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=PREFACE

Assembly Language for x86 Processors, Sixth Edition, teaches assembly language programming
and architecture for Intel and AMD processors. It is an appropriate text for the following types
of college courses:

* Assembly Language Programming
* Fundamentals of Computer Systems
* Fundamentals of Computer Architecture

Students use Intel or AMD processors and program with Microsoft Macro Assembler (MASM),
running on Windows 98, XP, Vista, and Windows 7. Although this book was originally designed
as a programming textbook for college students, it serves as an effective supplement to computer
architecture courses. As a testament to its popularity, previous editions have been translated into
Spanish, Korean, Chinese, French, Russian, and Polish.

Emphasis of Topics This edition includes topics that lead naturally into subsequent courses
in computer architecture, operating systems, and compiler writing:

e Virtual machine concept

e Instruction set architecture

* Elementary Boolean operations

* Instruction execution cycle

* Memory access and handshaking

e Interrupts and polling

e Hardware-based I/0

* Floating-point binary representation
Other topics relate specially to Intel and AMD architecture:

* Protected memory and paging

* Memory segmentation in real-address mode

* 16-bit interrupt handling

* MS-DOS and BIOS system calls (interrupts)

¢ Floating-point unit architecture and programming

e Instruction encoding
Certain examples presented in the book lend themselves to courses that occur later in a computer
science curriculum:

e Searching and sorting algorithms

* High-level language structures

XiX



XX Preface

¢ Finite-state machines
* Code optimization examples

What’s New in the Sixth Edition
In this revision, we have placed a strong emphasis on improving the descriptions of important
programming concepts and relevant program examples.

* We have added numerous step-by-step descriptions of sample programs, particularly in
Chapters 1-8.

* Many new illustrations have been inserted into the chapters to improve student comprehen-
sion of concepts and details.

 Java Bytecodes: The Java Virtual Machine (JVM) provides an excellent real-life example of
a stack-oriented architecture. It provides an excellent contrast to x86 architecture. Therefore,
in Chapters 8 and 9, the author explains the basic operation of Java bytecodes with short illus-
trative examples. Numerous short examples are shown in disassembled bytecode format, fol-
lowed by detailed step-by-step explanations.

* Selected programming exercises have been replaced in the first 8 chapters. Programming
exercises are now assigned stars to indicate their difficulty. One star is the easiest, four stars
indicate the most difficult level.

* Tutorial videos by the author are available on the Companion Web site (www.pearsonhighered.com/
irvine) to explain worked-out programming exercises.

* The order of chapters in the second half of the book has been revised to form a more logical
sequence of topics, and selected chapters are supplied in electronic form for easy searching.

This book is still focused on its primary goal, to teach students how to write and debug programs
at the machine level. It will never replace a complete book on computer architecture, but it does
give students the first-hand experience of writing software in an environment that teaches them
how a computer works. Our premise is that students retain knowledge better when theory is
combined with experience. In an engineering course, students construct prototypes; in a com-
puter architecture course, students should write machine-level programs. In both cases, they have
a memorable experience that gives them the confidence to work in any OS/machine-oriented
environment.

Real Mode and Protected Mode  This edition emphasizes 32-bit protected mode, but it still
has three electronic chapters devoted to real-mode programming. For example, there is an entire
chapter on BIOS programming for the keyboard, video display (including graphics), and mouse.
Another chapter covers MS-DOS programming using interrupts (system calls). Students can
benefit from programming directly to hardware and the BIOS.

The examples in the first half of the book are nearly all presented as 32-bit text-oriented appli-
cations running in protected mode using the flat memory model. This approach is wonderfully
simple because it avoids the complications of segment-offset addressing. Specially marked para-
graphs and popup boxes point out occasional differences between protected mode and real-mode
programming. Most differences are abstracted by the book’s parallel link libraries for real-mode
and protected mode programming.
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Link Libraries We supply two versions of the link library that students use for basic input-
output, simulations, timing, and other useful stuff. The 32-bit version (Irvine32.lib) runs in
protected mode, sending its output to the Win32 console. The 16-bit version (Irvine16.lib) runs
in real-address mode. Full source code for the libraries is supplied on the Companion Web site.
The link libraries are available only for convenience, not to prevent students from learning how
to program input-output themselves. Students are encouraged to create their own libraries.

Included Software and Examples All the example programs were tested with Microsoft
Macro Assembler Version 10.0, running in Microsoft Visual Studio 2010. In addition, batch files
are supplied that permit students to assemble and run applications from the Windows command
prompt. The 32-bit C++ applications in Chapter 14 were tested with Microsoft Visual C++ .NET.

Web Site Information Updates and corrections to this book may be found at the Companion
Web site, including additional programming projects for instructors to assign at the ends of chapters.

Overall Goals
The following goals of this book are designed to broaden the student’s interest and knowledge in
topics related to assembly language:

e Intel and AMD processor architecture and programming
* Real-address mode and protected mode programming
* Assembly language directives, macros, operators, and program structure
e Programming methodology, showing how to use assembly language to create system-level
software tools and application programs
e Computer hardware manipulation
e Interaction between assembly language programs, the operating system, and other applica-
tion programs
One of our goals is to help students approach programming problems with a machine-level mind
set. It is important to think of the CPU as an interactive tool, and to learn to monitor its operation
as directly as possible. A debugger is a programmer’s best friend, not only for catching errors,
but as an educational tool that teaches about the CPU and operating system. We encourage stu-
dents to look beneath the surface of high-level languages and to realize that most programming
languages are designed to be portable and, therefore, independent of their host machines. In
addition to the short examples, this book contains hundreds of ready-to-run programs that dem-
onstrate instructions or ideas as they are presented in the text. Reference materials, such as
guides to MS-DOS interrupts and instruction mnemonics, are available at the end of the book.

Required Background The reader should already be able to program confidently in at least
one high-level programming language such as Python, Java, C, or C++. One chapter covers C++
interfacing, so it is very helpful to have a compiler on hand. I have used this book in the class-
room with majors in both computer science and management information systems, and it has
been used elsewhere in engineering courses.

Features

Complete Program Listings The Companion Web site contains supplemental learning mate-
rials, study guides, and all the source code from the book’s examples. An extensive link library
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is supplied with the book, containing more than 30 procedures that simplify user input-output,
numeric processing, disk and file handling, and string handling. In the beginning stages of the
course, students can use this library to enhance their programs. Later, they can create their
own procedures and add them to the library.

Programming Logic Two chapters emphasize Boolean logic and bit-level manipulation. A
conscious attempt is made to relate high-level programming logic to the low-level details of the
machine. This approach helps students to create more efficient implementations and to better
understand how compilers generate object code.

Hardware and Operating System Concepts The first two chapters introduce basic hard-
ware and data representation concepts, including binary numbers, CPU architecture, status flags,
and memory mapping. A survey of the computer’s hardware and a historical perspective of the
Intel processor family helps students to better understand their target computer system.

Structured Programming Approach  Beginning with Chapter 5, procedures and functional
decomposition are emphasized. Students are given more complex programming exercises,
requiring them to focus on design before starting to write code.

Java Bytecodes and the Java Virtual Machine In Chapters 8 and 9, the author explains the
basic operation of Java bytecodes with short illustrative examples. Numerous short examples are
shown in disassembled bytecode format, followed by detailed step-by-step explanations.

Disk Storage Concepts Students learn the fundamental principles behind the disk storage
system on MS-Windows—based systems from hardware and software points of view.

Creating Link Libraries Students are free to add their own procedures to the book’s link
library and create new libraries. They learn to use a toolbox approach to programming and to
write code that is useful in more than one program.

Macros and Structures A chapter is devoted to creating structures, unions, and macros,
which are essential in assembly language and systems programming. Conditional macros with
advanced operators serve to make the macros more professional.

Interfacing to High-Level Languages A chapter is devoted to interfacing assembly lan-
guage to C and C++. This is an important job skill for students who are likely to find jobs pro-
gramming in high-level languages. They can learn to optimize their code and see examples of
how C++ compilers optimize code.

Instructional Aids  All the program listings are available on the Web. Instructors are provided
a test bank, answers to review questions, solutions to programming exercises, and a Microsoft
PowerPoint slide presentation for each chapter.

VideoNotes VideoNotes are Pearson’s new visual tool designed to teach students key pro-
gramming concepts and techniques. These short step-by-step videos demonstrate how to solve
problems from design through coding. VideoNotes allow for self-paced instruction with
easy navigation including the ability to select, play, rewind, fast-forward, and stop within each
VideoNote exercise. A note appears within the text to designate that a VideoNote is available.
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VideoNotes are free with the purchase of a new textbook. To purchase access to VideoNotes,
go to www.pearsonhighered.com/irvine and click on the VideoNotes under Student Resources.

Chapter Descriptions

Chapters 1 to 8 contain core concepts of assembly language and should be covered in sequence.
After that, you have a fair amount of freedom. The following chapter dependency graph shows
how later chapters depend on knowledge gained from other chapters.

1 through 9

10 15

¢+|¢¢ i_‘_i

11 12 13 14 16 17

1. Basic Concepts: Applications of assembly language, basic concepts, machine language, and data
representation.

2.x86 Processor Architecture: Basic microcomputer design, instruction execution cycle, x86
processor architecture, x86 memory management, components of a microcomputer, and the
input-output system.

3. Assembly Language Fundamentals: Introduction to assembly language, linking and
debugging, and defining constants and variables.

4. Data Transfers, Addressing, and Arithmetic: Simple data transfer and arithmetic instructions,
assemble-link-execute cycle, operators, directives, expressions, JMP and LOOP instructions, and
indirect addressing.

5.Procedures: Linking to an external library, description of the book’s link library, stack oper-
ations, defining and using procedures, flowcharts, and top-down structured design.

6. Conditional Processing: Boolean and comparison instructions, conditional jumps and
loops, high-level logic structures, and finite-state machines.

7. Integer Arithmetic: Shift and rotate instructions with useful applications, multiplication
and division, extended addition and subtraction, and ASCII and packed decimal arithmetic.

8. Advanced Procedures: Stack parameters, local variables, advanced PROC and INVOKE
directives, and recursion.

9. Strings and Arrays: String primitives, manipulating arrays of characters and integers, two-
dimensional arrays, sorting, and searching.

10. Structures and Macros: Structures, macros, conditional assembly directives, and defining
repeat blocks.

11. MS-Windows Programming: Protected mode memory management concepts, using the
Microsoft-Windows API to display text and colors, and dynamic memory allocation.

12. Floating-Point Processing and Instruction Encoding: Floating-point binary representa-
tion and floating-point arithmetic. Learning to program the IA-32 floating-point unit. Under-
standing the encoding of IA-32 machine instructions.
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13. High-Level Language Interface: Parameter passing conventions, inline assembly code, and
linking assembly language modules to C and C++ programs.

14. 16-Bit MS-DOS Programming: Calling MS-DOS interrupts for console and file input-output.
* Appendix A: MASM Reference
* Appendix B: The x86 Instruction Set
* Appendix C: Answers to Review Questions

The following chapters and appendices are supplied online at the Companion Web site:

15. Disk Fundamentals: Disk storage systems, sectors, clusters, directories, file allocation
tables, handling MS-DOS error codes, and drive and directory manipulation.

16. BIOS-Level Programming: Keyboard input, video text, graphics, and mouse programming.

17. Expert MS-DOS Programming: Custom-designed segments, runtime program structure,
and Interrupt handling. Hardware control using I/O ports.

* Appendix D: BIOS and MS-DOS Interrupts
* Appendix E: Answers to Review Questions (Chapters 15-17)

Instructor and Student Resources

Instructor Resource Materials
The following protected instructor material is available on the Companion Web site:

www.pearsonhighered.com/irvine

For username and password information, please contact your Pearson Representative.

¢ Lecture PowerPoint Slides
e Instructor Solutions Manual

Student Resource Materials
The student resource materials can be accessed through the publisher’s Web site located at
www.pearsonhighered.com/irvine. These resources include:

¢ VideoNotes
* Online Chapters and Appendices
* Chapter 15: Disk Fundamentals
e Chapter 16: BIOS-Level Programming
e Chapter 17: Expert MS-DOS Programming
* Appendix D: BIOS and MS-DOS Interrupts
* Appendix E: Answers to Review Questions (Chapters 15—17)

Students must use the access card located in the front of the book to register and access the online
chapters and VideoNotes. If there is no access card in the front of this textbook, students can purchase
access by going to www.pearsonhighered.com/irvine and selecting “purchase access to premium
content.” Instructors must also register on the site to access this material. Students will also find a link
to the author’s Web site. An access card is not required for the following materials:

* Getting Started, a comprehensive step-by-step tutorial that helps students customize Visual

Studio for assembly language programming.
* Supplementary articles on assembly language programming topics.
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* Complete source code for all example programs in the book, as well as the source code for
the author’s supplementary library.

* Assembly Language Workbook, an interactive workbook covering number conversions,
addressing modes, register usage, debug programming, and floating-point binary numbers.
Content pages are HTML documents to allow for customization. Help File in Windows Help
Format.

* Debugging Tools: Tutorials on using Microsoft CodeView, MS-DOS Debug, and Microsoft
Visual Studio.
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1.3.4 Hexadecimal Integers

1.1 Welcome to Assembly Language

Assembly Language for x86 Processors focuses on programming microprocessors compatible with
the Intel IA-32 and AMD x86 processors running under Microsoft Windows. The x86 processor
type first appeared in the Intel 80386 processor, and continued with processors such as the Intel
Pentium, Intel Pentium 4, Intel Pentium Core Duo, and the Advanced Micro Devices (AMD) Athlon.

Microsoft Macro Assembler 8.0, 9.0, or 10.0 can be used with this book. This assembler is
commonly known by its nickname: MASM. There are other good assemblers for Intel-based
computers, including TASM (Turbo Assembler), NASM (Netwide Assembler), and the GNU
assembler. Of these, TASM has the most similar syntax to MASM, and you could (with some
help from your instructor) assemble and run most of the programs in this book. The NASM
assembler is next closest in similarity to MASM. Finally, the GNU assembler has a completely
different syntax.
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Assembly language is the oldest programming language, and of all languages, bears the clos-
est resemblance to native machine language. It provides direct access to computer hardware,
requiring you to understand much about your computer’s architecture and operating system.

Educational Value Why read this book? Perhaps you’re taking a college course whose name
is similar to one of these:

* Microcomputer Assembly Language

* Assembly Language Programming

e Introduction to Computer Architecture
* Fundamentals of Computer Systems

* Embedded Systems Programming

These are names of courses at colleges and universities using previous editions of this book.
This book covers basic principles about computer architecture, machine language, and low-level
programming. You will learn enough assembly language to test your knowledge on today’s
most widely used microprocessor family. You won’t be learning to program a “toy” computer using
a simulated assembler; MASM is an industrial-strength assembler, used by practicing profession-
als. You will learn the architecture of the x86 processor family from a programmer’s point of view.

If you are planning to be a C or C++ developer, you need to develop an understanding of how
memory, address, and instructions work at a low level. A lot of programming errors are not eas-
ily recognized at the high-level language level. You will often find it necessary to “drill down”
into your program’s internals to find out why it isn’t working.

If you doubt the value of low-level programming and studying details of computer software
and hardware, take note of the following quote from a leading computer scientist, Donald Knuth,
in discussing his famous book series, The Art of Computer Programming:

Some people [say] that having machine language, at all, was the great mistake that I made.
I really don’t think you can write a book for serious computer programmers unless you are
able to discuss low-level detail.!

Visit this book’s Web site to get lots of supplemental information, tutorials, and exercises at
www.asmirvine.com

1.1.1 Good Questions to Ask

What Background Should | Have? Before reading this book, you should have programmed
in at least one structured high-level language, such as Java, C, Python, or C++. You should know
how to use IF statements, arrays, and functions to solve programming problems.

What Are Assemblers and Linkers?  An assembler is a utility program that converts source
code programs from assembly language into machine language. A linker is a utility program that
combines individual files created by an assembler into a single executable program. A related
utility, called a debugger, lets you to step through a program while it’s running and examine reg-
isters and memory.

What Hardware and Software Do | Need? You need a computer with an x86 processor.
Intel Pentium and AMD processors are good examples.
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MASM is compatible with all versions of Microsoft Windows, beginning with Windows 95.
A few of the advanced programs relating to direct hardware access and disk sector programming
will only run under MS-DOS, Windows 95, or 98, because of tight security restrictions imposed
by later versions of Windows.

In addition, you will need the following:

e Editor: Use a text editor or programmer’s editor to create assembly language source files. We
recommend the latest version of Microsoft Visual Studio.

* 32-Bit Debugger: Strictly speaking, you don’t need a debugger, but you will probably want
one. The debugger supplied with Microsoft Visual Studio is excellent.

What Types of Programs Will | Create? This book shows how to create two general classes
of programs:

* 16-Bit Real-Address Mode: 16-bit real-address mode programs run under MS-DOS and in
the console window under MS-Windows. Also known as real mode programs, they use a seg-
mented memory model required of programs written for the Intel 8086 and 8088 processors.
There are notes throughout the book with tips about programming in real-address mode, and
two chapters are exclusively devoted to programming in real mode.

* 32-Bit Protected Mode: 32-bit protected mode programs run under all 32-bit versions of
Microsoft Windows. They are usually easier to write and understand than real mode programs.

What Supplements Are Supplied with This Book? The book’s Web site (www.asmiry-
ine.com) has the following:
* Online Help File detailing the book’s library procedures and essential Windows API
structures.
* Assembly Language Workbook, a collection of tutorials.
e Irvine32 and Irvinel6 link libraries for real-address mode and protected mode program-
ming, with complete source code.
* Example programs with all source code from the book.
e Corrections to the book and example programs.
* Getting Started, a detailed tutorial designed to help you set up Visual Studio to use the
Microsoft assembler.
* Articles on advanced topics not included in the printed book for lack of space.
* An online discussion forum, where you can get help from other experts who use the book.

What Will | Learn? This book should make you better informed about data representation,
debugging, programming, and hardware manipulation. Here’s what you will learn:
* Basic principles of computer architecture as applied to x86 processors
* Basic boolean logic and how it applies to programming and computer hardware
* How x86 processors manage memory, using real mode, protected mode, and virtual mode
* How high-level language compilers (such as C++) translate statements from their language
into assembly language and native machine code
* How high-level languages implement arithmetic expressions, loops, and logical structures at
the machine level
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* Data representation, including signed and unsigned integers, real numbers, and character data

* How to debug programs at the machine level. The need for this skill is vital when you work in
languages such as C and C++, which provide access to low-level data and hardware

* How application programs communicate with the computer’s operating system via interrupt
handlers, system calls, and common memory areas

* How to interface assembly language code to C++ programs

* How to create assembly language application programs

How Does Assembly Language Relate to Machine Language? Machine language is
a numeric language specifically understood by a computer’s processor (the CPU). All x86
processors understand a common machine language. Assembly language consists of statements
written with short mnemonics such as ADD, MOV, SUB, and CALL. Assembly language has a
one-to-one relationship with machine language: Each assembly language instruction corresponds
to a single machine-language instruction.

How Do C++ and Java Relate to Assembly Language? High-level languages such as
C++ and Java have a one-to-many relationship with assembly language and machine language.
A single statement in C++ expands into multiple assembly language or machine instructions. We
can show how C++ statements expand into machine code. Most people cannot read raw machine
code, so we will use its closest relative, assembly language. The following C++ code carries out
two arithmetic operations and assigns the result to a variable. Assume X and Y are integers:

int Y;

int X = (Y + 4) * 3;
Following is the equivalent translation to assembly language. The translation requires multiple
statements because assembly language works at a detailed level:

mov eax,Y ; move Y to the EAX register
add eax, 4 ; add 4 to the EAX register
mov ebx, 3 ; move 3 to the EBX register
imul ebx ; multiply EAX by EBX

mov X, eax ; move EAX to X

(Registers are named storage locations in the CPU that hold intermediate results of operations.)
The point in this example is not to claim that C++ is superior to assembly language or vice versa,
but to show their relationship.

Is Assembly Language Portable? A language whose source programs can be compiled
and run on a wide variety of computer systems is said to be portable. A C++ program, for exam-
ple, should compile and run on just about any computer, unless it makes specific references to
library functions that exist under a single operating system. A major feature of the Java language
is that compiled programs run on nearly any computer system.

Assembly language is not portable because it is designed for a specific processor family. There
are a number of different assembly languages widely used today, each based on a processor family.
Some well-known processor families are Motorola 68x00, x86, SUN Sparc, Vax, and IBM-370.
The instructions in assembly language may directly match the computer’s architecture or they may
be translated during execution by a program inside the processor known as a microcode interpreter.
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Why Learn Assembly Language? If you're still not convinced that you should learn assem-
bly language, consider the following points:

* If you study computer engineering, you may likely be asked to write embedded programs.
They are short programs stored in a small amount of memory in single-purpose devices such
as telephones, automobile fuel and ignition systems, air-conditioning control systems, secu-
rity systems, data acquisition instruments, video cards, sound cards, hard drives, modem:s,
and printers. Assembly language is an ideal tool for writing embedded programs because of
its economical use of memory.

* Real-time applications dealing with simulation and hardware monitoring require precise
timing and responses. High-level languages do not give programmers exact control over
machine code generated by compilers. Assembly language permits you to precisely specify a
program’s executable code.

* Computer game consoles require their software to be highly optimized for small code size and
fast execution. Game programmers are experts at writing code that takes full advantage of hard-
ware features in a target system. They use assembly language as their tool of choice because it
permits direct access to computer hardware, and code can be hand optimized for speed.

* Assembly language helps you to gain an overall understanding of the interaction between
computer hardware, operating systems, and application programs. Using assembly language,
you can apply and test theoretical information you are given in computer architecture and
operating systems courses.

* Some high-level languages abstract their data representation to the point that it becomes awk-
ward to perform low-level tasks such as bit manipulation. In such an environment, program-
mers will often call subroutines written in assembly language to accomplish their goal.

* Hardware manufacturers create device drivers for the equipment they sell. Device drivers are
programs that translate general operating system commands into specific references to hard-
ware details. Printer manufacturers, for example, create a different MS-Windows device driver
for each model they sell. The same is true for Mac OS, Linux, and other operating systems.

Are There Rules in Assembly Language? Most rules in assembly language are based on
physical limitations of the target processor and its machine language. The CPU, for example,
requires two instruction operands to be the same size. Assembly language has fewer rules than
C++ or Java because the latter use syntax rules to reduce unintended logic errors at the expense
of low-level data access. Assembly language programmers can easily bypass restrictions charac-
teristic of high-level languages. Java, for example, does not permit access to specific memory
addresses. One can work around the restriction by calling a C function using JNI (Java Native
Interface) classes, but the resulting program can be awkward to maintain. Assembly language,
on the other hand, can access any memory address. The price for such freedom is high: Assem-
bly language programmers spend a lot of time debugging!

1.1.2 Assembly Language Applications

In the early days of programming, most applications were written partially or entirely in assem-
bly language. They had to fit in a small area of memory and run as efficiently as possible on slow
processors. As memory became more plentiful and processors dramatically increased in speed,
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programs became more complex. Programmers switched to high-level languages such as C,
FORTRAN, and COBOL that contained a certain amount of structuring capability. More
recently, object-oriented languages such as C++, C#, and Java have made it possible to write
complex programs containing millions of lines of code.

It is rare to see large application programs coded completely in assembly language because
they would take too much time to write and maintain. Instead, assembly language is used to opti-
mize certain sections of application programs for speed and to access computer hardware.
Table 1-1 compares the adaptability of assembly language to high-level languages in relation to
various types of applications.

Table 1-1  Comparison of Assembly Language to High-Level Languages.

Type of Application High-Level Languages Assembly Language
Commercial or scientific appli- Formal structures make it easy to orga- | Minimal formal structure, so one
cation, written for single plat- | nize and maintain large sections of | must be imposed by programmers
form, medium to large size. code. who have varying levels of experi-

ence. This leads to difficulties main-
taining existing code.

Hardware device driver. The language may not provide for direct | Hardware access is straightforward
hardware access. Even if it does, awk- and simple. Easy to maintain when
ward coding techniques may be required, | programs are short and well docu-
resulting in maintenance difficulties. mented.

Commercial or scientific appli- Usually portable. The source code can | Must be recoded separately for each

cation written for multiple | be recompiled on each target operating | platform, using an assembler with

platforms (different operating | system with minimal changes. a different syntax. Difficult to main-
systems). tain.

Embedded systems and com- Produces too much executable code, Ideal, because the executable code is

puter games requiring direct | and may not run efficiently. small and runs quickly.

hardware access.

The C and C++ languages have the unique quality of offering a compromise between high-
level structure and low-level details. Direct hardware access is possible but completely nonport-
able. Most C and C++ compilers have the ability to generate assembly language source code,
which the programmer can customize and refine before assembling into executable code.

1.1.3 Section Review
1. How do assemblers and linkers work together?
2. How will studying assembly language enhance your understanding of operating systems?

3. What is meant by a one-to-many relationship when comparing a high-level language to
machine language?

4. Explain the concept of portability as it applies to programming languages.

5. Is the assembly language for x86 processors the same as those for computer systems such as
the Vax or Motorola 68x00?
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6. Give an example of an embedded systems application.
7. What is a device driver?

8. Do you suppose type checking on pointer variables is stronger (stricter) in assembly lan-
guage or in C and C++?

9. Name two types of applications that would be better suited to assembly language than a
high-level language.

10. Why would a high-level language not be an ideal tool for writing a program that directly
accesses a particular brand of printer?

11. Why is assembly language not usually used when writing large application programs?

12. Challenge: Translate the following C++ expression to assembly language, using the exam-
ple presented earlier in this chapter as a guide: X = (Y *4) + 3.

1.2 Virtual Machine Concept

An effective way to explain how a computer’s hardware and software are related is called the
virtual machine concept. A well-known explanation of this model can be found in Andrew
Tanenbaum’s book, Structured Computer Organization. To explain this concept, let us begin
with the most basic function of a computer, executing programs.

A computer can usually execute programs written in its native machine language. Each
instruction in this language is simple enough to be executed using a relatively small number of
electronic circuits. For simplicity, we will call this language L0.

Programmers would have a difficult time writing programs in LO because it is enormously
detailed and consists purely of numbers. If a new language, L1, could be constructed that was
easier to use, programs could be written in L1. There are two ways to achieve this:

e Interpretation: As the L1 program is running, each of its instructions could be decoded and
executed by a program written in language LO. The L1 program begins running immediately,
but each instruction has to be decoded before it can execute.

e Translation: The entire L1 program could be converted into an LO program by an LO program
specifically designed for this purpose. Then the resulting LO program could be executed
directly on the computer hardware.

Virtual Machines Rather than using only languages, it is easier to think in terms of a hypo-
thetical computer, or virtual machine, at each level. Informally, we can define a virtual machine
as a software program that emulates the functions of some other physical or virtual computer.
The virtual machine VM1, as we will call it, can execute commands written in language L1. The
virtual machine VMO can execute commands written in language LO:

Virtual Machine VM1

Virtual Machine VMO
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Each virtual machine can be constructed of either hardware or software. People can write pro-
grams for virtual machine VM1, and if it is practical to implement VM1 as an actual computer,
programs can be executed directly on the hardware. Or programs written in VM1 can be inter-
preted/translated and executed on machine VMO.

Machine VM1 cannot be radically different from VMO because the translation or interpreta-
tion would be too time-consuming. What if the language VM1 supports is still not programmer-
friendly enough to be used for useful applications? Then another virtual machine, VM2, can be
designed that is more easily understood. This process can be repeated until a virtual machine
VMn can be designed to support a powerful, easy-to-use language.

The Java programming language is based on the virtual machine concept. A program written
in the Java language is translated by a Java compiler into Java byte code. The latter is a low-level
language quickly executed at runtime by a program known as a Java virtual machine (JVM). The
JVM has been implemented on many different computer systems, making Java programs rela-
tively system independent.

Specific Machines Let us relate this to actual computers and languages, using names such as
Level 2 for VM2 and Level 1 for VM1, shown in Figure 1-1. A computer’s digital logic hard-
ware represents machine Level 1. Above this is Level 2, called the instruction set architecture
(ISA). This is the first level at which users can typically write programs, although the programs
consist of binary values called machine language.

Figure 1-1 Virtual Machine Levels.

Level 4 High-Level Language

Level 3 Assembly Language

Level 2 Instruction Set
ceve Architecture (ISA)

Level 1 Digital Logic

Instruction Set Architecture (Level 2)  Computer chip manufacturers design into the proces-
sor an instruction set to carry out basic operations, such as move, add, or multiply. This set of
instructions is also referred to as machine language. Each machine-language instruction is exe-
cuted either directly by the computer’s hardware or by a program embedded in the microprocessor
chip called a microprogram. A discussion of microprograms is beyond the scope of this book, but
you can refer to Tanenbaum for more details.

Assembly Language (Level 3)  Above the ISA level, programming languages provide trans-
lation layers to make large-scale software development practical. Assembly language, which
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appears at Level 3, uses short mnemonics such as ADD, SUB, and MOV, which are easily trans-
lated to the ISA level. Assembly language programs are translated (assembled) in their entirety
into machine language before they begin to execute.

High-Level Languages (Level 4) At Level 4 are high-level programming languages such as
C, C++, and Java. Programs in these languages contain powerful statements that translate into
multiple assembly language instructions. You can see such a translation, for example, by exam-
ining the listing file output created by a C++ compiler. The assembly language code is automati-
cally assembled by the compiler into machine language.
1.2.1 Section Review

1. In your own words, describe the virtual machine concept.

2. Why don’t programmers write application programs in machine language?

3. (True/False): When an interpreted program written in language L1 runs, each of its instruc-
tions is decoded and executed by a program written in language LO.

4. Explain the technique of translation when dealing with languages at different virtual
machine levels.

5. At which level does assembly language appear in the virtual machine example shown in this
section?

What software permits compiled Java programs to run on almost any computer?
Name the four virtual machine levels named in this section, from lowest to highest.
Why don’t programmers write applications in machine language?

Machine language is used at which level of the virtual machine shown in Figure 1-1?

=EN A )

Statements at the assembly language level of a virtual machine are translated into state-
ments at which other level?

1.3 Data Representation

Assembly language programmers deal with data at the physical level, so they must be adept at exam-
ining memory and registers. Often, binary numbers are used to describe the contents of computer
memory; at other times, decimal and hexadecimal numbers are used. You must develop a certain flu-
ency with number formats, so you can quickly translate numbers from one format to another.

Each numbering format, or system, has a base, or maximum number of symbols that can be
assigned to a single digit. Table 1-2 shows the possible digits for the numbering systems used
most commonly in hardware and software manuals. In the last row of the table, hexadecimal
numbers use the digits 0 through 9 and continue with the letters A through F to represent deci-
mal values 10 through 15. It is quite common to use hexadecimal numbers when showing the
contents of computer memory and machine-level instructions.

1.3.1 Binary Integers

A computer stores instructions and data in memory as collections of electronic charges. Representing
these entities with numbers requires a system geared to the concepts of on and off or true and false.
Binary numbers are base 2 numbers, in which each binary digit (called a bif) is either O or 1. Bits are
numbered sequentially starting at zero on the right side and increasing toward the left. The bit on the
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left is called the most significant bit (MSB), and the bit on the right is the least significant bit (LSB).
The MSB and LSB bit numbers of a 16-bit binary number are shown in the following figure:

MSB LSB
|1o11oo1010011100
15 0  bit number

Table 1-2  Binary, Octal, Decimal, and Hexadecimal Digits.

System Base Possible Digits
Binary 2 01
Octal 8 01234567
Decimal 10 0123456789
Hexadecimal 16 0123456789ABCDEF

Binary integers can be signed or unsigned. A signed integer is positive or negative. An
unsigned integer is by default positive. Zero is considered positive. When writing down large
binary numbers, many people like to insert a dot every 4 bits or 8 bits to make the numbers eas-
ier to read. Examples are 1101.1110.0011.1000.0000 and 11001010.10101100.

Unsigned Binary Integers

Starting with the LSB, each bit in an unsigned binary integer represents an increasing power of
2. The following figure contains an 8-bit binary number, showing how powers of two increase
from right to left:

]

27 26 25 2% 23 22 ol 0
Table 1-3 lists the decimal values of 20 through 2,

Table 1-3  Binary Bit Position Values.

2n Decimal Value 2n Decimal Value
20 1 28 256

2! 2 20 512

22 4 210 1024

23 8 2! 2048

24 16 212 4096

29 32 213 8192

26 64 214 16384

27 128 215 32768
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Translating Unsigned Binary Integers to Decimal
Weighted positional notation represents a convenient way to calculate the decimal value of an
unsigned binary integer having n digits:

dec = (D,_; X 2" 1+ (D, X 2" 2) + =+ + (D; X 21y + (D, x 2%
D indicates a binary digit. For example, binary 00001001 is equal to 9. We calculate this value
by leaving out terms equal to zero:

(1x2)+1x2%=9

The same calculation is shown by the following figure:

00001001

Translating Unsigned Decimal Integers to Binary

To translate an unsigned decimal integer into binary, repeatedly divide the integer by 2, saving
each remainder as a binary digit. The following table shows the steps required to translate deci-
mal 37 to binary. The remainder digits, starting from the top row, are the binary digits D, Dy,
D2, D3, D4, and Dsl

Division Quotient Remainder
37/2 18 1
18/2 9 0
9/2 4 1
472 2 0
2/2 1 0
1/2 0 1

We can just concatenate the binary bits from the remainder column of the table in reverse
order (D5, D4, . . .) to produce binary 100101. Because x86 computer storage always consists of
binary numbers whose lengths are multiples of 8, we fill the remaining two digit positions on the
left with zeros, producing 00100101.

1.3.2 Binary Addition

When adding two binary integers, proceed bit by bit, starting with the low-order pair of bits (on
the right) and add each subsequent pair of bits. There are four ways to add two binary digits, as
shown here:

0+0=0 0+1=1

1+0=1 1+1=10
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When adding 1 to 1, the result is 10 binary (think of it as the decimal value 2). The extra
digit generates a carry to the next-highest bit position. In the following figure, we add binary
00000100 to 00000111:

carry: 1
ojojojofo]1rfo]o 4)
+ Ojlojfojofo|1|1]1 @)
ojlojojof1|o0|1]1 (11)
bit position: 7 6 5 4 3 2 1 0

Beginning with the lowest bit in each number (bit position 0), we add 0 + 1, producing a 1 in
the bottom row. The same happens in the next highest bit (position 1). In bit position 2, we add
1 + 1, generating a sum of zero and a carry of 1. In bit position 3, we add the carry bit to 0 + 0,
producing 1. The rest of the bits are zeros. You can verify the addition by adding the decimal
equivalents shown on the right side of the figure (4 + 7 = 11).

Sometimes a carry is generated out of the highest bit position. When that happens, the size of
the storage area set aside becomes important. If we add 11111111 to 00000001, for example, a 1
carries out of the highest bit position, and the lowest 8 bits of the sum equal all zeros. If the stor-
age location for the sum is at least 9 bits long, we can represent the sum as 100000000. But if the
sum can only store 8 bits, it will equal to 00000000, the lowest 8 bits of the calculated value.

1.3.3 Integer Storage Sizes

The basic storage unit for all data in an x86 computer is a byfe, containing 8 bits. Other
storage sizes are word (2 bytes), doubleword (4 bytes), and quadword (8 bytes). In the following
figure, the number of bits is shown for each size:

byte

doubleword | 32 |

quadword | 64

Table 1-4 shows the range of possible values for each type of unsigned integer.

Large Measurements A number of large measurements are used when referring to both
memory and disk space:

* One kilobyte is equal to 219 or 1024 bytes.

* One megabyte (1 MByte) is equal to 220 or 1,048,576 bytes.

* One gigabyte (1 GByte) is equal to 2°°, or 10243, or 1,073,741,824 bytes.

« One rerabyte (1 TByte) is equal to 2%°, or 1024%, or 1,099,511,627,776 bytes.
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Table 1-4  Ranges of Unsigned Integers.

Byte
Storage Type Range (Low to High) Powers of 2 Measu:’ements
Unsigned byte 0 to 255 0to28-1) 1 byte
Unsigned word 0 to 65,535 0to (20— 1) 2 bytes
Unsigned doubleword 0 to 4,294,967,295 010 2% -1) 4 bytes
Unsigned quadword 0 to 18,446,744,073,709,551,615 0 to (264 -1 8 bytes

* One petabyte is equal to 250, or 1,125,899,906,842,624 bytes.
* One exabyte is equal to 260, or 1,152,921,504,606,846,976 bytes.

* One zettabyte is equal to 270 bytes.
* One yottabyte is equal to 280 bytes.

1.3.4 Hexadecimal Integers

Large binary numbers are cumbersome to read, so hexadecimal digits offer a convenient way to
represent binary data. Each digit in a hexadecimal integer represents four binary bits, and two
hexadecimal digits together represent a byte. A single hexadecimal digit represents decimal 0 to
15, so letters A to F represent decimal values in the range 10 through 15. Table 1-5 shows how
each sequence of four binary bits translates into a decimal or hexadecimal value.

Table 1-%  Binary, Decimal, and Hexadecimal Equivalents.

Binary Decimal Hexadecimal Binary Decimal | Hexadecimal
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 10 A
0011 3 3 1011 11 B
0100 4 4 1100 12 C
0101 5 5 1101 13 D
0110 6 6 1110 14 E
0111 7 7 1111 15 F

The following example shows how binary 0001.0110.1010.0111.1001.0100 is equivalent to

hexadecimal 16A794:

0001

0110

1010

0111 1001

0100
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Converting Unsigned Hexadecimal to Decimal

In hexadecimal, each digit position represents a power of 16. This is helpful when calculating the
decimal value of a hexadecimal integer. Suppose we number the digits in a four-digit hexadecimal
integer with subscripts as D;D,DD,,. The following formula calculates the integer’s decimal value:

dec = (D3 X 16%) + (D, X 16%) + (D; X 16") + (Dy X 16%)
The formula can be generalized for any n-digit hexadecimal integer:

dec = (D,_; X 16" ) + (D,_, X 16" %) + - - - + (D; X 16") + (Dy X 16°)

In general, you can convert an n-digit integer in any base B to decimal using the following
formula: dec = (D,,_; X B" 1) + (D,_, X B" ) + - - - + (D; x B!) + (D, % BY).

For example, hexadecimal 1234 is equal to (1 X 16°) + (2 X 16%) + (3 X 16') + (4 x 16°), or
decimal 4660. Similarly, hexadecimal 3BA4 is equal to (3 X 16%) + (11 X 16%) + (10 X 16") +
4 X 160), or decimal 15,268. The following figure shows this last calculation:

3x16% = 12,288

11x16%2= 2816

[— 10x16' = 160
4x16°=+ 4
—

3 B A 4 Total: 15,268

Table 1-6 lists the powers of 16 from 16% t0 16”.

Table 1-6  Powers of 16 in Decimal.

16" Decimal Value 16" Decimal Value
16° 1 16* 65,536

16! 16 16° 1,048,576

16 256 16° 16,777,216

16° 4096 167 268,435,456

Converting Unsigned Decimal to Hexadecimal

To convert an unsigned decimal integer to hexadecimal, repeatedly divide the decimal value by
16 and retain each remainder as a hexadecimal digit. For example, the following table lists the
steps when converting decimal 422 to hexadecimal:

Division Quotient Remainder
422/16 26 6
26/ 16 1 A
1/16 0 1
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The resulting hexadecimal number is assembled from the digits in the remainder column, start-
ing from the last row and working upward to the top row. In this example, the hexadecimal rep-
resentation is 1A6. The same algorithm was used for binary integers in Section 1.3.1. To convert
from decimal into some other number base other than hexadecimal, replace the divisor (16) in
each calculation with the desired number base.

1.3.5 Signed Integers

Signed binary integers are positive or negative. For x86 processors, the MSB indicates the
sign: 0 is positive and 1 is negative. The following figure shows examples of 8-bit negative
and positive integers:

sign bit

|

1111|101 |10

Negative

Positive

Two’s-Complement Notation

Negative integers use fwo’s-complement representation, using the mathematical principle that
the two’s complement of an integer is its additive inverse. (If you add a number to its additive
inverse, the sum is zero.)

Two’s-complement representation is useful to processor designers because it removes the need
for separate digital circuits to handle both addition and subtraction. For example, if presented with
the expression A — B, the processor can simply convert it to an addition expression: A + (—B).

The two’s complement of a binary integer is formed by inverting (complementing) its bits
and adding 1. Using the 8-bit binary value 00000001, for example, its two’s complement turns
outtobe 11111111, as can be seen as follows:

Starting value 00000001
Step 1: Reverse the bits 11111110
Step 2: Add 1 to the value from Step 1 11111110

+00000001
Sum: Two’s-complement representation 11111111

11111111 is the two’s-complement representation of —1. The two’s-complement operation is
reversible, so the two’s complement of 11111111 is 00000001.

Two’s Complement of Hexadecimal To create the two’s complement of a hexadecimal inte-
ger, reverse all bits and add 1. An easy way to reverse the bits of a hexadecimal digit is to subtract
the digit from 15. Here are examples of hexadecimal integers converted to their two’s complements:

6A3D --> 95C2 + 1 --> 95C3
95C3 --> 6A3C + 1 --> 6A3D
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Converting Signed Binary to Decimal Use the following algorithm to calculate the decimal
equivalent of a signed binary integer:

e If the highest bit is a 1, the number is stored in two’s-complement notation. Create its two’s
complement a second time to get its positive equivalent. Then convert this new number to
decimal as if it were an unsigned binary integer.

* If the highest bit is a 0, you can convert it to decimal as if it were an unsigned binary integer.
For example, signed binary 11110000 has a 1 in the highest bit, indicating that it is a negative

integer. First we create its two’s complement, and then convert the result to decimal. Here are the
steps in the process:

Starting value 11110000
Step 1: Reverse the bits 00001111
Step 2: Add 1 to the value from Step 1 00001111

+ 1
Step 3: Create the two’s complement 00010000
Step 4: Convert to decimal 16

Because the original integer (11110000) was negative, we know that its decimal value is —16.

Converting Signed Decimal to Binary To create the binary representation of a signed deci-
mal integer, do the following:
1. Convert the absolute value of the decimal integer to binary.
2. If the original decimal integer was negative, create the two’s complement of the binary num-
ber from the previous step.
For example, —43 decimal is translated to binary as follows:
1. The binary representation of unsigned 43 is 00101011.
2.Because the original value was negative, we create the two’s complement of 00101011,
which is 11010101. This is the representation of —43 decimal.

Converting Signed Decimal to Hexadecimal To convert a signed decimal integer to hexa-
decimal, do the following:
1. Convert the absolute value of the decimal integer to hexadecimal.
2. If the decimal integer was negative, create the two’s complement of the hexadecimal number
from the previous step.

Converting Signed Hexadecimal to Decimal To convert a signed hexadecimal integer to
decimal, do the following:
1. If the hexadecimal integer is negative, create its two’s complement; otherwise, retain the
integer as is.
2. Using the integer from the previous step, convert it to decimal. If the original value was nega-
tive, attach a minus sign to the beginning of the decimal integer.
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You can tell whether a hexadecimal integer is positive or negative by inspecting its most significant
(highest) digit. If the digit is = 8, the number is negative; if the digit is < 7, the number is positive. For
example, hexadecimal 8 A20 is negative and 7FD9 is positive.

Maximum and Minimum Values
A signed integer of n bits uses only n — 1 bits to represent the number’s magnitude. Table 1-7
shows the minimum and maximum values for signed bytes, words, doublewords, and quadwords.

Table 1-7  Storage Sizes and Ranges of Signed Integers.

Storage Type Range (Low to High) Powers of 2
Signed byte —128to +127 270" -1
Signed word —32,768 to +32,767 2P0 @eb -1
Signed doubleword —2,147,483,648 to0 2,147,483,647 23023 - 1)

_ —9,223,372,036,854,775,808 to
Signed quadword +9.223,372,036,854,775,807 20—

1.3.6 Character Storage

If computers only store binary data, how do they represent characters? They use a character set,
which is a mapping of characters to integers. Until a few years ago, character sets used only 8
bits. Even now, when running in character mode (such as MS-DOS), IBM-compatible microcom-
puters use the ASCII (pronounced ‘“‘askey”) character set. ASCII is an acronym for American
Standard Code for Information Interchange. In ASCII, a unique 7-bit integer is assigned to each
character. Because ASCII codes use only the lower 7 bits of every byte, the extra bit is used on
various computers to create a proprietary character set. On IBM-compatible microcomputers, for
example, values 128 through 255 represent graphics symbols and Greek characters.

ANSI Character Set American National Standards Institute (ANSI) defines an 8-bit char-
acter set that represents up to 256 characters. The first 128 characters correspond to the
letters and symbols on a standard U.S. keyboard. The second 128 characters represent spe-
cial characters such as letters in international alphabets, accents, currency symbols, and
fractions. MS-Windows Millennium, 98, and 95 used the ANSI character set. To increase
the number of available characters, MS-Windows switches between character tables known
as code pages.

Unicode Standard There has been a need for some time to represent a wide variety of inter-
national languages in computer software. As a result, the Unicode standard was created as a uni-
versal way of defining characters and symbols. It defines codes for characters, symbols, and
punctuation used in all major languages, as well as European alphabetic scripts, Middle Eastern
right-to-left scripts, and many scripts of Asia. Three encoding forms are available in Unicode,
permitting data to be transmitted in byte, word, or doubleword formats:

* UTF-8 is used in HTML, and has the same byte values as ASCII (American Standard Code

for Information Interchange). It can be incorporated into a variable-length encoding system
for all Unicode characters.
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* UTF-16 is used in environments that balance efficient access to characters with economical
use of storage. Recent versions of Microsoft Windows, for example, use UTF-16 encoding.
Each character is encoded in 16 bits.

* UTF-32 is used in environments where space is no concern and fixed-width characters are
required. Each character is encoded in 32 bits.

You can copy a smaller Unicode value (byte, for example) into a larger one (word or double-
word) without losing any data.

ASCII Strings A sequence of one or more characters is called a string. More specifically, an
ASCII string is stored in memory as a succession of bytes containing ASCII codes. For example, the
numeric codes for the string “ABC123” are 41h, 42h, 43h, 31h, 32h, and 33h. A null-terminated string
is a string of characters followed by a single byte containing zero. The C and C++ languages use null-
terminated strings, and many DOS and Windows functions require strings to be in this format.

Using the ASCII Table A table on the inside back cover of this book lists ASCII codes used
when running in MS-DOS mode. To find the hexadecimal ASCII code of a character, look along the
top row of the table and find the column containing the character you want to translate. The most
significant digit of the hexadecimal value is in the second row at the top of the table; the least signif-
icant digit is in the second column from the left. For example, to find the ASCII code of the letter a,
find the column containing the a and look in the second row: The first hexadecimal digit is 6. Next,
look to the left along the row containing a and note that the second column contains the digit 1.
Therefore, the ASCII code of a is 61 hexadecimal. This is shown as follows in simplified form:

ASCII Control Characters Character codes in the range 0 through 31 are called ASCII con-
trol characters. If a program writes these codes to standard output (as in C++), the control
characters will carry out predefined actions. Table 1-8 lists the most commonly used characters
in this range, and a complete list may be found in the inside front cover of this book.

Table 1-8  ASCII Control Characters.

ASCII Code (Decimal) Description
8 Backspace (moves one column to the left)
9 Horizontal tab (skips forward n columns)
10 Line feed (moves to next output line)
12 Form feed (moves to next printer page)
13 Carriage return (moves to leftmost output column)
27 Escape character




1.3 DAta RepRESENTATION

Terminology for Numeric Data Representation 1t is important to use precise terminology
when describing the way numbers and characters are represented in memory and on the display
screen. Decimal 65, for example, is stored in memory as a single binary byte as 01000001.
A debugging program would probably display the byte as “41,” which is the number’s hexadeci-
mal representation. If the byte were copied to video memory, the letter “A” would appear on the
screen because 01000001 is the ASCII code for the letter A. Because a number’s interpretation
can depend on the context in which it appears, we assign a specific name to each type of data
representation to clarify future discussions:
* A binary integer is an integer stored in memory in its raw format, ready to be used in a calcu-
lation. Binary integers are stored in multiples of 8 bits (8, 16, 32, 48, or 64).
* An ASCII digit string is a string of ASCII characters, such as “123” or “65,” which is made to
look like a number. This is simply a representation of the number and can be in any of the for-

mats shown for the decimal number 65 in Table 1-9:

Table 1-9  Types of Numeric Strings.

Format Value
ASCII binary “01000001”
ASCII decimal “65”
ASCII hexadecimal “41”
ASCII octal “101”

1.3.7 Section Review

1. Explain the term Least Significant Bit (LSB).
2. Explain the term Most Significant Bit (MSB).

3. What is the decimal representation of each of the following unsigned binary integers?

a. 11111000
b. 11001010
c. 11110000

4. What is the decimal representation of each of the following unsigned binary integers?

a. 00110101
b. 10010110
c. 11001100

5. What is the sum of each pair of binary integers?

a. 00001111 + 00000010
b. 11010101 + 01101011
c. 00001111 + 00001111
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10.

11.

12.

13.

14.

. What is the sum of each pair of binary integers?

a. 10101111 + 11011011
b. 10010111 + 11111111
c. 01110101 + 10101100

. How many bytes are contained in each of the following data types?

a. word
b. doubleword
¢. quadword

. How many bits are contained in each of the following data types?

a. word
b. doubleword
¢. quadword

. What is the minimum number of binary bits needed to represent each of the following
unsigned decimal integers?

a. 65
b. 256
c. 32768

What is the minimum number of binary bits needed to represent each of the following
unsigned decimal integers?

a. 4095
b. 65534
c. 2134657

What is the hexadecimal representation of each of the following binary numbers?

a. 1100 1111 0101 0111
b. 0101 1100 1010 1101
c. 1001 0011 1110 1011

What is the hexadecimal representation of each of the following binary numbers?

a.0011 0101 1101 1010
b. 1100 1110 1010 0011
c. 1111 1110 1101 1011

What is the binary representation of the following hexadecimal numbers?
a. ESB6AED7

b. B697CT7A1
c. 234B6D92

What is the binary representation of the following hexadecimal numbers?
a. 0126F9D4

b. 6ACDFA95
c. FOOBDC2A
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15. What is the unsigned decimal representation of each hexadecimal integer?
a. 3A

b. IBF
c. 4096

16. What is the unsigned decimal representation of each hexadecimal integer?
a. 62

b. 1C9
c. 6A5B

17. What is the 16-bit hexadecimal representation of each signed decimal integer?
a. —26
b. —452
18. What is the 16-bit hexadecimal representation of each signed decimal integer?
a. —32
b. —62
19. The following 16-bit hexadecimal numbers represent signed integers. Convert to decimal.

a. 7CAB
b. C123

20. The following 16-bit hexadecimal numbers represent signed integers. Convert to decimal.

a. 7F9B
b. 8230

21. What is the decimal representation of the following signed binary numbers?
a. 10110101

b. 00101010
c. 11110000

22. What is the decimal representation of the following signed binary numbers?
a. 10000000
b. 11001100
c. 10110111

23. What is the 8-bit binary (two’s-complement) representation of each of the following signed
decimal integers?

a. —>5
b. —36
c. —16

24. What is the 8-bit binary (two’s-complement) representation of each of the following signed
decimal integers?
a. —72
b. —98
c. —26
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25. What are the hexadecimal and decimal representations of the ASCII character capital X?
26. What are the hexadecimal and decimal representations of the ASCII character capital M?

27. Why was Unicode invented?
28. Challenge: What is the largest value you can represent using a 256-bit unsigned integer?

29. Challenge: What is the largest positive value you can represent using a 256-bit signed integer?

1.4 Boolean Operations

Boolean algebra defines a set of operations on the values true and false. It was invented by George
Boole, a mid—nineteenth-century mathematician. When early digital computers were invented, it
was found that Boole’s algebra could be used to describe the design of digital circuits. At the same
time, boolean expressions are used in computer programs to express logical operations.

Boolean Expression A boolean expression involves a boolean operator and one or more
operands. Each boolean expression implies a value of true or false. The set of operators includes
the folllowing:

* NOT: notated as — or ~ or '

* AND: notated as A or e

* OR: notated as v or +

The NOT operator is unary, and the other operators are binary. The operands of a boolean

expression can also be boolean expressions. The following are examples:

Expression Description
—X NOT X
XAY XANDY
XvY XORY
—XvY (NOT X) ORY
(X AY) NOT (X ANDY)
X A—Y X AND (NOTY)

NOT The NOT operation reverses a boolean value. It can be written in mathematical notation
as —X, where X is a variable (or expression) holding a value of true (T) or false (F). The follow-
ing truth table shows all the possible outcomes of NOT using a variable X. Inputs are on the left
side and outputs (shaded) are on the right side:

X —X
T
T F

A truth table can use O for false and 1 for true.
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AND  The Boolean AND operation requires two operands, and can be expressed using the notation
X AY. The following truth table shows all the possible outcomes (shaded) for the values of X and Y:

XY XAY
F F F
F T IE]
T F I
T T T

The output is true only when both inputs are true. This corresponds to the logical AND used
in compound boolean expressions in C++ and Java.

The AND operation is often carried out at the bit level in assembly language. In the following
example, each bit in X is ANDed with its corresponding bit in Y:

X: 11111111
Y: 00011100
X A Y: 00011100

As Figure 1-2 shows, each bit of the resulting value, 00011100, represents the result of ANDing
the corresponding bits in X and Y.

Figure 1-2  ANDing the Bits of Two Binary Integers.

X: 1 (1|1 {1 |{1|1][1]1

AND AND AND AND AND AND AND AND

XAY: ofofoj1jy1]1]10/|0

OR The Boolean OR operation requires two operands, and is often expressed using the notation
X v'Y. The following truth table shows all the possible outcomes (shaded) for the values of X and Y:

XY XvY
F F I
F T T
T F T
T T T
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The output is false only when both inputs are false. This truth table corresponds to the
logical OR used in compound boolean expressions in C++ and Java.

The OR operation is often carried out at the bit level. In the following example, each bit in X
is ORed with its corresponding bit in Y, producing 11111100:

X: 11101100
Y: 00011100
X Vv Y: 11111100

As shown in Figure 1-3, the bits are ORed individually, producing a corresponding bit in the
result.

Figure 1-3 ORIing the Bits in Two Binary Integers.

X: 011 1 011 1 010

OR OR OR OR OR OR OR OR

Operator Precedence 1In a boolean expression involving more than one operator, precedence
is important. As shown in the following table, the NOT operator has the highest precedence,
followed by AND and OR. You can use parentheses to force the initial evaluation of an
expression:

Expression Order of Operations
—XvY NOT, then OR
—(XvY) OR, then NOT
Xv (YAZ) AND, then OR

1.4.1 Truth Tables for Boolean Functions
A boolean function receives boolean inputs and produces a boolean output. A truth table can be
constructed for any boolean function, showing all possible inputs and outputs. The following are
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truth tables representing boolean functions having two inputs named X and Y. The shaded col-
umn on the right is the function’s output:

Example 1: =X v Y

X —X Y —XvY

F T F T

F T T T

T F F F

T F T T

Example 2: X A =Y

X Y =Y X A=Y

F F T F

F T F F

T F T T

T T F F

Example 3: (Y AS) v (X A —=S)

X Y S YAS —S X A—S (YAS) Vv (XA—S)
F F F F T F F
F T F F T F F
T F F F T T T
T T F F T T T
F F T F F F F
F T T T F F T
T F T F F F F
T T T T F F T
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This boolean function describes a multiplexer, a digital component that uses a selector bit (S)
to select one of two outputs (X or Y). If S = false, the function output (Z) is the same as X. If
S = true, the function output is the same as Y. Here is a block diagram of a multiplexer:

S
X ——

mux Z
Y ————>

1.4.2 Section Review
Describe the following boolean expression: =X v Y.

Describe the following boolean expression: (X AY).
What is the value of the boolean expression (T AF) v T ?
What is the value of the boolean expression —(F v T) ?

What is the value of the boolean expression —F v —T ?

AN o e

Create a truth table to show all possible inputs and outputs for the boolean function

described by —(A v B).

7. Create a truth table to show all possible inputs and outputs for the boolean function
described by (—A A —B).

8. If a boolean function has four inputs, how many rows are required for its truth table?

9. How many selector bits are required for a four-input multiplexer?

1.5 Chapter Summary

This book focuses on programming x86 processors, using the MS-Windows platform. We cover
basic principles about computer architecture, machine language, and low-level programming.
You will learn enough assembly language to test your knowledge on today’s most widely used
microprocessor family.

Before reading this book, you should have completed a single college course or equivalent in
computer programming.

An assembler is a program that converts source-code programs from assembly language into
machine language. A companion program, called a linker, combines individual files created by
an assembler into a single executable program. A third program, called a debugger, provides a
way for a programmer to trace the execution of a program and examine the contents of memory.

You will create two basic types of programs: 16-bit real-address mode programs and 32-bit
protected mode programs.

You will learn the following concepts from this book: basic computer architecture applied to
x86 processors; elementary boolean logic; how x86 processors manage memory; how high-level
language compilers translate statements from their language into assembly language and native
machine code; how high-level languages implement arithmetic expressions, loops, and logical
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structures at the machine level; and the data representation of signed and unsigned integers, real
numbers, and character data.

Assembly language has a one-to-one relationship with machine language, in which a single
assembly language instruction corresponds to one machine language instruction. Assembly lan-
guage is not portable because it is tied to a specific processor family.

Programming languages are tools that you can use to create individual applications or parts of
applications. Some applications, such as device drivers and hardware interface routines, are
more suited to assembly language. Other applications, such as multiplatform commercial and
scientific applications, are more easily written in high-level languages.

The virtual machine concept is an effective way of showing how each layer in a computer
architecture represents an abstraction of a machine. Layers can be constructed of hardware or
software, and programs written at any layer can be translated or interpreted by the next-lowest
layer. The virtual machine concept can be related to real-world computer layers, including digi-
tal logic, instruction set architecture, assembly language, and high-level languages.

Binary and hexadecimal numbers are essential notational tools for programmers working at
the machine level. For this reason, you must understand how to manipulate and translate
between number systems and how character representations are created by computers.

The following boolean operators were presented in this chapter: NOT, AND, and OR. A bool-
ean expression combines a boolean operator with one or more operands. A truth table is an
effective way to show all possible inputs and outputs of a boolean function.

1.6 Exercises

1.6.1 Programming Tasks
Use any high-level programming language you wish for the following programming exercises.
Do not call built-in library functions that accomplish these tasks automatically. (Examples are
sprintf and sscanf from the Standard C library.)
1. Write a function that receives a string containing a 16-bit binary integer. The function must
return the decimal integer value of the binary integer.
2. Write a function that receives a string containing a 32-bit hexadecimal integer. The function
must return the decimal integer value of the hexadecimal integer.
3. Write a function that receives an integer. The function must return a string containing the
binary representation of the integer.

4. Write a function that receives an integer. The function must return a string containing the
hexadecimal representation of the integer.

1.6.2 Nonprogramming Tasks
1. Write a Java program that contains the following calculation. Then, use the javap —c com-
mand to disassemble your code. Then, add comments to each line that provide your best
guess as to its purpose.

int Y;
int X = (Y + 4) * 3;
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2. Devise a way of subtracting unsigned binary integers. Test your technique by subtracting
binary 0000101 from binary 10001000, producing 10000011. Test your technique with at
least two other sets of integers, in which a smaller value is always subtracted from a larger
one.

End Notes
1. Donald Knuth, MMIX, A RISC Computer for the New Millennium, Transcript of a lecture given at the Massa-
chusetts Institute of Technology, December 30, 1999.
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2.1 General Concepts

This chapter describes the architecture of the x86 processor family and its host computer sys-
tem from a programmer’s point of view. Included in this group are all Intel IA-32 processors,
such as the Intel Pentium and Core-Duo, as well as the Advanced Micro Devices (AMD)
Athlon, Phenom, and Opteron processors. Assembly language is a great tool for learning how a
computer works, and it requires you to have a working knowledge of computer hardware. To that
end, the concepts and details in this chapter will help you to understand the assembly lan-
guage code you write.

We strike a balance between concepts applying to all microcomputer systems and specifics
about x86 processors. You may work on various processors in the future, so we expose you to

29
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broad concepts. To avoid giving you a superficial understanding of machine architecture, we focus
on specifics of the x86, which will give you a solid grounding when programming in assembly
language.

If you want to learn more about the Intel IA-32 architecture, read the Intel 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1: Basic Architecture. It’s a free download from the Intel Web site
(www.intel.com).

2.1.1 Basic Microcomputer Design
Figure 2—-1 shows the basic design of a hypothetical microcomputer. The central processor
unit (CPU), where calculations and logic operations take place, contains a limited number of
storage locations named registers, a high-frequency clock, a control unit, and an arithmetic
logic unit.
* The clock synchronizes the internal operations of the CPU with other system components.
* The control unit (CU) coordinates the sequencing of steps involved in executing machine
instructions.
e The arithmetic logic unit (ALU) performs arithmetic operations such as addition and subtrac-
tion and logical operations such as AND, OR, and NOT.

The CPU is attached to the rest of the computer via pins attached to the CPU socket in the
computer’s motherboard. Most pins connect to the data bus, the control bus, and the address bus.
The memory storage unit is where instructions and data are held while a computer program is
running. The storage unit receives requests for data from the CPU, transfers data from random
access memory (RAM) to the CPU, and transfers data from the CPU into memory. All process-
ing of data takes place within the CPU, so programs residing in memory must be copied into the
CPU before they can execute. Individual program instructions can be copied into the CPU one at
a time, or groups of instructions can be copied together.

A Dbus is a group of parallel wires that transfer data from one part of the computer to another.
A computer system usually contains four bus types: data, I/O, control, and address. The data bus

Fiqure 2-1 Block Diagram of a Microcomputer.
data bus, I/0 bus

registers

Central Processor Unit Memory Storage Vo Vo
- Device Device
(CPU) Unit 1 ©

| ALU | CU | clock |

address bus
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transfers instructions and data between the CPU and memory. The I/O bus transfers data
between the CPU and the system input/output devices. The control bus uses binary signals to
synchronize actions of all devices attached to the system bus. The address bus holds the
addresses of instructions and data when the currently executing instruction transfers data
between the CPU and memory.

Clock Each operation involving the CPU and the system bus is synchronized by an internal
clock pulsing at a constant rate. The basic unit of time for machine instructions is a machine
cycle (or clock cycle). The length of a clock cycle is the time required for one complete clock
pulse. In the following figure, a clock cycle is depicted as the time between one falling edge and
the next:

one cycle

The duration of a clock cycle is calculated as the reciprocal of the clock’s speed, which in
turn is measured in oscillations per second. A clock that oscillates 1 billion times per second
(1 GHz), for example, produces a clock cycle with a duration of one billionth of a second
(1 nanosecond).

A machine instruction requires at least one clock cycle to execute, and a few require in excess
of 50 clocks (the multiply instruction on the 8088 processor, for example). Instructions requiring
memory access often have empty clock cycles called wait states because of the differences in the
speeds of the CPU, the system bus, and memory circuits.

2.1.2 Instruction Execution Cycle

The execution of a single machine instruction can be divided into a sequence of individual oper-
ations called the instruction execution cycle. Before executing, a program is loaded into mem-
ory. The instruction pointer contains the address of the next instruction. The instruction queue
holds a group of instructions about to be executed. Executing a machine instruction requires
three basic steps: fetch, decode, and execute. Two more steps are required when the instruction
uses a memory operand: fetch operand and store output operand. Each of the steps is described
as follows:

e Fetch: The control unit fetches the next instruction from the instruction queue and increments
the instruction pointer (IP). The IP is also known as the program counter.

* Decode: The control unit decodes the instruction’s function to determine what the instruction
will do. The instruction’s input operands are passed to the ALU, and signals are sent to the
ALU indicating the operation to be performed.

e Fetch operands: If the instruction uses an input operand located in memory, the control unit
uses a read operation to retrieve the operand and copy it into internal registers. Internal regis-
ters are not visible to user programs.
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* Execute: The ALU executes the instruction using the named registers and internal registers as
operands and sends the output to named registers and/or memory. The ALU updates status
flags providing information about the processor state.

* Store output operand: If the output operand is in memory, the control unit uses a write oper-
ation to store the data.

The sequence of steps can be expressed neatly in pseudocode:

loop

fetch next instruction

advance the instruction pointer (IP)

decode the instruction

if memory operand needed, read value from memory

execute the instruction

if result is memory operand, write result to memory
continue loop

A block diagram showing data flow within a typical CPU is shown in Figure 2-2. The diagram
helps to show relationships between components that interact during the instruction execution
cycle. In order to read program instructions from memory, an address is placed on the address
bus. Next, the memory controller places the requested code on the data bus, making the code
available inside the code cache. The instruction pointer’s value determines which instruction will
be executed next. The instruction is analyzed by the instruction decoder, causing the appropriate

Figure 2-2  Simplified CPU Block Diagram.
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digital signals to be sent to the control unit, which coordinates the ALU and floating-point unit.
Although the control bus is not shown in this figure, it carries signals that use the system clock to
coordinate the transfer of data between the different CPU components.

2.1.3 Reading from Memory

Program throughput is often dependent on the speed of memory access. CPU clock speed might
be several gigahertz, whereas access to memory occurs over a system bus running at a much
slower speed. The CPU must wait one or more clock cycles until operands have been fetched
from memory before the current instruction can complete its execution. The wasted clock cycles
are called wait states.

Several steps are required when reading instructions or data from memory, controlled by the
processor’s internal clock. Figure 2-3 shows the processor clock (CLK) rising and falling at
regular time intervals. In the figure, a clock cycle begins as the clock signal changes from high to
low. The changes are called trailing edges, and they indicate the time taken by the transition
between states.

Figure 2-3 Memory Read Cycle.
Cycle 1 Cycle 2 Cycle 3 Cycle 4
CLK Y~ Y NN NS

Address | 0 L

ADDR | X [

RD
I R Data
DATA |

The following is a simplified description of what happens during each clock cycle during a

memory read:

Cycle 1: The address bits of the memory operand are placed on the address bus (ADDR). The address

lines in the diagram cross, showing that some bits equal 1 and others equal 0.
Cycle 2: The read line (RD) is set low (0) to notify memory that a value is to be read.

Cycle 3: The CPU waits one cycle to give memory time to respond. During this cycle, the memory

controller places the operand on the data bus (DATA).

Cycle 4: The read line goes to 1, signaling the CPU to read the data on the data bus.
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Cache Memory Because conventional memory is so much slower than the CPU, computers use
high-speed cache memory to hold the most recently used instructions and data. The first time a pro-
gram reads a block of data, it leaves a copy in the cache. If the program needs to read the same data
a second time, it looks for the data in cache. A cache hit indicates the data is in cache; a cache miss
indicates the data is not in cache and must be read from conventional memory. In general, cache
memory has a noticeable effect on improving access to data, particularly when the cache is large.

2.1.4 How Programs Run

Load and Execute Process
The following steps describe, in sequence, what happens when a computer user runs a program

at a command prompt:

* The operating system (OS) searches for the program’s filename in the current disk directory.
If it cannot find the name there, it searches a predetermined list of directories (called paths)
for the filename. If the OS fails to find the program filename, it issues an error message.

e If the program file is found, the OS retrieves basic information about the program’s file from
the disk directory, including the file size and its physical location on the disk drive.

* The OS determines the next available location in memory and loads the program file into
memory. It allocates a block of memory to the program and enters information about the
program’s size and location into a table (sometimes called a descriptor table). Additionally,
the OS may adjust the values of pointers within the program so they contain addresses of
program data.

* The OS begins execution of the program’s first machine instruction. As soon as the program
begins running, it is called a process. The OS assigns the process an identification number
(process ID), which is used to keep track of it while running.

* The process runs by itself. It is the OS’s job to track the execution of the process and to
respond to requests for system resources. Examples of resources are memory, disk files, and
input-output devices.

* When the process ends, it is removed from memory.

If you’re using any version of Microsoft Windows, press Ctrl-Alt-Delete and click on the Task Manager
button. There are tabs labeled Applications and Processes. Applications are the names of complete programs
currently running, such as Windows Explorer or Microsoft Visual C++. When you click on the Processes
tab, you see 30 or 40 names listed, often some you might not recognize. Each of those processes is a
small program running independent of all the others. Note that each has a PID (process ID), and you can
continuously track the amount of CPU time and memory it uses. Most processes run in the background.
You can shut down a process somehow left running in memory by mistake. Of course, if you shut down
the wrong process, your computer may stop running, and you’ll have to reboot.

Multitasking
A multitasking operating system is able to run multiple tasks at the same time. A fask is defined

as either a program (a process) or a thread of execution. A process has its own memory area
and may contain multiple threads. A thread shares its memory with other threads belonging to
the same process. Game programs, for example, often use individual threads to simultaneously
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control multiple graphic objects. Web browsers use separate threads to simultaneously load
graphic images and respond to user input.

Most modern operating systems simultaneously execute tasks that communicate with hard-
ware, display user interfaces, perform background file processing, and so on. A CPU can really
execute only one instruction at a time, so a component of the operating system named the sched-
uler allocates a slice of CPU time (called a time slice) to each task. During a single time slice,
the CPU executes a block of instructions, stopping when the time slice has ended.

By rapidly switching tasks, the processor creates the illusion they are running simultaneously.
One type of scheduling used by the OS is called round-robin scheduling. In Figure 2—4, nine
tasks are active. Suppose the scheduler arbitrarily assigned 100 milliseconds to each task, and
switching between tasks consumed 8 milliseconds. One full circuit of the task list would require
972 milliseconds (9 X 100) + (9 X 8) to complete.

Figure 2-4 Round-Robin Scheduler.

| Task 6 | | Task 5 |

A multitasking OS runs on a processor (such as the x86) that supports fask switching.
The processor saves the state of each task before switching to a new one. A task’s state consists
of the contents of the processor registers, program counter, and status flags, along with refer-
ences to the task’s memory segments. A multitasking OS will usually assign varying priorities to
tasks, giving them relatively larger or smaller time slices. A preemptive multitasking OS (such as
Windows XP or Linux) permits a higher-priority task to interrupt a lower-priority one, leading to
better system stability. Suppose an application program is locked in loop and has stopped
responding to input. The keyboard handler (a high-priority OS task) can respond to the user’s
Ctrl-Alt-Del command and shut down the buggy application program.

2.1.5 Section Review
1. The central processor unit (CPU) contains registers and what other basic elements?

2. The central processor unit is connected to the rest of the computer system using what three
buses?

3. Why does memory access take more machine cycles than register access?
4. What are the three basic steps in the instruction execution cycle?

5. Which two additional steps are required in the instruction execution cycle when a memory
operand is used?
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6. During which stage of the instruction execution cycle is the program counter incremented?
7. When a program runs, what information does the OS read from the filename’s disk direc-
tory entry?
8. After a program has been loaded into memory, how does it begin execution?
9. Define multitasking.
10. What is the function of the OS scheduler?

11. When the processor switches from one task to another, what values in the first task’s state
must be preserved?

12. What is the duration of a single clock cycle in a 3-GHz processor?

2.2 x86 Architecture Details

In this section, we focus on the basic architectural features of the x86 processor family, which
includes both Intel IA-32 and 32-bit AMD processors.

2.2.1 Modes of Operation

x86 processors have three primary modes of operation: protected mode, real-address mode, and
system management mode. A sub-mode, named virfual-8086, is a special case of protected
mode. Here are short descriptions of each:

Protected Mode Protected mode is the native state of the processor, in which all instructions
and features are available. Programs are given separate memory areas named segments, and the
processor prevents programs from referencing memory outside their assigned segments.

Virtual-8086 Mode While in protected mode, the processor can directly execute real-address
mode software such as MS-DOS programs in a safe multitasking environment. In other words, if
an MS-DOS program crashes or attempts to write data into the system memory area, it will not
affect other programs running at the same time. Windows XP can execute multiple separate
virtual-8086 sessions at the same time.

Real-Address Mode Real-address mode implements the programming environment of the
Intel 8086 processor with a few extra features, such as the ability to switch into other modes.
This mode is available in Windows 98, and can be used to run an MS-DOS program that requires
direct access to system memory and hardware devices. Programs running in real-address mode
can cause the operating system to crash (stop responding to commands).

System Management Mode System Management mode (SMM) provides an operating sys-
tem with a mechanism for implementing functions such as power management and system secu-
rity. These functions are usually implemented by computer manufacturers who customize the
processor for a particular system setup.

2.2.2 Basic Execution Environment

Address Space

In 32-bit protected mode, a task or program can address a linear address space of up to 4 GBytes.
Beginning with the P6 processor, a technique called Extended Physical Addressing allows a total
of 64 GBytes of physical memory to be addressed. Real-address mode programs, on the other
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hand, can only address a range of 1 MByte. If the processor is in protected mode and running mul-
tiple programs in virtual-8086 mode, each program has its own 1-MByte memory area.

Basic Program Execution Registers

Registers are high-speed storage locations directly inside the CPU, designed to be accessed at
much higher speed than conventional memory. When a processing loop is optimized for speed,
for example, loop counters are held in registers rather than variables. Figure 2—5 shows the basic
program execution registers. There are eight general-purpose registers, six segment registers, a
processor status flags register (EFLAGS), and an instruction pointer (EIP).

Fiqure 2-7 Basic Program Execution Registers.

32-bit General-Purpose Registers

EAX EBP
EBX ESP
ECX ESI
EDX EDI

16-bit Segment Registers

EFLAGS CS ES
SS FS
EIP DS GS

General-Purpose Registers The general-purpose registers are primarily used for arith-
metic and data movement. As shown in Figure 2—6, the lower 16 bits of the EAX register can be
referenced by the name AX.

Figure 2-6 General-Purpose Registers.

8 8
AH AL 1 8 bits + 8 bits
| | |
| | |
T
AX 16 bits
| |
| | |
T ]
EAX | 32 bits

Portions of some registers can be addressed as 8-bit values. For example, the AX register, has an
8-bit upper half named AH and an 8-bit lower half named AL. The same overlapping relationship
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exists for the EAX, EBX, ECX, and EDX registers:

32-Bit 16-Bit 8-Bit (High) 8-Bit (Low)
EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL

The remaining general-purpose registers can only be accessed using 32-bit or 16-bit names,
as shown in the following table:

32-Bit 16-Bit
ESI SI
EDI DI
EBP BP
ESP SP

Specialized Uses Some general-purpose registers have specialized uses:

* EAX is automatically used by multiplication and division instructions. It is often called the
extended accumulator register.

* The CPU automatically uses ECX as a loop counter.

* ESP addresses data on the stack (a system memory structure). It is rarely used for ordinary
arithmetic or data transfer. It is often called the extended stack pointer register.

* ESI and EDI are used by high-speed memory transfer instructions. They are sometimes called
the extended source index and extended destination index registers.

* EBP is used by high-level languages to reference function parameters and local variables on
the stack. It should not be used for ordinary arithmetic or data transfer except at an advanced
level of programming. It is often called the extended frame pointer register.

Segment Registers 1In real-address mode, 16-bit segment registers indicate base addresses of
preassigned memory areas named segments. In protected mode, segment registers hold pointers
to segment descriptor tables. Some segments hold program instructions (code), others hold vari-
ables (data), and another segment named the stack segment holds local function variables and
function parameters.

Instruction Pointer The EIP, or instruction pointer, register contains the address of the next
instruction to be executed. Certain machine instructions manipulate EIP, causing the program to
branch to a new location.

EFLAGS Register The EFLAGS (or just Flags) register consists of individual binary bits
that control the operation of the CPU or reflect the outcome of some CPU operation. Some
instructions test and manipulate individual processor flags.

A flag is set when it equals 1; it is clear (or reset) when it equals 0.
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Control Flags Control flags control the CPU’s operation. For example, they can cause the
CPU to break after every instruction executes, interrupt when arithmetic overflow is detected,
enter virtual-8086 mode, and enter protected mode.

Programs can set individual bits in the EFLAGS register to control the CPU’s operation.
Examples are the Direction and Interrupt flags.

Status Flags The Status flags reflect the outcomes of arithmetic and logical operations per-
formed by the CPU. They are the Overflow, Sign, Zero, Auxiliary Carry, Parity, and Carry flags.
Their abbreviations are shown immediately after their names:
* The Carry flag (CF) is set when the result of an unsigned arithmetic operation is too large to
fit into the destination.
* The Overflow flag (OF) is set when the result of a signed arithmetic operation is too large or
too small to fit into the destination.
* The Sign flag (SF) is set when the result of an arithmetic or logical operation generates a
negative result.
e The Zero flag (ZF) is set when the result of an arithmetic or logical operation generates a result of
Zer0.
* The Auxiliary Carry flag (AC) is set when an arithmetic operation causes a carry from bit 3
to bit 4 in an 8-bit operand.
* The Parity flag (PF) is set if the least-significant byte in the result contains an even number
of 1 bits. Otherwise, PF is clear. In general, it is used for error checking when there is a possi-
bility that data might be altered or corrupted.

MMX Registers

MMX technology was added onto the Pentium processor by Intel to improve the performance of
advanced multimedia and communications applications. The eight 64-bit MMX registers sup-
port special instructions called SIMD (Single-Instruction, Multiple-Data). As the name implies,
MMX instructions operate in parallel on the data values contained in MMX registers. Although
they appear to be separate registers, the MMX register names are in fact aliases to the same reg-
isters used by the floating-point unit.

XMM Registers
The x86 architecture also contains eight 128-bit registers called XMM registers. They are used
by streaming SIMD extensions to the instruction set.

2.2.3 Floating-Point Unit

The floating-point unit (FPU) performs high-speed floating-point arithmetic. At one time a
separate coprocessor chip was required for this. From the Intel486 onward, the FPU has been
integrated into the main processor chip. There are eight floating-point data registers in the FPU,
named ST(0), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6), and ST(7). The remaining control and
pointer registers are shown in Figure 2-7.

2.2.4 Overview of Intel Microprocessors
Let’s take a short trip down memory lane, starting when the IBM-PC was first released, when

PC’s had 64 KByte of RAM and no hard drives.
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Fiqure 2-7  Floating-Point Unit Registers.

80-bit Data Registers
48-bit Pointer Registers

ST(0)

FPU Instruction Pointer
ST(1)
ST(2) FPU Data Pointer
ST(3)
ST(4) 16-bit Control Registers
ST(5) Tag Register
ST(6) Control Register
ST(7) Status Register

Opcode Register

When discussing processor evolution, references to the data bus size are significant because
they affect system performance. When a processor uses an 8-bit data bus to transfer a 32-bit inte-
ger to memory, for example, the integer must be broken into four parts, and four separate data
transfer operations are required to complete the operation. Given that there is a significant delay
(called latency) involved in each data transfer operation, an 8-bit data bus transfers data at one-
fourth the speed of a 32-bit data bus.

Intel 8086 The Intel 8086 processor (1978) marked the beginning of the modern Intel archi-
tecture family. The primary innovations of the 8086 over earlier processors were that it had 16-
bit registers and a 16-bit data bus and used a segmented memory model permitting programs to
address up to 1 MByte of RAM. Greater access to memory made it possible to write complex
business applications. The IBM-PC (1980) contained an Intel 8088 processor, which was identi-
cal to the 8086, except it had an 8-bit data bus that made it slightly less expensive to produce.
Today, the Intel 8088 is used in low-cost microcontrollers.

Backward Compatibility. Each processor introduced into the Intel family since the 8086 has been
backward-compatible with earlier processors. This approach enables older software to run (without
recompilation) on newer computers without modification. Newer software eventually appeared, requiring
features of more advanced processors.

Intel 80286 The Intel 80286 processor, first used in the IBM-PC/AT computer, set a new stan-
dard of speed and power. It was the first Intel processor to run in protected mode. The 80286
addresses up to 16 MByte of RAM using a 24-bit address bus.

IA-32 Processor Family (x86)
The Intel 80386 processor (1985) introduced 32-bit data registers and a 32-bit address bus and
external data path. Here, we can distinguish between an internal data path, which is a bus that
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moves data within the processor itself, and an external data path, which is the bus that moves
data to and from memory and I/O devices. As such, it was the first member of the IA-32 family.
IA-32 processors can address virtual memory larger than the computer’s physical memory. Each
program is assigned a 4-GByte (gigabyte) linear address space.

Intel i486 Continuing the IA-32 family, the Intel i486 processor (1989) featured an instruction
set microarchitecture using pipelining techniques that permitted multiple instructions to be pro-
cessed at the same time.

Pentium  The Intel Pentium processor (1993) added many performance improvements, includ-
ing a superscalar design with two parallel execution pipelines. Two instructions could be
decoded and executed simultaneously. The Pentium used a 32-bit address bus and a 64-bit inter-
nal data path (inside the processor itself), and introduced MMX technology to the IA-32 family.

Intel64 for 64-bit Processing
Intel64 is the name given to Intel’s implementation of the x86-64 specification, originally devel-
oped by AMD. Intel64 provides a 64-bit linear address space, although individual processors gen-
erally implement less than 64 bits. Their physical address space can be greater than 64 GBytes.
Intel64 provides backward compatibility to run 32-bit programs with no performance penalty.
Intel64 was first used in the Pentium Extreme processor, and has continued in the Intel Xeon,
Celeron D, Pentium D, Core 2, Core i7, and Atom processors, as well as newer generations of
the Pentium 4. In addition to the Protected mode, Real-address mode, and System management
modes of the IA-32 processor family, Intel64 processors support the IA-32e mode, designed
for 64-bit processing.

IA-32e Mode TA-32e Mode has two sub-modes, designed to benefit users of 64-bit operating
systems such as Windows Vista and Linux: Compatibility mode and 64-bit mode.

1. Compatibility mode permits legacy 16-bit and 32-bit applications to run without recompila-
tion under a 64-bit operating system. Operand sizes are 16 and 32 bits, and the addressable
range of memory is 4 GByte.

2. 64-bit mode uses 64-bit addresses, 64-bit (and 32-bit) operands, a greater number of regis-
ters, and extensions to the instruction set to improve the processing of massive amounts of
data. Memory segmentation is disabled, creating a flat 64-bit linear-address space.

Individual applications running at the same time can run in either Compatibility mode or 64-bit
mode. But an application running in 64-bit mode cannot use the segmented or real-address modes.

Processor Families At the time of this book’s publication, the following Intel processor fam-
ilies were currently the most widely used. To give you an idea of their relative power, some spec-
ifications are listed. These statistics become obsolete quickly, so consult the intel.com Web site
for the latest information:

Intel Celeron—dual-core, 512 KByte L2 cache, up to 2.2 GHz, 800 MHz bus

Intel Pentium—dual-core, 2 MByte L2 cache, 1.6 to 2.7 GHz, 800 MHz bus

Core 2 Duo—2 processor cores, 1.8-3.33 GHz, 64 bit, 6 MByte L2 cache

Core 2 Quad—4 processor cores, up to 12 MByte L2 cache, 1333 MHz front side bus
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Core i7—4 processor cores, (up to 2.93 GHz), 8 processing threads, 8§ MByte smart cache,
3 channels DDR3 memory

Hyperthreading and Multi-core Processing

A dual processor system contains two separate physical computer processors, usually attached
to the same motherboard with its own socket. The computer’s operating system will schedule
two separate tasks (processes or threads) to run at the same time, in parallel.

Intel Hyper-Threading (HT) technology allows two tasks to execute on a traditional single
processor at the same time. This approach is less expensive than a dual processor system, and it
makes efficient use of the processor’s resources. In effect, a single physical processor is divided
into two logical processors. The shared resources include cache, registers, and execution units.
The Intel Xeon processor and some Pentium 4 processors use HT technology.

The term Dual Core refers to integrated circuit (IC) chips that contain two complete physical
computer processor chips in the same IC package. Each processor has its own resources, and each
has its own communication path to the computer system’s front-side bus. Sometimes, dual-core
processors also incorporate HT technology, causing them to appear as four logical processors,
running four tasks simultaneously. Intel also offers packages containing more than two proces-
sors, called multi core.

CISC and RISC

The Intel 8086 processor was the first in a line of processors using a Complex Instruction Set
Computer (CISC) design. The instruction set is large, and includes a wide variety of memory-
addressing, shifting, arithmetic, data movement, and logical operations. Complex instruction
sets permit compiled programs to contain a relatively small number of instructions. A major dis-
advantage to CISC design is that complex instructions require a relatively long time to decode
and execute. An interpreter inside the CPU written in a language called microcode decodes and
executes each machine instruction. Once Intel released the 8086, it became necessary for all sub-
sequent Intel processors to be backward-compatible with the first one.

A completely different approach to microprocessor design is called Reduced Instruction
Set (RISC). A RISC consists of a relatively small number of short, simple instructions that execute
relatively quickly. Rather than using a microcode interpreter to decode and execute machine instruc-
tions, a RISC processor directly decodes and executes instructions using hardware. High-speed
engineering and graphics workstations have been built using RISC processors for many years.

Because of the huge popularity of IBM-PC—compatible computers, Intel was able to lower the
price of its processors and dominate the microprocessor market. At the same time, Intel recognized
many advantages to the RISC approach and found a way to use RISC-like features, such as over-
lapping execution in the Pentium series. The x86 instruction set continues to expand and improve.

2.2.,5 Section Review
1. What are the x86 processor’s three basic modes of operation?
2. Name all eight 32-bit general-purpose registers.
3. Name all six segment registers.
4

. What special purpose does the ECX register serve?



2.3  x86 Memory MANAGEMENT 43

5. Besides the stack pointer (ESP), what other register points to variables on the stack?
6. Name at least four CPU status flags.
7. Which flag is set when the result of an unsigned arithmetic operation is too large to fit into the
destination?
8. Which flag is set when the result of a signed arithmetic operation is either too large or too
small to fit into the destination?
9. Which flag is set when an arithmetic or logical operation generates a negative result?
10. Which part of the CPU performs floating-point arithmetic?
11. How many bits long are the FPU data registers?
12. Which Intel processor was the first member of the IA-32 family?
13. Which Intel processor first introduced superscalar execution?
14. Which Intel processor first used MMX technology?
15. Describe the CISC design approach.
16. Describe the RISC design approach.

2.3 x86 Memory Management

x86 processors manage memory according to the basic modes of operation discussed in
Section 2.2.1. Protected mode is the most robust and powerful, but it does restrict application
programs from directly accessing system hardware.

In real-address mode, only 1 MByte of memory can be addressed, from hexadecimal 00000
to FFFFF. The processor can run only one program at a time, but it can momentarily interrupt
that program to process requests (called interrupts) from peripherals. Application programs are
permitted to access any memory location, including addresses that are linked directly to system
hardware. The MS-DOS operating system runs in real-address mode, and Windows 95 and 98
can be booted into this mode.

In protected mode, the processor can run multiple programs at the same time. It assigns each
process (running program) a total of 4 GByte of memory. Each program can be assigned its own
reserved memory area, and programs are prevented from accidentally accessing each other’s
code and data. MS-Windows and Linux run in protected mode.

In virtual-8086 mode, the computer runs in protected mode and creates a virtual 8086
machine with its own 1-MByte address space that simulates an 80x86 computer running in real-
address mode. Windows NT and 2000, for example, create a virtual 8086 machine when you
open a Command window. You can run many such windows at the same time, and each is pro-
tected from the actions of the others. Some MS-DOS programs that make direct references to
computer hardware will not run in this mode under Windows NT, 2000, and XP.

In Sections 2.3.1 and 2.3.2 we will explain details of both real-address mode and protected
mode.

2.3.1 Real-Address Mode
In real-address mode, an x86 processor can access 1,048,576 bytes of memory (1 MByte) using
20-bit addresses in the range O to FFFFF hexadecimal. Intel engineers had to solve a basic
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problem: The 16-bit registers in the Intel 8086 processor could not hold 20-bit addresses. They
came up with a scheme known as segmented memory. All of memory is divided into 64-kilobyte
(64-KByte) units called segments, shown in Figure 2—8. An analogy is a large building, in which
segments represent the building’s floors. A person can ride the elevator to a particular floor, get
off, and begin following the room numbers to locate a room. The offset of a room can be thought
of as the distance from the elevator to the room.

Again in Figure 2-8, each segment begins at an address having a zero for its last hexadeci-
mal digit. Because the last digit is always zero, it is omitted when representing segment val-
ues. A segment value of C000, for example, refers to the segment at address CO000. The same
figure shows an expansion of the segment at 80000. To reach a byte in this segment, add a 16-
bit offset (0 to FFFF) to the segment’s base location. The address 8000:0250, for example,
represents an offset of 250 inside the segment beginning at address 80000. The linear address
is 80250h.

Figure 2-8 Segmented Memory Map, Real-Address Mode.
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20-Bit Linear Address Calculation An address refers to a single location in memory, and
x86 processors permit each byte location to have a separate address. The term for this is byte-
addressable memory. In real-address mode, the linear (or absolute) address is 20 bits, ranging
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from O to FFFFF hexadecimal. Programs cannot use linear addresses directly, so addresses are
expressed using two 16-bit integers. A segment-offset address includes the following:

* A 16-bit segment value, placed in one of the segment registers (CS, DS, ES, SS)

* A 16-bit offset value
The CPU automatically converts a segment-offset address to a 20-bit linear address. Suppose a
variable’s hexadecimal segment-offset address is 08F1:0100. The CPU multiplies the segment
value by 16 (10 hexadecimal) and adds the product to the variable’s offset:

08F1h X 10h = 08F10h (adjusted segment value)
Adjusted Segment value: 0 8 F 1 0
Add the offset: 0O 1 0 0
Linear address: 0 9 0 1 o0

A typical program has three segments: code, data, and stack. Three segment registers, CS, DS,
and SS, contain the segments’ base locations:

* CS contains the 16-bit code segment address

* DS contains the 16-bit data segment address

* SS contains the 16-bit stack segment address

* ES, FS, and GS can point to alternate data segments, that is, segments that supplement the
default data segment

2.3.2 Protected Mode
Protected mode is the more powerful “native” processor mode. When running in protected
mode, a program’s linear address space is 4 GBytes, using addresses 0 to FFFFFFFF hexadeci-
mal. In the context of the Microsoft Assembler, the flat segmentation model is appropriate
for protected mode programming. The flat model is easy to use because it requires only a single
32-bit integer to hold the address of an instruction or variable. The CPU performs address calcu-
lation and translation in the background, all of which are transparent to application program-
mers. Segment registers (CS, DS, SS, ES, FS, GS) point to segment descriptor tables, which the
operating system uses to keep track of locations of individual program segments. A typical
protected-mode program has three segments: code, data, and stack, using the CS, DS, and SS
segment registers:

* CS references the descriptor table for the code segment

* DS references the descriptor table for the data segment

* SS references the descriptor table for the stack segment

Flat Segmentation Model

In the flat segmentation model, all segments are mapped to the entire 32-bit physical address
space of the computer. At least two segments are required, one for code and one for data. Each
segment is defined by a segment descriptor, a 64-bit integer stored in a table known as the global
descriptor table (GDT). Figure 2-9 shows a segment descriptor whose base address field points
to the first available location in memory (00000000). In this figure, the segment limit is 0040.
The access field contains bits that determine how the segment can be used. All modern operating
systems based on x86 architecture use the flat segmentation model.
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Fiqure 2-9  Flat Segmentation Model.
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Multi-Segment Model

In the multi-segment model, each task or program is given its own table of segment descriptors,
called a local descriptor table (LDT). Each descriptor points to a segment, which can be distinct
from all segments used by other processes. Each segment has its own address space. In
Figure 2-10, each entry in the LDT points to a different segment in memory. Each segment
descriptor specifies the exact size of its segment. For example, the segment beginning at 3000
has size 2000 hexadecimal, which is computed as (0002 X 1000 hexadecimal). The segment
beginning at 8000 has size AO0OO hexadecimal.

Figure 2-10  Multi-Segment Model.
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Paging
x86 processors support paging, a feature that permits segments to be divided into 4,096-byte
blocks of memory called pages. Paging permits the total memory used by all programs running at the
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same time to be much larger than the computer’s physical memory. The complete collection of
pages mapped by the operating system is called virtual memory. Operating systems have utility
programs named virtual memory managers.

Paging is an important solution to a vexing problem faced by software and hardware design-
ers. A program must be loaded into main memory before it can run, but memory is expensive.
Users want to be able to load numerous programs into memory and switch among them at will.
Disk storage, on the other hand, is cheap and plentiful. Paging provides the illusion that memory
is almost unlimited in size. Disk access is much slower than main memory access, so the more a
program relies on paging, the slower it runs.

When a task is running, parts of it can be stored on disk if they are not currently in use.
Parts of the task are paged (swapped) to disk. Other actively executing pages remain in mem-
ory. When the processor begins to execute code that has been paged out of memory it issues a
page fault, causing the page or pages containing the required code or data to be loaded back
into memory. To see how this works, find a computer with somewhat limited memory and run
many large applications at the same time. You should notice a delay when switching from one
program to another because the operating system must transfer paged portions of each pro-
gram into memory from disk. A computer runs faster when more memory is installed because
large application files and programs can be kept entirely in memory, reducing the amount of

paging.

2.3.3 Section Review
1. What is the range of addressable memory in protected mode?
2. What is the range of addressable memory in real-address mode?

3. The two ways of describing an address in real-address mode are segment-offset and

4. In real-address mode, convert the following hexadecimal segment-offset address to a linear
address: 0950:0100.

5. In real-address mode, convert the following hexadecimal segment-offset address to a linear
address: 0CD1:02EO.

6. In MASM’s flat segmentation model, how many bits hold the address of an instruction or
variable?
7. In protected mode, which register references the descriptor for the stack segment?
8. In protected mode, which table contains pointers to memory segments used by a single
program?
9. In the flat segmentation model, which table contains pointers to at least two segments?
10. What is the main advantage to using the paging feature of x86 processors?
11. Challenge: Can you think of a reason why MS-DOS was not designed to support protected-
mode programming?
12. Challenge: In real-address mode, demonstrate two segment-offset addresses that point to
the same linear address.
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2.4 Components of a Typical x86 Computer

Let us look at how the x86 integrates with other components by examining a typical mother-
board configuration and the set of chips that surround the CPU. Then we will discuss memory,
I/O ports, and common device interfaces. Finally, we will show how assembly language pro-
grams can perform I/O at different levels of access by tapping into system hardware, firmware,
and by calling functions in the operating system.

2.4.1 Motherboard

The heart of a microcomputer is its motherboard, a flat circuit board onto which are placed the
computer’s CPU, supporting processors (chipset), main memory, input-output connectors,
power supply connectors, and expansion slots. The various components are connected to each
other by a bus, a set of wires etched directly on the motherboard. Dozens of motherboards are
available on the PC market, varying in expansion capabilities, integrated components, and
speed. The following components have traditionally been found on PC motherboards:

* A CPU socket. Sockets are different shapes and sizes, depending on the type of processor
they support.

* Memory slots (SIMM or DIMM) holding small plug-in memory boards

* BIOS (basic input-output system) computer chips, holding system software

* CMOS RAM, with a small circular battery to keep it powered

¢ Connectors for mass-storage devices such as hard drives and CD-ROMs

* USB connectors for external devices

* Keyboard and mouse ports

* PCI bus connectors for sound cards, graphics cards, data acquisition boards, and other input-
output devices

The following components are optional:
* Integrated sound processor
* Parallel and serial device connectors
e Integrated network adapter
* AGP bus connector for a high-speed video card

Following are some important support processors in a typical system:

* The Floating-Point Unit (FPU) handles floating-point and extended integer calculations.

* The 8284/82C284 Clock Generator, known simply as the clock, oscillates at a constant speed.
The clock generator synchronizes the CPU and the rest of the computer.

* The 8259A Programmable Interrupt Controller (PIC) handles external interrupts from hard-
ware devices, such as the keyboard, system clock, and disk drives. These devices interrupt the
CPU and make it process their requests immediately.

 The 8253 Programmable Interval Timer/Counter interrupts the system 18.2 times per second,
updates the system date and clock, and controls the speaker. It is also responsible for con-
stantly refreshing memory because RAM memory chips can remember their data for only a
few milliseconds.

* The 8255 Programmable Parallel Port transfers data to and from the computer using the
IEEE Parallel Port interface. This port is commonly used for printers, but it can be used with
other input-output devices as well.



2.4 Components of a Typical x86 Compurer 49

PCI and PCI Express Bus Architectures

The PCI (Peripheral Component Interconnect) bus provides a connecting bridge between the
CPU and other system devices such as hard drives, memory, video controllers, sound cards, and
network controllers. More recently, the PCI Express bus provides two-way serial connections
between devices, memory, and the processor. It carries data in packets, similar to networks, in
separate “lanes.” It is widely supported by graphics controllers, and can transfer data at about
4 GByte per second.

Motherboard Chipset
A motherboard chipset is a collection of processor chips designed to work together on a specific
type of motherboard. Various chipsets have features that increase processing power, multimedia
capabilities, or reduce power consumption. The Intel P965 Express Chipset can be used as an
example. It is used in desktop PCs, with either an Intel Core 2 Duo or Pentium D processor. Here
are some of its features:
e Intel Fast Memory Access uses an updated Memory Controller Hub (MCH). It can access
dual-channel DDR2 memory, at an 800 MHz clock speed.
* An I/O Controller Hub (Intel ICH8/R/DH) uses Intel Matrix Storage Technology (MST) to
support six Serial ATA devices (disk drives).
e Support for 10 USB ports, six PCI express slots, networking, Intel Quiet System technology.
* A high definition audio chip provides digital sound capabilities.
A diagram may be seen in Figure 2—11. Motherboard manufacturers will build products around
specific chipsets. For example, the PSB-E P965 motherboard by Asus Corporation uses the P965
chipset.

Figure 2-11  Intel 965 Express Chipset Block Diagram.

Source: The Intel P965 Express Chipset (product brief),
© 2006 by Intel Corporation, used by permission.
http://www.intel.com/Assets/PDF/prodbrief/P965-prodbrief.pdf
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2.4.2 Video Output

The video adapter controls the display of text and graphics. It has two components: the video
controller and video display memory. All graphics and text displayed on the monitor are written
into video display RAM, where it is then sent to the monitor by the video controller. The video
controller is itself a special-purpose microprocessor, relieving the primary CPU of the job of
controlling video hardware.

Older Cathode-ray tube (CRT) video displays used a technique called raster scanning to dis-
play images. A beam of electrons illuminates phosphorus dots on the screen called pixels. Starting
at the top of the screen, the gun fires electrons from the left side to the right in a horizontal row,
briefly turns off, and returns to the left side of the screen to begin a new row. Horizontal retrace
refers to the time period when the gun is off between rows. When the last row is drawn, the gun
turns off (called the vertical retrace) and moves to the upper left corner of the screen to start over.

A direct digital Liquid Crystal Display (LCD) panel, considered standard today, receives a
digital bit stream directly from the video controller and does not require raster scanning. Digital
displays generally display sharper text than analog displays.

2.4.3 Memory

Several basic types of memory are used in Intel-based systems: read-only memory (ROM), eras-
able programmable read-only memory (EPROM), dynamic random-access memory (DRAM),
static RAM (SRAM), video RAM (VRAM), and complimentary metal oxide semiconductor
(CMOS) RAM:

* ROM is permanently burned into a chip and cannot be erased.

* EPROM can be erased slowly with ultraviolet light and reprogrammed.

* DRAM, commonly known as main memory, is where programs and data are kept when a
program is running. It is inexpensive, but must be refreshed every millisecond to avoid losing
its contents. Some systems use ECC (error checking and correcting) memory.

* SRAM is used primarily for expensive, high-speed cache memory. It does not have to be
refreshed. CPU cache memory is comprised of SRAM.

* VRAM holds video data. It is dual ported, allowing one port to continuously refresh the dis-
play while another port writes data to the display.

* CMOS RAM on the system motherboard stores system setup information. It is refreshed by
a battery, so its contents are retained when the computer’s power is off.

2.4.4 Input-Output Ports and Device Interfaces

Universal Serial Bus (USB) The Universal Serial Bus port provides intelligent, high-speed
connection between a computer and USB-supported devices. USB Version 2.0 supports data
transfer speeds of 480 megabits per second. You can connect single-function units (mice, print-
ers) or compound devices having more than one peripheral sharing the same port. A USB hub,
shown in Figure 2—12, is a compound device connected to several other devices, including other
USB hubs.

When a device is attached to the computer via USB, the computer queries (enumerates) the
device to get its name, device type, and the type of device driver it supports. The computer can
suspend power to individual devices, putting them in a suspended state.
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Parallel Port Printers have traditionally been connected to computers using parallel ports.
The term parallel indicates that the bits in a data byte or word travel simultaneously from the
computer to the device, each on a separate wire. Data is transferred at high speed (1 MByte per
second) over short distances, usually no more than 10 feet. DOS automatically recognizes three
parallel ports: LPT1, LPT2, and LPT3. Parallel ports can be bidirectional, allowing the com-
puter to both send data to and receive information from a device. Although many printers now
use USB connectors, parallel ports are useful for high-speed connections to laboratory instru-
ments and custom hardware devices.

Figure 2-12  USB Hub Configuration.
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ATA Host Adapters Known as intelligent drive electronics or integrated drive electronics,
ATA host adapters connect computers to mass-storage devices such as hard drives and CD-
ROMs. The letters ATA stand for advanced technology attachment, referring to the way the drive
controller hardware and firmware are located on the drive itself. ATA adapters use a common
interface named IDE (integrated drive electronics) found on all motherboards.

SATA Host Adapters SATA (serial ATA) host adapters have become the most common stor-
age interface for laptop and desktop computers, replacing IDE and ATA interfaces. With only
four signal lines, serial ATA uses an inexpensive high-speed cable that permits reading and writ-
ing data in both directions simultaneously.

FireWire FireWire is a high-speed external bus standard supporting data transfer speeds up to
800 MByte per second. A large number of devices can be attached to a single FireWire bus, and
data can be delivered at a guaranteed rate (isochronous data transfer).

Serial Port An RS-232 serial interface sends binary bits one at a time, more slowly than par-
allel and USB ports, but with the ability to send over larger distances. The highest data transfer
rate is 19,200 bits per second. Laboratory acquisition devices often use serial interfaces, as do
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telephone modems. The 16550 UART (Universal Asynchronous Receiver Transmitter) chip con-
trols serial data transfer.

Bluetooth Bluetooth is a wireless communication protocol for exchanging small amounts of
data over short distances. It is commonly used with mobile devices such as cell phones and
PDAs. It features low power consumption and can be implemented using low-cost microchips.

Wi-Fi  Wi-Fi, sometimes known as wireless Ethernet, describes a certification asserting that a
device can send data wirelessly to another Wi-Fi enabled device. Wi-Fi is based on industry-standard
IEEE 802.11 standards. Wi-Fi devices operate at a greater speed and capacity than Bluetooth. Wi-Fi
devices often communicate with each other when in range of a wireless network. For example, a
wireless network can be established by a network router that has Wi-Fi capabilities. Most laptop com-
puters sold today have built-in Wi-Fi capabilities.

2.4.5 Section Review

Describe SRAM and its most common use.

Describe VRAM.

List at least two features found in the Intel P965 Express chipset.

Name four types of RAM mentioned in this chapter.

Which type of RAM is used for Level 2 cache memory?

What advantages does a USB device offer over a standard serial or parallel device?
What is the purpose of the 8259A PIC controller?

What are the main differences between Wi-Fi and Bluetooth?

® NNk =

2.5 Input-Output System

Tip: Because computer games are so memory and I/O intensive, they push computer performance to the
max. Programmers who excel at game programming often know a lot about video and sound hardware,
and optimize their code for hardware features.

2.5.1 Levels of I/0 Access

Application programs routinely read input from keyboard and disk files and write output to the
screen and to files. I/O need not be accomplished by directly accessing hardware—instead, you
can call functions provided by the operating system. I/O is available at different access levels,
similar to the virtual machine concept shown in Chapter 1. There are three primary levels:

* High-level language functions: A high-level programming language such as C++ or Java
contains functions to perform input-output. These functions are portable because they work
on a variety of different computer systems and are not dependent on any one operating
system.

* Operating system: Programmers can call operating system functions from a library known
as the API (application programming interface). The operating system provides high-level opera-
tions such as writing strings to files, reading strings from the keyboard, and allocating blocks of
memory.
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* BIOS: The Basic Input-Output System is a collection of low-level subroutines that communi-
cate directly with hardware devices. The BIOS is installed by the computer’s manufacturer and
is tailored to fit the computer’s hardware. Operating systems typically communicate with
the BIOS.

Device Drivers Device drivers are programs that permit the operating system to communicate
directly with hardware devices. For example, a device driver might receive a request from the
OS to read some data; the device driver satisfies the request by executing code in the device
firmware that reads data in a way that is unique to the device. Device drivers are usually installed
one of two ways: (1) before a specific hardware device is attached to a computer, or (2) after a
device has been attached and identified. In the latter case, the OS recognizes the device name
and signature; it then locates and installs the device driver software onto the computer.

We can put the I/O hierarchy into perspective by showing what happens when an application
program displays a string of characters on the screen in (Figure 2—13). The following steps are
involved:

1. A statement in the application program calls an HLL library function that writes the string to
standard output.

2. The library function (Level 3) calls an operating system function, passing a string pointer.

3. The operating system function (Level 2) uses a loop to call a BIOS subroutine, passing it the
ASCII code and color of each character. The operating system calls another BIOS subroutine
to advance the cursor to the next position on the screen.

4. The BIOS subroutine (Level 1) receives a character, maps it to a particular system font, and
sends the character to a hardware port attached to the video controller card.

5. The video controller card (Level 0) generates timed hardware signals to the video display that
control the raster scanning and displaying of pixels.

Figure 2-1% Access Levels for Input-Output Operations.
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Programming at Multiple Levels Assembly language programs have power and flexibility in
the area of input-output programming. They can choose from the following access levels
(Figure 2—14):

e Level 3: Call library functions to perform generic text I/O and file-based I/0. We supply such
a library with this book, for instance.

e Level 2: Call operating system functions to perform generic text I/O and file-based I/O. If the OS
uses a graphical user interface, it has functions to display graphics in a device-independent way.

e Level 1: Call BIOS functions to control device-specific features such as color, graphics,
sound, keyboard input, and low-level disk I/O.

e Level 0: Send and receive data from hardware ports, having absolute control over specific
devices. This approach cannot be used with a wide variety of hardware devices, so we say
that it is not portable. Different devices often use different hardware ports, so the program
code must be customized for each specific type of device.

Figure 2-14 Assembly Language Access Levels.
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What are the tradeoffs? Control versus portability is the primary one. Level 2 (OS) works on
any computer running the same operating system. If an I/O device lacks certain capabilities, the
OS will do its best to approximate the intended result. Level 2 is not particularly fast because
each I/O call must go through several layers before it executes.

Level 1 (BIOS) works on all systems having a standard BIOS, but will not produce the same
result on all systems. For example, two computers might have video displays with different res-
olution capabilities. A programmer at Level 1 would have to write code to detect the user’s hard-
ware setup and adjust the output format to match. Level 1 runs faster than Level 2 because it is
only one level above the hardware.

Level 0 (hardware) works with generic devices such as serial ports and with specific I/O
devices produced by known manufacturers. Programs using this level must extend their coding
logic to handle variations in I/O devices. Real-mode game programs are prime examples
because they usually take control of the computer. Programs at this level execute as quickly as
the hardware will permit.

Suppose, for example, you wanted to play a WAV file using an audio controller device. At
the OS level, you would not have to know what type of device was installed, and you would
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not be concerned with nonstandard features the card might have. At the BIOS level, you
would query the sound card (using its installed device driver software) and find out whether it
belonged to a certain class of sound cards having known features. At the hardware level, you
would fine tune the program for certain models of audio cards, taking advantage of each card’s
special features.

Finally, not all operating systems permit user programs to directly access system hardware.
Such access is reserved for the operating system itself and specialized device driver programs.
This is the case with all versions of Microsoft Windows beyond Windows 95, in which vital
system resources are shielded from application programs. MS-DOS, on the other hand, has no
such restrictions.

2.5.2 Section Review

1. Of the four levels of input/output in a computer system, which is the most universal and
portable?

2. What characteristics distinguish BIOS-level input/output?

3. Why are device drivers necessary, given that the BIOS already has code that communicates
with the computer’s hardware?

4. In the example regarding displaying a string of characters, which level exists between the
operating system and the video controller card?

5. At which level(s) can an assembly language program manipulate input/output?

6. Why do game programs often send their sound output directly to the sound card’s hardware
ports?

7. Challenge: Ts it likely that the BIOS for a computer running MS-Windows would be differ-
ent from that used by a computer running Linux?

2.6 Chapter Summary

The central processor unit (CPU) is where calculations and logic processing occur. It contains a
limited number of storage locations called registers, a high-frequency clock to synchronize its
operations, a control unit, and the arithmetic logic unit. The memory storage unit is where
instructions and data are held while a computer program is running. A bus is a series of parallel
wires that transmit data among various parts of the computer.

The execution of a single machine instruction can be divided into a sequence of individual
operations called the instruction execution cycle. The three primary operations are fetch, decode,
and execute. Each step in the instruction cycle takes at least one tick of the system clock, called
a clock cycle. The load and execute sequence describes how a program is located by the operat-
ing system, loaded into memory, and executed by the operating system.

A multitasking operating system can run multiple tasks at the same time. It runs on a proces-
sor that supports task switching, the ability to save the current task state and transfer control to a
different task.

x86 processors have three basic modes of operation: protected mode, real-address mode, and
system management mode. In addition, virtual-8086 mode is a special case of protected mode.
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Intel64 processors have two basic modes of operation: Compatibility mode and 64-bit mode.
In Compatibility mode they can run 16-bit and 32-bit applications.

Registers are named locations within the CPU that can be accessed much more quickly than
conventional memory. Following are brief descriptions of register types:

* The general-purpose registers are primarily used for arithmetic, data movement, and logical
operations.

e The segment registers are used as base locations for preassigned memory areas called
segments.

* The EIP (instruction pointer) register contains the address of the next instruction to be
executed.

* The EFLAGS (extended flags) register consists of individual binary bits that control the oper-
ation of the CPU and reflect the outcome of ALU operations.

The x86 has a floating-point unit (FPU) expressly used for the execution of high-speed floating-
point instructions.

The Intel 8086 processor marked the beginning of the modern Intel architecture family. The
Intel 80386 processor, the first of the IA-32 family, featured 32-bit registers and a 32-bit address
bus and external data path. More recent processors, such as the Core 2 Duo, have multiple
processor cores. They employ Intel Hyper-Threading technology to execute multiple tasks in
parallel on the same processor core.

x86 processors are based on the complex instruction set (CISC) approach. The instruction set
includes powerful ways to address data and instructions that are relatively high level complex
operations. A completely different approach to microprocessor design is the reduced instruction
set (RISC). A RISC machine language consists of a relatively small number of short, simple
instructions that can be executed quickly by the processor.

In real-address mode, only 1 MByte of memory can be addressed, using hexadecimal
addresses 00000 to FFFFF. In protected mode, the processor can run multiple programs at the
same time. It assigns each process (running program) a total of 4 GByte of virtual memory. In
virtual-8086 mode, the processor runs in protected mode and creates a virtual 8086 machine with
its own 1-MByte address space that simulates an Intel 8086 computer running in real-address
mode.

In the flat segmentation model, all segments are mapped to the entire physical address space
of the computer. In the multi-segment model, each task is given its own table of segment
descriptors, called a local descriptor table (LDT). x86 processors support a feature called pag-
ing, which permits a segment to be divided into 4096-byte blocks of memory called pages. Pag-
ing permits the total memory used by all programs running at the same time to be much larger
than the computer’s actual (physical) memory.

The heart of any microcomputer is its motherboard, holding the computer’s CPU, supporting
processors, main memory, input-output connectors, power supply connectors, and expansion
slots. The PCI (Peripheral Component Interconnect) bus provides a convenient upgrade path for
Pentium processors. Most motherboards contain an integrated set of several microprocessors
and controllers, called a chipset. The chipset largely determines the capabilities of the computer.
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The video adapter controls the display of text and graphics on IBM-compatibles. It has two
components: the video controller and video display memory.

Several basic types of memory are used in PCs: ROM, EPROM, Dynamic RAM (DRAM),
Static RAM (SRAM), Video RAM (VRAM), and CMOS RAM.

The Universal Serial Bus (USB) port provides an intelligent, high-speed connection between a
computer and USB-supported devices. A parallel port transmits 8 or 16 data bits simultaneously
from one device to another. An RS-232 serial port sends binary bits one at a time, resulting in
slower speeds than the parallel and USB ports.

Input-output is accomplished via different access levels, similar to the virtual machine con-
cept. Library functions are at the highest level, and the operating system is at the next level
below. The BIOS (Basic Input-Output System) is a collection of functions that communicate
directly with hardware devices. Programs can also directly access input-output devices.

A simple instruction set can be designed in such a way that each instruction is the same length,
it carries out most operations within registers, and only reads and writes memory from a single
register. The RISC (reduced instruction set architecture) is modeled along these principles.

2.7 Chapter Exercises

The following exercises require you to look in Intel’s online manuals relating to the Intel64 and

IA-32 processor architecture.

1. What are some of the innovative characteristics of the P6 processor architecture?

2. Locate a description of the Intel NetBurst Microarchitecture in one of the Intel64 and TA-32
processor manuals. Read about and summarize the functions of the Front End Pipeline.

3. Briefly explain the meaning of out of order execution. Why is it useful?

4. In processors that use Intel’s Hyperthreading Technology, what components are coupled with
each logical processor?

5. What is the size of the physical address space in a processor that implements the Intel64
architecture?

6. What are the Intel Virtual Machine Extensions? Why are virtual machines useful today?
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Chapter 1 introduced number concepts and virtual machines. Chapter 2 introduced hardware
basics. Now you’re ready to begin programming. There is an element of truth in saying “Assem-
bly language is simple.” It was designed to run in little memory and consists of mainly low-level,
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simple operations. Then why does it have the reputation of being difficult to learn? After all, how
hard can it be to move data between registers and do a calculation? Here’s a proof of concept—
a simple program in assembly language that adds two numbers and displays the result:

main PROC
mov eax, b move 5 to the EAX register
add eax, 6 add 6 to the EAX register
call WriteInt display value in EAX
exit ; quit

main ENDP

We simplified things a bit by calling a library subroutine named WriteInt, which itself con-
tains a fair amount of code. But in general, assembly language is not hard to learn if you’re
happy writing short programs that do practically nothing.

Details, Details Becoming a skilled assembly language programmer requires a love of details.
You will find it helpful to build a foundation of basic information and gradually fill in the details. If
you were a cook, we would show you around the kitchen and explain how to use mixers, grinders,
knives, stoves, and saucepans. Similarly, we will identify the ingredients of assembly language,
mix them together, and cook up a few tasty programs.

Next, we describe basic elements of Microsoft Macro Assembler (MASM) syntax. Knowing
these elements will help you to write your first programs in assembly language.

3.1.1 Integer Constants
An integer constant (or integer literal) is made up of an optional leading sign, one or more digits,
and an optional suffix character (called a radix) indicating the number’s base:

[{+|-}] digits [radix]

Microsoft syntax notation is used throughout this chapter. Elements within square brackets [..] are
optional and elements within braces {..} require a choice of one of the enclosed elements (separated by
the | character). Elements in italics denote items that have known definitions or descriptions.

Radix may be one of the following (uppercase or lowercase):

h Hexadecimal r Encoded real

a/o Octal t Decimal (alternate)
d Decimal v Binary (alternate)
b Binary

If no radix is given, the integer constant is assumed to be decimal. Here are some examples
using different radixes:

26 Decimal 420 Octal
26d Decimal 1Ah Hexadecimal
11010011b Binary 0A3h Hexadecimal

42g Octal
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A hexadecimal constant beginning with a letter must have a leading zero to prevent the assem-
bler from interpreting it as an identifier.

3.1.2 Integer Expressions

An integer expression is a mathematical expression involving integer values and arithmetic oper-
ators. The expression must evaluate to an integer, which can be stored in 32 bits (0 through
FFFFFFFFh). The arithmetic operators are listed in Table 3-1 according to their precedence
order, from highest (1) to lowest (4). The important thing to realize about integer expressions is

that they can only be evaluated at assembly time. These are not runtime expressions.

Table 3-1  Arithmetic Operators.
Operator Name Precedence Level
O Parentheses 1
+, - Unary plus, minus 2
*/ Multiply, divide 3
MOD Modulus 3
+, = Add, subtract 4

Precedence refers to the implied order of operations when an expression contains two or
more operators. The order of operations is shown for the following expressions:

4 + 5 * 2
12 - 1 MOD 5
-5 + 2

(4 + 2) * 6

Multiply,
Modulus,

add

subtract

Unary minus, add

Add, multiply

The following are examples of valid expressions and their values:

Expression Value
16/5 3
-@B+H*6-1) -35
—3+4%6—1 20
25 mod 3 1

precedence rules.

Use parentheses in expressions to clarify the order of operations so you don’t have to remember




3.1  Basic Elements of Assembly Language 61

3.1.3 Real Number Constants

Real number constants are represented as decimal reals or encoded (hexadecimal) reals. A deci-
mal real contains an optional sign followed by an integer, a decimal point, an optional integer
that expresses a fraction, and an optional exponent:

[sign] integer. [integer] [ exponent]
Following are the syntax for the sign and exponent:

sign {+,-}
exponent E[{+,-}]integer

Following are examples of valid real number constants:

2.

+3.0

-44 .2E+05
26 .E5

At least one digit and a decimal point are required.

Encoded Reals An encoded real represents a real number in hexadecimal, using the IEEE
floating-point format for short reals (see Chapter 12). The binary representation of decimal +1.0,
for example, is

0011 1111 1000 0000 0000 0000 0000 000O

The same value would be encoded as a short real in assembly language as
3F800000xr

3.1.4 Character Constants

A character constant is a single character enclosed in single or double quotes. MASM stores the
value in memory as the character’s binary ASCII code. Examples are

AT
I|dl|

A complete list of ASCII codes is printed on the inside back cover of this book.

3.1.5 String Constants
A string constant is a sequence of characters (including spaces) enclosed in single or double
quotes:
'ABC'
iy
"Good night, Gracie"
'4096"
Embedded quotes are permitted when used in the manner shown by the following examples:

"This isn't a test"
'Say "Good night," Gracie'
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3.1.6 Reserved Words
Reserved words have special meaning in MASM and can only be used in their correct context.

There are different types of reserved words:
e Instruction mnemonics, such as MOV, ADD, and MUL
* Register names
* Directives, which tell MASM how to assemble programs
e Attributes, which provide size and usage information for variables and operands. Examples
are BYTE and WORD
* Operators, used in constant expressions
¢ Predefined symbols, such as @data, which return constant integer values at assembly time

A common list of MASM reserved words can be found in Appendix A.

3.1.7 Identifiers
An identifier is a programmer-chosen name. It might identify a variable, a constant, a procedure,
or a code label. Keep the following in mind when creating identifiers:

* They may contain between 1 and 247 characters.

* They are not case sensitive.

e The first character must be a letter (A..Z, a..z), underscore (_), @ , ?, or $. Subsequent

characters may also be digits.
¢ An identifier cannot be the same as an assembler reserved word.

You can make all keywords and identifiers case sensitive by adding the —Cp command line switch when
running the assembler.

The @ symbol is used extensively by the assembler as a prefix for predefined symbols, so
avoid it in your own identifiers. Make identifier names descriptive and easy to understand. Here
are some valid identifiers:

varl Count sfirst
_main MAX open_file
myFile xVal 12345

3.1.8 Directives
A directive is a command embedded in the source code that is recognized and acted upon by the

assembler. Directives do not execute at runtime. Directives can define variables, macros, and
procedures. They can assign names to memory segments and perform many other housekeeping
tasks related to the assembler. In MASM, directives are case insensitive. For example, it
recognizes .data, .DATA, and .Data as equivalent.

The following example helps to show the difference between directives and instructions. The
DWORD directive tells the assembler to reserve space in the program for a doubleword variable.
The MOV instruction, on the other hand, executes at runtime, copying the contents of myVar to
the EAX register:

myVar DWORD 26 ; DWORD directive
mov eax,myvar ; MOV instruction
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Although all assemblers for Intel processors share the same instruction set, they have completely
different sets of directives. The Microsoft assembler’s REPT directive, for example, is not recog-
nized by some other assemblers.

Defining Segments One important function of assembler directives is to define program sec-
tions, or segments. The .DATA directive identifies the area of a program containing variables:

.data

The .CODE directive identifies the area of a program containing executable instructions:
.code

The .STACK directive identifies the area of a program holding the runtime stack, setting its size:
.stack 100h

Appendix A contains a useful reference for MASM directives and operators.

3.1.9 Instructions
An instruction is a statement that becomes executable when a program is assembled. Instruc-
tions are translated by the assembler into machine language bytes, which are loaded and exe-
cuted by the CPU at runtime. An instruction contains four basic parts:

e Label (optional)

e [nstruction mnemonic (required)

* Operand(s) (usually required)

* Comment (optional)

This is the basic syntax:
[label:] mnemonic [operands] [;comment]

Let’s explore each part separately, beginning with the label field.

Label

A label is an identifier that acts as a place marker for instructions and data. A label placed just
before an instruction implies the instruction’s address. Similarly, a label placed just before a
variable implies the variable’s address.

Data Labels A data label identifies the location of a variable, providing a convenient way to
reference the variable in code. The following, for example, defines a variable named count:

count DWORD 100

The assembler assigns a numeric address to each label. It is possible to define multiple data
items following a label. In the following example, array defines the location of the first number
(1024). The other numbers following in memory immediately afterward:

array DWORD 1024, 2048
DWORD 4096, 8192

Variables will be explained in Section 3.4.2, and the MOV instruction will be explained in
Section 4.1.4.
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Code Labels A label in the code area of a program (where instructions are located) must end
with a colon (:) character. Code labels are used as targets of jumping and looping instructions.
For example, the following JMP (jump) instruction transfers control to the location marked by
the label named target, creating a loop:

target:
mov ax, bx

jmp target
A code label can share the same line with an instruction, or it can be on a line by itself:
Ll: mov ax, bx
L2:
Label names are created using the rules for identifiers discussed in Section 3.1.7. You can use the

same code label more than once in a program as long as each label is unique within its enclosing
procedure. (A procedure is like a function.)

Instruction Mnemonic

An instruction mnemonic is a short word that identifies an instruction. In English, a mnemonic is
a device that assists memory. Similarly, assembly language instruction mnemonics such as mov,
add, and sub provide hints about the type of operation they perform. Following are examples of
instruction mnemonics:

mov Move (assign) one value to another
add Add two values

sub Subtract one value from another
mul Multiply two values

Jjmp Jump to a new location

call Call a procedure

Operands Assembly language instructions can have between zero and three operands, each
of which can be a register, memory operand, constant expression, or input-output port. We dis-
cussed register names in Chapter 2, and we discussed constant expressions in Section 3.1.2. A
memory operand is specified by the name of a variable or by one or more registers containing
the address of a variable. A variable name implies the address of the variable and instructs the
computer to reference the contents of memory at the given address. The following table contains
several sample operands:

Example Operand Type
96 Constant (immediate value)
2+4 Constant expression
eax Register
count Memory

Following are examples of assembly language instructions having varying numbers of oper-
ands. The STC instruction, for example, has no operands:

stc ; set Carry flag
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The INC instruction has one operand:
inc eax ; add 1 to EAX
The MOV instruction has two operands:
mov count, ebx ; move EBX to count

In a two-operand instruction, the first operand is called the destination. The second operand is
the source. In general, the contents of the destination operand are modified by the instruction. In
a MOV instruction, for example, data is copied from the source to the destination.

The IMUL instruction has 3 operands, in which the first operand is the destination, and the
following 2 operands are source operands:

imul eax,ebx,5

In this case, EBX is multiplied by 5, and the product is stored in the EAX register.

Comments
Comments are an important way for the writer of a program to communicate information about
the program’s design to a person reading the source code. The following information is typically
included at the top of a program listing:

* Description of the program’s purpose

* Names of persons who created and/or revised the program

* Program creation and revision dates

e Technical notes about the program’s implementation

Comments can be specified in two ways:

* Single-line comments, beginning with a semicolon character (;). All characters following the
semicolon on the same line are ignored by the assembler.

* Block comments, beginning with the COMMENT directive and a user-specified symbol. All
subsequent lines of text are ignored by the assembler until the same user-specified symbol
appears. For example,

COMMENT !
This line is a comment.

This line is also a comment.
|

We can also use any other symbol:

COMMENT &
This line is a comment.
This line is also a comment.
&

Of course, it is important to provide comments throughout your program, particularly where the
intent of your code is not obvious.

3.1.10 The NOP (No Operation) Instruction
The safest (and the most useless) instruction you can write is called NOP (no operation). It takes
up 1 byte of program storage and doesn’t do any work. It is sometimes used by compilers and
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assemblers to align code to even-address boundaries. In the following example, the first MOV
instruction generates three machine code bytes. The NOP instruction aligns the address of the
third instruction to a doubleword boundary (even multiple of 4):

00000000 66 8B C3 mov ax, bx
00000003 90 nop ; align next instruction
00000004 8B D1 mov edx, ecx

x86 processors are designed to load code and data more quickly from even doubleword addresses.
3.1.11 Section Review

1. Identify valid suffix characters used in integer constants.
2. (Yes/No): Is A5h a valid hexadecimal constant?

hed

(Yes/No): Does the multiplication operator (*) have a higher precedence than the division
operator (/) in integer expressions?

Write a constant expression that divides 10 by 3 and returns the integer remainder.

Show an example of a valid real number constant with an exponent.

(Yes/No): Must string constants be enclosed in single quotes?

N o w»n A

Reserved words can be instruction mnemonics, attributes, operators, predefined symbols,
and

8. What is the maximum length of an identifier?

9. (True/False): An identifier cannot begin with a numeric digit.
10. (True/False): Assembly language identifiers are (by default) case insensitive.
11. (True/False): Assembler directives execute at runtime.

12. (True/False): Assembler directives can be written in any combination of uppercase and low-
ercase letters.

13. Name the four basic parts of an assembly language instruction.

14. (True/False): MOV is an example of an instruction mnemonic.

15. (True/False): A code label is followed by a colon (:), but a data label does not have a colon.
16. Show an example of a block comment.

17. Why would it not be a good idea to use numeric addresses when writing instructions that
access variables?

3.2 Example: Adding and Subtracting Integers

We now introduce a short assembly language program that adds and subtracts integers. Registers
are used to hold the intermediate data, and we call a library subroutine to display the contents of
the registers on the screen. Here is the program source code:

TITLE Add and Subtract (AddSub.asm)
; This program adds and subtracts 32-bit integers.

INCLUDE Irvine32.inc
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.code

main PROC
mov eax,10000h ; EAX = 10000h
add eax,40000h ; EAX = 50000h
sub eax,20000h ; EAX = 30000h
call DumpRegs ; display registers
exit

main ENDP

END main

Let’s go through the program line by line. Each line of program code will appear before its
explanation.

TITLE Add and Subtract (AddSub.asm)

The TITLE directive marks the entire line as a comment. You can put anything you want on this
line.

; This program adds and subtracts 32-bit integers.
All text to the right of a semicolon is ignored by the assembler, so we use it for comments.
INCLUDE Irvine32.inc

The INCLUDE directive copies necessary definitions and setup information from a text file
named Irvine32.inc, located in the assembler’s INCLUDE directory. (The file is described in
Chapter 5.)

.code

The .code directive marks the beginning of the code segment, where all executable statements in
a program are located.

main PROC

The PROC directive identifies the beginning of a procedure. The name chosen for the only pro-
cedure in our program is main.

mov eax,10000h ; EAX = 10000h

The MOV instruction moves (copies) the integer 10000h to the EAX register. The first operand
(EAX) is called the destination operand, and the second operand is called the source operand.
The comment on the right side shows the expected new value in the EAX register.

add eax,40000h ; EAX = 50000h

The ADD instruction adds 40000h to the EAX register. The comment shows the expected new
value in EAX.

sub eax,20000h ; EAX = 30000h
The SUB instruction subtracts 20000h from the EAX register.

call DumpRegs ; display registers
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The CALL statement calls a procedure that displays the current values of the CPU registers. This
can be a useful way to verify that a program is working correctly.
exit

main ENDP
The exit statement (indirectly) calls a predefined MS-Windows function that halts the program.
The ENDP directive marks the end of the main procedure. Note that exit is not a MASM key-
word; instead, it’s a macro command defined in the /rvine32.inc include file that provides a sim-
ple way to end a program.

END main

The END directive marks the last line of the program to be assembled. It identifies the name of
the program’s startup procedure (the procedure that starts the program execution).

Program Output The following is a snapshot of the program’s output, generated by the call to
DumpRegs:

EAX=00030000 EBX=7FFDF000 ECX=00000101 EDX=FFFFFFFF
ESI=00000000 EDI=00000000 EBP=0012FFF0 ESP=0012FFC4
EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0 AF=0 PF=1

The first two rows of output show the hexadecimal values of the 32-bit general-purpose regis-
ters. EAX equals 00030000h, the value produced by the ADD and SUB instructions in the pro-
gram. The values in the other general-purpose registers are unimportant, since their values were
not set by our program. The third row shows the values of the EIP (extended instruction pointer)
and EFL (extended flags) registers, as well as the values of the Carry, Sign, Zero, Overflow,
Auxiliary Carry, and Parity flags.

Segments Programs are organized around segments, which are usually named code, data, and
stack. The code segment contains all of a program’s executable instructions. Ordinarily, the code
segment contains one or more procedures, with one designated as the startup procedure. In the
AddSub program, the startup procedure is main. Another segment, the stack segment, holds
procedure parameters and local variables. The data segment holds variables.

Coding Styles Because assembly language is case insensitive, there is no fixed style rule
regarding capitalization of source code. In the interest of readability, you should be consistent in
your approach to capitalization, as well as the naming of identifiers. Following are some
approaches to capitalization you may want to adopt:

* Use lowercase for keywords, mixed case for identifiers, and all capitals for constants. This
approach follows the general model of C, C++, and Java.

* Capitalize everything. This approach was used in pre-1980 software when many computer ter-
minals did not support lowercase letters. It has the advantage of overcoming the effects of
poor-quality printers and less-than-perfect eyesight, but seems a bit old-fashioned.

* Use capital letters for assembler reserved words, including instruction mnemonics, and regis-
ter names. This approach makes it easy to distinguish between identifiers and reserved words.
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* Capitalize assembly language directives and operators, use mixed case for identifiers, and
lowercase for everything else. This approach is used in this book, except that lowercase is
used for the .code, .stack, .model, and .data directives.

3.2.1 Alternative Version of AddSub
Our first version of the AddSub program used the /rvine32.inc file, which hides a few details.

Eventually you will understand everything in that file, but we’re just getting started in assembly
language. If you prefer full disclosure of information from the start, here is a version of AddSub
that does not depend on include files. A bold font is used to highlight the portions of the program
that are different from the previous version:

TITLE Add and Subtract (AddSubAlt.asm)

; This program adds and subtracts 32-bit integers.

.386

.model flat,stdcall

.stack 4096

ExitProcess PROTO, dwExitCode:DWORD
DumpRegs PROTO

.code

main PROC
mov eax,10000h ; EAX = 10000h
add eax,40000h ; EAX = 50000h
sub eax,20000h ; EAX = 30000h

call DumpRegs

INVOKE ExitProcess,0
main ENDP
END main

Let’s discuss the lines that have changed. As before, we show each line of code followed by its
explanation.

.386

The .386 directive identifies the minimum CPU required for this program (Intel386, the first x86
processor).

.model flat,stdcall

The .MODEL directive is used in our sample for two purposes: it identifies the segmentation
model used by the program and it identifies the convention used for passing parameters to pro-
cedures. In the current .model directive, the flat keyword tells the assembler to generate code
for a protected mode program, and the stdcall keyword enables the calling of MS-Windows
functions.

ExitProcess PROTO, dwExitCode:DWORD
DumpRegs PROTO
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Two PROTO directives declare prototypes for procedures used by this program: ExitProcess is
an MS-Windows function that halts the current program (called a process), and DumpRegs is a
procedure from the Irvine32 link library that displays registers.

INVOKE ExitProcess,0

The program ends by calling the ExitProcess function, passing it a return code of zero.
INVOKE is an assembler directive that calls a procedure or function.

3.2.2 Program Template

Assembly language programs have a simple structure, with small variations. When you begin a
new program, it helps to start with an empty shell program with all basic elements in place. You
can avoid redundant typing by filling in the missing parts and saving the file under a new name.
The following protected-mode program (7emplate.asm) can easily be customized. Note that
comments have been inserted, marking the points where your own code should be added:

TITLE Program Template (Template.asm)

; Program Description:
; Author:

; Creation Date:

; Revisions:

; Date:

INCLUDE Irvine32.inc

.data
; (insert variables here)
.code
main PROC
; (insert executable instructions here)
exit
main ENDP
; (insert additional procedures here)
END main

Use Comments Several comment fields have been inserted at the beginning of the program.
It’s a very good idea to include a program description, the name of the program’s author, cre-
ation date, and information about subsequent modifications.

Documentation of this kind is useful to anyone who reads the program listing (including you,
months or years from now). Many programmers have discovered, years after writing a program,
that they must become reacquainted with their own code before they can modify it. If you're tak-
ing a programming course, your instructor may insist on additional information.

3.2.3 Section Review
. In the AddSub program (Section 3.2), what is the meaning of the INCLUDE directive?

1

2. In the AddSub program, what does the .CODE directive identify?
3. What are the names of the segments in the AddSub program?

4. In the AddSub program, how are the CPU registers displayed?
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In the AddSub program, which statement halts the program?
Which directive begins a procedure?

Which directive ends a procedure?

What is the purpose of the identifier in the END statement?
What does the PROTO directive do?

0 ® oW

3.3 Assembling, Linking, and Running Programs

A source program written in assembly language cannot be executed directly on its target
computer. It must be translated, or assembled into executable code. In fact, an assembler is very
similar to a compiler, the type of program you would use to translate a C++ or Java program into
executable code.

The assembler produces a file containing machine language called an object file. This file
isn’t quite ready to execute. It must be passed to another program called a linker, which in turn
produces an executable file. This file is ready to execute from the MS-DOS/Windows command
prompt.

3.3.1 The Assemble-Link-Execute Cycle

The process of editing, assembling, linking, and executing assembly language programs is sum-
marized in Figure 3—1. Following is a detailed description of each step.

Step 1: A programmer uses a text editor to create an ASCII text file named the source file.

Step 2: The assembler reads the source file and produces an object file, a machine-language
translation of the program. Optionally, it produces a listing file. If any errors occur, the program-
mer must return to Step 1 and fix the program.

Step 3: The linker reads the object file and checks to see if the program contains any calls to
procedures in a link library. The linker copies any required procedures from the link library,
combines them with the object file, and produces the executable file.

Step 4: The operating system loader utility reads the executable file into memory and branches
the CPU to the program’s starting address, and the program begins to execute.

See the topic “Getting Started” on the author’s Web site (www.asmirvine.com) for detailed

instructions on assembling, linking, and running assembly language programs using Microsoft
Visual Studio.

Figure 3-1 Assemble-Link-Execute Cycle.
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Listing File

A listing file contains a copy of the program’s source code, suitable for printing, with line num-
bers, offset addresses, translated machine code, and a symbol table. Let’s look at the listing file
for the AddSub program from Section 3.2, with some lines omitted to save printing space:

Microsoft (R) Macro Assembler Version 9.00.30729.01 05/07/09
16:43:07
Add and Subtract (AddSub.asm) Page 1 -1
TITLE Add and Subtract (AddSub.asm)
; This program adds and subtracts 32-bit integers.
INCLUDE Irvine32.inc
C .NOLIST
C .LIST
00000000 .code
00000000 main PROC
00000000 B8 00010000 mov eax,10000h ; EAX = 10000h
00000005 05 00040000 add eax,40000h ; EAX = 50000h
0000000A 2D 00020000 sub eax,20000h ; EAX = 30000h
0000000F E8 00000000 E call DumpRegs
0000001B main ENDP
END main
Structures and Unions:
Name Size
Offset Type
CONSOLE_CURSOR_INFO 00000008
dwSize 00000000 DWord
bVvisible e e 00000004 DWord
CONSOLE_SCREEN_BUFFER_INFO 00000016
dwSize .. 00000000 DwWord
dwCursorPosition 00000004 Dword
wAttributes 00000008 Word
sriindow ... 0000000A QWord
dwMaximumWindowSize 00000012 DWord
(lines omitted to save space)
Segments and Groups:
Name Size Length Align Combine Class
FLAT GROUP
STACK 32 Bit 00001000 Para Stack 'STACK'
_DATA 32 Bit 00000000 Para Public 'DATA'
_TEXT 32 Bit 0000001B Para Public 'CODE'
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Procedures, parameters, and locals:
Name Type Value Attr
CloseFile Near 00000000 FLAT Length= 00000000
External STDCALL
CloseHandle Near 00000000 FLAT Length= 00000000
External STDCALL
Clrscr Near 00000000 FLAT Length= 00000000
External STDCALL
CreateFileA Near 00000000 FLAT Length= 00000000
External STDCALL
CreateOutputFile Near 00000000 FLAT Length= 00000000
External STDCALL
Crlf Near 00000000 FLAT Length= 00000000
External STDCALL
Delay Near 00000000 FLAT Length= 00000000
External STDCALL
DumpMem Near 00000000 FLAT Length= 00000000
External STDCALL
DumpRegs Near 00000000 FLAT Length= 00000000
External STDCALL
(lines omitted to save space)
WriteToFile Near 00000000 FLAT Length= 00000000
External STDCALL
WriteWindowsMsg Near 00000000 FLAT Length= 00000000
External STDCALL
main Near 00000000 _TEXT Length= 0000001B
Public STDCALL
printf Near 00000000 FLAT Length= 00000000
External C
scanf Near 00000000 FLAT Length= 00000000
External C
wsprintfA Near 00000000 FLAT Length= 00000000
External C
Symbols:
Name Type Value Attr
@CodeSize Number 00000000h
@DataSize Number 00000000h
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@Interface . . . . . . . . . . . Number 00000003h
@odel . . . . . . . . . . . . . Number 00000007h

(lines omitted to save space)

0 Warnings

0 Errors
Let’s look more closely at individual lines from the listing file. The first two lines are a section
heading. The first line identifies the assembler, its version number, and the date and time when
the listing file was generated (the line wraps around on the printed page):

Microsoft (R) Macro Assembler Version 9.00.30729.01 05/07/09
16:43:07

The second line identifies the program title, filename, and listing file page number:

Add and Subtract (AddSub.asm) Page 1 - 1
Next, a few lines are copied from the source file, up to the INCLUDE directive. The two lines
following INCLUDE start with a letter C, indicating that they were copied from the include file
(named Irvine32.inc) into the assembly stream:

TITLE Add and Subtract (AddSub.asm)

; This program adds and subtracts 32-bit integers.

INCLUDE Irvine32.inc

C .NOLIST

C .LIST
In fact, Irvine32.inc contains a great many lines, but it begins with a .NOLIST directive that
disables listing of the program’s source code until a corresponding .LIST directive is reached.
Generally, there is no point in listing all the lines of an include file unless you suspect that it
contains errors.

Next, we see lines taken directly from the AddSub.asm program file. Along the left side are
32-bit addresses that indicate the relative byte distance of each statement from the beginning of
the program’s code area:

00000000 .code

00000000 main PROC

00000000 B8 00010000 mov eax,10000h ; EAX = 10000h
00000005 05 00040000 add eax,40000h ; EAX = 50000h
0000000A 2D 00020000 sub eax,20000h ; EAX = 30000h

0000000F E8 00000000 E call DumpRegs
The first two lines, because they are directives, contain no executable instructions. But the sub-
sequent lines are assembly language instructions, each 5 bytes long. The hexadecimal values in
the second column, such as B8 00010000 are the actual instruction bytes.
The last two lines of the source code file appear next, containing the exit statement and the
ENDP directive:

0000001B main ENDP
END main
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The next section of the listing file contains a list of structures and unions. Although the AddSub
program does not explicitly contain any structures or unions, there are quite a few of them inside
the Irvine32.inc file. Each structure name is followed by a list of fields within the structure:

Structures and Unions:

Name Size
Offset Type

CONSOLE_CURSOR_INFO . . . . . . 00000008

dwSize . . . . . . . . . . . . 00000000 DwWord

bvisible . . . . . . . . . . . 00000004 DWord
CONSOLE_SCREEN_BUFFER_INFO . . . 00000016

dwSize . . . . . . . . . . . . 00000000 DWord

dwCursorPosition . . . . . . . 00000004 DWord

wAttributes . . . . . . . . . 00000008 Word

srWindow . . . . . . . . . . . 0000000OA QWord

dwMaximumWindowSize . . . . . 00000012 DWord

(etc.)

The list of structures has been shortened to save space. Next, the listing file contains a list of
Segments and Groups (of segments):

Segments and Groups:

Name Size Length Align Combine Class
FLAT . . . . . . GROUP
STACK . . . . . 32 Bit 00001000 Para Stack ' STACK'
_DATA . . . . . 32 Bit 00000000 Para Public 'DATA'
_TEXT . . . . . 32 Bit 0000001B Para Public 'CODE"'

The AddSub program uses a flat segmentation model, which causes the definition of a group
named FLAT. Notice that each segment has a name, size, length, and other attributes. Unless
you’re doing real-mode programming, you don’t have to think about segments. Chapter 16
covers real-mode programming and explains in detail how segments are defined.

Next, the listing file contains a list of procedures, parameters, and local variables. To save
space, we will show some of the more interesting entries:

Procedures, parameters, and locals:

Name Type Value Attr

CloseFile . . . . . P Near 00000000 FLAT Length= 00000000
External STDCALL

CloseHandle . . . . P Near 00000000 FLAT Length= 00000000
External STDCALL

Clrscr . . . . . . . P Near 00000000 FLAT Length= 00000000
External STDCALL
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CreateFileA Near 00000000 FLAT Length= 00000000
External STDCALL
CreateOutputFile Near 00000000 FLAT Length= 00000000
External STDCALL
Crlf Near 00000000 FLAT Length= 00000000
External STDCALL
Delay Near 00000000 FLAT Length= 00000000
External STDCALL
DumpMem Near 00000000 FLAT Length= 00000000
External STDCALL
DumpRegs Near 00000000 FLAT Length= 00000000
External STDCALL
WriteToFile Near 00000000 FLAT Length= 00000000
External STDCALL
WriteWindowsMsg Near 00000000 FLAT Length= 00000000
External STDCALL
main Near 00000000 _TEXT Length= 0000001B
Public STDCALL
printf Near 00000000 FLAT Length= 00000000
External C
scanf Near 00000000 FLAT Length= 00000000
External C
wsprintfA Near 00000000 FLAT Length= 00000000

The AddSub program defines only a single procedure named main, and it calls a single proce-
dure named DumpRegs. The rest of the procedures are here only because they are defined in the
Irvine32.inc file (or one of the files that it includes).

Finally, the listing file contains a long list of symbols, such as constants, labels, and variable
names. We show only the first few rows here:

Symbols:

@CodeSize
@DataSize
@Interface
@Model
(etc.)

Name

Type

Number
Number
Number
Number

Value Attr

00000000h
00000000h
00000003h
00000007h
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Symbols beginning with @ are predefined by MASM. Finally, at the end of the file are counts of
the numbers of warnings and errors produced by the assembler:

0 Warnings
0 Errors

3.3.2 Section Review

1. What types of files are produced by the assembler?

2. (True/False): The linker extracts assembled procedures from the link library and inserts
them in the executable program.

3. (True/False): When a program’s source code is modified, it must be assembled and linked
again before it can be executed with the changes.

4. Which operating system component reads and executes programs?

5. What types of files is produced by the linker?

3.4 Defining Data

3.4.1 |Intrinsic Data Types
MASM defines intrinsic data types, each of which describes a set of values that can be assigned
to variables and expressions of the given type. The essential characteristic of each type is its size
in bits: 8, 16, 32, 48, 64, and 80. Other characteristics (such as signed, pointer, or floating-point)
are optional and are mainly for the benefit of programmers who want to be reminded about the
type of data held in the variable. A variable declared as DWORD, for example, logically holds
an unsigned 32-bit integer. In fact, it could hold a signed 32-bit integer, a 32-bit single precision
real, or a 32-bit pointer. The assembler is not case sensitive, so a directive such as DWORD can
be written as dword, Dword, dWord, and so on.

In Table 3-2, all data types pertain to integers except the last three. In those, the notation
IEEE refers to standard real number formats published by the IEEE Computer Society.

3.4.2 Data Definition Statement

A data definition statement sets aside storage in memory for a variable, with an optional name.
Data definition statements create variables based on intrinsic data types (Table 3-2). A data def-
inition has the following syntax:

[name] directive initializer [,initializer]...
This is an example of a data definition statement:
count DWORD 12345
Name The optional name assigned to a variable must conform to the rules for identifiers
(Section 3.1.7).

Directive The directive in a data definition statement can be BYTE, WORD, DWORD,
SBYTE, SWORD, or any of the types listed in Table 3-2. In addition, it can be any of the legacy
data definition directives shown in Table 3-3, supported also by the Netwide Assembler (NASM)
and Turbo Assembler (TASM).
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Table 3-2 Intrinsic Data Types.

Type Usage
BYTE 8-bit unsigned integer. B stands for byte
SBYTE 8-bit signed integer. S stands for signed
WORD 16-bit unsigned integer (can also be a Near pointer in real-address mode)
SWORD 16-bit signed integer
DWORD 32-bit unsigned integer (can also be a Near pointer in protected mode). D stands for double
SDWORD 32-bit signed integer. SD stands for signed double
FWORD 48-bit integer (Far pointer in protected mode)
QWORD 64-bit integer. Q stands for quad
TBYTE 80-bit (10-byte) integer. T stands for Ten-byte
REAL4 32-bit (4-byte) IEEE short real
REALS 64-bit (8-byte) IEEE long real
REALI10 80-bit (10-byte) IEEE extended real

Table 3-3  Legacy Data Directives.

Directive Usage
DB 8-bit integer
DW 16-bit integer
DD 32-bit integer or real
DQ 64-bit integer or real
DT define 80-bit (10-byte) integer

Initializer At least one initializer is required in a data definition, even if it is zero. Additional ini-
tializers, if any, are separated by commas. For integer data types, initializer is an integer constant or
expression matching the size of the variable’s type, such as BYTE or WORD. If you prefer to leave
the variable uninitialized (assigned a random value), the ? symbol can be used as the initializer. All
initializers, regardless of their format, are converted to binary data by the assembler. Initializers
such as 00110010b, 32h, and 50d all end up being having the same binary value.

3.4.3 Defining BYTE and SBYTE Data
The BYTE (define byte) and SBYTE (define signed byte) directives allocate storage for one or
more unsigned or signed values. Each initializer must fit into 8 bits of storage. For example,
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valuel BYTE 'A' ; character constant
value2 BYTE 0 ; smallest unsigned byte
value3 BYTE 255 ; largest unsigned byte
valued SBYTE -128 ; smallest signed byte
value5 SBYTE +127 ; largest signed byte

A question mark (?) initializer leaves the variable uninitialized, implying it will be assigned a
value at runtime:

value6 BYTE °?

The optional name is a label marking the variable’s offset from the beginning of its enclosing
segment. For example, if valuel is located at offset 0000 in the data segment and consumes 1
byte of storage, value2 is automatically located at offset 0001:

valuel BYTE 10h
value2 BYTE 20h

The DB directive can also define an 8-bit variable, signed or unsigned:

vall DB 255 ; unsigned byte
val2 DB -128 ; signed byte

Multiple Initializers

If multiple initializers are used in the same data definition, its label refers only to the offset of the
first initializer. In the following example, assume list is located at offset 0000. If so, the value 10
is at offset 0000, 20 is at offset 0001, 30 is at offset 0002, and 40 is at offset 0003:

list BYTE 10,20,30,40

Figure 3-2 shows list as a sequence of bytes, each with its own offset.
Figure 3-2 Memory Layout of a Byte Sequence.

Offset  Value

0000: 10
0001: 20
0002: 30
0003: 40

Not all data definitions require labels. To continue the array of bytes begun with list, for
example, we can define additional bytes on the next lines:

list BYTE 10,20,30,40
BYTE 50,60,70,80
BYTE 81,82,83,84
Within a single data definition, its initializers can use different radixes. Character and string
constants can be freely mixed. In the following example, listl and list2 have the same contents:

listl BYTE 10, 32, 41h, 00100010b
list2 BYTE OAh, 20h, 'A', 22h
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Defining Strings
To define a string of characters, enclose them in single or double quotation marks. The most
common type of string ends with a null byte (containing 0). Called a null-terminated string,
strings of this type are used in many programming languages:

greetingl BYTE "Good afternoon", 0

greeting2 BYTE 'Good night',0
Each character uses a byte of storage. Strings are an exception to the rule that byte values must
be separated by commas. Without that exception, greetingl would have to be defined as

greetingl BYTE 'G','o','o','d'....etc.
which would be exceedingly tedious. A string can be divided between multiple lines without
having to supply a label for each line:

greetingl BYTE "Welcome to the Encryption Demo program "
BYTE "created by Kip Irvine.",0dh, Oah
BYTE "If you wish to modify this program, please "
BYTE "send me a copy.",0dh,0ah,0
The hexadecimal codes ODh and OAh are alternately called CR/LF (carriage-return line-feed)
or end-of-line characters. When written to standard output, they move the cursor to the left col-
umn of the line following the current line.

The line continuation character (\) concatenates two source code lines into a single statement.
It must be the last character on the line. The following statements are equivalent:

greetingl BYTE "Welcome to the Encryption Demo program
and

greetingl \
BYTE "Welcome to the Encryption Demo program "

DUP Operator

The DUP operator allocates storage for multiple data items, using a constant expression as a
counter. It is particularly useful when allocating space for a string or array, and can be used with
initialized or uninitialized data:

BYTE 20 DUP(0) ; 20 bytes, all equal to zero
BYTE 20 DUP(?) ; 20 bytes, uninitialized
BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK"

3.4.4 Defining WORD and SWORD Data
The WORD (define word) and SWORD (define signed word) directives create storage for one or
more 16-bit integers:

wordl WORD 65535 ; largest unsigned value
word2 SWORD -32768 ; smallest signed value
word3 WORD ? ; uninitialized, unsigned

The legacy DW directive can also be used:

vall DW 65535 ; unsigned
val2 DW -32768 ; signed
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Array of Words Create an array of words by listing the elements or using the DUP operator.
The following array contains a list of values:

myList WORD 1,2,3,4,5

Figure 3-3 shows a diagram of the array in memory, assuming myList starts at offset 0000. The
addresses increment by 2 because each value occupies 2 bytes.

Figure 3—%3 Memory Layout, 16-bit Word Array.

Offset Value

0000: 1
0002: 2
0004: 3
0006: 4
0008: 5

The DUP operator provides a convenient way to initialize multiple words:

array WORD 5 DUP(?) ; 5 values, uninitialized

3.4.5 Defining DWORD and SDWORD Data
The DWORD (define doubleword) and SDWORD (define signed doubleword) directives allo-
cate storage for one or more 32-bit integers:

vall DWORD 12345678h ; unsigned
val2 SDWORD —2147483648 ; signed
val3 DWORD 20 DUP(?) ; unsigned array

The legacy DD directive can also be used:

vall DD 12345678h ; unsigned
val2 DD —2147483648 ; signed

The DWORD can be used to declare a variable that contains the 32-bit offset of another variable.
Below, pVal contains the offset of val3:

pVal DWORD val3

Array of Doublewords Create an array of doublewords by explicitly initializing each ele-
ment, or use the DUP operator. Here is an array containing specific unsigned values:

myList DWORD 1,2,3,4,5

Figure 3—4 shows a diagram of the array in memory, assuming myList starts at offset 0000. The
offsets increment by 4.

3.4.6 Defining QWORD Data
The QWORD (define quadword) directive allocates storage for 64-bit (8-byte) values:

quadl QWORD 1234567812345678h
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The legacy DQ directive can also be used:
quadl DQ 1234567812345678h

Figure 3-4 Memory Layout, 32-bit Doubleword Array.
Offset Value

0000: 1
0004: 2
0008: 3
000C: 4
0010: 5

3.4.7 Defining Packed Binary Coded Decimal (TBYTE) Data

Intel stores a packed binary coded decimal (BCD) integers in a 10-byte package. Each byte
(except the highest) contains two decimal digits. In the lower 9 storage bytes, each half-byte
holds a single decimal digit. In the highest byte, the highest bit indicates the number’s sign. If
the highest byte equals 80h, the number is negative; if the highest byte equals 00h, the number is
positive. The integer range is —999,999,999,999,999,999 to +999,999,999,999,999,999.

Example  The hexadecimal storage bytes for positive and negative decimal 1234 are shown in
the following table, from the least significant byte to the most significant byte:

Decimal Value Storage Bytes
+1234 3412 00 00 00 00 00 00 00 00
—1234 3412 00 00 00 00 00 00 00 80

MASM uses the TBYTE directive to declare packed BCD variables. Constant initializers
must be in hexadecimal because the assembler does not automatically translate decimal con-
stants to BCD. The following two examples demonstrate both valid and invalid ways of repre-
senting decimal —1234:

intval TBYTE 800000000000001234h ; valid

intvVal TBYTE -1234 ; invalid
The reason the second example is invalid is that MASM encodes the constant as a binary integer
rather than a packed BCD integer.

If you want to encode a real number as packed BCD, you can first load it onto the floating-
point register stack with the FLD instruction and then use the FBSTP instruction to convert it to
packed BCD. This instruction rounds the value to the nearest integer:

.data
posVal REALS8 1.5
bcdval TBYTE *?

.code
fld posval ; load onto floating-point stack
fbstp bcdval ; rounds up to 2 as packed BCD
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If posVal were equal to 1.5, the resulting BCD value would be 2. In Chapter 7, you will learn
how to do arithmetic with packed BCD values.

3.4.8 Defining Real Number Data

REALA4 defines a 4-byte single-precision real variable. REALS defines an 8-byte double-precision
real, and REAL10 defines a 10-byte double extended-precision real. Each requires one or more
real constant initializers:

rvVall REAL4 -1.2
rval2 REAL8 3.2E-260
rval3 REAL10 4.6E+4096

ShortArray REAL4 20 DUP(0.0)

Table 3-4 describes each of the standard real types in terms of their minimum number of sig-
nificant digits and approximate range:

Table 3-4  Standard Real Number Types.

Data Type Significant Digits Approximate Range
Short real 6 1.18 X 1038 10 3.40 x 103
Long real 15 2.23 X 10308 10 1.79 x 10308
Extended-precision real 19 3.37 X 10493210 1.18 x 107932

The DD, DQ, and DT directives can define real numbers:

rvVall DD -1.2 ; short real
rvVal2 DQ 3.2E-260 ; long real
rvVal3 DT 4.6E+4096 ; extended-precision real

3.4.9 Little Endian Order

x86 processors store and retrieve data from memory using little endian order (low to high). The
least significant byte is stored at the first memory address allocated for the data. The remaining
bytes are stored in the next consecutive memory positions. Consider the doubleword 12345678h. If
placed in memory at offset 0000, 78h would be stored in the first byte, 56h would be stored in the
second byte, and the remaining bytes would be at offsets 0002 and 0003, as shown in Figure 3-5.

Figure 3—% Little Endian Representation of 12345678h.

0000: 78
0001: 56
0002: 34

0003: 12
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Some other computer systems use big endian order (high to low). Figure 3—6 shows an example
of 12345678h stored in big endian order at offset 0:

Fiqure 3—6 Big Endian Representation of 12345678h.

0000: 12
0001: 34
0002: 56
0003: 78

3.4.10 Adding Variables to the AddSub Program
Using the AddSub program from Section 3.2, we can add a data segment containing several

doubleword variables. The revised program is named AddSub2:
TITLE Add and Subtract, Version 2 (AddSub2 .asm)

; This program adds and subtracts 32-bit unsigned
; integers and stores the sum in a variable.

INCLUDE Irvine32.inc
.data

vall DWORD 10000h
val2 DWORD 40000h
val3 DWORD 20000h
finalvVal DWORD °?

.code

main PROC
mov eax,vall ; start with 10000h
add eax,val2 ; add 40000h
sub eax,val3 ; subtract 20000h
mov finalval, eax ; store the result (30000h)
call DumpRegs ; display the registers
exit

main ENDP

END main

How does it work? First, the integer in vall is moved to EAX:

mov eax,vall ; start with 10000h
Next, val2 is added to EAX:
add eax,val2 ; add 40000h

Next, val3 is subtracted from EAX:
sub eax,val3 ; subtract 20000h
EAX is copied to finalVal:

mov finalVal, eax ; store the result (30000h)
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3.4.11 Declaring Uninitialized Data

The .DATA? directive declares uninitialized data. When defining a large block of uninitialized
data, the .DATA? directive reduces the size of a compiled program. For example, the following
code is declared efficiently:

.data

smallArray DWORD 10 DUP(0) ; 40 bytes

.data?

bigArray DWORD 5000 DUP(?) ; 20,000 bytes, not initialized

The following code, on the other hand, produces a compiled program 20,000 bytes larger:

.data
smallArray DWORD 10 DUP(O0) ; 40 bytes
bigArray DWORD 5000 DUP(?) ; 20,000 bytes

Mixing Code and Data The assembler lets you switch back and forth between code and data
in your programs. You might, for example, want to declare a variable used only within a local-
ized area of a program. The following example inserts a variable named temp between two code
statements:

.code
mov eax, ebx
.data
temp DWORD ?
.code
mov temp, eax

Although the declaration of temp appears to interrupt the flow of executable instructions, MASM
places temp in the data segment, separate from the segment holding compiled code. At the same
time, intermixing .code and .data directives can cause a program to become hard to read.

3.4.12 Section Review

Create an uninitialized data declaration for a 16-bit signed integer.
Create an uninitialized data declaration for an 8-bit unsigned integer.
Create an uninitialized data declaration for an 8-bit signed integer.
Create an uninitialized data declaration for a 64-bit integer.

Which data type can hold a 32-bit signed integer?

A

Declare a 32-bit signed integer variable and initialize it with the smallest possible negative
decimal value. (Hint: Refer to integer ranges in Chapter 1.)

=

Declare an unsigned 16-bit integer variable named wArray that uses three initializers.

8. Declare a string variable containing the name of your favorite color. Initialize it as a null-
terminated string.

9. Declare an uninitialized array of 50 unsigned doublewords named dArray.
10. Declare a string variable containing the word “TEST” repeated 500 times.

11. Declare an array of 20 unsigned bytes named bArray and initialize all elements to zero.
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12. Show the order of individual bytes in memory (lowest to highest) for the following double-
word variable:

vall DWORD 87654321h

3.5 Symbolic Constants

A symbolic constant (or symbol definition) is created by associating an identifier (a symbol) with
an integer expression or some text. Symbols do not reserve storage. They are used only by the
assembler when scanning a program, and they cannot change at runtime. The following table
summarizes their differences:

Symbol Variable

Uses storage? No Yes

Value changes at runtime? No Yes

We will show how to use the equal-sign directive (=) to create symbols representing integer
expressions. We will use the EQU and TEXTEQU directives to create symbols representing
arbitrary text.

3.5.1 Equal-Sign Directive
The equal-sign directive associates a symbol name with an integer expression (see Section
3.1.2). The syntax is

name = expression

Ordinarily, expression is a 32-bit integer value. When a program is assembled, all occurrences of
name are replaced by expression during the assembler’s preprocessor step. Suppose the follow-
ing statement occurs near the beginning of a source code file:

COUNT = 500
Further, suppose the following statement should be found in the file 10 lines later:
mov eax, COUNT

When the file is assembled, MASM will scan the source file and produce the corresponding code
lines:

mov eax, 500

Why Use Symbols?  We might have skipped the COUNT symbol entirely and simply coded
the MOV instruction with the literal 500, but experience has shown that programs are easier to
read and maintain if symbols are used. Suppose COUNT were used many times throughout a
program. At a later time, we could easily redefine its value:

COUNT = 600

Assuming that the source file was assembled again, all instances of COUNT would be automati-
cally replaced by the value 600.
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Current Location Counter One of the most important symbols of all, shown as $, is called
the current location counter. For example, the following declaration declares a variable named
selfPtr and initializes it with its own location counter:

selfPtr DWORD $

Keyboard Definitions Programs often define symbols that identify commonly used numeric key-
board codes. For example, 27 is the ASCII code for the Esc key:

Esc_key = 27

Later in the same program, a statement is more self-describing if it uses the symbol rather than
an immediate value. Use

mov al,Esc_key ; good style
rather than
mov al,27 ; poor style

Using the DUP Operator Section 3.4.3 showed how to use the DUP operator to create stor-
age for arrays and strings. The counter used by DUP should be a symbolic constant, to simplify
program maintenance. In the next example, if COUNT has been defined, it can be used in the
following data definition:

array DWORD COUNT DUP (0)

Redefinitions A symbol defined with = can be redefined within the same program. The fol-
lowing example shows how the assembler evaluates COUNT as it changes value:

COUNT = 5

mov al, COUNT ; AL = 5
COUNT = 10

mov al, COUNT ; AL = 10
COUNT = 100

mov al, COUNT ; AL = 100

The changing value of a symbol such as COUNT has nothing to do with the runtime execution
order of statements. Instead, the symbol changes value according to the assembler’s sequential
processing of the source code during the assembler’s preprocessing stage.

3.5.2 Calculating the Sizes of Arrays and Strings
When using an array, we usually like to know its size. The following example uses a constant

named ListSize to declare the size of list:

list BYTE 10,20,30,40

ListSize = 4
Explicitly stating an array’s size can lead to a programming error, particularly if you should
later insert or remove array elements. A better way to declare an array size is to let the assembler
calculate its value for you. The $ operator (current location counter) returns the offset associated
with the current program statement. In the following example, ListSize is calculated by subtract-
ing the offset of list from the current location counter ($):

list BYTE 10,20,30,40
ListSize = ($ - list)
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ListSize must follow immediately after list. The following, for example, produces too large a
value (24) for ListSize because the storage used by var2 affects the distance between the current
location counter and the offset of list:

list BYTE 10,20,30,40
var2 BYTE 20 DUP(?)
ListSize = ($ - list)

Rather than calculating the length of a string manually, let the assembler do it:

myString BYTE "This is a long string, containing"
BYTE "any number of characters"
myString len = ($ — myString)
Arrays of Words and DoubleWords When calculating the number of elements in an array
containing values other than bytes, you should always divide the total array size (in bytes) by the
size of the individual array elements. The following code, for example, divides the address range
by 2 because each word in the array occupies 2 bytes (16 bits):

list WORD 1000h,2000h,3000h,4000h

ListSize = ($ — list) / 2
Similarly, each element of an array of doublewords is 4 bytes long, so its overall length must be
divided by four to produce the number of array elements:

list DWORD 10000000h,20000000h,30000000h,40000000h
ListSize = ($ —1list) / 4

3.5.3 EQU Directive
The EQU directive associates a symbolic name with an integer expression or some arbitrary text.
There are three formats:

name EQU expression

name EQU symbol

name EQU <text>
In the first format, expression must be a valid integer expression (see Section 3.1.2). In the sec-
ond format, symbol is an existing symbol name, already defined with = or EQU. In the third for-
mat, any text may appear within the brackets <. . .>. When the assembler encounters name later
in the program, it substitutes the integer value or text for the symbol.

EQU can be useful when defining a value that does not evaluate to an integer. A real number

constant, for example, can be defined using EQU:

PI EQU <3.1416>

Example The following example associates a symbol with a character string. Then a variable
can be created using the symbol:

pressKey EQU <"Press any key to continue...",0>

.data
prompt BYTE pressKey
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Example Suppose we would like to define a symbol that counts the number of cells in a 10-
by-10 integer matrix. We will define symbols two different ways, first as an integer expression
and second as a text expression. The two symbols are then used in data definitions:

matrixl EQU 10 * 10
matrix2 EQU <10 * 10>
.data

M1 WORD matrixl

M2 WORD matrix?2

The assembler produces different data definitions for M1 and M2. The integer expression in
matrix1 is evaluated and assigned to M1. On the other hand, the text in matrix2 is copied
directly into the data definition for M2:

M1 WORD 100
M2 WORD 10 * 10

No Redefinition Unlike the = directive, a symbol defined with EQU cannot be redefined in
the same source code file. This restriction prevents an existing symbol from being inadvertently
assigned a new value.

3.5.4 TEXTEQU Directive

The TEXTEQU directive, similar to EQU, creates what is known as a text macro. There are three
different formats: the first assigns text, the second assigns the contents of an existing text macro,
and the third assigns a constant integer expression:

name TEXTEQU <text>
name TEXTEQU textmacro
name TEXTEQU %$constExpr

For example, the prompt1 variable uses the continueMsg text macro:

continueMsg TEXTEQU <"Do you wish to continue (Y/N)?">
.data
promptl BYTE continueMsg

Text macros can build on each other. In the next example, count is set to the value of an integer
expression involving rowSize. Then the symbol move is defined as mov. Finally, setupAL is
built from move and count:

rowSize = 5
count TEXTEQU % (rowSize * 2)
move TEXTEQU <mov>

setupAL TEXTEQU <move al,count>
Therefore, the statement

setupAL
would be assembled as

mov al,l10

A symbol defined by TEXTEQU can be redefined at any time.
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3.5.5 Section Review
1. Declare a symbolic constant using the equal-sign directive that contains the ASCII code
(08h) for the Backspace key.
2. Declare a symbolic constant named SecondsInDay using the equal-sign directive and
assign it an arithmetic expression that calculates the number of seconds in a 24-hour period.
3. Write a statement that causes the assembler to calculate the number of bytes in the follow-
ing array, and assign the value to a symbolic constant named ArraySize:
myArray WORD 20 DUP(?)
4. Show how to calculate the number of elements in the following array, and assign the value
to a symbolic constant named ArraySize:
myArray DWORD 30 DUP(?)
5. Use a TEXTEQU expression to redefine “PROC” as “PROCEDURE.”
6. Use TEXTEQU to create a symbol named Sample for a string constant, and then use the
symbol when defining a string variable named MyString.
7. Use TEXTEQU to assign the symbol SetupESI to the following line of code:

mov esi,OFFSET myArray

3.6 Real-Address Mode Programming (Optional)

Programs designed for MS-DOS must be 16-bit applications running in real-address mode.
Real-address mode applications use 16-bit segments and follow the segmented addressing
scheme described in Section 2.3.1. If you’re using an x86 processor, you can still use the 32-bit
general-purpose registers for data.

3.6.1 Basic Changes
There are a few changes you must make to the 32-bit programs presented in this chapter to trans-
form them into real-address mode programs:

* The INCLUDE directive references a different library:
INCLUDE Irvinelé6.inc

* Two additional instructions are inserted at the beginning of the startup procedure (main).
They initialize the DS register to the starting location of the data segment, identified by the
predefined MASM constant @data:

mov ax,@data
mov ds,ax
e See the book’s Web site (www.asmirvine.com) for instructions on assembling 16-bit
programs.
e Offsets (addresses) of data and code labels are 16 bits.

You cannot move @data directly into DS and ES because the MOV instruction does not permit a constant
to be moved directly to a segment register.
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The AddSub2 Program

Here is a listing of the AddSub2.asm program, revised to run in real-address mode. New lines are
marked by comments:

TITLE Add and Subtract, Version 2 (AddSub2 .asm)

; This program adds and subtracts 32-bit integers
; and stores the sum in a variable.
; Target: real-address mode.

INCLUDE Irvinel6.inc ; changed *

.data

vall DWORD 10000h

val2 DWORD 40000h

val3 DWORD 20000h

finalval DWORD °?

.code

main PROC
mov ax,@data ; new *
mov ds, ax ; new *
mov eax,vall ; get first value
add eax,val2 ; add second value
sub eax,val3 ; subtract third value
mov finalVval, eax ; store the result
call DumpRegs ; display registers
exit

main ENDP

END main

3.7 Chapter Summary

An integer expression is a mathematical expression involving integer constants, symbolic con-
stants, and arithmetic operators. Precedence refers to the implied order of operations when an
expression contains two or more operators.

A character constant is a single character enclosed in quotes. The assembler converts a charac-
ter to a byte containing the character’s binary ASCII code. A string constant is a sequence of
characters enclosed in quotes, optionally ending with a null byte.

Assembly language has a set of reserved words with special meanings that may only be used
in the correct context. An identifier is a programmer-chosen name identifying a variable, a sym-
bolic constant, a procedure, or a code label. Identifiers cannot be reserved words.

A directive is a command embedded in the source code and interpreted by the assembler. An
instruction is a source code statement that is executed by the processor at runtime. An instruc-
tion mnemonic is a short keyword that identifies the operation carried out by an instruction.
A label is an identifier that acts as a place marker for instructions or data.

Operands are values passed to instructions. An assembly language instruction can have
between zero and three operands, each of which can be a register, memory operand, constant
expression, or input-output port number.
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Programs contain logical segments named code, data, and stack. The code segment contains
executable instructions. The stack segment holds procedure parameters, local variables, and
return addresses. The data segment holds variables.

A source file contains assembly language statements. A listing file contains a copy of the pro-
gram’s source code, suitable for printing, with line numbers, offset addresses, translated
machine code, and a symbol table. A source file is created with a text editor. An assembler is a
program that reads the source file, producing both object and listing files. The linker is a pro-
gram that reads one or more object files and produces an executable file. The latter is executed
by the operating system loader.

MASM recognizes intrinsic data types, each of which describes a set of values that can be
assigned to variables and expressions of the given type:

* BYTE and SBYTE define 8-bit variables.

* WORD and SWORD define 16-bit variables.

* DWORD and SDWORD define 32-bit variables.

* QWORD and TBYTE define 8-byte and 10-byte variables, respectively.

* REAL4, REALS, and REALI10 define 4-byte, 8-byte, and 10-byte real number variables,
respectively.

A data definition statement sets aside storage in memory for a variable, and may optionally
assign it a name. If multiple initializers are used in the same data definition, its label refers only
to the offset of the first initializer. To create a string data definition, enclose a sequence of char-
acters in quotes. The DUP operator generates a repeated storage allocation, using a constant
expression as a counter. The current location counter operator ($) is used in address-calculation
expressions.

x86 processors store and retrieve data from memory using little endian order: The least sig-
nificant byte of a variable is stored at its starting (lowest) address value.

A symbolic constant (or symbol definition) associates an identifier with an integer or text
expression. Three directives create symbolic constants:

* The equal-sign directive (=) associates a symbol name with an integer expression.
* The EQU and TEXTEQU directives associate a symbolic name with an integer expression or
some arbitrary text.

You can convert almost any program from 32-bit protected mode to 16-bit real-address mode.
This book is supplied with two link libraries containing the same procedure names for both
types of programs.

3.8 Programming Exercises
The following exercises can be done in protected mode or real-address mode.

1. Subtracting Three Integers

Using the AddSub program from Section 3.2 as a reference, write a program that subtracts three
integers using only 16-bit registers. Insert a call DumpRegs statement to display the register
values.



3.8 Programming EXercises 93

2. Data Definitions

Write a program that contains a definition of each data type listed in Table 3-2 in Section 3.4.
Initialize each variable to a value that is consistent with its data type.

3. Symbolic Integer Constants
Write a program that defines symbolic constants for all of the days of the week. Create an array
variable that uses the symbols as initializers.

4. Symbolic Text Constants

Write a program that defines symbolic names for several string literals (characters between
quotes). Use each symbolic name in a variable definition.
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perform strict type checking on variables and assignment statements. Compilers do this to help
programmers avoid logic errors relating to mismatched data. Assemblers, on the other hand, pro-
vide enormous freedom when declaring and moving data. They perform little error checking,
and supply a wide variety of operators and address expressions. What price must you pay for this
freedom? You must master a significant number of details before writing meaningful programs.

If you take the time to thoroughly learn the material presented in this chapter, the rest of the
reading in this book will be easier to understand. As the example programs become more com-
plicated, you must rely on mastery of fundamental tools presented in this chapter.

4.1.2 Operand Types
Chapter 3 introduced x86 instruction formats:

[label:] mnemonic [operands][ ; comment ]

Because the number of operands may vary, we can further subdivide the formats to have zero,
one, two, or three operands. Here, we omit the label and comment fields for clarity:

mnemonic

mnemonic [destination]

mnemonic [destination], [source]

mnemonic [destination], [source-1], [source-2]
To give added flexibility to the instruction set, x86 assembly language uses different types of
instruction operands. The following are the easiest to use:

e Immediate—uses a numeric literal expression

* Register—uses a named register in the CPU

* Memory—references a memory location
Table 4-1 lists a simple notation for operands freely adapted from the Intel manuals. We will use
it from this point on to describe the syntax of individual instructions.

Table 4-1  Instruction Operand Notation.

Operand Description
reg8 8-bit general-purpose register: AH, AL, BH, BL, CH, CL, DH, DL
regl6 16-bit general-purpose register: AX, BX, CX, DX, SI, DI, SP, BP
reg32 32-bit general-purpose register: EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP
reg Any general-purpose register
sreg 16-bit segment register: CS, DS, SS, ES, FS, GS
imm 8-, 16-, or 32-bit immediate value
imm8 8-bit immediate byte value
imml6 16-bit immediate word value
imm32 32-bit immediate doubleword value
reg/mem8 8-bit operand, which can be an 8-bit general register or memory byte
reg/meml6 16-bit operand, which can be a 16-bit general register or memory word
reg/mem32 32-bit operand, which can be a 32-bit general register or memory doubleword
mem An 8-, 16-, or 32-bit memory operand




96 Chaprer 4 o Dara Transfers, Addressing, and Arithmeric

4.1.3 Direct Memory Operands

Section 3.4 explained that variable names are references to offsets within the data segment. For
example, the following declaration indicates that a byte containing the number 10h has been
allocated in the data segment:

.data
varl BYTE 10h

Program code contains instructions that dereference (look up) memory operands using their
addresses. Suppose varl were located at offset 10400h. An assembly language instruction mov-
ing it to the AL register would be

mov AL,varl
Microsoft Macro Assembler (MASM) would assemble it into the following machine instruction:
AO0 00010400

The first byte in the machine instruction is the opcode. The remaining part is the 32-bit hexadec-
imal address of varl. Although it might be possible to write programs using only numeric
addresses, symbolic names such as varl make it easier to reference memory.

Alternative Notation. Some programmers prefer to use the following notation with direct operands
because the brackets imply a dereference operation:

mov al, [varl]

MASM permits this notation, so you can use it in your own programs if you want. Because so many pro-
grams (including those from Microsoft) are printed without the brackets, we will only use them in this
book when an arithmetic expression is involved:

mov al, [varl + 5]

(This is called a direct-offset operand, a subject discussed at length in Section 4.1.8.)

4.1.4 MOV Instruction

The MOV instruction copies data from a source operand to a destination operand. Known as a
data transfer instruction, it is used in virtually every program. Its basic format shows that the
first operand is the destination and the second operand is the source:

MOV destination, source

The destination operand’s contents change, but the source operand is unchanged. The right to
left movement of data is similar to the assignment statement in C++ or Java:

dest = source;

(In nearly all assembly language instructions, the left-hand operand is the destination and the right-
hand operand is the source.)
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MOV is very flexible in its use of operands, as long as the following rules are observed:

* Both operands must be the same size.

* Both operands cannot be memory operands.

* CS, EIP, and IP cannot be destination operands.

* An immediate value cannot be moved to a segment register.

Here is a list of the general variants of MOV, excluding segment registers:

MOV reg, reg

MOV mem, reg

MOV reg, mem

MOV mem, imm

MOV reg, imm

Segment registers should not be directly modified by programs running in protected mode.

The following options are available when running in real mode, with the exception that CS can-
not be a target operand:

MOV reg/memlé6, sreg

MOV sreg, reg/meml6
Memory to Memory A single MOV instruction cannot be used to move data directly from
one memory location to another. Instead, you must move the source operand’s value to a register
before moving its value to a memory operand:

.data

varl WORD °?
var2 WORD ?
.code

mov ax,varl
mov var2,ax

You must consider the minimum number of bytes required by an integer constant when copy-
ing it to a variable or register. For unsigned integer constants, refer to Table 1-4 in Chapter 1. For
signed integer constants, refer to Table 1-7.

Overlapping Values

The following code example shows how the same 32-bit register can be modified using differently
sized data. When oneWord is moved to AX, it overwrites the existing value of AL. When oneD-
word is moved to EAX, it overwrites AX. Finally, when 0 is moved to AX, it overwrites the lower
half of EAX.

.data

oneByte BYTE 78h

oneWord WORD 1234h
oneDword DWORD 12345678h

.code
mov eax,0 ; EAX = 00000000h
mov al,oneByte ; EAX = 00000078h
mov ax,oneWord ; EAX = 00001234h
mov eax,oneDword ; EAX = 12345678h

mov ax,0 ; EAX = 12340000h
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4.1.5 Zero/Sign Extension of Integers

Copying Smaller Values to Larger Ones

Although MOV cannot directly copy data from a smaller operand to a larger one, programmers
can create workarounds. Suppose count (unsigned, 16 bits) must be moved to ECX (32 bits). We
can set ECX to zero and move count to CX:

.data

count WORD 1
.code

mov ecx, 0
mov CcX,count

What happens if we try the same approach with a signed integer equal to —16?

.data

signedval SWORD -16 ; FFFOh (-16)

.code

mov ecx,0

mov cx,signedval ; ECX = 0000FFFOh (+65,520)

The value in ECX (+65,520) is completely different from —16. On the other hand, if we had
filled ECX first with FFFFFFFFh and then copied signedVal to CX, the final value would have
been correct:

mov ecx, OFFFFFFFFh
mov cx,signedvVal ; ECX = FFFFFFFOh (-16)

The effective result of this example was to use the highest bit of the source operand (1) to fill
the upper 16 bits of the destination operand, ECX. This technique is called sign extension. Of
course, we cannot always assume that the highest bit of the source is a 1. Fortunately, the engi-
neers at Intel anticipated this problem when designing the Intel386 processor and introduced the
MOVZX and MOVSX instructions to deal with both unsigned and signed integers.

MOVZX Instruction

The MOVZX instruction (move with zero-extend) copies the contents of a source operand into a
destination operand and zero-extends the value to 16 or 32 bits. This instruction is only used
with unsigned integers. There are three variants:

MOVZX reg32, reg/mem8
MOVZX reg32,reg/meml6
MOVZX reglé6,reg/mem8

(Operand notation was explained in Table 4-1.) In each of the three variants, the first operand (a
register) is the destination and the second is the source. The following example zero-extends
binary 10001111 into AX:

.data

byteval BYTE 10001111b

.code

movzxX ax,byteval ; AX = 0000000010001111b
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Figure 4—1 shows how the source operand is zero-extended into the 16-bit destination.

Figure 4-1 Using MOVZX to copy a byte into a 16-bit destination.

0 10001111 Source

00000000 10001111 Destination

The following examples use registers for all operands, showing all the size variations:
mov bx, 0A69Bh

movzx eax,bx ; EAX = 0000A69Bh
movzx edx,bl ; EDX = 0000009Bh
movzx cxX,bl ; CX = 009Bh

The following examples use memory operands for the source and produce the same results:

.data
bytel BYTE 9Bh
wordl WORD 0A69Bh

.code

movzx eax,wordl ; EAX = 0000A69Bh
movzx edx,bytel ; EDX = 0000009Bh
movzx cx,bytel ; CX = 009Bh

If you want to run and test examples from this chapter in real-address mode, use INCLUDE with
Irvine16.lib and insert the following lines at the beginning of the main procedure:

mov ax,@data
mov ds,ax

MOVSX Instruction

The MOVSX instruction (move with sign-extend) copies the contents of a source operand into a
destination operand and sign-extends the value to 16 or 32 bits. This instruction is only used
with signed integers. There are three variants:

MOVSX reg32,reg/mem8
MOVSX reg32,reg/meml6
MOVSX reglb, reg/mem8

An operand is sign-extended by taking the smaller operand’s highest bit and repeating (repli-
cating) the bit throughout the extended bits in the destination operand. The following example
sign-extends binary 10001111b into AX:

.data
byteval BYTE 10001111b

.code
movsx ax,byteval ; AX = 1111111110001111b
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The lowest 8 bits are copied as in Figure 4-2. The highest bit of the source is copied into each of
the upper 8 bit positions of the destination.

A hexadecimal constant has its highest bit set if its most significant hexadecimal digit is greater
than 7. In the following example, the hexadecimal value moved to BX is A69B, so the leading “A”
digit tells us that the highest bit is set. (The leading zero appearing before A69B is just a notational
convenience so the assembler does not mistake the constant for the name of an identifier.)

mov bx, 0A69Bh

movsx eax,bx ; EAX = FFFFA69Bh
movsx edx,bl ; EDX = FFFFFF9Bh
movsx cX,bl ; CX = FF9Bh

Figure 4-2  Using MOVSX to copy a byte into a 16-bit destination.

10001111 Source

(copy 8 bits)

11111111 10001111 Destination

4.1.6 LAHF and SAHF Instructions

The LAHF (load status flags into AH) instruction copies the low byte of the EFLAGS register
into AH. The following flags are copied: Sign, Zero, Auxiliary Carry, Parity, and Carry. Using
this instruction, you can easily save a copy of the flags in a variable for safekeeping:

.data

saveflags BYTE ?

.code

lahf ; load flags into AH

mov saveflags,ah ; save them in a variable

The SAHF (store AH into status flags) instruction copies AH into the low byte of the
EFLAGS register. For example, you can retrieve the values of flags saved earlier in a variable:

mov ah, saveflags ; load saved flags into AH
sahf ; copy into Flags register

4.1.7 XCHG Instruction
The XCHG (exchange data) instruction exchanges the contents of two operands. There are three
variants:

XCHG reg, reg

XCHG reg,mem

XCHG mem, reg
The rules for operands in the XCHG instruction are the same as those for the MOV instruction
(Section 4.1.4), except that XCHG does not accept immediate operands. In array sorting
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applications, XCHG provides a simple way to exchange two array elements. Here are a few
examples using XCHG:

xchg ax, bx ; exchange 16-bit regs
xchg ah,al ; exchange 8-bit regs
xchg varl, bx ; exchange 16-bit mem op with BX
xchg eax, ebx ; exchange 32-bit regs

To exchange two memory operands, use a register as a temporary container and combine MOV
with XCHG:

mov ax,vall
xchg ax,val2
mov vall, ax

4.1.8 Direct-Offset Operands
You can add a displacement to the name of a variable, creating a direct-offset operand. This lets
you access memory locations that may not have explicit labels. Let’s begin with an array of
bytes named arrayB:

arrayB BYTE 10h,20h,30h,40h,50h
If we use MOV with arrayB as the source operand, we automatically move the first byte in the
array:

mov al,arrayB ; AL = 10h
We can access the second byte in the array by adding 1 to the offset of arrayB:

mov al, [arrayB+1] ; AL = 20h
The third byte is accessed by adding 2:

mov al, [arrayB+2] ; AL = 30h

An expression such as arrayB+1 produces what is called an effective address by adding a con-
stant to the variable’s offset. Surrounding an effective address with brackets indicates the expres-
sion is dereferenced to obtain the contents of memory at the address. The brackets are not
required by MASM, so the following statements are equivalent:

mov al, [arrayB+1]

mov al,arrayB+1
Range Checking MASM has no built-in range checking for effective addresses. If we exe-
cute the following statement, the assembler just retrieves a byte of memory outside the array.
The result is a sneaky logic bug, so be extra careful when checking array references:

mov al, [arrayB+20] ; AL = ?7?

Word and Doubleword Arrays 1In an array of 16-bit words, the offset of each array element
is 2 bytes beyond the previous one. That is why we add 2 to ArrayW in the next example to
reach the second element:

.data
arrayW WORD 100h,200h,300h
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.code
mov ax,arrayW ; AX = 100h
mov ax, [arrayW+2] ; AX = 200h

Similarly, the second element in a doubleword array is 4 bytes beyond the first one:

.data

arrayD DWORD 10000h,20000h

.code

mov eax,arrayD ; EAX = 10000h
mov eax, [arrayD+4] ; EAX = 20000h

4.1.9 Example Program (Moves)
The following program demonstrates most of the data transfer examples from Section 4.1:

TITLE Data Transfer Examples (Moves.asm)

INCLUDE Irvine32.inc

.data

vall WORD 1000h

val2 WORD 2000h

arrayB BYTE 10h,20h,30h,40h,50h
arrayW WORD 100h,200h,300h
arrayD DWORD 10000h,20000h

.code
main PROC

; Demonstrating MOVZX instruction:
mov bx, 0A69Bh

movzx eax, bx ; EAX = 0000A69Bh
movzx edx, bl ; EDX = 0000009Bh
movzx cx, bl ; CX = 009Bh

; Demonstrating MOVSX instruction:
mov bx, 0A69Bh

movsx eax, bx ; EAX = FFFFA69Bh
movsx edx, bl ; EDX = FFFFFF9Bh
mov bl, 7Bh
movsx cx,bl ; CX = 007Bh
; Memory-to-memory exchange:
mov ax,vall ; AX = 1000h
xchg ax,val2 ; AX=2000h, wval2=1000h
mov vall, ax ; vall = 2000h
; Direct-Offset Addressing (byte array):
mov al,arrayB ; AL = 10h
mov al, [arrayB+1] ; AL = 20h
mov al, [arrayB+2] ; AL = 30h

; Direct-Offset Addressing (word array) :
mov ax,arrayw ; AX = 100h
mov ax, [arrayW+2] ; AX = 200h
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; Direct-Offset Addressing (doubleword array) :

mov eax,arrayD ; EAX = 10000h
mov eax, [arrayD+4] ; EAX = 20000h
mov eax, [arrayD+4] ; EAX = 20000h
exit

main ENDP

END main

This program generates no screen output, but you can (and should) run it using a debugger. Please

refer to tutorials on the book’s Web site showing how to use the Microsoft Visual Studio debugger.
Section 5.3 explains how to display integers using a function library supplied with this book.

4.1.10 Section Review

A

6.

What are the three basic types of operands?

(True/False): The destination operand of a MOV instruction cannot be a segment register.
(True/False): In a MOV instruction, the second operand is known as the destination operand.
(True/False): The EIP register cannot be the destination operand of a MOV instruction.

In the operand notation used by Intel, what does reg/mem32 indicate?

In the operand notation used by Intel, what does imm16 indicate?

Use the following variable definitions for the remaining questions in this section:

7.

.data

varl SBYTE -4,-2,3,1

var2 WORD 1000h,2000h,3000h,4000h
var3 SWORD -16,-42

var4d DWORD 1,2,3,4,5

For each of the following statements, state whether or not the instruction is valid:

mov ax,varl
mov ax,var?2
mov eax,var3

mov var2,var3
movzx ax,var2
movzx var2,al
mov ds, ax
mov ds,1000h

0Q O 0 O

. What will be the hexadecimal value of the destination operand after each of the following

instructions execute in sequence?

mov al,varl ;oa.
mov ah, [varl+3] ; b.

What will be the value of the destination operand after each of the following instructions
execute in sequence?
mov ax,var2 ;
mov ax, [var2+4] ;

mov ax,var3 B
mov ax, [var3-2] ;

Q0 oo
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10. What will be the value of the destination operand after each of the following instructions
execute in sequence?

mov edx,var4d ;
movzx edx,var2 ;
mov edx, [vard+4] B
movsx edx,varl ;

[oTRN oI o]

4.2 Addition and Subtraction

Arithmetic is a fairly big subject in assembly language, so we will approach it in steps. For the
moment, we will focus on integer addition and subtraction. Chapter 7 introduces integer multi-
plication and division. Chapter 12 shows how to do floating-point arithmetic with a completely
different instruction set. Let’s begin with INC (increment), DEC (decrement), ADD (add), SUB
(subtract), and NEG (negate). The question of how status flags (Carry, Sign, Zero, etc.) are
affected by these instructions is important, and will be discussed in Section 4.2.6.

4.2.1 INC and DEC Instructions
The INC (increment) and DEC (decrement) instructions, respectively, add 1 and subtract 1 from
a single operand. The syntax is

INC reg/mem
DEC reg/mem

Following are some examples:

.data

myWord WORD 1000h

.code

inc myWord ; myWord = 1001h
mov bx,myWord

dec bx ; BX = 1000h

The Overflow, Sign, Zero, Auxiliary Carry, and Parity flags are changed according to the

value of the destination operand. The INC and DEC instructions do not affect the Carry flag
(which is something of a surprise).

4.2.2 ADD Instruction
The ADD instruction adds a source operand to a destination operand of the same size. The syntax is

ADD dest, source

Source is unchanged by the operation, and the sum is stored in the destination operand. The set
of possible operands is the same as for the MOV instruction (Section 4.1.4). Here is a short code
example that adds two 32-bit integers:

.data
varl DWORD 10000h
var2 DWORD 20000h

.code
mov eax,varl ; EAX = 10000h
add eax,var?2 ; EAX = 30000h
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Flags The Carry, Zero, Sign, Overflow, Auxiliary Carry, and Parity flags are changed accord-
ing to the value that is placed in the destination operand.

4.2.3 SUB Instruction
The SUB instruction subtracts a source operand from a destination operand. The set of possible
operands is the same as for the ADD and MOV instructions (see Section 4.1.4). The syntax is

SUB dest, source
Here is a short code example that subtracts two 32-bit integers:

.data
varl DWORD 30000h
var2 DWORD 10000h

.code
mov eax,varl ; EAX = 30000h
sub eax,var?2 ; EAX = 20000h

Internally, the CPU can implement subtraction as a combination of negation and addition.
Figure 4-3 shows how the expression 4 — 1 can be rewritten as 4 + (—1). Two’s-complement
notation is used for negative numbers, so —1 is represented by 11111111.

Figure 4-% Adding the Value —1 to 4.

Carry: 1 1 1 1 1 1

ololololo|1]o]o]| @

olojlolololo|1]|1]| @

Flags The Carry, Zero, Sign, Overflow, Auxiliary Carry, and Parity flags are changed accord-
ing to the value that is placed in the destination operand.

4.2.4 NEG Instruction
The NEG (negate) instruction reverses the sign of a number by converting the number to its
two’s complement. The following operands are permitted:

NEG reg

NEG mem
(Recall that the two’s complement of a number can be found by reversing all the bits in the desti-
nation operand and adding 1.)

Flags The Carry, Zero, Sign, Overflow, Auxiliary Carry, and Parity flags are changed accord-
ing to the value that is placed in the destination operand.
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4.2.5 Implementing Arithmetic Expressions

Armed with the ADD, SUB, and NEG instructions, you have the means to implement arithmetic
expressions involving addition, subtraction, and negation in assembly language. In other words,
one can simulate what a C++ compiler might do when reading an expression such as

Rval = -Xval + (Yval - Zval);
The following signed 32-bit variables will be used:

Rval SDWORD °?

Xval SDWORD 26
Yval SDWORD 30
Zval SDWORD 40

When translating an expression, evaluate each term separately and combine the terms at the end.
First, we negate a copy of Xval:

; first term: -Xval
mov eax,Xval
neg eax ; EAX = -26

Then Yval is copied to a register and Zval is subtracted:

; second term: (Yval - Zval)
mov ebx,Yval
sub ebx,Zval ; EBX = -10

Finally, the two terms (in EAX and EBX) are added:

; add the terms and store:
add eax,ebx
mov Rval, eax ; -36

4.2.6 Flags Affected by Addition and Subtraction

When executing arithmetic instructions, we often want to know something about the result. Is it neg-
ative, positive, or zero? Is it too large or too small to fit into the destination operand? Answers to
such questions can help us detect calculation errors that might otherwise cause erratic program
behavior. We use the values of CPU status flags to check the outcome of arithmetic operations.
We also use status flag values to activate conditional branching instructions, the basic tools of
program logic. Here’s a quick overview of the status flags.

* The Carry flag indicates unsigned integer overflow. For example, if an instruction has an 8-bit
destination operand but the instruction generates a result larger than 11111111 binary, the
Carry flag is set.

* The Overflow flag indicates signed integer overflow. For example, if an instruction has a 16-
bit destination operand but it generates a negative result smaller than —32,768 decimal, the
Overflow flag is set.

* The Zero flag indicates that an operation produced zero. For example, if an operand is sub-
tracted from another of equal value, the Zero flag is set.

* The Sign flag indicates that an operation produced a negative result. If the most significant bit
(MSB) of the destination operand is set, the Sign flag is set.
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* The Parity flag indicates whether or not an even number of 1 bits occurs in the least signifi-
cant byte of the destination operand, immediately after an arithmetic or boolean instruction
has executed.

* The Auxiliary Carry flag is set when a 1 bit carries out of position 3 in the least significant
byte of the destination operand.

To display CPU status flag values in programs, call DumpRegs from the book’s link library. Following is
an example:

ERX=76D448FF EBX=7FFD ECX=HA0HBAAA EDX-A0481685
ES1=-HA0ABAAA EDI

EBP=HB812FF?4 ESP=BH12FF8C
6 CF=A SF=B ZF=1 0OF=B AF=8 PF=1

EIP=88481081A EFL=

Unsigned Operations: Zero, Carry, and Auxiliary Carry

The Zero flag is set when the result of an arithmetic operation is zero. The following examples
show the state of the destination register and Zero flag after executing the SUB, INC, and DEC
instructions:

mov ecx,1l

sub ecx,1 ; ECX = 0, 2F =1
mov eax, OFFFFFFFFh

inc eax ; EAX = 0, ZF =1
inc eax ; BEAX =1, ZF = 0
dec eax ; EAX = 0, ZF =1

Addition and the Carry Flag The Carry flag’s operation is easiest to explain if we consider
addition and subtraction separately. When adding two unsigned integers, the Carry flag is a copy
of the carry out of the MSB of the destination operand. Intuitively, we can say CF = 1 when the
sum exceeds the storage size of its destination operand. In the next example, ADD sets the Carry
flag because the sum (100h) is too large for AL:

mov al,OFFh
add al,1l ; AL = 00, CF =1

Figure 4—4 shows what happens at the bit level when 1 is added to OFFh. The carry out of the
highest bit position of AL is copied into the Carry flag.

Fiqure 4-4  Adding 1 to OFFh Sets the Carry Flag.

CF 00|l 0])J0]J0O]O0O]O0]O
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On the other hand, if 1 is added to O0OFFh in AX, the sum easily fits into 16 bits and the Carry
flag is clear:

mov ax,00FFh
add ax,1 ; AX = 0100h, CF =0

But adding 1 to FFFFh in the AX register generates a Carry out of the high bit position of AX:

mov ax, 0FFFFh

add ax,1 ; AX = 0000, CF =1
Subtraction and the Carry Flag A subtract operation sets the Carry flag when a larger
unsigned integer is subtracted from a smaller one. It’s easiest to consider subtraction’s effect on
the Carry flag from a hardware point of view. Let’s assume, for a moment, that the CPU can
negate a positive unsigned integer by forming its two’s complement:
1. The source operand is negated and added to the destination.
2. The carry out of MSB is inverted and copied to the Carry flag.
Figure 4-5 shows what happens when we subtract 2 from 1, using 8-bit operands. First, we
negate 2 and then perform addition. The sum (FF hexadecimal) is not valid. The carry out of
bit 7 is inverted and placed in the Carry flag, so CF = 1. Here is the corresponding assembly
code:

mov al,1l
sub al,2 ; AL = FFh, CF =1

The INC and DEC instructions do not affect the Carry flag. Applying the NEG instruction to a nonzero
operand always sets the Carry flag.

Fiqure 4-7 Subtracting 2 from 1 Sets the Carry Flag.

+ 111111 ]o]| (-2

CF T (1|11 |1(1]1]}1 (FFh)

Auxiliary Carry The Auxiliary Carry (AC) flag indicates a carry or borrow out of bit 3 in the
destination operand. It is primarily used in binary coded decimal (BCD) arithmetic
(Section 7.6), but can be used in other contexts. Suppose we add 1 to OFh. The sum (10h) con-
tains a 1 in bit position 4 that was carried out of bit position 3:

mov al,OFh
add al,1 ; AC =1
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Here is the arithmetic:

00010000

Parity The Parity flag (PF) is set when the least significant byte of the destination has an even
number of 1 bits. The following ADD and SUB instructions alter the parity of AL:

mov al,10001100b

add al,00000010b ; AL = 10001110, PF =1

sub al,10000000b ; AL = 00001110, PF = O
After the ADD, AL contains binary 10001110 (four O bits and four 1 bits), and PF = 1. After the
SUB, AL contains an odd number of 1 bits, so PF = 0.

Signed Operations: Sign and Overflow Flags

Sign Flag The Sign flag is set when the result of a signed arithmetic operation is negative. The
next example subtracts a larger integer (5) from a smaller one (4):

mov eax,4

sub eax,5 ; EAX = -1, SF =1
From a mechanical point of view, the Sign flag is a copy of the destination operand’s high bit.
The next example shows the hexadecimal values of BL when a negative result is generated:

mov bl,1 ; BL = 01h

sub bl,2 ; BL = FFh (-1), SF = 1
Overflow Flag The Overflow flag is set when the result of a signed arithmetic operation over-

flows or underflows the destination operand. For example, from Chapter 1 we know that the
largest possible integer signed byte value is +127; adding 1 to it causes overflow:

mov al,+127
add al,1 ; OF = 1
Similarly, the smallest possible negative integer byte value is —128. Subtracting 1 from it causes
underflow. The destination operand value does not hold a valid arithmetic result, and the Over-
flow flag is set:
mov al,-128
sub al,1 ; OF =1
The Addition Test There is a very easy way to tell whether signed overflow has occurred
when adding two operands. Overflow occurs when
* two positive operands generate a negative sum,
* two negative operands generate a positive sum.
Overflow never occurs when the signs of two addition operands are different.
How the Hardware Detects Overflow The CPU uses an interesting mechanism to determine
the state of the Overflow flag after an addition or subtraction operation. The Carry flag is exclu-
sive ORed with the high bit of the result. The resulting value is placed in the Overflow flag.
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In Figure 4-6, we show that adding the 8-bit binary integers 10000000 and 11111110 produces
CF =1 and a resulting MSB = 0. In other words, 1 XOR 0 produces OF = 1.

Figure 4-6 Demonstration of how the Overflow Flag Is Set.

100000O0O0
11111110

+
CI:III 01111110

NEG Instruction The NEG instruction produces an invalid result if the destination operand can-
not be stored correctly. For example, if we move —128 to AL and try to negate it, the correct value
(+128) will not fit into AL. The Overflow flag is set, indicating that AL contains an invalid value:

mov al,-128 ; AL = 10000000b
neg al ; AL = 10000000b, OF = 1

On the other hand, if +127 is negated, the result is valid and the Overflow flag is clear:

mov al,+127 ; AL = 01111111b
neg al ; AL = 10000001b, OF =0

How does the CPU know whether an arithmetic operation is signed or unsigned? We can only give what
seems a dumb answer: It doesn’t! The CPU sets all status flags after an arithmetic operation using a set of
boolean rules, regardless of which flags are relevant. You (the programmer) decide which flags to inter-
pret and which to ignore, based on your knowledge of the type of operation performed.

4.2.7 Example Program (AddSub3)
The following program implements various arithmetic expressions using the ADD, SUB, INC,

DEC, and NEG instructions, and shows how certain status flags are affected:
TITLE Addition and Subtraction (AddSub3.asm)

INCLUDE Irvine32.inc
.data

Rval SDWORD ?

Xval SDWORD 26
Yval SDWORD 30
Zval SDWORD 40

.code

main PROC
; INC and DEC
mov ax,1000h

inc ax ; 1001h

dec ax ; 1000h

; Expression: Rval = -Xval + (Yval - Zval)
mov eax,Xval

neg eax ; —-26

mov ebx,Yval
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sub ebx, zval ; —-10
add eax, ebx
mov Rval, eax ; =36

; Zero flag example:
mov cx, 1

sub cx, 1 ; ZF =1
mov ax, 0FFFFh
inc ax ; ZF =1

; Sign flag example:
mov cx, 0

sub cx, 1 ; SF =1
mov ax, 7FFFh
add ax, 2 ; SF =1

; Carry flag example:
mov al, OFFh
add al,1 ; CF =1, AL = 00

; Overflow flag example:
mov al,+127

add al,1l ; OF =1
mov al,-128
sub al,1 ; OF =1
exit

main ENDP

END main

4.2.8 Section Review
Use the following data for the next several questions:

.data

vall BYTE 10h
val2 WORD 8000h
val3 DWORD OFFFFh
vald WORD 7FFFh

Write an instruction that increments val2.
Write an instruction that subtracts val3 from EAX.

Werite instructions that subtract val4 from val2.

Eall o

If val2 is incremented by 1 using the ADD instruction, what will be the values of the Carry

and Sign flags?

5. If val4 is incremented by 1 using the ADD instruction, what will be the values of the Over-
flow and Sign flags?

6. Where indicated, write down the values of the Carry, Sign, Zero, and Overflow flags after

each instruction has executed:

mov ax, 7FFOh

add al,10h ; a. CF = SF = ZF = OF =
add ah,1 ; b. CF = SF = ZF = OF =
add ax, 2 ; c. CF = SF = ZF = OF =
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7. Implement the following expression in assembly language: AX = (—val2 + BX) — val4.
8. (Yes/No): Is it possible to set the Overflow flag if you add a positive integer to a negative integer?

9. (Yes/No): Will the Overflow flag be set if you add a negative integer to a negative integer
and produce a positive result?

10. (Yes/No): Is it possible for the NEG instruction to set the Overflow flag?
11. (Yes/No): Is it possible for both the Sign and Zero flags to be set at the same time?

12. Write a sequence of two instructions that set both the Carry and Overflow flags at the same
time.

13. Write a sequence of instructions showing how the Zero flag could be used to indicate unsigned
overflow after executing INC and DEC instructions.

14. In our discussion of the Carry flag we subtracted unsigned 2 from 1 by negating the 2 and
adding it to 1. The Carry flag was the inversion of the carry out of the MSB of the sum. Dem-
onstrate this process by subtracting 3 from 4 and show how the Carry flag value is produced.

4.3 Data-Related Operators and Directives

Operators and directives are not executable instructions; instead, they are interpreted by the
assembler. You can use a number of MASM directives to get information about the addresses
and size characteristics of data:

* The OFFSET operator returns the distance of a variable from the beginning of its enclosing
segment.
* The PTR operator lets you override an operand’s default size.
* The TYPE operator returns the size (in bytes) of an operand or of each element in an array.
e The LENGTHOF operator returns the number of elements in an array.
* The SIZEOF operator returns the number of bytes used by an array initializer.
In addition, the LABEL directive provides a way to redefine the same variable with different
size attributes. The operators and directives in this chapter represent only a small subset of the
operators supported by MASM. You may want to view the complete list in Appendix D.

MASM continues to support the legacy directives LENGTH (rather than LENGTHOF) and SIZE (rather
than SIZEOF).

4.3.1 OFFSET Operator

The OFFSET operator returns the offset of a data label. The offset represents the distance, in
bytes, of the label from the beginning of the data segment. To illustrate, Figure 4—7 shows a vari-
able named myByte inside the data segment.

Figure 4-7 A Variable Named myByte.

offset
1

data segment:

myByte
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OFFSET Example
In the next example, we declare three different types of variables:

.data

bval BYTE
wVal WORD
dval DWORD
dval2 DWORD

If bVal were located at offset 00404000 (hexadecimal), the OFFSET operator would return the
following values:

R N Vv

mov esi,OFFSET bval ; ESI = 00404000
mov esi,OFFSET wVal ; ESI = 00404001
mov esi,OFFSET dval ; ESI = 00404003
mov esi,OFFSET dval2 ; ESTI = 00404007

OFFSET can also be applied to a direct-offset operand. Suppose myArray contains five
16-bit words. The following MOV instruction obtains the offset of myArray, adds 4, and
moves the resulting address to ESI. We can say that ESI points to the third integer in the array:

.data

myArray WORD 1,2,3,4,5

.code

mov esi,OFFSET myArray + 4
You can initialize a doubleword variable with the offset of another variable, effectively creating
a pointer. In the following example, pArray points to the beginning of bigArray:

.data

bigArray DWORD 500 DUP(?)

pArray DWORD bigArray
The following statement loads the pointer’s value into ESI, so the register can point to the begin-
ning of the array:

mov esi,pArray

4.3.2 ALIGN Directive
The ALIGN directive aligns a variable on a byte, word, doubleword, or paragraph boundary. The
syntax is

ALIGN bound

Bound can be 1, 2, 4, or 16. A value of 1 aligns the next variable on a 1-byte boundary (the
default). If bound is 2, the next variable is aligned on an even-numbered address. If bound is 4,
the next address is a multiple of 4. If bound is 16, the next address is a multiple of 16, a
paragraph boundary. The assembler can insert one or more empty bytes before the variable to fix
the alignment. Why bother aligning data? Because the CPU can process data stored at even-
numbered addresses more quickly than those at odd-numbered addresses.

In the following revision of an example from Section 4.3.1, bVal is arbitrarily located at
offset 00404000. Inserting the ALIGN 2 directive before wVal causes it to be assigned an



114 Chaprer 4 o Dara Transfers, Addressing, and Arithmeric

even-numbered offset:

bval BYTE °? ; 00404000
ALIGN 2

wVal WORD °? ; 00404002
bval2 BYTE °? ; 00404004
ALIGN 4

dval DWORD °? ; 00404008
dval2 DWORD °? ; 0040400C

Note that dVal would have been at offset 00404005, but the ALIGN 4 directive bumped it up to
offset 00404008.

4.3.3 PTR Operator

You can use the PTR operator to override the declared size of an operand. This is only necessary
when you’re trying to access the variable using a size attribute that’s different from the one used
to declare the variable.

Suppose, for example, that you would like to move the lower 16 bits of a doubleword variable

named myDouble into AX. The assembler will not permit the following move because the oper-
and sizes do not match:

.data

myDouble DWORD 12345678h

.code

mov ax,myDouble ; error

But the WORD PTR operator makes it possible to move the low-order word (5678h) to AX:
mov ax,WORD PTR myDouble

Why wasn’t 1234h moved into AX? x86 processors use the little endian storage format
(Section 3.4.9), in which the low-order byte is stored at the variable’s starting address. In
Figure 4-8, the memory layout of myDouble is shown three ways: first as a doubleword, then as
two words (5678h, 1234h), and finally as four bytes (78h, 56h, 34h, 12h).

Figure 4-8 Memory Layout of myDouble.

doubleword  word Dbyte offset
12345678 5678 | 78 0000  myDouble

56 0001  myDouble + 1

1234 | 34 0002  myDouble + 2

12 0003  myDouble + 3

The CPU can access memory in any of these three ways, independent of the way a variable
was defined. For example, if myDouble begins at offset 0000, the 16-bit value stored at that
address is 5678h. We could also retrieve 1234h, the word at location myDouble+2, using the
following statement:

mov ax,WORD PTR [myDouble+2] ; 1234h
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Similarly, we could use the BYTE PTR operator to move a single byte from myDouble to BL:
mov bl,BYTE PTR myDouble ; 78h

Note that PTR must be used in combination with one of the standard assembler data types,
BYTE, SBYTE, WORD, SWORD, DWORD, SDWORD, FWORD, QWORD, or TBYTE.

Moving Smaller Values into Larger Destinations We might want to move two smaller val-
ues from memory to a larger destination operand. In the next example, the first word is copied to
the lower half of EAX and the second word is copied to the upper half. The DWORD PTR oper-
ator makes this possible:

.data

wordList WORD 5678h,1234h

.code

mov eax,DWORD PTR wordList ; EAX = 12345678h

4.3.4 TYPE Operator
The TYPE operator returns the size, in bytes, of a single element of a variable. For example, the

TYPE of a byte equals 1, the TYPE of a word equals 2, the TYPE of a doubleword is 4, and the
TYPE of a quadword is 8. Here are examples of each:

.data

varl BYTE

var2 WORD

var3 DWORD
vard4d QWORD

RV VY

The following table shows the value of each TYPE expression.

Expression Value
TYPE varl
TYPE var2
TYPE var3
TYPE var4

o~ | =

4.3.5 LENGTHOF Operator
The LENGTHOF operator counts the number of elements in an array, defined by the values
appearing on the same line as its label. We will use the following data as an example:

.data

bytel BYTE 10,20,30
arrayl WORD 30 DUP(?),0,0
array?2 WORD 5 DUP(3 DUP(?))
array3 DWORD 1,2,3,4
digitStr BYTE "12345678",0
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When nested DUP operators are used in an array definition, LENGTHOF returns the product of
the two counters. The following table lists the values returned by each LENGTHOF expression:

Expression Value
LENGTHOF bytel 3
LENGTHOF array1 30 +2
LENGTHOF array2 5*%3
LENGTHOF array3 4
LENGTHOF digitStr 9

If you declare an array that spans multiple program lines, LENGTHOF only regards the data
from the first line as part of the array. Given the following data, LENGTHOF myArray would
return the value 5:

myArray BYTE 10,20,30,40,50
BYTE 60,70,80,90,100
Alternatively, you can end the first line with a comma and continue the list of initializers onto
the next line. Given the following data, LENGTHOF myArray would return the value 10:

myArray BYTE 10,20,30,40,50,
60,70,80,90,100

4.3.6 SIZEOF Operator

The SIZEOF operator returns a value that is equivalent to multiplying LENGTHOF by TYPE. In
the following example, intArray has TYPE = 2 and LENGTHOF = 32. Therefore, SIZEOF
intArray equals 64:

.data

intArray WORD 32 DUP(0)

.code

mov eax,SIZEOF intArray ; EAX = 64

4.3.7 LABEL Directive
The LABEL directive lets you insert a label and give it a size attribute without allocating any
storage. All standard size attributes can be used with LABEL, such as BYTE, WORD, DWORD,
QWORD or TBYTE. A common use of LABEL is to provide an alternative name and size
attribute for the variable declared next in the data segment. In the following example, we declare
a label just before val32 named vall6 and give it a WORD attribute:

.data

vall6é LABEL WORD
val32 DWORD 12345678h

.code
mov ax,vallé ; AX = 5678h
mov dx, [vall6+2] ; DX = 1234h

vallé6 is an alias for the same storage location as val32. The LABEL directive itself allocates no
storage.
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Sometimes we need to construct a larger integer from two smaller integers. In the next

example, a 32-bit value is loaded into EAX from two 16-bit variables:

.data

LongValue LABEL DWORD

vall WORD 5678h

val2 WORD 1234h

.code

mov eax,LongValue ; EAX = 12345678h

4.3.8 Section Review

1. (True/False): The OFFSET operator always returns a 16-bit value.

2. (True/False): The PTR operator returns the 32-bit address of a variable.

3.

4. (True/False): The LENGTHOF operator returns the number of bytes in an operand.
5.

(True/False): The TYPE operator returns a value of 4 for doubleword operands.

(True/False): The SIZEOF operator returns the number of bytes in an operand.

Use the following data definitions for the next seven exercises:

6.
7.

10.
11.

12.

4.4

.data

myBytes BYTE 10h,20h,30h,40h
myWords WORD 3 DUP(?),2000h
myString BYTE "ABCDE"

Insert a directive in the given data that aligns myBytes to an even-numbered address.
What will be the value of EAX after each of the following instructions execute?

mov eax,TYPE myBytes ;
mov eax, LENGTHOF myBytes ;
mov eax,SIZEOF myBytes 7
mov eax,TYPE myWords :
mov eax, LENGTHOF myWords ;
mov eax,SIZEOF myWords ;
mov eax,SIZEOF myString ;

Hh O QO o

Q

Write a single instruction that moves the first two bytes in myBytes to the DX register. The
resulting value will be 2010h.

Write an instruction that moves the second byte in myWords to the AL register.

Write an instruction that moves all four bytes in myBytes to the EAX register.

Insert a LABEL directive in the given data that permits myWords to be moved directly to a
32-bit register.

Insert a LABEL directive in the given data that permits myBytes to be moved directly to a
16-bit register.

Indirect Addressing

Direct addressing is impractical for array processing because it is not practical to use constant
offsets to address more than a few array elements. Instead, we use a register as a pointer (called



118 Chaprer 4 o Dara Transfers, Addressing, and Arithmeric

indirect addressing) and manipulate the register’s value. When an operand uses indirect address-
ing, it is called an indirect operand.

4.41 Indirect Operands

Protected Mode In protected mode, an indirect operand can be any 32-bit general-purpose
register (EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP) surrounded by brackets. The register
is assumed to contain the address of some data. In the next example, ESI contains the offset of
byteVal. The MOV instruction uses the indirect operand as the source, the offset in ESI is deref-
erenced, and a byte is moved to AL:

.data

byteval BYTE 10h

.code

mov esi,OFFSET byteval

mov al, [esi] ; AL = 10h

If the destination operand uses indirect addressing, a new value is placed in memory at the loca-
tion pointed to by the register. In the following example, the contents of the BL register are cop-
ied to the memory location addressed by ESI.

mov [esi],bl

Real-Address Mode In real-address mode, a 16-bit register holds the offset of a variable. If
the register is used as an indirect operand, it may only be SI, DI, BX, or BP. Avoid BP unless you
are using it to index into the stack. In the next example, SI references byteVal:

.data
byteval BYTE 10h
.code
main PROC
startup
mov si,OFFSET byteVal
mov al, [si] ; AL = 10h

General Protection Fault 1In protected mode, if the effective address points to an area outside
your program’s data segment, the CPU executes a general protection (GP) fault. This happens
even when an instruction does not modify memory. For example, if ESI were uninitialized, the
following instruction would probably generate a GP fault:

mov ax, [esi]

Always initialize registers before using them as indirect operands. The same applies to high-
level language programming with subscripts and pointers. General protection faults do not occur
in real-address mode, which makes uninitialized indirect operands difficult to detect.

Using PTR with Indirect Operands The size of an operand may not be evident from the
context of an instruction. The following instruction causes the assembler to generate an “oper-
and must have size” error message:

inc [esi] ; error: operand must have size
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The assembler does not know whether ESI points to a byte, word, doubleword, or some other
size. The PTR operator confirms the operand size:

inc BYTE PTR [esi]

4.4.2 Arrays
Indirect operands are ideal tools for stepping through arrays. In the next example, arrayB con-
tains 3 bytes. As ESI is incremented, it points to each byte, in order:

.data

arrayB BYTE 10h,20h,30h

.code

mov esi,OFFSET arrayB

mov al, [esi] ; AL = 10h
inc esi

mov al, [esi] ; AL = 20h
inc esi

mov al, [esi] ; AL = 30h

If we use an array of 16-bit integers, we add 2 to ESI to address each subsequent array element:

.data

arrayW WORD 1000h,2000h,3000h

.code

mov esi,OFFSET arrayW

mov ax, [esi] ; AX = 1000h
add esi,2

mov ax, [esi] ; AX = 2000h
add esi,?2

mov ax, [esi] ; AX = 3000h

Suppose arrayW is located at offset 10200h. The following illustration shows the initial value
of ESI in relation to the array data:

Offset Value

10200 1000h ~—]est]
10202 2000h
10204 3000h

Example: Adding 32-Bit Integers The following code example adds three doublewords.
A displacement of 4 must be added to ESI as it points to each subsequent array value because
doublewords are 4 bytes long:

.data

arrayD DWORD 10000h,20000h,30000h

.code

mov esi,OFFSET arrayD

mov eax, [esi] ; first number
add esi,4

add eax, [esi] ; second number
add esi,4

add eax, [esi] ; third number
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Suppose arrayD is located at offset 10200h. Then the following illustration shows the initial
value of ESI in relation to the array data:

Offset Value

10200 10000h | <— [esi]
10204 20000h  |=<— [esi] + 4
10208 30000h  |<— [esi] + 8

4.4.3 Indexed Operands

An indexed operand adds a constant to a register to generate an effective address. Any of the 32-
bit general-purpose registers may be used as index registers. There are different notational forms
permitted by MASM (the brackets are part of the notation):

constant[reg]

[constant + regl
The first notational form combines the name of a variable with a register. The variable name is
translated by the assembler into a constant that represents the variable’s offset. Here are exam-
ples that show both notational forms:

arrayB[esi] [arrayB + esi]

arrayD[ebx] [arrayD + ebx]

Indexed operands are ideally suited to array processing. The index register should be initialized
to zero before accessing the first array element:

.data

arrayB BYTE 10h,20h,30h

.code

mov esi,0

mov al, [arrayB + esi] ; AL = 10h

The last statement adds ESI to the offset of arrayB. The address generated by the expression
[arrayB + ESI] is dereferenced and the byte in memory is copied to AL.

Adding Displacements The second type of indexed addressing combines a register with a
constant offset. The index register holds the base address of an array or structure, and the con-
stant identifies offsets of various array elements. The following example shows how to do this
with an array of 16-bit words:

.data

arrayW WORD 1000h,2000h,3000h

.code

mov esi,OFFSET arrayW

mov ax, [esi] ; AX = 1000h
mov ax, [esi+2] ; AX = 2000h
mov ax, [esi+4] ; AX = 3000h
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Using 16-Bit Registers 1t is usual to use 16-bit registers as indexed operands in real-address
mode. In that case, you are limited to using SI, DI, BX, or BP:

mov al,arrayB[si]
mov ax,arrayW[di]
mov eax,arrayD[bx]

As is the case with indirect operands, avoid using BP except when addressing data on the stack.

Scale Factors in Indexed Operands

Indexed operands must take into account the size of each array element when calculating offsets.
Using an array of doublewords, as in the following example, we multiply the subscript (3) by
4 (the size of a doubleword) to generate the offset of the array element containing 400h:

.data

arrayD DWORD 100h, 200h, 300h, 400h

.code

mov esi,3 * TYPE arrayD ; offset of arrayDI[3]
mov eax,arrayD[esi] ; EAX = 400h

Intel designers wanted to make a common operation easier for compiler writers, so they
provided a way for offsets to be calculated, using a scale factor. The scale factor is the size of the
array component (word = 2, doubleword = 4, or quadword = 8). Let’s revise our previous
example by setting ESI to the array subscript (3) and multiplying ESI by the scale factor (4) for
doublewords:

.data

arrayD DWORD 1,2,3,4

.code

mov esi,3 ; subscript
mov eax,arrayD[esi*4] ; EAX = 4

The TYPE operator can make the indexing more flexible should arrayD be redefined as another
type in the future:

mov esi,3 ; subscript
mov eax,arrayD[esi*TYPE arrayD] ; BEAX = 4

4.4.4 Pointers

A variable containing the address of another variable is called a pointer. Pointers are a great tool
for manipulating arrays and data structures, and they make dynamic memory allocation possible.
x86 programs use two basic types of pointers, NEAR and FAR. Their sizes are affected by the
processor’s current mode (16-bit real or 32-bit protected), as shown in Table 4-2:

Table 4-2  Pointer Types in 16- and 32-Bit Modes.

16-Bit Mode 32-Bit Mode
NEAR 16-bit offset from the beginning of | 32-bit offset from the beginning of
pointer the data segment the data segment
FAR 32-bit segment-offset address 48-bit segment selector-offset
pointer address
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The 32-bit mode programs in this book use near pointers, so they are stored in doubleword
variables. Here are two examples: ptrB contains the offset of arrayB, and ptrW contains the
offset of arrayW:

arrayB BYTE 10h,20h,30h,40h
arrayW WORD 1000h,2000h,3000h

ptrB DWORD arrayB
ptrw DWORD arrayW

Optionally, you can use the OFFSET operator to make the relationship clearer:

ptrB DWORD OFFSET arrayB
ptrw DWORD OFFSET arrayW

High-level languages purposely hide physical details about pointers because their implementations vary
among different machine architectures. In assembly language, because we deal with a single implemen-
tation, we examine and use pointers at the physical level. This approach helps to remove some of the
mystery surrounding pointers.

Using the TYPEDEF Operator

The TYPEDEF operator lets you create a user-defined type that has all the status of a built-in
type when defining variables. TYPEDEF is ideal for creating pointer variables. For example, the
following declaration creates a new data type PBYTE that is a pointer to bytes:

PBYTE TYPEDEF PTR BYTE

This declaration would usually be placed near the beginning of a program, before the data seg-
ment. Then, variables could be defined using PBYTE:

.data

arrayB BYTE 10h,20h,30h,40h

ptrl PBYTE °? ; uninitialized

ptr2 PBYTE arrayB ; points to an array

Example Program: Pointers The following program (pointers.asm) uses TYPDEEF to create
three pointer types (PBYTE, PWORD, PDWORD). It creates several pointers, assigns several
array offsets, and dereferences the pointers:

TITLE Pointers (Pointers.asm)
INCLUDE Irvine32.inc

; Create user-defined types.

PBYTE TYPEDEF PTR BYTE ; pointer to bytes

PWORD TYPEDEF PTR WORD ; pointer to words
PDWORD TYPEDEF PTR DWORD ; pointer to doublewords
.data

arrayB BYTE 10h,20h,30h
arrayW WORD 1,2,3
arrayD DWORD 4,5,6

; Create some pointer variables.
ptrl PBYTE arrayB
ptr2 PWORD arrayW
ptr3 PDWORD arrayD
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pointers to access data
esi,ptrl

al, [esi]

esi,ptr2

ax, [esi]

esi,ptr3

eax, [esi]

Indirect Addressing
.code
main PROC
; Use the
mov
mov
mov
mov
mov
mov
exit
main ENDP
END main

4.4.5 Section Review

1
2
3.
4

5.
6.

; 10h

. (True/False): Any 16-bit general-purpose register can be used as an indirect operand.

. (True/False): Any 32-bit general-purpose register can be used as an indirect operand.

(True/False): The BX register is usually reserved for addressing the stack.

script is out of range.

. (True/False): A general protection fault occurs in real-address mode when an array sub-

(True/False): The following instruction is invalid: inc [esi]

(True/False): The following is an indexed operand: array[esi]

Use the following data definitions for the remaining questions in this section:

myBytes
myWords

myDoubles
myPointer

BYTE 10h,20h,30h,40h
WORD 8Ah, 3Bh, 72h, 44h, 66h

DWORD 1,2,3,4,5
DWORD myDoubles

7. Fill in the requested register values on the right side of the following instruction sequence:

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

esi, OFFSET myBytes

al, [esi] ;
al, [esi+3] ;
esi,OFFSET myWords + 2

ax, [esi] H

edi, 8

edx, [myDoubles + edi] :
edx, myDoubles [edi] ;
ebx, myPointer

eax, [ebx+4] ;

£.

AL =
AL =

AX

EDX =
EDX =

EAX =

8. Fill in the requested register values on the right side of the following instruction sequence:

mov
mov
mov
mov
mov
mov
mov

esi,OFFSET myBytes

ax, [esi] H
eax, DWORD PTR myWords ;
esi,myPointer

ax, [esi+2] ;
ax, [esi+6] H
ax, [esi-4] H

AX
EAX =

AX =
AX =
AX =
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4.5 JMP and LOOP Instructions

By default, the CPU loads and executes programs sequentially. But the current instruction might
be conditional, meaning that it transfers control to a new location in the program based on the
values of CPU status flags (Zero, Sign, Carry, etc.). Assembly language programs use condi-
tional instructions to implement high-level statements such as IF statements and loops. Each of
the conditional statements involves a possible transfer of control (jump) to a different memory
address. A transfer of control, or branch, is a way of altering the order in which statements are
executed. There are two basic types of transfers:

¢ Unconditional Transfer: Control is transferred to a new location in all cases; a new address
is loaded into the instruction pointer, causing execution to continue at the new address. The
JMP instruction does this.

* Conditional Transfer: The program branches if a certain condition is true. A wide variety
of conditional transfer instructions can be combined to create conditional logic structures.
The CPU interprets true/false conditions based on the contents of the ECX and Flags
registers.

4.5.1 JMP Instruction
The JMP instruction causes an unconditional transfer to a destination, identified by a code label
that is translated by the assembler into an offset. The syntax is

JMP destination
When the CPU executes an unconditional transfer, the offset of destination is moved into the

instruction pointer, causing execution to continue at the new location.

Creating a Loop The JMP instruction provides an easy way to create a loop by jumping to a
label at the top of the loop:

top:

jmp top ; repeat the endless loop

JMP is unconditional, so a loop like this will continue endlessly unless another way is found to
exit the loop.

4.5.2 LOOP Instruction

The LOOP instruction, formally known as Loop According to ECX Counter, repeats a block of
statements a specific number of times. ECX is automatically used as a counter and is decre-
mented each time the loop repeats. Its syntax is

LOOP destination

The loop destination must be within —128 to +127 bytes of the current location counter. The
execution of the LOOP instruction involves two steps: First, it subtracts 1 from ECX. Next, it
compares ECX to zero. If ECX is not equal to zero, a jump is taken to the label identified by des-
tination. Otherwise, if ECX equals zero, no jump takes place, and control passes to the instruc-
tion following the loop.
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In real-address mode, CX is the default loop counter for the LOOP instruction. On the other hand, the
LOOPD instruction uses ECX as the loop counter, and the LOOPW instruction uses CX as the loop counter.

In the following example, we add 1 to AX each time the loop repeats. When the loop ends,
AX = 5and ECX = 0:

mov ax,0
mov ecx,5
Ll:
inc ax
loop L1
A common programming error is to inadvertently initialize ECX to zero before beginning a
loop. If this happens, the LOOP instruction decrements ECX to FFFFFFFFh, and the loop repeats
4,294,967,296 times! If CX is the loop counter (in real-address mode), it repeats 65,536 times.
Occasionally, you might create a loop that is large enough to exceed the allowed relative
jump range of the LOOP instruction. Following is an example of an error message generated by
MASM because the target label of a LOOP instruction was too far away:
error A2075: jump destination too far : by 14 byte(s)
Rarely should you explicitly modify ECX inside a loop. If you do, the LOOP instruction may
not work as expected. In the following example, ECX is incremented within the loop. It never
reaches zero, so the loop never stops:

top:

inc ecx

loop top
If you need to modify ECX inside a loop, you can save it in a variable at the beginning of the
loop and restore it just before the LOOP instruction:

.data
count DWORD ?
.code
mov ecx, 100 ; set loop count
top:
mov count, ecx ; save the count
mov ecx, 20 ; modify ECX
mov ecx, count ; restore loop count
loop top

Nested Loops When creating a loop inside another loop, special consideration must be
given to the outer loop counter in ECX. You can save it in a variable:

.data
count DWORD ?
.code
mov ecx,100 ; set outer loop count
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Ll:
mov count, ecx ; save outer loop count
mov ecx, 20 ; set inner loop count

L2:
loop L2 ; repeat the inner loop
mov ecx, count ; restore outer loop count
loop L1 ; repeat the outer loop

As a general rule, nested loops more than two levels deep are difficult to write. If the algo-
rithm you’re using requires deep loop nesting, move some of the inner loops into subroutines.

4.5.3 Summing an Integer Array
There’s hardly any task more common in beginning programming than calculating the sum of
the elements in an array. In assembly language, you would follow these steps:

1. Assign the array’s address to a register that will serve as an indexed operand.
2. Initialize the loop counter to the length of the array.

3. Assign zero to the register that accumulates the sum.

4. Create a label to mark the beginning of the loop.

5. In the loop body, add a single array element to the sum.

6. Point to the next array element.

7. Use a LOOP instruction to repeat the loop.

Steps 1 through 3 may be performed in any order. Here’s a short program that sums an array of
16-bit integers.

TITLE Summing an Array (SumArray.asm)

INCLUDE Irvine32.inc
.data
intarray DWORD 10000h,20000h,30000h,40000h

.code
main PROC

mov edi,OFFSET intarray ;
mov ecx,LENGTHOF intarray ;

EDI = address of intarray
initialize loop counter

1:
2:
mov eax,0 ; 3: sum = 0
Ll: ; 4: mark beginning of loop
add eax, [edi] ; 5: add an integer
add edi,TYPE intarray ; 6: point to next element
loop L1 ; 7: repeat until ECX = 0
exit
main ENDP
END main

4.5.4 Copying a String
Programs often copy large blocks of data from one location to another. The data may be arrays
or strings, but they can contain any type of objects. Let’s see how this can be done in assembly
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language, using a loop that copies a string, represented as an array of bytes with a null termina-
tor value. Indexed addressing works well for this type of operation because the same index regis-
ter references both strings. The target string must have enough available space to receive the
copied characters, including the null byte at the end:

TITLE Copying a String (CopyStr.asm)

INCLUDE Irvine32.inc

.data

source BYTE "This is the source string",0
target BYTE SIZEOF source DUP(0)

.code

main PROC
mov esi,0 ; index register
mov ecx,SIZEOF source ; loop counter

Ll:
mov al,sourcelesi] ; get a character from source
mov targetlesil],al ; store it in the target
inc esi ; move to next character
loop L1 ; repeat for entire string
exit

main ENDP

END main

The MOV instruction cannot have two memory operands, so each character is moved from the
source string to AL, then from AL to the target string.

When programming in C++ or Java, beginning programmers often do not realize how often back-
ground copy operations take place. In Java, for example, if you exceed the existing capacity of
an ArrayList when adding a new element, the runtime system allocates a block of new storage, copies
the existing data to a new location, and deletes the old data. (The same is true when using a C++
vector.) If a large number of copy operations take place, they have a significant effect on a program’s
execution speed.

4.5.5 Section Review
1. (True/False): A JMP instruction can only jump to a label inside the current procedure.
2. (True/False): IMP is a conditional transfer instruction.
3. If ECX is initialized to zero before beginning a loop, how many times will the LOOP
instruction repeat? (Assume ECX is not modified by any other instructions inside the loop.)

4. (True/False): The LOOP instruction first checks to see whether ECX is not equal to zero;
then LOOP decrements ECX and jumps to the destination label.

5. (True/False): The LOOP instruction does the following: It decrements ECX; then, if ECX is
not equal to zero, LOOP jumps to the destination label.

6. In real-address mode, which register is used as the counter by the LOOP instruction?
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7. In real-address mode, which register is used as the counter by the LOOPD instruction?
8. (True/False): The target of a LOOP instruction must be within 256 bytes of the current location.
9. (Challenge): What will be the final value of EAX in this example?

mov eax, 0

mov ecx,10 ; outer loop counter
Ll:

mov eax, 3

mov ecx, 5 ; inner loop counter
L2:

add eax, b

loop L2 ; repeat inner loop

loop L1 ; repeat outer loop

10. Revise the code from the preceding question so the outer loop counter is not erased when
the inner loop starts.

4.6 Chapter Summary

MOV, a data transfer instruction, copies a source operand to a destination operand. The MOVZX
instruction zero-extends a smaller operand into a larger one. The MOVSX instruction sign-
extends a smaller operand into a larger register. The XCHG instruction exchanges the contents
of two operands. At least one operand must be a register.

Operand Types The following types of operands are presented in this chapter:

* A direct operand is the name of a variable, and represents the variable’s address.

* A direct-offset operand adds a displacement to the name of a variable, generating a new off-
set. This new offset can be used to access data in memory.

* An indirect operand is a register containing the address of data. By surrounding the register with
brackets (as in [esi]), a program dereferences the address and retrieves the memory data.

* An indexed operand combines a constant with an indirect operand. The constant and register
value are added, and the resulting offset is dereferenced. For example, [array+esi] and
array[esi] are indexed operands.

The following arithmetic instructions are important:

* The INC instruction adds 1 to an operand.

* The DEC instruction subtracts 1 from an operand.

* The ADD instruction adds a source operand to a destination operand.

* The SUB instruction subtracts a source operand from a destination operand.

* The NEG instruction reverses the sign of an operand.

When converting simple arithmetic expressions to assembly language, use standard operator
precedence rules to select which expressions to evaluate first.

Status Flags The following CPU status flags are affected by arithmetic operations:

* The Sign flag is set when the outcome of an arithmetic operation is negative.
* The Carry flag is set when the result of an unsigned arithmetic operation is too large for the
destination operand.



4.7  Programming EXercises 129

* The Parity flag indicates whether or not an even number of 1 bits occurs in the least signifi-
cant byte of the destination operand immediately after an arithmetic or boolean instruction
has executed.

* The Auxiliary Carry flag is set when a carry or borrow occurs in bit position 3 of the destina-
tion operand.

* The Zero flag is set when the outcome of an arithmetic operation is zero.

* The Overflow flag is set when the result of an signed arithmetic operation is too large for the
destination operand. In a byte operation, for example, the CPU detects overflow by exclusive-
ORing the carry out of bit 6 with the carry out of bit 7.

Operators The following operators are common in assembly language:

* The OFFSET operator returns the distance of a variable from the beginning of its enclosing
segment.

* The PTR operator overrides a variable’s declared size.

» The TYPE operator returns the size (in bytes) of a single variable or of a single element in an
array.

* The LENGTHOF operator returns the number of elements in an array.

* The SIZEOF operator returns the number bytes used by an array initializer.

* The TYPEDEF operator creates a user-defined type.

Loops The JMP (Jump) instruction unconditionally branches to another location. The LOOP
(Loop According to ECX Counter) instruction is used in counting-type loops. In 32-bit mode,
LOOP uses ECX as the counter; in 16-bit mode, CX is the counter. In both 16- and 32-bit
modes, LOOPD uses ECX as the counter, and LOOPW uses CX as the counter.

4.7 Programming Exercises

The following exercises can be done in protected mode or real-address mode.

1. Carry Flag

Write a program that uses addition and subtraction to set and clear the Carry flag. After each
instruction, insert the call DumpRegs statement to display the registers and flags. Using com-
ments, explain how (and why) the Carry flag was affected by each instruction.

2. Zero and Sign Flags

Write a program that uses addition and subtraction to set and clear the Zero and Sign flags. After
each addition or subtraction instruction, insert the call DumpRegs statement (see Section 3.2) to
display the registers and flags. Using comments, explain how (and why) the Zero and Sign flags
were affected by each instruction.

3. Overflow Flag

Write a program that uses addition and subtraction to set and clear the Overflow flag. After each
addition or subtraction instruction, insert the call DumpRegs statement (see Section 3.2) to dis-
play the registers and flags. Using comments, explain how (and why) the Overflow flag was
affected by each instruction. Include an ADD instruction that sets both the Carry and Overflow
flags.
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* 4. Direct-Offset Addressing
Insert the following variables in your program:

.data
Uarray WORD 1000h,2000h,3000h,4000h
Sarray SWORD -1,-2,-3,-4

Write instructions that use direct-offset addressing to move the four values in Uarray to the
EAX, EBX, ECX, and EDX registers. When you follow this with a call DumpRegs statement
(see Section 3.2), the following register values should display:

EAX=00001000 EBX=00002000 ECX=00003000 EDX=00004000

Next, write instructions that use direct-offset addressing to move the four values in Sarray to the
EAX, EBX, ECX, and EDX registers. When you follow this with a call DumpRegs statement,
the following register values should display:

EAX=FFFFFFFF EBX=FFFFFFFE ECX=FFFFFFFD EDX=FFFFFFFC

**x* 5., Reverse an Array
Use a loop with indirect or indexed addressing to reverse the elements of an integer array in place.
Do not copy the elements to any other array. Use the SIZEOF, TYPE, and LENGTHOF operators
to make the program as flexible as possible if the array size and type should be changed in the
future. Optionally, you may display the modified array by calling the DumpMem method from the
Irvine32 library. See Chapter 5 for details. (A VideoNote for this exercise is posted on the Web site.)

** 6. Fibonacci Numbers
Write a program that uses a loop to calculate the first seven values of the Fibonacci number sequence,
described by the following formula: Fib(1) = 1, Fib(2) = 1, Fib(n) = Fib(n —1) + Fib(n — 2). Place
each value in the EAX register and display it with a call DumpRegs statement (see Section 3.2)
inside the loop.

** 7. Arithmetic Expression
Write a program that implements the following arithmetic expression:

EAX = —-val2 + 7 — val3 + vall
Use the following data definitions:

vall SDWORD 8

val2 SDWORD —15

val3 SDWORD 20
In comments next to each instruction, write the hexadecimal value of EAX. Insert a call
DumpRegs statement at the end of the program.

*** 8. Copy a String Backwards
Write a program using the LOOP instruction with indirect addressing that copies a string from
source to target, reversing the character order in the process. Use the following variables:

source BYTE "This is the source string",0
target BYTE SIZEOF source DUP('#')
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Insert the following statements immediately after the loop to display the hexadecimal contents
of the target string:

mov esi,OFFSET target ; offset of variable
mov ebx,1l ; byte format
mov ecx,SIZEOF target ; counter

call DumpMem
If your program works correctly, it will display the following sequence of hexadecimal bytes:

67 6E 69 72 74 73 20 65 63 72 75 6F 73 20 65 68
74 20 73 69 20 73 69 68 54

(The DumpMem procedure is explained in Section 5.3.2.) (A VideoNote for this exercise is posted
on the Web site.)
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Chapter Summary
Programming Exercises

This chapter introduces you to a convenient and powerful library that you can use to simplify
tasks related to input-output and string handling. You will also explore two essential concepts in
this chapter: (1) how to divide programs into manageable units by calling subroutines; (2) how
programming languages use the runtime stack to track subroutine calls. A concrete understand-
ing of the runtime stack is also a great help when you debug programs written in high-level

languages such as C and C++.

5.2 Linking to an External Library

If you spend the time, you can write detailed code for input-output in assembly language.
It’s a lot like building your own automobile from scratch so that you can drive somewhere.

132
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The work is both interesting and time consuming. In Chapter 11 you will get a chance to see
how input-output is handled in MS-Windows protected mode. It is great fun, and a new world
opens up when you see the available tools. For now, however, input-output should be easy
while you are learning assembly language basics. Section 5.3 shows how to call procedures
from the book’s link libraries, named Irvine32.lib and Irvinel6.lib. The complete library
source code is available at the publisher’s support Web site (listed in the Preface).

The Irvine32 library is for programs written in 32-bit protected mode. It contains procedures
that link to the MS-Windows API when they generate input-output. The Irvinel6 library is for
programs written in 16-bit real-address mode. It contains procedures that execute MS-DOS
Interrupts when they generate input-output.

5.2.1 Background Information

A link library is a file containing procedures (subroutines) that have been assembled into
machine code. A link library begins as one or more source files, which are assembled into object
files. The object files are inserted into a specially formatted file recognized by the linker utility.
Suppose a program displays a string in the console window by calling a procedure named
WriteString. The program source must contain a PROTO directive identifying the WriteString
procedure:

WriteString PROTO
Next, a CALL instruction executes WriteString:
call WriteString

When the program is assembled, the assembler leaves the target address of the CALL instruc-
tion blank, knowing that it will be filled in by the linker. The linker looks for WriteString in the
link library and copies the appropriate machine instructions from the library into the program’s
executable file. In addition, it inserts WriteString’s address into the CALL instruction. If a pro-
cedure you're calling is not in the link library, the linker issues an error message and does not
generate an executable file.

Linker Command Options The linker utility combines a program’s object file with one or
more object files and link libraries. The following command, for example, links hello.obj to the
irvine32.lib and kernel32.1ib libraries:

link hello.obj irvine32.lib kernel32.1lib

Linking 32-Bit Programs Let’s go into more detail regarding linking 32-bit programs. The
kernel32.1ib file, part of the Microsoft Windows Platform Software Development Kit, contains
linking information for system functions located in a file named kernel32.dll. The latter is a
fundamental part of MS-Windows, and is called a dynamic link library. It contains executable
functions that perform character-based input-output. Figure 5—1 shows how kernel32.1ib is a
bridge to kernel32.dll.
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Figure -1  Linking 32-bit programs.

links

Your program = Irvine32.1ib
links | to

canlink 0, yernel32.lib

executes

kernel32.dll

In Chapters 1 through 10, our programs link to Irvine32.lib. Chapter 11 shows how to link
programs directly to kernel32.lib.

5.2.2 Section Review

AN o O e

(True/False): A link library consists of assembly language source code.

Use the PROTO directive to declare a procedure named MyProc in an external link library.
Write a CALL statement that calls a procedure named MyProc in an external link library.
What is the name of the 32-bit link library supplied with this book?

Which library contains functions called from Irvine32.lib?

What type of file is kernel32.dl1?

5.3 The Book’s Link Library

Table 5-1 contains a complete list of procedures in the Irvine32 and Irvinel6 libraries. Any pro-
cedure found only in the Irvine32 library has a * at the end of its description.

Table 7-1  Procedures in the Link Library.

Procedure Description

CloseFile Closes a disk file that was previously opened.*

Clrscr Clears the console window and locates the cursor at the upper left corner.

CreateOutputFile Creates a new disk file for writing in output mode.*

Crlf Writes an end-of-line sequence to the console window.

Delay Pauses the program execution for a specified n-millisecond interval.

DumpMem Writes a block of memory to the console window in hexadecimal.

DumpRegs Displays the EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP, EFLAGS, and EIP registers
in hexadecimal. Also displays the most common CPU status flags.

GetCommandTail Copies the program’s command-line arguments (called the command tail) into an array
of bytes.

GetDateTime Gets the current date and time from the system.
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Table -1 (Continued)

Procedure Description
GetMaxXY Gets the number of columns and rows in the console window’s buffer.*
GetMseconds Returns the number of milliseconds elapsed since midnight.
GetTextColor Returns the active foreground and background text colors in the console window.*
Gotoxy Locates the cursor at a specific row and column in the console window.
IsDigit Sets the Zero flag if the AL register contains the ASCII code for a decimal digit (0-9).
MsgBox Displays a popup message box.*
MsgBoxAsk Display a yes/no question in a popup message box.*
OpenlInputFile Opens an existing disk file for input.*
ParseDecimal32 Converts an unsigned decimal integer string to 32-bit binary.
Parselnteger32 Converts a signed decimal integer string to 32-bit binary.
Random32 Generates a 32-bit pseudorandom integer in the range O to FFFFFFFFh.
Randomize Seeds the random number generator with a unique value.
RandomRange Generates a pseudorandom integer within a specified range.
ReadChar Waits for a single character to be typed at the keyboard and returns the character.
ReadDec Reads an unsigned 32-bit decimal integer from the keyboard, terminated by the Enter key.
ReadFromFile Reads an input disk file into a buffer.*
ReadHex Reads a 32-bit hexadecimal integer from the keyboard, terminated by the Enter key.
ReadlInt Reads a 32-bit signed decimal integer from the keyboard, terminated by the Enter key.
ReadKey Reads a character from the keyboard’s input buffer without waiting for input.
ReadString Reads a string from the keyboard, terminated by the Enter key.
SetTextColor Sets the foreground and background colors of all subsequent text output to the console.*

Str_compare
Str_copy
Str_length
Str_trim
Str_ucase
WaitMsg
WriteBin
WriteBinB
WriteChar
WriteDec
WriteHex
WriteHexB

Compares two strings.

Copies a source string to a destination string.

Returns the length of a string in EAX.

Removes unwanted characters from a string.

Converts a string to uppercase letters.

Displays a message and waits for a key to be pressed.

Writes an unsigned 32-bit integer to the console window in ASCII binary format.
Writes a binary integer to the console window in byte, word, or doubleword format.
Writes a single character to the console window.

Writes an unsigned 32-bit integer to the console window in decimal format.
Writes a 32-bit integer to the console window in hexadecimal format.

Writes a byte, word, or doubleword integer to the console window in hexadecimal
format.
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Table -1 (Continued)

Procedure Description
WriteInt Writes a signed 32-bit integer to the console window in decimal format.
WriteStackFrame Writes the current procedure’s stack frame to the console.

WriteStackFrameName Writes the current procedure’s name and stack frame to the console.

WriteString Writes a null-terminated string to the console window.
WriteToFile Writes a buffer to an output file.*
WriteWindowsMsg Displays a string containing the most recent error generated by MS-Windows.*

* Procedure not available in the Irvine16 library.

5.3.1 Overview

Console Window The console window (or command window) is a text-only window created
by MS-Windows when a command prompt is displayed.

There are two ways to display a console window, depending on which version of Windows
you use: In Windows Vista, click the Start button on the desktop, type cmd into the Start Search
field, and press Enter. In Windows XP, click the Start button on the desktop, select Run, type the
name cmd, and press Enter. Once a console window is open, you can resize the console window
buffer by right-clicking on the system menu in the window’s upper-left corner, selecting Proper-
ties from the popup menu, and then modifying the values, as shown in Figure 5-2.

You can also select various font sizes and colors. The console window defaults to 25 rows by
80 columns. You can use the mode command to change the number of columns and lines. The
following, typed at the command prompt, sets the console window to 40 columns by 30 lines:

mode con cols=40 lines=30

Redirecting Standard Input-Output

The Irvine32 and Irvinel6 libraries both write output to the console window, but the Irvinel6
library has one additional feature named redirection of standard input-output. For example, its
output can be redirected at the DOS or Windows command prompt to write to a disk file rather
than the console window. Here’s how it works: Suppose a program named sample.exe writes to
standard output; then we can use the following command (at the DOS prompt) to redirect its out-
put to a file named output.txt:

sample > output.txt

Similarly, if the same program reads input from the keyboard (standard input), we can tell it to
read its input from a file named input.txt:

sample < input.txt
We can redirect both input and output with a single command:

sample < input.txt > output.txt
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Figure -2 Modifying the Console Window Properties.
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We can send the standard output from progl.exe to the standard input of prog2.exe using the
pipe (I) symbol:

progl | prog2
We can send the standard output from progl.exe to the standard input of prog2.exe, and send the
output of prog2.exe to a file named output.txt:

progl | prog2 > output.txt
Progl.exe can read input from input.txt, send its output to prog2.exe, which in turn can send its
output to output.txt:

progl < input.txt | prog2 > output.txt

The filenames input.txt and output.txt are arbitrary, so you can choose different filenames.

5.3.2 Individual Procedure Descriptions
In this section, we describe how each of the procedures in the Irvinel6 and Irvine32 libraries is

used. We will omit a few of the more advanced procedures, which will be explained in later
chapters. In the descriptions, references to the console window are appropriate for the Irvine32
library, but would more correctly be termed standard output in the Irvine16 library.
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CloseFile (Irvine32 only) The CloseFile procedure closes a file that was previously created
or opened (see CreateOutputFile and OpenlnputFile). The file is identified by a 32-bit integer
handle, which is passed in EAX. If the file is closed successfully, the value returned in EAX will
be nonzero. Sample call:

mov eax, fileHandle
call CloseFile

Clrscr The Clrscr procedure clears the console window. This procedure is typically called at
the beginning and end of a program. If you call it at other times, you may need to pause the pro-
gram by first calling WaitMsg. Doing this allows the user to view information already on the
screen before it is erased. Sample call:

call WaitMsg ; "Press any key..."
call Clrscr

CreateQutputFile (Irvine32 only) The CreateOutputFile procedure creates a new disk file and
opens it for writing. When you call the procedure, place the offset of a filename in EDX. When
the procedure returns, EAX will contain a valid file handle (32-bit integer) if the file was created
successfully. Otherwise, EAX equals INVALID_HANDLE_VALUE (a predefined constant).
Sample call:

.data

filename BYTE "newfile.txt",O0
.code

mov edx,OFFSET filename

call CreateOutputFile

The following pseudocode describes the possible outcomes after calling CreateOutputFile:

if EAX = INVALID FILE_HANDLE

the file was not created successfully
else

EAX = handle for the open file
endif

Crlf The Crlf procedure advances the cursor to the beginning of the next line in the console

window. It writes a string containing the ASCII character codes ODh and OAh. Sample call:
call Crlf

Delay The Delay procedure pauses the program for a specified number of milliseconds.

Before calling Delay, set EAX to the desired interval. Sample call:

mov eax, 1000 ;1 second
call Delay

(The Irvine16.1ib version does not work under Windows NT, 2000, XP, or Vista.)

DumpMem The DumpMem procedure writes a range of memory to the console window in hexa-
decimal. Pass it the starting address in ESI, the number of units in ECX, and the unit size in EBX
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(1 = byte, 2 = word, 4 = doubleword). The following sample call displays an array of 11 doublewords
in hexadecimal:

.data

array DWORD 1,2,3,4,5,6,7,8,9,0Ah,0Bh

.code

main PROC
mov esi,OFFSET array ; starting OFFSET
mov ecx, LENGTHOF array ; number of units
mov ebx, TYPE array ; doubleword format

call DumpMem
The following output is produced:

00000001 00000002 00000003 00000004 00000005 00000006

00000007 00000008 00000009 0000000A 0000000B
DumpRegs The DumpRegs procedure displays the EAX, EBX, ECX, EDX, ESI, EDI, EBP,
ESP, EIP, and EFL (EFLAGS) registers in hexadecimal. It also displays the values of the Carry,
Sign, Zero, Overflow, Auxiliary Carry, and Parity flags. Sample call:

call DumpRegs
Sample output:

EAX=00000613 EBX=00000000 ECX=000000FF EDX=00000000
ESI=00000000 EDI=00000100 EBP=0000091E ESP=000000F6
EIP=00401026 EFL=00000286 CF=0 SF=1 ZF=0 OF=0 AF=0 PF=1
The displayed value of EIP is the offset of the instruction following the call to DumpRegs.
DumpRegs can be useful when debugging programs because it displays a snapshot of the CPU.
It has no input parameters and no return value.

GetCommandTail The GetCommandTail procedure copies the program’s command line into
a null-terminated string. If the command line was found to be empty, the Carry flag is set; other-
wise, the Carry flag is cleared. This procedure is useful because it permits the user of a program
to pass parameters on the command line. Suppose a program named Encrypt.exe reads an input
file named filel.txt and produces an output file named file2.txt. The user can pass both filenames
on the command line when running the program:

Encrypt filel.txt file2.txt

When it starts up, the Encrypt program can call GetCommandTail and retrieve the two filena-
mes. When calling Get_Commandtail, EDX must contain the offset of an array of at least 129
bytes. Sample call:

.data

cmdTail BYTE 129 DUP(0) ; empty buffer
.code

mov edx, OFFSET cmdTail

call GetCommandTail ; fills the buffer

There is a way to pass command-line arguments when running an application in Visual Studio.
From the Project menu, select <projectname> Properties. In the Property Pages window,
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expand the entry under Configuration Properties, and select Debugging. Then enter your com-
mand arguments into the edit line on the right panel named Command Arguments.

GetMaxXY (Irvine32 only) The GetMaxXY procedure gets the size of the console window’s
buffer. If the console window buffer is larger than the visible window size, scroll bars appear
automatically. GetMaxXY has no input parameters. When it returns, the DX register contains
the number of buffer columns and AX contains the number of buffer rows. The possible range of
each value can be no greater than 255, which may be smaller than the actual window buffer size.
Sample call:

.data

rows BYTE ?
cols BYTE ?
.code

call GetMaxXyY
mov rows, al
mov cols,dl

GetMseconds The GetMseconds procedure gets the number of milliseconds elapsed since
midnight on the host computer, and returns the value in the EAX register. The procedure is a
great tool for measuring the time between events. No input parameters are required. The follow-
ing example calls GetMseconds, storing its return value. After the loop executes, the code call
GetMseconds a second time and subtract the two time values. The difference is the approximate
execution time of the loop:

.data
startTime DWORD ?
.code
call GetMseconds
mov startTime, eax
Ll:
; (loop body)
loop L1
call GetMseconds
sub eax,startTime ; EAX = loop time, in milliseconds

GetTextColor (Irvine32 only) The GetTextColor procedure gets the current foreground
and background colors of the console window. It has no input parameters. It returns the
background color in the upper four bits of AL and the foreground color in the lower four bits.
Sample call:

.data

color BYTE ?

.code

call GetTextColor
mov color,AL

Gotoxy The Gotoxy procedure locates the cursor at a given row and column in the console win-
dow. By default, the console window’s X-coordinate range is 0 to 79 and the Y-coordinate range is
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0 to 24. When you call Gotoxy, pass the Y-coordinate (row) in DH and the X-coordinate (column)
in DL. Sample call:

mov dh, 10 ; row 10
mov dl, 20 ; column 20
call Gotoxy ; locate cursor

The user may have resized the console window, so you can call GetMaxXY to find out the cur-
rent number of rows and columns.

IsDigit The IsDigit procedure determines whether the value in AL is the ASCII code for a
valid decimal digit. When calling it, pass an ASCII character in AL. The procedure sets the Zero
flag if AL contains a valid decimal digit; otherwise, it clears Zero flag. Sample call:

mov AL, somechar

call IsDigit
MsgBox (Irvine32 only) The MsgBox procedure displays a graphical popup message box
with an optional caption. (This works when the program is running in a console window.) Pass it
the offset of a string in EDX, which will appear in the inside the box. Optionally, pass the offset
of a string for the box’s title in EBX. To leave the title blank, set EBX to zero. Sample call:

.data

caption db "Dialog Title", O

HelloMsg BYTE "This is a pop-up message box.", 0dh,Oah
BYTE "Click OK to continue...", 0

.code

mov ebx, OFFSET caption
mov edx, OFFSET HelloMsg
call MsgBox

Sample output:

MsgBoxAsk (Irvine32 only) The MsgBoxAsk procedure displays a graphical popup message
box with Yes and No buttons. (This works when the program is running in a console window.)
Pass it the offset of a question string in EDX, which will appear in the inside the box. Optionally,
pass the offset of a string for the box’s title in EBX. To leave the title blank, set EBX to zero.
MsgBoxAsk returns an integer in EAX that tells you which button was selected by the user.
The value will be one of two predefined Windows constants: IDYES (equal to 6) or IDNO (equal
to 7). Sample call:

.data

caption BYTE "Survey Completed",0

question BYTE "Thank you for completing the survey."
BYTE 0dh, Oah
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BYTE "Would you like to receive the results?",0
.code
mov ebx, OFFSET caption
mov edx, OFFSET question
call MsgBoxAsk
; (check return value in EAX)

Sample output:

OpeninputFile  (Irvine32 only) The OpenlnputFile procedure opens an existing file for input.
Pass it the offset of a filename in EDX. When it returns, if the file was opened successfully, EAX
will contain a valid file handle. Otherwise, EAX will equal INVALID_HANDLE_VALUE

(a predefined constant).

Sample call:

.data

filename BYTE "myfile.txt",O0
.code

mov edx,OFFSET filename
call OpenInputFile

The following pseudocode describes the possible outcomes after calling OpenlnputFile:

if EAX = INVALID FILE_HANDLE

the file was not opened successfully
else

EAX = handle for the open file
endif

ParseDecimal32 The ParseDecimal32 procedure converts an unsigned decimal integer string
to 32-bit binary. All valid digits occurring before a nonnumeric character are converted. Leading
spaces are ignored. Pass it the offset of a string in EDX and the string’s length in ECX. The
binary value is returned in EAX. Sample call:

.data

buffer BYTE "8193"

bufSize = ($ - buffer)

.code

mov edx, OFFSET buffer

mov ecx,bufSize

call ParseDecimal32 ; returns EAX

* If the integer is blank, EAX =0 and CF = 1
* If the integer contains only spaces, EAX =0 and CF =1
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* If the integer is larger than 232—1,EAX=0and CF =1
* Otherwise, EAX contains the converted integer and CF =0

See the description of the ReadDec procedure for details about how the Carry flag is affected.

Parselnteger32 The Parselnteger32 procedure converts a signed decimal integer string to 32-
bit binary. All valid digits from the beginning of the string to the first nonnumeric character are
converted. Leading spaces are ignored. Pass it the offset of a string in EDX and the string’s
length in ECX. The binary value is returned in EAX. Sample call:

.data

buffer BYTE "-8193"
bufSize = ($ - buffer)
.code

mov edx, OFFSET buffer
mov ecx,bufSize
call ParselInteger32 ; returns EAX
The string may contain an optional leading plus or minus sign, followed only by decimal dig-
its. The Overflow flag is set and an error message is displayed on the console if the value cannot
be represented as a 32-bit signed integer (range: —2,147,483,648 to +2,147,483,647).

Random32 The Random32 procedure generates and returns a 32-bit random integer in EAX.
When called repeatedly, Random32 generates a simulated random sequence. The numbers are
created using a simple function having an input called a seed. The function uses the seed in a
formula that generates the random value. Subsequent random values are generated using each
previously generated random value as their seeds. The following code snippet shows a sample
call to Random32:

.data

randvVal DWORD ?
.code

call Random32
mov randval, eax

Random32 is also available in the Irvinel6 library, returning its value in EAX.

Randomize The Randomize procedure initializes the starting seed value of the Random32 and
RandomRange procedures. The seed equals the time of day, accurate to 1/100 of a second. Each
time you run a program that calls Random32 and RandomRange, the generated sequence of
random numbers will be unique. You need only to call Randomize once at the beginning of a pro-
gram. The following example produces 10 random integers:

call Randomize
mov ecx,10
Ll: call Random32

; use or display random value in EAX here...
loop L1

RandomRange The RandomRange procedure produces a random integer within the range of
0 to n — 1, where n is an input parameter passed in the EAX register. The random integer is
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returned in EAX. The following example generates a single random integer between 0 and 4999
and places it in a variable named randVal.

.data

randVal DWORD ?
.code

mov eax, 5000
call RandomRange
mov randVal, eax

ReadChar The ReadChar procedure reads a single character from the keyboard and returns
the character in the AL register. The character is not echoed in the console window. Sample call:

.data

char BYTE °?
.code

call ReadChar
mov char,al

If the user presses an extended key such as a function key, arrow key, Ins, or Del, the proce-
dure sets AL to zero, and AH contains a keyboard scan code. A list of scan codes is shown on the
page facing the book’s inside front cover. The upper half of EAX is not preserved. The following
pseudocode describes the possible outcomes after calling ReadChar:

if an extended key was pressed

AL = 0

AH = keyboard scan code
else

AL = ASCII key value

endif

ReadDec The ReadDec procedure reads a 32-bit unsigned decimal integer from the keyboard
and returns the value in EAX. Leading spaces are ignored. The return value is calculated from
all valid digits found until a nondigit character is encountered. For example, if the user enters
123ABC, the value returned in EAX is 123. Following is a sample call:

.data

intVal DWORD ?
.code

call ReadDec
mov intVal, eax

ReadDec affects the Carry flag in the following ways:
« If the integer is blank, EAX = 0 and CF =1
* If the integer contains only spaces, EAX = 0 and CF = 1
* If the integer is larger than 232—1,EAX =0 and CF = 1
* Otherwise, EAX holds the converted integer and CF = 0

ReadFromFile  (Irvine32 only) The ReadFromFile procedure reads an input disk file into a
memory buffer. When you call ReadFromFile, pass it an open file handle in EAX, the offset of
a buffer in EDX, and the maximum number of bytes to read in ECX. When ReadFromFile
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returns, check the value of the Carry flag: If CF is clear, EAX contains a count of the
number of bytes read from the file. But if CF is set, EAX contains a numeric system error
code. You can call the WriteWindowsMsg procedure to get a text representation of the error.
In the following example, as many as 5000 bytes are copied from the file into the buffer
variable:

.data

BUFFER_SIZE = 5000

buffer BYTE BUFFER_SIZE DUP(?)
bytesRead DWORD °?

.code

mov edx, OFFSET buffer ; points to buffer
mov ecx, BUFFER_SIZE ; max bytes to read
call ReadFromFile ; read the file

If the Carry flag were clear at this point, you could execute the following instruction:
mov bytesRead, eax ; count of bytes actually read

But if the Carry flag were set, you would call WriteWindowsMsg procedure, which displays
a string that contains the error code and description of the most recent error generated by the
application:

call WriteWindowsMsg

ReadHex The ReadHex procedure reads a 32-bit hexadecimal integer from the keyboard and
returns the corresponding binary value in EAX. No error checking is performed for invalid char-
acters. You can use both uppercase and lowercase letters for the digits A through F. A maximum
of eight digits may be entered (additional characters are ignored). Leading spaces are ignored.
Sample call:

.data

hexvVal DWORD ?
.code

call ReadHex
mov hexVal, eax

Readint The ReadlInt procedure reads a 32-bit signed integer from the keyboard and returns
the value in EAX. The user can type an optional leading plus or minus sign, and the rest of the
number may only consist of digits. ReadInt sets the Overflow flag and display an error message
if the value entered cannot be represented as a 32-bit signed integer (range: —2,147,483,648 to
+2,147,483,647). The return value is calculated from all valid digits found until a nondigit char-
acter is encountered. For example, if the user enters +123ABC, the value returned is +123.
Sample call:

.data

intvVal SDWORD °?
.code

call ReadInt
mov intval, eax
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ReadKey The ReadKey procedure performs a no-wait keyboard check. In other words, it
inspects the keyboard input buffer to see if a key has been pressed by the user. If no keyboard
data is found, the Zero flag is set. If a keypress is found by ReadKey, the Zero flag is cleared and
AL is assigned either zero or an ASCII code. If AL contains zero, the user may have pressed a
special key (function key, arrow key, etc.) The AH register contains a virtual scan code, DX con-
tains a virtual key code, and EBX contains the keyboard flag bits. The following pseudocode
describes the various outcomes when calling ReadKey:

if no_keyboard data then

ZF = 1
else
ZF = 0

if AL = 0 then
extended key was pressed, and AH = scan code, DX = virtual
key code, and EBX = keyboard flag bits
else
AL = the key's ASCII code
endif
endif

The upper halves of EAX and EDX are overwritten when ReadKey is called.

ReadString The ReadString procedure reads a string from the keyboard, stopping when the
user presses the Enter key. Pass the offset of a buffer in EDX and set ECX to the maximum
number of characters the user can enter, plus 1 (to save space for the terminating null byte).
The procedure returns the count of the number of characters typed by the user in EAX.
Sample call:

.data

buffer BYTE 21 DUP(0) ; input buffer

byteCount DWORD °? ; holds counter

.code

mov edx, OFFSET buffer ; point to the buffer
mov ecx,SIZEOF buffer ; specify max characters
call ReadString ; input the string

mov byteCount, eax ; number of characters

ReadString automatically inserts a null terminator in memory at the end of the string. The fol-
lowing is a hexadecimal and ASCII dump of the first 8 bytes of buffer after the user has entered
the string “ABCDEFG”:

41 42 43 44 45 46 47 00 ABCDEFG

The variable byteCount equals 7.

SetTextColor The SetTextColor procedure (Irvine32 library only) sets the foreground and
background colors for text output. When calling SetTextColor, assign a color attribute to EAX.
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The following predefined color constants can be used for both foreground and background:

black = 0 red =4 gray = 8 lightRed = 12
blue = 1 magenta = 5 lightBlue = 9 lightMagenta = 13
green = 2 brown = 6 lightGreen = 10 yellow = 14

cyan =3 lightGray = 7 lightCyan = 11 white = 15

Color constants are defined in the include files named Irvine32.inc and Irvinel6.inc. Multiply
the background color by 16 and add it to the foreground color. The following constant, for exam-
ple, indicates yellow characters on a blue background:

yellow + (blue * 16)

The following statements set the color to white on a blue background:
mov  eax,white + (blue * 16) ; white on blue
call SetTextColor

An alternative way to express color constants is to use the SHL operator. You shift the back-
ground color leftward by 4 bits before adding it to the foreground color.

vellow + (blue SHL 4)

The bit shifting is performed at assembly time, so it can only be used with constants. In
Chapter 7, you will learn how to shift integers at runtime. You can find a detailed explanation of
video attributes in Section 16.3.2. The Irvine16 version of SetTextColor clears the console win-
dow with the selected colors.

StrLength The StrLength procedure returns the length of a null-terminated string. Pass the
string’s offset in EDX. The procedure returns the string’s length in EAX. Sample call:

.data
buffer BYTE "abcde", O
bufLength DWORD ?

.code

mov edx, OFFSET buffer ; point to string
call StrLength ; EAX = 5

mov bufLength, eax ; save length

WaitMsg The WaitMsg procedure displays the message “Press any key to continue. . .” and
waits for the user to press a key. This procedure is useful when you want to pause the screen dis-
play before data scrolls off and disappears. It has no input parameters. Sample call:

call WaitMsg
WriteBin  The WriteBin procedure writes an integer to the console window in ASCII binary
format. Pass the integer in EAX. The binary bits are displayed in groups of four for easy reading.
Sample call:

mov eax,12346AF9%h
call WriteBin
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The following output would be displayed by our sample code:
0001 0010 0011 0100 0110 1010 1111 1001

WriteBinB  The WriteBinB procedure writes a 32-bit integer to the console window in ASCII
binary format. Pass the value in the EAX register and let EBX indicate the display size in bytes
(1, 2, or 4). The bits are displayed in groups of four for easy reading. Sample call:

mov eax,00001234h
mov ebx, TYPE WORD ; 2 bytes
call WriteBinB ; displays 0001 0010 0011 0100

WriteChar The WriteChar procedure writes a single character to the console window. Pass the
character (or its ASCII code) in AL. Sample call:

mov al,'Aa!
call WriteChar ; displays: "A"

WriteDec The WriteDec procedure writes a 32-bit unsigned integer to the console window in
decimal format with no leading zeros. Pass the integer in EAX. Sample call:

mov eax, 295
call WriteDec ; displays: "295"

WriteHex The WriteHex procedure writes a 32-bit unsigned integer to the console window in
8-digit hexadecimal format. Leading zeros are inserted if necessary. Pass the integer in EAX.
Sample call:

mov eax, 7FFFh
call WriteHex ; displays: "00007FFF"

WriteHexB The WriteHexB procedure writes a 32-bit unsigned integer to the console window
in hexadecimal format. Leading zeros are inserted if necessary. Pass the integer in EAX and let
EBX indicate the display format in bytes (1, 2, or 4). Sample call:

mov eax, 7FFFh
mov ebx, TYPE WORD ; 2 bytes
call WriteHexB ; displays: "7FFF"

Writelnt The WriteInt procedure writes a 32-bit signed integer to the console window in deci-
mal format with a leading sign and no leading zeros. Pass the integer in EAX. Sample call:

mov eax, 216543
call WritelInt ; displays: "+216543"

WriteString The WriteString procedure writes a null-terminated string to the console window.
Pass the string’s offset in EDX. Sample call:

.data

prompt BYTE "Enter your name: ",0
.code

mov edx, OFFSET prompt

call WriteString
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WriteToFile (Irvine32 only) The WriteToFile procedure writes the contents of a buffer to an out-
put file. Pass it a valid file handle in EAX, the offset of the buffer in EDX, and the number of bytes
to write in ECX. When the procedure returns, if EAX is greater than zero, it contains a count of the
number of bytes written; otherwise, an error occurred. The following code calls WriteToFile:

BUFFER_SIZE = 5000

.data

fileHandle DWORD *?

buffer BYTE BUFFER_SIZE DUP(?)
.code

mov eax,fileHandle
mov edx,OFFSET buffer
mov ecx,BUFFER_SIZE
call WriteToFile

The following pseudocode describes how to handle the value returned in EAX after calling
WriteToFile:

if EAX = 0 then

error occurred when writing to file

call WriteWindowsMessage to see the error
else

EAX = number of bytes written to the file
endif

WriteWindowsMsg  (Irvine32 only) The WriteWindowsMsg procedure displays a string con-
taining the most recent error generated by your application when executing a call to a system
function. Sample call:

call WriteWindowsMsg
The following is an example of a message string:

Error 2: The system cannot find the file specified.

5.3.3 Library Test Programs

Tutorial: Library Test #1
In this hands-on tutorial, you will write a program that demonstrates integer input-output with
screen colors.

Step 1: Begin the program with a standard heading:
TITLE Library Test #1: Integer I/0 (InputLoop.asm)

; Tests the Clrscr, Crlf, DumpMem, ReadInt, SetTextColor,
; WaitMsg, WriteBin, WriteHex, and WriteString procedures.
INCLUDE Irvine32.inc

Step 2: Declare a COUNT constant that will determine the number of times the program’s loop
repeats later on. Then two constants, BlueTextOnGray and DefaultColor, are defined here so
they can be used later on when we change the console window colors. The color byte stores the
background color in the upper 4 bits, and the foreground (text) color in the lower 4 bits. We have
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not yet discussed bit shifting instructions, but you can multiply the background color by 16 to
shift it into the high 4 bits of the color attribute byte:

.data

COUNT = 4

BlueTextOnGray = blue + (lightGray * 16)

DefaultColor = lightGray + (black * 16)
Step 3: Declare an array of signed doubleword integers, using hexadecimal constants. Also, add
a string that will be used as prompt when the program asks the user to input an integer:

arrayD SDWORD 12345678h,1A4B2000h,3434h, 7ABSh

prompt BYTE "Enter a 32-bit signed integer: ",0
Step 4: In the code area, declare the main procedure and write code that initializes ECX to blue text
on a light gray background. The SetTextColor method changes the foreground and background
color attributes of all text written to the window from this point onward in the program’s execution:

.code

main PROC
mov eax,BlueTextOnGray
call SetTextColor

In order to set the background of the console window to the new color, you must use the Clrscr
procedure to clear the screen:

call Clrscr ; clear the screen

Next, the program will display a range of doubleword values in memory, identified by the
variable named arrayD. The DumpMem procedure requires parameters to be passed in the ESI,
EBX, and ECX registers.

Step 5: Assign to ESI the offset of arrayD, which marks the beginning of the range we wish to
display:
mov esi,OFFSET arrayD

Step 6: EBX is assigned an integer value that specifies the size of each array element. Since we
are displaying an array of doublewords, EBX equals 4. This is the value returned by the expres-
sion TYPE arrayD:

mov ebx, TYPE arrayD ; doubleword = 4 bytes
Step 7: ECX must be set to the number of units that will be displayed, using the LENGTHOF
operator. Then, when DumpMem is called, it has all the information it needs:

mov ecx, LENGTHOF arrayD ; number of units in arrayD
call DumpMem ; display memory

The following figure shows the type of output that would be generated by DumpMem:

Dump of offset 00405000

12345678 1A4B2000 00003434 00007AB9
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Next, the user will be asked to input a sequence of four signed integers. After each integer is
entered, it is redisplayed in signed decimal, hexadecimal, and binary.

Step 8: Output a blank line by calling the Crlf procedure. Then, initialize ECX to the constant
value COUNT so ECX can be the counter for the loop that follows:

call Crlf
mov ecx, COUNT

Step 9: We need to display a string that asks the user to enter an integer. Assign the offset of the
string to EDX, and call the WriteString procedure. Then, call the ReadInt procedure to receive
input from the user. The value the user enters will be automatically stored in EAX:

Ll: mov edx, OFFSET prompt
call WriteString
call ReadInt ; input integer into EAX
call Crlf ; display a newline

Step 10: Display the integer stored in EAX in signed decimal format by calling the WriteInt pro-
cedure. Then call Crlf to move the cursor to the next output line:

call WriteInt ; display in signed decimal
call Crlf

Step 11: Display the same integer (still in EAX) in hexadecimal and binary formats, by calling
the WriteHex and WriteBin procedures:

call WriteHex ; display in hexadecimal
call Crlf

call WriteBin ; display in binary

call Crilf

call Crlf

Step 12: You will insert a Loop instruction that allows the loop to repeat at Label L1. This
instruction first decrements ECX, and then jumps to label L1 only if ECX is not equal to zero:

Loop L1 ; repeat the loop

Step 13: After the loop ends, we want to display a “Press any key...” message and then pause the
output and wait for a key to be pressed by the user. To do this, we call the WaitMsg procedure:

call WaitMsg ; "Press any key..."

Step 14: Just before the program ends, the console window attributes are returned to the default
colors (light gray characters on a black background).

mov eax, DefaultColor
call SetTextColor
call Clrscr

Here are the closing lines of the program:

exit
main ENDP
END main
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The remainder of the program’s output is shown in the following figure, using four sample inte-
gers entered by the user:

Enter a 32-bit signed integer: -42

-42

FFFFFFD6

1111 1211 12121 12121 1111 1111 1101 0110
Enter a 32-bit signed integer: 36

+36

00000024

0000 0000 0000 0000 0000 0000 0010 0100
Enter a 32-bit signed integer: 244324
+244324

0003BA64

0000 0000 0000 0011 1011 1010 0110 0100
Enter a 32-bit signed integer: -7979779
-7979779

FF863CFD

1111 1111 1000 0110 0011 1100 1111 1101

A complete listing of the program appears below, with a few added comment lines:

TITLE Library Test #1l: Integer I/0 (InputLoop.asm)

; Tests the Clrscr, Crlf, DumpMem, ReadInt, SetTextColor,

; WaitMsg, WriteBin, WriteHex, and WriteString procedures.
INCLUDE Irvine32.inc

.data

COUNT = 4

BlueTextOnGray = blue + (lightGray * 16)

DefaultColor = lightGray + (black * 16)
arrayD SDWORD 12345678h,1A4B2000h,3434h, 7AB9h
prompt BYTE "Enter a 32-bit signed integer: ",0

.code
main PROC

; Select blue text on a light gray background

mov eax,BlueTextOnGray
call SetTextColor

call Clrscr ; clear the screen

; Display an array using DumpMem.

mov esi,OFFSET arrayD ; starting OFFSET
mov ebx, TYPE arrayD ; doubleword = 4 bytes
mov ecx, LENGTHOF arrayD ; number of units in arrayD
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call
; Ask

call
mov

L1l: mov
call
call
call

; Display

call
call
call
call
call
call
call
Loop

; Return

call
mov
call
call
exit
main ENDP
END main

Library Test #2:

DumpMem ; display memory

the user to input a sequence of signed integers

Crlf ; new line

ecx, COUNT

edx, OFFSET prompt

WriteString

ReadInt ; input integer into EAX
Crlf ; new line

the integer in decimal, hexadecimal, and binary

WritelInt ; display in signed decimal
Crlf

WriteHex ; display in hexadecimal
Crlf

WriteBin ; display in binary

Crlf

Crlf

Ll ; repeat the loop

the console window to default colors

WaitMsg ; "Press any key..."
eax,DefaultColor

SetTextColor

Clrscr

Random Integers

Let’s look at a second library test program that demonstrates random-number-generation capa-

bilities of the link

library, and introduces the CALL instruction (to be covered fully in Section

5.5). First, it randomly generates 10 unsigned integers in the range 0 to 4,294,967,294. Next, it
generates 10 signed integers in the range —50 to +49:

TITLE Link Library Test #2 (TestLib2.asm)

; Testing

the Irvine32 Library procedures.

INCLUDE Irvine32.inc

TAB = 9

.code

main PROC
call
call
call
exit

main ENDP

; ASCII code for Tab

Randomize ; init random generator
Randl
Rand2

Randl PROC
; Generate ten pseudo-random integers.
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mov ecx,10 ; loop 10 times
Ll: call Random32 ; generate random int
call WriteDec ; write in unsigned decimal
mov al, TAB ; horizontal tab
call WriteChar ; write the tab
loop L1
call Crlf
ret

Randl ENDP

Rand2 PROC

; Generate ten pseudo-random integers from -50 to +49
mov ecx, 10 ; loop 10 times

Ll: mov eax, 100 ; values 0-99
call RandomRange ; generate random int
sub eax, 50 ; values -50 to +49
call WritelInt ; write signed decimal
mov al, TAB ; horizontal tab
call WriteChar ; write the tab
loop L1
call Crlf
ret

Rand2 ENDP

END main

Here is sample output from the program:

3221236194 2210931702 974700167 367494257 2227888607
926772240 506254858 1769123448 2288603673 736071794
-34 +27 +38 -34 +31 -13 -29 +44 -48 -43

Library Test #3: Performance Timing

Assembly language is often used to optimize sections of code seen as critical to a program’s per-
formance. The GetMseconds procedure from the book’s library returns the number of millisec-
onds elapsed since midnight. In our third library test program, we call GetMseconds, execute a
nested loop, and call GetMSeconds a second time. The difference between the two values
returned by these procedure calls gives us the elapsed time of the nested loop:

TITLE Link Library Test #3 (TestLib3.asm)

; Calculate the elapsed execution time of a nested loop
INCLUDE Irvine32.inc

.data

OUTER_LOOP_COUNT = 3

startTime DWORD ?

msgl BYTE "Please wait...",0dh,0Oah,0
msg2 BYTE "Elapsed milliseconds: ",0
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.code
main PROC
mov edx, OFFSET msgl

call WriteString
; Save the starting time

call GetMSeconds
mov startTime, eax

; Start the outer loop

i

mov ecx, OUTER_LOOP_COUNT
Ll: call innerLoop
loop L1

; Calculate the elapsed time

call GetMSeconds
sub eax,startTime
; Display the elapsed time
mov edx, OFFSET msg2
call WriteString
call WriteDec
call Crlf
exit
main ENDP
innerLoop PROC
push ecx
mov ecx, OFFFFFFFh
Ll: mul eax
mul eax
mul eax
loop L1
pop ecx
ret
innerLoop ENDP
END main

"Please wait..."

"Elapsed milliseconds: "

write the milliseconds

save current ECX value

set the loop counter
use up some cycles

repeat the inner loop

restore ECX's saved value

Here is sample output from the program running on an Intel Core Duo processor:

Please wait....

Elapsed milliseconds:

4974

Detailed Analysis of the Program

Let us study Library Test #3 in greater detail. The main procedure displays the string “Please

wait...” in the console window:

main PROC
mov edx, OFFSET msgl
call WriteString

7

"Please wait..."
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When GetMSeconds is called, it returns the number of milliseconds that have elapsed since mid-
night into the EAX register. This value is saved in a variable for later use:

call GetMSeconds
mov startTime, eax

Next, we create a loop that executes based on the value of the OUTER_LOOP_COUNT con-
stant. That value is moved to ECX for use later in the LOOP instruction:

mov ecx, OUTER_LOOP_COUNT

The loop begins with label L1, where the innerLoop procedure is called. This CALL instruction
repeats until ECX is decremented down to zero:

Ll: call innerLoop
loop L1

The innerLoop procedure uses an instruction named PUSH to save ECX on the stack before set-
ting it to a new value. (We will discuss PUSH and POP in the upcoming Section 5.4.) Then, the
loop itself has a few instructions designed to use up clock cycles:

innerLoop PROC

push ecx ; save current ECX value

mov ecx, OFFFFFFFh
Ll: mul eax

mul eax

mul eax

; set the loop counter
; use up some cycles

loop L1 ; repeat the inner loop

The LOOQP instruction will have decremented ECX down to zero at this point, so we pop the saved
value of ECX off the stack. It will now have the same value on leaving this procedure that it had when
entering. The PUSH and POP sequence is necessary because the main procedure was using ECX as
a loop counter when it called the innerLoop procedure. Here are the last few lines of innerLoop:

pop ecx ; restore ECX's saved value
ret
innerLoop ENDP

Back in the main procedure, after the loop finishes, we call GetMSeconds, which returns its
result in EAX. All we have to do is subtract the starting time from this value to get the number of
milliseconds that elapsed between the two calls to GetMSeconds:

call GetMSeconds
sub eax,startTime

The program displays a new string message, and then displays the integer in EAX that repre-
sents the number of elapsed milliseconds:

mov edx, OFFSET msg2 ; "Elapsed milliseconds: "
call WriteString
call WriteDec
call Crlf
exit

main ENDP

; display the value in EAX
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5.3.4 Section Review
1. Which procedure in the link library generates a random integer within a selected range?
2. Which procedure in the link library displays “Press [Enter] to continue. . .” and waits for the
user to press the Enter key?
3. Write statements that cause a program to pause for 700 milliseconds.

4. Which procedure from the link library writes an unsigned integer to the console window in
decimal format?

5. Which procedure from the link library places the cursor at a specific console window
location?

Write the INCLUDE directive that is required when using the Irvine32 library.
What types of statements are inside the Irvine32.inc file?

What are the required input parameters for the DumpMem procedure?

What are the required input parameters for the ReadString procedure?

10. Which processor status flags are displayed by the DumpRegs procedure?

11. Challenge: Write statements that prompt the user for an identification number and input a
string of digits into an array of bytes.

5.4 Stack Operations
If we place 10 plates on each other as in the following diagram, the result can be called a stack.
While it might be possible to remove a dish from the middle of the stack, it is much more com-
mon to remove from the top. New plates can be added to the top of the stack, but never to the
bottom or middle (Figure 5-3):

Fiqure 5—3% Stack of Plates.
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A stack data structure follows the same principle as a stack of plates: New values are added
to the top of the stack, and existing values are removed from the top. Stacks in general are useful
structures for a variety of programming applications, and they can easily be implemented using
object-oriented programming methods. If you have taken a programming course that used data
structures, you have worked with the stack abstract data type. A stack is also called a LIFO
structure (Last-In, First-Out) because the last value put into the stack is always the first value
taken out.

In this chapter, we concentrate specifically on the runtime stack. It is supported directly by
hardware in the CPU, and it is an essential part of the mechanism for calling and returning from
procedures. Most of the time, we just call it the stack.
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5.4.1 Runtime Stack

The runtime stack is a memory array managed directly by the CPU, using the ESP register,
known as the stack pointer register. The ESP register holds a 32-bit offset into some location on
the stack. We rarely manipulate ESP directly; instead, it is indirectly modified by instructions
such as CALL, RET, PUSH, and POP.

ESP always points to the last value to be added to, or pushed on, the top of stack. To demon-
strate, let’s begin with a stack containing one value. In Figure 54, the ESP (extended stack
pointer) contains hexadecimal 00001000, the offset of the most recently pushed value (00000006).
In our diagrams, the top of the stack moves downward when the stack pointer decreases in value:

Figure -4 A Stack Containing a Single Value.

Offset

00001000 00000006 ~— ESP = 00001000h

00000FFC

00000FF8

00000FF4

00000FF0

Each stack location in this figure contains 32 bits, which is the case when a program is running
in 32-bit mode. In 16-bit real-address mode, the SP register points to the most recently pushed
value and stack entries are typically 16 bits long.

The runtime stack discussed here is not the same as the stack abstract data type (ADT) discussed in data
structures courses. The runtime stack works at the system level to handle subroutine calls. The stack ADT
is a programming construct typically written in a high-level programming language such as C++ or Java.
It is used when implementing algorithms that depend on last-in, first-out operations.

Push Operation
A 32-bit push operation decrements the stack pointer by 4 and copies a value into the location in
the stack pointed to by the stack pointer. Figure 5-5 shows the effect of pushing 000000AS on a

Fiqure 5-% Pushing Integers on the Stack

BEFORE AFTER
00001000 00000006 <— ESP 00001000 | 00000006
00000FFC 00000FFC | 000000AS ~— ESP
00000FF8 00000FF8
00000FF4 00000FF4
00000FF0 00000FF0
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stack that already contains one value (00000006). Notice that the ESP register always points to
the top of the stack. The figure shows the stack ordering opposite to that of the stack of plates we
saw earlier, because the runtime stack grows downward in memory, from higher addresses to
lower addresses. Before the push, ESP = 00001000h; after the push, ESP = 00000FFCh.
Figure 5-6 shows the same stack after pushing a total of four integers.

Figure -6  Stack, after Pushing 00000001 and 00000002.
Offset

00001000 00000006

00000FFC 000000AS

00000FF8 00000001

00000FF4 | 00000002 || <—Esp

00000FF0

Pop Operation

A pop operation removes a value from the stack. After the value is popped from the stack, the
stack pointer is incremented (by the stack element size) to point to the next-highest location in the
stack. Figure 5—7 shows the stack before and after the value 00000002 is popped.

Figure 5—7 Popping a Value from the Runtime Stack.

BEFORE AFTER
00001000 | 00000006 00001000 00000006
00000FFC |  000000A5 00000FFC |  000000A5
00000FF8 | 00000001 00000FF8 00000001 < ESP
00000FF4 | 00000002 -« ESP 00000FF4
00000FF0 00000FF0

The area of the stack below ESP is logically empty, and will be overwritten the next time the cur-
rent program executes any instruction that pushes a value on the stack.

Stack Applications
There are several important uses of runtime stacks in programs:
* A stack makes a convenient temporary save area for registers when they are used for more
than one purpose. After they are modified, they can be restored to their original values.
* When the CALL instruction executes, the CPU saves the current subroutine’s return address
on the stack.
* When calling a subroutine, you pass input values called arguments by pushing them on the stack.
* The stack provides temporary storage for local variables inside subroutines.
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5.4.2 PUSH and POP Instructions

PUSH Instruction

The PUSH instruction first decrements ESP and then copies a source operand into the stack.
A 16-bit operand causes ESP to be decremented by 2. A 32-bit operand causes ESP to be decre-
mented by 4. There are three instruction formats:

PUSH reg/meml6
PUSH reg/mem32
PUSH imm32

If your program calls procedures in the Irvine32 library, you must push 32-bit values; if you do not, the
Win32 Console functions used by the library will not work correctly. If your program calls procedures
from the Irvine16 library (in real-address mode), you can push both 16-bit and 32-bit values.

Immediate values are always 32 bits in 32-bit mode. In real-address mode, immediate values
default to 16 bits, unless the .386 processor (or higher) directive is used. (The .386 directive was
explained in Section 3.2.1).

POP Instruction

The POP instruction first copies the contents of the stack element pointed to by ESP into a 16- or
32-bit destination operand and then increments ESP. If the operand is 16 bits, ESP is incre-
mented by 2; if the operand is 32 bits, ESP is incremented by 4:

POP reg/memlé6
POP reg/mem32

PUSHFD and POPFD Instructions
The PUSHFD instruction pushes the 32-bit EFLAGS register on the stack, and POPFD pops the
stack into EFLAGS:

pushfd
popfd

16-bit programs use the PUSHF instruction to push the 16-bit FLAGS register on the stack and POPF to
pop the stack into FLAGS.

The MOV instruction cannot be used to copy the flags to a variable, so PUSHFD may be the
best way to save the flags. There are times when it is useful to make a backup copy of the flags
so you can restore them to their former values later. Often, we enclose a block of code within
PUSHFD and POPFD:

pushfd ; save the flags
; any sequence of statements here...
popfd ; restore the flags
When using pushes and pops of this type, be sure the program’s execution path does not skip
over the POPFD instruction. When a program is modified over time, it can be tricky to remem-
ber where all the pushes and pops are located. The need for precise documentation is critical!
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A less error-prone way to save and restore the flags is to push them on the stack and immedi-
ately pop them into a variable:

.data

saveFlags DWORD ?

.code

pushfd ; push flags on stack
pop saveFlags ; copy into a variable

The following statements restore the flags from the same variable:

push saveFlags ; push saved flag values
popfd ; copy into the flags

PUSHAD, PUSHA, POPAD, and POPA
The PUSHAD instruction pushes all of the 32-bit general-purpose registers on the stack in the

following order: EAX, ECX, EDX, EBX, ESP (value before executing PUSHAD), EBP, ESI,
and EDI. The POPAD instruction pops the same registers off the stack in reverse order. Simi-
larly, the PUSHA instruction, introduced with the 80286 processor, pushes the 16-bit general-
purpose registers (AX, CX, DX, BX, SP, BP, SI, DI) on the stack in the order listed. The POPA
instruction pops the same registers in reverse order.

If you write a procedure that modifies a number of 32-bit registers, use PUSHAD at the
beginning of the procedure and POPAD at the end to save and restore the registers. The follow-
ing code fragment is an example:

MySub PROC
pushad ; save general-purpose registers

mov eax, ...
mov edx, ...
mov ecx, ...

popad ; restore general-purpose registers
ret
MySub ENDP
An important exception to the foregoing example must be pointed out; procedures returning results
in one or more registers should not use PUSHA and PUSHAD. Suppose the following ReadValue
procedure returns an integer in EAX; the call to POPAD overwrites the return value from EAX:

ReadValue PROC
pushad ; save general-purpose registers

mov eax, return_value

popad ; overwrites EAX!
ret
ReadValue ENDP
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Example: Reversing a String

The RevStr.asm program loops through a string and pushes each character on the stack. It then
pops the letters from the stack (in reverse order) and stores them back into the same string
variable. Because the stack is a LIFO (last-in, first-out) structure, the letters in the string are
reversed:

TITLE Reversing a String (RevStr.asm)

INCLUDE Irvine32.inc

.data

aName BYTE "Abraham Lincoln",O0
nameSize = ($ - aName) - 1
.code

main PROC

; Push the name on the stack.
mov ecx,nameSize
mov esi,0

L1l: movzx eax,aName[esi] ; get character
push eax ; push on stack
inc esi
loop L1

; Pop the name from the stack, in reverse,
; and store in the aName array.

mov ecx,nameSize

mov esi, 0

L2: pop eax ; get character
mov aName[esi],al ; store in string
inc esi
loop L2

; Display the name.
mov edx, OFFSET aName
call WriteString
call Crlf
exit
main ENDP
END main

5.4.3 Section Review

Which register (in protected mode) manages the stack?

How is the runtime stack different from the stack abstract data type?
Why is the stack called a LIFO structure?

When a 32-bit value is pushed on the stack, what happens to ESP?

(True/False) Only 32-bit values should be pushed on the stack when using the Irvine32
library.

A

6. (True/False) Only 16-bit values should be pushed on the stack when using the Irvine16 library.

7. (True/False) Local variables in procedures are created on the stack.
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8. (True/False) The PUSH instruction cannot have an immediate operand.
9. Which instruction pushes all of the 32-bit general-purpose registers on the stack?
10. Which instruction pushes the 32-bit EFLAGS register on the stack?
11. Which instruction pops the stack into the EFLAGS register?
12. Challenge: Another assembler (called NASM) permits the PUSH instruction to list multiple

specific registers. Why might this approach be better than the PUSHAD instruction in
MASM? Here is a NASM example:

PUSH EAX EBX ECX
13. Challenge: Suppose there were no PUSH instruction. Write a sequence of two other instruc-
tions that would accomplish the same as PUSH EAX.

5.5 Defining and Using Procedures

If you’ve already studied a high-level programming language, you know how useful it can be to
divide programs into subroutines. A complicated problem is usually divided into separate tasks
before it can be understood, implemented, and tested effectively. In assembly language, we typi-
cally use the term procedure to mean a subroutine. In other languages, subroutines are called
methods or functions.

In terms of object-oriented programming, the functions or methods in a single class are
roughly equivalent to the collection of procedures and data encapsulated in an assembly lan-
guage module. Assembly language was created long before object-oriented programming, so it
doesn’t have the formal structure found in object-oriented languages. Assembly programmers
must impose their own formal structure on programs.

5.5.1 PROC Directive

Defining a Procedure

Informally, we can define a procedure as a named block of statements that ends in a return statement.
A procedure is declared using the PROC and ENDP directives. It must be assigned a name (a valid
identifier). Each program we’ve written so far contains a procedure named main, for example,

main PROC

main ENDP

When you create a procedure other than your program’s startup procedure, end it with a RET
instruction. RET forces the CPU to return to the location from where the procedure was called:

sample PROC
ret
sample ENDP

The startup procedure (main) is a special case because it ends with the exit statement. When
you use the INCLUDE /rvine32.inc statement, exit is an alias for a call to ExitProcess, a system
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procedure that terminates the program:
INVOKE ExitProcess, 0

(In Section 8.5.1 we introduce the INVOKE directive, which can call a procedure and pass
arguments.)

If you use the INCLUDE [Irvinel6.inc statement, exit is translated to the .EXIT assembler directive.
The latter causes the assembler to generate the following two instructions:

mov ah,4C00h ; call MS-DOS function 4Ch
int 21h ; terminate program

Labels in Procedures

By default, labels are visible only within the procedure in which they are declared. This rule
often affects jump and loop instructions. In the following example, the label named Destination
must be located in the same procedure as the JMP instruction:

jmp Destination

It is possible to work around this limitation by declaring a global label, identified by a double
colon (::) after its name:

Destination::

In terms of program design, it’s not a good idea to jump or loop outside of the current procedure.
Procedures have an automated way of returning and adjusting the runtime stack. If you directly
transfer out of a procedure, the runtime stack can easily become corrupted. For more informa-
tion about the runtime stack, see Section 8.2.

Example: Sum of Three Integers

Let’s create a procedure named SumOf that calculates the sum of three 32-bit integers. We will
assume that relevant integers are assigned to EAX, EBX, and ECX before the procedure is
called. The procedure returns the sum in EAX:

SumOf PROC
add eax, ebx
add eax,ecx
ret

SumOf ENDP

Documenting Procedures
A good habit to cultivate is that of adding clear and readable documentation to your programs.

The following are a few suggestions for information that you can put at the beginning of each
procedure:
* A description of all tasks accomplished by the procedure.
* A list of input parameters and their usage, labeled by a word such as Receives. If any input
parameters have specific requirements for their input values, list them here.
* A description of any values returned by the procedure, labeled by a word such as Returns.
* A list of any special requirements, called preconditions, that must be satisfied before the pro-
cedure is called. These can be labeled by the word Requires. For example, for a procedure
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that draws a graphics line, a useful precondition would be that the video display adapter must
already be in graphics mode.

The descriptive labels we’ve chosen, such as Receives, Returns, and Requires, are not absolutes; other
useful names are often used.

With these ideas in mind, let’s add appropriate documentation to the SumOf procedure:

Sumof PROC

; Calculates and returns the sum of three 32-bit integers.
; Receives: EAX, EBX, ECX, the three integers. May be

; signed or unsigned.

; Returns: EAX = sum

add eax, ebx
add eax,ecx
ret
SumOf ENDP
Functions written in high-level languages like C and C++ typically return 8-bit values in AL,
16-bit values in AX, and 32-bit values in EAX.

5.5.2 CALL and RET Instructions

The CALL instruction calls a procedure by directing the processor to begin execution at a new mem-
ory location. The procedure uses a RET (return from procedure) instruction to bring the processor
back to the point in the program where the procedure was called. Mechanically speaking, the CALL
instruction pushes its return address on the stack and copies the called procedure’s address into the
instruction pointer. When the procedure is ready to return, its RET instruction pops the return address
from the stack into the instruction pointer. In 32-bit mode, the CPU executes the instruction in mem-
ory pointed to by EIP (instruction pointer register). In 16-bit mode, IP points to the instruction.

Call and Return Example
Suppose that in main, a CALL statement is located at offset 00000020. Typically, this instruc-

tion requires 5 bytes of machine code, so the next statement (a MOV in this case) is located at
offset 00000025:

main PROC
00000020 call MySub
00000025 mov eax,ebx

Next, suppose that the first executable instruction in MySub is located at offset 00000040:

MySub PROC
00000040 mov eax,edx

ret
MySub ENDP
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When the CALL instruction executes (Figure 5-8), the address following the call (00000025)
is pushed on the stack and the address of MySub is loaded into EIP. All instructions in MySub
execute up to its RET instruction. When the RET instruction executes, the value in the stack
pointed to by ESP is popped into EIP (step 1 in Figure 5-9). In step 2, ESP is incremented so it

points to the previous value on the stack (step 2).

Figure -8 Executing a CALL Instruction.

777

00000025 —~— ESP

Figure 5—9 Executing the RET Instruction.

Step 1:

7?7

ESP —>

00000040

EIP

EIP

00000025

Step 2:

ESP —>|

777?

Nested Procedure Calls

00000025

A nested procedure call occurs when a called procedure calls another procedure before the first
procedure returns. Suppose that main calls a procedure named Sub1. While Subl1 is executing,
it calls the Sub2 procedure. While Sub2 is executing, it calls the Sub3 procedure. The process is

shown in Figure 5-10.

When the RET instruction at the end of Sub3 executes, it pops the value at stack[ESP] into
the instruction pointer. This causes execution to resume at the instruction following the call Sub3
instruction. The following diagram shows the stack just before the return from Sub3 is executed:

(ret to main)

(ret to Subl)

(ret to Sub2)

-— ESP
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Figure 7-10 Nested Procedure Calls.
— main PROC

call Sub1
exit
— main ENDP

— Subl PROC

call Sub2

ret
— Subl ENDP

— Sub2 PROC

call Sub3

ret
~ Sub2 ENDP

— Sub3 PROC

ret
— Sub3 ENDP

After the return, ESP points to the next-highest stack entry. When the RET instruction at the

end of Sub2 is about to execute, the stack appears as follows:

(ret to main)

(ret to Subl) ESP

Finally, when Subl1 returns, stack[ESP] is popped into the instruction pointer, and execution

resumes in main:
ret to main
( in) <— ESP

Clearly, the stack proves itself a useful device for remembering information, including nested
procedure calls. Stack structures, in general, are used in situations where programs must retrace

their steps in a specific order.
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Passing Register Arguments to Procedures
If you write a procedure that performs some standard operation such as calculating the sum of an
integer array, it’s not a good idea to include references to specific variable names inside the pro-
cedure. If you did, the procedure could only be used with one array. A better approach is to pass
the offset of an array to the procedure and pass an integer specifying the number of array ele-
ments. We call these arguments (or input parameters). In assembly language, it is common to
pass arguments inside general-purpose registers.

In the preceding section we created a simple procedure named SumOf that added the integers

in the EAX, EBX, and ECX registers. In main, before calling SumOf, we assign values to EAX,
EBX, and ECX:

.data
theSum DWORD °?
.code
main PROC
mov eax,10000h ; argument
mov ebx,20000h ; argument
mov ecx,30000h ; argument
call Sumof ; EAX = (EAX + EBX + ECX)
mov theSum, eax ; save the sum

After the CALL statement, we have the option of copying the sum in EAX to a variable.

5.5.3 Example: Summing an Integer Array

A very common type of loop that you may have already coded in C++ or Java is one that calcu-
lates the sum of an integer array. This is very easy to implement in assembly language, and it can
be coded in such a way that it will run as fast as possible. For example, one can use registers
rather than variables inside a loop.

Let’s create a procedure named ArraySum that receives two parameters from a calling pro-
gram: a pointer to an array of 32-bit integers, and a count of the number of array values. It calcu-
lates and returns the sum of the array in EAX:

ArraySum PROC

; Calculates the sum of an array of 32-bit integers.
; Receilves: ESI the array offset

; ECX = number of elements in the array

; Returns: EAX = sum of the array elements
push esi ; save ESI, ECX
push ecx
mov eax, 0 ; set the sum to zero

Ll: add eax, [esi] ; add each integer to sum
add esi, TYPE DWORD ; point to next integer
loop L1 ; repeat for array size

pop ecx ; restore ECX, EST
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pop esi
ret ; sum is in EAX
ArraySum ENDP
Nothing in this procedure is specific to a certain array name or array size. It could be used in any
program that needs to sum an array of 32-bit integers. Whenever possible, you should also create
procedures that are flexible and adaptable.

Calling ArraySum  Following is an example of calling ArraySum, passing the address of
array in ESI and the array count in ECX. After the call, we copy the sum in EAX to a variable:

.data
array DWORD 10000h,20000h,30000h,40000h,50000h
theSum DWORD °?

.code

main PROC
mov esi,OFFSET array ; ESI points to array
mov ecx, LENGTHOF array ; ECX = array count
call ArraySum ; calculate the sum
mov theSum, eax ; returned in EAX

5.5.4 Flowcharts

A flowchart is a well-established way of diagramming program logic. Each shape in a flowchart
represents a single logical step, and lines with arrows connecting the shapes show the ordering
of the logical steps. Figure 5-11 shows the most common flowchart shapes. The same shape is
used for begin/end connectors, as well as labels that are the targets of jump instructions.

Figure -11 Basic Flowchart Shapes.

begin/end yes

process (task)

no
procedure call target label

Text notations such as yes and no are added next to decision symbols to show branching
directions. There is no required position for each arrow connected to a decision symbol. Each process
symbol can contain one or more closely related instructions. The instructions need not be syntacti-
cally correct. For example, we could add 1 to CX using either of the following process symbols:

cx = cx + 1 | | add cx, 1

Let’s use the ArraySum procedure from the preceding section to design a simple flowchart,
shown in Figure 5-12. It uses a decision symbol for the LOOP instruction because LOOP must
determine whether or not to transfer control to a label (based on the value of CX). A code insert
shows the original procedure listing.
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Figure -12  Flowchart for the ArraySum Procedure.

ArraySum Procedure

begin

push esi, ecx

eax =0

add eax.[esi] push esi
push ecx
mov eax,(

add esi, 4 AS1:

add eax,[esi]
add esi4
loop AS1

ecx =ecx — 1
pop ecx
pop esi

yes

no

pop ecx, esi

end

5.5.5 Saving and Restoring Registers

In the ArraySum example, ECX and ESI were pushed on the stack at the beginning of the pro-
cedure and popped at the end. This action is typical of most procedures that modify registers.
Always save and restore registers that are modified by a procedure so the calling program can be
sure that none of its own register values will be overwritten. The exception to this rule pertains to
registers used as return values, usually EAX. Do not push and pop them.

USES Operator

The USES operator, coupled with the PROC directive, lets you list the names of all registers
modified within a procedure. USES tells the assembler to do two things: First, generate PUSH
instructions that save the registers on the stack at the beginning of the procedure. Second,
generate POP instructions that restore the register values at the end of the procedure. The USES
operator immediately follows PROC, and is itself followed by a list of registers on the same line
separated by spaces or tabs (not commas).
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The ArraySum procedure from Section 5.5.3 used PUSH and POP instructions to save and
restore ESI and ECX. The USES operator can more easily do the same:

ArraySum PROC USES esi ecx
mov eax, 0

Ll:
add eax, [esi]
add esi, TYPE DWORD
loop L1

ret
ArraySum ENDP

set the sum to zero
add each integer to sum
point to next integer

repeat for array size

sum is in EAX

The corresponding code generated by the assembler shows the effect of USES:

ArraySum PROC
push esi
push ecx
mov eax, 0

Ll:
add eax, [esi]
add esi, TYPE DWORD
loop L1

pop ecx

pop esi

ret
ArraySum ENDP

set the sum to zero

add each integer to sum
point to next integer
repeat for array size

Debugging Tip: When using the Microsoft Visual Studio debugger, you can view the hidden machine
instructions generated by MASM’s advanced operators and directives. Select Debug Windows from the
View menu, and select Disassembly. This window displays your program’s source code along with hidden
machine instructions generated by the assembler.

Exception There is an important exception to our standing rule about saving registers that
applies when a procedure returns a value in a register (usually EAX). In this case, the return reg-
ister should not be pushed and popped. For example, in the SumOf procedure in the following
example, it pushes and pops EAX, causing the procedure’s return value to be lost:

SumOf PROC
push eax
add eax, ebx
add eax, ecx
pop eax
ret

SumOf ENDP

5.5.6 Section Review

sum of three integers
save EAX

calculate the sum

of EAX, EBX, ECX
lost the sum!

1. (True/False): The PROC directive begins a procedure and the ENDP directive ends a

procedure.

2. (True/False): 1t is possible to define a procedure inside an existing procedure.
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What would happen if the RET instruction was omitted from a procedure?
How are the words Receives and Returns used in the suggested procedure documentation?
(True/False): The CALL instruction pushes the offset of the CALL instruction on the stack.

(True/False): The CALL instruction pushes the offset of the instruction following the
CALL on the stack.

(True/False): The RET instruction pops the top of the stack into the instruction pointer.

SANIN AN

% =

. (True/False): Nested procedure calls are not permitted by the Microsoft assembler unless
the NESTED operator is used in the procedure definition.

9. (True/False): In protected mode, each procedure call uses a minimum of 4 bytes of stack
space.

10. (True/False): The ESI and EDI registers cannot be used when passing parameters to procedures.

11. (True/False): The ArraySum procedure (Section 5.5.3) receives a pointer to any array of
doublewords.

12. (True/False): The USES operator lets you name all registers that are modified within a
procedure.

13. (True/False): The USES operator only generates PUSH instructions, so you must code POP
instructions yourself.

14. (True/False): The register list in the USES directive must use commas to separate the regis-
ter names.

15. Which statement(s) in the ArraySum procedure (Section 5.5.3) would have to be modified
so it could accumulate an array of 16-bit words? Create such a version of ArraySum and
test it.

5.6 Program Design Using Procedures

Any programming application beyond the trivial tends to involve a number of different tasks.
One could code all tasks in a single procedure, but the program would be difficult to read and
maintain. Instead, it’s best to dedicate a separate procedure for each task.

When creating a program, create a set of specifications that list exactly what the program is
supposed to do. The specifications should be the result of careful analysis of the problem you’re
trying to solve. Then design the program based on the specifications. A standard design
approach is to divide an overall problem into discrete tasks, a process known as functional
decomposition, or top-down design. It relies on some basic principles:

¢ A large problem may be more easily divided into small tasks.

* A program is easier to maintain if each procedure is tested separately.

* A top-down design lets you see how procedures are related to each other.

* When you are sure of the overall design, you can more easily concentrate on details, writing

code that implements each procedure.

In the next section, we demonstrate the top-down design approach for a program that inputs inte-
gers and calculates their sum. Although the program is simple, the same approach can be applied
to programs of almost any size.
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5.6.1 Integer Summation Program (Design)
The following are specifications for a simple program that we will call Integer Summation:

Write a program that prompts the user for three 32-bit integers, stores them in an array, calculates the
sum of the array, and displays the sum on the screen.

The following pseudocode shows how we might divide the specifications into tasks:

Integer Summation Program
Prompt user for three integers
Calculate the sum of the array
Display the sum

In preparation for writing a program, let’s assign a procedure name to each task:

Main
PromptForIntegers
ArraySum
DisplaySum

In assembly language, input-output tasks often require detailed code to implement. To reduce
some of this detail, we can call procedures that clear the screen, display a string, input an integer,
and display an integer:

Main
Clrscr ; clear screen
PromptForIntegers
WriteString ; display string
ReadInt ; input integer
ArraySum ; sum the integers
DisplaySum
WriteString ; display string
WriteInt ; display integer

Structure Chart The diagram in Figure 5-13, called a structure chart, describes the pro-
gram’s structure. Procedures from the link library are shaded.

Figure -1%  Structure Chart for the Summation Program.

Summation
Program (main)

Clrscr PromptForIntegers ArraySum DisplaySum

WriteString ReadlInt WriteString Writelnt
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Stub Program Let’s create a minimal version of the program called a stub program. It con-
tains only empty (or nearly empty) procedures. The program assembles and runs, but does not
actually do anything useful:

TITLE Integer Summation Program (Suml.asm)

; This program prompts the user for three integers,
; stores them in an array, calculates the sum of the
; array, and displays the sum.

INCLUDE Irvine32.inc

.code

main PROC

; Main program control procedure.

; Calls: Clrscr, PromptForIntegers,
; ArraySum, DisplaySum

exit
main ENDP

PromptForIntegers PROC
; Prompts the user for three integers, inserts
; them in an array.
; Receives: ESI points to an array of
; doubleword integers, ECX = array size.
; Returns: nothing
; Calls: ReadInt, WriteString
ret
PromptForIntegers ENDP

ArraySum PROC
; Calculates the sum of an array of 32-bit integers.
; Receives: ESI points to the array, ECX = array size
; Returns: EAX = sum of the array elements

ret
ArraySum ENDP

DisplaySum PROC

; Displays the sum on the screen.

; Receives: EAX = the sum

; Returns: nothing

; Calls: WriteString, WritelInt
ret

DisplaySum ENDP

END main
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A stub program gives you the chance to map out all procedure calls, study the dependencies
between procedures, and possibly improve the structural design before coding the details. Use
comments in each procedure to explain its purpose and parameter requirements.

5.6.2 Integer Summation Implementation
Let’s complete the summation program. We will declare an array of three integers and use a

defined constant for the array size in case we want to change it later:

INTEGER_COUNT = 3
array DWORD INTEGER_COUNT DUP (?)

A couple of strings are used as screen prompts:

strl BYTE "Enter a signed integer: ",0
str2 BYTE "The sum of the integers is: ",0

The main procedure clears the screen, passes an array pointer to the PromptForIntegers
procedure, calls ArraySum, and calls DisplaySum:

call Clrscr

mov esi,OFFSET array
mov ecx, INTEGER_COUNT
call PromptForIntegers
call ArraySum

call DisplaySum

* PromptForIntegers calls WriteString to prompt the user for an integer. It then calls ReadInt
to input the integer from the user, and stores the integer in the array pointed to by ESI. A loop
executes these steps multiple times.

e ArraySum calculates and returns the sum of an array of integers.

* DisplaySum displays a message on the screen (“The sum of the integers is:”) and calls
Writelnt to display the integer in EAX.

Finished Program Listing The following listing shows the completed Summation program:
TITLE Integer Summation Program (Sum2 .asm)

; This program prompts the user for three integers,
; stores them in an array, calculates the sum of the
; array, and displays the sum.

INCLUDE Irvine32.inc

INTEGER_COUNT = 3

.data
strl BYTE "Enter a signed integer: ",0
str2 BYTE "The sum of the integers is: ",0

array DWORD INTEGER_COUNT DUP(?)

.code

main PROC
call Clrscr
mov esi,OFFSET array
mov ecx, INTEGER_COUNT
call PromptForIntegers
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call ArraySum
call DisplaySum
exit

main ENDP

PromptForIntegers PROC USES ecx edx esi

; Prompts the user for an arbitrary number of integers
; and inserts the integers into an array.

; Receives: ESI points to the array, ECX = array size
; Returns: nothing

mov edx, OFFSET strl ; "Enter a signed integer"
Ll: call WriteString ; display string

call ReadInt ; read integer into EAX

call Crilf ; go to next output line

mov [esi], eax ; sStore in array

add esi, TYPE DWORD ; next integer

loop L1

ret

PromptForIntegers ENDP

ArraySum PROC USES esi ecx

; Calculates the sum of an array of 32-bit integers.
; Receives: ESI points to the array, ECX = number

; of array elements

; Returns: EAX = sum of the array elements
mov eax, 0 ; set the sum to zero

Ll: add eax, [esi] ; add each integer to sum
add esi, TYPE DWORD ; point to next integer
loop L1 ; repeat for array size
ret ; sum 1s in EAX

ArraySum ENDP

DisplaySum PROC USES edx

; Displays the sum on the screen
; Receives: EAX = the sum

; Returns: nothing

mov edx, OFFSET str2 ; "The sum of the..."
call WriteString

call WriteInt ; display EAX

call Crlf

ret

DisplaySum ENDP
END main
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5.6.3 Section Review
1. What is the name given to the process of dividing up large tasks into smaller ones?

2. Which procedures in the Summation program design (Section 5.6.1) are located in the
Irvine32 library?

3. What is a stub program?

4. (True/False): The ArraySum procedure of the Summation program (Section 5.6.1) directly
references the name of an array variable.

5. Which lines in the PromptForIntegers procedure of the Summation program (Section 5.6.1)
would have to be modified so it could handle an array of 16-bit words? Create such a version
and test it.

6. Draw a flowchart for the PromptForIntegers procedure of the Summation program (flow-
charts were introduced in Section 5.5.4).

5.7 Chapter Summary
This chapter introduces the book’s link library to make it easier for you to process input-output
in assembly language applications.

Table 5—1 lists most of the procedures from the Irvine32 link library. The most up-to-date
listing of all procedures is available on the book’s Web site (www.asmirvine.com).

The library test program in Section 5.3.3 demonstrates a number of input-output functions from
the Irvine32 library. It generates and displays a list of random numbers, a register dump, and a
memory dump. It displays integers in various formats and demonstrates string input-output.

The runtime stack is a special array that is used as a temporary holding area for addresses and
data. The ESP register holds a 32-bit OFFSET into some location on the stack. The stack is
called a LIFO structure (last-in, first-out) because the last value placed in the stack is the first
value taken out. A push operation copies a value into the stack. A pop operation removes a value
from the stack and copies it to a register or variable. Stacks often hold procedure return
addresses, procedure parameters, local variables, and registers used internally by procedures.

The PUSH instruction first decrements the stack pointer and then copies a source operand
into the stack. The POP instruction first copies the contents of the stack pointed to by ESP into a
16- or 32-bit destination operand and then increments ESP.

The PUSHAD instruction pushes the 32-bit general-purpose registers on the stack, and the
PUSHA instruction does the same for the 16-bit general-purpose registers. The POPAD instruc-
tion pops the stack into the 32-bit general-purpose registers, and the POPA instruction does the
same for the 16-bit general-purpose registers.

The PUSHFD instruction pushes the 32-bit EFLAGS register on the stack, and POPFD pops
the stack into EFLAGS. PUSHF and POPF do the same for the 16-bit FLAGS register.

The RevStr program (Section 5.4.2) uses the stack to reverse a string of characters.

A procedure is a named block of code declared using the PROC and ENDP directives. A procedure’s
execution ends with the RET instruction. The SumOf procedure, shown in Section 5.5.1, calculates the
sum of three integers. The CALL instruction executes a procedure by inserting the procedure’s address
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into the instruction pointer register. When the procedure finishes, the RET (return from procedure)
instruction brings the processor back to the point in the program from where the procedure was called.
A nested procedure call occurs when a called procedure calls another procedure before it returns.

A code label followed by a single colon is only visible within its enclosing procedure. A code label
followed by :: is a global label, making it accessible from any statement in the same source code file.

The ArraySum procedure, shown in Section 5.5.3, calculates and returns the sum of the ele-
ments in an array.

The USES operator, coupled with the PROC directive, lets you list all registers modified by a
procedure. The assembler generates code that pushes the registers at the beginning of the proce-
dure and pops the registers before returning.

A program of any size should be carefully designed from a set of clear specifications. A stan-
dard approach is to use functional decomposition (top-down design) to divide the program into
procedures (functions). First, determine the ordering and connections between procedures, and
later fill in the procedure details.

5.8 Programming Exercises

When you write programs to solve the programming exercises, use multiple procedures when
possible. Follow the style and naming conventions used in this book, unless instructed otherwise
by your instructor. Use explanatory comments in your programs at the beginning of each proce-
dure and next to nontrivial statements. As a bonus, your instructor may ask you to provide flow-
charts and/or pseudocode for solution programs.

1. Draw Text Colors

Write a program that displays the same string in four different colors, using a loop. Call the Set-
TextColor procedure from the book’s link library. Any colors may be chosen, but you may find
it easiest to change the foreground color.

2. File of Fibonacci Numbers

Using Programming Exercise 6 in Chapter 4 as a starting point, write a program that generates
the first 47 values in the Fibonacci series, stores them in an array of doublewords, and writes the
doubleword array to a disk file. You need not perform any error checking on the file input-
output because conditional processing has not been covered yet. Your output file size should be
188 bytes because each doubleword is 4 bytes. Use debug.exe or Visual Studio to open and
inspect the file contents, shown here in hexadecimal:

00000000 01 00 00 00 01 00 OO 00 02 00 00 00 03 00 0000
00000010 05 00 00 00 08 00 00 OO 0D 00 00 00 15 00 00 00
00000020 22 00 00 00 37 00 00 00 59 00 00 00 90 00 00 00
00000030 E9 00 00 00 79 01 00 00 62 02 00 00 DB 03 00 00
00000040 3D 06 00 00 18 0A 00 00 55 10 00 00 6D 1A 00 00
00000050 C2 2A 00 00 2F 45 00 00 F1 6F 00 00 20 B5 00 00
00000060 11250100 31 DAO1 00 42 FF 02 00 73 D9 04 00
00000070 BS D8 07 00 28 B2 0C 00 DD 8A 14 00 05 3D 21 00
00000080 E2 C7 35 00 E7 04 57 00 C9 CC 8C 00 BO D1 E3 00
00000090 79 9E 70 01 29 70 54 02 A2 OE C5 03 CB 7E 19 06
000000a0 6D 8D DE 09 38 0C F8 OF A5 99 D6 19 PD AS CE 29
00000060 82 3F A5 43 5F E5 73 6D EI1 24 19 BIF

(A VideoNote for this exercise is posted on the Web site.)
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3. Simple Addition (1)

Write a program that clears the screen, locates the cursor near the middle of the screen, prompts
the user for two integers, adds the integers, and displays their sum.

4. Simple Addition (2)
Use the solution program from the preceding exercise as a starting point. Let this new program
repeat the same steps three times, using a loop. Clear the screen after each loop iteration.

5. BetterRandomRange Procedure

The RandomRange procedure from the Irvine32 library generates a pseudorandom integer between
0and N — 1. Your task is to create an improved version that generates an integer between M and
N — 1. Let the caller pass M in EBX and N in EAX. If we call the procedure BetterRandomRange,
the following code is a sample test:

mov ebx,-300 ; lower bound

mov eax, 100 ; upper bound

call BetterRandomRange
Write a short test program that calls BetterRandomRange from a loop that repeats 50 times.
Display each randomly generated value.

6. Random Strings
Write a program that generates and displays 20 random strings, each consisting of 10 capital
letters {A..Z}. (A VideoNote for this exercise is posted on the Web site.)

7. Random Screen Locations

Write a program that displays a single character at 100 random screen locations, using a timing
delay of 100 milliseconds. Hint: Use the GetMaxXY procedure to determine the current size of
the console window.

8. Color Matrix

Write a program that displays a single character in all possible combinations of foreground and
background colors (16 X 16 = 256). The colors are numbered from O to 15, so you can use a
nested loop to generate all possible combinations.

9. Summation Program
Modify the Summation program in Section 5.6.1 as follows: Select an array size using a
constant:

ARRAY_SIZE = 20
array DWORD ARRAY_SIZE DUP(?)

Write a new procedure that prompts the user for the number of integers to be processed. Pass the
same value to the PromptForIntegers procedure. For example,

How many integers will be added? 5
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as it is, provides all the tools you need for decision-making logic. In this chapter, we will see
how the translation works, from high-level conditional statements to low-level implementation
code.

Programs that deal with hardware devices must be able to manipulate individual bits in num-
bers. Individual bits must be tested, cleared, and set. Data encryption and compression also rely
on bit manipulation. We will show how to perform these operations in assembly language.

This chapter should answer some basic questions:

* How can I use the boolean operations introduced in Chapter 1 (AND, OR, NOT)?

* How do I write an IF statement in assembly language?

* How are nested-IF statements translated by compilers into machine language?

* How can I set and clear individual bits in a binary number?

* How can I perform simple binary data encryption?

* How are signed numbers differentiated from unsigned numbers in boolean expressions?

This chapter follows a botfom-up approach, starting with the binary foundations behind pro-
gramming logic. Next, you will see how the CPU compares instruction operands, using the CMP
instruction and the processor status flags. Finally, we put it all together and show how to use
assembly language to implement logic structures characteristic of high-level languages.

6.2 Boolean and Comparison Instructions

In Chapter 1, we introduced the four basic operations of boolean algebra: AND, OR, XOR, and
NOT. These operations can be carried at the binary bit level, using assembly language instruc-
tions. These operations are also important at the boolean expression level, in IF statements, for
example. First, we will look at the bitwise instructions. The techniques used here could be used
to manipulate control bits for hardware devices, implement communication protocols, or encrypt
data, just to name a few applications. The Intel instruction set contains the AND, OR, XOR,
and NOT instructions, which directly implement boolean operations on binary bits, shown in
Table 6-1. In addition, the TEST instruction is a nondestructive AND operation, and the BT
(including BTC, BTR, and BTS) provides a combined bitwise operation.

Table 6-1  Selected Boolean Instructions.

Operation Description

AND Boolean AND operation between a source operand and a destination operand.

OR Boolean OR operation between a source operand and a destination operand.

XOR Boolean exclusive-OR operation between a source operand and a destination
operand.

NOT Boolean NOT operation on a destination operand.

TEST Implied boolean AND operation between a source and destination operand, set-
ting the CPU flags appropriately.

BT, BTC, BTR, BTS Copy bit n from the source operand to the Carry flag and complement/reset/set
the same bit in the destination operand (covered in Section 6.3.5).
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6.2.1 The CPU Flags

Boolean instructions affect the Zero, Carry, Sign, Overflow, and Parity flags. Here’s a quick
review of their meanings:

* The Zero flag is set when the result of an operation equals zero.

* The Carry flag is set when an operation generates a carry out of the highest bit of the destina-
tion operand.

* The Sign flag is a copy of the high bit of the destination operand, indicating that it is negative
if set and positive if clear. (Zero is assumed to be positive.)

* The Overflow flag is set when an instruction generates an invalid signed result.

e The Parity flag is set when an instruction generates an even number of 1 bits in the low byte
of the destination operand.

6.2.2 AND Instruction
The AND instruction performs a boolean (bitwise) AND operation between each pair of match-
ing bits in two operands and places the result in the destination operand:

AND destination, source
The following operand combinations are permitted:

AND reg, reg
AND reg, mem
AND reg, imm
AND mem, reg
AND mem, imm
The operands can be 8, 16, or 32 bits, and they must be the same size. For each matching bit
in the two operands, the following rule applies: If both bits equal 1, the result bit is 1; otherwise,
it is 0. The following truth table from Chapter 1 labels the input bits x and y. The third column
shows the value of the expression X A'Y:

X
0 0
0
1

—
oloc|o) >

1 1 1

The AND instruction lets you clear 1 or more bits in an operand without affecting other bits.
The technique is called bit masking, much as you might use masking tape when painting a
house to cover areas (such as windows) that should not be painted. Suppose, for example, that
a control byte is about to be copied from the AL register to a hardware device. Further, we
will assume that the device resets itself when bits 0 and 3 are cleared in the control byte.
Assuming that we want to reset the device without modifying any other bits in AL, we can write
the following:

and AL,11110110b ; clear bits 0 and 3, leave others unchanged
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For example, suppose AL is initially set to 10101110 binary. After ANDing it with 11110110,
AL equals 10100110:

mov al,10101110b
and al,11110110b ; result in AL = 10100110

Flags The AND instruction always clears the Overflow and Carry flags. It modifies the
Sign, Zero, and Parity flags in a way that is consistent with the value assigned to the destina-
tion operand. For example, suppose the following instruction results in a value of Zero in the
EAX register. In that case, the Zero flag will be set:

and eax, 1lFh

Converting Characters to Upper Case

The AND instruction provides an easy way to translate a letter from lowercase to uppercase.

If we compare the ASCII codes of capital A and lowercase a, it becomes clear that only bit 5 is

different:

01100001-= a

01 000O0O01-=41h ('A")
The rest of the alphabetic characters have the same relationship. If we AND any character

with 11011111 binary, all bits are unchanged except for bit 5, which is cleared. In the following

example, all characters in an array are converted to uppercase:

.data
array BYTE 50 "This Sentence is in Mixed Case",0
.code

mov ecx, LENGTHOF array

mov esi,OFFSET array

Ll: and BYTE PTR [esi],11011111b ; clear bit 5
inc esi
loop L1

6.2.3 OR Instruction
The OR instruction performs a boolean OR operation between each pair of matching bits in two
operands and places the result in the destination operand:

OR destination, source
The OR instruction uses the same operand combinations as the AND instruction:

OR reg, reg
OR reg, mem
OR reg, imm
OR mem, reg
OR mem, imm

The operands can be 8, 16, or 32 bits, and they must be the same size. For each matching bit
in the two operands, the output bit is 1 when at least one of the input bits is 1. The following
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truth table (from Chapter 1) describes the boolean expression X v y:

X |y | xvy

The OR instruction is particularly useful when you need to set 1 or more bits in an operand
without affecting any other bits. Suppose, for example, that your computer is attached to a servo
motor, which is activated by setting bit 2 in its control byte. Assuming that the AL register con-
tains a control byte in which each bit contains some important information, the following code
only sets the bit in position 2.

or AL,00000100b ; set bit 2, leave others unchanged

For example, if AL is initially equal to 11100011 binary and then we OR it with 00000100, the
result equals 11100111:

mov al,11100011b
and al,00000100b ; result in AL = 11100111

Flags The OR instruction always clears the Carry and Overflow flags. It modifies the Sign, Zero,
and Parity flags in a way that is consistent with the value assigned to the destination operand. For
example, you can OR a number with itself (or zero) to obtain certain information about its value:

or al,al

The values of the Zero and Sign flags indicate the following about the contents of AL:

Zero Flag Sign Flag Valuein AL s ...
Clear Clear Greater than zero
Set Clear Equal to zero
Clear Set Less than zero

6.2.4 Bit-Mapped Sets

Some applications manipulate sets of items selected from a limited-sized universal set. Exam-
ples might be employees within a company, or environmental readings from a weather monitor-
ing station. In such cases, binary bits can indicate set membership. Rather than holding pointers
or references to objects in a container such as a Java HashSet, an application can use a bit vector
(or bit map) to map the bits in a binary number to an array of objects, shown in Figure 6—1.

For example, the following binary number uses bit positions numbered from O on the right to 31
on the left to indicate that array elements 0, 1, 2, and 31 are members of the set named SetX:

SetX = 10000000 00000000 00000000 00000111
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Figure 6~1 Mapping Binary Bits to an Array.

bit 0 bit 0
l Byte 1 l Byte 2
Bit Map: [0[0[0]1][1]1]0]0] Lofofof1]1]1]o]0]

AN

Array: [0] ] [0 ] (1] [B1] (1] [Csr(er] (] (o0 [or] [er] [B1 [E (ete)

(The bytes have been separated to improve readability.) We can easily check for set membership
by ANDing a particular member’s bit position with a 1:

mov eax, SetX

and eax,10000b ; 1s element[16] a member of SetX?
If the AND instruction in this example clears the Zero flag, we know that element [16] is a
member of SetX.

Set Complement
The complement of a set can be generated using the NOT instruction, which reverses all bits.

Therefore, the complement of the SetX that we introduced is generated in EAX using the
following instructions:

mov eax,SetX
not eax ; complement of SetX

Set Intersection
The AND instruction produces a bit vector that represents the intersection of two sets. The fol-

lowing code generates and stores the intersection of SetX and SetY in EAX:

mov eax, SetX
and eax,SetY

This is how the intersection of SetX and SetY is produced:

1000000 00000000 00000000 00000111 (SetX)
(AND) 1000001 01010000 00000111 01100011 (SetY)
1000000 00000000 00000000 00000011 (intersection)

It is hard to imagine any faster way to generate a set intersection. A larger domain would require
more bits than could be held in a single register, making it necessary to use a loop to AND all of
the bits together.

Set Union
The OR instruction produces a bit map that represents the union of two sets. The following code
generates the union of SetX and SetY in EAX:

mov eax, SetX
or eax, SetY
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This is how the union of SetX and SetY is generated by the OR instruction:

1000000 00000000 00000000 00000111 (SetX)
(OR) 1000001 01010000 00000111 01100011 (SetY)

1000001 01010000 00000111 01100111 (union)

6.2.5 XOR Instruction
The XOR instruction performs a boolean exclusive-OR operation between each pair of matching
bits in two operands and stores the result in the destination operand:

XOR destination, source

The XOR instruction uses the same operand combinations and sizes as the AND and OR
instructions. For each matching bit in the two operands, the following applies: If both bits are the
same (both O or both 1), the result is 0; otherwise, the result is 1. The following truth table
describes the boolean expression X @ y:

X Xoy
0 0 0
0 1 1
1 0 1
1 1 0

A bit exclusive-ORed with O retains its value, and a bit exclusive-ORed with 1 is toggled
(complemented). XOR reverses itself when applied twice to the same operand. The following
truth table shows that when bit x is exclusive-ORed with bit y twice, it reverts to its original
value:

X X0y | x@y)dy
0] o0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

As you will find out in Section 6.3.4, this “reversible” property of XOR makes it an ideal tool for
a simple form of symmetric encryption.

Flags The XOR instruction always clears the Overflow and Carry flags. XOR modifies the
Sign, Zero, and Parity flags in a way that is consistent with the value assigned to the destination
operand.

Checking the Parity Flag Parity checking is a function performed on a binary number that
counts the number of 1 bits contained in the number; if the resulting count is even, we say that the
data has even parity; if the count is odd, the data has odd parity. In an IA-32 processor, the Parity flag
is set when the lowest byte of the destination operand of a bitwise or arithmetic operation has even
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parity. Conversely, when the operand has odd parity, the flag is cleared. An effective way to check the
parity of a number without changing its value is to exclusive-OR the number with zero:

mov al,10110101b ; 5 bits = odd parity
xor al,0 ; Parity flag clear (PO)
mov al,11001100b ; 4 bits = even parity
xor al,o0 ; Parity flag set (PE)

(Debuggers often use PE to indicate even parity and PO to indicate odd parity.)

16-Bit Parity You can check the parity of a 16-bit register by performing an exclusive-OR
between the upper and lower bytes:

mov ax,64Clh ; 0110 0100 1100 0001
xor ah,al ; Parity flag set (PE)

Imagine the set bits (bits equal to 1) in each register as being members of an 8-bit set. The XOR
instruction zeroes all bits belonging to the intersection of the sets. XOR also forms the union
between the remaining bits. The parity of this union will be the same as the parity of the entire
16-bit integer.

What about 32-bit values? If we number the bytes from B, through B3, we can calculate the
parity as By XOR B XOR B, XOR Bj;.

6.2.6 NOT Instruction
The NOT instruction toggles (inverts) all bits in an operand. The result is called the one’s com-
plement. The following operand types are permitted:

NOT reg
NOT mem

For example, the one’s complement of FOh is OFh:

mov al,11110000b
not al ; AL = 00001111b

Flags No flags are affected by the NOT instruction.

6.2.7 TEST Instruction

The TEST instruction performs an implied AND operation between each pair of matching bits in
two operands and sets the Sign, Zero, and Parity flags based on the value assigned to the destina-
tion operand. The only difference between TEST and AND is that TEST does not modify the
destination operand. The TEST instruction permits the same operand combinations as the AND
instruction. TEST is particularly valuable for finding out whether individual bits in an operand
are set.

Example: Testing Multiple Bits The TEST instruction can check several bits at once. Sup-
pose we want to know whether bit 0 or bit 3 is set in the AL register. We can use the following
instruction to find this out:

test al,00001001b ; test bits 0 and 3
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(The value 00001001 in this example is called a bit mask.) From the following example data
sets, we can infer that the Zero flag is set only when all tested bits are clear:

00100101 <- input value
00001001 <- test value
0000O0OO0OO01 <- result: zrF =0
00100100 <- input value
00001001 <- test value
0000O0OO0OO0OO0O <- result: zrF =1

Flags The TEST instruction always clears the Overflow and Carry flags. It modifies the Sign,
Zero, and Parity flags in the same way as the AND instruction.

6.2.8 CMP Instruction
Having examined all of the bitwise instructions, let’s now turn to instructions used in logical
(boolean) expressions. At the heart of any boolean expression is some type of comparison. The
following pseudocode examples support this idea:

if A > B then

while X > 0 and X < 200

1f check for_error( N ) = true then
In Intel assembly language we use the CMP instruction to compare integers. Character codes are
also integers, so they work with CMP as well. Floating-point values require specialized compar-
ison instructions, which we cover in Section 12.2.

The CMP (compare) instruction performs an implied subtraction of a source operand from a

destination operand. Neither operand is modified:

CMP destination, source
CMP uses the same operand combinations as the AND instruction.

Flags The CMP instruction changes the Overflow, Sign, Zero, Carry, Auxiliary Carry, and
Parity flags according to the value the destination operand would have had if actual subtraction
had taken place. When two unsigned operands are compared, the Zero and Carry flags indicate
the following relations between operands:

CMP Results ZF CF
Destination < source 0 1
Destination > source 0 0
Destination = source 1 0

When two signed operands are compared, the Sign, Zero, and Overflow flags indicate the fol-
lowing relations between operands:

CMP Results Flags
Destination < source SF # OF
Destination > source SF = OF

Destination = source ZF =1




6.2 Boolean and CompaRisON INSTRUCTIONS 189

CMP is a valuable tool for creating conditional logic structures. When you follow CMP with a
conditional jump instruction, the result is the assembly language equivalent of an IF statement.

Examples Let’s look at three code fragments showing how flags are affected by the CMP
instruction. When AX equals 5 and is compared to 10, the Carry flag is set because subtracting
10 from 5 requires a borrow:

mov ax,5

cmp ax, 10 ; ZF = 0 and CF = 1
Comparing 1000 to 1000 sets the Zero flag because subtracting the source from the destination
produces zero:

mov ax,1000

mov ¢x,1000

cmp CX,ax ; ZF =1 and CF = 0
Comparing 105 to O clears both the Zero and Carry flags because subtracting 0 from 105 would
generate a positive, nonzero value.

mov si,105
cmp si,0 ; ZF = 0 and CF = 0

6.2.9 Setting and Clearing Individual CPU Flags

How can you easily set or clear the Zero, Sign, Carry, and Overflow flags? There are several
ways, most of which require modifying the destination operand. To set the Zero flag, TEST or
AND an operand with Zero; to clear the Zero flag, OR an operand with 1:

test al,o0 ; set Zero flag
and al,o ; set Zero flag
or al,1 ; clear zZero flag

TEST does not modify the operand, whereas AND does. To set the Sign flag, OR the highest bit
of an operand with 1. To clear the sign flag, AND the highest bit with O:

or al,80h ; set Sign flag
and al,7Fh ; clear Sign flag

To set the Carry flag, use the STC instruction; to clear the Carry flag, use CLC:

stc ; set Carry flag
clc ; clear Carry flag

To set the Overflow flag, add two positive values that produce a negative sum. To clear the Over-
flow flag, OR an operand with O:

mov al,7Fh ; AL = +127
inc al ; AL = 80h (-128), OF=1
or eax, 0 ; clear Overflow flag

6.2.10 Section Review
1. In the following instruction sequence, show the resulting value of AL where indicated, in binary:
mov al,01101111b

and al,00101101b ; oa.
mov al, 6Dh
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and al,4Ah ; b.
mov al,00001111b
or al,6lh ;7 C.
mov al, 94h
xor al,37h ; d.
2. In the following instruction sequence, show the resulting value of AL where indicated, in

hexadecimal:

mov al,7Ah

not al ; a.
mov al,3Dh
and al,74h ; b.
mov al,9Bh
or al,35h ; C.
mov al,72h
xor al,0DCh ; d.

. In the following instruction sequence, show the values of the Carry, Zero, and Sign flags

where indicated:
mov al,00001111b

test al,00000010b ; a. CF= ZF= SF=
mov al,00000110b
cmp al,00000101b ; b. CF= ZF= SF=
mov al,00000101b
cmp al,00000111b ; c. CF= ZF= SF=

. Write a single instruction using 16-bit operands that clears the high 8 bits of AX and does

not change the low 8 bits.

. Write a single instruction using 16-bit operands that sets the high 8 bits of AX and does not

change the low 8 bits.

6. Write a single instruction (other than NOT) that reverses all the bits in EAX.
7. Write instructions that set the Zero flag if the 32-bit value in EAX is even and clear the Zero

10.

11.

flag if EAX is odd.

. Write a single instruction that converts an uppercase character in AL to lowercase but does

not modify AL if it already contains a lowercase letter.

Write a single instruction that converts an ASCII digit in AL to its corresponding binary
value. If AL already contains a binary value (O0h to 09h), leave it unchanged.

Write instructions that calculate the parity of the 32-bit memory operand. Hint: Use the
formula presented earlier in this section: B; XOR B; XOR B, XOR Bj.

Given two bit-mapped sets named SetX and SetY, write a sequence of instructions that gen-
erate a bit string in EAX that represents members in SetX that are not members of SetY.

6.3 Conditional Jumps

6.3.1 Conditional Structures
There are no explicit high-level logic structures in the x86 instruction set, but you can implement
them using a combination of comparisons and jumps. Two steps are involved in executing a
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conditional statement: First, an operation such as CMP, AND, or SUB modifies the CPU status
flags. Second, a conditional jump instruction tests the flags and causes a branch to a new
address. Let’s look at a couple of examples.

Example 1 The CMP instruction in the following example compares EAX to Zero. The JZ
(jump if Zero) instruction jumps to label L1 if the Zero flag was set by the CMP instruction:

cmp eax, 0
jz L1 ; Jump if ZF = 1

Ll:
Example 2 The AND instruction in the following example performs a bitwise AND on the
DL register, affecting the Zero flag. The JNZ (jump if not Zero) instruction jumps if the Zero
flag is clear:

and d1,10110000b
jnz L2 ; Jump if ZF = 0

L2:

6.3.2 Jcond Instruction

A conditional jump instruction branches to a destination label when a status flag condition is
true. Otherwise, if the flag condition is false, the instruction immediately following the condi-
tional jump is executed. The syntax is as follows:

Jcond destination

cond refers to a flag condition identifying the state of one or more flags. The following examples
are based on the Carry and Zero flags:

jc Jump if carry (Carry flag set)

jnc Jump if not carry (Carry flag clear)
jz Jump if zero (Zero flag set)

jnz Jump if not zero (Zero flag clear)

CPU status flags are most commonly set by arithmetic, comparison, and boolean instructions.
Conditional jump instructions evaluate the flag states, using them to determine whether or not
jumps should be taken.

Using the CMP Instruction Suppose you want to jump to label L1 when EAX equals 5. In
the next example, if EAX equals 5, the CMP instruction sets the Zero flag; then, the JE instruc-
tion jumps to L1 because the Zero flag is set:

cmp eax,5
je Ll ; Jjump if equal
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(The JE instruction always jumps based on the value of the Zero flag.) If EAX were not equal to
5, CMP would clear the Zero flag, and the JE instruction would not jump.

In the following example, the JL instruction jumps to label L1 because AX is less than 6:

mov ax,5
cmp ax, 6
J1 L1 ; Jjump if less

In the following example, the jump is taken because AX is greater than 4:
mov ax,5

cmp ax,4
jg L1 ; jump if greater

6.3.3 Types of Conditional Jump Instructions
The x86 instruction set has a large number of conditional jump instructions. They are able to
compare signed and unsigned integers and perform actions based on the values of individual
CPU flags. The conditional jump instructions can be divided into four groups:

* Jumps based on specific flag values

e Jumps based on equality between operands or the value of (E)CX

¢ Jumps based on comparisons of unsigned operands

* Jumps based on comparisons of signed operands

Table 6-2 shows a list of jumps based on the Zero, Carry, Overflow, Parity, and Sign flags.

Table 6-2  Jumps Based on Specific Flag Values.

Mnemonic Description Flags / Registers
1Z Jump if zero ZF =1
INZ Jump if not zero ZF =0
JC Jump if carry CF=1
INC Jump if not carry CF=0
JO Jump if overflow OF=1
JNO Jump if not overflow OF=0
IS Jump if signed SF=1
INS Jump if not signed SF=0
JpP Jump if parity (even) PF=1
INP Jump if not parity (odd) PF=0

Equality Comparisons

Table 6-3 lists jump instructions based on evaluating equality. In some cases, two operands are com-
pared; in other cases, a jump is taken based on the value of CX or ECX. In the table, the notations
leftOp and rightOp refer to the left (destination) and right (source) operands in a CMP instruction:

CMP leftOp,rightOp

The operand names reflect the ordering of operands for relational operators in algebra. For
example, in the expression X <Y, X is called leftOp and Y is called rightOp.
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Table 6-3 Jumps Based on Equality.

Mnemonic Description

JE Jump if equal (leftOp = rightOp)
INE Jump if not equal (leftOp + rightOp)
ICXZ Jump if CX =0

JECXZ Jump if ECX = 0

Although the JE instruction is equivalent to JZ (jump if Zero) and JNE is equivalent to JNZ
(jump if not Zero), it’s best to select the mnemonic (JE or JZ) that best indicates your intention
to either compare two operands or examine a specific status flag.

Following are code examples that use the JE, JNE, JCXZ, and JECXZ instructions. Examine
the comments carefully to be sure that you understand why the conditional jumps were (or were

not) taken.
Example 1:

mov
cmp
jne
je

Example 2:

mov
sub
jne
je
Example 3:
mov
inc
jcoxz
Example 4:

Xor

edx, 0A523h
edx, 0A523h
L5
Ll

bx,1234h
bx,1234h
L5
Ll

cx, OFFFFh
cx
L2

ecx, ecx

jecxz L2
Unsigned Comparisons
Jumps based on comparisons of unsigned numbers are shown in Table 6-4. The operand names
reflect the order of operands, as in the expression (leftOp < rightOp). The jumps in Table 6-4 are
only meaningful when comparing unsigned values. Signed operands use a different set of jumps.

Signed Comparisons
Table 6-5 displays a list of jumps based on signed comparisons. The following instruction
sequence demonstrates the comparison of two signed values:

mov
cmp
ja
jg

al,+127
al,-128
IsAbove
IsGreater

; jump not taken
; Jjump is taken

; jump not taken

; jump is taken

; jump is taken

; jump is taken

; hexadecimal value is 7Fh

; hexadecimal value is 80h

; jump not taken, because 7Fh < 80h
; jump taken, because +127 > -128
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Table 6-4 Jumps Based on Unsigned Comparisons.

Mnemonic Description
JA Jump if above (if leftOp > rightOp)
INBE Jump if not below or equal (same as JA)
JAE Jump if above or equal (if leftOp = rightOp)
JNB Jump if not below (same as JAE)
JB Jump if below (if leftOp < rightOp)
INAE Jump if not above or equal (same as JB)
JBE Jump if below or equal (if leftOp = rightOp)
INA Jump if not above (same as JBE)

The JA instruction, which is designed for unsigned comparisons, does not jump because
unsigned 7Fh is smaller than unsigned 80h. The JG instruction, on the other hand, is designed
for signed comparisons—it jumps because +127 is greater than —128.

Table 6-5  Jumps Based on Signed Comparisons.
Mnemonic Description
G Jump if greater (if leftOp > rightOp)
JNLE Jump if not less than or equal (same as JG)
JGE Jump if greater than or equal (if leftOp = rightOp)
JNL Jump if not less (same as JGE)
JL Jump if less (if leftOp < rightOp)
INGE Jump if not greater than or equal (same as JL)
JLE Jump if less than or equal (if leftOp = rightOp)
ING Jump if not greater (same as JLE)

In the following code examples, examine the comments to be sure you understand why the
jumps were (or were not) taken.

Example 1

mowv
cmp
jnl
jnle
jl
Example 2

mov
cmp
jng
jnge
jge

edx, -1
edx, 0
L5

L5

Ll

bx,+32
bx,-35
L5
L5
Ll

; Jump
; Jump
; Jump

; Jump
; Jump
; Jump

not taken (-1 >= 0 is false)
not taken (-1 > 0 is false)
is taken (-1 < 0 is true)

not taken (+32 <= -35 is false)
not taken (+32 < -35 1is false)
is taken (+32 >= -35 is true)
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Example 3

mov ecx,0
cmp ecx,0

jg L5 ; jump not taken (0 > 0 is false)
jnl L1 ; Jump is taken (0 >= 0 is true)
Example 4

mov ecx,0

cmp ecx, 0

jl L5 ; jump not taken (0 <
jng L1 ; jump is taken (0

is false)

0
0 is true)

<=

6.3.4 Conditional Jump Applications

Testing Status Bits

Bitwise instructions that examine groups of bits in binary data usually modify the values of cer-
tain CPU status flags. Conditional jump instructions often use these status flags to determine
whether or not to transfer control to code labels. Suppose, for example, that an 8-bit memory
operand named status contains status information about an external device attached to the com-
puter. The following instructions jump to a label if bit 5 is set, indicating that the device is offline:

mov al,status
test al,00100000b ; test bit 5
jnz EquipOffline

The following statements jump to a label if any of the bits 0, 1, or 4 are set:

mov al,status
test al,00010011b ; test bits 0,1,4
jnz InputDataByte

Jumping to a label if bits 2, 3, and 7 are all set requires both the AND and CMP instructions:

mov al, status

and al,10001100b ; mask bits 2,3,7
cmp al,10001100b ; all bits set?
je ResetMachine ; yes: jump to label

Larger of Two Integers The following code compares the unsigned integers in EAX and
EBX and moves the larger of the two to EDX:

mov edx,eax ; assume EAX is larger
cmp eax, ebx ; 1f EAX is >= EBX then
jae L1 ; jump to L1
mov edx, ebx ; else move EBX to EDX
Ll: ; EDX contains the larger integer

Smallest of Three Integers The following instructions compare the unsigned 16-bit values in
the variables V1, V2, and V3 and move the smallest of the three to AX:

.data
V1l WORD °?
V2 WORD °?
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V3 WORD °?
.code

mov ax, V1l ; assume V1 is smallest

cmp ax,V2 ; 1f AX <= V2 then

jbe Ll ; jump to L1

mov ax, V2 ; else move V2 to AX
Ll: cmp ax,V3 ; 1f AX <= V3 then

jbe L2 ; jump to L2

mov ax,V3 ; else move V3 to AX
L2:

Loop until Key Pressed In the following 32-bit code, a loop runs continuously until the user
presses a standard alphanumeric key. The ReadKey method from the Irvine32 library sets the
Zero flag if no key is present in the input buffer:

.data

char BYTE °?

.code

Ll: mov eax,10 ; create 10ms delay
call Delay
call ReadKey ; check for key
jz Ll ; repeat if no key
mov char, AL ; save the character

The foregoing code inserts a 10-millisecond delay in the loop to give MS-Windows time to process
event messages. If you omit the delay, keystrokes may be ignored. In a 16-bit application, on the
other hand, you can omit the delay. The following code calls ReadKey from the Irvinel6 library:

.data

char BYTE °?

.code

Ll: call ReadKey ; check for key
jz L1l ; repeat 1f no key
mov char, AL ; save the character

Application: Sequential Search of an Array

A common programming task is to search for values in an array that meet some criteria. For
example, the following program looks for the first nonzero value in an array of 16-bit integers.
If it finds one, it displays the value; otherwise, it displays a message stating that a nonzero value
was not found:

TITLE Scanning an Array (ArryScan.asm)
; Scan an array for the first nonzero value.

INCLUDE Irvine32.inc

.data

intArray SWORD 0,0,0,0,1,20,35,-12,66,4,0

;intArray SWORD 1,0,0,0 ; alternate test data
;intArray SWORD 0,0,0,0 ; alternate test data
;intArray SWORD 0,0,0,1 ; alternate test data

noneMsg BYTE "A non-zero value was not found",O0
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This program contains alternate test data that are currently commented out. Uncomment these lines to
test the program with different data configurations.

.code

main PROC
mov ebx, OFFSET intArray ; point to the array
mov ecx, LENGTHOF intArray; loop counter

Ll: cmp WORD PTR [ebx],0 ; compare value to zero
jnz found ; found a value
add ebx, 2 ; point to next
loop L1 ; continue the loop
Jjmp notFound ; none found

found: ; display the value
movsx eax,WORD PTR[ebx] ; sign-extend into EAX
call WriteInt
jmp quit

notFound: ; display "not found" message

mov edx, OFFSET noneMsg
call WriteString
quit:
call Crlf
exit
main ENDP
END main

Application: Simple String Encryption
Section 6.2.5 showed that the XOR instruction has an interesting property. If an integer X is
XORed withY and the resulting value is XORed with Y again, the value produced is X:

(X®Y)®Y) = X

This “reversible” property of XOR provides an easy way to perform a simple form of data
encryption: A plain text message is transformed into an encrypted string called cipher text by
XORing each of its characters with a character from a third string called a key. The intended
viewer can use the key to decrypt the cipher text and produce the original plain text.

Example Program We will demonstrate a simple program that uses symmetric encryption,
a process by which the same key is used for both encryption and decryption. The following steps
occur in order at runtime:
1. The user enters the plain text.
2. The program uses a single-character key to encrypt the plain text, producing the cipher text,
which is displayed on the screen.
3. The program decrypts the cipher text, producing and displaying the original plain text.
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Here is sample output from the program:

Program Listing Here is a complete program listing:

TITLE Encryption Program (Encrypt.asm)
INCLUDE Irvine32.inc

KEY = 239 ; any value between 1-255
BUFMAX = 128 ; maximum buffer size
.data

sPrompt BYTE "Enter the plain text:",0

sEncrypt BYTE "Cipher text: ", 0

sDecrypt BYTE "Decrypted: ", 0

buffer BYTE BUFMAX+1 DUP(0)
bufSize DWORD °?

.code

main PROC
call InputTheString ; input the plain text
call TranslateBuffer ; encrypt the buffer

mov edx, OFFSET sEncrypt
call DisplayMessage
call TranslateBuffer ; decrypt the buffer
mov edx, OFFSET sDecrypt display decrypted message
call DisplayMessage
exit

main ENDP

display encrypted message

InputTheString PROC

; Prompts user for a plaintext string. Saves the string
; and its length.

; Receives: nothing

; Returns: nothing

pushad ; save 32-bit registers
mov edx, OFFSET sPrompt ; display a prompt

call WriteString

mov ecx, BUFMAX ; maximum character count
mov edx, OFFSET buffer ; point to the buffer
call ReadString ; input the string

mov bufSize, eax ; save the length
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call Crlf

popad

ret
InputTheString ENDP

DisplayMessage PROC

; Displays the encrypted or decrypted message.
; Receives: EDX points to the message

; Returns: nothing

pushad

call WriteString

mov edx, OFFSET buffer ; display the buffer
call WriteString

call Crilf

call Crlf

popad

ret

DisplayMessage ENDP

TranslateBuffer PROC

; Translates the string by exclusive-ORing each
; byte with the encryption key byte.

; Receives: nothing

; Returns: nothing

pushad
mov ecx,bufSize ; loop counter
mov esi, 0 ; index 0 in buffer
Ll:
XOor buffer[esi], KEY ; translate a byte
inc esi ; point to next byte
loop L1
popad
ret
TranslateBuffer ENDP
END main

You should never encrypt important data with a single-character encryption key, because it can
be too easily decoded. Instead, the chapter exercises suggest that you use an encryption key con-
taining multiple characters to encrypt and decrypt the plain text.

6.3.5 Section Review
1. Which jump instructions follow unsigned integer comparisons?

2. Which jump instructions follow signed integer comparisons?

3. Which conditional jump instruction branches based on the contents of ECX?
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4. (Yes/No): Are the JA and JNBE instructions equivalent? Explain your answer.

5. Suppose the CMP instruction compares the integers 7FFFh and 8000h. Show how the JB
and JL instructions would generate different results if used after comparing these values.

6. Which conditional jump instruction is equivalent to the JNA instruction?
7. Which conditional jump instruction is equivalent to the JNGE instruction?
8. (Yes/No): Will the following code jump to the label named Target?

mov ax,8109h

cmp ax,26h
jg Target

9. (Yes/No): Will the following code jump to the label named Target?
mov ax,-30

cmp ax,-50
jg Target

10. (Yes/No): Will the following code jump to the label named Target?
mov ax,-42

cmp ax, 26
ja Target

11. Write instructions that jump to label L1 when the unsigned integer in DX is less than or
equal to the integer in CX.

12. Write instructions that jump to label L2 when the signed integer in AX is greater than the
integer in CX.

13. Write instructions that first clear bits 0 and 1 in AL. Then, if the destination operand is equal
to zero, the code should jump to label L3. Otherwise, it should jump to label L4.

6.4 Conditional Loop Instructions

6.4.1 LOOPZ and LOOPE Instructions

The LOOPZ (loop if zero) instruction works just like the LOOP instruction except that it has one
additional condition: the Zero flag must be set in order for control to transfer to the destination
label. The syntax is

LOOPZ destination

The LOOPE (loop if equal) instruction is equivalent to LOOPZ and they share the same
opcode. They perform the following tasks:

ECX = ECX - 1
if ECX > 0 and ZF = 1, jump to destination

Otherwise, no jump occurs, and control passes to the next instruction. LOOPZ and LOOPE
do not affect any of the status flags.

In 32-bit mode, ECX is the loop counter register. In 16-bit real-address mode, CX is the counter, and in
64-bit mode, RCX is the counter.
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6.4.2 LOOPNZ and LOOPNE Instructions
The LOOPNZ (loop if not zero) instruction is the counterpart of LOOPZ. The loop continues

while the unsigned value of ECX is greater than zero (after being decremented) and the Zero flag
is clear. The syntax is

LOOPNZ destination

The LOOPNE (loop if not equal) instruction is equivalent to LOOPNZ and they share the

same opcode. They perform the following tasks:

ECX = ECX - 1

if ECX > 0 and ZF = 0, jump to destination
Otherwise, nothing happens, and control passes to the next instruction.
Example The following code excerpt (from Loopnz.asm) scans each number in an array until
a nonnegative number is found (when the sign bit is clear). Notice that we push the flags on the
stack before the ADD instruction because ADD will modify the flags. Then the flags are restored
by POPED just before the LOOPNZ instruction executes:

.data
array SWORD -3,-6,-1,-10,10,30,40,4
sentinel SWORD 0

.code
mov esi,OFFSET array
mov ecx, LENGTHOF array
Ll: test WORD PTR [esi], 8000h ; test sign bit
pushfd ; push flags on stack
add esi, TYPE array ; move to next position
popfd ; pop flags from stack
loopnz L1 ; continue loop
jnz quit ; none found
sub esi, TYPE array ; ESI points to value
quit:

If a nonnegative value is found, ESI is left pointing at it. If the loop fails to find a positive
number, it stops when ECX equals zero. In that case, the JNZ instruction jumps to label quit,
and ESI points to the sentinel value (0), located in memory immediately following the array.

6.4.3 Section Review
1. (True/False): The LOOPE instruction jumps to a label when (and only when) the Zero flag
is clear.
2. (True/False): The LOOPNZ instruction jumps to a label when ECX is greater than zero and
the Zero flag is clear.
3. (True/False): The destination label of a LOOPZ instruction must be no farther than —128 or
+127 bytes from the instruction immediately following LOOPZ.
4. Modify the LOOPNZ example in Section 6.4.2 so that it scans for the first negative value in
the array. Change the array initializers so they begin with positive values.
5. Challenge: The LOOPNZ example in Section 6.4.2 relies on a sentinel value to handle the possi-
bility that a positive value might not be found. What might happen if we removed the sentinel?
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6.5 Conditional Structures

We define a conditional structure to be one or more conditional expressions that trigger a choice
between different logical branches. Each branch causes a different sequence of instructions to
execute. No doubt you have already used conditional structures in a high-level programming
language. But you may not know how language compilers translate conditional structures into
low-level machine code. Let’s find out how that is done.

6.5.1 Block-Structured IF Statements
An IF structure implies that a boolean expression is followed by two lists of statements; one per-
formed when the expression is true, and another performed when the expression is false:
if ( boolean-expression )
statement-1ist-1
else
statement-1list-2
The else portion of the statement is optional. In assembly language, we code this structure in
steps. First, we evaluate the boolean expression in such a way that one of the CPU status flags is
affected. Second, we construct a series of jumps that transfer control to the two lists of state-
ments, based on the value of the relevant CPU status flag.

Example 1 In the following C++ code, two assignment statements are executed if opl is
equal to op2:

if( opl == op2 ) then
{

X = 1;

Y = 2;
}

We translate this IF statement into assembly language with a CMP instruction followed by
conditional jumps. Because op1 and op2 are memory operands (variables), one of them must be
moved to a register before executing CMP. The following code implements the IF statement as
efficiently as possible by allowing the code to “fall through” to the two MOV instructions that
we want to execute when the boolean condition is true:

mov eax,opl

cmp eax, op2 ; opl == op2?
jne Ll ; no: skip next
mov X,1 ; yes: assign X and Y
mov Y,2
Ll:
If we implemented the == operator using JE, the resulting code would be slightly less com-

pact (six instructions rather than five):

mov eax,opl

cmp eax, op2 ; opl == op2-?

je Ll ; yes: jump to L1

jmp L2 ; no: skip assignments
Ll: mov X, 1 ; assign X and Y

mov Y, 2
L2:
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As you see from the foregoing example, the same conditional structure can be translated into assembly
language in multiple ways. When examples of compiled code are shown in this chapter, they represent
only what a hypothetical compiler might produce.

Example 2 In the FAT32 file storage system, the size of a disk cluster depends on the disk’s
overall capacity. In the following pseudocode, we set the cluster size to 4,096 if the disk
size (in the variable named gigabytes) is less than 8 GBytes. Otherwise, we set the cluster size
to 8,192:

clusterSize = 8192;
if gigabytes < 8
clusterSize = 4096,

Here’s a way to implement the same statement in assembly language:

mov clusterSize, 8192 ; assume larger cluster

cmp gigabytes, 8 ; larger than 8 GB?

jae next

mov clusterSize, 4096 ; switch to smaller cluster
next:

(Disk clusters are described in Section 15.2.)

Example 3 The following pseudocode statement has two branches:

if opl > op2 then
call Routinel
else
call Routine2
end if

In the following assembly language translation of the pseudocode, we assume that opl
and op2 are signed doubleword variables. When comparing variables, one must be moved to a
register:

mov eax,opl ; move opl to a register
cmp eax, op2 ; opl > op2-?
Jjg Al ; yes: call Routinel
call Routine2 ; no: call Routine2
Jjmp A2 ; exit the IF statement

Al: call Routinel

A2:

White Box Testing

Complex conditional statements may have multiple execution paths, making them hard to
debug by inspection (looking at the code). Programmers often implement a technique known as
white box testing, which verifies a subroutine’s inputs and corresponding outputs. White box
testing requires you to have a copy of the source code. You assign a variety of values to the input
variables. For each combination of inputs, you manually trace through the source code and
verify the execution path and outputs produced by the subroutine. Let’s see how this is done in
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assembly language by implementing the following nested-IF statement:

if opl == op2 then

if X > Y then

call Routinel

else

call RoutineZ2

end if
else

call Routine3

end if

Following is a possible translation to assembly language, with line numbers added for reference.
It reverses the initial condition (opl == op2) and immediately jumps to the ELSE portion. All
that is left to translate is the inner IF-ELSE statement:

1:
2:

w

9: Ll:

11: L2:
12: L3:

mov
cmp
jne

mov
cmp
jg
call
jmp
call
jmp
call

eax,opl
eax, op2

L2

eax, X
eax, Y

Ll

Routine2

L3

Routinel

L3

Routine3

; opl == op2-?
; no: call Routine3

process the inner IF-ELSE statement.

; X > Y?
; yes:

call Routinel

; no: call Routine2

; and exit

; call Routinel

; and exit

Table 6-6 shows the results of white box testing of the sample code. In the first four columns,
test values have been assigned to opl, op2, X, and Y. The resulting execution paths are verified

in columns 5 and

6.

Table 6-6  Testing the Nested IF Statement.
op1 op2 XY Line Execution Sequence Calls
10 20 30 | 40 | 1,2,3,11,12 Routine3
10 20 40 | 30 | 1,2,3,11,12 Routine3
10 10 30 | 40 | 1,2,3,4,5,6,7,8,12 Routine2
10 10 40 | 30 | 1,2,3,4,5,6,9,10,12 Routinel

6.5.2 Compound Expressions

Logical AND Operator

Assembly language easily implements compound boolean expressions containing AND oper-
ators. Consider the following pseudocode, in which the values being compared are assumed to
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be unsigned integers:
if (al > bl) AND (bl > cl) then

X =1
end if

Short-Circuit Evaluation The following is a straightforward implementation using short-
circuit evaluation, in which the second expression is not evaluated if the first expression is false.
This is the norm for high-level languages:

cmp al,bl ; first expression...
ja Ll
Jjmp next
Ll: cmp bl,cl ; second expression...
ja L2
jmp next
L2: mov X, 1 ; both true: set X to 1
next:

We can reduce the code to five instructions by changing the initial JA instruction to JBE:

cmp al,bl ; first expression...

jbe next ; quit if false

cmp bl,cl ; second expression

jbe next ; quit 1if false

mov X,1 ; both are true
next:

The 29% reduction in code size (seven instructions down to five) results from letting the CPU
fall through to the second CMP instruction if the first JBE is not taken.

Logical OR Operator
When a compound expression contains subexpressions joined by the OR operator, the overall
expression is true if any of the subexpressions is true. Let’s use the following pseudocode as an
example:

if (al > bl) OR (bl > cl) then

X =1

In the following implementation, the code branches to L1 if the first expression is true; other-
wise, it falls through to the second CMP instruction. The second expression reverses the > oper-
ator and uses JBE instead:

cmp al,bl ; 1: compare AL to BL
ja Ll ; 1f true, skip second expression
cmp bl,cl ; 2: compare BL to CL
jbe next ; false: skip next statement
Ll: mov X, 1 ; true: set X =1
next:

For a given compound expression, there are multiple ways the expression can be imple-
mented in assembly language.
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6.5.3 WHILE Loops

A WHILE loop tests a condition first before performing a block of statements. As long as the
loop condition remains true, the statements are repeated. The following loop is written in C++:

while( vall < val2 )
{

vall++;

val2--;

}

When implementing this structure in assembly language, it is convenient to reverse the loop
condition and jump to endwhile if a condition becomes true. Assuming that vall and val2 are
variables, we must copy one of them to a register at the beginning and restore the variable’s
value at the end:

mov eax,vall ; copy variable to EAX
beginwhile:

cmp eax,val2 ; 1f not (vall < val2)

jnl endwhile : exit the loop

inc eax ; vall++;

dec val2 ; val2--;

Jjmp beginwhile ; repeat the loop
endwhile:

mov vall, eax ; save new value for vall

EAX is a proxy (substitute) for vall inside the loop. References to vall must be through EAX.
JNL is used, implying that vall and val2 are signed integers.

Example: IF statement Nested in a Loop
High-level languages are particularly good at representing nested control structures. In the fol-
lowing C++ code, an IF statement is nested inside a WHILE loop. It calculates the sum of all
array elements greater than the value in sample:

int arrayl[] = {10,60,20,33,72,89,45,65,72,18};
int sample = 50;

int ArraySize = sizeof array / sizeof sample;
int index = 0;

int sum = 0;

while( index < ArraySize )
{
if( array[index] > sample )
{
sum += array[index];
}

index++;
}

Before coding this loop in assembly language, let’s use the flowchart in Figure 6-2
to describe the logic. To simplify the translation and speed up execution by reducing the number
of memory accesses, registers have been substituted for variables. EDX = sample, EAX = sum,
ESI = index, and ECX = ArraySize (a constant). Label names have been added to the shapes.
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Figure 6-2 Loop Containing IF Statement.

eax = sum
edx = sample
esi = index

ecx = ArraySize

L2: l
TRUE W FALSE
L5:
L3:
sum = eax
eax += array[esi]
L4:
()
L/
inc esi
end

Assembly Code The easiest way to generate assembly code from a flowchart is to implement
separate code for each flowchart shape. Note the direct correlation between the flowchart labels

and labels used in the following source code (see Flowchart.asm):

.data

sum DWORD 0

sample DWORD 50

array DWORD 10,60,20,33,72,89,45,65,72,18

ArraySize = ($ - Array) / TYPE array
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.code

main PROC
mov eax, 0 ; sum
mov edx, sample
mov esi, 0 ; index

mov ecx,ArraySize

Ll: cmp esi,ecx ; 1f esi < ecx
jl L2
jmp L5
L2: cmp arrayl[esi*4], edx ; 1f arraylesi] > edx
jg L3
jmp L4

L3: add eax,array[esi*4]
L4: inc esi

Jjmp Ll
L5: mov sum, eax

A review question at the end of Section 6.5 will give you a chance to improve this code.

6.5.4 Table-Driven Selection

Table-driven selection is a way of using a table lookup to replace a multiway selection structure.
To use it, you must create a table containing lookup values and the offsets of labels or proce-
dures, and then you must use a loop to search the table. This works best when a large number of
comparisons are made.

For example, the following is part of a table containing single-character lookup values and
addresses of procedures:

.data
CaseTable BYTE ‘A ; lookup value
DWORD Process_A ; address of procedure
BYTE 'B'
DWORD Process_B
(etc.)

Let’s assume Process_A, Process B, Process_C, and Process_D are located at addresses
120h, 130h, 140h, and 150h, respectively. The table would be arranged in memory as shown in
Figure 6-3.

Figure 6-3 Table of Procedure Offsets.

'A'| 00000120 B 00000130

a

00000140 D' 00000150

address of Process_B

lookup value

Example Program In the following example program (ProcTble.asm), the user inputs a
character from the keyboard. Using a loop, the character is compared to each entry in a lookup
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table. The first match found in the table causes a call to the procedure offset stored immediately
after the lookup value. Each procedure loads EDX with the offset of a different string, which is

displayed during the loop:

TITLE Table of Procedure Offsets

(ProcTble.asm)

; This program contains a table with offsets of procedures.
; It uses the table to execute indirect procedure calls.

INCLUDE Irvine32.inc

.data
CaseTable BYTE 'A’ ;

DWORD Process_A H
EntrySize = ($ - CaseTable)

BYTE 'B'

DWORD Process_B

BYTE 'C'

DWORD Process_C

BYTE 'D'

DWORD Process_D
NumberOfEntries = ($ - CaseTable)

prompt BYTE "Press capital A,B,C,or D:

lookup wvalue
address of procedure

/ EntrySize
II’O

Define a separate message string for each procedure:

msgA BYTE "Process_A",0

msgB BYTE "Process_B",0

msgC BYTE "Process_C",0

msgD BYTE "Process_D",0

.code

main PROC
mov edx, OFFSET prompt ;
call WriteString
call ReadChar ;
mov ebx, OFFSET CaseTable ;
mov ecx,NumberOfEntries ;

Ll:
cmp al, [ebx] ;
jne L2 ;
call NEAR PTR [ebx + 1] ;

ask user for input

read character into AL
point EBX to the table
loop counter

match found?
no: continue
ves: call the procedure

This CALL instruction calls the procedure whose address is stored in the memory location referenced by
EBX+1. An indirect call such as this requires the NEAR PTR operator.

call WriteString ;

call Crilf

jmp L3 i
L2:

add ebx, EntrySize H

loop L1 ;

display message
exit the search

point to the next entry
repeat until ECX = 0
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L3:
exit
main ENDP

Each of the following procedures moves a different string offset to EDX:

Process_A PROC
mov edx, OFFSET msgA
ret

Process_A ENDP

Process_B PROC
mov edx, OFFSET msgB
ret

Process_B ENDP

Process_C PROC
mov edx, OFFSET msgC
ret

Process_C ENDP

Process_D PROC
mov edx, OFFSET msgD
ret

Process_D ENDP

END main

The table-driven selection method involves some initial overhead, but it can reduce the
amount of code you write. A table can handle a large number of comparisons, and it can be more
easily modified than a long series of compare, jump, and CALL instructions. A table can even be
reconfigured at runtime.

6.5.5 Section Review
Notes: In all compound expressions, use short-circuit evaluation. Assume that vall and X are 32-bit
variables.

1. Implement the following pseudocode in assembly language:

if ebx > ecx then
X =1

2. Implement the following pseudocode in assembly language:

if edx <= ecx then

X =1
else
X =2

3. Implement the following pseudocode in assembly language:

if( vall > ecx ) AND ( ecx > edx ) then
X =1

else
X = 2;
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4. Implement the following pseudocode in assembly language:

if( ebx > ecx ) OR ( ebx > vall ) then

X =1
else
X =2

5. Implement the following pseudocode in assembly language:

if( ebx > ecx AND ebx > edx) OR ( edx > eax ) then

X =1
else
X =2

6. In the program from Section 6.5.4, why is it better to let the assembler calculate
NumberOfEntries rather than assigning a constant such as NumberOfEnteries = 47

7. Challenge: Rewrite the code from Section 6.5.3 so it is functionally equivalent, but uses
fewer instructions.

6.6 Application: Finite-State Machines

A finite-state machine (FSM) is a machine or program that changes state based on some input. It
is fairly simple to use a graph to represent an FSM, which contains squares (or circles) called
nodes and lines with arrows between the circles called edges (or arcs).

A simple example is shown in Figure 6—4. Each node represents a program state, and each
edge represents a transition from one state to another. One node is designated as the start state,
shown in our diagram with an incoming arrow. The remaining states can be labeled with num-
bers or letters. One or more states are designated as ferminal states, shown by a thick border
around the square. A terminal state represents a state in which the program might stop without
producing an error. A FSM is a specific instance of a more general type of structure called a
directed graph. The latter is a set of nodes connected by edges having specific directions.

Figure 64 Simple Finite-State Machine.

Start

Directed graphs have many useful applications in computer science related to dynamic data structures
and advanced searching techniques.

6.6.1 Validating an Input String

Programs that read input streams often must validate their input by performing a certain amount
of error checking. A programming language compiler, for instance, can use a FSM to scan
source programs and convert words and symbols into fokens, which are usually keywords, arith-
metic operators, and identifiers.
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When using a FSM to check the validity of an input string, you usually read the input charac-
ter by character. Each character is represented by an edge (transition) in the diagram. A FSM
detects illegal input sequences in one of two ways:

* The next input character does not correspond to any transitions from the current state.
* The end of input is reached and the current state is a nonterminal state.

Character String Example Let’s check the validity of an input string according to the
following two rules:

* The string must begin with the letter ‘x’ and end with the letter ‘z.’

* Between the first and last characters, there can be zero or more letters within the range

{a’..%y’}.

The FSM diagram in Figure 6-5 describes this syntax. Each transition is identified with a par-
ticular type of input. For example, the transition from state A to state B can only be accom-
plished if the letter x is read from the input stream. A transition from state B to itself is
accomplished by the input of any letter of the alphabet except z. A transition from state B to state
C occurs only when the letter z is read from the input stream.

Figure 6-7 FSM for String.

If the end of the input stream is reached while the program is in state A or B, an error condi-
tion results because only state C is marked as a terminal state. The following input strings would
be recognized by this FSM:

xaabcdefgz
XZ
Xyyqgarrstuvz

6.6.2 Validating a Signed Integer

A FSM for parsing a signed integer is shown in Figure 6-6. Input consists of an optional leading
sign followed by a sequence of digits. There is no maximum number of digits implied by the
diagram.

Figure 6—6 Signed Decimal Integer FSM.
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Finite-state machines are easily translated into assembly language code. Each state in the
diagram (A, B, C, . . . ) is represented in the program by a label. The following actions are
performed at each label:

1. A call to an input procedure reads the next character from input.
2.If the state is a terminal state, check to see whether the user has pressed the Enter key to end
the input.
3. One or more compare instructions check for each possible transition leading away from the
state. Each comparison is followed by a conditional jump instruction.
For example, at state A, the following code reads the next input character and checks for a possi-
ble transition to state B:

StateA:
call Getnext ; read next char into AL
cmp al, '+ ; leading + sign?
je StateB ; go to State B
cmp al,'-" ; leading - sign?
je StateB ; go to State B
call IsDigit ; ZF = 1 if AL contains a digit
jz StateC ; go to State C
call DisplayErrorMsg ; invalid input found
Jjmp Quit

Let’s examine this code in more detail. First, it calls Getnext to read the next character from the con-
sole input into the AL register. The code will check for a leading + or — sign. It begins by comparing
the value in AL to a ‘+’ character. If the character matches, a jump is taken to the label named StateB:

StateA:
call Getnext ; read next char into AL
cmp al, '+ ; leading + sign?
je StateB ; go to State B

At this point, we should look again at Figure 66, and see that the transition from state A to state
B can only be made if a + or — character is read from input. Therefore, the code must also check
for the minus sign:

cmp al,'-"' ; leading - sign?

je StateB ; go to State B
If a transition to state B is not possible, we can check the AL register for a digit, which would
cause a transition to state C. The call to the IsDigit procedure (from the book’s link library) sets
the Zero flag if AL contains a digit:

call IsDigit ; ZF = 1 if AL contains a digit
jz StateC ; go to State C

Finally, there are no other possible transitions away from state A. If the character in AL has not
been found to be a leading sign or digit, the program calls DisplayErrorMsg (which displays an
error message on the console) and then jumps to the label named Quit:

call DisplayErrorMsg ; invalid input found
jmp Quit
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The label Quit marks the exit point of the program, at the end of the main procedure:

Quit:
call
exit

main ENDP

Crlf

Complete Finite State Machine Program The following program implements the signed
integer FSM from Figure 6-5.

TITLE Finite State Machine

INCLUDE Irvine32.inc

ENTER_KEY
.data

InvalidInputMsg BYTE

.code
main PROC

=13

call Clrscr

StateA:
call
cmp
je
cmp
je
call
jz
call
jmp

StateB:
call
call
jz
call
jmp

StateC:
call
call
jz
cmp
je
call
jmp

Quit:
call
exit

main ENDP

Getnext

al, '+’

StateB

al,'-"

StateB

IsDigit

StateC
DisplayErrorMsg
Quit

Getnext

IsDigit

StateC
DisplayErrorMsg
Quit

Getnext

IsDigit

StateC

al, ENTER_KEY
Quit
DisplayErrorMsg
Quit

Crlf

(Finite.asm)

"Invalid input",13,10,0

read next char into AL

leading + sign-?
go to State B
leading - sign?
go to State B

ZF = 1 if AL contains a digit

go to State C

invalid input found

read next char into AL
ZF = 1 if AL contains a digit

invalid input found

read next char into AL
ZF = 1 if AL contains a digit

Enter key pressed?

yes: quit

no: invalid input found
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Getnext PROC

; Reads a character from standard input.
; Receives: nothing

; Returns: AL contains the character

call ReadChar ; input from keyboard
call WriteChar ; echo on screen
ret

Getnext ENDP

DisplayErrorMsg PROC
; Displays an error message indicating that
; the input stream contains illegal input.
; Receives: nothing.
; Returns: nothing

push edx

mov edx, OFFSET InvalidInputMsg

call WriteString

pop edx

ret
DisplayErrorMsg ENDP
END main

IsDigit Procedure The Finite State Machine sample program calls the IsDigit procedure,
which belongs to the book’s link library. Let’s look at the source code for IsDigit. It receives the
AL register as input, and the value it returns is the setting of the Zero flag:

IsDigit PROC

; Determines whether the character in AL is a valid decimal digit.
; Receilives: AL = character
; Returns: ZF = 1 if AL contains a valid decimal digit; otherwise, ZF = 0.

jb ID1 ; ZF = 0 when jump taken
cmp al,'9"
ja ID1 ; ZF = 0 when jump taken
test ax,0 ; set ZF =1

ID1: ret

IsDigit ENDP

Before examining the code in IsDigit, we can review the set of ASCII codes for decimal digits,
shown in the following table. Because the values are contiguous, we need only to check for the
starting and ending range values:

Character 0 T 2! 3 ‘4 '5' '6' T '8 '9'
ASCII code (hex) 30 31 32 33 34 35 36 37 38 39
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In the IsDigit procedure, the first two instructions compare the character in the AL register to the
ASCII code for the digit 0. If the numeric ASCII code of the character is less than the ASCII
code for 0, the program jumps to the label ID1:

cmp al,'0’

jb  ID1 ; ZF = 0 when jump taken
But one may ask, if JB transfers control to the label named ID1, how do we know the state of the
Zero flag? The answer lies in the way CMP works—it carries out an implied subtraction of the
ASCII code for Zero (30h) from the character in the AL register. If the value in AL is smaller,
the Carry flag is set, and the Zero flag is clear. (You may want to step through this code with a
debugger to verify this fact.) The JB instruction is designed to transfer control to a label when
CF=1and ZF = 0.

Next, the code in the IsDigit procedure compares AL to the ASCII code for the digit 9. If the
value is greater, the code jumps to the same label:
cmp al,'9’
ja ID1 ; ZF = 0 when jump taken
If the ASCII code for the character in AL is larger than the ASCII code of the digit 9 (3%h), the
Carry flag and Zero flag are cleared. That is exactly the flag combination that causes the JA
instruction to transfer control to its target label.
If neither jump is taken (JA or JB), we assume that the character in AL is indeed a digit.
Therefore, we insert an instruction that is guaranteed to set the Zero flag. To test any value with
zero means to perform an implied AND with all zero bits. The result must be zero:

test ax,0 ; set ZF =1

The JB and JA instructions we looked at earlier in IsDigit jumped to a label that was just beyond
the TEST instruction. So if those jumps are taken, the Zero flag will be clear. Here is the com-
plete procedure one more time:

Isdigit PROC

cmp al,'0’
jb ID1 ; ZF = 0 when jump taken
cmp al,'9’
ja ID1 ; ZF = 0 when jump taken
test ax,0 ; set ZF =1

ID1l: ret

Isdigit ENDP

In real-time or high-performance applications, programmers often take advantage of hardware
characteristics to fully optimize their code. The IsDigit procedure is an example of this approach
because it uses the flag settings of JB, JA, and TEST to return what is essentially a Boolean result.

6.6.3 Section Review
1. A finite-state machine is a specific application of what type of data structure?
2. In a finite-state machine diagram, what do the nodes represent?

3. In afinite-state machine diagram, what do the edges represent?
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4. In the signed integer finite-state machine (Section 6.6.2), which state is reached when the
input consists of “+577

5. In the signed integer finite-state machine (Section 6.6.2), how many digits can occur after a

minus sign?

6. What happens in a finite-state machine when no more input is available and the current state
is a nonterminal state?

7. Would the following simplification of a signed decimal integer finite-state machine work
just as well as the one shown in Section 6.6.27 If not, why not?

digit

digit

6.7 Conditional Control Flow Directives

MASM includes a number of high-level conditional control flow directives that help to simplify
the coding of conditional statements. (The printed MASM manuals from 1992 used the term
Decision Directives.) Before assembling your code, the assembler performs a preprocessing
step. In this step, it recognizes directives such as .CODE, .DATA, as well as directives that can
be used for conditional control flow. Table 6-7 lists the directives.

Table 6-7  Conditional Control Flow Directives.
Directive Description
.BREAK Generates code to terminate a .WHILE or .REPEAT block
.CONTINUE Generates code to jump to the top of a .WHILE or .REPEAT block
.ELSE Begins block of statements to execute when the .IF condition is false
.ELSEIF condition Generates code that tests condition and executes statements that follow, until an .ENDIF
directive or another .ELSEIF directive is found
ENDIF Terminates a block of statements following an .IF, .ELSE, or .ENDIF directive
.ENDW Terminates a block of statements following a .WHILE directive

IF condition

Generates code that executes the block of statements if condition is true.

.REPEAT Generates code that repeats execution of the block of statements until condition becomes
true

.UNTIL condition Generates code that repeats the block of statements between .REPEAT and .UNTIL until
condition becomes true

.UNTILCXZ Generates code that repeats the block of statements between .REPEAT and .UNTIL until
CX equals zero

.WHILE condition Generates code that executes the block of statements between .WHILE and .ENDW as

long as condition is true
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6.7.1 Creating IF Statements
The .IF, .ELSE, .ELSEIF, and .ENDIF directives make it easy for you to code multiway branch-
ing logic. They cause the assembler to generate CMP and conditional jump instructions in the
background, which appear in the output listing file (progname.lst). This is the syntax:
.IF conditionl
statements
[ .ELSEIF conditionZ2
statements ]
[.ELSE
statements ]
.ENDIF
The square brackets show that .ELSEIF and .ELSE are optional, whereas .IF and .ENDIF are
required. A condition is a boolean expression involving the same operators used in C++ and Java
(such as <, >, ==, and !=). The expression is evaluated at runtime. The following are exam-
ples of valid conditions, using 32-bit registers and variables:
eax > 10000h
vall <= 100
val2 == eax
val3 != ebx

The following are examples of compound conditions:

(eax > 0) && (eax > 10000h)
(vall <= 100) || (val2 <= 100)
(val2 !'= ebx) && !CARRY?

A complete list of relational and logical operators is shown in Table 6-8.

Table 6-8  Runtime Relational and Logical Operators.

Operator

Description

exprl == expr2

Returns true when expr/ is equal to expr2.

exprl = expr2

Returns true when exprl is not equal to expr2.

exprl > expr2

Returns true when exprl is greater than expr2.

exprl = expr2

Returns true when exprl is greater than or equal to expr2.

exprl < expr2

Returns true when exprl is less than expr2.

exprl < expr2

Returns true when expr/ is less than or equal to expr2.

| expr

Returns true when expr is false.

exprl && expr2

Performs logical AND between exprl and expr2.

exprl |l expr2

Performs logical OR between exprl and expr2.

exprl & expr2

Performs bitwise AND between exprl and expr2.

CARRY? Returns true if the Carry flag is set.
OVERFLOW? Returns true if the Overflow flag is set.
PARITY? Returns true if the Parity flag is set.
SIGN? Returns true if the Sign flag is set.
ZERO? Returns true if the Zero flag is set.
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Before using MASM conditional directives, be sure you thoroughly understand how to implement conditional
branching instructions in pure assembly language. In addition, when a program containing decision directives
is assembled, inspect the listing file to make sure the code generated by MASM is what you intended.

Generating ASM Code When you use high-level directives such as .IF and .ELSE, the
assembler writes code for you. For example, let’s write an .IF directive that compares EAX to
the variable vall:

mov eax, 6

.IF eax > vall
mov result,l

.ENDIF

vall and result are assumed to be 32-bit unsigned integers. When the assembler reads the fore-
going lines, it expands them into the following assembly language instructions, which you can
view if you run the program with debugging and view the Disassembly window:

mov eax, 6
cmp eax,vall

jbe @Cc0001 ; jump on unsigned comparison
mov result, 1
@Cc0001:

The label name @C0001 was created by the assembler. This is done in a way that guarantees
that all labels within same procedure are unique.

To control whether or not MASM-generated code appears in the source listing file, you can configure the
Project properties in Visual Studio. Here’s how: from the Project menu, select Project Properties, select
Microsoft Macro Assembler, select Listing File, and set Enable Assembly Generated Code Listing to Yes.

6.7.2 Signed and Unsigned Comparisons

When you use the .IF directive to compare values, you must be aware of how MASM generates
conditional jumps. If the comparison involves an unsigned variable, an unsigned conditional
jump instruction is inserted in the generated code. This is a repeat of a previous example that
compares EAX to vall, an unsigned doubleword:

.data
vall DWORD 5
result DWORD °?
.code
mov eax, 6
.IF eax > vall
mov result,l
.ENDIF

The assembler expands this using the JBE (unsigned jump) instruction:

mov eax, b6
cmp eax,vall
jbe @C0001 ; jump on unsigned comparison
mov result, 1l
@Cc0001:
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Comparing a Signed Integer If an .IF directive compares a signed variable, however, a
signed conditional jump instruction is inserted into the generated code. For example, val2, is a
signed doubleword:

.data
val2 SDWORD -1
result DWORD ?
.code
mov eax, 6
.IF eax > val2
mov result,l
.ENDIF

Consequently, the assembler generates code using the JLE instruction, a jump based on signed
comparisons:

mov eax, 6
cmp eax,val2
jle @C0001 ; Jjump on signed comparison
mov result,l
@C0001:

Comparing Registers The question we might then ask is, what happens if two registers are
compared? Clearly, the assembler cannot determine whether the values are signed or unsigned:

mov eax, 6

mov ebx,val2

.IF eax > ebx
mov result,1

.ENDIF

The following code is generated, showing that the assembler defaults to an unsigned comparison
(note the use of the JBE instruction).

mov eax,b

mov ebx,val2

cmp  eax, ebx

jbe @C0001

mov result,1l
@C0001:

6.7.3 Compound Expressions
Many compound boolean expressions use the logical OR and AND operators. When using the
F directive, the Il symbol is the logical OR operator:

.IF expressionl || expression2

statements
.ENDIF

Similarly, the && symbol is the logical AND operator:

.IF expressionl && expression2
statements
.ENDIF
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The logical OR operator will be used in the next program example.

SetCursorPosition Example

The SetCursorPosition procedure, shown in the next example, performs range checking on its
two input parameters, DH and DL (see SerCur.asm). The Y-coordinate (DH) must be between 0
and 24. The X-coordinate (DL) must be between 0 and 79. If either is found to be out of range,
an error message is displayed:

SetCursorPosition PROC

; Sets the cursor position.

; Receives: DL = X-coordinate, DH = Y-coordinate.

; Checks the ranges of DL and DH.

; Returns: nothing

.data

BadXCoordMsg BYTE "X-Coordinate out of range!",0Dh,0Ah, 0
BadYCoordMsg BYTE "Y-Coordinate out of range!",0Dh,0Ah, O

.code

JIF (Al < 0) || (a1 > 79)
mov edx, OFFSET BadXCoordMsg
call WriteString
jmp quit

.ENDIF

.IF (dh < 0) || (dh > 24)
mov edx,OFFSET BadYCoordMsg
call WriteString
jmp  quit

.ENDTF

call Gotoxy
quit:

ret
SetCursorPosition ENDP

The following code is generated by MASM when it preprocesses SetCursorPosition:

.code
; JIF (dl < 0) || (a1 > 79)

cmp dl, 000h
jb @co0002
cmp dl, 04Fh
jbe @Cc0001

@C0002:
mov edx, OFFSET BadXCoordMsg
call WriteString

jmp  quit
; .ENDIF
@C0001:
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; .IF (dh < 0) || (&h > 24)

cmp dh, 000h
jb @c0005
cmp dh, 018h
jbe @c0004

@C0005:
mov edx, OFFSET BadYCoordMsg
call WriteString

Jjmp quit
; .ENDIF
@Cc0004:

call Gotoxy
quit:

ret

College Registration Example

Suppose a college student wants to register for courses. We will use two criteria to determine
whether or not the student can register: The first is the person’s grade average, based on a 0 to
400 scale, where 400 is the highest possible grade. The second is the number of credits the
person wants to take. A multiway branch structure can be used, involving .IF, .ELSEIF, and
.ENDIF. The following shows an example (see Regist.asm):

.data
TRUE = 1
FALSE = 0
gradeAverage WORD 275 ; test value
credits WORD 12 ; test value
OkToRegister BYTE ?
.code
mov OkToRegister, FALSE
.IF gradeAverage > 350
mov OkToRegister, TRUE
.ELSEIF (gradeAverage > 250) && (credits <= 16)
mov OkToRegister, TRUE
.ELSEIF (credits <= 12)
mov OkToRegister, TRUE
.ENDTF

Table 6-9 lists the corresponding code generated by the assembler, which you can view by
looking at the Dissassembly window of the Microsoft Visual Studio debugger. (It has been
cleaned up here a bit to make it easier to read.) MASM-generated code will appear in the
source listing file if you use the /Sg command-line option when assembling programs. The
size of a defined constants (such as TRUE or FALSE in the current code example) is 32-bits.
Therefore, when a constant is moved to a BYTE address, MASM inserts the BYTE PTR
operator.
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Table 6-9  Registration Example, MASM-Generated Code.

mov byte ptr OkToRegister, FALSE
cmp word ptr gradeAverage, 350
jbe @C0006
mov byte ptr OkToRegister, TRUE
jmp @C0008
@C0006:
cmp word ptr gradeAverage, 250
jbe @C0009
cmp word ptr credits, 16
ja @co0009
mov byte ptr OkToRegister, TRUE
jmp @C0008
@Cc0009:
cmp word ptr credits,12
ja @co0008
mov byte ptr OkToRegister, TRUE
@Cco0008:

6.7.4 Creating Loops with .REPEAT and .WHILE

The .REPEAT and .WHILE directives offer alternatives to writing your own loops with CMP
and conditional jump instructions. They permit the conditional expressions listed earlier in
Table 6-8. The .REPEAT directive executes the loop body before testing the runtime condition
following the .UNTIL directive:

.REPEAT
statements
.UNTIL condition

The .WHILE directive tests the condition before executing the loop:

.WHILE condition
statements
. ENDW

Examples: The following statements display the values 1 through 10 using the .WHILE directive.
The counter register (EAX) is initialized to zero before the loop. Then, in the first statement inside
the loop, EAX is incremented. The .WHILE directive branches out of the loop when EAX equals 10.

mov eax, 0

.WHILE eax < 10
inc eax
call WriteDec
call Crlf

. ENDW
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The following statements display the values 1 through 10 using the .REPEAT directive:

mov eax, 0
.REPEAT
inc eax
call WriteDec
call Crlf
.UNTIL eax == 10

Example: Loop Containing an IF Statement
Earlier in this chapter, in Section 6.5.3, we showed how to write assembly language code for an IF

statement nested inside a WHILE loop. Here is the pseudocode:

while( opl < op2 )
{
opl++;
if( opl == op3 )
X = 2;
else
X = 3;
}
The following is an implementation of the pseudocode using the .‘WHILE and .IF directives.
Because opl, op2, and op3 are variables, they are moved to registers to avoid having two mem-

ory operands in any one instruction:

.data

X DWORD 0

opl DWORD 2 ; test data
op2 DWORD 4 ; test data
op3 DWORD 5 ; test data
.code

mov eax,opl
mov ebx, op2
mov ecx,op3
.WHILE eax < ebx
inc eax
IF eax == ecx
mov X, 2
.ELSE
mov X,3
.ENDIF
. ENDW

6.8 Chapter Summary
The AND, OR, XOR, NOT, and TEST instructions are called bitwise instructions because they
work at the bit level. Each bit in a source operand is matched to a bit in the same position of the
destination operand:

* The AND instruction produces 1 when both input bits are 1.

* The OR instruction produces 1 when at least one of the input bits is 1.

* The XOR instruction produces 1 only when the input bits are different.
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* The TEST instruction performs an implied AND operation on the destination operand, setting
the flags appropriately. The destination operand is not changed.
* The NOT instruction reverses all bits in a destination operand.

The CMP instruction compares a destination operand to a source operand. It performs an implied
subtraction of the source from the destination and modifies the CPU status flags accordingly. CMP
is usually followed by a conditional jump instruction that transfers control to a code label.

Four types of conditional jump instructions are shown in this chapter:

* Table 6-2 contains examples of jumps based on specific flag values, such as JC (jump carry),
JZ (jump zero), and JO (jump overflow).
* Table 6-3 contains examples of jumps based on equality, such as JE (jump equal), JNE
(jump not equal), and JECXZ (jump if ECX = 0).
e Table 6-4 contains examples of conditional jumps based on comparisons of unsigned inte-
gers, such as JA (jump if above), JB (jump if below), and JAE (jump if above or equal).
* Table 6-5 contains examples of jumps based on signed comparisons, such as JL (jump if less)
and JG (jump if greater).
In 32-bit mode, the LOOPZ (LOOPE) instruction repeats when the Zero flag is set and ECX
is greater than Zero. The LOOPNZ (LOOPNE) instruction repeats when the Zero flag is clear
and ECX is greater than zero.

Encryption is a process that encodes data, and decryption is a process that decodes data. The
XOR instruction can be used to perform simple encryption and decryption.

Flowcharts are an effective tool for visually representing program logic. You can easily write
assembly language code, using a flowchart as a model. It is helpful to attach a label to each flow-
chart symbol and use the same label in your assembly source code.

A finite-state machine (FSM) is an effective tool for validating strings containing recogniz-
able characters such as signed integers. It is relatively easy to implement a FSM in assembly
language if each state is represented by a label.

The .IF, .ELSE, .ELSEIF, and .ENDIF directives evaluate runtime expressions and greatly simplify
assembly language coding. They are particularly useful when coding complex compound boolean
expressions. You can also create conditional loops, using the .WHILE and .REPEAT directives.

6.9 Programming Exercises

1. Counting Array Values

Write an application that does the following: (1) fill an array with 50 random integers; (2) loop
through the array, displaying each value, and count the number of negative values; (3) after the
loop finishes, display the count. Note: The Random32 procedure from the Irvine32 library gen-
erates random integers.

2. Selecting Array Elements
Implement the following C++ code in assembly language, using the block-structured .IF and
.WHILE directives. Assume that all variables are 32-bit signed integers:

int arrayl[] = {10,60,20,33,72,89,45,65,72,18};
int sample = 50;
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int ArraySize = sizeof array / sizeof sample;
int index = 0;
int sum = 0;
while( index < ArraySize )
{

if( array[index] <= sample )

{

sum += array[index];
}
index++;

}
Optional: Draw a flowchart of your code.
* 3. Test Score Evaluation (1)

Using the following table as a guide, write a program that asks the user to enter an integer test
score between 0 and 100. The program should display the appropriate letter grade:

Score Range Letter Grade
90 to 100 A
80 to 89 B
70 to 79 C
60 to 69 D
0to 59 F

** 4, Test Score Evaluation (2)
Using the solution program from the preceding exercise as a starting point, add the following features:

* Run in a loop so that multiple test scores can be entered.

e Accumulate a counter of the number of test scores.

* Perform range checking on the user’s input: Display an error message if the test score is less
than O or greater than 100. (A VideoNote for this exercise is posted on the Web site.)

**x 5. College Registration (1)
Using the College Registration example from Section 6.7.3 as a starting point, do the following:
* Recode the logic using CMP and conditional jump instructions (instead of the .IF and
.ELSEIF directives).
e Perform range checking on the credits value; it cannot be less than 1 or greater than 30. If an
invalid entry is discovered, display an appropriate error message.
* Prompt the user for the grade average and credits values.

* Display a message that shows the outcome of the evaluation, such as “The student can regis-
ter” or “The student cannot register”.
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6. College Registration (2)
Using the solution program from the preceding exercise as a starting point, write a complete pro-
gram that does the following:

1. Use a loop that lets the user continue entering grade averages and credits, and seeing the eval-
uation results. If the user enters O as the grade average, stop the loop.

2. Perform range checking when the user inputs credits and GradeAverage. Credits must be
between 1 and 30. GradeAverage must be between 0 and 400. If either value is out of range,
display an appropriate error message.

7. Boolean Calculator (1)
Create a program that functions as a simple boolean calculator for 32-bit integers. It should dis-
play a menu that asks the user to make a selection from the following list:

1.x ANDy

2.x0ORYy

3.NOT x

4.x XORy

5. Exit program
When the user makes a choice, call a procedure that displays the name of the operation about to
be performed. (We will implement the operations in the exercise following this one.)

8. Boolean Calculator (2)
Continue the solution program from the preceding exercise by implementing the following pro-
cedures:

* AND_op: Prompt the user for two hexadecimal integers. AND them together and display the
result in hexadecimal.

* OR_op: Prompt the user for two hexadecimal integers. OR them together and display the
result in hexadecimal.

* NOT _op: Prompt the user for a hexadecimal integer. NOT the integer and display the result in
hexadecimal.

* XOR_op: Prompt the user for two hexadecimal integers. Exclusive-OR them together and
display the result in hexadecimal.

9. Probabilities and Colors

Write a program that randomly chooses among three different colors for displaying text on the
screen. Use a loop to display 20 lines of text, each with a randomly chosen color. The probabili-
ties for each color are to be as follows: white = 30%, blue = 10%, green = 60%. Hint: Generate
a random integer between 0 and 9. If the resulting integer is in the range O to 2, choose white. If
the integer equals 3, choose blue. If the integer is in the range 4 to 9, choose green. (A VideoNote
for this exercise is posted on the Web site.)

10. Print Fibonacci until Overflow

Write a program that calculates and displays the Fibonacci number sequence {1, 1, 2, 3, 5, 8,
13, ...}, stopping only when the Carry flag is set. Display each unsigned decimal integer value
on a separate line.
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11. Message Encryption

Revise the encryption program in Section 6.3.4 in the following manner: Let the user enter an
encryption key consisting of multiple characters. Use this key to encrypt and decrypt the plain-
text by XORing each character of the key against a corresponding byte in the message. Repeat
the key as many times as necessary until all plain-text bytes are translated. Suppose, for example
the key equals “ABXmv#7”. This is how the key would align with the plain-text bytes:

Plaintext[T{h]i[s] [i[s| Ta] [P[ifalilnlt]elx][t] [m[els[slalgle]lctc)
Key [AIBI[X[m[v][#[7[A[B[X|m|[v[#[7]AIB[X[m[v[#]7[A[8[X|m|[v[#][7]
(The key repeats until it equals the length of the plain text...)

(A VideoNote for this exercise is posted on the Web site.)

12. Weighted Probabilities

Create a procedure that receives a value N between 0 and 100. When the procedure is called,
there should be a probability of N/100 that it clears the Zero flag. Write a program that asks the
user to enter a probability value between 0 and 100. The program should call your procedure 30
times, passing it the same probability value and displaying the value of the Zero flag after the
procedure returns.
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7.1 Introduction

Assembly language has instructions that move bits around inside operands. Shift and rotate
instructions, as they are called, are particularly useful when controlling hardware devices, encrypt-
ing data, and implementing high-speed graphics. This chapter explains how to perform shift
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and rotate operations and how to carry out efficient integer multiplication and division using shift
operations.

Next, we explore the integer multiplication and division instructions. Intel classifies the instruc-
tions according to signed and unsigned operations. Using these instructions, we show how to trans-
late mathematical expressions from C++ into assembly language. Compilers divide complex
expressions into discrete sequences of machine instructions. If you learn to translate mathematical
expressions into assembly language, you can gain a better understanding of how compilers work,
and you will be better able to hand optimize assembly language code. You will learn how operator
precedence rules and register optimization work at the machine level.

Arithmetic with arbitrary-length integers (also known as bignums) is not supported by all
high-level languages. But in assembly language, you can use instructions such as ADC (add with
carry) and SBB (subtract with borrow) that work on integers of any size. In this chapter, we
also present specialized instructions for performing arithmetic on packed decimal integers and
integer strings.

7.2 Shift and Rotate Instructions

Along with bitwise instructions introduced in Chapter 6, shift instructions are among the most
characteristic of assembly language. Shifting means to move bits right and left inside an operand.
x86 processors provide a particularly rich set of instructions in this area (Table 7-1), all affecting the
Overflow and Carry flags.

Table 7-1  Shift and Rotate Instructions.

SHL Shift left

SHR Shift right

SAL Shift arithmetic left

SAR Shift arithmetic right

ROL Rotate left

ROR Rotate right

RCL Rotate carry left

RCR Rotate carry right

SHLD Double-precision shift left
SHRD Double-precision shift right

7.2.1 Logical Shifts and Arithmetic Shifts

There are two ways to shift an operand’s bits. The first, logical shift, fills the newly created bit posi-
tion with zero. In the following illustration, a byte is logically shifted one position to the right. In
other words, each bit is moved to the next lowest bit position. Note that bit 7 is assigned 0:

e
CF
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The following illustration shows a single logical right shift on the binary value 11001111, pro-
ducing 01100111. The lowest bit is shifted into the Carry flag:

1 1 0 0 1 1 1 1—>(ch)
NN NN
— 0 1 1 0 0 1 1 1

Another type of shift is called an arithmetic shift. The newly created bit position is filled with
a copy of the original number’s sign bit:

s et et e te

Binary 11001111, for example, has a 1 in the sign bit. When shifted arithmetically 1 bit to the
right, it becomes 11100111:

NN

1 —> (cf)

1

7.2.2 SHL Instruction

The SHL (shift left) instruction performs a logical left shift on the destination operand, filling the
lowest bit with 0. The highest bit is moved to the Carry flag, and the bit that was in the Carry flag
is discarded:

(—EEf < hf o
CF

If you shift 11001111 left by 1 bit, it becomes 10011110:

(h<—1 1 0 0 1 1 1 1

1 0 0 1 1 1 1 0 <-—

The first operand in SHL is the destination and the second is the shift count:
SHL destination, count

The following lists the types of operands permitted by this instruction:

SHL, reg, imm8
SHL. mem, imm8
SHL reg,CL
SHL mem, CL
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x86 processors permit imm8 to be any integer between 0 and 255. Alternatively, the CL register
can contain a shift count. Formats shown here also apply to the SHR, SAL, SAR, ROR, ROL,
RCR, and RCL instructions.

Example 1In the following instructions, BL is shifted once to the left. The highest bit is copied
into the Carry flag and the lowest bit position is assigned zero:

mov bl, 8Fh ; BL = 10001111b

shl bl,1 ; CF =1, BL = 00011110b
Multiple Shifts When a value is shifted leftward multiple times, the Carry flag contains the
last bit to be shifted out of the most significant bit (MSB). In the following example, bit 7 does
not end up in the Carry flag because it is replaced by bit 6 (a zero):

mov al,10000000b

shl al,2 ; CF = 0, AL = 00000000b

Similarly, when a value is shifted rightward multiple times, the Carry flag contains the last bit to
be shifted out of the least significant bit (LSB).

Bitwise Multiplication SHL can perform multiplication by powers of 2. Shifting any operand
left by » bits multiplies the operand by 2. For example, shifting the integer 5 left by 1 bit yields the
product of 5 X 2l =10:

mov dl,5
shl dil,1

Before: [ 00000101 |=5

After: (00001010 | =10

If binary 00001010 (decimal 10) is shifted left by 2 bits, the result is the same as multiplying 10
by 22

mov dl,10 ; before: 00001010

shl di,2 ; after: 00101000

7.2.3 SHR Instruction

The SHR (shift right) instruction performs a logical right shift on the destination operand,
replacing the highest bit with a 0. The lowest bit is copied into the Carry flag, and the bit that
was previously in the Carry flag is lost:

I e e S
CF

SHR uses the same instruction formats as SHL. In the following example, the O from the low-
est bit in AL is copied into the Carry flag, and the highest bit in AL is filled with a zero:

mov al,0DOh ; AL 11010000b
shr al,1l ; AL = 01101000b, CF = O
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Multiple Shifts In a multiple shift operation, the last bit to be shifted out of position O (the
LSB) ends up in the Carry flag:

mov al,00000010b
shr al,?2 ; AL = 00000000b, CF =1

Bitwise Division Logically shifting an unsigned integer right by 7 bits divides the operand by
2", In the following statements, we divide 32 by 2!, producing 16:

mov dl,32
shr dl,1

Before: [ 00100000 | =32

After: [ 00010000 | =16

In the following example, 64 is divided by 23

mov al,01000000b ; AL = 64

shr al,3 ; divide by 8, AL = 00001000b
Division of signed numbers by shifting is accomplished using the SAR instruction because it
preserves the number’s sign bit.

7.2.4 SAL and SAR Instructions

The SAL (shift arithmetic left) instruction works the same as the SHL instruction. For each shift
count, SAL shifts each bit in the destination operand to the next highest bit position. The lowest
bit is assigned 0. The highest bit is moved to the Carry flag, and the bit that was in the Carry flag
is discarded:

(<<t do
CF

If you shift binary 11001111 to the left by one bit, it becomes 10011110:

(cHh)=—1 1 0 0 1 1 1 1

1 0 0 1 1 1 1 0 <-—

The SAR (shift arithmetic right) instruction performs a right arithmetic shift on its destination
operand:

ST et et e e

The operands for SAL and SAR are identical to those for SHL and SHR. The shift may be
repeated, based on the counter in the second operand:

SAR destination, count
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The following example shows how SAR duplicates the sign bit. AL is negative before and
after it is shifted to the right:

mov al,0FOh ; AL 11110000b (-16)
sar al,1l ; AL = 11111000b (-8), CF =0

Signed Division You can divide a signed operand by a power of 2, using the SAR instruction.
In the following example, —128 is divided by 23. The quotient is —16:

mov dl,-128 ; DL = 10000000b
sar dl,3 ; DL = 11110000b

Sign-Extend AX into EAX Suppose AX contains a signed integer and you want to extend its
sign into EAX. First shift EAX 16 bits to the left, then shift it arithmetically 16 bits to the right:

mov ax,-128 ; EAX = ??7??FF80h
shl eax, 16 ; EAX = FF800000h
sar eax,le6 ; EAX = FFFFFF80h

7.2.5 ROL Instruction
The ROL (rotate left) instruction shifts each bit to the left. The highest bit is copied into the
Carry flag and the lowest bit position. The instruction format is the same as for SHL:

g eh k=]

Bit rotation does not lose bits. A bit rotated off one end of a number appears again at the other end.
Note in the following example how the high bit is copied into both the Carry flag and bit position 0:

mov al,40h ; AL = 01000000b

rol al,1l ; AL = 10000000b, CF =0
rol al,1l ; AL = 00000001b, CF =1
rol al,l1 ; AL = 00000010b, CF =0

Multiple Rotations When using a rotation count greater than 1, the Carry flag contains the last
bit rotated out of the MSB position:

mov al,00100000b
rol al,3 ; CF =1, AL = 00000001b

Exchanging Groups of Bits You can use ROL to exchange the upper (bits 4-7) and lower (bits
0-3) halves of a byte. For example, 26h rotated four bits in either direction becomes 62h:

mov al,26h
rol al,4 ; AL = 62h

When rotating a multibyte integer by 4 bits, the effect is to rotate each hexadecimal digit one
position to the right or left. Here, for example, we repeatedly rotate 6A4Bh left 4 bits, eventually
ending up with the original value:

mov ax,6A4Bh

rol ax,4 ; AX = A4B6h
rol ax,4 ; AX = 4B6Ah
rol ax,4 ; AX = B6A4h
rol ax,4 ; AX = 6A4Bh
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7.2.6 ROR Instruction
The ROR (rotate right) instruction shifts each bit to the right and copies the lowest bit into the
Carry flag and the highest bit position. The instruction format is the same as for SHL:

TP E STS RS

CF

In the following examples, note how the lowest bit is copied into both the Carry flag and the
highest bit position of the result:

mov al,0lh ; AL = 00000001b
ror al,l ; AL = 10000000b, CF =1
ror al,l ; AL = 01000000b, CF =0

Multiple Rotations When using a rotation count greater than 1, the Carry flag contains the last
bit rotated out of the LSB position:

mov al,00000100b
ror al,3 ; AL = 10000000b, CF =1

7.2.7 RCL and RCR Instructions
The RCL (rotate carry left) instruction shifts each bit to the left, copies the Carry flag to the

LSB, and copies the MSB into the Carry flag:

R e Y

If we imagine the Carry flag as an extra bit added to the high end of the operand, RCL looks like
a rotate left operation. In the following example, the CLC instruction clears the Carry flag. The
first RCL instruction moves the high bit of BL into the Carry flag and shifts the other bits left.
The second RCL instruction moves the Carry flag into the lowest bit position and shifts the other
bits left:

clc ; CF =0

mov bl,88h ; CF,BL = 0 10001000b
rcl bl,1 ; CF,BL = 1 00010000b
rcl bl,1 ; CF,BL = 0 00100001b

Recover a Bit from the Carry Flag RCL can recover a bit that was previously shifted into
the Carry flag. The following example checks the lowest bit of testval by shifting its lowest bit
into the Carry flag. If the lowest bit of testval is 1, a jump is taken; if the lowest bit is 0, RCL
restores the number to its original value:

.data

testval BYTE 01101010b

.code

shr testval,l ; shift LSB into Carry flag
jc  exit ; exit if Carry flag set

rcl testval,l ; else restore the number
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RCR Instruction. The RCR (rotate carry right) instruction shifts each bit to the right, copies
the Carry flag into the MSB, and copies the LSB into the Carry flag:

CF
(]

As in the case of RCL, it helps to visualize the integer in this figure as a 9-bit value, with the
Carry flag to the right of the LSB.

The following code example uses STC to set the Carry flag; then, it performs a Rotate Carry
Right operation on the AH register:

stc ; CF =1
mov ah,10h ; AH, CF = 00010000 1
rcr ah,l1 ; AH, CF = 10001000 O

7.2.8 Signed Overflow
The Overflow flag is set when shifting or rotating a signed integer by one bit position generates a
value outside the signed integer range of the destination operand. To put it another way, the num-
ber’s sign is reversed. In the following example, a positive integer (+127) stored in an 8-bit reg-
ister becomes negative (—2) when rotated left:

mov al,+127 ; AL = 01111111b

rol al,1l ; OF = 1, AL = 11111110b
Similarly, when —128 is shifted one position to the right, the Overflow flag is set. The result in
AL (+64) has the opposite sign:

mov al,-128 ; AL 10000000b
shr al,1 ; OF = 1, AL = 01000000b

The value of the Overflow flag is undefined when the shift or rotation count is greater than 1.
7.2.9 SHLD/SHRD Instructions

The SHLD (shift left double) instruction shifts a destination operand a given number of bits to the left.
The bit positions opened up by the shift are filled by the most significant bits of the source operand.
The source operand is not affected, but the Sign, Zero, Auxiliary, Parity, and Carry flags are affected:

SHLD dest, source, count
The following illustration shows the execution of SHLD with a shift count of 1. The highest
bit of the source operand is copied into the lowest bit of the destination operand. All the destina-
tion operand bits are shifted left:

dest source
1|{1|1]0[0]O0]O0O]O 1fo|Jof1]|1]1|0]1
1{1]10]0[O0O]O0]O0]|1

dest
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The SHRD (shift right double) instruction shifts a destination operand a given number of bits
to the right. The bit positions opened up by the shift are filled by the least significant bits of the
source operand:

SHRD dest, source, count

The following illustration shows the execution of SHRD with a shift count of 1:

source dest
010101 1 1101 1 1{o|lO0o]JOf[O|[O0]1
1|1 1{o0f0]JO0]OfO
dest

The following instruction formats apply to both SHLD and SHRD. The destination operand
can be a register or memory operand, and the source operand must be a register. The count oper-
and can be the CL register or an 8-bit immediate operand:

SHLD regl6,regl6,CL/imm8

SHLD memlé6, reglé6,CL/imm8

SHLD reg32,reg32,CL/imm8

SHLD mem32,reg32,CL/imm8
Example 1 The following statements shift wval to the left 4 bits and insert the high 4 bits of
AX into the low 4 bit positions of wval:

.data

wval WORD 9BA6h

.code

mov ax, 0AC36h

shld wval,ax, 4 ; wval = BA6Ah

The data movement is shown in the following figure:

wval AX

~<+9BA6 | |, AC36 |

| BacA”| | Acss |

Example 2 In the following example, AX is shifted to the right 4 bits, and the low 4 bits of
DX are shifted into the high 4 positions of AX:

DX AX
| 7654 ] | 2348
N\

| 7654 | [ 4234 |
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mov ax,234Bh

mov dx,7654h
shrd ax,dx,4 ; AX = 4234h

SHLD and SHRD can be used to manipulate bit-mapped images, when groups of bits must be

shifted left and right to reposition images on the screen. Another potential application is data
encryption, in which the encryption algorithm involves the shifting of bits. Finally, the two instruc-
tions can be used when performing fast multiplication and division with very long integers.

The following code example demonstrates SHRD by shifting an array of doublewords to the

right by 4 bits:
.data
array DWORD 648B2165h,8C943A29h, 6DFA4B86h, 91F76C04h, 8BAF9857h
.code
mov bl,4 ; shift count
mov esi,OFFSET array ; offset of the array
mov ecx, (LENGTHOF array) - 1 ; number of array elements
Ll: push ecx ; save loop counter

mov eax, [esi + TYPE DWORD]

mov cl,bl ; shift count

shrd [esi],eax,cl ; shift EAX into high bits of
[EST]

add esi, TYPE DWORD ; point to next doubleword pair

pop ecx ; restore loop counter

loop L1

shr DWORD PTR [esi], COUNT ; shift the last doubleword

7.2.10 Section Review

1.

e N

Which instruction shifts each bit in an operand to the left and copies the highest bit into both
the Carry flag and the lowest bit position?

. Which instruction shifts each bit to the right, copies the lowest bit into the Carry flag, and

copies the Carry flag into the highest bit position?

. Write a sequence of shift instructions that cause AX to be sign-extended into EAX. In other

words, the sign bit of AX is copied into the upper 16 bits of EAX. (Note: Do not use the
CWD instruction, which is covered later in this chapter:.)

. Which instruction performs the following operation (CF = Carry flag)?

Before: CF,AL = 1 11010101
After: CF,AL = 1 10101011

Suppose the instruction set contained no rotate instructions. Show how we might use SHR and
a conditional jump instruction to rotate the contents of the AL register one position to the right.
What happens to the Carry flag when the SHR AX,1 instruction is executed?

Write a logical shift instruction that multiplies the contents of EAX by 16.

Write a logical shift instruction that divides EBX by 4.

Write a single rotate instruction that exchanges the high and low halves of the DL register.
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10.

11.

12.

13.

14.

15.

16.

Write a SHLD instruction that shifts the highest bit of the AX register into the lowest bit
position of DX and shifts DX one bit to the left.

In the following code sequence, show the value of AL after each shift or rotate instruction has
executed:

mov al,0D4h

shr al,1 ; a.
mov al,0D4h
sar al,1l ; b.
mov al,0D4h
sar al,4 ; C.
mov al,0D4h
rol al,l ; d.

In the following code sequence, show the value of AL after each shift or rotate instruction
has executed:

mov al,0D4h

ror al,3 ; a.
mov al,0D4h

rol al,?7 ; b.
stc

mov al,0D4h

rcl al,l ;C.
stc

mov al,0D4h

rcr al,3 ; d.

Challenge: Write a series of instructions that shift the lowest bit of AX into the highest bit

of BX without using the SHRD instruction. Next, perform the same operation using SHRD.
Challenge: One way to calculate the parity of a 32-bit number in EAX is to use a loop that
shifts each bit into the Carry flag and accumulates a count of the number of times the Carry
flag was set. Write a code that does this, and set the Parity flag accordingly.

Challenge: Using only SUB, MOV, and AND instructions, show how to calculate x = n
mod y, assuming that you are given the values of » and y. You can assume that n is any 32-bit
unsigned integer, and y is a power of 2.

Challenge: Using only SAR, ADD, and XOR instructions (but no conditional jumps), write
code that calculates the absolute value of the signed integer in the EAX register. Hint:
A number can be negated by adding —1 to it and then forming its one’s complement. Also,
if you XOR an integer with all 1’s, the integer’s bits are reversed. On the other hand, if you
XOR an integer with all zeros, the integer is unchanged.

7.3 Shift and Rotate Applications

When a program needs to move bits from one part of an integer to another, assembly language is a
great tool for the job. Sometimes, we move a subset of a number’s bits to position 0 to make it eas-
ier to isolate the value of the bits. In this section, we show a few common bit shift and rotate appli-
cations that are easy to implement. More applications will be found in the chapter exercises.
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7.3.1 Shifting Multiple Doublewords
You can shift an extended-precision integer that has been divided into an array of bytes, words,
or doublewords. Before doing this, you must know how the array elements are stored. A com-
mon way to store the integer is called little-endian order. It works like this: Place the low-order
byte at the array’s starting address. Then, working your way up from that byte to the high-order
byte, store each in the next sequential memory location. Instead of storing the array as a series
of bytes, you could store it as a series of words or doublewords. If you did so, the individual
bytes would still be in little-endian order, because x86 machines store words and doublewords in

little-endian order.

The following steps show how to shift array of bytes one bit to the right:

Step 1: Shift the highest byte at [ESI+2] to the right, automatically copying its lowest bit into the

Carry flag.

Step 2: Rotate the value at [ESI+1] to the right, filling the highest bit with the value of the Carry

Starting values:

Step 1:

[esi+2] [esi+1] [esi]
10011001 10011001 10011001
[esi+2] CF
01001100 1

flag, and shifting the lowest bit into the Carry flag:

Step 3: Rotate the value at [ESI] to the right, filling the highest bit with the value of the Carry
flag, and shifting the lowest bit into the Carry flag:

[esi+2]

CF

[esi+1]

CF

Step2: | 01001100 10011001 B

CF

[esi+1]

CF

o {1

[esi+2] [esi+1] CF [esi]
Step 3: 01001100 11001100 1 10011001
CF [esi]
[ 11001100
When finished, all bits have been shifted 1 position to the right:
[esi+2] [esi+1] [esi]
01001100 11001100 11001100

The following code excerpt from the Multishift.asm program implements the steps we just outlined.

CF

CF
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.data
ArraySize = 3
array BYTE ArraySize DUP(99h) ; 1001 pattern in each nybble
.code
main PROC
mov esi, 0
shr arrayl[esi+2],1 ; high byte
rcr arraylesi+1],1 ; middle byte, include Carry flag
rcr arraylesi],1 ; low byte, include Carry flag

Although our current example only shifts 3 bytes, the example could easily be modified
to shift an array of words or doublewords. Using a loop, you could shift an array of arbitrary
size.

7.3.2 Binary Multiplication
In earlier Intel processors, the binary multiplication instructions (MUL and IMUL) are considered
slow relative to other machine instructions. As a result, programmers found that multiplication
could be performed more efficiently by using bit shifting techniques. The SHL instruction per-
forms unsigned multiplication efficiently when the multiplier is a power of 2. Shifting an unsigned
integer n bits to the left multiplies it by 2". Any other multiplier can be expressed as the sum of
powers of 2. For example, to multiply unsigned EAX by 36, we can write 36 as 23 + 2% and use the
distributive property of multiplication:
EAX * 36 = EAX * (2° + 22)
= EAX * (32 + 4)
= (EAX * 32) + (EAX * 4)

The following figure shows the multiplication 123 * 36, producing 4428, the product:

01111011 123
X 00100100 36
01111011 123 SHL 2
+ 01111011 123 SHL 5
0001000101001100 4428

It is rather remarkable to discover that bits 2 and 5 are set in the multiplier (36), and the integers
2 and 5 are also the required shift counters. Using this information, the following code excerpt
multiplies 123 by 36, using SHL and ADD instructions:

.code

mov eax,l1l23
mov ebx,eax

shl eax,5 ; mult by 2°
shl ebx,?2 ; mult by 22
add eax, ebx ; add the products

As a chapter exercise, you will be asked to generalize this example and create a procedure that
multiplies any two 32-bit unsigned integers using shifting and addition.
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7.3.3 Displaying Binary Bits

A common programming task is converting a binary integer to an ASCII binary string, allowing
the latter to be displayed. The SHL instruction is useful in this regard because it copies the high-
est bit of an operand into the Carry flag each time the operand is shifted left. The following Bin-
ToAsc procedure is a simple implementation:

BinToAsc PROC

; Converts 32-bit binary integer to ASCII binary.
; Receives: EAX = binary integer, ESI points to buffer
; Returns: buffer filled with ASCII binary digits
push ecx
push esi

mov ecx,32 ; number of bits in EAX
Ll: shl eax, 1 ; shift high bit into Carry flag
mov BYTE PTR [esi],'0’ ; choose 0 as default digit
jnc L2 ; if no Carry, jump to L2
mov BYTE PTR [esi],'1l"’ ; else move 1 to buffer
L2: inc esi ; next buffer position
loop L1 ; shift another bit to left

pop esi

pop ecx

ret
BinToAsc ENDP

7.3.4 Isolating MS-DOS File Date Fields

When storage space is at a premium, system-level software often packs multiple data fields into
a single integer. To uncover this data, applications often need to extract sequences of bits called
bit strings. For example, in real-address mode, MS-DOS function 57h returns the date stamp of
a file in DX. (The date stamp shows the date on which the file was last modified.) Bits O through
4 represent a day number between 1 and 31, bits 5 through 8 are the month number, and bits 9
through 15 hold the year number. If a file was last modified on March 10, 1999, the file’s date
stamp would appear as follows in the DX register (the year number is relative to 1980):

DH DL

{

| \
00100110 0 1 1
l || l

Field: Year Month Day
Bit numbers: 9-15 5-8 0-4

To extract a single bit string, shift its bits into the lowest part of a register and clear the irrele-
vant bit positions. The following code example extracts the day number field of a date stamp
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integer by making a copy of DL and masking off bits not belonging to the field:

mov al,dl ; make a copy of DL
and al,00011111b ; clear bits 5-7
mov day,al ; save in day

To extract the month number field, we shift bits 5 through 8 into the low part of AL before
masking off all other bits. AL is then copied into a variable:

mov ax,dx ; make a copy of DX
shr ax,5 ; shift right 5 bits
and al,00001111b ; clear bits 4-7
mov month,al ; save in month

The year number (bits 9 through 15) field is completely within the DH register. We copy it to AL
and shift right by 1 bit:

mov al,dh ; make a copy of DH

shr al,1 ; shift right one position
mov ah,0 ; clear AH to zeros

add ax, 1980 ; year is relative to 1980
mov year,ax ; save in year

7.3.5 Section Review
1. Write a sequence of instructions that shift three memory bytes to the right by 1 bit position.
Use the following data definition:
byteArray BYTE 81h,20h,33h
2. Write a sequence of instructions that shift three memory words to the left by 1 bit position.
Use the following data definition:
byteArray WORD 810Dh, 0C064h,93ABh
3. Write ASM instructions that calculate EAX * 24 using binary multiplication.
4. Write ASM instructions that calculate EAX * 21 using binary multiplication. Hint: 21 = 24
+22+ 20,
5. What change would you make to the BinToAsc procedure in Section 7.3.3 in order to dis-
play the binary bits in reverse order?

6. The time stamp field of a file directory entry uses bits O through 4 for the seconds, bits 5
through 10 for the minutes, and bits 11 through 15 for the hours. Write instructions that
extract the minutes and copy the value to a byte variable named bMinutes.

7.4 Multiplication and Division Instructions

Integer multiplication in x86 assembly language can be performed as a 32-bit, 16-bit, or 8-bit
operation. In many cases, it revolves around EAX or one of its subsets (AX, AL). The MUL and
IMUL instructions perform unsigned and signed integer multiplication, respectively. The DIV
instruction performs unsigned integer division, and IDIV performs signed integer division.

7.41 MUL Instruction
The MUL (unsigned multiply) instruction comes in three versions: the first version multiplies
an 8-bit operand by the AL register. The second version multiplies a 16-bit operand by the AX
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register, and the third version multiplies a 32-bit operand by the EAX register. The multiplier
and multiplicand must always be the same size, and the product is twice their size. The three for-
mats accept register and memory operands, but not immediate operands:

MUL reg/mem8

MUL reg/memlé6

MUL reg/mem32

The single operand in the MUL instruction is the multiplier. Table 7-2 shows the default mul-

tiplicand and product, depending on the size of the multiplier. Because the destination operand is
twice the size of the multiplicand and multiplier, overflow cannot occur. MUL sets the Carry and
Overflow flags if the upper half of the product is not equal to zero. The Carry flag is ordinarily
used for unsigned arithmetic, so we’ll focus on it here. When AX is multiplied by a 16-bit oper-
and, for example, the product is stored in the combined DX and AX registers. That is, the high
16 bits of the product are stored in DX, and the low 16 bits are stored in AX. The Carry flag is set
if DX is not equal to zero, which lets us know that the product will not fit into the lower half of
the implied destination operand.

Table 7.2 MUL Operands.

Multiplicand Multiplier Product
AL reg/mem8 AX
AX reg/mem16 DX:AX
EAX reg/mem32 EDX:EAX

A good reason for checking the Carry flag after executing MUL is to know whether the upper half of the
product can safely be ignored.

MUL Examples
The following statements multiply AL by BL, storing the product in AX. The Carry flag is clear

(CF =0) because AH (the upper half of the product) equals zero:

mov al,5h

mov bl,10h

mul bl ; AX = 0050h, CF =0
AL BL AX CF

05 | x| 10 | —> |o00s50| [ ©

The following statements multiply the 16-bit value 2000h by 0100h. The Carry flag is set
because the upper part of the product (located in DX) is not equal to zero:

.data

vall WORD 2000h

val2 WORD 0100h

.code

mov ax,vall ; AX = 2000h

mul wval2 ; DX:AX = 00200000h, CF = 1
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AX BX DX AX CF
2000 | X [0100 | ——= {0020 | 0000 1

The following statements multiply 12345h by 1000h, producing a 64-bit product in the com-
bined EDX and EAX registers. The Carry flag is clear because the upper half of the product in
EDX equals zero:

mov eax,l12345h

mov ebx,1000h
mul ebx ; EDX:EAX = 0000000012345000h, CF = 0

AL BX EDX EAX CF
00012345 | x | 00001000 | —> 00000000 | 12345000 0

7.4.2 IMUL Instruction

The IMUL (signed multiply) instruction performs signed integer multiplication. Unlike the
MUL instruction, IMUL preserves the sign of the product. It does this by sign extending the
highest bit of the lower half of the product into the upper bits of the product. The x86 instruction
set supports three formats for the IMUL instruction: one operand, two operands, and three oper-
ands. In the one-operand format, the multiplier and multiplicand are the same size and the prod-
uct is twice their size.

One-Operand Formats The one-operand formats store the product in AX, DX:AX, or
EDX:EAX:

IMUL reg/mem8 ; AX = AL * reg/mem8
IMUL reg/memlé6 ; DX:AX = AX * reg/meml6
IMUL reg/mem32 ; EDX:EAX = EAX * reg/mem32

As in the case of MUL, the storage size of the product makes overflow impossible. Also, the
Carry and Overflow flags are set if the upper half of the product is not a sign extension of
the lower half. You can use this information to decide whether to ignore the upper half of the
product.

Two-Operand Formats The two-operand version of the IMUL instruction stores the product
in the first operand, which must be a register. The second operand (the multiplier) can be a regis-
ter, memory operand, or immediate value. Following are the 16-bit formats:

IMUL regl6,reg/memlé
IMUL regl6,imm8
IMUL regl6,immlé6

Following are the 32-bit operand types showing that the multiplier can be a 32-bit register, 32-bit
memory operand, or immediate value (8 or 32 bits):

IMUL reg32,reg/mem32

IMUL reg32,imm8
IMUL reg32,imm32
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The two-operand formats truncate the product to the length of the destination. If significant dig-
its are lost, the Overflow and Carry flags are set. Be sure to check one of these flags after per-
forming an IMUL operation with two operands.

Three-Operand Formats The three-operand formats store the product in the first operand.
The second operand can be a 16-bit register or memory operand, which is multiplied by the third
operand, an 8- or 16-bit immediate value:

IMUL regl6,reg/meml6, imm8
IMUL reglé6,reg/meml6,immlé

A 32-bit register or memory operand can be multiplied by an 8- or 32-bit immediate value:

IMUL reg32,reg/mem32,imm8

IMUL reg32,reg/mem32,imm32
If significant digits are lost when IMUL executes, the Overflow and Carry flags are set. Be sure
to check one of these flags after performing an IMUL operation with three operands.

Unsigned Multiplication The two-operand and three-operand IMUL formats may also be
used for unsigned multiplication because the lower half of the product is the same for signed and
unsigned numbers. There is a small disadvantage to doing so: The Carry and Overflow flags will
not indicate whether the upper half of the product is Zero.

IMUL Examples
The following instructions multiply 48 by 4, producing +192 in AX. Although the product is
correct, AH is not a sign extension of AL, so the Overflow flag is set:

mov al,48
mov bl,4
imul bl ; AX = 00COh, OF = 1
The following instructions multiply —4 by 4, producing —16 in AX. AH is a sign extension
of AL so the Overflow flag is clear:

mov al, -4
mov bl,4
imul bl ; AX = FFFOh, OF = 0
The following instructions multiply 48 by 4, producing +192 in DX:AX. DX is a sign exten-
sion of AX, so the Overflow flag is clear:

mov ax, 48
mov bx, 4
imul bx ; DX:AX = 000000COh, OF = 0

The following instructions perform 32-bit signed multiplication (4,823,424 * —423), pro-

ducing —2,040,308,352 in EDX:EAX. The Overflow flag is clear because EDX is a sign exten-
sion of EAX:

mov eax, +4823424
mov ebx, -423
imul ebx ; EDX:EAX = FFFFFFFF86635D80h, OF = 0
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The following instructions demonstrate two-operand formats:

.data
wordl SWORD 4
dwordl SDWORD 4

.code

mov ax,-16 ; AX = -16
mov bx, 2 ; BX = 2
imul bx,ax ; BX = -32
imul bx,2 ; BX = -64
imul bx,wordl ; BX = -256
mov eax,-16 ; EAX = -16
mov ebx, 2 ; EBX = 2
imul ebx,eax ; EBX = -32
imul ebx, 2 ; EBX = -64
imul ebx,dwordl ; EBX = -256

The two-operand and three-operand IMUL instructions use a destination operand that is the
same size as the multiplier. Therefore, it is possible for signed overflow to occur. Always check
the Overflow flag after executing these types of IMUL instructions. The following two-operand
instructions demonstrate signed overflow because —64,000 cannot fit within the 16-bit destina-
tion operand:

mov ax,-32000

imul ax,2 ; OF =1
The following instructions demonstrate three-operand formats, including an example of signed
overflow:

.data

wordl SWORD 4
dwordl SDWORD 4

.code

imul bx,wordl,-16 ; BX = -64
imul ebx,dwordl,-16 ; EBX = -64
imul ebx,dwordl,-2000000000 ; OF =1

7.4.3 Measuring Program Execution Times

Programmers often find it useful to compare the performance of one code implementation to
another by measuring their performance times. The Microsoft Windows API library provides the
necessary tools to do this, which we have made even more accessible with the GetMseconds
procedure in the Irvine32 library. The procedure gets the number of system milliseconds that
have elapsed since midnight. In the following code example, GetMSeconds is called first, so we
can record the system starting time. Then we call the procedure whose execution time we wish
to measure (FirstProcedureToTest). Finally, GetMseconds is called a second time, and the differ-
ence between the current milliseconds value and the starting time is calculated:

.data

startTime DWORD ?
procTimel DWORD ?
procTime2 DWORD ?
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.code
call GetMseconds ; get start time
mov startTime, eax

call FirstProcedureToTest

call GetMseconds ; get stop time

sub eax,startTime ; calculate the elapsed time
mov procTimel, eax ; save the elapsed time

There is, of course, a small amount of execution time used up by calling GetMseconds twice.
But this overhead is insignificant when we measure the ratio of performance times between one
code implementation and another. Here, we call the other procedure we wish to test, and save its
execution time (procTime?2):

call GetMseconds ; get start time
mov startTime, eax

call SecondProcedureToTest

call GetMseconds ; get stop time

sub eax,startTime ; calculate the elapsed time
mov procTime2, eax ; save the elapsed time

Now, the ratio of procTimel to procTime2 indicates the relative performance of the two
procedures.

Comparing MUL and IMUL to Bit Shifting

In older x86 processors, there was a significant difference in performance between multiplica-
tion by bit shifting versus multiplication using the MUL and IMUL instructions. We can use the
GetMseconds procedure to compare the execution time of the two types of multiplication. The
following two procedures perform multiplication repeatedly using a LOOP_COUNT constant to
determine the amount of repetition:

mult_by shifting PROC

; Multiplies EAX by 36 using SHL, LOOP_COUNT times.
mov ecx,LOOP_COUNT

Ll: push eax ; save original EAX
mov ebx,eax
shl eax,5

shl ebx,2

add eax,ebx

pop eax ; restore EAX
loop L1

ret

mult_by shifting ENDP

mult_by MUL PROC

7



7.4 Mulriplication and Division INsTRUCTIONS 249

; Multiplies EAX by 36 using MUL, LOOP_COUNT times.

mov ecx,LOOP_COUNT

Ll: push eax ; save original EAX
mov ebx,36
mul ebx
pop eax ; restore EAX
loop L1
ret

mult_by MUL ENDP

The following code calls mult_by_shifting and displays the timing results. See the Compare-
Mult.asm program from the book’s Chapter 7 examples for the complete implementation:

.data

LOOP_COUNT = OFFFFFFFFh
.data

intval DWORD 5
startTime DWORD ?

.code

call GetMseconds ; get start time

mov startTime, eax

mov eax, intval ; multiply now

call mult_by_shifting

call GetMseconds ; get stop time

sub eax, startTime

call WriteDec ; display elapsed time

After calling mult_by MUL in the same manner, the resulting timings on a legacy 4-GHz Pen-
tium 4 showed that the SHL approach executed in 6.078 seconds and the MUL approach executed
in 20.718 seconds. In other words, using MUL instruction was 241 percent slower. However,
when running the same program on an Intel Duo-core processor, the timings of both function
calls were exactly the same. This example shows that Intel has managed to greatly optimize the
MUL and IMUL instructions in recent processors.

7.4.4 DIV Instruction
The DIV (unsigned divide) instruction performs 8-bit, 16-bit, and 32-bit unsigned integer divi-
sion. The single register or memory operand is the divisor. The formats are

DIV reg/mem8

DIV reg/meml6
DIV reg/mem32

The following table shows the relationship between the dividend, divisor, quotient, and remainder:

Dividend Divisor Quotient Remainder
AX reg/mem8 AL AH
DX:AX reg/mem16 AX DX
EDX:EAX reg/mem32 EAX EDX
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DIV Examples
The following instructions perform 8-bit unsigned division (83h / 2), producing a quotient of
41h and a remainder of 1:

mov ax,0083h ; dividend

mov bl,2 ; divisor

div bl ; AL = 41h, AH = 0l1lh
AX BL AL AH
0083| / | 02 | —> 41 01

quotient remainder

The following instructions perform 16-bit unsigned division (8003h / 100h), producing a
quotient of 80h and a remainder of 3. DX contains the high part of the dividend, so it must be
cleared before the DIV instruction executes:

mov dx, 0 ; clear dividend, high
mov ax,8003h ; dividend, low
mov c¢x,100h ; divisor
div cx ; AX = 0080h, DX = 0003h
DX AX CcX AX DX
0000 | 8003 | / |0100 | —— | 0080 0003

quotient remainder

The following instructions perform 32-bit unsigned division using a memory operand as the
divisor:
.data

dividend QWORD 0000000800300020h
divisor DWORD 00000100h

.code

mov edx,DWORD PTR dividend + 4 ; high doubleword

mov eax,DWORD PTR dividend ; low doubleword

div divisor ; EAX = 08003000h, EDX = 00000020h

EDX EAX divisor EAX EDX
00000008 [ 00300020 | / {00000100| —>= [ 08003000 00000020

quotient remainder

7.4.5 Signed Integer Division
Signed integer division is nearly identical to unsigned division, with one important difference:

The dividend must be fully sign-extended before the division takes place. First we will look at
sign extension instructions. Then we will apply them to the signed integer divide instruction,
IDIV.
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Sign Extension Instructions (CBW, CWD, CDQ)

Dividends of signed integer division instructions must often be sign-extended before the division
takes place. (Sign extension was described in Section 4.1.5.) Intel provides three useful sign exten-
sion instructions: CBW, CWD, and CDQ. The CBW instruction (convert byte to word) extends the
sign bit of AL into AH, preserving the number’s sign. In the next example, 9Bh (in AL) and FF9Bh
(in AX) both equal —101 decimal:

.data

byteval SBYTE -101 ; 9Bh

.code

mov al,byteval ; AL = 9Bh
cbw ; AX = FF9Bh

The CWD (convert word to doubleword) instruction extends the sign bit of AX into DX:

.data

wordVal SWORD -101 ; FF9Bh

.code

mov ax,wordvVal ; AX = FF9Bh

cwd ; DX:AX = FFFFFF9Bh

The CDQ (convert doubleword to quadword) instruction extends the sign bit of EAX into EDX:

.data

dwordval SDWORD -101 ; FFFFFF9Bh

.code

mov eax,dwordval

cdg ; EDX:EAX = FFFFFFFFFFFFFF9Bh

The IDIV Instruction

The IDIV (signed divide) instruction performs signed integer division, using the same operands
as DIV. Before executing 8-bit division, the dividend (AX) must be completely sign-extended.
The remainder always has the same sign as the dividend.

Example 1 The following instructions divide —48 by 5. After IDIV executes, the quotient in
AL is —9 and the remainder in AH is —3:

.data

byteval SBYTE -48 ; DO hexadecimal

.code

mov al,byteval ; lower half of dividend
cbw ; extend AL into AH

mov Dbl,+5 ; divisor

idiv bl ; AL = -9, AH = -3

The following illustration shows how AL is sign-extended into AX by the CBW instruction:

11010000 | AL = —48 decimal

(copy 8 bits)

11111111 11010000 AX = —48 decimal
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To understand why sign extension of the dividend is necessary, let’s repeat the previous example
without using sign extension. The following code initializes AH to zero so it has a known value,
and then divides without using CBW to prepare the dividend:

.data

byteval SBYTE -48
.code

mov ah,0

mov al,bytevVal
mov bl,+5

idiv bl

7

i

7

7

7

D0 hexadecimal

upper half of dividend
lower half of dividend
divisor

AL = 41, AH = 3

Before the division, AX = 00DOh (208 decimal). IDIV divides this by 5, producing a quotient of
41 decimal, and a remainder of 3. That is certainly not the correct answer.

Example 2 16-bit division requires AX to be sign-extended into DX. The next example

divides —5000 by 256:

.data

wordvVal SWORD -5000
.code

mov ax,wordval
cwd

mov bx,+256
idiv bx

dividend, low

extend AX into DX

divisor

quotient AX = -19, rem DX = -136

Example 3 32-bit division requires EAX to be sign-extended into EDX. The next example

divides 50,000 by —256:

.data

dwordval SDWORD +50000
.code

mov eax, dwordval

cdg

mov ebx,-256
idiv ebx

dividend, low

extend EAX into EDX

divisor

quotient EAX = -195, rem EDX = +80

All arithmetic status flag values are undefined after executing DIV and IDIV.

Divide Overflow

If a division operand produces a quotient that will not fit into the destination operand, a divide
overflow condition results. This causes a CPU interrupt, and the current program halts. The follow-
ing instructions, for example, generate a divide overflow because the quotient (100h) will not fit

into the AL register:

mov ax,1000h
mov bl,10h
div bl

AL cannot hold 100h
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When this code executes under MS-Windows, Figure 7-1 shows the resulting error dialog pro-

duced by Windows. A similar dialog window appears when you write instructions that attempt to

divide by zero.

Figure 7-1  Divide Overflow Error Example.

Use a 32-bit divisor and 64-bit dividend to reduce the probability of a divide overflow condition.

In the following code, the divisor is EBX, and the dividend is placed in the 64-bit combined

EDX and EAX registers:

mov eax,1000h
cdg

mov ebx,10h
div ebx

; EAX = 00000100h

To prevent division by zero, test the divisor before dividing:

mov ax,dividend
mov bl,divisor
cmp bl,0

je NoDivideZero
div bl

NoDivideZero:

7

’

7

7

check the divisor
zero? display error
not zero: continue

(display "Attempt to divide by zero")

7.4.6 Implementing Arithmetic Expressions

Section 4.2.5 showed how to implement arithmetic expressions using addition and subtraction.
We can now include multiplication and division. Implementing arithmetic expressions at first
seems to be an activity best left for compiler writers, but there is much to be gained by hands-on
study. You can learn how compilers optimize code. Also, you can implement better error check-
ing than a typical compiler by checking the size of the product following multiplication opera-
tions. Most high-level language compilers ignore the upper 32 bits of the product when
multiplying two 32-bit operands. In assembly language, however, you can use the Carry and
Overflow flags to tell you when the product does not fit into 32 bits. The use of these flags was

explained in Sections 7.4.1 and 7.4.2.
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There are two easy ways to view assembly code generated by a C++ compiler: Open a disas-
sembly window while debugging a C++ program or generate an assembly language listing file.
In Microsoft Visual C++, for example, the /FA command-line switch generates an assembly lan-
guage listing file.

Example 1 TImplement the following C++ statement in assembly language, using unsigned
32-bit integers:
vard = (varl + var2) * var3;

This is a straightforward problem because we can work from left to right (addition, then multi-
plication). After the second instruction, EAX contains the sum of varl and var2. In the third
instruction, EAX is multiplied by var3 and the product is stored in EAX:

mov eax,varl
add eax,var2
mul var3 ; EAX = EAX * var3
jc tooBig ; unsigned overflow?
mov varéd,eax
jmp next
tooBig: ; display error message

If the MUL instruction generates a product larger than 32 bits, the JC instruction jumps to a label
that handles the error.
Example 2 Tmplement the following C++ statement, using unsigned 32-bit integers:

vard = (varl * 5) / (var2 - 3);

In this example, there are two subexpressions within parentheses. The left side can be assigned
to EDX:EAX, so it is not necessary to check for overflow. The right side is assigned to EBX, and
the final division completes the expression:

mov eax,varl ; left side

mov ebx,5

mul ebx ; EDX:EAX = product
mov ebx,var2 ; right side

sub ebx,3

div ebx ; final division

mov var4d,eax

Example 3 Implement the following C++ statement, using signed 32-bit integers:

vard = (varl * -5) / (-var2 % var3);
This example is a little trickier than the previous ones. We can begin with the expression on the
right side and store its value in EBX. Because the operands are signed, it is important to sign-
extend the dividend into EDX and use the IDIV instruction:

mov eax,var?2 ; begin right side
neg eax

cdg ; sign-extend dividend
idiv wvar3 ; EDX = remainder

mov ebx, edx ; EBX = right side
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Next, we calculate the expression on the left side, storing the product in EDX:EAX:

mov eax, -5 ; begin left side
imul wvarl ; EDX:EAX = left side

Finally, the left side (EDX:EAX) is divided by the right side (EBX):

idiv ebx ; final division
mov vard, eax ; quotient

7.4.7 Section Review

1. Explain why overflow cannot occur when the MUL and one-operand IMUL instructions

execute.

2. How is the one-operand IMUL instruction different from MUL in the way it generates a

multiplication product?

When BX is the operand in a DIV instruction, which register holds the quotient?

N o kW

operand.
8. What will be the contents of AX and DX after the following operation?

mov dx,0
mov ax,222h
mov c¢x,100h
mul cx

9. What will be the contents of AX after the following operation?

mov ax,63h
mov bl,10h
div bl

10. What will be the contents of EAX and EDX after the following operation?

mov eax,123400h
mov edx, 0

mov ebx,10h

div ebx

11. What will be the contents of AX and DX after the following operation?

mov ax,4000h
mov dx,500h
mov bx,10h
div bx

12. Write instructions that multiply —5 by 3 and store the result in a 16-bit variable vall.
13. Write instructions that divide —276 by 10 and store the result in a 16-bit variable vall.

When EBX is the operand in a DIV instruction, which register holds the quotient?

When BL is the operand in a MUL instruction, which registers hold the product?

What has to happen in order for the one-operand IMUL to set the Carry and Overflow flags?

Show an example of sign extension before calling the IDIV instruction with a 16-bit
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14. Implement the following C++ expression in assembly language, using 32-bit unsigned
operands: vall = (val2 * val3) / (val4 — 3)

15. Implement the following C++ expression in assembly language, using 32-bit signed operands:
vall = (val2 / val3) * (vall + val2)

7.5 Extended Addition and Subtraction

Extended precision addition and subtraction is adding and subtracting numbers having an
almost unlimited size. In C++, writing a program that adds two 1024-bit integers would not be
easy. But in assembly language, the ADC (add with carry) and SBB (subtract with borrow)
instructions are well suited to this type of problem.

7.5.1 ADC Instruction

The ADC (add with carry) instruction adds both a source operand and the contents of the Carry
flag to a destination operand. The instruction formats are the same as for the ADD instruction,
and the operands must be the same size:

ADC reg, reg
ADC mem, reg
ADC reg,mem
ADC mem, imm
ADC reg,imm

For example, the following instructions add two 8-bit integers (FFh + FFh), producing a 16-
bit sum in DL:AL, which is O1FEh:

mov dl,0

mov al,OFFh

add al, OFFh ; AL = FEh

adc dl1,0 ; DL/AL = 01FEh

The following illustration shows the movement of data during the two addition steps. First,
FFh is added to AL, producing FEh in the AL register and setting the Carry flag. Next, both 0
and the contents of the Carry flag are added to the DL register:

AL AL

ADDALOFFh [ 11111111 | + [ 11111111 ]

DL

DL
ADCDL,O| 00000000 | + | 00000000 | n g;’;’y—>

Similarly, the following instructions add two 32-bit integers (FFFFFFFFh + FFFFFFFFh), pro-
ducing a 64-bit sum in EDX:EAX: 00000001 FFFFFFFEh:

mov edx,0
mov eax, OFFFFFFFFh
add eax, OFFFFFFFFh
adc edx,0
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7.5.2 Extended Addition Example

The following Extended_Add procedure adds two extended integers of the same size. Using
aloop, it works its way through the two extended integers as if they were parallel arrays.
As it adds each matching pair of values in the arrays, it includes the value of the carry from the
addition that was performed during the previous iteration of the loop. Our implementation
assumes that the integers are stored as arrays of bytes, but the example could easily be modified

to add arrays of doublewords:

Extended_Add PROC

; Calculates the sum of two extended integers stored
; as arrays of bytes.

; Receives:

ESI and EDI point to the two integers,

; EBX points to a variable that will hold the sum,

; and ECX indicates the number of bytes to be added.
; Storage for the sum must be one byte longer than the
; input operands.

; Returns: nothing
pushad
clc

Ll: mov al, [esi]
adc al, [edi]
pushfd
mov [ebx],al
add esi, 1
add edi, 1
add ebx, 1
popfd
loop L1
mov byte ptr
adc byte ptr
popad
ret

Extended_Add ENDP

The following excerpt from ExtAdd.asm calls Extended_Add, passing it two 8-byte integers.
We are careful to allocate an extra byte for the sum, in case a carry is generated when adding the

[ebx], 0
[ebx], 0

two high-order bytes of the integers.

.data

clear the Carry flag

get the first integer

add the second integer
save the Carry flag

store partial sum

advance all three pointers

restore the Carry flag
repeat the loop

clear high byte of sum
add any leftover carry

opl BYTE 34h,12h,98h,74h,06h, 0A4h, 0B2h, 0A2h
op2 BYTE 02h,45h,23h,00h,00h,87h,10h, 80h
sum BYTE 9 dup(0)

.code
main PROC
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mov
mov
mov
mov
call

esi,OFFSET opl
edi, OFFSET op2
ebx, OFFSET sum
ecx, LENGTHOF opl
Extended_Add

; Display the sum.

mov
mov

call
call

esi, OFFSET sum
ecx, LENGTHOF sum
Display_Sum

Crlf

; first operand

; second operand
; sum operand

; number of bytes

The following output is produced by the program. The addition produces a carry:

0122C32B0674BB5736

The Display_Sum procedure (from the same program) displays the sum in its proper order,
starting with the high-order byte, and working its way down to the low-order byte:

Display_Sum PROC
pushad
; point to the last array element
add esi,ecx
sub esi,TYPE BYTE
mov ebx,TYPE BYTE

Ll:

mov al, [esi]

call WriteHexB

sub esi,TYPE BYTE
loop L1

popad
ret

Display_Sum ENDP

7.5.3 SBB Instruction
The SBB (subtract with borrow) instruction subtracts both a source operand and the value of the
Carry flag from a destination operand. The possible operands are the same as for the ADC
instruction. The following example code performs 64-bit subtraction. It sets EDX:EAX to
0000000700000001h and subtracts 2 from this value. The lower 32 bits are subtracted first,
setting the Carry flag. Then the upper 32 bits are subtracted, including the Carry flag:

mov
mov
sub
sbb

edx, 7
eax, 1l
eax, 2
edx, 0

’

’

7

7
’
7

i

get an array byte
display it
point to previous byte

upper half
lower half
subtract 2
subtract upper half

Figure 7-2 demonstrates the movement of data during the two subtraction steps. First, the value
2 is subtracted from EAX, producing FFFFFFFFh in EAX. The Carry flag is set because a bor-
row is required when subtracting a larger number from a smaller one. Next the SBB instruction
subtracts both 0 and the contents of the Carry flag from EDX.
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Figure 7-2

Subtracting from a 64-bit Integer Using SBB.
EDX EAX
before: | 00000007 | 00000001 |

EAX EAX

SUB EAX,2 | 00000001 | - | 00000002 | FFFFFFFF
EDX EDX

— _ Carry

SBB EDX.0 | 00000007 | — | 00000000 | o 100000006

EDX EAX

after: |OOOOOOO6| FFFFFFFF |

7.5.4 Section Review
1. Describe the ADC instruction.
2. Describe the SBB instruction.
3. What will be the values of EDX:EAX after the following instructions execute?

mov
mov
add
adc

edx, 10h

eax, 0A0000000h
eax,20000000h
edx, 0

4. What will be the values of EDX:EAX after the following instructions execute?

mov
mov
sub
sbb

edx,100h

eax, 80000000h
eax, 90000000h
edx, 0

5. What will be the contents of DX after the following instructions execute (STC sets the
Carry flag)?

mov
stc
mov
adc

dx, 5

; set Carry flag
ax,10h
dx, ax

6. Challenge: The following program is supposed to subtract val2 from vall. Find and correct
all logic errors (CLC clears the Carry flag):

.data

vall QWORD 20403004362047A1h
val2 QWORD 055210304A2630B2h
result QWORD O

.code
mov Cx,8 ; loop counter
mov esi,vall ; set index to start

mov edi,val2
clc ; clear Carry flag
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top:
mov al,BYTE PTR[esi] ; get first number
sbb al,BYTE PTR[edi] ; subtract second
mov BYTE PTR[esi], al ; store the result

dec esi
dec edi
loop top

7.6 ASCIl and Unpacked Decimal Arithmetic

The integer arithmetic shown so far in this book has dealt only with binary values. The CPU cal-
culates in binary, but is also able to perform arithmetic on ASCII decimal strings. The la