - (ta + 1) I (6 - G) .... , 

for IOIIle e between a and b. Since G ,. b there is a unique real number K 
IUCh that 

(b -;.) .... , 
B.(b, G) - K (ft + 1) I 

The function rp: U - R defined by 

(b - s)·+1 
rp(s) - R.(b, s) - K (ft + 1) I 

for all s E U is differentiable. Furthemlor.e !p(a) - rp(b) - O. Thus the 
restriction of rp to the interval [a, b) (or to the interval [b, oj if 0 > b) Batis-



flee the conditionl of Rolle'l theorem. Hence ,,'(c) - 0 for lOme c between 
G and b. Since 

"'(s) __ /(rt+1)(S) (b - s)· + K: (b - s)· 
ftl ftl 

we have K - /(rt+I'(C). Thus 
fCrt+ll(c) 

R.(b, a) - (ft + 1)1 (b - a)"'I, 

88 W88 to be proved. 

Note that the C888 n -= 0 of thil theorem ill eII8etltially the mean value 
theorem. There ill a little more generality here in that it ill not 88IUJIled that 
a < II, but the 888Umption that I il differentiable on an open interval con­
tainilll G and b il coneiderably more Itringent than the analogous COnditiOD 
in the mean value theorem, where/W88 &88umed differentiable only beCween 
a and b. However it il not difficult to get a IOmewhat more IODI-winded 
,tatement of Taylor'l theorem which ill an authentic pneralil&tion of the 
mean value theorem (1188 lubeequent Problem 15). 

The term "Taylor" theorem" we have attached to the above reeult 
iI a convenient milnomer. Taylor', oriBinai ,tatement w .. much weaker. 

PROBLEMS 

1. DiIIeuse the ditTerentiability of the function J: R -+ R if 

{
Uin! ih"O 

(a) J(z) - It 

o ih-O 
(allUme the paeraJ propertiel of the line function are known) 

{ 
zllin ! ih" 0 

(b) J(:r) _ It· 

o ifz-O 
(e) J(z) - v'lil. 

2. Let the real-valued function J on the open subeet U of R be dUlerentiabie at 
the point _ e u. . 
(a) Prove that /' <I:t) _ = f(- + A) ; [('" -1). 

(b) If cr, _ e R, compute!: /<- + erA) ~ [('" + Ia). 
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3. Here is a "proof" of the chain rule: 

(,0/)' (%e) -lim ,(fez» -,(J(%e» _ lim(,{J(s» - ,(J<!e» • I(z) -/<N) 
..... a - %e _ ICz) - I(z.) :I - .. 

_ 11m ,Wz» - d/C .. » . 11m ICz) -/(." 
..... I(z) -/(z.) ..... z- .. 

- y(f(%e» 1'( .. ). 
ea) What is wrong with this "proof"? 
(b) Alter thie slightly into a correct proof. 

4. Prove that if I is ad ifferentiable rea1-valued function on an open lntemllln 
• then I is increasing (decreasing) if and only if I' it aonaeptiYe (DoapoIlUYe) 
at each point of the interval. 

6. AlBumlng the elementary properties of the tripnometrie fUllC!tioDe, .., tItM 
tan z - z is strictly increasing on (0, 1r/2), while the functioD lin z ia II&rictIJ 
d~ng. z 

8. Prove that a diflerentiable real-valued fUDOtloD on R witb IIouaded dIrifttIYe 
I, uniformly eontlnuoUl. 

7. Let G,. e., G < ., and let I be a dllerentlable rea1-vaIued , ...... caD .. 
opeI1 aubeet of •. that eontaina IG, b). Show that if .,. II uy real_her be­
tween I'(G) and I'(b) then there exiate a number c e (.,6) ... tIIM .,. -
I'(e). (Hi"': Combine the mean value theorem with the lntermecllate .,.. 
theorem for the function (J(z.) -/(~)/(zl-~ on the lit 1~ .. &'t)E.: 
• ~ Zl < %t ~ bl.) 

8. Let.,. e ., G < b, and let 1" be continuous rea1-vaIued fuaetiou on 1-, II 
that are differentiable on (G, .). Prove that &here exiate a number c e (.,6) 
such that 

1'(c)(,Cbr- ,(G» -,'(c){J(.) - I(G». 

(Hint: Consider the function 

F(z) - (fez) -/(G»(,(.) -,(G» - (g(z) - g(a»(fe6) - I(a».) 

9. u. Problem 8 (Cauohy mean value theorem) to prove the folJowlna ...... 
of L'Hoapital" rule: 
Ca) Let U be an open interval in H and let I and II be diflereat.iable ............ 

funetiona on U, with, and,' nowhere 181'0 on U. Let a be aa extnIMll.r of 
u. Supp088 that limJ(z) - lim ,(z) - o. Thea - -

I, lJ!l I' tJ!l 
~ ,(z) - ~ yCz) 

if the right.-band limit uista. 
(b) &me .. (a), except that it is &IIWD8d tbat 

. I' 1 I' 1 0 :! 1(:1) - :! ,(:I) - • 

(e) Same .. (a), except that U - fa e. ::1> a' for IOID8 a e R·and • ia 
replaced by the eymbol +. (el. Prob. 8, Chap. IV). 
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(d) Same .. (c), except that it is aaaumed that 

lim 1 lim' 1 0 
-_/(s) - __ g(s) - . 

10. State pnciaely and prove: An " times differentiable fUDCtion of an " times 
differentiable function is " tiDies differentiable. 

11. Let I be a real-valued function Oil aD open I1llxlet U of R that is twice durer· 
entiable at StE U. Show that if I'(~ - 0 and I"(~ < 0 U"(~ > 0) then 
the restriction of I to lOme opeD ball of center St attaiDa a maximum (minimum) 
ats.. 

12. A ... ·valued function on aD open interval in R is caned COIIIIG if no point on 
the UDe eepnent between any two points of its II'&ph lies below the lraph. If 
the function 18 differentiable, thia condition is kDOWD to be equivalent to the 
ao*ntioD that DO point 01 the Ir&Ph lie below any point of any taDpDt to the 
paph. If the function is twice differentiable the condition is known to be 
equivalent to the eecond derivative of the function heinl nonneptive at all 
pointe. State tbeee coDditiODl in precise analytio terms and prove \hem. 

la. U. Problem 9(a) to Ihow that if 118 a real-valued function on aD open IUlxlet 
U 01 R that 18 " tim. dilerenfiable at the point So E U then 

I(St + A) - I(So) -I'(:co) ! -I"(s.) ~ - ... - I'-'/(:co) ~ 
lim 11 21 (n - 1) I 
~ Aa 

[<"'(it) 
- nl . 

14. U. Taylor's theorem to prove the "binomial theorem" for positive iDte&ral 
exponent R: 

(a + s)" _ a" + ncaa-IS + "(,, - 1) a...-a,;a + n(n - l)(n - 2) a.....aza + ... +;ca. 
2 2·3 

15. Show that Taylor's theorem may be Itreqtbened .. followa: Let I be a con· 
tinuous real·valued function on the olosed interval in R of extremities a and 
II that Ia (" + 1) times differentiable on the open interval with these same ex· 
tremities and I1lPpoae that lim I'(s) , lim I"(s) , ... ,lim/III'(s} exist and that ........ .... 
1',/", .. . ,1'''' are bounded. Then 

1(11) -/(a) + (lim/'(S»(II - a) + ... + (lim/III/(s»(11 - a)a _ 11 ._ "I 

for lOme c between a and •• 

(II - a)II+1 
+ I'"+I/(C) (n + i) I 



CHAPTER VI 

Riemann Integration 

w. ctiIcuII in thia chapter the definition uid buio 
propertiel of the Riemann intecral for real-valued func­
tiona of one real variable. The integration of functiolll 
of eeveral real variables will be diacWl8eCi in the laat 
chapter, topther with some finer pointe of the one­
variable cue. Here we are concerned only with the 
timplE8t reeulte, up to the integrability of a continuous 
function and the fundamental theorem of calculus. The 
detaila of the proof. will be the only eeeentially new 
material for most atudente. In the laat section we apply 
our result. by living a rigorous treatment of the 
logarithmic and exponential functions. 



111 VI. JllllMANN INTIIOJlATlON 

11. DEFINITIONS AND EXAMPLES. 

Definition. Let a, b E R, a < b. By a partition 0/ the cloaed interval 
[a, b) is meant a finite sequence of numbers Zo, %1, ••• , %N such that 
a = Zo < %1 < . .. < XN = b. The width of this partition is defined to be 

max (%, - %i-I : i -= 1,2, ... , NJ. 
If I is a real-valued function on [a, b), by a Riemann aum lor / corruponding 
to the given partition is meant a sum 

f I(x/){xe - XI-a), 
c-t 

where %1-1 S x/ S x, for each i-I, 2,0' 0, N. 

Thus, given any function J: [a, b) - R and a partition %e, Xl, ••• , XN 

of [a, b), there are lote of Riemann sums for / corresponding to this partition, 
depending on the choice of Zl', z.', 0 •• , XN'. In the special ease where 
fez) ~ 0 for each % E [a, b), each Riemann sum can be considered an 
approximation for the "area under the curve y = I(x) between a and bit, 
that is, the "area bounded by the x-axis, the graph of I, and the lines 
x = a and x = b", as illustrated in Figure Z1. However this geometric in­
terpretation must not be overworked for at least two reasons. First of all 
we do not want to restrict ourselves to functions that are positive. Second, 
our arguments must have validity independent of geometric intuition. 
But the geometric interpretation does make the following definition 
reasonable. 

Dfflinition. Let a, b E R, a < b, and let J be a real-valued function on 
[a, b]. We say that J is Riemann integrable on [a, b] if there exists a number 
A E R such that, for any E > 0, there exists a 6 > 0 such that 18 - A I < I! 
whenever 8 is a Riemann sum for J corresponding to any partition of 
[a, b) of width less than 6. In this case A is called the Riemann integral 01 
/ bettoeen a and b and it isdenoted f I(%)th;· 

It makes sense to speak of the Riemann intP.gral of I between a and b 
since A is unique, by the usual argument: If A, A' are Riemannintegr&1s 
of J between a and b then given any e > 0 there exists a 6 > 0 luch that 
IS - A I, 18 - A' I < f whenever 8 is a Riemann sum for J corresponding 
to any partition of [a. b) of width less than 6. There are partitions of [a, b) 
of widt.h 1f'M than any pl'C!!l'ribed positive number since, for example, the 
partition by N equal subdivisions (with %i = a + i(b - a)/N for i .. 0, 
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FIOUD 27. Area under a curve approximated by a Riemann lum. The iacUcated oboioe 
of ,;,',2:1', ••• , ,;,' give\! a certain Riemann IUm corrwpoodi", ta the ...... 
tition 2:1, fAIl, .' , " ';" and thil lum can be COJIIldered aD apJ)l'Olllma&ioD or 
the area under the curve. The maximum (minimum) value of the lUemaIua 
lum_ for I corre_pondlnl to the liven partition Ia liveD by the IUIR or the 
&real or the talleat (Ihorteat) redanp. III the &pre or .... let. .. J. 
[ZI, z,l, "., [z., ,;.1, and the "true" "area under Ute eurve" m_ lie be­
tween theae latter extremea, u doea our qnal Riemann IUM, ThUl the 
error in making our original approximation to the area under the eurve ill 
at moat the total of the dift'erenCftl in area between the talleet and the 
IIhorteat rectanglea. It aeem8 I'l'uonable that if we divide (a, 6) iDta more 
and more pieCftl of widthp approaching JefO, then all our Riemann IUIDI 

will approach a certain definite limit, the true "area UDder the eurve". (Of 
course the only way to make thil rigoroul ia to UIe thia or aDOtber prooedure 
to define the notion "area under a curve". For a epecifie eurve the latter 
notion need not exist, just u limits do not alwaya exiat.) 

1, ... , N) has width (b - a)IN, which is small if N is large. Hence we can 
actually find a Riemann sum 8 for f corresponding to a partition of [G, b) 
of width less than a, 80 that the two inequalities 18 - A I < ., 18 - A' I < • 
hold. Hence I A - A' I < 2 •. Since • was an arbitrary poeitive number we 
must have IA - A'I- 0, or A - A'. 

Note the use of ~ in [.' J(z)dz as a "dummy variable"; we oould 

equally well have written L J(t)dt, or L' I (u)OO. 
We follow the usual convention of saying that I is, or is not, Riemann 

integrable on (a, b), and in the former case writing L' J(z)dz, even if lis a 
function defined on a larger set than [a, b), by implicitly replacing I by its 
restriction to (a, b). 
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ExAMPLE I. I(x) .. c, a constant, for all x E [a, b). Here we have 
any Riemann Bum 

f/(x/)(s. - s.-a) - f c(:c. - Xi-a). - C(ZN - x.) ... c(b - a). .... .... 
Since all Riemann luml equal c(b - a) we have I Riemann integrable on 

[ca, b), with L'/(s)tk - c(b - ca). 

One of the principal reaultl of this chapter will be that if I is con­

tinUOUl on [ca, b) then L· I(s)tk exiltl, that is I is Riemann integrable on 

[a, b); this is trivially illUitrated in Example 1. But if I is not continuoUi 

then L· I(s)tk mayor may not exist, &8 is shown by the following examples. 

ExAIiPLII 2. Let E be a fixed point of [a, b), let c E H, and let 

I(x) _ {O ~f s ,. E 
ells-E. 

For any Riemann BUm 8 correaponding to a partition of (ca, b) 01 width lell 
than • we have 181 < 21cl' (the coefficient 2 appearing since E may be 
one 01 the partition pointl s. and we may in this cue have both s/ and Zt+l' 

equal to c.) 80 clearly r. I(s)tk - o. 

1 -----.,,--.., 

• 

I 
I 
I 
I 
I 
I 

• • 
l'Iavu.. Graph of the lunotiOll 01 Example 3. 

ElwIPLII 3. Let. CI, fJ E [a, b) withCl < fJ. Let/: [a, b) - H be defined 

{I if x E (CI, If) 
I(x) - 0 if x E [a, b), x (! (CI, fJ). 
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Let :ro, %1, ••• , %N be a partition of (a, b) of width less than 3 and consider 
a Riemann sum for I corresponding to this partition, say 

8 - fl(%a')(x, - X'-.), 
1-1 

where X'-I :S %/ S x, for i-I, 2, ... , N. Sincel(xl) is 1 or 0 according as 
the point ~' is in the open interval (a, ~) or not, we have 

8 - 1:. (%a - Z'-I), 

the asterisk indicating that we include in the sum only those i for which 
xl E (a, ~). Now choose p, q from among 1,2, ... , N such that 

% ..... 1 S a < x., Xq-I < ~ S XV' 

Then %a' E (a,~) if p + 1 SiS q - 1 and ~: ft (a,~) if i < p or i > q. 
Therefore 

1: (x, - ~I) S S S 1: (x; - X'-I). 
~1S;':Sq-1 pS;S, 

By the choice of p and g, ~ - a :S x" - X ..... I < (g - p + 1)3, so that if 3 
is lufficiently Illlall we lUust have p + 1 S g - 1, in which case the last 
inequality Bimplifies to . 

Z,_I - x,. S 8 S x" - X,._I. 
Therefore 

(Xt:-I - ~ - (%p - a) :S S - (~ - a) S (x, -~) - (X ..... I - a). 

Since the partition has width less than 3, each of the quantities Xv-I - ~, 
z,. - a, z" - ~, Z ..... l - a is of absolute value less than 6. Therefore 

/8 - ~ - a)l < 23. 

Since 3 was an arbitrarily small positive number we conclude that I is 

Riemann integrable on [a, b) and that J: I(z)d:r; = ~ - a. 

ExAMPLE 4. Define I: [a, b) - R by setting I(x) = 1 if x is rational, 
otherwise f(z) .. O. (This is t.he rest.rict.ion to [a, b) of Example 6. page 
70.) Any interval in R is known to contain bot.h points that are rational 
and points t.hat. are not.. Hence for any partition .1:0, ~I, ••• , ~N of [a, bJ 
we can choose the xl'l to be either all rational, or all not, in which case 
the Riemann BUms are respectively b - a and O. That is, b - a and 0 
are Riemann BUms for f corresponding to any partition of [a, b), 110 matter 
what the width. It is clear that f is not Riemann integrable 011 [a, b). 

In the future, for: brevity, we shall say that a fUllction is integrable 
on a closed interval, rather than Riemann integrable, and speak of its 
inUtlral instead of its Riemann integral. It should be borne ill miud however 
that there are other integration processes than that of Riemann, and for 



theae other integration procet!l8es our resu1ts mayor may not be true. For 
example the moat commonly used integral after that of Riemann is that 
of Lebesgue. A given real-valued function on [a, bl mayor may not be 
Lebesgue integrable. If it is then its Lebesgue integral is a certain real 
number. If a function is Riemann integrable then it is also Lebesgue 
integrable and the two integrals are the same (hence can be denoted by 
the same symbol J.b j(x)dz). But many functions that are not Riemann 
integrable are Lebesgue integrable, so the Lebesgue integral can be of 
greater use. For example, the function of Example 4 above is Lebesgue 
integrable; as a matter of fact its Lebesgue integral is zero, in line with the 
fact that in some sense the points of the interval [a, bl that are rational are 
relatively few in comparison with those that are not. We repeat for emphasis 
that from now on integrable means Riemann integrable, integral means 
Riemann integral. 

,2. LINEARITY AND ORDER PROPERTIES OF THE INTEGRAL. 

Propoa.don. Riemann integration ha. the jollowing propertia: 
(1) Ij j and 9 are integrabk real-rlalued junptiona on the iflterllGl [4, b) 

Ihen j + , it integrabk on [a, b) 400 

f (f(x) + g(x»dz - J.b j(x)dz + I.. g(z)dz. 

(I) Ij juan integrabk real-valued junction on the intervCJl [4, b) and 
c E R then cj i. integrable on [a, bl 400 

J.' cj(z)dz - c f j(z)dz. 

These facts are easily proved by looking at the various Riemann 
sums, 8.8 follows. Given any E > 0 there are numbers 810 8t > 0 such that 
if B1, S2 are any Riemann sums for j, 9 respectively corresponding to parti­
tions of (a, bl of widths less than 81,6. respectively, then 

lSI - J.' !(x)dzl <~, 1St - f g(x)dzl < ~. 
Hence if xo, Xl, ••• ,XN is any partition of [a, b) or width I.. than 
min (81, 6.1 and if Xl', .•• , XN' are such that x4-15 %4' 5 %4 for i - 1, 
... , N, then 

I ~ (/(%4') + g(x/)(xi - %4-1) - (I.' !(x)dz + I.. g(z)dz)1 

... 1 ( ~ !(%4')(Xi - X4-1) - f !(X)dz) 

+ ( t. g(xl)(%4 - %4-1) - Lt 9(z)dz) I 
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s I ~/(zl)(~ - ~-a) - f I(Z)dzl 

+ I Fa ,,(~')(i, - z .... ) - r. ,(z)dz I 
e e 

<'2+"2- e• 

This proves part (1). For part (2), given any. > 0 there Ie. number' > 0 
sut,h that for any Riemann sum 8 for / correepondilll to any ,.ntllon 01 
(a, b) of width leu than 6 we h&ve IS - J.' J(z)dzl < ./lel (it iI permis­
sible to restrict our attention to the cue e .. 0 if we note tbU the ... 
c - 0 is a triviality). Then if Zo, x., ... , XN is any partition 01 ,fI,'} 01 wid'" 
less than 6 and xl E (Zi-l, Zi) for i ... 1, ... , N we have 

I t.1 cJ(~')(~ - Zi-t) - c/.' I(z)dz I 
-lei' I t./(~,)C~ - -..s) - /.t J(z~ < '.1· Tor ... 

finishing the proof. 

An immediate conaequence of the propoeiw. iI tbM C ..... the 
hypotheeee of part (1» 

f.' (/(z) - "Cz»dz - /.' I(z)dz - J.' ,(z,.. 
This cornel from applyinl part (1) to the rUlHltiona J.... -" the IatW 
being integrable by part (2), with c - -1. 

ProJHMition. 11 I ill an int""rtJbl. real-tIaluetl ~ "" 1M ..""., fa, ij 
oM fez) ~ 0 Jor aU Z E (a, bl, tlam 

f I(z)dz t! O. 

For if we are given any. > 0 we may find a Riem&lUl BUm S 'or J en 

(a. h) such that lS - J.' I(z)dz I < eo Then "r. J(z)dz ~ B - eo a.dJ' 
S ~ 0, 80 that J. I(x)dz t! -eo Thia heiDI true for .u • > 0,' we ...,. 

f./(z)dz t! O. ". 

Corollary I. II 10M" are i,.,.",..,. ~ ~ .... ......., 
(a, h) oM /(z) S ,,(z) lor all z E I •• b). lAM 

Lt/(z)dz S L· .ez)dz. 

For Lt ,(z)dz - L· I(z)dz" L· (,(z) - /(z»u ~ O. 
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eorou.". J. 1// ill (1ft integrable real-vGlued function on the interval (a, h) 
and m, MER are lUCIa that m S /(z) S M lor aU z E (a, h), then 

m(h - a) S f /(z)tk S M(h - a). 

For /.' mcb:S /"/(*)tk:S /.' Mtk, and we know that for any con­

.taDt c we have /.' = - c(b - a). 

I S. EXISTENCE OF THE INTEGRAL 

Lemma I. A reoJ.walued /unction 1 on the ifllcrvol (a, h) ill integrable on 
(a, h) if and only if, ,wen afty e > 0, there aUt. G ftumber 8 > 0 lUCIa thtlt 
lB. - Btl < e tDltenever B. aM St are Riemann ",m. lor / correaponding to 
partitiou 0/ [G, b) 0/ tDidt1t leBa them 8. 

First suppose / integrable on (a, h). Theil given any e > 0 there is a 

, > 0 lOch that IB - /"/(z)tk I < 1/2 whenever S is a Riemann 8um for / 

corresponding to a partition of (a, b) of width leas than 8. If B. and SI are 
two .uch Riemann lOmB then 

lB. - BII-I (S. - J.' I(z)tk) - (SI - J.' 1(:I:}tk) I 
SiB. - J.' I<*}tkl + 1St - J.' 1 (:I:)tk I <~ + ~- I. 

ThiI proves the "only if" part 01 the lemma. 
Convertely, &l8ume the hypothesis 01 the ceif" part of the lemma. For 

ft - 1,2, 3 •... choose any partition of (a, b) of width 1e88 than l/n and a 
Riemann lum 8(11) for / corresponding to this partition. Then 8(1), B(I), 
B''', ... it a Cauchy sequence 01 real numben. (l~or, by &l8umption, for 
every t > 0 there exists a. 8 > 0 lOch that lB. - Bt I < t whenever B. and 
Bt are Riemann 101M lor 1 corresponding to partitiOnl of (a, b) of width 
1_ than., 10 if we choose an intepr N lOch that liN < a then we have 
IB(II) - 8(->1 < t whenever ft, m > N.) Since R is complete, the sequence 
B(I), Set,. 8(1), ••• convel'les. Let its limit be A. Given any I> 0 now 
choose • > 0 such that 18. - Bt I < 1/2 whenever 8. and 8 t are Riemallll 
101M for 1 corresponding to partitions of (a, b) of width lC88 than " and 
choose an intepr N Buch that 18(N) - A I < ./2 and 1/ N < •. Then for 
any Riemann Bum 8 for / corresponding to & partitiQ" of [G, bl of width 
... than • we have 

18 - AI-I(B - 8(N» + (S(N) - A)I S IB - 8(NlI + 18(N) - AI 
e e 

~2+2-e. 
'nwa J Ie intepable on la, b). 
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A, tbie point i' would be easy to UI8 Lemma 1 to give a direct proof 
of the main result of this eection, the integrability of continuous functions. 
However we postpone this result because it is natural to wonder what 
integrable functions are like in general, and the next lemma and proposition 
will give us a better intuitive und81'lltanding of the situation. 

D.tIIlddon. A real-valued function I on the interval (a, b) is called a 
., ~ if there exist. a partition ~ ~I, ••• , ~" of (a, b) such that I is 
CODltant on each open subinterval (~~a), (~l, St), .•• , (Z"_I, SN). 

For example the functloDi of Examples 1, 2, and 3 of , 1 are step fune­
tiona. A step function of more general appearance is indicated in Figure 29. 

, 
I 
I 
I 
I 
I.........., 
I I I 
I I I 
~ I I 
I ......, I 
t I I , 
I I I I 
I I I I 

, 
r---t 
I I 
I I 
I I 
I I , 

PlQU.... Graph 01 a .... p fuoctioo OIl la, ". 

Lem .... J. A., fvrt,cnon it irttegrable. In particular, il ~ Za, ••• , ~N 
it • partiUtM 01"'- interval (., b), if Cl, ••• , CN E R and if I: (a, b) -. R .iI 
aucA 1IttIl/(~) - Co if z..-l < Z < ~ lor i-I, ... , N, tIum. 

/.'/(s)dz - :t Co(~ - a:.-a). 
• i0oi 

Note tbatthe values ol/(~,/(~I)' .. • ,/(~,,) have no effect on the 
intepal. It is convenient to place this lenllna here, but ita proof could have 
been given much earlier, immediately after the definition of integral ill ,1. However it is mOlt simplo to base the proof 011 Examples 2 and 3 of ,1 and the first proposition of t 2, &II follows: 
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For i-I, 2, ' ," N define 1('1: (a, bl- R by 

{ I if Z E (~I' iii) 
~z) - 0 if z E (a, bl, z ~ (~l, z.). 

Then / - t CIfP4 is a function on [a, b) that takas on the value aero at all 
W . 

pointe except pcaibly the pointe :eo, Zl, ••• , ZN; hence it is the IUDl of a 
Anita number of functiollll of the type of Example 2 of ,1. By Example 
2, topther with the linearity of the integral, we have 

L' V(Z) - ~ CIfP4(z»a - o. 

But each ~ is a function of the type of Example 3 of ,1, hence is inta­

gn,bie, with L' ~ ... :Ii - ~I' Again using the linearity of the integral we 

get 1-V - t ~ ) + t ~ integrable and 
W (001 

L'/(e)d:e - L'V(z) - !r CIfP4(z»)a + !r c, L' .,.(:e)d:e 

- t c,(1Ii - ~). ' 
W 

For an illustration of the situation of the following propoeition, where a 
function is sandwiched between two step functiollll, see Figure 'n (pap 113). 

'ropoaidoR. TIM real-wluetl IUMUm I on t1&e inIm1tJl (a, b) u intfJgrabltl 
on (a, b) il tmd onlrI if, lor eacA e > 0, tAm eNt "", /1mdioM II, /. on [IJ, b) 
auc:1& tIuJt 

!t(z) S I(z) S I,(z) lor «ICIa z E (a, b) 

L' V.(z) - /1(Z»d:e < eo 

We first prove that if the given condition holds then I is integrable. 
We use the criterion of Lemma 1. Given. > 0 we have to produce a' > 0 
8uch that if Bio B, are Riemann 8UIll8 for I corresponding to partitiollll of 
(a, b) of width less than' t.hen 181 - B,I < •. Use the hypoth.s to find 
step functiollll/l , I, on [a, b) such that 

II(z) S /(z) S I,(z) for ail z E [a, b) 

and 

L' V,(z) - II(s»tk < ;. 
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Since "". are integrable on [IJ, b) we can find a , > 0 auch that ..., Rie­
mann sum for " (or /~ colTMpondinl to any partition of (0, b) of wid~ 1_ 
than , ditYel'8 in abeolute value from J.' ,,(z). (or J.. 1aC..)d:e) by 1_ 
than ./3. Now let 8 be any Riemann sum for' correepondiq to & partition 
of [/I, b) of width Ieee than 'i say that Zt, ZI, ••• , ZII ia tbia partition and 

that 8 - t ,(%l)(%4 - Zi-I), where Zi-I ~ %4' ~ Z4 for each i-I, .. " N, 
'-I 

Then since 

we have 
II(z) S I(:c) ~ I.(:c) for :c E (/I, b) 

t I,(:c.')(zi - ~,) S 8 S t /t(Z4')(Z4 - ~.). 
;..a '-I 

By our choice of , we have 

I 6"(%4')(%4 -~.) - J.' 11(:c)d:e1 < t 
and 

implying 

J.' II(:C). - ; < 8 < J.' 1aC.:c'" + ; : 
Thus 8 belonp to a fixed open interval 

(J.' 11(:c)d:e - ;, J.' I.(:c). + ;) 
oflengtb 

f I'll () • • • • T+.~OO-"~·+T<T+T+r-~ 

If 8" 8. are two Riemann surne for , co1'l't!llpOndiDl to putt ... of fa. ij 
of width Ieee than " then each 81, Bt win belon& to the ... interYal, 10 
that 181 - 8 t l < f. ThiJ is what we wiabed to show, 10 half thepJUpCllitioa 
is proved. 

To prove the remaining half of the propolition, we It&It wi~ .. ill'" 
grable function I: (/I, b) - R and & fixed f > 0 and we have to pJOduee 
step functions "". with the deeired propertia Uai. Lemma l,we CIlIa 
find a partition ~ z" ' •. , ZII of (/I, b)euch that &OJ' two Riemum _ 
for / correepondinl to this partition differ in abiIoIute value by 1_ tbaa .. , 
whenl .. ia lOme arbitrary fixed poIitive number Ie. than ~ That ill, for 
arbitrar,y %4', %4" E [Zi-Io %4), i-I, ., ., N. we have 

I 6 (J(%4') - 1(:cl'»(Z4 - ZI-..) 1< e'. 



tI we apply tbia inequality to the special cue where, for lOme fixed index 
i-I, ... , N, we have al- al' if. "i and Zj" - Zj, we get 

implJinl 

I/~l) I < S, ! SI-I + I/(s/) I. 

Thia Ian inequality hola for all Zj' E I~ Zj). Thua I ia bounded on 
lZi-I' Zj). Therefore I ia bounded on aU of 1.,6). Thua for. - I, .,., N we 
cande6ne 

me - ,.I.b. lI(sl) : ~' E [z...., ~JI 

M, -1.u,b,II(~') : ~' e Iz...., ~JI 
and we can define atap functiona I., lion (., 6) by 

if ~. < z < ~" - I, ... , N 
if s - ~" - 0, I, , .. , N 

ifZ4-l<s<~,i-l, ... ,N 
if s - ~, i - 0, 1, , , " N. 

Clearly II(s) ~ I(z) ~ I.(s) for all s e [., 6), and the proof will be CORl­

plete if we can .how that L' CI.(s) - II(s»cb < .. To do tbia, for any 
real number tt > 0 find .pacific ~',~" e (Z4-I, ~), , ... I, ... , N, 10 that 

I(~,) < me + tt, I(~'') > M, - ". 

Then 

•• • 1: U(~") - I(~,»(~ - ~a> > 1: (M, - '"' - 2,,)(~ - ~-a> 
w -a - L' U.(s) - I.(z»cb - 2,,(b - .), 

I ~ U(~') -/(~"»(~ - Z4-a> I < , 

we have 

.. 
L' Uh) - 11~»cb < , + 2,,(b - .), 
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Since" wu ony positive number, we have 

/.' (J.(~) - Il(~»" S .' < " 

and the proof is complete. 

The foUowinc reeuit, which occurred in the COUl'8e of the proof of the 
proposition, ia a trivial conaequence of the propoaition itself. 

Corollary. II 1M NtJl..tHJ11Ultl /unction I 07& (a, b] ill integrable 07& la, b), 
tAm it iB bounded 07& (a, h]. 

TluJorem. II I iB a continU0U8 real-valued lunction on the interval la, bl 

tAm /.' I(z)tk e:eiBU. 

We ahall prove this theorenl by showing that the criterion of the 
praoedinc proposition obtains. Since I ill wliformJy (."OutinuoUB on (a, bl, 
given any e > 0 we can find a , > 0 such that whenever ~', ~" E [a, II) 
and I~' - ~'I < 'then I/(z') - l(z")1 < _/(b - a). Chooee any partition 
Zt, ~l, ••• , s" of (a, b] of width less than ,. {I'or each i = 1, ... , N choose 
#&e', #&e" E (~""l' s;) .such that the restriction of I to (4-1, Zi] attaillB a mini­
mum at #&e' and a maximum at #&e". Define step funCtiOllB II. Is on (a, b] by 

Il(~) _ J/«~)') if Z .... l < s < #&e, i ... 1, •.. , N 
11 ., if z - Zi, i - 0, 1, ..• , N. 

/.(s) _ JI«~i)'') if z....l < Z < Zi, i-I, ... , N 
11... if ~ - #&e,i - 0,1, .•. ,N. 

Then Il(z) S I(z) S I.(s) for all s E (a, b]. Furthermore for each i = 1, 
... , N we have l#&e' - zrl S x, - X,-l <', 110 that If(x.') - f(oI:,")I < 
_/(b - a) and therefore f.(%) - fl(x) < ./(b - a) for all x E [a, b]. There­
fore 

/.' (J.(z) -/l(X»tk S max 1I.(z) - /&(z) : z E (a, b1l • (b - a) 

< -b _ • (b - a) == •• 
-a 

1'hua the criterion of the Jut proposition is satisfied. 

I". THE FUNDAMENTAL THEOREM OF CALCULUS. 

Prop08"I0",. Let a, b, c E ft, a < h < c, and let / be a real-valued /unction 
on [a, c). TAen / i. integrable 07& [a, c) i/ and 07&111 if it ill integrable on both 
[a, b) and [b, e], in umich caN 

J.' I(z)" + L" I(z)" - J." I(z)rb. 
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It is r.onvenient to use the proposition of the precedinS eection, If / i. 
intepable on both (4, b) and (b, e), then for any e > 0 we can find etep 
functioDl A. and lit on (a, b] and k. and kt on (b, e] such that 

A.(z) S fez) S lIt(z) for each z E [a, b) 

k.(z) S fez) S kt(z) for each z E [b, 0] 

with I.' (1at(z) - A.(z) )a, I.' (kt(z) - k.(z»a each 1_ than t/2. 

Define lunctioDl /., /. on [a, e] .by 

{ 1&.(21) 
/.(21)" k.(z) 

/.(z) .. {~~:~ 

if 4 S z S b 
ifb<zSe 

ifaSzSb 
ilb<zSc. 

Then /l~ /. are Rep IunctiOlll, 

/.(z) S /(21) S /.(z) lor all s E [tI, eJ, 

r. (J.(z) - /.(z»a < ;, X (J.{s) - /.(:.». < ; . 

Now /. - /. is a step function on [tI, e] and the propoeition ie cl-.rly true 
for step functions, 10 that 

I.' (J.(z) - /.(z». - /.' (J.(z) - /.(z»a + t (J.(z) - /,(z» •. 
Therefore . 

I.' (j.(z) - /,(z». < ; + ; - e, 

This shows that / is integrable on [tI, eJ, Convenely, if / it intepable on 
[a, e1 ~hen for any e > 0 there are Rep functiOlll /1, /. OIl [s, eJ such that 

/1(Z) S fez) S /.(z) for all s E [fJ, e) 

and 

I.' (j.(s) - /.(s». < eo 
Since 

I.' (j.(s) - /.(z». ~ 0, X (J.{z) - /1(Z». ~ 0 

and 

I.' (J.(z) - /1(Z». - I.' (J.(z) - /I(Z». + X (j.{z) - /I(S». 

we have 



Thus, &pin by the pmpoeition of the Iut. eection, / is intep'able on both 
(0, b) and lb, e). To complete the proof, auppoee / intepable on IG, b), 
'lb, e) and [G, e). Given e > 0 we can find • > 0 noh that any Riemann 
aum for / corresponding to partitions of [G, b), lb, c) and [a, cl of width 1_ 
than I differ in absolute value from L' /(z)dz, I." /(z)dz and L" I(.)dz 
respectively by leaa than _/3. Take partitions of IG, b) and of IlJ, cl of width 
1_ than • and Riemann aurna 81, 8, for / COJTelPOndini to theBe pariltioDL 
Then 81 + 8, ia a Riemann sum for / correspondinc to & partition oIIG, el 
of width leaa than I, and we have 

181 - f /(z)dzl < ;, 18• - J."/(z)dzl < ; , 

IS. + & - L"/(z)dz\ < : . 

Therefore 

I L'/(z)dz + J."/(z)dz - L"/(z)dz I 
s I /.t!(z)dz - 8.1 + I J."/(z)dz - &1 

+1 8.+ 8.- J:/(z)dz\ <t+ ; +t -.; 
Since e wu any poeitive number, we have 

Lt !(z)dz + I." I(z)dz - L" /(z)dz. 

"...'don. If! is an integrable real-valued function on the internl 
(G, b), we set 

r.!(z)dz .. - J.'/(z)dz 

and, for any c E [CI, bJ, 

1" /(z)dz - O. 

Corollary. 111 .. G ~l_~ fm ... """" ita R.teA ...... , 
1M poinU CI, b, c ad if two of 1M ~ /.' /(s)dz, J: /Cs)dz, /.·/(e)ds 
aNt, cNm 1M tAw __ anti 

f.'/(z)dz + J." I(z)dz - L"/(s)dz. 

The epeoial cuea G - b, b - c, and G - e are all trivial to mr" 10 

we may uaume the thne numbeftl G, b, e diatinct. The pointe a, lJ, e deter­
mine & certain cbed interval in R that • ...-eel .. the union 01 _ 
eloaed subintervala, namely the interval (min Ia, b, cl, max (0, b, ell &ncI 
the two aubintervala determined by that. point amonc G, Ii, c which ia 



between the other two. The existence of any of L' I(%)dz, I." I(s)dz, 

L"/(%)dz is equivalent to the existence of the corresponding I." I(%)dz, " , . f I(s)dz, f I(%)dz, 80 the proposition tells us immediately that the 

exiateDce of two of the integrals in question implies that of the third. Thus 
we may uaume that all the integrala in question exist and it remains to 
prove the equality, which we may take to be in the equivalent but more 
qnunetric fonn 

L'/(%)dz + /.·/(~dz + f I(z)dz ... O. 

To prove this 1ut equality, we note that it does not atter its sense wlder 
the cyclic permutatiooa of 0, 6, c which send 0, 6, c into b, c, 0 reepectively, 
or into c, 0, 6 reepectively. Hence we may .. ume without 1088 of leDeranty 
that 6 is between 0 and c. Thus we are reduced to the two special cues 
• < " < cando> 6 > Co The truth of the equality in the firat cue follows 
directly from the proposition, while the second case is the 88me as the til'St, 
but witb a change of sips. . 

A further coDleQuence of the proposition is that if a real-valued function 

I ia intepable on a cloHd interval in R then 1'/(%)dz exists for all 0,6 
in tbia e10eed interval. We remark that if 1/(%) 1 S M for all % in tbe closed 
interval then for any 0, " in the interval 

This ia trivial if 0 - 6, a CODI8Quence of the fact that -M S 1(%) S M 
for all % in the interval and the last corollary of ,2 if 0 < b, and a conse­
quence 01 the last cue and eymmetry of sign if 0 > b. 

7'INorem (Fanda .... "t.I theoNm of cab""). IMI be CJ ccmtinuoua 
,...,...,ueclfvnt:4iqr& Oft 8ft opm inIenIGl U in R and let 0 E U. Let the/UfldiOft 
F Oft U be ".. by F(%) - L·/(t)dt lor aU % E U. Then F if differentiable 

_'-I· 
Since 1 is continuous, F(s) - L"/(t)dt is defined for all % E U. We 

have to ahow that for any fixed Z'1I E U 

1• F(%) - F(:eo). I() 
1m - %0. 
-.. s - Z'1I 



For any z E U, z .. :ee, we bave 

I '(:c) - '(z.) I I L·/(t)tlC - L" 1(l)dt I 
:c -:ee -/(z.) - :c -:ee -/(z~ 

_I J; 1(')tlC _ J~ 1(z.)tlC I_I J~ (J(t) ~ I(z.»dt I. 
:c-1Ce :c-1Ce :c-zo 

&iDee I II conuuoue at ICe, liven any I > 0 we can find a a > 0 IUcb that 
1/(:c) -/(z.) 1< • if :c E U and l:c -1Ce1 < f. Thue ih E U, 1% - 2:01 < a 
and z"lCe then for &oy e in tbe cloeed interval of extremities:lt and z we 
bave I/(e) -/(z.) I < ., 10 that 

I L: (J(t) -/(z.»tlCIS .1. -1Ce1· 
(We bave UI8Cl the remark immediately preceding the ltatement of the 
t.beorem.) Therefore if :c E U, l:c -1Ce1 <, and % "ICe we bave 

I ,(:e) - I'(z.) -/(z.) I S ·t~ -jl - •. z-a:. z-_. 
TbiI pIOV. the d_red limit ltatement. 

CoreUary J. 111 if Q conti,.,"*, reakalued fu'Mlitm OR CIf'& open ifttBrtHJl 
ita ft, lAM tItere aiD ca retJl..tHJlued /tIftclitm I' Oft 1M ICImB i1&ter1l41 whou 
tIeriNIiN it I. 

For if. II any fixed point in the interval, 1'(%) - L·/(OtlC will do. 

We recall that if F' -I then I' II called an tJJ&titltriIGtille or primitive 
of I. Corollary 1 1&11 that any continuoue real·valued function on an open 
interval baa an antiderivative. H I' ia an antiderivative of I on an open 
interval, 10 II I' + 0 for any ccmatant 0 E R. Furthermore, any antideriva­
tive of I muet bave the fonn I' + 0 : for if 0 is another antiderivative of I, 
then (0 -1')' - G' - F' - 0, 10 0 - I' mUBt be coDltant, by Corollary 1 
of the m-.n value theorem. 

CoroIIar7 J. 111M ....... ,., ~ I' OR CIf'& open iftttlnHll U ita R IaCII 
lIN ccmCiftUOUl tIeriIHJIWe I GfItl 0, b E U, """ 

Lt/(t)de - '(b) - '(0). 

Since ! (J: I(e)de - F(:c») -/(z) -/(%) - 0, J: I(t)dt - 1'(%) is 

CODBtant. Tbue L· l(t)tlC - F(z) + 0, lor lOme c E R. In particular 

0- J: I{OtlC - F(ca) + 0, 10 that 0 - -F(ca). Therefore f I(t)dt­
I'(z) - I'(ca). Hence L' l(I)tlC - '(b) - 1'(0). 
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Thi8 coro1Iary i8 a powerful tool for ttie computation of integral8. For 
example, if n i8 a positive integer then the function :c"+I/(n + 1) has the 
continuous derivative :c", 80 that 

L' ~"th - (b,,+1 - a,,+I)/(n + t). 

Corollary 3 (Change oJ tmriab'e theorem). Let l.T, V be open ifI.tmHJU 
in R, IP: U - V a differentiable Junction with continuoua deriooliN, and 
J: V - R a rofttinuous Junction. Then Jor any a, b E U 

J. tI(M J(v)dv = L·/(IP(u»IP'(u)du . .<., • 
Let F: V - R be the fu!,!ction defined by F(y) =- /;., I(v). for all 

1/ E V. Then F i8 differentiable and F' =- I. The function G: U - R 
defined by G(~) .. 1"(·) I(v). is the composite G == F 0 IP of two differen-toI., 
tiable function8, hence i8 itself differentiable. By the chain rule we have 
G'(~) - F'{IP(~»IP'(~) -/(IP(~»IP'(~) for all s E U. Hence G(s)-
/.- 1(IP(u) )1P'(u)du + c, for 80me constant c E R .. Setting s - CI we get 

c -= 0,80 that G(~) = I.·/(IP(u»IP'(u)du. This last equation holds for all 

~ E U. Setting ~ = b gives U8 Corollary 3. 

I S. THE WGARITHMIC AND EXPONENTIAL FUNcrIONS. 

In thi8 8ection we develop in a rigorous fashion the familiar properties 
of 80me of the functions which are dealt with in elementary calculus. 

Definition. If % E R, % > 0, then log % = le ~ . 
Proposition. The lunction log: 1% E R : ~ > 01 - R ia differentiable 
with dlog~/th .. 1/~, it is striclly incrMBing, flBBUme3 all valuu in R, and 
8€ltisjie. the rule. 

log X1/ ... log % + log 1/ if~, 11 > 0 
~ 

log, - log % - log II if~, II > 0 

log~" - n log s V s > 0, n an integer. 

The differentiability of log, together with the equation dlogs/th -
I/~, comes from the fundamental theorem of calculus. Since I/~ > 0 if 
Ie > 0, the derivative of log is alway8 positive, 80 log is a .trictly increasing 
function. If a i8 80me fixed positive number and 1/ = fIX, the chain rule gives 

d Idy t I -Iog,,=--=-.a--
th yth ~ s' 
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so that dloga/d:r ... dlogs/d:r and hence loga -lOIs + e, for IIOme 
e E R. Setting s - 1 giVell e - log a, 110 that 101 CUI - 101 G + 101 s. After 
changing notation we have 

logSIl -logs + 10111 ih, II> O. 

In the special case s - 1/11 this yields 1011/1/ - -101 II, 110 thM 
s 1 

log, -logs t log, -logs -10111 if s," > O. 

Clearly if z > 0 then 

80 that 

log s' - log 1 == 0 ... 0 • log z 
logs' == logs .. 1 • logs 
logs' -logs + logs - 2 logs 
logZ&-log (s'. s) -logs' + logs - 310gs 
etc. 

logs" - nlogs if .. - 0, 1,2.3, .... 

If n - 0, 1,2, 3, ... , then log r" - log l/s" - -101 S" - (-.. ) lOIS, 10 
that 

log ... - n log z if z > 0, n any integer. 

Since 2 > 1 we have 1012 > log 1 - O. Since 1012" - .. 1012, given any 
.., E R we can find integera nt. tat such that 

log 2"t < .., < 1012"1 

(simply by taking"l < ..,/1012 < nt). By the intermediate value theorem 
there is some e between 2"1 and 2" such that loge - ..,. That is, ~ loc 
function takes on all values. Everything desired has been proved. 

Definition. exp is the inverae function of log, that is 

exp (s) - II means s - 101". 

This makes aen8e since the 101 function is one-one (heiDI I&rictly 
increuing). We avoid the notation If' for the moment to avoid eonfull_ 
with our exi8tinl notation for powera. 

Propoeldon. TIN /uftdiqn up: R -Is E R : s > 01 .. cICt ..... ,. .... , 
VIiIA clap (a)/. - eX)) (s). l' .. eCricIlrI ~, ......... ." "... 
NlUf8, ncI ~"..""" 

up (a) • up (w) - up (s + 1/) iI s, 1/ E R 

exp~a~ _ exp(a -,) q s"ER 
exp II 

exp (ns) - (exp (a»· iI a E R, n GR ..,.. 
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To prove this, forget about differentiability for a moment. Then 
everything elae follows immediately from the corresponding properties of 
the log function. (The easiest way to prove the equations is to check each 
to see if it gives a correct statement when log is applied to both sides. Every­
thing works out, using the identity log (exp (z» .. z and the corresponding 
formulas for log.) A. for differentiability, we fil'8t prove that exp is con­
tinuous. We must show that for any Zo E R and any t > 0 there exists a 
I> 0 such that lexp (z) - exp (Zo) 1 < • if Iz - Zol < I. We may aaaume 
that e < exp (Zo). Since exp is strictly increasing, if z is between 
log (exp (zo) - e) and log (exp (z.) + e) then exp (z) will be between 
exp (Zo) - e and exp (Zo) + e. Hence we insure that I exp (z) - exp (z.) I < • 
whenever Iz - Zol < I by choosing 

, - min Is. -log (exp (Zo) - .),Iog (exp (Zo) +.) - z.1. 
Thus exp is continuous. To prove exp differentiable and find its derivative, 
let Zo E R be fixed and write exp (Zo) - I/o, exp (z) ... 1/. Then lim 1/ - II. 
and - ... 

I• up (z) - exp (Zo) I· ______ 11<----".11.:...°_ 1m - ... 1m 1 
_.. z - s. ..... log 1/ - log 1/. lim log 1/ - log I/o 

"'W. Y -I/o 
1 1 

- til - -1- - y." up (Zo). 
ogl/( ) 
~ 1/. 1/. 

This ends the proof. 

The symbol Z" has 80 far been defined only for integral values of n. In 
this case, if z > 0, we have logz" = nlogz, 80 that z" = exp(nlogz). 
Hence the following definition is consistent with our existing notation. 

~nition. If z, n E R, z > 0, then z" ... exp (nlogz). 

Propoaition. For z, 1/, n, mER, z, 1/ > 0, IN luwB 

Z'" Z- -= z"'" 
:1:" 

- - Z"-­z· 
(z") ..... z"" 
(ZI/)" .. z"l/" 
Loa __ -I 
~ .... =, ...... 

The four algebraic identities follow immediately from the definition 
and previous results of this section. For example, 
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Z"' • S- ... exp (n log~) • exp (m log~) =- eXp (n log ~ + m log:.:) 
= exp «n + m) log~) = ~.+-. 

The proof of the last fonnula is an exercise in the chain rule: 

d d d n dzZ"' '"" di" up (n log:.:) = exp (n log z)di"(n log~) ... z· • z = nJ:,,-1. 

The rules for fractional exponents are of course contained ill the last 
proposition. For example Zlll - ~,since (ZIIl)1 .. Zl ... Z. 

It is convenient to extend the definition of x" slightly by setting 
0- - 0 if n > 0, so that for any fixed positive n the fUllction x· is con­
tinuous for ~ ~ O. 

Dlffinltlon. • ... exp (1). 

We immediately recover the atandard notation for the exponential 
function: if z E R then If' - exp (s log.) - exp (~), since log. - 1. Thus 
we may write the formulas of the proposition before last in their more 
convenient forma 

d 
... tJI =~, d.i"1f'''' .. , etc. 

A rough approximation of e may be obtained by noting that for 

1 S s S 2 we have 1/2 S lIz S I, so that 1/2 S hi dz/s - 1012 S 1. As 
a matter of fact, we can get the slightly stronger relation 

1 
"2<log2<1 

by remarking that it is easy to find a larger step function than the constant 
1/2 that is leas than or equal to l/~ for 1 S z S 2, and a smaller one than 
the constant 1 that is greater than or equal to 1/~ for 1 S z S 2. From 
1/2 < log 2 < 1 follows 1 < 10121 < 2. Hence log 2 < 1 < log 4, 80 

2 <. < 4. 

It should be remarked that of course we could have obtained all the 
...wts of this section differently, Bf4rting with the exponential function. 
The argument (in outline) is as follows: For any fixed positive integer n 
the function z· is continuous and strictly increasing for z ~ 0, assuming 
arbitrarily large values. Therefore by the intermediate value theorem I.\OY 
poaitive number has a unique positive n'A root. We define rational powel'B 
of a number z > 0 by setting 

z""" ... (positive na root of z)· 

if m and n are integers with no common factor other than ::c 1 and n > O. 
We then prove the various rulea of exponents, for rational exponents. If 
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,1: > 0 and n E R is not rational, we can find a sequence nlo fit,"', ... of 
rational Ilumbel'll that converges to ni we then define.1:" to be the limit of 
the sequence .1:"1,.1:"1, ,1:"', ••• , fi1'8t 8howing that thi8 limit exiata and is 
independent of the choice of the sequence n" fit, fit, .. .. We then verify 
all the rules of exponents for arbitrary real exponents. Next we look at the 
function u.", for 80me fixed 4 > 0, 8how by a suitable trick that it i. differen­
tiable, and 8how al80 that for a very 8pecial choice of base 4, a choice 
denoted 8, we get the magic formula tbI'/d.z =~. Finally we do the log 
function, which at thi8 point is easy. Thus we end up with a more natural, 
but conaiderably longer, derivation of exactly the Bante results as before. 

PROBLEMS 

1. Compute /.1 = directly from the definition of the intearal, UlllUmilll only 

that this Intewal exists. 

2. Prove that C,(s)a - 0 if 1(I/n) - 1 for n - 1,2,3, ... and I(z) - 0 for 

all other z. 

3. Does C/(%)dz exist if I is tlte function of Problem l(d), Chap. IV? 

4. Let I: [a, h) .... R and let c E R. Prove that if Lt I (%)dz exists then 10 does 

J:: ,(z - c)dz and these two integrals are equal. 

Ii. Prove that a continuous real-valued funotion on a cloeed interval in R il 
integrable, using only Lemma 1 of 13 and uniform coJltinuity. 

6. Let (a, h) be a clOIII!d interval in R and let V be a complete Jlormed vector 
apace (of. Prob. 22, Chap. III). 

(a) Show that the definition of L' I (s)a for real-valued functiollll on [a, h) 

pneralilC8 to functions I: (a, b) ..... V. 
(b) Prove the analog of the criterion for integrability of Lemma 1 of 13 

for V -valued functions on (a, b). 

(c) Using (b), prove that if I: (a, b] ..... V il continuous then J.' I(z)ds exiat.L 

(d) Prove that if I: (a, b] ..... V is continuoul then 

II /.'/(s)a\\ S /.'II/(S) II a. 
(e) Prove that if V is finite-dimeneional with basis PI, .•• , II", and if II, •• • ,1" 

are real-valued functlonl aD (a, b], tlten J: (/I(S).,. + ... + I,,(z) ... )dz 

exIate if and only if r. I.(%)dz, •.. , /.' I.(s)a exist, in which cue 

r. (f.(s).,. + ... + I.(%)v,,)dz - (/.'Ia(z)a )11. + ... + (r. I.(z)a ) .... 
(For part (e) you will need the result of Prob. 23, Chap. IV.) 
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Prove that if the real-valued function 1 on the interval Ie, 6) ie bounded and 
il continuou8 except at a finite number of points, then r. I(~)dz ~ 
Prove that if I: lei, h) - R is increuina (or decreasing) thfJD r. I(z)a exietL 

Prove that if the real-valued function I on the interval (fI, 6) ie iatepable on 

(eI, hI then 80 is III, and I Lt'(Z)a I s r. II(~) I •. 
Prove that if the real-valued function I on the interval (a, 6) ie iatepable OIl 

lei, h) then 80 is 1'. Using the identity (J + ,)1 -I' + ~, + t, prove that the 
product of ~wo integrable functionl il integrable. 

Prove that if I is .. continuou8 real-valued function on the interval (a, b) IUeh 
that I(z) ~ 0 for all z E (eI, hI and I(z) > 0 for iome II E la, bl. then 

J: ,(z). > o. 

Show that if 1 il .. continuoul real-valued function on the Interval Ie, b] then 

J: I (z)a -/(E)(h - a) for lOme E E [G, hI (mean value theorem for inte­

grals). 

Show that if 1 il a continuous real-valuedfuncUon OIl the iDtervaI la, bl and 
I(z) ~ 0 for all z E [a,6), then 

~i.!! (r. (j(z».d.1:)a'" - max I/(z) : z E (G, bU. 

Show that if 1 ie a continuous real-valued function OIl ,. E R : II ~ 01 ADd 
lim/(z) - c (el. Prob. 8, Chap. IV), then ... -

lim! fa I(Qdt _ c . 
... _zJ. 

Let (eI, b) and (e, dJ be closed intervals in R and let I be .. continuous real­
valued function on I (z, r) E gt : z E (a, b), r E (C, dJl. Show that the func-

tion,: Ie, dJ - R defined by,(y) - r. I(z, r)a for all r E (c,1II II continuous. 

Prove that the real-valued function on caa, hD which .ada aD)' I iato 

J: I (z). ie uniformly continuous. 

Prove that if l' and " are real-valued functioaa OIl an open .w.n of R 
containi .. the interval la, h) and if l' and , have continuous derlvatl .... &hell 
(intearation by parts) 

L' 1'(Z)II'(II). - 1'(6)11(.) - l&(a)lI(o) - L'II(.>U·(."" 
Provetbat 

f· ,.m:;a tit J: flu J. v'1 _ p. ,I +... for aU z E •. 



19. 8hcnr that if U is aD open interval in R and the function /: U ...... R baa a COD­

tIauoua (a + 1)" derivative on U, then for any a. II E U we bave 

1(6) _ J(a) +1'(a)~I- a) +1"(a)~I- a)' + ... + .r"'(a)~I- a)· 

E (6 - %). /,,*II(s)a 

+ "I . 

• . A CW'IJ8 '" • tneri: IJHIC8 B iI a OODtiDlIOWI fUDCtion I froID an iDtervaI la. 61 
iD • iDto B; ita lattA iI 

Lu.b. {tcl(J~I)./(~) : ~ Sl, .. 0' s. iI a partition of la, bJ}. 

if tbia Lu.b .... Prove that if B - .. aDd 1(%) - (J.(%). 000 ,J .. (%», where 
la, •• • ,1.: (., 6J ...... R are 00Dtin1lOWl functiOhl which bave 6oDtiououa daiva-
tine on (a, 6) that exteDd to OODtioUOua functioaa on la, 61. then the curve baa 
lqtb and tltillenith II r. " C/a'(s»' + ... + (J.'(%»' a. 

II. Compute 

<a) ~I.+.~;" +",whereA:eR,II>O 

( I . 1 l\ 
(b) !!: _+1 +_+1 + ... + W· 

Do Show thM for _ - 1, 2, a, 0 ••• tile IlWDber 
I I 1 

1+I+i+'" +;-IDI. 
II pGIltive, .... it _n .. _ iNn .... MIl __ that the ....... of 

.......... OOD"- to a Iimlt ..".. 0 aDd 1 (Euler's eoaataDt). 

28. Prove that the only fuDction I: R - R aaeh that I' - I uad 1(0) - 1 is liVeD 
br 1(S) -,. 

II. ProvethM 
(a) .. (1 +.) S s for all s > -1, with equality if and only if s - 0 
(b) tI" ~ 1 +. for all s, with equality if and only if % - 0 
(c) lim toe (l + .) _ 1 

- % 
(d) lim (1 + _)"a -lim (1 +!\. - tI" _ _., 
<e> lim .( .... - 1) - 10K % if. > O. -

II. Show that lor • > • the functioll ~ i. Itrictly deoreuinl and that it pta 
arbIlrarIlJ .... to aero, heDoe that 

(a)'" S!_O 11_>0 _ .. 
(b) lim .. toe s - 0 if _ > 0 -
(e) lim .!: - 0 for aD)' • E R. 

_tI" 



.. DefiDe I: R - R by 

{ 
.... ,.. ifz>O 

I(z) - o ifs:S;O. 

......... us 

Prove that I baa derivatiVt!l of all orden, with I"" (0) - 0 for all ft. 

Z1. If at. E R, 0<., and I: Iz E R : a < z S .,- Ria a OOIltiououa fUDCtiou., 

de&ae the .. ,...,.,....., ,. I(z). to be 8m J:/(z)tJz, if this limit uiIt&. J... _ II 

Show that if , II &DOther eontiououa real-valued IUDCtion OIl the .. 

Is E R : 8 < z S 6111lCh that 1/(21) I :s; ,(z) for all 21 ill this eat and ! ,(21). 

aiata, then f..,/(Z)tlz exiate. Hence IIhow that ! 1(21). uiate if there 
aiata aD CI < I 8Ilch that (z - .)., is bouDded on (a, 6). 

28. II a E R and I: Iz E R : II: ~ .1- R is a contiououa fUJICtion, define the 

_,...,.,......, /.-/(21). to be lim t/(z)., if this limit exist. (el. Prob. . ...... . 
8, Chap. IV). Show that if , is another CIODtioUOua real-valued function OIl 

Is E R : 21 ~ _I, if 1/(21) I :s; ,(21) for all 21 ~ ., and if L .... ,(z)a exiata, then 

f .... 1(21)= uiIt&. Heace Ibow that L'" 1(21). exiata if there exiata aD CI > 1 
IIlCh that z-f (21) ia bounded. 



CHAPTER VII 

Interchange of Limit Operations 

The various kinds of limiting proeellllel we have 
. Btudied (limit of a eequence of pointe in a metric ..... 
limit of a function, differentiation, integration) do not. 
always ocour aingly. In a given problem we may be 
ealled upon to take one kind of limit, then ano~ kind. 
In auch problema the order in whioh the operations are 

. performed ia naturally of importance. We have already 
treated such a problem in applyins the two operat.iona 
lim and lim to a sequence of lunetioDl lit 1.,/., ... "... "...~ 

from one metric apace into another, ,. heiDI a point 
of the first metrio apace. II lim I.(P) exiat.a for each ...... 
n - 1,2,3, ... we get a sequence 01 pointe Um/.(p), ...... 
lim /,(P), lim /.(P), • .• in the eecond metrio apace, and 
.. PI .. PI 

we may be able to take Jim 01 this sequence of pointe. -On the other hand the limit lunction lim/. may exiIt--and if it does we may be able to apply lim to the limit -function, again getting a point in the I8COIld mekie 
space. However it may happen that aU 01 ~ open.. 
tiona can be performed and we arrive' M dilerent 
&DIWel'I in the two CMeI. In OIle edNmely import;ut 
caae this cannot happen, lor we have pIOved thM if 
/1,/,,/., ... is a uniformly COIlV8J'l8llt eequence of-~ 
tinuoua functiona,then Um I. is aIIo COIltiDUOUl, 10 that 

, -
lim «(lim/.}(p» - (lim/.){JIt) 
"PI - -

-1im/.{JIt) -lim (Jim/.(p». - --



In this chapter we prove a number of similar results for 
other pail'S of limiting processes. No attempt will be 
made to be systematic; we only intend to provide BOrne 
especially useful results. At the same time we take the 
opportunity to discU88 the meanings of these results for 
infinite series, which ill how infinite sequences usually 
ariae in practice, developing the theory of infinite series 
sufficiently for the purposes of calculus. An exposition 
of the trilOnometric functions is given .. an eaay 
application. 

11. INTEGRATION AND DIFFERENTIATION OF 
SEQUENCES OF FUNCfIONS. 

u 1.,/" I., . .. it a aequence of Wemann integrable real-valued func­
ticma on .. cIoeed interval [ca, b) in R and 'I, ,., ,., . .. converges to the 
function I on [ca, b), can we assert that 

f./(z)th - ~ f.,.(z)th? 

The followilll example shows that in general we cannot, not even if 
II, I., I., •.. are all continuous. 

~ For" - 1, 2, 3, . .. let ,.: (0, 1] - R be defined by Fig­
ure ao (f. can be defined analytically by setting/ .. (z) - 4nl z for 0 S z s 
1/2n, I.(s) - 4ft - 4ft's for 1/2n < z S l/n, , .. (%) - 0 for l/n < % S 1). 

For euh ",I. it continuous and /.' I.(z)dz - 1, BO that lim /.1 I.(z)dz - 1. 
• .-.co • 

On the other band,l-lim/. - O. (For clearly 1(0) -= 0 and if % J4 0 then -
I.(z) - 0 if" > l/z.) Hence f./(z)dz - 0 '" lim/"/ .. (z)dz. • .-.cD 0 

If, however, 11,/.,/1, ... converg_ uniformly, there is no trouble: 

r,.....m. I..c 0, b E R, Q < b, and 1st II, I., ,., ... be Q uniformly 
....,.,.,.,., teqUmce 01 continuoua rtGl-ualued lunctiona on (a, hI. Then 

f. (~'.(z»th - ~~ L·,·(z)th. 
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111 s. 
l'Iov .. 30. Graph of the fllDCt.i.on I. of the example on p. 138. 

Let I - lim I •. Bince each I. is oontinuoWl and the OODV81'pDG8 it -uniform, I is oontinuoWl. In particular I is inte&rable on (G, b). By tbede8Q1 .. 
tion of uniform convergence, for any e > 0 there exists a poeitive in ... N 
auch that if " > N then I/(z) -I.(z) I < e/(b - G) for aD ~. e (4, b]. We 
then have the inequalitl81 

• e 
--,,-S/(~) -I.(~) S-,,--a -G 

for aD ~ E (4, b), which imply 

-e S f: (J(~) -I.(~)}ds S e 

or 

This laat inequality holds for all" > N, and therefore 

lim L·I.(~)ds - L·/(~)ds. .... . . 
RIIMAax. The earne theorem holds if we do not ... ume that each I. 

is oontinuoWl, but merely Riemann integrable on (a, b). Indeed the .. me 
proof will hold once it is shown that I - lim I. is integrable. Tbis call be .-
done easily uailll the criterion of the proposition of 13 of the last chapter, 
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as follows. Given any e > 0, by uniform convergence we can find an integer 
n such that I/(x) - I.(x) I < e/3(b - a) for all x E [a, b), 80 that 

I .. (x) - 3(b ~ a) S I(x) S I .. (x) + 3(b ~ a) 

for all x E (a, b). Since I. is integrable on (a, b) there exist step functions '1,,, on (a, b) luch that (/l(X) S I .. (x) S ,,(x) for all z E [a,") and 

f (,.(z) - 'I(X»d:e < ./3. Then '1 - ./3(" - a) and ,,+ ./3(" - a) are 
ltep functions on [a, "1 IUch that 

'I(X) - 3(b ~ a) S I(z) S ,.(x) + 3(& ~ a) 

for all x E (a, h) and 

r. «,.(x) + 3(h ~ a» - ('I(Z) - 3(& ~ a»)d:e < •. 

By the proposition quoted, / il integrable on (a, "). 

To prove an analogous result for the differentiation of the limit of a 
eequence of differentiable functions ODe has to make slightly stronger 
&88umptions. 

Theorem. Let Jr, It, la, ... be a sequence 01 real-valtwl lu'ftdioM on an open 
interval U in R, each 1uwing a continuous derivative. Suppose tMt 1M aequence 
N, It', fa', . . . conver,es uniformly on U and thllt lor 801M a E U 1M aequence 
11(a),I.(a), '.(a), ... converges. Then lim/ .. existB, iI diJferentiabk, and .. -

(lim/ .. )' - lim/.'. --- .-. 

By the fundamental theorem of calculus we have 

I." 1 .. '(t)tIt .. , .. (x) - I .. (a) 

for any x E U and any n'" 1,2,3, .... Let lim!.' - (I. By the previous .. -
theorem lim (f.(z) - /.(a»· exists for any z E U and equala r. (I(OtU • .. - . 
Since lim/ .. (a) exists, 80 doee lim/.(x). Setting lim/ .. (x) - fez) we have .... It.... . ... 

I(x) - I(a) .. f ,(t)tIt 

for each x E U. A BeCOnd use of the fundamental theorem of calculus giVeR 

I' - I, which is what. was to be proved. 
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I J. INFINITE sa ... 

If ai, lit, lit, • •• i8 a sequence of real numben, by the ~iIe ..... 

al+IIt+Ge+ "', 
also denoted 

we mean the sequence Os, Cli + CIt, Cli + CIt + Ge, •••• The tenna 01 the latter 
sequence are called the pcartiGl "'tria 01 the eeri •. If A E R, we lAY that the 
infinite eeri. c:onvcrgu to A if the sequence 01 partialBUme conVe1J81 to A, 
that il if 

lim (CII + CIt + ... + ca.) - A. --
If the leri. converges to A it iB CUltomary to call A the ... '" oJ 1M .... 
(although thil iB not a lum at all, but a limit of BUmB) and it iI CUItoInary 
to write 

or 

(Thie somewhat awkward convention, whereby we \lie the aymbol Os + 
CIt + CIt + ... to denote both the eeri. and ita BUm, if the latter exilte, 
rarely cauaee confueion, lince it i8 ueually clear from the context whether 
the aeries or ita lum i. meant.) If a leri. converpll to some _ number, 
the aeries iB uid to converge, or to be ~i in the contnry ... the 
aeries diHrgu, or i. diver,ent. 

Similarly, if 11,1.,1., ... il a sequence of real-valued functiona on a 
metric lpace E, by the infinite leri. 

11+1.+1.+ ... 
we mean the sequence 01 functioDl 11,/1 + lit II + I, + I., . . .. We .Y 
that the eeri. ~ cat 1', for a certain , E B, if the __ /I~) + 
Ih) + fa(p) + ... converpllj otherwiBe the eeri. II + I. + I. + ... iI 
eaid to diNT,. cat p. The aeri. iB uid to "",..,." Oft B (or, more limply, 
to "",..,.,,) if it conve ... at each point 01 Bj in thiB cue tbe1e iI • _. 
valued function Ion B BUob that 1(P) iI the awn of the -- 1,(:,) + 
1.(1') + 1.(1') + ... for each l' E S, and we of COUl'IIe write 

11+1.+1.+'" -I. 
Finally, we uy that II + I. + I. + . .. CIII&I1er,_ ~ OIl B if the 
eequence of partial lOmB 11,/1 + 1.,/1 + /. + I., . .. converpe uniformly 
onE. 



ExAMPLII. If a E R, I al < 1, then the "geometric" series ~ G- -

1 + G + G' + ... converges. In fact, since 

we have 

10 that. 

(1 - G)(1 + G + al + ... + a-') - 1 - a" 

I-a" I +G+o1 + ... +a-· --­I-G 

- 1-0- 1 'r G- -lim --- - --. 
~ -- I-a I-G 

(We have beN ued the fact that lim G- - 0 if lal < 1. Thia was proved -at t.he end of ,3 of Chapter III. Another proof is obtained by noting that. 
1011 ai- - ft 101 I al is negative and pta arbitrarily large in abIOlute value 
u tI iDCl'elllll.) Lettilll s denote the identity function on R, u usual, we 
pt the analoaoue statement for the aeries of functiolUl on the metric apace 
(-1,1): . 

I l+s+sI+sI+ .. · ---. I-s 

The elementary facts about infinite sequences of real numbers can be 
tranalated immediately into fac .... about infinite .em. of real numbers. For 
example, lince an infinite sequence can have at IllOBt one limit, an infinite 
aeries can have at IllOBt one Bum. Aa another example, &ince a sequence of 
real numbers converpa if and only if it ia a Cauchy sequence, a aeri. of 
real numbers converpa if and only if i .... sequence of partialauma ia a Cauchy 
IIIqUence. Since for ft > '" the difference between the "," and ft" partial 
aurna of the eerieI •• + CIa + lie + . .. ia ..... + ..... + ... + .. , we have 
the followinl ..... t. 

Propoall.". TAe wiu 0/ real number. a. + CIa + .. + ... corwergu if 
,., Oftl, ii, pm -II • > 0, tMre it a poaitir1e integer N auch that if 71 > '" ~ 
N IAeft 

1 ..... + ..... + ... + .. 1 < eo 

The followilll two corollari. are immediate. 

CaNIIary I. 1/ t.U wiu 0/ real number. G. + .. + .. + ... COftIIerge., "Iim .. -O. -
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.. .. 
CoroIIory J. 1/ ~ ca,. ." ~ 6. .,.. ifllI:law atria 0/ ,., "umbtr. ,avd& 

IIttIl ca,. - 6. vIaeraaw n U ~" lorge, lAm i/ mae atria etmII6f'fIU 10 
dGatMotMr. 

.. 
EuIO'LJD 1. The geometric eeriee ~ CI· does not converge if 1111 ~ 1 

by the fim corollary. 

Ex.uIPLJII 2. The "harmonic" aeries f'1.. - 1 +1.. + 1.. + ... :;sn 2 3 

diverges. For whenever n - 2t.,. we have 

111 
c&.+1+G.+I+ .. • +ca,.- ",+1 + ",+2 + ... +fi" 

~1..+1..+ ... +1...,,;.1..-1.. 
"" " ,,2' 

contrary to the condition of the propoiition. 

.. .. 
(I) 1/ E ca,. cmd E 6. on CMWer,ent aeria 0/ ,etJl number., lAm U&. 

_1 ... .. 
Nriu E (ca,. + 6.) u e&lao couergeAt cmd . 

-I 
<It .... 

E (ca,. + 6.) - E ca,. + E b •• ... _ ... 
(I) 1/ It IIa i. II couergeAt atria 0/ retJl "umber. tmtI c E R, lAm 

The proposition is immediate from the third propoiition of 13 of 
Chapter III (page 48) . 

.. 
atria E ca,. c:tnaVerfIU or it .w tJrbitrGriz" large panitJl IUfIII • 

• -1 

For the sequence of partial luml is increasing, hence convergent in 
caae it il bounded from above. 
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PropotJition (Compar"on tat). If t a.. and t b. lire infinite uri,. __ I .. -1 

of real number88uch that 111 .. 1 ~ b .. for n = 1,2,3, ... and t b. converga, 
.-1 

, For let E be any real number greater than zero. By the fint proposition 
of this section there is a positive integer N such that if n > m ~ N then 

Ib",+1 + b .. +1 + ... + b.1 < E. 

Thusifn>m~Nthen 

1~1 + ~I + ... + a.. I ~ 111".+11 + 1110.+11 + ... + 1a..1 

~ b00+1 + bOO+I + ... + b. < E • 

... 
Thus, by the proposition just quoted, I: IIa is convergent. 

.-1 

Corollary. Uruhr the condititma of the propoaititm, 

I tllal~tb.. a-I •• 1 

Each partial sum 111 + lit + ... + a.. is such that 1111 + lit + ... + llal ~ 
lall + 11111 + ... + IIIaI ~ b1 + bt + ... + b. ~ t b., and since the closed 

_1 

interval [-t b., t b.] contains each partial sum III + lit + ... + a.. it 
--I •• 1 

also contains the limit t CIa of these partial sums. 
a-I 

-Definition. If II., /It, lIa, ••• are real numbers, the series I: IIa is aid to 
a-I 

be absolutely corwer,mt, or COfWIr'ge absolutely, if the eeriea t IIIaI ia 
a-I 

convergent. 

According to the proposition before last, a series of real numbers ... 
1: IIa is absolutely convergent if and only if the set of partial sums of the .-1 

CD 

series 1: I a.. I is bounded. By the comparison test an absolutely convergent __ I 

series is convergent. The (',omparison test is actually a test for absolute 
convergence, and the following "ratio test" is essentially a special cue of it. 
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Prop08ition (Ratio teat). 11 t a. u on inJi,ni/.e feria 01 rumuro real 
a-I 

number. and il there ezi8t. a number p < 1 auc1a that I ,,-+1/a.1 :S P lor GIl 
nU/icientl1l large n. then the Beriu ~ ab8oluIel,. 111,,-+1/a.1 ~l/or 
aU 814f/icientl1l large A. the BerNs diverges. 

For the proof we may replace the phraaea "for alleufticiently larp A" 

by "for aU A". since lopping off the first few tenna of the aeri. does not 
affect its convergence. Then if 1,,-+1/a.1 S p < 1 we have 

10,,+11 S pIa.l S pi I a.-II S .•• S palall, 

80 the absolute convergence of t a. follows from comparieon with the 
a-I 

geometric seri. I all + p I all + pi I all + .... On the other hand, from the 
atatement 10,,+1/0,,1 ~ 1 comes the fact 

/0,,+11 ~ 1a.1 ~ I a.-I I ~ ... ~ lall. 
80 the sequence ai, CIt, Oa, ••• doea not have aero .. ita limit, proviDl that 
the aeries diverges. 

• 
Corollary. 11 the Berie. 01 real number. I: a. i. auc1a that lim ',,-+I/a.1 

.. -1 .... 

exi.t. and ia luI than (greater than) one then the Beriu COJ&VeTgeI abaolut.lll 
(diverge.) • 

For if the limit ia leaa than 1 we may take the p of the proposition to 
be any number between this limit and I, while if the limit is greater than 
one the proposition is directly applicable. 

The series 

1-~+~-~+ ... 
234 

ia an example of a series of real numbers that is convergent without beblc 
absolutely convergent. The aeri. is not abaolutely converpnt Iince the -corresponding series of abeolute values is I: l/n, the harmonio __ , 

.-a 
which is known to be divergent; the convergence of the .... it • nault of 
the following more pneral atatement on "alternating" aeriee. 

Propoa'tion. Let ai, fit, Oa, ••• be a decr~ ~ 0/ ~ AumlHn 
converging to zero. Then the Beria 

t (-1)-1 CIa - Cll - fit + Oa - a. + ... 
.-a 

~ to some poritive number luI than Cll. 
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Any partialaum of the above aeries can be written 

{ a.-. - a,. if niB even 
(01 - a.) + (ae - a.) + . . . + <a.-I - a,.-s) + a,. if n is odd, 

which ie a aum of nonnegative numbers, hence nonnegative, and this partial 
sum can also be written 

( { -<a.-I - a,.) if • ie odd 
At - (0. - ae) - 04 - ae) - ... + _ (a.-. _ a.-s) - a,. if. ie even, 

which ie at moet 01. That ie, each partial aum ie located in (0, G~. If we 
delete the filSt few terms of an alternatinl aeriea we are left withplua or 
min1l8 UlOther alternatinl aeriea, 80 for any positive integelS n > m we have 

llil (-1)..-""1- 1"-+.-"-+1+"-+1 - ... =a,.I~,,-+ •• 
Since Um .. - 0, the aeriea ~ (-I)"-lea,. converpa. Each partial aum - = U. in the cbecl interval (0, G~. The aum of the aeriea ie not sero since 
the putial IUma (G. - a.) + (ae - 04) + ... + (0.-1 - a...) are increu­
iDe IIId positive for large ft, and the sum ie Ieee than Gl aince it equala 
At-(o.-ae+a.-Clt+ ... ) <GI.Thus 

• E (-I)-lea,. E (0, Gs) • ..... 
Note tbM thia reault impli. the aeemincl1 atronger reault that the 

diI..- heW_ the sum of the aeri. . 

CIa -o.+ae -a.+'" 
and ita ft- partial aum is Ieee than ""+. in abeolute value, aince this difference 
ie apin an alternating aeriea. 

The main properties 01 abeolutely converpnt aeriea, proved in the 
next two propositiona, are that their terms may be rearranged in any order 
or ftIl'Oupecl in any way without affecting the converpnce or the 8ums of 
the aeri •• This makes it poI8ible to perfonn many kinde of manipulations 
with these aeri. without concern about converpnce problemll, a fact that 
does not hold for aeri. that are converpnt but not absolutely convergent 
(cf. Problem I'). 

PropoRdon. 1M /: 11,2, 3, ... t - 11,2,3, ... t be a function that ia 
• 

OJIHU ad 01lI0. Tlaen if E a,. ia an abaolulelll convergent m'iu of real ..... -....".,." IAe __ E G" .. , ia ,.,. abaolulelll convergent and ..... 
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For AllY positive integer ra. the numben /(1)./(2) •...• /(ra) are a 
IRlbeet of 1, 2, •.. , N, for lOme N. Thus any partial lum of the aeries . -I: I 01(.) I is 1888 than or equal to a partial lum of the aeries L I 0.1. Since 
.-t .-1 
the latter aeries converges ita partial IUmB are bounded, hence al80 the 

• • 
partial IUmB of the aeries I: I a"a) I are bounded. ThUl the aeri88 L a"a) 

.-t --' 
is abaolutely convergent. We know that 

. - -L 01(.) - La''' L (0/(.) - a.) 
__ I _-I .... 

and we aba1l complete the proof by Ihowing that the latter 8um is zero. 
For any t > 0 choose a positive integer N luch that whenever n > m ~ N 
we have I CI.o+a I + 1000+11 + ... + 10.1 < t. Then choose N' luch that all 
the numbers 1,2, •.. , N are included among /(1). 1(2), .. . ,/(N'). Clearly 
N' ~ N. If ra > N' we have 

where 81 coats of those intepns/(1),/(2), •. . ,/(n) which do not occur 
&mODI 1, 2, ••• , ra, while 8. coDBiBta of tru.e integen 1, 2, .•. , ra which 
do not occur among 1(1), 1(2), . .• , I(ra). Clearly 8a and 8. have no element 
in common and neither includes any of the numbers 1. 2 •.•• , N. 10 that. 
B1 VSaC IN + I, N + 2, .•. ,Ml for lOme M. ThUl for ra > N' we have 

l!i (0/(.) - CIt) I S i~&VBtICltI s laN+l1 + I~N+.I + ... + 10.,1 < to 

This proV88 that t (0/(.) - a.) == O. 
a_I 

If 8 is a Bet and cp: 8 - R a function then the expl'e88ion of cp(.) 
~ 

is well~efined in C&8e 8 is finite. This expl'e88iOIl can 8Ometim88 be given a 
meanilll. independent of any ordering of 8, if 8 is infinite. In fact if 8 can 
be put in one-one correspondence with the natural numben and if in 80 

doing we obtain an abaolutely convergent aeries then we can define li cp(.) 

to be the BUm of that aeries. More precisely, if I: (I, 2,3, ... 1-8 is a 

function that is one-one onto and if t cp(f(ra» is absolutely convergent. 
- _-t 

then we define ~ cp(.) to be L cp(f(ra» (which by the lut proposition is 
~ _-t 

independent of the choice of I). 
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Rpecial CIUIeII of infinite sets 8 which can be put in one-one corre­
spondence with 11,2,3, ... J are 

(1) any infinite subset of the natural numbers (for the elementa of such a 
set can be written down in their natural order) 

(2) the set of all ordered pairs I (n, m) : n, m - I, 2, 3, .•• J of natural 
numbers (which can be written down in the order 

(1,1), (1,2), (2,1), (1,3), (2,2), (3, I), (1,4), (2,3), (3,2), (4,1), .•. ) 

(3) any infinite let of disjoint nonempty subseta of the natural numben 
(which can be written down in the order of their ema1leet elemental. 

The followilll result says that the terms of an absolutely converpnt 
aeries may be regrouped in any fashion without .,ttering the abeolute con­
vergence or the sum . 

• 
Propoaition. Let L all be an absolutely convergent Nria 0/ real number. 

II_I 

mad let 81,8.,8., ... be a aequence (Jinm or in.JiniU) 0/ dUJoint nonemply 
.,. 0/ natural number. tDhoae union 81 U 8. U 8. U . .. it 1M fJI&tire .. 0/ 
natwal number. 11,2,3, •.. J. Then lor each i tuM tIuJt 8, it infiniU 1M 
feria .~ a.. it abtolutely convergent, if the number 0/ .. B1, Ss, 8., ... it 

infinite then U&e.me. t ( r a..) it ab80lutely convergent, twl in _II cme 
_1 .et 

'-1ft ... (.tf, a..) - ~ a... 

For any infinite subset 8 of 11,2,3, ... J, ordered in a l8QUenae in 
any fashion, each partial sum of the series ria..l is 1_ than or equal to . .~ 
some partial sum of the series L I a..1. Since the partial IUms of the latter __ I 

series are bounded, so are the partial sums of r I a..1. Thus L a.. is abso-
.. ~ .. eB 

lute1y convergent. Thus L a.. makes sense for any subset Bell, 2, 3, ••. J • 
• eB 

We claim that 

This is clear if eitHer Bl or 8. U B. U . " is a finite let. On the other hand 
if both B1 and B. U B. U .. , are infinite then we can order them into 
sequences and then use part (1) of the second proposition of this section 
to get the same result. Thus, by repeated application of this idea, 
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-···-~a.+ra.+···+ra.+ ~ a. 
.U..EI. .EL ....... ~ .. 

in cue there happen to be at least " leta 8., 8., Sa, •••. We are clone, ~ 
in the case where the number of eeta 8., Sa, Sa, • •• is infinite, where i' 

remains to show that the aeries ~ ( .li a.) is abeolutely oonverpn' 

and that ita lum is t a.. To prove that it converpB to the IUIIl t a. 
.-t .... 

it IUftiCes to Ihow that 

lim r a.-O . 
.... ..... .tJI~ ... 

To do this, for any 1 > 0 chooee a positive intepr H lOCh tbat if " > 
m ~ N then 10.+11 + I Go.+.1 + ... + I a.1 <. and then chooIe H' moh that 
11,2, .. . ,HI C 81 U8.U ... U8N'. If now" > N' then the abeolute 
value of any partial 8WD of the infinite aeries r a. (aldOl the 

- .u .. .tJI .. 'IJ. .. 
terms of this series to be in any fixed order at &11) is at most. .~ I a.I, 
where 8' is lOme finite subset of IN + I, H + 2, H + 3, •.. 1, hence it ie 
at most I aN+11 + I aN+t I + ... + I aM 1 for IIOtne M > H, hence is 1_ than 

I. Thus the above limit is indeed aero and ~ ( .~ a.) indeed OOIlvelpl . . . 
to 1: a.. Applyinl thi. to the absolutely convergent aeri-1: 1a.1, we _. .... 
see tbat ~ (.~ 1 .. 1) is convergent. Since I.~ 0.1 S ._10.1 for all 

i-I, 2, 3, ... , the comparison teat .howe that !: ( .~ a.) is &bIoIutel,. 

eonvqent. This eompletea the proof. 

For infinite series of real-valued functions on a metric apace we have 
the following resulta, all immediate consequenCe8 of the definitiODl and 
resulta of preceding sections. 

• 
Propoaicion.. Tit. ifl/i1&ite .,,;u 1: I. oJ ,...,..,.luetl /wtt:lWU 011 ...... 

• -t 
IfNI" E eonver," un(formlJ (f mad 01&1, ii, "",,., • > 0, ..... ..." 
em integer N IUCA IIuJt (f 1& > m ~ H Uaen 

"-+1(1') + I-+h) + ... + /.(,>1 < • 
Jor aU 1'E E. 
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-The infinite aeries E I. of real-valued functions on a metric space E 
....a 

illaid to C01IfHII'P Gbaolulely if the series I:,I.(P) is absolutely convergent 
.-a 

lor each p E B. 

-0w0IIary. II E I • .. em irVinit. "" ... 01 ret&l-vGlued luneliou on a mdric 
....a -.,.,. E and 1: a. a c:onHrferat ..,.... 01 real numbfr. lucia that I/.(P) I Sa. 

....a -lor all p E B aM all ft, IIaen E I. ~ abIoluIay and uniformly • 
....a 

-Propo8ldon. II E/ • .. a uniforml'll ~ ""ia 01 continUOtU real-.... 
DGlutd ~ Oft a metric "'* E IIaen ill .m .. a continuou function 
_E. 

-P .... 'don. II a," E R, a < b, and E I • .. a uniformly ~ 
.-a 

__ 0/ COIItinUOtU real-tIalutl ItmdilJu Oft [a, b) IIaen 

r. (~/. )(aI). - ~ r. 1.(aI)=. 

PrOJHMlcf.oft. 1M 11. II, la, .•. be a ~ 01 real-uGlued luneliom Oft an 
open inWval U ift R, eac:A Iuwi"" a contiftUOtU derivative. 8uppole that tI&e 

• 
inflnit. .,;u EN etmfIef'geI uniformly on U and tMt lor lOmB a E U tI&e 

.-a - -.,;u E I.(a) conHrfCI. Tiaen tI&e ""ia E I. ~ to a difftll'eratiable 
.-a •• 1 

fwt,t;Wm on U aM 

( . )' -E/. - E/.'. 
_1 .-a 

I S. POWER SERIES. 

Let a, e., Ct, Ct, ••• be real numbel'll. The aeries of real-valued functions 
onR -1: c,.(aI - a)· - Co + el(:': - a) + ea(:.: - a)1 + ... ... 
ill eaUed a ,..,. __ (in powel'll of z - a). 
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To avoid meIIIIY circumlocutiolll, one a.lao calla the above expreuion 
.. power aeries when :e is not the identity function on R but rather lOme 
specific element of R. 

The first question about power series is for which :e E R the series 
conv8l'les. Here are three examples, all verified by the ratio testj the 
immediately following theorem userta that these examples are typical. 

t.::... conv8l'les for all :e E R • ... ", -E:Jwm.II 2. 1::e- conv8f1e8 if l:el < 1, div8f1e8 if l:el ~ 1. 
~ 

• 
E:Jwm.II 3. 1: n I:e- converges if z ..; 0, div8l'lee for all other :e. 

~ 

Theorem. [lor 0 ,wm potM' -w I: c..(z - 0)· 0t&8 01 the lollofIJing it 
~ 

",.,: 

(1) 2'A. ItIJf'ia ctlt&fJCf'fu takoluUly lor oil z E R. 
(I) 2' .. e:riaCa 0 reol number r > 0 ad that the aeriu corwergu ab.o­

luUl, lor oil z E R ad tIaat I z - a I < r and divergu lor aU :e auch that 
Iz -ol>r. 

(8) 2'Ae ItJf'iu conIHlr'fU mal" if z - a. 
[lUf'tIwmore, lor em" rl < r in CON ('), or lor an arbitrary rl ERin CtJ46 (l), 
1M ~ ill uniform lor aU z ad that Iz - al ~ rl. 

For suppose that the aeries converges for z .. ~, for lOme ~ ,-E a, -and let 0 < b < I ~ - a I. We aha1l show that E c..(z - a)- converges ... 
abeolutely and uniformly for all z such that I z - a 1 S b. To do tbia, note 

that eince ~ c..(~ - a)· conV8f1e8 ~e have lim c..(~ - a)- - 0, 80 that =- --there exists a number M such that I c..(~ - a)· I S M for all n. If I z - a I S b 
then 

1c..(z-a)·I"Ic..(~-a)-I·1 ~=: ,- ~M·I ~~a ,-. 

But t MI bl(f :- a) I- is a pometric ~riea with ratio I bl(f - a) 1 < 1, 80 
~ 

by comparieon with this aeries t c..(z - a)- converges absolutely and 
~ 

uniformly for all z such that Iz -al S b. Now consider the set S of all 
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E E R such that the seriesL c,,(E - a)" converges. It may happen that .... 
8 - (ai, which is po88ibiJity (3) above. It may happen that the set 8 is 
unbounded, in which C88e for every '1 E R there exists a E E 8 such that 
'1 <I E - al and what we have already shown proves that we are in C88e 

(1) above. The last po8IIibiJity is that 8 is bounded, 8 pili (al. Here we set 
, -l.u.b. fiE - al: E E 81. Then, > 0, the series diverp8 if Iz - al >', 
and for any '1 < , there is a E E 8 such that '1 < Ie - 01, 10 that the 
series converps absolutely and uniformly for all z such that Iz - 01 ~ rt. 
Since '. WM any number Iell than , this proves that C8M (2) obtains. 

The number, of case (2) is called the radiua oj cmwergence of the given 
power series, the interval (a - " 0 +,) the interlltll oj convergence. In C&8eII 

(1), (3) we also use the expression "radius of convergence", meaning by 
this the symbol • or the number lero respectively. 

If a power series baa radius of convergence, " 0, CIt, it may or may 
not converge at the extremities a - " a + , of the interval of convergence j 
for example the power series 

and 

~ z' z' 
zI-"2+3" -4"+ "', 

zI zI ~ 
z-"2+3"-4"+ "', 

z+zI+zI+ ... 
all have interval of convergence (-1,1) and the fil'Bt conveJ'les at both 
extremities, the second at one but not the other, and the third at neither 
extremity. 

Lemma. Let t c,,(x - a)" be a power W'ieB tDitIa ,odiUll oj ~ .... 
r (pouibly r = 0 or , = III). Then the aeries 

t nc,,(z - a)-· .... 

t ~(z - a}·+1 
.... n+l 

aho luJve radiua oj convergence ,. 

We shall fil'Bt show that if the series t c.(:z: - a)· converges for ..... 
% = E pili 0, then the other two series converge for all :z: such that I:z: - a I < 
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,~ - a ,. As in the proof of the last theorem, since 1: c.(E - a)· conVerpl .... 
the terms of this series approach zero, hence are bounded, 10 there ate 
a number 14 such that 1c.(E - a)"1 S 14 for all ft. ThUl 

'
n (:z: _ a)"-'I= nlc.(E - a)" I I.!...=!!.. I-I < • I.!..=.!..\-I 

c.. , E - al E - a - IE - al E - a 
and similarly . 

I ~(:z: _ a)-+II < MIE - all.!.=..!.llI+l. 
n+l - _+1 f-a 

To show that the series t ftC.(:z: - a),,-I and t c.+ 1 (z - a)1I+1 con-
..... .... n 

verge if I:z: - a I < I ~ - a I it therefore suffices to show that the series 

and 

at nM I z -a I-I 
~ IE -AI E -a 

t MIE - all.!.=..!.11I+1 
..... n+l ~-a 

converge, which is easily accomplished using the ratio test. .. 
Thus if 1: c.(:z: - a)" has radius of convergence r, then either of the two 

.-11 

series obtained from this one by "differentiating term by term" or "inte­
grating term by term" has radius of convergence at leut r. But the orilinal .. .. 
series 1: c.(x - a)" can be obtained from the series 1: tac.(a: - a)·-I by ..... . ... 
integrating term by term (except for the term for n - 0) and from the 

series t C+.. 1 (z - a),,+1 by differentiating term by term, eo the previous 
..... n 

argument applies in reverse, showing that the radius of convergence of the 
original series is at. least that of either of the two othen. Thus all three 
series have the same radius of convergence r . 

.. 
Theorem. 11 tI&e power wi-. 1: c.(:z: - a)" Au ratl .. 0/ ~ .... 
r> 0 (polftbly r = CD) tAen tI&e ItIftCtUm I Oft (a - r, a + r) (or Oft •• V 
r-CD)giHnbu 

u diJlerentiGbk. Furtl&ermore lor flRY z E (a - r, a + r) (or:z: E ., Vr - CD) 
w1&mJe 

I'(z) .. t nc..(:z: - a)"-' ..... tmd J: J(t). - ~ n ~ 1 (z - a)II+'. 
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By the lemma the three series involved have the same radius of con­
vergence ,. Pick any positive number '1 < ,. Then each series converges 
unifonnly on [a - '1, a + ,~ by the last theorem. By the last proposition 
of the laat section we have 

_ ,_ , GD 

( l: e:,.(z - a)") - l: (e:,.(z - a)") ... l: nc,.(z - a)"-1 - "... -
on (a - '1, a + r~. Similarly the result on term-by-term integration for 
z E [a - r" a + r1l foOows from the immediate predecessor of the quoted 
propoeition. Since rl was any positive number Iell than" these same resulta 
are true on (a -', a + r). 

Let a, ee, Ct, Ct, ... be real numbers. We say that a real-valued function 

/on an open aubeet of R Iaoa the potHr aerie. ezpanaion t c,,(z - a)" there if -• 
/(z) - l: e:,.(z - a)" -

lor all z in the open aubeet. In this case /' exista on the open subeet and has 
a power series expansion there, and similarly for 1", /"', etc. In fact, from 

/(z) - Ce + Ct(z - a) + Ct(z - a)1 + c.(z - a)1 + c,(z - a)' + ... 
foUcnn 

/'(z) - OJ + 2oa(z - a) + 3ct(z - a)· + 4 c.(z - a)' + "', 
I"(s) - 20a + 2 • 3ct(z - a) + 3 • 4 c.{z - a)1 + ... , 
/"'(s) - 2 • 3ct + 2 • 3 • 4 c.(z - a) + ... , 

P")(z) - ftle:,. + .. '. 
For s - a (assuming this point to be in the open set on which / is defined) 
we pt /(a) - ee,1'(a) - cl'/"(a) - 2Ct,/"'(a) - 2 • ac., ... , 1',,) (a) - ftle:,.. 
We reetate these reeulteu follows. 

Corollary. 1/ the fu'nctitm / Iaoa the potHr aeriu ezpanaion t c,.(z - a)" 
" .. 

Oft ... 0JHft __ 0/ R e1aat ccmtaim a, then /Iaoa ccmtiftuou, derivativu 0/ aU 
0If'dtn Oft lAw 0JHft aubM and e:,. - p")(a)/ftl/or aU ft. 1ft particular, i/ J 1uu 
• JJOtM' ...... apataaicm in power. 0/ z - a then tA .. potHr aerie ... Uftique. 
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For any real-valued function 1 defined on an open aubeet of R that 
containa a and poIIIIe8Bing derivatives of all orders at a. the power aeriee 

t I'->(G) (31 - a)· _ ftl 

is ealled the TG?J1or tItIf'iu 011 at 1M point a. 

'Ex.ulPLII. If 1311 < 1 then 1/(1 + 31) - 1 - 31 + Z' - 31'+ .. '. There­
fore 

Jog (1 + 31)" {a ~ .... 31 - Z' + 31' - ~ + ... if 1311 < 1 J. 1 + t 2 3 4 . 

Ie this power lleriee representation of log (1 + 31) valid for other values of 
311 Certainly not for 1%1> 1. for then the aeries divergee (and furthermore 
log (1 + 31) is not defined for z < -1). Certainly not if z .. -1. for the 
8&Dle reuoD8. But if z .. 1 the aeries converges. Does it converge to log 21 
The anawer is flU. that is. it is true that 

111 
log 2 -1-2'+3'-4'+ .... 

but this statement needs proof. Since a uniformly convergent aeries of c0n­

tinuous functiona baa a continuous 8um and the function log (1 + %) is -continuous at z - 1. it 8uffices to show that the aeriee L (-I)--lz"/ft is ..... 
uniformly convergent for z E (0. 1). This is true since the 8um of any 
number of coDleCutive terms 8tarting with the ftlA baa abeolute value at 
most za/ft S l/ft. since for 0 < z S 1 we have an alternating Bee. 

Suppose now that 1 is & real-valued function on an open interval in R 
containing a and that 1 baa derivativee of all ordem. When doeel have & 
power series expansion in powem of % - a1 That is. when is it true that -I(z) - E/(")(a)(z - a)-/nl? Reverting to a previous notation (end of -ChapterV). 

I(z) _ I(G) + l'(a)~1 - a) + ... + r·)(CI)~ - a)- + R .. (z. a) • 

• 
we see that we have I(z) - EI'·)(a)(z - a)-/nl for &ny particular z .... 
if and only if lim R.(z. a) - O. This can be & useful criterion. 8ince 'raylor'8 -theorem gives us some practical information on R .. (z, a). 
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... 
EXAMPLE. The Taylor seriee of e" at the point 0 is E ~ /n I. Tbie ..... 

seriell converges for all 2: E R. By Taylor's theorem we can write R.(~, 0) -
,,%,*I/(n + 1) I , where E is lOme number between 0 and z. Since e" is an 
increasing function we have 

.'8' 2: -+1 
IR.(z,O)I~ n+l)1 

... 
Since E z"/nl converps, lim z·+I/(n + 1)1 - O. Thus lim R.(z, 0) - 0 

.... .... a40t 

and therefore ... ~ 
e"" E-

..... nl 
for alI zE R. 

14. THE TRIGONOMETRIC FUNCI'lONS. 

We want to define the trigonometric functions and derive their stand­
ard properties in a rigoroUs manner. The usual geometric way of doing 
this, using angles and arll length, relies on intuition, but it is possible to 
make this method entirely logical. However it is much simpler to use an 
altemate approach. We shall confine the discU88ion to the sine and cosine 
functions, since all the other trigonometric functions, as well as their 
inverses, may be got from these. 

We look for real-valued functions on R that are everywhere twice 
differentiable and satisfy the differential equation 

I" - -I. 
II such a function I exists, from the equation /" ... -I we deduce 

I'" - -I', 80 that I is three times differentiable, then we get I(t) .. -I" ... 
I, 80 that I is four times differentiable. From I(t) "" I we get PI) = 1', 
PI) "" /" "" -I, 1('1) = -I', PI) = -/" "" I, etc. Thus I has derivatives of 
all orden and its Taylor series at the point 0 is 

1(0) + I'(O)z - 1(0) zI _ 1'(0) z' + 1(0) z' + ... 
21 31 41 . 

For any particular z po! 0, Taylor's theorem givee us the estimate 
IC.+I)(E) 

R,,(z, 0) - (n + 1)fZ,,+1 

for lOme E between 0 and z. Letting M be an uppet bound for 1/(E) I, 
I/'(E) I for E ranging over the closed interval with extremities 0 and z, 
we have 
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Thus lim R.(z, 0) - o. A. a consequence, if a function / with the _red .-
properties exista, it is equal to ita Taylor 18ri. for all z E R. 

For any el, es E R the 18ri. 

e,;eI 0tZ' ~ 
Ca + f:tZ - Y-ar +""ir + ... 

converpl!l for all z E R, U will be ... by comparieon with the __ -(Iell + lesl) 1: Islw/nl. Takinl es - 0, es - 1 we are led to de&oe the ... 
sine function ain by 

• 11' z' Z7 
I!I1nz - z - 31 +51 - 71 + ... 

and takiDl el - I, es - 0 we define the coaine function COl by 

zI zt 11' 
COl z - 1 - 2i + 41 - 61 + .... 

The functiona ain and COB are defined on all of R. Ditrerentia\iDl their 
series term by term lives 

Ii . Ii . 
d:e mn z - COl z, di' COB z - -1Ul z. :. 

Thus ain and COB both satisfy tho equation I" - -/ and any lunetlon 
/: R - R that satisfies this equation mUit be of the form 

/(z) - elCOU +e,linz 

for certain conatanta el, es E R. 
It follows immediately from the l8ries expanaiona that 

ainO - 0, COlO -1 

ain (-z) - -sin z, COl (-z) - COl z. 

ts (ain' z + coe' z) - 211in s -k aiD z + 2 COl s';' COl. - 0, 

10 that ain' z + COB's is conatant. Since aiD'O + _0 - 1 we ... 

ain's + coeI. - 1. 

To derive the familiar addition formulae, fix IOJD8 a e R. TbeD . 

! ain (s + a) - COI(S +a) ! (z+ a) - COI(z+a) 

and 

! COl (z + a) - -ain (z + a)~ (z + a) - -aiD (s + a), 
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eothat 

dI sin (x + a) . ( + ) dzI = -SID X a. 

Hence we can write 

lin (x + a) - ClOO8 X + Cs sin x 

for Certain Cl, Cs E R. Differentiating gives 

COlI (:e + a) - -c. sin:e + Cs con. 

Betting :e - 0 in the 1ut two equations gives Cl - sin a, Cs - 008 a, 80 that 

sin (:e + a) ... sin:e COlt a + con sin a 

COB (z + a) .... COB z 008, a - sin z sin a. 

To derive the periodicity properties ~f sin and COB reason as followa: 
Iin:e > 0 if :e E (0, 2), since then all the expreaaions 

:r;1 :r;1 Z7 :r;1 Zll 
:e -'31' 5i -71' DI-TII' ... 

are positive. Since d COlI :e/a - -sin Z, 008 Z is a decreasing function on 
(0,2). Now 

while 

111 00II1-1--+---+···>0 21 41 61 ' 

00II2-1--+-- --- -···<1--+-<0 21 2' (2' 2') 21 2' 
21 41 61 81 21 41 . 

It followa that COII:e is aero at eome unique point of the interval (1,2). 
This unique point we denote or/2 (this is a definition of or; note that at the 
moment we have only the rough approximation 2 < or < 4). We deduce 
that on the interval [0, or/2) COB:e decreases from 1 to O. Since the deriva­
tive of sin z is COII:e, which is positive if z E (0, or /2), sin z increases on 
this interval. Using the facts that Bin 0 .... 0 and sinl z + cosl X == 1, we see 
that linx incre&8el from 0 to 1 on the interval [0, or/2). The addition 
formulas then sive 

ain (:e + ; ) - COB:e, COB (z + ;) - - sin z. 

Repeated application of these give sin (z + or) .... sin «x + or/2) + or/2) == 
.. ~ + or/2)- -ainz, sin (z + 2or)- sin «x + or) + or) ... - Bin (x + 11") -
• a. Similady, or by differentiating the last fonnula, we get COB (x + 2or) = 
_:e. Ia other worda, sin and cos have period 2or. 
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,s. DIFFERENTIATION UNDER THE INTEGRAL SIGN. 

The result we give here is only the simplest of a number of similar 
resulta, but it is aIao the most uaeful and ita proof is illustrative of the 
otherB. The notion of partial derivative enters, but only for convenien~ of 
notation. None of the properties of partial ditterentiation to be developed 
in Chapter IX will be used here, only the definition, which is eseentially a 
one-variable matter. 

Let U be a aubeet of BI with the property that for each s E R the 
aubeet of R given by 1'1/ E R : (s, '1/) E UI is open. That ia, U ia the 
union of open aubeeta of vertical lines in the plane /II. Then if I ia a real­
valued function on U and (Zoo 'I/o) E U, by 

*(:ro,'I/.) 

we denote the derivative at 'I/o of the function sendinl '1/ into I(s., '1/), 
provided this derivative exiata j that ia 

lL(So 1/1) _ lim I(So, '1/) -/(s.,1/.) 
av' ..... '1/-1/. ' 

if this limit exista. If .!L (Sa, 1/1) exista for all (So, 1/0) E U we have a real­av 
valued function on U whose value at each (Zoo 'I/o) E U is lL (:ro, 1/.), and 

a1/ 
we of coune denote this function by lL. 

a1/ 

Theorem. Lee G, b, c, d E R, G < b, c < tl, tmtlllll be G contimAotu real­
lIGluecl juradMm em tile aubM 01 /II given bv 

(:e, '1/) E /II : G :S :e :S b, c < '1/ < tll. 
Su",.. tIaat Z eNCa cmtl g c:ontinuoua on tAg ad. flam 1M lunctitm 

F: (c, tl) -+ R tleJin«l bv 

F'(y) - L' Z (:e, 1/)u 

lor aU 1/ E (c, tl). 

For a fixed 1/ E (c, tl), both I and al/ay are continuous functions of :e 
for :e E (CI, b), 80 both illtegrala in question exist. We have to show that 
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F'(yo) exists and is as indirAted for eallh Yo E (c, d). So let Yo E (e, d) be 
fixed. (''hOO8e numbers c', d' such that c < c' < yo < d' < d. Then the set 

8 = (x, 1/) E E' : x E [a, b), 1/ E [e', d']1 

is compact, 80 that the continuous function a! / ay is uniformly continuous 
on 8. Given any I! > 0 choose 3 > 0 such that if (x, 1/) E 8, (Xl, 1/.) E 8 
and v' (x - Xl)· + (1/ - 1/.)' < 3 then 

I ~ (x, 1/) - ~ (Xl, 1/.) 1 < b ~ a' 

Wemay assume that 3 < min (Yo - e', tI' - Yol, Then if 1/ E Rand 
I, - rIol < 3 we have (x,1/) E 8 for any x E [0, b). If in addition to 
III - 1f.1 < 3 we have Y '" Ifo then 

I 'M - '(1/0) - f.t .!i....(x, 1/e)dx I 
II -1/0 • a1/ 

.. I f.t (/(X, 1/) - !(x, 1/0) _ a! (x, 1/0)\'-1 
• 1/-1/0 ay r 

= 1 J.. (:~ (x,,,) - :~ (x"ho) ~I 
where" (which depends on both x and 1/) is alw.tYB between 1/ and fie. (We 
have used the mean value theorem.) But v' (x - x)' + (" - 1/.)' == 
I" -1/01 < 11/-1/01 < 3, 80 that 

1 : (x,,,) - : (z, 1/0) I < b ~ 0 • 

Thus 

1 F(1/) - '(Yo) - f. • .!i....( '~-I < .:a.. z, YO/fUi _ I! 
Y - 110 • "/I 

if Iy - yol < 3,1/ "1/0. Therefore 

F'(y \ - lim F<II) - F<II.) - f.t .!i....{x OJ 'dx 
8J ..... Y -1/. • ay ,,8/ , 

as was to be shown. 

PROBLEMS 

1. Find a sequence of continuou8 functions Jft: R -+ R 8Uch that lim IimJ .. (z) 

and lim Jim/.(z) exist and are unequal. -.... 
..... -
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2. If !: E' - 1(0,0) I - R, three limits we can consider are lim lim !(a, r), 
..... -

lim lim !(%, 1/), and Um !(%. r). Compute t.heee limite, if they exist, 
- .... ( ••• >-11.1) 

for !(%. r) - m' and for !(%, r) - ~ + ~. 
3. Find a sequence of continuous functional.: [0, 1) -. R that COIl~ to the 

aero function and such that the sequence r. 11(.)., r. I.c.a>a. r. I.(a>a, ... 
increaaea without bound. 

4. Find a uniformly convergent sequence of differentiable functional.: (0, 1) .... R 
such that the sequence fa', N, "', ... does not converge. 

5. Construct a convergent sequence of Riemann intearable real-valued functicma 
on [0, 1) whose limit function ia not Riemann intearable. 

6. Prove the fonowinl fact. implicitly used leVeraI times in the tat: For &Dy 

positive intapr m, a eeriea of real numbers i:: a,. is CODVerpnt if and 0DIy if 
.-1 

~ a..+. is convergent, and in that cue .-1 
~a,.-tll'+41+ ... +a..+~a..+a . 
.tf:t f:t 

7. Show that if til + 41 + 41 + ... is a convergent eeriea of real numbers and 
"1, lit ........ is a subeequence of the IJ8qU8DCe 1.2. 3 •.••• then 
(til + 41 + ... + a..) + <a..+, + ... + a.,) + <tJ.,+1 + ... + o.j + ... 

-~a,.. 

8. Let tIJ, 41. 41, . .. be a decreasing sequence of poeitive numbers. Show that 
<a) if tI, + 41 + 4J + ... converges then lim ftG,. - 0 -(b) til + 41 + 41 + ... converges if and cmIy if tIJ + .. + 4aa + 8aa + ... 

converges. 

9. (InteRral teat). Let J: 1% E R : % ~ 11 .... R be a decreuing poeitive-va1ued 

function. Prove that ~ !(,,) converges if and only if lim /'·1(;1) • .... i=t ..... 
(Hint: Draw a diagram.) 

10. Use the prececiinl problem to tell for which , > 0 the following __ COIl-

verge: 

t ~. t "(~ ,,).' ~" loc" (~loc a)" 

11. Show the convergence of the aerieI 

tG- ,.~a) 
of real-valued functions on R - 1-1. -2, -3, ... J. 

12. Show that if til + 41 + lit + ... is an abeolutely converpnt aiea of real 
numbers, then tI,1 + G/' + G/' + ... converges. 



13. (Root teat). Let t .. he a __ of real numbers. Show that if there exiata a 

number II < 1 IUch that ~ S II for all aufticiently large ft, then the aeries 
is abeolutely eoDVerpnt. 

14. Prove that a aeries of real numbenwhich is eoDverpDt but not abeolutely 
OODverpDt caD have ita terms rearruaed in IUch a way that the DeW IIfIriu 
008 .... to &DJ pree ......... DWIlber, 01' IWIh that the partial IUme of 
the Dew eeries become arbitrarily Iaip, or become arbitrarily ..n. 

tL Prove that if t;t .. &Del t:; "" are ablolutely converpat eerill of ... numbera 

then the aeries ~ a.P. is &leo abeolutely Converpot, and ...... 
~aA-(~ .. )(~""} 

16. Let CIa, Ga, Gi, ••• be a aequence of nonnegative'" numbers, let 8" Bt, Bt, •.. 
be • II8qUeDC8 (finite or iuDite) of disjoint nonempty eeta of natural numbers 
wboee union is (1,2, 3, ..• 1, and auppoee that for each i auch that 8. is infinite 
the __ ~ .. eoDYeI'III and that if the number of eeta 8" Bt, Sa, ... is 

.:1'1, :m: the aeriee ~ (~, .. ) converps. Prove that the eerill 1;; .. 
17. !At V be. complete normed vector space (Prob. 22, Chap. III). The defiDi­

tioaII of an iDfiDite eeries of real numben &Del the converpnce and IWD of 
IW!h a eerieI ....... hmnecl.tely to eeries of elementa of V. 
(a) Verify the ...... for __ of element. of V of the OO8verpl108 cri-

terioD of the &rat propoIltion of 12. 
(b) De8De the aotloa of ablolute eoDverpIlCI8 for __ of element. of V 

&Del verify the rearr&DIin& and fIII'OUpbac propertill of . abIolutely con­.,...t eerieI of ...... t. of V. 
(0) Define the notion of uniform OO8verpDCe for a __ of V-valued fUG­

tioaII on a metric apace aDd prove that the IUID of a uniformly COOV8l'pDt 
aeries of COOtinuOUl V-valued funotioall ia oontinuouL 

18. Let e., C" Ct, ••• E R. Prove that if lim IC.!c..tll exiata, it il equal to the .-
radius of convergence of the pOwer eeries ~ c. zw. 

19. !At Ce, Cit Ct, ••• E R. Prove that the radius of converpnce of the power eeriea 

~ c. ZW is l/1im aup ~. (Cf. Prob. 18, Chap. III for the definition of 
~ . ... 
11m IUPi the quoted expn!IIIlon ia to be interpreted .. 0 if the lim sup does 
aot exiat &Del u • if the tim IUp ia 0.) 

... I'iDcl th. radli of converpnce of the lollowiq power .11: 

<a> ~.00I.)" 



(b) ~ (loa ,,) ... - Z" 

(c) ~ ,,-z;. 
(d)~~ 
~ (v'A)-

(e) ~~. 
~ "I 
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21. Show that a power aeriea ~ c" Z" baa the .. me radiua of CODVerpnce .. 

~ c.... Z", for any poeitive integer m. 

22. Let a, Ct, Cl, Ct, ••• E R, with at leaat ODe of Ct, C1, Ct, •• , Donaero, and let the 

power aeriee ~ c,,(z - a)· have poaitive radius of convergence r. Show that 

there exists a poeitive number 1 < r BUch that the BUm of the aeriea is nonaero 
for ever,y real number z BUch that 0 < F - a I < I. 

23. Let a, Ct, Cl, Ct, ••• E R and let the power aeries ~ c,,(z - a)- have radius of 

convergeDce r ~ 0 and converge to fez) if Iz - at < r. Show that if 6 ER and 
I" - at < r, then there exists a power aeries in powers of z - b which COD­
vergesto/(z) whenever lz-hI <r -I" - at. 
(Hint: Expand out ~ c" «z - b) + (6 - a»- ~y the binomial theorem.) 

24. Let a E R, a" 0, I, 2, .... Show that the "binomial aeries" 

1 + + a(a - 1) ~ + aea - l)(a - 2) zI + 
lIZ 21 31 ... 

baa radiua of convergence 1. Let f (z) be the BUm of this aeriee on ita interval of 
CODverpilce. Show that (1 + z) r(z) - qf(z), and hence that fez) - (1 + z)· 
for Iz\ < 1. 

26. Show that. the aeries ~ ( ; ) I is abeolute1~ convergent and lind ita BUm • 
.... -1 n m 

26. u. Problem 15 and the binomial theorem to show that 

(~ Z") (~t:) _ ~ (z + y)" 
f:t nl f:t ,,' f:t "I 

for &ll z, II E R. Hence give an alternate development of the theory of the 
exponential function ... 

'11. Find a real-valued funotion on R poeeeeaing denvativea of &ll orders whOle 
Taylor aeriee at a certain point converges to the function only at that point. 
(Hint: Start with Prob. 26, Chap. VI.) 

28. Define the functions tan, cot, 1IeC, C8C in terms of sin and COB and compute 
their derivativea. 
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29. Show that the functions aln and tan (el. Prob. 28) are each increuing on 
(-r/2. r/2). Hence define t.he funcUons aln-I and tan-I (on (-1.1) and R 
reepectively). prove them differentiable. and compute their derifttivee. 

30. 8Wting with the formula for d tan-I s/u (el. Prob. 29). live the TeUODIJ 
justifying the argument thaUor Izl < 1 we have 

t ", t zI zI . 
tan-Is- ol+P· • (1-P+14- ... )",-z-3"+6"- .... 

and therefore . 
r 111 
i- I -3+&-7+ .. ·• 

81. 8tartiDc with the formula for d ain-lz/u (el. Prob. 29). mab UIJ8 of the bi­
nomiall8riea (el. Prob. 24) to find the Taylor aeries for aIn-1 at the pobat O. 

82. The defbdtioDIJ of an infinite aeries of real numbel'll and the oonverpn08 and 
111m of IUch a eeri. extend verbatim to aeries of complex numbers (el. Prob. 
20. Qaap. III). Verify that the converpnce criterion of the &ra propoeition 
of 12. the notion of abeolute oonverpDce. and the I'eU'I'aDIiDI and rearoup­
iDs propertiee of abeolutel7 OODverpDt lUi. hold for aeriee of complex DUm­
ben, and that the notion of uniform OODverpllC8 extends to aeries of complex­
valued funotiODlJ on a metric apace ... well .. the theorem that the 111m of a 
uniformly OODvergent lUies of continuous functioDIJ is continuous. (1bere is 
no need to prove any of this if you have done Problem 17.) The notion of real 
power lUi. extends to power lUi. with complex coefticienu in powen of a 
complex variable. Verify that the fim theorem of 13 paeraliaI abnoet ver­
batim to lOch complex power lUi •. 

33. (a) Verify that the complex power aeri. . ". .. 
1 +ii+2j+3j+'" 

". ,. ". 
1-2j+ij-6j+'" 

.. .. 
'-3j+5i- ... 

eonverp for all. e C (el. Prob. 32). 
(b) Denot.ing t.he IOma of the earl. of part (a) by ... 001 •• and lin. reepeo­

tively (which agrees with our previowl conventionl if • e R). prove that 
,...e'I- ....... 

for all '1. It e C (el. Prob. 26) and that 
"'-OOI.+ialn. 

for all. e c­
(c) Verify that 

e'-+ ..... 001'---2-.... - ..... 
am .---w-
00"'+ alnl • - 1 

for all • e c. and that the uaua1 equations hold for 001 ('1 +.., and 
aIn( .. + ..,. 
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(d) Prove that any complex number ... 0 CloD be writtea • - II lor lOIII8 

tEC. 
(e) Prove that for any • E C and any positive int.epr • we ClaD write • - "" 

for lIOme III E C. 

34. The "fundamental theorem 01 aIpbra" atatel that for ..., poll,," in ...... 
and any Gh III, ... , a. E C there exieta at -- ODe r e C ... thM 

t"+G,r-'+IIIr-'+ ... +a.-o. 
Expand the following outline ·into a proof 01 dUe theorem. 
(a) Let I: C ..... C be defined by 1(.) _ .. + .,-' + ... + Ga. ".. 1/(1)' 

is larae if !.! is larae (el. Prob. 20, Chap. lIn. 
(b) Since the function !/(') I is continuoua (el. Prob. 11, a.ap.IV),lt &bete­

fore attaiDla minimum at lOIII8 point r e c. 
(c) We can write 

1(.) -/er> + G(. - t)-(1 + (. - ",(.» 
where m is a positive intepr, a e c, a .. 0, and ,(.) iI • poIyDomial in .. 

(d) ChooIe II e C IIIch that ttl" - -/er>/a (el. Problem 88(e». ".. If 
I(t) .. 0 we have lJet + lei), < 'let)' for ..., eufticieIltl)- .....u poIlttft 
real number I, which iI·a contradictioD. Thus/(t) - 0. 

35. Let (II, b) and (e, dl be cloeed intervals in ft and let I be a continuous ..... 
valued function on I (z,,) E liJI: z E (G, bl., e (C, dll. By Prob. 15, Chap. 

VI, /"/(z.,)IIz i. continuous in , and L'/(z,,)dr II continuous in ., 10 thM 

f."(f: I(z, ,).)dr and £(1." I(z,,)dr). 
exiIt. Prove that theee intecrale are equal by computiq 1./. 01 

J:(f: /(z, ,).)dr and /"(!." l(z,,)fIr)-
for I E (II, b). 

36. Let J be a reaI·valued function 08 .. open 111_' 01 P. Proft thM if 

:z (*D and ~ (i!) emt and are continuous then tbey are equal. ('/" 

hu been defined in the text; the definition 01 8/a. iI ......... ). (HWtI: u. 
Problem 35 to ahow that if the .. I (z, ,) e .. : z e (a, "I •• e Ie, eIIl II ell­

tirely contained in the let 08 which I is defined, theft 

£(/.' :z(~)dr)'" - £(1.' :'(~"Ir)-.) 
37. Let II, b, e E ft, b < c, and let I be. continuous ..... n.Iued fuaotiaD OIl the .. 

«z, ,) E liJI : z ~ a, , E [6, eJl. Let F: 16, el...... be ...... fuDo&ioD. W. 

-y that I.+- /(z, ,) ". ....".. tmif"",." 10 F(r) .. [6, el If, for ..... > 0, 

there exietll a number N e R IIIch that I f: I(z, ,) _ - 1'61) I <. lor II 
, > N and all , E (6, el (10 that for each , E (6, c) the Improper iD.tepU 
/'+-/(z, ,). emte and equala FM (el. Prob. 28, Chap. VI». Pnm thM if 

L+- /(z, !f)dz convergea uniformly to FM on [6, eJ. thea II' iI 00Idima0ue. 
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if.,.,c>O. 

at. Par" - 0, 1, I, ..... 1_ - /.." lin- a c. SIIow that " , . (a) • (eoa • lID-I .) - (" - 1) aiD .... a - " .- :I: .-1 (b) 1_ --.--1 .... ih~2 

l·a·6 .. · (2!-l)"} (e) I .. - I. 4 ..... (Ja) J . 
lor" - 1,2, a, ... 

2· 4· .... (!!) 
''''''1 - a • 6 • 1 ... (ta + 1) 

(d) 1 .. 1.,1 ..... is a clecreuiDc eequenee havilll the limit I0IO IoIld 

lim I,"*' _ I - .. 
(e) lim t • t • 4 .......... (211) • (Ia) _ ! w: ' 

-1 • a • a • 6 • 6 • 7 ... (ta - 1) • (ta + 1) :I ( &I1ia product). 

.. (a) Show &11M if I: ,. e a : _ ~ 11-a ill oontiauoua, then 

t/(l') - /:*1 /(.,. + t (J(t') - £+1/(.,.). 
(b) Show that. if , > 1 thea loi' - {.+lq. C Men from - 1!2& by _ 

than 1/.... (HiN: Work out the iIltepoal uaia& the T.,tOr __ for 
10& (l + -) at the point 0.) 

(0) U. pan (a) wWtl - ... put (b), aDd PIob.I2, Qaap. VI to prove that 

~00I.1- (.+1> Ioi"+.) ..... 
(d) u.. pan (8) af the ........ problem to aomput.e the above limit, t.hua 

obWaiDI 

lim "~ - I (8tirliDl'8 formula). 
- ... r-

41. I'ar _ e a, .. .,(.) - miD I I_ - .il : , - 0, ~I, ~2, ... J (which is the 
diItuae rna • to the ..... iDtepr). Show that 
(a) ... ill a eoatiaUOUll ,UDOtioa I: a - a liven by 

lea) - ~ tp(ICh)/I'" 

(b) if ...... , are _ DUlDben which have deoimaI expaDIIioDi which are 
equal.....,t iD tbeir ,. deeimaI P ...... '01' ... , > 0, &heir ,. ~ 
..... by 1 .......... ~ fl'OlB the pair If. 61, then 

N) - .-(a) - ~IO'"' 



(0) it. uad , .... ia (b) ..... ill .. of ....... 0.1 ••..• i-I tbaD 

.,(10-,) - f'<lO":I) -*10"""'. 
wbDe it • ~ , .. .,(1",,) - .,(10-.) 

(d) it.ud' .... 1n (b),taa. 

1<') -lfII) - ~ .Ut·" 

., tW C/CJ) -I(;II»/CJ - .) .. III ...... odd or eYeD aoooaIiDI .. i Ie 
odclor.... . 

(.) .... _ ..... fUDlllloa/: a .... a .. DOWhtre cWfereDt.iabIe. 



CHAPTER VIII 

The Method of Successi"e 
Approximations 

In thia chapter a number of important exiItence 
theorems are proved by a IUccellive approximation 
method. By way of introduction to IUCCleIIive approxi­
matioDl, consider Newton', method of IIOlvilll an equt.­
tion/(s) - 0: Suppoee that/. a continuous nal-valued 
function on an open interval U in R and that I attains 
the value RIO at lOme point of U. We wiab to find thiI 
point. Allume that I. differentiable on U and that I' 
• continuous and nowhere RIO on U (10 that I hu the 
value 181'0 at only one point of U). Let s. E U be IOID8 

lint app~ilnation to the root of I(s) - O. Then 
I(s. + A) - 0, for lOme mnaIl A. Since I(s. + A) ia 
"approximately" 1(:zI) + A/'(:zI), by -tina the latter 
expl'ellion equal to RIO we have A "approadmatelT' 
-/(z.)II'(z.). Hence we let the nen appawimpoo 
to the root of I(s) - 0 to be SI - s. -/(~/I'~. 
(Geometrically, SI • the point of interaection of the 
:z-axis with the tanpnt to the curve, -/(s) at tbepoint 
(s.,/(:zI».) If SI E U we can try to pta betW..,.,..... 
mation to the root by I18ttiq ~ - Sa -/(~/I'(~. 
If St E U we can similarly define :z.. '1'b.ua, ptOYided 
we never l.ve the interval U, we &at a IeqUeDGI of 
pointe St, Sl, St, ••• of U such that 

Sto+l - S. -~, .. - 0, 1,1, ~ ••• 

If thia BeqUIIlC8 CODverpi to a poiat feU, .. by 
continuity we haye 

f- f --Afr, 
80 that I(E) - 0 and f is our deeired root. It.,.. witJl.. 
out saying that tbia pmcedure doeI -* ..,. work. 
8everaI poabilitiee are iDultnted in the fipte _ &be 
next pap and only in cue <a> do we arrive at • root. 
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(a) (b) 

11. THE FIXED POINT THEOUM. 

Tbe followiaa theorem I&1B that a certain rather pneral problem can 
&I ... be IOlved by _ of the moat aimple-minded kind of auccaive 
appruimatioa. In the remainder of tbia chap_ and in the neD chapter we 
...... _ how tWa.., rault can be applied to a variety of apecial probl8llll 
01 CIOIIIlcI.able moment. 

n........ 1M II ......... ", .. ".,. tMIrio IJICICC, F: E - E • fuM­"'"'" .",... .... __ • ,.., tlt,,,,,- l ,. "'-~ .- IItGt lor aU 
p,IEB .. ,.. 

tl(F(P), F(f» S W(p, f). 

2'_ ........ wituf poW P E B .- IItGt F(P) - P. FurlAermore if 
PI it ., poW 01 E ." " - F(pe), PI - F(p.), PI - F(pd, •. , a..n 

lim,. - P. -
If we apply the given inequality to dittinct points p, I of E we &at 

l ~ O. If B doeI not contain dittinct points, tbat it if E conaiata of a linsl­
point, the inequality holda for l - O. Thus we may IUIIUIJl8 it given that 
OSl<l. 

Let • .tan with the lilt part of the theorem, letting,. be an arbitrary 
point 01 II and lettinc Pl, PIt PI, • .• be given by 

,.., - I'(p.), ,,- 0, I, 2, .•.• 

J'GI' lIlT Intepr " > 0 we haft 

4(,.,,..a) - tl('(p...a), ,(p.» S W(p...., P.)· 
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Repeated application of this gives 

d(p,., P"+1) ~ k d(P,,_I, P.) ~ k' d(P"_,, P._I) ~ ka d(p.-a, P __ t) ~ •.. 

80 that 
d(p", P"H) ~ k"d(Po, PU. 

It follows that for any integers n > m > 0 we have 

d(p., P.) ~ d(p., P .. H) + d(P_H' P .. +2) + ... + d(P,,_I, p,,) 

~ k" d(po, PI) + k-+1 d(po, PI) + ... + k,,-I d(po, PU 

~ d(po, Pl)(k- + k-+1 + k .. +t + ... ) 
d(Po, PI)k" 

- 1 -k ' 
the last step using the equation for the sum of a geometric series. Since 
lim k" - 0, the sequence Po, Pl, PI, . .. is a Cauchy sequence. E is com--plete, 80 this sequence converges to a limit, lI&y P. That is 

P ... limp •. 
" ..... 

The inequality d(F(p), F(q» ~ d(p, q) shows that F is uniformly con-
tinuous, hence continuous. Thus . 

F(P) - lim F(p,.) - lim p.+1 = P. .... . .... 
To show that P is the only point with the property that F(P) - P, auppose 
that Q E E, F(Q) - Q. Then 

d(P, Q) - d(F(P), F(Q» ~ 1cd(P, Q). 

Since II; < 1 thia implies that d(P, Q) ... 0, 80 that P ... Q. 

A map F of a metric space E into itself is called a contraction map if 
there exists a real number A: < 1 auch that d(F(p), F(q» ~ 1cd(p, q) for 
all p, q E E. A pea point for I" is a point PEE such that Jt'(P) - P. The 
theorem 11&18, in brief, that a contraction map of a nonempty complete 
metric space baa a fixed point. The theorem also aasertB that this fixed 
point is unique and it gives a simple auee_ve approximation procedure 
for finding the fixed point. If we check the details of the proof we see that 
we can even estimate the accuracy of any approximation of the fixed point, 
for one direct consequence of the inequality 

d(p P) < d(Po, pI)k-
.,,,- 1-k 

d( ... - P) < d(po, p.)k-
.... , - I-A: 
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Thus for any Po E E we have 

dCPo, P) S d~, !:<t}) . 
Proptnltlora. Let a, b E R, a < b, aM let F: (a, b) - (a, b) be a continu­
OUI/Ufldion. 8u'PfHI3e that F ia differentiable on (a, b) aM that there ~ 
a real number k < 1 auch tha' I F'(x) I S k lor all :a: E (a, b). T1aen F ia a 
contrtJdion map, 3D that the jiud poim theorem ia afYPlU:able to (a, b) aM F. 

The proof of this (,,onsists in showing that for all 1', q E (a, b) we have 
IF(p) - F(9)1 Skip - ql. This is clear if l' - q, whereas if 1''' q the 
mean value theorem gives us the existence of some E between l' and q 
such that 

so that 

F(P) - F(q) ... F'm(p - q), 

IF(p) - F(q) I == IF'mllp - ql skip - ql. 

PI p, p. 

<a> 
P. PI p, 

(b) 

p. P. PI 

(e) 

FlG111UD 32. The fixed point theorem for contraction mape of a c10111!d interval in R. 
In each diagram the curved line ia the graph of the function. 

The important point about the proposition is that it provides a epecific 
procedure for finding the point P E (a, b) such that F(P) - P, not that 
it tens us that such a P exists. The mere existence of a fixed point P for 
any continuous map F: [a, b) - (a, bJ can be deduced from the intermediate 
value theorem by noting that the real-valued function on (a, b) whose 
value at any x is F(x) - x is continuous, nonnegative at a, and nonpoeitive 
at b, so that it equals zero somewhere on (a, b). 

The proposition can be used to solve equations of the form I(x) .... o. 
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Suppose in fact that a, b E R, a < b, and that I: [a, b] - R is a continuous 
function that changes sign on [a, b]. Suppose further that / is differentiable 
on (a, b) and that there exist K l , K, E R such that 0 < Kl S f'(x) S K. 
for all x E (a, b). (Thus I is an increasing function on [a, b]j changing / to 
-I would enable us to handle decreasing functions that happen to _tiefy 
analogous conditions.) Then we can show that the proposition, and hence 
the fixed point theorem, are applicable to [a,b] and the function F(z) -
x - cl(x), where c is any constant such that 0 < c S 11K •. To do this note 
first that F is continuous and that for any x E (a, b) the number F'(x) -
1 - cJ'(x) is at least 1 - cK. and at most 1 - cKI , hence is nonnegative 
and less than some number less than one. In particular F is an increaainl 
function. Since I also increases on [a, b], I(a) < 0 < I(b) and for any 
x E [a, b] 

a < a - cf(a) = F(a) S F(x) S F(b) == b - c/(b) < b, 

so that F actually maps [a, b} into itself. Thus the conditione of the proposi­
tion are indeed satisfied. The fixed point E E [a, b] is such that E - F(E) -
E - cf(E), that is fm ... 0, as desired. We remark finally that if we chooee 
c = 1I/,(Xo) for some fixed Xo E [a, b], set F(z) .. x - c/(x), and then try 
to define Xl, X" X"~ ••• by the recursion relation XnH - F(x .. ) for n - 0, 1, 
2, ... , we obtain a well-known simplification of Newton's method which, 
however, does not always work. 

,2. THE SIMPLEST CASE OF 
THE IMPLICIT FUNCI'ION THEOREM. 

It often happens that for a given function I of two real variables we 
want to solve the equation I(x, 1/) = 0 for 11 in tenns of z. That ie, for a 
given real-valued function I on a subset of E' we want to find a real-valued 
function I(J on a subset of R such that for all X in the latter subset we have 
I(x, l(J(x» == o. The problem as thus posed is unwieldy. Among other diffi­
culties, for a given real value of X there may not exist any II E R such that 
f(x, 1/) = 0, or there may exist many such numbers II, the number of them 
possibly depending on x. Even if there exists such a function fP(x) there is 
no reason to expect that it can be given "explicitly," that is by means of 
some sort of formula, so that actually "solving" for 11 in tenna of x, or 
"finding" I(J, is literally Ollt of the question. The most that we can hope to 
do, and this would be of IIOme moment, is to show that under certain general 
conditions there exists somI' function I(J so.tisfying the equation/ex, fP(z» - 0 
and possessing other desirable qualities, such as being defined on a fairly 
large subset of R, being c,,"tinuoU8, or heing unique. To be somewhat more 
specific as well as more Vl'Ilctical, we refonnulate our problem 88 follows: 
We assume that a renl-nlued fUlletion f is defined and continuous on a 
given open subset of E'!. and we ask whether there exists a continuous reaI-



valued function f{J on lOme nonempty open subset of R such that for all % 

in the latter subset the point (.1:, f{J(%» lies in the given open subset of gt 
and 1(%, f{J(%» - O. These conditions are not enough to 888ure the existence 
of a BOlution; for example if I is always positive then f{J(%) cannot be defined 
for any % E R. We therefore suppose we are given a point (a, h) in the 
given open subeet of gt such that I(a, h) =- 0 and we insist that the function 
f{Jbe defined on lOme open interval containing a and that f{J(a) - h. But 
even this is not enough. For example, if 1(%, ,) - z.I + " and (a, h) - (O, 0) 
then f{J cannot be defined for any real number % ,. O. The trouble in this 
lut aample eeema to be that for any given .1: near a the function I has an 
extreme value at , - h. Thua we need lOme condition guaranteeing that 
for any given .1: near a the function I actually goes both up and down as , 
varies near h, and the obvious way to do this is to suppose that aI/a, 
exists near (a, h) and is continuoua and different from zero. A. a matter of 
fact this condition is sufficient for the solvability of our problem, as the 
following implicit function theorem shoWi. 

na ..... m. 1M I be G continuoua r«&l-vaIUtd/unction on an open ..."., 01 /.4.'1 
IAGt contoiftl 1M point (a, h), with I(a, h) - O. 8uppoae IJuJt aI/a, eNta and 

ia eontiftUOUl on 1M ,_ open aublet and IJuJt lL (a, h) ,. O. TAeft there a, 
esiIC open iaImIala U, VCR, with a E U and bE V, aucI& that there uiIt. 
a unique ftmclion f{J: U - V aucI& that 1(%, 1/1(%» .. 0 lor all % E U, and aucI& 
IAGt thia It.mClion f{J ia continuow. 

We begin by defining another real-valued function F on the same 
open IUblet of EI on which I is defined by 

F(%, ,) _ ,_ !]%, 11) 

,,(a, h) 

Thi. F has .. baaic properties that F and aF lay are continuoua, F(a, h) - b, 

aF (a, b) - 0, and for any (%, ,) the equation 1(.1:, y) .. 0 holds if and 
a, 
only if F(.1:, ,) - ,. The laat property indicates the main idea of the proof, 
which is a judicious application of the fixed point theorem. For this, we 
chooee lOme r > 0 luch that the open ball in JJ:I of center (a, b) and radius, 
is entirely contained in the open set on which I is defined. Since aF / By is 

continuoua and aF (a, b) - 0 we may auume , taken so small that 
By 

laF/a,1 < 1/2 at each point of the ball. Choose k such that 0 < k <', 
then chooee " such that 0 < h < V,I - kt and such that I F(.1:, h) :,:. hi 
< k/2 whenever Is - al < h, this last demand being justifiable by the 
continuity of F. We .hall prove the theorem with U = (0 - h, II + IL) and 
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v '"" (b - k, h + k). Conaider any fixed ~ E U. For any 11 E R 8uch that 
1 y - b 1 ~ k we have 

d«~, 11), (a, h») = V(~ - a)t + (y - W < V ht + kt <', 
80 that (~, y) is in our open ball of radiU8 r. If also 1/' E R, Iy' - bl ~ k, 
then by the mean value theorem we have 

F(~, 11) - F(~, 11') _ aF (~, y")(y - y') 
8y 

for lOme y" between 11 and 11' (or, if y ... y', for 11" - y - 11'). The point 
(~, 11") is also in our ball of radiU8 " 80 we deduce 

IF(~, y) - F(~, y')1 ~ ~ Iy - y'l· 

IF(~, y) - hi ~ IF(~, 11) - F(~, b) I + IF(~, b) - bl 
1 k k k 

<"2 II1 -.bl +"2 ~"2+"2- k. 

Thus the fixed point theorem is applicable to the cloeed interval [b - k, 
b + k] and the function that senda each y into F{z,1/), a function that 
mapa this interval into itself. (Recall that z i8 fixed.) This gives us the 
existence of a unique 11 8uch that 10 - bl ~ k and F(~, 11) = ,1, that is 
I (z, 11) .... O. Notice that in fact 111 - b I < k by the last displayed inequality i 
that is, 11 E V. Since this is valid for each ~ E U our desired function tp is 
defined by tp{z) .. 11 and to complete the proof of the theorem it remains 
only to prove that tp is continuous. But the continuity of tp can easily be 
deduced from what has been proved already. Note first that allay is not 
zero at any point of the open ball with center (a, b) and radius r, since 
laF/BtlI < 1/2 there. To prove tp continuoU8 at lOme a' E U, for any 
• > 0 consider the lI&Jlle problem as in the 8tatement of the theorem, with 
(G, b) replaced by (G', b'), where b' - tp(a'), and I replaced by ita restric­
tion to the open 8ubset of Et given by 

({z, y) E Et: z E U, y E V, Iy - b'l < el. 
The procedure used to obtain U, V, tp gives us, analogously, U', V', tp', 
the latter being a function tp': U' - V' 8uch that I(z, tp'{z» - 0 for all 
z E U'. (In the present context the prime' does not indicate differentia­
tion.) But we are dealing here with the restriction of I to a smaller open 
subset of Et than given originally, 80 that U' C U, V' C V, and so that 
11/ - b'l < e for all y E V'. The uniqueness property of tp implies that 
tp'{z) ... tp{z) for all ~ E U', 80 that Itp(z) - tp(a') 1 < f for all z E U'. 
Thus 1 tp{z) - tp(a') 1 < e whenever z is in lOme open ball in R of center G'. 
Hence tp is continuous at a'. Since a' was an arbitrary point of U, the func­
tion tp is continuoU8. 
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Corollary (lnHrseJunetion theorem), Let, be a real-wlued Junction 
on an open BUbBet 01 R Uw.t contains the point b mad 1UPfI086 Uw.t rI ezim and 
is continuoua on thia open IUbset, with ,'(b) #- O. Then tMre e:Nt open inter­
vals U, V in R, with bE V, lUCk Uw.t , is defined at 6IJCh point 01 V and the 
reatriction 01 , to V is a one-one mtlp 01 V onto U tDhoae inverN function 
,,-1: U _ V is di$erentitJble. 

On the open subset of l!JI consisting of all (z, II) E l!JI such that II is 
in the open subset of R on which g is defined. we define a function 1 by 
l(z,lI) - z - g(II). Set a =: g(b). We may apply the theorem to this 1 and 
the point (a, b) to obtain open intervals UI, VI C R, with a E U I and 
bE VI, and a unique and continuous funetion '1': UI - VI lIuch that 
z - g(rp(z» for all z E UI. The map 'I' is one-one from UI onto rp(Ua) -
,,-·(U.) ("\ V •• By the first proposition of Chapter IV the set ,,-·(Ua) is an 
open lIubeet of the set on which g ill defined, hence an open IIUbset of R. 
Therefore rp(Ua) ... ,,-I(UI) ("\ VI ill an open subset of R. rp(UI) is also 
co}lnected, since it is a continuous image of a connected set. A. a nonempty 
connected open IIUbtlet of an open interval in R, rp(UI) ill itself an open 
interval (in fact it ill the open interval (g.l.b. rp(Ua),l.u.b. rp(UI»)' If we 
set U - UI, V - rp(U.), then the restriction of g to V ill a one-one map 
onto U whose inverse map is 'I' and the whole of the corollary ill proved 
except for the differentiability of'll. [It is only fair to remark that there are 
much more elementary proofs. For example, g' maintaina the same sign 
on some open interval in R that containll b, so that we can assume that g 
is either IItrictly increasing or strictly decreasing. We can also assume that 
g is bounded. Using the intermediate value theorem we deduce that g is 
one-one from any open subinterval of the open set on which it is defined 
onto an open interval in R. This enables us to define the inverae function 
,,-. and to prove that ,,-1 is continuous.] To prove'll differentiable we may 
suppose V chosen 110 that g'(II) pili 0 if II E Vi indeed this is true for the V 
we have conlltructed, and we could in any case guarantee this by replacing 
U and V by suitable open subintervals. Then for z, XI E U, X '" Zl, we have 

X - ZI = g(rp(z» - g(rp(xa» = (rp(x) - rp(za) )g'(8), 

for some 9 between rp(x) and rp(ZI). Since 9 E V we have rI(8) ,,0 and we 
may write 

rp(z) - rp(ZI) 1 
x - Zl = g'(9) . 

Since'll is continuous we have lim 9 = rp(x.), 110 since g' is continuous we .... , 
have lim g'(8) = ,'(rp(XI». Hence 

·"·1 
lim rp(z) - rp(z.) 
_., z - ZI 
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Thus" is differentiable at each ~I E U, .. W&II to be abown. 

In the coune of the above proof the equation 

,,'(~) - "(~~» 
W88 obtained. Thia equation can iteelf be coDlidered an immediate 00DIe­
quence of the eoroUary, since once it is known thU " ill diI __ tiable, 
the application of the chain rule to the equation ~ - ,(.,{~» liv. 
1 - I'(,,(2:»,,'(z). 

The above implicit function theorem and invene function theorem 
generalize to functions of more than one variable.. Their pnenlilatioDa 
wiD be proved in the next chapter, after the neceaarr pre)iminariel on 
partial differentiation. 

I I. EXISTENCE AND UNIQIJENUI TIU.ORBM8 
FOR ORDINARY DIFI'ERINTIAL EQUATIONS. 

Suppose that J is a eontinuoUl.real-valued function on & .-taiD open 
aubset of ~ and let (G, b) be a point of this open IIUheet. To 101ft the 
differential equation 

dy 
.... -J(~,fI) 

with the initial condition Y(G) - b means to find a dilerentiable nal-valuecl 
function " on lOme open interval in R eontaininc G IUOh tbM for all • ill 
this interval we have ,,'(~) - /(., .,{s» (this impIiea tbM the poID' 
(z, ,,(~» must lie in the liven open subset of B') and in Idditioa .,(.) - •• 
We note fimt. that the interval in R on which a eoIution " can be de8ned 
may be rather amall, even if the function / ill defined on the "hoIe of .. 
and is very nicely behaved. For example, for any lIOlutioD " of the diler­
ential equation 

we have 

d tan-I ,,(.) 1 
tis - 1 + (f'{i»' .,'(.) - 1, 

80 that tan-I ,,(~) - ~ is eonatant on any opeD interval on which " ill 
defined; if we impoee the initial condition .,(O) - o. then the only __ 
on an open interval in R eootaining 0 is given by .,(~) - tan •• t.b\1l reetricf,. 
ing UI to I~I < 11/2. Therefore if we are interested in IOIviOl the above 
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diI .. tial equation with initial condition, all we can hope for in paet'Il 
.. tba& alOlutioD exIat. on .... open interval containiq (J. Thie is indeed 
the CMe, with no further conditicme, altho. we iban not pIOV8 thie f-' 
in tIaiI tat. However if we want the lOlution to be unique, which II highly 
deIirabl.in maD7 _, IODle funt. oonditioDl are nee.Fry. For eiample, 
if 1(., ,) - 81 ,ltII aocl (., b) - (0,0), we have the two lOlutiooi ... <-) - 0 
aocl ".c..) - ::t. Bence IOID8 condition mUit be impaled on lif we wiIh to 
puaotee a unique lOlutioD. 

The conditioD we abIIlllDpCIII'on I ia the followiqllO-Cllled LipdiU 
~: then exiata ME. such that. wbeaeYer (II,.,) and (II,.) are in 
the open IUhIet of .. on which I iI cIe6necl we have 

1/(11,.,) - I(s,,) I ~ MI, - '1· 

Thia oonditioD ia automatically _tiafied if 1//" uiet. and ia bounded in 
the Pv. opeD sublet of .. and if a vertical line 1IfIIID8Dt. U. entin1y 
within tbia open let whenever it. extremitiel do, for in tbia cue the mean 
value theorem enabl. \II to write 

I(s, ,) - I(s,.) - (v -.) -I- (s, ,,), 

for IOID8 , bet .... , _ • (If , - " we take " - ., - .), 10 M may be 
t&ktD to be any upper 1Jound for IBlI"I. 

7'laeGrem. Lee I_ a CORM .... ~ /wf,t:liIw& on - OJNI' ... 0/ 
.. IAae contaiu 1M poaftt (a, b). 8"",. "..,. .." M. E • ltd IAae 

I/(s, ,) -/(s,.)1 ~ MI, -.1 

........ <-, ,) .. (s,.) are ita 1M ,.,. .",. ... "AM "..,. ..." A E ., 
• > 0, .- IAae "..,. .." .... _ onlJ .... reakaluecl /tIrtI:liIIA " on 
(a - A, a + .) .- .., ,,'(s) - f(., ,,(11» on lAit ..,."",., _ ,,(a) - b. 

For a continuoua real-valued function" on an open interval in • that 
contaiDi a, the equatiODI ,,'(s) -/(s, ,,(s» and ,,(a) - b hold if and onI7 
if ,,(s) - r. I(e, "(O)cIC + b, u followa flOm the fundamental theorem of 
calcuIua. ThUllOlvina the liven dilenntial equation with initial condition 
.. eqaivat.t to IOlvina the Hln~ equation" 

,,(s) - r. I(e, "(O)cIC + b. 

. II to a function #I we ""te another function F(",) whoee value at any s 
.. (I'(#»(s) - f: 1(', #(0)'" + b, we lee that eoIviol the integral aqua-
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tion is the same 88 finding a function II' such that F(tp) .. 11', that is, solving 
a kind of fixed point problem; this is the basic idea of the proof, which we 
now proceed to work out in detail. We begin by ,choosing some N E H 

, such that N > I/(a, b) I, then some r E H, r > 0, such that the open ball 
in E' of center (a, b) and radius r is entirely contained in the open set on 
which 1 is defined and such that I/(z, 1/) I <N whenever (z,1/) is in the 
ball. Then choose 1& E H, 1& > 0, so that h < r/2, h < r/2N, and hM < 1. 
The rectangle 

Hz,1/) E.EI : Iz - al S h, 111 - bl S Nhl 

is then entirely contained in the open set on which I is defined and for each 
(z,1/) in this rectangle we have lI(z, 1/) I < N. We are going to prove that 
there exists one and only one continuous function II' on the closed interval 
(a - 1&, a + h) such that 

tp(z) ... f I(t, tp(t))dt + b 

for all z E (0 - h, a + hI. To do this, collSider the complete metric space 
C«(a - 11., a + h]) of all continuous real-valued functions on the compact 
metric space (a - h, a + hI, 88 at the end of Chapter IV. Let B be the 
closed ball in C«a - h, 0 + h» of radius Nh whose center is the constant 
function b, that is B is the set of all continuous functions 

1/1: (a - h, a + h]-+(b - Nh, b + Nh]. 

Since B is a closed subset of a complete metric space, B is itaelf a complete 
metric space. We claim that any solution of the above integral equation 
must lie in B, that in fact if II' is ... above then Itp(z) - bl < Nh for all 
z E (a - la, a + lal. For if there exist pointe z E (a - h, 0 + h1 such that 
I,,(z) - bl ~ Nil., let "'I be the greatest lower bound of Iz - 01 for anluch 
points. Since " is continuous and tp(a) - b, it follows that "'I > 0 and 
I ,,(a :t: "'I) - bl- Nil. for at leut one choice of the sign :t:. Thus Nh -
I ,,(a :t: "'I) - 11'(0) I-I "'III" (ex) I, for lOme ex between a and a:t: "'I, by the 
mean value theorem, and the latter expression equals I 'Y/(ex, tp(ex» I < 
"'IN S AN, which is a contradiction. Thus any solution II' of the integral 
equation is in B. Now for any", E B define a new function 

F(",): (a - h, a + h) -+ H 

by 

(F(I/I»(z) - f I(t, ",(O)dt + b. 

Since 1/1 E B, for any t E [a - 11., 0 + 11.] we have II/I(t) - bl S Nil., so that 
I(t, ",(t» is defined, is continuous ... a fUllctioll of t, and 11(t, !/I{t» I < N. 
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Hence lor s E [0 -1&, tI + 1&], (F(~»(s) is defined and I (F(~»(s) - bl­

I £-/(', ~(e»dtl ~ Nis - til ~ IaN. Since F(~) is clearly continuous we 
have F(~) E B. Thus F: B - B. If ~, wEB then for any element 
:e E (0 - 1&, tI + A] we have 

I(F(~»(:e) - (F(w» (:e) I 

-I f: C/(e, ~(t)) - i(i, w(t)))dt I 
:S I- - til max (11<', ~(t)) -Ie"~ wet)) I : • e [a - A, a + An 
~ I- - alMmu (I~(t) - w(OI : te [tl - A.a +1&11 
~ AM tI(~. w), 

where tI denotes the metric in B. Thus 

tI(F(~), F(w» ~ A M tI(~, w). 

But AM < 1, 110 that F is a contraction map. The fixed point theorem thus 
8I8U1'8I us of the existence of a unique" E B IlUch that" - F(,,), that is 
IlUcIl that 

,,(:e) - £-/(', ,,(O)dt + b 

fo'r aU _ E [a - A, tI + AJ. For :e E (a - A, a + A) we clearly have 
,,'(_) -/(s, ,,(s» and ,,(tI) - b. Thus the existence part of the proof is 
complete. However it is not immediately obvious that the reetriction of 
"to (a - A, G + A) is the on1ylOlution on (G - A, a + A) of our diI_tial 
equation with initial concJition. To Me thia, note that the above proof would 
have lODe tbrouP with A npIaoed by any A. E R llUoh that 0 < Aa < A. 
ADy eolution on (G - A, a + A) of the diI_tial equation with initial 
ooncIition PVII a eolution of the intesral equation on [a - ha, G + Ai). But 
we know that the intesral equation hal a unique lOlution on [a - A., G + AiJ. 
Thus any two eolutiODl on (a - A, a + A) bave equal reetriotioDi to 
[a - AI, a + AaJ. Since thie is true for aU A. IlUch that 0 < A. < A, there is 
at moat one eolution on (a - A, a + A) and our proof is DOW complete. 

The preceding theorem can be generalised to systems 01 fi!'lt order 
differential equations 01 the fonn 

: -I.(s, '" ... , ,.) 

: -/.(s, '" ... , ,.) 

":; -/.(s, l/., ..• , l/.) 

with initial conditionsl/.(a) -~, i-I, 2, ... , n. Here functiona/ • .! ..... , 
I. of " + 1 variablee are pven, toptber with reU numben ., &a, ••• , 6., 



and the problem is to find functiona ft, ' , , ,'" of s l&tiIfyiq the pno 
equatiooa, Except for notatioDai eomplicatiooa, h pDII'IIbatioil 01 the 
preceding theorem is straightforward. However we are aIao inter.W in 
P'ting ebarper results t.han have 80 far been obtained for ft - 1, 10 we 
begin with a rather specific lemma that iIolatee h technical detailI N1atina 
to the fixed point theorem. 

Lem..... La II, " "I. ". conhftUOUl ......... ..., /vIMJI;iIIu .. - .,. 
..., U of B-+I Uaat conItJina 1M poilU (a, &., "" "). &qIpoM tAft ..... 
N,MER'- Uaatlor .. '-1, ... ,ft 

1I,(s, Ul, " " ",)I < N 

~ (s, Ul, ' , " U.) E U aracI 

1I,(z, Ul, , , " 11.) - I'(z, '1, ' , " .. ) ISM «(,. - .a)1 + ,., + <u. - .. )1)111 
I 

~ (s, ft, " " U.), (s, II, ' , " .. ) E u, La A E R, A > 0, ". auo\ lUI 

fez, '1, , .. , ,.) E 8'*1: Is - 01 SA, 
1'1 - btl S NA, "" I", - b.1 S NAI C U. 

T1Nft V AM v'ft < 1 IIun ... one aracI cmlr one ....,. (fIl, •• ".,.) of 
~ ~ Oft tIae ifttenJGZ Co - A, a + A) .- IAa& I .... ,-
1, ., ., ft, ",'(z) -/'(s, fPl(s), ' , ., ".(s» em '1Ma .,."., aracI ..,{a) - ... 

We want to find functiona fPl, """. atiafyiq h I)'Item 01 in..,.. 
equatione 

",(s) - r. l,e" fPl(C), .. "".(,»)dt + ~ ,- 1, ... , '" 

AnaloaouaIy to what "u done in the proof of the pnoedina theoraD, we 
eoneider h eom~ metric apace to - A, a + A) and h complete met.rio 
apace IF of all eontinU0U8 functiona from (a - A, a + A) into B-, U M the 
end of Chapter IV. We indicate a function into B" by its.tuple of oom­
ponent functiona, 10 that an element ~ of If is an a-tuple (~ ••• , ~.), 
where each ~, is a eontinuOUI real-valued function on (a - A, a + A) aad 
for any s E (a - la, a + Ia) we have ~s) - (~(s), . , • I ~.(s», CoIIIkW tile 
eubeet B of If coneiatinlof all ~ - (~., , , " ~.) eucb that t#~s) -'" S 1IA 
for all sEta -A,a+A) and all '-1, .. "ft, In the~ .... B 
is not a ball in If, u it wu in the precedilll proof, but it ... ..... 
eubeet of If: for if '/I',.p,.p, '" is a eequence of elements of B that GOD­

verpe to the element # of If then for each z E (0 - A, a + A) we have 

10 t.hM 

lim t/I'(z) - ~S), 
~ 

lim f',(z) - ~,(S), i-I"", ft, 
~ 



_ 9IIL ~ &JlnOJaIIAftOIiB 

aDd fJom tile iDequaliti. I~'(*) -'" S Nil for aU j we can Ultnfore 
deduce If.(*) -'" S NA, 10 that fEB, thUl verifying the criterion for 
cbure of the theorem of ,3 of Chapter IlL Since B is a closed aubeet of 
a complete metric apace, B is iteelf a complete metric apace. We claim tbat 
if ,,- (fII, ••• , ".) E IF _tid. the above ayatem of integral equatiOD8 
tbID "E B, aDd in fact I ~(*) - '" < NA for aU * E [0 - II. 0 + h) and 
all .i - 1, ••• ,tL For if there exi8& pointe * E [0 - A. 0 + h] auch that 
I~*) - 6.1 ~ NA for 101118 i, let -r be the pateat lower bound of 1* - al 
for all IUCh pointe *. Since each ~ is continUous and ~a) - .. we have 
-r > 0 aDd '~(a. -r) - 6.1- NA for 101118 i - 1, ••• , ft and at leut one 
of the two chol_ of lip •. ThUl Nh -I ~- • -r) - ~-) I-i-rw(a) I , 
for IOIDe CI bet ... _ and a. -r, by the mean value theorem, and the 
lat.ter exprlllioD equaIa h1,(a, fII(a), ••• , ".(a» I <.,N S IaN, a contra­
dietion. '11wI any aoIutioD " of the Bylltem of integral equatiooa on [_ - A, 
_ + A) ia in B. Now for any fEB de6ne another ft-tuple of functions 
1'(#) - (I'.(f), ... , I'.(f» from [0 - h, a + A] into R by 

(I',(f»(*) - /.-/.(" f.(O, ~ .. , f.(e»dt + It.. 
8inoe #E B, for any t E [0 - A, a + A) and any i-I, ••• , ft we have 
I f,(O - '" S NA, 10 that Ie', f.(O, ... , f.(t» is defined, is continuoua .. 
& functioD of I, and 1/,(', f.(O, ... , f.(e» I < N. Bence for * E [a - A, 
_ + AI, (I'.(f»(s) is defined and 

I (I',(f) )(*) -'" ~ 1 /.- /.0, fa(O, ... , f.(e»dt I S NA. 

Since IMh I'.(f) ie clearly continuous, we have I'(f) E B. That II, 
1': B .... B. We now ahow that F is a contraction map. Let f, wEB. For 
aD7 s E l- - A, 0 + A) and i-I, ... , ft, 

I (I'.(f»(s) - (I'.(w»(*>1 
-I J:' (J.(t, fa(O, •.• , #.(t» -/.(', ,..(1), ••• , ,,,,,(0)>.1 
~ Is - -I DIU 11/.(1, fa(t), ... , f.(t» 

-/'<', ... (0, .• " ... (t» I : , E [0 - A, a + All 
~ 1* - _1M DIU I"(f(i), tt(t» : t E (0 -A, 0 + AU 
~ AM "(#, w), 

(We have here UI8d the ame letter" to denote the metrica in B" and in B.) 
'l1luI 

"«I'(#»(s), (I'(w»(*» - ( t. «I'.<f»(*) - (F,(w»(s»lr .... 
S A MVn "(f, w), 

10 

"(F(f), F(w» SAM Vi "(",, w). 



Since we have 888UJDed that 1&Jf Vi < 1, , is indeed a contraction map. 
Thus by the fixed point theorem there is a unique" .. ("', ... ,.,.) E B 
such that " - F(,,), that is, such that 

"",(z) ~ /.- I.{', ",(0, ... , .,.(t»dt + b, 

for all z E (0 -la, 0 + Ia) and all i-I, ... , n. For z E (1.1 - h,o + h) we 
clearly have "",'(z) ... I,(z, fI1(z), •.• , .,.(z» and "",(1.1) ... bi , so the existence 
part of the proof is &nished. To prove that the reetrictions of "', .•. , ". 
to (0 - A, 1.1 +!&) are the only functions with the desired properties, note 
that the above proof woUld have gone through with Ia replaced by any 
A. E R such that 0 < Ia. < h. Any solution on (1.1 - h, II + h) of the system 
of difterential equations with initial conditions gives a solution of the system 
of intepal equations on (1.1 - h., 1.1 + Ad. But we know that the system of 
intepal equations baa a unique lOlution on (1.1 - h., 1.1 + hi). Thus any two 
lOlutioDa on (1.1 - h, 1.1 + h) of the system of ditTerentiai equations with 
initial conditions have equal reetrictions to (1.1 - h., 0 + hi). Since this is 
true for all A. sUch that 0 < h, < h there is at mOlt one solution on (1.1 - h, 
II + h) and our proof is complete. 

Genera1ising our previous definition, we I&y that a real-valued function 
I on an open sublet of E-+l aatia&es a U,*"ilz condition if there exists a 
number MER such that whenever (z, y., ... , Y.) and (z, '" ... , ,.) are 
in the open Bet on which I is defined we have 

Il(z, ,., ... , ,.) -/(z, '" ... , .. ) 1 S M «,. - ,a)1 + ... + (Y. - .. )1)'/1. 

This oondition can be given in another way, for lince 

1111 - _I + ... + I,. - .. I ~ (w. - .a)1 + ... + (,. - .. )1)'11 

~ max (1,.- '.1,···, hi. - .. I t 
~ 1.(1,. - •• 1 + ... + I,. - .. I), 

n 

we see that I eatiafies a LipschitJI condition if and only if there exists 
M' E R such that whenever I is defined at (z, Y" ••. , Y.) and (z, '1, ... , .. ) 
we have 

I/(z,Ill, ... ".) -/(Z,'I, ... , .. ) 1 S M'(IYI - 'II + '" + I". - .. I). 

A.. a oonaequence it is possible to state that a rather large cl&88 of functioD8 
tatiBfy LipschitJI conditioD8: a real-valued function I on an open subset of 
11'*1 I&tisfies a LipschitJI condition if al/aYl, ... , af/ay. exist and are 
bounded on the open set and if whenever (x, lIl, •.. , 'II.) and (x, '1, : .. , z..) 
are in the open set so is the entire line segment between these two points. 
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For 

I/(x, til, ..• , tI .. ) - I(x, 21, ••. , 2 .. ) 1 
~ I/(x, til, ... , tI .. ) - I(x, 21, til, ••• , tI .. ) 1 

+ If(x, 21, YI, ••• ,1/ .. ) - f(x, 2" 2t, til, ••• , tI .. ) 1 + ... 
+ If(x, 21, ••• , "'-1, tI .. ) - f(x, 21, ••• , ... ) 1 

- 1 (1/1 - 21)..2L (x, "1, til, ••• , II,,) 1 + ... 
iJyl 

+ I (Y .. - ... ) ..2L (x, ZI, ••• , "'-1, ".) I , 
iJy. 

where for i-I, ... , n, ", is between ", and 2, (or equal to them if these 
latter are equal), so that if Mil is an upper bound for lalJaYll, ... , lafla" .. 1 

we have 

I/(x,1/I, ... ,1/ .. ) - I(x, 21, ••• , ... ) I ~ M"(lYI - 211 + ... + I"" - ... 1). 

Theorem. Let II, ... ,I" be continuous real-valued lunctiom on an open 
subset of Eft+t that contains the point (a, bl , ••• , b .. ). Suppose that ft, ... ,f" 
satisfy Lipschitz conditions, that is there exists M E H BUc1& that 

I/;(x, 1/1, ... , Y .. ) - f,(x, 21, ... ,2 .. ) I ~ M (b/I - 2ill + ... + (Y .. - ... )1)1" 

for i ... 1, ... , n whenCller (x, tilt ..• , Y .. ) and (x, 21, ••• , z .. ) are in tM given 
open set. Then there exists hE H, h > 0, such that there exi.ts one and only 
one n-tuple of real-valued function. (c,I>t, ••• , !P .. ) on (a - h, a + h) BUc1& that 
for i = 1, ... , n we hcult !p/(x) "" f,(x, !Pl(X), ••• , !P .. (.1:» on thi. interval and 
!PiCa) = b,. 

To prove this chOO8e some N E H such that 

N > max {I/t(a, b1, ••• , b .. ) I, ... , 1/ .. (a, bt, ..• , b.) II, 
then some r E H, r > 0, such that the open ball in ga+1 of center (a, bt, 
••. , b.) and radius r is entirely contained in the open set on which fl' ... , I .. 
are defined and such that If,(x, 1/1, ..• , Y .. ) I < N for each i "" 1, ... , n 
whenever (x, tI" ... , Y .. ) is in the ball. If h E H, h > 0, any point (x, til, 

... , 1/ .. ) E ga+tsuch that Ix - al ~ h, IYl - bll ~ Nh, ... , ItI .. - b .. 1 ~ Nh 
will automatically be in our open ball if hi + nNII&' < rl. Hence the theorem 
results directly from the lemma if we take the U of the lemma to be our 
open ball, take the same fl' ... , f .. , a, bll ••• , b .. , N, M, and chooee hER, 
h > 0, such that h < r/(l + nNI)11t and hM Vn < 1. 

Corollary 1. Let ft, ... ,f .. be continuouB real-valued function. on an open 
aubset oj Eft+! that contains 1M point (a, bh ••.• b .. ). Suppo.e that It, ... , I .. 
aatisfy Lipschitz condition •. Then if S is any open interval in H that contains 
the point a there is at most one n-tuple oj real-valued functions (c,I>t, ••• , !P .. ) 
on S such that lor each i = 1, ... , n we have !pl(x) = f,(x, c,I>t(x), ... , !P .. (x» 
on S and !p,(a) = b,. 



13. DlI'nUII'IUL ~AftO... 111 

For suppose that ('Pl, ... , .... ) and ("'It ••• , "'.) are two tHuples of 
functions each of which satisfies the &iven conditiODI. W. mUit abow that 
"1 - "'I, ... , rp." .., "'.. This can be acoompliabed by a .,.,. limple IIIIU­
ment as follows: We begin by noting that by the uni~ pari of the 
theorem the subset of S &iven by 

(a E S : ",(a) - ",,(a), i-I, .• " ,,) 

is open. By the continuity of 'Pl, •. " .... , "'1, "', "'.. tbileubeet it eloIed. 
Bince S is connected this subset must be S itself or the 8IDPt7 ... 8inee 
the subset includes the point a, we are forced to the ocmcIusloIl that it. 
must be 8 itself. 

Corollary J. Let I .. ... , I. be continuoua reakalued /vrfI:litma • ,. open 
SUb8et U 01 E"+I that contaim the point (a, ba, •• " ba). 8uppotl II&at Ia, .•• , I. 
aatiBlII lApachitz condition8. Let N I, ••• , N. E R be aucA ".", 

1I.{s, III, ••• , II.) I ~ N, 

lor all i-I, ...• n and all (s, III, ... , II.) E u. Ld 8 C R be .. .,. 
interval containing the point a suck that 

Then there exiltt unique lundiana 'Pl: 8 - R, ... , .... : 8 - R .- .., for 
each i-I, .. " n we have .,/(s) -I.(z, "1(2:), "', ".(s».S.., ~.) - b,. 

If there exist functioDl'Pl, ••. ,,,. with the stMed properties tbIQ t.be,r 
must be unique, by Corollary 1. Also the equatioDa 

"'(2:) - f 1.(2:, 'Pl(s), "', .... (s»dz + "', s E 8, i-I, ... ," 

imply 19'i(z)-b.I~N,ls-al, 80 that for all sE8 we wUI have 
(z, "I(Z), "', .... (z» E Q, where Q is the aet defined b7 

Q - (Z,lIl, ... ,11.) E E·+I : s E 8, III' - "'I ~ N,ls - al,i - 1, ... ,,,,. 

(Bee Figure 33, which illustrates the cue " - 1). One ocmeequenoe of tbiI 
is that cps, ••• ,., .. do not depend at all on the valu. of II, "', I. GUtiide 
the set Q. That is, if we consider a similar problem, with all the same data 
as at present except that the values of I., ... , I. are altered on U - Q, then 
the same functions "1, ... , .... will aolve both problems. But to &0 through 
with the proof we must take into account the behavior of 11, ••• , I. outlide 
Q, 80 we &0 to the trouble of modifying I., .. " I. out.side Q in auoh a way 



r - .,(z) . -
Ilope-N 

I 

• 8 

"..,..88. ,.... .. 0 - 1(., r) e .. : a: eS.lr - 'I~ NI_ -III. for &be _ 
• - 1 " CaroIIIry 2 .. buIioaW by 1IIadiq. 

thal our proof wiD work. All awdliari_, we define functiolll "': B'- R, 
i-I, ... ,ft, by 

{ 
N,I~ - cal + lJe if ,,- lJe > N,I~ - cal 

,.,(~,,,) -" if I" - lJel S N,I~ - cal 
-N.J~-caJ+lJe if ,,-lJe <-N,I~-cal. 

TbeIe f1lDClioDl ~., ••• , "" are continuous and for any ~ E 8 and "., •.• , 
". E R we have (~, "..(~, II.), .•. , ""(~, II.» E Q. Betting 

f4(~,,,., ... , ,.) -/'(~, ,..(~, ".), ... , ""~, ".» 
for Ie E B, ra, . 0 0, ,. E R and i-I, oO't ft, we pt each g, continuous, ,,.(S,,,., . 0 0, r.) J S N't and ,.(~,,,., ••• , ".) -/'(s,,,., ... , ".) whenever (S,,,., ... , ,.) eo. Now let II e R be INCh that 

1/,(.,,,., ... , II.) -/'(~, '" ••• , .. ) I :S II ({JI. - • .)1 + ... + (fl. - .. )1) III 

for all (s,,,., ••• ,,,.), (s, •• ; ... , .. ) e U and i-I, ... ,ft. It ia • fact 
that for each (s, ,,), (~,.) E B' and each i - 1, •.. , ft we have 

I,.,(s,,,) - ,.,(~,.)/:S III -., ; 

to prove this it IUflices to euppoee "~', ",(~, II) ,. ",(z, .), 80 tbat 

" ~ "'(~, ,) ~ "'(~, .) ~ .. 
ThUl for any ~ E 8,,, ..... , II., la, ••• , .. E Rand i-I, ... , ft, we have 

I"(s, ra, ... , I/a) - g,(~, •• , ... , .. ) I . . . 
-1/'(s, ,..(s, II.), .•• , ""(~, ".» -I,(~, ,..(z, • .), ... , ""(~, ':')11 
:S M«,..(~,II.) - "..(s, • .»1 + ... + (,..(~, fI,,) - ,..(~, .. »1)1/1 
:S M(<II. - • .)1 + ... + (II. - .. )1)111, 
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so that Ill • .•. , II. also satisfy Lipschitz conditions. with the same M. Since 
fi and Ii have the same restrictions to Q we may. if necessary, replace each 
fi by IIi so as to be able to 888ume that the open set U in the statement of 
the corollary is (x. YI, •••• Y .. ) E E,,+l : x E SI. Making this 888umption. 
choose hER, h > 0, such that S rontains the dosed interval [a - h, a + hI 
and such that h M vn < 1, M being the constant of the Lipschitz condi­
tions. Then the lemma tells us that given any open subinterval of S of 
length 2h WhOfie extremities are in S there exists a unique solution of the 
system of differential equations Y;' ... f,(x. Yl, ••• , y,,), i == 1, ...• n on the 
subinterval with arbitrarily prescribed values of Yl ••••• y. at the center 
of the subinterval. Suppose now that {9J1, •••• (/) .. ) is a solution of the 
system of differential equations on an open subinterval S' of S such that 
o E S' and (/),{o) - b,. i-I • ...• n. {For example, one po88ible such S' is 
(0 - h. a + h}.) For any a E S' such that [a - h. a + h) C S we can 
find a solution (,/I&, ••• , !/I .. ) of the system of differential equations on 
(a - h, a + h) such that !/I,{a) - (/)i(a), i ... 1, ... , n. By uniqueness 
(Corollary 1), !/Ii(:r;) - (/)i(:r;) for all xes' r'\ (a - h. a + Il). SO that we 
can put the (/);'S and !/I;'s to&ether to get a solution on the open interval 
S'V (a - h. a + h). Choosing a close to the extremities of S'. we see that 
we can extend «(/)1, •••• (/),,) to a solution of the system of differential equa­
tions on the open interval got by lengthening S' by a distance h at either 
extremity. provided we still remain in the given interval Sj otherwi1f8 we 
can lengthen S' up to all extremity of S. Repeating this procedure will give 
us a unique solution on all of S. 

Corollary 3. Let S C R be an open interval contai1ling a and let ft, ...• f .. 
be continuow real-valued functionB on (x. Yl, •.•• Y .. ) E E"+l : xES 1 that 
BatiBJy Lipechitz conditions. Then for any bl •••• , b .. E R there exist unique 
/unctions 9Jl:S-+R, ... ,(/).:S-+R tn«:h that for eod& i-I ..... n UHl 

IlCllle (/)/(:r;) .. f,(x, 9Jl(x), ... , .,..(x» on S and 'Pi(a) - boo 

First suppose that this has been proved in the special case that Is. 
•.. , /. are bounded 011 the subset of E .. +l given by I (x, hi •...• btl) : xES I. 
Then for any ai, lit E S such that al < a < ai, the functions /1, ... ,/. are 
bounded on the compact subset of E"+I given by ( (x. bl, •.• , b.) : 
x E [al. a.] I. so that there is a solution of the given system of differential 
equations with initial conditions on the subinterval (ai, lit) of s. By Corol­
lary I, if we choose different al. a, the solutions we get will be the same on 
the intersection of the two intervals (ai, lit). Since any point of S is con­
tained in some subinterval (ai, at) of S, we thus get a unique solution on 
all of S. Hence we may suppose to begin with that It, ... , f .. are bounded 
on (x, bl, ••• , btl) : x E 81. Let MER be such that if xES, 1/1, ••• , y .. , 
81, ... ,.2. E Rand i = 1, ... , n we have 

If.(x. YI, ••• , Yh) - fi(x,.21, •••• .2 .. ) 1 ~ M «YI - .21)2 + ... + (Y .. - .2 .. )1)112. 
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Let hER, h > 0, be such that 8 contains the open interval (a - h, /I + h) 
and hM vn < 1. We shall show that given any open subinterval of 8 of 
length 2h there exists a unique solution of the system of differential equa­
tions 'l/l - I,(z, 1/1, ••• , '1/,,), i ... 1, ... , n, on the subinterval having arbi­
trarily prescribed values of '1/1, ••• , 1/ .. at the center of the subinterval. 
Granting this and reasoning aa at the end of the proof of the preceding 
corollary, given any solution of the system of differential equations with 
initial conditions on an open subinterval 8' of 8 such that (I E 8' and given 
any a E 8' we can get a solution on the interval 8' V (a - h, a + h), 
provided this latter interval is contained in 8. We can repeat this procedure 
to get a unique solution on all of 8, Thua we are reduced to proving the 
corollary in the special C888 where 8 ... (a - h, a + h), M is aa above, 
hMvn < 1, and thereis~number A E Rsuch that 1/,(z, bt, "" b.) I <A 
for all z E (a - h, a + h) and i-I, ' , "n. For lOme positive real number 
N to be determined later define 

U - ((Z,1/I, .. ,,11 .. ) E E-+I: Is - al < h, 111' - bil < Nh, i-I, .. " nt, 
Then if (S,1/I, ",,11 .. ) E U and i = 1, ' '" n we have 

I"(z, 111, ' , ,,1/,,) - I,(z, bl, "" b,.) I 

~ M( t (11' - M·)tlt < M(nNW)lIt - hMNVn, 
4-1 

implying 

If.{z, 111, • , " 11.) I < hMN vn + A. 

We can now try to apply Corollary 2 to the present 8, fl •. , . ,f., /I, bt, 
... , b .. and U, taking NI = ... = N .. = N. All that is wanting for Corol­
lary 2 to go through, thereby completing the proof of Corollary 3, is that 
the inequalities 

lUx, 1/1, ••• , '1/.)1 ~ N 

hold for all (z, '1/1, ••• , '1/.) E U and all i-I, ... , n. But these are valid if 

hMNv"i+A ~N. 

Since hM vn < I the laat inequality will be guaranteed by taking 
N ~ AI(I - hM v"i), 80 we are done. 

An almost immediate consequence of the laat result is the following 
main theOrem on systems of first order ordinary linear differential equations 

2:' = 14 ... (X)'l/1 + ... + U(.(z)y .. + Vi(Z) , i-I" .. , n. 
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Corollary 4. IAt S C R be em open ifltmlal conkli,u.,., lite point ,. _lor 
e4Ch i, j .... I, ••• ," let Uq and II, be c:cmti"uou reoktalued lunt:tiou em 8. 
TAm lor ony b" ... , b. E R there .., unique Ju'ffd.il1M fII: 8 - R •••• , 
IP.: 8 - R aUc1a t1&ot for e4Ch i-I, ... ," _ 1aaH 

• 
",'(s) - 1: Uq(S)IP/(S) + 11,(21) 

1-1 

on S and ",(0) ==. b,. 

If all of the functions Uij are bounded on 8, say I~(s>l ~ II for all 
S E 8 and all i,i - I, ... , ", then if S E 8 and lilt ... , Ifa, -It ...... E R 
·wehave 

I ( t Uq(s)1I1 + ,,(s) ) - ( t UiJ(s)~ + 1I4(s) ) I 
1001 Iool 

S M<lIfl--II+'" +1,. - .. I), 
our desired Lipechit. condition, 10 this corollary ClODlII directly from the . 
preceding one. If the Uq's are not bounded on 8 they are ~ 
bounded on the interval (41, fit) whenever 01. CIa E 8 and .. < ,. < CIa (for 
each UiJ is bounded on (GI, GtJ), 10 we have a unique lOlution OD (..,..,. 

We therefore hav~ a unique lIOlution on the union 01 all IUOh open intenala 
(GI, CIa), which is 8. 

Higher order differential equatioDl are equivalent to ayatemI of &rat. 
order differential equatiODl. For example, letting 

dr. d'1/ ~ 
1/1 - II, 1/1 - .' 1/1 - d.r:" ••• , II. - -..=r' 

the ,," order differential equation 

~ -1(21. 11, t, .... Zl) 
is equivalent to the Byltem of first order differential equatica 

~-,. • -t- .. 
dtI-a -II. a 
1; - '(s, Ifl, 1ft, ••• , ,.). 

Thua the next two corollaries are immediate oooaequencee of the theorem 
and the last corollary l'eIIpectively. 
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CoroIIGry S. Lee I be G toMrIVOUI reaHrcaluetI futtdilm on em opeR lUb.et 
of ",,1 IAtJl COIIIcIiu 1M poW (G. Co, ••• , e...s). Suppoae that I lIOI.iajia G 
UpdiIII CO'Adititm, that u thera aiIU MER aucI& that 

I/(s, '1, •••• II.) - I(s. al. • •• , .. ) 1 S M (WI - as}1 + ... + (II .. - .. )1)111 

UIIaeneNr (z. '1. . ... ,.) cuad (z. al. . .•• a.) are in 1M giveR opeR Nt. TIaMa 
u..r. en. II E R. II > O. aucI& that there aialI one cmd onlll OM /uRClioR 
.,: (G - II. G + II) - R aucI& that 

d".,(z) ( dfp(s) d"-I,,(z»), 
-,;sa- - / s • .,(z). tis I···. ..-1 

lor call z E (G - II, G + II) cuad ,,(a) - Co, ,,'(a) - Ca, •••• ,,( .. -1)(0) - Ca-l· 

Corollary 6. Lee 8 C R be em open inler&ral contcaining 1M point a and ,. 
.1. tit •••• ,u.. , be toMrIVOUI reol-vdlued /t&f&t:lioM on 8. TIaMa lor anll 
Co, ••• , Ca-l E R lluJre .D a unique junclioR ,,: 8 - R aucI& that 

",., + .1,,'·-1) + ... + "-I'" + u.,. .. 11 

ad .,(0) - Ce, .,'(a) - Ca ••••• ,,(_1'(0) - e... .. 

Tbia l .. t ..wt ie of COU1'II8 the main theorem on ordinary linear 
differential equUiona. We had pNrioualy considered two notable apecial 
_, DUnely the differential equations 

II' -'/(z) (in Chapter VI. 14) 
and 

11"+11 -0 (in Chapter VII. 14). 

nOBLDII 
1. (a) Draw diapama to verify that Newton's method 01 80IviDI an equation 

1(.) - 0 wwb if 1 is a twice dilereatiable real-valued function on an 
opeD interval U in a that cbangee lip, whoee derivative is nowhere 
181'0. and whose II8COIld derivative does not ehalJl8 sign, provided that 
the point 3rt E U is 80 choeen that aIao Sa E U i indeed UDder theae oil­
aulll8tanCl8 the sequence Sit %I, ZI. • •• is monotonic. 

(b) U. Problem 12. Chapter V to prove theae facta. 
I. LIt. E a, • > O. Show that applyinc Newton's method to the function zI - • 

Pwa the formula %a+a- ~(z. + i:). Prove that Newton'a method works 

for arrr 3rt > 0 by Ihowine that then Sa ~ v'Ci and the map sending S iato 

1(. +~) is a contraction map oils E R : S ~ v'Ci1. (This method 01 find­

inc equare roots 0CleUI'II in ancient Babyionian manuscripts.) 
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3. Prove tbat the equation COl % - • - t - 0 baa a uDique reallOlution. ShoW' 
that the fixed point theorem is applicable to the f\lllCtlon '(%) - COI:c - t 
and the interval [0, .,/4) and thereby find this 101ution to three decimal placea. 

4. Find the "maximal" U, II' of the implicit function theorem if I(x, V) -

zI + " - 1 and (G, b) - (0, 1). 

5. Generalise the proof of the implicit function theorem to get the following re­
suit: Let I be a continuous real-valued function on an open subset of Ea.1 that 
contains the point (aa, ... , a., b), with f(aa, ... , a., b) - O. Suppose that 
8//8V exists and is continuou8 on the given open subset and that 

~ 8y (ai, •.. , a., b) " O. 

Then there exi8t positive real numbers h and I: such that there exists a unique 
function 

11': I (x\, ... , :c.) E E" : (::1 - GI)I + ... + (Zo - 0,.)1 < hll 
-+ Iy E R : Iv - 61 < 1:1 

such that I(xa, ... , z., Ip(x\, ... , z.» - 0 for all (z\, .. , Zo) in question. 

6. Expand the following argument into a proof of the implicit function theorem 
that avoids the use of the fixed point theorem: Take r > 0 such that I is de­
fined on the entire open ball in E' of center (a, b) and radius r and such that 
aI/a, is never aero on this ball. Choose A: such that 0 < A: < rl then choose A 
such that 0 < A < ~ and I is nowhere aero on the set 

«z, V) E E': Iz - al < A, IY - bI - kl. 
Then I is sero at precisely one point of each vertical section of the rectangle 

I(z, V) E E': Iz - aI < A, IY - hi < 1:1· 
7. Find all solutions on R of the differential equation V' - 31 Villi. 

8. Solve the system 11' - 2 vTYT, V(O) - O. (There is an infinity of answerll, 
with essentially four different onel near x - 0.) 

9. Apply the method of proof of the first theorem of .3 to solve the system 
y' - y, yeO) - 1, starting the IlUcceasive approximations with 1/10 - 0, ob­
taining thereby a power series expansion 01 the solution. 

10. Modify the proof of the first theorem of 13 to show that we may take for A 
any positive real number less than 11M such that the open subset of E' on 
which I is defined contains I (z, 11) E E' : Iz - al ~ 1&, y E RI by showing 
that for IIlch an A the given formula for F defines a contraction map on all of 
O(tG -1&, G + hI), not just on a ball B. 

11. Suppose that the conditions of the first theorem of t 3 obtain and that -J, is a 
real-valued function on some open interval of R one of whose extremities is G, 

1/1 having the properties that I/I'(z) - I(z, 1/1 (x) ) and lim I/I(z) - b. Prove that 
I/I(x) = 11'(%) whenever both expressions are defined. .-

12. Show that Corollaries 3, 4 and 6 of the last theorem remain valid if, instead 
of being an open interval, S is R itself. 
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13. Provo that if til, UI, ••• , u., II are real-valut'd functions on R that are til tlmee 
dltrerentiabJe, then any IIOlution of the differential equation 

~('" + UI(S)~(-" + ... + u.(s), - pes) 
. is (ft + m) timee differentiable. 

If. Let [G, 6J be a cloeed interval in R and let A and K be continuous rea1-valued 
functicms on I .. 6J and {(s, ,) E BI : s, , E (a, 6]J respectively. U # E C({a, 6D, 
define F(#) E C({a, 6) by 

(F(.,,»(s) - A(s) + J.' K(s,~) #M IlJ 

(the continuity of F(.,,) followilll from Prob. 15, Chap. VI). Show that if 
1(6 - a) K(z, ~>I < 1 for all s, y E (a, 6] then F i. a contraction map, and 
therefore there is a unique" E C«(a, b» such that 

,,(x) ... A(s) + f K(:r, II) "(11) fly 

for aU x E (a, b]. 

15. Let [a, b] be a closed interval in R and let A and K be continuous real-valued 
, functions on (a, b) and I (s, ~) E E' : a ~ II ~ z ~ 61 respectively. Prove that 

there is a unique" E C(la, 6» such that 

,,(x) - A(x) + J: K(s, y) ,,(y) IlJ 

for all s E (a, 6). (Hint: Imitate the procedure of the precedilll problem if 
1(6 - a) K(z, II) I < 1 whenever a S y ~ s ~ 6. To do the pneral _, note 
that for any al E (a, b), the problem reducea to provine the existence of a 
UDique '" E C([a, al) such that 

",(x) - A(z) + J.. K(s, y) ",M IlJ 
for all s E (a, al) and the existenoe of a unique fII E C«(al, 6) such that 

fII(S) - A(s) + /:1 K(x, II) ",(y) fl" + /; K(x, II) filM flll 
for all s E (a., 61.) 



CHAPTER IX 

Partial Diflerentiation 

ThiI chapter ia concerned with exteDdioctbe meth­
oda of one-variable differential calcul_ to fwlctloDI. of 
more than one variable. There .... few difIiGultia, once 
one bu the ClOl'ftlCt de6nifiion of difleNIltiabillV for 
functiona of aeveral variabl •. 
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11. DEFINITIONS AND BASIC PROPERTIES. 

Partial derivatives are themaelves a matter of one-variable differential 
calculUi. .A. luch they have already made their appearance in thietext in 
our diecuaaioDII of differentiation under the inte&rallign and the implicit 
funct.ion theorem. They were aleo alluded to in our diacUllion of ditlerential 
equationt, in connection with Lipechitl conditiooa. Let us recall their defi­
nition, restricting ounelv. for convenience to functiont on open subeeta 
of B-. 

For any poeitive integer ", any open subeet U of g., any real-valued 
function / on U, any point a - (GI, ••• , a.) E U and any i-I, ... , ", 
the illt. pGrtial dIriIatiH all til G is defined to be the derivative at CIt of the 
real-valued function which sends So into /(GI, "., "'-I, Zi, 41+1 ••• ,,4.), if 
this derivative exists. (The expl'e88ion /(a" ,. , , "'-I, :t., 41+1, ••. ,4.) is of 
coune to be understood as / (ZI. CIt, ••• ,4.) if i-I and in like manner 
II /(GI •••. , Go.-l,~) if i-ft. Note that the function sending 2:t into I(Gl, 
. , ., "'-I, :t" 41+1, ••• , a.) is defined on an open subset of R that con­
taint CIt, 10 that it makes aenae to speak of the derivative, if it exists.) The 

.... partial derivative of / at G is often denoted /I(a) or :! (G). Thus we 

can write 

If() ~/) l' 1(Gt, ... , "'-I, So, 41+1, ... , a.) -/(Ga, ... , a.) 
" a -~G - 1m • iZt·.... %I-a; 

If /I(a) exiata for each G E U we set a real-valued function /t on l! (aleo 
denoted a//azi) whose value at any a E U is JS(G); thie is the , ... partial 
dIriIatiH oj J, 

We remark that there are many other notationt for partial derivatives, 
none of which ,hall be used in this text. Alternate notationt for n - a/lin. 
include 

/.., I .. , and DJ, 

the analoaoua notationt for" (a) - !, (a) being 

I;'(G), I .. (G), and (DJ)(a). 

11leee are often expanded to /[(Gl, .• " a.), ~(alr ... , a.), etc., and one 
iJZt 

evtD finda 

a/(Ul, ... , u.) ( ) tc au. GI, .. "a., e . 
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There are clearly many possibilities for confusion and more will appear 
later. No systematic notation is perfect, although some are better than 
others. The only essential is that we know exactly what is meant in any 
given instance. 

How should the notion of ditJerentiability be defined for functions of 
several variables? The original definition by means of difference quotients 
(f(z) -/(zo) )/(z -:1:0) does not generalize immediately. A de6nition of 
ditJerentiability for functions of more than one variable Ibust be given 
which does more than refer to partial derivatives, for all the partial deriva­
tives of a function may exist at a point without the function being well­
behaved there. For example, the function on ,.. which has value zero at 
the origin (0,0) and the value zy/(zi + 11'> at any other point (z,1/) is 

such that ~(O, 0) and ~(O, 0) exist (and equal zero), but I is not even 
Bz By 

continuous at (0, 0). It turns out that the property of being closely approxi­
mable by linear functions can be generalized and this will give us the desired 
definition, as follows. 

Definition. Let I be a real-valued function on an open subset U of Ea. 
Let Il" (ai, ..• , tla) E U. Then I is differentiable at Il if there exist 
CI, ••• , c,. E R such that 

lim I/(z) - (f(a) + CI(ZI - Ill) + ... + c.(z. - tla» 1 _ o. 
-- d(z, Il) 

The Zl, ••• , z. in this definition are the coordinates of z, so that 
z = (Zl, •.• , z.). The d denotes the metric in E·, that is d(z,ll) = 
«ZI - 1l.)1 + ... + (z. - tla)I)III. 

The limit condition in the above definition is sometimes more con­
veniently stated as follows: given any e > 0, there exists a 3 > 0 Buch that 
if z t U and d(z, Il) < 3 then 

I/(z) - (f(a) + Cl(ZI - Il.) + ... + c,.(z. - tla» 1 S ed(z, Il). 

The symbol S iB used here rather than < in order to include the case 
z - Il. 

If for any i ... I, ... , n we set Z - (ai, ... , 1l'_I, Z" 1l1+1, .•• , tla) in 
the above definition, we get 

1. 1/(IlI, ... , tli-., Z" tli+I, ... , tla) -/(0.) - c,(z, - 0.;) 1 0 
~ = , 

-,-, IZi - 0.;1 
or 

1. 1/(1l1o ' •• , tli-l, Zi, tli+I, .•• , tla) -/(0.) 1 0 1m -Co ... , 
ai".i Zi - 0.; 

so that 1[(1l) exists, and indeed 11(0.) = Ci. Thus if I is differentiable at a 
then the coefficients CI, .•• , c,. are unique and equal to f{ (a), ... ,/~(a) 
respectively. 
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The following technical lemma will prove useful on I8Vel'al 0ClClIIIi0ne. 

"."...... L« I be a reakalued function on em open ""*' U 01 B" ... ,., 
a E U.T_ I u dijferentiGbk at a if _ oral" if "..., .., ~ 
~ AI, ..• , A. on U, continuoua at a, aucI& tAae 

I(z) - 1(0) - AI(z)(zl - a.) + A.(z)(z, - aa) + ..• + A.(z)(z. - .. ) 

lur all z E U. In tAu Ct.I86, lur each i ... 1, ... , n _ have /I(a) - A,(a). 

If I is differentiable at a we have 

Um I/(z) - U(a) + ,t:.(a)(zi - a.) + ... + f,.(a)(z.. - .. » I _ o. 
- d(z, a) 

8inoe 

des, a) - «Zl - a.)1 + ... + (z. - .. )1)1/1 S IZI - ",I + ..• + Iz. - .. I, 

if we deftne the function a: U - R by 

t{) I(z) - U(a) + I~(a)(zi - a.) + •.. + f,.(a)(z. - .. » 
s - ISI-",I+ ... +ls.- .. 1 

for :t .. a and I(a) - 0 we have lim a(z) - 0 and -
f(:t) - 1(0) + fs(O)(ZI - a.) + ••• + f.(o)(z. - .. ) 

+ e(s)(/zl - ",I + .•• + Iz. - .. I) 
for all z E U. Setting 

A.(z) .. Il(a) ± a(z) 

for i-I, ... , n, with the plus sign being chosen if Zi - 04 ~ 0, otherwise 
the minus sign, we get 

I(z) -/(a) = AI(z)(zl - al) + ... + AII(z)(z. - 0.) 

and lim A,(z) = /lea) = Ai(a), which proves half of the lemma. For the -
convel'88, if A I, ••• , A.: U - R are functions continuous at a luch that 

I(z) -/(a) - AI(z)(zl - al) + ... + A.(z)(z. - .. ) 

then for Z E U, z .. a, we have 

I/(s) - (1(0) + AI(a)(z~ '- al) + ... + A .. (a)(z. - 0.» I 
d(z, a) 

I (AI(z) - AI(a»(zl - al) + ... + (A.(z) - A.(a)}(z. - .. )! 
-~~~--~~--~~~~~~--~~--~~ 

d(z, a) 

S IAI(z) - Al(a) II~(;,-:;' + ... + IA.(z) - A.(a)! '~;:sl 
S I Al(z) - AI(a)'! + ... + I A.(z) - A.(a) I. 
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By the continuity of AI, .•• , A. at a, the laat exprellion. approachea the 
limit sero 88 % approaches a, proving that I is differentiable at a and ...., 
that fl(G) - A.(a) for i-I, ... , ft. 

Note that if ft > I, the functions AI, •••• A. appeariDa in the lemma 
are certainly not unique. 

Proposition. Let U be Gft open aubad 01 E", I: U - R. 111 Sa diI""""" 
at G E U, then f ia contifttWU3 at a. 

For if AI, •.. , A. are 88 in the lemma, then 

limf(%) .. lim (f(G) + A I(z)(%1 - at> + ... + A.(s)(s. - crJ) .... .... 
-/(a) + AI(G) • 0 + ... + A.(a) ·0 -/(a), 

80 I is continuous at a. 

It would obviously be of great value to have lOme praotical criterion 
for the differentiability of a function at a point. Such a criterioD II alonled 
by the following result. 

TMorem. Let U be (1ft opM ...",., 0/ ... I: U - •• /tilt", ...... ,.... 
tial thrivGtillu I., ... ,/~ esial on U ........ ~ -' .. ,..., • e u. 
Thm I ia di8t/f'efttiable at a. . 

Without 10IIII of genen1ity we may IllUme that U II .. .,. blUlll .. 
of center a. Then for any % - (SI, •••• s.) E u. all of the pain. 

(%1, •.. , z.), (ai, ZI, .•. , s.), (ai, lit, Stt •••• s.), 
.... (al, ... , ..... t s.), (CIt, ••• t e.) 

are in U and 80 are all pointe of all line aepnenta betwe8ll .Y CODIeCUtive 
two of these pointe. Writing . 

fez) -/(G) == (f(ZI, ... , S.) -/(Ot, ZI, .... s.» 
+ (f(al,ZI, ... ,s.) -/(a •• ..,-, ... ,e.» 

+ ... + (J(aa, ........ I.e.) -/( ... ... , .. » 
and applying the mean value theorem to write 

l(xI, ..• , z.) -/(al, ZI, ••• , s.) - !left, Zt, ••• t S.)(SI -.., 

I(al; ZI, •.• , z.) -/(a., lit, Sa, ••. , z.) - ft(a., f" St ••••• s.)(Zt - a,) 

I(al, ... , a,,-I, s.) -/(al, ... , a,,) -I;(a., ... , .... 1. Ea)(s. ~ Ga), 

where each ~i is between a, and Xi (or E ... /J4 - s, if G4 - s.), w. obtain 

I(s) -/(a) ... fa(EI, ZI, ... , %.)(ZI - 41) + IHOt, ft, ZI, .... z.)(Zt - a,) 
+ ... + 1~(4t, ..• , a-a,~.)( .. - a.). 
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Suppoae that for each Z E U a specific choice of ~1, ••• , ~ .. is made. Since 
ft, .. " f~ are continuous at a we have 

lim "(~1, Zt, ... ,z .. ) = f~(a) .... 
lim f;(al, ~t, ZI, ... ,x.) - f;(a) -. 

Hence the differentiability of f at a follows from the lemma to the pre­
ceding propoeition, taking 

Al(z) - n(E .. x" ••. , z.), 
A,(x) ... neal, Et, ZI, ... , Z.), 

A real-valued function f on an open subset U of E" is called differen­
~ Oft U (or just differentiable) if it is differentiable at each point of U. 
A neceIII&I'Y condition for this is that ft, ...• f~ exist on U. f is called con­
tinuoualy differentiable Oft U (or just continUO'lUly differentiable) if ft, ... , f~ 
exist and are continuous on U; thill terminology is re&l!Onable because the 
theorem implies that lIuch a function is necellll&rily differentiable. It ill easy 
to give many examples of continuously differentiable functions. For 
instance, any polynomial in the coordinate functions Zl, .. . ,:t,. on E" is 
continuoualy differentiable on E". 

Reca1I that a map f of any Bet U into E- is determined by its m com­
ponent functions /t, ... ,f.: U-R and we often write f= (fl • • :.,f.), 
this meaning thatf(P) = (/t(P), . .. ,J.(p» for any p E U. If U is an open 
IUbeet of E" and a E U we know that f is continuous at a if and only if 
fl' .. " f .. are continuous at a. It is therefore reasonable to define f to be 
differentiable at a if /t, ... , f. are differentiable at a. Similarly. f is said to be 
differentiaIJU if fl' ... , f. are differentiable. f is called continuoU8ly differen­
~ if II • ... ,f. are continuoualy differentiable. 

Exactly &8 in one-variable calculus, a differentiable function of a 
differentiable function is differentiable. More precisely, we have the follow­
ing "chain Nle". 

TIaeorem. Let U, V be open eubNl4 of E", E· reapectively and let J: U - V, 
,: V - R be /unction.. Ld a E U be 8UCA that I i3 differentiable at a and 9 
ill diI~ at I(G). TAen , • I ia differentiable at G and Jor j - 1, .•.• n 

• 
<II .n;(a) - 1: ,:(f(G»(f~)i(a) . .. 
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Since, II dUf .. tiabIe a~ /(0) - (fl(a), ••• , /.(0», the lemma proved 
earlier impli. the uiItenoe of funct.ioDe Aa, •.. , A.: V -., each con­
tinuoue at /(0), auoh that 

,(J) - f(J(0» - AI(,)(,. -/1(0» + ... + A.(,)(,. -/.(0» 

for aU 'II E V. SimiI&rIy for each i-I, ... , m the function /, II ditrerentiable 
a~ a, 10 there exiA functioDa BA, ••• , B .. : U -., each continuous at II, 
aueb that 

Ices) -/J.a) - BA(S)(Sa - a.> + ... + B .. (s)(:r. - a.) 

for aU s E U. Therefore 

• 
f(J(s» - ,(J(o» - 1: A,{J(s» (J,(s) -/,(0» 

w 

• • - 1: AcC/(s» 1: Bu(s)(SJ - OJ) 
4001 1-1 

- t ( t AcC/(s»B4j(s) )(SJ - OJ) 
1-1 4001 . 

for aU s E U. Since each Bu II continuous at a, since / is continuoue at a, 
and. since each A, Ie continuoua at /(0), we deduce that each function 

t (A.o/). Bu: U-R 
4001 • 

II ooatinUOUI at CI. By the lemma, '0/ Ie dUferenti&ble at o. Moreover, 
apin by the lemma, each "'{J(o» - AcC/(a» and. each (fo)~(o) -Bu(o), 
10 thatfor each i-I, ... , " 

• • 
(goniCo) - 1: AcC/(o»Bu(a) - 1: f'.{J(G»{Jo)i(o). 

4001 4001 

U the / and. , of the theorem are differentiable functions the con­
ohllion can be written in the slightly simpler form 

The chain rule is the oocuion for much imprecilion in notation. For 
example, the equation 01 the theorem ia often written in the form 

...!L _ t 11.. .ll1 
~ w 8/. ~. 
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This is not literally correct sinne, among other faults, g is not a function of 
Z - (ZI, ••• , z .. ). A correct version of this formula using the a notation is 
the cumbersome 

ag(/l(ZI, ••• , x,,), ••• , / ... (Xlp ••• , x..» 
aXI 

.;.. 8g(YI, ••• , Y .. ) (J ( ) f, ( »a/;(xl, ... , x.) == L.I .:10.. I XI, ••• , x.. , ... , .. Xl, ••• , x.. ... . 
;"1 "1/' . fiX; 

The kind of oversimplification appearing in the fi1'8t formula often results 
in confusion in practice. Here is a typical example: Suppoee that, ... 2x + u 
and that u == X + Y, 80 that. == 3z + y. Regarding. as a function of X 

and u we have a./ax = 2, but regarding. as a function of X and Y we have 
a./ ax = 3. The explanation of this anomaly is that the single symbol • is 
used here to represent two distinct functions. In fact let /: E' - E' be 
given by lex, II) - (x, x + II) and let g: E' - R be given by g(x, II) -
2%'+ II. Then the symbol, etande for both g(x, tI) (i.e., the funetion g) 
and g(f(x, II» (i.e., the function g on, 80 that the two U8eII of a,/ax above 
really represent the distinct functione g' and (g o/){. 

The following paragraph, which will not be required in what followa, 
ie intended for students adept in linear algebra. We consider E" a vector 
apace over R, defining addition and scalar multiplication by the formulae 

(XI, ••• , x.) + (1/1, ••• , 1/ .. ) = (XI + Ill, ••• , x.. + II.) 
C(XI, ••• , x.) .. (CXI, ••• , cx..). 

If U is an open subset of E" and /: U - EM is differentiable at the point 
aE U, define a linear transformation (a): E--E'- by means of the 
m Xn matrix 

(11',)'(a» .. ( aI, (a») v' ii-I ... ..... ;i-I ..... II aXJ 

(called the jacobian matrix of J). That is, if (Zl, •.• , x..) E E- we set 
/'(a)(xI, ... , x .. ) == (Yt, .•. , Y ... ) E Em, with 1/1, ••• ,1/... defined by the 
matrix product 

.. 
80 that for each i = 1, ... , m we have 1/; - E (/;)J(a):I:;. Then the differ-

1-1 
entiability of I at a implies that 

I. d(j(x),/(a) + /,(a)(x - a» 
1m -0. 
.... d(z, a) 
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(Note that in the top line of the formula d refers to distance in B-, while 
in the bottom hlle it refers to distance in P.) Collversely if U is an open 
subset of E". I: U - E'" a map, and if we have a point a E U and a linear 
transfonnation T: E" - E'" auch that 

I· d(j(z) , I (a) + T(z - a» 0 
1m - , 
-. d(z, a) 

then we verify immediately by looking at the coordinates of I(s) that I is 
differentiable at a and that T ..; /,(a). (Thus the differentiability of I at a 
and the linear transformation /,(a) could have been defined without felOn 
to component functions.) Our statement of the chain rule tranalatea to the 
statement that the 1 X n matrix for (g 0 f)'(a) is the product of the 1 X m 
matrix for g'(f(a» by the m X ft matrix for /'(a); in other words we have 
the equality of linear transformationa 

(g 0/)'(a) - ((f(a» • /'(0). 

Thia la.et atatement hIuI an immediate generalization to t.he following neat 
venDon of the chain rule. which is exactly analogous to the correaponding 
one-variable result (cf. la.et proposition of 12, Chapter V): If U, V are 
open aubeets of Ea, E'" respectively and I: U- V, g: V-~ are func­
tions, with I differentiable at the point a E U and g differentiable at I(a). 
then g 0 I is differentiable at a and 

(g 0 f)'(a) - g'(f(a» • I'(a). 

12. HIGHER DERIVATIVES. 

Higher order partial derivatives are defined similarly to higher order 
ordinary derivatives. Let U be all open aubeet of E", I: U - R a function, 
and i, i integers among 1, 2, ... ,ft. If It exiata on U we may be able to 
define the ii'" second order partial derivative 01 I aI a (Jf)J(a) for lOme point 
a E U. If (fl)j(a) exists for all a E U we get a new function (I:>i on u. 
If (fa: exists and k ... 1, ... , n. we may be able to define the ijlr!" IIftrd 
order partial derivative 01 I aI a «(fm)'(a), and if this exiate for all a E U 
we have a function «(faD •. And 80 on for still higher order derivatives. 

(fa: can al80 be written ~ al ), which i. uaually abbreviated 
aiJ\ a~ 

to ~. Other notationa for this, which we ahall refrain from u.nng, 
aZpZi 

include DjD,f. Di.I.I;:wl' and /"1"/' When atill higher order derivatives are 
in question certain obvious abbreviations are used. For example 

atl 
meana iz{ iy( iy( ~))). 



The larp number of pcaible higher order partial derivatives of a 
function ofll8VenI variables is much reduced by the cil'CUID8tance that the 
order of performing the partial differentiations is usually irrelevant. The 
eimpleet cue of tbia is the equation 

~-~ azB7I a"az' 
repeated application of which yields 

ftI/ _ 8'1 
azaya. a.a,az 

and aU eimil&r MUlte. Of COUl'8e lOme mild conditions must be satisfied to 
parantee thia irrelevance of order. The conditions in the following theorem 
are not the weak.t known but are sufficient for all practical purposes. We 
note that slightly weaker conditions have already appeared in one of the 
exerciaee (Chapter VII, Problem 36). 

Tlaeorem. lAt I be G retJl..vcalued function Oft an open IUbeet 01 E" II&al ema­
.... "" poW G cand ,., i, j be GmotIf I, ... , no II Cll)J cmd CI;): mil Oft our 
open __ cand en contin,"*, cat G then (JD}(G) - Clm(G). 

There is nothing to prove if i ... j, 80 we may suppose i "j. Also all 
vanabl. but Zi and Zi are held fixed in the various limit PIVC- by which 
we arrive at UDl(G) and (JJ):(G), 80 we are reduced to the ~ n - 2. 
Therefore we may suppose that I is defined on a certain open ball in HI 
of center G - (Gl, CIt) and that CI~); and (J;>~ exist on this ball and are con­
tinuous at G and we must prove they are equal at G. We introduce the 
function 4, given by 

4(z) _ I{zl, zi) - I(zl, CIt) - I(Gl,:e.) + I(G" CIt) 
(Zl - Ga) (St - CIt) , 

defined at all pointe Z - (ZI,:e.) of our ball of center G for which Zl " Ga, 
St "III- In the rest of the proof we restrict oUl'IIelves to such pointe z. If 
we set 

we have 

4(z) _ ,,(ZI, St) - .,(GI, :e.) 
(Zl - Ga) (St - CIt) 

Now the entire line segment in HI between (Zl, zi) and (Gt, XI) is in our 
open ball, 10 the mean value theorem enabl. us to write 

,,(ZI,:e.) - .,(GI,:e.) - (XI - sa).,:(Et, St) 

for some E. between GI and Zl. Therefore 

4(z) _ .,aEl, Zr) = laE" xi) -}J(El,-ai!_. 
z. - tit .1:. - tit 



SiDOe the entire line JeIIIleIlt in JlI between (El, z.) and (E1, as) ia in our 
open ball and since by 888umption (f;>; ¢data in our ball, another applica.­
tion of the mean value theorem gives 

11(2:) ... (f~);(fl' EJ 

for lOme tt between al and 4 That is 

l1(z) - (fm(fl, tt) 
for lOme fl between /11 and Zl and lOme tt between lit and 2:1. Since (f~)~ 
ia auumed continuoUi at /I we deduce 

lim l1(z) - (fn;(a). -
But by the symmetry of 11 thilllimit ia independent of the order of the two 
diiterentiatioDl. (This can also be proved explicitly by lOin, through the 
IllUDe argument 88 above with ,,(Z1, 2:1) replaced by ~(2:1, 2:.) - /(z" 2:.) -
/(G" 2:.}.) That ie, we aIao have 

lim 11(2:) - (f;>~(G). -
In the following theorem, which ia a version of Taylor's theorem for 

functions of several variables, we ahall find it convenient to use a uditter­
ential operator" of the type 

Cl~+~+ .. , +c..~, 
8Z1 82:1 8z. 

Here Ci, ' , " c.. E R and for any real-valued function / on an open subset 
of B- on which all the first partial derivatives ft, . , " I:' of-/ exist, we Bet 

I 8 8 \, 8/ 8/ 
,CI82:1 + ' .. + c.. 82:.JI- CI 8Z1 + .. , + c", ~ - c~ + .. ' + c../.., 

another functiOD on the Bame open subeet of E·, Similarly if all the 8eCond 
partial· derivatives ~)i cxist on this open Bet we can define 

( 8 8 )1 CI-+"·+C.- / '*, 82:. 

- (Ci..!.. + ' .. + C...!..X(Cl..!.. + '" + c...!.. \~), h, b. 8Z1 8z.JI, 

Similarly for hilher iterates of Cl-'- + .. , + c. -'-, One verifies 
hi 82:. 

immediately the explicit relation 

(Cl~ + ." + c",--~)'/ =. 1: ~.c. •. . 'c.. --- . ~'l __ ---. 
hi 8:1:.. .. ....... -1....... a.l: •• (I.I: •• •• • aor •• 
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TI&eerem. Let U be an open subset of E- and let f: U - R be a Jwu:tion 
tJlZ of" partial derivGtirJel of order n + 1 aUt and are continuoua on U. 
T1aen if a .. (a., •.. , a..), b = (b., .•• , b.), and 1M entire line aegment 
beCweM a aM b are in U there u.:iIU a point e on tAw line aegment auc1a tAat 

I(b) - f(a) + -M. «b. -a.) ,:. + ... + (b. -a..) a!. )r )(a) 

+ ;1 «(b.- a.) ,:. + ... + (b., - a..) ':')'f)(a) + ... 

+ ~I«(b. - a.) 8:. + ... + (b. - a..) t!. Yf)(a) 

1 (' a )"+1) .+ (n + 1)1 (bs - a.) h. + ... + (b., - a..) h. f (e). 

Define a map h: R - E- by 

h(e) - (a. + (bl - a.)t, ... , a. + (b. - a..)C), 

10 that h is dift'erentiable, h(O) - a, h(l) - b, and h rnape [0,1] onto the 
line aegment between a and b. Since U is open and contaiDl this line 1eI­
ment, the composite function f 0 h is defined on lOme open interval in R 
containing [0, IJ. The function f is dift'erentiable since it has continuous 
fint partial derivatives. By the chain rule,! 0 h ii dift'erentiable and we have 

• 
(Jo h)'(t) - I:Jf(h(t})(b, - fJI) 

'.1 

or 

(J 0 A)' - «(b. - Gi)-' + ... + (b. - a..)~ \~) 0 1&. 
h. az.~. 

Repeating this, for p = 1, ... , n + 1 we get 

(J 0 h) (0) - «(bl - a.)-'- + ... + (b. - a..)~)'f) 0 Ia. . az. az. 
By Taylor's theorem 

(Joh)(l) _ (Joh)(O) + (jola)'(O) + ([oh)"(O) + ... 
11 21 

(j 0 h) (II' (0) (j 0 A) (11+1)(1') 

+ nl + (n+l)1 

for IOnte r between 0 and 1. Hence the present theorem, withe - A(E). 

The special case n = 0 is of particUlar importance and is often called 
the "mean value theorem for functioDl of several variables". It states that 
there exists a point c on the line le(lMent between a and b such that 
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I(b) -/(a) = (bl - a.) al (c) + ... + (b. - ~(c). 
aZI az.. 

If we wish to prove only this special cue the proof is eepecia1ly auy: we 
jUllt apply the ordinary mean value theorem to the function 1(1a(t)). nul 
proof shows that in the present lpecial cue the bypottu.ea may be weak­
ened IOmewhat, for all we need is that I be aontinuously differentiable on 
lOme open subset of E" that containl all pointe of the line 1IfJIIMDt. between 
CI and b, except poesibly a and b themselveI, and aontinUOUI on • lupr 
let containing a and b. 

RBIIABIt. In applications of Taylor's theorem the _ U .. often • 
hall, 110 that it ill lJR(·flll to know that 1M entire line ..,.., ..... ,., 
pointe 01 E- ill contained in a given ball (open or cloI«l) if w ~ en 
in 1M ball. I~or if the points are the distinct points (/la, ••• , a.) and 
(bl• • •• , b.) and the l'enter of the ball is (Ca. • ••• c..) then for U17 'E R 

(d«a, + (bs - a.)t • ...• G,. + (b. - a.)t). (Cl •••• , c.))1 
• - 1: ( .. + ('" - .." - ee)l, 
w 

which can be written aCt - fJ)1 + 'Y for certain a, fJ, 'Y E a, ell > 0, and 
thil clearly attains its maximum on any cloeed interval of a at one of the 
extremities. 

I S. THE IMPLICIT FUNcnON THEOREM. 

To simplify the following exposition. if Z - (ZI, ••• , ~ E Bra and 
11 - (YI, ••• , Y.) E E" we denote by (z. y) the point (ZI, ••• , %a, fl, ••• t ,.) 

EE-+-. 

Theorem. LeI. m, n be poaitive integer., CI E 8-. bEE-, and W/., •.. ,/. 
be continuoua real-l'Cllued lunctiona on an open BUbM of ...... ".., .... 
1M point (a, b). tDitJ& II(a, b) "" ... -1.(0, b) - O. s.,... ., /fir .. 
i,j-I •... ,n 

a/,(ZI, •.• , %a. ,., ••• , ,.) _ ClC):'" 
lJfh 

e~ and iB continuoua on 1M giMa open ..... and IIaGe de. X n ~ 

det( :: (a, b») 
i. not uro. Then there eziBt open aubMB U C 8-, VeE-, vilA a E U and 
bE V, auc1a that there eziBt3 a unique furu:liqn ,,: U - V ..... IMt 
I,{z. rp(z» - 0 lor eacI& i-I, ... , n aM eacI& Z E U, and auc1 ., lAiB 
lunction " ill continuoua. 
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The proof is a straightforward generalization of that previously given 
for the special case '" ... ft .. 1. We begin by defining real-valued functions 
Fit ••• , F. on the same open subset of E-+- on whichla •..•• I. are defined 
by 

• 
F,{z, ,) - " - I: Cel/(Z. ,), 

1-1 

where (cClI,.I-I •...•• are certain real numbers to be determined in such a 
manner that Fl •...• F. satisfy the following basic properties: 

(I) each F, and each :: is continuous 

(2) for each I - 1 •.. " ft. F,(4, b) - b, 

(8) for each I, i-I, ... 1ft we·have :: (4. b) .. 0 

(4) for any z. JI we have Ic(z, JI) - 0 for i .. 1 ••.• I n if and only 
if Fc(z. JI) - JI' for i -= 1. "'1 ft. 

Note that properties (1) and (2) hold for any choice of the cils. For 
property (3) to hold we need 

• III. I: ~(41 b) - 6~, I, k - 1 •.•.• ft 
I_I v,. 

where ,~ is the Kronecker delta. equal to 1 if i - k, 0 if i .. k. Those who 
know linear algebra will see· in the last equations the statement that the 

ft X ft matrix (CII) times the ft X ft matrix ( :; (4. b») is the ft X ft 

identity matrix. 80 that (CCI) is to be taken to be the inverae of the second 
matrix. which indeed baa an invene aince its determinant is not MI'O. But 
the CCI'S may aIao be found in a more uelementary" way by noting that for 
any fixed I we get ft linear equations in the unknowns Cit. CII. • ••• Cia and 
we can solve these equations for Cit, CII, ••• , Cia provided the determinant 
of the coefficients is not MI'O. But this determinant is that obtained from 

. the square array ( Z: (4, b») by first interchanging rows and colwnns, 

and we know that this new determinant baa the same value as the original 
one, which wu given to be nonsero. Thus CiI'S may be found such that (3) 
holds. Aa for (4), it is clear that if IC(z, JI) "" 0 for i "" 1, ... , ft then 
F.(z,JI) -" for I - 1, ... ,ft. To prove the converse we must show that 

• 
if I: CulAZ, JI) - 0 for 1- 1, ... , ft, then II(Z, JI) ....... = , .. (z, JI) - O. 

1-1 
For those familiar with linear algebra, this is an immediate consequence of 
the nonaingu1arit.y of the matrix (cu). Those who prefer to reason otherwise 
may note that we can find Ua, ••• , u.. E R such that 
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t !!: (a, b)u" - !J(z, 1/), j ... 1, .•• , ft, 

t-.l """ 

for this involves IOlving a ayatem of ft linear equatiODB in ft unknowos, 
which is poIBible Bince the ayatem of equatiODB baa DOuero determinant 

det ( :r;. (a, b») j this enables ua to compute 

• • • o - 1: ~/1(z, 1/) - 1: ~ all (a, b)u .. - 1: ~u. = Uo, 
1-1 1 •• -1 By" ,,-I 

which in turn implies that each /J(z, 1/) ... O. This completes the argument 
that Cf/'8 can be found as desired, 80 that we may take for granted in the 
rest of the proof that Fa, ..• , F. have properties (1)-(4). 

Chooee lOme r > 0 8uch that the open ball in E-+- of center (a, b) 
and radiua r is entirely contained in the open set on which la, ... , I. are 

defined. Since each aF JByI is continuoua and !:': (a, b) - 0 we may 

888um8 , taken 80 8mall that for each i, j - 1, ... , ft we have I ::: I < i",1 

at each point of the ball. We further 888ume r is 80 small that the con­

tinuoua function det ( : ) is nowhere zero on the ball, this being po88ible 

Bince this determinant is not zero at (a, b). Chooee AI 8uch that 0 < I: < r 
is true and then chooee A 8uch that 0 < A < ...; ,. - 11:1 and 8uch that 
d«Fa(z, b), ••• , F.(z, b», b) < 1:/2 whenever z E E- and d(z, a) < A, this 
last demand being juatifiable by the continuity of Fa, ••• , F •• We 8hall 
prove the theorem with U the open ball in E- of center a and radiua A, 
and V the open ball in E" of center b and radiua k. 

CoDBider any fixed z E U. If " E E· and d(lI. b) S k we have 

d«z, 1/), (a, b» ... «Zl - a.)1 + ... + (z.. - ca.)1 + <111 - b.)1 
+ ... + (1/. - b,.)1)1It 

= «d(z, 0»1 + (d<1l, b»l)lIl < (hi + kl)lll < r, 

80 that (z,1/) is in our ball of radiU8 r. If &lao 1/' E E" and d<1l', b) S k, 
then by the remark at the end of the last aection the entire line segment in 
E" between 1/ and 11' is in the closed ball of center b and radiua k. For our 
fixed z, each F, is a differentiable function of the last ft variables OD an 
open 8Ubset of E" containing the latter closed ball. Thua for each i-I, . , ., ft, 

the several-variable veraion of the mean value theorem (which immediately 
follows the preceding theorem) implies the existence of a point 11" on the 
line segment between 1/ and 1/' Buch that 

F ~z, 1/) - F,(z, 11'> - <1Ia - Va) :: (z, 1/'') + .. . + (1/. - V.) :: (z, V')· 
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Thus 

I F,(~, 1/) - F,(x, 1/') I 
S 11/, - 11'11·1 ::: (X, 1/'') 1 + ... + 11/. -1/' .. 1'\ ::~ (X, 1/'') 1 

Therefore 

S _1_( 11/1 - 1/'11 + .. . + 11/ .. - 1/' .. I> 
2ftl 

S 2~ max 111/1 - 1/',1, ... ,111ft - 1/'.11 

S in d(1/, 1/'). 

d«FI(x,1/), ... , Fft(x, y», (FI(x, 1/'), ... , Fft(x, y'») 
'"" «FI(x, y) ...:.. FI(x, y'»' + ... + (F .. (x, y) - F .. (x, y'»I)'" 

S (n . (d(~.,:") ),Y" S }iCY, y'). 

Also 

d«F,(x, 1/), . ", F .. (x, y», b) 
s d«F,(x, y), ••• , F .. (x, 1/», (Fl(x, b), "', F.(x, b») 

+ d«F,(x, b), •.• , F .. (x, b», b) 
1 . k k k < j"d(y, b) + 2' S 2' + 2' ... le. 

Thus the fixed point theorem i, applicable to the closed ball in E" of 
center b and radius k and the map which sends any 1/ in 'this ball into 
(F,(x, 1/), ... , F .. (x, 1/». (Recall that x is fixed.) Thi, giVel us the existence 
of a unique gEE" such that d(g, b) S k and F,(x, g) - g, for i-I, ... , ft, 

that is hex, fI) - 0 for i-I, ... , ft. (Notice in fact that d(g, b) < k by 
the last inequality. That is, 11 E V.) Since this i8 valid for each x E U 
we can define our function I{I: U - V by l{I(x) =- 11, and to complete the 
proof it remains only to prove that I{I is continuous. 

The continuity of I{I can be deduced from what has already been proved. 
To prove I{I continuou8 at some a' E U, for any • > 0 consider the aame 
problem as in the statement of the theorem of this section, with (a, b) 
replaced by (a', b,), where b' - l{I(a'), and each!. replaced by ita restriction 
to the open subset of E'"+" given by . 

I (x, 1/) E Ewa+" : ~ E U,1/ E V, d(1/, b') < .t· 

Note that our choice of r above guarantees that det( :£ (a', b'» ~ 0, 
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80 all the analogs of the original hypotheses hold. Analogous to U, V, II' 
we obtain V', V', 11", where U' and V' are open subsets of U and V respec­
tively and 11" is a function 11": U' - V' such that for each :e E U' we have 
"(x,tp'(x» = ... = f.(x, tp'(x» = 0 and d(tp'(x), b') < t. By the unique­
ne1!8 property of II' we get that tp(x) == tp'(x) for all x E U'. Therefore 
d(tp(x),tp(a'» < e if x E U'. Hence II' is continuous at a'. Since a' W88 an 
arbitrary point of V, the function II' is continuous. 

Corollary I. If th~ hypotheses oj the theorem are Itrengthened by the aaump­
tion that fl, ... , f. are continuously differentiable on the given open aubaet 0/ 
E ...... ·, then U, V may be chosen so that II' is continuoulJly differenti4ble. 

We first show that if U and V are chosen suitably then II' is differen­
tiable. First choose V and Vas in the conclusion of the theorem. Then the 

continuous function on V whoae value at x is det ( Z: (x, tp(x») ie not 

zero at a, therefore nowhere zero in some open ball in E- of center a. It 
. therefore suffices to prove that II' is differentiable at any point x E U at 
which this determinant is not zero. Hence it sufficee to prove" differen­
tiable at a, under no further conditions than those given in the theorem 
and corollary. Now each point of E·e ....... ) may be considered an .tuple of 
points of E-+·, the coordinates of the first point of E-+" being the fint 
(m + n) coordinates of the point of E·e ....... ), the coordinates of the .econd 
point of E"+· being the second (m + n) coordinates of the point of E"e-" 
etc. Consider the subset of E"e,.+ .. ) consisting of all pointe (Zl, ••• , 1") such 
that each z, is a point of the open subset of E-+" on which / ..... ,/ .. are 
defined. We have a ('ontinuous function on this subset of E"(-"+'" whose 

value at (Zl, ••. , , .. ) is det ( :~: ("») and this function is not sero at 

«a, b), (a, b), ... , (a, b», hence not zero if Zl, ••• , I" are all sufficiently 
near (a, b). Thus by restricting the set on which /., ... ,/ .. are defined we 

may assume that for any Zl, ••• ,," in this set we have det( :~; (I'») ~ o. 
Let V, V be as in the conclusion of the theorem. Without 1088 of &enerality 
we may assume that V, V are open balls in E-, E" respectively, with centers 
a, b respectively, for otherwise V may be replaced by an open ball of center b 
that is entirely contained in V and U replaced by any open ball of center a 
of sufficiently small radius. The set of pointe I (x, y) E E-+": x E U, 
11 E VI has the property that it contains the entire line segment between 
any of ita points and (a, b). Write II' - (tpa, •. • ,11'.) where each tpi is a 
real-valued function on U, so that for any x E U we have tp(x) - (tpa(x) , 
... ,tp,,(x». For each i= 1, ... ,nandanyxE Uwehaveji(x,tp(X» ... 0, 
80 by the several-variable version of the mean value theorem 
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o - I~s, .,(s» - 1,(0, ,,(0» 

- aI, (-?(ss - os) + " . + ~(-?(s. - 0.) asl as. 
+~(I')(9'l(s) -bs) + •.. +~(-?(.,.(s) -b.) 

'Ill III. 
for IODle .. on the line IeIJDeIlt between (s, .,(s» and (0, b). For eaoh 

s E U we cboaee speci60 ", ••• , ,.. Since det ( : (-? ) ,. 0, the I)'8tem 

offtequatioDa 

:. (I')(",(s) - bs) + ... + :. (-?(.,.(s) - b.) 

- -~(I')(s, - os) - ... - 'I, (-?(s. - a..) 
Is. as. 

eanbeeo1vedfor9'l(s) -bs, ... ,,,,,(s) -b.. Weget,foreachi.:- i, ... ,ft, 

".(s) - b, - AQ(S)(SI, - as} + A,..(z)(Zs - as) + •.. + A .. (s)(s. - 0.), 

where IICh A~s) ill the quotient by det( !! (-?) of a apecific pol,.­

nomial expreIIion in the various partial derivativ. of II, ... , I. evaluated 
at various pointe ", ••• , ... Since lim .' - (0, b) for i-I, ••• I ft and the -partial derivativ. of I., ... , I. were IllUmed continuous, the varioUi 
All'. are continuoua at Go The lemma of ,1 implies that "., ... , "" are 
differentiable M Go '11lUl " ia differentiable at 0, and we have completed 
the proof that" is diffenmtiable for auitabb' choIen U,V. 

Havinl proved " ditrerentiable, it is eM7 fA) see how to compute the 

YUioua partial derivativ. *. We appI,. the chain rule fA) the equations 

f,(s., ... , .... 9'l(s), ••• , ".(s» - 0 to_ 
:£ (s, ,,(s» + :. (s, .,(s» ::: + ... + Z: (s, .,(s» ~ - 0 

(equivalently, for anyone likely to be confuaed by the a notation, 

(f.)~s,.,(s» + (f')':"'l(S,.,(S»(.,s}J(s) + ... + (fi)~(S,,,(s»(,,,,)J(s) - 0). 

For an,. 6xed j and varyinc i we pt a ayatem of ft linear equations in the 

ft unknowns "", ••• , ''''', the determinant of this ayatem being 
1st 'SI 

det ( %: (s, .,(s» ) ,. O. Thus we can solve explicitly for the various __ • 

In dolDc thia we _ the delired information that under the conditions of 
the 00I0llarJ IICh '"e/Isl is continuous on U, and this completes the proof. 
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COrollary 2 (InHraeJunetion theorem). Let g ... (gl, ••. , gil) be a con­
tin1l.OUBly differentiable ,'Unction Irom an open subset 01 Ea which containa tM 
point b into Ea, each g. being a real-val'UBd l'Unction on thia open subset, and 
auppose 

(that ia, det ( :; (b») -,I: 0). Then there exist open aubseU U, V of E-, with 

be V, such that g ia defined at each point of V and tM restriction 0/ g to V 
ia a one-one map 0/ V onto U whose inverse l'Unction g-I: U -+ V is contin",­
O1J.8l1l diJ! erentiable. 

On the open subset of }JIll consisting of aU points (x,1/) such that 
z E Ea and 1/ is in the open subset of E" on which g is defined, we define 
functions /1, ... ,III by 

I.(z, y) - z, - g.(y). 

Set a - g(b). Applying Corollary 1 to 11, ••. , I. and the point (a, b), we 
get open subeeta U1, V1 of Ea, with a E Ul and be VI, such that there 
exists a unique function tp: Ul - VI such that z - g(tp(z» for all z E Ul 
and tp is continuously difterentiable. The map tp is one-one from U1onto 
tp(U.) - g-I(U.) fl VI' By the first proposition of Chapter IV, g-I(UI ) is 
an open subset of the set on which g is defined, hence an open subset of E-. 
Therefore tp(U.) is an open subset of Ea. If we set U = Ul, V = ,p(U1), 

then the restriction of g to V is one-one onto U; furthermore the inverse 
function g-l: U _ V is just tp, which is continuously differentiable. 

The determinant det «g,):) - det( Z; ) is called the jacobian deter­

minant (or jacobian) of g. It is frequently denoted 

a(gl; ..• , gil) 
a(1/1, ••• , y.) 

or J,. 

The inverse function theorem implies that, if 9 is a continuously 
difterentiable function from a connected open subset W of Ea into E" and 
the jacobian of g is nowhere zero, then g(W) is a connected open subset of 
Ea and g is one-one on some open ball centered at any given point of W. 
However, 9 need not be one-one on all of W. If n - 1, g is indeed one-one 
on all of W, for then the jacobian g' is either positive or negative on all of 
W, SO that 9 is either strictly increasing or strictly decreasing. But if n ... 2 
the "polar coordinate map," which sends any (r,8) E» such that r > 0 
into the point (r COB (J, ,. ain 8), is not one-one, although it is one-one if (J is 
restricted to any open interval in R of length 211". 
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PROBLEMS 

1. Show that the function I: B' -+ R given by 

{ lsl~IYI if (s, y),. (0,0) 
I(s, y) -

o if (s, y) - (0, 0) 

is continuous. Where is it dilYerentiableT 

2. For which real numbers a > 0 is the function I: B' ..... R that is given by 
I(s, r) - (:cI + yI)- dllYerentiableT 

3. Show that if I is a real-valued function on a connected open subset of 8" and 
fa -I: - ... -/~ - 0 then I i8 constant. 

4. Let I be a dilYerentiable real-valued function on the open ball in B" of center 
(01, •.. ,0.) and radiu8 , and suppose that I~ - allaz,. - O. Prove that there 
is a unique real-valued function , on the open ball in B-1 of center 
(01, ••• , G.-I) and radiu8 , such that I(zl, ... , z") - ,(Zl, ••. , S .... I), and tbiI 
, is dilYeren tiable. 

6. Let I be a real-valued function on an open subset U of 8". Prove that I is 
continuously dilJerentiable if and only if there exist continuous real-valued 
functions AI, ... , A .. on the set 

I (Sl •••• , Z., y., ...• 11.) E B'" : (Zl, ••• , ~). (rl, •••• 11.) E UI 
such that 

I(s) -1M - A I (s.1IHzl - 11.) + ... + A.(z, 1IHs. - f.) 

for all s. " E U. 

6. Let U be an open subset of R, let a, 11: U -+ R be dilYerentiable functions. let 
V be an open subset of B' that for each 11 E U contains the entire line segment 
between the points (a(y), y) and (11M, y), and let J: V -+ R be a continuous 
function such that allay exists and is continuous. Prove that if F: U -+ R is 
defined by 

1~·' F(y) =- .c.l I(s, y) dx, 

then 

i _c., ~ 
F'(1I) - .C.' ay (x, 11) dx + 1({J(1/) , y) fJ'(II) -/(a(y), 11) a'M· 

7. Let V, W be normed vector spaces (Prob. 22, Chap. 1I1), let U be an open 
subset of V, and let a E U. Call a function I: U ..... W diff"",iable oh if there 
exists a continuous linear transformation (Prob. 22, Chap. IV) T: V -+ W 
such that 

I• III(z) -/(a) - T(z - 0)11 0 
~ liz-ali - . 

(a) Prove that if I is diIJerentiable at a, then T is unique (80 that we may 
write T -1'(0.), generaliaing ~t was done in the Iaat paracraph of , 1). 
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(b) Prove that if I i. differentiable at 0 thea I ill continuouut .. 
(c) Prove that if W - B" Ulan I ill differentiable at 0 if &Del oaI7 II the ~ 

pone1lt fUDctioDl of I are differentiable at o. 
(d) Prove the following pneraliatioD of the cbaiD rule: U V, W, Z are 

normed vector apaceI, if U and U' are opeD .. bIeta of V aDd W n.peo­
tively, and if I: U .... U' I. dilerentiable at the poiDt 0 e U aad ,: U''''' Z 
ill differentiable at I(a), thea ,oils differentiable at 0 &Del c,. n' -
,'(1(0» 1'(0). 

8. Verily that if ",1/1: R .... R are twice dilerentiabl. fUDCtiou, II a e ., aDd II 
I(z, JI) - ,,(z - aJl) + I/I(z + aJl) lor all (z, JI) e /lI, theD 

~ ~ a1/' - o'ax" 
9. Verily that the function u(z, JI) - ,-""'/ v'i .tisfi. the differential equa­

tion 
,.. h 
aza- ",. 

Do the .me for the funetion /.' I(t),-c-"II-v-mtll, where I., b) is a cloeecl 
interval in R and I: (a, b) .... R ill continuoue. 

10. Show that if f il! a contiDuoully differentiable. real-valued 'unction on all opeD 

interval iD B' and iJll/aza, - 0. then there are contiDUOUIly dil .... tiabIe 
real-valued functioDl fa, I, on open intervall iD R IUCh that 

I(z, r) - fa(z) + Ih). 

11. Prove that if U II! an open ball in B" ad I .. .. . 1.: U - R are contiDUOUIlJ 
differentiable functions such that 

Ph. Ni 
aXI - aZ, 

lor all i,J - I, ... , ft, then tbere exiI!tI a Iunction ,: U .... R IUoh that 
fl - aF/az, lor i-I, ... , R. (iii"': If (alt ... , a.) il t.he can_ of the ball, 
try defining /t' by 

F(z .. ... , z.) = J: f.(I, fit, •.• , a.) dt + J: I,(za, t, fit, ••• , oJ ", 

+ J: I.(z .. ZI, ',at, ... , a.) dt + ... + J:: I.(z" ... , z-a, " ",.) 

12. Show that the funet.ion I: B' .... R liven by 

{~. fez, r) _ za +,. II (z, r) ,. (0,0) 

o if (z,,) - (0,0) 

ill continuously differentiable and has all ita eecoad orda- partial cla+fUivee, 
but that 

~ ~ aza, (0,0) ,. ~ (0,0). 
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13. I& I be a rea1-valued fwactioD OD an open aubeet of ]II containiog the point 
(Ga, lit, ae>. Buppoee that I poeaeeaee all ita t.bird order partial derivatives and 
that these are continuous. Compute 

lim (ZI -Ga)-I(ZI - 1It)-I(ZI - 1It)-I(/(zl, ZI, Za) 
eq. ... .., .. , ...... .., 

-/(Ga, %to Zt) -/(zl, lit, Za) - /(ZI, ZI, Ge) 
+ /(Sa, lit, Ge) + I(AI, ZI, Ge) + /(AI, lit, Za) 
- I(Ga, lit, ae». 

14. (a) Ullina the notation of the theorem "vine the chain rule and 88IUIDinI 
that II, ••• .!. and , have contlnuOUl I8CODd order partial derlvativea, 
work out the expreeaiOD for (c, 0 I>i)~. 

(b) U. part. (a) to expreea the laplacian :: + :: in polar coordinates. 

(Here 11 - ,,0 I, where I(s, r) - (', I) - ( V zI + "., tan-I 'IJ/z), and the 
Laplaciau is to be expreeaed in terma of the partial derivatives of , with 
respect to , and I.) 

16. Write down aplicitly all terms of the multivariable Taylor formula if m - 3 
and " - 2, ooUeotins t.erma topther wherever poIBible. 

18. I& U be All opeo aubeet of gr.,/: U -t R a differentiable function. Prove that 
if I attains a maximum or a minimum at the point 0 E U, then/{(o) - ... -
I~(A) - O. Prove conveneiy that if / has all ita aecooo order partial derivativea 
continU0U8 at A and /((o) - ••• - /I.(A) - 0, then the restriction of / to lOme 
open ball of center 0 attains a maximum at 0 if the " X" symmetric matrix 
( <ffli<A» is Deptive definite and attains a minimum at A if thia matrix i8 
poeitive definite, while I does not attain either a maximum or a minimum at 
o if tbia matrix is neither poeitiv. nor neptive aemidefinite. 

17. Prove that if the functiolll/I, ••• ,/. in the etatement of the implicit function 
theorem are aeaumed to be A: timea continUOUlly differentiable (i.e., all partial 
derivatives of order A: exist and are continuous), then the lI&IIle is true of the 
component functiona .,., ••• , .,. of fl. 

18. (a> Compute B(z, r)/B(" I) if z - , COl I, r - , sin I. 
(b) Compute B(:I, r, .)/B(" I,,,) if z - , COB I sin 'P, 7J - , sin I sin ", and .-,coa". 

19. "If I(z, r,') - 0, then 
8 •• !!r. • 8z _ -1 II 
arBzB' . 

Make BeD8e out of thia nODBeD8e and prove. 

20. Let 8 be a cloaed IUbeet of gr. which contains the entire line segment between 
any two of ita pointa and let I be a continuoUllly differentiable map from an 
open aubeet of gr. containing 8 into gr.. Suppoae that /(8) C 8 and that there 
is a real Dumber A: < 1 IUch that 

i; «/j)j(Z»1 S I: 
'.1-1 

for all Z E 8. Prov. that the restriction of / to 8 is a contraction map, 80 that 
the flxecl point theorem is applicable. (Hi"': You may want to use Prob. 20, 
Chap. VI.) 



CHAPTER X 

Multiple Integrals 

In our treatment of one-variable intepation we 
were ~ concerned with continUOUl funetioaa. .. 
Step functioaa appeared in the proofs, but their WIe" 

W1III an euUy avoidable f.4lchnical device. In multi­
variable integration we are of COUI'II8 still primarily 
intereated in continuous functiona, but the neceity 
for intepatinl over fiIurea with curved boundaries 
foreea us to ccmaider fairly pnenl noncontinuous func­
tions. In this ohapter we .tart with a atraiptforward 
mimickinl of what was previously done for one variable. 
At a certain point the need for pnera1ity entaila lOme 
apecial consideration of leta of volume aero, but this 
hurdle is quickly pueed. We end up with .trongel' 
reaulta than before for the one-variable caae, in addition 
to all the eBI8Iltial speci&cally multidimeuaional etate­
menta. 
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11. 1UEMANN INTEGRATION ON A CLOSED INTERVAL IN P. 
EXAMPLES AND BASIC PROPERTIES. 

Recall that a closed interval in E- ia a aublet 01 E- 01 the lorm 

{(2:I, ••• , z,.) E E- : G, S 2:, S bcfor each i-I, ... , tal, 
where (II, ••• , a.., ba, ••• , b. are fixed real numbera IUch that GI < ba, 
•.• , a.. < b,.; we call thia closed interval the cloHtl i1&IenHJl .,..".irUJtl ", 
(II, ••• t a.., ba, ••• , b. and we note that the numben Gl, ••• , a.., ba, ••• , b,. 
are themaelves determined by the closed interval. The notion of an 
opeb interval in E- il obtained in a limilar manner by replaciDl each 
Iymhol S by the aymhol <. 

Dfdira'doJu. Let (II, ••• , a.., ba, ••• , b. E R, with (II < bl , ••• , a.. < b •• 
By a partition 0/ the cloaed i1&lervtJl 1 C E" determined by GI, ••• , a.., 
ba, ••• , b. we mean an n-tuple of partitioDl of the closed intervale [Gl, bal, 
••. , [a.., b,.) in R, that iI, an ordered set of n finite aequencea of real numben 

(2:1',2:11,2:11, ••• , 2:1NI), (2:1°,2:11,2:-/, ••• , 2ItN1), ••• , (z,.o, z,.1, z,.', ••• , z,.N.) 

(where the IUpencriptAI are indicea, not exponente) aueh that for each 
i-I, ... , n we have 

(I, - 2:' < 2:1 < 2:1 < •.• < 2:~' - b,. 

Th. tDidIA 01 this partition ia defined to b. 

max (2:1- 2:rl : i .. 1, •.• ,ta and i-I, ... , N,I. 
If / ia a real-valued function on 1, by a RiemtJtata IUm /or / corrupon.di,., to 
the given partitiota we mean a aum 

1: . /(111"""·, • •• , '1/./.'''1.) (2:J!' - 2:l/rl) ••• (z,./. - z,./.-I), 
I.-I ••••• N,; ••• ;I.-I ••••• N. 

where each '1//1"'1. E [2:101, 2:/1). We ... y that / ia Ricmman inlegrtJble Oft 1 
if there exilts a number A E R lueh that, given any f > 0, there exists a 
6> 0 lueh that 18 - A 1< f whenever 8.ia any Riemann lum for / cor­
responding to any partition of 1 of width Iell than '; in this cue A ia called 
the Rimumta intflgrtJl all Oft 1 (or over 1), and ia denoted /'/. 

Note that il n - 1 we have exactly what we bad in Chapter VI, 
except for a Blight change of notation. For ta > 1 we have an immediate 
generalization of what waS done earlier. The ahove partition of the closed 
interval 1 in B" lubdivides 1 into N"N I ... N. closed aubintervala no two 
of which overlap, except poBBibly at extremitiea, that is points (2:1, ••• , z,.) 
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FrouD 34. A partition 01 • eIeIed interftl III .. iIacIuca ... bcItriIioa Into ... 
IlUblntervale no two 01 which 0YWIap. eIIIIIPt poIIibI7 M extr ...... 

eueh that:l:i ... :1:1 for some i,j, &8 is illuetrated in Figure M. For. Riemann 
eum corresponding to a specific partition, the varioua pointa <r~ .. -I., .•. , 
y .. /, ... J.) are obtained by choosing one point from each 01 the cloeed aub­
intervale. The expl'ell8ion (:1:1/, - !l:l/,-1) ••• (:e,.J. - z..~) NpNI8Dta the 
"volume" of a eubinterval. (Cf. Figure 35.) . 

The Riemann integral of J on 1, if it ata, ie unique: If A, A' are 
Riemann integrale of J on 1, then for each t > 0 there exiatI • number 
., > 0 euch that if 8 is any Riemann sum for J eorrespondilll to • partition 
of 1 of wid th Ieee than , (such partitions axial. I) then we have 18 - A I, 
IS - A'l < e, &8 a eoneequenee of which IA - A'l < 2e, and linee t.his is 
true for each e > 0 we muet have A - A'. 



There are numerooa alternate notations for /,f. In the case n = 1, 

we have already denoted k .. 1 by J.' f(z) dx. For n > 1, /,f is sometimes 
written 

/rfdx, or /rf(z)d(:r:), or /rfdx1'" d:r:". 

Sometimee " integral signs are used, 88 in 

J /r I(z. II) d:r: d" or J f /r I(z. II. a) d:r: d" dz. 

M in the cue n - 1, we shall abbreviate the expreeeions "Riemann 
intepable" and "Riemann integral" to "integrable" and "integral" 
reepective1y. The comments made at the end of '1 of Cbapter VI are 
apropos here. In particular, since there are other methods of integration 
than that of Riemann. care moat be exercised in coUating the results of 
thia chapter with results in other texts. 

FlQVU 81. EIamp_ 01 RiemaDa auUIL If the function I on the liven clOled Interval I 
In IfI .... the value 1 a' each polnt 011 or within the indicated oval and the 
value IeI'O '" all otlaer pointe oil then lIllY RIemann eum lor I COITeIpoDdinc 
w the Indicated partlUon 01 I ill the IUID 01 the areaa or certain or the 
reo ...... Inw wblch I illaubdividecl. Which rectanalet are w be lncluded 
la the ... depeadI 011 how the pointe (,.,,/a, "",/a) are choMA. For differat 
ahoioeI 01 u-e pointe the un.haded rectanalet are never Included, the 
liPU7 Ihaded reetaIlalet may or may not be lncluded, and the darkly 
..... rectancl- are alway. Included. 
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EulO'LJI 1. If I is as above and /(s., ... , Sa) - e, a conatp.nt, for 
all (s., ... , Sa) E I, then for any partition of I, say the partition in the 
above definition, we have 

I: /("./1 .. 04, ••• , "il···I.)(stl - Sll-I) ... (Sal. - s.I.-') 
11-1 ..... NI; ... ;Ia-I ..... N. 

- I: e(sll - %./1-1) ••• (%01. - Sal.-I) 
i.-l, .... Na: ... ;J.-l ..... N. 

NI ~ - ,./ I: (%./1 - S.il-I») ... ( L (Sal. - Sa/.-I») 
'11-1 1.-1 

- e(ht - at} ••• (b. - a.). 

Since all Riemann 8UJD1 equal e(b. - at} ••• (h. - a.), we have a function 
that is integrable on 1 and 

f,e = e(hl - al) ••. (h. - a.). 

EXAMPLil 2. Let 1 be as above, let E. E (a., haJ, and let I: 1 - R be 
a bounded function such that 1(%., .•• , :ta) = 0 if %. pi! E ••. Suppose 
I/(z., ... , % .. ) ISM for all (s., ... , Sa) E 1. Consider the partition of I 
appearing in the definition, 8Upposed to be of width lellll than a, and the 
Riemann lum in the definition. We have 1(111/, ... 1., ••• , ",,/1"'1.) - 0 unlfJIII 
1/./1'''1. - EI, which can be true for at mOlt two diltinct NI, 10 that 

I I: 1(,11/, .. 04, ••• , " .. /1"'1.) (%1/1 - Sl/,-I) ••• (z,,1. - Sal.-I) I 
II-l ..... NlI ... ;Ia - ••••.• N. . 

S I: 2 M a(%s11 - :tsI..-I) ... (Sal. - Sal.-I) 
h-I, .... N.; .•. ;;.-I ..... N. 

~ N. 
-2 M a( 'r' (:.:sia - %..-1») ... ( I: (Sal. - Sal.-I») 

h-I . 1,,-1 

- 2M I(bs - a,) ••• (h .. - CIa). 

Clearly /,1- o. More genera1ly, /,1'" 0 for any bounded function 

I: 1 - R for which there exists some i ... I, ... , Il and some Ei E (ai, hi] 
luch that I(sl, ... , z.) = 0 if %i pi! f,. 

EUMPLII 3. Let 1 be as above, and let ai, ... , a., fll, ... , fl. E 8, 
with a. S ai < fli S bi for i-I, ... , n. Define I: 1-8 by 

1<-' ...... ) - {: 
if %i E (ai, fl,) for each i-I, ... , n 

if (%1, ... , z.) Eland %i e (a" fl,) 
for Borne i-I, ... ,n. 



CoDllider the partition (SID, SI1, ... , SINI), ... , (z.', z.I, ... , Z.N.) of I, 
suppoeed of width I... than " and a corresponding Riemann sum 

8 - 1: I(Ytla"·I., •• ',1/.Ia"·I.) (si' - Stlrt) ••. 
11.1 ..... Na; ••• iI-~l ..... N. 

(z.1. - S.I.-I), 

where ,1&"'1. E (ZFI, sic] for all i, i., ... , i.. Since I(,"·"A., ... , 1I.1, .. .J.) 
ie 1 or 0, according as the point (1II1a···I., .•• , 11.1, ... 1.) i. or it not. in the 
open lubinterv&l of I determined by orl, ••• , «., fJI, ••• , {J., we have 

8 - 1:. (s" - S,,-I) •.. (z.1. - z.1.-') , 
11 .... ,/0 . 

the aateriak indicating that we include only thoee i., ... , i. for which 
111/, ... 1. E (or., fJi), ••• ,1/,.1, ... 1. E (or., (J.). For i-I, ... , ", ohooae p., ,. 
from &rnOIlIl, 2, •• " N. 80 that 

si'rl ~ or. < si", s~rl < fJ. ~ S~'. 
Then ,1&"'1. E (or., fJi) if p. + 1 ~ i. ~ ,. - 1 and ,i'''.J. E (or., fJ,) if 
i. < p. or i. ~ , •. Therefore 

1: (Slla - S,,-I) ..• (z.1. - z.1.-1) ~ 8 
.. +ls11 S" -11 ...... +1 sl-S .. -I 

~ 1: (sal' - s./r1) ••• (%al. - %ala-I) 
.. S/, SIl; ... I1IIoSI- S .. 

or 
,,-I ..-1 

( 1: (s.l, - Sl/rl» ... ( 1: (z.1. - z.1.-1» ~ 8 1,-.. +1 1.-.. +1 
II ,-

~ ( 1: (s.1a - S~-I» ... ( 1: (%al. - %al.-I ) ). 

h-.. 1.-.. 

By the choice of p. and qi we have fJ. - or, ~ s~, - sjlrl < (q, - p. + I)', 
10 that we muat have qi - 1 ~ P. + 1 fori - I, ... , nif I iel ... than each 
(fJ. - a.}/2. in which case the last inequalitiea become 

(Slrl - s ... ) ... (z.,.-I - s."") ~ 8 ~ (Sl" - S ... -I) •.. (%a" - S.",,-I). 

Since our partition has width I .. than I, for each i-I, ... , n we have 

or, - I < Si'rl < si" < or, +. and fJ, - , < s~rl < sl' < fJ. + •. 
Therefore 

(fJ. - «t - 21) ••• ({J. - or. - 2.) ~ 8 ~ (fJl - or. + 2.) •.. (fJ. - «. + 21). 

Since the real-valued function on R which Benda any point. t E R into 
(II. - a. + 2C) ••• ({J. - or. + 2t) ie continuous at 0, given Any • > 0 
we can find a , > 0 such that for the above Riemann sum 8 we have 
18 - (fJI - ori) ••• (fJ. - «.) 1< •. Thus 1 il integrable on I and 

J, J f' (fJ • ...: ori) ... ({J. - or.). 
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EXAMPLE 4. If 1 is as above and I: 1 - R is defined by 

I( ) { I if s., .•. , s. are rational 
SI, ••• , s. - 0 otherwise 

then any open subinterval of I contains points at which I tak. on the value 
I and also points at which I takes on the value 0 (thi, ia a ample oonee­
quence of the corresponding fact for ft - 1). Therefore both ( .. - aa) ••• 
(II. - a.) and zero are Riemann sums col'ft!lpondilll to an, pu1ition of 1. 
It followa that I is not integrable. 

ProJHMition. RienllJftn inUgrtJtion w tM lolJtMi,., "..,.,.u.: 
(I) 111 and , are integrable reokalu«l ~ on 1M .... ......, 

1 01 E" O&en I + , i. inlef1rtJb,. on I and 

/, (J+ ,) - /,1+ /". 
(I) 111 is on inUgr~ reol-tJolued ~ on 1M ..., inIerNIl of 

E" and c E R O&en cf i. integrable on 1 and 

/,cl- c /,1. 
Given any partition of 1, a Riemann IWD for 1+, 00I'ftIPIJIlIII to 

thie partition is the sum of a Riemann IIWi1 for I ~ to ... 
partition plus a Riemann IWD for , col'ft!lpondhll to thiI puIitital, ..... 
similarly a Riemann sum for cf comepondjna to this· pu1i_ II e ibneI a 
Riemann sum for I col'l'e8ponding to this partition. BeDel the propaIitioD 
is quite trivial. (Those wishing to write down a proof in all detail..., do. 
by effectinJ ,uitable minor chan~ in the proof 01 the ~ .... , 
of Chapter VI.) 

An immediate consequence of the propoeitloa ia that if 1_ , IN 
integrable on 1, then 

J, (J -,) - /,1- J". 
ProJHMidon. 111 iI em iftI.etIr"",. ,..,... .... /tIftI:lion on Me .... ......, 
1 oJ E" and I(s) ~ 0 lor aU "E I, lAM /,1 ~ O. 

For if 8 i. any Riemann IUm for 1 OOJllIpOndiaa to &IlJ' puthlon of I 
thenB ~ O. . 

All in Chapter VI, there are two immediate coroUarieI. 

Corollary 1. III and , are integrGbk ~ /tmditIu ".. '" ..." 
intInIJlI 01 E" and I(z) S ,(z) lor aU " E 1, O&en J, IS J"o 



_ X. IItJIJIUUI IIfftOLU .. 

GwollGry J. II I is an integrable real-flalued lunctilm on the cloBed interval 
I 01 E" IIaot is ddmnined by aI, ••. , CIa, lis, ..• , b,. and m :S I(z) :S M lor 
aU xE I,Uten 

m(bs - as) ... (b,. - CIa) :S J,I:S M(bs - as) ... (b. - CIa). 

12. EXISTENCE OF THE INTEGRAL. INTEGRATION ON 
ARBrrRARY SUBSETS OF 1:". VOL11ME. 

Lemma I. A reaH10ltuId lunctilm / on a cloaed inlmlal I 01 E" is integrable 
on I if and only if, gWen Oft1l « > 0, tMr, uialI a "umber 1 > 0 aucI& IIaot 
181 - 8.1 < • tDlacruver 81 and S. ar, Riemann fUme lor I corrupondi,., to 
PfJrtitiont 01 I 0/ width leu tha" I. 

The proof of Lemma 1 of § 3, Chapter VI applies verbatim in the 
present case, if we change the symbol la, bl, wherever it occurs, to I, and 

the symbol J.. I(z)dz to f, /. 
Deflnilion. A real-valued function I on a closed interval I of E" is called 
a .up /tmdilm if there exists a partition (ZI', ZI', ••• , ZINl), ••• , (x.', x.1, 

••• , ~ ... ) of 1 such that for any (ZI, •.• , Za), (J'I, ••• , JI .. ) E I we have 
!(Zl, ... , Za) '" 1(1/1, ... , ,.) only if for BOrne i-I, ... , n such that 
~ '" 111, the cloeed interval in R whose extremities are Zi and 11, contains 
at leut one of the points ~,Zil, •••• z.N'. 

In other words, / is oonatant on any subset of I consisting of points 
(Sl, ... , Za) in which each Zi is restricted to one of the subsets (zl, Z,I) , 
(s/" sl) •... , (zl'r-I, zl"), Iz!'. Ix,', •... , Izl"'. In particular, J takes 
on only a finite number of distinct values. The functions of Examples 1 
and 3 of 11 are step functions. 

Lemma J. A IIep /unction on a closeJ interval 1 in A'" i. integrable. In 
particular, if (Zl', Zl', ••• , ZINI), ••• , (z.', z.', ... , Z.N_) i. a pArtition 01 I, 
if lell ... h'il-I ..... Nl; ... ~-I ..... N_ C H, and iJ the IItep Junction I: 1-+ H it auch 
IAat lor Oft, ;1 - 1, ... , N 1; ••• j j" = I, ... , N ~ we have J(Zl, ••• , z .. ) -
OIl ... 1e if sir-I < ~ < zi' Jor BaM i-I, ... , n, then 

f,1 - 1: Cia ... I..(zl' - ZII&-l) ••• (z .. 1.. - Zal.-I). 
1.-l ••••• N.; ... u.-l ..... N. 

For if we define "1I ... Ia(SI ••.. ,~) to be 1 if zi'-I < ~. < zi' for each 
i-I, ... ," and aero otherwise, then 1- 1: Ci •.•. I .. f(Ji •••• i_ is a function 

I ••... J-
on I that. baa the value zero at each point (ZI, ••• , Za) of I for which all the 
iaequalitiea Si '" si hold, for i ... I, ... ," and j = 0, ... , N i. By the 
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additivity of the intep'al and Example 2 of the previous section, we have 

I, (f - L Cil"'''' lI'il"'''') = o. By Example 3 of the previous section, for 
il .... ,J. . I 

all jl, .•. ,j" we have I, lI'ia ... I .. = (XIII - Xlii-I) • •• (z..'" - z..",-I). Thus 

the given expression for J,I results from the linearity of the integral, that 
is, the tint proposition of the last section. 

Proposition. The retJl.."alued lunction I on the cloaed interlllJl I 01 E- i. 
inlegrable on I il and only if, lor each e > 0, there exi8t .tep lunction. /I, I. on 
Iauchthat 

and 

/, (fa -- /I) < e. 

The proof of this is exactly the same as that of the analogous proposi­
tion in § 3 of Chapter VI if we make a few appropriate changes in notation. 
Since we shall refrain from making the precise transcription, the reader 
should carefully check this statement. 

Corollary 1. II the real-valued lunction I on the closed interval I 01 E- is 
integrable on 1, then it is bounded on 1. 

The following simple result could have been proved much earlier, but 
it is especially easy to prove at this point. 

Corollary J. II 1 C J are cloaed intervala in E" and I: J - R is auch that 
I (x) ... 0 lor all X E J - 1, then the integral 01 I on J eziata il and only il the 
inlegral 01 the re8triction 011 to 1 on 1 exi8tB, in which. case they are equal. 

Denoting the restriction of I to I by the 8&lIIe lett.er 1 when 110 confusion 

is postJible, this cOI'oUary states silllply that /J J;;; /r I if J ::> I and 1 ill 
zero outside 1. To prove this, fint note that Lemma 2 implies the truth of 
Corollary 2 if 1 is a step fUllction. Next suppose that. J, I exists. Then for 

any e > 0 there exist step fundiouslt, " on lauch thatft(z) S f(z) S ''(x) 

for each X E I and Buch that /, UI - It) < t. l~xtcnd ft, fa to fUllIltiOl;' on 
J by setting /l(z) -I.(x) ... 0 if x E J - I. ThclI 11, I. are step fUllctiolls 

on J, l1(x) S I(x) S Is(x) for all x E J, and /J (f. - /l) - J, (fa - /I) < e. 

Thus bl exists. Since /rf,S J,IS J,/a and J,It= bitS /JIS 
/JI. = J,I., we have \ /JI - 1,1\ S I, Is - J, It = J, (f. -II) < E. Since 
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the last inequality is tme for ear.h f > 0, we have J., I = J, I. Finally 

suppose that J., I exists. Then for any f > 0 there exist step functions Uh 

g. on J such that Ul(X) S lex) S g,(x) for each x E J and J., (gt - Ul) < f. 
The restrictions of gl, gt to I are step functions on I. By Lemma 2, 
J, (g. - g~ s f" (g, - gl), 80 that J, (g, - gl) < f. Hence J, I exists, and 
this completes the proof. 

It is now convenient to extend the notion of integral. First let 
I: E" - R be a function which is zero outside some bounded subset of E". 
We can then find a closed interval I of En sueh that lex) == 0 for all 

x Eel. We caU I integrable on E" and define f.-/:= f,1 if the latter 
integral exists. This makes sense, for suppose I' C E" is another closed 
interval such that lex) == 0 for all x Eel'. Let J be still another closed 
interval of E", such that J ::> I V I'. By the last coroUary, f,1 exists if 

and only if J.,I exists, in which case these are equal, and similarly f" I 
exists if and only if fJ I exists, in which case they are equal. Therefore J, I 
exists if and only if J" I exists, in w~ich case they are equal. 

Now consider an arbitrary mbset ACE" and an arbitrary real-valued 
function Ion some subset of E" that contains A. Define]: E" - R by setting 
l(x) = I(x) if x E A, J (x) = 0 if x eA. We say that I is integrable on A 
and define L I to be f." 1 if the latter integral exists. This agrees with the 

previous definition if A is a closed interval of E". For any A and I, fA I 
can exist only if the set of points of A at which J is not zero is bounded and 
if I is bounded on A; this follows from the present defiuition. 

For an arbitrary subset A C En, we say that A htu lIOlume, and define 
the volume 01 A to be 

vol (A) == fA 1, 

if this integral exists. A necessary condition that vol (A) exist is that A 
be bounded. If I is the open or closed interval in lJft detennined by Clio ••• , 

tJ,., bl , ••• , b .. , then vol (I) - (b. - 4.) ... (b" - a,.). An oxample of a 
bounded subset of IS" having no volume is the set of all points of a given 
rlosed interval I of E" all of whose ('oordinatcs are rational numbers 
(cf. Example 4 of § 1). The word volume, as u!lt'd here, is often replared by 
n-dimensional 1J01ume, or Jordan measure. If n = I, one often UBes the 
word InItJth instead, and if n = 2 the word ClreCl. 

The two propositions of § 1 possess the following immediate generaliza.. 
tiona. 
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PropGIJ'eJora. Integration Aoa tAt lollotDi1lf 1iftesril.1/ proper": 
(1) II ACE- and I and , are i~ltI NGl ... ,.., /ufIt:4itma '" A, 

tAen I + , ia tfttegrabltl Oft A anti 

L (f + ,) - fA I + fA ,. 
(') II ACE-, I ia em integrabltl ~ /tmt:liIIrt '" A ,., e E B, 

tAen cJ it w."abliI on A _ 

Jua usual, it follows that if I and, are integrable on A then 

fA (f - ,) - L 1- L ,. 
PrOfHM'eJora. 11 I ia em inlefrabltl ~ /tmt:lu. .. 1M __ A of 
E- tmd/(z) ~ 0 lor all z E A, tAen fA/~ o. 

Corollary 1. II I, , are integrabls ~ /tmt:liou '" 1M __ A oJ 
E- _ I(z) ~ ,(z) lor all z E A, tAen LIS fA ,. 
Corollary J. Let I be em ~ ~ /tmeliM& '" 1M ......, A oJ 
E-. 8uppoH I1aGt m ~ I(z) ~ M lor all z E A .,." ., A Acu ......... TAM 

m vol (A) S L/~ Mvol (A). 

Subeets of E" of volume 181'0 are eapeciaIly important. W." iIopther 
lOme of their properties. 

ProfHM'tJon. Tlul lolltNirag ~ Itoltl: 
(1) A...". A 01 E- Aoa 1IOlu ... IeI"O if ,., only f, ,.. .., • > 0, 

1Aer. am. G finite number 01 eloMl (or 01*') iftImJalI .. If" ..,.. __ 
contcriu A _ tAt am oltllhoaellOluma ia ,., .... .. 

(I) An1/ eubM 01 G aubM of E- 0/ ........ ia oJ ...... . 
(,) Tlul _ion 014 [mite number of ... of If" 11/ .... ... ia of 

1IOlu ...... o. 
(4) 11 A C B" Aoa IIolWM Nf'O _ eM ,., Be .. Acu ....... lAM 

vol (BVA) - vol (B - A) ~ vol (B). 
(6) 11 A C 1l" 1aaa ........ _I: A - B " ........... ~, 

tAen fAI- O. 
(6) 118 C E-l ia c:ompad and I: 8 - B " conImuou., lAM eM ".,. 

01 I ita 8-, i .•. , tAt ,., 

«ZI, ... ,z.) EE-: (ZI, ... ,Za-.) E8'/(ZI, ... ,~ -s.t, 
Aoa~.ro. 



To prove (1) we mayeupp088 A C I, for lOme closed interval 1 of 8., 
since only bounded eeta have volume. Let I: 1 - R be defined by aetting 

I(~) - 1 if ~ E A,/(~) - 0 if ~ E 1 - A,so that vol (A) - 11. If vol (A) 

- 0 then for any e > 0 there is a partition of 1 8uch that any Riemann 
BUm for I comaponding to this partition has abeolute value 1_ than .. 
But one euch Riemann sum for I correspondiq to this partition is the 
eum·of the volumes of those closed eubintervals of I (for the 8ubdivision 
of I correaponding to the liven partition) which contain points of A. Hence 
A ill contained in the union of a finite number of closed interval8 the eum 
of whose volum. is 1_ than .. Convene1y, euppoie that for each • > 0 
we can write A C II V •.. V IN, where each 1, is a cloeed interval in ... 

N 

and E vol (I,) < .. For j - I, •.. , N we define II: I-R by I'(~) - 1 if 
1-1 

N 

~ E 1 nIl and II(~) - 0 if ~ E 1 - h so that Ell is a step function on 
I-l 

If N N 
I, 0 S/(~) S E/'(~) for all ~ E I, and f, ("Eli - 0) ... "E vol (I nI,) 

I-l 1-1 /-1 

" S E vol (11) <.. Since for each e > 0 I is 8&Ddwiched between the 
I-l 

N 

two step functiODB 0 and Ell, we know that 11 exists. Since 10 S 
I-l 

11 S 1 fll < • for each e > 0, we have 11"" 0, that is vol (A) - o. 
I-l 

This provee the part of (1) dealing with closed intervals. A. for open inter­
vals, the reeu1t for closed intervals plus the rerharb that any open interval 
in B" is contained in a closed interval of the u.me volume and that any 
closed interval in B" is contained in an open interval of twice the volume 
(namely the open interval having the same center as the closed interval, 
with dimen8ioDB those of the cloeed interval tim. 21/.) prove (1) for open 
intervals. Thus the proof of (1) i8 complete. Parts (2) and (3) foUo" 
immediately from (1). To prove (4), first note that we have vol (A - B) -
vol (A n B) - 0, by (2). Define functions 1a,1 • ./,: B" - R by setting 

11(~) - {~ if:c E B 
if:cfl B 

I.(~) - {~ if~EA-B if:ceA-B 

I.(~) - {~ if~EAnB if~eAnB. 
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Then 1 •. /& .. f.l - vol (B), f .. l. - /.._.1 = vol (A - B) = 0, and 

f../a ... fAI"\B 1 == vol (A II B) ... O. \te have/lex) + hex) ... 1 if x E B V A 

and fa(x) + /.(x) = 0 if x fl B V A, so that vol (B V A}!"" f •. (fa + /.) ... 
f .. /a + f .. f. - vol (B). Also fa(x) - /.(x) ... 1 if x E B - A and /1(x) -

I.(x) - 0 if x e B - A, so that vol (B - A) = f." (/& - /.) = f."fa­
f .. /1 - vol (B), which completes the proof of (4). For (5), auppose that 
A is contained in the closed interval 1 of E" and auppose that If(x) I < ltI 
for each x E A. DefineJ: E" - R by settingJ(x) - lex) if z E A,J(x) :=' 0 
if x e A. For any • > 0, paR (1) tella ua that there exist. a step function 
,: l-R such that ,(z) ~ 0 for all x E 1, ,(x) ~ 1 for x E A, and 

J" < •. Then -M,(x) sJ(x) S Mg(x)forallx E Ii f, (M, - (-JIg» .... 

2M J" < 2M e follows. This being true for each e > 0, /, J exists. 

Since J, (-M,) s /,J s /, M" we have I I, '\ S M I, , < Me, and 

aince this is true for all .e > (, we have /,1'" o. But fA / ia by definition 

f,J, so fA / .. 0, finishing (5). To prove (6), we may auppose that 8 C 1, 
where 1 is some closed interval in E"-I. Given allY E> 0, by uniform con­
tinuity we can find a number a > 0 auch that I/(p) - J(q) I < E whenever 
p, q E 8 are such that d(p, q) < a. Choose a partition of 1 of width leaa 
than 6/v"n"=l. Let this partition of I subdivide I into the closed sub­
intervale 11, ••• , IN, so that 1a, •.. ,IN are closed subintervale of 1 whose 
aides are all 1888 than a/v"n"=l, 1 = 1a V ... V IN, and vol (I) = 

N 

E vol (II)' If p, q E II II 8 then d(p, q) < a, so that If(p) - /(g) I < •. 
1-' 

Hence if 1111 8 is nonempty, the graph of the reatriction of / to 1;11 8, 
that is, . 

«Xa, .•. , x.) E E" : (Xa, •.. , x __ a) E 1; II 8, /(XI, .•. , x __ a) = z.1 

is contained in the set 

where ml and M i are respectively the minimum and the maximum values 
attained by I on I; f'\ S, and the latter set is a dosed interval in Jo;. of 
volume (M; - 1tl;)vol (Ii) < E vol (Ij), HClwe the gl'&ph of J ia contained 
in the union of a finite number of closed intervala in E" the aum of whose 

N 

volumes ia at moat I: f vol (I j ) = E vol (I). Sim'c E is all arbitrary positive 
;-1 

number, (6) is implied by (1). 



",...,.,don. II A, B are IUb8dI 01 E" aucA U&at vol (A'" B) - 0 _ 
I: A V B - R ia if&le(/rable em A t.md em B, II&en 

Lv.l - LI+ 1.1. 
To prove thie, define II, I., la: E" -+ R by 

I.{) {/(:e) if:e E A 
liS - 0 if:e(lA 

I.(s) _ {!(OS) if:e E B 
if S (l B 

{/(S) if sEA'" B 
la(te) - 0 if:e (l A '" B. 

Then I .. Is - IA I and 1 ... 1. - I. I· The exiatence of the last two int. 
gra1a impU. that I ia bounded, 80 by (5) of the previous proposition we 

have 1 .. /1 - IAf'\BI - O. Since II(s) + I.(:e) - I.(s) - I(s) if :e E AU B 
and II(s) + I.(:e) - I.(:e) - 0 if :e E A U B, we can therefore compute 

Lv. I - I .. (/1 + I. - la) - 1 ... 11 + 1.·1. -1 .. /a - L 1+ 1.1. 
In the apecial cue 1- 1, the proposition aays that if A and B are 

subsets of E- with volume whose intenection baa volume 181'0, then 

vol (A V B) .. vol (A) + vol (B). 

We now have the main exiatence theorem. 

Theorem. Let A C Eft be a Bet VJitA I/olume and let I: A -+ R be a 
bound4ld luneticm tMt is continuous except on a subaet oJ A oJ volume uro. 

Tiaen IA I e:eiaU. 

Let us fint prove this in the apecial cue where A ia a cloeed interval 1 
and I ia continuous on 1. Here the proof ia an eaay modi&cation 01 the 
earlier proof for ft - 1. Let MER be luch that I/(s) ISM lor all :e E 1. 
Given e > 0, the uniform continuity of I on 1 giva us a a > 0 eucb that 
1/(:e) - 1M I < e whenever :e, 11 Eland des, 1/) < a. Chooee a partition 
of 1 of width lese than al Vn. Suppose this partition eubdivid. 1 into 
the cloeed eubintervals11, ••• ,1",80 that 1== 11 V·,·· U lit and no two 
of the Ila overlap except poeeibly at extremities. Thus vol (II'" 1.) .. 
o if j, k .. 1, • .. ,N and j pi k. If :e, 11 E 1/ then d(s,1/) "< a, 80 we have 
1/(:e) - J(y) I < e. We define It,!.: 1-+ R by -UIlI 
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Ia(z) = {min '_IM(Y) : Y E IjJ if z E Iii s e I. for any A: ~j 
if s is in at least two of the aeta II, ..• ,1. 

f,() {maX '/(y) : Y E IjJ if s E h s e I. for any A: ~j 
• z co M if z is in at least two of the aeta 1 ..... ,1 •. 

Then fl, fl are step functions on I, fl(s) S f(s) S f.(s) for each s E I and 
• • J, (J. - II) ... E k (Js - fl) SEe vol (II) - • vol (l). Binee IUCh 11,1. 

I-I I-I 
exist for each f > 0, our criterion for integrability on a closed interval 
impliee the existence of J, f· This proves the epeeial cue. 

Now consider the general cue of the theorem, with A C .. a let with 
volume and I a hounded real-valued function on A that is continuoUi 
except on a 8ubset of volume zero. If 8 C A is the sublet where I is not 
continuou8, then A - 8 haa volume (by part (4) of the propoeition OR aeta 
of volume lero) and 1.1- 0 (by part (5) 01 the same propoeition). II we 

can prove that f._a f exiete, the precediJlI propoeition will imply that 

IA I -'/A-. 1+ /.1- IA-af. We may therefore replace A by A - 8, 
if neceaaary, to obtain the simplilyilll UIUJIlption that lis continUOUl on A. 
Fix a closed intetvail C" IUch that A C 1. Extend the de6nition of I 
to 1, redefining I on 1 - A if necaary, 80 that I{s) - 0 if s E 1 - A. 
We then have to 8how that /, f exiete. Suppoee tha~ I/(s) ISM for all 
s E 1. Letg: I -R be defined byg{z) - 1 if zE A,,{s) - Oils E 1- A. 
Then /, g existe, this being jUit vol (A). Suppoee • > 0 II liven. W. can 
then find a partition of 1 such that any two Riemann 1U1Dl10r, cornepond­
ing to this partition differ by Iell than e. Suppoee that this partition sub­
dividee 1 into the closed subintervale 11, •.. ,1.,80 that I-I, V ••• V I. 
and no two of the subintervale 11 overlap, except pcaibly at. extremities. 
The points of I that are contained in more than one 11 are a let 01 volume 
lero. Let P he the number of lubintervale 11, ... ,1. that are entirely 
contained in A, and let Q be the number 01 these subinterYalI that have 
points in common with A. We may suppoee 11, ... ,1.80 numbered that. 
Ii C A if 1 SiS P, that 11 contaiDl both pointe 01 A and pointe oil - A 
if P <j S Q and that 11 C 1- A if Q <j S N. Then t.wo Rieman08UIDI ,. 
for g correeponding to the given partition 01 1 are I: vol (11) and 

I-l 
CI CI 
E vol (Ii)' Therefore E vol (II) < e. The reetriction of f to each clOlled 
j-t 1-"+1 

subinterval II, ... , I,. il continuoUl, 80 that /,,1 exists lor j - 1, ••• , P. 
Therefore for each i = 1, ... , P there are step functioDl laid': II-R 
Buch that N(z) S fez) S N(z) for all z E 11 and /" (J' -/a') < elN. 
Now define a pair of functions la, f.: 1-R in the foUowilll faahion: 



If sEll for IOIJle unique j - 1, ••. , N we let 

I.(s) - N{s) and I.(s) -/i(s) if j ... 1, ••. , p 
I.(s) - -M and I.(s) - M if j ... p + 1, ••• , Q 
I.(s) -/'(s) - 0 if j - Q + 1, ... , N. 

IfsEI/formoretbanonej -1, ... ,N~aet 

I.(s) - -M and I.(s) - M. 

Then 1.,/. are atep functiOl'l8 on 1 and I.{s) S I(s) S I.(s) for all s E 1. 
Furthermore, making a repeated application of the preceding proposition, 

" J, (f. -/~ - 1: J" (f. -Ii) 
I-l 

~ 0 " 
- I; /" (f. -Ii) + I; /" (f. -Is) + I; J" (f. -/~ 

I-l 1-1'+' 1000+' 

~ 0 " 
- 1: /" (fal-/i) + 1: /,,2M + I; J" 0 

I-l 1-1'+' 1-0+1 

• S J::. + 2M I; vol (11) S • + 2M. - .(1 + 2M). 
l"I /-1'+1 

Since • wu an arbitrary positive number, our criterion for intecrability 
on a cbed interval apin impli. that /, I exiata. The proof is now com­
plete. 

80 far the only eubleta of E- that are known to have volume are closed 
intervale, eete of volume aero, and eete that may be obtained from theae by 
put (4) of the propoeition on leta of volume aero (page 22&). The theorem 
...,.. ua to pve other examples of leta with volume. 

Exuaor.L Let 1 be a closed interval in B-1 and let 'PI, fII be continu­
oua real-valued functioDl on I such that 'PI(s) S fII(S) for all s E I. Then 
the_ 

f (s., "', Sa) E E- : (%., ... , z..-i) E I, 'PI(%., ... , %11-.) < Sa < fII(%., ... , %a-') t 
hu volume. For if MER is such that I fI.(%) I, I fII(%) I :S M for all % E 1 
and J C B" it the clOlled interval 

1<.., ..• , s.) E 11-: (St, ••. , z..-i) E I, s. E [-M, Mlt, 

theD the function /: J - R which hu the value one at each point of the 
.t in qu.tion and value IeJ'O at all other pointe of J is not continuoua 
onl7 at pointa of the form (s., ••• , s_., fI.(S., ••• , z..-1» or (%It ••• , S~l' 

.,.<St, •.. ,z..-i). Since th.-e latter are a set of volume zero, /,,1 exiata. 
Thie Ia Wuetrateci in Figure 36. 
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F'lauu 31. The UDit ball ill JlI .... volume. Except for ..... of volume HrO it II aaad-
wiabed bet.... the ..... of tile ooatiDuou real-ftlued fWUltiou 
:I: ,,: JlI-.. where AA.'" - ", 1 - at' - aIt' if .. ' + .. ' S 1 aDd 
• .., - 0 If at' + .. ' > 1. 

• a. ITERATED INTEGRALS. 

When the integral of a continuous function of one variable actually 
baa to be computed one uaually UIe8 antiderivatives. The main method for 
computiq integrals of functiona of several variables is reduction to the 
one-variable cue by means of iterated integrals. 

In the following, for any sets A C B- and B C Era we identify A X B 
with a .ublet of B-+- in the obvious way: 

A X B - «Zl, ... , Sa, Ill, ... , II.) E B-+- : (Zl, .... z.) E A, (JIl, ... , 1/..) E BJ. 

r ...... ".. 1M A C B-, B C Era tmtl 1M I: A X B -+ R. SvppoBe /AXlJ I 
___ tI&at lor eacI& z E A 1M junction Ie.): B -+ R giwn by le.)(1/) = 
I(z. II) .. ~ ora B. TA4m if 1M jvndion on A whoae IIGlue at eacI& z ia 

/.1"" .. tItmoI«l by /.1- Aaw 

!AXIII-!A(!./). 
(2'A .......... o/IM ..... in 1M ".".", moN ~ Iorm. 

LXII 1- L (/./(s, lI)dy) tlz.) 

If we extend I to a function on g.+- by defining it to be zero outside 
A X B, the theorem becomes equivalent to the analogous statement for 
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the special case A = g.., B = E .... In this special case, the integrability 
of / on B-+- implies that / must be zero outside some bounded subset of 
B-+-, therefore outside some closed interval 1 X J of g..+-, 1 and J being 
closed intervals in E" and E- respectively. It follows that the theorem iB 
equivalent to the analogous statement for the restriction of / to 1 X J. 
ThUi without any lOll of generality we may assume that A, B are closed 
intervala in E", II- respectively. We make this assumption, and first prove 
the theorem when / is a step function on A X B. In this case, for any 

~ E A the function /(.) is a step function 011 B, 80 that 1.1c.) exists without 

any further assumption. If /1, /1, ... , /. are step functions on A X B and 
• 

the theorem holds for each Ii, then the theorem holds for E Ii, for 
1-1 

( t/I- t 1 11- t 1 (r II) -1 (t ( II) -1 (r til)' 
jA)(JI I_I 1-1 A)(JI I_I A J. A I-l 1. A J. 1_' 

But any step funetion on A X B is the Bum of a finite number of step 
functions on A X B each of which is of the following aimple type: there 
are subsets 81, ••• , 8" •• of R, each 8. being either a lingle point or an 
open interval, such that 

f (~I, .•• , :.:,,+_) E 8"+- : :.:. E 81, .•. , ~.+- E 8 ... ) 

is a lubset of AX B and the ltep function baa a constant value c E R on 
thil IUbaet of AX B and the value aero on the complement of this aubaet. 
For a step function on A X B of the above simple type the theorem can 
be verified directly, each aide of the equality in queation reducing immedi­
ately to c times the product of the lengthl of the leta 8 1, ••• , 8 ...... Bence 
the theorem holds whenever / is a ltep function on A X 11. Suppoae, 
finally, that / iI any function aatisfying the hypotheses of the theorem. For 
any I > 0 there are step functions II, lion A X B such that /1(') ~ 1(') ~ 

1.(,) for all , E A X B and lAX. (f. -/~ < e. We then have fAx. II S 
fAXIII S fAx.I •. Furthermore, for each ~ E A we have (f~(8)W) S 

1(.,(11) S (f,)(.,(y) for each 11 E B, so that J. (f~(., S f./(., S f. (f~(8). 
But f. It and f. I. are step functions on A and 

Since such I" I. can be found for any. > 0, it follows that L (/. I) exists. 
We can therefore write 
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or 

Lxa /l S L (1./) S Lxa / .. 

Combining this with Lx./1 S IAxal S Lxa/• we get 

I Lx.l - L (1.1) I S Lx. CI. -111 < .. 
The theorem follows from the faet that the lut inequality holda for aD)' 
.>0. . 

We clearly have the symmetric result that if I is integrable OIl A X B 

then lAx. 1- I. (IA I), provided that. IA "s, ,)cfs exiata for each , e B. 

Corollary I. Let I be an i7&t8grable reaHtaluecl/UfldiM& on 1M ..... A oJ 
E-, let B be a cloatrd interval in B-, cmd let T A: A X B - A "1M ~ 
on. the firMlactor, that ii, 1I'A(S, ,) - s i,f sEA, ,E B. 2"_ 

IAxa/oTA - (IAI) vol (B). 

(In anot1&er notation, IAx./(s) cfsd, - (L I(s)cfs)(f. .).) 

For z E A and ,E B we have CI 0 TA)C-'(') - CI. TA)(S, ,) -/(a) 
BO that I. CI 0 TA)(., - I./(z) -/(z) vol (B). If IOTA is batepable _ 

A X B we get IAxa /o 1I'A - L (jvol (B» - (/..1) vol (B). lienee we 

need only show that Lx./o 1I'A exiata. To do tbiI~ we" nduoe tID the 
cue A - E- by extending I to a fullCtion OIl II- thM ........ ...., M 
eaeh point of E" - A. If we then chooee a cloeed intenall C ..... thM 
Ii. lero at eaeh point of E- -1, we reduce to the cue A - I. ThU", we 
may .. ume that A is a closed interval in P. ThiI -Dl., the ....... of 
IA I implies that, liven any • > 0, we 0Ul Incl atep f\mot.iau 1-./. _ A 

such that II(z) S I(z) S I.(s) lor -.eh a E A .. /A CI. -IS> < .. ".. 
II 0 11' A, I. 0 T A are .tap functions on A X B aucb that ,.. each • E A X B 
we have (f, 0 1I'A)(') S (f 0 TA)C,) S (f, 0 TA)(') and L_C/. 0 TA -I. OTA)-

lAX. (f. -I,) o1l'A - (L (f, -IS» vol (B) < • vol (8). B81U!8 /.. ... !. TA 
exists, as was to be shown. 

If we apply Corollary 1 to the cue 1- 1, we pt the followia& aimpl. 
result: if ACE- hu volume and Be B- is a eIoIecI iD&ervai, &hen 
vol (A X B) ... vol (A) vol (B). In particular, if A hal RIO volume 10 baa 
AXB. 



n .. worth remarki._t this point that the theorem remains true if we 
replace the UIUIIlption that /Ca) is integrable on B for all Z E A by the 
MIUIIlption that/Ca, is integrable on B for all z E 4 - 8, where 8 is a subset 

of A of valume 181'0, if we then underatand 1.1(., to be an arbitrary ela­

IDtIlt of eome bounded eubeet of R whenever s E 8. To see this, note fint 
that B may be IllUmed bounded, 10 that vol (8 X B) - O. Therefore 

I~/- O. If we define,: A X B-R by,(.) -/(.) if, E 8 X B, other-

wile ,(.) - 0, then IAXB' -0. Therefore IAXB (f - g) = !AXB /. But 
(f - ,): A X B - R baa the same restriction as / to (A - 8) X B and is 

181'0 on 8 X B, 10 that .lA-.,XB / exista and equala LXB (f - ,) - LXB /. 
ThUi 

Corollary t. 1M tile .. A C B-1 be ~ and haN POl""" and ,., 
9'1, fPI: A - R be coMnUOU /ad ... IUCI& tAat 9'1(S) S fPI(z) lor all z E A. 2'_ if / ... coMnUOU retIHtaluMI /urtclitIA on 1M .. 

B - ((Sl, ... , z.) E E- : (Sa, ... , z..-a) E A, 
9'I(s.. • •• , s_a) S z. S 9'1(3:1, ••• , s_a) J, 

.. ,... Ii - IA <[.'1), ... r.../ .. 1M fat:timt on, A -- IIfIluc at 

( - -\ . L .. t-a· .. ..a.-a''f( - \.01.. ., S" "',"'-11 U S ..... ,~ 
.. ,PI .......... , 

Let B be a cloeecl interval in R containing 9'I(A) U fPlCA), 10 that 
8 C A X B. Extend / to _ function on A X B by Betti. 1(') - 0 if 
• e A X B - 8. Then / ia bounded and is oontinuoua at any point of 
A X B that is not of the form 

(s ..... , z..-I, 9'I(s., ••• , z..-a» or (ZI, ••• , Sa_I, IPt(ZI, •.• , z..-a». 

'l"I-.later point. form a let of volume 181'0, by part (6) of the proposition 
OR .. of volume 181'0. Since A X B baa volume (by the comment following 

CoraDarr 1), 1.1- IAXBI exiata. AlIo for each (ZI, .•• , Za-a) E A, 

r I ............. ' - t 1( ... ... , z.)'" - /. ... PI .......... , /(SI, ••. , z.) .... 
J. J. . ... (II, ...... -'·'l· 

HeDGe the theorem ia applicable to the present A, B and I. giving 118 the 
..... n.ult. 
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In favorable circumatances Corollary 2 may be applied repeatedly to 
express an integral over a subset of E" &8 an n-fold iterated integral. 

If we apply Corollary 2 to the case where n ... 2, / ... 1 and A ... [a, b) 
(for BOrne a, b E H, a < b) we obtain the well-known fact that the area of 
the plane set bounded by the lines:ll - a and:ll - b and the curves 1/ ... 1P1(:Il) 

and 11 - 1Pt(:Il) is f (",,(:Il) - 1P1(:Il»d:ll. Howev~r we have actually proved 
BOmething nontrivial because this is now a theorem, not a definition. Simi­
larly, if n - 3 and I... 1, for any compact subset A of the plane that has 
area, the volume of the subset of ga lying over A and between z = 1Pl{:Il, y) 

and z .. ",,(:Il, 1/) is fA (1Pt(:Il, 1/) - 1P1{:Il, 1/»d:ll dy. 

••• CHANGE OF VARIABLE. 

Lemma. Let D be II comptICC eubNt oJ the open lUlnet U oJ E". TAm there 
e:z;iat ",buta D', V oJ U, with D' comptICC and V open, auch that 

DCVCD'CU. 

Each point of D is contained in an open ball of Eft Buch that the closed 
ball with the same oenter and radius is entirely contained in U. Since D 
is compact, we may find a finite set of such open balls whose union contains 
D. We may then take V to be the union of this finite set of open balls, D' 
the union of the corresponding closed balls. 

Propoaition. ("Partition. oj URityU). Let D be a compact aubaet 0/ E" 
and l8t (U,I ,EB be a collection oJ open Bubaet.t 0/ E" whoae union contaim D. 
TAm there i8 a finite Nt 0/ continuous Junctiona t/I., ... , t/lN: E" -. [0,1] auch 
that 

"'1(:Il) + ... + "'N(:Il) - 1 

Jor ttu:h :Il E D and eada "', i. uro outBids a comptICC sublet oJ one oJ ~ Bell 
( U,I ,EB• 

Start with any continuous function h: R -. R Buch that h{x) ... 0 if 
:Il S 0, while h{:Il) > 0 if x > OJ for example, we may take h(x) = x for 
:Il > O. Then the function ,: R - R given by ,(:Il) .. 1&(1 - zI) has the 
properties that ,(:Il) - 0 if 1:Ili ~ 1 while ,(x) > 0 if 1:Ili < 1. Hence if 
" > 0, then ,(n) is aero for 1:Ili ~ 1/" and positive for 1:Ili < 1/". For each 
point P E D ohoose fl. > 0 such that the cloaed ball in E" of center P and 
radius 1/". is entirely contained in one of the sets I U,I ,E •• Let Bp be the 
open ball in E" of center P and radius 1/" .. Since D is compact there is 
a finite subset PI, ... , PN of D such that DC U = B.I V ... V BpN • 
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Set 

for,; E U and i-I, ... , N. Then each tp4 ia a continuous lunction on the 
open aet U::> D with values in [0, 1] and 4PI(%) + ... + tpN(Z) - 1 for all 
% E U. In addition, for each i = I, ... , N, the points where tp4 ia not aero 
are contained in a compact subset of one of the sets I U.I.e". Now use the 
lemma to obtain subsets D' and V of E", respectively compact and open, 
such that 

DCVCD'CU. 

Apply what haa been proved above to the compact aet D' and the collection 
of open sets I V, U - DI (whose union contains 0'). We get functions 
analogous to the above tpla and these we group into two batches, according 
to whether or not the set of points at which the function ia not aero is con­
tained in a compact aubset of V, then we add the aeparate batches. We get 
continuous lunctiona 'I, '. on an open set U'::> 0' with values in [0, 1] 
auch that '.(s) + '.(s) - 1 for each z E U' while '. is aero at each point of 
U' outside a compact IUbaet of V and 'I il aero at each point of U' outside 
a compact aublet of U - D. Bince 'I(Z) - 0 for each z E u' - V and 
ainee V C 0', we have '1(';) - 0 if Z E U' - D'. Also '.(z) - 0 if zED, 
so that '1(%) - 1 if zED. For i-I, ... , N . we define "'.: E" - R by 
",.(z) - tp~Z)'I(S) if Z E U ~ U' and "'i(Z) .. 0 if sEE" - U ~ U'. Bince 
"'. ia continuoua on the open seta U ('\ U' and E" - D' (it is aero on the 
latter), it is continuous on their union, which ia E". The other desired prop­
erties of "'I, ... , "'N follow immediately from their construction. 

Corollary. Let D be a compaet aubaet 01 the open aubaet U 01 E". Tlaen 
there is 4 continuoua lunction "': E" - [0,11 8'IA!1& lAst ",(,;) - 1 lor eacA 
zED tmd "'(x) = 0 lor each x 0tAt8itU some compaet aubaet 01 u. 

Thia baa eaaentially appeared in the proof above, but it also follows 
easily from the atatement of the proposition. Let 0' and V be aubaeta of 
E", ,respectively compact and open, luch that 

DCVCD'CU. 

Bince 0' C VV (U - D), we can apply the proposition to the compact 
let 0' and the collection of open seta I V, U - Dt to get continuous func­
tiona "'., ",.: E" - [0, 1] such that "'1(Z) + ",.(x) - 1 for each zED' and 
"'I and "'. are sero outside compact subsets of V and U - D respectively. 
Since "'I is 1 on D and aero outBide 0', we may take '" - ~. 



,4. CHANG. 01' VAIIUJILII = 
We remark that the functions "'I, ... , "'N of the propoeition and &Iso 

the function '" of the corollary may be chosen 10 .. to palla all partial 
derivatives of order m, for any given poeitive integer m, by ltanin, with 
h(z) - Z·+I for z > O. In fact it can be .hown that "'I •••• , "'N. '" poIIeII 
all partial derivativel of all orden if we take "(:c) - roll" lor 1/1 > 0 (cf. 
Problem 26, Chapter VI). 

Lemma. The real-valued lunction I on the cloaed inlmlall 01 E- ia ~ 
on 1 il and only iI, lOT each f > 0, there eziat continuOUI ~ fundioM 
II, J. on 1 BUCk that 

II(z) S I(z) S I.(z) lor tach z E 1 

and 

J, (JI - It> < •. 

The proof makes repeated Ule of the tint propoeition of 12. Firat 
suppose that I aati8fies the given condition. Then given • > 0 there are 
continuous functions Ih I,: 1-R 8uch that II(z) S fez) S /.(z) for each 
z Eland J, (JI -/1) < ./3. Since /1 and /. _ are intepable on 1 there are 
ltep functions N, N', N, /t" on 1 such that N(z) S/I(:C) SN'(z) and 
/t'(z) S /.(z) S /t"(z) are true for each z E I and J,(N' -/1') < _/3, 

J, (/t" - N) < f/3. The step functions N, /t" are luch that N(z) S 
I(z) S /t"(z) for each z E I and 

J,(N' - N) = J, (N' - It) + J, (J. - II) + J, (JI - N) 

S J, (N' - N) + J, (JI -/1) + J, VI" - N) < ; + ; + ; - .. 
Thus/ is integrable on 1. To prove the converse, IUPpoee first that any 
step fun('tion on laatisfies the given condition. We reuon in the laDle way 
&8 above. If I i8 integrable on I then for any • > 0 there are step functicma 

110 lion 1 8uch that /t(z) S /(z) S II(z) for each z Eland J, (fl - It> < 
./3. Since step functions are I88Umed to aatisfy the given condition. there 
are continuous functions It', /t", It'd": 1 - R lOch that we wUl have 
N(z) S /I(Z) S N'(z) and /I'(Z) S I.(z) S 1t"(III) for all III E 1 -and 
J, (N' - N) < f/3, J, (It" -It') < e/3. Thus the continuoua functiona 
N,It" are 8u('h that N(z) S fez) S N'(z) for all z Eland 

J, (It" - N) = J, (It" - It) + J, V. -/1) + J, UI - N) 

S J, (J," - N) + J, (JI - II) + J, (JI" - N) < -j. + ; + ; --t 



10 \hat l-tisfieI the given condition. Therefore it remains only to show 
that for any step function I on 1 and any e > 0 there exist continuous 
functiona 1.,/. on 1 such that /a(S) S /(s) S I,(s) for all s Eland 
J, C/e -/a) < eo But any step function on 1 is the sum of a finite number of 

Rep lunctlo .. on 1 each of which is of the following simple type: there are 
IUbIetI 8., ... , 8. C R, each B. being either a single point or an open 
in ..... , IUch that the set (Sa, ••• , z.) E E" : Sa E Ba, ••• , s .. E B" I is a 
IUbeet of 1 and the step function baa a constant value c E R on this subset 
and the value 0 on the complement of this subset. Therefore we need only 
prove tbat a step function on I of the above simple type satisfies the indi­
cated condition. 'nlat is, if for i ... I, ... , n the subset B, C R is a single 
poiot or an open interval such that I (Zl, ••• , z..) E E" : s. E BI, ••• , 

s.. E B.t is a subset of 1 and if I: 1 - R has the constant value c E R on 
this subset and the value zero on its complement, we must show that for 
any • > 0 there are continuous functions / .. /.: 1-R such that /I(s) S 
I(s) S I.(s) lor aU % Eland J, (J. - /I) < e. It clearly IUfficea to prove 

this lor c - 1. Allume that 1 happens to be the closed interval in E" deter­
mined by aa, .•. , a., b., •.. , b.. First suppose that some B. is a single 
poiot, say B. - CI. E (a., btJ. For any a > 0 choose a continuous function 
.,: R - (0, 1) such that ';(CI.) - 1 and .,,(%.) - 0 if I Sa - CI.I > a. Define 
41: E" - (0, 1) by ~(s ..... , z..) - ,,(SI). Then ° S /(s) S ~(z) for all 
sEland 

J, (41 - 0) S 2a(b, - a,) ..• (b. - a.) , 

which can be made 1_ than e by taking a small enough. It remains to con­
sider the ease where each B, = (cri, fJi), where Oi S cr, < fJ, S bi • Yor any 
a > 0 such tbat 2a < fJ. - cra, ••• , fJ. - cr", choose a continuous function 
la: E" - (0, 1) such that /a is 1 on the closed interval determined by 
era + a, •.• , CI" + a, fJ. - a, ••. , fJ" - a and 0 outside the open interval 
determined by era, ... , CIro, fJ.. • .. ,fJ", and choose a continuous function 
I.: E" - (0, 1] that is 1 on the closed interval determined by cra, ••• , cr", 
/l., .•• , fJ. and 0 outside the open interval determined by CIa - a, ... , 
CIro - I, fJ. + I, "', fJ" + I. Then /a(S) S /(s) S /.(s) for all s Eland 

J, (J. -/a) S f ... (J. -/1) 

S (fJa - CIa + 24) ••. (iJ" - cr" + 2a) - (fJl - cr. - 28) ... (fJ .. - cr" - 2a). 

Since polynomial functions are continuous, this latter expression can be 
made less than. by taking 8 sufficiently near zero, and this completes the 
proof. 
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Theorem. Let A be 41& open aub,et oj E·, I(J: A -+ /:I.'" 4 one-one continu­
owly differentiable m4p whOle ja.cobi4n J., i, nowhere zero on A. Suppoae 
tIuJt the Junction J: I(J(A) -+ R i, zero outaide 4 co,np4Ct aubaet oj I(J(A) 4nd 

tIuJt h'A) J exiata. Then 

Since the proof is quite complicated it will be given in a number of 
steps. We first make a few preliminary remarks to be borne in mind below. 
The inverse function theorem implies that I(J(A) is an open subset of Era and 
that the map I(J-I: I(J(A) -+ A is also continuously differentiable. Any com­
pact subset of A (or I(J(A» is mappe4 by I(J (or I(J-I) onto a compact subset 
of I(J(A) (or A), since the image of a ~mpact set under a continuous map 
is compact. Similarly, lince the inverse image of an open set under a con­
tinuous map is open (by the fi1'8t proposition of Chapter IV), I(J induces a 
one-one corresPondence betw~n the open lIubsets of A and thOle of I(J(A). 

If I is continuous the &ll8umption that f."Al exists is superfluous, for this 

fact follows automatically from the &ll8umption that 1 is zero outside a 
compact subset of the open set I(J(A). The reason 1 is &ll8umed to be zero 
outside a compact subset of I(J(A) ill that one must allow for the eventuality 
of A,I(J(A) or J., being unbounded. As usual, the component function. of 
I(J will be denoted by 1fJl, ••• , I(J", 80 that l(J(x) = (lfJl(x), ••• , 1(J.(x» for all 

x E A and J., - det( := ). 
(1) The theorem is true if I(Js(xs, ••• , x,,), ••• , IfJ,.(Xl, ••• ,z,.) are a 

permutation of Xs, ••• ,x". I<'or if lfJl(x), ..• , I(JII(X) are just Xl, ••• ,x., but 
poaaibly in a different order, then J., is the determinant of an n X n square 
array that baa precisely one 1 in each row and each column, with all the 
other elements zero, 80 that J., = :1. Thus the statement is a direct conse­
quence of the definition of the integral, which does not depend on the order 
in which the coordinates are taken. 

(2) We may &ll8ume that the theorem is true for n - 1 in place of n, 
if n > 1. For suppoae we prove the theorem under this &88umption. Then 
if we prove the theorem for n - 1 it will be true for n - 2, lince true for 
n - 2 it will be true for n - 3, since true for n - 3 it will be true for n - 4, 
etc., 80 the theorem will hold for all n. 

(3) It is sufficient to prove the theorem when 1 is continuous. For 
suppoae it is known in this special case. Then given an arbitrary I: I(J(A) -+ R 
which is zero outside a compact subset of I(J(A) and integrable on I(J(A) we 

must show that fA UOI(J) IJ.,I exists and is equal to J.,IA)/. Let DC I(J(A) 
be a compact set such that I is zero outside D. Apply the previous corollary 
to D and I(J(A) to get a continuous function l/!: E" -+ (0,1) that is 1 on D 
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_d 0 outside a compact mbeet D' of cp(A). Let 1 he a closed interval in E" 
tliat contains the compact set D'V cp-I(D'). For convenience, if F is any 
function on a suheet of H" we Rhan denote by F the function on g.. which 
apeea with F where the latter is defined and is sero elsewhere. Thua 
}.CA) 1- /, 1. Now suppose we are Kiven BOrne • > O. Since /, 1 ate, 
the lemma enables ua to find continuous functions (II, (I.: 1-R such that 
(l1(:r;) ~1(:r;) ~ (l1(:r;) for each x Eland J, {(I. - (II) < t. Then t/t(X)(lI(:r;) ~ 
l(x) St/t(X)(lI(Z) for each Z Eland J, (I/IU' - "I) ... J, t/t<us - (It} ~ 
J, <us - (It} < t. U we let II, II be the restrictions to cp(A) of iii, ~ respec­

tively, then 11,1. are continuous real-valued functions on cp(A) which are 

I8l'O outside D',il(:r;) ~ I(x) ~ 11(:r;) for each :r; E cp(A), and f~A)(J1 - It} 
< •. Now consider the real-valued functions on A given by (flo,,)IJ.I, 
(f. ° .,) I J.I and (f 0 cp) I J.I ; the tint two are continuoua, they are all sero 
outside cp-l(D'), and they satisfy 

«(flocp)IJ.I)(x) S «(focp)IJ.I)(x) S «(f.ocp)IJ.I)(:r;) 

for aU xE A. Thus U;;;-cp)IJ.1 and (f.ocp)IJ.1 are continuous on E- and 

(110 ,,) IJ .. I<x) S (fo cp) IJ.I (x) S (flO cp) IJ.I (:r;) 

for all x E 1. By asaumption our theorem holds for II and II, BO that 

/'«(I,ocp)IJ.I- (flo cp) IJ.I> - fA «(f,o,,)IJ.I- (flO cp) IJ.I) 

- LCA) (fl - il) < •. 
Since. was an arbitrary positive number, the lemma implies that (10 cp) IJ.I 
is integrable on 1. Thus (focp)IJ.1 is integrable on A. Furthermore, from 
the inequalities 

LCA)/,,"" L (flocp)IJ .. 1 S fA (focp)lJ .. 1 S fA (flocp)IJ.I- LeA)/a 
and 

we deduce that 

I L (focp)IJ.I- LA,!I S LCA) (fl-/l) < t. 
This being true for all f > 0, we have 

fA (focp)IJ.I- f~A'!' 
proving the contention of this section of the proof. Therefore from now 
on we may 8118Ume I to be continuous. 



(4) If (A.I.e. is a collection of open subsets of ... euch u.t A -
V A. and for each It E 8 the theorem is true for A. aod the l'eItricUon 
eE' 

of " to A .. then the theorem is true for A and ". For let /: ,,(A) - R be 
a continuoue function that is aero outaide the compact sublet D of ,,(A). 
(,,(A.)}.e. ie a collection 01 open eubeets of ,,(A) whoee union is .,(A). 
By the proposition continuoue functioDl "'h ... , '/I,,: ... - (0, 1) may be 
found euch that '/Il(Z) + ... + ",,,(Z) - 1 lor each zED aod each '/I, ie 
zero outside a compact subset of ,,(A'h,», for lOme .(t) E 8. For each 
i ... 1, ... , N we have 

f"(A) '/1;/-. £(A,(I) '/1;/- £0(11 «'/I;/)o,,)lJ.,I- L. «",;/)o,,)IJ.,I. 

" Since 1 == E '/Id, we deduce 
1_1 

"" " f. 1 - f. E "';/ - E 1 "';/ - E 1 «"'4) 0 ,,) IJ.,I 
.,(A) ~A) _1 _I .,(A) _I A 

it ... L E «'/I4)o")IJ,,I- L (fo,,)IJ.,I, 

which was to be shown. 
(5) The theorem ie true for n - 1. To prove true we may suppoee A 

to be an open interval, by (4). Let 1 be a continuoue real-valued function 
on ,,(A) that is zero outside lOme compact subset of .,(A). The function 
10" is zero outside lOme compact subset of A, 10 we can find 0, b E A, 
o < b, luch that J 0" is zero on A - (a, b). Then / ie aero on .,(A) -
,,«(a, b». In the present case J" - ,,', and einee this is nowhere aero " muet 
be either an increasing function on A or a decreasing funcUon. In either 
case we go back to the change of variable theorem for One variable (C0rol­
lary 3 of the fundamental theorem of ca1culue). If" is increuina, then 

(1-1 1- f.tJ(t)/- {(fo,,),,'-l (fo")lJ,,I. 
h(A)' "aN)) ~.). A 

If " is decreasing the computation il 

f. / .. f. / - r<-) / - r. (f 0 ,,).,' - {CJ 0 ,,)( -",) 
,(A) ,,« • .tI) ltJ(t). • 

- L (fo,,)IJ,,(· 

TbiI provee the theorem lor n - 1. Therefore lrom now on we may ...ume 
that n > 1. 

(6) The theormo is true if lor certain i, j - I, ••• , a we bave 
".(ZI, .•• , %,0) - ZJ. By virtue of (1), it eufBceI to prove this in the epeciaI 
case where i - j - 1, that is 

,,(ZI, ••• , z.) - (ZI, .,.(zs, .•• , %,0), ••• , .,. (Zl. • •• , :r..». 
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A is a UDion of open interva.1a of E-, for any point 01 A ia the center of an 
open ball that is _tirely contained in A, and an open ball of radius r con­
tUna the open interval haviOl the lIIlme center and aides 2r/ yn. Thus 
by (.) we may UIUJIle that A ia itAlelf an open interval. Identifyinl E­
with. X B-1, we have A - B X C, where B and C are open intervalt in 
• and B-1 respectively. Let J: .,(A) - B be.a continuous funotion that 
is ..., outaide a compact aubeet of cp(A) C B X B-1. The funotion 
I: B X B-l-+ B which .... with J on .,(A) and othenriae II HI'O II 
oootioUOUl. For each s E B, the function/ca): B-l-+R liven by Ic-)VI) -
I(s, ,) is continuoua and ia IeI'O outlide a compact aubeet of B-1, hence 
lntecrable on B-1, 10 we have 

I.tA)J - I.xr-d - I. (/ ..... ·1), 
where /.-.1 denote. the function on B whoeevalue at s is / ..... 1(.). 
For any s E B CODIider the function CPc-l: C - B-1 which is defined by 

CPc.)(.zs, ... , z.) - (",(s, St, ... , z.), ... , ",,(s, St, ... , s.» 

for all (St, ••. , s.) E C. CPC-) is a one-one continuously differentiable map 
whoee jacobian 1 'Ic-' ia (I.) '-" that is for each (St, ••• , s.) E C we have 
1 'Ic-'(St, ••• , s.) - I.(s, St, ••• , z.). Since our theorem holds for ,,- 1 
(by (2», we can compute 

I ..... lc-) - /'Ic-)cC)JC-) - /Q (/c-)oCP(a)IJ'Ic-,I- IQ (Uocp)IJ.l)ca), 

10 that 

Therefore 

I.cA)J- /. (lc(Jocp)II.I). 
Now (/ocp) 11.1 is a continuous real-valued function on B X C that. is 
IeI'O outBide a compact sublet of B X C, hence integrable on B X Cj alto, 
for each sEB the function «Jocp)IJ:.I)C-) is a continuous real-valued 
function on C that is IeI'O outside a coinpact.aubeet of C, hence int.ear&ble 

on C. Therefore the laat iterated intearal equals I.xc (J 0 cp) 1 J" I. Thus we 
indeed have 

in our epecial cue. 
(7) We now prove the theorem. For any point 0 E A we hava' 

1.(0) ... 0,10 that. ::: (0) ... 0 for at. leut one i-I, ... , n. For given i, 



the 8Ubeet of A where atpal aSj iB not zero iB open and the union of these ft 

subsets iB A, 80 by (4) it 8uffices to prove the theorem for each one of these 
subeets. Therefore lYe may 88IIWlle that atpalas, is never zero on A. By (1), 
we mayauume that i ... R, that iB afP.las. is never zero on A. Now con­
Bider the map 17: A - E- defined by 

The jacobian 01 17 iB IJfP.IIJs., which it never aero, 10 by the invel'lle function 
theorem each point G E A iB contained in an open lubeet A. of A 8uch that 
the reamction of 17 to A. iB a one-one map from A. onto an open subset 
17(A.) of E- and such that the map rl: 17(A.) - A. iB also continuouely 
differentiable. Again by (4), it suffices to prove the theorem for each A •. 
Thus we may 888ume that the map 17: A - E- is a one-one map frorp A 
onto the open subset 17(A) of E- and that rl: 17(A) _ A is also continu­
ously differentiable. The map T" fP 0 rl is therefore a one-one con­
tinuously differentiable map from 17(A) onto fP(A), and fP - TO 17. The 
maps 17 and T are such that if S = (Sl, •.. , s.) E A, then 17(S) = (Sl, "', 
Sa-l, tpa(s» and T(Sl, ... , Sa-I, tpa(s» -= (fPl(s), •.. , tpa(s». By (6), the 
theorem holds for the map 17 of A, provided J. iB nowhere zero on A, and 
also for the map T of 17(A), providedJ~ is nowhere zero on 17(A). Therefore 
for any continuous func~on I: fP(A) - E- that is zero outside a compact 
subset of fP(A) we have, provided J. and J~ are nowhere zero, 

l.tA)l- /'c.(A))/- /.(A) (JOT) IJ,I- IA «UOT)lJ.1) 0 17)IJ.1 

.. IA (JofP)I(J~o17)J.I· 
The theorem will therefore be proved if we can show that 

J. - (J. ° 17)J. 

at each point of A. Por those who know linear algebra thiB equality iB an 
immediate consequence of the last paragraph of the first section of Chapter 
IX (Bince the determinant of the product of two linear transformations is 
the product of the determinants), but it is possible to give a more "ele­
mentary" proof, as followa. Since fP = T 0 17, for auy i, j == 1, ... ,ft the 
chain rule giVeB . 

. .. 
(~); ... «T017Mi - (T,017), -= E «T')~017)(17,,)i .-1 

_ { (T,); ° 17 + «TJ~ ° 17)(fP.); if j < ft 

«TI): 017)(tpa)~ if j - ft. 
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Thus the " X " square array «/Pi);) is obtained from the" X " square 
array «or,); ocr) &8 follows: if j < " then each element of the j" column of 
the former equals the corresponding element of the j" column of the latter 
plus (tp,,), times the corresponding element of the "" column of the latter, 
while each element of the ,," column of the former equals (tp,,)! times the 
corresponding element of the ,," column of the latter. By the elementary 
properties of determinants we have 

det «/Pi)j) = det «Ti)/ocr). (tp,,)!, 

that is, 

J" = (J.ocr)J., 

which is precisely what remained to be shown. 

PROBLEMS 

1. Let II, ... , IN be disjoint open intervals in E". Show that If J., .. . ,J" are 
open intervals in E" BUch that 

I.V ... VINCJIV .. • VJ" 

then 

vol(Ia) + ... + vol (1.) S vol (J.) + ... + vol (J II). 

2. Can you give a I .. computational &J'IUIDeJ)t for Example 3 of • 1 T 

3. Prove that a continuous real-valued function on a closed interval in B- is 
intep'able, using only Lemma 1 of • 2 and uniform continuity. 

4. Do the n-dimensional generalisation of Problem 6, Chapter VI, with [0, b) 

replaced by a c1011ed interval 1 of E- and L· J(z)dz by /,J. 

5. Write down in all detail the proof of the fint proposition of • 2. 

6. Let I be a real-valued function on a BUbeet A of E". Show that if fAI exiate, 

then 10 doee fA III, and I L II < L III· (Him: FInt U8UIIle that A is a c10aed 
interval.) 

7. (a> Let I be a real-valued function on a cloeed interval 1 of B-. Bhow that If 
I is integrable on 1 then 80 ia/'. 

(b) Let I. , be real-valued functions on a closed interval! of B-. Bhow that if 
I and , are integrable on 1 then 10 ia/,. 

(e) Let I., be real-valued functiona on a BUbeet A of E". Show that if fAI 
and L, exist. then fA I, exists. 

Cd) Let I be a real-valued function on a BUbaet A of B- and let B C A. Show 

that If fAI exists and B has volume, then f.1 exiate. 
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(e) Show that if the subsets A and B of E" have volume, then 80 do the sets 
A flB, A VB and A-B. 

8. Show that if a subset ACE" baa volume, then the interior of A (of. Prob. 16, 
Chap. III) baa the same volume. 

9. Show that a bounded 8ubset A of E" has volume if and only if the boundary 
of A (d. Pl'oh. 17, Chap. III) haR volume sero. 

10. Let f be a bounded real-valued function on a closed interval 1 of E". Prove 
that f is integrable on 1 if and only if, for any e, 6 > 0, 1 is the union of a 
finite set of closed ~ubintervals such that the sum of the volumes of those 
subintervals on which f varies by at least e is less than B. 

11. Let. f be a bounded r('.al-valued funcUon on a cloAed interval 1 of E". Prove 
that. fiR integrahle on 1 if and only if, for each e > 0, the Bet of points of 1 at 
which the osdllation of f (cf. Prob. 5, Chap. IV) is at least • baa volume sero. 

12. US!' the preceding problem to show that a bounded real-valued function I on 
a c1oSl'd interval I of Eft is integrable on 1 if and only if the Bet of points of 1 
at which f i~ not continuoufl is the union of a sequence of subeets of 1 of volume 
zero. 

13. Show that the nonempty subset of (0,1\ consisting of thOle numbel'll which 
have derimall'xpanflionR none of whose dilits is 6 i8 the let of ita on clueter 
pointPI. Show that thill set is of volume lero. . 

14. For each intl'ger n> 1 let 8" be the union of the OllCll ball, in R of C8ntel'll 
l/n,2/n, ... , (n - 1 )/71 and radii l/n2-+I• Prove that V 8. I, an open .-1,1 ...... 
subRet of [0, II without volum('. (Hint: If this set had volume, the volume 
would be I. But th(' union of any finite number of 8,,'s baa volume less 
than 1/2.) 

15. Let A c Eft and let f: A --0 E"'. Consider the condition that there exist some 
MER such that d{j(x), f(y» ~ Afd(x,,,) for all x,,, E A. 
(II.) Show that the ('ondition ill flBtisfied if I is the restriction to A of some 

differentiable map into E'" of some open subset of E" containing A, if the 
partial derivatives of the component functions of I are bounded on A and 
A ('ontainR the entire line S!'gment between any two of its pointe. 

(b) Show that if the condition is satisfied, if m - ft, and vol (A) - 0, then 
vol (f(A» >= O. (Hint: A is contained in the union of a finita Dumber of 
cubes of total volume less than any prescribed positive number.) 

(c) Show that if the condition is satisfied, if m > n, and A is bounded then 
vol (f(A» - O. (Contrast with Prob. 31, Chap. IV.) 

16. Prove that if ACE" has positive volume and I is a positive-valued functioD 

on A such that fA f exists, then fA f > O. (Hint: Reduce to the caae where A is 
a cloRed interval and for any positive e we have vol (Ix E A : lex) ~ .1) - 0, 
then try to use compactness.) 

17. Let AcE" be a set with volume and f: A --0 R a continuous function. Show 
that. if the S!'t Ix E A : f(x) = 01 has volume zero, then the Bet Ix E A : 
f(z) > 01 has volume. 
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18. Let A be a bolUlded aublet of B" aDd II, I., I., . .. a eequence of real-valued 
funetions on A that converges uniformly to the limit function I. Show that if 

[ I. exists for all tn, then 11 exists, and ( I - lim ( I •. Is this true if A 
.t .t J. • .... J .. 
not bounded? . 

II. 1M A C B- be compact aDd have 'VOlume, let U C B be open, and let I be a 
ClODUnUOUS real-vaIued functioD OIl the eet 

f(SI, ... ,s.,,) eB-+l: (Sa, ... ,s.) eA"e UI. 
Prove that if '1/'" uiate and ill ClObtinuoua OIl the latter eet, then 

! il(S, ,) a - i ~ (s, ,) a. 
m. Let. v C B- be 00IIlpaCt aDd have volume and let A aDd K be continuoua naI­

valued fUDCtio_ OIl V and V X V reapectively. Show that if 

!vol (V) K(s, r) I < 1 

lor all s, , e V then there ill a unique continuoul real-valued lunction " OIl V 
IUCh that 

rp(s) - A(s) + Iv K(z, ,) rp(r) tlfI 

forallse V. 

21. Let F: (0, 1) X (0, 1) - B be defined by I(s, ,) - 0 if :r aDd fI are not. both 
rational, while 1(S, ,) - 1/, if s aad , are rational and 9 is the amaIlest p0si­
tive intepr BUcb that fZ ill an intepr. Show that 

1 ... 1Ix ... /(S,,) t&tlr - 0 but 1 .... (f"'II /(S,') tlr) a 

ill not de&oed. What about I .... (/"'11 I (:r, ,) a) tlfl? 

2t. Compute 

1 / ~ .... _a+w+~. s". .. a tlr .. 
23. Cbanp the order of intepatiOD in 

r. (J.~.I'"(J.'lI-......... I'J4 /(z, fI, ,) tlz) dr) a 
(five aoawera). 

II. 8bcnr that if (a, 6J ill a cloaed interval In It and I: (a, 61 X (G, 61- B .. contln­
uoua, tlaeD r. (t I(:r, fI) d,) a - r. (L'/(Z, II) dJ:) dll . 

.. Compute 

vol «((:r" ••• , s.) e" : 0 < :r" ••• ,:r .. and :r, + ... +:r" S 11). 
t8. Let V. be the volume of the clot!ed unit. ball in B-, that is, the set 

H:r., ... ,~) eB-: :r,I+ ... +~I S 11. 

Show that if ,. > 1 then V. - 2 V ....... /.' (1 - tI)I"-'I/' dt, and bence (applying 

Prob. 39, Chap. VII) that V .. - (211'/ft) V ...... if ft > 2. 



PBOBLB118 ~7 

'D. Let A c E-, BeE", let J and fI be integrable real-valued functions on A aDd 
B respectively, and let 1r .. and 1r. be the projections of AX B onto its factors, 
that is 1r .. (z,1I) ,. z and "'.(Z,II) ... 11 if Z E A and 11 E B. Show that 

Lx. (J 0 1r..}{fJ 0 .... ) - (£/)(/. (I). 
(Hint: Problem 7 can simplify the proof.) 

28. Let ACE- and B C 8-. Show that 
(a) if A and B have volume, then (by Problem 27) 

vol (A X B) - vol (A) vol (B) 

(b) if vol (A X B) exists and is nonaero, then A and B have volume 
(c) if vol (A X B) - 0 then A or B baa volume lero. 

29. Prove thlt under the conditions of the change of variable theorem, ip maps 
any aubaet of A that is t.'Ontained in a compact liUbret of A and has volume 
onto a subset of ,,(A) that has volume. 

30. Prove that if J it a real-valued function on E' such that. Irl exists, then 

Ir/(z,1I) dz d1l - 1~.t9S .. /(r COl 6, r sin 6) r dr dB. 

(Hint: First prove thil if I is zero on lOme open subset of E' containing the 
positive z-axis. Problem 7(d) can help in l)assin~ to the general case.) 

31. (a) Ulle Problem 30 to show that for any Ie > 0 we have 

l ,-rI r dr dB ... 1 r.a-". dz dll < L ,-all-Wi dz d/l 
~II ~-'~ ··wElO.tl 

< ( ,-ao-w- dJ: dy - ( _ ,-rI , dr dB. 
}o<... }D<r<.J.VI 

.T+Wll94" oS,S·1I 
(b) Deduce that 

1(1- rtl) < (Ie'rd th}1 < i( 1 - rW). 
(+- v'r 

(c) Prove that}. e-·· dz - 2 (cf. Prob. 28, Chap. VI). 

32. Let A be an open subset of E- and 1 a real-valued fuuction on A. Let :D be the 
llet 01 compact lIubaebs of A th&t have volume. Cadi J abaolutel/l integrable on 

A if ID 1 exiatl for each D E :D and there is a number L E R such that for any 

• > 0 there exilts lOme D E :D web that if D' E :D and D' ::::> D then 

I ID,f - L I < 4!. 

(a) Show that if L exists, it is unique. (Hence we may write 

L ... 1;""1.) 
(b) Show that if IA 1 exists, then I: 1= 1 .. /. (IIi,,,: Problem 7(d) impliCij 

that ID I exists for all D E :D.) 
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(0) Show that if /DI exists for all DEI), then I HI ablolutel)' intepoable on 
A if and only if for any • > 0 there exiate IOII1fI DEI) IIleh tIW if D' E I) 

and D' C A - D then I /D,J I < e, which is true if and only if the lit 

I 1.1 : DEI) 1 HI bounded, and this in tum II true if aDd onl7 if the lit 

f /. III : Del)I is bounded. (Note that I. III .... '01' all Del), bJ 
Problem 8.> 

(d) Show that if f HI continUOUl and I and A are bounded then I; I am.. 
<e> Let (a,6) be an open interval in R and let I be a continuoue rea1-valued 

function on I z E R : a < z S 6J. Show that if l: f alate then 

(Yo 1_ J.' fez) dz (01. Prob. 71, Chap. VI), and that iff takes on only }e_ e+ 

nonneptive values and /; f(z) dz uiIta then J: f.u.iIta. 
(I) Leta E R, A - Iz E R: z > aJ, and let f be a contiDuoua real-valued 

runction on I z E R : z ~ al. Show that if /;1 exists then /; f­
/. .... /(Z) dz (01. Prob. 28, Chap. VI), and that ill takes on only __ . 

nepUve values and /. .... fez) dz exiate then /;1 exiate. 

~) Show that J.+- -: z dz exiata, but /: iii: z cis does not. 
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Lucid examination of the Rayleigh· Benard problem; clear coverage of the theory of 
instabilities causing convection. 704pp. 5" )( 814. 64071-X Pa. S14.95 

CALCULUS OF VARIATIONS. Robert Weinstock. Basic introduction covering 
isoperimetric problems. theory of elasticity, quantum mechanics, elec:troltatia. etc. 
Exercises throughout. 526pp. 5" )( 81i. 65069-2 Pa. $8.9S 

DYNAMICS OF FLUIDS IN POROUS MEDIA. Jacob Bear. For advanced 
students of ground water hydrology. soil mechanics and phyaia. drainage and 
irrigation engineering and more. 555 illustrations. Exercises. with answers. 7&tpp. 
~ )( 9\4. 65675-6 Pa. SI9.95 
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NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS. Richard 
Hamming. Classic text strelKl frequency approach in coverage of algorithms. 
polynomial approximation. Fourier approximation. exponential approxima­
tion. other topia. Revised and enlarged 2nd edition. 721pp. 5J6 x 8lt 

65241-6 Pa. $14.95 

THEORETICAL SOUD STATE PHYSICS. Vol. I: Perfect Lattices in Equilib­
rium; Vol. II: Non-Equilibrium and D~. William Jones and Norman H. 
March. Monumental reference work covers fundamental theory of equilibrium 
properties of perfect crystalline solids, non-equilibrium properties. defects and 
disordered .ystelDL Appendices. Problems. Preface. Diagrams. Index. Bibliog­
raphy. Total oll.Hlpp. 5J6 x 8"- Two volumes. Vol. I 650IS-4 Pa.II4.95 

Vol. 1165016-2 Pa. $14.95 

OPTIMIZATION THEORY WITH APPUCATIONS, Donald A. Pierre. Broad­
spectrum approach to important topic. Classit-al theory of minima and maxima. 
calculus of variations. simplex technique and linear programming, more. Many 
problems. examples. 6tOpp. 5" x 8Ii. 652O!i-X Pa. 114.9S 

THE CONTINUUM: A Critical Examination of the Foundation of Analysis. 
Hermann Weyl. Classic ol 2Oth-century foundational fese-.rch deals with the 
conceptual problem posed by the continuum. 156pp. 5" x lli. 67982-9 Pa. 15.95 

ESSAYS ON THE THEORY OF NUMBEllS. Richard Dedekind. Two classic 
nsay. by pat German mathematician: on the theory of irrational numbers; and on 
tnnsfUtite numben and properties of natural numbers. IISpp. 5J6 x 8lt 

21010-5 Pa. $4.95 

THE FUNCTIONS OF MATHEMATICAL PHYSICS. Harry Hochstadt. Com· 
prehenaiw treaUllelltol orthopmal polynomials. hYpelFOlDetric functions, Hill'. 
equation. much more. Bibliopaphy. Index. 522pp. 5!6 Ie 8"- 65214-9 Pa. $9.95 

NUMBER THEORY AND ITS HISTORY, Oystein Ore. Unusually clear. 
aa:esaible inttoduction coven counting. properties of numbers. prime numbers. 
much 1IIOJ'f:. Bibliopaphy. 580pp. 5" x 8"- 65620-9 Pa. $9.95 

THE VARIATIONAL PR.lNClPLES OF MECHANICS, Cornelius Lanczos. 
Graduate !nel rowrage ol calculus of variations. equationa of motiun. reialivistit­
mechania. 1IIOJ'f:. Fint inexpensive paperbound Nilioll o( dasaic lrealise. Index. 
Bibliopaphy. 418pp. 5J6 Ie IlL 65067-7 Pa. $11.9S 

MATHEMATICAL TABLES AND FORMULAS, Robert D. Carmichael and 
Edwin R. Smith. Logarithm., .ines, tangent., trig functions. powers, rooll. 
reciprocals. exponential and hyperbolic functions. formulas and theorem •. 269pp. 
5J6 Ie a 60111-0 Pa. $6.95 

THEORETICAL PHYSICS. Georg JOOI. with Ira M. Freeman. Classic overview 
cowen nsential math, mcchania, electl'OlDllgl1et theory. thermodynamia. quan· 
tUID mechanics. nuclear physics, other topica. Fint paperback edition. xxiii + 
885pp. 5!6 Ie IlL 65227-0 Pa. $19.95 
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HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS, 
GRAPHS, AND MATHEMATICAL TABLES, edited by MillOn Abramowiu and 
Irene A. Stqun. Vast compendium: 29 leU of tables. some to as high as 20 places. 
1.CH6pp. 8 x lOlL 61272-4 Pa. $24.95 

MATHEMATICAL METHODS IN PHYSICS AND ENGINEERING, John W. 
Deuman. Algebraically based approach to vectors. mapping, diffraction, other 
topica in applied math. Also generalized functions. analytic function theory, more. 
Exercises. 448pp. 5")( 81'- 65649-7 Pa. 19.95 

A SURVEY OF NUMERICAL MATHEMATICS. David M. Young and Roben 
Todd Gregory. Broad self-contained coverage of computer-oriented numerical 
algorithms f9l' solving variOUI type. of mathematical problems in linear algebra, 
prdinary and partial, differential equations, much more. Exercises. TOtal of 
1.248pp. 5")( 8li. Two volumes. Vol. 165691-8 p..a. 114.95 

Vol. II 65692·6 p. ... 114.95 

TENSOR ANALYSIS FOR PHYSICISTS, J.A. Schouten. Concise exposition of 
the mathematical buia of tensor analysis. integrated with well-chosen physical 
examples of the theory. Exercises. Index. Bibliography. 289pp. 516)( 8lL 

65582-2 Pa. $8.95 

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F.B. Hilde· 
brand. Claasic. fundamental treatment covers computation. approximation. inter· 
polation. numerical differentiation and integration. other topics. 150 new prob­
lems. 669pp. 5f6 x &i. 65!16S-5 Pa. $15.95 

INVESTIGATIONS ON THE THEORY OF THE BR.OWNIAN MOVEMENT, 
Albert Einatein. Five papers (1905-8) investipting dynamics of Brownian motion 
and evolving elementary theory. Notes by R. Fiinh. 122pp. 5")( &i. 

60504-0 Pa. $4.95 

CATASTROPHE THEORY FOR SCIENTISTS AND ENGINEERS, Robert 
Gilmore. Advanced-level treatment describes mathematics of theory grounded in 
the work of Poincare, R. Thorn, other mathenaaticians. Also important applications 
to problems in mathematics, physics. chemistry and engineering. 1981 edition. 
References. 28 tables. 597 black-and· white i1lustrations. xvii + 666pp. 61\ )( ~. 

67559·4 p. ... $1'6.95 

AN INTRODUCTION TO STATISTICAL THERMODYNAMICS, Terrell L. 
Hill. Excellent basic text offers wide-ranging coverage of quantum ltatiltical 
mechanics. syawOI of interacting molecules. quantum ltatiatiu. nwre. 525pp. 
5f6x&i. 65242·4 Pa. 112.95 

ELEMENTARY DIFFERENTIAL EQUATIONS. Wi1liam Teet Martin and Eric 
Reiamer. Exceptionally clear. comprehensive introduction at undergraduate level. 
Nature and origin of differential equations, differential equations of first, second 
and higher orders. Picard,'. Theorem. much more. Problems with solutions. 551 pp. 
5f6 )( &i. 65024·5 Pa. $8.95 

STATISTICAL PHYSICS. Gregory H. Wannier. Classic text combines thermo­
dynamica, statistical mechanica and kinetic theory in one unified presentation of 
thermal phyaics. Problema with solutiona. Bibliography. 552pp. 5" x 8lL 

6540I·X Pa. 112.95 
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ORDINARY DIFFERENTIAL EQUATIONS, Morris Tenenbaum and Harry 
Pollard. Exhaustive survey of ordinary diUerential equations for undergraduates in 
mathematics, engineering, science. Thorough analysis of theorems. Diagrams. 
Bibliography. Index. 818pp. 5" x 81i. 64940-7 Pa. $16.95 

STATISTICAL MECHANICS: Principles and Applications, Terrell L. Hill. 
Standard text covers fundamentals of statistical mechanics, applications to 
fluctuation theory, imperfect gases, distribution functions, more. 448pp. 5" lC 81t 

65590-0 Pa. $11.95 

ORDINARY DIFFERENTIAL EQUATIONS AND STABILITY THEORY: An 
Introduction, David A. Sanchez. Brief, modem treatment. Linear equation, 
stability theory (or autonomous and nonautonomous systems, etc. 164pp. 5" lC 81t 

65828-6 Pa. $5.95 

THIRTY YEARS THAT SHOOK PHYSIC,s: The Story of Quantum Theory, 
~orge Gamow. Lucid, accessible introduction to influential theory o( energy and 
mall4~r. Careful explanations of Dirac's anti-particles, Bohr's model of the atom, 
much more. 12 plates. Numerous drawings. 240pp. 5" x 8li. 24895-X Pa. $6.95 

THEORY OF MATRICES, Sam Perlis. Outstanding text ("Overing rank, non-
5ingularity and inverse5 in connection with the df'velopment of canonical matrices 
IIndf'r thf' rdation of equivalf'nce. and without the intervention of determinants. 
Includes exercises. 2!17pp. 5* x 8li. 668IO-X Pa. $7.95 

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Calileo to 
Einstein, edited by Morris H. Shamos. 25 crucial discoveries: Newton's laws of 
motion, Chadwick's study of the neutron, Heru on electromagnetic waves, more. 
Original accounts clearly annotated. !l70pp. 5* lC 8li. 25546-5 Pa. $10,95 

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH AP­
PLICATIONS, E.C. Zachmanoglou and Dale W. Thoe. Essentials of partial 
differential equations applied to common problems in engineering and the 
physical sciences. Problems and answers. 416pp. 5* x 81t 65251-5 Pa. $10.95 

BURNHAM'S CELESTIAL HANDBOOK, Robert Burnham. Jr. Thorough guide 
to the stars beyond our solar system. Exhaustive treatment. Alphabetical by 
constellation: Andromeda to Cetus in Vol. I; Chamaeleon to Orion in Vol. 2; and 
Pavo to Vulpecula in Vol. 5. Hundreds of illustrations. Index in Vol. 5. 2,OOOpp. 
6" x 9.... 25567-X, 2!1568-8. 25675-0 Pa., Three-vol. set $4"1.85 

CHEMICAL MAGIC, L('nnard A. Ford. Sef'ond Edition. Revised by E. Winston 
Grundmeier. Over 100 unusual.slIlIlts demonstrating cold fire, dust explosions, 
much more. Text explains scientifk principles and stresses safety precautions. 
I 28pp. 5* x 8li. 67628-5 Pa. $5.95 

AMATHJR ASTRONOMF.R'S HANDBOOK, J.B. Sidgwick. Timeless, compre­
hI'Tlsive coverage of telf'5('ol>f'S, mirrors, If'nses, mountings, tdescope drives, 
micrometers, spectroscopes, more. 189 illustrations. 576pp. 5" x 8 .... (Available in 
U.S. only) 24034-7 Pa. $9.95 



CATALOG OF DOVER BOOKS 

SPECIAL FUNCTIONS. N.N. Lebedev. Translated by Richard Silverman. Fa­
mous Russian work treating more important special func:t.ioDi. with applications 
to specific problems of physics and engineering. 58 figura. lI08pp. R Ie 8Il. 

60624-4 Pa. $8.95 

OBSERVATIONAL ASTRONOMY FOR AMATEURS.J.B. Sidpick. Mine of 
useful data for observation of lun. moon. planets. asteroids. aurorae. meteors, 
comets. variables. binaries. etc. 59 illustration •. 584pp. R Ie 8IC. (Available in U.S. 
only) 24055-9 Pa. $8.95 

INTEGRAL EQlIA110NS. F.G. Tricomi. Authoritative. well-written uatmmt 
of extremely useful mathematical tool with wide applications. Volterra Equation •• 
Fredholm Equations. much more. Advanced undergraduate to graduate level. 
Exercises. Bibliography. 258pp. 516 Ie 81i. 64828-1 Pa. $7.95 

POPULAR LF.CTURF.S ON MATHEMATICAl. l.OGIC. Hao Wang. Noted 
logician's lucid treatment of historical developments. set theory. model theory. 
recursion theory and constructivism. proof theory. more. 5 appendixes. Bibli­
ography. 1981 t'dition. ix + 2SSpp. 5,.)( SK. 67652-5 Pa. $8.95 

MODERN NONLINEAR EQUATIONS. Thomas L Saaty. Emphasizes practical 
solution of problems; covers seven typea of equations. " ... a welcome contribution 
to the existing literature ... . "-Math RtNiftlll. 49Opp. R Ie BIi. 64252-1 Pa. SII.95 

FUNDAMENTALS OF ASTRODYNAMICS. Roger Bate et al. Modem approach 
developed by U.S. Air Force Academy. Designed as a first course. Problems. 
exercises. Numerous illustrations. 455pp. 516)( 81i. 60061-0 Pa. $9.95 

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA­
TIONS. John W. Deuman. Excellent text coven complex numbers. determinants. 
orthonormal bases. Laplace transforms. much more. Exercises with solutions. 
Undergraduate level. 416pp. 516)( 8Ii. 65191-6 Pa. $10.95 

INCOMPRESSIBLE AERODYNAMICS. edited by Bryan ThwaiteL Coven the0-
retical and experimental treatment of the uniform Dow of air and viscoUs Duids palt 
two-dimensional aerofoilsand three-dimenaional ~ings; manyothtT lOpia. 654pp. 
516 )( SK. 65465-6 Pa. $16.95 

INTRODUCTION TO DIFFERENCE EQUATIONS. Samuel GoIcibeq. Exap­
tionally clear exposition of important discipline with applications to aoc:iolou. 
psychology. economics. Many illustrative examples; over 250 problems. 260pp. 
5")( SK. 6!1084-7 Pa. S7.95 

l.AMINAR BOUNDARY LAYERS. edhed by L llosenheacL Encineeringclassic 
covers steady boundary layers in two- and three-dimensional Dow. unllady 
boundary layers. stability. observational techniques. much more. 708pp. 51- 8Il. 

65646-2 Pa. $18.95 

LECTURES ON CLASSICAL DIFFERENTIAL GEOMETRY. Second Edition. 
Dirk J. Suuik. Excellent brief introduction coven curves, theory of .urfaces. 
fundamental equations. geometry on a surface. conformal mapping. other topics. 
Problems. 24Opp. R )( SIi. 65609-8 Pa. $8.95 
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ROT AR Y -WING AERODYNAMICS, W.z. Stepniewski. Clear, concise text covers 
aerodynamic phenomena of the rotor and offers guidelines for helicopter per. 
formance evaluation. Originally prepaml for NASA. 557 figures. 640pp. 6" x 914. 

64647-5 Pa. $15.95 

DIFFERENTIAL GEOMETRY, Heinrich W. Guggenheimer. Local differential 
seometry as an application of advanced calculus and linear algebra. Curvature, 
transformation groups. surfaces. more. Exerciaea. 62 figures. 578pp. M6 x 81i. 

65455-7 Pa. $8.95 

INTRODUCTION TO SPACE DYNAMICS. William Tyrrell Thomson. Com· 
prehensive. classic introduction to space-night engineering for advanced under­
graduate and graduate studenll. Includes vector algebra, kinematics, transforma­
tion of coordinates. Bibliography. Index. 552pp. 5" x 81t. 65115-4 Pa. $8.95 

A SURVEY OF MINIMAL SURFACES, Robert Osserman. Up·to-date, in-depth 
diacullion of the field for advanced Itudenta. Corrected and enlarged edition coven 
new developments. Includes numerous problems. 192pp. 5" x 81i. 

64998·9 POd. $8.95 

ANALYTICAL MECHANICS OF GEARS, l-:arle Buckingham. Indispenlable 
reference for modern gear manufacture covers conjugate gear-tooth action, gear­
tooth profiln of various gears, many other topics. 265 rigures. \02 tables. 546pp. 
M6 x 81i. 65712-4 Pa. $14.95 

SET THEORY AND LOGIC, Robert R. Stoll. Lucid introduction to uniried 
theory of mathematical concepts. Set theory and logic seen as tools for conceptual 
understanding of real number system. 496pp. 5" x 814. 6lJ829·4 P-d. $12.95 

A HISTORY OF MECHANICS, Ren~ Dugas. Monumental study of mechanical 
principln from antiquity to quantum mechanics. Contributions of ancient Greeks. 
Galileo, Leonardo, Kepler. Lagrange, many otherl. 671pp. 5" x 81i. 

65652-2 Pa. $14.95 

FAMOUS PROBLEMS OF GEOMETRY AND HOW TO SOLVE THEM, 
Benjamin Bold. Squaring the circle, trisecting the angle, duplicating the cube: 
learn their history, why they are impollible to solve, then solve them yourself. 
128pp. 5" IC 81i. 24297 -8 Pa. $1.95 

MECHANICAL VIBRATIONS, J.P. Den Hartog. Cla~sk textbook o[(efll ludd 
explanationland iIIuatrative models, applying theories of vibrations to a variety of 
practical industrial engillffring problems. Numerous figun,s. 2lJlJ problems, 
IOlutions. Appendix. Index. Preface. 456pp. 5" x 811. 64711f>·.j POd. $\0.95 

CURVATURE AND HOMOLOGY, Samuel I. Goldberg. Thorough treat men! of 
specialized branch of differential geometry. Covers Riemannian manifolds, topol­
ogy of differentiable manifolds, compact Lie groups, other topks. l-:xercises. lJ 15pp. 
M6IC81i. 6HI4·X Pa. $9.95 

HISTORY OF STRENGTH OF MATERIALS, Stephen P. Timoshenko. Excel­
lent historical survey of the strength of materials with many references to the 
tbeorin of elallicity and structure. 245 figures. 452pp. 5" x 81i. 61187-6 Pa. $ 11.95 
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GEOMETRY OF COMPLEX NUMBERS, Hans Schwerdtfeger. Illuminating, 
widely prailed book on analYlic geometry of circles, the Moebius uansformalion, 
and two-dimensional non-Euclidean geome&ries. 200pp. 5" )( B!4. 

65B50-B Pa. $8:95 

MECHANICS, J.P. Den Hanog. A classicinuoduclOry texl orrefresher. Hundreds 
of applicaliona and design problems illuminate fundamentals of uuaSe5, loaded 
beams and cables, elc. 554 answered problema. 462pp. 5" )( Bli. 60754-2 Pa. $9.95 

TOPOLOGY, John G. Hocking and Gail S. Young. Superb one-year course in 
classicallOpOlogy. Topological Spacel and funClions, poim-sel IOpology, much 
1'IlOJe. Examples and problems. Bibliography. Index. 584pp. 5")( 814. 

65676-4 Pa. $9.9!'1 

STIlENGTH OF MATERIALS, J.P. Den Hanog. Full, dear areaamem of basic 
maaerial (tension, torsion, bt-nding, etc.) plus advana-d malerial on engineering 
methods, applications. 550 answered problema. 525pp. 5" )( Bli. 60755-0 PO •. $8.95 

ELEMENTAllY CONCEPTS OF TOPOLOGY, Paul Alexandroff. Elegam, 
inluilive approach 10 topology from sea-theoretic lopology 10 Belli groups; how 
conceplS of IOpology are useful in math and physics. 25 figures. 57pp. 5" )( Bli. 

60747-X Pa. $5.50 

ADVANCED STIlENGTH OF MATERIALS, J.P. Den Hanog. Superbly written 
advanced IeXt covers torsion, rotating disks, n.embrane sareSSe5 in shells, much 
more. Many problems and answers. 588pp. 5")( Bli. 65407-9 Pa. $9.95 

COMPUTABIUTY AND UNSOLVABIUTY, Marlin Davis. Classic graduale­
level inuoduction 10 theory of computability, uaually referred to as Iheory o( 
recurrent funClions. New preface and appendix. 28Bpp. 5")( Bli. 61471-9 Pa. 57.95 

GENEIlAL CHEMISTIl Y, Linus Pauling. Reviled 5rd edition of classic firsl-year 
text by Nobel laureate. Atomic and molecular structure, quantum mechanics, 
atatiltical mechanics, thermodynamics correlated wilh deacriplive chemistry. 
Problema. 992pp. 51)( 8!L 65622-5 Pa. $19.95 

AN INTIlODUCI10N TO MA TIlICES, SETS AND GROUPS FOR SCIENCE 
STUDENTS, G. Stephenson. Concise, readable text inaroduces selS. groups, and 
IDOIt importantly, matrices 10 undergraduate llucienlS of physics, chemiaary, and 
engineering. Problems. l64pp. 51)( 8!L 65077-4 Pa. $6.95 

THE HISTORICAL BACKGROUND OF CHEMISTRY, Henry M. Leice.ler. 
Evolution of ideas, not individual biography. Con(:elllrales on formulation o( a 
coherent set of chemical laws. 260pp. 51)( Bli. 61055-5 PO •. 56.95 

THE PHILOSOPHY OF MATHEMATICS: An. Inaroductory Essay, Stephan 
KOmer. SUrveyl the views of Plato, Aristotle, Leibniz Ie Kam concerning proposi. 
tiona and theories of applied and pure mathemalics. Introducaion. Two appen· 
dices. Index. 198pp. 5")( 8!L 2504B·2 Pa. S7.9!'1 

THE DEVELOPMENT OF MODERN CHEMISTR Y, Aaron J. Ihde. AUlhorila· 
live hillOry of chemistry from ancient Greek Iheory 10 20th-century innovalion. 
Covers major chemists and their discoveries. 209 iIIus&ralioIl5. 14 tables. Bibliog· 
raphies. Indices. Appendices. as I pp. 5" )( Bli. 64255·6 PO •. SIll. 9'" 
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DE RE MET ALLlCA, Georgius Agricola. The famous Hoover tranllation of 
greatest treatise on technological chemistry, engineering, geology, mining of early 
modem timt'S (1556). All 289 original woodcuts. 65Spp. 611)( II 

60006-S Pa. SIS.95 

SOME THEORY OF SAMPLING, William Edward. Deming. AnalYlil of the 
problems, theory and design of .ampling techniqut'S for social scientists, indUitrial 
managers and othen who find statistici increalingly illlportant in their work. 61 
tablt'S. 90 figurt'l. xvii + 602pp. 5!6)( Sli. 64684·X Pa. S15.95 

THE VARIOUS AND INGENIOUS MACHINES OF AGOSTINO RAMELLI: A 
CIII~sk Sixlffnlh·('.eontury 1II\1~lralf'd Trf'llti!W on Tt-rhnoloRY, Agostino Ramt'lli. 
One of tht- most widely known and copied worbon machinery in the 16th century. 
194 detailed plates of water pumps, grain mills, erant'S, more. 608pp. 9)( 12. 

28180-9 Pa. S24.95 

LINEAR PROGRAMMING AND ECONOMIC ANALYSIS, Robert Dorfman, 
Paul A. Samuelson and Robert M. Solow. First comprehenlive treatment of linear 
programming in ltandard economic analysis. Game theory, modern welfare 
economics, Leantief input-output, more. 525pp. 5!6)( .. 6M91·S Pa. SI-US 

ELEMENT AR. Y DECISION THEORY, Herman Chernoff and Lincoln E. Moses. 
Clear introduction to statistics and statistical theory coven data processing, 
probability and random variablt'S, testing hypotht'lt'l. much more. Exercilt'l. 
564pp. 5")( 8Il 65218-1 Pa. S9.95 

THE COMPLEAT STRATEGYST: Being a Primer on the Theory of Gamt'S of 
Strategy, J.D. Williams. Highly entertaining c1allic dt'lCribes, with many iIIus· 
trated examples, how to select bell strategit'S in conDict lituationa. Prefaces. 
Appendices. 268pp. 5")( Sli. 25101-2 Pa. S7.95 

MATHEMATICAL METHODS OF OPERATIONS RESEARCH, Thomas L. 
Saaty. Classic graduate· level text coven historical background. c1aasical methods of 
forming models, optimization, game theory, probability, queueing theory, much 
more. ExerciSt'S. Bibliography. 44Spp. 5!6 )( 816. 65705·5 Pa. S12.95 

CONSTRUCTIONS AND COMBINATORIAL PROBLEMS IN DESIGN OF 
EXPERIMENTS, Damaraju Raghavarao. In-depth reference work examiDt'l 
onhogonal Latin squart'l, incomplete block designl, tactical configuration, partial 
geometry, much more. Abundant explanations, examplt'S, 416pp, 5!6)( 816. 

65685·5 Pa. $10.95 

THE ABSOLUTE DIFFERENTIAL CALCULUS (CALCULUS OF TENSORS), 
Tullio Levi·Civita. Great 2Oth-c:entury mathematician's elallie work on material 
neceuary for mathematical grasp of theory of relativity. 452pp. 5!6 )( Ill. 

65401·9 Pa. $9.95 

VECTOR AND TENSOR ANALYSIS WITH APPLICATIONS, A.I. Boriamko 
and I.E. Tarapov: Concise introduction. WorIted-out problema. solutionl, exer· 
ciSt'S. 257pp. 5!6 )( 816. 65&!1S·2 Pa. $7.95 
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THE FOUIl-COLOIl PIlOBLEM: Assaults and Conquest. Thomu 1.. Saaly and 
Paul G. Kainen. Engrolling. comprehensive account of the century-old combina· 
torial topological problem. ill history and solution. Bibliopaphia. Index. 110 
figures. 228pp. 5" )( 81i. 65092-8 Pa. $6.95 

CATALYSIS IN CHEMISTIlY AND ENZYMOLOGY. William P. Jencb. 
Exceptionally dear coveratp! of mechanilml for catalysis. forca in aqueous 
solution. carbonyl- and acyl·group reat:tion .. practical kineda, more. IMpp. 
5!6 )( 81i. 65460-5 Pa. 119.95 

PIlOBABILITY: An Introduction. Samuel Goldberg. Excellent buic text coven sec 
theory. probability theory for finite sample spaces. binomial theorem. much 1IIOft. 
!l60 problems. Bibliographies. !l22pp. !'i")( 81i. 65252-1 Pa. $8.95 

LIGHTNING. Manin A. Uman. Revised. updated edition of dusic work on the 
physics of lightning. Phenomena. terminolOlY. mealuremmt. photopaphy. 
spectroscopy. thunder. more. Ileviews recent research. Bibliopaphy. Indices. 
!l2Opp. !'i" )( 814. 64575-4 Pa. 18.95 

PIlOBABILITY THEORY: A ('.oncise Coune. Y.A. Rosanov. Hishly readab~. 
aelf-contained introduction coven combination of evenll. dependent events, 
Bernoulli trials. etc. Translation by Ilichard Silftnltan. 148pp. SIx IN. 

65544·9 Pa. $5.95 

AN INTIlODUCTlON TO HAMILTONIAN OPTICS. H. A. Buchdahl. Detailed 
account of the Hamiltonian treatment of aberration theory in tp!OIIletrical optia. 
Many dalleS of optical systema defined in term. of the symmetries they poueII. 
Problema with detailed solution .. 1970 edition. xv + !6Opp. 5!6 x 81i. 

67597·1 Pa.IIO.95 

STATISTICS MANUAL, Edwin 1.. Crow. et al. Comprehensive. practical 
collection of c .... ical and modern methods prepared by V.S. Naval Ordnance Test 
Station. Stress on use. Buies of ltatiltia usumed. 288pp. 5!6 x a 

60599-X Pa. $6.95 
DlCTIQNAR Y IOllTUNE OF BASIC STA11STICS. John E. Freund and Frank 
J. Williams. A c1~ar concise dictionary qf over I.OOlhtalistical tennsand an outline 
of statistical formulas covering probability. nonparameuic teall. much moRe 
208pp. 516 x iii. 66796-0 Pa. $6.95 

STATISTICAL METHOD FIlOM THE VIEWPOINT OF QVAUTY CON· 
TROL, Walter A. Shewhart. Important text explains replalion of variabla. UIeI 

of statillical control to achieve quality conbOl in industry. qriculture. CMher area. 
192pp. SIx iii. 65D2·7 Pa • ..,.95 

THE INTERPRETATION OF GEOLOGICAL PHASE DIAGRAMS. Ernat G. 
Ehlers. Clear. concise text emphuizft diapama of lyMemI under Ruid or 
containing preuure; also cover&tp! of complex binary ayaeema. hydnMhennal 
melting. more. 288pp. 616 x !N. 65589-7 Pa. 110.95 

STATlSTICALADJVSTMENTOFDATA,W.EdwaniaDeminc·lnbOductionto 
basic concepti ofltatistics. curve fitting. leall squares solution. conditions without 
panmeter. conditions containing panmeters. 26 exaasea worked OUL 271pp. 
5!6 )( 81i. 64685-8 Pa. $8.95 
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TENSOR CALCULUS. J.L. Synge and A. Schild. Widely used introduClory text 
covers spaces and tensors. basic operations in Riemannian space. non-Riemannian 
spaces. etc. 524pp. 5" x 81'- 65612-7 Pa. 18.95 

A CONCISE HISTORY OF MATHEMATICS. Dirk J. Struik. The beat brief 
history of mathematics. Stresses oripn. and coven every major figure from andent 
Near East to 19th century. 41 illu.tration •. 195pp. 516 x 81t .60255-9 Pa. 17.95 

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS. W. W. Rouse 
Ball. One of clearest. moat authoritative IUrveyS from the Egyptians and Phoeni­
cians through 19th-century figures such as Grassman. Galois. Riemann. Fourth 
edition. 522pp. 5!6)( 8". 20650-0 Pa. 110.95 

HISTORY OF MATHEMATICS. David E. Smith. Nontechnical sUrvey from 
ancient Greece and Orient to late 19th century; evolution of arithmetic. geometry. 
trigonometry. calculatingdevicn. algebra. the calculus. 562 iIIu5tr.uions. 1.555pp. 
5!6 x 81t 20429-4. 20450-8 po .... Two-vol. set 525.90 

THE GEOMETRY OF RENt DESCARTES. Rene Descartes. The great work 
founded analytical geometry. Original French text. Descartes' own diagrams. 
together with definitive Smith-Latham translation. 244pp. 5" x Bit. 

60068-8 Pa. 17.95 

THE ORIGINS OF THE INFINITESIMAL CALCULUS. Margaret E. Baron. 
Only fully detailed and documented account of crucial discipline: origins; 
development by Galileo. Kepler. Cavalieri; contributions of Newton. Leibniz. 
more. 504pp. 5")( BIi. (Available in U.S. and Canada only) 65571-4 Pa. 59.95 

THE HISTORY OF THE CALCULUS AND ITS CONCEPTUAL DEVELOP­
MENT. Carl B. Boyer. Origins in antiquity. medieval contributions. work of 
Newton. Leibniz. rigorous formulation. Treatment it verbal. 546pp. 5" )( Bit 

60509-4 Pa. 5S.95 

THE THIRTEEN BOOKS OF EUCLID'S ELEMENTS. tr .. nslated with introdu~" 
tion and commentary by Sir Thomas L Heath. Definitive edition. Textual and 
linguistic nOIn. mathematical analysis. 2.500 years of critical commentary. Not 
abridFd. 1.414pp. 5")( 81t 60088-2.60089-0.60090-4 Pa., Three-vol. set 129.S5 

GAMES AND DECISIONS: Introduction and ('.ritieal Survey. R. Dunnn Lu(e 
and Howard Railfa. Superb nontechnical introduction lU game thwry. primarily 
applied to social sciences. Utility theory. zero-sum games. n-person games, 
decision-making. much more. Bibliography. 509pp. 5")( Sli. 65945-7 Pa. 112.95 

THE HISTOIUCAL ROOTS OF ELEMENTARY MATHEMATICS, Lucas 
N.H. Bunt, Phillip S. Jones. and Jack D. Bedient. Fundamental underpinnings of 
modem arithmetic, algebra, geometry and number systems derived from ancient 
civilizations. 52Opp. S")( 81t 2SS65-S Pa. 58.95 

CALCULUS REFltESHER FOR TECHNICAL PEOPLE, A. Albert Klaf. Coven 
important upecta of integral and differential calculus via 7S6 questions. S66 
problema. IDOIt answered. 451 pp. 5" )( 8". 20570-0 Pa. $8.9S 
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CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY 
SOLUTIONS, A.M. Yaglom and I.M. Yaglom. Over 170challenging problems on 
probability theory, combinatorial analysis, poims and lines, topology, convex 
polygons, many other topics. Solutions. Total of 445pp. 5li K 81i. Two-vol. set. 

Vol. I 655l16-9 Pa. 17.95 
Vol. II 655l17-7 Pa. $6.95 

FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLU­
TIONS, Fredtrick MosteJler. Remarkable puzzlers, graded in difficulty, illusttate 
elementary and advanced aspeclS of probability. Detailed solutions. 88pp. 5" K 81i. 

65555-2 Pa. $4.95 

EXPERIMENTS IN TOPOLOGY, Stephen Barr_ Classic, lively explanation of 
one 0( the byways 0( mathematic.. Klein bottles, Moebius suips, projective planes, 
map coloring, problem of Ihe Koenigsbt"rg bridges. much more, described with • 
clarity and wit. 411 figures. 210pp. 5" K 8". 259l1!l-1 1" •. 15.95 

RELATIVITY IN ILLUSTRATIONS, Jacob T. Schwaru. Clear nontechnical 
~unent makes relativity more acceaaible than ever before. Over 60 drawings 
ilIU1uate conceptS more clearly than text alone. Only high school geomeuy needed. 
Bibliography. 128pp. 6!1 )( 916. 25965-X Pa. $6.95 

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, Earl 
A. Coddington. A thorough and systematic finl"Course in elementary differential 
equations for undergraduates in mathematics and science, with many exercises and 
problema (with answers). Index, 504pp. 5li )( BIi. 65942·9 Pa. $8.95 

FOURIER SERIES AND ORTHOGONAL FUNCTIONS, Harry F. Davis. An 
incisive text combining theory and practical example to inuoduce Fourier series, 
orthopnal functions and applications of tbe Fourier method to boundary·value 
problema, 570 exercises, Answers and notes, 416pp. 5li I( 81l. 6597l1-9 Pa. 19.95 

THE THEORY OF BRANCHING PROCESSES, Theodore E. Harris. «'im 
ayltrmatic, (''OIDprdlensive treatment of branching (i.e. multiplicative) processes 
and their applications. Galton-Watson mudel. Markov branching proct'Slon. 
electron-photon cascade, many other topics. Rigorous proofs. Bibliography. 
24Opp. 5")( 8Ii. 65952-61" •. $6.95 

AN INTRODUcrlON TO Al.GEBRAIC STRUGrURES, Joseph Landin. 
Supt'l'b aelf-fVlltained text covers "abstract alFbla": srts and numbt"r.. th('(IJY of 
groups, theory of rings, much more. Numeruu, well-('hosen example., exenise •. 
247pp. Slx 8Ii. 65940-2 1" •. 17.95 

h;e •• ''''';«' '0 ellian •• w;,hu .. ' nolie •. 
Available at your book dealer or wrile for free Mathematics and Science CatalOlIO Dept. CI. 
Dover Publications, Inc., !II East 2nd St .• Mineola. N. Y. 11501. Dover publishes mOR than 171) 
boob each year on Kientt, elementary and advanced mathematics. biology. music, art. 
lileratUle, hiltory. lOCial Kienees and other area •. 
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