DISTRIBUTED

Principles, Algorithms, and Systems

COMPUTING

Ajay b Kshemkalyani
and Mukesh Singhal

http://www.cambridge.org/9780521876346

This page intentionally left blank

Distributed Computing
Principles, Algorithms, and Systems

Distributed computing deals with all forms of computing, information access,
and information exchange across multiple processing platforms connected
by computer networks. Design of distributed computing systems is a com-
plex task. It requires a solid understanding of the design issues and an
in-depth understanding of the theoretical and practical aspects of their solu-
tions. This comprehensive textbook covers the fundamental principles and
models underlying the theory, algorithms, and systems aspects of distributed
computing.

Broad and detailed coverage of the theory is balanced with practical
systems-related problems such as mutual exclusion, deadlock detection,
authentication, and failure recovery. Algorithms are carefully selected, lucidly
presented, and described without complex proofs. Simple explanations and
illustrations are used to elucidate the algorithms. Emerging topics of signif-
icant impact, such as peer-to-peer networks and network security, are also
covered.

With state-of-the-art algorithms, numerous illustrations, examples, and
homework problems, this textbook is invaluable for advanced undergraduate
and graduate students of electrical and computer engineering and computer
science. Practitioners in data networking and sensor networks will also find
this a valuable resource.

Ajay D. Kshemkalyani is an Associate Professor in the Department of Com-
puter Science, at the University of Illinois at Chicago. He was awarded his
Ph.D. in Computer and Information Science in 1991 from The Ohio State
University. Before moving to academia, he spent several years working on
computer networks at IBM Research Triangle Park. In 1999, he received the
National Science Foundation’s CAREER Award. He is a Senior Member of
the IEEE, and his principal areas of research include distributed computing,
algorithms, computer networks, and concurrent systems. He currently serves
on the editorial board of Computer Networks.

Mukesh Singhal is Full Professor and Gartner Group Endowed Chair in Net-
work Engineering in the Department of Computer Science at the University
of Kentucky. He was awarded his Ph.D. in Computer Science in 1986 from
the University of Maryland, College Park. In 2003, he received the IEEE

Technical Achievement Award, and currently serves on the editorial boards
for the IEEE Transactions on Parallel and Distributed Systems and the IEEE
Transactions on Computers. He is a Fellow of the IEEE, and his principal
areas of research include distributed systems, computer networks, wireless and
mobile computing systems, performance evaluation, and computer security.

Distributed Computing

Principles, Algorithms, and
Systems

Ajay D. Kshemkalyani

University of Illinois at Chicago, Chicago

and

Mukesh Singhal

University of Kentucky, Lexington

EH CAMBRIDGE

&) UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, S3o Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK
Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521876346

© Cambridge University Press 2008

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published in print format 2008

ISBN-13 978-0-511-39341-9 eBook (EBL)

ISBN-13 978-0-521-87634-6 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

http://www.cambridge.org/9780521876346
http://www.cambridge.org

To my father Shri Digambar and
my mother Shrimati Vimala.
Ajay D. Kshemkalyani

To my mother Chandra Prabha Singhal,
my father Brij Mohan Singhal, and my
daughters Meenakshi, Malvika,
and Priyanka.

Mukesh Singhal

Contents

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29
2.10

Preface

Introduction

Definition

Relation to computer system components

Motivation

Relation to parallel multiprocessor/multicomputer systems
Message-passing systems versus shared memory systems
Primitives for distributed communication

Synchronous versus asynchronous executions

Design issues and challenges

Selection and coverage of topics

Chapter summary

Exercises

Notes on references

References

A model of distributed computations
A distributed program

A model of distributed executions
Models of communication networks
Global state of a distributed system
Cuts of a distributed computation
Past and future cones of an event
Models of process communications
Chapter summary

Exercises

Notes on references

References

page xv

DN W N = =

viii

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8

4.9

4.10
4.11
4.12

5.1
52
53
54
5.5
5.6
5.7
5.8
59
5.10

Contents

Logical time

Introduction

A framework for a system of logical clocks
Scalar time

Vector time

Efficient implementations of vector clocks
Jard—Jourdan’s adaptive technique

Matrix time

Virtual time

Physical clock synchronization: NTP
Chapter summary

Exercises

Notes on references

References

Global state and snapshot recording algorithms
Introduction

System model and definitions

Snapshot algorithms for FIFO channels
Variations of the Chandy—Lamport algorithm
Snapshot algorithms for non-FIFO channels
Snapshots in a causal delivery system
Monitoring global state

Necessary and sufficient conditions for consistent global

snapshots

Finding consistent global snapshots in a distributed

computation
Chapter summary
Exercises
Notes on references
References

Terminology and basic algorithms
Topology abstraction and overlays
Classifications and basic concepts
Complexity measures and metrics
Program structure

Elementary graph algorithms
Synchronizers

Maximal independent set (MIS)
Connected dominating set
Compact routing tables

Leader election

50
50
52
53
55
59
65
68
69
78
81
84
84
84

87
87
90
93
97
101
106
109

110

114
121
122
122
123

126
126
128
135
137
138
163
169
171
172
174

Contents

5.11 Challenges in designing distributed graph algorithms 175
5.12 Object replication problems 176
5.13 Chapter summary 182
5.14 Exercises 183
5.15 Notes on references 185
References 186
6 Message ordering and group communication 189
6.1 Message ordering paradigms 190
6.2 Asynchronous execution with synchronous communication 195
6.3 Synchronous program order on an asynchronous system 200
6.4 Group communication 205
6.5 Causal order (CO) 206
6.6 Total order 215
6.7 A nomenclature for multicast 220
6.8 Propagation trees for multicast 221
6.9 Classification of application-level multicast algorithms 225
6.10 Semantics of fault-tolerant group communication 228
6.11 Distributed multicast algorithms at the network layer 230
6.12 Chapter summary 236
6.13 Exercises 236
6.14 Notes on references 238
References 239
7 Termination detection 241
7.1 Introduction 241
7.2 System model of a distributed computation 242
7.3 Termination detection using distributed snapshots 243
7.4 Termination detection by weight throwing 245
7.5 A spanning-tree-based termination detection algorithm 247
7.6 Message-optimal termination detection 253
7.7 Termination detection in a very general distributed computing
model 257
7.8 Termination detection in the atomic computation model 263
7.9 Termination detection in a faulty distributed system 272
7.10 Chapter summary 279
7.11 Exercises 279
7.12 Notes on references 280
References 280
8 Reasoning with knowledge 282
8.1 The muddy children puzzle 282

8.2 Logic of knowledge 283

Contents

8.3
8.4
8.5
8.6
8.7
8.8
8.9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15

10

10.1
10.2
10.3
10.4
10.5

10.6

10.7
10.8
10.9
10.10
10.11
10.12

Knowledge in synchronous systems
Knowledge in asynchronous systems
Knowledge transfer

Knowledge and clocks

Chapter summary

Exercises

Notes on references

References

Distributed mutual exclusion algorithms
Introduction

Preliminaries

Lamport’s algorithm

Ricart—Agrawala algorithm

Singhal’s dynamic information-structure algorithm
Lodha and Kshemkalyani’s fair mutual exclusion algorithm
Quorum-based mutual exclusion algorithms
Maekawa’s algorithm

Agarwal-El Abbadi quorum-based algorithm
Token-based algorithms

Suzuki-Kasami’s broadcast algorithm

Raymond’s tree-based algorithm

Chapter summary

Exercises

Notes on references

References

Deadlock detection in distributed systems

Introduction

System model

Preliminaries

Models of deadlocks

Knapp’s classification of distributed deadlock detection
algorithms

Mitchell and Merritt’s algorithm for the single-
resource model

Chandy-Misra—Haas algorithm for the AND model

Chandy-Misra—Haas algorithm for the OR model

Kshemkalyani—Singhal algorithm for the P-out-of-Q model

Chapter summary

Exercises

Notes on references

References

289
290
298
300
301
302
303
303

305
305
306
309
312
315
321
327
328
331
336
336
339
348
348
349
350

352
352
352
353
355

358

360
362
364
365
374
375
375
376

xi

Contents

11

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

13

13.1
13.2
13.3
13.4
13.5
13.6
13.7

13.8

13.9
13.10

13.11
13.12
13.13

Global predicate detection

Stable and unstable predicates

Modalities on predicates

Centralized algorithm for relational predicates
Conjunctive predicates

Distributed algorithms for conjunctive predicates
Further classification of predicates

Chapter summary

Exercises

Notes on references

References

Distributed shared memory

Abstraction and advantages

Memory consistency models

Shared memory mutual exclusion
Wait-freedom

Register hierarchy and wait-free simulations
Wait-free atomic snapshots of shared objects
Chapter summary

Exercises

Notes on references

References

Checkpointing and rollback recovery

Introduction

Background and definitions

Issues in failure recovery

Checkpoint-based recovery

Log-based rollback recovery

Koo-Toueg coordinated checkpointing algorithm

Juang—Venkatesan algorithm for asynchronous checkpointing
and recovery

Manivannan-Singhal quasi-synchronous checkpointing
algorithm

Peterson—Kearns algorithm based on vector time

Helary—Mostefaoui—Netzer—Raynal communication-induced
protocol

Chapter summary

Exercises

Notes on references

References

379
379
382
384
388
395
404
405
406
407
408

410
410
413
427
434
434
447
451
452
453
454

456
456
457
462
464
470
476

478

483
492

499
505
506
506
507

Xii

Contents

14

14.1
14.2
14.3

14.4

14.5

14.6
14.7
14.8
14.9

15

15.1
15.2
15.3
15.4
15.5
15.6

15.7
15.8
15.9
15.10

16

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

17
17.1
17.2

Consensus and agreement algorithms

Problem definition

Overview of results

Agreement in a failure-free system (synchronous or
asynchronous)

Agreement in (message-passing) synchronous systems with
failures

Agreement in asynchronous message-passing systems with
failures

Wait-free shared memory consensus in asynchronous systems

Chapter summary

Exercises

Notes on references

References

Failure detectors

Introduction

Unreliable failure detectors
The consensus problem
Atomic broadcast

A solution to atomic broadcast

The weakest failure detectors to solve fundamental agreement

problems
An implementation of a failure detector
An adaptive failure detection protocol
Exercises
Notes on references
References

Authentication in distributed systems
Introduction

Background and definitions

Protocols based on symmetric cryptosystems
Protocols based on asymmetric cryptosystems
Password-based authentication
Authentication protocol failures

Chapter summary

Exercises

Notes on references

References

Self-stabilization
Introduction
System model

510
510
514

515

516

529
544
562
563
564
565

567
567
568
577
583
584

585
589
591
596
596
596

598
598
599
602
615
622
625
626
627
627
628

631
631
632

Xiii

Contents

17.3
17.4
17.5
17.6
17.7
17.8
17.9

17.10
17.11
17.12
17.13
17.14
17.15
17.16
17.17

18
18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12
18.13
18.14
18.15
18.16
18.17

Definition of self-stabilization

Issues in the design of self-stabilization algorithms

Methodologies for designing self-stabilizing systems

Communication protocols

Self-stabilizing distributed spanning trees

Self-stabilizing algorithms for spanning-tree construction

An anonymous self-stabilizing algorithm for 1-maximal
independent set in trees

A probabilistic self-stabilizing leader election algorithm

The role of compilers in self-stabilization

Self-stabilization as a solution to fault tolerance

Factors preventing self-stabilization

Limitations of self-stabilization

Chapter summary

Exercises

Notes on references

References

Peer-to-peer computing and overlay graphs
Introduction

Data indexing and overlays

Unstructured overlays

Chord distributed hash table

Content addressible networks (CAN)
Tapestry

Some other challenges in P2P system design
Tradeoffs between table storage and route lengths
Graph structures of complex networks
Internet graphs

Generalized random graph networks
Small-world networks

Scale-free networks

Evolving networks

Chapter summary

Exercises

Notes on references

References

Index

634
636
647
649
650
652

657
660
662
665
667
668
670
670
671
671

677
677
679
681
688
695
701
708
710
712
714
720
720
721
723
727
727
728
729

731

Background

Preface

The field of distributed computing covers all aspects of computing and infor-
mation access across multiple processing elements connected by any form of
communication network, whether local or wide-area in the coverage. Since
the advent of the Internet in the 1970s, there has been a steady growth of
new applications requiring distributed processing. This has been enabled by
advances in networking and hardware technology, the falling cost of hard-
ware, and greater end-user awareness. These factors have contributed to
making distributed computing a cost-effective, high-performance, and fault-
tolerant reality. Around the turn of the millenium, there was an explosive
growth in the expansion and efficiency of the Internet, which was matched
by increased access to networked resources through the World Wide Web,
all across the world. Coupled with an equally dramatic growth in the wireless
and mobile networking areas, and the plummeting prices of bandwidth and
storage devices, we are witnessing a rapid spurt in distributed applications and
an accompanying interest in the field of distributed computing in universities,
governments organizations, and private institutions.

Advances in hardware technology have suddenly made sensor networking
a reality, and embedded and sensor networks are rapidly becoming an integral
part of everyone’s life — from the home network with the interconnected
gadgets to the automobile communicating by GPS (global positioning system),
to the fully networked office with RFID monitoring. In the emerging global
village, distributed computing will be the centerpiece of all computing and
information access sub-disciplines within computer science. Clearly, this is
a very important field. Moreover, this evolving field is characterized by a
diverse range of challenges for which the solutions need to have foundations
on solid principles.

The field of distributed computing is very important, and there is a huge
demand for a good comprehensive book. This book comprehensively covers
all important topics in great depth, combining this with a clarity of explanation

XVi

Preface

and ease of understanding. The book will be particularly valuable to the
academic community and the computer industry at large. Writing such a
comprehensive book has been a Herculean task and there is a deep sense of
satisfaction in knowing that we were able complete it and perform this service
to the community.

Description, approach, and features

Readership

The book will focus on the fundamental principles and models underlying all
aspects of distributed computing. It will address the principles underlying the
theory, algorithms, and systems aspects of distributed computing. The manner
of presentation of the algorithms is very clear, explaining the main ideas and
the intuition with figures and simple explanations rather than getting entangled
in intimidating notations and lengthy and hard-to-follow rigorous proofs of
the algorithms. The selection of chapter themes is broad and comprehensive,
and the book covers all important topics in depth. The selection of algorithms
within each chapter has been done carefully to elucidate new and important
techniques of algorithm design. Although the book focuses on foundational
aspects and algorithms for distributed computing, it thoroughly addresses all
practical systems-like problems (e.g., mutual exclusion, deadlock detection,
termination detection, failure recovery, authentication, global state and time,
etc.) by presenting the theory behind and algorithms for such problems. The
book is written keeping in mind the impact of emerging topics such as
peer-to-peer computing and network security on the foundational aspects of
distributed computing.

Each chapter contains figures, examples, exercises, a summary, and
references.

This book is aimed as a textbook for the following:

e Graduate students and Senior level undergraduate students in computer
science and computer engineering.

e Graduate students in electrical engineering and mathematics. As wireless
networks, peer-to-peer networks, and mobile computing continue to grow
in importance, an increasing number of students from electrical engineering
departments will also find this book necessary.

e Practitioners, systems designers/programmers, and consultants in industry
and research laboratories will find the book a very useful reference because
it contains state-of-the-art algorithms and principles to address various
design issues in distributed systems, as well as the latest references.

Xvii

Acknowledgements

Access to resources

Preface

Hard and soft prerequisites for the use of this book include the following:

e An undergraduate course in algorithms is required.

e Undergraduate courses in operating systems and computer networks would
be useful.

e A reasonable familiarity with programming.

We have aimed for a very comprehensive book that will act as a single
source for distributed computing models and algorithms. The book has both
depth and breadth of coverage of topics, and is characterized by clear and
easy explanations. None of the existing textbooks on distributed computing
provides all of these features.

This book grew from the notes used in the graduate courses on distributed
computing at the Ohio State University, the University of Illinois at Chicago,
and at the University of Kentucky. We would like to thank the graduate
students at these schools for their contributions to the book in many ways.
The book is based on the published research results of numerous researchers
in the field. We have made all efforts to present the material in our own
words and have given credit to the original sources of information. We would
like to thank all the researchers whose work has been reported in this book.
Finally, we would like to thank the staff of Cambridge University Press for
providing us with excellent support in the publication of this book.

The following websites will be maintained for the book. Any errors and
comments should be sent to ajayk @cs.uic.edu or singhal @cs.uky.edu. Further
information about the book can be obtained from the authors’ web pages:

e www.cs.uic.edu/~ajayk/DCS-Book
e www.cs.uky.edu/~singhal/DCS-Book.

CHAPTER

1.1 Definition

Introduction

A distributed system is a collection of independent entities that cooperate to
solve a problem that cannot be individually solved. Distributed systems have
been in existence since the start of the universe. From a school of fish to a flock
of birds and entire ecosystems of microorganisms, there is communication
among mobile intelligent agents in nature. With the widespread proliferation
of the Internet and the emerging global village, the notion of distributed
computing systems as a useful and widely deployed tool is becoming a reality.
For computing systems, a distributed system has been characterized in one of
several ways:

e You know you are using one when the crash of a computer you have never
heard of prevents you from doing work [23].

e A collection of computers that do not share common memory or a common
physical clock, that communicate by a messages passing over a communi-
cation network, and where each computer has its own memory and runs its
own operating system. Typically the computers are semi-autonomous and are
loosely coupled while they cooperate to address a problem collectively [29].

e A collection of independent computers that appears to the users of the
system as a single coherent computer [33].

e A term that describes a wide range of computers, from weakly coupled
systems such as wide-area networks, to strongly coupled systems such as
local area networks, to very strongly coupled systems such as multipro-
cessor systems [19].

A distributed system can be characterized as a collection of mostly
autonomous processors communicating over a communication network and
having the following features:

e No common physical clock This is an important assumption because
it introduces the element of “distribution” in the system and gives rise to
the inherent asynchrony amongst the processors.

Introduction

e No shared memory This is a key feature that requires message-passing
for communication. This feature implies the absence of the common phys-
ical clock.

It may be noted that a distributed system may still provide the abstraction
of a common address space via the distributed shared memory abstraction.
Several aspects of shared memory multiprocessor systems have also been
studied in the distributed computing literature.

e Geographical separation The geographically wider apart that the pro-
cessors are, the more representative is the system of a distributed system.
However, it is not necessary for the processors to be on a wide-area net-
work (WAN). Recently, the network/cluster of workstations (NOW/COW)
configuration connecting processors on a LAN is also being increasingly
regarded as a small distributed system. This NOW configuration is becom-
ing popular because of the low-cost high-speed off-the-shelf processors
now available. The Google search engine is based on the NOW architec-
ture.

e Autonomy and heterogeneity = The processors are “loosely coupled”
in that they have different speeds and each can be running a different
operating system. They are usually not part of a dedicated system, but
cooperate with one another by offering services or solving a problem
jointly.

1.2 Relation to computer system components

Figure 1.1 A distributed
system connects processors by
a communication network.

A typical distributed system is shown in Figure 1.1. Each computer has a
memory-processing unit and the computers are connected by a communication
network. Figure 1.2 shows the relationships of the software components that
run on each of the computers and use the local operating system and network
protocol stack for functioning. The distributed software is also termed as
middleware. A distributed execution is the execution of processes across the
distributed system to collaboratively achieve a common goal. An execution
is also sometimes termed a computation or a run.

The distributed system uses a layered architecture to break down the com-
plexity of system design. The middleware is the distributed software that

P processor(s)

Communication network M memory bank(s)

(WAN/ LAN)

o

|P M| |P M|

Figure 1.2 Interaction of the
software components at each
processor.

1.3 Motivation

1.3 Motivation

Extent of
distributed
protocols

Distributed application |

! ! L

Distributed software

system
Network layer

i)

(middleware libraries) §
)

Q

Application layer =

-

&

Operating Transport layer 4
3

g

5]

4

Data link layer

drives the distributed system, while providing transparency of heterogeneity at
the platform level [24]. Figure 1.2 schematically shows the interaction of this
software with these system components at each processor. Here we assume
that the middleware layer does not contain the traditional application layer
functions of the network protocol stack, such as http, mail, ftp, and telnet.
Various primitives and calls to functions defined in various libraries of the
middleware layer are embedded in the user program code. There exist several
libraries to choose from to invoke primitives for the more common func-
tions — such as reliable and ordered multicasting — of the middleware layer.
There are several standards such as Object Management Group’s (OMG)
common object request broker architecture (CORBA) [36], and the remote
procedure call (RPC) mechanism [1, 11]. The RPC mechanism conceptually
works like a local procedure call, with the difference that the procedure code
may reside on a remote machine, and the RPC software sends a message
across the network to invoke the remote procedure. It then awaits a reply,
after which the procedure call completes from the perspective of the program
that invoked it. Currently deployed commercial versions of middleware often
use CORBA, DCOM (distributed component object model), Java, and RMI
(remote method invocation) [7] technologies. The message-passing interface
(MPI) [20,30] developed in the research community is an example of an
interface for various communication functions.

The motivation for using a distributed system is some or all of the following
requirements:

1. Inherently distributed computations In many applications such as
money transfer in banking, or reaching consensus among parties that are
geographically distant, the computation is inherently distributed.

2. Resource sharing Resources such as peripherals, complete data sets
in databases, special libraries, as well as data (variable/files) cannot be

Introduction

fully replicated at all the sites because it is often neither practical nor
cost-effective. Further, they cannot be placed at a single site because access
to that site might prove to be a bottleneck. Therefore, such resources are
typically distributed across the system. For example, distributed databases
such as DB2 partition the data sets across several servers, in addition to
replicating them at a few sites for rapid access as well as reliability.

3. Access to geographically remote data and resources In many sce-
narios, the data cannot be replicated at every site participating in the
distributed execution because it may be too large or too sensitive to be
replicated. For example, payroll data within a multinational corporation is
both too large and too sensitive to be replicated at every branch office/site.
It is therefore stored at a central server which can be queried by branch
offices. Similarly, special resources such as supercomputers exist only in
certain locations, and to access such supercomputers, users need to log in
remotely.

Advances in the design of resource-constrained mobile devices as well
as in the wireless technology with which these devices communicate
have given further impetus to the importance of distributed protocols and
middleware.

4. Enhanced reliability A distributed system has the inherent potential
to provide increased reliability because of the possibility of replicating
resources and executions, as well as the reality that geographically dis-
tributed resources are not likely to crash/malfunction at the same time
under normal circumstances. Reliability entails several aspects:

e availability, i.e., the resource should be accessible at all times;

e integrity, i.e., the value/state of the resource should be correct, in the
face of concurrent access from multiple processors, as per the semantics
expected by the application;

e fault-tolerance, i.e., the ability to recover from system failures, where
such failures may be defined to occur in one of many failure models,
which we will study in Chapters 5 and 14.

5. Increased performance/cost ratio By resource sharing and accessing
geographically remote data and resources, the performance/cost ratio is
increased. Although higher throughput has not necessarily been the main
objective behind using a distributed system, nevertheless, any task can be
partitioned across the various computers in the distributed system. Such a
configuration provides a better performance/cost ratio than using special
parallel machines. This is particularly true of the NOW configuration.

In addition to meeting the above requirements, a distributed system also offers
the following advantages:

6. Scalability As the processors are usually connected by a wide-area net-
work, adding more processors does not pose a direct bottleneck for the
communication network.

1.4 Relation to parallel multiprocessor/multicomputer systems

7. Modularity and incremental expandability Heterogeneous processors
may be easily added into the system without affecting the performance,
as long as those processors are running the same middleware algo-
rithms. Similarly, existing processors may be easily replaced by other
processors.

1.4 Relation to parallel multiprocessor/multicomputer systems

The characteristics of a distributed system were identified above. A typical
distributed system would look as shown in Figure 1.1. However, how does
one classify a system that meets some but not all of the characteristics? Is the
system still a distributed system, or does it become a parallel multiprocessor
system? To better answer these questions, we first examine the architec-
ture of parallel systems, and then examine some well-known taxonomies for
multiprocessor/multicomputer systems.

1.4.1 Characteristics of parallel systems

Figure 1.3 Two standard
architectures for parallel
systems. (a) Uniform memory
access (UMA) multiprocessor
system. (b) Non-uniform
memory access (NUMA)
multiprocessor. In both
architectures, the processors
may locally cache data from
memory.

A parallel system may be broadly classified as belonging to one of three
types:

1. A multiprocessor system is a parallel system in which the multiple proces-
sors have direct access to shared memory which forms a common address
space. The architecture is shown in Figure 1.3(a). Such processors usually
do not have a common clock.

A multiprocessor system usually corresponds to a uniform memory
access (UMA) architecture in which the access latency, i.e., waiting time, to
complete an access to any memory location from any processor is the same.
The processors are in very close physical proximity and are connected by
an interconnection network. Interprocess communication across processors
is traditionally through read and write operations on the shared memory,
although the use of message-passing primitives such as those provided by

U U ki

Interconnection network Interconnection network
| |
""""" Pl [Pl] [P[m]
(@) (b)
M memory P processor

Figure 1.4 Interconnection
networks for shared memory
multiprocessor systems. (a)
Omega network [4] for n =8
processors P0-P7 and
memory banks M0-M7. (b)
Butterfly network [10] for

n = 8 processors P0-P7 and
memory banks M0-M7.

Introduction

P0
P1

P2
P3

P4
P5

P6

257000 Mo MO
M1
M2
M3
M4
" M5
M6
" M7

(a) 3-stage Omega network (n=8, M =4) (b) 3-stage Butterfly network (n =8, M =4)

the MPI, is also possible (using emulation on the shared memory). All the
processors usually run the same operating system, and both the hardware
and software are very tightly coupled.

The processors are usually of the same type, and are housed within the
same box/container with a shared memory. The interconnection network
to access the memory may be a bus, although for greater efficiency, it is
usually a multistage switch with a symmetric and regular design.

Figure 1.4 shows two popular interconnection networks — the Omega
network [4] and the Butterfly network [10], each of which is a multi-stage
network formed of 2 x 2 switching elements. Each 2 x 2 switch allows data
on either of the two input wires to be switched to the upper or the lower
output wire. In a single step, however, only one data unit can be sent on an
output wire. So if the data from both the input wires is to be routed to the
same output wire in a single step, there is a collision. Various techniques
such as buffering or more elaborate interconnection designs can address
collisions.

Each 2 x 2 switch is represented as a rectangle in the figure. Further-
more, a n-input and n-output network uses logn stages and logn bits
for addressing. Routing in the 2 x 2 switch at stage k uses only the kth
bit, and hence can be done at clock speed in hardware. The multi-stage
networks can be constructed recursively, and the interconnection pattern
between any two stages can be expressed using an iterative or a recursive
generating function. Besides the Omega and Butterfly (banyan) networks,
other examples of multistage interconnection networks are the Clos [9]
and the shuffle-exchange networks [37]. Each of these has very interesting
mathematical properties that allow rich connectivity between the processor
bank and memory bank.

Omega interconnection function The Omega network which connects
n processors to n memory units has n/2log, n switching elements of size
2 x 2 arranged in log, n stages. Between each pair of adjacent stages of
the Omega network, a link exists between output i of a stage and the input
Jj to the next stage according to the following perfect shuffle pattern which

1.4 Relation to parallel multiprocessor/multicomputer systems

is a left-rotation operation on the binary representation of i to get j. The
iterative generation function is as follows:
.2, forO0<i<n/2-1, (1.1)
“|2i+1—n, forn/2<i<n-—1. ’

Consider any stage of switches. Informally, the upper (lower) input lines
for each switch come in sequential order from the upper (lower) half of
the switches in the earlier stage.

With respect to the Omega network in Figure 1.4(a), n = 8. Hence, for
any stage, for the outputs i, where 0 <i < 3, the output i is connected
to input 2i of the next stage. For 4 <i <7, the output i of any stage is
connected to input 2i 4 1 —n of the next stage.

Omega routing function The routing function from input line i to output
line j considers only j and the stage number s, where s € [0, log,n — 1].
In a stage s switch, if the s+ Ith MSB (most significant bit) of j is 0, the
data is routed to the upper output wire, otherwise it is routed to the lower
output wire.

Butterfly interconnection function Unlike the Omega network, the gen-
eration of the interconnection pattern between a pair of adjacent stages
depends not only on n but also on the stage number s. The recursive expres-
sionis as follows. Let there be M = n/2 switches per stage, and let a switch be
denoted by the tuple (x, s), where x € [0, M — 1] and stage s € [0, log,n—1].

The two outgoing edges from any switch (x, s) are as follows. There is
an edge from switch (x, s) to switch (y, s+ 1) if (i) x =y or (ii) x XOR
y has exactly one 1 bit, which is in the (s+ 1)th MSB. For stage s, apply
the rule above for M/2° switches.

Whether the two incoming connections go to the upper or the lower
input port is not important because of the routing function, given below.

Example Consider the Butterfly network in Figure 1.4(b), n =8 and
M = 4. There are three stages, s =0, 1, 2, and the interconnection pattern
is defined between s =0 and s =1 and between s =1 and s = 2. The
switch number x varies from O to 3 in each stage, i.e., x is a 2-bit string.
(Note that unlike the Omega network formulation using input and output
lines given above, this formulation uses switch numbers. Exercise 1.5 asks
you to prove a formulation of the Omega interconnection pattern using
switch numbers instead of input and output port numbers.)

Consider the first stage interconnection (s = 0) of a butterfly of size M,
and hence having log, 2M stages. For stage s = 0, as per rule (i), the first
output line from switch 00 goes to the input line of switch 00 of stage
s = 1. As per rule (ii), the second output line of switch 00 goes to input line
of switch 10 of stage s = 1. Similarly, x = 01 has one output line go to an
input line of switch 11 in stage s = 1. The other connections in this stage

Introduction

can be determined similarly. For stage s = 1 connecting to stage s =2, we
apply the rules considering only M/2! = M/2 switches, i.e., we build two
butterflies of size M/2 — the “upper half” and the “lower half” switches.
The recursion terminates for M/2* = 1, when there is a single switch.

Butterfly routing function In a stage s switch, if the s+ 1th MSB of j
is 0, the data is routed to the upper output wire, otherwise it is routed to
the lower output wire.

Observe that for the Butterfly and the Omega networks, the paths from
the different inputs to any one output form a spanning tree. This implies
that collisions will occur when data is destined to the same output line.
However, the advantage is that data can be combined at the switches if
the application semantics (e.g., summation of numbers) are known.

2. A multicomputer parallel system is a parallel system in which the multiple
processors do not have direct access to shared memory. The memory of
the multiple processors may or may not form a common address space.
Such computers usually do not have a common clock. The architecture is
shown in Figure 1.3(b).

The processors are in close physical proximity and are usually very
tightly coupled (homogenous hardware and software), and connected by
an interconnection network. The processors communicate either via a com-
mon address space or via message-passing. A multicomputer system that
has a common address space usually corresponds to a non-uniform mem-
ory access (NUMA) architecture in which the latency to access various
shared memory locations from the different processors varies.

Examples of parallel multicomputers are: the NYU Ultracomputer and
the Sequent shared memory machines, the CM* Connection machine
and processors configured in regular and symmetrical topologies such
as an array or mesh, ring, torus, cube, and hypercube (message-passing
machines). The regular and symmetrical topologies have interesting math-
ematical properties that enable very easy routing and provide many rich
features such as alternate routing.

Figure 1.5(a) shows a wrap-around 4 x 4 mesh. For a k x k mesh which
will contain k2 processors, the maximum path length between any two
processors is 2(k/2 — 1). Routing can be done along the Manhattan grid.
Figure 1.5(b) shows a four-dimensional hypercube. A k-dimensional hyper-
cube has 2F processor-and-memory units [13,21]. Each such unit is a node
in the hypercube, and has a unique k-bit label. Each of the k& dimensions is
associated with a bit position in the label. The labels of any two adjacent
nodes are identical except for the bit position corresponding to the dimen-
sion in which the two nodes differ. Thus, the processors are labelled such
that the shortest path between any two processors is the Hamming distance
(defined as the number of bit positions in which the two equal sized bit
strings differ) between the processor labels. This is clearly bounded by k.

Figure 1.5 Some popular
topologies for multicomputer
shared-memory machines. (a)
Wrap-around 2D-mesh, also
known as torus. (b) Hypercube
of dimension 4.

1.4 Relation to parallel multiprocessor/multicomputer systems

SRS
R

ﬂf
m
m
=

[J processor + memory

ﬂf
m
o
=

(

(b)

Example Nodes 0101 and 1100 have a Hamming distance of 2. The
shortest path between them has length 2.

Routing in the hypercube is done hop-by-hop. At any hop, the message
can be sent along any dimension corresponding to the bit position in which
the current node’s address and the destination address differ. The 4D
hypercube shown in the figure is formed by connecting the corresponding
edges of two 3D hypercubes (corresponding to the left and right “cubes”
in the figure) along the fourth dimension; the labels of the 4D hypercube
are formed by prepending a “0” to the labels of the left 3D hypercube
and prepending a “1” to the labels of the right 3D hypercube. This can
be extended to construct hypercubes of higher dimensions. Observe that
there are multiple routes between any pair of nodes, which provides fault-
tolerance as well as a congestion control mechanism. The hypercube and
its variant topologies have very interesting mathematical properties with
implications for routing and fault-tolerance.

3. Array processors belong to a class of parallel computers that are physically
co-located, are very tightly coupled, and have a common system clock (but
may not share memory and communicate by passing data using messages).
Array processors and systolic arrays that perform tightly synchronized
processing and data exchange in lock-step for applications such as DSP
and image processing belong to this category. These applications usually
involve a large number of iterations on the data. This class of parallel
systems has a very niche market.

The distinction between UMA multiprocessors on the one hand, and NUMA
and message-passing multicomputers on the other, is important because
the algorithm design and data and task partitioning among the processors
must account for the variable and unpredictable latencies in accessing mem-
ory/communication [22]. As compared to UMA systems and array processors,
NUMA and message-passing multicomputer systems are less suitable when
the degree of granularity of accessing shared data and communication is
very fine.

The primary and most efficacious use of parallel systems is for obtain-
ing a higher throughput by dividing the computational workload among the

10 Introduction

processors. The tasks that are most amenable to higher speedups on par-
allel systems are those that can be partitioned into subtasks very nicely,
involving much number-crunching and relatively little communication for
synchronization. Once the task has been decomposed, the processors perform
large vector, array, and matrix computations that are common in scientific
applications. Searching through large state spaces can be performed with sig-
nificant speedup on parallel machines. While such parallel machines were
an object of much theoretical and systems research in the 1980s and early
1990s, they have not proved to be economically viable for two related reasons.
First, the overall market for the applications that can potentially attain high
speedups is relatively small. Second, due to economy of scale and the high
processing power offered by relatively inexpensive off-the-shelf networked
PCs, specialized parallel machines are not cost-effective to manufacture. They
additionally require special compiler and other system support for maximum
throughput.

1.4.2 Flynn's taxonomy

Flynn [14] identified four processing modes, based on whether the processors
execute the same or different instruction streams at the same time, and whether
or not the processors processed the same (identical) data at the same time. It
is instructive to examine this classification to understand the range of options
used for configuring systems:

e Single instruction stream, single data stream (SISD)
This mode corresponds to the conventional processing in the von Neumann
paradigm with a single CPU, and a single memory unit connected by a
system bus.

e Single instruction stream, multiple data stream (SIMD)
This mode corresponds to the processing by multiple homogenous proces-
sors which execute in lock-step on different data items. Applications that
involve operations on large arrays and matrices, such as scientific applica-
tions, can best exploit systems that provide the SIMD mode of operation
because the data sets can be partitioned easily.

Several of the earliest parallel computers, such as Illiac-IV, MPP, CM2,
and MasPar MP-1 were SIMD machines. Vector processors, array pro-
cessors’ and systolic arrays also belong to the SIMD class of processing.
Recent SIMD architectures include co-processing units such as the MMX
units in Intel processors (e.g., Pentium with the streaming SIMD extensions
(SSE) options) and DSP chips such as the Sharc [22].

e Multiple instruction stream, single data stream (MISD)
This mode corresponds to the execution of different operations in parallel
on the same data. This is a specialized mode of operation with limited but
niche applications, e.g., visualization.

Figure 1.6 Flynn's taxonomy
of SIMD, MIMD, and

MISD architectures for
multiprocessor/multicomputer
systems.

1.4 Relation to parallel multiprocessor/multicomputer systems

control unit
processing unit

I instruction stream

D data stream

(a) SIMD (b) MIMD (¢) MISD

e Multiple instruction stream, multiple data stream (MIMD)
In this mode, the various processors execute different code on different
data. This is the mode of operation in distributed systems as well as in
the vast majority of parallel systems. There is no common clock among
the system processors. Sun Ultra servers, multicomputer PCs, and IBM SP
machines are examples of machines that execute in MIMD mode.

SIMD, MISD, and MIMD architectures are illustrated in Figure 1.6. MIMD
architectures are most general and allow much flexibility in partitioning
code and data to be processed among the processors. MIMD architectures
also include the classically understood mode of execution in distributed
systems.

1.4.3 Coupling, parallelism, concurrency, and granularity

Coupling

The degree of coupling among a set of modules, whether hardware or software,
is measured in terms of the interdependency and binding and/or homogeneity
among the modules. When the degree of coupling is high (low), the mod-
ules are said to be tightly (loosely) coupled. SIMD and MISD architectures
generally tend to be tightly coupled because of the common clocking of the
shared instruction stream or the shared data stream. Here we briefly examine
various MIMD architectures in terms of coupling:

e Tightly coupled multiprocessors (with UMA shared memory). These may
be either switch-based (e.g., NYU Ultracomputer, RP3) or bus-based (e.g.,
Sequent, Encore).

e Tightly coupled multiprocessors (with NUMA shared memory or that
communicate by message passing). Examples are the SGI Origin 2000
and the Sun Ultra HPC servers (that communicate via NUMA shared
memory), and the hypercube and the torus (that communicate by message
passing).

e Loosely coupled multicomputers (without shared memory) physically co-
located. These may be bus-based (e.g., NOW connected by a LAN or
Myrinet card) or using a more general communication network, and the
processors may be heterogenous. In such systems, processors neither share

12

Introduction

memory nor have a common clock, and hence may be classified as dis-
tributed systems — however, the processors are very close to one another,
which is characteristic of a parallel system. As the communication latency
may be significantly lower than in wide-area distributed systems, the solu-
tion approaches to various problems may be different for such systems
than for wide-area distributed systems.

e Loosely coupled multicomputers (without shared memory and without
common clock) that are physically remote. These correspond to the con-
ventional notion of distributed systems.

Parallelism or speedup of a program on a specific system

This is a measure of the relative speedup of a specific program, on a given
machine. The speedup depends on the number of processors and the mapping
of the code to the processors. It is expressed as the ratio of the time 7(1) with
a single processor, to the time 7(n) with n processors.

Parallelism within a parallel/distributed program

This is an aggregate measure of the percentage of time that all the proces-
sors are executing CPU instructions productively, as opposed to waiting for
communication (either via shared memory or message-passing) operations to
complete. The term is traditionally used to characterize parallel programs. If
the aggregate measure is a function of only the code, then the parallelism is
independent of the architecture. Otherwise, this definition degenerates to the
definition of parallelism in the previous section.

Concurrency of a program

This is a broader term that means roughly the same as parallelism of a
program, but is used in the context of distributed programs. The paral-
lelism/concurrency in a parallel/distributed program can be measured by the
ratio of the number of local (non-communication and non-shared memory
access) operations to the total number of operations, including the communi-
cation or shared memory access operations.

Granularity of a program

The ratio of the amount of computation to the amount of communication
within the parallel/distributed program is termed as granularity. If the degree
of parallelism is coarse-grained (fine-grained), there are relatively many more
(fewer) productive CPU instruction executions, compared to the number of
times the processors communicate either via shared memory or message-
passing and wait to get synchronized with the other processors. Programs with
fine-grained parallelism are best suited for tightly coupled systems. These
typically include SIMD and MISD architectures, tightly coupled MIMD
multiprocessors (that have shared memory), and loosely coupled multicom-
puters (without shared memory) that are physically colocated. If programs
with fine-grained parallelism were run over loosely coupled multiprocessors

13 1.5 Message-passing systems versus shared memory systems

that are physically remote, the latency delays for the frequent communication
over the WAN would significantly degrade the overall throughput. As a
corollary, it follows that on such loosely coupled multicomputers, programs
with a coarse-grained communication/message-passing granularity will incur
substantially less overhead.

Figure 1.2 showed the relationships between the local operating system,
the middleware implementing the distributed software, and the network pro-
tocol stack. Before moving on, we identify various classes of multiproces-
sor/multicomputer operating systems:

e The operating system running on loosely coupled processors (i.e., het-
erogenous and/or geographically distant processors), which are themselves
running loosely coupled software (i.e., software that is heterogenous), is
classified as a network operating system. In this case, the application can-
not run any significant distributed function that is not provided by the
application layer of the network protocol stacks on the various processors.

e The operating system running on loosely coupled processors, which are
running tightly coupled software (i.e., the middleware software on the
processors is homogenous), is classified as a distributed operating system.

e The operating system running on tightly coupled processors, which are
themselves running tightly coupled software, is classified as a multipro-
cessor operating system. Such a parallel system can run sophisticated
algorithms contained in the tightly coupled software.

1.5 Message-passing systems versus shared memory systems

Shared memory systems are those in which there is a (common) shared address
space throughout the system. Communication among processors takes place
via shared data variables, and control variables for synchronization among
the processors. Semaphores and monitors that were originally designed for
shared memory uniprocessors and multiprocessors are examples of how syn-
chronization can be achieved in shared memory systems. All multicomputer
(NUMA as well as message-passing) systems that do not have a shared address
space provided by the underlying architecture and hardware necessarily com-
municate by message passing. Conceptually, programmers find it easier to
program using shared memory than by message passing. For this and several
other reasons that we examine later, the abstraction called shared memory
is sometimes provided to simulate a shared address space. For a distributed
system, this abstraction is called distributed shared memory. Implementing
this abstraction has a certain cost but it simplifies the task of the application
programmer. There also exists a well-known folklore result that communi-
cation via message-passing can be simulated by communication via shared
memory and vice-versa. Therefore, the two paradigms are equivalent.

14 Introduction

1.5.1 Emulating message-passing on a shared memory system (UIP — SM)

The shared address space can be partitioned into disjoint parts, one part
being assigned to each processor. “Send” and “receive” operations can be
implemented by writing to and reading from the destination/sender processor’s
address space, respectively. Specifically, a separate location can be reserved
as the mailbox for each ordered pair of processes. A P—P; message-passing
can be emulated by a write by P; to the mailbox and then a read by P; from
the mailbox. In the simplest case, these mailboxes can be assumed to have
unbounded size. The write and read operations need to be controlled using
synchronization primitives to inform the receiver/sender after the data has
been sent/received.

1.5.2 Emulating shared memory on a message-passing system (S — MP)

This involves the use of “send” and “receive” operations for “write” and
“read” operations. Each shared location can be modeled as a separate process;
“write” to a shared location is emulated by sending an update message to
the corresponding owner process; a “read” to a shared location is emulated
by sending a query message to the owner process. As accessing another
processor’s memory requires send and receive operations, this emulation
is expensive. Although emulating shared memory might seem to be more
attractive from a programmer’s perspective, it must be remembered that in
a distributed system, it is only an abstraction. Thus, the latencies involved
in read and write operations may be high even when using shared memory
emulation because the read and write operations are implemented by using
network-wide communication under the covers.

An application can of course use a combination of shared memory and
message-passing. In a MIMD message-passing multicomputer system, each
“processor” may be a tightly coupled multiprocessor system with shared
memory. Within the multiprocessor system, the processors communicate via
shared memory. Between two computers, the communication is by message
passing. As message-passing systems are more common and more suited
for wide-area distributed systems, we will consider message-passing systems
more extensively than we consider shared memory systems.

1.6 Primitives for distributed communication

1.6.1 Blocking/non-blocking, synchronous/asynchronous primitives

Message send and message receive communication primitives are denoted
Send() and Receive(), respectively. A Send primitive has at least two param-
eters — the destination, and the buffer in the user space, containing the data
to be sent. Similarly, a Receive primitive has at least two parameters — the

15

1.6 Primitives for distributed communication

source from which the data is to be received (this could be a wildcard), and
the user buffer into which the data is to be received.

There are two ways of sending data when the Send primitive is invoked —
the buffered option and the unbuffered option. The buffered option which is
the standard option copies the data from the user buffer to the kernel buffer.
The data later gets copied from the kernel buffer onto the network. In the
unbuffered option, the data gets copied directly from the user buffer onto the
network. For the Receive primitive, the buffered option is usually required
because the data may already have arrived when the primitive is invoked, and
needs a storage place in the kernel.

The following are some definitions of blocking/non-blocking and syn-
chronous/asynchronous primitives [12]:

e Synchronous primitives A Send or a Receive primitive is synchronous
if both the Send() and Receive() handshake with each other. The processing
for the Send primitive completes only after the invoking processor learns
that the other corresponding Receive primitive has also been invoked and
that the receive operation has been completed. The processing for the
Receive primitive completes when the data to be received is copied into
the receiver’s user buffer.

e Asynchronous primitives A Send primitive is said to be asynchronous
if control returns back to the invoking process after the data item to be
sent has been copied out of the user-specified buffer.

It does not make sense to define asynchronous Receive primitives.

e Blocking primitives A primitive is blocking if control returns to the
invoking process after the processing for the primitive (whether in syn-
chronous or asynchronous mode) completes.

e Non-blocking primitives A primitive is non-blocking if control returns
back to the invoking process immediately after invocation, even though
the operation has not completed. For a non-blocking Send, control returns
to the process even before the data is copied out of the user buffer. For a
non-blocking Receive, control returns to the process even before the data
may have arrived from the sender.

For non-blocking primitives, a return parameter on the primitive call
returns a system-generated handle which can be later used to check the
status of completion of the call. The process can check for the completion
of the call in two ways. First, it can keep checking (in a loop or periodically)
if the handle has been flagged or posted. Second, it can issue a Wait with
a list of handles as parameters. The Wait call usually blocks until one of
the parameter handles is posted. Presumably after issuing the primitive
in non-blocking mode, the process has done whatever actions it could
and now needs to know the status of completion of the call, therefore
using a blocking Wait() call is usual programming practice. The code for
a non-blocking Send would look as shown in Figure 1.7.

16

Figure 1.7 A non-blocking
send primitive. When the Wait
call returns, at least one of its
parameters is posted.

Figure 1.8 Blocking/
non-blocking and
synchronous/asynchronous
primitives [12]. Process P; is
sending and process P; is
receiving. (a) Blocking
synchronous Send and
blocking (synchronous)
Receive. (b) Non-blocking
synchronous Send and
nonblocking (synchronous)
Receive. (c) Blocking
asynchronous Send. (d)
Non-blocking asynchronous
Send.

Introduction

Send(X, destination, handley) // handley, is a return parameter

Wait(handle;, handle,, ..., handley, ..., handle,,) // Wait always blocks

If at the time that Wait() is issued, the processing for the primi-
tive (whether synchronous or asynchronous) has completed, the Wair
returns immediately. The completion of the processing of the primitive
is detectable by checking the value of handle,. If the processing of the
primitive has not completed, the Wait blocks and waits for a signal to wake
it up. When the processing for the primitive completes, the communication
subsystem software sets the value of handle, and wakes up (signals) any
process with a Wait call blocked on this handle,. This is called posting
the completion of the operation.

There are therefore four versions of the Send primitive — synchronous block-
ing, synchronous non-blocking, asynchronous blocking, and asynchronous
non-blocking. For the Receive primitive, there are the blocking synchronous
and non-blocking synchronous versions. These versions of the primitives are
illustrated in Figure 1.8 using a timing diagram. Here, three time lines are

process i

buffer_i

kernel i ---

kernel_j -------

buffer_j

process j

(a) Blocking sync. Send, blocking Receive (b) Nonblocking sync. Send, nonblocking Receive

. Se—e= S.C S W W
process i
PINS C
buffer_i
kernel _i --- -\ ------------------------ L ---\; -----------------
(c) Blocking async. Send (d) Non-blocking async. Send

mmmmm Duration to copy data from or to user buffer
——— Duration in which the process issuing send or receive primitive is blocked

S Send primitive issued S C processing for Send completes

R Receive primitive issued R C processing for Receive completes
P The completion of the previously initiated nonblocking operation

w Process may issue Wait to check completion of nonblocking operation

17

1.6 Primitives for distributed communication

shown for each process: (1) for the process execution, (2) for the user buffer
from/to which data is sent/received, and (3) for the kernel/communication
subsystem.

e Blocking synchronous Send (See Figure 1.8(a)) The data gets copied
from the user buffer to the kernel buffer and is then sent over the network.
After the data is copied to the receiver’s system buffer and a Receive call
has been issued, an acknowledgement back to the sender causes control
to return to the process that invoked the Send operation and completes the
Send.

e non-blocking synchronous Send (See Figure 1.8(b)) Control returns
back to the invoking process as soon as the copy of data from the user
buffer to the kernel buffer is initiated. A parameter in the non-blocking call
also gets set with the handle of a location that the user process can later
check for the completion of the synchronous send operation. The location
gets posted after an acknowledgement returns from the receiver, as per the
semantics described for (a). The user process can keep checking for the
completion of the non-blocking synchronous Send by testing the returned
handle, or it can invoke the blocking Wait operation on the returned handle
(Figure 1.8(b)).

e Blocking asynchronous Send (See Figure 1.8(c)) The user process that
invokes the Send is blocked until the data is copied from the user’s buffer
to the kernel buffer. (For the unbuffered option, the user process that
invokes the Send is blocked until the data is copied from the user’s buffer
to the network.)

e non-blocking asynchronous Send (See Figure 1.8(d)) The user process
that invokes the Send is blocked until the transfer of the data from the user’s
buffer to the kernel buffer is initiated. (For the unbuffered option, the user
process that invokes the Send is blocked until the transfer of the data from the
user’s buffer to the network is initiated.) Control returns to the user process
as soon as this transfer is initiated, and a parameter in the non-blocking call
also gets set with the handle of a location that the user process can check
later using the Wait operation for the completion of the asynchronous Send
operation. The asynchronous Send completes when the data has been copied
out of the user’s buffer. The checking for the completion may be necessary if
the user wants to reuse the buffer from which the data was sent.

e Blocking Receive (See Figure 1.8(a)) The Receive call blocks until the
data expected arrives and is written in the specified user buffer. Then
control is returned to the user process.

e non-blocking Receive (See Figure 1.8(b)) The Receive call will cause
the kernel to register the call and return the handle of a location that the
user process can later check for the completion of the non-blocking Receive
operation. This location gets posted by the kernel after the expected data
arrives and is copied to the user-specified buffer. The user process can

18 Introduction

check for the completion of the non-blocking Receive by invoking the Wait
operation on the returned handle. (If the data has already arrived when the
call is made, it would be pending in some kernel buffer, and still needs to
be copied to the user buffer.)

A synchronous Send is easier to use from a programmer’s perspective
because the handshake between the Send and the Receive makes the com-
munication appear instantaneous, thereby simplifying the program logic. The
“instantaneity” is, of course, only an illusion, as can be seen from Figure 1.8(a)
and (b). In fact, the Receive may not get issued until much after the data
arrives at P s in which case the data arrived would have to be buffered in the
system buffer at Pj and not in the user buffer. At the same time, the sender
would remain blocked. Thus, a synchronous Send lowers the efficiency within
process P;.

The non-blocking asynchronous Send (see Figure 1.8(d)) is useful when a
large data item is being sent because it allows the process to perform other
instructions in parallel with the completion of the Send. The non-blocking
synchronous Send (see Figure 1.8(b)) also avoids the potentially large delays
for handshaking, particularly when the receiver has not yet issued the Receive
call. The non-blocking Receive (see Figure 1.8(b)) is useful when a large data
item is being received and/or when the sender has not yet issued the Send
call, because it allows the process to perform other instructions in parallel
with the completion of the Receive. Note that if the data has already arrived,
it is stored in the kernel buffer, and it may take a while to copy it to the
user buffer specified in the Receive call. For non-blocking calls, however, the
burden on the programmer increases because he or she has to keep track of
the completion of such operations in order to meaningfully reuse (write to
or read from) the user buffers. Thus, conceptually, blocking primitives are
easier to use.

1.6.2 Processor synchrony

As opposed to the classification of synchronous and asynchronous commu-
nication primitives, there is also the classification of synchronous versus
asynchronous processors. Processor synchrony indicates that all the proces-
sors execute in lock-step with their clocks synchronized. As this synchrony
is not attainable in a distributed system, what is more generally indicated is
that for a large granularity of code, usually termed as a step, the processors
are synchronized. This abstraction is implemented using some form of barrier
synchronization to ensure that no processor begins executing the next step of
code until all the processors have completed executing the previous steps of
code assigned to each of the processors.

19 1.7 Synchronous versus asynchronous executions

1.6.3 Libraries and standards

The previous subsections identified the main principles underlying all com-
munication primitives. In this subsection, we briefly mention some publicly
available interfaces that embody some of the above concepts.

There exists a wide range of primitives for message-passing. Many com-
mercial software products (banking, payroll, etc., applications) use proprietary
primitive libraries supplied with the software marketed by the vendors (e.g., the
IBM CICS software which has a very widely installed customer base worldwide
uses its own primitives). The message-passing interface (MPI) library [20, 30]
and the PVM (parallel virtual machine) library [31] are used largely by the sci-
entific community, but other alternative libraries exist. Commercial software
is often written using the remote procedure calls (RPC) mechanism [1, 6] in
which procedures that potentially reside across the network are invoked trans-
parently to the user, in the same manner that a local procedure is invoked [1,6].
Under the covers, socket primitives or socket-like transport layer primitives are
invoked to call the procedure remotely. There exist many implementations of
RPC [1,7,11] - for example, Sun RPC, and distributed computing environ-
ment (DCE) RPC. “Messaging” and “streaming” are two other mechanisms for
communication. With the growth of object based software, libraries for remote
method invocation (RMI) and remote object invocation (ROI) with their own
set of primitives are being proposed and standardized by different agencies [7].
CORBA (common object request broker architecture) [36] and DCOM (dis-
tributed component object model) [7] are two other standardized architectures
with their own set of primitives. Additionally, several projects in the research
stage are designing their own flavour of communication primitives.

1.7 Synchronous versus asynchronous executions

In addition to the two classifications of processor synchrony/asynchrony and
of synchronous/asynchronous communication primitives, there is another clas-
sification, namely that of synchronous/asynchronous executions.

e An asynchronous execution is an execution in which (i) there is no pro-
cessor synchrony and there is no bound on the drift rate of processor
clocks, (ii) message delays (transmission + propagation times) are finite but
unbounded, and (iii) there is no upper bound on the time taken by a process
to execute a step. An example asynchronous execution with four processes
P, to P is shown in Figure 1.9. The arrows denote the messages; the tail
and head of an arrow mark the send and receive event for that message,
denoted by a circle and vertical line, respectively. Non-communication
events, also termed as internal events, are shown by shaded circles.

e A synchronous execution is an execution in which (i) processors are syn-
chronized and the clock drift rate between any two processors is bounded,

20

Figure 1.9 An example of an
asynchronous execution in a
message-passing system. A
timing diagram is used to
illustrate the execution.

Figure 1.10 An example of a
synchronous execution in a
message-passing system. All
the messages sent in a round
are received within that same
round.

Introduction

o \ v

@ internal event

O send event recelve event

(i1) message delivery (transmission + delivery) times are such that they
occur in one logical step or round, and (iii) there is a known upper bound
on the time taken by a process to execute a step. An example of a syn-
chronous execution with four processes P, to P; is shown in Figure 1.10.
The arrows denote the messages.

It is easier to design and verify algorithms assuming synchronous execu-
tions because of the coordinated nature of the executions at all the processes.
However, there is a hurdle to having a truly synchronous execution. It is
practically difficult to build a completely synchronous system, and have the
messages delivered within a bounded time. Therefore, this synchrony has to
be simulated under the covers, and will inevitably involve delaying or block-
ing some processes for some time durations. Thus, synchronous execution is
an abstraction that needs to be provided to the programs. When implementing
this abstraction, observe that the fewer the steps or “synchronizations” of the
processors, the lower the delays and costs. If processors are allowed to have
an asynchronous execution for a period of time and then they synchronize,
then the granularity of the synchrony is coarse. This is really a virtually
synchronous execution, and the abstraction is sometimes termed as virfual
synchrony. Ideally, many programs want the processes to execute a series of
instructions in rounds (also termed as steps or phases) asynchronously, with
the requirement that after each round/step/phase, all the processes should be
synchronized and all messages sent should be delivered. This is the commonly
understood notion of a synchronous execution. Within each round/phase/step,
there may be a finite and bounded number of sequential sub-rounds (or sub-
phases or sub-steps) that processes execute. Each sub-round is assumed to

XTI X X
@Y
DAV SN A4S

phase 1 phase 2 phase 3

21

1.7 Synchronous versus asynchronous executions

send at most one message per process; hence the message(s) sent will reach
in a single message hop.

The timing diagram of an example synchronous execution is shown in
Figure 1.10. In this system, there are four nodes P, to P;. In each round,
process P; sends a message t0 P,1),004 and P_y) 044 and calculates some
application-specific function on the received values.

1.7.1 Emulating an asynchronous system by a synchronous system (A —)

An asynchronous program (written for an asynchronous system) can be emu-
lated on a synchronous system fairly trivially as the synchronous system is a
special case of an asynchronous system — all communication finishes within
the same round in which it is initiated.

1.7.2 Emulating a synchronous system by an asynchronous system (S — A)

1.7.3 Emulations

Figure 1.11 Emulations
among the principal system
classes in a failure-free system.

A synchronous program (written for a synchronous system) can be emulated
on an asynchronous system using a tool called synchronizer, to be studied in
Chapter 5.

Section 1.5 showed how a shared memory system could be emulated by a
message-passing system, and vice-versa. We now have four broad classes of
programs, as shown in Figure 1.11. Using the emulations shown, any class
can be emulated by any other. If system A can be emulated by system B,
denoted A/B, and if a problem is not solvable in B, then it is also not solvable
in A. Likewise, if a problem is solvable in A, it is also solvable in B. Hence,
in a sense, a