

In Praise of Knowledge Representation and Reasoning

This book clearly and concisely distills
decades of work in AI on representing
information in an efficient and general
manner. The information is valuable not
only for AI researchers, but also for people
working on logical databases, XML, and
the semantic web: read this book, and avoid
reinventing the wheel!

Henry Kautz, University of Washington

Brachman and Levesque describe better
than I have seen elsewhere, the range of
formalisms between full first order logic at
its most expressive and formalisms that
compromise expressiveness for computation
speed. Theirs are the most even-handed
explanations I have seen.

John McCarthy, Stanford University

This textbook makes teaching my KR course
much easier. It provides a solid foundation
and starting point for further studies. While
it does not (and cannot) cover all the topics
that I tackle in an advanced course on KR,
it provides the basics and the background
assumptions behind KR research. Together
with current research literature, it is the
perfect choice for a graduate KR course.

Bernhard Nebel, University of Freiburg

This is a superb, clearly written, com-
prehensive overview of nearly all the major
issues, ideas, and techniques of this
important branch of artificial intelligence,
written by two of the masters of the field.
The examples are well chosen, and the
explanations are illuminating.

Thank you for giving me this opportunity
to review and praise a book that has sorely
been needed by the KRR community.

William J. Rapaport, State University of
New York at Buffalo

A concise and lucid exposition of the major
topics in knowledge representation, from
two of the leading authorities in the field.
It provides a thorough grounding, a wide
variety of useful examples and exercises,
and some thought-provoking new ideas for
the expert reader.

Stuart Russell, UC Berkeley

No other text provides a clearer introduc-
tion to the use of logic in knowledge
representation, reasoning, and planning,
while also covering the essential ideas
underlying practical methodologies such as
production systems, description logic-based
systems, and Bayesian networks.

Lenhart Schubert, University of
Rochester

Brachman and Levesque have laid much of
the foundations of the field of knowledge
representation and reasoning. This textbook
provides a lucid and comprehensive
introduction to the field. It is written with the
same clarity and gift for exposition as their
many research publications. The text will
become an invaluable resource for students
and researchers alike.

Bart Selman, Cornell University

KR&R is known as “core AI” for a reason —
it embodies some of the most basic con-
ceptualizations and technical approaches in
the field. And no researchers are more
qualified to provide an in-depth introduction
to the area than Brachman and Levesque,
who have been at the forefront of KR&R for
two decades. The book is clearly written, and
is intelligently comprehensive. This is the
definitive book on KR&R, and it is long
overdue.

Yoav Shoham, Stanford University

This Page Intentionally Left Blank

KNOWLEDGE REPRESENTATION

AND REASONING

About the Authors

Ron Brachman has been doing influential work in knowledge representation since the time
of his Ph.D. thesis at Harvard in 1977, the result of which was the KL-ONE system, which
initiated the entire line of research on description logics. For the majority of his career he
served in research management at AT&T, first at Bell Labs and then at AT&T Labs, where
he was Communications Services Research Vice President, and where he built one of the
premier research groups in the world in Artificial Intelligence. He is a Founding Fellow of the
American Association for Artificial Intelligence (AAAI), and also a Fellow of the Association for
Computing Machinery (ACM). He is currently President of the AAAI. He served as Secretary-
Treasurer of the International Joint Conferences on Artificial Intelligence (IJCAI) for nine
years. With more than 60 technical publications in knowledge representation and related
areas to his credit, he has led a number of important knowledge representation systems efforts,
including the CLASSIC project at AT&T, which resulted in a commercially deployed system that
processed more than $5 billion worth of equipment orders. Brachman is currently Director of
the Information Processing Technology Office at the U.S. Defense Advanced Research Projects
Agency (DARPA), where he is leading a new national-scale initiative in cognitive systems.

Hector Levesque has been teaching knowledge representation and reasoning at the Univer-
sity of Toronto since joining the faculty there in 1984. He has published over 60 research
papers in the area, including three that have won best-paper awards. He has also co-authored
a book on the logic of knowledge bases and the widely used TELL–ASK interface that he
pioneered in his Ph.D. thesis. He and his collaborators have initiated important new lines of
research on a number of topics, including implicit and explicit belief, vivid reasoning, new
methods for satisfiability, and cognitive robotics. In 1985, he became the first non-American
to receive the Computers and Thought Award given by IJCAI. He was the recipient of an
E.W.R. Steacie Memorial Fellowship from the Natural Sciences and Engineering Research
Council of Canada for 1990–1991. He was also a Fellow of the Canadian Institute for Advanced
Research from 1984 to 1995, and is a Founding Fellow of the AAAI. He was elected to the
Executive Council of the AAAI, and is on the editorial board of five journals. In 2001, Levesque
was the Conference Chair of the IJCAI-01 conference, and is currently Past President of the
IJCAI Board of Trustees.

Brachman and Levesque have been working together on knowledge representation and rea-
soning for more than 25 years. In their early collaborations at BBN and Schlumberger, they
produced widely read work on key issues in the field, as well as several well-known knowledge
representation systems, including KL-ONE, KRYPTON, and KANDOR. They presented a tutorial
on knowledge representation at the International Joint Conference on Artificial Intelligence in
1983. In 1984, they coauthored a prize-winning paper at the National Conference on Artificial
Intelligence that is generally regarded as the impetus for an explosion of work in description
logics and which inspired many new research efforts on the tractability of knowledge rep-
resentation systems, including hundreds of research papers. The following year, they edited
a popular collection, Readings in Knowledge Representation, the first text in the area. With
Ray Reiter, they founded and chaired the international conferences on Principles of Knowl-
edge Representation and Reasoning in 1989; these conferences continue on to this day. Since
1992, they have worked together on the course in knowledge representation at the University
of Toronto that is the basis for this book.

KNOWLEDGE

REPRESENTATION AND

REASONING

■

■

■

Ronald J. Brachman

Hector J. Levesque

with a contribution by Maurice Pagnucco

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Morgan Kaufmann is an imprint of Elsevier

Publishing Director: Diane Cerra
Senior Editor: Denise E. M. Penrose
Publishing Services Manager: Andre Cuello
Production Manager: Brandy Palacios
Production Management: Graphic World Publishing Services
Editorial Assistant: Valerie Witte
Design Manager: Cate Barr
Cover Design: Dick Hannus, Hannus Design Associates
Cover Image: “Trout River Hills 6: The Storm Passing”, 1999, Oil on board, 80" × 31¾".

Private Collection. Copyright Christopher Pratt
Text Design: Graphic World Publishing Services
Composition: Cepha Imaging Pvt. Ltd.
Technical Illustration: Graphic World Publishing Services
Copyeditor: Graphic World Publishing Services
Proofreader: Graphic World Publishing Services
Indexer: Graphic World Publishing Services
Printer: Maple Press
Cover Printer: Phoenix Color

Morgan Kaufmann Publishers is an Imprint of Elsevier
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2004 by Elsevier, Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim,
the product names appear in initial capital or all capital letters. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means—electronic, mechanical, photocopying, or otherwise—without written
permission of the publishers.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk.
You may also complete your request on-line via the Elsevier homepage (http://elsevier.com) by selecting
“Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Brachman, Ronald J., 1949-
Knowledge representation and reasoning / Ronald J. Brachman, Hector J. Levesque.

p. cm.
Includes bibliographical references and index.
ISBN: 1-55860-932-6
1. Knowledge representation (Information theory) 2. Reasoning. I. Levesque, Hector J.,

1951- II. Title.

Q387.B73 2003
006.3′32′—dc22

2004046573

For information on all Morgan Kaufmann publications,
visit our website at www.mkp.com

Printed in the United States of America
04 05 06 07 5 4 3 2 1

To Gwen, Rebecca, and Lauren; and Pat, Michelle, and Marc

— because a reasoning mind still needs a loving heart.

This Page Intentionally Left Blank

■ CONTENTS
■

■

Preface xvii

Acknowledgments xxvii

1 Introduction 1

1.1 The Key Concepts: Knowledge, Representation, and
Reasoning . 2

1.2 Why Knowledge Representation and Reasoning? 5
1.2.1 Knowledge-Based Systems 6
1.2.2 Why Knowledge Representation? 7
1.2.3 Why Reasoning? . 9

1.3 The Role of Logic . 11
1.4 Bibliographic Notes . 12
1.5 Exercises . 13

2 The Language of First-Order Logic 15

2.1 Introduction . 15
2.2 The Syntax . 16
2.3 The Semantics . 18

2.3.1 Interpretations . 20
2.3.2 Denotation . 21
2.3.3 Satisfaction and Models . 22

2.4 The Pragmatics . 22
2.4.1 Logical Consequence . 23
2.4.2 Why We Care . 23

2.5 Explicit and Implicit Belief . 25
2.5.1 An Example . 25
2.5.2 Knowledge-Based Systems 27

2.6 Bibliographic Notes . 28
2.7 Exercises . 28

ix

x Contents

3 Expressing Knowledge 31

3.1 Knowledge Engineering . 31
3.2 Vocabulary . 32
3.3 Basic Facts . 33
3.4 Complex Facts . 34
3.5 Terminological Facts . 36
3.6 Entailments . 37
3.7 Abstract Individuals . 41
3.8 Other Sorts of Facts . 43
3.9 Bibliographic Notes . 44
3.10 Exercises . 45

4 Resolution 49

4.1 The Propositional Case . 50
4.1.1 Resolution Derivations . 52
4.1.2 An Entailment Procedure . 53

4.2 Handling Variables and Quantifiers 55
4.2.1 First-Order Resolution . 58
4.2.2 Answer Extraction . 61
4.2.3 Skolemization . 64
4.2.4 Equality . 65

4.3 Dealing with Computational Intractability 67
4.3.1 The First-Order Case . 67
4.3.2 The Herbrand Theorem . 68
4.3.3 The Propositional Case . 69
4.3.4 The Implications . 70
4.3.5 SAT Solvers . 70
4.3.6 Most General Unifiers . 71
4.3.7 Other Refinements . 72

4.4 Bibliographic Notes . 74
4.5 Exercises . 75

5 Reasoning with Horn Clauses 85

5.1 Horn Clauses . 85
5.1.1 Resolution Derivations with Horn Clauses 86

5.2 SLD Resolution . 87
5.2.1 Goal Trees . 89

5.3 Computing SLD Derivations . 91
5.3.1 Backward Chaining . 91
5.3.2 Forward Chaining . 93
5.3.3 The First-Order Case . 94

Contents xi

5.4 Bibliographic Notes . 94
5.5 Exercises . 95

6 Procedural Control of Reasoning 99

6.1 Facts and Rules . 100
6.2 Rule Formation and Search Strategy 101
6.3 Algorithm Design . 102
6.4 Specifying Goal Order . 103
6.5 Committing to Proof Methods . 104
6.6 Controlling Backtracking . 106
6.7 Negation as Failure . 108
6.8 Dynamic Databases . 110

6.8.1 The PLANNER Approach . 111
6.9 Bibliographic Notes . 112
6.10 Exercises . 113

7 Rules in Production Systems 117

7.1 Production Systems: Basic Operation 118
7.2 Working Memory . 119
7.3 Production Rules . 120
7.4 A First Example . 122
7.5 A Second Example . 125
7.6 Conflict Resolution . 126
7.7 Making Production Systems More Efficient 127
7.8 Applications and Advantages . 129
7.9 Some Significant Production Rule Systems 130
7.10 Bibliographic Notes . 132
7.11 Exercises . 133

8 Object-Oriented Representation 135

8.1 Objects and Frames . 135
8.2 A Basic Frame Formalism . 136

8.2.1 Generic and Individual Frames 136
8.2.2 Inheritance . 138
8.2.3 Reasoning with Frames . 140

8.3 An Example: Using Frames to Plan a Trip 141
8.3.1 Using the Example Frames 146

8.4 Beyond the Basics . 149
8.4.1 Other Uses of Frames . 149

xii Contents

8.4.2 Extensions to the Frame Formalism 150
8.4.3 Object-Driven Programming with Frames 151

8.5 Bibliographic Notes . 152
8.6 Exercises . 153

9 Structured Descriptions 155

9.1 Descriptions . 156
9.1.1 Noun Phrases . 156
9.1.2 Concepts, Roles, and Constants 157

9.2 A Description Language . 158
9.3 Meaning and Entailment . 160

9.3.1 Interpretations . 160
9.3.2 Truth in an Interpretation . 161
9.3.3 Entailment . 162

9.4 Computing Entailments . 163
9.4.1 Simplifying the Knowledge Base 164
9.4.2 Normalization . 165
9.4.3 Structure Matching . 167
9.4.4 The Correctness of the Subsumption Computation . 168
9.4.5 Computing Satisfaction . 169

9.5 Taxonomies and Classification . 171
9.5.1 A Taxonomy of Atomic Concepts and Constants . . . 172
9.5.2 Computing Classification . 173
9.5.3 Answering the Questions . 175
9.5.4 Taxonomies versus Frame Hierarchies 175
9.5.5 Inheritance and Propagation 176

9.6 Beyond the Basics . 177
9.6.1 Extensions to the Language 177
9.6.2 Applications of Description Logics 179

9.7 Bibliographic Notes . 181
9.8 Exercises . 182

10 Inheritance 187

10.1 Inheritance Networks . 188
10.1.1 Strict Inheritance . 189
10.1.2 Defeasible Inheritance . 190

10.2 Strategies for Defeasible Inheritance 192
10.2.1 The Shortest Path Heuristic 192
10.2.2 Problems with Shortest Path 194
10.2.3 Inferential Distance . 195

10.3 A Formal Account of Inheritance Networks 196
10.3.1 Extensions . 199
10.3.2 Some Subtleties of Inheritance Reasoning 201

Contents xiii

10.4 Bibliographic Notes . 202
10.5 Exercises . 203

11 Defaults 205

11.1 Introduction . 205
11.1.1 Generics and Universals . 206
11.1.2 Default Reasoning . 207
11.1.3 Nonmonotonicity . 209

11.2 Closed-World Reasoning . 209
11.2.1 The Closed-World Assumption 210
11.2.2 Consistency and Completeness of Knowledge 211
11.2.3 Query Evaluation . 211
11.2.4 Consistency and a Generalized Assumption 212
11.2.5 Quantifiers and Domain Closure 213

11.3 Circumscription . 215
11.3.1 Minimal Entailment . 216
11.3.2 The Circumscription Axiom 219
11.3.3 Fixed and Variable Predicates 219

11.4 Default Logic . 222
11.4.1 Default Rules . 222
11.4.2 Default Extensions . 223
11.4.3 Multiple Extensions . 224

11.5 Autoepistemic Logic . 227
11.5.1 Stable Sets and Expansions 228
11.5.2 Enumerating Stable Expansions 230

11.6 Conclusion . 232
11.7 Bibliographic Notes . 233
11.8 Exercises . 233

12 Vagueness, Uncertainty, and Degrees of Belief 237

12.1 Noncategorical Reasoning . 238
12.2 Objective Probability . 239

12.2.1 The Basic Postulates . 240
12.2.2 Conditional Probability and Independence 241

12.3 Subjective Probability . 243
12.3.1 From Statistics to Belief . 244
12.3.2 A Basic Bayesian Approach 245
12.3.3 Belief Networks . 246
12.3.4 An Example Network . 247
12.3.5 Influence Diagrams . 250
12.3.6 Dempster–Shafer Theory . 251

xiv Contents

12.4 Vagueness . 253
12.4.1 Conjunction and Disjunction 255
12.4.2 Rules . 255
12.4.3 A Bayesian Reconstruction 259

12.5 Bibliographic Notes . 262
12.6 Exercises . 263

13 Explanation and Diagnosis 267

13.1 Diagnosis . 268
13.2 Explanation . 269

13.2.1 Some Simplifications . 270
13.2.2 Prime Implicates . 271
13.2.3 Computing Explanations . 272

13.3 A Circuit Example . 273
13.3.1 Abductive Diagnosis . 275
13.3.2 Consistency-Based Diagnosis 277

13.4 Beyond the Basics . 279
13.4.1 Extensions . 279
13.4.2 Other Applications . 280

13.5 Bibliographic Notes . 281
13.6 Exercises . 282

14 Actions 285

14.1 The Situation Calculus . 286
14.1.1 Fluents . 286
14.1.2 Precondition and Effect Axioms 287
14.1.3 Frame Axioms . 288
14.1.4 Using the Situation Calculus 289

14.2 A Simple Solution to the Frame Problem 291
14.2.1 Explanation Closure . 292
14.2.2 Successor State Axioms . 292
14.2.3 Summary . 294

14.3 Complex Actions . 295
14.3.1 The Do Formula . 295
14.3.2 GOLOG . 297
14.3.3 An Example . 298

14.4 Bibliographic Notes . 299
14.5 Exercises . 301

15 Planning 305

15.1 Planning in the Situation Calculus . 306

Contents xv

15.1.1 An Example . 307
15.1.2 Using Resolution . 308

15.2 The STRIPS Representation . 312
15.2.1 Progressive Planning . 314
15.2.2 Regressive Planning . 315

15.3 Planning as a Reasoning Task . 316
15.3.1 Avoiding Redundant Search 317
15.3.2 Application-Dependent Control 318

15.4 Beyond the Basics . 320
15.4.1 Hierarchical Planning . 320
15.4.2 Conditional Planning . 321
15.4.3 “Even the Best-Laid Plans . . .” 322

15.5 Bibliographic Notes . 322
15.6 Exercises . 323

16 The Tradeoff between Expressiveness
and Tractability 327

16.1 A Description Logic Case Study . 329
16.1.1 Two Description Logic Languages 329
16.1.2 Computing Subsumption . 330

16.2 Limited Languages . 332
16.3 What Makes Reasoning Hard? . 334
16.4 Vivid Knowledge . 336

16.4.1 Analogues, Diagrams, Models 337
16.5 Beyond Vivid . 339

16.5.1 Sets of Literals . 339
16.5.2 Incorporating Definitions . 340
16.5.3 Hybrid Reasoning . 340

16.6 Bibliographic Notes . 342
16.7 Exercises . 343

Bibliography 349

Index 377

This Page Intentionally Left Blank

■ PREFACE
■

■

Knowledge representation and reasoning is the area of Artificial Intelli-
gence (AI) concerned with how knowledge can be represented symboli-
cally and manipulated in an automated way by reasoning programs. More
informally, it is the part of AI that is concerned with thinking, and how
thinking contributes to intelligent behavior.

There are, of course, many ways to approach the topic of intelligence
and intelligent behavior: We can, for example, look at the neuroscience,
the psychology, the evolution, and even the philosophy of the concepts
involved. What does knowledge representation have to offer here? As a
field of study it suggests an approach to understanding intelligent behav-
ior that is radically different from the others. Instead of asking us to study
humans or other animals very carefully (their biology, their nervous sys-
tems, their psychology, their sociology, their evolution, or whatever), it
argues that what we need to study is what humans know. It is taken as a
given that what allows humans to behave intelligently is that they know
a lot of things about a lot of things and are able to apply this knowledge
as appropriate to adapt to their environment and achieve their goals. So
in the field of knowledge representation and reasoning we focus on the
knowledge, not on the knower. We ask what any agent—human, animal,
electronic, mechanical—would need to know to behave intelligently, and
what sorts of computational mechanisms might allow its knowledge to be
made available to the agent as required.

This book is the text for an introductory course in this area of research.

REPRESENTATION AND REASONING TOGETHER

The easiest book to have written might have been one that simply surveyed
the representation languages and reasoning systems currently popular
with researchers pushing the frontiers of the field. Instead, we have
taken a definite philosophical stance about what we believe matters in the
research, and then looked at the key concepts involved from this perspec-
tive. What has made the field both intellectually exciting and relevant to
practice, in our opinion, is the interplay between representation and reason-
ing. It is not enough, in other words, to write down what needs to be known

xvii

xviii Preface

in some formal representation language; nor is it enough to develop rea-
soning procedures that are effective for various tasks. Although both of
these are honorable enterprises, knowledge representation and reasoning
is best understood as the study of how knowledge can at the same time
be represented as comprehensively as possible and be reasoned with as
effectively as possible.

There is a tradeoff between these two concerns, which is an implicit
theme throughout the book and one that becomes explicit in the final
chapter. Although we start with first-order logic as our representation
language and logical entailment as the specification for reasoning, this
is just the starting point, and a somewhat simplistic one at that. In sub-
sequent chapters we wander from this starting point, looking at various
representation languages and reasoning schemes with different intuitions
and emphases. In some cases, the reasoning procedure may be less than
ideal; in other cases, it might be the representation language. In still other
cases, we wander far enough from the starting point that it is hard to even
see the logic involved. However, in all cases, we take as fundamental the
impact that needing to reason with knowledge structures has on the form
and scope of the languages used to represent a system’s knowledge.

OUR APPROACH

We believe that it is the job of an introductory course (and an introductory
textbook) to lay a solid foundation, enabling students to understand in a
deep and intuitive way novel work that they may subsequently encounter
and putting them in a position to tackle their own later research. This
foundation does not depend on current systems or the approaches of spe-
cific researchers. Fundamental concepts like knowledge bases, implicit
belief, mechanized inference using sound deductive methods, control of
reasoning, nonmonotonic and probabilistic extensions to inference, and
the formal and precise representation of actions and plans are so basic
to the understanding of AI that we believe that the right approach is to
teach them in a way that parallels the teaching of elementary physics or
economics. This is the approach that we have taken here. We start with
very basic assumptions of the knowledge representation enterprise and
build on them with simplified but pedagogically digestible descriptions of
mechanisms and “laws.” This will ultimately leave the student grounded
in all of the important basic concepts and fully prepared to study and
understand current and advanced work in the field.

This book takes a strong stand on this. We have taken it as our goal to
cover most of the key principles underlying work in knowledge representa-
tion and reasoning in a way that is, above all else, accessible to the student,

Preface xix

and in a sequence that allows later concepts to regularly build directly
on earlier ones. In other words, pedagogical clarity and the importance
of the material were our prime drivers. For well more than ten years we
have taught this material to early graduate students and some fourth-year
undergraduates, and in that time we have tried to pay close attention to
what best prepared the students to jump directly from our course into the
active research literature. Over the years we have tuned and refined the
material to match the needs and feedback of the students; we believe that
this has resulted in a very successful one-semester course, and one that is
unique in its focus on core principles and fundamental mechanisms with-
out being slanted toward our own technical work or interests of the week.
Based on our experience with the course, we approached the construction
of the book in a top-down way: We first outlined the most important topics
in what we felt was the ideal sequence, and then worked to determine the
appropriate relative weight (i.e., chapter length) of each set of concepts in
the overall book. As we wrote, we worked hard to stay within the structure
and bounds that we had initially set, despite the frequent temptation to
just keep writing about certain topics. We will have to leave it to you, our
reader, to judge, but we feel that the relative emphases and scope of the
chapters are important contributions to the value of the book.

Perhaps it would have been nice to have written the comprehensive
and up-to-the-minute book that might have become the “bible” of the
field, and we may someday tilt at that windmill. But that is not the book
we set out to write. By adhering to the approach outlined here, we have
created something that fits very well in a one-semester course on the prin-
ciples and mechanisms that underlie most of the important work going
on in the field. In a moment, we will discuss other courses that could be
built on top of this textbook, but we feel that it is important for you to
know that the book you hold in your hands is first and foremost about the
basics. It is intended to put students and practitioners on a firm enough
foundation that they can build substantial later work on top of what they
learn here.

OVERVIEW OF THE BOOK

The text is organized as follows. The first chapter provides an overview
and motivation for the area of knowledge representation and reason-
ing and defines the core concepts on which the rest of the book is built.
It also spells out the fundamental relationships between knowledge, rep-
resentation, and reasoning that underlie the rest of the material in the
text. Chapters 2 through 4 are concerned with the basic techniques of

xx Preface

knowledge representation using first-order logic in a direct way. These
early chapters introduce the notation of first-order logic, show how it
can be used to represent commonsense worlds, and cover the key reason-
ing technique of Resolution theorem-proving. Chapters 5 through 7 are
concerned with representing knowledge in a more limited way, so that
the reasoning is more amenable to procedural control; among the impor-
tant concepts covered are rule-based systems. Chapters 8 through 10 deal
with a more object-oriented approach to knowledge representation and
the taxonomic reasoning that goes with it. Here we delve into the ideas
of frame representations and description logics and spend time on the
notion of inheritance in hierarchies of concepts. Chapters 11 and 12 deal
with reasoning that is uncertain or logically unsound, using defaults and
probabilities. Chapters 13 through 15 deal with forms of reasoning that go
beyond simply drawing conclusions from what is known, including per-
forming diagnosis and generating plans using knowledge about actions.
Finally, Chapter 16 explores the tradeoff mentioned earlier.

Exercises are included at the end of each chapter. These exercises
focus on the technical aspects of knowledge representation and reason-
ing, although it should be possible with this book to consider essay-type
questions as well. The exercises tend to be more than just drills, often
introducing new ideas or extending those presented in the text. All of
them have been student tested. Depending on the students involved, a
course instructor may want to emphasize the programming questions and
deemphasize the mathematics, or perhaps vice versa.

Each chapter includes a short section of bibliographic notes and
citations. Although far from complete, these can serve as entry points
into the research literature related to the chapter. As stated, it is one of
our main pedagogical goals that students who have mastered the top-
ics of the book should be able to read and understand research papers.
In this sense, the book is intended to hold a position somewhere
between the general AI textbooks that give an overview of the entire
field (but somewhat cursorily) and the technical research papers them-
selves (which are more appropriately covered in an advanced graduate
course, perhaps).

AN INTRODUCTORY COURSE

The material in this book has been used for the past ten years or so in a one-
semester (26 hours) introductory course on knowledge representation and
reasoning taught at the University of Toronto. (Drafts of the actual text
have only been available to students for the past three years.) This course
is typically taken by first-year graduate students in computer science, with

Preface xxi

a smattering of fourth-year computer science undergraduates as well as
occasional graduate students from other departments. The syllabus of the
course has evolved over the years, but has converged on the 16 chapters
of this book, presented in sequence. Students are assigned four problem
sets, from which we have culled the exercises appearing in the book. There
are two tests given in class, and no final exam.

In our opinion, going through the entire book in sequence, and espe-
cially doing the exercises in each chapter, is the best way to learn the
basics of knowledge representation. It takes one-hour lectures to cover
most chapters, with the chapters on description logic (9), defaults (11),
uncertainty (12), diagnosis (13), action (14), and the tradeoff (16) each
requiring an additional hour, and the chapter on Resolution (4) requir-
ing a bit more. This adds up to about 24 total hours; in our course, the
remaining two hours have been used for tests.

Even if some of the chapters appear to have less immediate relevance to
current AI research—for instance, the chapters on procedural reasoning
(6) and inheritance (10)—they introduce concepts that remain interesting
and important. Negation as failure, for example, introduced in Chapter
6 on procedural representations, is the source of many other ideas that
appear elsewhere in the text. Similarly, we feel that students benefit from
having seen defeasible inheritance in Chapter 10 before seeing the more
demanding Chapter 11 on default reasoning. Before seeing inheritance, it
helps to have seen slots with default values used in commonsense exam-
ples in Chapter 8 on frames. Before seeing frames, it helps to have seen
procedural representations in a non-object-oriented form in Chapter 6.
And so on.

On the other hand, despite the many historical and conceptual connec-
tions among the chapters, only a few chapters are absolutely necessary
from a technical point of view in order to understand the technical mate-
rial and do the exercises in later chapters. We can think of these as strong
prerequisites. Here is a breakdown:

■ Chapter 2 on first-order logic is a strong prerequisite to Chapters 3
on expressing knowledge, 4 on Resolution, 9 on description logic,
11 on default reasoning, and 14 on action;

■ Chapter 4 on Resolution is a strong prerequisite to Chapters 5 on
Horn logic and 13 on diagnosis;

■ Chapter 9 on description logic is a strong prerequisite to Chapter
16 on the tradeoff;

■ Chapter 14 on actions is a strong prerequisite to Chapter 15 on
planning.

Other than these, any chapter appearing before any other in the sequence
can be thought of as “recommended preparation.”

xxii Preface

USING PARTS OF THE BOOK

As we have emphasized, this book matches up best with a full-semester
course intending to cover the basic foundations in knowledge representa-
tion and reasoning. However, we believe that it is possible to meaningfully
use parts of the book in a shorter course, or in a course that delves more
deeply into one or more sets of issues of current interest.

Here is our recommendation for a course on knowledge representation
that takes about two thirds of the time as the full course (roughly 16
classroom hours):

A short course

Chapters 1 (introduction), 2 (first-order logic), 3 (expressing knowl-
edge), 4 (Resolution), 9 (description logic), 11 (default reasoning),
12 (vague representations and probabilistic reasoning), 14 (reasoning
about action), and 16 (the tradeoff).

In our opinion, these are the core chapters, and armed with these a student
should be able to understand the context at least of research papers in the
major subareas of the field.

One possibility for an advanced course in knowledge representation is
to cover the core chapters and then supplement them, according to the
interests of the students and instructor, with additional chapters from the
book and research papers selected by the instructor.

Without attempting to be exhaustive, here are some suggestions for
advanced courses that could still use this book to provide the broader
picture:

1. limited reasoning: add Chapter 5 on Horn logic, and papers on
logics of explicit belief, modern description logics, knowledge
compilation, and limited rationality;

2. constraint satisfaction: add Chapter 5 on Horn logic, and papers
on SAT, arc consistency, problems of bounded tree width, and
theoretical properties of randomized problems;

3. answer set programming: add Chapter 5 on Horn logic, Chapter 6
on procedural representations, and papers on default logic and the
varieties of semantics for logic programs;

4. ontology: add Chapter 8 on frames, and papers on modern descrip-
tion logics, the CYC project, and the semantic web;

5. semantic networks: add Chapter 8 on frames, Chapter 10 on inheri-
tance, and papers on associative reasoning, mental models, mean-
ing representations for natural language, and modern semantic
network languages (e.g., Conceptual Graphs, SNePS);

Preface xxiii

6. belief revision: add Chapter 10 on inheritance, and papers on logics
of knowledge, the AGM postulates, nonmonotonic reasoning, and
knowledge and action;

7. rule-based systems: add Chapter 6 on procedural representations,
Chapter 7 on production systems, and papers on the SOAR project
and case studies of deployed systems;

8. medical applications: add Chapter 7 on production systems,
Chapter 13 on explanation and diagnosis, and papers on expert
systems in medicine, as well as those on model-based diagnosis
and treatment prescription;

9. belief networks: add papers on reasoning methods based on propa-
gation for special network topologies, approximate reasoning, and
expectation maximization (EM);

10. planning algorithms: add Chapter 15 on planning, and papers on
graph-based planning, SAT-based planning, conditional planning,
and decision-theoretic planning;

11. cognitive robotics: add Chapter 15 on planning, and papers on the
logics of knowledge and action, sensing, and dealing with noise;

12. agent theory: add Chapter 15 on planning, and papers on the logics
of belief, goals, intentions, and communicative actions.

Finally, it is worth addressing one notable omission. Given the scope of
our course, we have chosen not to attempt to cover learning. Learning is
a rich and full subfield of AI on its own, and given the wide variety of ways
that humans seem to learn (by reading, by being taught, by observing, by
trial and error, by mental simulation, etc.), as an area of intellectual pur-
suit it would easily be worth a semester’s introductory course of its own.
Our own belief is that it will be very important for the learning community
and the knowledge representation community to find significant common
ground—after all, ultimately, intelligent systems will need to do both and
we would expect significant common foundations for both areas. Perhaps
by the time a second edition of this text might be warranted there will be
enough to say on this issue to facilitate a new chapter.

A NOTE TO THE PRACTITIONER

Although it is clear that when we designed this textbook we had most
directly in mind the student who was planning to go on to further study
or research in AI, we have tried to stay aware of the potential role of

xxiv Preface

this material in the lives of those who are already in the field and are
practicing their trade in a more down-to-earth systems- and applications-
building way. The complementarity between the more academic side of
the field and its more practical side has been an important ingredient in
our own technical work, and the ultimate use of this textbook by the more
pragmatic community is important to us.

The current textbook is clearly not a self-contained practitioner’s
“handbook,” and there is not an emphasis here on detailed issues of direct
practical impact. However, our own experience in building AI systems
(and we have built and deployed several with teams of collaborators) has
taught us that a deep understanding of the concepts explained in this book
is an invaluable part of the practitioner’s toolkit. As we have mentioned
here, and is clearly emphasized in the text, we believe that the reason-
ing side of the equation is as important as the representation side, and
boils down in the end to the question of building reasoning systems that
operate within the time and resource constraints of the applications that
need them. Further, as described, we have written the text in a fashion
that emphasizes simplicity of description of the mechanisms and the basic
generality of the material. As a result, we believe that the understanding of
the content here would be of great value to someone building systems in
industry or supporting a research or development team in a laboratory or
other enterprise. Among the exercises, for example, we include program-
ming tasks that should help practitioners understand the core principles
behind almost all of the approaches covered in the text. Also, in almost
all cases there are fielded systems based on the technologies treated here,
and these are either pointed to in the bibliographic notes or are easily
accessible in conference proceedings (e.g., from the Innovative Applica-
tions of AI conference, sponsored by AAAI) or on the Internet. There are
ways to augment the core material presented in the book to make it even
more valuable for practitioners, and we are eager to hear from you with
your suggestions for doing that.

A NOTE TO THE EXPERIENCED RESEARCHER

No single book of this size can be expected to cover all the topics one
might think of as essential to the study of knowledge representation, and
as we have mentioned, that was never our intention. If you are actively
involved in research in the area, there is a good chance that your sub-
area is only partly covered here, or perhaps is not covered at all. As we
have prepared the material in the book, one comment we have heard
from time to time is that it would be “inconceivable” to do a book on
knowledge representation without covering topic X (where inevitably
the person making the comment happened to work on topic X). Such

Preface xxv

comments may be justified, but as we have tried to emphasize, our focus
was on pedagogically digestible material covering a limited number of
core concepts in the field. We chose quite intentionally to limit what we
covered.

But even having made that decision, there are of course even further
choices that needed to be made. Some of these clearly involved our own
personal preferences and research history. When it comes to modeling
change, should we focus on belief change or world change? (We chose
the latter.) Should we deal with world change in terms of action or time?
(The former.) Should it be in a modal or a reified representation language?
(The latter—hence Chapter 14.) Other choices were possible.

In other cases, what might appear to be missing material might involve
a slight misinterpretation of what we set out to do. This book is not
intended to be a text on logic-based AI, for example. Although logic plays
an important role in our approach (as explained in Chapter 1), there is sig-
nificant work on logic that is not essential to knowledge representation.
Similarly, this is not a book about ontologies or knowledge-based sys-
tems. Although we will define what we mean by a knowledge-based system
(again, in Chapter 1) and use this to motivate what follows, the techniques
for engineering such systems and developing suitable large-scale ontolo-
gies involve a different set of concerns. Nor is the book intended as a text in
cognitive science. We do believe that cognitive science should be informed
by the considerations raised here and vice versa, but in the end the goals
of cognitive science suggest an approach that, despite being broad and
interdisciplinary, is still focused on the study of people—the knower, not
the knowledge.

Finally, as mentioned earlier, this book is not intended to be a complete
overview of the field or of the current state of the art. Those interested
in learning about the latest advances will need to look elsewhere. What
we have intended to cover are the basic foundational ideas that underlie
research in the field. What we lose in immediacy and topicality, we hope
to gain in the long run in applicability.

One last caveat: As will be apparent to the expert, we have made many
significant simplifications. Each of our chapters presents a simplified and
sometimes nonstandard form of representation or reasoning: We intro-
duce logic, of course, but only first-order predicate calculus; we present
a definition of Resolution that does not work in all cases; we define pro-
duction systems, but virtually ignore their implementations; we present
description logics, but with a subsumption procedure that has largely
been superseded by a different type of method; we define only one sort of
preemption in inheritance networks; we present a version of default logic
that is known to exhibit anomalies; we omit the circumscription schema
and axiom altogether; we present belief networks with only the most rudi-
mentary form of reasoning procedure; we present the situation calculus,
but with very strict assumptions about how actions can be represented;

xxvi Preface

we define planning, but only hint at how planning procedures can be made
to run efficiently.

As should now be clear, we have made these simplifications for peda-
gogical reasons and to create a course of modest scope and length. It is
true, for instance, that we do not use Reiter’s original definition of a default
extension. What we do present, however, works identically in many cases,
and is much easier for students to digest (some of this has been learned
through hard experience with our students over the years). Near the end,
with the basics in hand, we can then raise the somewhat esoteric exam-
ples that are not well-handled by our definition, and suggest Reiter’s
much more complex version as a way to deal with them.

Having said all of this, comments and corrections on all aspects of the
book are most welcome and should be sent to the authors.

■ ACKNOWLEDGMENTS
■

■

To quote Crosby, Stills, and Nash (and perhaps date ourselves), “It’s been
a long time comin’.” The impetus for this book goes back to a tutorial
on knowledge representation that we presented at the International Joint
Conference on Artificial Intelligence in Karlsruhe, in 1983. In the process
of preparing that overview of the field and a subsequent collection of read-
ings that grew out of it, we began to see research in the area as primarily
an attempt to reconcile two conflicting goals: to represent knowledge (and
especially, incomplete knowledge) as generally as possible, and to reason
with it in an automated way as efficiently as possible. This was an idea
that surfaced in some of our own research papers of the time, but as we
came to see it as a commonality across much of the work in the area,
we also came to feel that it really needed a great deal more thought, and
perhaps even a book, to develop in detail. A lot of plans, a lot of talk, and
a lot of stalling intervened, but we finally offered an introductory course
on these ideas at the University of Toronto in 1987, and then yearly start-
ing in 1992. As the course matured and we evolved ways to explain the
core mechanisms of various representation frameworks in simple terms,
the idea of a new introduction to the field took shape. At that stage, what
existed were slides for lectures, and subsequently, detailed notes for an
ambitious and comprehensive book that would have been about twice the
size of the current one. We began writing drafts of chapters on and off
around 1994, but it took till the start of the new millennium before we had
enough material to hand out to students. The last year or two has been
spent fine-tuning the manuscript, weaving elements of the different chap-
ters together, integrating exercises, and ultimately trying to find enough
time to put it all together. It seems nothing short of miraculous to us that
we’ve finally managed to do it!

Many people contributed directly and indirectly to bringing this text
into existence. We thank our colleagues at Fairchild, Schlumberger, Bell
Labs, AT&T Labs, DARPA, CNRI, and the University of Toronto, as well
as the institutions themselves, for providing the wonderful intellectual
environments and resources to support endeavors of this nature.

We first want to acknowledge our dear colleague and friend, the late
Ray Reiter, who inspired and encouraged us year after year. We miss him
terribly. His ideas are everywhere in the book. We also thank Maurice

xxvii

xxviii Acknowledgments

Pagnucco, who agreed to do the bibliographic notes and compile the
bibliography for us, and did an extraordinary job in a very short time.

Over the years, many other friends and colleagues contributed, in one
way or another, to this project. Ron would like to thank his colleagues
from AT&T who contributed so much to his work and the general back-
drop of this book, including especially those in the CLASSIC group, namely,
Alex Borgida (Rutgers), Deborah McGuinness, Peter Patel-Schneider,
and Lori Alperin Resnick. His immediate supporting team of managers
and colleagues helped to create the world’s best environment for AI
research: Bill Aiello, Julia Hirschberg, Larry Jackel, Candy Kamm, Henry
Kautz, Michael Kearns, Dave Maher, Fernando Pereira, John Rotondo,
and Gregg Vesonder. Ron would also like to give special thanks to Ken
Schmidt, who provided so much assistance in his lab at AT&T, and more
recently at DARPA. Hector would like to acknowledge Jim Delgrande, Jim
des Rivières, Patrick Dymond, Patrick Feehan, and Maurice Pagnucco.
Some of them may think that they’ve had nothing to do with this book,
but they’d be wrong. Without their friendship and support there would
be no book. He would also like to thank Sebastian Sardiña, Mikhail
Soutchanski, and Eugenia Ternovskaia, who served as teaching assistants
for the knowledge representation course and helped debug the exercises,
and all the members of the Cognitive Robotics group, with a special men-
tion to the external members, Giuseppe de Giacomo, Gerhard Lakemeyer,
Yves Lespérance, Fangzhen Lin, Fiora Pirri, and Richard Scherl. Special
thanks also to Phil Cohen, Richard Fikes, and David Israel, with whom
we both have had such enjoyable and exciting collaborations over many
years.

We also need to express our deep gratitude to all of our secretaries and
assistants over the lifetime of this enterprise; they were essential in so
many ways: Helen Surridge, Kara Witzal, Romaine Abbott, Marion Riley,
Mary Jane Utter, and Linda Morris, and Veronica Archibald, Belinda
Lobo, and Marina Haloulos.

A number of students and instructors have used drafts of the text over
the years and have helped us fix a healthy number of bugs and oversights.
Among them, we especially thank Selmer Bringsjord, Shannon Dalmao,
Ken Forbus, Peter Kanareitsev, Ioannis Kassios, Gerhard Lakemeyer,
Wendy Liu, Phuong The Nguyen, Maurice Pagnucco, Bill Rapaport,
Debajyoti Ray, Ray Reiter, Sebastian Sardiña, Richard Scherl, Patricio
Simari, and Nina Thiessen. We also wish to acknowledge our esteemed
colleagues, Tony Cohn, Jim Delgrande, Henry Kautz, Bernhard Nebel,
and Peter Norvig, who reviewed a draft in detail for the publisher and
gave us invaluable feedback at many levels. All remaining errors are our
fault alone, of course, although in reading this, the reader agrees to accept
the current volume as is, with no warranty of correctness expressed or
implied. Right.

Acknowledgments xxix

We would also like to thank Denise Penrose and Valerie Witte and
the other staff members at Morgan Kaufmann and Elsevier, as well as
Dan Fitzgerald and Seth Reichgott, all of whom provided enormous sup-
port and enthusiasm in the development and production of this book.
Mike Morgan was also very encouraging and helpful in the early stages,
and always treated us better than we felt we deserved. Financial support
for this research was gratefully received from the Natural Sciences and
Engineering Research Council of Canada, and the Canadian Institute for
Advanced Research.

Last, but nowhere near least, we would like to thank our families—
Gwen, Rebecca, and Lauren; and Pat, Michelle, and Marc—who heard
us talking about doing this book for so long, it became a bit of a family
joke. Well guys, joke or not, here it is!

Ron Brachman and Hector Levesque
WESTFIELD, NEW JERSEY, AND TORONTO, ONTARIO

DECEMBER 2003

This Page Intentionally Left Blank

C H A P T E R 1

INTRODUCTION

■

■

■

Intelligence, as exhibited by people anyway, is surely one of the most
complex and mysterious phenomena that we are aware of. One striking
aspect of intelligent behavior is that it is clearly conditioned by knowledge:
for a very wide range of activities, we make decisions about what to do
based on what we know (or believe) about the world, effortlessly and
unconsciously. Using what we know in this way is so commonplace that
we only really pay attention to it when it is not there. When we say that
someone has behaved unintelligently, like when someone has used a lit
match to see if there is any gas in a car’s gas tank, what we usually mean
is not that there is something that the person did not know, but rather
that the person has failed to use what he or she did know. We might say,
“You weren’t thinking!” Indeed, it is thinking that is supposed to bring
what is relevant in what we know to bear on what we are trying to do.

One definition of Artificial Intelligence (AI) is that it is the study of
intelligent behavior achieved through computational means. Knowledge
representation and reasoning, then, is that part of AI that is concerned
with how an agent uses what it knows in deciding what to do. It is the
study of thinking as a computational process. This book is an introduction
to that field and in particular, to the symbolic structures it has invented
for representing knowledge and to the computational processes it has
devised for reasoning with those symbolic structures.

If this book is an introduction to the area, then this chapter is an
introduction to the introduction. In it, we will try to address, if only
briefly, some significant questions that surround the deep and challenging
topics of the field: What exactly do we mean by “knowledge,” by “repre-
sentation,” and by “reasoning,” and why do we think these concepts are

1

2 Chapter 1 ■ Introduction

useful for building AI systems? In the end, these are philosophical ques-
tions, and thorny ones at that; they bear considerable investigation by
those with a more philosophical bent and can be the subject matter of
whole careers. But the purpose of this chapter is not to cover in any detail
what philosophers, logicians, and computer scientists have said about
knowledge over the years; it is rather to glance at some of the main issues
involved, and examine their bearings on Artificial Intelligence and the
prospect of a machine that could think.

1.1 THE KEY CONCEPTS: KNOWLEDGE, REPRESENTATION,
AND REASONING

Knowledge What is knowledge? This is a question that has been dis-
cussed by philosophers since the ancient Greeks, and it is still not totally
demystified. We certainly will not attempt to be done with it here. But
to get a rough sense of what knowledge is supposed to be, it is useful to
look at how we talk about it informally.

First, observe that when we say something like “John knows that …,”
we fill in the blank with a simple declarative sentence. So we might
say, “John knows that Mary will come to the party,” or “John knows
that Abraham Lincoln was assassinated.” This suggests that, among
other things, knowledge is a relation between a knower, like John, and
a proposition, that is, the idea expressed by a simple declarative sentence,
like “Mary will come to the party.”

Part of the mystery surrounding knowledge is due to the nature of
propositions. What can we say about them? As far as we are concerned,
what matters about propositions is that they are abstract entities that can
be true or false, right or wrong.1 When we say, “John knows that p,” we
can just as well say, “John knows that it is true that p.” Either way, to say
that John knows something is to say that John has formed a judgment
of some sort, and has come to realize that the world is one way and not
another. In talking about this judgment, we use propositions to classify
the two cases.

A similar story can be told about a sentence like “John hopes that
Mary will come to the party.” The same proposition is involved, but
the relationship John has to it is different. Verbs like “knows,” “hopes,”

1Strictly speaking, we might want to say that the sentences expressing the proposition are
true or false, and that the propositions themselves are either factual or nonfactual. Further,
because of linguistic features such as indexicals (that is, words whose referents change with
the context in which they are uttered, such as “me” and “yesterday”), we more accurately
say that it is actual tokens of sentences or their uses in specific contexts that are true or false,
not the sentences themselves.

1.1 The Key Concepts: Knowledge, Representation, and Reasoning 3

“regrets,” “fears,” and “doubts” all denote propositional attitudes, rela-
tionships between agents and propositions. In all cases, what matters
about the proposition is its truth: If John hopes that Mary will come to
the party, then John is hoping that the world is one way and not another,
as classified by the proposition.

Of course, there are sentences involving knowledge that do not explic-
itly mention propositions. When we say, “John knows who Mary is
taking to the party,” or “John knows how to get there,” we can at
least imagine the implicit propositions: “John knows that Mary is tak-
ing so-and-so to the party,” or “John knows that to get to the party,
you go two blocks past Main Street, turn left, …,” and so on. On the
other hand, when we say that John has a skill, as in “John knows how
to play piano,” or a deep understanding of someone or something, as
in “John knows Bill well,” it is not so clear that any useful proposition
is involved. While this is certainly challenging subject matter, we will
have nothing further to say about this latter form of knowledge in this
book.

A related notion that we are concerned with, however, is the con-
cept of belief. The sentence “John believes that p” is clearly related
to “John knows that p.” We use the former when we do not wish
to claim that John’s judgment about the world is necessarily accurate
or held for appropriate reasons. We sometimes use it when we feel
that John might not be completely convinced. In fact, we have a full
range of propositional attitudes, expressed by sentences like “John is
absolutely certain that p,” “John is confident that p,” “John is of the
opinion that p,” “John suspects that p,” and so on, that differ only in
the level of conviction they attribute. For now, we will not distinguish
among any of them. What matters is that they all share with knowl-
edge a very basic idea: John takes the world to be one way and not
another.

Representation The concept of representation is as philosophically
vexing as that of knowledge. Very roughly speaking, representation is
a relationship between two domains, where the first is meant to “stand
for” or take the place of the second. Usually, the first domain, the
representor, is more concrete, immediate, or accessible in some way
than the second. For example, a drawing of a milkshake and a hamburger
on a sign might stand for a less immediately visible fast food restaurant;
the drawing of a circle with a plus below it might stand for the much
more abstract concept of womanhood; an elected legislator might stand
for his or her constituency.

The type of representor that we will be most concerned with here
is the formal symbol, that is, a character or group of characters taken
from some predetermined alphabet. The digit “7,” for example, stands
for the number 7, as does the group of letters “VII” and, in other

4 Chapter 1 ■ Introduction

contexts, the words sept and shichi. As with all representation, it is
assumed to be easier to deal with symbols (recognize them, distinguish
them from each other, display them, etc.) than with what the symbols
represent. In some cases, a word like “John” might stand for some-
thing quite concrete; but many words, like “love” or “truth,” stand for
abstractions.

Of special concern to us is when a group of formal symbols stands
for a proposition: “John loves Mary” stands for the proposition that John
loves Mary. Again, the symbolic English sentence is fairly concrete: It
has distinguishable parts involving the three words, for example, and
a recognizable syntax. The proposition, on the other hand, is abstract.
It is something like a classification of all the different ways we can ima-
gine the world to be into two groups: those where John loves Mary, and
those where he does not.

Knowledge representation, then, is the field of study concerned with
using formal symbols to represent a collection of propositions believed
by some putative agent. As we will see, however, we do not want to insist
that these symbols must represent all the propositions believed by the
agent. There may very well be an infinite number of propositions believed,
only a finite number of which are ever represented. It will be the role
of reasoning to bridge the gap between what is represented and what is
believed.

Reasoning So what is reasoning? In general, it is the formal manipu-
lation of the symbols representing a collection of believed propositions
to produce representations of new ones. It is here that we use the fact
that symbols are more accessible than the propositions they represent:
They must be concrete enough that we can manipulate them (move them
around, take them apart, copy them, string them together) in such a way
as to construct representations of new propositions.

It is useful here to draw an analogy with arithmetic. We can think of
binary addition as being a certain formal manipulation: We start with
symbols like “1011” and “10,” for instance, and end up with “1101.” The
manipulation in this case is addition, because the final symbol repre-
sents the sum of the numbers represented by the initial ones. Reasoning
is similar: We might start with the sentences “John loves Mary” and
“Mary is coming to the party,” and after a certain amount of manip-
ulation produce the sentence, “Someone John loves is coming to the
party.” We would call this form of reasoning logical inference because
the final sentence represents a logical conclusion of the propositions
represented by the initial ones, as we will discuss later. According to
this view (first put forward, incidentally, by the philosopher Gottfried
Leibniz in the seventeenth century), reasoning is a form of calculation,
not unlike arithmetic, but over symbols standing for propositions rather
than numbers.

1.2 Why Knowledge Representation and Reasoning? 5

1.2 WHY KNOWLEDGE REPRESENTATION AND REASONING?

Why is knowledge even relevant at all to AI systems? The first answer
that comes to mind is that it is sometimes useful to describe the behavior
of sufficiently complex systems (human or otherwise) using a vocabulary
involving terms like “beliefs,” “desires,” “goals,” “intentions,” “hopes,”
and so on.

Imagine, for example, playing a game of chess against a complex
chess-playing program. In looking at one of its moves, we might say to
ourselves something like this: “It moved this way because it believed its
queen was vulnerable, but still wanted to attack the rook.” In terms of
how the chess-playing program is actually constructed, we might have
said something more like, “It moved this way because evaluation proce-
dure P using static evaluation function Q returned a value of +7 after an
alpha-beta minimax search to depth 4.” The problem is that this second
description, although perhaps quite accurate, is at the wrong level of
detail, and does not help us determine what chess move we should make in
response. Much more useful is to understand the behavior of the program
in terms of the immediate goals being pursued relative to its beliefs, long-
term intentions, and so on. This is what the philosopher Daniel Dennett
calls taking an intentional stance toward the chess-playing system.

This is not to say that an intentional stance is always appropriate. We
might think of a thermostat, to take a classic example, as “knowing” that
the room is too cold and “wanting” to warm it up. But this type of anthro-
pomorphization is typically inappropriate—there is a perfectly workable
electrical account of what is going on. Moreover, it can often be quite
misleading to describe a system in intentional terms: Using this kind
of vocabulary, we could end up fooling ourselves into thinking we are
dealing with something much more sophisticated than it actually is.

But there’s a more basic question: Is this what knowledge represen-
tation is all about? Is all the talk about knowledge just that—talk—a stance
one may or may not choose to take toward a complex system?

To understand the answer, first observe that the intentional stance
says nothing about what is or is not represented symbolically within
a system. In the chess-playing program, the board position might be rep-
resented symbolically, say, but the goal of getting a knight out early, for
instance, may not be. Such a goal might only emerge out of a complex
interplay of many different aspects of the program, its evaluation func-
tions, book move library, and so on. Yet we may still choose to describe
the system as “having” this goal if this properly explains its behavior.

So what role is played by a symbolic representation? The hypothe-
sis underlying work in knowledge representation is that we will want
to construct systems that contain symbolic representations with two
important properties. First is that we (from the outside) can understand

6 Chapter 1 ■ Introduction

them as standing for propositions. Second is that the system is
designed to behave the way that it does because of these symbolic
representations. This is what the philosopher Brian Smith calls the
Knowledge Representation Hypothesis:

Any mechanically embodied intelligent process will be comprised of
structural ingredients that a) we as external observers naturally take
to represent a propositional account of the knowledge that the overall
process exhibits, and b) independent of such external semantic attri-
bution, play a formal but causal and essential role in engendering the
behaviour that manifests that knowledge.

In other words, the Knowledge Representation Hypothesis implies
that we will want to construct systems for which the intentional
stance is grounded by design in symbolic representations. We will call
such systems knowledge-based systems and the symbolic representations
involved their knowledge bases (KBs).

1.2.1 Knowledge-Based Systems
To see what a knowledge-based system amounts to, it is helpful to look at
two very simple PROLOG programs with identical behavior. Consider the
first:

printColor(snow) :- !, write("It’s white.").
printColor(grass) :- !, write("It’s green.").
printColor(sky) :- !, write("It’s yellow.").
printColor(X) :- write("Beats me.").

Here is an alternate:

printColor(X) :- color(X,Y), !,
write("It’s "), write(Y), write(".").

printColor(X) :- write("Beats me.").
color(snow,white).
color(sky,yellow).
color(X,Y) :- madeof(X,Z), color(Z,Y).
madeof(grass,vegetation).
color(vegetation,green).

Observe that both programs are able to print out the color of various
items (getting the sky wrong, as it turns out). Taking an intentional stance,
both might be said to “know” that the color of snow is white. The crucial
point, as we will see, however, is that only the second program is designed
according to the Knowledge Representation Hypothesis.

1.2 Why Knowledge Representation and Reasoning? 7

Consider the clause color(snow,white), for example. This is a sym-
bolic structure that we can understand as representing the proposition
that snow is white, and moreover, we know, by virtue of knowing how
the PROLOG interpreter works, that the system prints out the appropriate
color of snow precisely because it bumps into this clause at just the right
time. Remove the clause and the system would no longer do so.

There is no such clause in the first program. The one that comes closest
is the first clause of the program, which says what to print when asked
about snow. But we would be hard-pressed to say that this clause literally
represents a belief, except perhaps a belief about what ought to be printed.

So what makes a system knowledge-based, as far as we are concerned,
is not the use of a logical formalism (like PROLOG), or the fact that it
is complex enough to merit an intentional description involving knowl-
edge, or the fact that what it believes is true; rather, it is the presence of
a knowledge base, a collection of symbolic structures representing what
it believes and reasons with during the operation of the system.

Much (though not all) of AI involves building systems that are
knowledge-based in this way, that is, systems whose ability derives in part
from reasoning over explicitly represented knowledge. So-called expert
systems are a very clear case, but we also find KBs in the areas of language
understanding, planning, diagnosis, and learning. Many AI systems are
also knowledge-based to a somewhat lesser extent—some game-playing
and high-level vision systems, for instance. Finally, some AI systems are
not knowledge-based at all: Low-level speech, vision, and motor-control
systems typically encode what they need to know directly in the programs
themselves.

How much of intelligent behavior needs to be knowledge-based in
this sense? This remains an open research question. Perhaps the most
serious challenge to the Knowledge Representation Hypothesis is the
“connectionist” methodology, which attempts to avoid any kind of sym-
bolic representation and reasoning, and instead advocates computing
with networks of weighted links between artificial “neurons.”

1.2.2 Why Knowledge Representation?
An obvious question arises when we start thinking about the two PROLOG

programs of the previous section: What advantage, if any, does the
knowledge-based one have? Wouldn’t it be better to “compile out” the
KB and distribute this knowledge to the procedures that need it, as we
did in the first program? The performance of the system would certainly
be better. It can only slow a system down to have to look up facts in
a KB and reason with them at runtime in order to decide what actions
to take. Indeed, advocates within AI of what has been called procedural
knowledge take pretty much this point of view.

8 Chapter 1 ■ Introduction

When we think about the various skills we have, such as riding
a bicycle or playing a piano, it certainly feels like we do not reason about
the various actions to take (shifting our weight or moving our fingers);
it seems much more like we just know what to do, and do it. In fact, if
we try to think about what we are doing, we end up making a mess of it.
Perhaps (the argument goes), this applies to most of our activities: making
a meal, getting a job, staying alive, and so on.

Of course, when we first learn these skills, the case is not so clear:
It seems like we need to think deliberately about what we are doing,
even riding a bicycle. The philosopher Hubert Dreyfus first observed
this paradox of “expert systems.” These systems are claimed to be sup-
erior precisely because they are knowledge-based, that is, they reason
over explicitly represented knowledge. But novices are the ones who
think and reason, claims Dreyfus. Experts do not; they learn to recog-
nize and to react. The difference between a chess master and a chess
novice is that the novice needs to figure out what is happening and
what to do, but the master just “sees” it. For this reason (among oth-
ers), Dreyfus believes that the development of knowledge-based systems
is completely wrongheaded if it is attempting to duplicate human-level
intelligent behavior.

So why even consider knowledge-based systems? Unfortunately, no
definitive answer can yet be given. We suspect, however, that the answer
will emerge in our desire to build a system that can deal with a set of
tasks that is open-ended. For any fixed set of tasks it might work to “com-
pile out” what the system needs to know, but if the set of tasks is not
determined in advance, the strategy will not work. The ability to make
behavior depend on explicitly represented knowledge seems to pay off
when we cannot specify in advance how that knowledge will be used.

A good example of this is what happens when we read a book. Suppose
we are reading about South American geography. When we find out
for the first time that approximately half of the population of Peru lives
in the Andes, we are in no position to distribute this piece of knowledge
to the various routines that might eventually require it. Instead, it seems
pretty clear that we are able to assimilate the fact in declarative form
for a very wide variety of potential uses. This is a prototypical case of
a knowledge-based approach.

Further, from a system-design point of view, the knowledge-based
approach exhibited by the second PROLOG program seems to have a
number of desirable features:

■ We can add new tasks and easily make them depend on previous
knowledge. In our PROLOG program example, we can add the task of
enumerating all objects of a given color, or even of painting a pic-
ture, by making use of the already specified KB to determine the
colors.

1.2 Why Knowledge Representation and Reasoning? 9

■ We can extend the existing behavior by adding new beliefs. For
example, by adding a clause saying that canaries are yellow,
we automatically propagate this information to any routine that
needs it.

■ We can debug faulty behavior by locating the erroneous beliefs of
the system. In the PROLOG example, by changing the clause for the
color of the sky, we automatically correct any routine that uses
color information.

■ We can concisely explain and justify the behavior of the system.
Why did the program say that grass was green? It was because
it believed that grass is a form of vegetation and that vegetation
is green. We are justified in saying “because” here, since if we
removed either of the two relevant clauses the behavior would
indeed change.

Overall, then, the hallmark of a knowledge-based system is that by design
it has the ability to be told facts about its world and adjust its behavior
correspondingly.

This ability to have some of our actions depend on what we
believe is what the cognitive scientist Zenon Pylyshyn has called
cognitive penetrability. Consider, for example, responding to a fire alarm.
The normal response is to get up and leave the building, but we would
not do so if we happened to believe that the alarm was being tested. There
are any number of ways we might come to this belief, but they all lead
to the same effect. Our response to a fire alarm is cognitively penetrable
because it is conditioned on what we can be made to believe. On the other
hand, something like a blinking reflex as an object approaches your eye
does not appear to be cognitively penetrable: Even if you strongly believe
the object will not touch you, you still blink.

1.2.3 Why Reasoning?
To see the motivation behind reasoning in a knowledge-based system, it
suffices to observe that we would like action to depend on what the system
believes about the world, as opposed to just what the system has explicitly
represented. In the second PROLOG example, there was no clause repre-
senting the belief that the color of grass was green, but we still wanted
the system to know this. In general, much of what we expect to put in a
KB will involve quite general facts, which will then need to be applied to
particular situations.

For example, we might represent the following two facts explicitly:

1. Patient x is allergic to medication m.

2. Anyone allergic to medication m is also allergic to medication m′.

10 Chapter 1 ■ Introduction

In trying to decide if it is appropriate to prescribe medication m′
for patient x, neither represented fact answers the question. Together,
however, they paint a picture of a world where x is allergic to m′, and this,
together with other represented facts about allergies, might be sufficient
to rule out the medication. We do not want to condition behavior only
on the represented facts that we are able to retrieve, like in a database
system. The beliefs of the system must go beyond these.

But beyond them to where? There is, as it turns out, a simple answer to
this question, but one which, as we will discuss many times in subsequent
chapters, is not always practical. The simple answer is that the system
should believe p if, according to the beliefs it has represented, the world
it is imagining is one where p is true. In the example, facts (1) and (2) are
both represented. If we now imagine what the world would be like if
(1) and (2) were both true, then this is a world where

3. Patient x is allergic to medication m′

is also true, even though this fact is only implicitly represented.
This is the concept of logical entailment: We say that the propositions

represented by a set of sentences S entail the proposition represented
by a sentence p when the truth of p is implicit in the truth of the sen-
tences in S. In other words, if the world is such that every element of
S comes out true, then p does as well. All that we require to get some
notion of entailment is a language with an account of what it means for
a sentence to be true or false. As we argued, if our representation lan-
guage is to represent knowledge at all, it must come with such an account
(again, to know p is to take p to be true). So any knowledge representation
language, whatever other features it may have, whatever syntactic form
it may take, whatever reasoning procedures we may define over it, ought
to have a well-defined notion of entailment.

A simple answer to what beliefs a knowledge-based system should
exhibit, then, is that it should believe all and only the entailments of what
it has explicitly represented. The job of reasoning, then, according to this
account, is to compute the entailments of a KB.

What makes this account simplistic is that there are often quite good
reasons not to calculate entailments. For one thing, it can be too diffi-
cult computationally to decide which sentences are entailed by the kind
of KB we will want to use. Any procedure that always gives us answers
in a reasonable amount of time will occasionally either miss some entail-
ments or return some incorrect answers. In the former case, the reasoning
process is said to be logically incomplete; in the latter case, the reasoning
is said to be logically unsound.

But there are also conceptual reasons why we might consider unsound
or incomplete reasoning. For example, suppose p is not entailed by a KB,
but is a reasonable guess, given what is represented. We might still want

1.3 The Role of Logic 11

to believe that p is true. To use a classic example, suppose all I know about
an individual Tweety is that she is a bird. I might have a number of facts
about birds in the KB, but likely none of them would entail that Tweety
flies. After all, Tweety might turn out to be an ostrich. Nonetheless, it
is a reasonable assumption that Tweety flies. This is logically unsound
reasoning since we can imagine a world where everything in the KB is
true but where Tweety does not fly.

Alternately, a knowledge-based system might come to believe a collec-
tion of facts from various sources that, taken together, cannot all be true.
In this case, it would be inappropriate to do logically complete reasoning,
because then every sentence would be believed: Since there are no worlds
where the KB is true, every sentence p will be trivially true in all worlds
where the KB is true. An incomplete form of reasoning would clearly be
more useful here until the contradictions were dealt with, if ever.

Despite all this, it remains the case that the simplistic answer is by far
the best starting point for thinking about reasoning, even if we intend to
diverge from it. So while it would be a mistake to identify reasoning in
a knowledge-based system with logically sound and complete inference,
it is the right place to begin.

1.3 THE ROLE OF LOGIC

The reason logic is relevant to knowledge representation and reasoning
is simply that, at least according to one view, logic is the study of entail-
ment relations—languages, truth conditions, and rules of inference. Not
surprisingly, we will borrow heavily from the tools and techniques of
formal symbolic logic. Specifically, we will use as our first knowledge
representation language a very popular logical language, that of the pred-
icate calculus, or as it is sometimes called, the language of first-order logic
(FOL). This language was invented by the philosopher Gottlob Frege at
the turn of the twentieth century for the formalization of mathematical
inference, but has been co-opted by the AI community for knowledge
representation purposes.

It must be stressed, however, that FOL itself is also just a starting point.
We will have good reason in what follows to consider subsets and super-
sets of FOL, as well as knowledge representation languages quite different
in form and meaning. Just as we are not committed to understanding
reasoning as the computation of entailments, even when we do so we are
not committed to any particular language. Indeed, as we shall see, certain
representation languages suggest forms of reasoning that go well beyond
whatever connections they may have ever had with logic.

Where logic really does pay off from a knowledge representation
perspective is at what Allen Newell has called the knowledge level.

12 Chapter 1 ■ Introduction

The idea is that we can understand a knowledge-based system at two
different levels (at least). At the knowledge level, we ask questions
concerning the representation language and its semantics. At the
symbol level, on the other hand, we ask questions concerning the com-
putational aspects. There are clearly issues of adequacy at each level.
At the knowledge level, we deal with the expressive adequacy of a rep-
resentation language and the characteristics of its entailment relation,
including its intrinsic computational complexity; at the symbol level,
we ask questions about the computational architecture and the prop-
erties of the data structures and reasoning procedures, including their
algorithmic complexity.

The tools of formal symbolic logic seem ideally suited for a knowledge-
level analysis of a knowledge-based system. In the next chapter we begin
such an analysis using the language of first-order logic, putting aside for
now all computational concerns.

1.4 BIBLIOGRAPHIC NOTES

Much of the material in this chapter is shared with the first chapter of
Levesque and Lakemeyer [244].

The area of knowledge representation and reasoning is one of the most
active areas of AI research, dominating many of the general AI confer-
ences, as well as having a conference of its own. Some of the more
influential early papers (that is, before 1985) may be found in a collec-
tion of readings by Brachman and Levesque [47]. An overview of the field
as a whole at about that time is presented by Levesque [240]. For an
even earlier view of the state of the art during a time of great progress and
intellectual debate, see the SIGART Newsletter, Special Issue on Knowledge
Representation [50].

Sowa [394] also discusses general aspects of knowledge representation
and reasoning and, in particular, how various proposals relate to for-
mal logic and to a specific representation formalism he invented called
conceptual graphs [392]. Other books devoted to the general topic include
those by Davis [86], Ringland and Duce [354], and Reichgelt [338].

Most textbooks on Artificial Intelligence contain material on knowl-
edge representation and reasoning. A general AI textbook by Genesereth
and Nilsson [153] emphasizes (first-order) logic and its use in Artificial
Intelligence. Some popular textbooks that spend considerable time on
knowledge representation include those by Dean et al. [98], Ginsberg
[160], Luger [260], Nilsson [311], Poole et al. [332], Rich and Knight
[352], Russell and Norvig [359], and Winston [428].

Leibniz was one of the first to see logic as providing a unifying basis for
all mathematics and science. For a summary of his views about thinking

1.5 Exercises 13

as a form of calculation, see [118], vol. 3, p. 422. Frege [135] devel-
oped propositional logic and introduced the idea of quantification and
a notation for expressing logical concepts.

The distinction between knowledge and belief is discussed at length in
the philosophical literature. Gettier’s article [156] represents one of the
landmarks in this area, presenting arguments against the common view
of knowledge as true, justified belief. A collection of papers by Pappas
and Swain [314] contains responses to Gettier’s work.

Dennett’s intentional stance is discussed in [102]. The notion of
cognitive penetrability is addressed by Pylyshyn [334]. The knowledge
representation hypothesis is due to Smith [390]. An alternate opinion
on the general question of what constitutes a knowledge representation
is expressed by Davis et al. [89]. The original conception of the knowl-
edge level is due to Newell [305]. The knowledge level as applied directly
to the knowledge representation and reasoning enterprise was addressed
by Levesque [238] and by Brachman et al. [52].

Despite the centrality of knowledge representation and reasoning to
AI, there are alternate views. Some authors have claimed that human-
level reasoning is not achievable via purely computational means. These
include Dreyfus [113], Searle [373, 374], and Penrose [327] (see also the
collection by Boden [33]). Others suggest that intelligence derives from
computational mechanisms that are not as directly representational as
those discussed in this book. Among these are the so-called connectionists,
such as Kohonen [220] and Smolensky [391].

1.5 EXERCISES

These exercises are all taken from [244].

1. Consider a task requiring knowledge, like baking a cake. Examine
a recipe and state what needs to be known to follow the recipe.

2. In considering the distinction between knowledge and belief in this
book, we take the view that belief is fundamental and knowledge is
simply belief where the outside world happens to be cooperating (the
belief is true, is arrived at by appropriate means, is held for the right
reasons, and so on). Describe an interpretation of the terms where
knowledge is taken to be basic and belief is understood in terms
of it.

3. Explain in what sense reacting to a loud noise is and is not cognitively
penetrable.

14 Chapter 1 ■ Introduction

4. It has become fashionable to attempt to achieve intelligent behavior in
AI systems without using propositional representations. Speculate on
what such a system should do when reading a book on South American
geography.

5. Describe some ways in which the firsthand knowledge we have of some
topic goes beyond what we are able to write down in a language. What
accounts for our inability to express this knowledge?

C H A P T E R 2

THE LANGUAGE OF FIRST-ORDER LOGIC

■

■

■

Before any system aspiring to intelligence can even begin to reason,
learn, plan, or explain its behavior, it must be able to formulate the ideas
involved. You will not be able to learn something about the world around
you, for example, if it is beyond you to even express what that thing is. So
we need to start with a language of some sort, in terms of which knowledge
can be formulated. In this chapter, we will examine in detail one specific
language that can be used for this purpose: the language of first-order
logic. FOL is not the only choice, but is a simple and convenient one to
begin with.

2.1 INTRODUCTION

What does it mean to “have” a language? Once we have a set of words
or a set of symbols of some sort, what more is needed? As far as we are
concerned, there are three things:

1. syntax: we need to specify which groups of symbols, arranged in
what way, are to be considered properly formed. In English, for
example, the string of words “the cat my mother loves” is a well-
formed noun phrase, but “the my loves mother cat” is not. For
knowledge representation, we need to be especially clear about
which of the well-formed strings are the sentences of the language,
since these are what express propositions.

15

16 Chapter 2 ■ The Language of First-Order Logic

2. semantics: we need to specify what the well-formed expressions are
supposed to mean. Some well-formed expressions like “the hard-
nosed decimal holiday” might not mean anything. For sentences, we
need to be clear about what idea about the world is being expressed.
Without such an account, we cannot expect to say what believing
one of them amounts to.

3. pragmatics: we need to specify how the meaningful expressions in
the language are to be used. In English, for example, “There is some-
one right behind you” could be used as a warning to be careful in
some contexts and a request to move in others. For knowledge rep-
resentation, this involves how we use the meaningful sentences of
a representation language as part of a knowledge base from which
inferences will be drawn.

These three aspects apply mainly to declarative languages, the sort we
use to represent knowledge. Other languages will have other aspects
not discussed here, for example, what the words sound like (for spo-
ken languages), or what actions are being called for (for imperative
languages).

We now turn our attention to the specification of FOL.

2.2 THE SYNTAX

In FOL, there are two sorts of symbols: the logical ones and the nonlogical
ones. Intuitively, the logical symbols are those that have a fixed meaning
or use in the language. There are three sorts of logical symbols:

1. punctuation: “(”, “)”, and “.”.

2. connectives: “¬,” “∧,” “∨,” “∃,” “∀,” and “=.” Note the usual inter-
pretation of these logical symbols: ¬ is logical negation, ∧ is logical
conjunction (“and”), ∨ is logical disjunction (“or”), ∃ means “there
exists…,” ∀ means “for all…,” and = is logical equality. ∀ and ∃ are
called quantifiers.

3. variables: an infinite supply of symbols, which we will denote here
using x, y, and z, sometimes with subscripts and superscripts.

The nonlogical symbols are those that have an application-dependent
meaning or use. In FOL, there are two sorts of nonlogical symbols:

1. function symbols: an infinite supply of symbols, which we will write
in uncapitalized mixed case, e.g., bestFriend, and which we will

2.2 The Syntax 17

denote more generally using a, b, c, f , g, and h, with subscripts
and superscripts.

2. predicate symbols: an infinite supply of symbols, which we will write
in capitalized mixed case, e.g., OlderThan, and which we will denote
more generally using P, Q, and R, with subscripts and superscripts.

One distinguishing feature of nonlogical symbols is that each one is
assumed to have an arity, that is, a nonnegative integer indicating how
many “arguments” it takes. (This number is used in the syntax of the
language.) It is assumed that there is an infinite supply of function and
predicate symbols of each arity. By convention, a, b, and c are only used
for function symbols of arity 0, which are called constants, while g and h
are only used for function symbols of nonzero arity. Predicate symbols of
arity 0 are sometimes called propositional symbols.

If you think of the logical symbols as the reserved keywords of a pro-
gramming language, then nonlogical symbols are like its identifiers. For
example, we might have “Dog” as a predicate symbol of arity 1, “OlderThan”
as a predicate symbol of arity 2, “bestFriend” as a function symbol of arity
1, and “johnSmith” as a constant. Note that we are treating “=” not as a
predicate symbol, but as a special logical symbol (unlike the way that it
is handled in some logic textbooks).

There are two types of legal syntactic expressions in FOL: terms and
formulas. Intuitively, a term will be used to refer to something in the
world, and a formula will be used to express a proposition. The set of
terms of FOL is the least set satisfying these conditions:

■ every variable is a term;

■ if t1, . . . , tn are terms, and f is a function symbol of arity n,
then f (t1, . . . , tn) is a term.

The set of formulas of FOL is the least set satisfying these constraints:

■ if t1, . . . , tn are terms, and P is a predicate symbol of arity n,
then P(t1, . . . , tn) is a formula;

■ if t1 and t2 are terms, then t1 = t2 is a formula;

■ if α and β are formulas, and x is a variable, then ¬α, (α∧β), (α∨β),
∀x. α, and ∃x. α are formulas.

Formulas of the first two types (containing no other simpler formulas) are
called atomic formulas or atoms.

At this point, it is useful to introduce some notational abbreviations
and conventions. First of all, we will add or omit matched parentheses
and periods freely, and also use square and curly brackets to improve

18 Chapter 2 ■ The Language of First-Order Logic

readability. In the case of predicates or function symbols of arity 0, we
will usually omit the parentheses since there are no arguments to enclose.
We will also sometimes reduce the number of parentheses by assuming
that ∧ has higher precedence than ∨ (the way × has higher precedence
than +).

By the propositional subset of FOL, we mean the language with no
terms, no quantifiers, and where only propositional symbols are used.
So, for example,

(P ∧ ¬(Q ∨ R)),

where P, Q, and R are propositional symbols, would be a formula in this
subset.

We also use the following abbreviations:

■ (α ⊃ β) for (¬α ∨ β);

■ (α ≡ β) for ((α ⊃ β) ∧ (β ⊃ α)).

We also need to discuss the scope of quantifiers. We say that a variable
occurrence is bound in a formula if it lies within the scope of a quantifier,
and free otherwise. That is, x appears bound if it appears in a subformula
∀x. α or ∃x. α of the formula. So, for example, in a formula like

∀y. P(x) ∧ ∃x[P(y) ∨Q(x)],

the first occurrence of the variable x is free, and the final two occurrences
of x are bound; both occurrences of y are bound.1 If x is a variable, t
is a term, and α is a formula, we use the notation αx

t to stand for the
formula that results from replacing all free occurrences of x in α by t.
If 	x is a sequence of variables, 	c is a sequence of constants of the same
length, and α is a formula whose free variables are among those in 	x, then
α[x] means α itself and α[c] means α with each free xi replaced by the
corresponding ci.

Finally, a sentence of FOL is any formula without free variables. The
sentences of FOL are what we use to represent knowledge, and the rest is
merely supporting syntactic machinery.

2.3 THE SEMANTICS

As noted in Section 2.1, the concern of semantics is to explain what the
expressions of a language mean. As far as we are concerned, this involves

1In some textbooks, the occurrence of the variable just after the quantifier is considered
neither free nor bound.

2.3 The Semantics 19

specifying what claim a sentence of FOL makes about the world, so that
we can understand what believing it amounts to.

Unfortunately, there is a bit of a problem here. We cannot realistically
expect to specify once and for all what a sentence of FOL means, for the
simple reason that the nonlogical symbols are used in an application-
dependent way. I might use the constant “john” to mean one individual,
and you might use it to mean another. So there’s no way we can possibly
agree on what the sentence “Happy(john)” claims about the world, even if
we were to agree on what “Happy” means.

Here is what we can agree to: The sentence “Happy(john)” claims that
the individual named by “john” (whoever that might be) has the property
named by “Happy” (whatever that might be). In other words, we can agree
once and for all on how the meaning of the sentence derives from the
interpretation of the nonlogical symbols involved. Of course, what we
have in mind for these nonlogical symbols can be quite complex and hard
to make precise. For example, our list of nonlogical symbols might include
terms like

DemocraticCountry, IsABetterJudgeOfCharacterThan,
favoriteIceCreamFlavorOf, puddleOfwater27,

and the like. We should not (and cannot) expect the semantic specification
of FOL to tell us precisely what terms like these mean. What we are after,
then, is a clear specification of the meaning of sentences as a function of
the interpretation of the predicate and function symbols.

To get to such a specification, we take the following (simplistic) view
of what the world could be like:

1. There are objects in the world.

2. For any predicate P of arity 1, some of the objects will satisfy P
and some will not. An interpretation of P settles the question, decid-
ing for each object whether it has or does not have the property
in question. (Borderline cases are ruled in separate interpretations:
In one, it has the property; in another, it does not.) Predicates of
other arities are handled similarly. For example, an interpretation
of a predicate of arity 3 decides on which triples of objects stand
in the corresponding ternary relation. Similarly, a function sym-
bol of arity 3 is interpreted as a mapping from triples of objects to
objects.

3. No other aspects of the world matter.

The assumption made in FOL is that this is all you need to say regarding
the meaning of the nonlogical symbols, and hence the meaning of all
sentences.

20 Chapter 2 ■ The Language of First-Order Logic

For example, we might imagine that there are objects that include
people, countries, and flavors of ice cream. The meaning of “Democratic-
Country” in some interpretation will be no more and no less than those
objects that are countries that we consider to be democratic. We
may disagree on which those are, of course, but then we are simply
talking about different interpretations. Similarly, the meaning of “favorite-
IceCreamFlavorOf” would be a specific mapping from people to flavors of
ice cream (and from nonpeople to some other arbitrarily chosen object,
say). Note that as far as FOL is concerned, we do not try to say what
“DemocraticCountry” means the way a dictionary would, in terms of free
elections, representative governments, majority rule, and so on; all we
need to say is which objects are and are not democratic countries. This is
clearly a simplifying assumption, and other languages would handle the
terms differently.

2.3.1 Interpretations
Meanings are typically captured by specific interpretations, and we can
now be precise about them. An interpretation
 in FOL is a pair 〈D, I〉,
where D is any nonempty set of objects, called the domain of the inter-
pretation, and I is a mapping, called the interpretation mapping, from
the nonlogical symbols to functions and relations over D, as described
later.

It is important to stress that an interpretation need not only involve
mathematical objects. D can be any set, including people, garages, num-
bers, sentences, fairness, unicorns, chunks of peanut butter, situations,
and the universe, among other things.

The interpretation mapping I will assign meaning to the predicate sym-
bols as follows: To every predicate symbol P of arity n, I[P] is an n-ary
relation over D, that is,

I[P] ⊆ D × · · · ×D︸ ︷︷ ︸
n times

.

So, for example, consider a unary predicate symbol Dog. Here, I[Dog]
would be some subset of D, presumably the set of dogs in that interpreta-
tion. Similarly, I[OlderThan] would be some subset of D ×D, presumably
the set of pairs of objects in D where the first element of the pair is older
than the second.

The interpretation mapping I will assign meaning to the function sym-
bols as follows: To every function symbol f of arity n, I[f] is an n-ary
function over D, that is,2

I[f] ∈ [D × · · · ×D︸ ︷︷ ︸
n times

→ D].

2Here and subsequently, mathematical functions are taken to be total.

2.3 The Semantics 21

So, for example, I[bestFriend] would be some function [D → D], presum-
ably the function that maps a person to his or her best friend (and does
something reasonable with nonpersons). Similarly, I[johnSmith] would
be some element of D, presumably somebody called John Smith.

It is sometimes useful to think of the interpretation of predicates in
terms of their characteristic functions. In this case, when P is a predicate
of arity n, we view I[P] as an n-ary function to {0, 1}:

I[P] ∈ [D × · · · ×D → {0, 1}].

The relationship between the two specifications is that a tuple of objects
is considered to be in the relation over D if and only if the characteristic
function over those objects has value 1. This characteristic function also
allows us to see more clearly how predicates of arity 0 (i.e., the propo-
sitional symbols) are handled. In this case, I[P] will be either 0 or 1.
We can think of the first one as meaning “false” and the second “true.”
For the propositional subset of FOL, then, we can ignore D completely,
and think of an interpretation as simply being a mapping, I, from the
propositional symbols to either 0 or 1.

2.3.2 Denotation
Given an interpretation
 = 〈D, I〉, we can specify which elements of D are
denoted by any variable-free term of FOL. For example, to find the object
denoted by the term “bestFriend(johnSmith)” in
, we use I to get hold of
the function denoted by “bestFriend,” and then we apply that function to
the element of D denoted by “johnSmith,” producing some other element
of D. To deal with terms including variables, we also need to start with
a variable assignment over D, that is, a mapping from the variables of FOL
to the elements of D. So if μ is a variable assignment and x is a variable,
μ[x] will be some element of the domain.

Formally, given an interpretation
 and a variable assignment μ, the
denotation of term t, written ‖t‖
,μ, is defined by these rules:

1. if x is a variable, then ‖x‖
,μ = μ[x];
2. if t1, . . . , tn are terms, and f is a function symbol of arity n, then

‖f (t1, . . . , tn)‖
,μ = F(d1, . . . , dn)

where F = I[f], and di = ‖ti‖
,μ.

Observe that according to these recursive rules, ‖t‖
,μ is always an element
of D.

22 Chapter 2 ■ The Language of First-Order Logic

2.3.3 Satisfaction and Models
Given an interpretation
 = 〈D, I〉 and the ‖ · ‖
,μ relation just defined,
we can now specify which sentences of FOL are true and which are false
according to this interpretation. For example, “Dog(bestFriend(johnSmith))”
is true in
 if and only if the following holds: If we use I to get
hold of the subset of D denoted by “Dog” and the object denoted by
“bestFriend(johnSmith),” then that object is in the set. To deal with for-
mulas containing free variables, we again use a variable assignment, as
shown earlier.

More formally, given an interpretation
 and variable assignment μ,
we say that the formula α is satisfied in
, written
, μ |= α, according to
these rules:

Assume that t1, . . . , tn are terms, P is a predicate of arity n, α and β are
formulas, and x is a variable.

1.
, μ |= P(t1, . . . , tn) iff 〈d1, . . . , dn〉 ∈ P, where P = I[P], and
di = ‖ti‖
,μ;

2.
, μ |= t1 = t2 iff ‖t1‖
,μ and ‖t2‖
,μ are the same element of D;

3.
, μ |= ¬α iff it is not the case that
, μ |= α;

4.
, μ |= (α ∧ β) iff
, μ |= α and
, μ |= β;

5.
, μ |= (α ∨ β) iff
, μ |= α or
, μ |= β (or both);

6.
, μ |= ∃x. α iff
, μ′ |= α, for some variable assignment μ′ that
differs from μ on at most x;

7.
, μ |= ∀x. α iff
, μ′ |= α, for every variable assignment μ′ that
differs from μ on at most x.

When the formula α is a sentence, it is easy to see that satisfaction does
not depend on the given variable assignment (recall that sentences do not
have free variables). In this case, we write
 |= α and say that α is true
in the interpretation
, or that α is false otherwise. In the case of the
propositional subset of FOL, it is sometimes convenient to write I[α] = 1
or I[α] = 0 according to whether I |= α or not. We will also use the
notation
 |= S, where S is a set of sentences, to mean that all of the
sentences in S are true in
. We say in this case that
 is a logical model of S.

2.4 THE PRAGMATICS

The semantic rules of interpretation tell us how to understand precisely
the meaning of any term or formula of FOL in terms of a domain and

2.4 The Pragmatics 23

an interpretation for the nonlogical symbols over that domain. What is
less clear, perhaps, is why anyone interested in knowledge representa-
tion should care about this. How are we supposed to use this language
to represent knowledge? How is a knowledge-based system supposed to
reason about concepts like “DemocraticCountry” or even “Dog” unless it is
somehow given the intended interpretation to start with? How could we
possibly “give” a system an interpretation, which could involve (perhaps
infinite) sets of honest-to-goodness objects like countries or animals?

2.4.1 Logical Consequence
To answer these questions, we first turn to the notion of logical conse-
quence. Observe that although the semantic rules of interpretation depend
on the interpretation of the nonlogical symbols, there are connections
among sentences of FOL that do not depend on the meaning of those
symbols.

For example, let α and β be any two sentences of FOL, and let γ be the
sentence ¬(β ∧ ¬α). Now suppose that
 is any interpretation where α is
true. Then, by using the earlier rules we can see that γ must be also true
under this interpretation. This does not depend on how we understand
any of the nonlogical symbols in α or β. As long as α comes out true, γ

will as well. In a sense, the truth of γ is implicit in the truth of α. We say
in this case that γ is a logical consequence of α.

More precisely, let S be a set of sentences, and α any sentence. We say
that α is a logical consequence of S, or that S logically entails α, which we
write S |= α, if and only if, for every interpretation
, if
 |= S then
 |= α.
In other words, every model of S satisfies α. Yet another way of saying
this is that there is no interpretation
 where
 |= S∪ {¬α}. We say in this
case that the set S ∪ {¬α} is unsatisfiable.

As a special case of this definition, we say that a sentence α is logically
valid, which we write |= α, when it is a logical consequence of the empty
set. In other words, α is valid if and only if, for every interpretation
, it
is the case that
 |= α or, in still other words, if and only if the set {¬α} is
unsatisfiable.

It is not too hard to see that not only is validity a special case of entail-
ment but entailment when the set is finite also reduces to validity: If
S = {α1, . . . , αn}, then S |= α if and only if the sentence [(α1∧· · ·∧αn) ⊃ α]
is valid.

2.4.2 Why We Care
Now let us reexamine the connection between knowledge-based sys-
tems and logical entailment, since this is at the heart of the knowledge
representation enterprise.

24 Chapter 2 ■ The Language of First-Order Logic

What we are after is a system that can reason. Given something like
the fact that Fido is a dog, it should be able to conclude that Fido is also
a mammal, a carnivore, and so on. In other words, we are imagining a
system that can be told or learn a sentence like “Dog(fido)” that is true
in some user-intended interpretation, and that can then come to believe
other sentences true in that interpretation.

A knowledge-based system will not and cannot have access to the
interpretation of the nonlogical symbols itself. As we noted, this could
involve infinite sets of real objects quite outside the reach of any com-
puter system. So a knowledge-based system will not be able to decide
what to believe by using the rules of Section 2.3.3 to evaluate the truth
or falsity of sentences in this intended interpretation. Nor can it sim-
ply be “given” the set of sentences true in that interpretation as beliefs,
because, among other things, there will be an infinite number of such
sentences.

However, suppose a set of sentences S entails a sentence α. Then we
do know that whatever the intended interpretation is, if S happens to be
true in that interpretation, then so must be α. If the user imagines the
world satisfying S according to his or her understanding of the nonlogical
symbols, then it satisfies α as well. Other nonentailed sentences may or
may not be true, but a knowledge-based system can safely conclude that
the entailed ones are. If we tell our system that “Dog(fido)” is true in the
intended interpretation, it can safely conclude any other sentence that
is logically entailed, such as “¬¬Dog(fido)” and “(Dog(fido) ∨ Happy(john)),”
without knowing anything else about that interpretation.

But who cares? These conclusions are logically unassailable of course,
but not the sort of reasoning we would likely be interested in. In a sense,
logical entailment gets us nowhere, since all we are doing is finding
sentences that are already implicit in what we were told.

As we said, what we really want is a system that can go from
“Dog(fido)” to conclusions like “Mammal(fido),” and on from there to
other interesting animal properties. This is no longer logical entail-
ment, however: There are interpretations where “Dog(fido)” is true and
“Mammal(fido)” is false. For example, let
 = 〈D, I〉 be an interpretation
where for some dog d, D = {d}, for every predicate P other than “Dog,”
I[P] = {}, where I[Dog] = {d}, and where for every function symbol f ,
I[f](d, . . . , d) = d. This is an interpretation where the one and only dog
is not a mammal. So the connection between the two sentences is not a
strictly logical one.

To get the desired connection between dogs and mammals, we need
to include within the set of sentences S a statement connecting the
nonlogical symbols involved. In this case, the sentence

∀x. Dog(x) ⊃ Mammal(x)

2.5 Explicit and Implicit Belief 25

should be an element of S. With this universal and “Dog(fido)” in S, we
do get “Mammal(fido)” as a logical consequence. We will examine claims
of logical consequence like this in more detail later, but for now note
that by including this universal as one of the premises in S, we rule out
interpretations like the one where the set of dogs is not a subset of the set
of mammals. If we then continue to add more and more sentences like
this to S, we will rule out more and more unintended interpretations, and
in the end, logical consequence itself will start to behave much more like
“truth in the intended interpretation.”

This, then, is the fundamental tenet of knowledge representation:

Reasoning based on logical consequence only allows safe, logically
guaranteed conclusions to be drawn. However, by starting with a rich
collection of sentences as given premises, including not only facts about
particulars of the intended application but also those expressing con-
nections among the nonlogical symbols involved, the set of entailed
conclusions becomes a much richer set, closer to the set of sentences
true in the intended interpretation. Calculating these entailments thus
becomes more like the form of reasoning we would expect of someone
who understood the meaning of the terms involved.

In a sense, this is all there is to knowledge representation and reasoning;
the rest is just details.

2.5 EXPLICIT AND IMPLICIT BELIEF

The collection of sentences given as premises to be used as the basis for
calculating entailments is what we called a knowledge base in Chapter 1—
in our case, a finite set of sentences in the language of FOL. The role of
a knowledge representation system, as discussed before, is to calculate
entailments of this KB. We can think of the KB itself as the beliefs of
the system that are explicitly given, and the entailments of that KB as the
beliefs that are only implicitly given.

Just because we are imagining a “rich” collection of sentences in the
KB, including the intended connections among the nonlogical symbols,
we should not be misled into thinking that we have done all the work
and there is no real reasoning left to do. As we will see in the following
example, it is often nontrivial to move from explicit to implicit beliefs.

2.5.1 An Example
Consider the “blocks-world” example illustrated in Figure 2.1. Suppose
we have three colored blocks stacked on a table, where the top one is
green, the bottom one is not green, and the color of the middle block

26 Chapter 2 ■ The Language of First-Order Logic

green

not green

A

B

C

■ FIGURE 2.1

A Stack of Three Blocks

is not known. The question to consider is whether there is a green block
directly on top of a nongreen one. The thing to observe about this question
is that the answer (which happens to be yes) is not immediately obvious
without some thinking.

We can formalize this problem in FOL, using a, b, and c as the names of
the blocks and predicate symbols G and O to stand for “green” and “on.”
The facts we have in S are

{O(a, b), O(b, c), G(a),¬G(c)}

and this is all we need. The claim we make here is that these four facts
entail that there is indeed a green block on top of a nongreen one, that is,
that S |= α, where α is

∃x∃y. G(x) ∧ ¬G(y) ∧O(x, y).

To see this, we need to show that any interpretation that satisfies S also
satisfies α. So let
 be any interpretation, and assume that
 |= S. There
are two cases to consider:

1. Suppose
 |= G(b). Then because ¬G(c) and O(b, c) are in S,

 |= G(b) ∧ ¬G(c) ∧O(b, c).

It follows from this that

 |= ∃x∃y. G(x) ∧ ¬G(y) ∧O(x, y).

2.5 Explicit and Implicit Belief 27

2. Suppose on the other hand that it is not the case that
 |= G(b). Then
it is the case that
 |= ¬G(b), and because G(a) and O(a, b) are in S,

 |= G(a) ∧ ¬G(b) ∧O(a, b).

It follows from this that

 |= ∃x∃y. G(x) ∧ ¬G(y) ∧O(x, y).

Either way, it is the case that
 |= α. Thus, α is a logical consequence
of S.

Even though this is a very simple example, we can see that calculating
what is implicit in a given collection of facts will sometimes involve subtle
forms of reasoning. Indeed, it is well known that for FOL the problem of
determining whether one sentence is a logical consequence of others is in
general unsolvable: No automated procedure can decide validity, and so
no automated procedure can tell us in all cases whether or not a sentence
is entailed.

2.5.2 Knowledge-Based Systems
To recap, we imagine that for knowledge representation we will start with
a (large) KB representing what is explicitly known by a knowledge-based
system. This KB could be the result of what the system is told, or perhaps
what the system found out for itself through perception or learning. Our
goal is to influence the behavior of the overall system based on what is
implicit in this KB, or as close as possible.

In general, this will require reasoning. By deductive inference, we mean
the process of calculating the entailments of a KB, that is, given the KB,
and any sentence α, determining whether or not KB |= α.

We consider a reasoning process to be logically sound if whenever it
produces α, then α is guaranteed to be a logical consequence. This rules
out the possibility of producing plausible assumptions that may very well
be true in the intended interpretation but are not strictly entailed.

We consider a reasoning process to be logically complete if it is guaran-
teed to produce α whenever α is entailed. This rules out the possibility of
missing some entailments, for example, when their status is too difficult
to determine.

As noted, no automated reasoning process for FOL can be both sound
and complete in general. However, the relative simplicity of FOL makes it
a natural first step in the study of reasoning. The computational difficulty
of FOL is one of the factors that will lead us to consider various other
options in subsequent chapters.

28 Chapter 2 ■ The Language of First-Order Logic

2.6 BIBLIOGRAPHIC NOTES

For a history of the development of logic beginning in ancient Greece,
refer to Kneale and Kneale [218]. Books on first-order logic tend to focus
on three broad categories: philosophical logic [172, 187, 234], mathe-
matical logic [26, 34, 119, 288], and computer science [194, 265]. The
role of logic in Artificial Intelligence is treated by Genesereth and Nilsson
[153]. The importance of first-order logic in knowledge representation is
argued by Hayes [181], Israel [195] and Moore [294, 297]. John McCarthy,
probably the first to advocate the use of formal logic as a basis for auto-
mated reasoning in Artificial Intelligence [275], also argues that first-order
logic is sufficient for knowledge representation [281]. Interesting related
works in the philosophy of language include those by Ayer [16] and
Wittgenstein [429].

The distinction between explicit and implicit belief was first dis-
cussed in AI by Levesque [239] and further developed by Levesque and
Lakemeyer [244]. Other approaches to the same issue were taken by
Fagin and Halpern [123], Delgrande [100], and others. The topic is also
discussed in the psychological literature (see [103], for example).

The semantics of first-order logic is largely due to Tarski [405]. For
a proof of the undecidability of first-order logic, see Büchi [61] (the
undecidability of FOL was first shown independently by Church and Tur-
ing in 1936). Completeness of first-order logic for a given set of axioms
was first proven by Gödel [161]. Gödel’s famous incompleteness theorem
regarding number theory [163] is discussed in [301].

The Handbook of Logic in Artificial Intelligence and Logic Programming
[139] and the Handbook of Philosophical Logic [138] are two series of
volumes that are excellent sources of articles on a large variety of logics
and their uses.

2.7 EXERCISES

1. For each of the following sentences, give a logical interpretation that
makes that sentence false and the other two sentences true:

(a) ∀x∀y∀z[(P(x, y) ∧ P(y, z)) ⊃ P(x, z)];
(b) ∀x∀y[(P(x, y) ∧ P(y, x)) ⊃ (x = y)];
(c) ∀x∀y[P(a, y) ⊃ P(x, b)].

2. This question involves formalizing the properties of mathematical
groups in FOL. Recall that a set is considered to be a group relative
to a binary function f and an object e if and only if (1) f is associative;

2.7 Exercises 29

(2) e is an identity element for f , that is, for any x, f (e, x) = f (x, e) = x;
and (3) every element has an inverse, that is, for any x, there is an i such
that f (x, i) = f (i, x) = e. Formalize these as sentences of FOL with two
nonlogical symbols, a function symbol f, and a constant symbol e,
and show using interpretations that the sentences logically entail the
following property of groups:

For every x and y, there is a z such that f (x, z) = y.

Explain how your answer shows the value of z as a function of x
and y.

3. This question involves formalizing some simple properties of sets in
FOL. Consider the following three facts:

■ No set is an element of itself.
■ A set x is a subset of a set y iff every element of x is an element

of y.
■ Something is an element of the union of two sets x and y iff it is

an element of x or an element of y.

(a) Represent the facts as sentences of FOL. As nonlogical symbols,
use Sub(x, y) to mean “x is a subset of y,” Elt(e, x) to mean “e is
an element of x,” and u(x, y) to mean “the union of x and y.”
Instead of using a special predicate to assert that something is
a set, you may simply assume that in the domain of discourse
(assumed to be nonempty) everything is a set. Call the resulting
set of sentences T .

(b) Show using logical interpretations that T entails that x is a subset
of the union of x and y.

(c) Show using logical interpretations that T does not entail that the
union of x and y is equal to the union of y and x.

(d) Let A be any set. Show using logical interpretations that T entails
that there is a set z such that the union of A and z is a subset of A.

(e) Does T entail that there is a set z such that for any set x the union
of x and z is a subset of x? Explain.

(f) Write a sentence that asserts the existence of singleton sets, that is,
for any x, the set whose only element is x. T1 is T with this sentence
added.

(g) Prove that T1 is not finitely satisfiable (again, assuming the domain
is nonempty). Hint: In a finite domain, consider u, the object
interpreted as the union of all the elements in the domain.

(h) Prove or disprove that T entails the existence of an empty set.

30 Chapter 2 ■ The Language of First-Order Logic

4. In a certain town, there are the following regulations concerning the
town barber:

■ Anyone who does not shave himself must be shaved
by the barber.

■ Whomever the barber shaves, must not shave himself.

Show that no barber can fulfill these requirements. That is, formulate
the requirements as sentences of FOL and show that in any interpre-
tation where the first regulation is true, the second one must be false.
(This is called the barber’s paradox and was formulated by Bertrand
Russell.)

C H A P T E R 3

EXPRESSING KNOWLEDGE

■

■

■

The stage is now set for a somewhat more detailed exploration of the
process of creating a knowledge base. Recall that knowledge involves
taking the world to satisfy some property, as expressed by a declarative
sentence. A KB will thus comprise a collection of such sentences, and
we take the propositions expressed by these sentences to be beliefs of
our putative agent.

Much of this book is an exploration of different languages that can
be used to represent the knowledge of an agent in symbolic form with
different consequences, especially regarding reasoning. As we suggested
in Chapter 2, first-order logic, while by no means the only language for
representing knowledge, is a convenient choice for getting started with
the knowledge representation enterprise.

3.1 KNOWLEDGE ENGINEERING

Having outlined the basic principles of knowledge representation and
decided on an initial representation language, we might be tempted to
dive right in and begin the implementation of a set of programs that
could reason over a specific KB of interest. But before doing so, there are
key questions about the knowledge of the agent that need to be consid-
ered in the abstract. In the same way that a programmer who is thinking
ahead would first outline an architecture for his or her planned system,
it is essential that we consider the overall architecture of the system we
are about to create. We must think ahead to what it is we ultimately
want (or want our artificial agent) to compute. We need to make some

31

32 Chapter 3 ■ Expressing Knowledge

commitments to the reasons and times that inference will be necessary
in our system’s behavior. Finally, we need to stake out what is some-
times called an ontology—the kinds of objects that will be important to
the agent, the properties those objects will be thought to have, and the
relationships among them—before we can start populating our agent’s
KB. This general process, which addresses the KB at the knowledge level,
is often called knowledge engineering.

This chapter, then, will be an introductory exercise in knowledge
engineering, intended to be specific enough to make vivid the import of
the previous two chapters. There are any number of example domains
that we might use to illustrate how to use a knowledge representation
language to build a KB. Here we pick a common and commonsensical
world to illustrate the process, with people and places and relation-
ships that are representative of many of the types of domains that AI
systems will address. Given the complexity of human relations and the
kind of behaviors that regular people have, we can think of this exam-
ple domain as a “soap opera” world. Think of a small town in the midst
of a number of scandals and contorted relationships. This little world
will include people, places, companies, marriages (and divorces), crimes,
death, “hanky-panky,” and, of course, money.

Our task is to create a KB that has appropriate entailments, and the
first things we need to consider are what vocabulary to use and what facts
to represent.

3.2 VOCABULARY

In creating a KB it is a good idea to start with the set of domain-dependent
predicates and functions that provide the basis for the statement of facts
about the KB’s domain. What sorts of objects will there be in our soap-
opera world?

The most obvious place to start is with the named individuals who are
the actors in our human drama. In FOL, these would be represented by
constant symbols, like maryJones, johnQSmith, and so on. We might need
to allow multiple identifiers that could ultimately be found to refer to the
same individual: At some point in the process our system might know
about a “john” without knowing whether he is johnQSmith or johnPJones, or
even the former joannaSmith. Beyond the human players on our stage, we
could of course have animals, robots, ghosts, and other sentient entities.

Another class of named individuals would be the legal entities that
have their own identities, such as corporations (faultyInsuranceCompany),
governments (evilvilleTownCouncil), and restaurants (theRackAndRollRes-
taurant). Key places also need to be identified: tomsHouse, theAbandoned-
RailwayCar, norasJacuzzi, and so on. Finally, other important objects need
to be scoped out, such as earring35, butcherknife1, and laurasMortgage

3.3 Basic Facts 33

(note that it is common to use the equivalent of numeric subscripts to
distinguish among individuals that do not have uniquely referring names).

After capturing the set of individuals that will be central to the agent’s
world, it is next essential to circumscribe the basic types of objects that
those individuals are. This is usually done with one-place predicates in
FOL, such as Person(x). Among the types of unary predicates we will want
in our current domain we find Man, Woman, Place, Company, Jewelry, Knife,
Contract, and so on. If we expect to be reasoning about certain places
based on what types of entities they are, such as a restaurant as a place
to eat that is importantly different than someone’s living room, for exam-
ple, then object types like Restaurant, Bar, House, and SwimmingPool will be
useful.

Another set of one-place predicates that is crucial for our domain
representation is the set of attributes that our objects can have. So we
need a vocabulary of properties that can hold for individuals, such as Rich,
Beautiful, Unscrupulous, Bankrupt, ClosedForRepairs, Bloody, and Foreclosed.
The syntax of FOL is limited in that it does not allow us to distinguish
between such properties and the object-types we suggested a moment ago,
such as Man and Knife. This usually does not present a problem, although
if it were important for the system to distinguish between such types, the
language could be extended to do so.1

The next key predicates to consider are n-ary predicates that express
relationships (obviously of crucial interest in any soap-opera world). We
can start with obvious ones, like MarriedTo and DaughterOf, and related ones
like LivesAt and HasCEO. We can then branch out to more esoteric relation-
ships like HairDresserOf, Blackmails, and HadAnAffairWith. Also, we cannot
forget relationships of higher arity than 2, as in LoveTriangle, ConspiresWith,
and OccursInTimeInterval.

Finally, we need to capture the important functions of the domain.
These can take more than one argument, but are most often unary, as
in fatherOf, bestFriendOf, and ceoOf. One thing to note is that all functions
are taken to be total in FOL. If we want to allow for the possibility of
individuals without friends in our domain, we can use a binary BestFriend
predicate instead of a unary bestFriendOf function.

3.3 BASIC FACTS

Now that we have our basic vocabulary in place, it is appropriate to
start representing the simple core facts of our soap-opera world. Such
facts are usually represented by atomic sentences and negations of

1FOL does not distinguish because in our semantic account, as presented in Chapter 2, both
sorts of predicates will be interpreted as sets of individuals for which the descriptions hold.

34 Chapter 3 ■ Expressing Knowledge

atomic sentences. For example, we can use our type predicates, applied
to individuals in the domain, to represent some basic truths: Man(john),
Woman(jane), Company(faultyInsuranceCompany), Knife(butcherknife1). Such
type predications would define the basic ontology of this world.2

Once we have set down the types of each of our objects, we can capture
some of the properties of the objects. These properties will be the chief
currency in talking about our domain, since we most often want to see
what properties (and relationships) are implied by a set of facts or conjec-
tures. In our sample domain, some useful property assertions might be
Rich(john), ¬HappilyMarried(jim), WorksFor(jim,fic), Bloody(butcherknife1), and
ClosedForRepairs(marTDiner).

Basic facts like these yield what amounts to a simple database. These
facts could indeed be stored in relational tables. For example, each type
predicate could be a table, with the table’s entries being identifiers for
all of the known satisfiers of that predicate. Of course, the details of such
a storage strategy would be a symbol-level, not a knowledge-level issue.

Another set of simple facts that are useful in domain representation are
those dealing with equality. To express the fact that John is the CEO of
Faulty Insurance Company, we could use an equality and a one-place func-
tion: john = ceoOf(fic). Similarly, bestFriendOf(jim) = john would capture the
fact that John is Jim’s best friend. Another use of equalities would be for
naming convenience, as when an individual has more than one name, for
example, fic = faultyInsuranceCompany.

3.4 COMPLEX FACTS

Many of the facts we would like to express about a domain are more
complex than can be captured using atomic sentences. Thus we need to
use more complex formulas, with quantifiers and other connectives, to
express various beliefs about the domain.

In the soap-opera domain, we might want to express the fact that all
the rich men in our world love Jane. To do so, we would use universal
quantification, ranging over all of the rich individuals in our world, and
over all of the men:

∀y[Rich(y) ∧Man(y) ⊃ Loves(y, jane)].

Note that “rich man” here is captured by a conjunction of predicates.
Similarly, we might want to express the fact that in this world all the

2Note, by the way, that suggestive names are not a form of knowledge representation
because they do not support logical inference. Just using “butcherknife1” as a symbol
does not give the system any substantive information about the object. This is done using
predicates, not orthography.

3.4 Complex Facts 35

women, with the possible exception of Jane, love John. To do so, we
would use a universal ranging over all of the women, and negate an
equality to exclude Jane:

∀y[Woman(y) ∧ y �= jane ⊃ Loves(y, john)].

Universals are also useful for expressing very general facts, not even
involving any known individuals. For example,

∀x∀y[Loves(x, y) ⊃ ¬Blackmails(x, y)]

expresses the fact that no one who loves someone will blackmail the one
he or she loves.

Note that these universal quantifications could each be expressed
without quantifiers if all of the individuals in the soap-opera world were
enumerated. It would be tedious if the world were at all large, so the
universally quantified sentences are handy abbreviations. Further, as new
individuals are born or otherwise introduced into our soap-opera world,
the universals will cover them as well.

Another type of fact that needs a complex formula to express it is one
that expresses incomplete knowledge about our world. For example, if we
know that Jane loves one of John or Jim but not which, we would need to
use a disjunction to capture that belief:

Loves(jane, john) ∨ Loves(jane, jim).

Similarly, if we knew that someone (an adult) was blackmailing John,
but not who it was, we would use an existential quantifier to posit that
unknown person:

∃ x[Adult(x) ∧ Blackmails(x, john)].

This kind of fact would be quite prevalent in a soap-opera world story,
although one would expect many such unknowns to be resolved over time.

In contrast to the prior use of universals, these cases of incom-
plete knowledge are not merely abbreviations. We cannot write a more
complete version of the information in another form—it just isn’t known.

Another useful type of complex statement about our soap-opera domain
is what we might call a closure sentence, used to limit the domain of
discourse. So, for example, we could enumerate if necessary all of the
lawyers in our world:

∀x[Lawyer(x) ⊃ x = jane ∨ x = jack ∨ x = jim ∨ . . .].

36 Chapter 3 ■ Expressing Knowledge

In a similar fashion, we could circumscribe the set of all married couples:

∀x∀y[MarriedTo(x, y) ⊃ (x = ethel ∧ y = fred) ∨ . . .].

It will then follow that any pair of individuals known to be different from
those mentioned in the sentence are unmarried. In an even more general
way, we can carve out the full set of individuals in the domain of discourse:

∀x[x = fic ∨ x = jane ∨ x = jim ∨ x = marTDiner ∨ . . .].

This ensures that a reasoner would not postulate a new, hitherto
unknown object in the course of its reasoning.

Finally, it is useful to distinguish formally between all known indi-
viduals with a set of sentences like jane �= john. This would prevent the
accidental postulation that two people were the same, for example, in
trying to solve a crime.

3.5 TERMINOLOGICAL FACTS

The kinds of facts we have represented so far are sufficient to capture
the basic circumstances in a domain, and give us grist for the reasoning
mill. However, when thinking about domains like the soap-opera world,
we would typically also think in terms of relationships among the predi-
cate and function symbols we have exploited. For example, we would
consider it quite “obvious” in this domain that if it were asserted that john
were a Man, then we should answer “no” to the query Woman(john). Or
we would easily accede to the fact that MarriedTo(jr,sueEllen) was true if it
were already stated that MarriedTo(sueEllen,jr) was. But there is nothing in
our current KB that would actually sanction such inferences. In order to
support such common and useful inferences, we need to provide a set of
facts about the terminology we are using.

Terminological facts come in many varieties. Here we look at a sample:

■ Disjointness: Often two predicates are disjoint, and the assertion of
one implies the negation of the other, as in

∀x[Man(x) ⊃ ¬Woman(x)]

■ Subtypes: There are many predicates that imply a form of speciali-
zation, wherein one type is subsumed by another. For example,
since a surgeon is a kind of doctor, we would want to capture the
subtype relationship:

∀x[Surgeon(x) ⊃ Doctor(x)]

3.6 Entailments 37

This way, we should be able to infer the reasonable consequence
that anything true of doctors is also true of surgeons (but not vice
versa).

■ Exhaustiveness: This is the converse of the subtype assertion, where
two or more subtypes completely account for a supertype, as in

∀x[Adult(x) ⊃ (Man(x) ∨Woman(x))]

■ Symmetry: As in the case of the MarriedTo predicate, some relation-
ships are symmetric:

∀x, y[MarriedTo(x, y) ⊃ MarriedTo(y, x)]

■ Inverses: Some relationships are the opposite of others:

∀x, y[ChildOf(x, y) ⊃ ParentOf(y, x)]

■ Type restrictions: Part of the meaning of some predicates is the fact
that their arguments must be of certain types. For example, we
might want to capture the fact that the definition of marriage entails
that the partners are persons:

∀x, y[MarriedTo(x, y) ⊃ Person(x) ∧ Person(y)]

■ Full definitions: In some cases, we want to create compound predi-
cates that are completely defined by a logical combination of other
predicates. We can use a biconditional to capture such definitions:

∀x[RichMan(x) ≡ Rich(x) ∧Man(x)]

As can be seen from these examples, terminological facts are typically
captured in a logical language as universally quantified conditionals or
biconditionals.

3.6 ENTAILMENTS

Now that we have captured the basic structure of our soap-opera domain,
it is time to turn to the reason that we have done this representation
in the first place: deriving implicit conclusions from our explicitly repre-
sented KB. Here we briefly explore this notion in an intuitive fashion. This
will give us a feel for the consequences of a particular characterization

38 Chapter 3 ■ Expressing Knowledge

of a domain. In Chapter 4 we will consider how entailments can be
computed in a more mechanical way.

Let us consider all of the basic and complex facts proposed so far in
this chapter to be a knowledge base, called KB. Besides asking simple
questions of KB like, “Is John married to Jane?” we will want to explore
more complex and important ones, such as, “Is there a company whose
CEO loves Jane?” Such a question would look like this in FOL:

∃x[Company(x) ∧ Loves(ceoOf(x), jane)]?

What we want to do is find out if the truth of this sentence is implicit in
what we already know. In other words, we want to see if the sentence is
entailed by KB.

To answer the question, we need to determine whether every logical
interpretation that satisfies KB also satisfies the sentence. So let us imag-
ine an interpretation
, and suppose that
 |= KB. It follows then that

satisfies Rich(john), Man(john), and ∀y[Rich(y) ∧ Man(y) ⊃ Loves(y, jane)],
since these are all in KB. As a result,
 |= Loves(john,jane). Now since
(john = ceoOf(fic)) is also in KB, we can conclude that

 |= Loves(ceoOf(fic), jane).

Finally, since

Company(faultyInsuranceCompany)

and

fic = faultyInsuranceCompany

are both in KB, it is the case that

 |= Company(fic) ∧ Loves(ceoOf(fic), jane),

from which it follows that

 |= ∃x[Company(x) ∧ Loves(ceoOf(x), jane)].

Since this argument goes through for any interpretation
, we know that
the sentence is indeed entailed by KB.

Observe that by looking at the argument we have made, we can deter-
mine not only that there is a company whose CEO loves Jane, but also
what that company is. In many applications we will be interested in
finding out not only whether something is true or not, but also which indi-
viduals satisfy a property of interest. In other words, we need answers not

3.6 Entailments 39

only to yes–no questions, but to wh-questions as well (who? what? where?
when? how? why?).3

Let us consider a second example, which involves a hypothetical.
Consider the question, “If no man is blackmailing John, then is he being
blackmailed by someone he loves?” In logical terms, this question would
be formulated this way:

∀x[Man(x) ⊃ ¬Blackmails(x, john)] ⊃
∃y[Loves(john, y) ∧ Blackmails(y, john)]?

Again, we need to determine whether or not the sentence is entailed by
KB. Here we use the easily verified fact that KB |= (α ⊃ β) if and only
if KB ∪ {α} |= β. So let us imagine that we have an interpretation
 such
that
 |= KB, and that

 |= ∀x[Man(x) ⊃ ¬Blackmails(x, john)].

We must show that

 |= ∃y[Loves(john, y) ∧ Blackmails(y, john)].

To get to this conclusion, there are a number of steps. First of all, we know
that someone is blackmailing John,

 |= ∃x[Adult(x) ∧ Blackmails(x, john)],

since this fact is in KB. Also, KB contains the fact that adults are either
men or women,

 |= ∀x[Adult(x) ⊃ (Man(x) ∨Woman(x))],

and since by hypothesis no man is blackmailing John, we conclude that
a woman is blackmailing him:

 |= ∃x[Woman(x) ∧ Blackmails(x, john)].

Next, as seen in the previous example, we know that

 |= Loves(john,jane).

3In Chapter 4 we will propose a general mechanism for extracting answers from existential
questions.

40 Chapter 3 ■ Expressing Knowledge

So, some woman is blackmailing John and John loves Jane. Could she
be the blackmailer? Recall that all the women except possibly Jane love
John,

 |= ∀y[Woman(y) ∧ y �= jane ⊃ Loves(y, john)],
and that no one who loves someone will blackmail them,

 |= ∀x∀y[Loves(x, y) ⊃ ¬Blackmails(x, y)].

We can put these two conditionals together and conclude that no woman
other than Jane is blackmailing John:

 |= ∀y[Woman(y) ∧ y �= jane ⊃ ¬Blackmails(y, john)].

Since we know that a woman is in fact blackmailing John, we are forced
to conclude that it is Jane:

 |= Blackmails(jane, john).

Thus, in the end, we have concluded that John loves Jane and she is
blackmailing him,

 |= [Loves(john, jane) ∧ Blackmails(jane, john)],

and so

 |= ∃y[Loves(john, y) ∧ Blackmails(y, john)],
as desired.

Here we have illustrated in intuitive form how a proof can be thought
of as a sequence of FOL sentences, starting with those known to be true
in the KB (or surmised as part of the assumptions dictated by the query),
that proceeds logically using other facts in the KB and the rules of logic
until a suitable conclusion is reached. In Chapter 4 we will examine
a different style of proof based on negating the desired conclusion and
showing that this leads to a contradiction.

To conclude this section, let us consider what is involved with an
entailment question when the answer is no. In the previous example, we
made the assumption that no man was blackmailing John. Now let us
consider if this was necessary: Is it already implicit in what we have in
the KB that someone John loves is blackmailing him? In other words, we
wish to determine whether or not KB entails

∃y[Loves(john, y) ∧ Blackmails(y, john)].

3.7 Abstract Individuals 41

To show that it does not, we must show an interpretation that satisfies KB
but falsifies this sentence. That is, we must produce a specific interpreta-
tion
 = 〈D, I〉 and argue that it satisfies every sentence in the KB as well
as the negation of the sentence. For the number of sentences we have in
KB this is a big job, since all of them must be verified, but the essence
of the argument is that without contradicting anything already in KB, we
can arrange
 in such a way that John only loves women, there is only
one person in D who is blackmailing John, and it is a man. Thus it is not
already implicit in KB that someone John loves is blackmailing him.

3.7 ABSTRACT INDIVIDUALS

The FOL language gives us the basic tools for representing facts in
a domain, but in many cases there is a great deal of flexibility that
can be exercised in mapping objects in that domain onto predicates and
functions. There is also considerable flexibility in what we consider to be
the individuals in the domain. In this section we will see that it is some-
times useful to introduce new abstract individuals that might not have
been considered in a first analysis. This idea of making up new individ-
uals is called reification and is typical, as we shall see in later chapters, of
systems like description logics and frame languages.

To see why reification might be useful, consider how we might say that
John purchased a bike:

Purchases(john,bike) vs.

Purchases(john,sears,bike) vs.

Purchases(john,sears,bike,feb14) vs.

Purchases(john,sears,bike,feb14,$200) vs. . . .

The problem here is that it seems that the arity of the Purchases predicate
depends on how much detail we will want to express, which we may not
be able to predict in advance.

A better approach is to take the purchase itself to be an abstract indi-
vidual; call it p23. To describe this purchase at any level of detail we find
appropriate, we need only use 1-place predicates and functions:

Purchase(p23) ∧ agent(p23) = john ∧ object(p23) = bike

∧ source(p23) = sears ∧ amount(p23) = $200 ∧ . . .

For less detail, we simply leave out some of the conjuncts; for more, we
include others. The big advantage is that the arity of the predicate and
function symbols involved can be determined in advance.

42 Chapter 3 ■ Expressing Knowledge

In a similar way we can capture in a reasonable fashion complex
relationships of the sort that are common in our soap-opera world.
For example, we might initially consider representing marriage relation-
ships this way:

MarriedTo(x, y),

but we might also need to consider

PreviouslyMarriedTo(x, y)

and

ReMarriedTo(x, y).

Rather than create a potentially endless supply of marriage and remar-
riage (and divorce and annulment and so on) predicates, we can reify
marriage and divorce events as abstract individuals and determine
anyone’s current marital status and complete marital history directly
from them:

Marriage(m17) ∧ husband(m17) = x ∧ wife(m17) = y

∧ date(m17) = . . . ∧ witness(m17) = . . . ∧ . . .

It is now possible to define these predicates (PreviouslyMarriedTo, etc.) in
terms of the existence (and chronological order) of appropriate marriage
and divorce events.

In representing commonsense information like this we also find that
we need individuals for numbers, dates, times, addresses, and so on.
Basically, any “object” about which we can ask a wh-question should have
an individual standing for it in the KB so it can be returned as the result
of a query.

The idea of reifying abstract individuals leads to some interesting
choices concerning the representation of quantities. For example, an
obvious representation for a person’s age would be something like this:

ageInYears(suzy) = 14.

If a finer-grained notion of age is needed in an application, we might
prefer to represent a person’s age in months (this is particularly common
when talking about young children):

ageInMonths(suzy) = 172. 4

4For some purposes a more qualitative view of age might be in order, as in
age(suzy) = teenager or age(suzy) = minor.

3.8 Other Sorts of Facts 43

Of course, there is a relationship between ageInYears and ageInMonths.
However, we have exactly the same relationship between quantities like
durationInYears and durationInMonths, and between expectedLifeInYears and
expectedLifeInMonths.

To capture all these regularities, it might be better to introduce an
abstract individual to stand for a time duration, independent of any units.
So we might take age(suzy) to denote an abstract quantity of time quite
apart from Suzy and 14, and assert that

years(age(suzy)) = 14

as a way of saying what this quantity would be if measured in years. Now
we can write very general facts about such quantities such as

months(x) = 12 ∗ years(x)

to relate the two units of measurement. Similarly, we would have

centimeters(x) = 100 ∗meters(x).

We could continue in this vein with locations and times. For example,
instead of

time(m17) = “Jan 5 1992 4:47:03EST”

where we are forced to decide on a fixed granularity, we could use

time(m17) = t41 ∧ year(t41) = 1992 ∧ month(t41) = Jan ∧ . . .

where we have reified time points. This type of representation of abstract
individuals for quantities, times, locations, and so on is a common
technique similar to the reification of events illustrated earlier.

3.8 OTHER SORTS OF FACTS

With the apparatus described so far we have seen how to represent the
basic facts and individuals of a commonsense domain like our soap-opera
world. Before moving on to a look at the variations in different knowledge
representation systems and their associated inference machinery, it is
important to point out that there are a number of other types of facts
about domains that we may want to capture. Each of these is problem-
atical for a straightforward application of first-order logic, but as we shall
see in the remainder of the book, they may be represented with extensions
of FOL or with other knowledge representation languages. The choice of
the language to use in a system or analysis will ultimately depend on what
types of facts and conclusions are most important for the application.

44 Chapter 3 ■ Expressing Knowledge

Among the many types of facts in the soap-opera world that we have
not captured are the following:

■ statistical and probabilistic facts: These include those that involve
portions of the sets of individuals satisfying a predicate, in some
cases exact subsets and in other cases less exactly quantifiable:

– Half of the companies are located on the East Side.
– Most of the employees are restless.
– Almost none of the employees are completely trustworthy.

■ default and prototypical facts: These cite characteristics that are
usually true, or reasonable to assume true unless told otherwise:

– Company presidents typically have secretaries intercepting their
phone calls.

– Cars have four wheels.
– Companies generally do not allow employees that work together

to be married.
– Birds fly.

■ intentional facts: These express people’s mental attitudes and inten-
tions, that is, they can reflect the reality of people’s beliefs but not
necessarily the “real” world itself:

– John believes that Henry is trying to blackmail him.
– Jane does not want Jim to know that she loves him.
– Tom wants Frank to believe that the shot came from the grassy

knoll.

This is not the end of what we would like to be able to express in a KB, of
course. In later chapters we will want to talk about the effects of actions
and will end up reifying both actions and states of the world. Ultimately,
a knowledge-based system should be able to express and reason with
anything that can be expressed by a sentence of English, indeed, any-
thing that we can imagine as being either true or false. Here we have
only looked at simple forms that are easily expressible in FOL. In sub-
sequent chapters we will examine other representation languages with
different strengths and weaknesses. First, however, we turn to how we
might compute entailments of a KB in FOL.

3.9 BIBLIOGRAPHIC NOTES

The catalogue of concepts (constants, relations, functions, etc.) used to
represent knowledge about a problem domain has come to be called
an ontology [1, 85, 171]. A very substantial, many-year attempt to

3.10 Exercises 45

develop a universal ontology for commonsense reasoning has been the
CYC project [235]. Among some smaller projects with related ambitions is
the KM project [71, 72].

A number of standards have been proposed for communicating
knowledge between knowledge-based systems and for representing
knowledge in a standard format. These include the Knowledge Inter-
change Format KIF [151, 152] (for a critique of KIF, see Ginsberg [159]),
the Knowledge Query Manipulation Language KQML [229, 230], the DARPA
Agent Markup Language DAML [185], the Ontology Inference Layer OIL [126],
and the Web Ontology Language OWL [286]. Some of this work is making
its way into the broader world of the World Wide Web via what is called
the “Semantic Web” [27].

The domain closure assumption and unique names assumption were
introduced by Reiter [341] and will be examined in detail in Chapter 11.
As noted in Chapter 2, the formal truth-valued semantics for first-order
logic is largely credited to Tarski [405], although it follows on from earlier
work. For further discussion, see Etchemendy [121].

3.10 EXERCISES

1. (Adapted from [309], and see follow-up Exercise 2 of Chapter 4.)
Consider the following piece of knowledge:

Tony, Mike, and John belong to the Alpine Club. Every member of
the Alpine Club who is not a skier is a mountain climber. Mountain
climbers do not like rain, and anyone who does not like snow is not
a skier. Mike dislikes whatever Tony likes, and likes whatever Tony
dislikes. Tony likes rain and snow.

(a) Prove that the given sentences logically entail that there is a
member of the Alpine Club who is a mountain climber but not
a skier.

(b) Suppose we had been told that Mike likes whatever Tony dislikes,
but we had not been told that Mike dislikes whatever Tony likes.
Prove that the resulting set of sentences no longer logically entails
that there is a member of the Alpine Club who is a mountain
climber but not a skier.

2. Consider the following facts about the Elm Street Bridge Club:

Joe, Sally, Bill, and Ellen are the only members of the club. Joe is
married to Sally. Bill is Ellen’s brother. The spouse of every married
person in the club is also in the club.

46 Chapter 3 ■ Expressing Knowledge

From these facts, most people would be able to determine that Ellen
is not married.

(a) Represent these facts as sentences in FOL, and show semantically
that by themselves they do not entail that Ellen is not married.

(b) Write in FOL some additional facts that most people would be
expected to know, and show that the augmented set of sentences
now entails that Ellen is not married.

3. Donald and Daisy Duck took their nephews, age 4, 5, and 6, on an
outing. Each boy wore a tee-shirt with a different design on it and of
a different color. You are also given the following information:

■ Huey is younger than the boy in the green tee-shirt.
■ The 5-year-old wore the tee-shirt with the camel design.
■ Dewey’s tee-shirt was yellow.
■ Louie’s tee-shirt bore the giraffe design.
■ The panda design was not featured on the white tee-shirt.

(a) Represent these facts as sentences in FOL.

(b) Using your formalization, is it possible to conclude the age of
each boy together with the color and design of the tee-shirt he
is wearing? Show semantically how you determined your answer.

(c) If your answer was “no,” indicate what further sentences you
would need to add so that you could conclude the age of each boy
together with the color and design of the tee-shirt he is wearing.

4. A Canadian variant of an old puzzle:

A traveler in remote Quebec comes to a fork in the road and does not
know which way to go to get to Chicoutimi. Henri and Pierre are two
local inhabitants nearby who do know the way. One of them always
tells the truth, and the other one never does, but the traveler does not
know which is which. Is there a single question the traveler can ask
Henri (in French, of course) that will be sure to tell him which way
to go?

We will formalize this problem in FOL. Assume there are only two
sorts of objects in our domain: inhabitants, denoted by the constants
henri and pierre; and French questions, which Henri and Pierre can
answer. These questions are denoted by the following terms:

■ gauche, which asks if the traveler should take the left branch of
the fork to get to Chicoutimi;

■ dit-oui(x, q), which asks if inhabitant x would answer yes to the
French question q;

3.10 Exercises 47

■ dit-non(x, q), which asks if inhabitant x would answer no to the
French question q.

Obviously this is a somewhat impoverished dialect of French, although
a philosophically interesting one. For example, the term

dit-non(henri, dit-oui(pierre, gauche))

represents a French question that might be translated as, “Would Henri
answer no if I asked him if Pierre would say yes I should go to the left
to get to Chicoutimi?” The predicate symbols of our language are the
following:

■ Truth-teller(x), which holds when inhabitant x is a truth teller;
■ Answer-yes(x, q), which holds when inhabitant x will answer yes

to French question q;
■ True(q), which holds when the correct answer to the question

q is yes;
■ Go-left, which holds if the direction to get to Chicoutimi is to

go left.

For purposes of this puzzle, these are the only constant, function, and
predicate symbols.

(a) Write FOL sentences for each of the following:

■ One of Henri or Pierre is a truth teller, and one is not.
■ An inhabitant will answer yes to a question if and only if he is a

truth teller and the correct answer is yes, or he is not a truth teller
and the correct answer is not yes.

■ The gauche question is correctly answered yes if and only if the
proper direction is to go is left.

■ A dit-oui(x, q) question is correctly answered yes if and only if x
will answer yes to question q.

■ A dit-non(x, q) question is correctly answered yes if and only if x
will not answer yes to q.

Imagine that these facts make up the entire KB of the traveler.

(b) Show that there is a ground term t such that

KB |= [Answer-yes(henri, t) ≡ Go-left].
In other words, there is a question t that can be asked to Henri
(and there is an analogous one for Pierre) that will be answered
yes if and only if the proper direction to get to Chicoutimi is to
go left.

(c) Show that this KB does not entail which direction to go, that is,
show that there is an interpretation satisfying the KB where Go-left
is true, and another one where it is false.

This Page Intentionally Left Blank

C H A P T E R 4

RESOLUTION

■

■

■

In Chapter 3, we examined how FOL could be used to represent knowl-
edge about a simple application domain. We also showed how logical
reasoning could be used to discover facts that were only implicit in a
given knowledge base. All of our deductive reasoning, however, was done
by hand, and relatively informally. In this chapter, we will examine in
detail how to automate a deductive reasoning procedure.

At the knowledge level, the specification for an idealized deductive
procedure is clear: Given a knowledge base KB and a sentence α, we
would like a procedure that can determine whether or not KB |= α;
also, if β[x1, . . . , xn] is a formula with free variables among the xi, we
want a procedure that can find terms ti, if they exist, such that KB |=
β[t1, . . . , tn]. Of course, as discussed in Chapter 1, this is idealized; no
computational procedure can fully satisfy this specification. What we are
really after, in the end, is a procedure that does deductive reasoning in as
sound and complete a manner as possible, and in a language as close as
possible to that of full FOL.

One observation about this specification is that if we take the KB to be
a finite set of sentences {α1, . . . , αn}, there are several equivalent ways of
formulating the deductive reasoning task:

KB |= α

iff |= [(α1 ∧ · · · ∧ αn) ⊃ α]
iff KB ∪ {¬α} is not satisfiable

iff KB ∪ {¬α} |= ¬TRUE

where TRUE is any valid sentence, such as ∀x(x = x). What this means
is that if we have a procedure for testing the validity of sentences, or

49

50 Chapter 4 ■ Resolution

for testing the satisfiability of sentences, or for determining whether or
not ¬TRUE is entailed, then that procedure can also be used to find the
entailments of a finite KB. This is significant, because the Resolution
procedure that we will consider in this chapter is in fact a procedure for
determining whether certain sets of formulas are satisfiable.

In the next section, we begin by looking at a propositional version of
Resolution, the clausal representation it depends on, and how it can be
used to compute entailments. In Section 4.2, we generalize this account
to deal with variables and quantifiers, and show how special answer
predicates can be used to find bindings for variables in queries. Finally,
in Section 4.3, we review the computational difficulties inherent in Reso-
lution, and show some of the refinements to Resolution that are used in
practice to deal with them.

4.1 THE PROPOSITIONAL CASE

The reasoning procedure we will consider in this chapter works on logi-
cal formulas in a special restricted form. It is not hard to see that every
formula α of propositional logic can be converted into another formula
α′ such that |= (α ≡ α′), and where α′ is a conjunction of disjunctions of
literals, where a literal is either an atom or its negation. We say that α

and α′ are logically equivalent, and that α′ is in conjunctive normal form,
or CNF. In the propositional case, CNF formulas look like this:1

(p ∨ ¬q) ∧ (q ∨ r ∨ ¬s ∨ p) ∧ (¬r ∨ q).

The procedure to convert any propositional formula to CNF is as follows:

1. eliminate ⊃ and ≡, using the fact that these are abbreviations for
formulas using only ∧, ∨, and ¬;

2. move ¬ inward so that it appears only in front of an atom, using
the following equivalences:

|= ¬¬α ≡ α;

|= ¬(α ∧ β) ≡ (¬α ∨ ¬β);

|= ¬(α ∨ β) ≡ (¬α ∧ ¬β).

3. distribute ∧ over ∨, using the following equivalences:

|= (α ∨ (β ∧ γ)) ≡ ((β ∧ γ) ∨ α) ≡ ((α ∨ β) ∧ (α ∨ γ)).

1In this chapter, to be consistent with common practice, we use lowercase letters for
propositional symbols.

4.1 The Propositional Case 51

4. collect terms, using the following equivalences:

|= (α ∨ α) ≡ α;

|= (α ∧ α) ≡ α.

The result of this procedure is a logically equivalent CNF formula (which
can be exponentially larger than the original formula).2 For example, for
((p ⊃ q) ⊃ r), by applying rule (1), we get (¬(¬p ∨ q) ∨ r); applying rule
(2), we then get ((p∧¬q)∨ r); and with rule (3), we get ((p ∨ r) ∧ (¬q ∨ r)),
which is in CNF. In this chapter, we will mainly deal with formulas
in CNF.

It is convenient to use a shorthand representation for CNF. A
clausal formula is a finite set of clauses, where a clause is a finite set of
literals. The interpretation of clausal formulas is precisely as formulas in
CNF: A clausal formula is understood as the conjunction of its clauses,
where each clause is understood as the disjunction of its literals, and
literals are understood normally. In representing clauses here, we will
use the following notation:

■ if ρ is a literal then ρ is its complement, defined by p = ¬p and
¬p = p, for any atom p;

■ while we will always use the normal set notation involving “{” and “}”
for clausal formulas (which are sets of clauses), we will sometimes
use “[” and “]” as the delimiters for clauses (which are sets of literals)
when we want to emphasize the difference between clauses and
clausal formulas.

For example, [p,¬q, r] is the clause consisting of three literals, and under-
stood as the disjunction (p ∨ ¬q ∨ r), while {[p,¬q, r], [q]} is the clausal
formula consisting of two clauses, and understood as ((p ∨ ¬q ∨ r) ∧ q).
A clause like [¬p] with a single literal is called a unit clause.

Note that the empty clausal formula {} is not the same as {[]}, the for-
mula containing just the empty clause. The empty clause [] is understood
as a representation of ¬TRUE (the disjunction of no possibilities), and so
{[]} also stands for ¬TRUE. However, the empty clausal formula {} (the
conjunction of no constraints) is a representation of TRUE.

For convenience, we will move freely back and forth between ordinary
formulas in CNF and their representations as sets of clauses.

Putting the comments made at the start of the chapter together with
what we have seen about CNF, it is the case that as far as deductive

2An analogous procedure also exists to convert a formula into a disjunction of conjunctions
of literals, which is called disjunctive normal form, or DNF.

52 Chapter 4 ■ Resolution

reasoning is concerned, to determine whether or not KB |= α it will be
sufficient to do the following:

1. put the sentences in KB and ¬α into CNF;

2. determine whether or not the resulting set of clauses is satisfiable.

In other words, any question about entailment can be reduced to a
question about the satisfiability of a set of clauses.

4.1.1 Resolution Derivations
To discuss reasoning at the symbol level, it is common to posit what are
called rules of inference, which are statements of what formulas can be
inferred from other formulas. Here, we use a single rule of inference
called (binary) Resolution:

Given a clause of the form c1 ∪ {ρ} containing some literal ρ, and
a clause of the form c2 ∪ {ρ} containing the complement of ρ, infer
the clause c1 ∪ c2 consisting of those literals in the first clause other
than ρ and those in the second other than ρ.3

We say in this case that c1 ∪ c2 is a resolvent of the two input clauses with
respect to ρ. For example, from clauses [w, p, q] and [s, w,¬p], we have
the clause [w, s, q] as a resolvent with respect to p. The clauses [p, q] and
[¬p,¬q] have two resolvents: [q,¬q] with respect to p, and [p,¬p] with
respect to q. Note that [] is not a resolvent of these two clauses. The only
way to get the empty clause is to resolve two complementary unit clauses
like [¬p] and [p].

A Resolution derivation of a clause c from a set of clauses S is a
sequence of clauses c1, . . . , cn, where the last clause, cn, is c, and where
each ci is either an element of S or a resolvent of two earlier clauses in
the derivation. We write S � c if there is a derivation of c from S.

Why do we care about Resolution derivations? The main point is that
this purely symbol-level operation on finite sets of literals has a direct
connection to knowledge-level logical interpretations.

Observe first of all that a resolvent is always entailed by the two input
clauses. Suppose we have two clauses c1 ∪ {p} and c2 ∪ {¬p}. We claim
that

{c1 ∪ {p}, c2 ∪ {¬p}} |= c1 ∪ c2.

To see why, let
 be any interpretation, and suppose that
 |= c1 ∪ {p}
and
 |= c2 ∪ {¬p}. There are two cases: If
 |= p, then
 �|= ¬p, but since

3Either c1 or c2 or both can be empty. In the case that c1 is empty, c1 ∪ {ρ} would be the
unit clause [ρ].

4.1 The Propositional Case 53

 |= c2 ∪ {¬p}, it must be the case that
 |= c2, and so
 |= c1 ∪ c2; simi-
larly, if
 �|= p, then since
 |= c1 ∪ {p}, it must be the case that
 |= c1,
and so again
 |= c1 ∪ c2. Either way, it is the case that
 |= c1 ∪ c2.

We can extend this argument to prove that any clause derivable by
Resolution from S is entailed by S, that is, if S � c, then S |= c. We
show by induction on the length of the derivation that for every ci, S |= ci:
This is clearly true if ci ∈ S, and otherwise, ci is a resolvent of two earlier
clauses, and so is entailed by them, as argued, and hence by S.

The converse, however, does not hold: We can have S |= c without
having S � c. For example, let S consist of the single clause [¬p] and let
c be [¬q, q]. Then, S clearly entails c even though it has no resolvents.
In other words, as a form of reasoning, finding Resolution derivations
is sound but not complete.

Despite this incompleteness, however, Resolution does have a property
that allows it to be used without loss of generality to calculate entail-
ments: Resolution is both sound and complete when c is the empty clause.
In other words, there is a theorem that states that S � [] if and only
if S |= [].4 This means that S is unsatisfiable if and only if S � []. This
provides us with a way of determining the satisfiability of any set of
clauses, because all we need to do is search for a derivation of the empty
clause. Because this works for any set S of clauses, we sometimes say that
Resolution is refutation-complete.

4.1.2 An Entailment Procedure
We are now ready to consider a symbol-level procedure for determining if
KB |= α. The idea is to put both KB and ¬α into CNF, as discussed before,
and then to check if the resulting set S of clauses (for both) is unsatisfi-
able by searching for a derivation of the empty clause. As discussed, S is
unsatisfiable if and only if KB ∪ {¬α} is unsatisfiable, which holds if and
only if KB |= α. This can be done using the nondeterministic procedure
in Figure 4.1. What the procedure does is to repeatedly add resolvents to
the input clauses S until either the empty clause is added (in which case
there is a derivation of the empty clause) or no new clauses can be added
(in which case there is no such derivation). Note that this is guaranteed
to terminate: Each clause that gets added to the set is a resolvent of previ-
ous clauses, and so contains only literals mentioned in the original set S.
There are only finitely many clauses with just these literals, and so even-
tually at step 2 we will not be able to find a pair of clauses that resolves
to something new.

The procedure can be made deterministic quite simply: We need to
settle on a strategy for choosing which pair of clauses to use when there

4This theorem will carry over to quantified clauses later.

54 Chapter 4 ■ Resolution

input: a finite set S of propositional clauses
output: satisfiable or unsatisfiable

1. check if [] ∈ S; if so, return unsatisfiable

2. otherwise, check if there are two clauses in S such that they resolve
to produce another clause not already in S; if not, return satisfiable

3. otherwise, add the new resolvent clause to S, and go back to step 1

■ FIGURE 4.1

A Resolution Procedure

is more than one pair that would produce a new resolvent. One possi-
bility is to use the first pair encountered; another is to use the pair that
would produce the shortest resolvent. It might also be a good idea to keep
track of which pairs have already been considered to avoid redundant
checking. If we were interested in returning or printing out a derivation,
we would of course also want to store with each resolvent pointers to its
input clauses.

The procedure does not distinguish between clauses that come from
the KB and those that come from the negation of α, which we will call
the query. Observe that if we have a number of queries we want to ask
for the same KB, we need only convert the KB to CNF once and then
add clauses for the negation of each query. Moreover, if we want to add
a new fact α to the KB, we can do so by adding the clauses for α to those
already calculated for KB. Thus, to use this type of entailment procedure,
it makes good sense to keep KB in CNF, adding and removing clauses as
necessary.

Let us now consider some simple examples of this procedure in
action. We start with the following KB:

Toddler

Toddler ⊃ Child

Child ∧ Male ⊃ Boy

Infant ⊃ Child

Child ∧ Female ⊃ Girl

Female

We can read these sentences as if they were talking about a particular
person: The person is a toddler; if the person is a toddler then the per-
son is a child; if the person is a child and male, then the person is a
boy; if the person is an infant, then the person is a child; if the person

4.2 Handling Variables and Quantifiers 55

is a child and female, then the person is a girl; the person is female. In
Figure 4.2, we graphically display a Resolution derivation showing that
the person is a girl by showing that KB |= Girl. Observe that in this dia-
gram we use a dashed line to separate the clauses that come directly from
the KB or the negation of the query from those that result from applying
Resolution. There are six clauses from the KB, one from the negation of
the query (i.e., ¬Girl) and four new ones generated by Resolution. Each
resolvent in the diagram has two solid lines pointing up to its input clauses.
The resulting graph will never have cycles, because input clauses must
always appear earlier in the derivation. Note that there are two clauses
in the KB that are not used in the derivation and could be left out of the
diagram.

A second example uses the following KB:

Sun ⊃ Mail

(Rain ∨ Sleet) ⊃ Mail

Rain ∨ Sun

These formulas can be understood as talking about the weather and
the mail service on a particular day. In Figure 4.3, we have a Res-
olution derivation showing that KB |= Mail. Note that the formula
((Rain∨Sleet)⊃Mail) results in two clauses on conversion to CNF. If we
wanted to show that KB �|= Rain for the same KB, we could do so by dis-
playing a similar graph that contains the clause [¬Rain] and every possible
resolvent, but does not contain the empty clause.

4.2 HANDLING VARIABLES AND QUANTIFIERS

Having seen how to do Resolution for the propositional case, we now
consider reasoning with variables, terms, and quantifiers. Again, we will
want to convert formulas into an equivalent clausal form. For simpli-
city, we begin by assuming that no existential quantifiers remain once
negations have been moved inward.5

1. eliminate ⊃ and ≡, as before;

2. move ¬ inward so that it appears only in front of an atom, using the
previous equivalences and the following two:

|= ¬∀x. α ≡ ∃x.¬α;

|= ¬∃x. α ≡ ∀x.¬α;

5We will see how to handle existentials in Section 4.2.3.

56 Chapter 4 ■ Resolution

[Toddler]

[Child]

[¬Female, Girl]

[Female]

[Girl]

[¬Girl]

[¬Infant, Child]

[¬Child, ¬Male, Boy]

[]

[¬Toddler, Child]

[¬Child, ¬Female, Girl]

negation
of query

■ FIGURE 4.2

A First Example Resolution Derivation

[¬Sleet, Mail]

[]

[¬Sun, Mail]

[¬Sun]

[¬Mail][¬Rain, Mail][Rain, Sun]

[Rain] [¬Rain]

■ FIGURE 4.3

A Second Example Resolution Derivation

3. standardize variables, that is, ensure that each quantifier is over
a distinct variable by renaming them as necessary. This uses the
following equivalences (provided that x does not occur free in α):

|= ∀y. α ≡ ∀x. α y
x ;

|= ∃y. α ≡ ∃x. α y
x ;

4.2 Handling Variables and Quantifiers 57

4. eliminate all remaining existentials (discussed later);

5. move universals outside the scope of ∧ and ∨ using the following
equivalences (provided that x does not occur free in α):

|= (α ∧ ∀x. β) ≡ (∀x. β ∧ α) ≡ ∀x(α ∧ β);

|= (α ∨ ∀x. β) ≡ (∀x. β ∨ α) ≡ ∀x(α ∨ β);

6. distribute ∧ over ∨, as before;

7. collect terms as before.

The result of this procedure is a quantified version of CNF, a univer-
sally quantified conjunction of disjunctions of literals that is once again
logically equivalent to the original formula (ignoring existentials).

Again, it is convenient to use a clausal form of CNF. We simply drop the
quantifiers (because they are all universal anyway), and we are left with
a set of clauses, each of which is a set of literals, each of which is either
an atom or its negation. An atom now is of the form P(t1, . . . , tn), where
the terms ti may contain variables, constants, and function symbols.6

Clauses are understood exactly as they were before, except that variables
appearing in them are interpreted universally. So, for example, the clausal
formula

{[P(x),¬R(a, f (b, x))], [Q(x, y)]}
stands for the CNF formula

∀x∀y ([P(x) ∨ ¬R(a, f (b, x))] ∧ Q(x, y)).

Before presenting the generalization of Resolution, it is useful to intro-
duce special notation and terminology for substitutions. A substitution θ

is a finite set of pairs {x1/t1, . . . , xn/tn} where the xi are distinct variables
and the ti are arbitrary terms. If θ is a substitution and ρ is a literal,
then ρθ is the literal that results from simultaneously replacing each xi
in ρ by ti. For example, if θ = {x/a, y/g(x, b, z)}, and ρ = P(x, z, f (x, y)),
then ρθ = P(a, z, f (a, g(x, b, z))). Similarly, if c is a clause, cθ is the clause
that results from performing the substitution on each literal. We say that
a term, literal, or clause is ground if it contains no variables. We say that
a literal ρ is an instance of a literal ρ′ if for some θ , ρ = ρ′θ .

6For now, we ignore atoms involving equality.

58 Chapter 4 ■ Resolution

4.2.1 First-Order Resolution
We now consider the Resolution rule as applied to clauses with variables.
The main idea is that since clauses with variables are implicitly universally
quantified, we want to allow Resolution inferences that can be made from
any of their instances.

For example, suppose we have clauses

[P(x, a),¬Q(x)] and [¬P(b, y),¬R(b, f (y))].

Then, implicitly at least, we also have clauses

[P(b, a),¬Q(b)] and [¬P(b, a),¬R(b, f (a))],

which resolve to [¬Q(b),¬R(b, f (a))]. We will define the rule of Resolution
so that this clause is a resolvent of the two original ones.

The general rule of (binary) Resolution is as follows:

Suppose we are given a clause of the form c1 ∪ {ρ1} containing some
literal ρ1, and a clause of the form c2∪{ρ2} containing the complement
of a literal ρ2. Suppose we rename the variables in the two clauses so
that each clause has distinct variables, and there is a substitution θ

such that ρ1θ = ρ2θ . Then, we can infer the clause (c1 ∪ c2)θ consist-
ing of those literals in the first clause other than ρ1 and those in the
second other than ρ2, after applying θ .

We say in this case that θ unifies ρ1 and ρ2, and that θ is a unifier of the
two literals.

With this new general rule of Resolution, the definition of a derivation
stays the same, and ignoring equality, it is the case that S � [] if and only
if S |= [] as before.7

We will use the same conventions as before to show Resolution deriva-
tions in diagrams, except that we will often show the unifying substitution
as a label near one of the solid lines.8

Consider the following KB as an example:

∀x. GradStudent(x) ⊃ Student(x)

∀x. Student(x) ⊃ HardWorker(x)

GradStudent(sue)

7For certain pathological cases, we actually require a slightly more general version of
Resolution to get completeness. See Exercise 4.
8Because it is sometimes not obvious which literals in the input clauses are being resolved,
for clarity we use the solid lines to point to them in the input clauses.

4.2 Handling Variables and Quantifiers 59

[¬Student(x), HardWorker(x)]

[¬GradStudent(x), Student(x)]

[GradStudent(sue)]
[¬Student(sue)]

[¬HardWorker(sue)]

[¬GradStudent(sue)]

[]

x / sue

x / sue

■ FIGURE 4.4

An Example Resolution Derivation with Variables

In Figure 4.4, we show that KB |= HardWorker(sue). Note that the
conversion of this KB to CNF did not require either existentials or
equality.

A slightly more complex derivation is presented in Figure 4.5. This is
a Resolution derivation corresponding to the three-block problem first
presented in Figure 2.1 of Chapter 2: If there are three stacked blocks
where the top one is green and the bottom one is not green, is there
a green block directly on top of a nongreen block? The KB here is

On(a,b), On(b,c), Green(a), ¬Green(c)

where the three blocks are a, b, and c. Note that this KB is already in CNF.
The query is

∃x∃y. On(x, y) ∧ Green(x) ∧ ¬Green(y)

whose negation contains no existentials or equalities.
Using a Resolution derivation it is possible to get answers to queries

that we might think of as requiring computation. To do arithmetic, for
example, we can use the constant zero to stand for 0, and succ to stand
for the successor function. Every natural number can then be written as
a ground term using these two symbols. For instance, the term

succ(succ(succ(succ(succ(zero)))))

60 Chapter 4 ■ Resolution

[On(b,c)]

[¬Green(b), Green(c)]

[¬Green(a), Green(b)][¬Green(c)]

[¬Green(b)]
[Green(b)]

[Green(a)]

[]

[On(a,b)]

[¬On(x,y), ¬Green(x), Green(y)]

x/b, y/c

x/a, y/b

■ FIGURE 4.5

The Three-Block Problem

stands for 5. We can use the predicate Plus(x, y, z) to stand for the relation
x + y = z, and start with a KB that formalizes the properties of addition
as follows:

∀x. Plus(zero, x, x)
∀x∀y∀z. Plus(x, y, z) ⊃ Plus(succ(x), y, succ(z)).

All the expected relations among triples of numbers are entailed by this
KB. For example, in Figure 4.6, we show that 2+ 3 = 5 follows from this
KB.9 A derivation for an entailed existential formula like

∃u. Plus(2, 3, u)

is similar, as shown in Figure 4.7. Here, we need to be careful to rename
variables (using v and w) to ensure that the variables in the input clauses
are distinct. Observe that by examining the bindings for the variables
we can locate the value of u: It is bound to succ(v), where v is bound to
succ(w), and w to 3. In other words, the answer for the addition is correctly
determined to be 5. As we will see in Chapter 5, this form of computation,
including locating the answers in a derivation of an existential, is what
underlies the PROLOG programming language.

9For readability, instead of using terms like succ(succ(zero)), we write the decimal equiva-
lent, 2.

4.2 Handling Variables and Quantifiers 61

[¬Plus(x,y,z), Plus(succ(x),y,succ(z))]
[¬Plus(2,3,5)]

[¬Plus(1,3,4)]

[¬Plus(0,3,3)]

[]

[Plus(0,x,x)]

x/1, y/3, z/4

x/0, y/3, z/3

x/3

■ FIGURE 4.6

Arithmetic in FOL

[¬Plus(x,y,z), Plus(succ(x),y,succ(z))]
[¬Plus(2,3,u)]

[¬Plus(1,3,v)]

[¬Plus(0,3,w)]

[]

[Plus(0,x,x)]

x/1, y/3, u/succ(v), z/v

x/0, y/3, v/succ(w), z/w

x/3, w/3

■ FIGURE 4.7

An Existential Arithmetic Query

4.2.2 Answer Extraction
While it is often possible to get answers to questions by looking at the
bindings of variables in a derivation of an existential, in full FOL the

62 Chapter 4 ■ Resolution

situation is more complicated. Specifically, it can happen that a KB entails
some ∃x. P(x) without entailing P(t) for any specific t. For example, in the
three-block problem in Figure 4.5, the KB entails that some block must
be green and on top of a nongreen block, but not which.

One general method that has been proposed for dealing with answers
to queries even in cases like these is the answer-extraction process. Here
is the idea: We replace a query such as ∃x. P(x) (where x is the vari-
able we are interested in) by ∃x. P(x) ∧ ¬A(x) where A is a new predicate
symbol occurring nowhere else, called the answer predicate. Since A
appears nowhere else, it will normally not be possible to derive the empty
clause from the modified query. Instead, we terminate the derivation as
soon as we produce a clause containing only the answer predicate.

To see this in action, we begin with an example having a definite answer.
Suppose the KB is

Student(john)

Student(jane)

Happy(john)

and we wish to show that some student is happy. The query then is

∃x. Student(x) ∧ Happy(x).

In Figure 4.8, we show a derivation augmented with an answer predicate
to derive who that happy student is. The final clause can be interpreted
as saying, “An answer is John.” A normal derivation of the empty clause
can be easily produced from this one by eliminating all occurrences of
the answer predicate.

Observe that in this example we say that an answer is produced by the
process. There can be many such answers, but each derivation only deals

[Student(jane)]

[Student(john)]

[Happy(john)]

[¬Student(john), A(john)]

[¬Happy(x), ¬Student(x), A(x)]

[A(john)]

x/john

■ FIGURE 4.8

Answer Predicate with a Definite Answer

4.2 Handling Variables and Quantifiers 63

with one. For example, if the KB had been

Student(john)

Student(jane)

Happy(john)

Happy(jane)

then in one derivation we might extract the answer jane, and in another,
john.

Where the answer-extraction process especially pays off is in cases
involving indefinite answers. Suppose, for example, our KB had been

Student(john)

Student(jane)

Happy(john) ∨ Happy(jane)

We can still see that there is a student who is happy, although we cannot
say who. If we use the same query and answer extraction process, we get
the derivation in Figure 4.9. In this case, the final clause can be interpreted
as saying, “An answer is either Jane or John,” which is as specific as the
KB allows.

Finally, it is worth noting that the answer-extraction process can result
in clauses containing variables. For example, if our KB is

∀w. Student(f (a, w))

∀x∀z. Happy(f (x, g(z)))

[Happy(john), Happy(jane)]

[Student(jane)] [Student(john)]

[A(jane), ¬Happy(jane)]

[A(jane), Happy(john)]

[A(jane), A(john)]

[¬Happy(john), A(john)]

[¬Happy(x), ¬Student(x), A(x)]

x/johnx/jane

■ FIGURE 4.9

Answer Predicate with an Indefinite Answer

64 Chapter 4 ■ Resolution

we get a derivation whose final clause is [A(f (a, g(z)))], which can be
interpreted as saying, “An answer is any instance of the term f (a, g(z)).”

4.2.3 Skolemization
So far, in converting formulas to CNF, we have ignored existentials. For
example, we could not handle facts in a KB like ∃x∀y∃z. P(x, y, z), since we
had no way to put them into CNF.

To handle existentials and represent such facts, we use the following
idea: Because some individuals are claimed to exist, we introduce names
for them (called Skolem constants and Skolem functions, for the logician
who first introduced them) and represent facts using those names. If we
are careful not to use the names anywhere else, what will be entailed
will be precisely what was entailed by the original existential. For the
formula just mentioned, for example, an x is claimed to exist, so call it
a; moreover, for each y, a z is claimed to exist, call it f (y). So instead of
reasoning with ∃x∀y∃z. P(x, y, z), we use ∀y. P(a, y, f (y)), where a and f are
Skolem symbols appearing nowhere else. Informally, if we think of the
conclusions we can draw from this formula, they will be the same as those
we can draw from the original existential (as long as they do not mention
a or f).

In general, then, in our conversion to CNF we eliminate all existen-
tials (at step 4) by what is called Skolemization: Replace each existential
variable by a new function symbol with as many arguments as there are
universal variables dominating the existential. In other words, if we start
with

∀x1(. . . ∀x2(. . . ∀x3(. . . ∃y[. . . y . . .] . . .) . . .) . . .),

where existentially quantified y appears in the scope of universally
quantified x1, x2, x3, and only these, we end up with

∀x1(. . . ∀x2(. . . ∀x3(. . . [. . . f (x1, x2, x3) . . .] . . .) . . .) . . .),

where f appears nowhere else.
If α is our original formula and α′ is the result of converting it to CNF

including Skolemization, then it is no longer the case that |= (α ≡ α′) as
it was before. For example, ∃x. P(x) is not logically equivalent to P(a), its
Skolemized version. What can be shown, however, is that α is satisfiable if
and only if α′ is satisfiable, and this is really all we need for Resolution.10

10We do need to be careful, however, with answer extraction, not to confuse real con-
stants (which have meaning in the application domain) with Skolem constants, which are
generated only to avoid existentials.

4.2 Handling Variables and Quantifiers 65

Note that Skolemization depends crucially on the universal vari-
ables that dominate the existential. A formula like ∃x∀yR(x, y) entails
∀y∃xR(x, y), but the converse does not hold. To show that the former holds
using Resolution, we show that

{∃x∀yR(x, y),¬∀y∃xR(x, y)}
is unsatisfiable. After conversion to CNF, we get the clauses

{[R(a, y)], [¬R(x, b)]}
(where a and b are Skolem constants) that resolve to the empty clause in
one step. If we were to try the same with the converse, we would need to
show that

{¬∃x∀yR(x, y),∀y∃xR(x, y)}

was unsatisfiable. After conversion to CNF, we get

{[¬R(x, g(x))], [R(f (y), y)]}
where f and g are Skolem functions. In this case, there is no derivation of
the empty clause (nor should there be) because the two literals R(x, g(x))
and R(f (y), y) cannot be unified.11 For logical correctness it is impor-
tant to get the dependence of variables right. In one case, we had R(a, y)
where the value of the existential x did not depend on universal y (i.e.,
in ∃x∀yR(x, y)); in the other case, we had the much weaker R(f (y), y)
where the value of the existential x could depend on the universal (i.e.,
in ∀y∃xR(x, y)).

4.2.4 Equality
So far, we have ignored formulas containing equality. If we were to simply
treat equality as a normal predicate, we would miss many unsatisfiable
sets of clauses, for example, {a = b, b = c, a �= c}. To handle these, it is
necessary to augment the set of clauses to ensure that all of the special
properties of equality are taken into account. What we require are the
clausal versions of the axioms of equality:

reflexitivity: ∀x. x = x;

symmetry: ∀x∀y. x = y ⊃ y = x;

transitivity: ∀x∀y∀z. x = y ∧ y = z ⊃ x = z;

11To see this, note that if x is replaced by t1 and y by t2, then t1 would have to be f (t2) and
t2 would have to be g(t1). So t1 would have to be f (g(t1)), which is impossible.

66 Chapter 4 ■ Resolution

[Married(y1,y2), ¬Married(x1,x2), x1 � y1, x2 � y2] equality

[¬Married(bill,mother(john))]

[father(john) � bill]

[mother(john) � mother(john)]

[]

[Married(father(x), mother(x))]

[x � x] equality[x2 � mother(john), x1 � bill, ¬Married(x1,x2))]

[x2� mother(john), ¬Married(father(john),x2))]

■ FIGURE 4.10

Using the Axioms of Equality

substitution for functions: for every function symbol f of arity n, an
axiom

∀x1∀y1 · · · ∀xn∀yn. x1 = y1 ∧ · · · ∧ xn = yn ⊃
f (x1, . . . , xn) = f (y1, . . . , yn);

substitution for predicates: for every predicate symbol P of arity n, an
axiom

∀x1∀y1 · · · ∀xn∀yn. x1 = y1 ∧ · · · ∧ xn = yn ⊃
P(x1, . . . , xn) ≡ P(y1, . . . , yn).

It can be shown that with the addition of these axioms, equality can
be treated as a binary predicate, and soundness and completeness of
Resolution for the empty clause will be preserved.

A simple example of the use of the axioms of equality can be found in
Figure 4.10. In this example, the KB is

∀x. Married(father(x),mother(x))

father(john)=bill

and the query to derive is

Married(bill,mother(john)).

4.3 Dealing with Computational Intractability 67

Note that the derivation uses two of the axioms: reflexitivity and substi-
tution for predicates.

Although the axioms of equality are sufficient for Resolution, they do
result in a very large number of resolvents, and their use can easily come
to dominate Resolution derivations. A more efficient treatment of equality
is discussed in Section 4.3.7.

4.3 DEALING WITH COMPUTATIONAL INTRACTABILITY

The success we have had using Resolution derivations should not mislead
us into thinking that Resolution provides a general effective solution to
the reasoning problem.

4.3.1 The First-Order Case
Consider, for example, the KB consisting of a single formula (again in
the domain of arithmetic):

∀x∀y. LessThan(succ(x), y)⊃LessThan(x, y).

Suppose our query is LessThan(zero,zero). Obviously, this should fail
because the KB does not entail the query (nor its negation). The prob-
lem is that if we pose it to Resolution, we get derivations like the one
shown in Figure 4.11. Although we never generate the empty clause, we
might generate an infinite sequence looking for it. Among other things,

. . .

. . .

[LessThan(x,y), ¬LessThan(succ(x),y)]

[¬LessThan(0,0)]

[¬LessThan(1,0)]

[¬LessThan(2,0)]

x/0,y/0

x/1,y/0

x/2,y/0

■ FIGURE 4.11

An Infinite Resolution Branch

68 Chapter 4 ■ Resolution

this suggests that we cannot simply use a depth-first procedure to search
for the empty clause, because we run the risk of getting stuck on such an
infinite branch.

We might ask if there is any way to detect when we are on such a
branch, so that we can give it up and look elsewhere. The answer unfortu-
nately is no. The FOL language is very powerful and can be used as a full
programming language. Just as there is no way to detect when a program
is looping, there is no way to detect if a branch will continue indefinitely.

This is quite problematic from a knowledge representation point of
view, because it means that there can be no procedure that, given a set
of clauses, returns satisfiable when the clauses are satisfiable and unsatis-
fiable otherwise.12 However, we do know that Resolution is refutation-
complete: If the set of clauses is unsatisfiable, some branch will contain
the empty clause (even if some branches may be infinite). So a breadth-
first search is guaranteed to report unsatisfiable when the clauses are
unsatisfiable. When the clauses are satisfiable, the search may or may
not terminate.

4.3.2 The Herbrand Theorem
We saw in Section 4.1 that in the propositional case we can run
Resolution to completion, so we never have the nontermination problem.
An interesting fact about Resolution in FOL is that it sometimes reduces
to this propositional case. Given a set S of clauses, the Herbrand universe
of S (named after the logician who first introduced it) is the set of all
ground terms formed using just the constants and function symbols in
S.13 For example, if S mentions just constants a and b and unary function
symbol f , then the Herbrand universe is the set

{a, b, f (a), f (b), f (f (a)), f (f (b)), f (f (f (a))), . . .}
The Herbrand base of S is the set of all ground clauses cθ where c ∈ S and
θ assigns the variables in c to terms in the Herbrand universe.

Herbrand’s Theorem states that a set of clauses is satisfiable if and
only if its Herbrand base is.14 The reason this is significant is that the
Herbrand base is a set of clauses without variables, so it is essentially
propositional. To reason with the Herbrand base it is not necessary to
use unifiers and so on, and we have a sound and complete reasoning
procedure that is guaranteed to terminate.

The catch in this approach (and there must be a catch, because no
procedure can decide the satisfiability of arbitrary sets of clauses) is that

12We will see in Chapter 5 that this is also true for the much simpler case of Horn clauses.
13In case S mentions no constant or function symbols, we use a single constant, say a.
14This applies to Horn clauses also, as discussed in Chapter 5.

4.3 Dealing with Computational Intractability 69

the Herbrand base will typically be an infinite set of propositional clauses.
It will, however, be finite when the Herbrand universe is finite (no func-
tion symbols and only finitely many constants appear in S). Moreover,
sometimes we can keep the universe finite by considering the “type” of
the arguments and values of functions, and include a term like f (t) only
if the type of t is appropriate for the function f . For example, if our func-
tion is birthday (taking a person as argument and producing a date), we
may be able to avoid meaningless terms like birthday(birthday(john)) in the
Herbrand universe.

4.3.3 The Propositional Case
If we can get a finite set of propositional clauses, we know that the
Resolution procedure in Figure 4.1 will terminate. But this does not make
it practical. The procedure may terminate, but how long will it take? We
might think that this depends on how good our procedure is at finding
derivations. However, in 1985, Armin Haken proved that there are unsat-
isfiable propositional clauses c1, . . . , cn such that the shortest derivation of
the empty clause has on the order of 2n steps. This answers the question
definitively: No matter how clever we are at finding derivations, and even
if we avoid all needless searching, any Resolution procedure will still take
exponential time on such clauses, because it takes that long to get to the
end of the derivation.

We might then wonder if this is just a problem with Resolution:
Might there not be a better way to determine whether a set of propo-
sitional clauses is satisfiable? As it turns out, this question is one of
the deepest ones in all of computer science and still has no definite
answer. In 1972, Stephen Cook proved that the satisfiability problem was
NP-complete: Roughly, any search problem where we are searching for
an item satisfying a certain property, and where we can test in polyno-
mial time whether a candidate item satisfies the property, can be recast
as a propositional satisfiability problem. The importance of this result
is that many problems of practical interest (in areas such as schedul-
ing, routing, and packing) can be formulated as search problems of this
form.15 Thus a polynomial time algorithm for satisfiability (which Haken
proved Resolution is not) would imply a polynomial time algorithm for
all of these tasks. Because so many people have been unable to find
good algorithms for any of them, it is strongly believed that propositional

15An example is the so-called Traveling Salesman Problem: Given a graph with nodes stand-
ing for cities and edges with numbers on them standing for direct routes between cities that
many kilometers apart, determine if there is a way to visit all the cities in the graph in less
than some given number k of kilometers.

70 Chapter 4 ■ Resolution

satisfiability cannot be solved at all in polynomial time. Proofs, however,
like Haken’s for Resolution, have been very hard to obtain.

4.3.4 The Implications
So what are the implications of these negative results? At the very least,
they tell us that Resolution is not a panacea. For knowledge representation
purposes, we would like to be able to produce entailments of a KB for
immediate action, but determining the satisfiability of clauses may simply
be too difficult computationally for this purpose.

We may need to consider some other options. One is to give more
control over the reasoning process to the user. This is a theme that will
show up in the procedural representations in Chapters 5 and 6 and oth-
ers. Another option is to consider the possibility of using representation
languages that are less expressive than full FOL or even full propositional
logic. This is a theme that will show up in Chapters 5 and 9, among others.
Much of the research in knowledge representation and reasoning can be
seen as attempts to deal with this issue, and we will return to it in detail
in Chapter 16.

On the other hand, it is worth observing that in some applications
of Resolution it is reasonable to wait for answers, even for a very
long time. Using Resolution to do mathematical theorem-proving, for
example, to determine whether or not Goldbach’s Conjecture or its nega-
tion follows from the axioms of number theory, is quite different from
using Resolution to determine whether or not an umbrella is needed
when it looks like rain. In the former case, we might be willing to
wait for months or even years for an answer. There is an area of AI
called automated theorem-proving whose subject matter is precisely the
development of procedures for such mathematical applications.

The best we can hope for in such applications of Resolution is not a
guarantee of efficiency or even of termination, but a way to search for
derivations that eliminates unnecessary steps as much as possible. In the
rest of this section, we will consider strategies that can be used to improve
the search in this sense.

4.3.5 SAT Solvers
In the propositional case, various procedures have been proposed for
determining the satisfiability of a set of clauses more efficiently than
the Resolution procedure of Figure 4.1. Examples are the DP, TAB, and
LS procedures presented in Exercises 6, 7, and 8, respectively. Instead
of searching for a derivation that would show a set of clauses to be
unsatisfiable, these procedures search for an interpretation that would
show the clauses to be satisfiable. For this reason, the procedures are

4.3 Dealing with Computational Intractability 71

called SAT solvers, and are often applied to clauses that are known to be
satisfiable, but where the satisfying interpretation is not known.

However, the distance between the two sorts of procedures is not
that great. For one thing, the Resolution procedure of Figure 4.1 can be
adapted to finding a satisfying interpretation (see Exercise 9). Further-
more, as discussed in the exercises, the SAT solvers DP and TAB have the
property that when they fail to find a satisfying interpretation, a Resolu-
tion derivation of the empty clause can be lifted directly from a trace of
their execution. This implies that no matter how well DP or TAB work
in practice, they must take exponential time on some inputs.

One interesting case is the procedure called GSAT in Exercise 10. This
SAT solver is not known to be subject to any lower bounds related to the
Haken result for Resolution. However, it does have drawbacks of its own:
It is not even guaranteed to terminate with a correct answer in all cases.

4.3.6 Most General Unifiers
The most important way of avoiding needless search in a first-order deri-
vation is to keep the search as general as possible. Consider, for example,
two clauses c1 and c2, where c1 contains the literal P(g(x), f (x), z) and c2
contains ¬P(y, f (w), a). These two literals are unified by the substitution

θ1 = {x/b, y/g(b), z/a, w/b}

and also by

θ2 = {x/f (z), y/g(f (z)), z/a, w/f (z)}.

We may very well be able to derive the empty clause using θ1, but if we
cannot, we will need to consider other substitutions like θ2 and so on.

The trouble is that both of these substitutions are overly specific. We
can see that any unifier must give w the same value as x, and y the same
as g(x), but we do not need to commit yet to a value for x. The substitution

θ3 = {y/g(x), z/a, w/x}

unifies the two literals without making an arbitrary choice that might
preclude a path to the empty clause. It is a most general unifier (MGU).

More precisely, a most general unifier θ of literals ρ1 and ρ2 is a uni-
fier that has the property that for any other unifier θ ′, there is a further
substitution θ∗ such that θ ′ = θ ·θ∗.16 So starting with θ you can always

16By θ ·θ∗ we mean the substitution such that for any literal ρ, ρ(θ ·θ∗) = (ρθ)θ∗, that is, we
apply θ to ρ and then apply θ∗ to the result.

72 Chapter 4 ■ Resolution

get to any other unifier by applying additional substitutions. For example,
given θ3, we can get to θ1 by further applying x/b, and to θ2 by applying
x/f (z). Note that an MGU need not be unique, in that

θ4 = {y/g(w), z/a, x/w}

is also one for c1 and c2.
The key fact about MGUs is that (with certain restrictions that need

not concern us here) we can limit the Resolution rule to MGUs without
loss of completeness. This helps immensely in the search, because it dra-
matically reduces the number of resolvents that can be inferred from two
input clauses. Moreover, an MGU of a pair of literals ρ1 and ρ2 can be
calculated efficiently by the following procedure:

1. start with θ = {};
2. exit if ρ1θ = ρ2θ ;

3. otherwise get the disagreement set, DS, which is the pair of terms
at the first place where the two literals disagree;

e.g., if ρ1θ = P(a, f (a, g(z), . . .)) and ρ2θ = P(a, f (a, u, . . .)), then
DS = {u, g(z)};

4. find a variable v ∈ DS, and a term t ∈ DS not containing v; if none,
fail;

5. otherwise, set θ to θ ·{v/t}, and go to step 2.

This procedure works very well in practice, although it can take exponen-
tial time on certain pathological cases. Moreover, an even better but more
complex linear time algorithm exists.

Because MGUs greatly reduce the search and can be calculated effi-
ciently, all Resolution-based systems implemented to date use them.

4.3.7 Other Refinements
A number of other refinements to Resolution have been proposed to help
improve the search.

Clause Elimination The idea is to keep the number of clauses gener-
ated as small as possible, without giving up completeness, by using the
fact that if there is a derivation to the empty clause at all, then there is one
that does not use certain types of clause. Some examples are the following:

■ pure clauses: these are clauses that contain some literal ρ such that
ρ does not appear anywhere;

4.3 Dealing with Computational Intractability 73

■ tautologies: these are clauses that contain both ρ and ρ, and can be
bypassed in any derivation;

■ subsumed clauses: these are clauses for which there already exists
another clause with a subset of the literals (perhaps after a substi-
tution).

Ordering Strategies The idea here is to prefer to perform Resolution
steps in a fixed order, trying to maximize the chance of deriving the
empty clause. The best strategy found to date (but not the only one) is
unit preference, that is, to use unit clauses first. This is because using a
unit clause together with a clause of length k always produces a clause of
length k−1. By going for shorter and shorter clauses, the hope is to arrive
at the empty clause more quickly.

Set of Support In a knowledge representation application, even if the
KB and the negation of a query are unsatisfiable, we still expect the KB by
itself to be satisfiable. It therefore makes sense not to perform Resolution
steps involving only clauses from the KB. The set of support strategy says
that we are only allowed to perform Resolution if at least one of the input
clauses has an ancestor in the negation of the query. Under the right
conditions, this can be done without loss of completeness.

Special Treatment of Equality We examined earlier one way to
handle equality using the axioms of equality explicitly. Because these can
generate so many resolvents, a better way is to introduce a second rule of
inference in addition to Resolution, called Paramodulation:

Suppose we are given a clause c1 ∪ {t = s} where t and s are terms, and
a clause c2 ∪ {ρ[t′]} containing some term t′. Suppose we rename the
variables in the two clauses so that each clause has distinct variables,
and that there is a substitution θ such that tθ = t′θ . Then, we can infer
the clause ({c1∪c2∪ρ[s]})θ , which eliminates the equality atom, replaces
t′ by s, and then performs the θ substitution.

With this rule, it is no longer necessary to include the axioms of equality,
and what would have required many steps of Resolution involving those
axioms can be done in a single step. Using the earlier example, it is not
hard to see that from

[father(john) = bill] and [Married(father(x), mother(x))],

we can derive the clause [Married(bill,mother(john))] in a single Paramodu-
lation step.

Sorted Logic The idea here is to associate sorts with all terms. For
example, a variable x might be of sort Male, and the function mother might
be of sort [Person → Female]. We might also want to keep a taxonomy of

74 Chapter 4 ■ Resolution

sorts, for example, that Woman is a subsort of Person. With this information
in place, we can refuse to unify P(s) with P(t) if the sorts of s and t are
incompatible. The assumption here is that only meaningful (with respect
to sorts) unifications can ever lead to the empty clause.

Connection Graph In the connection graph method, given a set of
clauses, we precompute a graph with edges between any two unifiable
literals of opposite polarity and labeled with the MGU of the two literals.
In other words, we start by precomputing all possible unifications. The
Resolution procedure, then, involves selecting a link, computing a resol-
vent clause, and inheriting links for the new clause from its input clauses
after substitution. No unification is done at “run time.” With this, Resolu-
tion can be seen as a kind of state-space search problem—find a sequence
of links that ultimately produces the empty clause—and any technique for
improving a state-space search (such as using a heuristic function) can be
applied to Resolution.

Directional Connectives A clause like [¬p, q], representing “if p then
q,” can be used in a derivation in two ways: In the forward direction,
if we derive a clause containing p, we then derive the clause with q; in
the backward direction, if we derive a clause containing ¬q, we then
derive the clause with¬p. The idea with directional connectives is to mark
clauses to be used in one or the other direction only. For example, given
a fact in a KB like

∀x. Battleship(x) ⊃ Gray(x)

we may wish to use this only in the forward direction, because it is prob-
ably a bad idea to work on deriving that something is gray by trying to
derive that it is a battleship. Similarly, a fact like

∀x. Person(x) ⊃ Has(x, spleen)

might be used only in the backward direction, because it is probably
a bad idea to derive having a spleen for every individual derived to be
a person. This form of control over how facts are used is the basis for the
procedural representation languages that will be discussed extensively in
Chapter 6. From a logical point of view, however, great care is needed
with directional connectives to ensure that completeness is not lost.

4.4 BIBLIOGRAPHIC NOTES

The Resolution principle was developed by Robinson [357]; Robinson
also showed that Resolution is refutation-complete. An early, influential
text on theorem proving was written by Chang and Lee [66]. Another

4.5 Exercises 75

text in the area is by Fitting [132], who contrasts the use of conjunctive
normal form in Resolution (as presented here) and disjunctive normal
form in another theorem-proving method known as tableau. Resolution
and tableau are currently the predominant techniques in implementing
automated theorem provers.

Wos [431] provides an interesting practical guide to the use of McCune’s
OTTER theorem prover as applied to the automated proof of theorems in
algebra. Wos claims to have coined the term automated reasoning in 1980
[431, p. 2]. Leitsch [233] presents Resolution as a logical calculus. Wang
[419] provides an early theorem prover based on another logical system
known as Gentzen’s “sequent calculus” [154]. Wang’s theorem prover
was capable of mechanically proving a number of the results in Principia
Mathematica [422].

The idea of using answer predicates for answer extraction is due to
Green [167]. Skolemization is named after Thoralf Skolem [387, 388].
Haken’s result, showing the existence of unsatisfiable sets of clauses
where the shortest derivation of the empty clause takes exponentially
many steps in the number of clauses, can be found in [176]. Cook’s
landmark complexity result appeared in [78]. Garey and Johnson [145]
present a comprehensive survey of the field of computational complexity,
including discussion of the Traveling Salesman Problem and other related
problems.

The study of SAT solvers has stimulated interesting interactions among
researchers in AI (e.g., [293]), computational complexity (e.g., [5]), and
statistical physics (e.g., [289]). SAT can be seen as a special type of
constraint satisfaction problem (CSP) (see the textbook by Dechter [99]),
and some of the research in the area concerns both notions. References
to some of the existing algorithms for SAT are found in the exercises at
the end of this chapter.

The set-of-support refinement is discussed by Wos et al. [433]. The
paramodulation technique was developed by Wos and Robinson [432].
The collection by Meinke and Tucker [287] discusses aspects of sorted
logic. The connection graph method of precomputing unifications was
introduced by Stickel [400]. Boyer and Moore [39] introduce a theo-
rem prover based on mathematical induction. Knuth and Bendix [219]
introduce a procedure for equational reasoning that is commonly used in
term-rewriting systems.

4.5 EXERCISES

1. Determine whether the following sentence is valid using Resolution:

∃x∀y∀z((P(y) ⊃ Q(z)) ⊃ (P(x) ⊃ Q(x))).

76 Chapter 4 ■ Resolution

2. (Follow-up to Exercise 1 of Chapter 3)
Use Resolution with answer extraction to find the member of the
Alpine Club who is a mountain climber but not a skier.

3. (Adapted from [153])
Victor has been murdered, and Arthur, Bertram, and Carleton are the
only suspects (meaning exactly one of them is the murderer). Arthur
says that Bertram was the victim’s friend, but that Carleton hated the
victim. Bertram says that he was out of town the day of the murder,
and besides, he didn’t even know the guy. Carleton says that he saw
Arthur and Bertram with the victim just before the murder. You may
assume that everyone—except possibly for the murderer—is telling
the truth.

(a) Use Resolution to find the murderer. In other words, formalize
the facts as a set of clauses, prove that there is a murderer, and
extract his identity from the derivation.

(b) Suppose we discover that we were wrong—we cannot assume
that there was only a single murderer (there may have been a
conspiracy). Show that in this case the facts do not support any-
one’s guilt. In other words, for each suspect, present a logical
interpretation that supports all the facts but where that suspect
is innocent and the other two are guilty.

4. (See follow-up Exercise 3 of Chapter 5)
The general form of Resolution with variables presented here is
not complete as it stands, even for deriving the empty clause. In
particular, note that the two clauses

[P(x), P(y)] and [¬P(u),¬P(v)]

are together unsatisfiable.

(a) Argue that the empty clause cannot be derived from these two
clauses.

A slightly more general rule of Resolution handles cases such as these:

Suppose that C1 and C2 are clauses with disjoint atoms. Suppose
that there are sets of literals D1 ⊆ C1 and D2 ⊆ C2 and a substitu-
tion θ such that D1θ = {ρ} and D2θ = {ρ}. Then, we conclude by
Resolution the clause (C1 −D1)θ ∪ (C2 −D2)θ .

The form of Resolution considered in the text simply took D1 and D2
to be singleton sets.

4.5 Exercises 77

(b) Show a refutation of the two clauses with this generalized form
of Resolution.

(c) Another way to obtain completeness is to leave the Resolution
rule unchanged (that is, dealing with pairs of literals rather than
pairs of sets of literals), but to add a second rule of inference,
sometimes called factoring, to make up the difference. Present
such a rule of inference and show that it properly handles the
earlier example.

In the remaining exercises of this chapter we consider a number of
procedures for determining whether or not a set of propositional
clauses is satisfiable. In most cases, we also would like to return a
satisfying interpretation, if one exists.

5. In defining procedures for testing satisfiability, it is useful to have the
following notation: When C is a set of clauses and m is a literal, define
C •m to be the following set of clauses:

C •m = {c | c ∈ C, m /∈ c, m /∈ c} ∪ {(c−m) | c ∈ C, m /∈ c, m ∈ c}.

For example, if C = {[p, q], [p, a, b], [p, c], [d, e]}, it follows that C•p =
{[a, b], [c], [d, e]} and C • p = {[q], [d, e]}.

Prove the following two properties of Resolution derivations:

(a) If C •m derives clause c in k steps, then C derives c∗ in k steps,
where c∗ is either c itself or the clause c ∪ [m].

(b) If C • p derives [] in n1 steps and C • p derives [] in n2 steps, then
C derives [] in no more than (n1 + n2 + 1) steps.

6. A very popular procedure for testing the satisfiability of a set of
propositional clauses is the Davis-Putnam procedure (henceforth
DP), shown in Figure 4.12, named after the two mathematicians who
first presented it.17

(a) Sketch how DP could be modified to return a satisfying assign-
ment (as a set of literals) instead of YES when the clauses are
satisfiable.

(b) The main refinements to this procedure that have been proposed
in the literature involve the choice of the atom p. As stated, the

17The version considered here is actually closer to the variant presented by Davis, Logemann,
and Loveland sans Putnam [87].

78 Chapter 4 ■ Resolution

input: a set of clauses C

output: are the clauses satisfiable, YES or NO?

procedure DP(C)

if C is empty then return YES

if C contains [] then return NO

let p be some atom mentioned in C

if DP(C • p) = YES then return YES

otherwise, return DP(C • p)

end

■ FIGURE 4.12

The DP Procedure

choice is left to chance. Argue why it is useful to do at least the
following: If C contains a singleton clause [p] or [p], then choose
p as the next atom.

(c) Another refinement is the following: Once it is established that C
is not empty and does not contain [], check to see if C mentions
some literal m but not its complement m. In this case, we return
DP(C•m) directly and do not bother with C•m. Explain why this
is correct.

(d) Among all known propositional satisfiability procedures, recent
experimental results suggest that DP (including the refinements
mentioned here) is the fastest one in practice. Somewhat sur-
prisingly, it is possible to prove that DP can take an exponential
number of steps on some inputs. Use the results from Exercise 5
and Haken’s result mentioned in Section 4.3.3 to prove an expo-
nential lower bound on the running time of DP. Hint: Prove by
induction on k that if DP(C) returns NO after k steps, then C
derives [] by Resolution in no more than k steps.

(e) As stated, the choice of the next atom p is left to chance. How-
ever, a number of selection strategies have been proposed in the
literature, such as choosing an atom p where

■ p appears in the most clauses in C, or
■ p appears in the fewest clauses in C, or
■ p is the most balanced atom in C (the number of posi-

tive occurrences in C is closest to the number of negative
occurrences), or

■ p is the least balanced atom in C, or
■ p appears in the shortest clause(s) in C.

4.5 Exercises 79

Choose any two of these selection strategies, implement two versions
of DP, and compare how well they run (in terms of the number of
recursive calls) on some hard test cases. To generate some sets of
clauses that are known to be hard for DP (see [293] for details), ran-
domly generate about 4. 2n clauses of length 3, where n is the number
of atoms. (Each clause can be generated by choosing three atoms at
random and flipping the polarity of each with a probability of .5.)

7. Until recently, a very popular way of testing the satisfiability of a set
of propositional clauses was the tableau method. Rather than com-
puting resolvents, the procedure TAB in Figure 4.13 tries to construct
an interpretation L that satisfies a set of clauses C by picking literals
from each clause.

In this exercise, we begin by showing that the TAB procedure, like
the DP procedure of Exercise 6, must have exponential running time
on some inputs. First, we use the notation C �N c to mean that clause c
(or a subset of it) can be derived by Resolution from the set of clauses
C in N steps (or less). Observe that if C �N1 c1 and C ∪ {c1} �N2 c2, then
C �(N1+N2) c2, just by stacking the two derivations together.

(a) Prove that if C ∪ {c} �N [], then C ∪ {(c ∪ c′)} �N c′.

input: a set of clauses C

output: are the clauses satisfiable, YES or NO?

procedure TAB(C) = TAB1(C, {})
procedure TAB1(C, L)

if L contains some m and m then return NO

if C is empty then return YES

otherwise, let c be any clause in C

for m ∈ c do

if TAB1({c ∈ C |m /∈ c}, L ∪ {m}) = YES

then return YES

end for

return NO

end

■ FIGURE 4.13

The TAB Procedure

80 Chapter 4 ■ Resolution

(b) Prove using part (a) and the earlier observation that if m1, . . . , mk
are literals, and for each i, C ∪ {[mi]} �Ni

[], then

C ∪ {[m1, . . . , mk]} �(N1+···+Nk) [].

(c) Prove by induction on N and using part (b) that if
TAB1(C,{l1, . . . , lr}) returns NO after a total of N procedure calls,
then there is a Resolution refutation of (C ∪ {[l1], . . . , [lr]}) that
takes at most N steps.

(d) As in Exercise 6, use Haken’s result from Section 4.3.3 and part
(c) to prove that there is a set of clauses C for which TAB(C)
makes an exponential number of recursive procedure calls.

Finally, we consider an experimental question:

(e) As mentioned in Exercise 6, it was shown in [293] that the DP
procedure often runs for a very long time with about 4. 2n ran-
domly generated clauses of length 3 (where n is the number of
atoms in the clauses). With fewer than 4. 2n clauses, DP usu-
ally terminates quickly; with more, again DP usually terminates
quickly.

Confirm (or refute) experimentally that the tableau method TAB
also exhibits the same easy–hard–easy pattern around 4. 2n on
sets of clauses randomly generated as in Exercise 6.

8. Another method was proposed in [83] for testing the satisfiability of a
set of propositional clauses. The procedure LS (for local search) tries
to find an interpretation that satisfies a set of clauses by searching
to within a certain distance from a given set of start points. In the
simplest version, we consider two start points: the interpretation I0,
which assigns all atoms false, and the interpretation I1, which assigns
all atoms true. It is not hard to see that every interpretation lies within
a distance of n/2 from one of these two start points, where n is the
number of atoms and where the distance between two interpretations
is the number of atoms where they differ (the Hamming distance).
The procedure is shown in Figure 4.14 using the C •m notation from
Exercise 5.

Note: The correctness of the procedure depends on the following
fact (discussed in [83]): In the final step, suppose c ∈ C is a
clause not satisfied by I. Then there is an interpretation within dis-
tance d of I that satisfies C if and only if for some literal m ∈ c
there is an interpretation within distance d − 1 of I that satisfies
C •m.

4.5 Exercises 81

input: a set of clauses C, over n atoms

output: are the clauses satisfiable, YES or NO?

procedure LS(C) = LS1(C, I0, n/2) or LS1(C, I1, n/2)

procedure LS1(C, I, d)

if I |= c, for every c ∈ C, then return YES

if d ≤ 0 then return NO

if [] ∈ C then return NO

otherwise, let c be any clause in C such that I �|= c

for m ∈ c do

if LS1(C •m, I, d− 1) = YES

then return YES

end for

return NO

end

■ FIGURE 4.14

The LS Procedure

Confirm (or refute) experimentally that the LS method also exhibits
the same easy–hard–easy pattern noted in Exercise 7.

9. In some applications we are given a set of clauses that is known to be
satisfiable and our task is to find an interpretation that satisfies the
clauses. We can use variants of the procedures presented in Exercises
6, 7, or 8 to do this, but we can also use Resolution itself. First we
generate R = RES(S), the set of all resolvents derivable from S. Then
we run the procedure RES-SAT, shown in Figure 4.15.

Note that ¬c refers to the set of literals that are the complements of
those in c. Also, we are treating an interpretation as a set of literals T
containing exactly one of pi or ¬pi, for each atom pi.

(a) Show an example where this procedure would not correctly
locate a satisfying interpretation if the original set S were used
instead of R in the body.

(b) Given that the procedure works correctly for some set R, prove
that it would also work correctly on just the minimal elements of
R, that is, on those clauses in R for which no proper subset is a
clause in R.

82 Chapter 4 ■ Resolution

input: a set of clauses C over n atoms

output: an interpretation satisfying C

procedure RES-SAT(C)

T := {}
for i := 1 to n

if there is a clause c ∈ R such that ¬c ⊆ T ∪ {pi}
then T := T ∪ {¬pi}
else T := T ∪ {pi}

end for

return T

end

■ FIGURE 4.15

The RES-SAT Procedure

(c) Prove that the procedure correctly finds a satisfying inter-
pretation when R = RES(S). Hint: Begin by showing the
following:

For any T, if for no clause c ∈ R is it the case that ¬c ⊆ T, then
there cannot be clauses c1 and c2 in R such that ¬c1 ⊆ T ∪ {p}
and ¬c2 ⊆ T ∪ {¬p}.

Then use induction to do the rest.

10. In [375], a procedure called GSAT is presented for finding inter-
pretations for satisfiable sets of clauses. This procedure, shown in
Figure 4.16, seems to have some serious drawbacks: It does not work
at all on unsatisfiable sets of clauses, and even with satisfiable ones
it is not guaranteed to eventually return an answer. Nonetheless, it
appears to work quite well in practice.

The procedure uses two parameters: flips determines how many
times the atoms in I should be flipped before starting over with
a new random interpretation; tries determines how many times this
process should be repeated before giving up and declaring failure.
Both parameters need to be set by trial and error.

Implement GSAT and compare its performance to one of the
other satisfiability procedures presented in these exercises on some
satisfiable sets of clauses of your own choosing. Note that one of

4.5 Exercises 83

input: a set of clauses C, and two parameters, tries and flips

output: an interpretation satisfying C, or failure

procedure GSAT(C, tries, flips)

for i := 1 to tries do

I := a randomly generated truth assignment

for j := 1 to flips do

if I |= C then return I
p := an atomic symbol such that a change in its truth

assignment gives the largest increase in the total

number of clauses in C that are satisfied by I
I := I with the truth assignment of p reversed

end for

end for

return “no satisfying interpretation found”

end

■ FIGURE 4.16

The GSAT Procedure

the properties of GSAT is that because it counts the number of
clauses not yet satisfied by an interpretation, it is very sensitive
to how a problem is encoded as a set of clauses (that is, logically
equivalent formulations could have very different computational
consequences).

This Page Intentionally Left Blank

C H A P T E R 5

REASONING WITH HORN CLAUSES

■

■

■

In Chapter 4, we saw how a Resolution procedure could in principle be
used to calculate entailments of any first-order logic KB. But we also
saw that in its most general form Resolution ran into serious compu-
tational difficulties. Although refinements to Resolution can help, the
problem can never be completely eliminated. This is a consequence of
the fundamental computational intractability of first-order entailment.

In this chapter, we will explore the idea of limiting ourselves to only
a certain interesting subset of first-order logic, where the Resolution
procedure becomes much more manageable. We will also see that from
a representation standpoint, the subset in question is still sufficiently
expressive for many purposes.

5.1 HORN CLAUSES

In a Resolution-based system, clauses end up being used for two different
purposes. First, they are used to express ordinary disjunctions like

[Rain, Sleet, Snow].

This is the sort of clause we might use to express incomplete knowledge:
There is rain or sleet or snow outside, but we don’t know which. But
consider a clause like

[¬Child, ¬Male, Boy].

Although this can certainly be read as a disjunction, namely, “either
someone is not a child, or is not male, or is a boy,” it is much more

85

86 Chapter 5 ■ Reasoning with Horn Clauses

naturally understood as a conditional: “If someone is a child and is male
then that someone is a boy.” It is this second reading of clauses that will
be our focus in this chapter.

We call a clause like this—containing at most one positive literal—a
Horn clause. When there is exactly one positive literal in the clause, it
is called a positive (or definite) Horn clause. When there are no positive
literals, the clause is called a negative Horn clause. In either case, there
can be zero negative literals, and so the empty clause is a negative Horn
clause. Observe that a positive Horn clause [¬p1, . . . ,¬pn, q] can be read
as “if p1 and … and pn, then q.” We will sometimes write a clause like
this as

p1 ∧ . . . ∧ pn ⇒ q

to emphasize this conditional, “if–then” reading.
Our focus in this chapter will be on using Resolution to reason with

if–then statements (which are sometimes called “rules”). Full first-order
logic is concerned with disjunction and incomplete knowledge in a
more general form, which we are putting aside for the purposes of this
chapter.

5.1.1 Resolution Derivations with Horn Clauses
Given a Resolution derivation over Horn clauses, observe that two
negative clauses can never be resolved together, because all of their
literals are of the same polarity. If we are able to resolve a negative and
a positive clause together, we are guaranteed to produce a negative clause:
The two clauses must be resolved with respect to the one positive literal in
the positive clause, and so it will not appear in the resolvent. Similarly, if
we resolve two positive clauses together, we are guaranteed to produce a
positive clause: The two clauses must be resolved with respect to one (and
only one) of the positive literals, so the other positive literal will appear in
the resolvent. In other words, Resolution over Horn clauses must always
involve a positive clause, and if the second clause is negative, the resolvent
is negative; if the second clause is positive, the resolvent is positive.

Less obvious, perhaps, is the following fact: Suppose S is a set of Horn
clauses and S � c, where c is a negative clause. Then there is guaranteed
to be a derivation of c where all the new clauses in the derivation (i.e.,
clauses not in S) are negative. The proof is detailed and laborious, but the
main idea is this: Suppose we have a derivation with some new positive
clauses. Take the last one of these, and call it c′. Since c′ is the last positive
clause in the derivation, all of the Resolution steps after c′ produce nega-
tive clauses. We now change the derivation so that instead of generating
negative clauses using c′, we generate these negative clauses using the
positive parents of c′ (which is where all of the literals in c′ come from—c′

5.2 SLD Resolution 87

must have only positive parents, because it is a positive clause). We know
we can do this because in order to get to the negative successor(s) of c′,
we must have a clause somewhere that can resolve with it to eliminate
the one positive literal in c′ (call that clause d and the literal p). That p
must be present in one of the (positive) parents of c′, so we just use clause
d to resolve against the parent of c′, thereby eliminating p earlier in the
derivation and producing the negative clauses without producing c′. The
derivation still generates c, but this time without needing c′. If we repeat
this for every new positive clause introduced, we eliminate all of them.

We can go further: Suppose S is a set of Horn clauses and S � c, where
c is again a negative clause. Then there is guaranteed to be a derivation of
c where each new clause derived is not only negative, but is a resolvent of
the previous one in the derivation and an original clause in S. The reason
is this: By the earlier argument, we can assume that each new clause in
the derivation is negative. This means that it has one positive and one
negative parent. Clearly, the positive parent must be from the original set
(because all the new ones are negative). Each new clause then has exactly
one negative parent. So starting with c, we can work our way back through
its negative ancestors and end up with a negative clause that is in S. Then,
by discarding all the clauses that are not on this chain from c to S, we end
up with a derivation of the required form.

These observations lead us to the following conclusion:

There is a derivation of a negative clause (including the empty clause)
from a set of Horn clauses S if and only if there is one where each new
clause in the derivation is a negative resolvent of the previous clause in
the derivation and some element of S.

We will look at derivations of this form in more detail in the next section.

5.2 SLD RESOLUTION

The observations of the previous section lead us to consider a very
restricted form of Resolution that is sufficient for Horn clauses. This is
a form of Resolution where each new clause introduced is a resolvent
of the previous clause and a clause from the original set. This pattern
showed up repeatedly in the examples of Chapter 4, and is illustrated
schematically in Figure 5.1.1

Let us be a little more formal about this. For any set S of clauses (Horn
or not), an SLD derivation of a clause c from S is a sequence of clauses
c1, c2, . . . , cn, such that cn = c, c1 ∈ S, and ci+1 is a resolvent of ci and

1The pattern appears in Figure 4.4, but not Figure 4.5.

88 Chapter 5 ■ Reasoning with Horn Clauses

. . .

. . .

. . .

. . .

c1

c2

c3

■ FIGURE 5.1

The SLD Resolution Pattern

some clause of S. We write S �SLD c if there is an SLD derivation of c from
S. Notationally, because of its structure, an SLD derivation is simply a type
of Resolution derivation where we do not explicitly mention the elements
of S except for c1.2 We know that at each step of the way the obvious
positive parent from S can be identified, so we can leave it out of our
description of the derivation and just show the chain of negative clauses
from c1 to c.

In the general case, it should be clear that if S �SLD [] then S � []. The
converse, however, is not true in general. For example, let S be the set of
clauses [p, q], [¬p, q], [p,¬q], and [¬p,¬q]. A quick glance at these clauses
should convince us that S is unsatisfiable (whatever values we pick for
p and q, we cannot make all four clauses true at the same time). Therefore,
S � []. However, to generate [] by Resolution, the last step must involve
two complementary unit clauses [ρ] and [ρ], for some atom ρ. Since S
contains no unit clauses, it will not be possible to use an element of S for
this last step. Consequently there is no SLD derivation of [] from S, even
though S � [].

In the previous section we argued that for Horn clauses we could get
by with Resolution derivations of a certain shape, wherein each new
clause in the derivation was a negative resolvent of the previous clause

2The name SLD stands for Selected literals, Linear pattern, over Definite clauses.

5.2 SLD Resolution 89

in the derivation and some element of S; we have now called such deriva-
tions SLD derivations. So although not the case for Resolution in general,
it is the case that if S is a set of Horn clauses, then S � [] if and
only if S �SLD []. So if S is Horn, then it is unsatisfiable if and only if
S �SLD []. Moreover, we know that each of the new clauses c2, . . . , cn can
be assumed to be negative. So c2 has a negative and a positive parent, and
thus c1 ∈ S can be taken to be negative as well. Thus in the Horn case,
SLD derivations of the empty clause must begin with a negative clause
in the original set.

To see an example of an SLD derivation, consider the first example
of Chapter 4. We start with a KB containing the following positive Horn
clauses:

Toddler

Toddler ⊃ Child

Child ∧ Male ⊃ Boy

Infant ⊃ Child

Child ∧ Female ⊃ Girl

Female

and wish to show that KB |= Girl, that is, that there is an SLD derivation
of [] from KB together with the negative Horn clause [¬Girl]. Because
this is the only negative clause, it must be the c1 in the derivation. By
resolving it with the fifth clause in the KB, we get [¬Child,¬Female] as
c2. Resolving this with the sixth clause, we get [¬Child] as c3. Resolving
this with the second clause, we get [¬Toddler] as c4. And finally, resolving
this with the first clause, we get [] as the final clause. Observe that all the
clauses in the derivation are negative. To display this derivation, we could
continue to use Resolution diagrams from Chapter 4. However, for SLD
derivations, it is convenient to use a special-purpose terminology and
format.

5.2.1 Goal Trees
All the literals in all the clauses in a Horn SLD derivation of the empty
clause are negative. We are looking for positive clauses in the KB to
“eliminate” these negative literals to produce the empty clause. Some-
times, there is a unit clause in the KB that eliminates the literal directly.
For example, if a clause like [¬Toddler] appears in a derivation using the
earlier KB, then the derivation is finished, because there is a positive
clause in the KB that resolves with it to produce the empty clause. We say
in this case that the goal Toddler is solved. Sometimes there is a positive
clause that eliminates the literal but introduces other negative literals.

90 Chapter 5 ■ Reasoning with Horn Clauses

For example, with a clause like [¬Child] in the derivation, we continue
with the clause [¬Toddler], having resolved it against the second clause in
our knowledge base ([¬Toddler, Child]). We say in this case that the goal
Child reduces to the subgoal Toddler. Similarly, the goal Girl reduces to
two subgoals, Child and Female, since two negative literals are introduced
when it is resolved against the fifth clause in the KB.

A restatement of the SLD derivation is as follows: We start with the
goal Girl. This reduces to two subgoals, Child and Female. The goal Female
is solved, and Child reduces to Toddler. Finally, Toddler is solved.

We can display this derivation using what is called a goal tree. We
draw the original goal (or goals) at the top, and point from there to the
subgoals. For a complete SLD derivation, the leaves of the tree (at the
bottom) will be the goals that are solved (see Figure 5.2). This allows
us to easily see the form of the argument: We want to show that Girl is
entailed by the KB. Reading from the bottom up, we know that Toddler is
entailed because it appears in the KB. This means that Child is entailed.
Furthermore, Female is also entailed (because it appears in the KB), so we
conclude that Girl is entailed.

This way of looking at Horn clauses and SLD derivations, when gen-
eralized to deal with variables in the obvious way, forms the basis of the
programming language PROLOG. We already saw an example of a PROLOG-
style definition of addition in Chapter 4. Let us consider another example
involving lists. For our purposes, list terms will either be variables, the
constant nil, or a term of the form cons(t1, t2), where t1 is any term and
t2 is a list term. We will write clauses defining the Append(x, y, z) relation,
intended to hold when list z is the result of appending list y to list x:

Append(nil, y, y)

Append(x, y, z)⇒Append(cons(w, x), y, cons(w, z))

Girl

Child

Toddler

Female

■ FIGURE 5.2

An Example Goal Tree

5.3 Computing SLD Derivations 91

Append(cons(a,cons(b,nil)), cons(c,nil), cons(a,cons(b,cons(c,nil))))

Append(cons(b,nil), cons(c,nil), cons(b,cons(c,nil)))

Append(nil, cons(c,nil), cons(c,nil))

■ FIGURE 5.3

A Goal Tree for Append

If we wish to show that this entails

Append(cons(a,cons(b,nil)), cons(c,nil), cons(a,cons(b,cons(c,nil))))

we get the goal tree in Figure 5.3. We can also use a variable in the goal and
show that the definition entails ∃u. Append(cons(a,cons(b,nil)), cons(c,nil), u).
The answer u = cons(a,cons(b,cons(c,nil))) can be extracted from the deri-
vation directly. Unlike ordinary Resolution, it is not necessary to use
answer predicates with SLD derivations. This is because if S is a set of
Horn clauses, then S |= ∃x. α if and only if for some term t, S |= αx

t .

5.3 COMPUTING SLD DERIVATIONS

We now turn our attention to procedures for reasoning with Horn
clauses. The idea is that we are given a KB containing a set of posi-
tive Horn clauses representing if–then sentences, and we wish to know
whether or not some atom (or set of atoms) is entailed. Equivalently, we
wish to know whether or not the KB together with a clause consisting of
one or more negative literals is unsatisfiable. Thus the typical case, and
the one we will consider here, involves determining the satisfiability of
a set of Horn clauses containing exactly one negative clause.3

5.3.1 Backward Chaining
A procedure for determining the satisfiability of a set of Horn clauses
with exactly one negative clause is presented in Figure 5.4. This procedure

3It is not hard to generalize the procedures presented here to deal with more than one
negative clause (see Exercise 4). Similarly, the procedures can be generalized to answer
entailment questions where the query is an arbitrary (non-Horn) formula in CNF.

92 Chapter 5 ■ Reasoning with Horn Clauses

input: a finite list of atomic sentences, q1, . . . , qn

output: YES or NO according to whether a given KB entails all of the qi

procedure SOLVE[q1, . . . , qn]

if n = 0 then return YES

for each clause c ∈ KB, do

if c = [q1,¬p1, . . . ,¬pm]
and SOLVE[p1, . . . , pm, q2, . . . , qn]

then return YES

end for

return NO

■ FIGURE 5.4

A Recursive Backward-Chaining SLD Procedure

starts with a set of goals as input (corresponding to the atoms in the single
negative clause) and attempts to solve them. If there are no goals, then it
is done. Otherwise, it takes the first goal q1 and looks for a clause in KB
whose positive literal is q1. Using the negative literals in that clause as
subgoals, it then calls itself recursively with these subgoals together with
the rest of the original goals. If this is successful, it is done; otherwise
it must consider other clauses in the KB whose positive literal is q1. If
none can be found, the procedure returns NO, meaning the atoms are
not entailed.

This procedure is called backward chaining, because it works back-
ward from goals to facts in the KB. It is also called depth-first, because it
attempts to solve the new goals pi before tackling the old goals qi. Finally, it
is called left-to-right, because it attempts the goals qi in order 1, 2, 3, and so
on. This depth-first left-to-right backward-chaining procedure is the one
normally used by PROLOG implementations to solve goals, although the
first-order case obviously requires unification, substitution of variables,
and so on.

This backward-chaining procedure also has a number of drawbacks.
First, observe that even in the propositional case it can go into an infinite
loop. Suppose we have the tautologous [p,¬p] in the KB.4 In this case,
a goal of p can reduce to a subgoal of p, and so on, indefinitely.

Even if it does terminate, the backward-chaining algorithm can be
quite inefficient and do a considerable amount of redundant searching.
For example, imagine that we have 2n atoms p0, . . . , pn−1 and q0, . . . , qn−1,

4This corresponds to the PROLOG program “p :- p.”

5.3 Computing SLD Derivations 93

input: a finite list of atomic sentences, q1, . . . , qn

output: YES or NO according to whether a given KB entails all of the qi

1. if all of the goals qi are marked as solved, then return YES

2. check if there is a clause [p,¬p1, . . . ,¬pn] in KB, such that all of its
negative atoms p1, …, pn are marked as solved, and such that the
positive atom p is not marked as solved

3. if there is such a clause, mark p as solved and go to step 1

4. otherwise, return NO

■ FIGURE 5.5

A Forward-Chaining SLD Procedure

and the following 4n− 4 clauses: For 0 < i < n,

pi−1 ⇒ pi

pi−1 ⇒ qi

qi−1 ⇒ pi

qi−1 ⇒ qi

For any i, both SOLVE[pi] and SOLVE[qi] will eventually fail, but only
after at least 2i steps. The proof is a simple induction argument.5 This
means that even for a reasonably sized KB (say 396 clauses when n = 100),
an impossibly large amount of work may be required (over 2100 steps).

Given this exponential behavior, we might wonder if this is a problem
with the backward-chaining procedure or another instance of what we
saw in the last chapter where the entailment problem itself was simply too
hard in its most general form. As it turns out, this time it is the procedure
that is to blame.

5.3.2 Forward Chaining
In the propositional case, there is a much more efficient procedure to
determine if a Horn KB entails a set of atoms, given in Figure 5.5. This is
a forward-chaining procedure, because it works from the facts in the KB
toward the goals. The idea is to mark atoms as “solved” as soon as we have
determined that they are entailed by the KB.

5The claim is clearly true for i = 0. For the goal pk, where k > 0, we need to try to solve both
pk−1 and qk−1. By induction, each of these take at least 2k−1 steps, for a total of 2k steps.
The case for qk is identical.

94 Chapter 5 ■ Reasoning with Horn Clauses

Suppose, for example, we start with the earlier Girl example. At the
outset Girl is not marked as solved, so we go to step 2. At this point, we
look for a clause satisfying the given criteria. The clause [Toddler] is one
such, because all of its negative literals (of which there are none) are
marked as solved. So we mark Toddler as solved and try again. This time
we might find the clause [Child,¬Toddler], and so we can mark Child as
solved and try again. Continuing in this way, we mark Female and finally
Girl as solved and we are done.

Although this procedure appears to take about the same effort as the
backward-chaining one, it has much better overall behavior. Note, in
particular, that each time through the iteration we need to find a clause
in the KB with an atom that has not been marked. Thus, we will iterate
at most as many times as there are clauses in the KB. Each such iteration
step may require us to scan the entire KB, but the overall result will never
be exponential. In fact, with a bit of care in the use of data structures,
a forward-chaining procedure like this can be made to run in time that
is linear in the size of the KB, as will be demonstrated in Exercise 1.

5.3.3 The First-Order Case
Thus, in the propositional case at least, we can determine if a Horn KB
entails an atom in a linear number of steps. But what about the first-order
case? Unfortunately, even with Horn clauses, we still have the possibility
of a procedure that runs forever. The example in Figure 4.11, where an
infinite branch of resolvents was generated, only required Horn clauses.
While it might seem that a forward-chaining procedure could deal with
first-order examples like these, avoiding the infinite loops, this cannot
be: The problem of determining whether a set of first-order Horn clauses
entails an atom remains undecidable. So no procedure can be guaranteed
to always work, despite the fact that the propositional case is so easy. This
is not too surprising, because PROLOG is a full programming language, and
being able to decide if an atom is entailed would imply being able to decide
if a PROLOG program would halt.

As with non-Horn clauses, the best that can be expected in the first-
order case is to give control of the reasoning to the user to help avoid
redundancies and infinite branches. Unlike the non-Horn case, however,
Horn clauses are much easier to structure and control in this way. In the
next chapter, we will see some examples of how this can be done.

5.4 BIBLIOGRAPHIC NOTES

Horn formulas were first studied by Alfred Horn [190] and are named
after him. The SLD Resolution procedure was introduced by Kowalski

5.5 Exercises 95

[223] and referred to as SLD Resolution by Apt and van Emden [14].
The linear-time procedure for the satisfiability of Horn clauses is due to
Dowling and Gallier [110].

What is called backtracking here is usually referred to as chrono-
logical backtracking [418]. Another common backtracking technique is
dependency-directed backtracking, introduced by Stallman and Sussman
[395].

Horn clauses and SLD Resolution form the basis of the logic program-
ming language PROLOG [75]. Good introductions to reasoning with clauses
are given by Kowalski [224] and Richards [353]. Further reference to
material on PROLOG will be provided in the next chapter.

5.5 EXERCISES

1. Write, test, and document a program that determines the satisfiability
of a set of propositional Horn clauses by forward chaining and that
runs in linear time, relative to the size of the input. Use the following
data structures:

(a) a global variable STACK containing a list of atoms known to be
true, but waiting to be propagated forward;

(b) for each clause, an atom CONCLUSION, which is the positive
literal appearing in the clause (or NIL if the clause contains only
negative literals), and a number REMAINING, which is the num-
ber of atoms appearing negatively in the clause that are not yet
known to be true;

(c) for each atom, a flag VISITED indicating whether or not the atom
has been propagated forward, and a list ON-CLAUSES of all the
clauses where the atom appears negatively.

You may assume the input is in suitable form. Include in the docu-
mentation an argument as to why your program runs in linear time.
(If you choose to use LISP property lists for your data structures, you
may assume that it takes constant time to go from an atom to any of
its properties.)

2. As noted in Chapter 4, Herbrand’s Theorem allows us to convert a
first-order satisfiability problem into a propositional (variable-free)
one, although the size of the Herbrand base, in general, is infinite.
One way to deal with an infinite set S of clauses is to look at pro-
gressively larger subsets of it to see if any of them are unsatisfiable,
in which case S must be as well. In fact, the converse is true: If S is

96 Chapter 5 ■ Reasoning with Horn Clauses

unsatisfiable, then some finite subset of S is unsatisfiable too. This is
called the compactness property of FOL.
One way to generate progressively larger subsets of S is as follows:

For any term t, let |t| be defined as 0 for variables and constants,
and 1+max|ti| for terms f (t1, . . . , tn).
Now for any set S of formulas, define Sk to be those elements α of S
such that every term t of α has |t| ≤ k.

(a) Write and test a program that given a finite set S of first-order
clauses and a positive number k returns as value Hk, where H is
the Herbrand base of S.

(b) When the original set S is Horn, then for any k, your program
returns a finite set of propositional Horn clauses. These can be
checked for satisfiability using a propositional program like the
one in Exercise 1. Briefly compare this way of testing the satisfia-
bility of S to the more standard way using SLD Resolution, as in
PROLOG.

3. Consider the more general version of Resolution discussed in
Exercise 4 of Chapter 4. Is that generalization required for SLD-
resolution? Explain.

4. In this question, we will explore the semantic properties of propo-
sitional Horn clauses. For any set of clauses S, define IS to be the
interpretation that satisfies an atom p if and only if S |= p.

(a) Show that if S is a set of positive Horn clauses, then IS |= S.

(b) Give an example of a set of clauses S where IS �|= S.

(c) Suppose that S is a set of positive Horn clauses and that c is
a negative Horn clause. Show that if IS �|= c then S ∪ {c} is
unsatisfiable.

(d) Suppose that S is a set of positive Horn clauses and that T is a set
of negative ones. Using part (c), show that if S ∪ {c} is satisfiable
for every c ∈ T, then S ∪ T is satisfiable also.

(e) In the propositional case, the normal PROLOG interpreter can be
thought of as taking a set of positive Horn clauses S (the program)
and a single negative clause c (the query) and determining whether
or not S∪{c} is satisfiable. Use part (d) to conclude that PROLOG can
be used to test the satisfiability of an arbitrary set of Horn clauses.

5. In this question, we will formalize a fragment of high school geometry.
We will use a single binary predicate symbol, which we write
here as ∼=. The objects in this domain are points, lines, angles,

5.5 Exercises 97

and triangles. We will use constants only to name the points we need,
and for the other individuals we will use function symbols that take
points as arguments: first, a function that given two points is used to
name the line between them, which we write here as AB, where A and
B are points; next, a function that given three points names the angle
between them, which we write here as ∠ABC; and finally, a function
that given three points names the triangle between them, which we
write here as �ABC.
Here are the axioms of interest:

■ ∼= is an equivalence relation.
■ XY ∼= YX .
■ ∠XYZ ∼= ∠ZYX .
■ If �XYZ ∼= �UVW, then the corresponding lines and angles are

congruent (XY ∼= UV , ∠XYZ ∼= ∠UVW, etc.).
■ SAS: If XY ∼= UV , ∠XYZ ∼= ∠UVW, and YZ ∼= VW,

then �XYZ ∼= �UVW.

(a) Show that these axioms imply that the base angles of an isosceles
triangle must be equal, that is, that

Axioms ∪ AB ∼= AC |= ∠ABC ∼= ∠ACB.

Because the axioms can be formulated as Horn clauses and the
other two sentences are atomic, it is sufficient to present an SLD
derivation.

(b) The theorem in part (a) can also be proven by constructing the
midpoint of the side BC (call it D), and showing that �ABD ∼=
�ACD (by using SSS, the fact that two triangles are congruent if
the corresponding sides are all congruent). What difficulties do
you foresee in automated reasoning with constructed points like
this?

This Page Intentionally Left Blank

C H A P T E R 6

PROCEDURAL CONTROL OF REASONING

■

■

■

Theorem-proving methods, like Resolution, are general, domain-
independent ways of reasoning. A user can express facts in full FOL
without having to know how this knowledge will ultimately be used for
inference by an automated theorem-proving (ATP) procedure. The ATP
mechanism will try all logically permissible uses of everything in the
knowledge base in looking for an answer to a query.

This is a double-edged sword, however. Sometimes, it is not computa-
tionally feasible to try all logically possible ways of using what is known.
Furthermore, we often do have an idea about how knowledge should be
used or how to go about searching for a derivation. When we understand
the structure of a domain or a problem, we may want to avoid using facts
in every possible way or in every possible order. In cases like these, we
would like to communicate guidance to an automatic theorem-proving
procedure based on properties of the domain. This may be in the form of
specific methods to use, or perhaps merely suggesting what to avoid in
trying to answer a query.

For example, consider a variant on a logical language where some of
the connectives are to be used only in one direction, as suggested at the
end of Chapter 4. Instead of a simple implication symbol, for example,
we might have a special forward implication symbol that suggests only
going from antecedent to consequent but not the reverse. If we used the
symbol “→” to represent this one-way implication, then the sentence,
(Battleship(x) → Gray(x)), would allow a system to conclude in the forward
direction for any specific battleship that it was gray, but would prevent
it from trying to show that something was gray by trying to show that it
was a battleship (an unlikely prospect for most gray things).

99

100 Chapter 6 ■ Procedural Control of Reasoning

More generally, there are many cases in knowledge representation
where we as users will want to control the reasoning process in various
domain-specific ways. As noted in Chapter 4, this is often the best we
can do to deal with an otherwise computationally intractable reasoning
task. In this chapter, we will examine how knowledge can be expressed to
provide control for the simple case of the backward-chaining reasoning
procedure we examined in Chapter 5.

6.1 FACTS AND RULES

In a clausal representation scheme like those we considered in the chapter
on Horn logic, we can often separate the clauses in a KB into two
components: a database of facts, and a collection of rules. The facts are
used to cover the basic truths of the domain and are usually ground atoms;
the rules are used to extend the vocabulary, expressing new relations in
terms of basic facts, and are usually universally quantified conditionals.
Both the basic facts and the (conclusions of) rules can be retrieved by the
sort of unification matching we have studied.

For example, we might have the following simple knowledge base
fragment:

Mother(jane, billy)

Father(john, billy)

Father(sam, john)

…

Parent(x, y) ⇐ Mother(x, y)

Parent(x, y) ⇐ Father(x, y)

Child(x, y) ⇐ Parent(y, x)

…

We can read the latter sentence, for example, as “x is a child of y if y
is a parent of x.” In this case, if we ask the knowledge base if John is
the father of Billy, we would find the answer by matching the base fact,
Father(john, billy), directly. If we ask if John is a parent of Billy, we would
need to chain backward and ask the KB if John was either the mother
of Billy or the father of Billy (the latter would of course succeed). If we
were to ask whether Billy is a child of John, then we would have to check
whether John was a parent of Billy, and then proceed to the mother and
father checks.

Because rules involve chaining, and the possible invocation of other
rules that can in turn cause more chaining, the key control issue we

6.2 Rule Formation and Search Strategy 101

need to think about is how to make the most effective use of the rules
in a knowledge base.

6.2 RULE FORMATION AND SEARCH STRATEGY

Let’s consider defining the notion of Ancestor in terms of the predicate
Parent. Here are three logically equivalent ways to express the relationship
between the two predicates:

1. Ancestor(x, y) ⇐ Parent(x, y)
Ancestor(x, y) ⇐ Parent(x, z) ∧ Ancestor(z, y)

2. Ancestor(x, y) ⇐ Parent(x, y)
Ancestor(x, y) ⇐ Parent(z, y) ∧ Ancestor(x, z)

3. Ancestor(x, y) ⇐ Parent(x, y)
Ancestor(x, y) ⇐ Ancestor(x, z) ∧ Ancestor(z, y)

In the first case, we see that someone x is an ancestor of someone else
y if x is a parent of y, or if there is a third person z who is a child of x
and an ancestor of y. So, for example, if Sam is the father of Bill, and
Bill is the great-grandfather (an ancestor) of Sue, then Sam is an ancestor
of Sue. The second case looks at the situation where Sam might be the
great-grandfather of Fred, who is a parent of Sue, and therefore Sam is
an ancestor of Sue. In the third case, we observe that if Sam is the great-
grandfather of George who is in turn a grandfather of Sue, then again
Sam is an ancestor of Sue. Although their forms are different, a close
look reveals that all three of these yield the same results on all questions.

If we are trying to determine whether or not someone is an ancestor
of someone else, in all three cases we would use backward chaining from
an initial Ancestor goal, such as Ancestor(sam,sue), which would ultimately
reduce to a set of Parent goals. But depending on which version we use,
the rules could lead to substantially different amounts of computation.
Consider the three cases:

1. the first version of Ancestor suggests that we start from Sam and look
“downward” in the family tree; in other words (assuming that Sam
is not Sue’s parent), to find out whether or not Ancestor(sam, sue) is
true, we first look for a z that is Sam’s child: Parent(sam, z). We then
check to see if that z is an ancestor of Sue: Ancestor(z, sue).

2. the second option (again, assuming that Sam is not Sue’s parent)
suggests that we start searching “upward” in the family tree from
Sue, looking for some z that is Sue’s parent: Parent(z, sue). Once we

102 Chapter 6 ■ Procedural Control of Reasoning

find one, we then check to see if Sam is an ancestor of that parent:
Ancestor(sam, z).

3. the third option suggests a search in both directions, looking at
individual Parent relationships both up and down at the same time.

The three search strategies implied by these (logically equivalent)
representations are not equivalent in terms of the computational
resources needed to answer the query. For example, suppose that people
have on average one child, but two parents. With the first option, as we
fan out from Sam, we search a tree downward that has about d nodes
where d is the depth of the search; with the second option, as we fan out
from Sue, we search a tree upward that has 2d nodes where d is the depth.
So as d gets larger, we can see that the first option would require much
less searching. If, on the other hand, people had more than two children
on average, the second option would be better. Thus we can see how the
structure of a particular domain, or even a particular problem, can make
logically equivalent characterizations of the rules quite different in their
computational impact for a backward-chaining derivation procedure.

6.3 ALGORITHM DESIGN

The same kind of thinking about the structure of rules plays a significant
role in a wide variety of problems. For example, familiar numerical rela-
tions can be expressed in forms that are logically equivalent, but with
substantially different computational properties.

Consider the Fibonacci integer series, wherein each Fibonacci number
is the sum of the previous two numbers in the series. Assuming that the
first two Fibonacci numbers are 1 and 1, the series looks like this:

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

One direct and obvious way to characterize this series is with the following
two base facts and a rule, using a two-place predicate, Fibo(n, v), intended
to hold when v is the nth Fibonacci number:

Fibo(0, 1)

Fibo(1, 1)

Fibo(s(s(n)), v) ⇐ Fibo(n, y) ∧ Fibo(s(n), z) ∧ Plus(y, z, v)

This says explicitly that the zeroth and first Fibonacci numbers are both
1, and by the rule, that the (n+ 2)nd Fibonacci number is the sum of the
(n + 1)st Fibonacci number z and the nth Fibonacci number y. Note that
we use a three-place relation for addition: Plus(y, z, v) means v = y+ z.

6.4 Specifying Goal Order 103

This simple and direct characterization has significant computational
drawbacks if used by an unguided backward-chaining theorem prover. In
particular, it generates an exponential number of Plus subgoals. This is
because each application of the rule calls Fibo twice, once each on the
previous two numbers in the series. Most of this effort is redundant,
because the call on the previous number makes a further call on the
number before that, which has already been pursued in a different part of
the proof tree by the former step. That is, Fibo(12,−) invokes Fibo(11,−)
and Fibo(10,−); the call to Fibo(11,−) then calls Fibo(10,−) again. The
resulting exponential behavior makes it virtually impossible to calculate
the 100th Fibonacci number using these clauses.

An alternative (but still recursive) view of the Fibonacci series uses
a four-place intermediate predicate, F. The definition is this:

Fibo(n, v) ⇐ F(n, 1, 0, v)

F(0, y, z, y)

F(s(n), y, z, v) ⇐ Plus(y, z, s) ∧ F(n, s, y, v)

Here, F(n, y, z, v) will count down from n using y to keep track of the
current Fibonacci number and z to keep track of the one before that.
Each time we reduce n by 1, we get a new current number (the sum
of the current and previous Fibonacci numbers) and we get a new pre-
vious number (which was the current one). At the end, when n is 0,
the final result v is the current Fibonacci number y.1 The important
point about this equivalent characterization is that it avoids the redun-
dancy of the previous version and requires only a linear number of Plus
subgoals. Calculating the 100th Fibonacci number in this case is quite
straightforward.

In a sense, looking for computationally feasible ways of expressing
definitions of predicates using rules is not so different from looking for
efficient algorithms for computational tasks.

6.4 SPECIFYING GOAL ORDER

When using rules to do backward chaining, we can try to solve subgoals
in any order; all orderings of subgoals are logically permissible. But as we
saw in the previous sections, the computational consequences of logically
equivalent representations can be significant.

1To prove that F(n, 1, 0, v) holds when v is the nth Fibonacci number, we show by induction
on n that F(n, y, z, v) holds if and only if v is the sum of y times the nth Fibonacci number
and z times the (n− 1)st Fibonacci number.

104 Chapter 6 ■ Procedural Control of Reasoning

Consider this simple example:

AmericanCousin(x, y) ⇐ American(x) ∧ Cousin(x, y)

If we are trying to ascertain the truth of AmericanCousin(fred, sally), there
is not much difference between choosing to solve the first subgoal
(American(fred)) or the second subgoal (Cousin(fred, sally)) first. However,
there is a big difference if we are looking for an American cousin of Sally:
AmericanCousin(x, sally). Our two options are then

1. find an American and then check to see if she is a cousin of Sally; or

2. find a cousin of Sally and then check to see if she is an American.

Unless Sally has a lot of cousins (more than several hundred million), the
second method will be much better than the first.

This illustrates the potential importance of ordering goals. We might
think of the two parts of the earlier definition as suggesting that when
we want to generate Sally’s American cousins, what we want to do
is to generate Sally’s cousins one at a time and test to see if each
is an American. Languages like PROLOG, which are used for program-
ming and not just general theorem proving, take ordering constraints
seriously, both of clauses and of the literals within them. In PROLOG

notation,

G :- G1, G2,..., Gn.

stands for

G ⇐ G1 ∧ G2 ∧ . . . ∧ Gn

but goals are attempted exactly in the presented order.

6.5 COMMITTING TO PROOF METHODS

An appropriate PROLOG rendition of our American cousin case would take
care of the inefficiency problem we pointed out earlier:

americanCousin(X,Y) :– cousin(X,Y), american(X).

In a construct like this, we need to allow for goal backtracking, because
for a goal of, say, AmericanCousin(x, sally), we may need to try American(x)
for various values of x. In other words, we may need to generate many
cousin candidates before we find one that is American.

6.5 Committing to Proof Methods 105

Sometimes, given a clause of the form

G :- T, S.

goal T is needed only as a test for the applicability of subgoal S, and
not as a generator of possibilities for subgoal S to test further. In other
words, if T succeeds, then we want to commit to S as the appropriate
way of achieving goal G. So, if S were then to fail, we would consider
goal G as having failed. A consequence is that we would not look for other
ways of solving T, nor would we look for other clauses with G as the
head.

In PROLOG, this type of test/fail control is specified with the cut symbol,
“!”. Notationally, we would have a PROLOG clause that looks like this:

G :- T1, T2,..., Tm, !, G1,G2,...,Gn.

which would tell the interpreter to try each of the goals in this order, but
if all the Ti succeed, to commit to the Gi as the only way of solving G.

A clear application of this construct is in the if–then–else construct
of traditional programming languages. Consider, for example, defining
a predicate Expt(a, n, v) intended to hold when v = an. The obvious way
of calculating an (or reasoning about Expt goals) requires n − 1 multipli-
cations. However, there is a much more efficient recursive method that
only requires about log2(n) multiplications: If n is even, we continue
recursively with a2 and n/2 replacing a and n, respectively; otherwise,
if n is odd, we continue recursively with a2 and (n− 1)/2 and then multi-
ply the result by a. In other words, we are imagining a recursive procedure
with an if–then–else of the form

if n is even
then do one thing
else do another.

The details need not concern us, except to note the form of the clauses we
would use to define the predicate:

Expt(a, 0, 1)

Expt(a, n, v) ⇐ n > 0 ∧ Even(n) ∧ Expt(a2, n/2, v)

Expt(a, n, v) ⇐ n > 0 ∧ ¬Even(n) ∧
Expt(a2, (n− 1)/2, v′) ∧ v = av′

The point of this example is that we need to use slightly different methods
based on whether n is even or odd. However, we would much prefer to
test whether n is even only once: We should attempt the goal Even(n) and

106 Chapter 6 ■ Procedural Control of Reasoning

if it succeeds do one thing, if it fails do another. The goal ¬Even(n) should
in reality never be considered. A related but less serious consideration is
the test for n = 0: If n = 0 we should commit to the first clause; we should
not have to confirm that n > 0 in the other two clauses.

In PROLOG both of these concerns can be handled with the cut operator.
We would end up with a PROLOG definition like this:

expt(A,0,V) :- !, V=1.
expt(A,N,V) :- even(N), !, …what to do when n is even.
expt(A,N,V) :- …what to do when n is odd.

Note that we commit to the first clause when n = 0 regardless of the value
of a or v, but we only succeed when v = 1. Thus, while

expt(A,N,V) :- N=0, !, V=1.

is correct and equivalent to the first clause,

expt(A,0,1) :- !.

would be incorrect. In general, we can see that something like

G :- P, !, R.
G :- S.

is logically equivalent to “if P holds then R implies G, and if ¬P holds
then S implies G,” but that it only considers the P once.

A less algorithmic example of the use of the cut operator might be to
define a NumberOfParents predicate: For Adam and Eve, the number of
parents is 0, but for everyone else, it is 2:

numberOfParents(adam,V) :- !, V=0.
numberOfParents(eve,V) :- !, V=0.
numberOfParents(P,2).

In this case, we do not need to confirm in the third clause that the person
in question is not Adam or Eve.

6.6 CONTROLLING BACKTRACKING

Another application of the PROLOG cut operator involves control of back-
tracking on failure. At certain points in a proof we can have an idea of

6.6 Controlling Backtracking 107

which steps might be fruitful and which steps will come to nothing and
waste resources in the process.

Imagine, for example, that we are trying to show that Jane is an
American cousin of Billy. Two individuals can be considered to be (first)
cousins if they share a grandparent but are not siblings:

Cousin(x, y) ⇐ (x �= y) ∧ ¬Sibling(x, y) ∧ GParent(z, x) ∧ GParent(z, y)

Suppose that in trying to show that Jane is an American cousin of Billy,
we find that Henry is a grandparent of both of them, but that Jane is not
American. The question is what happens now. If it turns out that Elizabeth
is also a grandparent of both Jane and Billy, we will find this second z on
backtracking and end up testing whether Jane is American a second time.
This will of course fail once more, because nothing has changed.

What this example shows is that on failure we need to avoid trying to
redo a goal that was not part of the reason we are failing. It was not the
choice of grandparent that caused the trouble here, so there is no point
in reconsidering it. Yet this is precisely what PROLOG backtracking would
do.2 To get the effect we want in PROLOG, we would need to represent our
goal as

cousin(jane,billy), !, american(jane)

In other words, once we have found a way to show that Jane is a cousin
of Billy (no matter how), we should commit to whatever result comes out
of checking that she is American.

As a second example of controlling backtracking, consider the following
definition of membership in a list:

Member(x, l) ⇐ FirstElement(x, l)

Member(x, l) ⇐ RemainingElements(l, l′) ∧ Member(x, l′)

with the auxiliary predicates FirstElement and RemainingElements defined in
the obvious way. Now imagine that we are trying to establish that some
object a is an element of some (large) list c and has property Q. That is,
we have the goal

Member(a, c) ∧ Q(a).

If the Member(a, c) subgoal were to succeed but Q(a) fail, it would be silly
to reconsider Member(a, c) to see if a also occurs later in the list. In PROLOG,
we can control this by using the goal

member(a,C), !, q(a).

2A more careful but time-consuming version of backtracking (called dependency-directed
backtracking) avoids the redundant steps here automatically.

108 Chapter 6 ■ Procedural Control of Reasoning

More generally, if we know that the Member predicate will only be used to
test for membership in a list (and not to generate elements of a list), we
can use a PROLOG definition like this:

member(X,L) :- firstElement(X,L), !.
member(X,L) :- remainingElements(L,L1), member(X,L1).

This guarantees that once a membership goal succeeds (in the first
clause) by finding a sublist whose first element is the item in question,
the second clause, which looks farther down the list, will never be recon-
sidered on failure of a later goal. For example, if we had a list of our
friends and some goal needed to check that someone (e.g., George) was
both a friend and rich, we could simply write

member(george,Friends), rich(george).

without having to worry about including a cut. The definition of Member
assures us that once an element is found in the list, if a subsequent
test like Rich fails, we won’t go back to see if that element occurs
somewhere later in the list and try the failed test again.

6.7 NEGATION AS FAILURE

Perhaps the most interesting idea to come out of the study of the
procedural control of reasoning is the concept of negation as failure.
Procedurally, we can distinguish between two types of “negative” situ-
ations with respect to a goal G:

■ being able to solve the goal ¬G; or

■ being unable to solve the goal G.

In the latter case, we may not be able to find a fact or rule in the KB
asserting that G is false, but we may have run out of options in trying to
show that G is true. In general, we would like to be able to tell a reasoner
what it should do after failing to prove a goal.

We begin by introducing a new type of goal, not(G), which is under-
stood to succeed when the goal G fails and to fail when the goal G
succeeds (quite apart from the status of ¬G). In PROLOG, not behaves as
if it were defined like this:

not(G) :- G, !, fail. % fail if G succeeds

not(G). % otherwise succeed

6.7 Negation as Failure 109

This type of negation as failure is only useful when failure is finite. If
attempting to prove G results in an infinite branch with an infinite set
of resolvents to try, then we cannot expect a goal of not(G) to terminate
either. However, if there are no more resolvents to try in a proof, then
not(G) will succeed.

Negation as failure is especially useful in situations where the collection
of facts and the rules express complete knowledge about some predicate.
If, for example, we have an entire family represented in a KB, we could
define in PROLOG

noChildren(X) :- not(parent(X,Y)).

We know that someone has no children if we cannot find any in the
database. With incomplete knowledge, on the other hand, we could fail
to find any children in the database simply because we have not yet been
told of any.

Another situation where negation as failure is useful is when we have
a complete method for computing the complement of a predicate we care
about. For example, if we have a rule for determining if a number is prime,
we would not need to construct another one to show that a number is not
prime; instead, we can use negation as failure:

composite(N) :- N > 1, not(primeNumber(N)).

In this case, failure to prove that a number greater than 1 is prime is
sufficient to conclude that the number is composite.

Declaratively, not has the same reading as conventional negation,
except when new variables appear in the goal. For example, the PROLOG

clause for Composite can be read as saying that

for every number n, if n > 1 and n is not a prime number,
then n is composite.

However, the clause for NoChildren before that should not be read as saying
that

for every x and y, if x is not a parent of y, then x has no children.

For example, suppose that the goal Parent(sue, jim) succeeds, but that the
goal Parent(sue, george) fails. Although we do want to conclude that Sue
is not a parent of George, we do not want to conclude that she has no
children. Logically, the rule needs to be read as

for every x, if for every y, x is not a parent of y, then x has no children.

Note that the quantifier for the new variable y in the goal has moved inside
the scope of the “if.”

110 Chapter 6 ■ Procedural Control of Reasoning

6.8 DYNAMIC DATABASES

In this chapter we have considered a KB consisting of a collection of
ground atomic facts about the world and universally quantified rules
defining new predicates. Because our most basic knowledge is expressed
by the elementary facts, we can think of them as a database representing
a snapshot of the world. It is natural, then, as properties of the world
change over time, to think of reflecting these changes with additions and
deletions to the database. The removed facts are a reflection of things that
are no longer true, and the added facts are a reflection of things that have
newly become true.

With this more dynamic view of the database, it is useful to con-
sider three different procedural interpretations for a basic rule like
Parent(x, y) ⇐ Mother(x, y):

1. if-needed: Whenever we have a goal matching Parent(x, y), we can
solve it by solving Mother(x, y). This is ordinary backward chaining.
Procedurally, we wait to make the connection between mothers and
parents until we need to prove something about parents.

2. if-added: Whenever a fact matching Mother(x, y) is added to the
database, we also add Parent(x, y) to the database. This is forward
chaining. In this case, the connection between mothers and par-
ents is made as soon as we learn about a new mother relationship.
A proof of a parent relationship would then be more immediate,
but at the cost of the space needed to store facts that may never be
used.

3. if-removed: Whenever something matching Parent(x, y) is removed
from the database, we should also remove Mother(x, y). This is the
dual of the if-added case, but there is a more subtle issue here. If
the only reason we have a parent relationship in the database is
because of the mother relationship, then if we remove that mother
relationship, we should remove the parent one as well. To do
this properly, we would need to keep track of dependencies in the
database.

Interpretation (1) is of course the mainstay of PROLOG; interpretations
(2) and (3) suggest the use of demons, which are procedures that actively
monitor the database and trigger—or fire—when certain conditions are
met. There can be more than one such demon matching a given change
to the database, and each demon may end up further changing the
database, causing still more demons to fire, in a pattern of spreading
activation. This type of processing underlies the production systems of
Chapter 7.

6.8 Dynamic Databases 111

6.8.1 The PLANNER Approach
The practical implications of giving the user more direct control over the
reasoning process have led over the years to the development of a set of
programming languages based on ideas like the ones we have covered
here. The PROLOG language is of course well known, but only covers some
of these possibilities. A LISP-based language called PLANNER was invented
at about the same time as PROLOG, and was designed specifically to give
the user fine-grained control of a theorem-proving process.

The main ideas in PLANNER relevant to our discussion here are as
follows:3

■ The knowledge base of a PLANNER application is a database of facts,
expressed in a notation like (Mother susan john) and (Person john).

■ The rules of the system are formulated as a collection of if-needed,
if-added, and if-removed procedures, each consisting of a pattern
for invocation (e.g., (Mother x y)) and a body, which is a program
statement to execute once the invocation pattern is matched.

■ Each program statement can succeed or fail:

– (goal p), (assert p), and (erase p) specify, respectively, that a
goal should be established (proven or made true), that a new fact
should be added to the database, and that an old fact should be
removed from the database;

– (and s1 . . . sn), where the si are program statements, is considered
to succeed if all the si succeed, allowing for backtracking among
them;

– (not s) is negation as failure;
– (for p s) says to perform program statement s for every way goal

p succeeds;
– (finalize s) is similar to the PROLOG cut operator;
– a lot more, including all of LISP.

Here is a simple PLANNER example:

(proc if-needed (clearTable)
(for (on x table)

(and (erase (on x table)) (goal (putaway x)))))

(proc if-removed (on x y) (print x “is no longer on” y))

The first procedure is invoked whenever the goal clearTable needs to be
true, that is, in the blocks world of this example, whenever the table needs

3We are simplifying the original syntax somewhat.

112 Chapter 6 ■ Procedural Control of Reasoning

to be free of objects. To solve this goal, for each item found on the table
we remove the statement in the database that reflects its being on the
table and solve the goal of putting that item away somewhere. We do not
show here how those goals are solved, but presumably each putaway goal
could trigger an action by a robot arm to put the item somewhere not
on the table and subsequently to assert the new location in the database.
The second procedure just alerts the user to a change in the database,
printing a statement that the item is no longer on the surface it was
removed from.

The type of program considered in PLANNER suggests an interesting
shift in perspective on knowledge representation and reasoning. Instead
of thinking of solving a goal as proving that a condition is logically
entailed by a collection of facts and rules, we think of it as making condi-
tions hold, using some combination of forward and backward chaining.
This is the first harbinger of the use of a representation scheme to
support the execution of plans; hence the name of the language.4 We
also see a shift away from rules with a clear logical interpretation (as
universally quantified conditionals) toward arbitrary procedures, and
specifically, arbitrary operations over a database of facts. These opera-
tions can correspond to deductive reasoning, but they need not. Although
PLANNER itself is no longer used, we will see that this dynamic view of
rules persists in the representation for production systems of the next
chapter.5

6.9 BIBLIOGRAPHIC NOTES

The idea that logic could be used as the basis for a programming lan-
guage is generally attributed to Kowalski and Colmerauer [259, p. 1]. The
history of the development of logic programming is detailed in Kowalski
[225] (see also Cohen [74] in the same issue). A good reference on the
foundations of logic programming and PROLOG is Lloyd [259]. Hogger
[188] also provides a good introduction. There are a number of textbooks
on the PROLOG programming language, including Clocksin and Mellish
[73], Covington et al. [80], Nilsson and Maluszynski [312], and Sterling
and Shapiro [399]. The use of PROLOG in Artificial Intelligence is covered
by Bratko [54] and Shoham [385].

For definite logic programs (consisting of clauses with exactly one atom
in the head and no negation), the cut operator does not affect soundness
but may lead to incompleteness. In normal logic programs, which may

4We will reconsider the issue of planning from a logical perspective in Chapter 15.
5Users of the language eventually wanted even more control, and gravitated toward using
its implementation language and some of its data structures.

6.10 Exercises 113

have negation in the body of the clause, the cut operator may also affect
soundness [259].

Negation as failure was first introduced by Clark [70]. It has been widely
studied in the logic programming literature and several different types
of semantics have been suggested for logic programs with negation as
failure. These include stable model semantics [147], which forms the basis
of answer set programming (see, for instance, Baral [24]), and the well-
founded semantics [146].

There are many extensions to the PROLOG language and logic program-
ming, including versions capable of dealing with concurrency and with
parallelism. One interesting extension involves the solving of constraints,
termed constraint logic programming [198, 199]. This has led to work
on constraint databases [351] and more directly to constraint program-
ming [269]. Volume 138 of the journal Artificial Intelligence [2] contains
a special issue on knowledge representation and logic programming.
Research on logic programming also influenced, and was influenced by,
work on database management, leading to the development of deductive
databases, which highlight the distinction between facts (the “exten-
sional” part of the database) and rules (the “intensional” part). See [140]
for an early survey of work in this area, and [291] for a more recent
account.

The PLANNER language was proposed by Hewitt [186] and portions of the
language were implemented by Sussman and Winograd [404]. Many vari-
ants were also implemented (mostly at MIT), including CONNIVER [403]
and AMORD [96]. Winograd discusses procedural representations more
generally in [426].

6.10 EXERCISES

The exercises here all concern generalizing Horn derivations to incorpo-
rate negation as failure. For these questions, assume that a KB consists
of a list of rules of the form (q ← a1, . . . , an) where n ≥ 0, q is an atom,
and each ai is either of the form p or not(p), where p is an atom. The q
in this case is called the conclusion of the rule, and the ai make up the
antecedent of the rule.

1. The forward-chaining procedure presented in Chapter 5 for Horn
clause satisfiability can be extended to handle negation as failure by
marking atoms incrementally with either a Y (when they are known to
be solved), or with an N (when they are known to be unsolvable), using
the following procedure:

114 Chapter 6 ■ Procedural Control of Reasoning

For any unmarked atom q,

■ if there is a rule (q ← a1, . . . , an) ∈KB, where all the positive ai
are marked Y and all the negative ai are marked N, then mark
q with Y;

■ if for every rule (q ← a1, . . . , an) ∈ KB, some positive ai is
marked N or some negative ai is marked Y, then mark q with N.

Note that the first case trivially applies for rules where n = 0, and
that the second case trivially applies if there are no rules with q as the
conclusion.

(a) Show how the procedure would label the atoms in the following
KB:

a ←
b ← a
c ← b
d ← not(c)
e ← c, g
f ← d, e
f ← not(b), g
g ← not(h), not(f)

(b) Give an example of a KB where this procedure fails to label an
atom as either Y or N, but where the atom is intuitively Y, according
to negation as failure.

(c) A KB is defined to be strongly stratified if and only if there is
a function f from atoms to numbers such that for every rule
(q ← a1, . . . , an) ∈ KB, and for every 1 ≤ i ≤ n, it is the case
that f (q) > f (ai), where f (not(pi)) = f (pi). (In other words, the
conclusion of a rule is always assigned a higher number than any
atom used positively or negatively in the antecedent of the rule.)
Is the example KB of part (a) strongly stratified?

(d) Prove by induction that this procedure will label every atom of a
strongly stratified KB.

(e) Alternately, a KB is defined to be weakly stratified if and only if
there is a function g from atoms to numbers such that for every
rule (q ← a1, . . . , an) ∈KB, and for every 1 ≤ i ≤ n, g(q) ≥ g(ai),
where in this case, g(not(pi)) = 1 + g(pi). (In other words, the
conclusion of a rule is always assigned a number no lower than
any atom used positively in the antecedent of the rule, and higher
than any atom used negatively in the antecedent of the rule.) Is
the example KB of part (a) weakly stratified?

6.10 Exercises 115

(f) Give an example of a weakly stratified KB where the procedure
fails to label an atom.

(g) Assume you are given a KB that is weakly stratified and you are
also given the function g in question. Sketch a forward-chaining
procedure that uses the g to label every atom in the KB either
Y or N.

2. Write, test, and document a program that performs the forward chain-
ing of the previous question and that runs in linear time, relative to
the size of the input. You should use data structures inspired by those
of Exercise 1 of Chapter 5. Include in the documentation an argument
as to why your program runs in linear time. Show that your program
works properly on at least the KB of the previous question.

3. There are many ways of making negation as failure precise, but one
way is as follows: We try to find a set of “negative assumptions” we can
make, {not(q1), . . . , not(qn)}, such that if we were to add these to the
KB and use ordinary logical reasoning (now treating a not(p) as if it
were a new atom unrelated to p), the set of atoms we could not derive
would be exactly {q1, . . . , qn}.

More precisely, we define a sequence of sets as follows:

N0 = { }
Nk+1 = {not(q) |KB ∪Nk �|= q }

The reasoning procedure then is this: We calculate the Nk, and if the
sequence converges, that is, if Nk+1 = Nk for some k, then we con-
sider any atom p such that not(p) /∈ Nk to be derivable by negation as
failure.

(a) Show how this procedure works on the KB of Exercise 1, by giving
the values of Nk.

(b) Give an example of a KB where the procedure does not terminate.

(c) Explain why the procedure does the right thing for KBs that are
pure Horn, that is, do not contain the not operator.

(d) Suppose a KB is weakly stratified with respect to g, as defined
in Exercise 1. For any pair of natural numbers k and r, define
N(k, r) by

N(k, r) = {not(q) ∈ Nk | g(q) < r}.
It can be shown that for any k and any atom p where g(p) = r

KB ∪Nk |= p iff KB ∪N(k, r) |= p.

116 Chapter 6 ■ Procedural Control of Reasoning

In other words, for a weakly stratified KB, when trying to prove
p, we need only consider negative assumptions whose g value is
lower than p. Use this fact to prove that for any k and r where
r < k, N(k + 1, r) = N(k + 2, r). Hint: Prove this by induction
on k. In the induction step, this will require assuming the claim
for k (which is that for any r < k, N(k + 1, r) = N(k + 2, r)) and
then proving the claim for k + 1 (which is that for any r < k + 1,
N(k+ 2, r) = N(k+ 3, r).)

(e) Use part (d) to conclude that this negation as failure reasoning
procedure always terminates for a KB that is weakly stratified.

C H A P T E R 7

RULES IN PRODUCTION SYSTEMS

■

■

■

We have seen from our work on Horn clauses and procedural systems
in previous chapters that the concept of an if–then conditional or rule—if
P is true then Q is true—is central to knowledge representation. Whereas
the semantics of the logical formula (P ⊃ Q) is simple and clear, it suggests
that a rule of this sort is no more than a form of disjunction: Either P is
false or Q is true. However, as we saw in Chapter 6, from a reasoning
point of view we can look at these rules in different ways. In particular,
a rule can be understood procedurally as either

■ moving from assertions of P to assertions of Q, or

■ moving from goals of Q to goals of P.

We can think of these two cases this way:

(assert P) ⇒ (assert Q)

(goal Q) ⇒ (goal P).

Although both of these arise from the same connection between P and
Q, they emphasize the difference between focusing on asserting facts
and seeking the satisfaction of goals. We usually call the two types of
reasoning that they suggest

■ data-directed reasoning, that is, reasoning from P to Q, and

■ goal-directed reasoning, that is, reasoning from Q to P.

117

118 Chapter 7 ■ Rules in Production Systems

Data-directed reasoning might be most appropriate in a database-like
setting, when assertions are made and it is important to follow the
implications of those assertions. Goal-directed reasoning might be most
appropriate in a problem-solving situation, where a desired result is
clear and the means to achieve that result—the logical foundations for
a conclusion—are sought.

Quite separately, we can also distinguish the mechanical direction of
the computation. Forward-chaining computations follow the “⇒” in the
forward direction, independent of the emphasis on assertion or goal.
Backward-chaining reasoning goes in the other direction. While the latter
is almost always oriented toward goal-directed reasoning and the former
toward data-directed reasoning, these associations are not exclusive. For
example, using the notation of Chapter 6, we might imagine procedures
of the following sort:

■ (proc if-added (myGoal Q) … (assert (myGoal P)) …)

■ (proc if-needed (myAssert P) … (goal (myAssert Q)) …)

In the former case, we use forward chaining to do a form of goal-directed
reasoning: (myGoal Q) is a formula to be read as saying that Q is a goal; if
this is ever asserted (that is, if we ever find out that Q is indeed a goal),
we might then assert that P is also a goal. In a complementary way, the
latter case illustrates a way to use backward chaining to do a form of data-
directed reasoning: (myAssert P) is a formula to be read as saying that P is
an assertion in the database; if this is ever a goal (that is, if we ever want
to assert P in the database), we might then also have the goal of asserting
Q in the database. This latter example suggests how it is possible, for
example, to do data-directed reasoning in PROLOG, a backward-chaining
system.

In the rest of this chapter, we examine a new formalism, production
systems, that is used extensively in practical applications and empha-
sizes forward chaining over rules as a way of reasoning. We will see
examples where the reasoning is data-directed, and others where it is
goal-directed. Applications built using production systems are often called
rule-based systems as a way of highlighting the emphasis on rules in the
underlying knowledge representation.

7.1 PRODUCTION SYSTEMS: BASIC OPERATION

A production system is a forward-chaining reasoning system that uses
rules of a certain form called production rules (or simply, productions)
as its representation of general knowledge.1 A production system keeps

1Many variants have been proposed; the version we present here is representative.

7.2 Working Memory 119

an ongoing memory of assertions in what is called its working memory
(WM). The WM is like a database, but more volatile; it is constantly
changing during the operation of the system.

A production rule is a two-part structure comprising an antecedent set
of conditions and a consequent set of actions. We usually write a rule in
this form:

IF conditions THEN actions

The antecedent conditions are tests to be applied to the current state of
the WM. The consequent actions are a set of actions that modify the WM.

The basic operation of a production system is a cycle of three steps that
repeats until no more rules are applicable to the WM, at which point the
system halts. The three parts of the cycle are as follows:

1. recognize: find which rules are applicable, that is, those rules whose
antecedent conditions are satisfied by the current working memory;

2. resolve conflict: among the rules found in the first step (called
a conflict set), choose which of the rules should “fire,” that is, get
a chance to execute;

3. act: change the working memory by performing the consequent
actions of all the rules selected in the second step.

As stated, this cycle repeats until no more rules can fire.

7.2 WORKING MEMORY

Working memory is composed of a set of working memory elements
(WMEs). Each WME is a tuple of the form,

(type attribute1: value1 . . . attributen: valuen),

where type, attributei, and valuei are all atoms. Here are some examples
of WMEs:

■ (person age: 27 home: toronto)

■ (goal task: putDown importance: 5 urgency: 1)

■ (student name: john department: computerScience)

Declaratively, we understand each WME as an existential sentence:

∃x [type(x) ∧ attribute1(x) = value1 ∧ attribute2(x) = value2 ∧ . . .

∧ attributen(x) = valuen].

120 Chapter 7 ■ Rules in Production Systems

Note that the individual about whom the assertion is made is not explicitly
identified in a WME. If we choose to do so, we can identify individuals
by using an attribute that is expected to be unique for the individual. For
example, we might use a WME of the form (person identifier: 777-55-1234
name: janeDoe …). Note also that the order of attributes in a WME is not
significant.

These example WMEs represent objects in an obvious way. Relation-
ships among objects can be handled by reification.2 For example,
something like

(basicFact relation: olderThan firstArg: john secondArg: mary)

might be used to say that John is older than Mary.

7.3 PRODUCTION RULES

As mentioned, the antecedent of a production rule is a set of conditions.
If there is more than one condition, they are understood conjunctively,
that is, they all have to be true for the rule to be applicable. Each condi-
tion can be positive or negative (negative conditions will be expressed as
−cond), and the body of each is a tuple of this form:

(type attribute1: specification1 . . . attributek: specificationk),

where each specification is one of the following:

■ an atom,

■ a variable,

■ an evaluable expression, within “[],”

■ a test, within “{ },”

■ the conjunction (∧), disjunction (∨), or negation (¬) of a specifi-
cation.

Here are two examples of rule conditions:

(person age: [n+ 4] occupation: x)

This condition is satisfied if there is a WME whose type is person
and whose age attribute is exactly n + 4, where n is specified elsewhere.

2The technique of encoding n-ary relationships using reified objects and a collection of
unary functions was discussed in Section 3.7.

7.3 Production Rules 121

The result binds the occupation value to x, if x is not already bound; if x is
already bound, then the occupation value in the WME needs to be the same
as the value of x.

−(person age: {< 23 ∧ > 6})

This condition is satisfied if there is no WME in the WM whose type is
person and whose age value is between 6 and 23.

Now we can be more precise about the applicability of rules: A rule
is considered applicable if there are values for all the variables in the
rule such that all the antecedent conditions are satisfied by the current
WM. A positive condition is satisfied if there is a matching WME in
the WM; a negative condition is satisfied if there is no matching WME.
A WME matches a condition if the types are identical and for each
attribute/specification pair mentioned in the condition there is a corre-
sponding attribute/value pair in the WME, where the value matches the
specification (under the given assignment of variables) in the obvious way.
The matching WME may have attributes that are not mentioned in the
condition.

Note that for a negated condition there must be no element in the
entire WM that matches it. This interpretation is negation as failure, as in
PROLOG-type systems (see Chapter 5). We do not need to prove that such a
WME could never exist in WM—it just has to be the case that no matching
WME can be found at the time the rule is checked for applicability.

The consequent sides of production rules are treated a little differently.
They have a strictly procedural interpretation, all of the actions in the
consequent are to be executed in sequence, and each action is one of the
following:

■ ADD pattern: this means that a new WME specified by pattern is
added directly to the WM.

■ REMOVE i: i is an integer, and this means to remove (com-
pletely) from WM the WME that matched the i-th condition in
the antecedent of the rule. This construct is not applicable if that
condition was negative.

■ MODIFY i (attribute specification): this means to modify the WME
that matched the i-th condition in the antecedent by replacing
its current value for attribute by specification. MODIFY is also not
applicable to negative conditions.

Note that in the ADD and MODIFY actions, any variables that appear
refer to the values obtained when matching the antecedent of the rule.
For example, the following rule might be used in an ordinary logical

122 Chapter 7 ■ Rules in Production Systems

reasoning situation:

IF (student name: x) THEN ADD (person name: x)

In other words, if there is a WME of type student, with any name (and
bind that name to x), then add to WM an element of type person with
the same name. This is a production rule version of the conditional
∀x (Student(x) ⊃ Person(x)), here used in a data-directed way. This con-
ditional could also be handled in a very different way with a user-defined
assertion type and a rule like this:

IF (assertion predicate: student)
THEN MODIFY 1 (predicate person)

In this case, we lose the original fact stated in terms of student and replace
it with one using the predicate person.

The following example implements a simple database update. It
assumes that some rule has added a WME of type birthday to the WM
at the right time:

IF (person age: x name: n) (birthday who: n)
THEN MODIFY 1 (age [x+ 1])

REMOVE 2

Note that when the WME with the person’s age is changed, the birthday
WME is removed, so that the rule will not fire a second time.

The REMOVE action is also used on occasion to deal with control infor-
mation. We might use a WME of type control to indicate what phase of
a computation we are in. This can be initialized in the following way:

IF (starting)
THEN REMOVE 1

ADD (control phase: 1)

We could subsequently change phases of control with something like this:

IF (control phase: x) . . . other appropriate conditions . . .
THEN MODIFY 1 (phase [x+ 1])

7.4 A FIRST EXAMPLE

In order to illustrate a production system in action, we consider the
following task. We have three bricks, each of different size, sitting in

7.4 A First Example 123

a heap. We have three identifiable positions in which we want to place
the bricks with a robotic “hand”; call these positions 1, 2, and 3. Our goal
is to place the bricks in those positions in order of their size, with the
largest in position 1 and the smallest in position 3.

Assume that when we begin, working memory has the following
elements:

(counter value: 1)

(brick name: A size: 10 position: heap)

(brick name: B size: 30 position: heap)

(brick name: C size: 20 position: heap)

In this case, the desired outcome is brick B in position 1, brick C in
position 2, and brick A in position 3.

We can achieve our goal with two production rules that work with any
number of bricks. The first one will place the largest currently available
brick in the hand, and the other one will place the brick currently in the
hand into the next position, going through the positions sequentially:

1. IF (brick position: heap name: n size: s)

−(brick position: heap size: {> s})

−(brick position: hand)

THEN MODIFY 1 (position hand)

In other words, if there is a brick in the heap, and there is no bigger
brick in the heap, and there is nothing currently in the hand, put the
brick in the hand.

2. IF (brick position: hand)

(counter value: i)

THEN MODIFY 1 (position i)

MODIFY 2 (value [i+ 1])
When there is a brick in the hand, this rule places it in the next
position in sequence given by the counter, and increments the
counter.

In this example, no conflict resolution is necessary, because only one rule
can fire at a time: The second rule requires there to be a brick in the hand,
and the first rule requires there to be none.

It is fairly simple to trace the series of rule firings and actions in this
example. Recall that when we start, all bricks are in the heap and none
are in the hand. The counter is initially set to 1.

124 Chapter 7 ■ Rules in Production Systems

1. Rule 2 is not applicable, since no brick is in the hand. Rule 1 attempts
to match each of the three WMEs of type brick in WM, but only
succeeds for brick B, because it is the only one for which no larger
brick exists in the heap. When Rule 1 matches, n is bound to B and
s to 30. The result of this rule’s firing, then, is the modification of
the brick B WME to be the following:

(brick name: B size: 30 position: hand)

2. Now that there is a brick in the hand, Rule 1 cannot fire. Rule 2 is
applicable, with i being bound to 1. Rule 2’s firing results in two
modifications, one to the brick B WME (position now becomes 1) and
one to the counter WME:

(brick name: B size: 30 position: 1)

(counter value: 2)

3. Brick B no longer has its position as the heap, so now Rule 1 matches
on brick C, whose position is modified as a result:

(brick name: C size: 20 position: hand)

4. In a step similar to step 2, Rule 2 causes brick C to now be in position
2 and the counter to be reset to 3:

(brick name: C size: 20 position: 2)

(counter value: 3)

5. Now A is the only brick left in the heap, so Rule 1 matches its WME
and moves it to the hand:

(brick name: A size: 10 position: hand)

6. Rule 2 fires again, this time moving brick A to position 3:

(brick name: A size: 10 position: 3)

(counter value: 4)

7. Now that there are no bricks in either the heap or the hand, neither
Rule 1 nor Rule 2 is applicable. The system halts, with the final
configuration of WM as follows:

(counter value: 4)

(brick name: A size: 10 position: 3)

(brick name: B size: 30 position: 1)

(brick name: C size: 20 position: 2)

7.5 A Second Example 125

7.5 A SECOND EXAMPLE

Next we look at an example of a slightly more complex computation that
is easy to do with production systems; we present a set of rules that com-
putes how many days there are in any given year. In this example, working
memory will have two simple control elements in it. (wantDays year: n) will
be our starting point and express the fact that our goal is to calculate the
number of days in the year n. The WME (hasDays days: m) will express the
result when the computation is finished. Finally, we will use a WME of
type year to break the year down into its value mod 4, mod 100, and mod
400. Here are the five rules that capture the problem:

1. IF (wantDays year: n)
THEN REMOVE 1

ADD (year mod4: [n%4] mod100: [n%100] mod400: [n%400])
2. IF (year mod400: 0)

THEN REMOVE 1
ADD (hasDays days: 366)

3. IF (year mod100: 0 mod400: {�= 0})
THEN REMOVE 1

ADD (hasDays days: 365)

4. IF (year mod4: 0 mod100: {�= 0})
THEN REMOVE 1

ADD (hasDays days: 366)

5. IF (year mod4: {�= 0})
THEN REMOVE 1

ADD (hasDays days: 365)

This rule set is structured in a typical way for goal-directed reasoning.
The first rule initializes WM with the key values for a year that will
lead to the calculation of the length of the year in days. Once it fires,
it removes the wantDays WME and is never applicable again. Each of
the other four rules check for their applicable conditions, and once
one of them fires, it removes the year WME, so the entire system
halts. Each antecedent expresses a condition that only it can match,
so again no conflict resolution is needed. The order of the rules is also
irrelevant.

It is easy to see how this rule set works. If the input is 2000, then we
start with (wantDays year: 2000) in WM. The first rule fires, which then
adds to WM the WME, (year mod4: 0 mod100: 0 mod400: 0). This matches
only Rule 2, yielding (hasDays days: 366) at the end. If the input is 1900,
the first rule adds the WME, (year mod4: 0 mod100: 0 mod400: 300), which

126 Chapter 7 ■ Rules in Production Systems

then matches only Rule 3, for a value of 365. If the input is 1996, we get
(year mod4: 0 mod100: 96 mod400: 396), which matches only Rule 4, for
a value of 366.

7.6 CONFLICT RESOLUTION

Depending on whether we are doing data-directed reasoning or goal-
directed reasoning, we may want to fire different numbers of rules in
the case that more than one rule is applicable. In a data-directed context,
we may want to fire all rules that are applicable, to get all consequences
of a sentence added to working memory; in a goal-directed context, we
may prefer to pursue only a single method at a time, and thus wish to
fire only one rule.

In cases where we do want to eliminate some applicable rules, there
are many conflict resolution strategies for arriving at the most appro-
priate rule(s) to fire. The most obvious one is to choose an applicable
rule at random. Here are some other common approaches:

■ order: Pick the first applicable rule in order of presentation. This is
the type of strategy that PROLOG uses and is one of the most common
ones. Production system programmers would take this strategy into
account when formulating rule sets.

■ specificity: Select the applicable rule whose conditions are most
specific. One set of conditions is said to be more specific than
another if the set of WMs that satisfy it is a subset of those that
satisfy the other. For example, consider the three rules

IF (bird) THEN ADD (canFly)
IF (bird weight: {>100}) THEN ADD (cannotFly)
IF (bird) (penguin) THEN ADD (cannotFly)

Here the second and third rules are both more specific than the
first. If we have a bird that is heavy or that is a penguin, then
the first rule applies, but the others should take precedence. (Note
that if the bird is a penguin and heavy, another conflict resolution
criterion might still have to come into play to help decide between
the second and third rules.)

■ recency: Select an applicable rule based on how recently it has been
used. There are different versions of this strategy, ranging from
firing the rule that matches on the most recently created (or mod-
ified) WME to firing the rule that has been least recently used.
The former could be used to make sure a problem solver stays

7.7 Making Production Systems More Efficient 127

focused on what it was just doing (typical of depth-first search); the
latter would ensure that every rule gets a fair chance to influence
the outcome (typical of breadth-first search).

■ refractoriness: Do not select a rule that has just been applied with
the same values of its variables. This prevents the looping behav-
ior that results from firing a rule repeatedly because of the same
WME. A variant forbids reusing a given rule–WME pair. Either the
refractoriness can disappear automatically after a few cycles, or an
explicit “refresh” mechanism can be used.

As implied in our penguin example, nontrivial rule systems often need to
use more than one conflict resolution criterion. For example, the OPS5

production rule system uses the following criteria for selecting the rule
to fire among those that are found to be applicable:

1. discard any rule that has just been used for the same values of
variables;

2. order the remaining instances in terms of recency of WME matching
the first condition, and then the second condition, and so on;

3. order the remaining rules by number of conditions;

4. if there is still a conflict, select arbitrarily among the remaining
candidates.

One interesting approach to conflict resolution is provided by the SOAR

system. This system is a general problem solver that attempts to find
a path from a start state to a goal state by applying productions. It treats
selecting which rule to fire as deciding what the system should do next.
Thus, if unable to decide on which rule to fire at some point, SOAR sets
up a new metagoal to solve, namely, the goal of selecting which rule to
use, and the process iterates. When this metagoal is solved (which could
in principle involve metametagoals, etc.), the system has made a decision
about which base goal to pursue, and therefore the conflict is resolved.

7.7 MAKING PRODUCTION SYSTEMS MORE EFFICIENT

Early production systems, implemented in a straightforward way,
ended up spending inordinate amounts of time (as much as 90%) in
rule matching. Surprisingly, this remained true even when the matching
was implemented using sophisticated indexing and hashing.

However, two key observations led to an implementation break-
through: first, that the WM was modified only very slightly on each

128 Chapter 7 ■ Rules in Production Systems

rule-firing cycle, and second, that many rules shared conditions. The
idea behind what came to be called the RETE algorithm was to create a
network from the rule antecedents. Because the rules in a production
system do not change during its operation, this network could be com-
puted in advance. During operation of the production system, “tokens”
representing new or changed WMEs are passed incrementally through
the network of tests. Tokens that make it all the way through the network
on any given cycle are considered to satisfy all of the conditions of a rule.
At each cycle, a new conflict set can then be calculated from the previous
one and any incremental changes made to WM. This way, only a very
small part of WM is rematched against any rule conditions, drastically
reducing the time needed to calculate the conflict set.

A simple example will serve to illustrate. Consider a rule like the
following (call it RULE23):

IF (person name: x age: {< 14} father: y)
(person name: y occupation: doctor)

THEN . . .

This rule would cause the RETE network of Figure 7.1 to be created. The
network has two types of nodes: alpha nodes, which represent simple,
self-contained tests, and beta nodes, which take into account the fact
that variables create constraints between different parts of an antecedent.
Tokens for all new WMEs whose type was person would enter the network

...

... ...

�: type � person

�: father � name

RULE23

�: age � 14 �: occupation � doctor

■ FIGURE 7.1

A Sample RETE Network

7.8 Applications and Advantages 129

at the topmost (alpha) node. If the age of the person was not known to
be less than 14, or the person was not known to be a doctor, then the
token would sit at the topmost node until one of the relevant attributes
was modified by a rule. A person WME whose age was known to be less
than 14 would pass down to the age alpha node; one whose occupation was
doctor would pass to the other alpha node in the figure. In the case where
a pair of WMEs residing at those alpha nodes also shared a common
value between their respective father and name attributes, a token would
pass through the lower beta node expressing the constraint, indicating
that this rule was now applicable. For tokens left sitting in the network
at the end of a cycle, any modifications to the corresponding WMEs would
cause a reassessment, to see if they could pass further down the network,
or combine with other WMEs at a beta node. Thus the work at each step
is quite small and incremental.

7.8 APPLICATIONS AND ADVANTAGES

Production systems are a general computational framework, but one
based originally on the observation that human experts appear to rea-
son from “rules of thumb” in carrying out tasks. Systems based on the
production system architecture were the first to attempt to model explic-
itly not only the knowledge that people have but also the reasoning method
people use when performing mental tasks. Here, for example, is a produc-
tion rule that suggests one step in the procedure a person might use in
carrying out a subtraction:

IF (goal is: getUnitDigit)
(minuend unit: d)
(subtrahend unit: {> d})

THEN REMOVE 1
ADD (goal is: borrowFromTens)

What was especially interesting to researchers in this area of psychol-
ogy was the possibility of modeling the errors or misconceptions people
might have in symbolic procedures of this sort.

Subsequently, what was originally a descriptive framework for psy-
chological modeling was taken up in a more prescriptive fashion in what
became known as expert systems. Expert systems, now a core technol-
ogy in the field, use rules as a representation of knowledge for problems
that ordinarily take human expertise to solve. But because human experts
appear to reason from symptoms to causes in a heuristic fashion, pro-
duction rules seem to be able to handle significant problems of great

130 Chapter 7 ■ Rules in Production Systems

consequence, ranging from medical diagnosis to checking for credit-
worthiness to configuration of complex products. We will look briefly at
some of these rule-based systems in the next section.

There are many advantages claimed for production systems when
applied to practical complex problems. Among the key advantages, the
following are usually cited:

■ modularity: In a production rule framework, each rule works inde-
pendently of the others. This allows new rules to be added or old
rules to be removed incrementally in a relatively easy fashion. This
is especially useful for knowledge acquisition and for debugging.

■ fine-grained control: Production systems have a very simple control
structure. There are no complex goal or control stacks hidden in the
implementation, among other things.

■ transparency: Because rules are usually derived from expert knowl-
edge or observation of expert behavior, they tend to use terminology
that humans can resonate with. In contrast to formalisms like
neural networks, the reasoning behavior of the system can be traced
and explained in natural language, as discussed in Chapter 1.

In reality—especially when the systems get large and are used to solve
complex problems—these advantages tend to wither. With hundreds or
even thousands of rules, it is deceptive to think that rules can be added
or removed with impunity. Often, more complex control structures than
one might suppose are embedded in the elements of WM (remember
attributes like phase and counter from earlier) and in very complex rule
antecedents. But production rules have been used successfully on a very
wide variety of practical problems, and are an essential element of every
AI researcher’s toolkit.

7.9 SOME SIGNIFICANT PRODUCTION RULE SYSTEMS

Given the many years that they have been used and the many problems to
which they have been applied, there are many variants on the production
system theme. While it is impossible to survey here even the most impor-
tant developments in the area, one or two significant contributions are
worth mentioning. Among other systems, work on MYCIN and XCON has
influenced virtually all subsequent work in the area.

MYCIN was developed at Stanford University in the 1970s to aid physi-
cians in the diagnosis of bacterial infections. After working with infectious
disease specialists, the MYCIN team built a system with approximately
500 production rules for recognizing roughly 100 causes of infection.
Although the system operated in the typical forward-chaining manner of

7.9 Some Significant Production Rule Systems 131

production systems (using the recognize–resolve–act cycle we studied ear-
lier), it performed its reasoning in a goal-directed fashion. Rules looked
for symptoms in WM and used those symptoms to build evidence for
certain hypotheses.

Here is a simplified version of a typical MYCIN rule:

IF
the type of x is primary bacteremia
the suspected entry point of x is the gastrointestinal tract
the site of the culture of x is one of the sterile sites

THEN
there is evidence (0.8) that x is bacteroides

MYCIN also introduced the use of other static data structures (not
in WM) to augment the reasoning mechanism; these included things
like lists of organisms and clinical parameters. But perhaps the most
significant development was the introduction of a level of certainty in
the accumulation of evidence and confidence in hypotheses. Because
in medical diagnosis not all conclusions are obvious, and many dis-
eases can produce the same symptoms, MYCIN worked by accumulating
evidence and trying to ascertain what was the most likely hypothesis,
given that evidence. The technical means for doing this was what were
called certainty factors, which were numbers from −1 to 1 attached to
the conclusions of rules; these allowed the rank ordering of alternative
hypotheses. Because rules could introduce these numeric measures into
working memory and newly considered evidence could change the con-
fidence in various outcomes, MYCIN had to specify a set of combination
rules for certainty factors. For example, the conjunction of two conclu-
sions might take the minimum of the two certainty factors involved, and
their disjunction might imply the maximum of the two.3

In a very different line of thinking, researchers at Carnegie-Mellon
University produced an important rule-based system called XCON (orig-
inally called R1). The system was in use for many years at what was
the Digital Equipment Corporation for configuring computers, starting
with its VAX line of products. The most recent versions of the system
had over 10,000 rules, covering hundreds of types of components. This
system was the main stimulus for widespread commercial interest in
rule-based expert systems. Substantial commercial development, includ-
ing the formation of several new companies, has subsequently gone into
the business of configuring complex systems, using the kind of technology
pioneered by XCON.

3We address uncertainty and its relationship to other numerical means of combining
evidence in Chapter 12.

132 Chapter 7 ■ Rules in Production Systems

Here is a simplified version of a typical XCON rule:

IF
the context is doing layout and assigning a power supply
an sbi module of any type has been put in a cabinet
there is space available for the power supply
there is no available power supply
the voltage and frequency of the components are known

THEN
add an appropriate power supply

XCON was the first rule-based system to segment a complex task into
sections, or “contexts,” to allow subsets of the very large rule base to
work completely independently of one another. It broke the configura-
tion task down into a number of major phases, each of which could
proceed sequentially. Each rule would typically include a condition
like (control phase: 6) to ensure that it was applicable to just one phase
of the task. Then special context-switching rules, like the kind we saw
at the end of Section 7.3, would be used to move from one phase of
the computation to another. This type of framework allowed for more
explicit emulation of standard control structures, although again, one
should note that this type of architecture is not ideal for complex control
scenarios.

While grouping rules into contexts is a useful way of managing the
complexity of large knowledge bases, we now turn our attention to an
even more powerful organizational principle, object orientation.

7.10 BIBLIOGRAPHIC NOTES

A good introduction to expert systems is provided by Jackson [196]; see
also Waterman [421], and the collection by Hayes-Roth et al. [183].
Newell and Simon’s General Problem Solver [306, 307] was an early, influ-
ential rule-based system. MYCIN is described by Shortliffe [386]. The R1

system (later renamed XCON) is described by McDermott [283, 284, 285].
Another early expert system is DENDRAL [60] (see also Lindsay et al. [257]).
PROSPECTOR was introduced by Duda et al. [115].

General-purpose languages for building expert systems include OPS5

[59] and CLIPS [435]. OPS5 and its variants have had broad and extensive
worldwide use. The RETE algorithm was designed by Forgy [134]. Apart
from expert systems, it is used in the SOAR architecture [231].

As presented here, the rules of a production system are not allowed to
change. The ripple-down rules [76] technique allows the rule base of an
expert system to be incrementally modified and adapted (see also Kang
et al. [209]).

7.11 Exercises 133

7.11 EXERCISES

1. Consider the following strategy for playing tic-tac-toe:
Put your mark in an available square that ranks the highest in the
following list of descriptions:

(i) a square that gives you three in a row;

(ii) a square that would give your opponent three in a row;

(iii) a square that is a double row for you;

(iv) a square that would be a double row for your opponent;

(v) a center square;

(vi) a corner square;

(vii) any square.

A double row square for a player is an available square that gives the
player two in a row on two distinct lines (where the third square of
each line is still available, obviously).

(a) Encode this strategy as a set of production rules, and state what
conflict resolution is assumed.

Assumptions: To simplify matters, you may assume that there are
elements in WM of the form (line sq1: i sq2: j sq3: k), for any three
squares i, j, k, that form a straight line in any order. You may
also assume that for each occupied square there is an element in
WM of the form (occupied square: i player: p) where p is either X
or O. Finally, assume an element of the form (want-move player: p),
that should be replaced once a move has been determined by
something of the form (move player: p square: i).

(b) It is impossible to guarantee a win at tic-tac-toe, but it is pos-
sible to guarantee a draw. Describe a situation where your rule
set fails to chose the right move to secure a draw.

(c) Suggest a small addition to your rule set that is sufficient to
guarantee a draw.

2. In the famous Towers of Hanoi problem, you are given three pegs, A,
B, and C, and n disks of different sizes with holes in them. Initially
all the disks are located on peg A arranged in order, with the smallest
one at the top. The problem is to get them all to peg C, but where only
the top disk on a peg can be moved, a disk can only be moved from one
peg to another, and at no time can a disk be placed on top of a smaller
disk.

134 Chapter 7 ■ Rules in Production Systems

While this problem has an elegant recursive solution, it also has a less
well known iterative solution, as follows: First, we arrange the pegs in
a circle, so that clockwise we have A, B, C, and then A again. Follow-
ing this, assuming we never move the same disk twice in a row, there
will always only be one disk that can be legally moved, and we trans-
fer it to the first peg it can occupy, moving in a clockwise direction, if
n is even, and counterclockwise, if n is odd.

Write a collection of production rules that implement this procedure.
Initially, the working memory will have elements (on peg: A disk: i), for
each disk i, and an element (solve). When your rules stop firing, your
working memory should contain (done) and (on peg: C disk: i), for each
disk i.

3. This question concerns computing subtraction using a production
system. Assume that WM initially contains information to deal with
individual digits in the following form:

(digitMinus top: n bot: m ans: k borrow: b), where n and m are any
digits, and if n ≥ m, then k is n−m and b is 0, else k is 10+ n−m
and b is 1.

For example, (digitMinus top: 7 bot: 3 ans: 4 borrow: 0) would be in WM,
as would (digitMinus top: 3 bot: 7 ans: 6 borrow: 1). The working memory
also specifies the first and second arguments of a subtraction problem
(the subtrahend and minuend):

(topNum pos: i digit: d left: j) and (botNum pos: i digit: d left: j), where
d is a digit, and i and j are indices indicating the current position
of the digit and its neighbor to the left, respectively.

For example, if the subtrahend were 465, the WM would contain

(topNum pos: 0 digit: 5 left: 1)

(topNum pos: 1 digit: 6 left: 2)

(topNum pos: 2 digit: 4 left: 3)

Finally, the WM contains the goal (start). Your job is to write a collec-
tion of production rules that removes (start) and eventually stops with
additional elements in WM of the form (ansNum pos: i digit: d left: j),
indicating digit by digit what the answer to the subtraction is. Be sure
to specify which conflict resolution strategy you are using; you may
use any strategy described in the text. You may not use any arithmetic
operators in your rules.

C H A P T E R 8

OBJECT-ORIENTED REPRESENTATION

■

■

■

One property shared by all of the representation methods we have
considered so far is that they are flat: Each piece of representation is
self-contained and can be understood independently of any other. Recall
that when we discussed logical representations in Chapter 3, we observed
that information about a given object we might care about could be
scattered among any number of seemingly unrelated sentences. With
production system rules and the procedures in procedural systems, we
have the corresponding problem: Knowledge about a given object or type
of object could be scattered around the knowledge base.

As the number of sentences or procedures in a KB grows, it becomes
critical to organize them in some way. As we have seen, in a production
system, rule sets can be organized by their context of application, but
this is primarily a control structure convenience for grouping items by
when they might execute. A more representationally motivated approach
would be to group facts or rules in terms of the kinds of objects they
pertain to. Indeed, it is very natural to think of knowledge itself not as
a mere collection of sentences, but rather as structured and organized
in terms of what the knowledge is about, the objects of knowledge. In
this chapter, we will examine a procedural knowledge representation
formalism that is object-oriented in this way.

8.1 OBJECTS AND FRAMES

The objects that we care about range far and wide, from physical objects
like houses and people, to more conceptual objects like courses and

135

136 Chapter 8 ■ Object-Oriented Representation

trips, and even to reified abstractions like events and relations. Each
of these types of object has its own parts, some physical (roof, doors,
rooms, fixtures, etc.; arms, torso, head, etc.), and some more abstract
(course title, teacher, students, meeting time, etc.; destination, con-
veyance, departure date, etc.). The parts are constrained in various ways:
The roof has to be connected to the walls in a certain way, the depar-
ture date and the first leg of a trip have to be related, and so on. The
constraints between the parts might be expressed procedurally, such as
by the registration procedure that connects a student to a course, or the
procedure for reserving an airline seat that connects the second leg of
a trip to the first. Also, some types of objects might have procedures of
other sorts that are crucial to our understanding of them: procedures for
recognizing bathrooms in houses, for reserving hotel rooms on trips, and
so on. In general, in a procedural object-oriented representation system,
we consider the kinds of reasoning operations that are relevant for the
various types of objects in our application, and we design procedures to
deal with them.

In one of the more seminal papers in the history of knowledge repre-
sentation, Marvin Minsky in 1975 suggested the idea of using object-
oriented groups of procedures to recognize and deal with new situations.
Minsky used the term frame for the data structure used to represent
these situations. Although the original intended application of frames
as a knowledge representation was for recognition, the idea of grouping
related procedures in this way for reasoning has much wider applica-
bility. Among its more natural applications we might find the kind of
relationship recognition common in story understanding, data monitor-
ing in which we look for key situations to arise, and propagation and
enforcement of constraints in planning tasks.

8.2 A BASIC FRAME FORMALISM

To examine the way frames can be used for reasoning, it will help us to
have a formal representation language to express their structure. For the
sake of discussion, we will keep the language simple, although extremely
elaborate frame languages have been developed.

8.2.1 Generic and Individual Frames
For our purposes, there are two types of frames: individual frames, used
to represent single objects, and generic frames, used to represent cat-
egories or classes of objects. An individual frame is a named list of
“buckets” into which values can be dropped. The buckets are called
slots, and the items that go into them are called fillers. Individual

8.2 A Basic Frame Formalism 137

frames are similar to the working memory elements of production
systems seen in Chapter 7. Schematically, an individual frame looks
like this:

(Frame-name
<slot-name1 filler1>

<slot-name2 filler2>

. . .)

The frame and slot names are atomic symbols; the fillers are either
atomic values (like numbers or strings) or the names of other individual
frames.

Notationally, the names of generic frames appear here capitalized,
while individual frames will be in uncapitalized mixed case. Slot names
will be capitalized and prefixed with a “:”. For example, we might have
the following frames:

(tripLeg123
<:INSTANCE-OF TripLeg>
<:Destination toronto> . . .)

(toronto
<:INSTANCE-OF CanadianCity>
<:Province ontario>
<:Population 4.5M> . . .)

Individual frames also have a special distinguished slot called
:INSTANCE-OF, whose filler is the name of a generic frame indicating
the category of the object being represented. We say that the individual
frame is an instance of the generic one, so, in the example, toronto is an
instance of CanadianCity.

Generic frames, in their simplest form, have a syntax that is similar to
individual frames:

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>)

In this case, slot fillers are the names of either generic frames
(like CanadianProvince) or individual ones (like canada). Instead of an
:INSTANCE-OF slot, generic frames can have a distinguished slot called
:IS-A, whose filler is the name of a more general generic frame. We say
that the generic frame is a specialization of the more general one, for
example, CanadianCity is a specialization of City.

138 Chapter 8 ■ Object-Oriented Representation

Slots of generic frames can also have attached procedures. In the
simple case we consider here, there are two types, IF-ADDED and
IF-NEEDED, which are object-oriented versions of the if-added and
if-needed procedures from Chapter 6. The syntax is illustrated in these
examples:

(Table
<:Clearance [IF-NEEDED ComputeClearanceFromLegs]> . . .)

(Lecture
<:DayOfWeek WeekDay>
<:Date [IF-ADDED ComputeDayOfWeek]> . . .)

Note that a slot can have both a filler and an attached procedure in the
same frame.

8.2.2 Inheritance
As we will see, much of the reasoning that is done with a frame system
involves creating individual instances of generic frames, filling some of the
slots with values, and inferring some other values. The :INSTANCE-OF
and :IS-A slots have a special role to play in this process. In particular,
the generic frames can be used to fill in values that are not mentioned
explicitly in the creation of the instance, and they can also trigger
additional actions when slot fillers are provided.

For example, if we ask for the :Country of the toronto frame, we can
determine that it is canada by using the :INSTANCE-OF slot, which points
to CanadianCity, where that value is given. The process of passing infor-
mation from generic frames down through their specializations and
eventually to their instances is called inheritance of properties (the “child”
frames inherit properties from their “parents”), and we say that toronto
inherits the :Country property from CanadianCity. If we had not provided
a filler for the :Province of toronto, we would still know by inheritance
that we were looking for an instance of CanadianProvince (which could
be useful in a recognition task). Similarly, if we had not provided a filler
for :Population, but we also had the following frame,

(City
<:Population NonNegativeNumber> . . .)

then by using both the :INSTANCE-OF slot of toronto and the :IS-A slot of
CanadianCity, we would know by inheritance that we were looking for an
instance of NonNegativeNumber.

The inheritance of attached procedures works analogously. If we
create an instance of Table, and we need to find the filler of the :Clearance

8.2 A Basic Frame Formalism 139

slot for that instance, we can use the attached IF-NEEDED procedure to
compute the clearance of that table from the height of its legs. This pro-
cedure would also be used through inheritance if we created an instance
of the frame MahoganyCoffeeTable, where we had the following:

(CoffeeTable
<:IS-A Table> . . .)

(MahoganyCoffeeTable
<:IS-A CoffeeTable> . . .)

Similarly, if we create an instance of the Lecture frame with a lecture date
specified explicitly, the attached IF-ADDED procedure would fire imme-
diately to calculate the day of the week for the lecture, filling the slot
:DayOfWeek. If we later changed the :Date slot, the :DayOfWeek slot would
again be changed by the same procedure.

One of the distinguishing features of the inheritance of properties in
frame systems is that it is defeasible. By this we mean that we use an
inherited value only if we cannot find a filler otherwise. So a slot filler
in a generic frame can be overridden explicitly in its instances and in its
specializations. For example, if we have a generic frame like

(Elephant
<:IS-A Mammal>
<:EarSize large>
<:Color gray> . . .)

we are saying that instances of Elephant have a certain :EarSize and :Color
property by default. We might have the following other frames:

(raja
<:INSTANCE-OF Elephant>
<:EarSize small> . . .)

(RoyalElephant
<:IS-A Elephant>
<:Color white> . . .)

(clyde
<:INSTANCE-OF RoyalElephant> . . .)

In this case, raja inherits the gray color of elephants, but has small
ears; clyde inherits the large ears from Elephant via RoyalElephant, but
inherits the white color from RoyalElephant, overriding the default from
Elephant.

140 Chapter 8 ■ Object-Oriented Representation

Normally in frame systems, all values are understood as default values,
and nothing is done automatically to check the validity of an explic-
itly provided filler. So, for example, nothing stops us from creating an
individual frame like

(city135
<:INSTANCE-OF CanadianCity>
<:Country holland>)

It is also worth mentioning that in many frame systems, individual
frames are allowed to be instances of (and generic frames are allowed
to be specializations of) more than one generic frame. For example, we
might want to say that

(AfricanElephant
<:IS-A Elephant>
<:IS-A AfricanAnimal> . . .)

with properties inherited from both generic frames. This, of course,
complicates inheritance considerably, because the values from Elephant
may conflict with those from AfricanAnimal. We will further examine this
more general form of inheritance in Chapter 10.

8.2.3 Reasoning with Frames
The procedures attached to frames give us a flexible, organized framework
for computation. Reasoning within a frame system usually starts with the
system’s “recognizing” an object as an instance of a generic frame, and
then applying procedures triggered by that recognition. Such procedure
invocations can then produce more data or changes in the knowledge base
that can cascade to other procedure calls. When no more procedures are
applicable, the system halts.

More specifically, the basic reasoning loop in a frame system has these
three steps:

1. a user or external system using the frame system as its knowledge
representation declares that an object or situation exists, thereby
instantiating some generic frame;

2. any slot fillers that are not provided explicitly but can be inherited
by the new frame instance are inherited;

3. for each slot with a filler, any IF-ADDED procedure that can be inher-
ited is run, possibly causing new slots to be filled, or new frames to
be instantiated, and the cycle repeats.

8.3 An Example: Using Frames to Plan a Trip 141

If the user, the external system, or an attached procedure requires the
filler of a slot, then we get the following behavior:

1. if there is a filler stored in the slot, then that value is returned;

2. otherwise, any IF-NEEDED procedure that can be inherited is run,
calculating the filler for the slot, but potentially also causing other
slots to be filled, or new frames to be instantiated.

If neither of these produce a result, then the value of the slot is con-
sidered to be unknown. Note that in this account, the inheritance of
property values is done at the time the individual frame is created, but
IF-NEEDED procedures, which calculate property values, are only invoked
as required. Other schemes are possible.

This comprises the local reasoning involving a single frame. When
constructing a frame knowledge base, one would also think about the
global structure of the KB and how computation should produce the
desired overall reasoning. Typically, generic frames are created for any
major object-type or situation-type required in the problem-solving. Any
constraints between slots are expressed by the attached IF-ADDED and
IF-NEEDED procedures. As in the procedural systems of Chapter 6, it
is up to the designer to decide whether reasoning should be done in
a data-directed or goal-directed fashion.

In this account, default values are filled in whenever they are avail-
able on slots. It is worth noting that in the original, psychological view
that first gave rise to frames, defaults were considered to play a major role
in scene, situation, and object recognition; it was felt that people were
prone to generalize from situations they had seen before, and that they
would assume that objects and situations were “typical”—had key aspects
taking on their normal default values—unless specific features in the
individual case were noticed to be exceptional.

Overall, given the constraints between slots that are enforced by
attached procedures, we can think of a frame knowledge base as a
symbolic “spreadsheet,” with constraints between the objects we care
about being propagated by attached procedures. But the procedures in
a frame KB can do a lot more, including invoking complex actions by
the system.

8.3 AN EXAMPLE: USING FRAMES TO PLAN A TRIP

We now turn our attention to developing an example frame system to see
how these representations work in practice. This is a form of knowledge
engineering that is quite different from the logical approach considered
in Chapter 3. The example will be part of a scheme for planning trips.

142 Chapter 8 ■ Object-Oriented Representation

We will see how the “symbolic spreadsheet” style of reasoning in frame
systems is used. This might be particularly useful in supporting the
documentation one often uses in a company for reporting expenses.

The basic structure of our representation involves two main types of
frames: Trip and TravelStep. A Trip will have a sequence of TravelSteps,
linked together by appropriate slots. A TravelStep will usually terminate
in a LodgingStay, except when there are two travel legs in a single day, or
when it is the last leg of a trip.

In order to make the correspondences work out correctly (and to be
able to keep track of what is related to what), a LodgingStay will use slots
to point to its arriving TravelStep and its departing TravelStep. Similarly,
TravelSteps will indicate the LodgingStays at their origin and destination.
Graphically, for a trip with three legs (instances of TravelStep), we might
sketch the relationships as in Figure 8.1.

Using the obvious slot names, a Trip in general will look like this:

(Trip
<:FirstStep TravelStep>

<:Traveler Person>

<:BeginDate Date>
<:EndDate Date>
<:TotalCost Price>
. . .)

trip17

travelStep17a

lodgingStay17a lodgingStay17b

travelStep17b travelStep17c

■ FIGURE 8.1

Sketch of Structure of a Trip

8.3 An Example: Using Frames to Plan a Trip 143

A specific Trip, say trip17, might look like this:

(trip17
<:INSTANCE-OF Trip>

<:FirstStep travelStep17a>
<:Traveler ronB>

<:BeginDate 11/13/98>

<:EndDate 11/18/98>

<:TotalCost $1752.45>

. . .)

In general, instances of TravelStep and LodgingStay will share some
properties (e.g., each has a beginning date, an end date, a cost, and
a payment method), so for representational conciseness, we might posit
a more general category, TripPart, of which the two other frames would
be specializations:

(TripPart
<:BeginDate Date>
<:EndDate Date>
<:Cost Price>
<:PaymentMethod FormOfPayment>
. . .)

(LodgingStay
<:IS-A TripPart>
<:Place City>
<:LodgingPlace LodgingPlace>
<:ArrivingTravelStep TravelStep>

<:DepartingTravelStep TravelStep>

. . .)

(TravelStep
<:IS-A TripPart>
<:Origin City>
<:Destination City>
<:OriginLodgingStay LodgingStay>
<:DestinationLodgingStay LodgingStay>
<:Means FormOfTransportation>

<:DepartureTime Time>
<:ArrivalTime Time>
<:NextStep TravelStep>

<:PreviousStep TravelStep>

. . .)

144 Chapter 8 ■ Object-Oriented Representation

This gives us our basic overall structure for a trip. Next we embel-
lish the frame structure with various defaults as well as procedures that
will help us enforce constraints. For example, our trips might most often
be made by air, in which case the default filler for the :Means slot of
a TravelStep should be airplane:

(TravelStep
<:Means airplane> . . .)

We might also make a habit of paying for parts of trips with a Visa
card:

(TripPart
<:PaymentMethod visaCard> . . .)

However, perhaps because it provides insurance, we may prefer American
Express for travel steps, overriding this default:

(TravelStep
<:PaymentMethod americanExpressCard> . . .)

As indicated earlier, not all inherited fillers of slots will necessarily be
specified as fixed values; it may be more appropriate to compute them
from the current circumstances. For example, it would be appropriate to
automatically set up the origin of a travel step as our home airport, say
Newark, as long as there was no previous travel step—in other words,
Newark is the default airport for the beginning of a trip. To do this we
introduce two pieces of notation:

■ if x refers to an individual frame and y to a slot, then xy refers to the
filler of the slot for the frame;1

■ SELF will be a way to refer to the frame currently being processed.

Our travel step description would then be augmented to look like this:

(TravelStep
<:Origin

[IF-NEEDED
{if no SELF:PreviousStep

then newark
else SELF:PreviousStep:Destination}]> . . .)

1Note that we do not write x : y, because we are assuming that the slot y already begins
with a “:”.

8.3 An Example: Using Frames to Plan a Trip 145

This attached procedure says that for any TravelStep, if we want its origin
city, use the destination of the previous TravelStep, or newark if there is
none.

Another useful thing to do with a travel planning symbolic spreadsheet
would be to compute the total cost of a trip from the costs of each of its
parts:

(Trip
<:TotalCost

[IF-NEEDED
{let result←0;
let x←SELF:FirstStep;
repeat

{if exists x:NextStep
then

{result← result + x:Cost
if exists x:DestinationLodgingStay then

result← result + x:DestinationLodgingStay:Cost;
x← x:NextStep}

else return result + x:Cost}}]> . . .)

This IF-NEEDED procedure (written in a suggestive pseudocode) iterates
through the travel steps, starting at the trip’s :FirstStep. At each step, it
adds the cost of the step itself (x:Cost) to the previous result, and if there is
a subsequent step, the cost of the lodging stay between those two steps, if
any (x:DestinationLodgingStay:Cost).

Another useful thing to expect an automatic travel documentation
system to do would be to create a skeletal lodging stay instance each
time a new travel leg was added. The following IF-ADDED procedure
does a basic form of this:

(TravelStep
<:NextStep

[IF-ADDED
{if SELF:EndDate �= SELF:NextStep:BeginDate

then
SELF:DestinationLodgingStay ←
SELF:NextStep:OriginLodgingStay ←
create new LodgingStay

with :BeginDate = SELF:EndDate
and with :EndDate = SELF:NextStep:BeginDate
and with :ArrivingTravelStep = SELF
and with :DepartingTravelStep = SELF:NextStep

. . .}]> . . .)

146 Chapter 8 ■ Object-Oriented Representation

Note that the first thing done is to confirm that the next travel leg begins
on a different day than the one we are starting with ends; presum-
ably no lodging stay is needed if the two travel legs join on the same
day.

Note also that the default :Place of a LodgingStay (and other fillers) could
also be calculated as another piece of automatic processing:

(LodgingStay
<:Place [IF-NEEDED

{SELF:ArrivingTravelStep:Destination}]> . . .)

This might be a fairly weak default, however, and its utility would depend
on the particular application. It is quite possible that a traveller’s pre-
ferred default city for lodging is different than the destination city for the
arriving leg of the trip (e.g., flights may arrive in San Francisco, but I may
prefer as a default to stay in Palo Alto).

8.3.1 Using the Example Frames
We now consider how the various frame fragments we have created might
work together in specifying a trip. Imagine that we propose a trip to
Toronto on December 21, 2006, returning home the following day. First,
we create an individual frame for the overall trip (call it trip18), and one
for the first leg of the trip:

(trip18
<:INSTANCE-OF Trip>

<:FirstStep travelStep18a>)

(travelStep18a
<:INSTANCE-OF TravelStep>

<:Destination toronto>
<:BeginDate 12/21/06>

<:EndDate 12/21/06>)

Because we know we are to return home the next day, we create the second
leg of the trip:

(travelStep18b
<:INSTANCE-OF TravelStep>

<:Destination newark>
<:BeginDate 12/22/06>

<:EndDate 12/22/06>

<:PreviousStep travelStep18a>)

The state of affairs after creating travelStep18b is pictured in Figure 8.2.

8.3 An Example: Using Frames to Plan a Trip 147

trip18

:FirstStep

:BeginDate 12/21/06
:EndDate 12/21/06
:Means
:Origin
:Destination toronto
:NextStep
:PreviousStep
:Cost
:OriginLodgingStay
:DestinationLodgingStay

travelStep18a

:BeginDate 12/22/06
:EndDate 12/22/06
:Means
:Origin
:Destination newark
:NextStep

:PreviousStep
:Cost
:OriginLodgingStay
:DestinationLodgingStay

travelStep18b

... ...

■ FIGURE 8.2

Travel Example with Two Legs

To complete the initial setup, travelStep18a will need its :NextStep slot
filled with travelStep18b. (Note that this could be done automatically
with an IF-ADDED procedure on travelStep:PreviousStep triggered from
travelStep18b.) As a consequence of the assignment of travelStep18b as the
:NextStep of travelStep18a, a default LodgingStay is automatically created to
represent the overnight stay between those two legs of the trip (using the
IF-ADDED procedure on the :NextStep slot):

(lodgingStay18a
<:INSTANCE-OF LodgingStay>
<:BeginDate 12/21/06>

<:EndDate 12/22/06>

<:ArrivingTravelStep travelStep18a>
<:DepartingTravelStep travelStep18b>)

Note that the IF-NEEDED procedure for the :Place slot of LodgingStay
would infer a default filler of toronto for lodgingStay18a, if required. Once
we have established the initial structure, we can see how the :Means slot
of either step would be filled by default, and a query about the :Origin
slot of either step would produce an appropriate default value, as in
Figure 8.3 (note that we have included in the figure the values derived
by the IF-NEEDED procedures).

148 Chapter 8 ■ Object-Oriented Representation

trip18

:FirstStep

:BeginDate 12/21/06
:EndDate 12/21/06
:Means airplane
:Origin newark
:Destination toronto
:NextStep
:PreviousStep
:Cost
:OriginLodgingStay
:DestinationLodgingStay

:ArrivingTravelStep
:DepartingTravelStep
:BeginDate 12/21/06
:EndDate 12/22/06
:Place toronto
:Cost

travelStep18a

lodgingStay18a

:BeginDate 12/22/06
:EndDate 12/22/06
:Means airplane
:Origin toronto
:Destination newark
:NextStep

:PreviousStep
:Cost
:OriginLodgingStay
:DestinationLodgingStay

travelStep18b

...

......

■ FIGURE 8.3

The Travel Example with Lodging Stay

For a final illustration, imagine that we have over the course of
our trip filled in the :Cost slots for each of the instances of TripPart as
follows: travelStep18a:Cost is $321.00; travelStep18b:Cost is $321.00; and
lodgingStay18b:Cost is $124.75. If we ask for the :TotalCost of the entire trip,
the IF-NEEDED procedure defined earlier will come into play (assum-
ing the :TotalCost slot has not already been filled manually). Given the
final state of the trip as completed by the cost assertions, the calculation
proceeds as follows:

■ result is initialized to 0, and x is initialized to travelStep18a, which
makes x:NextStep be travelStep18b;

8.4 Beyond the Basics 149

■ the first time through the repeat loop, result is set to the
sum of result (0), the cost of x ($321.00), and the cost of the
:DestinationLodgingStay of the current step (lodgingStay18a) ($124.75);
x is then set to travelStep18b;

■ the next time through, because x (travelStep18b) has no following
step, the loop is broken and the sum of result ($445.75) and the cost
of x ($321.00) is returned.

As a result, a grand total of $766.75 is taken to be the :TotalCost of trip18.

8.4 BEYOND THE BASICS

The trip planning example considered here is typical of how frame
systems have been used: Start with a sketchy description of some circum-
stance and embellish it with defaults and implied values. The IF-ADDED
procedures can make updates easier and help to maintain consistency; the
IF-NEEDED procedures allow values to be computed only when they are
needed. There is a tradeoff here, of course, and which type of procedure
to use in an application will depend on the potential value to the user of
seeing implied values computed up front versus the value of waiting to
do computation only as required.

8.4.1 Other Uses of Frames
There are other types of applications for frame systems. One would be to
use a frame system to provide a structured, knowledge-based monitoring
function over a database. By hooking the frames to items in a database,
changes in values and newly added values could be detected by the frame
system, and new frame instances or implied slot values could be computed
and added to the database, without having to modify the DBMS itself to
handle rules. In some ways, this combination would act like an expert
system. But database monitors are probably more naturally thought of
as object-centered (generic frames could line up with relations in the
schema, for example), in which case a frame representation is a better
fit than a flat production system.

Other uses of frame systems come closer to the original thinking about
psychologically oriented recognition processes espoused by Minsky in
1975. These include, for example, structuring views of typical activi-
ties of characters in stories. The frame structures for such activities have
been called scripts, and have been used to recognize the motivations of
characters in the stories and set up expectations for their later behavior.
More general commonsense reasoning of the sort that Minsky envisioned
would use local cues from a situation to suggest potentially relevant

150 Chapter 8 ■ Object-Oriented Representation

frames, which in turn would set up further expectations that could drive
investigation procedures.

Consider, for example, a situation where many people in a room were
holding what appeared to be wrapped packages, and balloons and cake
were in evidence. This would suggest a birthday party, and prompt us
to look for the focal person at the party (a key slot of the birthday
party frame) and to interpret the meaning of lit candles in a certain
way. Expectations set up by the suggested frames could be used to con-
firm the current hypothesis (that this is a birthday party). If they were
subsequently violated, then an appropriately represented “differential
diagnosis” attached to the frame could lead the system to suggest other
candidate frames, taking the reasoning in a different direction. For exam-
ple, no candles on the cake and an adult focal person or persons could
suggest a retirement or anniversary party.

8.4.2 Extensions to the Frame Formalism
As with other knowledge representation formalisms, frame systems
have been subject to many extensions to handle ever more complex
applications. Here we briefly review some of these extensions.

Other Procedures An obvious way to increase the expressiveness and
utility of the frame mechanism is to include other types of procedures.
The whole point of object-oriented reasoning is to determine the sort of
questions appropriate for a type of object and to design procedures to
answer them. For trips, for example, we have only considered two forms
of questions, exemplified by “What is the total cost of a trip?” (handled
by an IF-NEEDED procedure) and “What should I do if I find out about a
new leg of a trip?” (handled by an IF-ADDED procedure). Other questions
that do not fit these two patterns are certainly possible, such as “What
should I do if I cancel a leg of a trip?” (requiring some sort of “if-removed”
procedure), “How do I recognize an overly expensive trip?” (along the lines
of the birthday party recognition example), or “What do I need to look out
for in an overseas trip?” and so on.

Multiple Slot Fillers In addition to extending the repertoire of proce-
dures attached to a frame knowledge base, we can also expand the types
of slots used to express parts and features of objects. One obvious exten-
sion is to allow sets of frames to fill slots. Procedures attached to the
slot could then operate on the entire set of fillers, and constraints on
the cardinality of these sets could be used in reasoning, as we will see
in the description logics of Chapter 9. One complication this raises con-
cerns inheritance: With multiple slot fillers, we need to know whether
the fillers of a slot given explicitly should or should not be augmented by
other fillers through inheritance.

8.4 Beyond the Basics 151

Other Slot Facets So far, we have seen that both default fillers and
procedures can be associated with a slot. We can imagine dealing with
other aspects of the relationship between a slot and a frame. For exam-
ple, we might want to be able to insist that instances of a generic frame
provide a filler of a certain type (or perhaps check the validity of the pro-
vided filler with a procedure), rather than being merely a default. Another
possibility is to state preferences we might have regarding the filler of
a slot. Preferences could be used to help select a filler among a number of
competing inherited values.

Metaframes Generic frames can sometimes usefully be considered to
be instances of higher-level metaframes. For example, generic frames
like CanadianCity and NewJerseyCity represent a type of city defined by
a geographic region. So we might think of them as being instances
(not specializations) of a metaframe like GeographicalCityType, and have
something like this:

(GeographicalCityType
<:IS-A CityType>
<:DefiningRegion GeographicalRegion>

<:AveragePopulation NonNegativeNumber> . . .)

An instance of this frame, like CanadianCity, would have a particu-
lar value for the :DefiningRegion slot, namely canada. The filler for
the :AveragePopulation slot for CanadianCity could be calculated by an
IF-NEEDED procedure, by iterating through all the Canadian cities.
Observe that individual cities themselves do not have a defining region
or an average population, so we need to ensure that frames like toronto
do not inherit these slots from CanadianCity. The usual way this is done
is to distinguish the “member” slots of a generic frame, which apply to
instances (members) of the frame (like the :Country of a CanadianCity), from
the “own” slots of the frame, which apply to the frame itself (like the
:AveragePopulation of CanadianCity).

8.4.3 Object-Driven Programming with Frames
Frame-structured knowledge bases are the first instance we have seen of
an object-oriented representation. Careful attention to the mapping of
generic frames to categories of objects in a domain of interest can yield
a simple declarative knowledge base, emphasizing taxonomies of objects
and their structural relationships. However, as we have seen, attached
procedures can be a useful adjunct to a pure object-oriented representa-
tion structure, and in practice, we are encouraged to take advantage of
their power to build a complex, highly procedural knowledge base. In this

152 Chapter 8 ■ Object-Oriented Representation

case, what is known about the connections among the various symbols
used is expressed through the attached procedures, just as it was in the
procedural and production systems of previous chapters. Although there
is nothing intrinsically wrong with this, it does mean moving away from
the original declarative view of knowledge—taking the world to be one
way and not another—presented in the first chapter.

The shift to a more procedural view of frames moves us close to
conventional object-oriented programming (OOP). Indeed, frame-based
representation languages and OOP systems were developed concurrently,
and share many of the same intuitions and techniques. A procedu-
ral frame system shares the advantages of a conventional OOP system:
Definition is done primarily by specialization of more general classes,
control is localized, methods can be inherited, encapsulation of abstract
procedures is possible, and so on. The main difference is that frame sys-
tems tend to have a centralized, conventional control regime, whereas
OOP systems have objects acting as small, independent agents sending
each other messages. Frame systems tend to work in a cycle: Instanti-
ate a frame and declare some slot fillers, inherit values from more general
frames, trigger appropriate forward-chaining procedures, and then, when
quiescent, stop and wait for the next input. OOP systems tend to be more
decentralized and less patterned. As a result, there can be some applica-
tions for which a frame-based system can provide some advantages over
a more generic OOP system, for example, in the style of applications that
we touched on earlier. But if the primary use of a frame system is as
an organizing method for procedures, this contrast should be examined
carefully to be sure that the system is best suited to the task.

In Chapter 9 we will continue our investigation of object-oriented
knowledge representation, but now without procedures, in a more logical
and declarative form.

8.5 BIBLIOGRAPHIC NOTES

A collection of papers about frames and other structured representa-
tions was edited by Bobrow and Collins [31]. The key concepts of frame
representations are generally credited to a seminal paper by Minsky [292],
although many of the ideas were in the air and pursued by others in the
early 1970s. FRL [356] was one of the first implemented reasoning sys-
tems to be based on the frames idea and procedural attachment. In some
respects, the apotheosis of frame systems was KRL [32], a very ambitious
effort based, among other things, on insight into the use of descriptions
in natural language. Scripts [366] were an attempt to apply the idea of
frames to natural language story understanding.

8.6 Exercises 153

Frame-style representations eventually found their way into the com-
mercial arena in systems like KEE [3, 127].

For a critique of frames and the difficulty of providing a logical
semantics for framelike languages, see Hayes [182].

8.6 EXERCISES

1. Imagine a frame-based travel-planning assistant, as discussed in the
text. Let us focus on two of the generic frames used there, LodgingStay
(which represents a hotel stay in a city while on a trip) and TravelStep
(which represents any travel from one city to another). A LodgingStay
has a :Place, in which the lodging is located, an :ArrivingTravelStep, and
a :DepartingTravelStep, both of which are TravelSteps. A TravelStep has an
:Origin and a :Destination, each of which is a city, a possible :Origin-
LodgingStay, and a possible :DestinationLodgingStay, each of which is
a LodgingStay. For simplicity, assume that there is always a LodgingStay
between any two TravelSteps.

Write in English some combination of IF-NEEDED and/or IF-ADDED
procedures that could be attached to the city slots of the various
LodgingStay and TravelStep frames to keep them consistent. Statements
like “set the :Place of my :OriginLodgingStay to be the same as this one”
in a procedure are fine. Make sure that a change to one of these city
slots does not cause an infinite loop.

In the remaining exercises, we consider two possible frame-based appli-
cations:

Classroom Scheduler Imagine we want to build a program that helps
schedule rooms for classes of various size at a university, using the sort
of frame technology (frames, slots, and attached procedures) discussed
in the text. Slots of frames might be used to record when and where a
class is to be held, the capacity of a room, and so on, and IF-ADDED and
other procedures might be used to encode constraints as well as to fill in
implied values when the KB is updated.

In this problem, we want to consider updating the KB in several ways:
(1) asserting that a class of a given size is to be held in a given room
at a given time; the system would either go ahead and add this to its
schedule or alert the user that it was not possible to do so; (2) asserting
that a class of a given size is to be held at a given time, with the system
providing a suitable room (if one is available) when queried; (3) asserting
that a class of a given size is desired, with the system providing a time and
place when queried.

154 Chapter 8 ■ Object-Oriented Representation

Olympic Assistant Imagine we want to help the International Olympic
Committee in the smooth running of the next Olympic games. In partic-
ular, we want to select an event and write a program to deal with that
event including facilities for handling the preliminary rounds/heats and
finals. Slots of frames might be used to record athletes in a heat/final, the
location and time of that heat/final, and so on, and IF-ADDED/IF-NEEDED
and other procedures might be used to encode constraints as well as to
fill in implied values when the knowledge base is updated.

We particularly wish to consider several ways of updating the knowl-
edge base: (1) asserting that a heat will take place with certain athletes;
the system should add this and determine what time and the location
of the venue the athletes need to be at for their heat, and so on; (2) assert-
ing that a particular semifinal/final should take place, the system should
determine the participating athletes; and (3) asserting that the medal
ceremony should take place at a particular time and location, the sys-
tem should add this and provide the medalists plus appropriate national
anthem when queried. To simplify matters, we assume that an athlete
takes part in only the event we have chosen.

2. For either application, the questions are the same:

(a) Design a set of frames and slots to represent the schedule and any
ancillary information needed by the assistant.

(b) For all slots of all frames, write in English pseudocode the
IF-ADDED or IF-NEEDED procedures that would appear there.
Annotate these procedures with comments explaining why they
are there (e.g., what constraints they are enforcing).

(c) Briefly explain how your system would work (what procedures
would fire and what they would do) on concrete examples of your
choosing, illustrating each of the three situations (1, 2, and 3)
mentioned in the description of the application.

C H A P T E R 9

STRUCTURED DESCRIPTIONS

■

■

■

In Chapter 8, we looked at knowledge organization inspired by our
natural tendency to think in terms of categories of objects. However,
the frame representation seen there focused more on the organization
and invocation of procedures than on inferences about the objects and
categories themselves. Reasoning about objects in everyday thinking
goes well beyond the simple cascaded computations seen in that chapter,
and is based on considerations like the following:

■ objects naturally fall into categories (e.g., my pet is a dog, my wife
is a physician), but are very often thought of as being members of
multiple categories (e.g., I am an author, an employee, and a father);

■ categories can be more general or more specific than others (e.g.,
Westie and Schnauzer are types of dogs, a rheumatologist is a type
of physician, a father is a type of parent);

■ in addition to generalization being common for categories with
simple names, it is also natural for those with more complex
descriptions (e.g., a part-time employee is an employee, a Canadian
family with at least one child is a family, a family with three
children is a family that is not childless);

■ objects have parts, sometimes in multiples (e.g., books have titles,
tables have legs, automobiles have wheels);

■ the relationships among an object’s parts is essential to its being
considered a member of a category (e.g., a stack of bricks is not
the same as a pile of the very same bricks).

155

156 Chapter 9 ■ Structured Descriptions

In this chapter we will delve into representation techniques that look
more directly at these aspects of objects and categories than frames did.
In focusing on the more declarative aspects of an object-oriented rep-
resentation, our analysis will take us back to concepts like predicates
and entailment from FOL. But as we shall see, what matters about these
predicates and the kind of entailments we will consider here will be quite
different.

9.1 DESCRIPTIONS

Before we look at the details of a formal knowledge representation lan-
guage in the next section, one useful way to get our bearings is to think
in terms of the expressions of a natural language like English. In our dis-
cussion of knowledge in Chapter 1, and in our presentation of FOL, we
focused mainly on sentences, because it is sentences, after all, that express
what is known. Here, we want to talk about noun phrases. Like sentences,
noun phrases can be simple or complex, and they give us a nice window
onto our thinking about objects.

9.1.1 Noun Phrases
Recall that in our introduction to expressing knowledge in FOL-like lan-
guages (Chapter 3), we represented categories of objects with one-place
predicates using common nouns like Company(x), Knife(x), and Contract(x).
But there is more to noun phrases than just nouns. To capture more
interesting types of nominal constructions, such as “a hunter-gatherer”
or “a man whose children are all female,” we would need predicates
with internal structure.

For example, if we had a truly compound predicate like

Hunter&Gatherer(x),

then we would expect that for any x for which Hunter&Gatherer(x) was
true, both Hunter(x) and Gatherer(x) would also be true.1 Most important,
this connection among the three predicates would hold not by virtue of
some fact believed about the world, but by definition of what we meant
by the compound predicate.

Similarly, we would expect that if Child(x, y) and FatherOfOnlyGirls(x)
were both true, y would have to be a girl, again (somehow), by definition.
Note that this would be so even if we had a simple name that served
as an abbreviation for a concept like this, which is very often the case

1We are using the “&” and complex predicate names suggestively here; we will introduce
formal machinery shortly.

9.1 Descriptions 157

in natural language (e.g., Teenager is synonymous with PersonWithAge-
Between13and19).

Traditional first-order logic does not provide any tools for dealing with
compound predicates of this sort. In a sense, the only noun phrases in
FOL are the nouns. But given the prominence and naturalness of such
constructs in natural language, it is worthwhile to consider knowledge
representation machinery that does provide such tools. Because a logic
that would allow us to manipulate complex predicates would be working
mainly with descriptions, we call a logical system based on these ideas
a description logic (DL).2

9.1.2 Concepts, Roles, and Constants
Looking at our earlier examples, we can already see that two sorts of
nouns are involved: There are category nouns like Hunter, Teenager, and
Girl describing basic classes of objects, and there are relational nouns like
Child and Age that describe objects that are parts or attributes or proper-
ties of other objects.3 We saw a similar distinction in Chapter 8 between
a frame and a slot. In a description logic, we refer to the first type of
description as a concept and to the second type as a role.

As with frames, we will think of concepts as being organized into
a generalization hierarchy where, for example, Hunter&Gatherer is a spe-
cialization of Hunter. However, we will see that much of the generaliza-
tion hierarchy in a description logic follows logically from the meaning
of the compound concepts involved, quite unlike the case with frames
where hierarchies were stipulated by the user. As we will see, much of
the reasoning performed by a description logic system centers around
automatically computing this generalization relation.

For simplicity, we will not consider roles to be organized hierarchically
in this way except briefly in Section 9.6. In contrast to the slots in frame
systems, however, roles will be allowed to have multiple fillers. This way
we can naturally describe a person with several children, a function with
multiple arguments, a desk with many drawers, or a wine made from
more than one type of grape.

Finally, although much of the reasoning we perform in a descrip-
tion logic concerns generic categories, we will want to know how these
descriptions apply to individuals as well. Consequently, we will also
include constants like johnSmith in our description logic language.

2Other names used in the literature include “terminological logics,” “term subsumption
systems,” “taxonomic logics,” or even “KL-One-like systems,” because of their origin in
early work on a representation system called KL-One.
3Many nouns can be used both ways. For example, “child” can refer to a relation (the inverse
of parent) or a category (a person of a young age).

158 Chapter 9 ■ Structured Descriptions

9.2 A DESCRIPTION LANGUAGE

We begin here with the syntax of a very simple but illustrative description
logic language that we call DL. Like FOL, DL has two types of symbols:
logical symbols, which have a fixed meaning or use, and nonlogical sym-
bols, which are application-dependent. There are four sorts of logical
symbols in DL:

1. punctuation: “[,” “],” “(,” “)”;

2. positive integers: 1, 2, 3, etc.;

3. concept-forming operators: “ALL,” “EXISTS,” “FILLS,” “AND”;

4. connectives: “�,” “ .=,” “→.”

We distinguish three sorts of nonlogical symbols in DL:

1. atomic concepts, written in capitalized mixed case, e.g., Person,
WhiteWine, FatherOfOnlyGirls; DL also has a special atomic concept,
Thing;

2. roles, written like atomic concepts, but preceded by “:,” e.g., :Child,
:Height, :Employer, :Arm;

3. constants, written in uncapitalized mixed case, e.g., desk13,
maryAnnJones.

There are four types of legal syntactic expressions in DL: constants, roles
(both seen earlier), concepts, and sentences. We use c and r to range over
constants and roles, respectively, d and e to range over concepts, and
a to range over atomic concepts. The set of concepts of DL is the least set
satisfying the following:

■ every atomic concept is a concept;

■ if r is a role and d is a concept, then [ALL r d] is a concept;

■ if r is a role and n is a positive integer, then [EXISTS n r] is a concept;

■ if r is a role and c is a constant, then [FILLS r c] is a concept;

■ if d1 . . . dn are concepts, then [AND d1 . . . dn] is a concept.

Finally, there are three types of sentences in DL:

■ if d1 and d2 are concepts, then (d1 � d2) is a sentence;

■ if d1 and d2 are concepts, then (d1
.= d2) is a sentence;

■ if c is a constant and d is a concept, then (c → d) is a sentence.

9.2 A Description Language 159

A KB in a description logic like DL is considered to be any collection
of sentences of this form.

What are these syntactic expressions supposed to mean? Constants
are intended to stand for individuals in some application domain
as they did in FOL, atomic concepts (and indeed all concepts in
general) are intended to stand for categories or classes of individ-
uals, and roles are intended to stand for binary relations over those
individuals.

As for the complex concepts, their meanings are derived from the
meanings of their parts the way the meanings of noun phrases are.
Imagine that we have a role r standing for some binary relation. Then the
concept [EXISTS n r] stands for the class of individuals in the domain
that are related by relation r to at least n other individuals. So the
concept [EXISTS 1 :Child] could represent someone who was not child-
less. Next, imagine that constant c stands for some individual; then the
concept [FILLS r c] stands for those individuals that are r-related to that
individual. So [FILLS :Cousin vinny] would then represent someone, one
of whose cousins was Vinny. Next, imagine that concept d stands for
some class of individuals; then the concept [ALL r d] stands for those
individuals who are r-related only to elements of that class. For exam-
ple, [ALL :Employee UnionMember] describes something whose employees,
if any, are all union members. Finally, the concept [AND d1 . . . dn] stands
for anything that is described by d1 and . . . dn.

Turning now to sentences, these expressions are intended to be true
or false in the domain, as they would be in FOL. Imagine that we have
two concepts d1 and d2, standing for two classes of individuals, and a
constant c, standing for some individual. Then (d1 � d2) says that con-
cept d1 is subsumed by concept d2, that is, all individuals that satisfy d1
also satisfy d2. For example, (Surgeon � Doctor) says that any surgeon is
also a doctor (among other things). Similarly, (d1

.= d2) will mean that
the two concepts are equivalent, that is, the individuals that satisfy d1
are precisely those that satisfy d2. This is just a convenient way of say-
ing that both (d1 � d2) and (d2 � d1) are true. Finally, (c → d) says
that the individual denoted by c satisfies the description expressed by
concept d.

While the sentences of DL are all atomic, it is easy to create complex
concepts. For example,

[AND Wine
[FILLS :Color red]
[EXISTS 2 :GrapeType]]

would represent the category of a blended red wine (literally, a wine,
one of whose colors is red, and which has at least two types of grape
in it).

160 Chapter 9 ■ Structured Descriptions

A typical sentence in a description logic KB is one that assigns a name
to a complex concept:

(ProgressiveCompany
.= [AND Company

[EXISTS 7 :Director]
[ALL :Manager [AND Woman

[FILLS :Degree phD]]]
[FILLS :MinSalary $24.00/hour]])

The concept on the right-hand side represents the notion of a company
with at least seven directors, and all of whose managers are women with
Ph.D.s and whose minimum salary is $24.00/hour. The sentence as a
whole says that ProgressiveCompany, as a concept, is equivalent to the one
on the right. If this sentence is in a KB, we consider ProgressiveCompany
to be fully defined in the KB, that is, we have a set of necessary and
sufficient conditions for being a ProgressiveCompany, exactly expressed by
the right-hand side. If we used the � connective instead, the sentence
would say only that ProgressiveCompany as a concept was subsumed by the
one on the right. Without a .= sentence in the KB defining it, we con-
sider ProgressiveCompany to be a primitive concept in that we only have
necessary conditions it must satisfy. As a result, although we could draw
conclusions about an individual ProgressiveCompany once we were told it
was one, we would not have a way to recognize an individual definitively
as a ProgressiveCompany.

9.3 MEANING AND ENTAILMENT

As we saw in the previous section, there are four different sorts of syntactic
expressions in a description logic—constants, roles, concepts, and
sentences—with different intended uses. In this section, we will explain
precisely what these expressions are supposed to mean, and under what
circumstances a collection of sentences in this logic entails another. As
in ordinary FOL, it is this entailment relation that a description logic
reasoner will be required to calculate.

9.3.1 Interpretations
The starting point for the semantics of description logics is the inter-
pretation, just as it was for FOL. An interpretation
 for DL is a pair
〈D, I〉 as before, where D is any set of objects called the domain of
the interpretation, and I is a mapping called the interpretation mapping
from the nonlogical symbols of DL to elements and relations over D,

9.3 Meaning and Entailment 161

where

1. for every constant c, I[c] ∈ D;4

2. for every atomic concept a, I[a] ⊆ D;

3. for every role r, I[r] ⊆ D ×D.

Comparing this to FOL, we can see that constants have the same mean-
ing as they would as terms in FOL, that atomic concepts are understood
as unary predicates, and that roles are understood as binary predicates.
The set I[d] associated with a concept d in an interpretation is called its
extension, and I is sometimes called an extension function.

As we have emphasized, a distinguishing feature of description logics
is the existence of nonatomic concepts whose meanings are completely
determined by the meanings of their parts. For example, the extension of
[AND Doctor Female] is required to be the intersection of the extension of
Doctor and that of Female. More generally, we can extend the definition
of I to all concepts as follows:

■ for the distinguished concept Thing, I[Thing] = D;

■ I[[ALL r d]] = {x ∈ D | for any y, if 〈x, y〉 ∈ I[r], then y ∈ I[d]};
■ I[[EXISTS n r]] =

{x ∈ D | there are at least n distinct y such that 〈x, y〉 ∈ I[r]};
■ I[[FILLS r c]] = {x ∈ D | 〈x, I[c]〉 ∈ I[r]};
■ I[[AND d1 . . . dn]] = I[d1] ∩ . . . ∩ I[dn].

So if we are given an interpretation
, with an interpretation mapping
for constants, atomic concepts, and roles, these rules tell us how to find
the extension of any concept.

9.3.2 Truth in an Interpretation
Given an interpretation, we can now specify which sentences of DL are
true and which are false according to that interpretation. A sentence
(c → d) will be true when the object denoted by c is in the extension of
d; a sentence (d � d′) will be true when the extension of d is a subset
of the extension of d′; a sentence (d .= d′) will be true when the exten-
sion of d is the same as that of d′. More formally, given an interpretation

 = 〈D, I〉, we say that α is true in
, written
 |= α, according to these
rules:

4Note that, as in FOL, different constants can map to the same individual in the
domain.

162 Chapter 9 ■ Structured Descriptions

Assume that d and d′ are concepts, and that c is a constant.

1.
 |= (c → d) iff I[c] ∈ I[d];
2.
 |= (d � d′) iff I[d] ⊆ I[d′];
3.
 |= (d .= d′) iff I[d] = I[d′].

As in FOL, we will also use the notation
 |= S, where S is a set of sentences,
to mean that all the sentences in S are true in
.

9.3.3 Entailment
The definition of entailment in DL is exactly like it is in FOL. Let S be
a set of sentences, and α any individual sentence. We say that S logically
entails α, which we write S |= α, if and only if for every interpretation

, if
 |= S then
 |= α. As a special case of this definition, we say that
a sentence α is logically valid, which we write |= α, when it is logically
entailed by the empty set.

There are two basic sorts of reasoning we will be concerned with in
description logics: determining whether or not some constant c satis-
fies a certain concept d, and determining whether or not a concept d
is subsumed by another concept d′. Both of these involve calculating
entailments of a KB: In the first case, we need to determine if the KB
entails (c → d), and in the second case, if the KB entails (d � d′). So, as
in FOL, reasoning in a description logic means calculating entailments.

Note that in some cases the entailment relationship will hold because
the sentences themselves are valid. For example, consider the sentence

([AND Doctor Female] � Doctor).

This sentence is valid according to the definition just mentioned: The
sentence must be true in every interpretation
 because no matter
what extension it assigns to Doctor and Female, the extension of the AND
concept (which is the intersection of the two sets) will always be a sub-
set of the extension of Doctor. Consequently, for any KB, the first concept
is subsumed by the second—in other words, a female doctor is always a
doctor. Similarly, the sentence

(john → Thing)

is valid: The sentence must be true in every interpretation
 because no
matter what extension it assigns to john, it must be an element of D, which
is the extension of Thing. Consequently, for any KB, the constant satisfies
that concept—in other words, the individual John is always something.

9.4 Computing Entailments 163

In more typical cases, the entailment relationship will depend on the
sentences in the KB. For example, if a knowledge base, KB, contains the
sentence

(Surgeon � Doctor),

then we get the following entailment:

KB |= ([AND Surgeon Female] � Doctor).

To see why, consider any interpretation
, and suppose that
 |= KB.
Then, for this interpretation, the extension of Surgeon is a subset of that of
Doctor, and so the extension of the AND concept (that is, the intersection
of the extensions of Surgeon and Female) must also be a subset of that of
Doctor. So for this KB, the AND concept is subsumed by Doctor: If a surgeon
is a doctor (among other things), then a female surgeon is also a doctor.
This conclusion would also follow if instead of (Surgeon � Doctor), the KB
were to contain

(Surgeon
.= [AND Doctor [FILLS :Specialty surgery]]).

In this case we are defining a surgeon to be a certain kind of doctor,
which again requires the extension of Surgeon to be a subset of that of
Doctor. With the empty KB, on the other hand, there would be no sub-
sumption relation, because we can find an
 where the extension of the
AND concept is not a subset of the extension of Doctor: Let D be the set
of all integers, and let I assign Doctor to the empty set, and both Surgeon
and Female to the set of all integers.

9.4 COMPUTING ENTAILMENTS

As stated, there are two major types of reasoning that we care about with
a description logic: Given a knowledge base, KB, we want to be able to
determine if KB |= α for sentences α of the form

■ (c → d), where c is a constant and d is a concept; and

■ (d � e), where d and e are both concepts.5

In fact, the first of these depends on being able to handle the second,
and so we begin by considering how to compute subsumption. As with

5As noted, KB |= (d .= e) if and only if KB |= (d � e) and KB |= (e � d).

164 Chapter 9 ■ Structured Descriptions

Resolution for FOL, the key fact about the symbol-level computation that
we are about to present is that it is correct (sound and complete) relative
to the knowledge-level definition of entailment given earlier.

9.4.1 Simplifying the Knowledge Base
First, it can be shown that subsumption entailments are unaffected by the
presence of sentences of the form (c → d) in the KB. In other words, if KB′
is just like KB except that all the (c → d) sentences have been removed,
then it can be shown that KB |= (d � e) if and only if KB′ |= (d � e).6

So we can assume that for subsumption questions, the KB in question
contains no (c → d) sentences.

Furthermore, we can eliminate sentences of the form (d � e) from the
KB, replacing them by sentences of the form (d .= [AND e a]), where a
is a new atomic concept used nowhere else. In other words, to think of
d as a primitive sort of e is the same as thinking of it as being defined
to be exactly those e things that also satisfy some new unaccounted-for
concept a.

For pragmatic purposes, it is useful to make the following restriction:
We insist that the left-hand sides of the .= sentences in the KB be atomic
concepts other than Thing and that each atom appears on the left-hand
side of a sentence exactly once in the KB. We can think of such sentences
as providing definitions of the atomic concepts. We will, however, still
be able to compute KB |= α for sentences α of the more general form
(e.g., subsumption between two complex concepts). Finally, we assume
that the .= sentences in the KB are acyclic. Informally we want to rule
out a KB like

{ (d1
.= [AND d2 . . .]), (d2

.= [ALL r d3]), (d3
.= [AND d1 . . .]) },

which has a cycle (d1, d2, d3, d1). While this type of cycle is meaningful in
our semantics, it complicates the calculation of subsumption.

With these restrictions in place, to determine whether KB |= (d � e)
it will be sufficient to do the following:

1. using the definitional declarations (.=) in KB, put d and e into
a special normalized form;

2. determine whether each part of the normalized e is accounted for
by some part of the normalized d.

6This would not hold if the sentences involving constants could be inconsistent.

9.4 Computing Entailments 165

So subsumption in a description logic KB reduces to a question about
a structural relationship between two normalized concepts.7

9.4.2 Normalization
Normalization in description logics is similar in spirit to the derivation
of normal forms like CNF in FOL. During this phase, we draw some
inferences, but only small, obvious ones. This preprocessing makes the
subsequent structure-matching step straightforward.

Normalization applies to one concept at a time and involves a small
number of steps. Here we outline the steps and then review the whole
process on a larger expression.

1. expand definitions: Any atomic concept that appears as the left-
hand side of a .= sentence in the KB is replaced by its definition.
For example, if we have the following sentence in KB,

(Surgeon
.= [AND Doctor [FILLS :Specialty surgery]]),

then the concept [AND . . . Surgeon . . .] expands to

[AND . . . [AND Doctor [FILLS :Specialty surgery]] . . .].

2. flatten the AND operators: Any subconcept of the form

[AND . . . [AND d1 . . . dn] . . .]

can be simplified to [AND . . . d1 . . . dn . . .].

3. combine the ALL operators: Any subconcept of the form

[AND . . . [ALL r d1] . . . [ALL r d2] . . .]

can be simplified to [AND . . . [ALL r [AND d1 d2]] . . .].

4. combine EXISTS operators: Any subconcept of the form

[AND . . . [EXISTS n1 r] . . . [EXISTS n2 r] . . .]

can be simplified to the concept [AND . . . [EXISTS n r] . . .], where n
is the maximum of n1 and n2.

7There are other ways of computing subsumption; this is probably the most common and
direct way that takes concept structure into account.

166 Chapter 9 ■ Structured Descriptions

5. deal with Thing: Certain concepts are vacuous and should be
removed as an argument to AND: Thing, [ALL r Thing], and AND
with no arguments. In the end, the concept Thing should only appear
if this is what the entire expression simplifies to.

6. remove redundant expressions: Eliminate any expression that is
an exact duplicate of another within the same AND expression.

To normalize a concept, these operations can be applied repeatedly
in any order and at any level of embedding within ALL and AND
operators. The process only terminates when no further steps are
applicable.

In the end, the result of a normalization is either Thing, an atomic
concept, or a concept of the following form:

[AND a1 . . . am
[FILLS r1 c1] . . . [FILLS rm′ cm′]
[EXISTS n1 s1] . . . [EXISTS nm′′ sm′′]
[ALL t1 e1] . . . [ALL tm′′′ em′′′]]

where the ai are primitive atomic concepts other than Thing, the ri, si,
and ti are roles, the ci are constants, the ni are positive integers, and the
ei are themselves normalized concepts. We call the arguments to AND in
a normalized concept the components of the normalized concept. In fact,
we can think of Thing itself as an AND that has no components, and an
atomic concept as an AND with one component.

To illustrate the normalization process, we consider an example.
Assume that KB has the following definitions:

WellRoundedCo
.=

[AND Company [ALL :Manager [AND B-SchoolGrad
[EXISTS 1 :TechnicalDegree]]]]

HighTechCo
.=

[AND Company [FILLS :Exchange nasdaq] [ALL :Manager Techie]]

Techie
.= [EXISTS 2 :TechnicalDegree]

These definitions amount to a WellRoundedCo being a company whose
managers are business school graduates who each have at least one tech-
nical degree, a HighTechCo being a company listed on the NASDAQ whose
managers are all Techies, and a Techie being someone with at least two
technical degrees.

Given these definitions, let us examine how we would normalize the
concept

[AND WellRoundedCo HighTechCo].

9.4 Computing Entailments 167

First, we would expand the definitions of WellRoundedCo and HighTechCo,
and then Techie, yielding this:

[AND [AND Company
[ALL :Manager [AND B-SchoolGrad

[EXISTS 1 :TechnicalDegree]]]]
[AND Company

[FILLS :Exchange nasdaq]
[ALL :Manager [EXISTS 2 :TechnicalDegree]]]]

Next, we flatten the AND operators at the top level and then combine the
ALL operators over :Manager:

[AND Company
[ALL :Manager [AND B-SchoolGrad

[EXISTS 1 :TechnicalDegree]
[EXISTS 2 :TechnicalDegree]]]

Company
[FILLS :Exchange nasdaq]]

Finally, we remove the redundant Company concept and combine the
EXISTS operators over :TechnicalDegree, yielding the following:

[AND Company
[ALL :Manager [AND B-SchoolGrad [EXISTS 2 :TechnicalDegree]]]
[FILLS :Exchange nasdaq]]

This is the concept of a company listed on the NASDAQ exchange whose
managers are business school graduates with at least two technical
degrees.

9.4.3 Structure Matching
In order to compute whether KB |= (d � e), we need to compare the
normalized versions of d and e. The idea behind structure-matching is
that for d to be subsumed by e, the normalized d must account for each
component of the normalized e in some way. For example, if e contains
the component [ALL r e′], then d must contain some [ALL r d′], where d′
is subsumed by e′. The full procedure for structure matching is shown in
Figure 9.1.

To illustrate briefly the structure-matching algorithm, consider the
following normalized concept:

[AND Company
[ALL :Manager B-SchoolGrad]
[EXISTS 1 :Exchange]]

168 Chapter 9 ■ Structured Descriptions

input: Two normalized concepts d and e where

d is [AND d1 . . . dm] and e is [AND e1 . . . em′]

output: YES or NO, according to whether KB |= (d � e)

Return YES iff for each component ej, for 1 ≤ j ≤ m′, there exists a
component di where 1 ≤ i ≤ m, such that di matches ej, as follows:

1. if ej is an atomic concept, then di must be identical to ej;

2. if ej is of the form [FILLS r c], then di must be identical to it;

3. if ej is of the form [EXISTS n r], then the corresponding di must be
of the form [EXISTS n′ r], for some n′ ≥ n; in the case where n = 1,
the matching di can be of the form [FILLS r c], for any constant c;

4. if ej is of the form [ALL r e′], then the corresponding di must be of
the form [ALL r d′], where recursively d′ is subsumed by e′.

■ FIGURE 9.1

A Procedure for Structure Matching

This is the concept of a company listed on some stock exchange whose
managers are business school graduates. This concept (call it d) can be
seen to subsume the concept that resulted from the normalization exam-
ple in the previous section (call it d′) by looking at each of the three
components of d and seeing that there exists in d′ a matching component:

■ Company is an atomic concept that appears as a component of d′;
■ for the ALL component of d, whose restriction is B-SchoolGrad, there

is an ALL component of d′ such that the restriction on that ALL
component is subsumed by B-SchoolGrad (namely, the conjunction
[AND B-SchoolGrad [EXISTS 2 :TechnicalDegree]]).

■ for the [EXISTS 1 :Exchange] component of d, there is a corres-
ponding FILLS component of d′.

9.4.4 The Correctness of the Subsumption Computation
We conclude our discussion of subsumption by claiming correctness for
the procedure presented here: KB |= (d � e) (according to the definition
in terms of interpretations) if and only if d normalizes to some d′, e nor-
malizes to some e′, and for every component of e′ there is a corresponding
matching component of d′ as in the procedure of Figure 9.1. We will not
present a full proof, because it is quite involved, but merely sketch the
argument.

9.4 Computing Entailments 169

The first observation is that given a KB in the simplified form discussed
in Section 9.4.1, every concept can be put into normal form, and more-
over, each step of the normalization preserves concept equivalence. Once
the concepts have been put into normal form, the KB itself is no longer
needed. It follows that KB |= (d � e) if and only if (d′ � e′) is valid.

The next part of the proof is to show that if the procedure returns YES
given d′ and e′, then (d′ � e′) is valid. So suppose that each component of
e′ has a corresponding component in d′. To show subsumption, imagine
that we have some interpretation
 = 〈D, I〉 and some x ∈ D such that
x ∈ I[d′], and therefore in all of its components, di. To prove that x ∈
I[e′] (and consequently that d′ is subsumed by e′), we look at each of
the components ej of e′ and note that x ∈ I[ej] for each ej because it has
a matching component di in d′ and x ∈ I[di].

The final part of the proof is the trickiest. We must show that if the
procedure returns NO, then (d′ � e′) is not valid. To do so, we need to
construct an interpretation where for some x ∈ D, x ∈ I[d′] but x �∈ I[e′].

Here is how to do so in the simplest case where there are no EXISTS
concepts involved. Let the domain D be the set of all constants together
with the set of role chains, defined to be all sequences of roles (including
the empty sequence). Then, for every constant c, let I[c] be c; for every
atomic concept a, let I[a] be all constants and all role chains σ where
σ = r1 · · · rk for some k ≥ 0 and such that d′ is of the form

[AND . . . [ALL r1 . . . [AND . . . [ALL rk a] . . .] . . .] . . .];

finally, for every role r, let I[r] be every pair of constants, together with
every pair (σ , σ ·r) where σ is a role chain, together with every pair (σ , c)
where c is a constant, σ = r1 · · · rk where k ≥ 0, and such that d′ is of the
form

[AND . . . [ALL r1 . . . [AND . . . [ALL rk [FILLS r c]] . . .] . . .] . . .].

Assuming the procedure returns NO, it can be shown for this interpreta-
tion that the empty role chain is in the extension of d′, but not in the
extension of e′, and consequently that d′ does not subsume e′. We omit all
further details.

9.4.5 Computing Satisfaction
Computing whether an individual denoted by a constant satisfies a con-
cept is very similar to computing subsumption between two concepts. The
main difference is that we need to take the → sentences in the KB into
account. In general, we wish to determine whether or not KB |= (b → e),
where b is a constant and e is a concept. For example, if we have a KB that
contains (b → d) and where KB |= (d � e), then we clearly have a case

170 Chapter 9 ■ Structured Descriptions

where KB |= (b → e). This suggests that we should collect together all
sentences of the form (b → di) in the KB, and answer YES when the
concept [AND d1 . . . dn] is subsumed by e. However, this would miss some
necessary inferences. For example, suppose we have a KB that contains

joe → Person
canCorp → [AND Company

[ALL :Manager Canadian]
[FILLS :Manager joe]]

It is not hard to see that KB |= (joe → Canadian), even though the →
sentence in the KB about joe does not lead us to this conclusion. In gen-
eral, to find out if an individual satisfies a description, we will need to
propagate the information implied by what we know about other indi-
viduals (either named by constants or unnamed fillers of roles) before
checking for subsumption.

This can be done with a form of forward chaining, similar to how
we dealt with entailment for Horn clauses. Assuming for the moment
that there are no EXISTS terms in any concept, we can use the following
procedure:

1. Construct a list S of pairs (b, d), where b is any constant mentioned
in the KB and d is the normalized version of the AND of all concepts
d′ such that (b → d′) is in the KB.

2. Try to find two constants, b1 and b2, such that (b1, d1) and (b2, d2)
are in S and where for some role r, [FILLS r b2] and [ALL r e] are
both components of d1, but it is not the case that KB |= (d2 � e).

3. If no such pair of constants can be found, exit. Otherwise, replace
the pair (b2, d2) in S by (b2, d′2), where d′2 is the normalized version
of [AND d2 e], and then go to step 2.

This procedure has the effect of computing for each constant b the most
specific concept d such that KB |= (b → d). Once it has been run, to
test whether or not KB |= (b → e), we need only test whether or not
KB |= (d � e). Observe that the forward chaining will terminate in time
that is polynomial in the size of the KB, because, at the very worst, for
each constant b we will end up with a pair (b, d) where d is the AND of every
component mentioned in the KB, after which no further propagation
will be possible.

To handle terms of the form [EXISTS 1 r], a similar idea can be
used. Instead of having pairs (b, d) in S, we allow pairs (b ·σ , d), where
σ is a role chain (as in the previous subsection). Intuitively, b · r1 · r2
can be understood as an individual that is an r2 of an r1 of b (perhaps
unnamed). When σ is empty, this corresponds to b itself. We then extend

9.5 Taxonomies and Classification 171

the forward chaining procedure to these new terms by inserting some
additional steps in the procedure just before the end, as follows:

■ Try to find a constant b, a role chain σ (possibly empty), and a role r,
such that (b · σ , d1) is in S and some (b ·σ · r, d2) is in S (or if no such
pair exists, take d2 to be Thing), and where [EXISTS 1 r] and [ALL r e]
are both components of d1, but it is not the case that KB |= (d2 � e).

■ If these can be found, remove the pair (b · σ · r, d2) from S (if appli-
cable), and add the pair (b · σ · r, d′2) where d′2 is the normalized
version of [AND d2 e]. Repeat.

This extends the propagation procedure to anonymous individuals: We
start with some property of the individual b · σ and conclude something
new about the individual b · σ · r. Eventually, this can lead us to conclude
something new about a named individual. For example, it would allow
us to conclude correctly that (marianne → Scandinavian), assuming we
have the following in the KB:

ellen → [AND [EXISTS 1 :Child]
[ALL :Child [AND [FILLS :Pediatrician marianne]

[ALL :Pediatrician Scandinavian]]]]

If we did not allow this propagation, the original procedure would not
draw the conclusion about Marianne, because there is no constant in the
KB corresponding to a child of Ellen.

Finally, to handle terms of the form [EXISTS n r] where n > 1, we
observe that it is not necessary to create n different anonymous individ-
uals, because they would all get exactly the same properties in the forward
chaining. So the more general case is handled the same as when n = 1.

9.5 TAXONOMIES AND CLASSIFICATION

In practice, there are a small number of key questions that would typically
be asked of a description logic KB. Because these KBs resemble databases,
where the concepts correspond roughly to elements of a schema and con-
stants correspond to records, it is common to ask for all of the instances
of a concept:

given some query concept, q, find all c in KB such that KB |= (c → q).

On the other hand, because these KBs resemble frame systems in some
ways, it is common to ask for all of the known categories that an

172 Chapter 9 ■ Structured Descriptions

individual satisfies, in order, for example, to trigger procedures associated
with those classes:

given a constant c, find all atomic concepts a such that KB |= (c → a).

While the logic and computational methods we have presented so far are
adequate for finding the answers to these questions, a naïve approach
might consider doing a full scan of the KB, requiring time that grows
linearly with the number of sentences in the KB. However, one of the key
reasons for using a description logic in the first place is to exploit the fact
that concepts are naturally thought of as organized hierarchically, with
the most general ones at the top and the more specialized ones further
down. In this section, we will consider a special treelike data structure
that we call a taxonomy for representing sentences in a description logic
KB. This taxonomy will allow us to answer queries like the above much
more efficiently, requiring time that in many cases grows linearly with
the depth of the taxonomy, rather than its size. The net result: It becomes
practical to consider extremely large knowledge bases, with thousands
or even millions of concepts and constants.

9.5.1 A Taxonomy of Atomic Concepts and Constants
The key observation is that subsumption is a partial order, and a tax-
onomy naturally falls out of any given set of concepts. Assume that
a1, . . . , an are all the atomic concepts that occur on the left-hand sides
of .= or � sentences in KB. The resultant taxonomy will have nodes for
each of the ai and edges from ai up to aj, whenever ai � aj and there is
no distinct ak such that ai � ak � aj. This will produce a directed acyclic
graph. The graph will have no redundant links in it, and the transitivity
of the links will capture all of the subsumption relationships implied by
the declarations defining ai. If we add to this the requirement that each
constant c in KB be linked only to the most specific atomic concepts ai
such that KB |= (c → ai), we have a hierarchical representation of KB
that makes our key questions easier to answer.8

Once we have a taxonomy of concepts corresponding to some KB, we
can consider adding a sentence to the KB for some new atomic concept or
constant. This will involve creating some links from the new concept or
constant to existing ones in the taxonomy, and perhaps redirecting some
existing links. This process is called classification. Because classification
itself exploits the structure of the taxonomy, the process can be done
efficiently. Furthermore, we can think of building the entire taxonomy by

8We assume that with each node in the taxonomy we also store the concept making up the
right-hand side of the sentence it appeared in.

9.5 Taxonomies and Classification 173

classification: We start with a single concept Thing in the taxonomy, and
then add new atomic concepts and constants to it incrementally.

9.5.2 Computing Classification
We begin by considering how to add a sentence (anew

.= d) to a taxonomy
where anew is an atomic concept not appearing anywhere in the KB and d
is any concept:

1. We first calculate S, the most specific subsumers of d, that is, the
set of atomic concepts a in the taxonomy such that KB |= (d � a),
but such that there is no a′ other than a such that KB |= (d � a′)
and KB |= (a′ � a). We will see how to do this efficiently in a
moment.

2. We next calculate G, the most general subsumees of d, that is, the
set of atomic concepts a in the taxonomy such that KB |= (a � d),
but such that there is no a′ other than a such that KB |= (a′ � d)
and KB |= (a � a′). We will also see how to do this efficiently.

3. If there is a concept a in S∩G, then the new concept anew is already
present in the taxonomy under a different name (namely, a), and
no action is necessary.

4. Otherwise, if there are any links from concepts in G up to concepts
in S, we remove them, because we will be putting anew between the
two groups.

5. We add links from anew up to each concept in S, and links from
each concept in G up to anew.

6. Finally, we handle constants: We calculate C, the set of constants
c in the taxonomy such that for every a ∈ S, KB |= (c → a), but
such that there is no a′ ∈ G such that KB |= (c → a′). (This is done
by doing intersections and set differences on the sets of constants
below concepts in the obvious way.) Then, for each c ∈ C, we test
if KB |= (c → d), and if so, we remove the links from c to the
concepts in S and add a single link from c to anew.

To add a sentence (anew � d) to a taxonomy, the procedure is similar,
but simpler. Because anew is a new primitive, there will be no concepts
or constants below it in the taxonomy. So we need only link anew to the
most specific subsumers of d. Similarly, to add a sentence (cnew → d), we
again link cnew to the most specific subsumers of d.

Now, to calculate the most specific subsumers of a concept d, we
begin at the very top of the taxonomy with the set {Thing} as our first
S. Assume we have a list S of subsumers of d. Suppose that some a ∈ S

174 Chapter 9 ■ Structured Descriptions

has at least one child a′ immediately below it in the taxonomy such that
KB |= (d � a′). Then we remove a from S and replace it with all those
children a′. We keep doing this until no element of S has a child that
subsumes d.

Observe that if we have an atomic concept a′ below a ∈ S that does
not subsume d, then we will not use any other concept below this a′ during
the classification. If a′ is high enough in the taxonomy, such as just below
Thing, an entire subtree can be safely ignored. This is the sense in which
the structure of the taxonomy allows us to do classification efficiently
even for very large knowledge bases.

Finally, to calculate the most general subsumees G of a concept d,
we start with the most specific subsumers S as our first G. Because d
is subsumed by the elements of S, we know that any concept that is below
d will be below the elements of S as well. Again, other distant parts of
the taxonomy will not be used. Suppose that for some a ∈ G it is not the
case that KB |= (a � d). Then we remove a from G and replace it with all
the children of a (or simply delete a, if it has no children). We keep doing
this, working our way down the taxonomy, until every element of G is
subsumed by d. Finally, we repeatedly delete any a ∈ G that has a parent
that is also subsumed by d.

Following this procedure, Figure 9.2 shows how a new concept, Surgeon,
defined by the sentence (Surgeon

.= [AND Doctor [FILLS :Specialty surgery]]),
can be classified, given a taxonomy that already includes appropriate

Surgeon

AmericanSurgerySpecialist

AmericanDermatologySpecialist

AmericanSpecialist

Specialist

Doctor

Thing

new

■ FIGURE 9.2

Classifying a New Concept in a Taxonomy

9.5 Taxonomies and Classification 175

definitions for concepts like Doctor, AmericanSpecialist, and so on. First,
we calculate the most specific subsumers of Surgeon, S. We start with
S = {Thing}. Assume that none of the direct subsumees of Thing except for
Doctor subsume Surgeon. Given that, and the fact that (Surgeon � Doctor),
we replace Thing in the set S by Doctor. The concept Specialist is immedi-
ately below Doctor, and (Surgeon� Specialist), so we then replace Doctor in S
with Specialist. Finally, we see that no child of Specialist subsumes Surgeon
(i.e., not all surgeons are American specialists), so we have computed the
set of most specific subsumers, S = {Specialist}.

Now we turn our attention to the most general subsumees. We start
with G = S = {Specialist}. It is not the case that (Specialist � Surgeon), so
we replace Specialist in G with its one child in the taxonomy; now G =
{AmericanSpecialist}. Similarly, it is not the case that (AmericanSpecialist
� Surgeon), so we replace that concept in G with its children, result-
ing in G = {AmericanDermatologySpecialist, AmericanSurgerySpecialist}. Then,
since AmericanDermatologySpecialist is not subsumed by Surgeon, and that
concept has no children, it is deleted from G. Finally, we see that it is
the case that (AmericanSurgerySpecialist � Surgeon), and we are done, with
G = {AmericanSurgerySpecialist}. As a result of this classification process,
the new concept, Surgeon, is placed between the two concepts Specialist
and AmericanSurgerySpecialist.

9.5.3 Answering the Questions
If we construct in this manner a taxonomy corresponding to a knowl-
edge base, we are in a position to answer the key description logic
questions quite easily. To find all of the constants that satisfy a query
concept, q, we simply classify q and then collect all constants at the fringe
of the tree below q. This would involve a simple tree walk in only the
part of the taxonomy subtended by q. Similarly, to find all atomic con-
cepts that are satisfied by a constant c, we start at c and walk up the tree,
collecting all concept nodes that can be reached by following the links
representing subsumption.

9.5.4 Taxonomies versus Frame Hierarchies
The taxonomies we derive by classification in a description logic KB
look a lot like the hierarchies of frames we encountered in the preced-
ing chapter. In the case of frames, the KB designer could create the
hierarchy in any arbitrary way desired, simply by adding whatever :IS-A
and :INSTANCE-OF slot-fillers seemed appropriate. However, with DLs
the logic of concepts dictates what each concept means, as well as what
must be above or below it in the resulting taxonomy. As a result, we can-
not just throw labeled nodes together in a hierarchy or arbitrarily change
a taxonomy—we must honor the relationships implicit in the structures

176 Chapter 9 ■ Structured Descriptions

of the concepts. A concept of the form [AND Fish [FILLS :Size large]…]
must appear in a taxonomy below Fish, even if we originally (perhaps
mistakenly) constructed it to be the referent of Whale. If we at some point
realized that that was an inaccurate rendition of Whale, what would have
to be changed is the association of the symbol Whale with the expres-
sion, changing it to perhaps [AND Mammal [FILLS :Size large]…]. But the
compound concept with Fish in it could not possibly go anywhere in the
taxonomy but under Fish.

9.5.5 Inheritance and Propagation
Recall that in our frames chapter (Chapter 8) we introduced the notion of
inheritance, whereby individual frames were taken to have values (and
attached procedures) represented in parent frames somewhere up the
generalization hierarchy. The same phenomenon can be seen here with
description logic taxonomies: A constant in the taxonomy should be taken
as having all properties (as expressed by ALL, FILLS, and EXISTS) that
appear both on it locally (as part of the right-hand side of the sentence
where it was first introduced) and on any parent concept further up the
taxonomy.

Inheritance here tends to be much simpler than inheritance found in
most frame systems, because it is strict: There are no exceptions permitted
by the logic of the concept-forming operators. It is important to note,
though, that these inferences are sanctioned by the logic, and issues of
how to compute them using the taxonomy are purely implementation
considerations. We will return to a much richer notion of inheritance in
the next chapter.

Another important inference in practical description logic systems
involves the propagation of properties to an individual caused by an
assertion. We are imagining, in other words, that we can add a sentence
(c → d) to the KB even if we had already previously classified c. This can
then cause other constants to be reclassified. For example, suppose we
introduce Lauren with the sentence (lauren → [FILLS :Child rebecca]), and
we define ParentOfDocs by

(ParentOfDocs
.= [ALL :Child Doctor]).

Then, as soon as it is asserted that (lauren → ParentOfDocs), we are forced
to conclude that Rebecca is a doctor. (This is what would happen with
the forward-chaining procedure of Section 9.4.5.) If it were also the case
that (rebecca → Woman), and we had the atomic concept FemaleDoc defined
as [AND Woman Doctor], then the assertion about Lauren should result in
Rebecca being reclassified as a FemaleDoc.

This kind of cascaded inference is interesting in applications where
membership in classes is monitored and changes in class membership

9.6 Beyond the Basics 177

are considered significant (e.g., imagine we are monitoring the stock
market and have concepts representing stocks whose values are chang-
ing in significant ways). It is also reminiscent of the kind of cascaded
computation we saw with frame systems, except that here again the
computations are dictated by the logic.

9.6 BEYOND THE BASICS

In this final section, we examine briefly how we can move beyond the
simple picture of description logics presented so far.

9.6.1 Extensions to the Language
First, we consider some extensions to DL that would make it more useful.
Each of the extensions ends up having serious consequences for comput-
ing subsumption or satisfaction. In many cases, it is no longer possible to
use normalization and structure matching to do the job; in some cases,
subsumption can even be shown to be undecidable.9

Bounds on the Number of Role Fillers The DL construct EXISTS is
used to say that a role has a minimum number of fillers. We can think
of the dual operator AT-MOST where [AT-MOST n r] describes individuals
related by role r to at most n individuals. This seemingly small addition
to DL in fact allows a wide range of new inferences. First of all, we can
have descriptions like

[AND [EXISTS 4 r] [AT-MOST 3 r]],

which are inconsistent in that their extension is guaranteed to be the empty
set. Moreover, a simple concept like [ALL r d] now subsumes one like

[AND [FILLS r c] [AT-MOST 1 r] [ALL s d] [FILLS s c]]

even though there is no obvious structure to match.
We should also note that as soon as inconsistency is allowed into

the language, computation gets complex. Besides the difficulties with
structure matching just noted, normalization also suffers. For example,
if we have found d to be inconsistent, then although [ALL r d] is not
inconsistent by itself, the result of conjoining it with [EXISTS 1 r] is
inconsistent, and this would need to be detected during normalization.

9We will revisit this important issue in detail in Chapter 16.

178 Chapter 9 ■ Structured Descriptions

Sets of Individuals Another important construct would package up
a set of individuals into a set concept, which could then be used, for
example, in restricting the values of roles. [ONE-OF c1 c2 . . . cn] would be
a concept that could only be satisfied by the ci. In an ALL restriction, we
might find such a set:

[ALL :BandMember [ONE-OF john paul george ringo]]

would represent the concept of something whose band members could
only be taken from the specified set. Note that such a combination would
have consequences for the cardinality of the :BandMember role, implying
[AT-MOST 4 :BandMember], although it would imply nothing about the
minimum number of band members.

Relating the Roles While we have discussed classes of objects with
internal structure (via their roles), we have ignored a key ingredient of
complex terms—how the role fillers actually interrelate. A simple case of
this is when fillers for two roles are required to be identical. Consider a
construct [SAME-AS r1 r2], which equates the fillers of roles r1 and r2.
[AND Company [SAME-AS :CEO :President]] would thus mean a company
whose CEO was identical to its president. Despite its apparent simplicity,
without some restrictions, SAME-AS makes subsumption difficult to com-
pute (even undecidable, with the right other constructs). This is especially
true if we allow a very natural extension to the SAME-AS construct—
allowing it to take as arguments chains of roles, rather than single
roles. In that case, [SAME-AS (:Mother :Sister)(:Father :Partner :Lawyer)]
would represent something whose mother’s sister is its father’s partner’s
lawyer. Computation can be simplified by restricting SAME-AS to chains
of “features” or “attributes”—roles that have exactly one filler.

Qualified Number Restrictions Another natural extension to DL is
what has been called a “qualified number restriction.” [EXISTS n r d]
would allow us to represent something that is r-related to n individuals
who are also instances of d. For example, [EXISTS 2 :Child Female] would
represent someone with at least two daughters. This is a very natural and
useful construct, but as we will explore in detail in Chapter 16, it causes
surprising computational difficulties, even if the rest of the language is
kept very simple.

Complex Roles So far we have taken roles to be primitive atomic
constructs. It is plausible to consider a logic of roles reminiscent of
the logic of concepts. For example, some description logics have role-
forming operators that construct conjunctive roles (much like AND over
concepts). This would imply a role taxonomy akin to the concept taxon-
omy. Another extension that has been explored is that of role inverses.

9.6 Beyond the Basics 179

If we have introduced a role like :Parent, it is quite natural to think of
introducing :Child to be defined as its inverse.

Rules In DL, there is no way to assert that all instances of one concept
are also instances of another. Consider, for example, the concept of a red
Bordeaux wine, which we might define as follows:

(RedBordeauxWine
.= [AND Wine

[FILLS :Color red]
[FILLS :Region bordeaux]])

We might also have the following concept:

(DryRedBordeauxWine
.= [AND Wine

[FILLS :Color red]
[FILLS :Region bordeaux]
[FILLS :SugarContent dry]])

These two concepts are clearly not equivalent. But suppose that we want
to assert that all red Bordeaux wines are in fact dry. If we were to try to do
this by using the second concept as the definition of RedBordeauxWine, we
would be saying in effect that red Bordeaux wines are dry by definition.
In this case, the status of the first concept would be unclear: Should the
subsumption relation be changed somehow so that the two concepts end
up being equivalent? To avoid this difficulty, we can keep the original
definition of RedBordeauxWine, but extend DL with a simple form of rules,
which capture universal assertions. A rule will have an atomic concept as
its antecedent and an arbitrary concept as its consequent:

(if RedBordeauxWine then [FILLS :SugarContent dry])

Rules of this sort give us a new and quite useful form of propagation: A
constant gets classified, then inherits rules from concepts that it satisfies,
which then are applied and yield new properties for the constant (and
possibly other constants), which can then cause a new round of classifi-
cation. This is reminiscent of the triggering of IF-ADDED procedures in
frame systems, except that the classification is done automatically.

9.6.2 Applications of Description Logics
We now turn our attention to how description logic systems can be utilized
in practical applications.

Assertion and Query One mode of use is the exploration of the conse-
quences of axiomatizing a domain by describing it in a concept hierarchy.

180 Chapter 9 ■ Structured Descriptions

In this scenario, we generate a taxonomy of useful general categories and
then describe individuals in terms of those categories. The system then
classifies the individuals according to the general scheme and propagates
to related individuals any new properties that they should accrue. We
might then ask if a given individual satisfies a certain concept, or we
might ask for the entire set of individuals satisfying a concept.

This would be appealing in a situation where a catalogue of products
was described in terms of a complex domain model. The system may be
able to determine that a product falls into some categories unanticipated
by the user.

Another situation in which this style of interaction is important
involves configuration of complex structured items. Asserting that a cer-
tain board goes in a certain slot of a computer hardware assembly could
cause the propagation of constraints to other boards, power supplies, soft-
ware, and so on. The domain theory then acts as a kind of object-oriented
constraint propagator. One could also ask questions about properties of
an incrementally evolving configuration, or even “what if” questions.

Contradiction Detection in Configuration Configuration-style
applications can also make good use of contradiction-detection facilities
for those DLs that have enough power to express them. In particular, as
an incremental picture of the configured assembly evolves, it is useful
to detect when a proposed part or subassembly violates some constraint
expressed in the knowledge base. This keeps us from making invalid
configurations. It is also possible to design explanation mechanisms so
that the reasons for the violation can be outlined to the user.

Classification and Contradiction Detection in Knowledge
Acquisition In a similar way, some of the inferential properties of
a description logic system can be used as partial validation during
knowledge acquisition. As we add more concepts or constants to a DL
knowledge base, a DL system will notice if any inconsistencies are intro-
duced. This can alert us to mistakes. Because of its classification property,
a DL can make us aware of certain failures of domain modeling in a way
that frame systems cannot, for example, the unintended merger of two
concepts that look different on the surface but mutually subsume one
another, or the unintended classification of a new item below one that the
user had not expected.

Assertion and Classification in Monitoring Scenarios In some
applications, it is normal to build the description of an individual incre-
mentally over time. This might be the case in a diagnosis scenario,
where information about a suspected fault is gathered in pieces, or in
a situation with a hardware device sending a stream of status and error
reports. Such an incremental setting leads one to expect the refinement

9.7 Bibliographic Notes 181

of classifications of individuals over time. If we are on the lookout for
members of certain classes (e.g., Class1CriticalError), we can alert a user
when new members for those classes are generated by new data. We can
also imagine actions (external procedures) being triggered automatically
when such class members are found. Although this begins to sound like
the sort of operation done with a procedural system, in the case of a DL
the detection of interesting situations is handled automatically once the
situations are described as concepts.

Working Memory for a Production System This scenario is some-
what reminiscent of a common use of production systems; in situations
where the description logic language is expressive enough, a DL could
in fact be used entirely to take the place of a production system. In
other cases, it may be useful to preserve the power and style of a pro-
duction system, but a DL might provide some very useful added value.
In particular, if the domain of interest has a natural object-oriented,
hierarchical structure, as so many do, a true picture of the domain can
only be achieved in a pure production system if there are explicit rules
capturing the inheritance relationships, part–whole relationships, and
so on. An alternative would be to use a DL as the working memory.
The DL would encode the hierarchical domain theory and take care
of classification and inheritance automatically. The production system
could then restrict its attention to complex pattern detection and action—
where it belongs—with its rules represented at just the right, natural level
(the antecedents could refer to classes at any level of a DL generaliza-
tion hierarchy), avoiding any ad hoc attempts to encode inheritance or
classification procedurally.

Using Concepts as Queries and Access to Databases It is possible
to think of a concept as a query asking for all of its instances. Imagine
we have “raw” data stored in a relational database system. We can then
develop an object-oriented model of the world in our DL and specify
a mapping from that model to the schema used in the conventional
database management system (DBMS). This would then allow us to ask
questions of a relational database mediated by an object-oriented domain
model. One could implement such a hybrid system either by preclassifying
in the KB all objects from the DB and using classification of a DL query
to find answers, or leaving the data in the DB and dynamically translating
a DL query into a DB query language like SQL.

9.7 BIBLIOGRAPHIC NOTES

Description logics grew out of research in the 1970s and 1980s driven
by interest in overcoming representational and semantic difficulties in

182 Chapter 9 ■ Structured Descriptions

“semantic network” and frame languages (see the notes for Chapter 10
and Chapter 8). The original work was done in the context of a knowledge
representation system called KL-ONE [41, 49]. An important development
in this line of work was the differentiation between “terminological”
information, which captured definitions and relations among concepts,
and “assertional” information, which captured information about indi-
viduals in the domain [45]. The first system to make this distinction
explicit was KRYPTON [51, 52]. KANDOR [316] was a related, but more
compact version (see also [317]). Besides being useful in certain types
of information retrieval tasks [318], KANDOR helped start thinking in the
emerging description logic community about the value of expressively
limited representation systems, as we will discuss in detail in Chapter 16.

The recent Description Logic Handbook [18] is an excellent compre-
hensive resource for information on all aspects of this kind of represen-
tation system, including interesting extensions to the basic framework.

While subsumption was originally most often computed structurally
in the way presented here, most modern systems use a tableau-style
computation regime [18]. A good account of the original notion of
classification is provided by Schmolze and Lipkis [368].

For examples of possible applications of description logics, see
Baader et al. [17] and Wright et al. [434]. [44] looks at the poten-
tial of database access mediated by a DL-based object-oriented view
mechanism. Brachman et al. [53] discuss how the implementation and
deployment of the CLASSIC system [36] influenced the theory underly-
ing it (and vice versa). Recent work on OWL [191], which provides
knowledge-structuring primitives that can be used to build ontologies
for the Semantic Web [27], is based on description logics.

9.8 EXERCISES

1. In this chapter, we considered the semantics of a description logic
language that includes concept-forming operators such as FILLS and
EXISTS but no role-forming operators. In this question, we extend
the language with new concept-forming operators and role-forming
operators.

(a) Present a formal semantics in the style of Section 9.3.1 for the
following concept-forming operators:

■ [SOME r] Role existence.
Something with at least 1 r.

■ [AT-MOST n r] Maximum role cardinality.
Something with at most n r’s.

9.8 Exercises 183

(b) Do the same for the following role-forming operators:

■ [INVERSE r] Role inverse.
So the :Child role could be defined as [INVERSE :Parent].

■ [COMPOSE r1 . . . rn−1 rn] Role composition.
The rn’s of the rn−1’s . . . of the r1’s.
So [ALL [COMPOSE :Parent :BrotherInLaw] Rich]would mean
something all of whose uncles are rich (where an uncle is
a brother-in-law of a parent).

(c) Use this semantic specification to show that for any roles r, s,
and t, the concept

[ALL [COMPOSE r s] [SOME t]]

subsumes the concept

[ALL r [AND [ALL s [EXISTS 2 t]] [ALL s [AT-MOST 2 t]]]]

by showing that the extension of the latter concept is always
a subset of the extension of the former.

2. Consider a new concept-forming operator, AMONG, which takes two
arguments, each of which can be a role chain (a sequence of one or
more roles). The description [AMONG (r1 . . . rn) (s1 . . . sm)] is intended
to apply to an individual whose rn’s of its rn−1’s of its … of its
r1’s are a subset of its sm’s of its sm−1’s of its … of its s1’s. For
example,

[AMONG (:Brother :Friend) (:Sister :Enemy)]

would mean “something whose friends of its brothers are among the
enemies of its sisters.”

(a) Give a formal semantics for AMONG in the style of Section 9.3.1.

(b) Use this semantics to show that for any roles ri, the concept

[AMONG (r1) (r2 r3 r4)]

subsumes the concept

[AND [AMONG (r1) (r2 r5)] [ALL r2 [AMONG (r5) (r3 r4)]]].

(c) Does the subsumption also work in the opposite direction (that is,
are the two concepts equivalent)? Show why or why not.

184 Chapter 9 ■ Structured Descriptions

(d) Construct an interpretation that shows that neither of the follow-
ing two concepts subsumes the other:

[AMONG (r1) (r2 r3 r4)]

and

[AMONG (r1 r2) (r3 r4)].

3. The procedure given in Section 9.5.2 for finding the most general
subsumees G of a concept d says at the very end that we should
remove any a ∈ G that has a parent that is also subsumed by d.
Explain why this is necessary by presenting an example where the
procedure would produce an incorrect answer without it.

4. When building a classification hierarchy, once we have determined
that one concept d1 subsumes another d2, it is often useful to
calculate the difference between the two—the concept that needs
to be conjoined to d1 to produce d2. As a trivial example, if we
have

d1 = [AND p [AND q r]]
d2 = [AND [AND q t] [AND p s] r]

then the difference in question is [AND t s] since d2 is equivalent to

[AND d1 [AND t s]].

(a) Implement and test a procedure that takes as arguments two
concepts in the following simple language, and when the first
subsumes the second, returns a difference as above. You may
assume that your input is well-formed. The concept language to
use is

<concept> ::= [AND <concept> … <concept>]
<concept> ::= [ALL <role> <concept>]
<concept> ::= <atom>
<role> ::= <atom>

with the semantics as presented in the text.

(b) The earlier definition of “difference” is not precise. If all we are
after is a concept d such that d2 is equivalent to [AND d1 d], then
d2 itself would qualify as the difference, because d2 is equivalent
to [AND d1 d2], whenever d1 subsumes d2. Make the definition of
what your program calculates precise.

9.8 Exercises 185

5. For this question, you will need to write, test, and document a pro-
gram that performs normalization and subsumption for a description
logic language. The input will be a pair of syntactically correct expres-
sions encoded in a list-structured form. Your system should output
a normalized form of each, and a statement of which subsumes the
other, or that neither subsumes the other.

The description language your program needs to handle should
contain the concept-forming operators AND, ALL, and EXISTS (as
described in the text), AT-MOST (as used in Exercise 1), but no role-
forming operators, so that roles are all atomic. You may assume that
all named concepts and roles other than Thing are primitive, so that
you do not have to maintain a symbol table or classification hierarchy.
Submit output from your program working on at least the following
pairs of descriptions:

(a) (1) [AND [ALL :Employee Canadian]]
(2) [ALL :Employee [AND American Canadian]]

(b) (1) [EXISTS 0 :Employee]
(2) [AT-MOST 2 :Employee]

(c) (1) [AND [ALL :Friend [EXISTS 3 Teacher]]
[ALL :Friend [AND [ALL Teacher Person]

[AT-MOST 2 Teacher]]]]
(2) [ALL :Friend [ALL Teacher Female]]

(d) (1) [EXISTS 1 Teacher]
(2) [AND [EXISTS 2 Teacher] [ALL Teacher Male]]

(e) (1) [EXISTS 1 Teacher]
(2) [AND [AT-MOST 2 Teacher] [ALL Teacher Male]]

(f) (1) [AND [ALL :Cousin [EXISTS 0 :Friend]]
[ALL :Employee Female]]

(2) [AND [AT-MOST 0 :Employee]
[ALL :Friend [AT-MOST 3 :Cousin]]]

6. This question involves writing and running a program to do a sim-
ple form of normalization and classification, building a concept
hierarchy incrementally. We will use the very simple description
language specified by the grammar in Exercise 4a. The atomic con-
cepts here are either primitives or the names of previously classified
descriptions.

There are two main programs to write: NORMALIZE and CLASSIFY.

186 Chapter 9 ■ Structured Descriptions

NORMALIZE takes a concept description as its single argument, and
returns a normal form description, an AND expression where every
argument is either a primitive atom or an ALL expression whose con-
cept argument is itself in normal form. Within this AND, primitives
should occur at most once, and ALL expressions with the same
role should be combined. Nonprimitive atomic concepts need to be
replaced by their definitions. (It may simplify the code to leave out
the atoms AND and ALL within normalized descriptions, and just deal
with the lists.)

CLASSIFY should take as its two arguments an atom and a descrip-
tion. The idea is that a new concept of that name (the atom) is being
defined, and CLASSIFY should first link the name to a normalized
version of the description as its definition. CLASSIFY should then
position the newly defined concept in a hierarchy of previously defined
concepts. Initially, the hierarchy should contain a single concept
named Thing. Subsequently, all new concepts can work their way down
the hierarchy to their correct position starting at Thing, as explained in
the text. (Something will need to be done if there is already a defined
concept at that position.)

Show your program working on some examples of your own choosing.

C H A P T E R 10

INHERITANCE

■

■

■

As we saw in earlier chapters on frames and description logics, when we
think about the world in an object-centered way we inevitably end up
thinking in terms of hierarchies or taxonomies. This reflects the impor-
tance of abstraction, classification, and generalization in the enterprise
of knowledge representation. Groups of things in the world naturally
share properties, and we talk about them most concisely using words for
abstractions like “furniture” or “situation comedy” or “seafood.” Further,
hierarchies allow us to avoid repeating representations—it is sufficient
to say that “elephants are mammals” to immediately know a great deal
about them. Taxonomies of kinds of objects are so fundamental to our
thinking about the world that they are found everywhere, especially when
it comes to organizing knowledge in a comprehensible form for human
consumption, in encyclopedias, dictionaries, scientific classifications, and
so on.

What does reasoning with a taxonomy amount to? When we are told
that elephants are mammals what we expect to conclude is that ele-
phants (by and large) inherit the properties of mammals. In the kind of
classification networks we built using description logics, inheritance was
just a way of doing a certain type of logical reasoning in a graphically
oriented way: If we have a network where the concept PianoConcerto is
directly below Concerto, which is directly below MusicalWork, then instances
of PianoConcerto inherit properties from MusicalWork because logically all
instances of PianoConcerto are also instances of Concerto and thus also
instances of MusicalWork. Similar considerations apply in the case of
frames, although the reasoning there is not strict: If the :IS-A slot of
frame AdultHighSchoolStudent points to HighSchoolStudent and HighSchool

187

188 Chapter 10 ■ Inheritance

Student points to Teenager, then instances of AdultHighSchoolStudent may
inherit properties from HighSchoolStudent and in turn from Teenager, but
we are no longer justified in concluding that an instance of AdultHigh-
SchoolStudent must be an instance of Teenager. In both cases, however,
“can (instances of) a inherit properties from b?” involves asking if we can
get from a to b along some sort of path of generalization relationships.

In order to highlight the richness of this type of reasoning, in this
chapter we are going to concentrate just on inheritance and generaliza-
tion relationships among nodes in a network, suppressing a great deal of
representational detail. This will also allow us to introduce a simple but
fundamental form of default reasoning, which will be the topic of the next
chapter.

10.1 INHERITANCE NETWORKS

In this chapter, we reduce the frames and descriptions of previous
chapters to simple nodes that appear in inheritance networks, like the one
expressed in Figure 10.1. For our discussion, we treat objectlike concepts,
like Elephant, and properties, like Gray, equivalently as nodes. If we wanted
to be more precise, we could use terms like GrayThing (for a Thing whose
Color role was filled with the individual gray), but for our purposes here
that is not really necessary. Also, we normally will not distinguish which
nodes at the bottom of the hierarchy stand for individuals like Clyde and
which stand for kinds like Elephant. We will capitalize the names of both.
We will use the following concepts in our discussion:

■ edges in the network, connecting one node directly to another. In
Figure 10.1, Clyde · Elephant and Elephant · Gray are the two edges.

Gray

Elephant

Clyde

•

•

•

■ FIGURE 10.1

A Simple Inheritance Network

10.1 Inheritance Networks 189

These represent instance or generalization relationships (Clyde is
an elephant, an elephant is a gray thing).

■ paths included in the network; a path is a sequence of one or more
edges. So edges are paths, and in Figure 10.1, Clyde · Elephant · Gray
is the only other path.

■ conclusions supported by the paths. In Figure 10.1, three con-
clusions are supported: Clyde → Elephant; Elephant → Gray; and
Clyde → Gray. The last conclusion is supported because the edges
represent relationships that are transitive (and so Clyde is a gray
thing).

Before getting into some of the interesting complications with inheritance
networks, we begin with some simple cases.

10.1.1 Strict Inheritance
The simplest form of inheritance is the kind used in description logics
and other systems based on classical logic: strict inheritance. In a strict
inheritance network, conclusions are produced by the complete transi-
tive closures of all paths in the network. Any traversal procedure for
computing the transitive closure will do for determining the supported
conclusions.

In a tree-structured strict inheritance network, inheritance is very
simple. As in Figure 10.2, all nodes reachable from a given node are
implied. In this figure, supported conclusions include the fact that Ben
is gray and that Clyde is gray.

In a strict inheritance network that is a directed acyclic graph (DAG),
the results are the same as for trees: All conclusions you can reach by

Gray

Elephant

Clyde

•

•

•

Rat

Ben

•

•

■ FIGURE 10.2

Strict Inheritance in a Tree

190 Chapter 10 ■ Inheritance

TaxpayerIlliterate

Employee

Salaried

Ernest

• •

•

•

Student

Academic

George

•

•

•

•

■ FIGURE 10.3

Strict Inheritance in a DAG

any path are supported. This includes conclusions found by traversing
different branches upward from a node in question. Figure 10.3 illus-
trates a strict DAG. It says that Ernest is both a student and an employee.
The network supports the conclusions that Ernest is an academic, as well
as a taxpayer, and salaried.

Note that in this figure we introduce a negative edge with a bar through
it, between Student and Illiterate, meaning that a student is not an illiterate
thing. So edges in these networks have polarity—positive or negative. Thus
the conclusion that Ernest is not illiterate is supported by the network
in the figure.1

Inheritance in directed acyclic networks is often called multiple
inheritance when a node has more than one parent node; in such cases,
because of the meaning of the edges, the node must inherit from all of its
parents.

10.1.2 Defeasible Inheritance
In our study of frame systems, we saw numerous illustrations of a
nonstrict inheritance policy. In these representations, inherited prop-
erties do not always hold; they can be defeated, or overridden. This
is most obviously true in the case of default values for slots, such as
the default origin of a trip. But a closer examination of the logic of

1As we will see more precisely in Section 10.3, when a network contains negative edges,
a path is considered to be zero or more positive edges followed by a single positive or
negative edge.

10.1 Inheritance Networks 191

frame systems such as those that we covered in Chapter 8 would suggest
that in fact virtually all properties (and procedures) can be overridden.
We call the kind of inheritance in which properties can be defeated
defeasible inheritance.

In a defeasible inheritance scheme, one way to determine conclusions
is by searching upward from a focus node—the one about which we are
trying to draw a conclusion—and selecting the first version of the property
being considered. An example will make this clear. In Figure 10.4 there
is an edge from Clyde to Elephant and one from Elephant to Gray. There
is also, however, a negative edge from Clyde directly to Gray. This net-
work is intended to capture the knowledge that while elephants in general
are gray, Clyde is not. Intuitively, if we were trying to find what conclu-
sion this network supported about Clyde’s color, we would first find the
negative conclusion about Gray, because that is directly asserted of Clyde.

In general, what will complicate defeasible reasoning, and what will
occupy us for much of this chapter, is the fact that different paths in a
network can support conflicting conclusions and a reasoning procedure
needs to decide which conclusion should prevail, if any. In the exam-
ple, there is an argument for Clyde being gray: He is an elephant and
elephants are gray; however, there is a “better” argument for concluding
that he is not gray, because this has been asserted of him specifically.

In some cases, we will not be able to say which conclusion is bet-
ter or worse. In Figure 10.5 there is nothing obvious that tells us how
to choose between the positive or negative conclusions about Nixon’s
pacifism. The network tells us that by virtue of his being a Quaker he
is a pacifist; it also tells us that by virtue of his being a Republican, he is
not. This type of network is said to be ambiguous.

Gray

Elephant

Clyde

•

•

•

■ FIGURE 10.4

Defeasible Inheritance

192 Chapter 10 ■ Inheritance

Pacifist

Republican

Nixon

•

•

•

Quaker •

■ FIGURE 10.5

Is Nixon a Pacifist or Not?

When exploring different accounts for reasoning under this kind of
circumstance, we typically see two types of approaches: credulous (or
brave or choice) accounts allow us to choose arbitrarily between conclu-
sions that appear equally well supported; skeptical (or cautious) accounts
are more conservative, often accepting only conclusions that are not con-
tradicted by other paths. In the Nixon case, a credulous account would in
essence flip a coin and choose one of Nixon → Pacifist or Nixon → ¬Pacifist,
because either conclusion is as good as the other. A skeptical account
would draw no conclusion about Nixon’s pacifism.

10.2 STRATEGIES FOR DEFEASIBLE INHERITANCE

For DAGs with defeasible inheritance, we need a method for deciding
which conclusion to choose (if any) when there are contradictory conclu-
sions supported by different paths through the network. In this section,
we examine two possible ways of doing this informally, before moving to
a precise characterization of inheritance reasoning in the next section.

10.2.1 The Shortest Path Heuristic
Figure 10.6 shows two examples of defeasible inheritance networks that
produce intuitively plausible conclusions. In the one on the left, we see
that while Royal Elephants are elephants, and elephants are (typically)
gray, Royal Elephants are not. Since Clyde is a Royal Elephant, it would
be reasonable to assume he is not gray.

10.2 Strategies for Defeasible Inheritance 193

Gray

Elephant

RoyalElephant

FatRoyalElephant

Clyde

WhiteWhale

BabyBeluga

•

•

•

•

•

AquaticCreature

Mammal

Whale

•

•

•

•

•

■ FIGURE 10.6

Shortest Path Heuristic

To decide this in an automated way, the shortest path heuristic says that
we should prefer conclusions resulting from shorter paths in the network.
Because there are fewer edges in the path from Clyde to Gray that includes
the negative edge than in the path that includes the positive edge, the
negative conclusion prevails.

In the network on the right, we see the opposite polarity conclusion
being supported. Whales are mammals, but mammals are typically not
aquatic creatures. Whales are exceptional in that respect, and are directly
asserted to be aquatic creatures. We infer using the shortest path heuristic
that BabyBeluga is an AquaticCreature.

The intuition behind the shortest path heuristic is that it makes sense to
inherit from the most specific subsuming class. If two superclasses up the
chain disagree on a property (e.g., Gray vs. ¬Gray), we take the value from
the more specific one, because that is likely to be more directly relevant.2

2A similar consideration arises in probabilistic reasoning in Chapter 12 regarding choosing
what is called a “reference class”: Our degree of belief in an individual having a certain
property depends on the most specific class he or she belongs to for which we have statistics.

194 Chapter 10 ■ Inheritance

Notice then that in defeasible inheritance networks not all paths
count in generating conclusions. It makes sense to think of the paths
in the network as arguments in support of conclusions. Some arguments
are preempted by others. Those that are not we might call “admissible.”
The inheritance problem, then, is “What are the admissible conclusions
supported by the network?”

10.2.2 Problems with Shortest Path
While intuitively plausible, and capable of producing correct conclusions
in many cases, the shortest path heuristic has serious flaws. Unfortu-
nately, it can produce intuitively incorrect answers in the presence of
redundant edges—those that are already implied by the basic network.
Look at the network in Figure 10.7. The edge labeled q is simply redun-
dant, in that it is clear from the rest of the network that Clyde is
unambiguously an elephant. But by creating an edge directly from Clyde

Gray

Elephant

RoyalElephant

FatRoyalElephant

Clyde

q

•

•

•

•

•

■ FIGURE 10.7

Shortest Path in the Face of Redundant Links

10.2 Strategies for Defeasible Inheritance 195

857 edges

•

•

•

856 edges

•

••

■ FIGURE 10.8

Very Long Paths

to Elephant we have inadvertently changed the polarity of the conclu-
sion about Clyde’s color. The path from Clyde to Gray that goes through
edge q is now shorter (length = 2) than the one with the negative edge
from RoyalElephant to Gray (length = 3). So the inclusion of an edge that
is already implicitly part of the network undermines the shortest path
heuristic.

Another problem with the shortest path heuristic is the fact that
the length of a path through the network does not necessarily reflect
anything salient about the domain. Depending on the problem or appli-
cation, some paths may describe object hierarchies in excruciating detail,
whereas others may be very sketchy. Just because an inheritance chain
makes many fine-grained distinctions, there should not be a bias against
it in drawing conclusions. Figure 10.8 illustrates in a somewhat extreme
way how this causes problems. The left-hand path has a very large num-
ber of nodes in it and ends with a positive edge. The right-hand path has
just one more edge and ends with a negative edge. So for this network the
shortest path heuristic supports the positive conclusion. But if we were to
add another two edges—anywhere in the path—to the left-hand side, the
conclusion would be reversed. This seems rather silly; the network should
be considered ambiguous in the same manner as the one in Figure 10.5.

10.2.3 Inferential Distance
Shortest path is what is considered to be a preemption strategy, which
allows us to make admissibility choices among competing paths. It tries

196 Chapter 10 ■ Inheritance

to provide what is called a specificity criterion, matching our intuition that
more specific information about an item is more relevant than informa-
tion more generally true about a broader class of items of which it is
a member.

As we have seen, shortest path has its problems. Fortunately, it is
not the only possible specificity criterion. A more plausible strategy
is inferential distance, which rather than being linear distance based, is
topologically based.

Consider Figure 10.7 once again. Starting at the node for Clyde, we
would like to say that RoyalElephant is more specific than Elephant despite
the redundant edge q because there is a path to Elephant that passes
through RoyalElephant. Because it is more specific, we then prefer the
negative edge from RoyalElephant to Gray over the positive one from
Elephant to Gray. More generally, a node a is considered closer to node
b than to node c according to inferential distance if and only if there is
a path from a to c through b, regardless of the actual length of any paths
from a to b and to c.

This criterion handles the earlier simple cases of inheritance from
Figure 10.6. Furthermore, in the case of the ambiguous network of
Figure 10.8, inferential distance prefers neither conclusion, as desired.

Unfortunately, inferential distance has its own problems. What should
happen, for example, when the path from a through b to c is itself con-
tradicted by another path? Rather than attempt to patch the definition to
deal with such problematic cases, we will consider a different formaliza-
tion of inheritance that incorporates a version of inferential distance as
well as other reasonable accounts of defeasible inheritance networks.

10.3 A FORMAL ACCOUNT OF INHERITANCE NETWORKS

The discussion so far has been intended to convey some of the intent
and issues behind defeasible inheritance networks, but has been some-
what informal. The ideas in these networks can be captured and stud-
ied in a much more formal way. We here briefly present one of the
clearer formal accounts of inheritance networks (there are many that are
impenetrable), owing to Lynn Stein.

An inheritance hierarchy � = 〈V , E〉 is a directed, acyclic graph with
positive and negative edges, intended to denote “(normally) is-a” and
“(normally) is-not-a,” respectively (V are the nodes, or vertices, in the
graph; E are the edges). Positive edges will be written as (a · x) and
negative edges will be written as (a · ¬x).

A positive path is a sequence of one or more positive edges a · . . . · x.
A negative path is a sequence of zero or more positive edges followed

10.3 A Formal Account of Inheritance Networks 197

by a single negative edge: a · . . . · v · ¬x. A path is either a positive or
negative path.

Note that there are no paths with more than one negative edge, although
a negative path could have no positive edges (i.e., be just a negative
edge).

A path (or argument) supports a conclusion in the following ways:

■ a · . . . · x supports the conclusion a → x (a is an x);

■ a · . . . · v · ¬x supports the conclusion a �→ x (a is not an x).

A single conclusion can be supported by many arguments. However, not
all arguments are equally believable. We now look at what makes an
argument prevail, given other arguments in the network. This stems from
a formal definition of admissibility:

� supports a path if the corresponding set of edges are in E, and the
path is admissible according to the definition that follows. The hier-
archy supports a conclusion a → x (or a �→ x) if it supports some
corresponding path between a and x.

A path a · s1 · . . . · sn · (¬)x is admissible if every edge in it is admissible
with respect to a.

An edge v · (¬)x is admissible in � with respect to a if there is a positive
path a · s1 · . . . sn · v (n ≥ 0) in E and

1. each edge in a · s1 · . . . sn · v is admissible in � with respect to
a (recursively);

2. no edge in a · s1 · . . . sn · v is redundant in � with respect to
a (discussed later);

3. no intermediate node a, s1, . . . , sn is a preemptor of v · (¬)x with
respect to a (discussed later).

So, an edge is admissible with respect to a if there is a nonredundant,
admissible path leading to it from a that contains no preempting inter-
mediaries. This situation is sketched in Figure 10.9.

......

a si v x

the edge under
consideration

■ FIGURE 10.9

Basic Path Situation for Formalization

198 Chapter 10 ■ Inheritance

AquaticCreature (� x)

Mammal (� v)

Whale (� y)

BlueWhale

q

•

•

•

•

■ FIGURE 10.10

A Preempting Node

The definitions of preemption along a path and of redundancy will
complete the basic formalization:

A node y along path a · . . . · y · . . . · v is a preemptor of v · x (v · ¬x) with
respect to a if y · ¬x ∈ E (y · x ∈ E). For example, in Figure 10.10, the
node Whale preempts the negative edge from Mammal to AquaticCreature
with respect to both Whale and BlueWhale.

A positive edge b ·w is a redundant in � with respect to node a if there
is some positive path b · t1 · . . . · tm ·w ∈ E (m ≥ 1) for which

1. each edge in b · t1 · . . . · tm is admissible in � with respect to a
(i.e., none of the edges are themselves preempted);

2. there are no c and i such that c · ¬ti is admissible in � with
respect to a;

3. there is no c such that c · ¬w is admissible in � with respect
to a.

By this definition, the edge labeled q in Figure 10.10 is redundant with
respect to BlueWhale. The definition of redundancy for a negative edge is
analogous.

10.3 A Formal Account of Inheritance Networks 199

10.3.1 Extensions
Now that we have covered the basics of admissibility and preemption, we
can finally look at how to calculate what conclusions should be believed
given an inheritance network. As noted in Section 10.1.2, we do not expect
an ambiguous network to specify a unique set of conclusions. We use the
term extension to mean a possible set of beliefs supported by the network.
Ambiguous networks will have multiple extensions. More formally, we
have the following:

� is a-connected iff for every node x in �, there is a path from a to x, and
for every edge v · (¬)x in �, there is a positive path from a to v. In other
words, every node and edge is reachable from a.

� is (potentially) ambiguous with respect to node a at x if there is some
node x ∈ V such that both a · s1 · . . . · sn ·x and a · t1 · . . . · tm ·¬x are paths.

A credulous extension of an inheritance hierarchy � with respect to
a node a is a maximal unambiguous a-connected subhierarchy of �

with respect to a.

So if X is a credulous extension of �, then adding an edge of � to X makes
X either ambiguous or not a-connected.

Figure 10.11 illustrates an ambiguous network and Figure 10.12 shows
its two credulous extensions. Note that adding the edge from Mammal

MilkProducer

Mammal

EggLayerFurryAnimal

Platypus

■ FIGURE 10.11

An Ambiguous Network

200 Chapter 10 ■ Inheritance

Mammal

EggLayer
FurryAnimal

Platypus

MilkProducer

Mammal

EggLayer
FurryAnimal

Platypus

■ FIGURE 10.12

Two Credulous Extensions

to MilkProducer in the extension on the left would cause that extension
to no longer be a-connected (where a is Platypus), because there is no
positive path from Platypus to Mammal. Adding the edge from FurryAnimal
to Mammal in the extension on the left, or the edge from EggLayer to Mammal
in the extension on the right, would make the extensions ambiguous.
Thus, both extensions in the figure are credulous extensions.

Credulous extensions do not incorporate any notion of admissibility or
preemption. For example, the network of Figure 10.4 has two credulous
extensions with respect to node Clyde. However, given our earlier discus-
sion and our intuition about reasoning about the natural world, we would
like our formalism to rule out one of these extensions. This leads us to
a definition of preferred extensions:

Let X and Y be credulous extensions of � with respect to a node a. X is
preferred to Y iff there are nodes v and x such that

■ X and Y agree on all edges whose endpoints precede v
topologically;

■ there is an edge v · x (or v · ¬x) that is inadmissible in �; and
■ this edge is in Y but not in X .

A credulous extension is a preferred extension if there is no other
credulous extension that is preferred to it.

10.3 A Formal Account of Inheritance Networks 201

Gray

Elephant

Clyde

•

•

•

Gray

Elephant

Clyde

•

•

•

■ FIGURE 10.13

A Preferred Credulous Extension

The key part of this definition is that it appeals to the notion of admissi-
bility defined earlier. So, for example, for the � shown in Figure 10.4, the
extension on the left in Figure 10.13 is a preferred extension, whereas the
one on the right is not. If we use the assignment a = Clyde, v = Elephant,
and x = Gray, we can see that the two extensions agree up to Elephant, but
the edge Elephant ·Gray is not admissible because it has a preemptor, Clyde,
and that edge is in the extension on the right but not on the left.

10.3.2 Some Subtleties of Inheritance Reasoning
Although we have detailed some reasonable formal definitions that allow
us to distinguish between different types of extensions, an agent still
needs to make a choice based on such a representation of what actually
to believe. The extensions offer sets of consistent conclusions, but one’s
attitude toward such extensions can vary. Different forms of reasoning
have been proposed based on the type of formalization we have presented
here:

■ credulous reasoning: Choose a preferred extension, perhaps arbi-
trarily, and believe all of the conclusions supported by it.

■ skeptical reasoning: Believe the conclusions supported by any path
that is present in all preferred extensions.

■ ideally skeptical reasoning: Believe the conclusions that are sup-
ported by all preferred extensions. This is subtly different from
skeptical reasoning, in that these conclusions may be supported
by different paths in each extension. One significant consequence

202 Chapter 10 ■ Inheritance

of this is that ideally skeptical reasoning cannot be computed in a
path-based way.

One final point to note is that our emphasis in this chapter has been on
“upward” reasoning: In each case, we start at a node and see what can be
inherited from its ancestor nodes further “up” the tree. There are actually
many variations on this definition, and none has emerged as the agreed
upon, or “correct” one. One alternative, for example, looks from the top
and sees what propagates downward through the network.

In Chapter 11, we will reconsider in more general logical terms the
kind of defeasible reasoning seen here in inheritance networks. We will
study some very expressive representation languages for this that go well
beyond what can be represented in a network. Although these languages
have a clear logical foundation, we will see that it is quite difficult to get
them to emulate in a convincing way the subtle path-based account of
reasoning we have investigated here.

10.4 BIBLIOGRAPHIC NOTES

Inheritance networks, as described in the text, grew out of a more
general-purpose representation formalism that used inheritance, known
as semantic networks. Early and influential work in this area, inspired by
the semantics of verbs and nouns in natural language, was done by Quil-
lian [335, 336] and, for the application of computer vision, Winston [427].
Other important semantic network systems include Fahlman’s NETL [124]
and Shapiro’s SNePS [381], which is still in use today (see, for example,
[382]) and has also been used to develop a system for belief revision
[270, 383]. For a more recent collection of articles on semantic networks,
see Sowa [393].

The ideas in semantic networks were refined by a number of researchers
trying to give such networks a clear semantics, most notably Woods [430]
and Brachman [40, 42, 43] (see also the collections by Findler [130],
Lehmann and Rodin [232], and Lenzerini et al. [236]). The work by Brach-
man eventually led to the development of description logics, described in
Chapter 9.

The formal characterization of inheritance networks presented here is
due to Stein [398] (see also [396, 397]). Variants of the definition, and the
problems they raise, are discussed by Touretzky et al. [413]. Etherington
and Reiter [122] studied exceptions in inheritance networks using default
logic (see Chapter 11) and pointed out inadequacies with the shortest path
heuristic. The notion of inferential distance is examined in Touretzky
[412]. The conceptual graph [392] combines ideas from inheritance net-
works and Peirce’s existential graphs [323, 325, 355], a graphical form

10.5 Exercises 203

of logic (allowing for propositional, first-order, and even some forms of
modal logic).

10.5 EXERCISES

In these exercises, we consider three collections of assertions:

George: George is a Marine.

George is a chaplain.

A Marine is typically a beer drinker.

A chaplain is typically not a beer drinker.

A beer drinker is typically overweight.

A Marine is typically not overweight.

Polly: Polly is a platypus.

Polly is an Australian animal.

A platypus is typically a mammal.

An Australian animal is typically not a mammal.

A mammal is typically not an egg layer.

A platypus is typically an egg layer.

Dick: Dick is a Quaker.

Dick is a Republican.

Quakers are typically pacifists.

Republicans are typically not pacifists.

Republicans are typically promilitary.

Pacifists are typically not promilitary.

Promilitary (people) are typically politically active.

Pacifists are typically politically active.

For each collection, the questions are the same (and see the follow-up
Exercise 1 in Chapter 11):

1. Represent the assertions in an inheritance network.

2. What are the credulous extensions of the network?

204 Chapter 10 ■ Inheritance

3. Which of them are preferred extensions?

4. Give a conclusion that a credulous reasoner might make but that
a skeptical reasoner would not.

5. Are there conclusions where a skeptical reasoner and an ideally
skeptical reasoner would disagree given this network?

C H A P T E R 11

DEFAULTS

■

■

■

In Chapter 8 on frames, the kind of reasoning we saw exemplified by the
inheritance of properties was actually a simple form of default reasoning,
where a slot was assumed to have a certain value unless a different one
was provided explicitly. In Chapter 10 on inheritance, we also considered
a form of default reasoning in hierarchies. We might know, for example,
that elephants are gray, but understand that there could be special kinds
of elephants that are not. In this chapter, we look at this form of default
reasoning in detail and in logical terms, without tying our analysis either
to procedural considerations or to the topology of a network as we did
earlier.

11.1 INTRODUCTION

Despite the fact that FOL is an extremely expressive representation
language, it is nonetheless restricted in the patterns of reasoning it
admits. To see this, imagine that we have a KB in FOL that contains
facts about animals of various sorts, and that we would like to find out
whether a particular individual, Fido, is a carnivore. Assuming that the
KB contains the sentence Dog(fido), there are only two possibilities for
getting to the conclusion Carnivore(fido):

1. the KB contains other facts that mention the constant fido explicitly;

2. the KB entails a universal of the form ∀x. Dog(x) ⊃ Carnivore(x).

205

206 Chapter 11 ■ Defaults

It is not too hard to see that if neither of these two conditions are satis-
fied, the desired conclusion simply cannot be derived: There is a logical
interpretation that satisfies the KB but not Carnivore(fido).1 So it is clear
that if we want to deduce something about a particular dog that we know
nothing else about, the only option available to us in FOL is to use what
we know about each and every dog. In general, to reason from P(a) to Q(a)
in FOL where we know nothing else about a itself, we need to use what
is known to hold for all instances of P.

11.1.1 Generics and Universals
So what is the problem? All along, we have been imagining that we will
build a KB that contains facts about a wide variety of topics, somewhat like
an encyclopedia. There would be “entries” on turtles, violins, wildflowers,
and ferris wheels as in normal encyclopedias, as well as entries on more
mundane subjects, like grocery stores, birthday parties, rubber balls, and
haircuts. Clearly, what we would like to say about these topics goes beyond
facts about particular cases of turtles or violins. The troublesome fact of
the matter is that although we may have a great deal to write down about
violins, say, almost none of it applies to all violins. The problem is how
to express what we know about the topics in general using FOL, and in
particular using universal quantification.

We might want to state, for example,

Violins have four strings

to distinguish them from guitars, which have six. But we most assuredly
do not want to state,

All violins have four strings

because, obviously, this would rule out a violin with a string added
or removed. One possible solution is to attempt to enumerate the
conditions under which violins would not have four strings:

All violins that are not P1 or P2 or . . . or Pn have four strings

where the Pi state the various exceptional cases. The challenge is to
characterize these cases. We would need to cover at least the following:
natural manufacturing (or genetic) varieties, like electric violins; cases in
exceptional circumstances, like violins that have been modified or dam-
aged; borderline cases, like miniature toy violins; imagined cases, like

1The construction is as follows: Take any model
 = 〈D, I〉 of the KB that satisfies the first,
but not the second, of the two conditions. So there is a dog d in D that is not a carnivore.
Let
′ = 〈D, I′〉 be just like
 except that I′[fido] = d. Because KB contains no facts other
than Dog(fido) that mention fido,
′ still satisfies KB, but
′ satisfies ¬Carnivore(fido).

11.1 Introduction 207

multiplayer violins (whatever they might be); and so on. Because of the
range of possibilities, we are almost reduced to saying,

All violins have four strings except those that do not

a true but vacuous universal.
This is obviously not just a problem with the topic of violins. When

we say that lemons are yellow and tart, that polar bears are white and
live in Arctic regions, that birds have wings and fly, that children sing
“Happy Birthday” at birthday parties, that banks are closed on Sundays,
and on and on, we do not mean to say that such sentences hold of each
and every instance of the corresponding class. Yet the facts are true;
it would be wrong to say that at birthday parties children sing “Oh!
Susanna,” for example.

So we need to distinguish between universals, properties that do hold
for all instances, easily expressible in FOL, and generics, properties that
hold “in general.” Much of our commonsense knowledge of the world
appears to be concerned with generics, so it is quite important to con-
sider formalisms that go beyond FOL in allowing us to handle general,
but not truly universal, knowledge.

11.1.2 Default Reasoning
Assuming we know that dogs are, generally speaking, carnivores, and that
Fido is a dog, under what circumstances is it appropriate to infer that
Fido is a carnivore? The answer we will consider in very general terms
is this:

Given that a P is generally a Q, and given that P(a) is true, it is reasonable
to conclude that Q(a) is true unless there is a good reason not to.

This answer is unfortunately somewhat vague: Exactly what constitutes
a good reason not to conclude something? Different ways of making this
precise will be the subject of the rest of the chapter.2

One thing to notice, however, is that if absolutely nothing is known
about the individual a except that it is an instance of P, then we ought
to be able to conclude that it is an instance of Q, because there can
be nothing that would urge us not to. When we happen to know that
a polar bear has been rolling in the mud, or swimming in an algae-
ridden pool, or playing with paint cans, then we may not be willing to
conclude anything about its color; but if all we know is that the individ-
ual is a polar bear, it seems perfectly reasonable to conclude that it is
white.

2In Chapter 12 we consider ways of dealing with this issue numerically. Here our approach
is qualitative.

208 Chapter 11 ■ Defaults

Note, however, that just because we don’t know that the bear has been
blackened by soot, for example, doesn’t mean that it hasn’t been. The
conclusion does not have the guarantee of logical soundness; everything
else we believe about polar bears could be true without this particular
bear being white. It is only a reasonable default. That is to say, if we
are pressed for some reason to come to some decision about its color,
white is a reasonable choice. We would be prepared to retract that belief
if appropriate evidence were encountered later. In general, this form of
reasoning, which involves applying some general though not universal
fact to a particular individual, is called default reasoning.

We do not want to suggest, however, that the only source of default
reasoning has to do with general properties of kinds like violins, polar
bears, or birthday parties. There are a wide variety of reasons for want-
ing to conclude Q(a) given P(a) even in the absence of true universal
quantification. Here are some examples:

General Statements

■ normal: Under typical circumstances, Ps are Qs.
(People work close to where they live. Children enjoy singing.)

■ prototypical: The prototypical P is a Q.
(Apples are red. Owls hunt at night.)

■ statistical: Most Ps are Qs.
(The people in the waiting room are growing impatient.)

Lack of Information to the Contrary

■ familiarity: If a P was not a Q, you would know it.
(No nation has a political leader more than 7 feet tall.)

■ group confidence: All the known Ps are known (or assumed) to be Qs.
(Natural languages are easy for children to learn.)

Conventional Uses

■ conversational: A P is a Q, unless I tell you otherwise.
(Being told “The closest gas station is two blocks east,” the assumed
default is that the gas station is open.)

■ representational: A P is a Q, unless otherwise indicated.
(The speed limit in a city. An open door to an office, meaning that
the occupant can be disturbed.)

Persistence

■ inertia: A P is a Q unless something changes it.
(Marital status. The position of objects [within limits].)

11.2 Closed-World Reasoning 209

■ time: A P is a Q if it used to be a Q.
(The color of objects. Their sizes.)

This list is not intended to be exhaustive. But it does suggest the very
wide variety of sources of default information. In all cases, our concern
in this chapter will be the same: how to characterize precisely when,
in the absence of universals, it is appropriate to draw a default conclu-
sion. In so doing, we will only use the simplest of examples, like the
default that birds fly, which in FOL would have to be approximated by
∀x(Bird(x) ⊃ Flies(x)). But the techniques considered here apply to all the
various forms of defaults, which, as we have argued, cover much of what
we know.

11.1.3 Nonmonotonicity
In the rest of this chapter, we will consider four approaches to default
reasoning: closed-world reasoning, circumscription, default logic, and
autoepistemic logic. In all cases, we start with a KB from which we wish
to derive a set of implicit beliefs. In the simple case with no default rea-
soning, implicit beliefs are just the entailments of the KB; with defaults,
we go beyond these by making various assumptions.

Ordinary deductive reasoning is monotonic, which is to say that new
facts can only produce additional beliefs. In other words, if KB1 |= α, then
KB2 |= α, for any KB2 such that KB1 ⊆ KB2. However, default reasoning
is nonmonotonic: New facts will sometimes invalidate previous beliefs.
For example, if we are only told that Tweety is a bird, we may believe
that Tweety flies. However, if we are now told that Tweety is an emu, we
may no longer believe that she flies. This is because the belief that Tweety
flies was a default based on an absence of information to the contrary.
When we find out that Tweety is an exceptional bird, we reconsider.

For this reason, default reasoning of the kind we will discuss in this
chapter is often called nonmonotonic reasoning, where the emphasis is
not so much on how assumptions are made or where they come from,
but on inference relations that are similar to entailment, but which are
nonmonotonic.

11.2 CLOSED-WORLD REASONING

The simplest formalization of default reasoning we will consider was also
the first to be developed, and is based on the following observation:

Imagine representing facts about the world in FOL with some natural
vocabulary of predicate, function, and constant symbols. Of the large
(but finite) number of atomic sentences that can be formed, only a very

210 Chapter 11 ■ Defaults

small fraction are expected to be true. A reasonable representational
convention, then, is to explicitly represent the true atomic sentences,
and to assume that any unmentioned atomic sentence is false.

Consider, for example, information sources like an airline flight guide.
The kind of information we find in a such a guide might be roughly
represented in FOL by sentences like

DirectConnect(cleveland,toronto),
DirectConnect(toronto,northBay),
DirectConnect(cleveland,phoenix),

telling us which cities have flights between them. What we do not expect to
find in such a guide are statements about which cities do not have flights
between them:

¬DirectConnect(northBay,phoenix).

The convention is that if an airline guide does not list a flight between
two cities, then there is none. Similar conventions are used, of course, in
encyclopedias, dictionaries, maps, and many other information sources.
It is also the assumption used in computerized databases, modeled exactly
on such information sources.3

11.2.1 The Closed-World Assumption
In general terms, the assumption here, called the closed-world assumption
(CWA), is the following:

Unless an atomic sentence is known to be true,
it can be assumed to be false.

Note that expressed this way, the CWA can be seen to involve a form
of default reasoning. A sentence assumed to be false could later be
determined in fact to be true.

Perhaps the easiest way to formalize the reasoning inherent in the CWA
is to consider a new form of entailment, |=

C
, where we say that KB |=

C
α if

and only if KB+ |= α, where

KB+ = KB ∪ {¬p |p is atomic and KB �|= p}.
So |=

C
is just like ordinary entailment, except with respect to an aug-

mented KB, namely one that includes all negative atomic facts not

3Note that it is clearly possible to represent knowledge in a dual vocabulary where most
of the atomic sentences would be true and where the opposite convention would be more
appropriate. In everyday information sources, we tend not to do this.

11.2 Closed-World Reasoning 211

explicitly ruled out by the KB.4 In the airline guide example, KB+ would
include all the appropriate ¬DirectConnect(c1, c2) sentences.

11.2.2 Consistency and Completeness of Knowledge
It is useful to introduce two terms at this point: We say that a KB exhibits
consistent knowledge if and only if there is no sentence α such that
both α and ¬α are known. This is the same as requiring the KB to be
satisfiable. We also say that a KB exhibits complete knowledge if and only
if for every sentence α (within its vocabulary), either α or ¬α is known.

In general, of course, knowledge can be incomplete. For example, sup-
pose KB consists of a single sentence, (p ∨ q). Then, KB does not entail
either p or ¬p, and so exhibits incomplete knowledge. If we consider the
CWA as we have formalized it, however, for any sentence α, it holds that
either KB |=

C
α or KB |=

C
¬α. (The argument is by induction on the length

of α.) So with the CWA we have completely filled out the entailment rela-
tion for the KB. Every sentence is decided by KB+, that is, either it or its
negation is entailed by KB+.

It is not hard to see that if a KB is complete in this sense (the way
KB+ is), it also has the property that if it tells us that one of two sen-
tences is true, then it must also tell us which. In other words, if KB
exhibits complete knowledge and KB |= (α ∨ β), then KB |= α or KB |= β.
Again, note that this is not the case in general, for example, for the KB
comprising only (p ∨ q), as described a moment ago.

The idea behind the CWA then, is to act as if the KB represented com-
plete knowledge. Whenever KB �|= p, then either KB |= ¬p directly, or the
assumption is that ¬p is what was intended and it is conceptually added
to the KB.

11.2.3 Query Evaluation
The fact that every sentence is decided by the CWA allows queries to be
handled in a very direct way. The question as to whether KB |=

C
α ends

up reducing to a collection of questions about the literals in α. We begin
with the following general properties of entailment:

1. KB |= (α ∧ β) iff KB |= α and KB |= β.

2. KB |= ¬¬α iff KB |= α.

3. KB |= ¬(α ∨ β) iff KB |= ¬α and KB |= ¬β.

4This definition applies to the propositional subset of FOL. We will deal with quantifiers
later.

212 Chapter 11 ■ Defaults

Next, because KB+ is complete, we also have the following properties:

4. KB |=
C

(α ∨ β) iff KB |=
C

α or KB |=
C

β.

5. KB |=
C
¬(α ∧ β) iff KB |=

C
¬α or KB |=

C
¬β.

Putting all of these together, we can recursively reduce any question
about whether KB |=

C
α to a set of questions about the literals in α. For

example, it is the case that

KB |=
C

((p ∧ q) ∨ ¬(r ∧ ¬s)) iff
either both KB |=

C
p and KB |=

C
q, or KB |=

C
¬r, or KB |=

C
s.

If we further assume that KB+ is consistent (which we discuss later), we
get the following:

6. If KB+ is consistent, KB |=
C
¬α iff KB �|=

C
α.

With this extra condition, we can reduce a query to a set of questions
about the atoms in α. For example, assuming consistency, the sentence
((p ∧ q) ∨ ¬(r ∧ ¬s)) will be entailed under the CWA if and only if either
both p and q are entailed or r is not entailed or s is entailed. What this
suggests is that for a KB that is consistent and complete, entailment con-
ditions are just like truth conditions: A conjunction is entailed if and only
if both conjuncts are, a disjunction is entailed if and only if either dis-
junct is, and a negation is entailed if and only if the negated sentence is
not entailed. As long as we have a way of handling atomic queries, all
other queries can be handled recursively.5

11.2.4 Consistency and a Generalized Assumption
Just because a KB is consistent does not mean that KB+ will also be
consistent. Consider, for example, the consistent KB composed of the
single sentence (p∨ q), mentioned earlier. Because KB �|= p, it is the case
that ¬p ∈ KB+. Similarly, ¬q ∈ KB+. So KB+ contains {(p ∨ q),¬p,¬q},
and thus is inconsistent. In this case, KB |=

C
α, for every sentence α.

On the other hand, it is clear that if a KB consists of just atomic
sentences (like the DirectConnect KB, which was discussed earlier) and
is itself consistent, then KB+ will be consistent. The same is true if
the KB contains conjunctions of atomic sentences (or of other conjunc-
tions). It is also true if the KB contains disjunctions of negative literals.

5We will explore the implications of this for reasoning procedures in Chapter 16.

11.2 Closed-World Reasoning 213

But it is not clear what a reasonable closure assumption should be for
disjunctions like (p ∨ q).

One possibility is to apply the CWA only to atoms that are completely
“uncontroversial.” For example, in the earlier case, although we might
not apply the CWA to either p or q, because they are both controver-
sial (because we know that one of them is true, but not which), we
might be willing to apply it to any other atom. This suggests a version of
the CWA, which we call the generalized closed-world assumption (GCWA),
where KB |=

GC
α if and only if KB	 |= α, where KB	 is defined as follows:

KB	 = KB ∪ {¬p | for all collections of atoms q1, . . . , qn,
if KB |= (p ∨ q1 ∨ . . . ∨ qn), then KB |= (q1 ∨ . . . ∨ qn)

}
.

So an atom p can be assumed to be false only if it is the case that
whenever a disjunction of atoms including that atom is entailed by the
KB the smaller disjunction without the atom is also entailed. In other
words, we will not assume that p is false if an entailed disjunction of
atoms including p exists that cannot be reduced to a smaller entailed
disjunction not involving p.

For example, suppose that KB is (p ∨ q), and consider the atom p.
Then it is the case that KB |= (p ∨ q), but KB �|= q. So ¬p �∈ KB	.
Similarly, ¬q �∈ KB	. However, consider an atom r. Here it is the case
that ¬r ∈ KB	, because although KB |= (r ∨ p ∨ q), we also have the
reduced disjunction KB |= (p ∨ q).6

It is not hard to see that entailments under the GCWA are a sub-
set of those under the CWA, and in particular, that if ¬p ∈ KB	, then
¬p ∈ KB+. Moreover, the GCWA agrees completely with the CWA in
those cases where the KB has no disjunctive knowledge, that is, in those
cases where KB |= (q1 ∨ . . . ∨ qn) implies that KB |= qi for some i.
Finally, unlike the CWA, the GCWA preserves consistency: If KB is con-
sistent then KB	 is also consistent. To summarize, then, the GCWA is a
weaker version of the CWA that agrees with the CWA in the absence of
disjunctions, but that remains consistent in the presence of disjunctions.

11.2.5 Quantifiers and Domain Closure
So far we have only considered the properties of the CWA in terms
of sentences without quantifiers. Unfortunately, its most desirable

6The intuition behind this is as follows: Say that we know that there is a flight from
Cleveland either to Dallas or to Houston (but not which one). As a result, we also know
that there is a flight from Cleveland to one of Dallas, Houston, or Austin. But because we
know that there is definitely a flight to one of the first two, it makes sense, under normal
closed-world reasoning, to assume that there is no flight to Austin.

214 Chapter 11 ■ Defaults

properties do not immediately generalize to sentences with quanti-
fiers. To see why, consider a simple representation language contain-
ing a single predicate DirectConnect as before and constants c1, . . . , cn.
If we start with a KB containing only atomic sentences of the form
DirectConnect(ci, cj), the CWA will add to this a collection of literals of the
form ¬DirectConnect(ci, cj). In the resulting KB+, for any pair of constants
ci and cj, either DirectConnect(ci, cj) is in KB+ or ¬DirectConnect(ci, cj) is
in KB+.

Let us suppose that there is a city smallTown that has no airport
and does not appear in the imagined guide, so that for every
cj, ¬DirectConnect(cj, smallTown) is in KB+. Now consider the query,
¬∃xDirectConnect(x, smallTown). Ideally, by closed-world reasoning, this
sentence should be entailed: There is no city that has a direct connec-
tion to smallTown. However, even under the CWA, neither this sentence
nor its negation is entailed: The CWA precludes any of the named
cities, c1, . . . , cn, flying to smallTown, but it does not preclude some other
unnamed city doing so. That is, there is a model of KB+ where the domain
includes a city not named by any ci such that it and the denotation of
smallTown are in the extension of DirectConnect. The problem is that the
CWA has not gone far enough: Not only do we want to assume that none
of the ci have a direct connection to smallTown, we want to assume that
no city does so.

Perhaps the easiest way to achieve this effect is to assume that the
named constants are the only individuals of interest, in other words, that
every individual is named by one of the ci. This leads to a stronger form
of closed-world reasoning, which is the closed world assumption with
domain closure, and a new form of entailment: KB |=

CD
α if and only if

KB� |= α, where

KB� = KB+ ∪ {∀x[x = c1 ∨ . . . ∨ x = cn]},
where c1, . . . , cn, are all the constant symbols appearing in KB.

This is exactly like the CWA, but with the additional assumption that no
objects exist apart from the named constants. Returning to the smallTown
example, because ¬DirectConnect(ci, smallTown) is entailed under the CWA
for every ci, it will follow that ¬∃xDirectConnect(x, smallTown) is entailed
under the CWA with domain closure.

The main properties of this extension to the CWA are the following:

KB |=
CD
∀xα iff KB |=

CD
αx

c , for every c appearing in KB;

KB |=
CD
∃xα iff KB |=

CD
αx

c , for some c appearing in KB.

This means that the correspondence between entailment conditions
and truth conditions now generalizes to quantified sentences. With this

11.3 Circumscription 215

additional completeness assumption, it is the case that KB |=
CD

α or
KB |=

CD
¬α for any α, even with quantifiers. Similarly, the recursive

query operation, which reduces queries to the atomic case, now works
for quantified sentences as well. This property can also be extended to
deal with formulas with equality (and hence all of FOL) by including
a unique name assumption, which adds to KB� all sentences of the form
(c �= c′), for distinct constants c and c′.

Finally, there is the issue of consistency. First note that domain closure
does not rule out the use of function symbols. If we use sentences like
∀xP(x) ⊃ P(f (x)), then under the CWA with domain closure, we end up
assuming that each term f (t) is equal to one of the constants. In other
words, even though individuals have unique constant names, they can
have other nonconstant names.

However, it is possible to construct a KB that is inconsistent with
domain closure in more subtle ways. Consider, for instance, the
following:

P(c), ∀x¬R(x, x),∀x[P(x) ⊃ ∃y(R(x, y) ∧ P(y))]

This KB is consistent and does not even use equality. However, KB� is
inconsistent. The individual denoted by c cannot be the only instance
of P, because the other two sentences in effect assert that there must
be another one. It is also possible to have a consistent KB that asserts
the existence of infinitely many instances of P, guaranteeing that domain
closure cannot be used for any finite set of constants. But these exam-
ples are somewhat far-fetched; they look more like formulas that might
appear in axiomatizations of set theory than in databases. For “normal”
applications, domain closure is much less of a problem.

11.3 CIRCUMSCRIPTION

In general terms, the CWA is the convention that arbitrary atomic
sentences are taken to be false by default. Formally, |=

C
is defined as the

entailments of KB+, which is KB augmented by a set of negative literals.
For a sentence α to be believed (under the CWA), it is not necessary
for α to be true in all models of the KB, but only those that are also
models of KB+. In the first-order case, because of the presence of the
negated literals in KB+, we end up looking at models of the KB where
the extension of the predicates is made as small as possible. This sug-
gests a natural generalization: Consider forms of entailment where the
extension of certain predicates (perhaps not all) is as small as possible.

One way to handle default knowledge is to assume that we have
a predicate Ab to talk about the exceptional or abnormal cases where

216 Chapter 11 ■ Defaults

a default should not apply. Instead of saying that all birds fly, we might
say:

∀x[Bird(x) ∧ ¬Ab(x) ⊃ Flies(x)].

This can be read as saying that all birds that are not in some way abnor-
mal fly, or more succinctly, that all normal birds fly.7 Now imagine we
have this fact in a KB along with these facts:

Bird(chilly), Bird(tweety), (tweety �= chilly),¬Flies(chilly).

The intent here is clear: We would like to conclude by default that Tweety
flies, whereas Chilly (the black and white Antarctic bird), of course,
does not.

Note, however, that KB �|= Flies(tweety): There are interpretations sat-
isfying the KB where Flies(tweety) is false. However, note that in these
interpretations, the denotation of Tweety is contained in the extension of
Ab. This then suggests a strategy for making default conclusions: As with
the CWA, we will only consider certain interpretations of the KB, but
in this case, only those where the Ab predicate is as small as possible.
In other words, the strategy is to minimize abnormality. Intuitively, the
default conclusions are taken to be those that are true in models of the
KB where as few of the individuals as possible are abnormal.

In this example, we already know that Chilly is an abnormal bird, but
we do not know one way or another about Tweety. The default assumption
we wish to make is that the extension of Ab is only as large as it has to
be given what we know; hence it includes Chilly, because it must, but
excludes Tweety, because nothing we know dictates that Ab must include
her. This is called circumscribing the predicate Ab, and as a whole, the
technique is called circumscription.

Note that while Chilly is abnormal in her flying ability, she may be quite
normal in having two legs, laying eggs, and so on. This suggests that we
do not really want to use a single predicate Ab and not be able to assume
any defaults at all about Chilly, but rather have a family of predicates Abi
for talking about the various aspects of individuals. Chilly might be in the
extension of Ab1, but not in that of Ab2, and so on.

11.3.1 Minimal Entailment
Circumscription is intended to be a much more fine-grained tool than
the CWA, and because of this and the fact that we wish to apply it
in much broader settings, the formalization we use does not involve

7We are not suggesting that this is exactly what is meant by the sentence, “Birds fly.”

11.3 Circumscription 217

adding negative literals to the KB. Instead, we characterize a new form
of entailment directly in terms of properties of interpretations themselves.

Let P be a fixed set of unary predicates, which we will intuitively
understand to be the Ab predicates. Let
1 and
2 be logical interpre-
tations over the same domain such that every constant and function is
interpreted the same. So
1 = 〈D, I1〉 and
2 = 〈D, I2〉. Then we define
the relationship, ≤:

1 ≤
2 iff for every P ∈ P , it is the case that I1[P] ⊆ I2[P].

Also,
1 <
2 if and only if
1 ≤
2 but
2 �≤
1. Intuitively, given two
interpretations over the same domain, we are saying that one is less than
another in this ordering if it makes the extension of all the abnormality
predicates smaller. Informally, then, we can think of an interpretation
that is less than another as more normal.

With this idea, we can define a new form of entailment |=≤ (which we
call minimal entailment) as follows:

KB |=≤ α iff for every interpretation
 such that
 |= KB,
either
 |= α or there is an
′ such that
′ <
 and
′ |= KB.

This is very similar to the definition of entailment itself: We require each
interpretation that satisfies KB to satisfy α except that it may be excused
when there is another more normal interpretation that also satisfies the
KB. Roughly speaking, we do not require α to be true in all interpre-
tations satisfying the KB, but only in the minimal or most normal ones
satisfying the KB.8

Consider, for example, the KB with Tweety and Chilly we defined
earlier. As noted, KB �|= Flies(tweety). However, KB |=≤ Flies(tweety). The
reason is this: If
 |= KB but
 �|= Flies(tweety), then
 |= Ab(tweety). So
let
′ be exactly
 except that we remove the denotation of tweety from
the extension of Ab. Then
′ <
 (assuming P = {Ab}, of course), and

′ |= KB. Thus, in the minimal models of the KB, Tweety is a normal
bird: KB |=≤ ¬Ab(tweety), from which we can infer that Tweety flies. We
cannot do the same for Chilly, because in all models of the KB, normal
or not, Chilly is an abnormal bird. Note that the only default step in this
reasoning was to conclude that Tweety was normal; the rest was ordinary
deductive reasoning given what we know about normal birds. This then
is the circumscription proposal for formalizing default reasoning.

8This is a convenient but slightly inaccurate way of putting it. In fact, there may be no “most
normal” models; in pathological cases, we could have an infinite descending chain of ever
more normal models. In such cases, the definition would have every sentence minimally
entailed, but a more complex account of minimal entailment can be made to do something
more reasonable.

218 Chapter 11 ■ Defaults

Note that, in general, we do not expect the “most normal” models of
the KB all to satisfy exactly the same sentences. Suppose, for example,
a KB contains Bird(c), Bird(d), and (¬Flies(c) ∨ ¬Flies(d)). Then in any
model of the KB the extension of Ab must contain either the denotation of
c or the denotation of d. Any model that contains other abnormal individ-
uals (including ones where the denotations of both c and d are abnormal)
would not be minimal. Because we need to consider what is true in all
minimal models, we see that KB �|=≤ Flies(c) and KB �|=≤ Flies(d). In other
words, we cannot conclude by default that c is a normal bird, nor that
d is. However, what we can conclude by default is that one of them is
normal: KB |=≤ Flies(c) ∨ Flies(d).

This is very different from the behavior of the CWA. Under similar
circumstances, because it is consistent with what is known that c is
normal, using the CWA we would add the literal ¬Ab(c), and by simi-
lar reasoning, ¬Ab(d), leading to inconsistency. Thus circumscription is
more cautious than the CWA in the assumptions it makes about “con-
troversial” individuals, like those denoted by c and d. However, circum-
scription is less cautious than the GCWA: The GCWA would not conclude
anything about either the denotation of c or d, whereas circumscription
is willing to conclude by default that one of them flies.

Another difference between circumscription and the CWA involves
quantified sentences. By using interpretations directly rather than adding
literals to the KB, circumscription works equally well with unnamed
individuals. For example, if the KB contains

∃x[Bird(x) ∧ (x �= chilly) ∧ (x �= tweety) ∧ InTree(x)],
then with circumscription we would conclude by default that this
unnamed individual flies:

∃x[Bird(x) ∧ (x �= chilly) ∧ (x �= tweety) ∧ InTree(x) ∧ Flies(x)].
The reason here is the same as before: In the minimal models there will
be a single abnormal individual, Chilly. This also carries over to unnamed
abnormal individuals. If our KB contains the assertion that

∃x[Bird(x) ∧ (x �= chilly) ∧ (x �= tweety) ∧ ¬Flies(x)],
then a model of the KB will be minimal if and only if there are exactly two
abnormal individuals: Chilly and the unnamed one. Thus, we conclude
by default that

∃x∀y[(Bird(y) ∧ ¬Flies(y)) ≡ (y = chilly ∨ y = x)].
Unlike the CWA and the GCWA, we do not need to name exceptions
explicitly to avoid inconsistency. Indeed, the issue of consistency for

11.3 Circumscription 219

circumscription is considerably more subtle than it was for the CWA,
and characterizing it precisely remains an open question.

11.3.2 The Circumscription Axiom
One of the conceptual advantages of the CWA is that, although it is a
form of non-monotonic reasoning, we can understand its effect in terms
of ordinary deductive reasoning over a KB that has been augmented by
certain assumptions. As we saw earlier, we cannot duplicate the effect of
circumscription by simply adding a set of negative literals to a KB.

We can, however, view the effect of circumscription in terms of ordi-
nary deductive reasoning from an augmented KB if we are willing to
use so-called second-order logic, that is, logic where we can quantify not
only over objects in the domain, but also over relations over the domain.
Without going into detail, it is worth observing that for any KB there is
a second-order sentence τ such that KB |=≤ α if and only if KB ∪ {τ } |= α

in second-order logic. What is required here of the sentence τ is that it
should restrict interpretations to be minimal in the ordering. That is, if
an interpretation
 is such that
|=KB, what we need (to get the corre-
spondence with |=≤) is that
|=τ if and only if there does not exist
′ <

such that
′ |= KB. The idea here (due to John McCarthy) is that instead
of talking about another interpretation
′, we could just as well have said
that a smaller extension for the Ab predicates that would also satisfy the
KB must not exist. This requires quantification over the extensions of Ab
predicates, and is what makes τ second-order.

11.3.3 Fixed and Variable Predicates
Although the default assumptions made by circumscription are usually
weaker than those of the CWA, there are cases where they appear too
strong. Suppose, for example, that we have the following KB:

∀x[Bird(x) ∧ ¬Ab(x) ⊃ Flies(x)],
Bird(tweety),
∀x[Penguin(x) ⊃ (Bird(x) ∧ ¬Flies(x))].

It then follows that ∀x[Penguin(x) ⊃ Ab(x)], that is, with respect to flying
anyway, penguins are abnormal birds.

The problem is this: To make default assumptions using circumscrip-
tion, we end up minimizing the set of abnormal individuals. For this KB,
we conclude that there are no abnormal individuals at all:

KB |=≤ ¬∃xAb(x).

220 Chapter 11 ■ Defaults

But this has the effect of also minimizing penguins. In the process of
wanting to derive the conclusion that Tweety flies, we end up concluding
not only that Tweety is not a penguin, which is perhaps reasonable, but
also that there are no penguins, which seems unreasonable:

KB |=≤ ¬∃xPenguin(x).

In our zeal to make things as normal as possible, we have ruled out
penguins. What would be much better in this case, it seems, is to be
able to conclude by default merely that penguins are the only abnormal
birds.

One solution that has been proposed is to redefine |=≤ so that in
looking at more normal worlds we do not in the process exclude the
possibility of exceptional classes like penguins. What we should say is
something like this: We can ignore a model of the KB if there is a sim-
ilar model with fewer abnormal individuals, but with exactly the same
penguins. That is, in the process of minimizing abnormality, we should
not be allowed to also minimize the set of penguins. We say that the
extension of Penguin remains fixed in the minimization. But it is not as if
all predicates other than Ab will remain fixed. In moving from a model

 to a lesser model
′ where Ab has a smaller extension, we are willing
to change the extension of Flies and indeed to conclude that Tweety flies.
We say that the extension of Flies is variable in the minimization.

More formally, we redefine ≤ with respect to a set of unary predi-
cates P (understood as the ones to be minimized) and a set of arbitrary
predicates Q (understood as the predicates that are fixed in the minimiza-
tion). Let
1 and
2 be as before. Then
1 ≤
2 if and only if for every
P ∈ P it is the case that I1[P] ⊆ I2[P], and for every Q ∈ Q it is the case
that I1[Q] = I2[Q]. The rest of the definition of |=≤ is as before. Taking
P = {Ab} and Q = {Penguin} amounts to saying that we want to minimize
the instances of Ab holding constant the instances of Penguin. The earlier
version of |=≤ was simply one where Q was empty.

Returning to the example bird KB, there will now be minimal models
where there are penguins: KB �|=≤ ¬∃xPenguin(x). In fact, a model of the
KB will be minimal if and only if its abnormal individuals are precisely
the penguins. Obviously the penguins must be abnormal. Conversely,
assume to the contrary that in interpretation
we have an abnormal indi-
vidual o who is not one of the penguins. Then construct
′ by moving o
out of the extension of Ab and, if it is in the extension of Bird, into the
extension of Flies. Clearly,
′ satisfies KB and
′ <
. So it follows that

KB |=≤ ∀x[(Bird(x) ∧ ¬Flies(x)) ≡ Penguin(x)].

Unfortunately, this version of circumscription still has some serious
problems. For one thing, our method of using circumscription requires

11.3 Circumscription 221

us to specify not only which predicates to minimize, but also which addi-
tional predicates to keep fixed: We need to be able to figure out somehow
beforehand that flying should be a variable predicate, for example, and it
is far from clear how.

More seriously, perhaps, KB �|=≤ Flies(tweety). The reason is this:
Consider a model of the KB where Tweety happens to be a penguin; we
can no longer find a lesser model where Tweety flies, because that would
mean changing the set of penguins, which must remain fixed. What we
do get is that

KB |=≤ ¬Penguin(tweety) ⊃ Flies(tweety).

So if we know that Tweety is not a penguin, as in

Canary(tweety), ∀x[Canary(x) ⊃ ¬Penguin(x)],

we then get the desired conclusion. But this is not derivable by default.
Even if we add something saying that birds are normally not penguins,
as in

∀x[Bird(x) ∧ ¬Ab2(x) ⊃ ¬Penguin(x)],

Tweety still does not fly, because we cannot change the set of penguins.
Various solutions to this problem have been proposed in the literature,
but none are completely satisfactory.

In fact, this sort of problem was already there in the background with
the earlier version of circumscription. For example, consider the KB we
had before with Tweety and Chilly, but this time without (tweety �= chilly).
Then, as with the penguins, we lose the assumption that Tweety flies
and only get

KB |=≤ (tweety �= chilly) ⊃ Flies(tweety).

The reason is that there is a model of the KB with a minimal num-
ber of abnormal birds where Tweety does not fly, namely, one where
Chilly and Tweety are the same bird.9 Putting Chilly aside, all it really
takes is the existence of a single abnormal bird: If the KB contains
∃x[Bird(x) ∧ ¬Flies(x)], then although we can assume by default that this
flightless bird is unique, we have not ruled out the possibility that Tweety
is that bird and we can no longer assume by default that Tweety flies.

9It would be nice here to be able to somehow conclude by default that any two named
constants denote distinct individuals. Unfortunately, it can be shown that this cannot be
done using a mechanism like circumscription (see Exercise 2).

222 Chapter 11 ■ Defaults

This means that there is a serious limitation in using circumscription
for default reasoning: We must ensure that any abnormal individual is
known to be distinct from the other individuals.

11.4 DEFAULT LOGIC

In the previous section, we introduced the idea of circumscription
as a generalization of the CWA: Instead of minimizing all predicates,
we minimize abnormality predicates. Of course, in the CWA section, we
looked at it differently: We thought of it as deductive reasoning from a
KB that had been enlarged by certain default assumptions, the negative
literals that are added to form KB+.

A generalization in a different direction then suggests itself: Instead of
adding to a KB all negative literals that are consistent with the KB, we
provide a mechanism for specifying explicitly which sentences should be
added to the KB when it is consistent to do so. For example, if Bird(t) is
entailed by the KB, we might want to add the default assumption Flies(t),
if it is consistent to do so. Or perhaps this should only be done in certain
contexts.

This is the intuition underlying default logic. A KB is now thought of
as a default theory consisting of two parts, a set F of first-order sentences
as usual, and a set D of default rules, which are specifications of what
assumptions can be made and when. The job of a default logic is then to
specify what the appropriate set of implicit beliefs should be, somehow
incorporating the facts in F ; as many default assumptions as we can,
given the default rules in D; and the logical entailments of both. As we
will see, defining these implicit beliefs is nontrivial: In some cases, there
will be more than one candidate set of sentences that could be regarded
as a reasonable set of beliefs (just as there could be multiple preferred
extensions in Chapter 10); in other cases, no set of sentences seems to
work properly.

11.4.1 Default Rules
Perhaps the most general form of default rule that has been examined
in the literature is due to Ray Reiter: It consists of three sentences:
a prerequisite α, a justification β, and a conclusion δ. The informal inter-
pretation of this triple is that δ should be believed if α is believed and it is
consistent to believe β. That is, if we have α and we do not have ¬β, then
we can assume δ. We will write such a rule as 〈 α : β / δ 〉.

A typical rule is 〈 Bird(tweety) : Flies(tweety) / Flies(tweety) 〉. This says
that if we know that Tweety is a bird, then we should assume that
Tweety flies if it is consistent to assume that Tweety flies. This type of

11.4 Default Logic 223

rule, where the justification and conclusion are the same, is called a
normal default rule and is by far the most common case. We will some-
times write such rules as Bird(tweety) ⇒ Flies(tweety). We call a default
theory all of whose rules are normal a normal default theory. As we will
see, there are cases where nonnormal defaults are useful.

Note that these rules are particular to Tweety. In general, we would
like rules that could apply to any bird. To do so, we allow a default rule
to use formulas with free variables. A rule like this should be understood
as an abbreviation for the set of all its instances (formed by replacing its
variables by ground terms). So, for example, 〈 Bird(x) : Flies(x) / Flies(x) 〉
stands for all rules of the form 〈 Bird(t) : Flies(t) / Flies(t) 〉, where t is any
ground term. This will allow us to conclude by default of any bird that
it flies without also forcing us to believe by default that all birds fly, a
useful distinction.

11.4.2 Default Extensions
Given a default theory KB = (F , D), what sentences ought to be believed?
We will call a set of sentences that constitute a reasonable set of beliefs
given a default theory an extension of the theory. In this subsection, we
present a simple and workable definition of extension; in the next, we
will argue that sometimes a more complex definition is called for.

For our purposes, a set of sentences E is an extension of a default
theory (F , D) if and only if for every sentence π ,

π ∈ E iff F ∪ {δ | 〈 α : β / δ 〉 ∈ D, α ∈ E ,¬β �∈ E} |= π .

Thus, a set of sentences is an extension if it is the set of all entailments
of F ∪ , where is a suitable set of assumptions. In this respect, the
definition of extension is similar to the definition of the CWA: We add
default assumptions to a set of basic facts. Here, the assumptions to be
added are those that are applicable to the extension E : An assumption is
applicable to an extension if and only if it is the conclusion of a default
rule whose prerequisite is in the extension and the negation of whose
justification is not. Note that we require α to be in E , not in F . This
has the effect of allowing the prerequisite to be believed as the result
of other default assumptions, and therefore of allowing default rules to
chain. Note also that this definition is not constructive: It does not tell us
how to find an E given F and D, or even if there is one or more than one
to be found. However, given F and D, the E is completely characterized
by its set of applicable assumptions, .

For example, suppose we have the following normal default theory:

F = {Bird(tweety), Bird(chilly),¬Flies(chilly)}
D = {Bird(x) ⇒ Flies(x)}.

224 Chapter 11 ■ Defaults

We wish to show that there is a unique extension to this default theory
characterized by the assumption Flies(tweety). To show this, we must first
establish that the entailments of F ∪ {Flies(tweety)}—call this set E—are
indeed an extension according to the definition. This means showing
that Flies(tweety) is the only assumption applicable to E : It is applica-
ble because E contains Bird(tweety) and does not contain ¬Flies(tweety).
Moreover, for no other t is Flies(t) applicable, because E contains Bird(t)
additionally only for t = chilly, for which E also contains ¬Flies(chilly).
So this E is indeed an extension. Observe that unlike circumscription,
we do not require Tweety and Chilly to be distinct to draw the default
conclusion.

But are there other extensions? Assume that some E ′ is also an exten-
sion for some applicable set of assumptions Flies(t1), . . . , Flies(tn). First
observe that no matter what Flies assumptions we make, we will never
be able to conclude that ¬Flies(tweety). Thus Flies(tweety) must be applica-
ble to E ′. However, we will not be able to conclude Bird(t) for any t other
than tweety or chilly. So Flies(tweety) is the only applicable assumption,
and therefore E ′ must again be the entailments of F ∪ {Flies(tweety)}.

In arguing that there was a unique extension, we made statements like,
“No matter what assumptions we make, we will never be able to con-
clude α.” Of course, if E is inconsistent we can conclude anything we
want. For example, if we could somehow add the assumption Flies(chilly),
then we could conclude Bird(george). It turns out that such contradictory
assumptions are never possible: An extension E of a default theory (F , D)

is inconsistent if and only if F is inconsistent.

11.4.3 Multiple Extensions
Now consider the following default theory:

F = {Republican(dick), Quaker(dick)}
D = {Republican(x) ⇒ ¬Pacifist(x), Quaker(x) ⇒ Pacifist(x)}.

Here, there are two defaults that are in conflict for Dick. There are,
correspondingly, two extensions:

1. E1 is characterized by the assumption Pacifist(dick).

2. E2 is characterized by the assumption ¬Pacifist(dick).

Both of these are extensions, because their assumption is applicable and
no other assumption (for any t other than dick) is. Moreover, there are no
other extensions: The empty set of assumptions does not give an extension,
because both Pacifist(dick) and ¬Pacifist(dick) would be applicable; for any

11.4 Default Logic 225

other potential extension, assumptions would be of the form Pacifist(t)
or ¬Pacifist(t), none of which are applicable for any t other than dick,
because we will never have the corresponding prerequisite Quaker(t) or
Republican(t) in E . Thus, E1 and E2 are the only extensions.

Thus, what default logic tells us here is that we may choose to assume
that Dick is a pacifist or that he is not a pacifist. On the basis of
what we have been told, either set of beliefs is reasonable. As in the
case of inheritance hierarchies in Chapter 10, there are two immediate
possibilities:

1. a skeptical reasoner will only believe those sentences that are
common to all extensions of the default theory;

2. a credulous reasoner will simply choose arbitrarily one of the
extensions of the default theory as the set of sentences to believe.

Arguments for and against each type of reasoning have been made.
Note that minimal entailment, in giving us what is true in all minimal
models, is much more like skeptical reasoning.

In some cases, the existence of multiple extensions is merely an indica-
tion that we have not said enough to make a reasonable decision. In the
example, we may want to say that the default regarding Quakers should
only apply to individuals not known to be politically active. Assuming
we have the fact

∀x[Republican(x) ⊃ Political(x)],
we can replace the original rule with Quaker(x) as the prerequisite by
a nonnormal one like

Quaker(x) : [Pacifist(x) ∧ ¬Political(x)]
Pacifist(x).

Then, for ordinary Republicans and ordinary Quakers, the assumption
would be as before; for Quaker Republicans like Dick, we would assume
(unequivocally) that they were not pacifists. Note that if we merely say
that Republicans are politically active by default, we would again be left
with two extensions.

This idea of arbitrating among conflicting default rules is crucial when
it comes to dealing with concept hierarchies. For example, suppose we
have a KB that contains ∀x[Penguin(x) ⊃ Birds(x)], together with two
default rules:

Bird(x) ⇒ Flies(x)
Penguin(x) ⇒ ¬Flies(x).

226 Chapter 11 ■ Defaults

If the KB also contains Penguin(chilly), we get two extensions: one
where Chilly is assumed to fly and one where Chilly is assumed not to fly.
Unlike the Quaker Republican example, however, what ought to have
happened here is clear: The default that penguins do not fly should preempt
the more general default that birds fly. In other words, we only want one
extension, where Chilly is assumed not to fly. To get this in default logic,
it is necessary to encode the penguin case as part of the justification in
a nonnormal default for birds:

Bird(tweety) : [Flies(tweety) ∧ ¬Penguin(tweety)]
Flies(tweety).

This is not a very satisfactory solution, because there may be a very large
number of interacting defaults to consider:

Bird(tweety) :
[Flies(tweety) ∧ ¬Penguin(tweety) ∧ ¬Emu(tweety)

∧ ¬Ostrich(tweety) ∧ ¬Dead(tweety) ∧ . . .]
Flies(tweety).

It is a severe limitation of default logic and indeed of all the default
formalisms considered in this chapter that, unlike the inheritance
formalism of Chapter 10, they do not automatically prefer the most
specific defaults in cases like this.

Now consider the following example. Suppose we have a default
theory (F , D), where F is empty and D contains a single nonnormal
default 〈 TRUE : p /¬p 〉, where p is any atomic sentence. This default
theory has no extensions: If E were an extension, then ¬p ∈ E if and only
if ¬p is an applicable assumption if and only if ¬p �∈ E . This means that
with this default rule, there is no reasonable set of beliefs to hold. Having
no extension is very different from having a single but inconsistent one,
such as when F is inconsistent. A skeptical believer might go ahead and
believe all sentences (because every sentence is trivially common to all the
extensions), but a credulous believer is stuck (because there are none).
Fortunately, this situation does not arise with normal defaults, as it can
be proven that every normal default theory has at least one extension.

An even more serious problem is shown in the following example.
Suppose we have a default theory (F , D), where F is empty and D con-
tains a normal default p ⇒ p, where again p is atomic. This theory has
two extensions, one of which is the set of all valid sentences and the
other of which is the set E consisting of the entailments of p. (The assump-
tion p is applicable here, because p ∈ E and¬p �∈ E .) However, on intuitive
grounds, this second extension is quite inappropriate. The default rule
says that p can be assumed if p is believed. This really should not allow
us to conclude by default that p is true any more than a fact saying that
p is true if p is true would. It would be much better to end up with a single

11.5 Autoepistemic Logic 227

extension consisting of just the valid sentences, because there is no good
reason to believe p by default.

One way to resolve this problem is to rule out any extension for which
a proper subset is also an extension. This works for this example, but fails
on other examples. A more complex definition of extension, due to Ray
Reiter, appears to handle all such anomalies: Let (F , D) be any default
theory. For any set S, let (S) be the least set containing F , closed under
entailment, and satisfying the following:

If 〈 α : β / δ 〉 ∈ D, α ∈ (S), ¬β �∈ S, then δ ∈ (S).

Then a set E is a grounded extension of (F , D) if and only if E = (E).
This definition is considerably more complex to work with than the one
we have considered, but does have some desirable properties, including
handling the example correctly and agreeing with the simpler definition
on all of the earlier examples.

We will not pursue this version in any more detail except to observe
one simple feature: In the definition of (S), we test if ¬β �∈ S, rather
than ¬β �∈ (S). Had we gone with the latter, the definition of (S) would
have been this: the least set containing F , closed under entailment, and
containing all of its applicable assumptions. Except for the part about
“least set,” this is precisely our earlier definition of extension. So this very
small change to how justifications are used in the definition of extension
ends up making all the difference.

11.5 AUTOEPISTEMIC LOGIC

One advantage circumscription has over default logic is that defaults end
up as ordinary sentences in the language (using abnormality predicates).
In default logic, although we can reason with defaults, we cannot reason
about them. For instance, suppose we have the default 〈 α : β / δ 〉. It would
be nice to say that we also implicitly have the defaults 〈 (α∧α′) : β / δ 〉 and
〈 α : β / (δ ∨ δ′) 〉. Similarly, we might want to say that we also have the
“contrapositive” default 〈 ¬δ : β /¬α 〉. But these questions cannot even
be posed in default logic because, despite its name, it is not a logic of
defaults at all, as there is no notion of entailment among defaults. On
the other hand, default logic deals more directly with what it is consis-
tent to assume, whereas circumscription forces us to handle defaults in
terms of abnormalities. The consistency in default logic is, of course,
relative to what is currently believed. This suggests another approach to
default reasoning where, like circumscription, defaults are represented
as sentences, but like default logic, these sentences talk about what it is
consistent to assume.

228 Chapter 11 ■ Defaults

Roughly speaking, we will represent the default about birds, for
example, by

Any bird that can be consistently believed to fly does fly.

Given that beliefs (as far as we are concerned) are closed under entailment,
then a sentence can be consistently believed if and only if its negation is
not believed. So we can restate the default as

Any bird not believed to be flightless flies.

To encode defaults like these as sentences in a logic, we extend the FOL
language to talk about belief directly. In particular, we will assume that
for every formula α, there is another formula Bα to be understood infor-
mally as saying “α is believed to be true.” The B should be thought of as
a new unary connective (like negation). Defaults, then, are represented
by sentences like

∀x[Bird(x) ∧ ¬B¬Flies(x) ⊃ Flies(x)].

For this to work, it must be the case that saying that a bird is believed to
be flightless is not the same as saying that the bird is flightless. Suppose,
for example, that we know that either bird a or bird b is flightless, but we
do not know which.10 In this case, we know that one of them is flight-
less, but neither of them is believed to be flightless. Because we imagine
reasoning using sentences like these, we will be reasoning about birds, of
course, but also about what we believe about birds. The fact that this is a
logic about our own beliefs is why it is called autoepistemic logic.

11.5.1 Stable Sets and Expansions
As usual, our primary concern is to determine a reasonable set of beliefs
in the presence of defaults. With autoepistemic logic, the question is
the following: Given a KB that contains sentences using the B operator,
what is a reasonable set of beliefs to hold? To answer this question, we
begin by examining some minimal properties we expect any set of beliefs
E to satisfy. We call a set E stable if and only if it satisfies these three
properties:

1. Closure under entailment: if E |= α, then α ∈ E .

2. Positive introspection: if α ∈ E , then Bα ∈ E .

3. Negative introspection: if α �∈ E , then ¬Bα ∈ E .

10As we have been doing throughout the book, we use “know” and “believe” interchangeably.
Unless otherwise indicated, “believe” is what is intended, and “know” is used for stylistic
variety.

11.5 Autoepistemic Logic 229

So first, we want E to be closed under entailment. Because we have not yet
defined entailment for a language with B operators, we take this simply
to mean ordinary logical entailment, where we treat

∀x[Bird(x) ∧ ¬B¬Flies(x) ⊃ Flies(x)]

as if it were something like

∀x[Bird(x) ∧ ¬Q(x) ⊃ Flies(x)]

where Q is a new predicate symbol.
The other two properties of a stable set deal with the B operator. They

ensure that if α is believed then so is Bα, and if α is not believed then
¬Bα is believed. These are called introspection constraints, because they
deal with beliefs about beliefs.

Given a KB, there will be many stable sets E that contain it. In decid-
ing what sentences to believe, we want a stable set that contains the
entailments of the KB and the appropriate introspective beliefs, but
nothing else. This is called a stable expansion of the KB and its formal
definition, due to Robert Moore, is this: A set E is a stable expansion of
KB if and only if for every sentence π it is the case that

π ∈ E iff KB ∪ {Bα |α ∈ E} ∪ {¬Bα |α �∈ E} |= π .

This is a familiar pattern: The implicit beliefs E are those sentences
that are entailed by KB ∪ , where is a suitable set of assumptions.
In this case, the assumptions are those arising from the introspection
constraints.

To see how this leads to default reasoning, suppose we a have a KB that
consists of the following:

Bird(chilly), Bird(tweety), (tweety �= chilly),¬Flies(chilly),
∀x[Bird(x) ∧ ¬B¬Flies(x) ⊃ Flies(x)].

Let’s consider the consequences of this KB informally. First, we see that
there is no way to conclude ¬Flies(tweety): ¬Flies(tweety) is not explicitly
in the knowledge base, and there is no rule that would allow us to con-
clude it, even by default (the conclusion of our one rule is of the form
Flies(x)). This means that if E is a stable expansion of the KB, it will not
include this fact. But because of our negative introspection property, a
stable expansion that did not include the fact ¬Flies(tweety) would include
the assumption, ¬B¬Flies(tweety).11 Now, given this assumption, and the

11This really is an assumption, because ¬B¬Flies(tweety) does not follow from what is in the
KB; the KB does not specify one way or another.

230 Chapter 11 ■ Defaults

fact that ∀x[Bird(x) ∧ ¬B¬Flies(x) ⊃ Flies(x)] is in the KB, we conclude
Flies(tweety) using ordinary logical entailment. In autoepistemic logic,
default assumptions are typically of the form¬Bα, and new default beliefs
about the world, like Flies(tweety), are deduced from these assumptions.

11.5.2 Enumerating Stable Expansions
The previous section illustrated informally how the notion of a stable
expansion of a knowledge base can account for default reasoning of a cer-
tain sort. To be more precise, and show that the KB does in fact have a
stable expansion containing Flies(tweety) and that it is unique, we will
consider the simpler propositional version of the definition and show
how to enumerate stable expansions. In the propositional case, we replace
the sentence,

∀x[Bird(x) ∧ ¬B¬Flies(x) ⊃ Flies(x)]

by all of its instances, as we did with default rules in the previous section.
Let us call a sentence objective if it does not contain any B operators.

The first thing to observe is that in the propositional case a stable expan-
sion is completely determined by its objective subset; the nonobjective
part can be reconstructed using the two introspection constraints and
logical entailment.

So imagine that we have a KB that contains objective and nonobjec-
tive sentences, where Bα1, Bα2, . . . , Bαn are all the B formulas mentioned.
Assume for simplicity that all the αi are objective. If we knew which of
the Bαi formulas were true in a stable expansion, we could calculate the
objective part of that stable expansion using ordinary logical reasoning.
The procedure we will use is to guess nondeterministically which of the
Bαi formulas are true, and then check whether the result makes sense
as the objective part of a stable expansion: If we guessed that Bαi was
true, we need to confirm that αi is entailed; if we guessed that Bαi was
false, we need to confirm that αi is not entailed. A more precise version of
this procedure is shown in Figure 11.1. Observe that using this procedure
we can generate at most 2n stable expansions.

To see this procedure in action, consider a propositional version of
the flying bird example. In this case, our KB is

Bird(chilly), Bird(tweety),¬Flies(chilly),
[Bird(tweety) ∧ ¬B¬Flies(tweety) ⊃ Flies(tweety)],
[Bird(chilly) ∧ ¬B¬Flies(chilly) ⊃ Flies(chilly)].

There are two subformulas with B operators, B¬Flies(tweety) and
B¬Flies(chilly), and so at most 22 = 4 stable expansions. For each
constant c, if B¬Flies(c) is true, then [Bird(c) ∧ ¬B¬Flies(c) ⊃ Flies(c)]

11.5 Autoepistemic Logic 231

input: a propositional KB, containing subformulas Bα1, Bα2, . . . , Bαn

output: the objective part of a stable expansion of the KB

1. Replace each Bαi in KB by either TRUE or ¬TRUE.

2. Simplify, and call the resulting objective knowledge base KB◦.

3. If Bαi was replaced by TRUE, confirm that KB◦ |= αi; if Bαi was
replaced by ¬TRUE, confirm that KB◦ �|= αi.

4. If the condition is confirmed for every Bαi, then return KB◦, whose
entailments form the objective part of a stable expansion.

■ FIGURE 11.1

A Procedure to Generate Stable Expansions

simplifies to TRUE; if B¬Flies(c) is false, then the sentence simplifies to
[Bird(c) ⊃ Flies(c)], which will reduce to Flies(c), because the KB contains
Bird(c). So, our four cases are these:

1. B¬Flies(tweety) true and B¬Flies(chilly) true, for which KB◦ is

Bird(tweety), Bird(chilly),¬Flies(chilly).

This is the case because the two implications each simplify to
TRUE. Then, following Step 3, for each of the two Bαi formulas,
which were replaced by TRUE, we need to confirm that the αi are
entailed by KB◦. KB◦ does not entail ¬Flies(tweety). As a result, this
is not a stable expansion.

2. B¬Flies(tweety) true and B¬Flies(chilly) false, for which KB◦ is

Bird(tweety), Bird(chilly),¬Flies(chilly), Flies(chilly).

Following Step 3, we need to confirm that KB◦ entails ¬Flies(tweety)
and that it does not entail ¬Flies(chilly). Because KB◦ entails
¬Flies(chilly), this is not a stable expansion (actually, this KB fails
on both counts).

3. B¬Flies(tweety) false and B¬Flies(chilly) true, for which KB◦ is

Bird(tweety), Bird(chilly),¬Flies(chilly), Flies(tweety).

Step 3 tells us to confirm that KB◦ entails ¬Flies(chilly) and does not
entail ¬Flies(tweety). In this case, we succeed on both counts, and
this characterizes a stable expansion.

232 Chapter 11 ■ Defaults

4. Finally, B¬Flies(tweety) false and B¬Flies(chilly) false, for which
KB◦ is

Bird(tweety), Bird(chilly),¬Flies(chilly), Flies(tweety), Flies(chilly).

Because KB◦ entails ¬Flies(chilly), this is not a stable expansion.

Thus, this KB has a unique stable expansion, and in this expansion,
Tweety flies.

As another example, we can use the procedure to show that the KB
consisting of the sentence (¬Bp ⊃ p) has no stable expansion: If Bp is
false, then the KB◦ is p, which entails p; conversely, if Bp is true, then
KB◦ is TRUE, which does not entail p. So there is no stable expansion.

Similarly, we can use the procedure to show that the KB consisting of
the sentences (¬Bp ⊃ q) and (¬Bq ⊃ p) has exactly two stable expansions:
If Bp is true and Bq false, the KB◦ is p, which entails p and does not entail
q, and so this is the first stable expansion; symmetrically, the other stable
expansion is when Bp is false and Bq true; if both are true, the KB◦ is
TRUE, which neither entails p nor q, and if both are false, the KB◦ is
(p ∧ q), which entails both.

It is worth noting that as with default logic, in some cases this def-
inition of stable expansion may not be strong enough. Consider, for
example, a KB consisting of a single sentence, (Bp ⊃ p). Using the proce-
dure, we can see that there are two stable expansions: one that contains
p and one that does not. Intuitively it seems like the first expansion is
inappropriate: The only possible justification for believing p is Bp itself.
As in the default logic case, it seems that the assumption is not properly
grounded.

A new definition of stable expansion (due to Kurt Konolige) has
been proposed to deal with this problem: A set of sentences is a
minimal stable expansion if and only if it is a stable expansion that is
minimal in its objective sentences. In the earlier example, only the
stable expansion not containing p would be a minimal stable expan-
sion. However, further examples suggest that an even stronger definition
may be required, resulting in an exact correspondence between stable
expansions and the grounded extensions of default logic.

11.6 CONCLUSION

In this chapter, we have examined four different logical formalisms for
default reasoning. Although each of them does the job in many cases, they
each have drawbacks of one sort or another. Getting a logical account
of default reasoning that is simple, broadly applicable, and intuitively

11.8 Exercises 233

correct remains an open problem, unfortunately. In fact, because so
much of what we know involves default reasoning, it is perhaps the open
problem in the whole area of knowledge representation. Not surprisingly,
much of the theoretical research over the last twenty years has been on
this topic.

11.7 BIBLIOGRAPHIC NOTES

Default reasoning and, in general, nonmonotonic reasoning are cov-
ered in most textbooks on AI. Books devoted to nonmonotonic rea-
soning include those by Antoniou [13], Łukaszewicz [261], Marek and
Truszczyński [267], and Brewka et al. [57]. Besnard [28] concentrates
on default logic. Ginsberg edited an early collection of readings in
nonmonotonic reasoning [157]. For an early overview, see Reiter [344].

The closed-world assumption is due to Reiter [345], as were the
domain closure assumption and unique names assumption [341]. The
generalized closed-world assumption was suggested by Minker [290].
Circumscription and minimal entailment were introduced by McCarthy
[278, 279] (see also the work of Lifschitz [249, 250, 253] and McCarthy
[280]). Default logic was developed by Reiter [342, 343]. An alterna-
tive formulation is given by Poole [330]. This idea was extended by
Brewka [55] (see also [56]). Autoepistemic logic was introduced by Moore
[295, 296, 298]. Konolige [222] and Marek and Truszczyński [266] relate
autoepistemic logic to default logic.

A semantics for negation as failure was proposed by Clark [70].
The work by Kraus, Lehmann, and Magidor investigates the notion of
nonmonotonic consequence relations [227]. This type of work is also
considered by Schlecta [367]. Makinson [262] relates nonmonotonic
logics to classical logics.

11.8 EXERCISES

1. Although the inheritance networks of Chapter 10 are in a sense
much weaker than the other formalisms considered in this chapter
for default reasoning, they use default assertions more fully.
Consider the following assertions:

Canadians are typically not francophones.

All Québecois are Canadians.

Québecois are typically francophones.

Robert is a Québecois.

234 Chapter 11 ■ Defaults

Here is a case where it seems plausible to conclude by default that
Robert is a francophone.

(a) Represent these assertions in an inheritance network (treating
the second one as defeasible), and argue that it unambiguously
supports the conclusion that Robert is a francophone.

(b) Represent them in first-order logic using two abnormality predi-
cates, one for Canadians and one for Québecois, and argue that,
as it stands, minimizing abnormality would not be sufficient to
conclude that Robert is a francophone.

(c) Show that minimizing abnormality will work if we add the
assertion

All Québecois are abnormal Canadians,

but will not work if we only add

Québecois are typically abnormal Canadians.

(d) Repeat the exercise in default logic: Represent the assertions as
two facts and two normal default rules, and argue that the result
has two extensions. Eliminate the ambiguity using a nonnormal
default rule. You may use a variable-free version of the prob-
lem where the letters q, c, and f stand for the propositions that
Robert is a Québecois, Canadian, and francophone, respectively,
and where defaults are considered only with respect to Robert.

(e) Write a variable-free version of the assertions in autoepistemic
logic, and show that the procedure described in the text gener-
ates two stable expansions. How can the unwanted expansion be
eliminated?

2. Consider the Chilly and Tweety KB presented in the text.

(a) We showed that for this KB, if we write the default that birds
fly using an abnormality predicate, the resulting KB minimally
entails that Tweety flies. Prove that without (chilly �= tweety), the
conclusion no longer follows.

(b) Suppose that for any two constants c and c′, we hoped to conclude
by default that they were unequal. Imagine that we have a binary
predicate Abe and an FOL sentence

∀x∀y (¬Abe(x, y) ⊃ (x �= y)).

Would using minimal entailment work? Explain.

11.8 Exercises 235

3. Consider the following proposal for default reasoning. As with min-
imal entailment, we begin with a KB that uses one or more Ab
predicates. Then, instead of asking what is entailed by the KB, we
ask what is entailed by KB′, where

KB′ = KB ∪ {¬Ab(t) | KB �|= Ab(t)}.

Compare this form of default reasoning to minimal entailment.
Show an example where the two methods disagree on some default
conclusions. State a sufficient condition for them to agree.

4. This question concerns the interaction between defaults and knowl-
edge that is disjunctive. Starting with autoepistemic logic, there are
different ways one might represent a default like “Birds fly.” The first
way, as in the text, is what we might call a strong default:

∀x(Bird(x) ∧ ¬B¬Flies(x) ⊃ Flies(x)).

Another way is what we might call a weak default:

∀x(BBird(x) ∧ ¬B¬Flies(x) ⊃ Flies(x)).

In this question, we will work with the following KB:

Bird(a), Bird(b), (Bird(c) ∨ Bird(d)), ¬Flies(b),

where we assume that all names denote distinct individuals.

(a) Propositionalize and show that the strong and weak defaults lead
to different conclusions about flying ability.

(b) Consider the following version of the default:

∀x(BBird(x) ∧ ¬B¬Flies(x) ⊃ BFlies(x)).

Show that this version does not lead to reasonable conclusions.

(c) Now consider using default logic and circumscription to represent
the default. Show that one of them behaves more like the strong
default, while the other is more like the weak one.

(d) Consider the following representation of the default in default
logic:

〈TRUE ⇒ [Bird(x) ⊃ Flies(x)]〉.

Discuss how this representation handles disjunctive knowledge.

This Page Intentionally Left Blank

C H A P T E R 12

VAGUENESS, UNCERTAINTY, AND

DEGREES OF BELIEF

■

■

■

In earlier chapters, we learned how precise logical statements about the
world, in many different forms, can be useful for capturing knowledge
and applying it. However, when we try to emulate the more common-
sensical kinds of reasoning that people do, we find that the crisp pre-
cision of classical logics may fall short of what we want. As we saw
in Chapter 11, trying to represent what is known about a typical bird
stretches our logical forms in one direction—not every bird has all of
what we usually think of as the characteristics of birds in general. But
there are additional needs in Artificial Intelligence that ask us to extend
our representations in other ways.

Sometimes it is not appropriate to express a general statement with
the totality of a logical universal. In other words, not every generality
has the force of “Ps are always, purely, exactly, and unarguably Qs.” As
we have seen, there are circumstances where Ps might usually (or per-
haps only rarely) be Qs; for example, birds usually fly, but not always. In
other cases, Ps might be fair, but not excellent examples of Qs; we might,
for example, prefer to say that someone is barely competent, or some-
what tall. In situations where we use physical sensors, we might also have
some unavoidable imprecision, as with, for example, a thermometer that
is only accurate to a certain precision.

These cases show that in many situations it may be hard to gauge
something precisely or categorically. In addition to the intrinsic imper-
fection of statements like those just mentioned, the way that we generate
conclusions from data may also be imprecise. For example, if we learn
a fact or a rule from some other person, we may need to discount for that

237

238 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

person’s untrustworthiness, fallibility, or past inaccuracies. Similarly, we
may only understand a physical system to a modest level of depth, and
not be able to confidently apply rules in 100% of the cases; such is the
case with many types of medical knowledge.

In cases like these, the use of equivocal information and imperfect
rules can yield conclusions that “follow” from premises, but not in the
standard logical sense we have been investigating so far. The “conclu-
sions” that we come to may not be categorical: We may not be confident
in an answer, or only be able to come within some error range of the true
answer, or only really be able to say that something is “pretty good.” As
a result of this fairly common need to equivocate on specific data and
general rules, we need to find ways to stretch the types of knowledge rep-
resentation techniques we have investigated so far in this book. In this
chapter, we look at some of the more common ways to expand our core
representations to include frequencies, impurity of examples, doubt, and
other modes of noncategorical description.

12.1 NONCATEGORICAL REASONING

A natural first reaction to the need to expand our interpretation of what
follows from some premises would be to suggest using probabilities.
A probability is a number expressing the chance that a proposition will be
true or that an event will occur. The introduction of numbers—especially
real numbers—would seem to be the key to avoiding the categorical nature
of binary logical values. Given the introduction of the notion of “less than
100%” into the knowledge representation mix, we can easily see a way to
go from “all birds fly” to “95% of birds fly.”

But as appealing as probabilities are, they won’t fit the bill in all ways.
Certainly there will be repeatable sequences of events for which we will
want to represent the likelihood of the next outcome—probabilities work
well for sequences like coin tosses—but we also need to capture other
senses of “less than 100%.” For example, when we talk about the chances
that the Blue Jays will win the World Series, or that Tweety will fly, we
are not talking really about the laws of chance (as we would in assess-
ing the probability of “heads” in tossing a fair coin), but rather about the
development of opinions based on evidence and an inference about the
possibility of the occurrence of an individual event or the property of a
specific bird. Finally, in a somewhat different vein, to speak of someone
being “fairly tall” doesn’t feel like the use of a probability at all.

So let us take a moment to sort out some different ways to loosen
the categorical grip of standard logics. We start by looking at a typi-
cal logical sentence of the form ∀xP(x), as in “Everyone in this room is
married,” or “Everyone in my class is tall.” We can distinguish at least

12.2 Objective Probability 239

three different types of modification we might try in order to make this
logical structure more flexible:

1. We can relax the strength of the quantifier. Instead of “for all x,”
we might want to say “for most x” or “for 95% of x,” as in “95%
of the people in this room are married.” This yields an assertion
about frequency—a statistical interpretation. We say that our use
of probability in such sentences is objective, because it is about the
world, pure and simple, and not subject to interpretation or degrees
of confidence.

2. We could relax the applicability of the predicate. Instead of only strict
assertions like “Everyone in my class is (absolutely) tall,” we could
have statements like “Everyone in my class is moderately tall.” This
yields the notion of a predicate like “tall” that applies to an individual
to a greater or lesser extent. We call these vague predicates. Note that
with the relaxation of the predicate, a person might be considered
simultaneously to be both tall (strongly) and short (weakly).

3. We could relax our degree of belief in the sentence as a whole. Instead
of saying, “Everyone in the room is married,” we might say, “I
believe that everyone in the room is married, but I am not very
sure.” This lack of confidence can come from many sources, but
it does not reflect a probabilistic concern (either everyone is mar-
ried or they’re not) or a less-than-categorical predicate (a person is
either fully married or not married at all). Here we are dealing with
uncertain knowledge; when we can quantify our lack of certainty,
we are using a notion of subjective probability, because it reflects
some individual’s personal degree of belief, and not the objective
frequency of an event.

We now look at objective probabilities, subjective probabilities, and vague
predicates, in turn. This separation of concerns allows us to better deter-
mine appropriate representational mechanisms for less-than-categorical
statements. However, nothing says that these three representational
approaches cannot work together: We may need to represent statements
like “I am pretty sure that most of the people in the room are fairly short.”
Also, many of the concepts we introduce (like the basic postulates of
probability) will connect all three approaches.

12.2 OBJECTIVE PROBABILITY

Objective probabilities are about frequency. Even though we like to talk
in terms of the probability or chance of a single event happening, for

240 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

example, whether the next card I am dealt will be the ace of spades, or
whether tomorrow will be rainy, the “chance of rain” we speak of actually
refers to the percentage of time that a rain event will happen in the long
run, when the conditions are exactly the same as they are now. In frequen-
tist terms, the “chance of x” is really the percentage of times x is expected
to happen out of a sequence of many events, when the basic process is
repeated over and over, each event is independent of those that have gone
before, and the conditions each time are exactly the same. As a result, the
notion of objective probability, or chance of something, is best applied to
processes like coin flipping and card drawing. Weather forecasting draws
on the fact that the conditions today are similar enough to the conditions
on prior days to help us decide how to place our bets—whether or not to
carry an umbrella or go ahead with a planned picnic.

The kind of probability that deals with factual frequencies is called
objective because it does not depend on who is assessing the probability.
(In Section 12.3, we will talk about subjective probabilities, which deal
with degrees of belief.) Because this is a statistical view, it does not directly
support the assignment of a belief about a random event that is not part
of any obvious repeatable sequence.

12.2.1 The Basic Postulates
Technically, a probability is a number between 0 and 1 (inclusive) rep-
resenting the frequency of an event (e.g., a coin’s landing on “heads”
two times in a row) in a large enough space of random samples (e.g., a
long sequence of coin flips). An event with probability 1 is considered
to always happen, and one with probability 0 to never happen. More
formally, we begin with a universal set U of all possible occurrences,
for example, the result of a large set of coin flips. An event a is under-
stood to be any subset of U. A probability measure Pr is a function from
events to numbers in the interval [0, 1] satisfying the following two basic
postulates:

1. Pr(U) = 1.

2. If a1, . . . , an are disjoint events, then
Pr(a1 ∪ · · · ∪ an) = Pr(a1)+ · · · + Pr(an).

It follows immediately from these two postulates that

Pr(a) = 1− Pr(a),

and hence that

Pr({}) = 0.

12.2 Objective Probability 241

It also follows (less obviously) from these that for any two events a and b,

Pr(a ∪ b) = Pr(a)+ Pr(b)− Pr(a ∩ b).

Another useful consequence is the following:

If b1, b2, . . . , bn are disjoint events and exhaust all the possibilities, that
is, if (bi ∩ bj) = {} for i �= j, and (b1 ∪ · · · ∪ bn) = U, then

Pr(a) = Pr(a ∩ b1)+ · · · + Pr(a ∩ bn).

When thinking about probability, it is sometimes helpful to think in
terms of a very simple interpretation of Pr : We imagine that U is a finite
set of some sort and that Pr(a) is the number of elements in a divided by
the size of U, in other words, the proportion of elements of U that are also
in a. It is easy to confirm that this particular set-theoretic interpretation
of Pr satisfies the two basic postulates stated earlier, and hence all the
other properties as well.

12.2.2 Conditional Probability and Independence
A key idea in probability theory is conditioning. The probability of one
event may depend on its interaction with others. We write a conditional
probability with a vertical bar (“|”) between the event in question and
the conditioning event; for example, Pr(a|b) means the probability of a,
given that b has occurred. In terms of our simple finite set interpretation,
whereas Pr(a) means the proportion of elements that are in a among all
the elements of U, Pr(a|b) means the proportion of elements that are in a
among the elements of b. This is defined more formally by the following:1

Pr(a|b)
def= Pr(a ∩ b)

Pr(b)
.

Note that we cannot predict in general the value of Pr(a ∩ b) given the
values of Pr(a) and Pr(b). In other words, in terms of our simple set-
theoretic interpretation, we cannot predict the size of (a ∩ b) given only
the sizes of a and b.

It does follow immediately from the definition of conditioning that

Pr(a ∩ b) = Pr(a|b)× Pr(b),

1This conditional probability is considered to be undefined if b has zero probability.

242 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

and more generally, we have the following chain rule:

Pr(a1 ∩ · · · ∩ an) = Pr(a1 | a2 ∩ · · · ∩ an)×
Pr(a2 | a3 ∩ · · · ∩ an) × · · · × Pr(an−1 | an) × Pr(an).

We also get conditional versions of the properties noted earlier, such as

Pr(a|b) = 1− Pr(a|b),

and the following:

If b1, b2, . . . , bn are disjoint events and exhaust all the possibilities, then

Pr(a|c) = Pr(a ∩ b1|c)+ · · · + Pr(a ∩ bn|c).

A very useful rule, called Bayes’ rule, uses the definition of conditional
probability to relate the probability of a given b to the probability of b
given a:

Pr(a|b) = Pr(a)× Pr(b|a)
Pr(b)

.

Imagine, for example, that a is a disease and b is a symptom, and we wish
to know the probability of someone having the disease given that they
exhibit the symptom. Although it may be hard to estimate directly the
frequency with which the symptom indicates the disease, it may be much
easier to provide the numbers on the right-hand side of the equation,
that is, the unconditional (or a priori) probabilities of the disease and
of the symptom in the general population, and the probability that the
symptom will appear given that the disease is present. We will find Bayes’
rule especially helpful when we consider subjective probabilities.

Finally, we say that an event a is conditionally independent of event b if
b does not affect the probability of a, that is, if

Pr(a|b) = Pr(a).

This says that the chance of getting event a is unaffected by whether or
not event b has occurred. In terms of our simple set-theoretic interpreta-
tion, a is conditionally independent of b if the proportion of a elements
within set b is the same as the proportion of a elements in the general
population U. It follows from the definition that event a is independent of
b if and only if

Pr(a ∩ b) = Pr(a)× Pr(b),

12.3 Subjective Probability 243

if and only if b is independent of a. So the relation of conditional indepen-
dence is symmetric. We also say that a and b are conditionally independent
given c if

Pr(a|b ∩ c) = Pr(a|c).

Observe that when we are trying to assess the likelihood of some event a
given everything we know, it will not be sufficient to know only some of
the conditional probabilities regarding a. For example, it does not help to
know the value of Pr(a|c) when we want to calculate Pr(a|b ∩ c), because
the probability of a given both b and c is unrelated to the probability of a
given just c, unless a is known to be independent from b given c.

12.3 SUBJECTIVE PROBABILITY

As proposed in Section 12.1, an agent’s subjective degree of confidence
or certainty in a sentence is separable from and indeed orthogonal to the
propositional content of the sentence itself. Regardless of how vague or
categorical a sentence may be, the degree of belief in it can vary. We
might be absolutely certain, for example, that Bill is quite tall; similarly,
we might only suspect that Bill is married.

Degrees of beliefs of this sort are often derived from observations
about groups of things in the world. We may be confident that it will rain
today because of the statistical observation about similar-looking days in
the past. Moving from statistics to graded beliefs about individuals thus
seems similar to the move we make from general facts about the world to
defaults. We may conclude that Tweety the bird flies based on a belief that
birds generally fly, but default conclusions tend to be all or nothing: We
conclude that Tweety flies or we do not. With subjective beliefs, we are
expressing levels of confidence rather than all-or-nothing conclusions.

Because degrees of belief often derive from statistical considerations,
they are usually referred to as subjective probabilities. Subjective proba-
bilities and their computations work mechanically like objective ones, but
are used in a different way. We work with them typically in seeing how
evidence combines to change our confidence in a belief about the world,
rather than to simply derive new conclusions.

In the world of subjective probability, we define two types of probabil-
ity relative to drawing a conclusion. The prior probability of a sentence α

involves the prior state of information or background knowledge (which
we indicate by β): Pr(α|β). For example, suppose we know that .2% of
the general population has hepatitis. Given just this, our degree of belief
that some randomly chosen individual, John, has hepatitis is .002. This
would be the subjective probability prior to any specific evidence to con-
sider about John. A posterior probability is derived when new evidence

244 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

is taken into account: Pr(α|β ∧ γ), where γ is the new evidence. If we
take into account evidence that John is jaundiced, for example, we may
conclude that the posterior probability of John’s having hepatitis, given
his symptoms and the prior probability, is .65. A key issue then, is how
we combine evidence from various sources to reevaluate our beliefs.

12.3.1 From Statistics to Belief
As we have pointed out, there is a basic difference between statistical
information like “the probability that an adult male is married is .43”
and a graded belief about whether a particular individual is married.
Intuitively, it ought to be reasonable to try to derive beliefs from sta-
tistical information. The traditional approach to doing this is to find
a reference class for which we have statistical information, and use the
statistics about the class to compute an appropriate degree of belief for
the individual. A reference class would be a general class into which
the individual in question would fit and information about which would
comfortably seem to apply.

For example, imagine trying to assign a degree of belief to the propo-
sition “Eric is tall,” where Eric is an American male. If all we knew was
this,

A 20% of American males are tall,

we might be inclined to assign a value of .2 to our belief about Eric’s
height. This move from statistics to belief is usually referred to as direct
inference.

But there is a problem with such a simpleminded technique. Individ-
uals will in general belong to many classes. For example, we might know
that Eric is from California, and that

B 32% of Californian males are tall.

In general, more specific reference classes would seem to be more infor-
mative. So we should now be inclined to assign a higher degree of belief to
“Eric is tall,” because (B) gives us more specific information. But suppose
we also know that

C 1% of jockeys are tall.

If we do not know Eric’s occupation, should we leave our degree of belief
unchanged? Or do we have to estimate the probability of his also being
a jockey before we can decide? Imagine we also know that

D 8% of American males ride horses,

and

E Eric collects unusual hats.

12.3 Subjective Probability 245

Does this change anything, or is it irrelevant? Simple direct inference
computations are full of problems because of multiple reference classes.
This is reminiscent of our description of specificity in inheritance net-
works and the problems with simple algorithms like shortest path.

12.3.2 A Basic Bayesian Approach
Given problems like these, it would be nice to have a more principled way
of calculating subjective probabilities and how these are affected by new
evidence.

As a starting point, we might assume that we have a number of proposi-
tional variables (or atomic sentences) of interest, p1, . . . , pn. For example,
p1 might be the proposition that Eric is a lawyer, p2 might be the propo-
sition that Sue is married, p3 might be the proposition that Linda is rich,
and so on. In different states of the world, different combinations of these
sentences will be true. We can think of each state of the world as charac-
terized by an interpretation I that specifies which atomic sentences are
true and which are false. By a joint probability distribution J we mean a
specification of the degree of belief for each of the 2n truth assignments
to the propositional variables. In other words, for each interpretation I,
J(I) is a number between 0 and 1 such that

∑
J(I) = 1, where the sum

is over all 2n possibilities. Intuitively, we are imagining a scenario where
an agent does not know the true state of the world and J(I) is the degree
of belief the agent assigns to the world state specified by I.

Using a joint probability like this, we can calculate the degree of belief
in any sentence involving any subset of the variables. The idea is that the
degree of belief in α is the sum of J over all interpretations where α is
true. In other words, we believe α to the extent that we believe in the
world states that satisfy α. More formally, we define

Pr(α)
def=

∑
I|=α

J(I),

and where, as before, Pr(α|β) = Pr(α ∧ β) ÷ Pr(β). By this account, the
degree of belief that Eric is tall given that he is male and from California
is the sum of J over all possible world states where Eric is tall, male, and
from California divided by the sum of J over all possible world states where
Eric is male and from California. It is not hard to see that this definition
of subjective probability satisfies the two basic postulates of probability
listed in Section 12.2.

While this approach does the right thing, and tells us how to calculate
any subjective probability given any evidence, there is one major problem
with it: It assumes we have a joint probability distribution over all of
the variables we care about. For n atomic sentences, we would need to

246 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

specify the values of 2n−1 numbers.2 This is unworkable for any practical
application.

12.3.3 Belief Networks
In order to cut down on what needs to be known to reason about subjec-
tive probabilities, we will need to make some simplifying assumptions.

First, we introduce some notation. Assuming we start with atomic
sentences p1, . . . , pn, we can specify an interpretation using 〈P1, . . . , Pn〉,
where each uppercase Pi is either pi (when the sentence is true) or
¬pi (when the sentence is false). From our definition, we see that

J(〈P1, . . . , Pn〉) = Pr(P1 ∧ P2 ∧ · · · ∧ Pn),

because there is a single interpretation that satisfies the conjunction of
the literals.

One extreme simplification we could make is to assume that all of the
atomic sentences are conditionally independent from each other. This
amounts to assuming that

J(〈P1, . . . , Pn〉) = Pr(P1) · Pr(P2) · · ·Pr(Pn).

With this assumption, we would only need to know n numbers to fully
specify the joint probability distribution, and therefore all other proba-
bilities. But this independence assumption is too extreme. Typically there
will be dependencies among the atomic sentences.

Here is a better idea: Let us first of all represent all the variables pi in
a directed acyclic graph, which we will call a belief network (or Bayesian
network). Intuitively, there should be an arc from pi to pj if we think of
the truth of the former as directly affecting the truth of the latter. (We will
see an example later.) We say in this case that pi is a parent of pj in the
belief network.

Let us suppose that we have numbered the variables in such a way
that the parents of any variable pj appear earlier in the ordering than pj.
We can always do this, because the graph is acyclic. Observe that by the
chain rule of Section 12.2, it is the case that

J(〈P1, . . . , Pn〉) =
Pr(P1) · Pr(P2|P1) · Pr(P3|P1 ∧ P2) · · ·Pr(Pn|P1 ∧ · · · ∧ Pn−1).

2This is one less than 2n because we can use the constraint that the sum of all J values
equals 1.

12.3 Subjective Probability 247

We can see that formulated this way, the joint probability distribution
still needs 2n − 1 numbers, because for each term Pr(Pj+1|P1 ∧ · · · ∧ Pj)
there are 2j conditional probabilities to specify (corresponding to the
truth or falsity of p1, . . . , pj), and

∑
2j = 2n − 1.

However, what we are willing to assume in a belief network is this:

Each propositional variable in the belief network is conditionally
independent from the nonparent variables given the parent variables.

More precisely, we assume that

Pr(Pj+1|P1 ∧ · · · ∧ Pj) = Pr(Pj+1|parents(Pj+1)),

where parents(Pj+1) is the conjunction of those P1, . . . , Pj literals that
are parents of pj+1 in the graph. With these independence assumptions,
it follows that

J(〈P1, . . . , Pn〉) =
Pr(P1|parents(P1)) · Pr(P2|parents(P2)) · · ·Pr(Pn|parents(Pn)).

The idea of belief networks, then, is to use this equation to define a joint
probability distribution J, from which any probability we care about can
be calculated.

Before looking at an example, observe that to fully specify J, we need
to know Pr(P|parents(P)) for each variable p. If p has k parents in the
belief network, we will need to know the 2k conditional probabilities, cor-
responding to the truth or falsity possibilities of each parent. Summing
up over all variables, we will have no more than n · 2k numbers to spec-
ify, where k is the maximum number of parents for any node. As n grows,
we expect this number to be much smaller than 2n.

Consider the four-node belief network in Figure 12.1. This graph
represents the assumption that

J(〈P1, P2, P3, P4〉) = Pr(P1) · Pr(P2|P1) · Pr(P3|P1) · Pr(P4|P2 ∧ P3).

We can see that the full joint probability distribution is completely spec-
ified by (1 + 2 + 2 + 4) = 9 numbers, rather than the 15 that would be
required without the independence assumptions.

12.3.4 An Example Network
Let us look at an example to see how we might compute using belief
networks. First, we construct the graph: We assign a node to each variable
in the domain and draw arrows toward each node p from a select set of
nodes perceived to be “direct causes” of p. Here is a sample problem due

248 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

p2

p3
p1 p4

■ FIGURE 12.1

A Simple Belief Network

to Eugene Charniak:

We want to do some reasoning about whether or not my family is out
of the house. Imagine the family has a dog. We virtually always put
the dog out (do) when the family is out (fo). We also put the dog out
for substantial periods of time when it has a (fortunately, infrequent)
bowel problem (bp). A reasonable proportion of the time when the dog
is out, you can hear her barking (hb) when you approach the house.
One last fact: we usually (but not always) leave the light on (lo) outside
the house when the family is out.

Using this set of facts, we can construct the belief network of Figure 12.2,
where the arcs can be interpreted as causal connections.

This graph represents the following assumption about the joint prob-
ability distribution:

J(〈FO, LO, BP, DO, HB〉) =
Pr(FO) · Pr(LO|FO) · Pr(BP) · Pr(DO|FO ∧ BP) · Pr(HB|DO)

This joint distribution is considerably simpler than the full one involving
the five variables, given the independence assumptions captured in the
belief network. As a result, we need only (1+ 2+ 1+ 4+ 2) = 10 numbers
to specify the full probability distribution, as shown in the figure.

Suppose we want to use this belief network with the numbers in the
figure to calculate the probability that the family is out, given that the
light is on but we don’t hear barking: Pr(fo|lo∧¬hb). Using the definition
of conditional probability, this translates to the following:

Pr(fo|lo ∧ ¬hb) = Pr(fo ∧ lo ∧ ¬hb)
Pr(lo ∧ ¬hb)

=
∑

J(〈 fo, lo, BP, DO,¬hb〉)∑
J(〈FO, lo, BP, DO,¬hb〉)

12.3 Subjective Probability 249

family out

light on dog out

Pr(fo) � .15

bowel problem

Pr(bp) � .01

Pr(lo| fo) � .6
Pr(lo|¬ fo) � .05

Pr(hb|do) � .7
Pr(hb|¬ do) � .01

Pr(do| fo � bp) � .99
Pr(do| fo � ¬bp) � .9
Pr(do|¬ fo � bp) � .97
Pr(do|¬ fo � ¬bp) � .3

hear bark

■ FIGURE 12.2

A Belief Network Example

The sum in the numerator has four terms, and the sum in the denom-
inator has eight terms (the four from the numerator and four others
where FO is false). We can compute the eight needed elements of the
joint distribution from the probability numbers given in the figure, as
follows:

1. J(〈 fo, lo, bp, do,¬hb〉) = .15× .6× .01× .99× .3 = .0002673,
that is, Pr(fo) · Pr(lo|fo) · Pr(bp) · Pr(do|fo ∧ bp) · (1− Pr(hb|do))

2. J(〈 fo, lo, bp,¬do,¬hb〉) = .15× .6× .01× .01× .99 = .00000891

3. J(〈 fo, lo,¬bp, do,¬hb〉) = .15× .6× .99× .9× .3 = .024057

4. J(〈 fo, lo,¬bp,¬do,¬hb〉) = .15× .6× .99× .1× .99 = .0088209

5. J(〈¬fo, lo, bp, do,¬hb〉) = .85× .05× .01× .97× .3 = .000123675

6. J(〈¬fo, lo, bp,¬do,¬hb〉) = .85× .05× .01× .03× .99 = .0000126225

7. J(〈¬fo, lo,¬bp, do,¬hb〉) = .85× .05× .99× .3× .3 = .00378675

8. J(〈¬fo, lo,¬bp,¬do,¬hb〉) = .85× .05× .99× .7× .99 = .029157975

250 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

Thus, Pr(fo|lo∧¬hb) is the sum of the first four values from the previous
page (.003315411) divided by the sum of all eight values (.00662369075),
which is about .5.

It is sometimes possible to compute a probability value without using
the full joint distribution. For example, if we wanted to know the prob-
ability of the family’s being out given just that the light was on, Pr(fo|lo),
we could first use Bayes’ rule to convert Pr(fo|lo) to Pr(lo|fo) × Pr(fo) ÷
Pr(lo). From our given probabilities, we know the first two terms, but
not the value of Pr(lo). But we can compute that quite simply: Pr(lo) =
Pr(lo|fo) × Pr(fo) + Pr(lo|¬fo) × Pr(¬fo). We have each of those four
values available (the last one using the rule for negation), and thus we
have all the information we need to compute Pr(fo|lo) without going
through the full joint distribution.

In a sense, using the full joint probability distribution to compute
a degree of belief is like using the set of all logical interpretations to com-
pute entailment: It does the right thing, but is feasible only for small
problems. While a belief network may make what needs to be known
in advance practical, it does not necessarily make reasoning practical.
Not surprisingly, calculating a degree of belief from a belief network can
be shown to be NP-hard, as hard as full satisfiability. More surprisingly,
determining an approximate value for a degree of belief can also be shown
to be NP-hard. Nonetheless, specialized reasoning procedures have been
developed that appear to work well on certain practical problems or on
networks with restricted treelike topologies.

12.3.5 Influence Diagrams
Belief networks are useful for computing subjective probabilities based
on independence assumptions and causal relationships, but in mak-
ing decisions under uncertainty, there are usually other factors to take
into account, such as the relative merit of the different outcomes and
their costs. In general, these are concerns in what is usually called
decision theory and lie outside the scope of this book. However, one
simple approach to decision making is worth glancing at, because it is
based on a direct extension to the belief network representation scheme
we have just seen.

Influence diagrams attempt to extend the reasoning power of belief
networks with a larger set of node-types. In Figure 12.3, which might
allow us to decide what course of action to take in the face of coro-
nary artery disease, we see four types of nodes: Chance nodes are drawn
as circles and represent probabilistic variables as before, deterministic
nodes are drawn as double circles and represent straightforward com-
putations based on their inputs, decision nodes are drawn as rectangles
and represent all-or-nothing decisions to be made by the user, and

12.3 Subjective Probability 251

chest
pain

coronary artery
disease

test
results

heart
surgery

heart
attack

cost

life
years

life
quality

future
chest
pain

angiogram
test

value

■ FIGURE 12.3

Influence Diagram

the value node—there is only one—is drawn as a diamond and repre-
sents the final decision to be made based on some valuation function.
Arcs in the diagram represent the appropriate obvious influence or rele-
vance relationships (probabilistic and deterministic) between the nodes.

The intent with diagrams like these is for a system to reason about
the relationships between variables that are probabilistically determined,
choice determined, and deterministically determined. This yields a
powerful framework to support decision making, and a number of
implemented systems reason with these sorts of representations.

12.3.6 Dempster–Shafer Theory
There are other techniques available for allowing a system to pool evi-
dence and support decisions. Although we will not go into any of these
in detail, it is worth mentioning one of the more prominent alternatives,
often called Dempster–Shafer theory, after the inventors.

Consider the following example. If we flip an unbiased coin, the degree
of belief would be .5 that the coin comes out heads. But now consider
flipping a coin where we do not know whether or not the coin is biased.
In fact, it may have tails on both sides, for all we know. In cases like this,
although we have no reason to prefer heads to tails, we may not want to

252 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

assign the same degree of belief of .5 to the proposition that the result is
heads. Instead, due to lack of information, we may want to say only that
the degree of belief lies somewhere between 0 and 1.

Instead of using a single number to represent a degree of belief,
Dempster–Shafer representations use two-part measures, called belief
and plausibility. These are essentially lower and upper bounds on the
probability of a proposition. For a coin known to be perfectly unbiased,
we have .5 belief and .5 plausibility that the result is heads; but for the
mystery coin, we have 0 belief that the result is heads (meaning we have
no reason to give it any credence) and 1 plausibility (meaning we have
no reason to disbelieve it either). The “value” of a propositional variable
is represented by a range, which we might call the possibility distribution
of the variable.

To see where these ideas are useful, imagine we have a simple data-
base with names of people and their believed ages. In a situation with
complete knowledge, the ages would be simple values (e.g., 24). But we
might not know the exact age of someone and would instead have the age
field in the table filled by a range:

Name Age

Mary [22,26]
Tom [20,22]
Frank [30,35]
Rebecca [20,22]
Sue [28,30]

This would mean, for example, that we believed the age of Tom to lie
somewhere between 20 and 22; {20, 21, 22} would be the set of possibilities
for age(tom).

In this kind of setting, simple membership questions like age(x) ∈ Q
are no longer applicable. It is more natural to ask about the possibility
of Q given the possibility distribution of age(x). For example, given the
table, if Q = [20, 25], it is possible that age(mary) ∈ Q, it is not possible
that age(frank) ∈ Q, and it is certain that age(rebecca) ∈ Q.

Now consider the following question: What is the probability that the
age of an individual selected at random from the table is in the range
[20, 25]? We would like to say that the belief (lower bound) in this propo-
sition is 2/5, because two of the five people in the table are of necessity
in the age range from 20 to 25, and the plausibility (upper bound) in this
proposition is 3/5, because at most three of the five people in the table are
in the age range. So the answer is the interval [.4, .6].

This calculation seems commensurate with the information provided.
In fact, the Dempster–Shafer combination rule (more complex than we

12.4 Vagueness 253

can go into here) allows us to combine multiple sources of information
like these in which we have varying levels of knowledge and confidence.

12.4 VAGUENESS

As mentioned in Section 12.1, quite apart from considerations of fre-
quency and degree of belief, we can consider the degree to which certain
predicates are satisfied.

Let us begin with this question: Is a man tall if his height is 5 feet
9 inches? A first answer might be, compared to what? Obviously, the
tallness of a man depends on whether we are comparing him to jockeys,
to basketball players, or to all North American males. But suppose we fix
on a reference class, so that by “tall” we really mean “tall compared to
the rest of North American males.” We might still want to say that this is
not a clear-cut affair; people are tall to a certain degree, just as they are
healthy, fast runners, or close to retirement to varying degrees.

Predicates like these that are intuitively thought of as holding to a
degree are called vague predicates. In English, these correspond to adjec-
tives that can be modified by the adverb “very,” unlike, for instance,
“married” or “dead.” Typically, we assume that for each vague predi-
cate there is a corresponding precise base function in terms of which the
predicate is understood. For “tall” the base function is “height”; for “rich”
it is “net worth”; for “bald” it might be something like “percentage hair
cover.”

We can capture the relationship between a vague predicate like Tall
and its base function height using a function like the one depicted in
Figure 12.4, which we call a degree curve. As the height of a person

1.0

0.0
4 ft. 8 ft.height

■ FIGURE 12.4

A Degree Curve for the Vague Predicate Tall

254 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

• • • • • • • • • • • • • ••• •

• • • • • • • • • • • • • • • •

1.0

0.0
4 ft. 8 ft.height

VeryTall
FairlyTall
Short •

■ FIGURE 12.5

Degree Curves for Variants on Tall

(a North American male) varies from 4 to 8 feet, this curve shows a
degree of tallness, from 0 (not at all) to .5 (middling) to 1 (totally). This
definition of Tall would yield the following values for various individuals
and their heights:

Individual Height Degree of Tallness

Larry 4’6” 0.00
Roger 5’6” 0.25
Henry 5’9” 0.50
Michael 6’2” 0.90
Wilt 7’1” 1.00

Curves for Short, VeryTall, and FairlyTall, which are also based on height,
are shown in Figure 12.5. The predicate Short varies in degree in a way that
is complementary to Tall; VeryTall is similar to Tall but rises later; FairlyTall
rises earlier but then decreases, reflecting the fact that an individual can
be too tall to be considered to be only FairlyTall to a high degree. The
individuals in the table would thus have the following degrees of Shortness
and VeryTallness:

Individual Height Degree of Shortness Degree of VeryTallness

Larry 4’6” 1.00 0.00
Roger 5’6” 0.75 0.00
Henry 5’9” 0.50 0.10
Michael 6’2” 0.10 0.47
Wilt 7’1” 0.00 1.00

12.4 Vagueness 255

In a more qualitative way, given these degree curves, we might consider
a man who is 5’6” pretty short (.75), and at the same time barely tall (.25).
In these figures, we have drawn the degree curves as straight lines with
similar slopes, but there is no reason why they cannot be smooth rounded
curves or have different slopes. The crucial thing is that an object’s degree
of satisfaction can be nonzero for multiple predicates over the same base
function, and in particular for two predicates that are normally thought
of as opposites, such as Short and Tall.

12.4.1 Conjunction and Disjunction
As with logic and probability, we need to consider Boolean combinations
of vague properties and to what degree these are taken to be satisfied.
Negation poses no special problem: We take the degree to which the
negation of a property is satisfied to be 1 minus the degree to which
the property itself is satisfied, as with Tall and Short. In this case, rea-
soning with vague predicates is exactly like reasoning with probabilities,
where Pr(¬p) = 1− Pr(p).

Conjunctions and disjunctions, however, appear to be different.
Suppose, for example, that we are looking for a candidate to train as
a basketball player. We might be looking for someone who is tall, physi-
cally coordinated, strong, and so on. Imagine that we have a person who
rates highly on each of these. Obviously this person should be considered
a very good candidate. This suggests that the degree to which a person
satisfies the conjoined criterion

Tall ∧ Coordinated ∧ Strong ∧ . . .

should not be the product of the degrees to which he or she satisfies each
individual one. If there were a total of twenty criteria, say, and all were
satisfied at the very high level of .95, we would not want to say the degree
of satisfaction of the conjoined criterion was only .36 = (.95)20.

There is, consequently, a difference between the probability of satis-
fying the conjoined criterion—which, assuming independence, would be
the product of the probabilities of satisfying each individual criterion—
and the degree to which the conjoined criterion is satisfied. Arguably, the
degree to which an individual is P and Q is the minimum of the degrees
to which the individual is P and is Q. Similarly, the degree to which a
disjoined criterion is satisfied is best thought of as the maximum degree
to which each individual criterion is satisfied.

12.4.2 Rules
One of the most interesting applications of vague predicates involves their
use in production rules of the sort we saw in Chapter 7. In a typical

256 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

application of what is sometimes called fuzzy control, the antecedent of
a rule will concern quantities that can be measured or evaluated, and
the consequent will concern some control action. Unlike standard pro-
duction systems where a rule either does or does not apply, here the
antecedent of a rule will apply to some degree and the control action
will be affected to a commensurate degree. In that regard, these rules
work less like logical implications and more like continuous mappings
between sets of variables. The advantage of rules using vague predicates
is that they enable inferences even when the antecedent conditions are
only partially satisfied. In this kind of a system, the antecedents apply to
values from the same base functions and the consequent values are taken
from the same base functions. The rules are usually developed in groups
and are not taken to be significant independent of one another; their main
goal is to work in concert to jointly affect the output variable. Rules of this
sort have been used in a number of successful engineering applications
(although why they were successful remains contentious).

Let us consider an example of a set of such rules. Imagine that we are
trying to decide on a tip at a restaurant based on the quality of the food
and service. Assume that service and food quality can each be described
by a simple number on a linear scale (e.g., a number from 0 to 10). The
amount of the tip will be characterized as a percentage of the cost of the
meal, where, for example, the tip might normally be around 15%. We
might have the following three rules:

1. If the service is poor or the food is rancid then the tip is stingy.

2. If the service is good then the tip is normal.

3. If the service is excellent or the food is delicious then the tip is
generous.

In the last rule we see vague predicates like “excellent,” “delicious,” and
“generous,” and we imagine that in most circumstances the service will
be excellent to some degree, the food will be delicious to some degree,
and the resulting tip should be correspondingly generous to some degree.
Of course, the other two rules will also apply to some degree and could
temper this generosity. We assume that for each of the eight vague pred-
icates mentioned in the rules (like “rancid”) we are given a degree curve
relating the predicate to one of three base quantities: service, food qual-
ity, or tip. The problem we wish to solve is the following: Given a specific
numeric rating for the service and another specific rating for the food,
calculate a specific amount for the tip, subject to these rules.

One popular method used to solve this problem is as follows:

1. transform the inputs, that is, determine the degree to which
each of the vague predicates used in the antecedents hold for each

12.4 Vagueness 257

of the inputs; in other words, use the given degree curves to deter-
mine the degree to which the predicates “poor,” “rancid,” “good,”
and so on apply for the given ratings of the inputs, service, and
food.

For example, if we are given that the service rating is 3 out of 10 and
the food rating is 8 out of 10, the degree curves might tell us that
the service is excellent to degree 0.0 and that the food is delicious
to degree 0.7.

2. evaluate the antecedents, that is, determine the degree to which
each rule is applicable by combining the degrees of applicability
of the individual predicates determined in the first step, using the
appropriate combinations for the logical operators.

For the third rule in our example, the antecedent is the disjunc-
tion of the service being excellent and the food being delicious.
Using the numbers from the previous step, we conclude that the
rule applies to degree 0.7 (the maximum of 0.0 and 0.7). The other
two rules are similar.

3. evaluate the consequents, that is, determine the degree to which the
predicates “stingy,” “normal,” and “generous” should be satisfied.
The intuition is that the consequent in each rule should hold only
to the degree that the rule is applicable.

For the third rule in our example, the consequent is the predicate
“generous.” We need to reconsider the degree curve for this predi-
cate to ensure that we will be generous only to the degree that this
third rule is applicable. One way to do this (but not the only way)
is to cut off the given degree curve at a maximum of 0.7. The other
two rules can be handled similarly.

4. aggregate the consequents, that is, obtain a single degree curve for
the tip that combines the “stingy,” “normal,” and “generous” ones
in light of the applicability of the rules. The intuition is that each
possible value for the tip should be recommended to the degree that
it is supported by the rules in the previous step.

In our example, we take the three clipped curves for “stingy,”
“normal,” and “generous” from the previous step and we overlay
them to form a composite curve whose value at any tip value is the
maximum of the values given by the three individual curves. Other
ways of combining these curves are possible, depending on what
was done in the previous step.

5. “defuzzify” the output, that is, use the aggregated degree curve to
generate a weighted average value for the tip.

258 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

One way to do this in our example is to take the aggregated curve
from the previous step and find the center of the area under the
curve. This is the tip value for which there is as much weight for
lower tip values as there is for higher tip values. The result is a
recommended tip of 15.8%.

The five-step process is illustrated graphically in Figure 12.6. Starting
with the arrows at the bottom left-hand side, we see the two input values
for service and food. Immediately above, the degree curves for “excellent”
and “delicious,” the antecedents of the third rule, are seen to intersect
the given input values at 0.0 and 0.7. The maximum of these, 0.7, is pro-
jected to the right where it intersects the degree curve for “generous,”
the consequent of the third rule. Immediately to the right of this, we see
this curve clipped at the value of 0.7. This clipped curve is then com-
bined with the clipped curves for “normal” and for “cheap” just above

10

1.0

0.0

1.0

0.0

1.0

0.0

0 10 0 0% 25% 0% 25%

0% 25%0% 25%

0% 25% 0% 25%

0% 25%

0 10

0 10

0 10

poor

good

excellent

service � 3 food � 8

tip � 15.8%

rancid

delicious

generous

aggregated

normal

cheap

■ FIGURE 12.6

Fuzzy Control Example

12.4 Vagueness 259

to produce the final aggregated curve in the bottom right-hand corner.
The center of the area under this final curve is the point where the tip
is 15.8%, the final output. In this example, the quality of the food was
sufficient to compensate for the somewhat mediocre service, yielding
a slightly more generous than normal tip.

12.4.3 A Bayesian Reconstruction
While the procedure just described appears to work well in many applica-
tions, it is hard to motivate it from a semantic point of view, and indeed,
several incompatible variants have been proposed.3 It has been sug-
gested that despite the conceptual differences between degrees of belief
and degrees of satisfaction (noted earlier), much of the reasoning with
vague predicates can be recast more transparently in terms of subjective
probability.

Under a subjective probability interpretation, we treat Tall, VeryTall,
FairlyTall, and so on as ordinary predicates, true of a person in some inter-
pretations and false in others. There are no “borderline” cases: In some
interpretations, a person whose height is 5’9” is tall, and in others not.
Each of the base predicates, such as Tall, is associated with a base mea-
sure, such as height. We imagine that in addition to sentences like Tall(bill),
we have atomic sentences like height(bill) = n where n is a number.

Turning now to probabilities, for each n, Pr(height(bill) = n) will be
a number between 0 and 1, and the sum over all n must equal to 1. As
we go from n = 4 feet to n = 8 feet, say, we expect to see some sort of
bell-shaped curve around a mean of, say, 5’9”.

What do we expect for the curve for Pr(height(bill) = n|Tall(bill)) as we
vary n? We expect a bell curve again, but with a higher mean (say, 6’1”)
and perhaps sharper (less spread). By Bayes’ rule, we know that

Pr(height(bill) = n|Tall(bill)) =
Pr(Tall(bill)|height(bill) = n)× Pr(height(bill) = n)

Pr(Tall(bill))

What can we say about the curve for Pr(Tall(bill)|height(bill) = n)? It has
to be a curve such that when you multiply it by the original bell curve and
then divide by a constant (i.e., Pr(Tall(bill))), you get the second shifted
sharper bell curve. Here’s the main observation: If we draw this curve,
going from n = 4 feet to n = 8 feet, what we need is exactly the sort of

3Note in the restaurant example, for instance, that the impact that a degree curve has on the
final tip depends on the area below that curve. A single spike at a particular value (represent-
ing a degree curve for a precise value) would have much less impact on the center-of-area
calculation than a curve with a larger spread.

260 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

curve we have been calling the degree curve for tallness. In other words,
the proposal in this reconstruction is to reinterpret “degree of tallness for
height of x” as “degree of belief in tallness given a height of x.”

What then happens to Boolean combinations of properties? Things
work out as long as we are prepared to assume that

Pr(α ∧ β|γ) = min{Pr(α|γ), Pr(β|γ)}.

This is allowed, provided we do not assume that α and β are independent.4

Moreover, with this assumption, we derive that

Pr(α ∨ β|γ) = max{Pr(α|γ), Pr(β|γ)}

by using general properties of probability.
Finally, what about the production rules? In the given restaurant

example, we want to calculate an aggregate tip given the service and
food rating. In subjective terms, for a food rating of x and a service rating
of y, the weighted average is defined by

AveragedTip =
∑

z

z× Pr((tip = z) | (food = x) ∧ (service = y)). 5

We do not have nearly enough information to calculate the joint proba-
bilities of all the propositions involved. However, we will sketch some
reasonable assumptions that would permit a subjective value to be
computed.

First, observe that for any x, y, and z, the value we need,

Pr((tip = z) | (food = x) ∧ (service = y)),

is equal to

∑
G,N,S

{
Pr((tip = z) |G ∧N ∧ S ∧ (food = x) ∧ (service = y))×

Pr(G ∧N ∧ S | (food = x) ∧ (service = y))

}

where G is Generous or its negation, N is Normal or its negation, and S is
Stingy or its negation. Taking the first of these terms, we assume that the

4When α and β are not independent, the only requirement on the probability of (α ∧ β) is
that it be no larger than the probability of either one.
5We assume a countable number of possible values for the tip. Otherwise, the summations
here would have to be integrals.

12.4 Vagueness 261

tip is completely determined given G, N, and S, so that

Pr((tip = z) |G ∧N ∧ S ∧ (food = x) ∧ (service = y)) =
Pr((tip = z) |G ∧N ∧ S).

Applying Bayes’ rule, we derive that this is equal to

Pr(G ∧N ∧ S | (tip = z)) × Pr((tip = z))∑
u

Pr(G ∧N ∧ S | (tip = u)) × Pr((tip = u))
.

If we now assume that all tips are a priori equally likely, this is equal to

Pr(G ∧N ∧ S | (tip = z))∑
u

Pr(G ∧N ∧ S | (tip = u))
.

For any value of u, it is the case that

Pr(G ∧N ∧ S | (tip = u))

can be assumed to be

min{Pr(G | (tip = u)), Pr(N | (tip = u)), Pr(S | (tip = u))},

which can be calculated from the given degree curves for Stingy, Generous,
and Normal. This leaves us only with calculating

Pr(G ∧N ∧ S | (food = x) ∧ (service = y)),

which we can again assume to be

min

⎧⎪⎨
⎪⎩

Pr(G | (food = x) ∧ (service = y)),

Pr(N | (food = x) ∧ (service = y)),

Pr(S | (food = x) ∧ (service = y)).

To calculate these, we use the given production rules: We assume that
the probability of a proposition like Generous is the maximum of the prob-
ability of the antecedents of all rules where it appears as a consequent.
So, for example,

Pr(Generous | (food = x) ∧ (service = y))

262 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

is assumed to be equal to

max

{
Pr(Excellent | (food = x) ∧ (service = y)),

Pr(Delicious | (food = x) ∧ (service = y)).

Taking the food quality to be independent of the service quality, this is
equal to

max

{
Pr(Excellent | (service = y)),

Pr(Delicious | (food = x)),

and for these we use the remaining degree curves for Excellent, Delicious,
and so on. This completes the required calculation.

12.5 BIBLIOGRAPHIC NOTES

The literature on probability theory is quite extensive. A recent perspective
on the area is given by Jaynes [200]. For a discussion of the founda-
tions of probability, see von Mises [415], de Finetti [90, 91], and Jeffrey
[201, 202].

Bayes’ rule was introduced in [25]. The postulates for probability are
due to Kolmogorov [221].

An early but still comprehensive treatment of uncertain reasoning in
AI is the book by Pearl [320] (see also Pearl [321]). Jensen [203] gives
an introduction to belief networks (Bayesian networks). Neapolitan [302]
gives an overview of the use of probability in expert systems. The com-
plexity of reasoning with belief networks is discussed by Cooper [79], and
the difficulty of doing even approximate reasoning with the networks is
considered by Dagum and Luby [82].

The example in Section 12.3.4 due to Charniak is taken from [68].
Resnik [350] provides an introduction to decision theory. For a discussion
of influence diagrams, see Howard and Matheson [192].

The Dempster–Shafer theory of evidence grew out of work by Dempster
[101], which was subsequently extended by Shafer [376]. For recent
contributions, see Yager et al. [436] and a special issue of the International
Journal of Approximate Reasoning [4].

The description of vague predicates in the text derives from work by
Zadeh on fuzzy logic [438] and fuzzy sets [437]. For a critique of fuzzy
logic, see Haack [173]. See also Dubois et al. [114] for a collection of
readings on fuzzy sets. Wang [420] provides an introduction to fuzzy
control. The particular scheme described in Section 12.4.2 is due to
Mamdani [264].

12.6 Exercises 263

Readings on uncertain reasoning are collected in Shafer and Pearl
[378]. An overview of reasoning under uncertainty is given by Paris [315].
For a treatment of uncertainty and its relationship to other areas of knowl-
edge representation and reasoning, including some of those covered in
this book, see Halpern [177].

12.6 EXERCISES

1. As noted in the text, one way to understand probabilities is to imag-
ine taking a snapshot of all the entities in the domain of discourse
(assuming there are only finitely many) and looking at the proportion
of them having certain properties. We can then use elementary set the-
ory to analyze the relationships among various probabilities. Under
this reading, the probability of a given b is defined as the number of
elements in both a and b divided by the number of elements in b alone:
Pr(a|b) = |a∩b| ÷ |b|. Similarly, Pr(a), the probability of a itself, can
be thought of as Pr(a|U), where U is the entire domain of discourse.
Note that according to this definition, the probability of U is 1 and
the probability of the empty set is 0.

Use this simple model of probability to do the following:

(a) Prove that Pr(a ∩ b ∩ c) = Pr(a|b ∩ c) ∗ Pr(b|c) ∗ Pr(c).

(b) Prove Bayes’ rule: Pr(a|b) = Pr(a) ∗ Pr(b|a)÷ Pr(b).

(c) Suppose that b1, b2, . . . , bn are mutually exclusive events of which
one must occur. Prove that for any event a, it is the case that

Pr(a) =
n∑

i=1

Pr(a ∩ bi).

(d) Derive (and prove correct) an expression for Pr(a ∪ b) that does
not use either disjunction or conjunction.

(e) Recall that two statistical variables a and b are said to be con-
ditionally independent if and only if Pr(a ∩ b) = Pr(a) ∗ Pr(b).
However, just because a and b are independent, it does not follow
that Pr((a ∩ b)|c) = Pr(a|c) ∗ Pr(b|c). Explain why.

2. Consider the following example:

Metastatic cancer is a possible cause of a brain tumor and is also an
explanation for an increased total serum calcium. In turn, either of

264 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

these could cause a patient to fall into an occasional coma. Severe
headache could also be explained by a brain tumor.

(a) Represent these causal links in a belief network. Let a stand
for “metastatic cancer,” b for “increased total serum calcium,”
c for “brain tumor,” d for “occasional coma,” and e for “severe
headaches.”

(b) Give an example of an independence assumption that is implicit
in this network.

(c) Suppose the following probabilities are given:

Pr(a) = .2

Pr(b|a) = .8 Pr(b|a) = .2

Pr(c|a) = .2 Pr(c|a) = .05

Pr(e|c) = .8 Pr(e|c) = .6

Pr(d|b, c) = .8 Pr(d|b, c) = .8

Pr(d|b, c) = .8 Pr(d|b, c) = .05

and assume that it is also given that some patient is suffering
from severe headaches but has not fallen into a coma. Calcu-
late joint probabilities for the eight remaining possibilities (that
is, according to whether a, b, and c are true or false).

(d) According to the numbers given, the a priori probability that the
patient has metastatic cancer is .2. Given that the patient is suffer-
ing from severe headaches but has not fallen into a coma, are we
now more or less inclined to believe that the patient has cancer?
Explain.

3. Consider the following example:

The fire alarm in a building can go off if there is a fire in the building
or if the alarm is tampered with by vandals. If the fire alarm goes off,
this can cause crowds to gather at the front of the building and fire
trucks to arrive.

(a) Represent these causal links in a belief network. Let a stand for
“alarm sounds,” c for “crowd gathers,” f for “fire exists,” t for “fire
truck arrives,” and v for “vandalism exists.”

(b) Give an example of an independence assumption that is implicit
in this network.

(c) What are the 10 conditional probabilities that need to be specified
to fully determine the joint probability distribution? Suppose that

12.6 Exercises 265

there is a crowd in front of the building one day but that no fire
trucks arrive. What is the chance that there is a fire, expressed as
some function of the 10 given conditional probabilities?

(d) Suppose we find out that in addition to setting off the fire alarm,
vandals can cause a fire truck to arrive by phoning the Fire
Department directly. How would your belief network need to be
modified? Assuming all the given probabilities remain the same
(including the a priori probability of vandalism), there would still
not be enough information to calculate the full joint probability
distribution. Would it be sufficient to be given Pr(t|v) and Pr(t|v)?
How about being told Pr(t|a, v) and Pr(t|a, v) instead? Explain
your answers.

4. Consider the following example:

Aching elbows and aching hands may be the result of arthritis.
Arthritis is also a possible cause of tennis elbow, which in turn may
cause aching elbows. Dishpan hands may also cause aching hands.

(a) Represent these facts in a belief network. Let ar stand for “arthri-
tis,” ah for “aching hands,” ae for “aching elbow,” te for “tennis
elbow,” and dh for “dishpan hands.”

(b) Give an example of an independence assumption that is implicit
in this network.

(c) Write the formula for the full joint probability distribution over
all five variables.

(d) Suppose the following probabilities are given:

Pr(ah|ar, dh) = Pr(ae|ar, te) = .1

Pr(ah|ar,¬dh) = Pr(ae|ar,¬te) = .99

Pr(ah|¬ar, dh) = Pr(ae|¬ar, te) = .99

Pr(ah|¬ar,¬dh) = Pr(ae|¬ar,¬te) = .00001

Pr(te|ar) = .0001

Pr(te|¬ar) = .01

Pr(ar) = .001

Pr(dh) = .01.

Assume that we are interested in determining whether it is more likely
that a patient has arthritis, tennis elbow, or dishpan hands.

i. With no observations at all, which of the three is most likely
a priori?

266 Chapter 12 ■ Vagueness, Uncertainty, and Degrees of Belief

ii. If we observe that the patient has aching elbows, which is now the
most likely?

iii. If we observe that the patient has both aching hands and elbows,
which is the most likely?

iv. How would your rankings change if there were no causal con-
nection between tennis elbow and arthritis, where, for example,
Pr(te|ar) = Pr(te|¬ar) = .00999 (instead of the two values given
earlier).

Show the calculations justifying your answers.

C H A P T E R 13

EXPLANATION AND DIAGNOSIS

■

■

■

So far in this book we have concentrated on reasoning that is primarily
deductive in nature: Given a KB representing some explicit beliefs about
the world, we try to deduce some α, to determine if it is an implicit belief
or perhaps to find a constant (or constants) c such that αx

c is an implicit
belief. This pattern shows up not only in ordinary logical reasoning, but
also in description logics and procedural systems. In fact, a variant even
shows up in probabilistic and default reasoning, where extra assumptions
might be added to the KB, or degrees of belief might be considered.

In this chapter, we consider a completely different sort of reasoning
task. Suppose we are given a KB and an α that we do not believe at all,
even with default assumptions. We might ask the following: Given what
we already know, what would it take for us to believe that α was true?
In other words, what else would we have to be told for α to become an
implicit belief? One interesting aspect of this question is that the answer
we are expecting will not be “yes” or “no” or the names of some indi-
viduals; instead, the answer should be a formula of the representation
language.1

The typical pattern for deductive reasoning is as follows:

given (p ⊃ q), from p, we can conclude q.

The corresponding pattern for what is called abductive reasoning is as
follows:

given (p ⊃ q), from q, we can posit p.

1In the last section of this chapter, we will see that it can be useful to have some deductive
tasks that return formulas as well.

267

268 Chapter 13 ■ Explanation and Diagnosis

Abductive reasoning is in some sense the converse of deductive reason-
ing: Instead of looking for sentences entailed by p given what is known,
we look for sentences that would entail q given what is known.2

Another way to look at abduction is as a way of providing an
explanation. The typical application of these ideas is in reasoning about
causes and effects. Imagine that p is a cause (for example, “it is raining”)
and q is an effect (for example, “the grass is wet”). If it rains, the grass
is wet. Deductive reasoning would be used to predict the effects of rain,
that is, wet grass, among others; abductive reasoning would be used to
conjecture the cause of wet grass, that is, rain, among others. In this
case, we are trying to find something that would be sufficient to explain
a sentence’s being true.

13.1 DIAGNOSIS

One type of reasoning about causes and effects where abductive rea-
soning appears especially useful is diagnosis. Imagine that we have
a collection of causal rules in a KB of the form

(Disease ∧ · · · ⊃ Symptoms)

where the ellipsis is a collection of hedges or qualifications. The goal of
diagnosis is to find a disease (or diseases) that best explains a given set
of observed symptoms.

Note that in this setting we would not expect to be able to reason
deductively using diagnostic rules of the form

(Symptoms ∧ · · · ⊃ Disease),

because facts like these are much more difficult to obtain. Typically,
a disease will have a small number of well-known symptoms, but a symp-
tom can be associated with a large number of potential diseases (e.g.,
fever can be caused by hundreds of afflictions). It is usually much easier
to account for an effect of a given cause than to prescribe a cause of a
given effect. The diagnosis we are looking for will not be an entailment
of what is known; rather, it is merely a conjecture.

2The term abduction in this sense is due to the philosopher C. S. Peirce, who also
discussed a third possible form of reasoning, inductive reasoning, which takes as given
(a number of instances of) both p and q, and induces that (p ⊃ q) is true.

13.2 Explanation 269

For example, imagine a KB containing the following (in nonquantified
form, to keep things simple):

TennisElbow ⊃ SoreElbow,

TennisElbow ⊃ TennisPlayer,

Arthritis ∧ ¬Treated ⊃ SoreJoints,

SoreJoints ⊃ SoreElbow ∧ SoreHips.

Now suppose we would like to explain an observed symptom: SoreElbow.
Informally, what we are after is a diagnosis like TennisElbow, which
clearly accounts for the symptom, given what is known. Another equally
good diagnosis would be (Arthritis ∧ ¬Treated), which also explains the
symptom. So we are imagining that there will in general be multiple
explanations for any given symptom, quite apart from the fact that
logically equivalent formulas like (¬Treated ∧ ¬¬Arthritis) would work
as well.

13.2 EXPLANATION

In characterizing precisely what we are after in an explanation, it is
useful to think in terms of four criteria:

Given a knowledge base KB and a formula β to be explained, we are
looking for a formula α satisfying the following:

1. α is sufficient to account for β. More precisely, we want to find
an α such that KB∪{α} |= β, or equivalently, KB |= (α ⊃ β). Any α

that does not satisfy this property would be considered too weak
to serve as an explanation for β.

2. α is not ruled out by the KB. More precisely, we want it to be the
case that KB ∪ {α} is consistent, or equivalently, that KB �|= ¬α.
Without this, a formula like (p ∧ ¬p), which always satisfies the
first criterion, would be a reasonable explanation. Similarly, if
¬TennisPlayer were a fact in the previously described KB, then
even though TennisElbow would still entail SoreElbow, it would not
be an appropriate diagnosis.

3. α is as simple and logically parsimonious as possible. By this
we mean that α does not mention extraneous conditions. A sim-
ple case of the kind of situation we want to avoid is when α is
unnecessarily strong. In the example, a formula like

(TennisElbow ∧ ChickenPox)

270 Chapter 13 ■ Explanation and Diagnosis

satisfies the first two criteria—it implies the symptom and is
consistent with the KB. But the part about chicken pox is
unnecessary. Similarly (but less obviously), the α can be unnec-
essarily weak. If ¬Vegetarian were a fact in the KB, then a formula
like

(TennisElbow ∨ Vegetarian)

would still satisfy the first two criteria, although the vegetarian
part is unnecessary. In general, we want α to use as few terms as
possible. In the propositional case, this means as few literals as
possible.

4. α is in the appropriate vocabulary. Note, for example, that accord-
ing to the first three criteria, SoreElbow is a formula that explains
SoreElbow. We might call this the trivial explanation. It is also
the case that SoreJoints satisfies the first three criteria. For var-
ious applications, this may or may not be suitable. Intuitively,
however, in this case, because we think of SoreJoints in this KB as
being almost just another name for the conjunction of SoreElbow
and SoreHips, it would not really be a good explanation. Usually,
we have in mind a set H of possible hypotheses (a set of atomic
sentences), sometimes called “abducibles,” in terms of which
explanations are to be phrased. In the case of medical diag-
noses, for instance, these would be diseases or conditions like
ChickenPox or TennisElbow. In that case, SoreJoints would not be
a suitable explanation.

We call any α that satisfies these four conditions an abductive explana-
tion of β with respect to KB.

13.2.1 Some Simplifications
With this definition of an explanation in hand, we will see that in the pro-
positional case, at least, certain simplifications to the task of generating
explanations are possible.

First of all, although we have considered explaining an arbitrary
formula β, it is sufficient to know how to explain a single literal, or
even just an atom. The reason for this is that we can choose a new
atom p that appears nowhere else, in which case α is an explanation
for β with respect to KB if and only if α is an explanation for p with
respect to (KB∪{(p ≡ β}), as can be verified by considering the definition
of explanation. In other words, according to the criteria in the defini-
tion, anything that is an explanation for p would also be considered an
explanation for β, and vice versa.

13.2 Explanation 271

Next, while we have considered explanations that could be any sort of
formula, it is sufficient to limit our attention to conjunctions of literals.
To see why, imagine that some arbitrary formula α is an explanation for
β, and assume that when α is converted into DNF, we get (d1 ∨ · · · ∨ dn),
where each di is a conjunction of literals. Observe that each di entails β

and uses terms of the appropriate vocabulary. Moreover, at least one of
the di must be consistent with the KB (because otherwise α would not be).
This di is also as simple as α itself, because it has the same or a subset
of the literals. So this single di by itself can be used instead of α as an
explanation for β.

Because a conjunction of literals is logically equivalent to the negation
of a clause, it then follows that to explain a literal ρ it is sufficient to look
for a clause c (in the desired vocabulary) with as few literals as possible
that satisfies the following constraints:

1. KB |= (¬c ⊃ ρ), or equivalently, KB |= (c ∪ {ρ}), and

2. KB �|= c.

This brings us to the topic of prime implicates.

13.2.2 Prime Implicates
A clause c is said to be a prime implicate of a KB if and only if

1. KB |= c, and

2. for every c′ that is a proper subset of c, it is not the case that KB |= c′.

Note that for any clause c, if KB |= c, then some subset of c or perhaps
c itself must be a prime implicate of KB. For example, if we have a KB
consisting of

{(p ∧ q ∧ r ⊃ g), (¬p ∧ q ⊃ g), (¬q ∧ r ⊃ g)}

then among the prime implicates are (p ∨ ¬q ∨ g) and (¬r ∨ g). Each
of these clauses is entailed by KB, and no subset of either of them is
entailed. In this KB, the tautologies (p ∨ ¬p), (q ∨ ¬q), (r ∨ ¬r), and so
on are also prime implicates. In general, note that for any atom ρ, unless
KB |= ρ or KB |= ¬ρ, the tautology (ρ ∨ ¬ρ) will be a prime implicate.

Returning now to explanations for a literal ρ, as we said, we want to
find minimal clauses c′ such that KB |= (c′ ∪ {ρ}) but KB �|= c′. Therefore,
it will be sufficient to find prime implicates c containing ρ, in which case
the negation of (c−ρ) will be an explanation for ρ. For the earlier example
KB, if we want to generate the explanations for g, we first generate the

272 Chapter 13 ■ Explanation and Diagnosis

prime implicates of KB containing g, which are (p∨¬q∨ g), (¬r ∨ g), and
(g∨¬g), and then we remove the atom g and negate the clauses to obtain
three explanations (as conjunctions of literals): (¬p ∧ q), r, and g itself
(the negation of ¬g). Note that tautologous prime implicates like (g∨¬g)
will always generate trivial explanations.

13.2.3 Computing Explanations
Now we can derive a procedure to compute explanations for any literal ρ

in some vocabulary H:

1. calculate the set of prime implicates of the KB that contain the
literal ρ;

2. remove ρ from each of the clauses;

3. return as explanations the negations of the resulting clauses,
provided that the literals are in the language H.

The only thing left to consider is how to generate prime implicates.
As it turns out, Resolution can be used directly for this: It can be

shown that, in the propositional case, Resolution is complete for non-
tautologous prime implicates. In other words, if KB is a set of clauses,
and if KB |= c where c is a nontautologous prime implicate, then KB � c
(see Exercise 1). The completeness of Resolution for the empty clause,
used in the Resolution chapter, is just a special case: The empty clause, if
entailed, must be a prime implicate. So we can compute all prime impli-
cates of KB containing ρ by running Resolution to completion, generating
all resolvents, and then keeping only the minimal ones containing ρ. If
we want to generate trivial explanations as well, we then need to add the
tautologous prime implicates to this set.

This way of handling explanations suggests that it might be a good
idea to precompute all prime implicates of a KB using Resolution, and
then generate explanations for a literal by consulting this set as needed.
Unfortunately, this will not work in practice. Even for a KB that is a set
of Horn clauses, there can be exponentially many prime implicates. For
example, consider the following Horn KB over the atoms pi, qi, Ei, Oi for
0 ≤ i < n, and En and On. This example is a version of parity checking; pi
means bit i is on, qi means off, Ei means the count up to level i is even, Oi
means odd:

Ei ∧ pi ⊃ Oi+1

Ei ∧ qi ⊃ Ei+1

Oi ∧ pi ⊃ Ei+1

13.3 A Circuit Example 273

Oi ∧ qi ⊃ Oi+1

E0

¬O0

This KB contains 4n + 2 Horn clauses of size 3 or less. Nonetheless,
there are 2n−1 prime implicates that contain En: Any clause of the form
[x0, . . . xn−1, En] where xi is either pi or qi and where an even number of
them are ps will be a prime implicate.

13.3 A CIRCUIT EXAMPLE

In this section, we apply these ideas to a circuit diagnosis problem.
Overall, the problem is to determine which component (or components)
of a Boolean circuit might have failed given certain inputs and outputs
and a background KB specifying the structure of the circuit, the normal
behavior of logic gates, and perhaps a fault model.

The circuit in question is the full adder shown in Figure 13.1. A full
adder takes three bits as input—two addends and a carry bit from a
previous adder—and produces two outputs—the sum and the next carry
bit. The facts we would expect to have in a KB capturing this circuit are
as follows:

■ Components, using gate predicates:

∀x. Gate(x) ≡ AndGate(x) ∨ OrGate(x) ∨ XorGate(x);

in1

b1 b2

o1a1

a2

out2

out1
in2

in3

■ FIGURE 13.1

A Circuit for a Full Adder

274 Chapter 13 ■ Explanation and Diagnosis

AndGate(a1), AndGate(a2),

XorGate(b1), XorGate(b2),

OrGate(o1);

the whole circuit: FullAdder(f).

■ Connectivity, using functions ini for input i, and outi for output i
(where inputs and outputs are numbered from the top down in the
diagram):

in1(b1) = in1(f), in2(b1) = in2(f),

in1(b2) = out(b1), in2(b2) = in3(f),

in1(a1) = in1(f), in2(a1) = in2(f),

in1(a2) = in3(f), in2(a2) = out(b1),

in1(o1) = out(a2), in2(o1) = out(a1),

out1(f) = out(b2), out2(f) = out(o1).

■ Truth tables in terms of functions and, or, and xor:

and(0, 0) = 0, and(0, 1) = 0, etc.

or(0, 0) = 0, or(0, 1) = 1, etc.

xor(0, 0) = 0, xor(0, 1) = 1, etc.

■ The normal behavior of logic gates, using a predicate Ab:3

∀x. AndGate(x) ∧ ¬Ab(x) ⊃ out(x) = and(in1(x), in2(x)),

∀x. OrGate(x) ∧ ¬Ab(x) ⊃ out(x) = or(in1(x), in2(x)),

∀x. XorGate(x) ∧ ¬Ab(x) ⊃ out(x) = xor(in1(x), in2(x)).

■ Finally, we may or may not wish to include some specification of
possible abnormal behaviors of the circuit. This is what is usu-
ally called a fault model. For example, we might have the following
specification:

short circuit:

∀x. [OrGate(x) ∨ XorGate(x)] ∧ Ab(x) ⊃ out(x) = in2(x).

In this example, nothing is specified regarding the behavior of abnormal
and-gates. Of course, by leaving out parts of a fault model like this, or by

3Although this predicate was used for minimal entailment in Chapter 11, no default
reasoning will be used here.

13.3 A Circuit Example 275

making it too weak, we run the risk that certain abnormal behaviors may
be inexplicable, as we will discuss further later. Note also that abnormal
behavior can be compatible with normal behavior on certain inputs (the
output is the same whether or not the gate is working).

13.3.1 Abductive Diagnosis
The abductive diagnosis task is as follows: Given a KB as previously
discussed, and some input settings of the circuit, for example,

in1(f) = 1, in2(f) = 0, in3(f) = 1,

explain some output observations of the circuit, for example,

out1(f) = 1, out2(f) = 0,

in the language of Ab. What we are looking for, roughly, is a minimal
conjunction α of ground Ab(c) and ¬Ab(c) terms such that

KB ∪ Settings ∪ {α} |= Observations.

To do this computation, we can use the techniques described earlier,
although we first have to “propositionalize” by observing, for example,
that the universally quantified x in the circuit example need only range
over the five given gates.

To do this by hand, the easiest way is to make a table of all 25 possi-
bilities regarding which gates are normal or abnormal, seeing which of
them entail the observations, and then looking for commonalities (and
thus simplest possible explanations). In Figure 13.2, in each row of the
table, the “entailed?” column says whether or not the conjunction of Ab
literals (either positive or negative) together with the KB and the input
settings entails the output observations. (Ignore the “consistent?” column
for now.) For example, in row 5, we see that

Ab(b1) ∧ Ab(b2) ∧ ¬Ab(a1) ∧ Ab(a2) ∧ Ab(o1)

entails the outputs; however, it is not an explanation, because

Ab(b1) ∧ ¬Ab(a1) ∧ Ab(o1)

also entails the outputs (as can be verified by examining rows 5, 7, 13,
and 15) and is simpler. Moreover, no subset of these literals entails
the outputs. Continuing in this way, we end up with three abductive
explanations:

1. Ab(b1) ∧ ¬Ab(a1) ∧ Ab(o1),
gates b1 and o1 are defective, but a1 is working;

276 Chapter 13 ■ Explanation and Diagnosis

b1 b2 a1 a2 o1 entailed? consistent?

1 Ab(b1) Ab(b2) Ab(a1) Ab(a2) Ab(o1) no yes
2 Ab(b1) Ab(b2) Ab(a1) Ab(a2) ¬Ab(o1) no yes
3 Ab(b1) Ab(b2) Ab(a1) ¬Ab(a2) Ab(o1) no yes
4 Ab(b1) Ab(b2) Ab(a1) ¬Ab(a2) ¬Ab(o1) no yes
5 Ab(b1) Ab(b2) ¬Ab(a1) Ab(a2) Ab(o1) yes yes
6 Ab(b1) Ab(b2) ¬Ab(a1) Ab(a2) ¬Ab(o1) no yes
7 Ab(b1) Ab(b2) ¬Ab(a1) ¬Ab(a2) Ab(o1) yes yes
8 Ab(b1) Ab(b2) ¬Ab(a1) ¬Ab(a2) ¬Ab(o1) yes yes
9 Ab(b1) ¬Ab(b2) Ab(a1) Ab(a2) Ab(o1) no yes

10 Ab(b1) ¬Ab(b2) Ab(a1) Ab(a2) ¬Ab(o1) no yes
11 Ab(b1) ¬Ab(b2) Ab(a1) ¬Ab(a2) Ab(o1) no yes
12 Ab(b1) ¬Ab(b2) Ab(a1) ¬Ab(a2) ¬Ab(o1) no yes
13 Ab(b1) ¬Ab(b2) ¬Ab(a1) Ab(a2) Ab(o1) yes yes
14 Ab(b1) ¬Ab(b2) ¬Ab(a1) Ab(a2) ¬Ab(o1) no yes
15 Ab(b1) ¬Ab(b2) ¬Ab(a1) ¬Ab(a2) Ab(o1) yes yes
16 Ab(b1) ¬Ab(b2) ¬Ab(a1) ¬Ab(a2) ¬Ab(o1) yes yes
17 ¬Ab(b1) Ab(b2) Ab(a1) Ab(a2) Ab(o1) no yes
18 ¬Ab(b1) Ab(b2) Ab(a1) Ab(a2) ¬Ab(o1) no yes
19 ¬Ab(b1) Ab(b2) Ab(a1) ¬Ab(a2) Ab(o1) no yes
20 ¬Ab(b1) Ab(b2) Ab(a1) ¬Ab(a2) ¬Ab(o1) no no
21 ¬Ab(b1) Ab(b2) ¬Ab(a1) Ab(a2) Ab(o1) yes yes
22 ¬Ab(b1) Ab(b2) ¬Ab(a1) Ab(a2) ¬Ab(o1) no yes
23 ¬Ab(b1) Ab(b2) ¬Ab(a1) ¬Ab(a2) Ab(o1) yes yes
24 ¬Ab(b1) Ab(b2) ¬Ab(a1) ¬Ab(a2) ¬Ab(o1) no no
25 ¬Ab(b1) ¬Ab(b2) Ab(a1) Ab(a2) Ab(o1) no no
26 ¬Ab(b1) ¬Ab(b2) Ab(a1) Ab(a2) ¬Ab(o1) no no
27 ¬Ab(b1) ¬Ab(b2) Ab(a1) ¬Ab(a2) Ab(o1) no no
28 ¬Ab(b1) ¬Ab(b2) Ab(a1) ¬Ab(a2) ¬Ab(o1) no no
29 ¬Ab(b1) ¬Ab(b2) ¬Ab(a1) Ab(a2) Ab(o1) no no
30 ¬Ab(b1) ¬Ab(b2) ¬Ab(a1) Ab(a2) ¬Ab(o1) no no
31 ¬Ab(b1) ¬Ab(b2) ¬Ab(a1) ¬Ab(a2) Ab(o1) no no
32 ¬Ab(b1) ¬Ab(b2) ¬Ab(a1) ¬Ab(a2) ¬Ab(o1) no no

■ FIGURE 13.2

Diagnosis of the Full Adder

2. Ab(b1) ∧ ¬Ab(a1) ∧ ¬Ab(a2),
gate b1 is defective, but a1 and a2 are working;

3. Ab(b2) ∧ ¬Ab(a1) ∧ Ab(o1),
gates b2 and o1 are defective, but a1 is working.

Observe that not all components are mentioned in these explanations.
This is because, given the settings and the fault model, we would

13.3 A Circuit Example 277

get the same results whether or not the components were working
normally. Different settings (or different fault models) could lead to dif-
ferent diagnoses. In fact, a key principle in this area is what is called
differential diagnosis, that is, trying to discover tests that would distin-
guish between competing explanations. In the case of the circuit, this
amounts to trying to find different input settings that would provide dif-
ferent outputs depending on what is or is not working normally. One
principle of good engineering design is to make a circuit testable, that is,
configured in such a way as to facilitate testing its (usually inaccessible)
internal components.

13.3.2 Consistency-Based Diagnosis
One problem with the abductive form of diagnosis presented here is that
it relies crucially on the presence of a fault model. Without a specification
of how a circuit would behave when it is not working, certain output
observations can be inexplicable, and this form of diagnosis can be much
less helpful.

In many cases, however, we know how a circuit is supposed to work,
but may not be able to characterize its failure modes. We would like to
find out which components could be at fault when output observations
conflict with this specification. Of course, with no fault model at all, we
would be free to conjecture that all components were at fault. What we
are really after, then, is a minimal diagnosis, that is, one that does not
assume any unnecessary faults.4

This second version of diagnosis can be made precise as follows:

Assume KB uses the predicate Ab as before. (The KB may or may
not include a fault model.) We want to find a set of components D
such that the set

{Ab(c) | c ∈ D} ∪ {¬Ab(c) | c /∈ D}

is consistent with the set

KB ∪ Settings ∪ Observations

and no proper subset of D is. Any such D is called a consistency-
based diagnosis of the circuit.

Thus, for consistency-based diagnosis, we look for (minimal sets of)
assumptions of abnormality that are consistent with the settings and

4Note that in the earlier abductive account, we did not necessarily minimize the set of
components assumed to be faulty, in that the literals Ab(c) and ¬Ab(c) have equal status.

278 Chapter 13 ■ Explanation and Diagnosis

observations, rather than (minimal sets of) assumptions of normality and
abnormality that entail the observations.

In the case of the circuit example (with the given fault model), we can
look for the diagnoses by hand by again making a table of all 25 possibili-
ties regarding which gates are normal or abnormal, seeing which of them
are consistent with the settings and observations, and then looking for
commonalities (and thus minimal sets of faulty components). Returning
to the table in Figure 13.2, in each row of the table, the “consistent?” col-
umn says whether or not the conjunction of Ab literals (either positive or
negative) is consistent with the KB, together with the input settings and
the output observations. (Ignore the “entailed?” column this time.) For
example, in row 5, we see that

{Ab(b1), Ab(b2),¬Ab(a1), Ab(a2), Ab(o1)}

is consistent with the inputs and outputs. This does not yet give us
a diagnosis, because

{Ab(b1),¬Ab(b2),¬Ab(a1),¬Ab(a2),¬Ab(o1)}

is also consistent (row 16), and assumes a smaller set of abnormal
components.

Continuing in this way, this time we end up with three consistency-
based diagnoses: {b1}, {b2, a2}, and {b2, o1}. Further testing on the circuit
with different inputs and outputs could then be used to reduce the
possibilities.

Although it is difficult to compare the two approaches to diagnosis
in general terms, it is worth noting that they do behave quite differ-
ently regarding fault models. In the abductive case, with less of a fault
model, there are usually fewer diagnoses involving abnormal components,
because nothing follows regarding their behavior; in the consistency-
based case, the opposite usually happens, because anything can be
assumed regarding their behavior. For example, one of three possibili-
ties considered in the consistency-based account is that both b2 and a2
are abnormal, because it is consistent that a2 is producing a 0, and then
that the output of o1 is 0. In the abductive case, none of the explana-
tions involve a2 being abnormal, because there would then be no way
to confirm that the output of o1 is 0. In general, however, it is diffi-
cult to give hard and fast rules about which type of diagnosis should
be used.

13.4 Beyond the Basics 279

13.4 BEYOND THE BASICS

We conclude this chapter by examining some complications to the sim-
ple picture of abductive reasoning we have presented, and then finally
sketching some nondiagnostic applications of abductive reasoning.

13.4.1 Extensions
There are a number of ways in which our account of abductive reason-
ing could be enlarged for more realistic applications.

Variables and Quantification In the first-order case of abductive
reasoning, we might need to change, at the very least, our definition of
what it means for an explanation to be as simple as possible. It might also
be useful to consider explaining formulas with free variables, as a way
of answering certain types of wh-questions, in a way that goes beyond
answer extraction. Imagine we have a query like P(x). We might return
the answer (x = john) using answer extraction, because this is one way of
explaining how P(x) could be true. But we might also return something
like Q(x) as the answer to the question. For example, if we ask the ques-
tion, “What are yellow song birds that serve as pets?” the answer we are
expecting is probably not the names of some individual birds, but rather
another predicate like “canaries.” Note, however, that it is not clear how
to use Resolution to generate explanations in a first-order setting.

Negative Evidence We have insisted that explanations entail every-
thing to be explained. We might, however, imagine cases where missing
observations need to be accounted for. For example, we might be inter-
ested in a medical diagnosis that does not entail fever, without necessarily
requiring that it entail ¬fever.

Defaults We have used logical entailment as the relation between an
explanation α and what is being explained β. In a more general setting, it
might be preferable to require that it be reasonable to believe β given α,
where this belief could involve default assumptions. For example, being
a bird might explain an animal being able to fly, even though it would not
entail it.

Probabilities We have preferred explanations and diagnoses that are
as simple as possible. However, in general, not all simplest ones would
be expected to be equally likely. For example, we may have two circuit
diagnoses, each involving a single component, but it may be that one
of them is much more likely to fail than the other. Perhaps the fail-
ure of one component makes it very likely that another will fail as well.

280 Chapter 13 ■ Explanation and Diagnosis

Moreover, the “causal laws” we have between, say, diseases and symp-
toms would typically have a probabilistic component: Only a certain
percentage of the time would we expect a disease to manifest a symptom.

13.4.2 Other Applications
Finally, let us consider other applications of abductive reasoning.

Object Recognition This is an application where a system is given
input from a camera, say, and must determine what is being viewed.
At one level, the question is this: What scene would explain the image
elements being observed? Abduction is required here, because, as with
diseases and symptoms, it is presumed to be easier to obtain facts that
tell us what would be visible if an object were present than to obtain facts
that tell us what object is present if certain patterns are visible. At a higher
level, once certain properties of the object have been determined, another
question to consider is this: What object(s) would explain the collection
of properties discovered? Both of these tasks can be nicely formulated in
abductive terms.

Plan Recognition In this case, the observations are the actions of an
agent, and the explanation we seek is one that relates to the high-level
goals of the agent. If we observe the agent boiling water and heating
a tomato sauce, we might conjecture that a pasta dish is being prepared.

Hypothetical Reasoning As a final application, consider the fol-
lowing. Instead of asking, “What would I have to be told to believe that β

is true?” as in abductive reasoning, we ask, “What would I learn if I were
told that α were true?” For example, we might be looking for new symp-
toms that would be entailed if a disease were present. This is clearly a
form of deductive reasoning, but one where we are interested in returning
a formula, rather than a yes/no answer or the names of some individuals.
In a sense, it is the dual of explanation: We are looking for a formula β that
is entailed by α together with the KB, but one that is not already entailed
by the KB itself, that is simple and logically parsimonious, and that is in
the correct vocabulary.

Interestingly, there is a precise connection between this form of
reasoning and the type of explanation we have already defined: We should
learn β on being told α in the sense just mentioned if and only if the
formula ¬β is an abductive explanation for ¬α as already defined. For
instance, to go back to the tennis example at the start of the chapter, one
of the new things we ought to learn on being told

(Arthritis ∧ ¬SoreElbow)

13.5 Bibliographic Notes 281

would be Treated (that is, the arthritis is being treated). If we now go back
to the definition of explanation, we can verify that ¬Treated is indeed an
abductive explanation for

¬(Arthritis ∧ ¬SoreElbow),

because ¬Treated entails this sentence, is consistent with the KB, and is as
simple as possible. The nice thing about this account is that an existing
procedure for abductive reasoning could be used directly for this type of
deductive reasoning.

13.5 BIBLIOGRAPHIC NOTES

The term abduction was introduced by the philosopher Charles Sanders
Peirce [323, 325] (see also [324] for a selection of writings). Fann [125]
discusses the development of Peirce’s ideas on abduction. The volume by
Eco and Sebeok [117] contains an interesting collection of essays refer-
ring to abduction. The term inference to the best explanation is often used
to describe abduction (see, for instance, [180, 258]). As to how closely
abduction captures the notion of explanation, refer to Salmon [362]. One
of the things that Salmon considers is the Hempel and Oppenheim [184]
deductive-nomological model, which is similar in many ways to abduc-
tion. One of the first papers on abduction in Artificial Intelligence was by
Pople [333], who applied it to diagnosis. For a survey of abduction in AI,
refer to Paul [319].

Many explanation criteria have been suggested for selecting the best
abduction beyond those mentioned in this chapter. Cost-based measures,
in which costs are associated with making abductive hypotheses, are given
by Charniak and Shimony [69] and Stickel [402]. Ram and Leake [337]
give utility-based criteria for choosing hypotheses. The procedures given
for computing abduction by Pople [333] and Cox and Pietrzykowski [81]
are what Stickel refers to as most specific abductions [402].

When it comes to computing abductive inferences, Reiter and de Kleer
[349] suggest that methods can be divided into two categories: interpreted
and compiled approaches. Interpreted approaches retain the knowledge
base in its original form and compute abductive conclusions as required.
Compiled approaches transform the knowledge base into a more conve-
nient form for determining abductive inferences quickly and efficiently.
The mechanisms proposed by Pople [333], in THEORIST [330, 331], and by
Cox and Pietrzykowski [81] would be classified as interpreted. The most
common form of compilation for abduction is to convert the knowledge
base into prime implicates. Many methods for computing prime impli-
cates are based on Tison’s method [411]. Other methods for computing
prime implicates include those of Jackson [197], Kean and Tsiknis [217],

282 Chapter 13 ■ Explanation and Diagnosis

and Kean [216]. Sets of prime implicates can be viewed as a mini-
mal CNF and contrasted with their dual, prime implicants, as minimal
DNF. For formulas in DNF a common method of compilation is binary
decision diagrams (BDDs) [6].

Bylander et al. [64] discuss the complexity of computing one form of
abduction and find that it is NP-hard. Attardi et al. [15] discuss knowl-
edge compilation in a first-order setting. Darwiche and Marquis [84]
consider a number of knowledge compilation techniques, including prime
implicates and BDDs. For an empirical assessment of knowledge compi-
lation, see Kautz and Selman [215]. The example in the text used to show
that even Horn clauses can have exponentially many prime implicates is
due to McAllester [272].

The circuit example used in Section 13.3 appears in Genesereth
[150], and is also considered in a paper by Reiter [346], where for-
mal definitions of abductive diagnosis and consistency-based diagnosis
are introduced. The approach developed independently by de Kleer and
Williams [94, 95] is related to Reiter’s consistency-based diagnosis. This
work drew on earlier work in AI on model-based diagnosis [88, 178]
and on truth maintenance systems [111]. These ideas were extended in
the assumption-based truth maintenance systems (ATMS) considered in
[349]. For the logical aspects of truth maintenance systems, see also
Reinfrank [339] and Reinfrank et al. [340]. On these issues, see also Doyle
[112]. Forbus and de Kleer [133] present methods for implementing truth
maintenance systems.

Complementing logic-based approaches to abduction is another line
of research on set-cover-based approaches [11, 326]. For the logic-based
approaches that are the focus of this chapter, definitions are given by
Console and Torasso [77]. A variant of abduction defined in terms of
belief is presented by Levesque [242]. Marquis [268] considers abduc-
tion in first-order logic. Another view of abduction developed through
the implementation of various systems is presented by Josephson and
Josephson [205].

The THEORIST system [330, 331] uses abduction to perform default
reasoning. This idea is generalized by Brewka [55]. A similar approach
to THEORIST in the context of logic programming is given by Eshghi and
Kowalski [120], who relate abduction and negation as failure. Such
work has led to the area of abductive logic programming [207, 208].
Abduction has also been applied to diagnosis [326, 333], natural lan-
guage [67, 69, 308, 402], database updates [206, 408], and scientific
discovery [300].

13.6 EXERCISES

1. In Chapter 4, we saw that Resolution was logically complete for the
empty clause, but not for clauses in general. Prove that Resolution is

13.6 Exercises 283

complete for prime implicates that are not tautologous. Hint: Assume
that c is a prime implicate of a set of clauses �. Then there is a deriva-
tion of [], given � and the negation of c. Show how to modify this
derivation to obtain a new Resolution derivation that ends with c but
uses only the clauses in �.

2. In this question we explore what it could mean to say that a KB “says
something” about some topic. More precisely, we say that a set of
propositional clauses S is relevant to an atom p if and only if p appears
(either positively or negatively) in a nontautologous prime implicate
of S.

(a) Give an example of a consistent set of clauses S where an atom p
is mentioned but where S is not relevant to p.

(b) Suppose we have a clause c ∈ S and a literal ρ ∈ c. Show that if
S �|= c− {ρ}, then ρ appears in a prime implicate of S.

(c) Suppose we have a clause c ∈ S and a literal ρ ∈ c. Show that if
S |= c − {ρ}, then S is logically equivalent to S′ where S′ is S with
c replaced by c− {ρ}.

(d) Suppose S is consistent. Use parts (b) and (c) to show that
S is relevant to p if and only if there is a nontautologous
clause c ∈ S with ρ ∈ c, where ρ = p or ρ = ¬p such that
S �|= c− {ρ}.

(e) Use part (d) to argue that there is a polynomial time procedure
that takes a set of Horn clauses S and an atom p as arguments
and decides whether S is relevant to p. Note: the naïve way
of doing this would take exponential time, because S can have
exponentially many prime implicates.

3. Consider the binary circuit for logical AND depicted in Figure 13.3,
where i1, i2, and i3 are logical inverters and o1 is an OR gate.

(a) Write sentences describing this circuit—its components, connec-
tivity, and normal behavior.

(b) Write a sentence for a fault model saying that a faulty inverter has
its output the same as its input.

(c) Assuming the fault model and that the output is 1 given inputs
of 0 and 1, generate the three abductive explanations for this
behavior.

(d) Generate the three consistency-based diagnoses for this circuit
under the same conditions.

(e) Compare the abductive and consistency-based diagnoses and
explain informally why they are different.

284 Chapter 13 ■ Explanation and Diagnosis

i1

i3

i2

o1

■ FIGURE 13.3

A Circuit for AND

i1o1

o2

a1

■ FIGURE 13.4

A Circuit for EQUAL

4. Consider the binary circuit in Figure 13.4 that tests if its two inputs
are equal, where o1 and o2 are OR gates, i1 is an inverter, and a1 is an
AND gate:

(a) Write sentences describing this circuit—its components, connec-
tivity, and normal behavior.

(b) Write a sentence for a fault model saying that a faulty OR has its
output the same as its first input (the higher one in the diagram).

(c) Assuming the fault model and that the output is 1 given inputs of
0 and 1, generate the abductive explanations for this behavior.

(d) Generate the three consistency-based diagnoses for this circuit
under the same conditions.

(e) Compare the abductive and consistency-based diagnoses and
explain informally why they are different.

C H A P T E R 14

ACTIONS

■

■

■

The language of FOL is sometimes criticized as being an overly “static”
representation formalism. Sentences of FOL are either true or false in
an interpretation and stay that way. Unlike procedural representations or
production systems, there is seemingly nothing in FOL corresponding to
any sort of change.

In fact, there are two sorts of changes that we might want to consider.
First, there is the idea of changing what is believed about the world.
Although we will not dwell on it here, this is a very important aspect
of real-world reasoning. Suppose α is a sentence saying that birds are the
descendants of dinosaurs. At some point you might come to believe that
α is true, perhaps by being told directly. If you had no beliefs about α

before, this would be a straightforward process that involved adding α to
your current KB. If you had previously thought that α was false, however,
perhaps having concluded this from a number of other beliefs, dealing
with the new information would be a much more complicated process.
The study of which of your old beliefs to discard is an important area of
research known as belief revision.

The second notion of change to consider is when the beliefs them-
selves are about a changing world. Instead of merely believing that John
is a student, for example, you might believe that John was not a student
initially, but that he became a student by enrolling at a university, and that
he later graduated, and thus ceased to be a student. In this case, whereas
the world you are imagining is certainly changing, the beliefs you have
about John’s history as a whole need not change at all.1

1Of course, we might also have changing beliefs about a changing world, but we will not
pursue this here.

285

286 Chapter 14 ■ Actions

In this chapter, we will study how beliefs about a changing world
of this sort can in fact be represented in a dialect of FOL called the
situation calculus. This is not the only way to represent a changing world,
but it is a simple and powerful way to do so. It also naturally lends itself
to various sorts of reasoning, including planning, discussed separately in
the next chapter.

14.1 THE SITUATION CALCULUS

One way of thinking about change is to imagine being in a certain static
situation and having an action move you from that situation to a new
situation. For example, you may be in the situation of standing empty-
handed next to a cup of coffee, and the action of picking it up moves you
into the next situation, of holding it in your hand. The situation calculus is
a dialect of FOL in which such situations and actions are explicitly taken
to be objects in the domain. In particular, there are two distinguished
sorts of first-order terms:

■ actions, such as jump (the act of jumping), kick(x) (kicking object x),
and put(r, x, y) (robot r putting object x on top of object y). The con-
stant and function symbols for actions are completely application
dependent.

■ situations, which denote possible world histories. A distinguished
constant S0 and function symbol do are used. S0 denotes the
initial situation, before any action has been performed; do(a, s)
denotes the new situation that results from performing action a in
situation s.

For example, the situation term do(pickup(b2), do(pickup(b1), S0)) denotes
the situation that results from first picking up object b1 in S0 and
then picking up object b2. Note that this situation is not the same
as do(pickup(b1), do(pickup(b2), S0)), because they are different histo-
ries, even though for practical purposes there may be no reason to
distinguish them.

14.1.1 Fluents
Predicates and functions whose values may vary from situation to situa-
tion are called fluents, and are used to describe what holds in a situation.
By convention, the last argument of a fluent is a situation. For example,
the fluent Holding(r, x, s) might stand for the relation of robot r holding
object x in situation s. Thus, we can have formulas like

¬Holding(r, x, s) ∧ Holding(r, x, do(pickup(r, x), s)),

14.1 The Situation Calculus 287

which says that robot r is not holding x in some situation s, but is holding
x in the situation that results from picking it up in that situation. Note
that in the situation calculus there is no distinguished “current” situation.
A single formula like this can talk about many different situations, past,
present, or future.

Finally, a distinguished predicate Poss(a, s) is used to state that action
a can be performed in situation s. For example,

Poss(pickup(r, x), S0)

says that the robot r is able to pick up object x in the initial situation.
This completes the specification of the dialect of FOL that we will use

to reason about actions.

14.1.2 Precondition and Effect Axioms
To reason about a changing world, it is necessary to have beliefs not only
about what is true initially but also about how the world changes as the
result of actions.

Actions typically have preconditions, that is, conditions that need to be
true for the action to occur. For example, in a robotics setting, we might
have the following:

■ a robot can pick up an object if and only if it is not holding anything,
the object is not too heavy, and the robot is next to the object:2

Poss(pickup(r, x), s) ≡
∀z.¬Holding(r, z, s) ∧ ¬Heavy(x) ∧ NextTo(r, x, s);

■ it is possible for a robot to repair an object if and only if the object
is broken and there is glue available:

Poss(repair(r, x), s) ≡ Broken(x, s) ∧ HasGlue(r, s).

Actions typically also have effects, that is, fluents that are changed as
a result of performing the action. For example,

■ dropping a fragile object causes it to break:

Fragile(x) ⊃ Broken(x, do(drop(r, x), s));

■ repairing an object causes it to be unbroken:

¬Broken(x, do(repair(r, x), s)).

2In this chapter, free variables should be assumed to be universally quantified in the
widest scope.

288 Chapter 14 ■ Actions

Formulas like these are often called precondition axioms and effect axioms,
respectively.3 Effect axioms are called positive if they describe when
a fluent becomes true, and negative otherwise.

14.1.3 Frame Axioms
To fully capture the dynamics of a situation, we need to go beyond the
preconditions and effects of actions. With what we have discussed so far,
if a fluent is not mentioned in an effect axiom for an action a, we would
not know anything at all about it in the situation do(a, s). To really know
how the world can change, it is also necessary to know what fluents are
unaffected by performing an action. For example,

■ dropping an object does not change its color:

Color(x, c, s) ⊃ Color(x, c, do(drop(r, x), s));

■ dropping an object y does not break an object x when x is not the
same as y or x is not fragile:

¬Broken(x, s) ∧ [x �= y ∨ ¬Fragile(x)] ⊃
¬Broken(x, do(drop(r, y), s)).

Formulas like these are often called frame axioms, because they limit or
frame the effects of actions. Observe that we would not normally expect
them to be entailed by the precondition or effect axioms for the actions
involved.

Frame axioms do present a serious problem, however, sometimes
called the frame problem. Simply put, it will be necessary to know and
reason effectively with an extremely large number of frame axioms.
Indeed, for any given fluent we would expect that only a very small num-
ber of actions affect the value of that fluent; the rest leave it invariant.
For instance, an object’s color is unaffected by picking things up, open-
ing a door, using the phone, making linguini, walking the dog, electing
a new prime minister of Canada, and so on. All of these will require frame
axioms. It seems very counterintuitive that we should need to even think
about these ≈ 2 × A × F facts (where A is the number of actions and F
the number of fluents) about what does not change when we perform an
action.

What counts as a solution to this problem? Suppose the person respon-
sible for building a KB has written down all the relevant effect axioms.

3These are called axioms for historical reasons: A KB can be thought of as the axioms of
a logical theory (like number theory or set theory), with the entailed beliefs considered as
theorems.

14.1 The Situation Calculus 289

That is, for each fluent F(x, s) and action a that can cause the fluent to
change, we have an effect axiom of the form

φ(x, s) ⊃ (¬)F(x, do(a, s)),

where φ(x, s) is some condition on situation s. What we would like
is a systematic procedure for generating all the frame axioms from
these effect axioms. Moreover, if possible, we also want a parsimonious
representation for them, because in their simplest form there are too
many.

Why do we want such a solution? There are at least three reasons:

■ Frame axioms are necessary beliefs about a dynamic world that are
not entailed by other beliefs we may have.

■ Frame axioms are a convenience for the KB builder. Generating the
frame axioms automatically gives us modularity, because only the
effect axioms need to be given by hand. This ensures there is no
inadvertent omission or error.

■ Such a solution is useful for theorizing about actions. We can see
what assumptions need to be made to draw conclusions about what
does not change.

We will examine a simple solution to the frame problem in Section 14.2.

14.1.4 Using the Situation Calculus
Given a KB containing facts expressed in the situation calculus, there are
various sorts of reasoning tasks we can consider. We will see in the next
chapter that we can do planning. In Section 14.3, we will see that we
can figure out how to execute a high-level action specification. Here we
consider two basic reasoning tasks: projection and legality testing.

The projection task is the following: Given a sequence of actions and
some initial situation, determine what would be true if those actions
were performed starting in that initial situation. This can be formalized
as follows:

Suppose that φ(s) is a formula with a single free variable s of the situ-
ation sort, and that 	a is a sequence of actions 〈a1, . . . , an〉. To find out
if φ(s) would be true after performing 	a starting in the initial situation
S0, we determine whether or not KB |= φ(do(a, S0)), where do(a, S0)
is an abbreviation for do(an, do(an−1, . . . , do(a2, do(a1, S0)) . . .)), and for
S0 itself when n = 0.

For example, using the effect and frame axioms presented in Sections
14.1.2 and 14.1.3, it follows that the fluent ¬Broken(b2, s) would hold after

290 Chapter 14 ■ Actions

the sequence of actions

〈pickup(b1), pickup(b2), drop(b2), repair(b2), drop(b1)〉.

In other words, the fluent holds in the situation

s = do(drop(b1), do(repair(b2), do(drop(b2), do(pickup(b2),
do(pickup(b1), S0))))).

It is a separate matter to determine whether or not the given sequence
of actions could in fact be performed starting in the initial situation.
This is called the legality testing task. For example, a robot might not
be able to pick up more than one object at a time. We call a situation
term legal if it is either the initial situation or the result of performing an
action whose preconditions are satisfied starting in a legal situation. For
example, although the term

do(pickup(b2), do(pickup(b1), S0))

is well formed, it is not a legal situation, because the precondition for pick-
ing up b2 (e.g., not holding anything) will not be satisfied in a situation
where b1 has already been picked up. So the legality task is determin-
ing whether a sequence of actions leads to a legal situation. This can be
formalized as follows:

Suppose that 	a is a sequence of actions 〈a1, . . . , an〉. To find out if 	a can
be legally performed starting in the initial situation S0, we determine
whether or not KB |= Poss(ai, do(〈a1, . . . , ai−1〉, S0)) for every i such that
1 ≤ i ≤ n.

Before concluding this section on the situation calculus, it is perhaps
worth noting some of the representational limitations of this language:

■ single agent: there are no unknown or unobserved exogenous actions
performed by other agents, and no unnamed events;

■ no time: we have not talked about how long an action takes, or when
it occurs;

■ no concurrency: if a situation is the result of performing two actions,
one of them is performed first and the other afterward;

■ discrete actions: there are no continuous actions like pushing an
object from one point to another or filling a bathtub with water;

■ only hypotheticals: we cannot say that an action has occurred in
reality, or will occur;

14.2 A Simple Solution to the Frame Problem 291

■ only primitive actions: there are no actions that are constructed from
other actions as parts, such as iterations or conditionals.

Many of these limitations can be dealt with by refinements and extensions
to the dialect of the situation calculus considered here. We will deal with
the last of these in Section 14.3. First we turn to a solution to the frame
problem.

14.2 A SIMPLE SOLUTION TO THE FRAME PROBLEM

The solution to the frame problem we will consider depends on first
putting all effect axioms into a normal form. Suppose, for example, that
there are two positive effect axioms for the fluent Broken:

Fragile(x) ⊃ Broken(x, do(drop(r, x), s))

NextTo(b, x, s) ⊃ Broken(x, do(explode(b), s)).

In other words, an object is broken if it is fragile and it was dropped,
or something next to it exploded. Using a universally quantified action
variable a, these can be rewritten as a single formula:

∃r{a = drop(r, x) ∧ Fragile(x)} ∨
∃b{a = explode(b) ∧ NextTo(b, x, s)} ⊃

Broken(x, do(a, s)).

Similarly, a negative effect axiom like

¬Broken(x, do(repair(r, x), s)),

saying that an object is not broken after it is repaired, can be rewritten as

∃r{a = repair(r, x)} ⊃ ¬Broken(x, do(a, s)).

In general, for any fluent F(x, s), we can rewrite all of the positive effect
axioms as a single formula of the form

�F(x, a, s) ⊃ F(x, do(a, s)), (1)

and all the negative effect axioms as a single formula of the form

NF(x, a, s) ⊃ ¬F(x, do(a, s)), (2)

where �F(x, a, s) and NF(x, a, s) are formulas whose free variables are
among the xi, a, and s.

292 Chapter 14 ■ Actions

14.2.1 Explanation Closure
Now imagine that we make a completeness assumption about the effect
axioms we have for a fluent: Assume that formulas (1) and (2) charac-
terize all the conditions under which an action a changes the value of
fluent F. We can in fact formalize this assumption using what are called
explanation closure axioms as follows:

¬F(x, s) ∧ F(x, do(a, s)) ⊃ �F(x, a, s), (3)

in other words, if F were false, and made true by doing action a, then
condition �F must have been true;

F(x, s) ∧ ¬F(x, do(a, s)) ⊃ NF(x, a, s), (4)

in other words, if F were true, and made false by doing action a, then
condition NF must have been true.

Informally, these axioms add an “only if” component to the normal
form effect axioms: (1) says that F is made true if �F holds, whereas (3)
says that F is made true only if �F holds.4 In fact, by rewriting them
slightly, these explanation closure axioms can be seen to be disguised
versions of frame axioms:

¬F(x, s) ∧ ¬�F(x, a, s) ⊃ ¬F(x, do(a, s))

F(x, s) ∧ ¬NF(x, a, s) ⊃ F(x, do(a, s)).

In other words, F remains false after doing a when �F is false, and F
remains true after doing a when NF is false.

14.2.2 Successor State Axioms
If we are willing to make two assumptions about our KB, the formulas
(1), (2), (3), and (4) can be combined in a particularly simple and elegant
way. Specifically, we assume that our KB entails the following:

■ integrity of the effect axioms for every fluent F:

¬∃	x, a, s. �F(x, a, s) ∧NF(x, a, s);

4Note that in (3) we need to ensure that F was originally false and was made true to be able
to conclude that �F held, and similarly for (4).

14.2 A Simple Solution to the Frame Problem 293

■ unique names for actions:

A(x) = A(y) ⊃ (x1 = y1) ∧ · · · ∧ (xn = yn)

A(x) �= B(y), where A and B are distinct action names.

The first assumption is merely that no action a satisfies the condition of
making the fluent F both true and false. The second assumption is that
the only action terms that can be equal are two identical actions with
identical arguments.

With these two assumptions, it can be shown that for any fluent F, KB
entails that (1), (2), (3), and (4) together are logically equivalent to the
following formula:

F(x, do(a, s)) ≡ �F(x, a, s) ∨ (F(x, s) ∧ ¬NF(x, a, s)).

A formula of this form is called a successor state axiom for the fluent F
because it completely characterizes the value of fluent F in the successor
state resulting from performing action a in situation s. Specifically, F
is true after doing a if and only if before doing a, �F (the positive effect
condition for F) was true, or both F and¬NF (the negative effect condition
for F) were true. For example, for the fluent Broken, we have the following
successor state axiom:

Broken(x, do(a, s)) ≡
∃r{a = drop(r, x) ∧ Fragile(x)} ∨
∃b{a = explode(b) ∧ NextTo(b, x, s)} ∨
Broken(x, s) ∧ ∀r{a �= repair(r, x)}

This says that an object x is broken after doing action a if and only if a is
a dropping action and x is fragile, or a is a bomb-exploding action when
x is near to the bomb, or x was already broken and a is not the action of
repairing it.

Note that it follows from this axiom that dropping a fragile object
will break it. Moreover, it also follows logically that talking on the
phone does not affect whether or not an object is broken (assuming
unique names, i.e., talking on the phone is distinct from any dropping,
exploding, or repairing action). Thus, a KB containing this single axiom
would entail all the necessary effect and frame axioms for the fluent in
question.

294 Chapter 14 ■ Actions

14.2.3 Summary
We have, therefore, a simple solution to the frame problem in terms of
the following axioms:

■ precondition axioms, one per action,

■ successor state axioms, one per fluent,

■ unique name axioms for actions.

Observe that we do not get a small number of axioms at the expense of
prohibitively long ones. The length of a successor state axiom is roughly
proportional to the number of actions that affect the value of the fluent,
and, as noted earlier, we do not expect in general that very many of the
actions would change the value of any given fluent.

The conciseness and perspicuity of this solution to the frame problem
clearly depends on three factors:

1. the ability to quantify over actions, so that only actions changing
the fluent need to be mentioned by name;

2. the assumption that relatively few actions affect each fluent, which
keeps the successor state axioms short;

3. the completeness assumption for the effects of actions, which allows
us to conclude that actions that are not mentioned explicitly in effect
axioms leave the fluent invariant.

The solution also depends on being able to put effect axioms in the
normal form used earlier. This would not be possible, for example, if we
had actions whose effects were nondeterministic. For example, imagine
an action flipcoin whose effect is to make either the fluent Heads or the
fluent Tails true. An effect axiom like

Heads(do(flipcoin, s)) ∨ Tails(do(flipcoin, s))

cannot be put into the required normal form. In general, we need to
assume that every action a is deterministic in the sense that all the given
effect axioms are of the form

φ(x, a, s) ⊃ (¬)F(x, do(a, s)).

How to deal in some way with nondeterministic choice and other complex
actions is the topic of the next section.

14.3 Complex Actions 295

14.3 COMPLEX ACTIONS

So far, in our treatment of the situation calculus we have assumed that
there are only primitive actions, with effects and preconditions indepen-
dent of each other. We have no way of handling complex actions, that is
to say, actions that have other actions as components. Examples of these
are actions like the following:

■ conditionals: if the car is in the driveway then drive and otherwise
walk;

■ iterations: while there are blocks on the table, remove one;

■ nondeterministic choice: pick a red block off the table and put it on
the floor;

and others, as described later. What we would like to do is to define such
actions in terms of their primitive components in such a way that we
can inherit their solution to the frame problem. To do this, we need a
compositional treatment of the frame problem for complex actions. This
is precisely what we will provide, and we will see that it results in a novel
kind of programming language.

14.3.1 The Do Formula
To handle complex actions in general, it is sufficient to show that for
each complex action A we care about, there is a formula of the situation
calculus, which we call Do(A, s, s′), that says that action A when started in
situation s can terminate legally in situation s′. Because complex actions
can be nondeterministic, there may be more than one such s′. Consider,
for example, the complex action

[pickup(b1) ; if InRoom(kitchen) then putaway(b1) else goto(kitchen)].

For this action to start in situation s and terminate legally in s′, the
following sentence must be true:

Poss(pickup(b1), s) ∧
[(InRoom(kitchen, do(pickup(b1), s))

∧ Poss(putaway(b1), do(pickup(b1), s))
∧ s′ = do(putaway(b1), do(pickup(b1), s)))

∨
(¬InRoom(kitchen, do(pickup(b1), s))
∧ Poss(goto(kitchen), do(pickup(b1), s))
∧ s′ = do(goto(kitchen), do(pickup(b1), s)))]

296 Chapter 14 ■ Actions

In general, we define the formula Do recursively on the structure of
the complex action as follows:

1. For any primitive action A, we have

Do(A, s, s′) def= Poss(A, s) ∧ s′ = do(A, s).

2. For the sequential composition of complex actions A and B, [A ; B],
we have

Do([A ; B], s, s′) def= ∃s′′. Do(A, s, s′′) ∧Do(B, s′′, s′).

3. For a conditional involving a test φ of the form [if φ then A else B],
we have

Do([if φ then A else B], s, s′) def=
[φ(s) ∧ Do(A, s, s′)] ∨ [¬φ(s) ∧Do(B, s, s′)].5

4. For a test action, [φ?], determining if a condition φ currently holds,
we have

Do([φ?], s, s′) def= φ(s) ∧ s′ = s.

5. For a nondeterministic branch to action A or action B, [A | B], we
have

Do([A | B], s, s′) def= Do(A, s, s′) ∨Do(B, s, s′).

6. For a nondeterministic choice of a value for variable x, [πx. A], we
have

Do([πx. A], s, s′) def= ∃x. Do(A, s, s′).

7. For an iteration of the form [while φ do A], we have

Do([while φ do A], s, s′) def= ∀P{· · · ⊃ P(s, s′)}
where the ellipsis is an abbreviation for the conjunction of

∀s1. ¬φ(s1) ⊃ P(s1, s1)

∀s1, s2, s3. φ(s1) ∧ Do(A, s1, s2) ∧ P(s2, s3) ⊃ P(s1, s3).6

5If φ(s) is a formula of the situation calculus with a free variable s, then φ is that formula
with the situation argument suppressed. For example, in a complex action we would use
the test Broken(x) instead of Broken(x, s).
6The rule for iteration involves second-order quantification: The P in this formula is a quan-
tified predicate variable. The definition says that an iteration takes you from s to s′ if and
only if the smallest relation P satisfying certain conditions does so. The details are not of
concern here.

14.3 Complex Actions 297

Similar rules can be given for recursive procedures, and even constructs
involving concurrency and prioritized interrupts. The main point is that
what it means to perform these complex actions can be fully specified
in the language of the situation calculus. What we are giving, in effect,
is a purely logical semantics for many of the constructs of traditional
programming languages.

14.3.2 GOLOG
The formalism just presented gives us a programming language that we
will call GOLOG, which generalizes conventional imperative programming
languages.7 It includes the usual imperative constructs (sequence, iter-
ation, etc.), as well as nondeterminism and other features. The main
difference, however, is that the primitive statements of GOLOG are not
operations on internal states, like assignment statements or pointer
updates, but rather primitive actions in the world, such as picking up
a block. Moreover, what these primitive actions are supposed to do is not
fixed in advance by the language designer, but is specified by the user
separately by precondition and successor state axioms.

Given that the primitive actions are not fixed in advance or executed
internally, it is not immediately obvious what it should mean to execute
a GOLOG program A. There are two steps:

1. find a sequence of primitive actions 	a such that Do(A, S0, do(a, S0))
is entailed by the KB;

2. pass the sequence of actions 	a to a robot or simulator for actual
execution in the world.

In other words, to execute a program we must first find a sequence of
actions that would take us to a legal terminating situation for the program
starting in the initial situation S0, and then run that sequence.

Note that to find such a sequence it will be necessary to reason using
the given precondition and effect axioms, performing both projection and
legality testing. For example, suppose we have the program

[A ; if Holding(x) then B else C].

To decide between B and C, we need to determine whether Holding(x, s)
would be true in the situation that results from performing action A.

7The name comes from Algol in logic, after one of the original and influential programming
languages.

298 Chapter 14 ■ Actions

14.3.3 An Example
To see how this would work, consider a simple example in a robotics
domain involving three primitive actions, pickup(x) (picking up a block),
putonfloor(x) (putting a block on the floor), and putontable(x) (putting
a block on the table), and three fluents, Holding(x, s) (the robot is hold-
ing a block), OnFloor(x, s) (a block is on the floor), and OnTable(x, s) (a
block is on the table).

The precondition axioms are the following:

■ Poss(pickup(x), s) ≡ ∀z.¬Holding(z, s);

■ Poss(putonfloor(x), s) ≡ Holding(x, s);

■ Poss(putontable(x), s) ≡ Holding(x, s).

The successor state axioms are the following:

■ Holding(x, do(a, s)) ≡ a = pickup(x) ∨
Holding(x, s) ∧ a �= putonfloor(x) ∧ a �= putontable(x);

■ OnFloor(x, do(a, s)) ≡ a = putonfloor(x) ∨
OnFloor(x, s) ∧ a �= pickup(x);

■ OnTable(x, do(a, s)) ≡ a = putontable(x) ∨
OnTable(x, s) ∧ a �= pickup(x).

We might also have the following facts about the initial situation:

■ ¬Holding(x, S0);

■ OnTable(x, S0) ≡ (x = b1) ∨ (x = b2).

So initially, the robot is not holding anything, and b1 and b2 are
the only blocks on the table. Finally, we can consider two complex
actions—removing a block and clearing the table:

■ proc RemoveBlock(x) : [pickup(x) ; putonfloor(x)];
■ proc ClearTable : while ∃x. OnTable(x) do

πx[OnTable(x)? ; RemoveBlock(x)].

This completes the specification of the example.
To execute the GOLOG program ClearTable, it is necessary to first find

an appropriate terminating situation, do(a, S0), which determines the
actions 	a to perform. To find this situation, we can use Resolution
theorem-proving with answer extraction for the query

KB |= ∃s. Do(ClearTable, S0, s).

14.4 Bibliographic Notes 299

We omit the details of this derivation, but the result will yield a value for
s like

s = do(putonfloor(b2), do(pickup(b2),
do(putonfloor(b1), do(pickup(b1), S0))))

from which the desired sequence starting from S0 is

〈pickup(b1), putonfloor(b1), pickup(b2), putonfloor(b2)〉.
In a more general setting, an answer predicate could be necessary. In
fact, in some cases it may not be possible to obtain a definite sequence
of actions. This happens, for example, if what is known about the initial
situation is that either block b1 or block b2 is on the table, but not which.

Observe that if what is known about the initial situation and the actions
can be expressed as Horn clauses, the evaluation of GOLOG programs can
be done directly in PROLOG. Instead of expanding Do(A, s, s′) into a long
formula of the situation calculus and then using Resolution, we write
PROLOG clauses such as

do(A,S1,S2) :- /* for primitive actions */

prim_action(A), poss(A,S1), S2=do(A,S1).
do(seq(A,B),S1,S2) :- /* for sequences */

do(A,S1,S3), do(B,S3,S2).
do(while(F,A),S1,S2) :- /* for while loops (test false) */

not holds(F,S1), S2=S1.
do(while(F,A),S1,S2) :- /* for while loops (test true) */

holds(F,S1), do(seq(A,while(F,A)),S1,S2).

and so on. Then the PROLOG goal

?- do(clear_table,s0,S).

would return the binding for the final situation.
This idea of using Resolution with answer extraction to derive a

sequence of actions to perform will be taken up again in the next chapter
on planning. When the problem can be reduced to PROLOG, we get a
convenient and efficient way of generating a sequence of actions. This
has proven to be an effective method of providing high-level control for
a robot.

14.4 BIBLIOGRAPHIC NOTES

The situation calculus was first introduced by McCarthy [276]. However,
the variant of the situation calculus used in the text was developed by

300 Chapter 14 ■ Actions

Reiter (see [348] for a comprehensive treatment, and also Pirri and Reiter
[328]). Under the McCarthy view, a situation is a complete state of the
world at some point in time, while Reiter’s view is that a situation is a
history of actions (i.e., the sequence leading from the initial situation to
the current situation). For a discussion of some of the shortcomings of
the situation calculus, see Gelfond et al. [149].

The frame problem was first raised by McCarthy and Hayes [282].
Explanation closure axioms were suggested by Schubert [371] (see
also [372]) following proposals by Haas [175] and Pednault [322]. The
solution to the frame problem proposed by Reiter [347] extends these
ideas with the introduction of successor state axioms.

For a discussion of circumscription and the situation calculus, see
Baker [22, 23] (see also Kartha [210], and Kartha and Lifschitz [211]).
Shanahan [379] gives a comprehensive treatment of the use of circum-
scription in the situation calculus and solutions to the frame problem.
Frame fluents are discussed by Lifschitz [252]. Shoham [384] discusses
the idea of chronological ignorance and minimization in reasoning about
action.

In addition to the frame problem, related problems concerning reason-
ing about action have been investigated. The qualification problem was
first discussed by McCarthy [277], and the ramification problem by Finger
[131]. Recent work in this area has investigated the use of explicit notions
of causality in dealing with these problems [256, 273, 274, 313, 364, 409].

The GOLOG language is introduced by Levesque et al. [246]. Reiter
[348] gives an account of developments in reasoning about action lead-
ing to GOLOG and presents a number of GOLOG variants. Some important
extensions of GOLOG include CONGOLOG (concurrency and interrupts) [92],
INDIGOLOG (incremental deterministic) [93], STGOLOG (stochastic) [348,
Chapter 12], DTGOLOG (decision theoretic) [38], and CCGOLOG (concurrent,
continuous) [169]. Funge [137] introduces the Cognitive Modeling Lan-
guage, which is influenced by GOLOG; he uses this language for animation
and automated cinematography. GOLOG itself has been used to control
mail delivery robots [237], a museum tour guide [62], and robot soccer
robots [116]. LEGOLOG [245] is a system that uses GOLOG to control LEGO

MINDSTORMS robots.
Alternative approaches to reasoning about action include the event

calculus by Kowalski and Sergot [226], the A languages [24, 148], the
features and fluents framework by Sandewall [363], and the Fluent
Calculus [189] (see also Thielscher [410]).

The area of belief revision, mentioned briefly at the start of the chapter,
has an extensive literature of its own. The main logic-based approach
to belief revision is that developed by Alchourrón, Gärdenfors, and
Makinson (commonly referred to as the AGM approach) [10, 141, 142,
144] (but see also [7, 8, 9]). A comprehensive text on this type of belief
revision is Hansson [179]. The relationship between AGM belief revision

14.5 Exercises 301

and nonmonotonic reasoning is discussed in Makinson and Gärdenfors
[263] and Rott [358]. Katsuno and Mendelzon [213] suggest that AGM
belief revision is suited to reasoning about a static world in which a rea-
soning entity changes its beliefs due to mistakes or incompleteness in its
beliefs. They introduce the idea of belief update as a distinct form of change
for dynamic worlds in which the process of change is brought about due to
actions that alter the world. It can be argued that AGM revision is an ana-
logue of Bayesian conditionalization, whereas update is an analogue of
Lewis’s imaging [248]. There are various implementations of AGM belief
revision systems [104, 105, 164, 424, 425]. For discussion of belief change
in the situation calculus, see Shapiro et al. [380], which combines revi-
sion and update. Boutilier [37] also combines revision and update in a
generalized framework (see also Friedman and Halpern [136]).

14.5 EXERCISES

In these exercises, and in the follow-up exercises of Chapter 15, we con-
sider three application domains where we would like to be able to reason
about action and change:

Pots of Water

Consider a world with pots that may contain water. There is a single flu-
ent, Contains, where Contains(p, w, s) is intended to say that a pot p contains
w liters of water in situation s. There are only two possible actions, which
can always be executed: empty(p), which discards all the water contained
in the pot p, and transfer(p, p′), which pours as much water as possible
without spilling from pot p to p′, with no change when p = p′. To simplify
the formalization, we assume that the usual arithmetic constants, func-
tions, and predicates are also available. (You may assume that axioms for
these have already been provided or built in.)

15 Puzzle

The 15 puzzle consists of 15 consecutively numbered tiles located in a
4 × 4 grid. The object of the puzzle is to move the tiles within the grid
so that each tile ends up at its correct location, as shown in Figure 14.1.
The domain consists of locations, numbered 1 to 16, tiles, numbered 1 to
15, and, of course, actions and situations. There will be a single action
move(t, l) whose effect is to move tile t to location l, when possible. We will
also assume a single fluent, which is a function loc, where loc(t, s) refers
to the location of tile t in situation s. The only other nonlogical terms
we will use are the situation calculus predicate Poss and, to simplify the
formalization, a predicate Adjacent(l1, l2), which holds when location l1 is
one move away from location l2. For example, location 5 is adjacent only

302 Chapter 14 ■ Actions

initial state

1

10

13

9

6

2

5

14

3

7

4

11

8

15

12

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

goal state

■ FIGURE 14.1

The 15 Puzzle

C

D

F

A

B E

■ FIGURE 14.2

The Blocks World

to locations 1, 6, and 9. (You may assume that axioms for Adjacent have
already been provided.)

Note that in the text we concentrated on fluents that were predicates. Here
we have a fluent that is a function. Instead of writing Loc(t, l, s), you will
be writing loc(t, s) = l.

Blocks World

Imagine that we have a collection of blocks on a table and a robot arm
that is capable of picking up blocks and putting them elsewhere, as shown
in Figure 14.2.

We assume that the robot arm can hold at most one block at a time. We
also assume that the robot can only pick up a block if there is no other
block on top of it. Finally, we assume that a block can only support or be
supported by at most one other block, but that the table surface is large
enough that all blocks can be directly on the table. There are only two
actions available: puton(x, y), which picks up block x and moves it onto
block y, and putonTable(x), which moves block x onto the table. Similarly,

14.5 Exercises 303

we have only two fluents: On(x, y, s), which holds when block x is on block
y, and OnTable(x, s), which holds when block x is on the table.

For each application, the questions are the same:

1. Write the precondition axioms for the actions.

2. Write the effect axioms for the actions.

3. Show how successor state axioms for the fluents would be derived
from these effect axioms. Argue that the successor state axioms are
not logically entailed by the effect axioms by briefly describing an
interpretation where the effect axioms are satisfied but the successor
state ones are not.

4. Show how frame axioms are logically entailed by the successor state
axioms.

This Page Intentionally Left Blank

C H A P T E R 15

PLANNING

■

■

■

When we explored reasoning about action in Chapter 14, we considered
how a system could figure out what to do given a complex nondetermin-
istic action to execute, by using what it knew about the world and the
primitive actions at its disposal. In this chapter, we consider a related
but more fundamental reasoning problem: how to figure out what to do
to make some arbitrary condition true. This type of reasoning is usually
called planning. The condition that we want to achieve is called the goal,
and the sequence of actions we seek that will make the goal true is called
a plan.

Planning is one of the most useful ways that an intelligent agent can
take advantage of the knowledge it has and its ability to reason about
actions and their consequences. If we think of Artificial Intelligence as
the study of intelligent behavior achieved through computational means,
then planning is central to this study, because it is concerned precisely
with generating intelligent behavior and, in particular, with using what is
known to find a course of action that will achieve some goal. The knowl-
edge in this case involves information about the world, about how actions
affect the world, about potentially complex sequences of events, and about
interacting actions and entities, including other agents.

In the real world, because our actions are not totally guaranteed to
have certain effects and because we simply cannot know everything there
is to know about a situation, planning is usually an uncertain enterprise,
and it requires attention to many of the issues we have covered in earlier
chapters, such as defaults and reasoning under uncertainty. Moreover,
planning in the real world involves trying to determine what future states
of the world will be like, but also observing the world as plans are being

305

306 Chapter 15 ■ Planning

executed and replanning as necessary. Nonetheless, the basic capabilities
needed to begin considering planning are already available to us.

15.1 PLANNING IN THE SITUATION CALCULUS

Given its appropriateness for representing dynamically changing worlds,
the situation calculus is an obvious candidate to support planning. We
can use it to represent what is known about the current state of the world
and the available actions.

The planning task can be formulated in the language of the situation
calculus as follows:

Given a formula, Goal(s), of the situation calculus with a single free
variable, s, find a sequence of actions, 	a = 〈a1, . . . , an〉, such that

KB |= Goal(do(a, S0)) ∧ Legal(do(a, S0))

where do(a, S0) abbreviates do(an, do(an−1, . . . , do(a1, S0) . . .)), and
Legal(do(a, S0)) abbreviates

∧n
i=1 Poss(ai, do(〈a1, . . . , ai−1〉, S0)).

In other words, given a goal formula, we wish to find a sequence of
actions such that it follows from what is known that

1. the goal formula will hold in the situation that results from execut-
ing the actions in sequence starting in the initial state, and

2. it is possible to execute each action in the appropriate situation
(that is, each action’s preconditions are satisfied).

Note that this definition says nothing about the structure of the KB,
for example, whether it represents complete knowledge about the initial
situation.

Having formulated the task this way, to do the planning we can use
Resolution theorem-proving with answer extraction for the following
query:

KB |= ∃s. Goal(s) ∧ Legal(s).

As with the execution of complex actions in Chapter 14, if the extracted
answer is of the form do(a, S0), then 	a is a correct plan. But as we will
see in Section 15.4.2, there can be cases where the existential is entailed,
but where the planning task is impossible because of incomplete knowl-
edge. In other words, the goal can be achieved, but we can’t find a specific
way that is guaranteed to achieve it.

15.1 Planning in the Situation Calculus 307

15.1.1 An Example
Let us examine how this version of planning might work in the sim-
ple world depicted in Figure 15.1. A robot can roll from room to room,
possibly pushing objects through doorways between the rooms. In such
a world, there are two actions: pushThru(x, d, r1, r2), in which the robot
pushes object x through doorway d from room r1 to r2, and goThru(d, r1, r2),
in which the robot rolls through doorway d from room r1 to r2. To be able
to execute either action, d must be the doorway connecting r1 and r2,
and the robot must be located in r1. After successfully completing either
action, the robot ends up in room r2. In addition, for the action pushThru,
the object x must be located initially in room r1, and will also end up in
room r2.

We can formalize these properties of the world in the situation calculus
using the following two precondition axioms:

Poss(goThru(d, r1, r2), s) ≡
Connected(d, r1, r2) ∧ InRoom(robot, r1, s);

Poss(pushThru(x, d, r1, r2), s) ≡
Connected(d, r1, r2) ∧ InRoom(robot, r1, s) ∧ InRoom(x, r1, s).

In this formulation, we use a single fluent, InRoom(x, r, s), with the
following successor state axiom:

InRoom(x, r, do(a, s)) ≡
�(x, a, r) ∨ (InRoom(x, r, s) ∧ ¬∃r′. (r �= r′) ∧�(x, a, r′)),

supplies

box1

box2

office

closet

doorB

doorA

robot

■ FIGURE 15.1

A Simple Robot World

308 Chapter 15 ■ Planning

where �(x, a, r) is the formula

x = robot ∧ ∃d∃r1. a = goThru(d, r1, r)

∨ x = robot ∧ ∃d∃r1∃y. a = pushThru(y, d, r1, r)

∨ ∃d∃r1. a = pushThru(x, d, r1, r).

In other words, the robot is in room r after an action if that action was
either a goThru or a pushThru to r, or the robot was already in r and the
action was not a goThru or a pushThru to some other r′. For any other
object, the object is in room r after an action if that action was a pushThru
to r for that object, or the object was already in r and the action was not
a pushThru to some other r′ for that object.

Our KB should also contain facts about the specific initial situation
depicted in Figure 15.1: There are three rooms—an office, a supply room,
and a closet—two doors, two boxes, and the robot, with their locations
as depicted. Finally, the KB needs to state that the robot and boxes are
distinct objects and, so that the solution to the frame problem presented
in Chapter 14 applies, that goThru and pushThru are distinct actions.

15.1.2 Using Resolution
Now suppose that we want to get some box into the office, that is, the
goal we would like to achieve is

∃x. Box(x) ∧ InRoom(x, office, s).

To use Resolution to find a plan to achieve this goal, we must first convert
the KB to CNF. Most of this is straightforward, except for the successor
state axiom, which expands to a set of clauses that includes the following
(for one direction of the ≡ formula only):

[x �= robot, a �= goThru(d, r1, r2), InRoom(x, r2, do(a, s))]
[x �= robot, a �= pushThru(y, d, r1, r2), InRoom(x, r2, do(a, s))]
[a �= pushThru(x, d, r1, r2), InRoom(x, r2, do(a, s))]
[¬InRoom(x, r, s), x = robot, a = pushThru(x, t0, t1, t2),

InRoom(x, r, do(a, s))]
[¬InRoom(x, r, s), a = goThru(t3, t4, t5), a = pushThru(t6, t7, t8, t9),

InRoom(x, r, do(a, s))].

The ti here are Skolem terms of the form fi(x, r, a, s) arising from the
existentials in the subformula �(x, a, r).

15.1 Planning in the Situation Calculus 309

[Box(box1)]

successor state axiom

[a � pushThru(x,d,r1,r2), InRoom(x,r2,do(a,s))]

precondition axiom

[¬InRoom(x,r1,s),Poss(pushThru(x,d,r1,r2),s),
¬InRoom(robot,r1,s),
¬Connected(d,r1,r2)]

successor state axiom

[a � goThru(d,r1,r2), InRoom(x,r2,do(a,s)),
x � robot]

precondition axiom

[¬Connected(d,r1,r2), Poss(goThru(x,d,r1,r2),s),
¬InRoom(robot,r1,s)]

initial state

[InRoom(robot,office,S0)]

initial state

[InRoom(box1,supplies,S0)]

[Connected(doorA,office,supplies)]

successor state axiom**

[¬InRoom(x,r,s), InRoom(x,r,do(a,s)),
x � robot, a � pushThru(x,t0,t1,t2)]

[Connected(doorA,supplies,office)]

[¬Box(x), ¬InRoom(x,office,s1), ¬Legal(s1)]

[¬InRoom(box1,office,s1), ¬Legal(s1)]

x/box1

[¬Poss(pushThru(box1,d,r1,office),s2), ¬Legal(s2)]

s1/do(pushThru(box1,d,r1,office),s2)

[¬Connected(d,r1,office), ¬InRoom(robot,r1,s2),
¬InRoom(box1,r1,s2),¬Legal(s2)]

x/box1,s/s2,r2/office

[¬InRoom(robot,supplies,s2), ¬Legal(s2),
¬InRoom(box1,supplies,s2)]

d/doorA,r1/supplies

[¬Poss(goThru(d,r1,supplies),S0)]

s3/S0

[¬InRoom(box1,supplies,s3), Legal(s3),
¬Poss(goThru(d,r1,supplies),s3)]

[¬Connected(d,r1,supplies), ¬InRoom(robot,r1,S0)]

r2/supplies, s/S0

[¬InRoom(robot,office,S0)]

[]

d/doorA,r1/office

[¬InRoom(box1,supplies,do(goThru(d,r1,supplies),s3)),
¬Poss(goThru(d,r1,supplies),s3),
¬Legal(s3)]

s2/do(goThru(d,r1,supplies),s3)

■ FIGURE 15.2

Planning Using Resolution

The Resolution proof tree for this planning problem is sketched in
Figure 15.2. The formulas on the left are taken from the KB, and those on
the right start with the negation of the formula to be proved:

∃s1∃x. Box(x) ∧ InRoom(x, office, s1) ∧ Legal(s1).

310 Chapter 15 ■ Planning

Notice that whenever a Legal literal is derived, it is expanded to a clause
containing Poss or to the empty clause in the case of ¬Legal(S0). For
example, in the second step of the derivation, s1 is replaced by a term
of the form do(. . . , s2), and so ¬Legal(s1) expands to a clause contain-
ing ¬Poss(. . . , s2) and ¬Legal(s2). Also observe that the successor state
axioms in the KB use equality, which would require some additional
machinery (as explained in Chapter 4), and which we have omitted from
the diagram here for simplicity.

To keep the diagram simple, we have also not included an answer
predicate in this derivation. Looking at the bindings on the right side,
it can be seen that the correct substitution for s1 is

do(pushThru(box1, doorA, supplies, office),
do(goThru(doorA, office, supplies), S0)).

and so the plan is to first perform the goThru action and then the pushThru
one.

All but one of the facts in this derivation (including a definition of Legal)
can be expressed as Horn clauses. The final use of the successor state
axiom has two positive equality literals. However, by using negation as
failure to deal with the inequalities, we can use a PROLOG program directly
to generate a plan, as shown in Figure 15.3. The goal would be

?- box(X), inRoom(X,office,S), legal(S).

and the result of the computation would then be

X = box1
S = do(pushThru(box1,doorA,supplies,office),

do(goThru(doorA,office,supplies),s0))

as it was earlier. Using PROLOG in this way is very delicate, however. A
small change in the ordering of clauses or literals can easily cause the
depth-first search strategy to go down an infinite branch.

In fact, more generally, using Resolution theorem-proving over the
situation calculus for planning is rarely practical for two principal
reasons. First, we are required to explicitly draw conclusions about what
is not changed by doing actions. We saw this in the derivation (in the final
use of the successor state axiom, marked with ** in Figure 15.2), where
we concluded that the robot moving from the office to the supply room
did not change the location of the box (and so the box was still ready to
be pushed into the office). In this case, there was only one action and one
box to worry about; in a larger setting, we may have to reason about the
properties of many objects remaining unaffected after the performance
of many actions.

15.1 Planning in the Situation Calculus 311

inRoom(robot,office,s0).

box(box1). inRoom(box1,supplies,s0).

box(box2). inRoom(box2,closet,s0).
connected(doorA,office,supplies).

connected(doorA,supplies,office).

connected(doorB,closet,supplies).

connected(doorB,supplies,closet).
poss(goThru(D,R1,R2),S) :-

connected(D,R1,R2), inRoom(robot,R1,S).

poss(pushThru(X,D,R1,R2),S) :-

connected(D,R1,R2), inRoom(robot,R1,S),

inRoom(X,R1,S).
inRoom(X,R2,do(A,S)) :-

X=robot, A=goThru(D,R1,R2).

inRoom(X,R2,do(A,S)) :-

X=robot, A=pushThru(Y,D,R1,R2).

inRoom(X,R2,do(A,S)) :-

A=pushThru(X,D,R1,R2).

inRoom(X,R,do(A,S)) :- inRoom(X,R,S),

not (X=robot),

not (A=pushThru(X,T0,T1,T2)).

inRoom(X,R,do(A,S)) :- inRoom(X,R,S),

not (A=goThru(T3,T4,T5)),

not (A=pushThru(T6,T7,T8,T9)).
legal(s0).

legal(do(A,S)) :- poss(A,S), legal(S).

■ FIGURE 15.3

Planning Using PROLOG

Second, and more serious, the search for a sequence of actions using
Resolution (or the PROLOG variant) is completely unstructured. Notice,
for example, that in the derivation, the first important choice that was
made was to bind the x to box1. If your goal is to get some box into the
office, it is silly to first decide on a box and then search for a sequence
of actions that will work for that box. Much better would be to decide
on the box opportunistically based on the current situation and what else
needs doing. In some cases the search should work backward from the
goal; in others, it should work forward from the current state. Of course,
all of this search should be quite separate from the search that is needed
to reason about what does or does not hold in any given state.

In the next section, we deal with the first of these issues. We deal with
searching for a plan effectively in Section 15.3.

312 Chapter 15 ■ Planning

15.2 THE STRIPS REPRESENTATION

STRIPS is an alternative representation to the pure situation calculus for
planning. It derives from work on a mobile robot (called “Shakey”) at SRI
International in the 1960s. In STRIPS, we assume that the world we are
trying to deal with satisfies the following criteria:

■ only one action can occur at a time;

■ actions are effectively instantaneous;

■ nothing changes except as the result of planned actions.

In this context, this has been called the STRIPS assumption, but it clearly
applies just as well to our version of the situation calculus. What really
distinguishes STRIPS from the situation calculus is that knowledge about
the initial state of the world is required to be complete, and knowledge
about the effects and noneffects of actions is required to be in a specific
form. In what follows, we use a very simple version of the representation,
although many of the advantages we claim for it hold more generally.

In STRIPS, we do not represent histories of the world like we do in
the situation calculus, but rather we deal with a single world state at
a time. The world state is represented by what is called a world model,
which is a set of ground atomic formulas, similar to a database of facts
in the PLANNER system of Chapter 6 and the working memory of a pro-
duction system of Chapter 7. These facts can be thought of as ground
fluents (with the situation argument suppressed) under closed-world,
unique-name, and domain-closure assumptions (as in Chapter 11). For
the example depicted in Figure 15.1, we would have the following initial
world model, DB0:

InRoom(box1,supplies) Box(box1)
InRoom(box2,closet) Box(box2)
InRoom(robot,office)
Connected(doorA,office,supplies) Connected(doorA,supplies,office)
Connected(doorB,closet,supplies) Connected(doorA,supplies,closet)

In this case there is no need to distinguish between a fluent (like InRoom)
and a predicate that is unaffected by any action (like Box).

Further, in STRIPS, actions are not represented explicitly as part of the
world model, which means that we cannot reason about them directly.
Instead, actions are thought of as operators that syntactically transform
world models. An operator takes the world model database for some state
and transforms it into a database representing the successor state. The
main benefit of this way of representing and reasoning about plans is that
it avoids frame axioms: An operator will change what it needs to in the
database, and thereby leave the rest unaffected.

15.2 The STRIPS Representation 313

STRIPS operators are specified by pre- and postconditions. The pre-
conditions are sets of atomic formulas of the language that need to hold
before the operator can apply. The postconditions come in two parts:
a delete list, which is a set of atomic formulas to be removed from the
database, and an add list, which is a set of atomic formulas to be added
to the database. The delete list represents properties of the world state
that no longer hold after the operator is applied, and the add list repre-
sents new properties of the world state that will hold after the operator
is applied. For the earlier example, we would have the following two
operators:

pushThru(x, d, r1, r2)

Precondition: InRoom(robot, r1), InRoom(x, r1), Connected(d, r1, r2)

Delete list: InRoom(robot, r1), InRoom(x, r1)

Add list: InRoom(robot, r2), InRoom(x, r2)

goThru(d, r1, r2)

Precondition: InRoom(robot, r1), Connected(d, r1, r2)

Delete list: InRoom(robot, r1)

Add list: InRoom(robot, r2)

Note that the arguments of operators are variables that can appear in the
pre- and postcondition formulas.1

A STRIPS problem, then, is represented by an initial world model
database, a set of operators, and a goal formula. A solution to the prob-
lem is a set of operators that can be applied in sequence starting with the
initial world model without violating any of the preconditions, and which
results in a world model that satisfies the goal formula.

More precisely, a STRIPS problem is characterized by 〈DB0, Operators,
Goal〉, where DB0 is a list of ground atoms, Goal is a list of atoms (whose
free variables are understood existentially), and Operators is a list of oper-
ators of the form 〈Act, Pre, Add, Del〉, where Act is the name of the operator
and Pre, Add, and Del are lists of atoms. A solution is a sequence

〈Act1θ1, . . . , Actnθn〉

where Acti is the name of an operator in the list (with Prei, Addi, and
Deli as the other corresponding components) and θi is a substitution
of constants for the variables in that operator, and where the sequence

1We use the term operator to describe both a generic action (with variables as arguments)
and particular instances of the action (with constants as arguments).

314 Chapter 15 ■ Planning

satisfies the following:

■ for all 1 ≤ i ≤ n, DBi = DBi−1 + Addiθi − Deliθi;

■ for all 1 ≤ i ≤ n, Preiθi ⊆ DBi−1;

■ for some θ , Goalθ ⊆ DBn.

The + and − in this definition refer to the union and difference of lists,
respectively.

15.2.1 Progressive Planning
The characterization of a solution to the STRIPS planning problem imme-
diately suggests the planning procedure shown in Figure 15.4. For
simplicity, we have left out the details concerning the substitutions of
variables. This type of planner is called a progressive planner, because
it works by progressing the initial world model forward until we obtain
a world model that satisfies the goal formula.

Consider once again the planning problem in Figure 15.1. If called
with the initial world model (DB0) and the goal

Box(x), InRoom(x, office),

the progressive planner would first confirm that the goal is not yet
satisfied and then, within the loop, eventually get to the operator
goThru(doorA,office,supplies), whose precondition is satisfied in the DB.

input: a world model and a goal formula

output: a plan or fail

ProgPlan[DB,Goal] =

if Goal ⊆ DB then return the empty plan

for each operator 〈Act, Pre, Add, Del〉 such that Pre ⊆ DB do

let DB′ = DB+ Add−Del

let Plan = ProgPlan[DB′, Goal]
if Plan �= fail then return Act · Plan

end for

return fail

■ FIGURE 15.4

A Depth-First Progressive Planner

15.2 The STRIPS Representation 315

It then would call itself recursively with the following progressed world
model:

InRoom(box1,supplies) Box(box1)
InRoom(box2,closet) Box(box2)
InRoom(robot,supplies)
Connected(doorA,office,supplies) Connected(doorA,supplies,office)
Connected(doorB,closet,supplies) Connected(doorA,supplies,closet)

The goal is still not satisfied, and the procedure then continues and gets
to the operator pushThru(box1,doorA,supplies,office), whose precondition is
satisfied in the progressed DB. It would then call itself recursively with
a new world model:

InRoom(box1,office) Box(box1)
InRoom(box2,closet) Box(box2)
InRoom(robot,office)
Connected(doorA,office,supplies) Connected(doorA,supplies,office)
Connected(doorB,closet,supplies) Connected(doorA,supplies,closet)

At this point, the goal formula is satisfied, and the procedure unwinds
successfully and produces the expected plan.

15.2.2 Regressive Planning
In some applications, it may be advantageous to use a planner that works
backward from the goal rather than forward from the initial state. The
process of working backward, repeatedly simplifying the goal until we
obtain one that is satisfied in the initial state, is called goal regression. The
planner shown in Figure 15.5 is called a regressive planner. In this case,
the first operator we consider is the last one in the plan. This operator
obviously must not delete any atomic formula that appears in the goal.
Furthermore, to be able to use this operator, we must ensure that its pre-
conditions will be satisfied; they become part of the next goal. However,
the formulas in the add list of the operator we are considering will be
handled by that operator, so they can be removed from the goal as we
regress it.

If called with the initial world model from Figure 15.1 and the
goal

Box(x), InRoom(x, office),

the regressive planner would first confirm that the goal is not satisfied
and then, within the loop, eventually get to pushThru(box1,doorA,supplies,

316 Chapter 15 ■ Planning

input: a world model and a goal formula

output: a plan, or fail

RegrPlan[DB,Goal] =

if Goal ⊆ DB then return the empty plan

for each operator 〈Act, Pre, Add, Del〉 such that Del ∩Goal = {} do

let Goal′ = Goal+ Pre− Add

let Plan = RegrPlan[DB, Goal′]
if Plan �= fail then return Plan · Act

end for

return fail

■ FIGURE 15.5

A Depth-First Regressive Planner

office), whose delete list does not intersect with the goal.2 It then would
call itself recursively with the following regressed goal:

Box(box1), InRoom(robot,supplies), InRoom(box1,supplies),
Connected(doorA,supplies,office).

The goal is still not satisfied in the initial world model, so the proce-
dure continues and, within the loop, eventually gets to the operator
goThru(doorA,office,supplies), whose delete list does not intersect with the
current goal. It would then call itself recursively with a new regressed
goal:

Box(box1), InRoom(robot,office), InRoom(box1,supplies),
Connected(doorA,supplies,office), Connected(doorA,office,supplies).

At this point, the goal formula is satisfied in the initial world model, and
the procedure unwinds successfully and produces the expected plan.

15.3 PLANNING AS A REASONING TASK

Although the two planners just presented (or their breadth-first vari-
ants) work much better in practice than the Resolution-based planner
considered earlier, neither of them works very well on large problems.

2As before, we are omitting details about variable bindings. A more realistic version would
certainly leave the x in the goal unbound at this point, for example.

15.3 Planning as a Reasoning Task 317

This is not too surprising, because it can be shown that the planning task
is NP-hard, even for the simple version of STRIPS we have considered, and
even when the STRIPS operators have no variables. It is therefore extremely
unlikely that there is any procedure that will work well in all cases, as this
would immediately lead to a corresponding procedure for satisfiability.3

As with deductive reasoning, there are essentially two options we can
consider: We can do our best to make the search as effective as possi-
ble, especially by avoiding redundancy in the search, or we can make
the planning problem easier by allowing the user to provide control
information.

15.3.1 Avoiding Redundant Search
One major source of redundancy is the fact that actions in a plan tend to be
independent and can be performed in different orders. If the goal is to get
both box1 and box2 into the office, we can push box1 first or push box2 first.
The problem is that when searching for a sequence of actions (either pro-
gressing a world model or regressing a goal), we consider totally ordered
sequences of actions. Before we can rule out a collection of actions as
inappropriate for some goal, we end up considering many permutations
of those same actions.

To deal with this issue, let us consider a new type of plan, which is
a finite set of actions that are only partially ordered. Because such a plan
is not a linear sequence of actions, it is sometimes called a nonlinear plan.
In searching for such a plan, we order one action before another only
if we are required to do so. For getting the two boxes into the office,
for example, we would want a plan with two parallel branches, one for
each box. Within each branch, however, the moving actions(s) of the
robot to the appropriate room would need to occur strictly before the
corresponding pushing action(s).

To generate this type of plan, a partial-order planner is often used. In
a partial-order planner, we start with an incomplete plan, consisting of
the initial world model at one end and the goal at the other end. At each
step, we insert new actions into the plan and new constraints on when that
action needs to take place relative to the other actions in the plan, until
we have filled all the gaps from one end to the other. It is worth noting,
however, that the efficacy of this approach to planning is still somewhat
controversial because of the amount of extra bookkeeping it appears to
require.

A second source of redundancy concerns applying sequences of
actions repeatedly. Consider, for example, getting a box into the office.

3One popular planning method involves encoding the task directly as a satisfiability
problem and using satisfiability procedures to find a plan.

318 Chapter 15 ■ Planning

This always involves the same operators: some number of goThru actions
followed by a corresponding number of pushThru actions. Furthermore,
this sequence as a whole has a fixed precondition and postcondition that
can be calculated once and for all from the component operators. The
authors of STRIPS considered an approach to the reuse of such sequences
of actions and created a set of macro-operators, or MACROPS, which
were parameterized and abstracted sequences of operators. Although
adding macro-operators to a planning problem means that a larger num-
ber of operators will need to be considered, if they are chosen wisely the
resulting plans can be much shorter. Indeed, many of the practical plan-
ning systems work primarily by assembling precompiled plan fragments
from a library of macro-operators.

15.3.2 Application-Dependent Control
Even with careful attention to redundancy in the search, planning
remains impractical for many applications. Often the only way to make
planning effective is to make the problem easier, for example, by giving
the planner explicit guidance on how to search for a solution. We can
think of the macro-operators, for example, as suggesting to the planner a
sequence to use to get a box into a room. Another option is to use domain-
dependent heuristic search information to rank order the possibilities in
terms of estimated likelihood of success, so that we can explore the most
likely candidates first.

In some cases, we can be more definite. Suppose, for example, we
wish to reorganize all of the boxes in a certain distant room. We might
tell the planner that it should handle this by first planning on getting to
the distant room (ignoring any action dealing with the boxes) and only
then planning on reorganizing the boxes (ignoring any action involving
motion to other rooms). As with the procedural control of Chapter 6,
constraints of this sort clearly simplify the search by ruling out various
sequences of action.

In fact, we can imagine two extreme versions of this guidance. At one
extreme, we let the planner search for any sequence of actions, with
no constraints; at the other extreme, the guidance we give to a planner
would specify a complete sequence of actions, where no search would be
required at all. This idea does not require us to use STRIPS, of course, and
the situation calculus, augmented with the GOLOG programming language,
provides a convenient notation for expressing application-dependent
search strategies.

Consider the following highly nondeterministic GOLOG program:

while ¬Goal do {πa. a}.
The body of the loop says that we should pick an action a nondetermin-
istically, and then do a. To execute the entire program, we need to find

15.3 Planning as a Reasoning Task 319

a sequence of actions corresponding to performing the loop body repeat-
edly, ending up in a final situation s where Goal(s) is true. But this is
no more and no less than the planning task. So using GOLOG, we can
represent guidance to a planner at various levels of specificity. This pro-
gram provides no guidance at all. On the other hand, the deterministic
program

{ goThru(doorA, office, supplies) ;

pushThru(box1, doorA, supplies, office) }
requires no search at all. In between, however, we would like to provide
some application-dependent guidance, perhaps using heuristic search
information, leaving a more manageable search problem.

One convenient way to control the search process during planning is
by using what is called forward filtering. The idea is to modify very slightly
the while program so that not every action a whose precondition is sat-
isfied can be selected as the next action to perform in the sequence, but
only those actions that also satisfy some application-dependent criterion:

while ¬Goal do {πa. Acceptable(a)? ; a}.

The intent is that the fluent Acceptable(a, s) should be defined by the user
to filter out actions that may be legal but are not useful at this point in
the plan. For example, if we want to tell the planner that it first needs to
get to the closet and only then consider moving any boxes, we might have
something like the following in the KB:

Acceptable(a, s) ≡ InRoom(robot, closet, s) ∧ BlockAction(a)
∨ ¬InRoom(robot, closet, s) ∧ MoveAction(a),

for some suitable BlockAction and MoveAction predicates. Of course, defin-
ing an Acceptable properly for any particular application is not easy, and
requires a deep understanding of how to solve planning problems in that
application.

We can use the idea of forward filtering to define a complete pro-
gressive planner in GOLOG. The following procedure DFPlan is a recursive
variant of the earlier while loop that takes as an argument a bound on the
length of the action sequence it will consider. It then does a depth-first
search for a plan of that length or shorter:

proc DFPlan(n) :
Goal? | {(n > 0)? ; πa (Acceptable(a)? ; a) ; DFPlan(n− 1)}.

320 Chapter 15 ■ Planning

Of course, the plan it finds need not be the shortest one that works. To get
the shortest plan, it would be necessary to first look for plans of a certain
length and only then look for longer ones:

proc IDPlan(n) : IDPlan′(0, n)

proc IDPlan′(m, n) : DFPlan(m) | {(m < n)? ; IDPlan′(m+ 1, n)}.

The procedure IDPlan does a form of search called iterative deepening. It
uses depth-first search (that is, DFPlan) at ever larger depths as a way of
providing many of the advantages of breadth-first search.

15.4 BEYOND THE BASICS

In this final section, we briefly consider a small number of more advanced
topics in planning.

15.4.1 Hierarchical Planning
The basic mechanisms of planning that we have covered so far, even
including attempts to simplify the process with macro-operators, still
preserve all detail needed to solve a problem all the way through the
process. In reality, attention to too much detail can derail a planner to
the point of uselessness. It would be much better, if possible, to first
search through an abstraction space, where unimportant details were
suppressed. Once a solution in the abstraction space were found, all we
would have to do would be to account for the details of the linkup of the
steps.

In an attempt to separate levels of abstraction of the problem in the
planning process, the STRIPS team invented the ABSTRIPS approach. The
details are not important here, but we can note a few of the elements of
this approach. First, preconditions in the abstraction space have fewer
literals than those in the ground space; thus they should be less taxing
on the planner. For example, in the case of pushThru, at the highest level
of abstraction the operator is applicable whenever an object is pushable
and a door exists; without those basic conditions, the operator is not even
worth considering. At a lower level of abstraction, like the one we used
in our earlier example, the robot and object have to be in the same room,
which must be connected by a door to the target room. At an even finer-
grained level of detail, it would be important to ascertain whether the door
was open (and attempt to open it if not). But that is really not relevant
until we have a plan that involves going through the door with the object.
Finally, in the least abstract representation, it would be important to get

15.4 Beyond the Basics 321

the robot right next to the object, and both the robot and object right next
to the doorway, so that they could move through it.

15.4.2 Conditional Planning
In many applications, there may not be enough information available to
plan a full course of action to achieve some goal. For example, in our
robot domain, imagine that each box has a printed label on it that says
either office or closet, and suppose our goal is to get box1 into the room
printed on its label. With no further information, the full advance plan-
ning task is impossible, because we have no way of knowing where the
box should end up. However, we do know that a sequence of actions exists
that will achieve the goal, namely, to go into the supply room and push the
box either to the office or to the closet. If we were to use Resolution with
answer extraction for this example, the existential query would succeed,
but we would end up with a clause with two answer literals, corresponding
to the two possible sequences of action.

But now imagine that our robot is equipped with a sensor of some
sort that tells it whether or not there is a box located in the same room
with a label on it that says office. In this case, we would now like to say that
the planning task, or a generalization of it, is possible. The plan that we
expect, however, is not a linear sequence of actions, but is tree-structured,
based on the outcome of sensors: Go to the supply room, and if the sensor
indicates the presence of a box labeled office, then push that box into the
office, and otherwise push the box into the closet. This type of branching
plan is called a conditional plan, and a planner that can generate one is
called a conditional planner.

There are various ways of making this notion precise, but perhaps the
simplest is to extend the language of situation calculus so that instead
of just having terms S0 and do(a, s) denoting situations, we also have
terms of the form cdo(p, s), where p is a tree-structured conditional
plan of some sort. The situation denoted by this term would depend
on the outcome of the sensors involved, which of course would need
to be specified. To describe, for example, the sensor from the previous
paragraph, we might state something like the following:

Fires(sensor1, s) ≡ ∃x∃r. InRoom(robot, r, s) ∧
Box(x) ∧ InRoom(x, r, s) ∧ Label(x, office).

With terms like cdo(p, s) in the language, we could once again use
Resolution with answer extraction to do planning. How to do condi-
tional planning efficiently, on the other hand, is a much more difficult
question.

322 Chapter 15 ■ Planning

15.4.3 “Even the Best-Laid Plans …”
Situation calculus representations, and especially STRIPS, make many
restrictive assumptions. As discussed in our section on complex actions,
there are many aspects of action that bear investigation and may poten-
tially impact the ability of an AI agent to reason appropriately about the
world. Among the many issues in real-world planning that are currently
under active investigation we find things like simultaneous interacting
actions (e.g., lifting a piano, opening a doorlatch where the key and
knob must be turned at the same time), external events, nondeterministic
actions or those with probabilistic outcomes, noninstantaneous actions,
nonstatic predicates, plans that explicitly include time, and reasoning
about termination.

An even more fundamental challenge for planning is the sugges-
tion made by some that explicit, symbolic production of formal plans
is something to be avoided altogether. This is generally a reaction to
the computational complexity of the underlying planning task. Some
advocate instead the idea of a more “reactive” system, which observes
conditions and just “reacts” by deciding—or looking up—what to do
next. This one-step-at-a-time-like process is more robust in the face of
unexpected changes in the environment. A reactive system could be
implemented with a kind of “universal plan”—a large lookup table (or
Boolean circuit) that tells you exactly what to do based on conditions.
In some cases where they have been tried, reactive systems have had
impressive performance on certain low-level problems like learning to
walk; they have even appeared intelligent in their behavior. At the current
time, though, it is unclear how far one can go with such an approach and
what its intrinsic limitations are.

15.5 BIBLIOGRAPHIC NOTES

The classical work on planning in AI is by Green [166], who related plan-
ning to theorem-proving. An early and influential system for planning
was STRIPS [128] (see also [129]), which was used in the “Shakey” robotics
project [310]. For a formalization of STRIPS, see [251].

For early surveys of planning, see the review article by Georgeff [155]
and the collection of readings by Allen et al. [12]. A more recent treat-
ment is given by Dean and Wellman [97]. The computational complexity
of STRIPS was considered by Bylander [63]. The complexity of plan-
ning in the popular blocks-world domain is discussed by Slaney and
Thiébaux [389].

The idea of regressive planning can be traced to Waldinger [417].
Planning as satisfiability was introduced by Kautz and Selman [214], and
partial-order planning by Sacerdoti [360]. For hierarchical planning and

15.6 Exercises 323

abstraction spaces, see [361]. A planning method based on graph tech-
niques was introduced by Blum and Furst [30]. Recent approaches have
introduced the use of model-checking in planning [329]. Search methods
like iterative deepening, depth-first search, and breadth-first search are
covered in most textbooks on AI (see the references in Chapter 1).

Wilkins’s SIPE [423] was an early planner with a continuing long his-
tory of research and real-world impact. The ARPA/Rome Laboratory
Planning Initiative (ARPI) [407] also led to implementations of planners
used in important applications. The state of the art in planning is tested at
the AIPS Planning Competition [19]. Currently, among the fastest plan-
ners are TLPLAN by Bacchus and Kabanza [20, 21], which makes use of
forward filtering, and TALPLANNER [106], which is based on similar ideas.

In contrast to the more “classical” work on planning, the reactive
planning approach argues against the use of representation to do any
sort of lookahead (see, for example, Brooks [58]). The universal planning
idea is due to Schoppers [369] (see [158] for a critique).

15.6 EXERCISES

These exercises are continuations of the exercises from Chapter 14. For
each application, we consider a planning problem involving an initial
setup and a goal.

Pots of Water

Imagine that in the initial situation, we have two pots, a 5-liter one filled
with water and an empty 2-liter one. Our goal is to obtain 1 liter of water
in the 2-liter pot.

15 Puzzle

Assume that every tile is initially placed in its correct position, except for
tile 9 in location 13, tile 13 in location 14, tile 14 in location 15, and tile
15 in location 16. The goal, of course, is to get every tile placed correctly.

Blocks World

In the initial situation, the blocks are arranged as in Figure 14.2. The goal
is to get them arranged as in Figure 15.6.

For each application, the questions are the same:

1. Write a sentence of the situation calculus of the form ∃s. α that asserts
the existence of the final goal situation.

324 Chapter 15 ■ Planning

C

D

E

A

B F

■ FIGURE 15.6

The Blocks-World Goal

2. Write a ground situation term e (that is, a term that is either S0
or of the form do(a, e′), where a is a ground action term and e′ is
itself a ground situation term) such that e denotes the desired goal
situation.

3. Explain how you could use Resolution to automatically solve the
problem for any initial state: How would you generate the clauses,
and assuming the process stops, how would you extract the neces-
sary moves? (Do not attempt to write down a derivation!) Explain
why you need to use the successor state axioms, and not just effect
axioms.

4. Suppose we were interested in formalizing the problem using a STRIPS

representation. Decide what the operators should be and then write
the precondition, add list, and delete list for each operator. You may
change the language as necessary.

5. Consider the database corresponding to the initial state of the
problem. For each STRIPS operator and each binding of its vari-
ables such that the precondition is satisfied, state what the database
progressed through this operator would be.

6. Consider the final goal state of the problem. For each STRIPS operator,
describe the bindings of its variables for which the operator can be
the final action of a plan, and in those cases, what the goal regressed
through the operator would be.

7. Without any additional guidance, a very large amount of search
is usually required to solve planning problems. There are often,
however, application-dependent heuristics that can be used to reduce

15.6 Exercises 325

the amount of search. For example,

■ for the 15 puzzle, we should get the first row and first column
of tiles into their correct positions (tiles 1, 2, 3, 4, 5, 9, and
13), and then recursively solve the remaining 8 puzzle without
disturbing these outside tiles;

■ for the blocks world, we should never move a block that is
in its final position, where a block x is considered to be in its
final position if and only if either (a) x is on the table and x
will be on the table in the goal state or (b) x is on another
block y, x will be on y in the goal state, and y is also in its final
position.

Explain how the complex actions of GOLOG from Chapter 14 can be
used to define a more restricted search problem that incorporates
heuristics like these. Sketch briefly what the GOLOG program would
look like.

This Page Intentionally Left Blank

C H A P T E R 16

THE TRADEOFF BETWEEN

EXPRESSIVENESS AND TRACTABILITY

■

■

■

The focus of our exploration thus far has been the detailed investiga-
tion of a number of representational formalisms aimed at various uses
or applications. Each had its own features, usually knit together in a
cohesive whole that was justified by a particular point of view on the
world (e.g., object-oriented, or procedural, or rule-based). Many of the
formalisms we discussed can be viewed as extensions to a bare knowl-
edge representation formalism based on FOL. Even features like defaults
or probabilities can be thought of as additions to a basic FOL framework.

As we have proceeded through the discussion, lurking in the back-
ground has been a nagging question: Because, in the end, we would like
to be able to formally represent anything that can be known, why not
strive for a highly expressive language, one that includes all of the fea-
tures we have seen so far? Or even more generally, why do we not attempt
to define a formal knowledge representation language that is coextensive
with a natural language like English?1

The answer is the linchpin of the art of practicing knowledge repre-
sentation: Although such a highly expressive language would certainly be
desirable from a representation standpoint, it leads to serious difficulties
from a reasoning standpoint. If all we cared about was to formally repre-
sent knowledge in order to be able to prove occasional properties about
it by hand, then perhaps we could go ahead. But if we are thinking of

1Although we will not attempt to define the expressiveness of a language precisely, we
can think of it intuitively as measured by the subset of English we can properly encode.

327

328 Chapter 16 ■ The Tradeoff between Expressiveness and Tractability

using a mechanical reasoning procedure to manipulate the expressions
of this language, especially in support of reasoning by an artificial agent,
then we need to worry about what we can do with them in a reason-
able amount of time. As we will see in this chapter, reasoning procedures
that seem to be required to deal with more expressive representation lan-
guages do not appear to work well in practice. A fundamental fact of life
is that there is a tradeoff between the expressiveness of the representation
language and the computational tractability of the associated reasoning
task.2

In this chapter, we will explore this issue in detail. We will begin with
a simple description language of the sort considered in Chapter 9 and
show how a very small change in its expressiveness completely changes
the sort of reasoning procedure it requires. Then we will consider the
idea of languages more limited than FOL and what seems to happen as
they are generalized to full FOL. We will see that “reasoning by cases”
in various forms is a serious concern, and that one extreme way to
guarantee tractability is to limit ourselves to representation languages
where only a single “case” is ever considered. Finally, we will see that
there is still room to maneuver and that even limited representation lan-
guages can be augmented in various ways to make them more useful in
practice. Indeed, it can be argued that much of the research that is con-
cerned with both knowledge representation and reasoning is concerned
with finding interesting points in the tradeoff between tractability and
expressiveness.

It is worth noting before beginning, however, that the topic of this
chapter is somewhat controversial. People, after all, are able to rea-
son with what they know, even if much of what they know comes
from hearing or reading sentences in seemingly unrestricted natural
language. How is this possible? For one thing, people do not natu-
rally explore all and only the logical consequences of what they know.
This suggests that one way of dealing with the tradeoff is to allow
very expressive languages, but to preserve tractability by doing a form
of reasoning that is somehow less demanding. Researchers have pro-
posed alternative logical systems with weaker notions of entailment,
which might be candidates for exploration of limited reasoning with
expressive representation languages. However, because the tradeoff
between expressiveness and complexity is so fundamental to the under-
standing of knowledge representation and reasoning, we will here
concentrate on that issue and leave aside the consideration of weak
logics.

2Although we will not attempt to define the tractability of a reasoning task precisely, we will
assume (as we have done throughout) that any reasoning task whose execution time scales
exponentially with the size of the KB is intractable.

16.1 A Description Logic Case Study 329

16.1 A DESCRIPTION LOGIC CASE STUDY

To illustrate the tradeoff between expressiveness and tractability most
clearly, we begin by examining a very concrete case involving descrip-
tion logics and the subsumption task, as discussed in Chapter 9. We will
present a new description logic language called FL and a subset of it
called FL−, and show that what is needed to calculate subsumption is
quite different in each case.

16.1.1 Two Description Logic Languages
As with DL in Chapter 9, the FL language consists of concepts and roles
(but no constants) and is defined by the following grammar:

■ every atomic concept is a concept;

■ if r is a role and d is a concept, then [ALL r d] is a concept;

■ if r is a role, then [EXISTS 1 r] is a concept;

■ if d1 . . . dn are concepts, then [AND d1 . . . dn] is a concept;

■ every atomic role is a role;

■ if r is a role and d is a concept, then [RESTR r d] is a role.

There is one simple difference between FL and a variant that we will
call FL−: The grammar for the FL− language is the same as for FL, but
without the RESTR operator.

As usual, concepts can be thought of as 1-place predicates and roles
as 2-place predicates. Unlike in DL, both concepts and roles here can be
either atomic (with no internal structure) or nonatomic, indicated by an
operator (like ALL or RESTR) with arguments. As an aside, note that we
will use [SOME r] as a shorthand for [EXISTS 1 r].

The meaning of all the operators except for RESTR was explained in
Chapter 9. The RESTR operator is intended to denote a restricted role.
For example, if :Child is a role (to be filled by a person who is a child of
someone), then [RESTR :Child Female] is also a role (to be filled by a person
who is a daughter of someone). It is important then to distinguish clearly
between the following two concepts:

[AND Person [ALL :Child [AND Female Student]]]
[AND Person [ALL [RESTR :Child Female] Student]]

The first describes a person whose children are all female students; the
second describes a person whose female children are all students. In the
second case, nothing is said about the male children, if there are any.

330 Chapter 16 ■ The Tradeoff between Expressiveness and Tractability

Formally, the semantics for FL is like that of DL. The interpretation
mapping I is required to satisfy one additional requirement for RESTR:

■ I[[RESTR r d]] = {〈x, y〉 ∈ D×D | 〈x, y〉 ∈ I[r], and y ∈ I[d]}.

Thus, the set of [RESTR :Child Female] relationships is defined to be the
set of child relationships where the child in question is female. With this
definition in place, subsumption for FL is as before: d1 subsumes d2 (given
an empty KB) if and only if for every interpretation 〈D, I〉, I[d1] is a
superset of I[d2].

16.1.2 Computing Subsumption
As we have seen, the principal form of reasoning in description logics is
the calculation of subsumption. We begin by considering this reasoning
task for expressions in FL−, where we can use a procedure very similar
to the one for DL:

■ first put the expressions into an equivalent normal form,

[AND a1, . . . , an
[SOME r1], . . ., [SOME rm],
[ALL s1 d1], . . ., [ALL sk dk]],

where ai are atomic concepts, the ri and si are atomic roles, and the
di are themselves concept expressions in normal form;

■ to see if normal form expression d subsumes normal form expres-
sion d′, we check that for every part of d there is a matching part
in d′:

– for every a, if a ∈ d, then a ∈ d′;
– for every r, if [SOME r] ∈ d, then [SOME r] ∈ d′;
– for every [ALL s e] ∈ d, there is an [ALL s e′] ∈ d′, such that e

recursively subsumes e′.

This procedure can be shown to be sound and complete for FL−: It returns
with success if and only if the concept d subsumes d′ according to the
definition (with interpretations). Furthermore, it is not hard to see that
the procedure runs quickly: Conversion to normal form can be done in
O(n2) time, where n is the length of the concept expression, and the
structural matching part requires at worst scanning d′ for each part of d,
and so is again O(n2).

But let us now consider subsumption for all of FL, including the
RESTR operator. Here we see that subsumption is not so easy. Consider,

16.1 A Description Logic Case Study 331

for example, the following two descriptions:

[ALL [RESTR :Friend [AND Male Doctor]]
[AND Tall Rich]]

and

[AND [ALL [RESTR :Friend Male]
[AND Tall Bachelor]]

[ALL [RESTR :Friend Doctor]
[AND Rich Surgeon]]].

It is not hard to see that the first subsumes the second: Looking at the
second expression, if all your male friends are tall bachelors and all your
doctor friends are rich surgeons, then it follows that all your male doctor
friends are both tall and rich. On the other hand, we cannot settle the sub-
sumption question by finding a matching part in the second concept for
each part in the first. The interaction among the parts is more complicated
than that. Similarly, a description like

[SOME [RESTR r [AND a b]]]

subsumes one like

[AND [SOME [RESTR r [AND c d]]]
[ALL [RESTR r c] [AND a e]]
[ALL [RESTR r [AND d e]] b]]

even though we have to work through all the parts of the second one to
see why.

Because of possible interactions among the parts, the sort of reasoning
that is required to handle FL appears to be much more complex than the
structural matching sufficient for FL−. Is this just a failure of imagination
on our part, or is FL truly harder to reason with? In fact, it can be proven
that subsumption in FL is as difficult as proving the unsatisfiability of
propositional formulas: There is a polynomial-time function � that maps
CNF formulas into concept expressions of FL that has the property that
for any two CNF formulas α and β, (α ⊃ β) is valid if and only if �(α)
is subsumed by �(β). Because (α ⊃ (p ∧ ¬p)) is valid if and only if α

is unsatisfiable, it follows that a procedure for FL subsumption could
be used to check whether a CNF formula is unsatisfiable. Because it is
believed that no good algorithm exists for computing unsatisfiability for
CNF formulas, it follows that no good algorithm exists for FL expressions
either.

332 Chapter 16 ■ The Tradeoff between Expressiveness and Tractability

The moral: Even small doses of expressive power—in this case
adding one natural, role-forming operator—can come at a signif-
icant computational price.

This raises a number of interesting questions that are central to the
knowledge representation enterprise:

1. What properties of a representation language affect or control its
computational difficulty?

2. How far can expressiveness be pushed without losing the prospect
of good (or at least nonexponential) algorithms?

3. When are inexpressive but tractable representation languages suffi-
cient for the purposes of knowledge representation and reasoning?

Although these questions remain largely unanswered, some progress has
been made on them. As we will see, reasoning by cases is a major source
of computational intractability. As for description logics, the space of
possible languages has been explored extensively, together with proofs
about which combinations of operators preserve tractability.

Finally, as for making do with inexpressive languages, this is a much
more controversial topic. For some researchers, anything less than
“English” is a cop-out and inappropriate for AI research; others are
quite content to look for inexpressive languages tailored to applications,
although they might prefer to call this, “exploiting constraints in the appli-
cation domain,” rather than the more negative sounding, “getting by with
an expressively limited language.” As we will see, there is indeed sig-
nificant mileage to be gained by looking for reasoning tasks that can be
formulated in limited but tractable representation languages and then
making efforts to extend them as necessary.

16.2 LIMITED LANGUAGES

The main idea in the design of useful limited languages is that there are
reasoning tasks that can be easily formulated in terms of FOL entailment,
that is, in terms of whether or not KB |= α, but that can also be solved by
special-purpose methods because of restrictions on the KB or on α.

A simple example of this is Horn clause entailment. We could obvi-
ously use full Resolution to handle Horn clauses, but there is no need
to, because SLD Resolution offers a much more focused search. In fact,
in the propositional case, we know that there is a procedure guaranteed
to run in linear time for doing the reasoning, whereas a full Resolution
procedure need not and likely would not do as well.

16.2 Limited Languages 333

A less obvious example of a limited language is provided by description
logics in general. It is not hard to formulate subsumption in terms of FOL
entailment. We can imagine introducing predicate symbols for concept
expressions and writing meaning postulates for them in FOL. For example,
for the concept

[AND [ALL :Friend Rich]
[ALL :Child [ALL :Friend Happy]]],

we introduce the predicate symbol P and the meaning postulate

∀x. P(x) ≡ ∀y (Friend(x, y) ⊃ Rich(y)) ∧
∀y (Child(x, y) ⊃ ∀z. Friend(y, z) ⊃ Happy(z)).

This has the effect of defining P to be anything that satisfies the stated
property. If we have two concept descriptions and introduce two predi-
cate symbols P and Q, along with two meaning postulates μP and μQ, it
is clearly the case that the first concept is subsumed by the second if and
only if

{μP, μQ} |= ∀x. P(x) ⊃ Q(x).

So if we wanted to, we could use full Resolution to calculate concept
subsumption. But as we saw, for some description logic languages (like
FL−), there are very good subsumption procedures. It would be extremely
awkward to try to coax this efficient structure-matching behavior out of
a general-purpose Resolution procedure.

As a third and final example, consider linear equations. Let E be the
usual Peano axioms of arithmetic written in FOL:

∀x∀y. x+ y = y+ x,

∀x. x+ 0 = x,

and so on. From this we can derive, for example, that

E |= ∀x∀y. (x+ 2y = 4 ∧ x− y = 1) ⊃ (x = 2 ∧ y = 1).

That is, even though we cannot formalize all of arithmetic within FOL,
we can do enough of it to use Resolution (with some form of answer
extraction) to solve systems of linear equations. But there is a much better
way, of course: the Gauss–Jordan method with back substitution. For
the example, we subtract the second equation (x − y = 1) from the first
(x + 2y = 4) to derive that 3y = 3; we divide both sides by 3 to get y = 1;
we substitute this value of y in the first equation to get x = 2. In general,

334 Chapter 16 ■ The Tradeoff between Expressiveness and Tractability

a set of n linear equations can be solved by this method in O(n3) steps,
whereas the Resolution procedure can offer no such guarantee.

This idea of limited languages obviously generalizes: It will always be
advantageous to use a special-purpose reasoning procedure when one
exists even if a general-purpose procedure like Resolution is applicable.

16.3 WHAT MAKES REASONING HARD?

So when do we expect not to be able to use a specialized procedure to
advantage? Suppose that instead of having a system of linear equations,
our reasoning task started with the following formulas:3

(x+ 2y = 4 ∨ 3x− y = 7) ∧ x− y = 1.

We can still show using Resolution that this implies that y > 0. But if
we wanted to use an efficient procedure like Gauss–Jordan to draw this
conclusion, we would have to split the problem into two cases:

Given x+ 2y = 4 and x− y = 1,
we infer using Gauss–Jordan that y = 1, and so y > 0.

Given 3x− y = 7 and x− y = 1,
we infer using Gauss–Jordan that y = 2, and so y > 0.

Either way, we conclude that y > 0.

Reasoning this way may still be better than using Resolution. But what
if we have two disjunctions to consider, (e1 ∨ f1) ∧ (e2 ∨ f2), where the ei
and fi are equations? Then we would have four cases to consider. If we
had n disjunctions

(e1 ∨ f1) ∧ (e2 ∨ f2) ∧ . . . (en ∨ fn)

we would need to call the Gauss–Jordan method 2n times to see what
follows. For even a modestly sized formula of this type—say when n
is 30—this method is no longer feasible, even though the underlying
Gauss–Jordan procedure is efficient. Thus, special-purpose reasoning
methods will not help us if we are forced to reason by cases and invoke
these procedures exponentially often.

But can we avoid this type of case analysis? Unfortunately, it seems to
be demanded by languages like FOL. The constructs of FOL are ideally

3Of course, we would not expect to find a disjunction in a textbook on mathematical
equations.

16.3 What Makes Reasoning Hard? 335

suited to expressing incomplete knowledge. Consider what we can say
in FOL:

1. In(blockA, box) ∨ In(blockB, box)
Either block A or block B is in the box.
But which one?

2. ¬In(blockC, box)
Block C is not in the box.
But where is it?

3. ∃x. In(x, box)
Something is in the box.
But what is it?

4. ∀x. In(x, box) ⊃ Light(x)
Everything in the box is light (in weight).
But what are the things in the box?

5. heaviestBlock �= blockA
The heaviest block is not block A.
But which block is the heaviest block?

6. heaviestBlock = favorite(john)
The heaviest block is also John’s favorite.
But what block is this?

In all cases, the logical operators of FOL allow us to express knowledge
in a way that does not force us to answer the questions posed in italics. In
fact, we can understand the expressiveness of FOL not in terms of what
it allows us to say, but in terms of what it allows us to leave unsaid.

From a reasoning point of view, however, the problem is that if we
know that block A or block B is in the box, but not which, and we want
to consider what follows from this and what the world must be like, we
have to somehow cover the two cases. Again, the trouble with cases is
that they multiply together, and so very quickly there are too many of
them to enumerate.4 Not too surprisingly then, the limited languages we
have examined (Horn clauses, description logics, linear equations) do not
allow this form of incomplete knowledge to be represented.

This then suggests a general direction to pursue to avoid intractability:
Restrict the contents of a KB somehow so that reasoning by cases is not
required.

4This is not to suggest that we are required to enumerate the cases to reason correctly.
Indeed, whether we need a reasoning procedure that scales with the number of cases remains
open, and is perhaps the deepest open problem in computer science.

336 Chapter 16 ■ The Tradeoff between Expressiveness and Tractability

One natural question along these lines is this: Is complete knowledge
sufficient to ensure tractability? That is, if for every sentence α we care
about the KB entails α or the KB entails ¬α, can we efficiently determine
which? The answer unfortunately is no; a proof is beyond the scope of
this book, but an informal argument is that if we have a KB like

{(p ∨ q), (¬p ∨ q), (¬p ∨ ¬q)},

then we have a KB with complete knowledge about p and q, because
it only has one satisfying interpretation.5 But we need to reason care-
fully with the entire KB to come to this conclusion and determine, for
example, that q is entailed.

16.4 VIVID KNOWLEDGE

We saw in the previous section that one way to keep reasoning tractable
is to somehow avoid reasoning by cases. Unfortunately, we also saw that
merely insisting on complete knowledge in a KB was not enough. In this
section, we will consider an additional restriction that will be sufficient
to guarantee the tractability of reasoning.

We begin with the propositional case. One property we do have for
a KB with complete knowledge is that if it is satisfiable at all, then it
is satisfied by a unique interpretation. To see this, suppose that KB has
complete and consistent knowledge, and define the interpretation
 such
that for any atom p,
 |= p if and only if KB |= p. Now consider any
other interpretation
′ that satisfies KB. If KB |= p, it follows that
′ |= p;
furthermore, because KB is complete, if KB �|= p, then KB |= ¬p, and so
it follows that
′ |= ¬p, and thus that,
′ �|= p. Therefore,
 and
′ agree
on all atoms, and so are the same interpretation.

It follows by this argument that if a KB has complete and consistent
knowledge (for some vocabulary), then there is an interpretation
 such
that for any sentence α, KB |= α if and only if
 |= α. In other words,
there is a (unique) interpretation such that the entailments of the KB
are nothing more than the sentences true in that interpretation. Because
calculating what is true in an interpretation is such a simple matter once
we are given the interpretation, we find that calculating entailments in
this case will be easy too. The problem, as we saw in the previous section,
is that it may be difficult to find this interpretation. The simplest way, then,

5It can be shown that finding a satisfying interpretation for a set of clauses that has at
most one satisfying interpretation, although not NP-hard, is still unlikely to be solvable in
polynomial time.

16.4 Vivid Knowledge 337

to ensure tractability of reasoning is to insist that a KB with complete
and consistent knowledge wear this unique interpretation on its sleeve.

In the propositional case, then, we define a KB to be vivid if and only
if it is a complete and consistent set of literals (over some vocabulary).
A KB in this form exhibits the unique satisfying interpretation in a very
obvious way. To answer queries with such a KB we need only use the
positive literals in the KB, as we did with the CWA in Chapter 11. In fact,
a vivid KB is simply one that has the CWA built in.

In the first-order case, we will do exactly the same, and base our defini-
tion on the first-order version of the CWA. We say that a first-order KB is
vivid if and only if for some finite set KB+ of positive function-free ground
literals it is the case that

KB = KB+ ∪
{¬p |p is atomic and KB �|= p} ∪
{(ci �= cj) | ci, cj are distinct constants} ∪
{∀x[x = c1 ∨ . . . ∨ x = cn], where the ci are all the constants in KB+}.

So a KB that is vivid has the CWA built in; no further assumptions are
necessary. For a KB of this form, we get a simple recursive algorithm
for determining whether KB |= α, just as we did with the CWA:

1. KB |= (α ∧ β) iff KB |= α and KB |= β;

2. KB |= (α ∨ β) iff KB |= α or KB |= β;

3. KB |= ¬α iff KB �|= α;

4. KB |= ∃xα iff KB |= αx
c , for some c appearing in KB;

5. KB |= (a = b) iff a and b are the same constants;

6. if α is atomic, then KB |= α iff α ∈ KB+.

Notice that the algorithm for determining what is entailed by a vivid KB
is just database retrieval over the KB+ part. Only this part of the KB is
actually needed to answer queries, and could be stored in a collection of
database relations. The rest of the KB is not needed to answer questions,
but is there to ensure that the recursive algorithm is correct.

16.4.1 Analogues, Diagrams, Models
One interesting aspect of this definition of a vivid KB is how well it
accounts for what is called analogical, diagrammatic, or model-based
reasoning.

338 Chapter 16 ■ The Tradeoff between Expressiveness and Tractability

It is often argued that a form of reasoning that is even more basic than
reasoning with sentences representing knowledge about some world (as
we consider in this book) is reasoning with models representing worlds
directly. Instead of reasoning by asking what is entailed by a collection of
sentences, we are presented with a model or a diagram of some sort and
we reason by asking ourselves if a sentence is satisfied by the model or
holds in the diagram.

Here is the type of example that is used to argue for this form of
reasoning: Imagine the president of the United States standing directly
beside the prime minister of Canada. It is observed that people have
a hard time thinking about this scene without either imagining the
president as being on the left or the prime minister as being on the left.
In a collection of sentences representing beliefs about the scene, we could
easily leave out who is on the left. But in a model or diagram of the scene,
we cannot represent the leaders as being beside each other without also
committing to this and other visually salient properties of the scene.

This constraint on how we seem to think about the world has led
many to conclude that reasoning with models or diagrams is somehow
a more basic and fundamental form of reasoning than the manipulation
of sentences.

But viewed another way, it can be argued that what we are really talking
about is a form of reasoning where certain kinds of properties of the
world cannot be left unspecified and must be spelled out directly in the
representation. A vivid KB can in fact be viewed as a model of the world in
just this sense. In fact, there is clear structural correspondence between
a vivid KB and the world it represents knowledge about:

■ for each object of interest in the world, there is exactly one constant
in KB+ that stands for that object;

■ for each relationship of interest in the world, there is a correspond-
ing predicate in the KB such that the relationship holds among
certain objects in the world if and only if the predicate with the
constants as arguments is an element of KB+.

In this sense, KB+ is an analogue of the world it represents knowledge
about.

Note that this close correspondence between the structure of a KB
and the world it represents knowledge about does not hold in general.
For example, if a KB consists of the sentences {P(a), Q(b)}, it might be
talking about a world where there are five objects, two of which satisfy
property P and four of which satisfy Q. On the other hand, if we have
a vivid KB where KB+ is {P(a), Q(b)}, then we must be talking about a
world with exactly two objects, one of which satisfies P and the other
of which satisfies Q. In the propositional case, we said that a vivid KB
was uniquely satisfied; in the first-order case, a vivid KB is not uniquely

16.5 Beyond Vivid 339

satisfied, but all of the interpretations that satisfy it look the same—they
are isomorphic.

The result of this close correspondence between the structure of a vivid
KB and the structure of its satisfying interpretations is that many reason-
ing operations are much simpler on a vivid KB than they would be in a
general setting. Just as, given a model of a house, we can find out how
many doors the house has by counting them in the model, given a vivid
KB, we can find out how many objects have a certain property by count-
ing how many constants have the property. Similarly, we can represent
changes to the world directly by changes to the analogue KB+, adding or
removing elements just as we did with the procedural representations in
Chapter 6.

16.5 BEYOND VIVID

While vivid knowledge bases seem to provide a platform for tractable
reasoning, they are quite limited as representations of knowledge. In this
section, we will consider some extensions that have been proposed that
appear to preserve tractability.

16.5.1 Sets of Literals
First, let us consider in the propositional case a KB as any finite set of
literals, not necessarily complete (that is, with no CWA built in). Because
such a knowledge base does not use disjunction explicitly, we might think
it would be easier to reason with. It is not, however.6 Notice that if this KB
happens to be the empty set of literals, it will entail an α if and only if α is
a tautology. So a good algorithm for reasoning from a set of literals would
imply a good algorithm for testing for tautologies, an unlikely prospect.

However, let us now assume that the α in question is small in com-
parison with an exponentially larger KB. For example, imagine a query
that uses at most 20 atoms, whereas the KB might use millions. In this
case, here is what we can do: First, we can put α into CNF to obtain a set
of clauses c1, c2, . . . , cn. Next, we discard tautologous clauses (containing
an atom and its negation). It is then the case that KB |= α if and only if
KB |= ci for every remaining ci (and if there are no remaining ones, then
α was a tautology). Finally, we have this property:7

KB |= ci iff (KB ∩ ci) �= ∅.

6In fact, the presence of disjunctions is neither necessary nor sufficient for intractability.
7The argument is this: If the intersection of KB and ci is not empty, then clearly KB |= ci;
if it is empty, we can find an interpretation that makes KB true and makes ci false, and so
KB �|= ci.

340 Chapter 16 ■ The Tradeoff between Expressiveness and Tractability

So under these conditions we do get tractable reasoning even in the
absence of complete knowledge. However, this is for a propositional
language; it is far from clear how to extend this idea to an α with
quantifiers.

16.5.2 Incorporating Definitions
As a second extension, imagine that we have a vivid KB as before. Now
assume that we add to it a sentence of the form ∀	x. P(x) ≡ α, where α is
any formula that uses the predicates in the KB and P is a new predicate
that does not appear in the KB. For example, we might have a vivid KB
that uses the predicate Parent and Female, and we could add a sentence
like

∀x∀y. Mother(x, y) ≡ Parent(x, y) ∧ Female(x).

Such a sentence serves essentially to define the new predicate in terms
of the old ones.

We can still reason efficiently with a vivid KB that has been extended
with definitions in this way: If we have a query that contains an atom like
P(t1, . . . , tn) where P is one of the defined predicates, we can simply replace
it in the query by α(t1, . . . , tn), and continue as before. Note that this for-
mula α can contain arbitrary logical operations (including disjunctions
and existential quantifications), because they will end up being part of
the query, not of the KB. Furthermore, it is not too hard to see that we
could allow recursive definitions like

∀x∀y. Ancestor(x, y) ≡ Parent(x, y) ∨ ∃z(Parent(x, z) ∧ Ancestor(z, y))

provided that we were careful about how the expansion would take place.
In this case, it would be undecidable whether a sentence was entailed,
but arguably, this would be a very modest and manageable form of
undecidability.

This idea of a vivid KB together with definitions of unrestricted logical
form has a clear connection with PROLOG. A good case can be made that
in fact this, rather than Horn clauses, is the proper way to understand
PROLOG from a knowledge representation point of view.

16.5.3 Hybrid Reasoning
Having seen various forms of limited, special-purpose reasoning algo-
rithms, we might pose the natural question as to whether these can be
combined in a single system. What we would like is a system that can use
efficient procedures such as equation solvers or subsumption checkers as
appropriate, but can also do general first-order reasoning (like reason-
ing by cases) in those perhaps rare situations where it is necessary to

16.5 Beyond Vivid 341

do so. We might have, for example, a Resolution-based reasoning system
where we attempt, as much as possible, to use special-purpose reasoning
procedures whenever we can, as part of the derivation process.

One proposal in this direction is what is called semantic attachment.
The idea here is that procedures can be attached to certain function and
predicate symbols. For example, in the domain of numbers, we might
attach the obvious procedures to the function times and the predicate
LessThan. Then, when we are dealing with a clause that has ground
instances of these expressions, we attempt to simplify them before passing
them on to Resolution. For example, the literal P(a, times(5, 3), x) would
simplify to P(a, 15, x) using the procedure attached to times. Similarly, a
clause of the form [LessThan(quotient(36, 6), 5) ∨ c] would simplify to c
itself, once the first literal had simplified to false. Obviously this reason-
ing could be done without semantic attachment using Resolution and the
axioms of arithmetic. However, as we argued, there is much to be gained
by using special-purpose procedures.

A more general version of this idea that is not restricted to ground
terms is what is called theory resolution. The idea here is to build a back-
ground theory into the unification process itself, the way paramodulation
encodes a theory of equality. Rather than attaching procedures to func-
tions and predicates, we imagine that the special-purpose reasoner will
extend the notion of which literals are considered to be complementary.
For example, suppose we have two clauses,

[c1 ∨ LessThan(2, x)] and [c2 ∨ LessThan(x, 1)].

Using a background theory of LessThan, we can inform Resolution that the
two literals in question are complementary, exactly as if one had been p
and the other had been¬p. In this case, we would get the theory resolution
resolvent (c1 ∨ c2) in one step, using this special-purpose reasoner.

One nice application of theory resolution is the incorporation of a
description logic into Resolution. Suppose that some of the predicates
in a Resolution system are the names of concepts defined elsewhere in
a description logic system. For example, we might have the two clauses

[P(x) ∨ ¬Male(x)] and [Bachelor(john) ∨Q(y)],

where no Resolution steps are possible. However, if both Male and
Bachelor are defined in a description logic, we can determine that the
former subsumes the latter, and so the two literals are indeed comple-
mentary. Thus, we infer the clause

[P(john) ∨Q(y)]

342 Chapter 16 ■ The Tradeoff between Expressiveness and Tractability

by theory resolution. In this case, we are using a description logic pro-
cedure to quickly decide if two predicates are complementary, instead of
letting Resolution work with meaning postulates, as discussed earlier.

One concern in doing this type of hybrid reasoning is making sure we
do not miss any conclusions: We would like to draw exactly the same
conclusions we would get if we used the axioms of a background theory.
To preserve this form of completeness, it is sometimes necessary to con-
sider literals that are “almost complementary.” Consider, for example,
the two clauses

[P(x) ∨Male(x)] and [¬Bachelor(john) ∨Q(y)].

There are no complementary literals here, even assuming Male and
Bachelor have their normal definitions. However, there is a connection
between the two literals in the clauses, in that they are contradictory
unless the individual in question is married. Thus, we would say that the
two clauses should resolve together to produce the clause

[P(john) ∨Q(y) ∨ ¬Single(john)],

where the third literal in the clause is considered to be a residue of the
unification. It is a simple matter in description logics to calculate such
residues, and it turns out that without them, or without a significantly
more complex form of Resolution, completeness would be lost.

16.6 BIBLIOGRAPHIC NOTES

For further discussion of expressiveness versus tractability, see [48, 243].
The review of knowledge representation by Levesque [240] examines the
entire field from this perspective, arguing that much of the research can
be seen as exploring useful points along the expressiveness–tractability
spectrum.

In terms of research addressing the tradeoff directly, Cadoli et al.
[65] show that nonmonotonic logics lead to more compact representa-
tions, but that this may be at the cost of an increase in computational
complexity. Schaerf and Cadoli [365] consider approximate reasoning by
looking at consequence operations that give up either soundness or com-
pleteness, resulting in a decrease in computational complexity. Logics of
explicit belief (see the references in Chapter 2) explore similar ideas.

The description logics FL and FL− are discussed by Brachman and
Levesque [46]. Nebel [304] considers the computational complexity of
description logics more generally. There are many papers analyzing
the complexity of subsumption for description logics (see, for example,

16.7 Exercises 343

[107, 108, 109, 303]). For the expressiveness of description logics, see
Kurtonina and de Rijke [228].

The notion of a vivid KB is introduced by Levesque [241] (see also
Borgida and Etherington [35] and Wagner [416]). Reasoning with ana-
logues or models is discussed by Glasgow and a number of others in
[165]. For a general reference on reasoning as a whole, viewed as the
manipulation of mental models, see Johnson-Laird [204].

For a discussion of reasoning in hybrid systems, see Nebel [303].
Theory Resolution is due to Stickel [401]. The incorporation of a descrip-
tion logic into Resolution was achieved in the KRYPTON system [51, 52].

16.7 EXERCISES

1. Many of the disjunctive facts that arise in practice state that a spe-
cific individual has one property or another, where the two properties
are similar. For example, we may want to represent the fact that a
person is either 4 or 5 years old, that a car is either a Chevrolet or a
Pontiac, or that a piece of music is either by Mozart or by Haydn. In
general, to calculate the entailments of a KB containing such facts, we
would need to use a mechanism that considered each case individually,
such as Resolution. However, when the conditions being disjoined are
sufficiently similar, a better strategy might be to try to sidestep the
case analysis by finding a single property that subsumes the disjoined
ones. For example, we might treat the original fact as if it merely said
that the person is a preschooler, that the car is made by GM, or that
the music is by a classical composer, none of which involve explicit
disjunctions.

Imagine that you have a KB that contains among other things a
taxonomy of one-place predicates like in Figure 16.1 that can be used

pet

turtle snake

reptile carnivore mammal fish

cat

fish
eater

ferret

rodent
eater

carnivorous
mammal

dog mouse gerbil

rodent

hamster goldfish guppy

■ FIGURE 16.1

A Taxonomy of Pets

344 Chapter 16 ■ The Tradeoff between Expressiveness and Tractability

to find subsuming cases for disjunctions. Assume that this taxonomy
is understood as exhaustive, so that, for example, it implies

∀x[Mammal(x) ≡ Rodent(x) ∨ CarnivorousMammal(x)].

(a) Given the taxonomy, what single atomic sentence could be used
to replace the disjunction (Turtle(fred)∨Cat(fred))? Explain why no
information is lost in this translation.

(b) What atomic sentence would replace the disjunction

(Gerbil(stan) ∨ Hamster(stan))?

In this case, information about Stan is lost. Give an example
of a sentence that follows from the original KB containing the
disjunction, but that no longer follows once the disjunction is
eliminated.

(c) What should happen to the disjunction

(Dog(sam) ∨ Snake(sam) ∨ Rabbit(sam))?

(d) Present informally a procedure that, given a taxonomy like in
Figure 16.1 and a disjunction (P1(a)∨ . . .∨Pn(a)), where the Pi are
predicates that may or may not appear in the taxonomy, replaces
it by a disjunction containing as few cases as possible.

(e) Argue that a reasoning process that first eliminates disjunctions
as we have done in parts (a) through (d) will always be sound.

2. In Chapter 11, we saw that under the closed-world assumption, com-
plex queries can be broken down to queries about their parts. In
particular, restricting ourselves to the propositional case, for any for-
mulas α and β it is the case that KB |=

C
(α ∨ β) if and only if KB |=

C
α

or KB |=
C

β. This way of handling disjunction clearly does not work
for regular entailment, because, for instance, (p ∨ q) |= (p ∨ q) but
(p ∨ q) �|= p and (p ∨ q) �|= q.

(a) Prove that this way of handling disjunction does work for regular
entailment when the KB happens to be a complete set of literals
(that is, containing every atom or its negation).

(b) Show that the completeness of the KB matters here by finding a
set of literals S and formulas α and β such that S |= (α∨β), S �|= α,
S �|= β, and �|= (α ∨ β).

(c) Prove that when a KB is a set of literals (not necessarily complete)
and also α and β have no atoms in common, then once again
KB |= (α ∨ β) if and only if KB |= α or KB |= β.

16.7 Exercises 345

3. In this question we will consider reasoning with a vivid KB and
definitions, in a simple propositional form. Assume that a KB consists
of two parts, a vivid part V , which is a complete and consistent set of
literals over some set of atoms A, and for some set of atoms {q1, . . . , qn}
not in A, a set of definitions D = {(q1 ≡ β1), . . . , (qn ≡ βn)}, where each
βi is an arbitrary propositional formula whose atoms are all from A.
Intuitively, we are using D to define qi as βi. We want to examine the
conditions under which we can reason efficiently with such a KB.

(a) Prove that for any propositional formula α, D entails (α ≡ α′),
where α′ is like α except with qi replaced by βi. Hint: Show by
induction on the size of α that any interpretation satisfying D will
satisfy α if and only if it satisfies α′.

(b) Using part (a), prove that for any propositional formula α, KB
entails α if and only if V entails α′, where α′ is as in part (a).

(c) Explain using part (b) how it is possible to determine efficiently
whether KB entails an arbitrary propositional α. State precisely
what assumptions are needed regarding the sizes of the various
formulas.

(d) Would this still work if V were a set of propositional Horn clauses?
Explain briefly.

(e) Suppose that D contained “necessary but not sufficient conditions”
(like we saw in description logics) of the form (qi ⊃ βi). D might
contain, for example, (Dog ⊃ Animal). For efficiency reasons, it
would be nice to still replace α by α′ and then use V , as we did ear-
lier. Give an example showing that the resulting reasoning process
would not be sound.

(f) Under the same conditions as part (e), suppose that instead of
using α′ and V , we use α′′, defined as follows: When (qi ≡ βi) is in
D, we replace qi in α by βi as before; but when (qi ⊃ βi) is in D,
we replace qi by (βi∧ ri), where ri is some new atom used nowhere
else. The idea here is that we are treating (qi ⊃ βi) as if it were
(qi ≡ (βi ∧ ri)) for some atom ri about which we know nothing.
Show that the reasoning process is now both sound and complete.
Hint: Repeat the argument from part (b).

4. Consider the following KB:

Man(sandy) ∨Woman(sandy)

∀x[Person(x) ⊃ Woman(mother(x))]
From this KB, we would like to conclude that Female(mother(sandy)), but
obviously this cannot be done as is using ordinary Resolution without
saying more about the predicates involved.

346 Chapter 16 ■ The Tradeoff between Expressiveness and Tractability

Imagine a version of theory resolution that works with a descrip-
tion logic from Chapter 9 as follows: For unary predicates, instead
of requiring P(t) in one clause and ¬P(u) in the other (where t and u
are unifiable), we instead allow Q(t) in one clause and ¬P(u) in the
other, provided that P subsumes Q. The assumption here is that some
of the unary predicates in the KB will have associated definitions in
the description logic. Assume we augment the KB with the following:

Man
.= [AND Person Male]

Woman
.= [AND Person Female]

where Person, Male, and Female are primitive concepts.

(a) Show using theory resolution that the conclusion now follows.

(b) Show that this derivation is sound by writing meaning postulates
MP for the two definitions such that the conclusion is entailed by
KB ∪ MP.

(c) Show that this form of theory resolution is incomplete by finding
a sentence that is entailed by KB ∪MP but not derivable from KB
using the version of theory resolution described in this exercise.

5. We saw in Section 16.5.1 that it was possible to determine entailments
efficiently when a KB was an arbitrary set of literals (not necessarily
complete) and the query was small relative to the size of the KB. In
this question, we will generalize this result to Horn KBs. More pre-
cisely, assume that |KB| ≥ 2|α|, where KB is a set of propositional
Horn clauses and α is an arbitrary propositional sentence. Prove that
it is possible to decide whether KB entails α in time that is polynomial
in |KB|. Why does this not work if α is the same size as the KB?

6. In this question, we will explore a different way of dealing with the
computational intractability of ordinary deductive reasoning than the
one we explored in the text. The idea is that instead of determining if
KB |= α, which can be too difficult in general, we determine if KB |=∗ α,
where |=∗ is a variant of |= that is easier to calculate. To define this
variant, we first need two auxiliary definitions:

DEFINITION 1 An interpretation I maximally satisfies a set of (propo-
sitional) clauses S iff for every clause c ∈ S, I satisfies some literal
in c (as usual), and falsifies at most one of the literals in c.

(a) If a set of clauses has a maximally satisfying interpretation then
it is clearly satisfiable, but the converse need not hold. Present
a set of clauses (with no unit clauses) that is satisfiable but not
maximally satisfiable.

16.7 Exercises 347

(b) Let H be a set of Horn clauses with no unit clauses and no empty
clause. Show that H is always maximally satisfiable.

(c) For any set S of clauses, let T(S) = {[x1, x2] | for some c ∈ S,
x1 ∈ c, x2 ∈ c, x1 �= x2}. Prove that when S contains no unit clauses,
I maximally satisfies S if and only if I satisfies T(S).

In the second definition, we eliminate unit clauses from a set of clauses:

DEFINITION 2 For any set of (propositional) clauses S, let BP(S), which is
the binary propagation of S, be the set of clauses resulting from resolving
away all unit clauses in S. More formally, for any literal x, such that
[x] ∈ S, let S • x be defined as in Exercise 5 of Chapter 4. Then BP(S)
is the result of starting with S and any unit clause [x] in S, calculating
S • x, and then repeating this process with S • x (assuming it contains a
unit clause) and so on, until no unit clauses remain.

(d) What is BP(S) when S is

{[p], [p, s], [q, q], [s, r, u, v], [q], [r], [p, q, t, u]}?

(e) Present an example of an unsatisfiable set of clauses S1 such that
BP(S1) contains the empty clause, and another unsatisfiable set S2
such that BP(S2) does not contain the empty clause.

(f) Prove that S is satisfiable if and only if BP(S) is satisfiable. It is
sufficient to prove that for any S and x such that [x] ∈ S, I |= S
iff I |= S • x and I |= x, and the rest follows by induction.

Finally, we define KB |=∗ p, where for simplicity, we assume that KB
is a set of clauses and p is atomic:

DEFINITION 3 KB |=∗ p iff BP(KB ∪ {[p]}) is not maximally satisfiable.

(g) Present an example KB and a query p such that |=∗ does not give the
same answer as |=. Hint: Use part (a). Explain whether reasoning
with |=∗ is unsound or incomplete (or both).

(h) Prove that reasoning with |=∗ is both sound and complete for a KB
that is Horn. Hint: Where H is Horn, consider the cases according
to whether BP(H) contains the empty clause, and use parts (b)
and (f).

(i) Argue that for any KB it is possible to determine if KB |=∗ p
in polynomial time. You may use the fact that BP(S) can be
calculated in polynomial time, and that 2SAT (i.e., satisfiability

348 Chapter 16 ■ The Tradeoff between Expressiveness and Tractability

restricted to clauses of length 2) can also be solved in polynomial
time.

(j) Call a set of clauses S generalized Horn if a set of Horn clauses
could be produced by inverting some of its atomic formulas,
that is, by replacing all occurrences of the letter by its negation.
Is |=∗ sound and complete for a KB that is generalized Horn?
Explain.

■ BIBLIOGRAPHY
■

■

[1] Special issue on ontology research. AI Magazine, 24(3), Fall 2003.

[2] Special issue on knowledge representation and logic programming. Artificial
Intelligence, 138(1–2), June 2002.

[3] KEE Software Development User’s Manual. IntelliCorp, Mountain View, CA, 1985.

[4] Special issue on Dempster–Shafer theory, methodology, and applications.
International Journal of Approximate Reasoning, 31(1–2), 2002.

[5] Dimitris Achlioptas. Lower bounds for random 3-SAT via differential equations.
Theoretical Computer Science, 265(1–2):159–185, 2001.

[6] Sheldon B. Akers, Jr. Binary decision diagrams. IEEE Transactions on
Computers, C-27(6):509–516, 1978.

[7] Carlos E. Alchourrón and David Makinson. The logic of theory change:
Contraction functions and their associated revision functions. Theoria, 48:14–37,
1982.

[8] Carlos E. Alchourrón and David Makinson. On the logic of theory change: Safe
contraction. Studia Logica, 44:405–422, 1985.

[9] Carlos E. Alchourrón and David Makinson. Maps between some different kinds
of contraction function: The finite case. Studia Logica, 45:187–198, 1986.

[10] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the logic
of theory change: Partial meet contraction and revision functions. Journal of
Symbolic Logic, 50(2):510–530, 1985.

[11] Dean Allemang, Michael Tanner, Thomas Bylander, and John Josephson.
Computational complexity of hypothesis assembly. In Proceedings of the Tenth
International Joint Conference on Artificial Intelligence, Milan, Italy, pages
1112–1117. Morgan Kaufmann, San Mateo, CA, 1987.

[12] James Allen, James Hendler, and Austin Tate, editors. Readings in Planning.
Morgan Kaufmann, San Mateo, CA, 1990.

[13] Grigoris Antoniou. Nonmonotonic Reasoning. MIT Press, Cambridge, MA, 1997.

[14] Krystof R. Apt and Maarten H. van Emden. Contributions to the theory of logic
programming. Journal of the ACM, 29(3):841–862, 1982.

[15] Giuseppe Attardi, Mauro Gaspari, and Pietro Iglio. Efficient compilation of first
order predicates. In Proceedings of the Tenth European Conference on Artificial
Intelligence, Vienna, Austria, pages 440–444. John Wiley & Sons, Chichester,
1992.

349

350 Bibliography

[16] Alfred Jules Ayer. Language, Truth and Logic, 2nd edition. V. Gollancz, London,
1962.

[17] Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality restric-
tions on concepts. Artificial Intelligence, 88(1–2):195–213, 1996.

[18] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, Cambridge, England,
2003.

[19] Fahiem Bacchus. The AIPS’00 planning competition. AI Magazine, 22(3):47–56,
2001.

[20] Fahiem Bacchus and Froduald Kabanza. Planning for temporally extended goals.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence,
Portland, OR, pages 1215–1222. AAAI Press, Menlo Park, CA, 1996.

[21] Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express
search control knowledge for planning. Artificial Intelligence, 116(1–2):123–191,
2000.

[22] Andrew B. Baker. A simple solution to the Yale Shooting Problem. In Proceedings
of the First International Conference on Principles of Knowledge Representation
and Reasoning, Toronto, pages 11–20. Morgan Kaufmann, Los Altos, CA, 1989.

[23] Andrew B. Baker. Nonmonotonic reasoning in the framework of the situation
calculus. Artificial Intelligence, 49(1–3):5–23, 1991.

[24] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press, Cambridge, England, 2003.

[25] Thomas Bayes. An essay towards solving a problem in the doctrine of chances.
Phil. Trans. Royal Society, pages 370–418, 1763. Reprinted in Biometrika 45:
293–313, 1958.

[26] John L. Bell and Moshe Machover. A Course in Mathematical Logic.
North-Holland, Amsterdam, 1977.

[27] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, 284(5):34–43, 2001.

[28] Philippe Besnard. An Introduction to Default Logic. Springer-Verlag New York,
Secaucus, NJ, 1990.

[29] Wolfgang Bibel. On matrices with connections. Journal of the ACM, 24(4):
633–645, 1981.

[30] Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph
analysis. Artificial Intelligence, 90(1–2):279–298, 1997.

[31] Daniel G. Bobrow and Alan M. Collins, editors. Representation and Under-
standing: Studies in Cognitive Science. Academic Press, New York, 1975.

[32] Daniel G. Bobrow and Terry Winograd. An overview of KRL, a knowledge
representation language. Cognitive Science, 1(1):3–46, 1977. Reprinted in [47].

[33] Margaret A. Boden, editor. The Philosophy of Artificial Intelligence. Oxford
Readings in Philosophy, Oxford University Press, Oxford, 1990.

Bibliography 351

[34] George Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and Logic,
4th edition. Cambridge University Press, Cambridge, England, 2002.

[35] Alex Borgida and David W. Etherington. Hierarchical knowledge bases and effi-
cient disjunctive reasoning. In Proceedings of the First International Conference
on Principles of Knowledge Representation and Reasoning, Toronto, pages 33–43.
Morgan Kaufmann, San Mateo, CA, 1989.

[36] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and
Lori Alperin Resnick. CLASSIC: A structural data model for objects. SIGMOD
Record, 18(2):58–67, 1989.

[37] Craig Boutilier. A unified view of qualitative belief change: A dynamical systems
perspective. Artificial Intelligence, 98(1–2):281–316, 1998.

[38] Craig Boutilier, Raymond Reiter, Mikhail Soutchanski, and Sebastian Thrun.
Decision-theoretic, high-level agent programming in the situation calculus.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence,
Austin, TX, pages 355–362. AAAI Press, Menlo Park, CA, 2000.

[39] Robert S. Boyer and J Strother Moore. A Computational Logic Handbook,
2nd edition. Academic Press, London, 1998.

[40] Ronald J. Brachman. What’s in a concept: Structural foundations for
semantic networks. International Journal of Man-Machine Studies, 9:127–152,
1977.

[41] Ronald J. Brachman. Structured inheritance networks. In William A. Woods
and Ronald J. Brachman, editors, Research in Natural Language Understand-
ing, Quarterly Progress Report No. 1, BBN Report No. 3742, pages 36–78. Bolt,
Beranek and Newman, Cambridge, MA, 1978.

[42] Ronald J. Brachman. On the epistemological status of semantic networks.
In Nicholas V. Findler, editor, Associative Networks: Representation and Use
of Knowledge by Computers, pages 3–50. Academic Press, New York, 1979.
Reprinted in [47].

[43] Ronald J. Brachman. What IS-A is and isn’t: An analysis of taxonomic links in
semantic networks. IEEE Computer, 16(10):30–36, 1983.

[44] Ronald J. Brachman. Viewing databases through a knowledge representation
lens. In Kazuhiro Fuchi and Toshio Yokoi, editors, Knowledge Building and
Knowledge Sharing, Proc. KB&KS ’93 Conference, Tokyo, pages 121–124. Ohmsha,
Tokyo, 1994.

[45] Ronald J. Brachman and Hector J. Levesque. Competence in knowledge
representation. In Proceedings of the Second National Conference on Artificial
Intelligence, Pittsburgh, pages 189–192. AAAI, Menlo Park, CA, 1982.

[46] Ronald J. Brachman and Hector J. Levesque. The tractability of subsumption in
frame-based description languages. In Proceedings of the Fourth National Con-
ference on Artificial Intelligence (AAAI-84), Austin, TX, pages 34–37. William
Kaufmann, Los Altos, CA, 1984.

[47] Ronald J. Brachman and Hector J. Levesque, editors. Readings in Knowledge
Representation. Morgan Kaufmann, San Francisco, 1985.

352 Bibliography

[48] Ronald J. Brachman and Hector J. Levesque. Expressiveness and tractability in
knowledge representation and reasoning. Computational Intelligence, 3:78–93,
1987.

[49] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE

knowledge representation system. Cognitive Science, 9(2):171–216, 1985.

[50] Ronald J. Brachman and Brian C. Smith. SIGART Newsletter, Special Issue on
Knowledge Representation, No. 70. ACM, New York, 1980.

[51] Ronald J. Brachman, Richard E. Fikes, and Hector J. Levesque. KRYPTON:
A functional approach to knowledge representation. IEEE Computer, 16(10):
67–73, 1983.

[52] Ronald J. Brachman, Victoria P. Gilbert, and Hector J. Levesque. An essential
hybrid reasoning system: Knowledge and symbol level accounts of KRYPTON. In
Proceedings of the Ninth International Joint Conference on Artificial Intelligence,
Los Angeles, pages 532–539. Morgan Kaufmann, Los Altos, CA, 1985.

[53] Ronald J. Brachman, Deborah L. McGuinness, Peter F. Patel-Schneider, and
Alex Borgida. “Reducing” CLASSIC to practice: Knowledge representation theory
meets reality. Artificial Intelligence, 114(1–2):203–250, 1999.

[54] Ivan Bratko. PROLOG Programming for Artificial Intelligence, 3rd edition. Addison-
Wesley, New York, 2000.

[55] Gerhard Brewka. Preferred subtheories: An extended logical framework for
default reasoning. In Proceedings of the Eleventh International Joint Confer-
ence on Artificial Intelligence, Detroit, pages 1043–1048. Morgan Kaufmann,
San Mateo, CA, 1989.

[56] Gerhard Brewka. Nonmonotonic Reasoning: Logical Foundations of Common-
sense. Cambridge University Press, Cambridge, England, 1991.

[57] Gerhard Brewka, Jürgen Dix, and Kurt Konolige. Nonmonotonic Reasoning: An
Overview. CSLI, Stanford, CA, 1997.

[58] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2:14–23, 1986.

[59] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. Program-
ming Expert Systems in OPS5: An Introduction to Rule-Based Programming.
Addison-Wesley, Reading, MA, 1985. Reprinted with corrections, January
1986.

[60] Bruce G. Buchanan, Georgia L. Sutherland, and Edward A. Feigenbaum.
Heuristic DENDRAL: A program for generating explanatory hypotheses in organic
chemistry. In Bernard Meltzer and Donald Michie, editors, Machine Intelligence
4, pages 209–254. Edinburgh University Press, Edinburgh, 1969.

[61] J. Richard Büchi. Turing machines and the entscheidungsproblem.
Mathematische Annalen, 148:201–213, 1962.

[62] Wolfram Burgard, Armin B. Cremers, Dieter Fox, Dirk Hahnel, Gerhard
Lakemeyer, Dirk Schulz, Walter Steiner, and Sebastian Thrun. Experiences
with an interactive museum tour-guide robot. Artificial Intelligence, 114(1–2):
3–55, 1999.

Bibliography 353

[63] Tom Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1–2):165–204, 1994.

[64] Tom Bylander, Dean Allemang, Michael C. Tanner, and John R. Josephson.
The computational complexity of abduction. Artificial Intelligence, 49(1–3):25–60,
1991.

[65] Marco Cadoli, Francesco M. Donini, and Marco Schaerf. Is intractability of non-
monotonic reasoning a real drawback? Artificial Intelligence, 88(1–2):215–251,
1996.

[66] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, New York, 1973.

[67] Eugene Charniak. Motivation analysis, abductive unification, and nonmonotonic
equality. Artificial Intelligence, 34(3):275–295, 1987.

[68] Eugene Charniak. Bayesian networks without tears. AI Magazine, 12(4):50–63,
1991.

[69] Eugene Charniak and Solomon E. Shimony. Probabilistic semantics for cost-
based abduction. In Proceedings of the Eighth National Conference on Artificial
Intelligence, Boston, pages 106–111. AAAI Press, Menlo Park, CA, 1990.

[70] Keith L. Clark. Negation as failure. In Hervé Gallaire and Jack Minker, editors,
Logic and Databases, pages 293–322. Plenum Press, New York, 1987.

[71] Peter Clark and Bruce W. Porter. Building concept representations from reusable
components. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence, Providence, RI, pages 369–376. AAAI Press, Menlo Park, CA, 1997.

[72] Peter Clark and Bruce W. Porter. Using access paths to guide inference
with conceptual graphs. In Dickson Lukose, Harry Delugach, Mary Keeler,
Leroy Searle, and John Sowa, editors. Conceptual Structures: Fulfilling Peirce’s
Dream, Proceedings of the Fifth International Conference on Conceptual Structures,
pages 521–535. Lecture Notes in Artificial Intelligence, Vol. 1257. Springer-Verlag,
Berlin, 1997.

[73] William F. Clocksin and Christopher S. Mellish. Programming in PROLOG,
3rd revised and extended edition. Springer-Verlag, Berlin, 1987.

[74] Jacques Cohen. A view of the origins and development of PROLOG. Communications
of the ACM, 31:26–36, 1988.

[75] Alain Colmerauer, Henry Kanoui, Robert Pasero, and Philippe Roussel. Un sys-
teme de communication homme-machine en francais. Technical report, Groupe
de Recherche en Intelligence Artificielle, Université Aix-Marseille II, 1973.

[76] Paul Compton and Bob Jansen. A philosophical basis for knowledge acquisition.
Knowledge Acquisition, 2(3):241–257, 1990.

[77] Luca Console and Pietro Torasso. A spectrum of logical definitions of model-
based diagnosis. Computational Intelligence, 7:133–141, 1991.

[78] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, Shaker Heights,
OH, pages 151–158. Association for Computing Machinery, New York, 1971.

354 Bibliography

[79] Gregory F. Cooper. Probabilistic inference using belief networks is NP-hard.
Artificial Intelligence, 42(2–3):393–405, 1990.

[80] Michael A. Covington, Donald Nute, and André Vellino. PROLOG Programming in
Depth. Prentice Hall, Upper Saddle River, NJ, 1997.

[81] Philip T. Cox and Tomasz Pietrzykowski. Causes for events: Their computa-
tion and applications. In Proceedings of the Eighth Conference on Automated
Deduction, Oxford, pages 608–621. Springer, Berlin, 1986.

[82] Paul Dagum and Michael Luby. Approximating probabilistic reasoning in
Bayesian belief networks is NP-hard. Artificial Intelligence, 60(1):141–153, 1993.

[83] Evgeny Dantsin, Andreas Goerdt, Edward Hirsch, Ravi Kannan, Jon Kleinberg,
Christos Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A determin-
istic (2 − 2/(k + 1))n algorithm for k-sat based on local search. Theoretical
Computer Science, 289(1):69–83, 2002.

[84] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of
Artificial Intelligence Research, 17:229–264, 2002.

[85] John Davies, Dieter Fensel, and Frank van Harmelen, editors. On-To-Knowledge:
Content-Driven Knowledge-Management through Evolving Ontologies. John
Wiley & Sons, New York, 2002.

[86] Ernest Davis. Representations of Commonsense Knowledge. Morgan Kaufmann,
San Francisco, 1990.

[87] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[88] Randall Davis and Walter Hamscher. Model-based reasoning: Troubleshooting.
In Howard E. Shrobe, editor, Exploring Artificial Intelligence, pages 297–346.
Morgan Kaufmann, San Mateo, CA, 1988.

[89] Randall Davis, Howard Shrobe, and Peter Szolovits. What is a knowledge
representation? AI Magazine, 14(1):17–33, 1993.

[90] Bruno de Finetti. Probability, Induction and Statistics: The Art of Guessing.
John Wiley & Sons, New York, 1972.

[91] Bruno de Finetti. Theory of Probability: A Critical Introductory Treatment.
John Wiley & Sons, New York, 1974.

[92] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. ConGolog,
a concurrent programming language based on the situation calculus. Artificial
Intelligence, 121(1–2):109–169, 2000.

[93] Giuseppe De Giacomo, Yves Lespérance, Hector J. Levesque, and Sebastian
Sardiña. On the semantics of deliberation in IndiGolog—from theory to imple-
mentation. In Proceedings of the Eighth International Conference on Principles
of Knowledge Representation and Reasoning, Toulouse, France, pages 603–614.
Morgan Kaufmann, San Francisco, 2002.

[94] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial
Intelligence, 32(1):97–130, 1987.

[95] Johan de Kleer and Brian C. Williams. Diagnosis with behavioral modes.
In Proceedings of the Eleventh International Joint Conference on Artificial

Bibliography 355

Intelligence, Detroit, pages 1324–1330. Morgan Kaufmann, San Mateo, CA,
1989.

[96] Johan de Kleer, Jon Doyle, Charles Rich, Guy L. Steele, and Gerald J.
Sussman. AMORD: A deductive procedure system. AI Memo 435, MIT, January,
1978.

[97] Thomas L. Dean and Michael P. Wellman. Planning and Control. Morgan
Kaufmann, San Mateo, CA, 1991.

[98] Thomas Dean, James Allen, and John Aloimonos. Artificial Intelligence: Theory
and Practice. Addison-Wesley, Menlo Park, CA, 1995.

[99] Rina Dechter. Constraint Processing. Morgan Kaufmann, San Francisco, 2003.

[100] James P. Delgrande. A framework for logics of explicit belief. Computational
Intelligence, 11(1):47–88, 1995.

[101] Arthur P. Dempster. A generalization of Bayesian inference. Journal of the Royal
Statistical Society, 39:205–247, 1968.

[102] Daniel C. Dennett. The Intentional Stance. MIT Press, Cambridge, MA, 1987.

[103] Zoltan Dienes and Josef Perner. A theory of implicit and explicit knowledge.
Behavioral and Brain Sciences, 22:735–755, 1999.

[104] Simon Edmund Dixon. Belief Revision: A Computational Approach. Ph.D. thesis,
Basser Department of Computer Science, University of Sydney, Australia, 1994.

[105] Simon Edmund Dixon and Wayne Wobcke. The implementation of a first-order
logic AGM belief revision system. In Proceedings of the Fifth IEEE Interna-
tional Conference on Tools with Artificial Intelligence, Boston, pages 40–47. IEEE,
Los Alamitos, CA, 1993.

[106] Patrick Doherty and Jonas Kvarnström. TALplanner: A temporal logic based
planner. AI Magazine, 22(1):95–102, 2001.

[107] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Werner Nutt. Tractable
concept languages. In Proceedings of the Twelfth International Joint Conference
on Artificial Intelligence, Sydney, Australia, pages 458–465. Morgan Kaufmann,
San Mateo, CA, 1991.

[108] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt. The
complexity of concept languages. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Second International Conference, Cambridge, MA,
pages 151–162. Morgan Kaufmann, Los Altos, CA, 1991.

[109] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf.
Reasoning in description logics. In Gerhard Brewka, editor, Principles of Knowl-
edge Representation, pages 191–236. CSLI, Stanford, CA, 1996.

[110] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the
satisfiability of propositional Horn formulae. Journal of Logic Programming,
1(3):267–284, 1984.

[111] Jon Doyle. A truth maintenance system. Artificial Intelligence, 12(3):231–272,
1979.

356 Bibliography

[112] Jon Doyle. Reason maintenance and belief revision: Foundations versus coher-
ence theories. In Peter Gärdenfors, editor, Belief Revision, pages 29–51.
Cambridge University Press, Cambridge, England, 1992.

[113] Hubert Dreyfus. What Computers Still Can’t Do: A Critique of Artificial Reason.
MIT Press, Cambridge, MA, 1992.

[114] Didier Dubois, Henri Prade, and Ronald R. Yager, editors. Readings in Fuzzy Sets
for Intelligent Systems. Morgan Kaufmann, San Mateo, CA, 1993.

[115] Richard Duda, John Gaschnig, and Peter Hart. Model design in the Prospec-
tor consultant system for mineral exploration. In Donald Michie, editor, Expert
Systems in the Microelectronic Age. Edinburgh University Press, Edinburgh, 1979.
Reprinted in Bonnie L. Webber and Nils J. Nilsson, editors, Readings in Artificial
Intelligence, pages 334–348. Tioga, Los Altos, CA, 1981.

[116] Frank Dylla, Alexander Ferrein, and Gerhard Lakemeyer. Acting and deliberating
using GOLOG in robotic soccer: A hybrid architecture. In Proceedings of the Third
International Cognitive Robotics Workshop, Edmonton, Alberta, pages 29–36. AAAI
Press, Menlo Park, CA, 2002.

[117] Umberto Eco and Thomas A. Sebeok, editors. The Sign of Three — Dupin,
Holmes, Peirce. Indiana University Press, Bloomington, 1988.

[118] Paul Edwards, editor. The Encyclopedia of Philosophy. Macmillan, New York,
1967.

[119] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press,
New York, 1972.

[120] Kave Eshghi and Robert A. Kowalski. Abduction compared with negation
by failure. In Proceedings of the Sixth International Conference on Logic Program-
ming, Lisbon, Portugal, pages 234–254. MIT Press, Cambridge, MA, 1989.

[121] John Etchemendy. The Concept of Logical Consequence. Harvard University
Press, Cambridge, MA, 1990.

[122] David W. Etherington and Raymond Reiter. On inheritance hierarchies with
exceptions. In Proceedings of the Third National Conference on Artificial Intelli-
gence (AAAI-83), Washington, DC, pages 104–108. William Kaufmann, Los Altos,
CA, 1983. Reprinted in [47].

[123] Ronald Fagin and Joseph Y. Halpern. Belief, awareness and limited reasoning.
Artificial Intelligence, 34(1):39–76, 1987.

[124] Scott E. Fahlman. NETL: A System for Representing and Using Real-World
Knowledge. MIT Press, Cambridge, MA, 1979.

[125] Kuang T. Fann. Peirce’s Theory of Abduction. Martinus Nijhoff, The Hague, The
Netherlands, 1970.

[126] Dieter Fensel, Ian Horrocks, Frank van Harmelen, Stefan Decker, Michael
Erdmann, and Michel C. A. Klein. OIL in a nutshell. In Rose Dieng and Olivier
Corby, editors, Knowledge Engineering and Knowledge Management Methods,
Models, and Tools: Twelfth International Conference, EKAW 2000, pages 1–16.
Lecture Notes in Computer Science, Vol. 1937. Springer-Verlag, Heidelberg,
2000.

Bibliography 357

[127] Richard E. Fikes and Tom Kehler. The role of frame-based representation in
reasoning. Communications of the ACM, 28(9):904–920, 1985.

[128] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3–4):189–208, 1971.

[129] Richard E. Fikes and Nils J. Nilsson. STRIPS, a retrospective. Artificial Intelligence,
59(1–2):227–232, 1993.

[130] Nicholas V. Findler, editor. Associative Networks: Representation and Use of
Knowledge by Computer. Academic Press, New York, 1979.

[131] J. Jeffrey Finger. Exploiting Constraints in Design Synthesis. Ph.D. thesis, Stanford
University, 1987.

[132] Melvin Fitting. First-Order Logic and Automated Theorem Proving, 2nd edition.
Springer-Verlag, New York, 1996.

[133] Kenneth D. Forbus and Johan de Kleer. Building Problem Solvers. MIT Press,
Cambridge, MA, 1993.

[134] Charles L. Forgy. Rete: A fast algorithm for the many patterns/many objects
match problem. Artificial Intelligence, 19(1):17–37, 1982.

[135] Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache
des reinen Denkens. Halle, Berlin, 1879. English translation in Jean van
Heijenoort, editor, From Frege to Gödel: A Source Book in Mathematical Logic,
1879–1931, pages 1–82. Harvard University Press, Cambridge, MA, 1967.

[136] Nir Friedman and Joseph Y. Halpern. A knowledge-based framework for belief
change, Part II: Revision and update. In Proceedings of the Fifth International
Conference on Principles of Knowledge Representation and Reasoning, Bonn,
Germany, pages 190–201. Morgan Kaufmann, San Francisco, 1994.

[137] John D. Funge. AI for Games and Animation: A Cognitive Modeling Approach.
A. K. Peters, Natick, MA, 1999.

[138] Dov M. Gabbay and Franz Guenthner, editors. Handbook of Philosophical
Logic, 2nd edition. 9 volumes (18 volumes expected). Kluwer, Dordrecht, The
Netherlands, 2001–2002.

[139] Dov M. Gabbay, Christopher John Hogger, and John Alan Robinson, editors.
Handbook of Logic in Artificial Intelligence and Logic Programming: Vols. I–V.
Oxford University Press, Oxford, 1993–1998.

[140] Hervé Gallaire, Jack Minker, and Jean-Marie Nicolas. Logic and databases:
A deductive approach. ACM Computing Surveys, 16(2):153–185, 1985.

[141] Peter Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States.
Bradford Books, MIT Press, Cambridge, MA, 1988.

[142] Peter Gärdenfors. The dynamics of belief systems: Foundations vs. coherence
theories. Revue Internationale de Philosophie, 44:24–46, 1990.

[143] Peter Gärdenfors and David Makinson. Revisions of knowledge systems using
epistemic entrenchment. In Proceedings of the Second Conference on Theoretical
Aspect of Reasoning about Knowledge, Pacific Grove, CA, pages 83–96. Morgan
Kaufmann, San Mateo, CA, 1988.

358 Bibliography

[144] Peter Gärdenfors and Hans Rott. Belief revision. In Dov M. Gabbay,
Christopher John Hogger, and John Alan Robinson, editors, Handbook of Logic
in Artificial Intelligence and Logic Programming. Vol. IV: Epistemic and Temporal
Reasoning, pages 35–132. Oxford University Press, Oxford, 1995.

[145] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness, 2nd printing with update edition. W. H. Freeman,
San Francisco, 1980.

[146] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded
semantics for general logic programs. Journal of the ACM, 38(3):620–650, 1991.

[147] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9(3–4):365–385, 1991.

[148] Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transac-
tions on AI, 3(16):193–210, 1998.

[149] Michael Gelfond, Vladimir Lifschitz, and Arkady Rabinov. What are the limita-
tions of the situation calculus? In Robert S. Boyer, editor, Automated Reasoning:
Essays in Honor of Woody Bledsoe, pages 167–179. Kluwer, Dordrecht, The
Netherlands, 1991.

[150] Michael R. Genesereth. The use of design descriptions in automated diagnosis.
Artificial Intelligence, 24(1–3):411–436, 1984.

[151] Michael R. Genesereth. Knowledge Interchange Format. In Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Second International Con-
ference, Cambridge, MA, pages 599–600. Morgan Kaufmann, Los Altos, CA, 1991.

[152] Michael R. Genesereth and Richard E. Fikes. Knowledge Interchange Format,
version 3.0 reference manual. Technical Report Logic-92-1, Stanford University,
Stanford, CA, 1992.

[153] Michael R. Genesereth and Nils J. Nilsson. Logical Foundations of Artificial
Intelligence. Morgan Kaufmann, Los Altos, CA, 1987.

[154] Gerhard Gentzen. Untersuchungen über das logische Schliessen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1934. Translated as Investigations into logical
deduction, in M. E. Szabo, editor and translator, The Collected Papers of Gerhard
Gentzen, pages 68–131. North-Holland, Amsterdam, 1969.

[155] Michael P. Georgeff. Planning. Annual Review of Computer Science, 2:359–400,
1987.

[156] Edmund L. Gettier. Is justified true belief knowledge? Analysis, 23:121–123, 1963.
Reprinted in [168].

[157] Matthew L. Ginsberg, editor. Readings in Nonmonotonic Reasoning. Morgan
Kaufmann, Los Altos, CA, 1987.

[158] Matthew L. Ginsberg. Universal planning: An (almost) universally bad idea.
AI Magazine, 10(4):40–44, 1989.

[159] Matthew L. Ginsberg. Knowledge interchange format: The KIF of death.
AI Magazine, 12(3):57–63, 1991.

[160] Matthew L. Ginsberg. Essentials of Artificial Intelligence. Morgan Kaufmann,
San Francisco, 1993.

Bibliography 359

[161] Kurt Gödel. Über die Vollständigkeit des Logikkalküls. Ph.D. thesis, University of
Vienna, 1930.

[162] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter System I. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

[163] Kurt Gödel. On Formally Undecidable Propositions of Principia Mathematica and
Related Systems. Basic Books, New York, 1962. Translated by Bernard Meltzer.
Reprinted by Dover, New York, 1992. Original appears in [162].

[164] Nikos Gorogiannis and Mark D. Ryan. Implementation of belief change
operators using BDDs. Studia Logica, 70(1):131–156, 2002.

[165] Janice I. Glasgow, editor. Taking issue forum on imagery and AI. Computational
Intelligence, 9(4):309–333, 1993.

[166] Cordell Green. Applications of theorem proving to problem solving. In
Proceedings of the First International Joint Conference on Artificial Intelligence,
Washington, DC, pages 219–239. Morgan Kaufmann, Los Altos, CA, 1969.

[167] Cordell Green. Theorem-proving by resolution as a basis for question-answering
systems. In Bernard Meltzer and Donald Michie, editors, Machine Intelligence 4,
pages 183–205. Edinburgh University Press, Edinburgh, 1969.

[168] A. Phillips Griffiths, editor. Knowledge and Belief. Oxford University Press,
London, 1967.

[169] Henrik Grosskreutz and Gerhard Lakemeyer. Turning high-level plans into robot
programs in uncertain domains. In Proceedings of the Fourteenth European Con-
ference on Artificial Intelligence, Berlin, pages 548–552. IOS Press, Amsterdam,
2000.

[170] Adam Grove. Two modellings for theory change. Journal of Philosophical Logic,
17:157–170, 1988.

[171] Thomas Gruber. Toward principles for the design of ontologies used for
knowledge sharing. International Journal of Human–Computer Studies, 43(5–6):
907–928, 1995.

[172] Susan Haack. Philosophy of Logics. Cambridge University Press, Cambridge,
England, 1978.

[173] Susan Haack. Do we need fuzzy logic? International Journal of Man–Machine
Studies, 11:437–445, 1979. Reprinted in [174].

[174] Susan Haack. Deviant Logic, Fuzzy Logic: Beyond the Formalism. University of
Chicago Press, Chicago, 1996. Revised edition of Deviant Logic, Cambridge
University Press, Cambridge, England, 1974.

[175] Andrew R. Haas. The case for domain-specific frame axioms. In Proceedings of
the 1987 Workshop on the Frame Problem in Artificial Intelligence, pages 343–348.
Morgan Kaufmann, Los Altos, CA, 1987.

[176] Armin Haken. The intractability of Resolution. Theoretical Computer Science,
39:297–308, 1985.

[177] Joseph Y. Halpern. Reasoning about Uncertainty. MIT Press, Cambridge, MA,
2003.

360 Bibliography

[178] Walter Hamscher, Luca Console, and Johan de Kleer, editors. Readings in Model-
Based Diagnosis. Morgan Kaufmann, San Mateo, CA, 1992.

[179] Sven Ove Hansson. A Textbook of Belief Dynamics: Theory Change and Database
Updating. Kluwer, Dordrecht, The Netherlands, 1999.

[180] Gilbert H. Harman. Inference to the best explanation. Philosophical Review,
74:88–95, 1965.

[181] Patrick J. Hayes. In defense of logic. In Proceedings of the Fifth International
Joint Conference on Artificial Intelligence, Cambridge, MA, pages 559–565. Morgan
Kaufmann, Los Altos, CA, 1977. Reprinted in [47].

[182] Patrick J. Hayes. The logic of frames. In Dieter Metzing, editor, Frame Conceptions
and Text Understanding, pages 46–61. Walter de Gruyter, Berlin, 1979.

[183] Frederick Hayes-Roth, Donald A. Waterman, and Douglas B. Lenat, editors.
Building Expert Systems. Addison-Wesley, Reading, MA, 1983.

[184] Carl G. Hempel and Paul Oppenheim. Studies in the logic of explanation.
Philosophy of Science, 15:135–175, 1965.

[185] James Hendler and Deborah L. McGuinness. The DARPA agent markup language.
IEEE Intelligent Systems, 15(6):67–73, 2000.

[186] Carl Hewitt. PLANNER: A language for proving theorems in robots. In Proceedings
of the First International Joint Conference on Artificial Intelligence, Washington,
DC, pages 295–301. Morgan Kaufmann, Los Altos, CA, 1969.

[187] Wilfred Hodges. Logic. Penguin Books, Harmondsworth, Middlesex, UK, 1977.

[188] Christopher John Hogger. Introduction to Logic Programming. Academic Press,
London, 1984.

[189] Steffen Hölldobler and Josef Schneeberger. A new deductive approach to
planning. New Generation Computing, 8(3):225–244, 1990.

[190] Alfred Horn. On sentences which are true of direct unions of algebras. Journal of
Symbolic Logic, 16:14–21, 1951.

[191] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to descrip-
tion logic satisfiability. In Proceedings of International Semantic Web Conference
(ISWC2003), pages 17–29, Sundial Resort, Florida, October 2003. Lecture Notes
in Computer Science, Vol. 2870. Springer-Verlag, Heidelberg, 2003.

[192] Ronald A. Howard and James E. Matheson. Influence diagrams. In Ronald A.
Howard and James E. Matheson, editors, Readings on the Principles and Appli-
cations of Decision Analysis, Vol. 2, pages 721–762. Strategic Decisions Group,
Menlo Park, CA, 1984.

[193] Michael N. Huhns and Munindar Singh, editors. Readings in Agents. Morgan
Kaufmann, San Francisco, 1997.

[194] Michael Huth and Mark D. Ryan. Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press, Cambridge, England,
2000.

[195] David J. Israel. The role of logic in knowledge representation. IEEE
Computer, 16(10):37–42, 1983.

Bibliography 361

[196] Peter Jackson. Introduction to Expert Systems. Addison-Wesley, Reading, MA,
1990.

[197] Peter Jackson. Computing prime implicates incrementally. In Proceedings of
the Eleventh Conference on Automated Deduction, Saratoga Springs, New York,
pages 253–267. Lecture Notes in Artificial Intelligence, Vol. 607. Springer-Verlag,
Heidelberg, 1992.

[198] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Conference Record of the Fourteenth Annual ACM Symposium on Principles of
Programming Languages, Munich, Germany, pages 111–119. Association for
Computing Machinery, New York, 1987.

[199] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The
CLP(R) language and system. ACM Transactions on Programming Languages and
Systems, 14(3):339–395, 1992.

[200] Edwin T. Jaynes. Probability Theory: The Logic of Science. Cambridge University
Press, Cambridge, England, 2003.

[201] Richard Jeffrey. The Logic of Decision. McGraw-Hill, New York, 1965.

[202] Richard Jeffrey. Probability and the Art of Judgment. Cambridge Studies in
Probability, Induction, and Decision Theory. Cambridge University Press,
Cambridge, England, 1992.

[203] Finn V. Jensen. An Introduction to Bayesian Networks. University College London
Press, London, 1996.

[204] Philip N. Johnson-Laird. Mental Models. Harvard University Press, Cambridge,
MA, 1983.

[205] John R. Josephson and Susan G. Josephson, editors. Abductive Inference:
Computation, Philosophy, Technology. Cambridge University Press, Cambridge,
England, 1994.

[206] Antonis C. Kakas and Paolo Mancarella. Database updates through abduction.
In Proceedings of the Sixteenth Conference on Very Large Databases, Brisbane,
Australia, pages 650–661. Morgan Kaufmann, San Mateo, CA, 1990.

[207] Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni. Abductive logic
programming. Journal of Logic and Computation, 2(6):719–770, 1993.

[208] Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni. The role of abduction
in logic programming. In Dov M. Gabbay, editor, Handbook of Logic in Artificial
Intelligence and Logic Programming, Vol. 5, pages 235–324. Oxford University
Press, Oxford, 1995. An updated version of [207].

[209] Byeong H. Kang, Paul Compton, and Phillip Preston. Multiple classification
ripple down rules: Evaluation and possibilities. In Proceedings of the Ninth Knowl-
edge Acquisition for Knowledge Based Systems Workshop, Banff, Alberta, Canada,
pages 17.1–17.20. 1995.

[210] G. Neelakantan Kartha. Two counterexamples related to Baker’s approach to the
frame problem. Artificial Intelligence, 69(1–2):379–391, 1994.

362 Bibliography

[211] G. Neelakantan Kartha and Vladimir Lifschitz. A simple formalization of actions
using circumscription. In Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, Montreal, pages 1970–1977. Morgan Kaufmann,
San Mateo, CA, 1995.

[212] Hirofumi Katsuno and Alberto O. Mendelzon. On the difference between updat-
ing a knowledge base and revising it. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Second International Conference, Cambridge,
MA, pages 387–394. Morgan Kaufmann, Los Altos, CA, 1991.

[213] Hirofumi Katsuno and Alberto O. Mendelzon. On the difference between updat-
ing a knowledge base and revising it. In Peter Gärdenfors, editor, Belief Revision,
pages 183–203. Cambridge University Press, Cambridge, England, 1992. This
paper extends [212].

[214] Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of
the Tenth European Conference on Artificial Intelligence, Vienna, Austria, pages
359–363. John Wiley & Sons, Chichester, 1992.

[215] Henry Kautz and Bart Selman. An empirical evaluation of knowledge compila-
tion by theory approximation. In Proceedings of the Twelfth National Conference
on Artificial Intelligence, Seattle, pages 155–161. AAAI Press, Menlo Park, CA,
1994.

[216] Alex Kean. A formal characterisation of a domain independent abductive reason-
ing system. Technical Report HKUST-CS93-4, Department of Computer Science,
Hong Kong University of Science and Technology, March 1993.

[217] Alex Kean and George Tsiknis. An incremental method for generating
prime implicants/implicates. Journal of Symbolic Computation, 9(2):185–206,
1990.

[218] William Calvert Kneale and Martha Kneale. The Development of Logic. Clarendon
Press, Oxford, 1964.

[219] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal
algebra. In John Leech, editor, Computational Problems in Abstract Algebra,
pages 263–267. Pergamon Press, Oxford, 1970.

[220] Teuvo Kohonen. Self-Organization and Associative Memory, 3rd edition. Springer-
Verlag, Berlin, 1989.

[221] Andrei N. Kolmogorov. Foundations of the Theory of Probability. Chelsea,
New York, 1950.

[222] Kurt Konolige. On the relation between default logic and autoepistemic logic.
Artificial Intelligence, 35(3):343–382, 1988.

[223] Robert A. Kowalski. Predicate logic as a programming language. Information
Processing, 74:569–574, 1974.

[224] Robert A. Kowalski. Logic for Problem Solving. Elsevier Science, New York, 1979.

[225] Robert A. Kowalski. The early years of logic programming. Communications of
the ACM, 31:38–43, 1988.

[226] Robert A. Kowalski and Mark J. Sergot. A logic-based calculus of events. New
Generation Computing, 4:67–95, 1986.

Bibliography 363

[227] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic rea-
soning, preferential models and cumulative logics. Artificial Intelligence, 44(1):
167–207, 1990.

[228] Natasha Kurtonina and Maarten de Rijke. Expressiveness of concept expressions
in first-order description logics. Artificial Intelligence, 107(2):303–330, 1999.

[229] Yannis Labrou. Semantics for an Agent Communication Language. Ph.D. thesis,
Department of Computer Science and Electrical Engineering, University of
Maryland, Baltimore County, 1996.

[230] Yannis Labrou and Tim Finin. Semantics and conversations for an agent com-
munication language. In Proceedings of the Fifteenth International Joint Con-
ference on Artificial Intelligence, Nagoya, pages 584–591. Morgan Kaufmann,
San Francisco, 1997. Reprinted in [193].

[231] John E. Laird, Allen Newell, and Paul S. Rosenbloom. SOAR: An architecture for
general intelligence. Artificial Intelligence, 33(1):1–64, 1987.

[232] Fritz Lehmann and Ervin Y. Rodin, editors. Semantic Networks in Artificial
Intelligence. Pergamon Press, Oxford, 1992.

[233] Alexander Leitsch. The Resolution Calculus. Texts in Theoretical Computer
Science. Springer-Verlag, Berlin, 1997.

[234] Edward John Lemmon. Beginning Logic. Nelson, London, 1967.

[235] Douglas B. Lenat and Ramanathan V. Guha. Building Large Knowledge-Based
Systems: Representation and Inference in the CYC Project. Addison-Wesley,
Reading, MA, 1990.

[236] Maurizio Lenzerini, Daniele Nardi, and Maria Simi, editors. Inheritance
Hierarchies in Knowledge Representation and Programming Languages. John
Wiley & Sons, Chichester, 1991.

[237] Yves Lespérance, Hector J. Levesque, Fangzhen Lin, Daniel Marcu, Raymond
Reiter, and Richard Scherl. A logical approach to high-level robot program-
ming: A progress report. In Control of the Physical World by Intelligent Systems,
Working Notes of the 1994 AAAI Fall Symposium, pages 79–85. AAAI Press,
Menlo Park, CA, 1994.

[238] Hector J. Levesque. Foundations of a functional approach to knowledge
representation. Artificial Intelligence, 23(2):155–212, 1984.

[239] Hector J. Levesque. A logic of implicit and explicit belief. In Proceedings of the
Fourth National Conference on Artificial Intelligence (AAAI-84), Austin, TX, pages
198–202. William Kaufmann, Los Altos, CA, 1984.

[240] Hector J. Levesque. Knowledge representation and reasoning. Annual Review of
Computer Science, 1:255–288, 1986.

[241] Hector J. Levesque. Making believers out of computers. Artificial Intelligence,
30(1):81–108, 1986.

[242] Hector J. Levesque. A knowledge-level account of abduction. In Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence, Detroit,
pages 1061–1067. Morgan Kaufmann, San Mateo, CA, 1989.

364 Bibliography

[243] Hector J. Levesque and Ronald J. Brachman. A fundamental tradeoff in knowl-
edge representation and reasoning (revised version). In Ronald J. Brachman and
Hector J. Levesque, editors, Readings in Knowledge Representation, pages 41–70.
Morgan Kaufmann, San Francisco, 1985.

[244] Hector J. Levesque and Gerhard Lakemeyer. The Logic of Knowledge Bases. MIT
Press, Cambridge, 2000.

[245] Hector J. Levesque and Maurice Pagnucco. LEGOLOG: Inexpensive experiments in
cognitive robotics. In Proceedings of the Second International Cognitive Robotics
Workshop, pages 104–109. ECAI, Berlin, 2000.

[246] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and
Richard Scherl. GOLOG: A logic programming language for dynamic domains.
Journal of Logic Programming, 31:59–84, 1997.

[247] David Lewis. Counterfactuals. Harvard University Press, Cambridge, MA, 1973.
Reprinted with corrections, 1986.

[248] David Lewis. Probabilities of conditionals and conditional probabilities. The
Philosophical Review, 85:297–315, 1976.

[249] Vladimir Lifschitz. Computing circumscription. In Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence, Los Angeles, pages 121–127.
Morgan Kaufmann, Los Altos, CA, 1985.

[250] Vladimir Lifschitz. Pointwise circumscription. In Proceedings of the Fifth National
Conference on Artificial Intelligence (AAAI-86), Philadelphia, pages 406–410.
Morgan Kaufmann, Los Altos, CA, 1986.

[251] Vladimir Lifschitz. On the semantics of STRIPS. In Proceedings of the 1986 Work-
shop on Reasoning about Actions and Plans, Timberline Lodge, OR, pages 1–9.
Morgan Kaufmann, Los Altos, CA, 1987.

[252] Vladimir Lifschitz. Frames in the space of situations. Artificial Intelligence,
46(3):365–376, 1990.

[253] Vladimir Lifschitz. Circumscription. In Dov M. Gabbay, Christopher John
Hogger, and John Alan Robinson, editors, Handbook of Logic in Artificial Intel-
ligence and Logic Programming, Vol. 3, pages 298–352. Oxford University Press,
Oxford, 1994.

[254] Vladimir Lifschitz, editor. Formalizing Common Sense: Papers by John McCarthy.
Intellect, Exeter, England, 1998.

[255] James Lighthill. Artificial Intelligence: A general survey. In J. Lighthill,
N. S. Sutherland, R. M. Needham, H. C. Longuet-Higgins, and D. Michie, editors,
Artificial Intelligence: A Paper Symposium. Science Research Council of Great
Britain, London, 1973.

[256] Fangzhen Lin. Embracing causality in specifying the indirect effects of actions.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intel-
ligence, Montreal, pages 1985–1991. Morgan Kaufmann, San Mateo, CA, 1995.

[257] Robert K. Lindsay, Bruce G. Buchanan, Edward A. Feigenbaum, and Joshua
Lederberg. Applications of Artificial Intelligence for Organic Chemistry: The
DENDRAL Project. McGraw-Hill, New York, 1980.

Bibliography 365

[258] Peter Lipton. Inference to the Best Explanation. Routledge, London, 1991.

[259] John W. Lloyd. Foundations of Logic Programming, 2nd, extended edition.
Springer-Verlag, Berlin, 1987.

[260] George F. Luger. Artificial Intelligence: Structures and Strategies for Complex
Problem Solving, 4th edition. Addison-Wesley, London, 2002.

[261] Witold Łukaszewicz. Non-Monotonic Reasoning: Formalization of Commonsense
Reasoning. Ellis Horwood, New York, 1990.

[262] David Makinson. Bridges between classical and nonmonotonic logic. Logic
Journal of the IGPL, 11(1):69–96, 2003.

[263] David Makinson and Peter Gärdenfors. Relations between the logic of theory
change and nonmonotonic logic. In Andre Fuhrmann and Michael Morreau,
editors, The Logic of Theory Change, pages 185–205. Lecture Notes in Artificial
Intelligence, Vol. 465. Springer-Verlag, Berlin, 1990.

[264] Ebrahim H. Mamdani. Advances in the linguistic synthesis of fuzzy controllers.
International Journal of Man–Machine Studies, 8:669–678, 1976.

[265] Zohar Manna and Richard Waldinger. The Logical Basis for Computer Program-
ming. Vol. 1: Deductive Reasoning. Addison-Wesley, Reading, MA, 1985.

[266] V. Wiktor Marek and Miroslaw Truszczyński. Relating autoepistemic and default
logics. In Proceedings of the First International Conference on Principles of Knowl-
edge Representation and Reasoning, Toronto, pages 276–288. Morgan Kaufmann,
Los Altos, CA, 1989.

[267] V. Wiktor Marek and Miroslaw Truszczyński. Nonmonotonic Logic: Context
Dependent Reasoning. Springer-Verlag, Berlin, 1993.

[268] Pierre Marquis. Extending abduction from propositional to first-order logic.
In Proceedings of the International Workshop on Fundamentals of Artificial
Intelligence, pages 141–155. Lecture Notes in Computer Science, Vol. 535.
Springer-Verlag, Berlin, 1991.

[269] Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduc-
tion. MIT Press, Cambridge, MA, 1998.

[270] João P. Martins and Stuart C. Shapiro. A model for belief revision. Artificial
Intelligence, 35(1):25–79, 1988.

[271] Marta Cialdea Mayer and Fiora Pirri. Propositional abduction in modal logic.
Journal of the Interest Group on Pure and Applied Logics, 3(6):907–919, 1995.

[272] David McAllester. A widely used truth-maintenance system. AI Memo, MIT,
Cambridge, MA, 1985.

[273] Norman McCain and Hudson Turner. A causal theory of ramifications and
qualifications. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, Montreal, pages 1978–1984. Morgan Kaufmann, San Mateo,
CA, 1995.

[274] Norman McCain and Hudson Turner. Causal theories of action and change.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence,
Providence, RI, pages 460–465. AAAI Press, Menlo Park, CA, 1997.

366 Bibliography

[275] John McCarthy. Programs with common sense. In Mechanization of Thought
Processes, Vol. 1, Proc. Symposium, National Physical Laboratory, London,
pages 77–84, November 1958. Reprinted in Marvin Minsky, editor, Seman-
tic Information Processing, pages 216–270. MIT Press, Cambridge, MA, 1968.
Reprinted in [47].

[276] John McCarthy. Situations, actions, and causal laws. Technical report, Stanford
University Artificial Intelligence Project, 1963.

[277] John McCarthy. Epistemological problems in artificial intelligence. In Proceedings
of the Fifth International Joint Conference on Artificial Intelligence, Cambridge,
MA, pages 1038–1044. Morgan Kaufmann, Los Altos, CA, 1977. Reprinted in [47]
and [254].

[278] John McCarthy. Circumscription: A form of non-monotonic reasoning. Artificial
Intelligence, 13(1–2):27–39, 1980. Reprinted in [254].

[279] John McCarthy. Applications of circumscription to formalizing commonsense
knowledge. Artificial Intelligence, 28(1):89–116, 1986. Reprinted in [254].

[280] John McCarthy. History of circumscription. Artificial Intelligence, 59(1–2):23–26,
1993.

[281] John McCarthy. Modality, si! modal logic, no! Studia Logica, 59(1):29–32, 1997.

[282] John McCarthy and Patrick Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In Donald Michie and Bernard Meltzer,
editors, Machine Intelligence 4, pages 463–502. Edinburgh University Press,
Edinburgh, 1969. Reprinted in [254].

[283] John McDermott. R1: An expert in the computer systems domain. In Proceedings
of the First National Conference on Artificial Intelligence, Stanford, CA, pages
269–271. AAAI, Menlo Park, CA, 1980.

[284] John McDermott. R1: The formative years. AI Magazine, 2(2):21–29, 1981.

[285] John McDermott. R1: A rule-based configurer of computer systems. Artificial
Intelligence, 19(1):39–88, 1982.

[286] Deborah L. McGuinness and Frank van Harmelen, editors. OWL web ontology
language overview. Technical report, World Wide Web Consortium, 2003.

[287] Karl Meinke and John V. Tucker, editors. Many-Sorted Logic and Its Applications,
John Wiley & Sons, Chichester, 1993.

[288] Elliot Mendelson. Introduction to Mathematical Logic, 4th edition. Chapman and
Hall, London, 1997.

[289] Marc Mezard, Giorgio Parisi, and Riccardo Zecchina. Analytic and algorithmic
solution of random satisfiability problems. Science, 297:812–815, 2002.

[290] Jack Minker. On indefinite databases and the closed-world assumption. Lecture
Notes in Computer Science, Vol. 138, pages 292–308. Springer-Verlag, Berlin,
1982.

[291] Jack Minker. Logic and databases: A 20 year perspective—updated in honor of
Ray Reiter. In Hector J. Levesque and Fiora Pirri, editors, Logical Foundations for
Cognitive Agents: Contributions in Honor of Ray Reiter, pages 234–299. Springer,
Berlin, 1999.

Bibliography 367

[292] Marvin Minsky. A framework for representing knowledge. In John Haugeland,
editor, Mind Design, pages 95–128. MIT Press, Cambridge, MA, 1981. Reprinted
in [47].

[293] David Mitchell, Bart Selman, and Hector J. Levesque. Hard and easy distributions
of SAT problems. In Proceedings of the Tenth National Conference on Artificial
Intelligence, San Jose, CA, pages 459–465. AAAI Press, Menlo Park, CA, 1992.

[294] Robert C. Moore. The role of logic in knowledge representation and common-
sense reasoning. In Proceedings of the Second National Conference on Artificial
Intelligence, Pittsburgh, pages 428–433. AAAI, Menlo Park, CA, 1982. Reprinted
in [299].

[295] Robert C. Moore. Possible-world semantics for autoepistemic logic. In Proceed-
ings of the Non-Monotonic Reasoning Workshop, New Paltz, NY, pages 344–354.
AAAI, Menlo Park, CA, 1984. Reprinted in [299].

[296] Robert C. Moore. Semantical considerations on nonmonotonic logic. Artificial
Intelligence, 25(1):75–94, 1985. Reprinted in [299].

[297] Robert C. Moore. The role of logic in artificial intelligence. In I. Benson,
editor, Intelligent Machinery: Theory and Practice. Cambridge University Press,
Cambridge, England, 1986. Reprinted in [299].

[298] Robert C. Moore. Autoepistemic logic revisited. Artificial Intelligence, 59(1–2):
27–30, 1993. Reprinted in [299].

[299] Robert C. Moore. Logic and Representation. CSLI Lecture Notes, Vol. 39. CSLI,
Stanford, CA, 1995.

[300] Steven Morris and Paul O’Rorke. An approach to theory revision using abduc-
tion. In Working Notes of the 1990 Spring Symposium on Automated Abduction,
pages 33–37. Technical Report 90-32. University of California, Irvine, 1990.

[301] Ernest Nagel and James R. Newman. Gödel’s Proof. New York University Press,
New York, 1958. Revised edition, cowritten with Douglas R. Hofstadter, 2002.

[302] Richard E. Neapolitan. Probabilistic Reasoning in Expert Systems: Theory and
Algorithms. John Wiley & Sons, New York, 1990.

[303] Bernhard Nebel. Reasoning and Revision in Hybrid Systems. Lecture Notes in
Artificial Intelligence, Vol. 422, Springer-Verlag, Berlin, 1990.

[304] Bernhard Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence, 43(2):235–249, 1990.

[305] Allen Newell. The knowledge level. Artificial Intelligence, 18(1):87–127, 1982.

[306] Allen Newell and Herbert A. Simon. GPS, a program that simulates thought. In
Edward A. Feigenbaum and Julian Feldman, editors, Computers and Thought,
McGraw-Hill, New York, 1963. Republished by AAAI Press/MIT Press, Menlo
Park, CA/Cambridge, MA, 1995.

[307] Allen Newell and Herbert A. Simon. Human Problem Solving, Prentice Hall,
Englewood Cliffs, NJ, 1972.

[308] Hwee Tou Ng and Raymond J. Mooney. On the role of coherence in abduc-
tive explanation. In Proceedings of the Eighth National Conference on Artificial
Intelligence, Boston, pages 337–342. AAAI Press, Menlo Park, CA, 1990.

368 Bibliography

[309] Nils J. Nilsson. Problem Solving Methods in Artificial Intelligence. McGraw-Hill,
Toronto, 1971.

[310] Nils J. Nilsson. Shakey the robot. Technical report, SRI, 1984.

[311] Nils J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann,
San Francisco, 1998.

[312] Ulf Nilsson and Jan Maluszynski. Logic, Programming and PROLOG. John
Wiley & Sons, Chichester, 1995.

[313] Maurice Pagnucco and Pavlos Peppas. Causality and minimal change demysti-
fied. In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence, Seattle, pages 125–130. Morgan Kaufmann, San Francisco, 2001.

[314] George S. Pappas and Marshall Swain, editors. Essays on Knowledge and
Justification. Cornell University Press, Ithaca, NY, 1978.

[315] Jeff B. Paris. The Uncertain Reasoner’s Companion: A Mathematical Perspective.
Cambridge Tracts in Theoretical Computer Science 39. Cambridge University
Press, Cambridge, England, 1994.

[316] Peter F. Patel-Schneider. Small can be beautiful in knowledge representation.
In Proceedings of the IEEE Workshop on Principles of Knowledge-Based Systems,
Denver, pages 11–16. IEEE Press, Los Alamitos, CA, 1984.

[317] Peter F. Patel-Schneider. A four-valued semantics for terminological logics.
Artificial Intelligence, 38(3):319–351, 1989.

[318] Peter F. Patel-Schneider, Ronald J. Brachman, and Hector J. Levesque. ARGON:
Knowledge representation meets information retrieval. In Proceedings of the First
Conference on Artificial Intelligence Applications, Denver, pages 280–286. IEEE
Computer Society Press, Silver Spring, MD, 1984.

[319] Gabrielle Paul. Approaches to abductive reasoning: An overview. Artificial Intel-
ligence Review, 7:109–152, 1993.

[320] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, 2nd revised printing. Morgan Kaufmann, San Francisco, 1988.

[321] Judea Pearl. Belief networks revisited. Artificial Intelligence, 59(1–2):49–56, 1993.

[322] Edwin P. D. Pednault. ADL: Exploring the middle ground between STRIPS and the
situation calculus. In Proceedings of the First International Conference on Principles
of Knowledge Representation and Reasoning, Toronto, pages 324–332. Morgan
Kaufmann, Los Altos, CA, 1989.

[323] Charles Sanders Peirce. Collected Papers of Charles Sanders Peirce. Vols. 1–8, edited
by Charles Hartshorne, Paul Weiss, and Arthur W. Burks. Harvard University
Press, Cambridge, MA, 1931–1958.

[324] Charles Sanders Peirce. Philosophical Writings of Peirce. Selected and edited
with an introduction by Justus Buchler. Dover, New York, 1955. Unaltered
republication of book published in 1940 by Routledge and Kegan Paul.

[325] Charles Sanders Peirce. Reasoning and the Logic of Things. Edited by Kenneth
Laine Ketner, with an introduction by Kenneth Laine Ketner and Hilary Putnam.
Harvard University Press, Cambridge, MA, 1992.

Bibliography 369

[326] Yun Peng and James A. Reggia. Abductive Inference Models for Diagnostic
Problem-Solving. Springer-Verlag, New York, 1990.

[327] Roger Penrose. The Emperor’s New Mind: Concerning Computers, Minds, and the
Laws of Physics. Vintage, London, 1990.

[328] Fiora Pirri and Raymond Reiter. Some contributions to the metatheory of the
situation calculus. Journal of the ACM, 46(3):261–325, 1999.

[329] Marco Pistore and Paolo Traverso. Planning as model checking for extended
goals in non-deterministic domains. In Proceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence, Seattle, pages 479–486. Morgan
Kaufmann, San Francisco, 2001.

[330] David Poole. A logical framework for default reasoning. Artificial Intelligence,
36(1):27–47, 1988.

[331] David Poole, Randy Goebel, and Romas Aleliunas. THEORIST: A logical reasoning
system for defaults and diagnosis. In Nick Cercone and Gordon McCalla, editors,
The Knowledge Frontier: Essays in the Representation of Knowledge, pages 331–352.
Springer-Verlag, New York, 1987.

[332] David Poole, Alan Mackworth, and Randy Goebel. Computational Intelligence:
A Logical Approach. Oxford University Press, New York, 1998.

[333] Harry E. Pople Jr. On the mechanization of abductive logic. In Proceedings
of the Third International Joint Conference on Artificial Intelligence, Stanford, CA,
pages 147–152. Morgan Kaufmann, Los Altos, CA, 1973.

[334] Zenon Pylyshyn. Computation and Cognition: Toward a Foundation for Cognitive
Science. MIT Press, Cambridge, MA, 1984.

[335] M. Ross Quillian. Semantic Memory. Ph.D. thesis, Carnegie Institute of Technol-
ogy, 1966.

[336] M. Ross Quillian. Semantic memory. In Marvin Minsky, editor, Semantic
Information Processing, pages 216–270. MIT Press, Cambridge, MA, 1968.

[337] Ashwin Ram and David Leake. Evaluation of explanatory hypotheses. In Proceed-
ings of the Thirteenth Annual Conference of the Cognitive Science Society, Chicago,
pages 867–871. Lawrence Erlbaum Associates, Hillsdale, NJ, 1991.

[338] Han Reichgelt. Knowledge Representation: An AI Perspective. Ablex, Norwood, NJ,
1991.

[339] Michael Reinfrank. Fundamentals and Logical Foundations of Truth Maintenance.
Ph.D. thesis, Department of Computer and Information Science, University of
Linköping, 1989.

[340] Michael Reinfrank, Oskar Dessler, and Gerhard Brewka. On the relation between
truth maintenance and autoepistemic logic. In Proceedings of the Eleventh Interna-
tional Joint Conference on Artificial Intelligence, Detroit, pages 1206–1212. Morgan
Kaufmann, San Mateo, CA, 1989.

[341] Raymond Reiter. Equality and domain closure in first-order databases. Journal
of the Association for Computing Machinery, 27(2):235–249, 1980.

[342] Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13(1–2):
81–132, 1980.

370 Bibliography

[343] Raymond Reiter. On interacting defaults. In Proceedings of the Seventh Interna-
tional Joint Conference on Artificial Intelligence, Vancouver, pages 270–276. AAAI,
Menlo Park, CA, 1981.

[344] Raymond Reiter. Nonmonotonic reasoning. Annual Review of Computer Science,
2:147–186, 1987.

[345] Raymond Reiter. On closed world data bases. In Hervé Gallaire and Jack Minker,
editors, Logic and Databases, pages 55–76. Plenum Press, New York, 1987.

[346] Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

[347] Raymond Reiter. The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. In Artificial Intelligence
and Mathematical Theory of Computation: Papers in Honor of John McCarthy,
pages 359–380. Academic Press, New York, 1991.

[348] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press, Cambridge, MA, 2001.

[349] Raymond Reiter and Johan de Kleer. Foundations of assumption-based truth
maintenance systems: Preliminary report. In Proceedings of the Sixth National
Conference on Artificial Intelligence (AAAI-87), Seattle, pages 183–188. Morgan
Kaufmann, Los Altos, CA, 1987.

[350] Michael D. Resnik. Choices: An Introduction to Decision Theory. University of
Minnesota Press, Minneapolis, 1987.

[351] Peter Revesz. Introduction to Constraint Databases. Springer-Verlag, New York,
2002.

[352] Elaine Rich and Kevin Knight. Artificial Intelligence, 2nd edition. McGraw-Hill,
New York, 1990.

[353] Tom Richards. Clausal Form Logic: An Introduction to the Logic of Computer
Reasoning. Addison-Wesley, Boston, 1989.

[354] Gordon A. Ringland and David A. Duce, editors. Approaches to Knowledge Rep-
resentation: An Introduction. Research Studies Press, Letchworth, Hertfordshire,
England, 1988.

[355] Don D. Roberts. The Existential Graphs of Charles S. Peirce. Mouton de Gruyter,
The Hague, 1973.

[356] R. Bruce Roberts and Ira P. Goldstein. The FRL primer. AI Memo 408, Arti-
ficial Intelligence Laboratory. MIT, Cambridge, MA, 1977.

[357] John Alan Robinson. A machine-oriented logic based on the Resolution principle.
Journal of the Association for Computing Machinery, 12(1):23–41, 1965.

[358] Hans Rott. Change, Choice and Inference: A Study of Belief Revision and Nonmono-
tonic Reasoning. Oxford University Press, Oxford, 2001.

[359] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach,
2nd edition. Prentice Hall, Upper Saddle River, NJ, 2002.

[360] Earl Sacerdoti. The nonlinear nature of plans. In Proceedings of the Fourth Inter-
national Joint Conference on Artificial Intelligence, Tbilisi, Georgia, pages 206–214.
Morgan Kaufmann, Los Altos, CA, 1975.

Bibliography 371

[361] Earl Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelli-
gence, 5(2):231–272, 1974.

[362] Wesley C. Salmon. Four Decades of Scientific Explanation. University of
Minnesota Press, Minneapolis, 1989.

[363] Erik Sandewall. Features and Fluents: The Representation of Knowledge about
Dynamical Systems. Vol. 1. Oxford University Press, Oxford, 1995.

[364] Erik Sandewall. Underlying semantics for action and change with ramification.
Linköping Electronic Articles in Computer and Information Science, 3:307–329,
1998.

[365] Marco Schaerf and Marco Cadoli. Tractable reasoning via approximation.
Artificial Intelligence, 74(2):249–310, 1995.

[366] Roger C. Schank and Robert P. Abelson. Scripts, Plans, Goals, and Under-
standing: An Inquiry into Human Knowledge Structures. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1977.

[367] Karl Schlecta. Nonmonotonic Logics: Basic Concepts, Results, and Techniques.
Lecture Notes in Artificial Intelligence, Vol. 1187. Springer-Verlag, Berlin,
1997.

[368] James G. Schmolze and Thomas A. Lipkis. Classification in the KL-ONE knowl-
edge representation system. In Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, Karlsruhe, Germany, pages 330–332.
William Kaufmann, Los Altos, CA, 1983.

[369] Marcel J. Schoppers. Universal plans for reactive robots in unpredictable
domains. In Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, Milan, Italy, pages 1039–1046. Morgan Kaufmann, San Mateo, CA,
1987.

[370] Marcel J. Schoppers. Representation and Automatic Synthesis of Reaction Plans.
Ph.D. thesis, University of Illinois at Urbana-Champaign, 1989.

[371] Lenhart K. Schubert. Monotonic solution of the frame problem in the situa-
tion calculus: An efficient method for worlds with fully specified actions. In
Henry E. Kyburg, Ronald P. Loui, and Greg N. Carlson, editors, Knowledge
Representation and Defeasible Reasoning, pages 23–67. Kluwer, Dordrecht, The
Netherlands, 1990.

[372] Lenhart K. Schubert. Explanation closure, action closure and the Sandewall test
suite for reasoning about change. Journal of Logic and Computation, 4(5):679–900,
1994.

[373] John Searle. Minds, brains, and programs. Behavioral and Brain Sciences,
3(3):417–457, 1980.

[374] John Searle. Minds, Brains and Science: The 1984 Reith Lectures. Penguin Books,
London, 1984.

[375] Bart Selman, Hector J. Levesque, and David Mitchell. A new method for solving
hard instances of satisfiability. In Proceedings of the Tenth National Conference on
Artificial Intelligence, San Jose, CA, pages 440–446. AAAI Press, Menlo Park, CA,
1992.

372 Bibliography

[376] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press,
Princeton, NJ, 1976.

[377] Glenn Shafer. The Art of Causal Conjecture. MIT Press, Cambridge, 1996.

[378] Glenn Shafer and Judea Pearl, editors. Readings in Uncertain Reasoning. Morgan
Kaufmann, San Francisco, 1990.

[379] Murray Shanahan. Solving the Frame Problem: A Mathematical Investigation of
the Common Sense Law of Inertia. MIT Press, Cambridge, MA, 1997.

[380] Steven Shapiro, Maurice Pagnucco, Yves Lespérance, and Hector J. Levesque.
Iterated belief change in the situation calculus. In Proceedings of the Seventh
International Conference on Principles of Knowledge Representation and Reasoning,
Breckenridge, CO, pages 527–538. Morgan Kaufmann, San Francisco, 2000.

[381] Stuart C. Shapiro. The SNePS semantic network processing systems. In
Nicholas V. Findler, editor, Associative Networks: Representation and Use of
Knowledge by Computers, pages 179–203. Academic Press, New York, 1979.
Reprinted in [47].

[382] Stuart C. Shapiro. An introduction to SNePS 3. In Bernhard Ganter and Guy W.
Mineau, editors, Conceptual Structures: Logical, Linguistic, and Computa-
tional Issues, pages 510–524. Lecture Notes in Artificial Intelligence, Vol. 1867,
Springer-Verlag, Berlin, 2000.

[383] Stuart C. Shapiro and Frances L. Johnson. Automatic belief revision in SNePS.
In Proceedings of the Eighth International Workshop on Nonmonotonic Reasoning,
Breckenridge, CO, 2000.

[384] Yoav Shoham. Reasoning about Change. MIT Press, Cambridge, MA, 1988.

[385] Yoav Shoham. Artificial Intelligence Techniques in PROLOG. Morgan Kaufmann,
San Francisco, 1994.

[386] Edward H. Shortliffe. Computer-Based Medical Consultations: MYCIN. Elsevier,
New York, 1976.

[387] Thoralf A. Skolem. Logisch-kombinatorische untersuchungen über die erfüll-
barkeit oder beweisbarkeit mathematischer sätze nebst einem theoreme über die
dichte mengen. Videnskapsakademiets Skrifter I. Matematisk-naturvidenskabelig
klasse, 4:1–36, 1920. Also appears in Jens E. Fenstad, editor, Th. Skolem: Selected
Works in Logic, pages 103–136. Universitetsforlag, Oslo, 1970.

[388] Thoralf A. Skolem. Über die mathematische logik. Norsk Matematisk Tidsskrift,
10:125–142, 1928.

[389] John Slaney and Sylvie Thiébaux. Blocks world revisited. Artificial Intelligence,
125(1–2):119–153, 2001.

[390] Brian Cantwell Smith. Reflection and Semantics in a Procedural Language. Ph.D.
thesis, Massachusetts Institute of Technology, Cambridge, MA, 1982. Also
appears as Technical Report MIT/LCS/TR-272, MIT.

[391] Paul Smolensky. On the proper treatment of connectionism. Behavioral and Brain
Sciences, 2:1–74, 1988.

[392] John F. Sowa. Conceptual Structures: Information Processing in Mind and
Machine. Addison-Wesley, Reading, MA, 1984.

Bibliography 373

[393] John F. Sowa, editor. Principles of Semantic Networks: Explorations in the
Representation of Knowledge. Morgan Kaufmann, San Mateo, CA, 1991.

[394] John F. Sowa. Knowledge Representation: Logical, Philosophical, and Computa-
tional Foundations. Brooks Cole, Pacific Grove, CA, 2000.

[395] Richard M. Stallman and Gerald J. Sussman. Forward reasoning and dependency-
directed backtracking in a system for computer-aided circuit analysis. Artificial
Intelligence, 9(2):135–196, 1977.

[396] Lynn Andrea Stein. Skeptical inheritance: Computing the intersection of credu-
lous extensions. In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, Detroit, pages 1153–1158. Morgan Kaufmann, San Mateo,
CA, 1989.

[397] Lynn Andrea Stein. Computing skeptical inheritance. In Maurizio Lenzerini,
Daniele Nardi, and Maria Simi, editors, Inheritance Hierarchies in Knowledge
Representation and Programming Languages, pages 69–81. John Wiley & Sons,
Chichester, 1991.

[398] Lynn Andrea Stein. Resolving ambiguity in nonmonotonic inheritance hierar-
chies. Artificial Intelligence, 55(2–3):259–310, 1992.

[399] Leon Sterling and Ehud Shapiro. The Art of PROLOG. MIT Press, Cambridge, MA,
1986.

[400] Mark E. Stickel. A nonclausal connection-graph resolution theorem-proving pro-
gram. In Proceedings of the Second National Conference on Artificial Intelligence,
Pittsburgh, pages 229–233, AAAI, Menlo Park, CA, 1982.

[401] Mark E. Stickel. Automated deduction by theory resolution. Journal of Automated
Reasoning, 1(4):333–355, 1985.

[402] Mark E. Stickel. A PROLOG-like inference system for computing minimal-cost
abductive explanations in natural-language interpretation. Annals of Mathematics
and Artificial Intelligence, 4:89–106, 1991.

[403] Gerald J. Sussman and Drew McDermott. Why conniving is better than
planning. AI Memo 255A, MIT, Cambridge, MA, 1972.

[404] Gerald J. Sussman and Terry Winograd. MICRO-PLANNER reference manual. Tech-
nical report, Artificial Intelligence Laboratory, MIT, Cambridge, MA, 1970.

[405] Alfred Tarski. Über den Begriff der logischen Folgerung. Actes du Congrés
International de Philosophie Scientifique, 7:1–11, 1936. Translated in [406].

[406] Alfred Tarski. Logic, Semantics, Mathematics. Clarendon Press, Oxford, 1956.

[407] Austin Tate. Advanced Planning Technology: Technological Achievements of the
ARPA/Rome Laboratory Planning Initiative. AAAI Press, Menlo Park, CA, 1996.

[408] Ernest Teniente. An abductive framework to handle consistency-preserving
updates in deductive databases. In Proceedings of the ICLP’95 Joint Workshop
on Deductive Databases and Logic Programming and Abduction in Deductive
Databases and Knowledge-Based Systems, pages 111–125. GMD-Studien No. 266,
GMD, Sankt Augustin, Germany, 1995.

[409] Michael Thielscher. Ramification and causality. Artificial Intelligence, 89(1–2):
317–364, 1997.

374 Bibliography

[410] Michael Thielscher. Introduction to the fluent calculus. Linköping Electronic
Articles in Computer and Information Science, 3(14):179–192, 1998.

[411] Pierre Tison. Generalization of consensus theory and application to the
minimization of boolean functions. IEEE Transactions on Electronic Computers,
4:446–456, 1967.

[412] David S. Touretzky. The Mathematics of Inheritance Systems. Morgan Kaufmann,
Los Altos, CA, 1986.

[413] David S. Touretzky, John F. Horty, and Richmond H. Thomason. A clash of
intuitions: The current state of nonmonotonic multiple inheritance systems. In
Proceedings of the Tenth International Joint Conference on Artificial Intelligence,
Milan, Italy, pages 476–482. Morgan Kaufmann, San Mateo, CA, 1987.

[414] Maarten H. van Emden. Red and green cuts. Logic Programming Newsletter, 2,
1982.

[415] Richard von Mises. Probability, Statistics and Truth, 2nd revised English edition
prepared by Hilda Geiringer. Allen & Unwin, London, 1957. Republished by
Dover, New York, 1981. Translation of the third German edition, 1951.

[416] Gerd Wagner. Vivid Logic: Knowledge-Based Reasoning with Two Kinds of
Negation. Lecture Notes in Artificial Intelligence, Vol. 764. Springer-Verlag,
Berlin, 1994.

[417] Richard Waldinger. Achieving several goals simultaneously. In Edward W. Elcock
and Donald Michie, editors, Machine Intelligence 8, pages 94–136. Ellis Horwood,
Chichester, 1975. Reprinted in Bonnie L. Webber and Nils J. Nilsson, editors,
Readings in Artificial Intelligence, pages 250–271. Tioga, Los Altos, CA, 1981.

[418] R. J. Walker. An enumerative technique for a class of combinatorial problems.
In Richard E. Bellman and Marshall Hall Jr., editors, Combinatorial Analysis:
Proceedings of the Symposium on Applied Mathematics. Vol. X, pages 91–94.
American Mathematical Society, Providence, 1960.

[419] Hao Wang. Toward mechanical mathematics. IBM Journal of Research and Devel-
opment, 4:2–22, 1960. Reprinted in Hao Wang, Logic, Computers, and Sets,
Science Press, Peking, 1962; Hao Wang, A Survey of Mathematical Logic, North-
Holland, Amsterdam, 1964; Hao Wang, Logic, Computers, and Sets, Chelsea,
New York, 1970.

[420] Li-Xin Wang. A Course in Fuzzy Systems and Control. Prentice Hall, Upper Saddle
River, NJ, 1997.

[421] Donald A. Waterman. A Guide to Expert Systems. Addison-Wesley, Reading, MA,
1986.

[422] Alfred North Whitehead and Bertrand Russell. Principia Mathematica, 2nd
edition. Cambridge University Press, Cambridge, England, 1927.

[423] David E. Wilkins. Practical Planning: Extending the Classical AI Planning
Paradigm. Morgan Kaufmann, San Mateo, CA, 1988.

[424] Mary-Anne Williams. Iterated theory base change: A computational model. In
Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-
gence, Montreal, pages 1541–1550. Morgan Kaufmann, San Mateo, CA, 1995.

Bibliography 375

[425] Mary-Anne Williams. Towards a practical approach to belief revision: Reason-
based change. In Proceedings of the Fifth International Conference on Principles
of Knowledge Representation and Reasoning, Cambridge, MA, pages 412–421.
Morgan Kaufmann, San Francisco, 1996.

[426] Terry Winograd. Frame representations and the declarative/procedural contro-
versy. In Daniel G. Bobrow and Allan M. Collins, editors, Representation and
Understanding: Studies in Cognitive Science, pages 185–210. Academic Press,
New York, 1975.

[427] Patrick Henry Winston. Learning structural descriptions from examples. In
Patrick Henry Winston, editor, Psychology of Computer Vision, pages 157–209.
McGraw-Hill, New York, 1975. Reprinted in [47].

[428] Patrick Henry Winston. Artificial Intelligence, 3rd edition. Addison-Wesley,
Reading, MA, 1992.

[429] Ludwig Wittgenstein. Tractatus logico-philosophicus. Routledge and Kegan Paul,
London, 1974. Originally published in German in Annalen der Naturphilosophie,
1921, as Logisch-Philosophische Abhandlung.

[430] William A. Woods. What’s in a link: Foundations for semantic networks. In
Daniel G. Bobrow and Allan M. Collins, editors, Representation and Understand-
ing: Studies in Cognitive Science, pages 35–82. Academic Press, New York, 1975.
Reprinted in [47].

[431] Larry Wos. The Automation of Reasoning: An Experimenter’s Notebook with OTTER

Tutorial. Academic Press, San Diego, 1996.

[432] Larry Wos and George A. Robinson. Paramodulation and set of support. In
Proceedings of the IRIA Symposium on Automatic Demonstration, Versailles,
pages 276–310. Springer-Verlag, Berlin, 1968.

[433] Larry Wos, George A. Robinson, and Daniel F. Carson. Efficiency and complete-
ness of the set of support strategy in theorem proving. Journal of the Association
of Computing Machinery, 12(4):536–541, 1965.

[434] Jon R. Wright, Elia S. Weixelbaum, Karen E. Brown, Gregg T. Vesonder,
Stephen R. Palmer, Jay I. Berman, and Harry H. Moore. A knowledge-based con-
figurator that supports sales, engineering, and manufacturing at AT&T Network
Systems. In Proceedings of the Innovative Applications of Artificial Intelligence
Conference, Washington, DC, pages 183–193. AAAI Press, Menlo Park, CA, 1993.

[435] Robert M. Wygant. CLIPS: A powerful development and delivery expert system
tool. Computers and Industrial Engineering, 17:546–549, 1989.

[436] Ronald R. Yager, Mario Fedrizzi, and Janus Kacprzyk. Advances in the Dempster-
Shafer Theory of Evidence. John Wiley & Sons, New York, 1994.

[437] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[438] Lotfi A. Zadeh. Fuzzy logic and approximate reasoning. Synthese, 30:407–425,
1975.

This Page Intentionally Left Blank

■ INDEX
■

■

The following is a list of all the important concepts presented in the text.
The page number indicates where the concept is first introduced or defined.

�, 52
|=, 22, 23

A
Abductive diagnosis, 275
Abductive explanation, 270
Abductive reasoning, 267
Abstract individual, 41
Abstraction space for

planning, 320
Add list for planning, 313
Admissible path, 197
Ambiguous network,

191, 199
Analogue representation,

338
Answer predicate, 62
Answer-extraction process,

62
Applicable assumption, 223
Arity, 17
Atom, 17
Atomic concept, 158
Atomic formula, 17
Attached procedure, 138
Autoepistemic logic, 228

stable expansion, 229
Automated theorem-

proving (ATP),
70

Axioms of equality, 65

B
Backward-chaining

reasoning, 92

Base function, 253
Bayes’ rule, 242
Belief, 3
Belief measure, 252
Belief network, 246
Belief revision, 285
Bound variable, 18

C
Certainty factor, 131
Circumscribing a predicate,

216
Circumscription, 216

minimal entailment, 217
Classification, 172

taxonomy, 172
Clausal formula, 51, 57
Clause, 51

ground, 57
pure, 72
subsumed, 73
unit, 51

Closed-world assumption,
210

generalized, 213
Cognitive penetrability, 9
Complement of a literal, 51
Complete knowledge, 211
Component of a concept,

166
Concept in description

logic, 157
atomic, 158
component, 166
defined, 160

extension of, 161
primitive, 160

Concept-forming operator,
158

Conclusion of a default
rule, 222

Conclusion supported in a
network, 189

Conditional, 86
Conditional independence,

242
Conditional planner, 321
Conditional probability,

241
independence, 242
Bayes’ rule, 242

Conflict resolution strategy,
126

recency, 126
refractoriness, 127
specificity, 126

Conflict set, 119
Conjunctive normal form

(CNF), 50
skolemization, 64

Connection graph, 74
Consistency-based

diagnosis, 277
Consistent knowledge, 211
Constant in description

logic, 157
Constant symbol, 17
Context-switching rule, 132
Cook’s theorem, 69
Credulous extension, 199

377

378 Index

Credulous reasoning, 192,
201, 225

Cut symbol, 105

D
Data-directed reasoning,

117
Decision theory, 250
Deductive inference, 27
Default logic, 222
Default rule, 222

conclusion, 222
prerequisite, 222
justification, 222
normal, 223

Default slot filler, 139
Default theory, 222

extension of, 223
normal, 223

Defeasible inheritance, 139,
191

Defined concept, 160
Definite Horn clause, 86
Degree curve, 253
Delete list for planning, 313
Dempster–Shafer theory,

251
belief measure, 252
plausibility measure, 252

Denotation of a term, 21
Description logic, 157

classification, 172
equivalence, 159
language, 157

concept, 157
concept-forming

operator, 158
constant, 157
role, 157
sentence, 158

subsumption, 159
Diagnosis

abductive, 275
consistency-based, 277
differential, 277
minimal, 277

Differential diagnosis, 277
Direct inference, 244

Directional connective, 74
Disjunctive normal form

(DNF), 51
Domain closure, 214
Domain of an

interpretation, 20

E
Edge in an inheritance

network, 188
polarity, 190
redundant, 198

Effect axiom, 288
Effect of an action, 287
Entailment in logic, 10, 23
Equality axioms, 65
Equivalence in logic, 50
Equivalence in description

logic, 159
Expert system, 129
Explanation, 268

abductive, 270
Explanation closure axiom,

292
Extension of a concept, 161
Extension of a default

theory, 223
applicable assumption,

223
grounded, 227

Extension of an inheritance
network, 199

credulous, 199
preferred, 200

F
Falsity in an interpretation,

22
Fault model, 274
Filler of a slot, 136
Fluent, 286
Focus node in inheritance,

191
FOL, 11, 15

propositional subset, 18
Formula of FOL, 17

atomic, 17
bound variable in, 18

clausal, 51, 57
free variable in, 18
satisfaction of, 22
sentence, 18
substitution in, 57

Forward filtering, 319
Forward-chaining

reasoning, 93
Frame, 136

generic, 136
individual, 136
instantiation, 137
specialization, 137

Frame axiom, 288
Frame problem, 288
Free variable, 18
Function symbol, 16

arity, 17
Fuzzy control, 256

G
Generalized closed-world

assumption, 213
Generate and test, 104
Generic frame, 136
Goal regression, 315
Goal tree, 90
Goal-directed reasoning,

117
GOLOG, 297
Ground term, literal, or

clause, 57
Grounded extension, 227

H
Haken’s result, 69
Herbrand base, 68
Herbrand universe, 68
Horn clause, 86

definite, 86
negative, 86
positive, 86

I
Ideally skeptical reasoning,

201
If-added procedure,

111, 138

Index 379

If-added rule, 110
If-needed procedure, 111,

138
If-needed rule, 110
If-removed procedure, 111
If-removed rule, 110
Incomplete knowledge, 335
Individual frame, 136
Inductive reasoning, 268
Inferential distance, 196
Influence diagram, 250
Inheritance hierarchy, 196
Inheritance network, 188

admissible path, 197
ambiguous network,

191, 199
conclusion supported,

189
credulous extension, 199
edge, 188
node, 188
preferred extension, 200

Inheritance of properties,
138

defeasible, 139, 191
strict, 176, 189

Instance of a literal, 57
:INSTANCE-OF slot, 137
Instantiation in frames, 137
Intentional stance, 5
Interpretation in FOL, 20

denotation of a term, 21
domain, 20
falsity, 22
logical model, 22
satisfaction of a

formula, 22
truth, 22

Interpretation mapping,
20

:IS-A slot, 137
Iterative deepening, 320

J
Joint probability

distribution, 245
Justification of a default

rule, 222

K
Knowledge, 2

complete, 211
consistent, 211
incomplete, 335

Knowledge base, 6
Knowledge engineering, 32
Knowledge level, 11
Knowledge Representation,

4
Knowledge Representation

Hypothesis, 6
Knowledge-based system, 6

L
Legal situation, 290
Legality testing task, 290
Literal, 50

complement, 51
ground, 57
instance, 57
unification, 58

Logic, 11
Logical connective, 16
Logical consequence, 23
Logical entailment, 10, 23
Logical inference, 4
Logical model, 22
Logical punctuation, 16
Logical symbol, 16
Logical variable, 16
Logically complete

reasoning, 10, 27
Logically equivalent

sentences, 50
Logically sound reasoning,

10, 27

M
Meaning postulate, 333
Minimal diagnosis, 277
Minimal entailment, 217
Minimal stable expansion,

232
Monotonic reasoning, 209
Most general subsumee,

173

Most general unifier
(MGU), 71

Most specific subsumer,
173

MYCIN, 130

N
Negation as failure, 108
Negative Horn clause, 86
Negative path, 196
Node in an inheritance

network, 188
focus, 191
preemptor, 198

Nonlinear plan, 317
Nonlogical symbol, 16
Nonmonotonic reasoning,

209
Normal default rule, 223
Normal default theory,

223
NP-complete, 69

O
Objective probability, 239
Objective sentence, 230
Ontology, 32
OPS5, 127

P
Paramodulation, 73
Partial-order planner, 317
Path in an inheritance

network, 189
negative, 196
positive, 196

PLANNER, 111
Planning

abstraction space, 320
conditional, 321
nonlinear, 317
operators, 312

add list, 313
delete list, 313
precondition, 313

partial-order, 317
progressive, 314

380 Index

Planning (continued)
regressive, 315
STRIPS, 312
world model, 312

Planning operators, 312
Plausibility measure, 252
Polarity of an edge, 190
Positive Horn clause, 86
Positive path, 196
Possibility distribution, 252
Posterior probability, 243
Precondition axiom, 288
Precondition of a planning

operator, 313
Precondition of an

action, 287
Predicate symbol, 17

arity, 17
Preemption strategy, 195

inferential distance, 196
shortest path, 193
specificity criterion, 196

Preemptor node, 198
Preferred extension, 200
Prerequisite of a default

rule, 222
Prime implicate, 271
Primitive concept, 160
Prior probability, 243
Probability measure, 240

conditional, 241
joint, 245
objective, 239
posterior, 243
prior, 243
subjective, 239, 243

Production rule, 118, 119
Production system, 118

conflict resolution
strategy, 126

conflict set, 119
recognize-resolve-act

cycle, 119
working memory (WM),

119
working memory

element (WME), 119
Progressive planner, 314
Projection task, 289

Proposition, 2
Propositional attitude, 3
Propositional subset of

FOL, 18
Propositional symbol, 17
Pure clause, 72

Q
Quantifier, 16

R
Reasoning, 4

abductive, 267
backward-chaining, 92
credulous, 192, 201, 225
data-directed, 117
forward-chaining, 93
goal-directed, 117
ideally skeptical, 201
inductive, 268
logical completeness of,

10, 27
logical soundness of,

10, 27
monotonic, 209
nonmonotonic, 209
skeptical, 192, 201, 225

Recency for conflict
resolution, 126

Recognize-resolve-act
cycle, 119

Redundant edge, 198
Reference class, 244
Refractoriness, 127
Refutation completeness,

53
Regressive planner, 315

goal regression, 315
Reification, 41
Representation, 3

analogue, 338
knowledge, 4
vivid, 337

Residue, 342
Resolution, 52

answer predicate, 62
answer-extraction

process, 62

derivation, 52
refutation completeness,

53
resolvent, 52
set of support strategy,

73
unit preference

strategy, 73
Resolution derivation, 52

SLD derivation, 87
Resolvent, 52
Restricted role, 329
RETE algorithm, 128
Role in description logic,

157
restricted, 329

Rule of inference, 52
paramodulation, 73
resolution, 52

Rule-based system, 118

S
SAT solver, 71
Satisfaction of a

formula, 22
variable assignment,

21
Satisfiable set of sentences,

23
Script, 149
Semantic attachment, 341
Sentence of description

logic, 158
Sentence of FOL, 18

objective, 230
Set of support strategy, 73
Shortest path heuristic,

193
Situation calculus, 286

legal situation, 290
legality testing task, 290
projection task, 289

Skeptical reasoning, 192,
201, 225

Skolem constant, 64
Skolem function, 64
Skolemization, 64
SLD derivation, 87

Index 381

Slot in a frame, 136
filler, 136
default filler, 139
:INSTANCE-OF, 137
:IS-A, 137

SOAR, 127
Sorted logic, 73
Specialization in frames,

137
Specificity criterion, 196
Specificity for conflict

resolution, 126
Stable expansion, 229

minimal, 232
Stable set of sentences, 228
Strict inheritance, 176, 189
STRIPS, 312
Subjective probability, 239,

243
direct inference, 244
reference class, 244

Substitution in a formula,
57

Subsumed clause, 73
Subsumption in

description logic, 159
most general subsumee,

173
most specific

subsumer, 173

Successor state axiom,
293

Symbol, 3
logical, 16

connective, 16
punctuation, 16
quantifier, 16
variable, 16

nonlogical, 16
constant, 17
function, 16
predicate, 17
propositional, 17

Symbol level, 12

T
Tautology, 73
Taxonomy of concepts,

172
Term in FOL, 17

denotation of, 21
ground, 57

Theory resolution, 341
residue, 342

Truth in an interpretation,
22

U
Unification of literals, 58

Unifier, 58
most general (MGU), 71

Unique name assumption,
215

Unit clause, 51
Unit preference strategy, 73

V
Vague predicate, 239, 253

base function, 253
degree curve, 253

Valid sentence, 23
tautology, 73

Variable assignment, 21
Vivid representation, 337

W
Working memory (WM),

119
Working memory element

(WME), 119
World model in planning,

312

X
XCON, 131

This Page Intentionally Left Blank

	Knowledge Representation and Reasoning
	Copyright Page
	Contents
	Preface
	Acknowledgments
	Chapter 1. Introduction
	1.1 The Key Concepts: Knowledge, Representation, and Reasoning
	1.2 Why Knowledge Representation and Reasoning?
	1.3 The Role of Logic
	1.4 Bibliographic Notes
	1.5 Exercises

	Chapter 2. The Language of First-Order Logic
	2.1 Introduction
	2.2 The Syntax
	2.3 The Semantics
	2.4 The Pragmatics
	2.5 Explicit and Implicit Belief
	2.6 Bibliographic Notes
	2.7 Exercises

	Chapter 3. Expressing Knowledge
	3.1 Knowledge Engineering
	3.2 Vocabulary
	3.3 Basic Facts
	3.4 Complex Facts
	3.5 Terminological Facts
	3.6 Entailments
	3.7 Abstract Individuals
	3.8 Other Sorts of Facts
	3.9 Bibliographic Notes
	3.10 Exercises

	Chapter 4. Resolution
	4.1 The Propositional Case
	4.2 Handling Variables and Quantifiers
	4.3 Dealing with Computational Intractability
	4.4 Bibliographic Notes
	4.5 Exercises

	Chapter 5. Reasoning with Horn Clauses
	5.1 Horn Clauses
	5.2 SLD Resolution
	5.3 Computing SLD Derivations
	5.4 Bibliographic Notes
	5.5 Exercises

	Chapter 6. Procedural Control of Reasoning
	6.1 Facts and Rules
	6.2 Rule Formation and Search Strategy
	6.3 Algorithm Design
	6.4 Specifying Goal Order
	6.5 Committing to Proof Methods
	6.6 Controlling Backtracking
	6.7 Negation as Failure
	6.8 Dynamic Databases
	6.9 Bibliographic Notes
	6.10 Exercises

	Chapter 7. Rules in Production Systems
	7.1 Production Systems: Basic Operation
	7.2 Working Memory
	7.3 Production Rules
	7.4 A First Example
	7.5 A Second Example
	7.6 Conflict Resolution
	7.7 Making Production Systems More Efficient
	7.8 Applications and Advantages
	7.9 Some Significant Production Rule Systems
	7.10 Bibliographic Notes
	7.11 Exercises

	Chapter 8. Object-Oriented Representation
	8.1 Objects and Frames
	8.2 A Basic Frame Formalism
	8.3 An Example: Using Frames to Plan a Trip
	8.4 Beyond the Basics
	8.5 Bibliographic Notes
	8.6 Exercises

	Chapter 9. Structured Descriptions
	9.1 Descriptions
	9.2 A Description Language
	9.3 Meaning and Entailment
	9.4 Computing Entailments
	9.5 Taxonomies and Classification
	9.6 Beyond the Basics
	9.7 Bibliographic Notes
	9.8 Exercises

	Chapter 10. Inheritance
	10.1 Inheritance Networks
	10.2 Strategies for Defeasible Inheritance
	10.3 A Formal Account of Inheritance Networks
	10.4 Bibliographic Notes
	10.5 Exercises

	Chapter 11. Defaults
	11.1 Introduction
	11.2 Closed-World Reasoning
	11.3 Circumscription
	11.4 Default Logic
	11.5 Autoepistemic Logic
	11.6 Conclusion
	11.7 Bibliographic Notes
	11.8 Exercises

	Chapter 12. Vagueness, Uncertainty, and Degrees of Belief
	12.1 Noncategorical Reasoning
	12.2 Objective Probability
	12.3 Subjective Probability
	12.4 Vagueness
	12.5 Bibliographic Notes
	12.6 Exercises

	Chapter 13. Explanation and Diagnosis
	13.1 Diagnosis
	13.2 Explanation
	13.3 A Circuit Example
	13.4 Beyond the Basics
	13.5 Bibliographic Notes
	13.6 Exercises

	Chapter 14. Actions
	14.1 The Situation Calculus
	14.2 A Simple Solution to the Frame Problem
	14.3 Complex Actions
	14.4 Bibliographic Notes
	14.5 Exercises

	Chapter 15. Planning
	15.1 Planning in the Situation Calculus
	15.2 The STRIPS Representation
	15.3 Planning as a Reasoning Task
	15.4 Beyond the Basics
	15.5 Bibliographic Notes
	15.6 Exercises

	Chapter 16. The Tradeoff between Expressiveness and Tractability
	16.1 A Description Logic Case Study
	16.2 Limited Languages
	16.3 What Makes Reasoning Hard?
	16.4 Vivid Knowledge
	16.5 Beyond Vivid
	16.6 Bibliographic Notes
	16.7 Exercises

	Bibliography
	Index

